THE GRAPHICS PIPELINE (2): RENDERING OR ALGORITHMIC PROCESSES

Figure 6.23

BSP operations for

a four object scene.

(a) Constructing a BSP tree.
(b) Descending the tree
with the view point
coordinates gives

the nearest object.

(c) Evaluating a visibility
order for all objects.

(a)

) View point

(<)

(number of polygons per object) is much greater than scene complexity (num-
ber of objects per scene) and for the approach to be useful we have to deal with
polygons within objects rather than entire objects. Also there is the problem of
positioning the planes — itself a non-trivial problem. If the number of objects is
small then we can have a separating plane for every pair of objects - a total of
n? for an n object scene.

For polygon visibility ordering we can choose planes that contain the face
polygons. A polygon is selected and used as a root node. All other polygons are
tested against the plane containing this polygon and placed on the appropriate
descendant branch. Any polygon which crosses the plane of the root polygon is
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Figure 6.24
A BSP tree for polygons,

HIDDEN SURFACE REMOVAL

split into two constituents. The process continues recursively until all polygons
are contained by a plane. Obviously the procedure creates more polygons than
were originally in the scene but practice has shown that this is usually less than
a factor of two.

The process is shown for a simple example in Figure 6.24. The first plane cho-
sen, plane A, containing a polygon from object 1, splits object 3 into two parts.
The tree builds up as before and we now use the convention IN/OUT to say
which side of a partition an entity lies since this now has meaning with respect
to the polygonal objects.

Far to near ordering was the original scheme used with BSP trees. Rendering
polygons into the frame buffer in this order results in the so-called painter's algo-
rithm - near polygons are written ‘on top of’ farther ones. Near to far ordering
can also be used but in this case we have to mark in some way the fact that a
pixel has already been visited. Near to far ordering can be advantageous in
extremely complicated scenes if some strategy is adopted to avoid rendering
completely occluded surfaces, for example, by comparing their image plane
extents with the {already rendered) projections of nearer surfaces,

Thus to generate a visibility order for a scene we:

® Descend the tree with view point coordinates,

® At each node, we determine whether the view point is in front of or behind
the node plane.

@ Descend the far side subtree first and output polygons.
® Descend the near side subtree and output polygons.

This results in a back to front ordering for the polygons with respect to the cur-
rent view point position and these are rendered into the frame buffer in this
order. If this procedure is used then the algorithm suffers from the same effi-
ciency disadvantage as the Z-buffer — rendered polygons may be subsequently
obscured. However, one of the disadvantages of the Z-buffer is immediately over-
come. Polygon ordering allows the unlimited use of transparency with no addi-
tional effort. Transparent polygons are simply composited according to their
transparency value.
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Multi-pass rendering and accumulation buffers
The rendering strategies that we have outlined have all been single pass
approaches where a rendered image is composed by one pass through a graph.
ics pipeline. In Section 6.6.3 we looked at a facility that enabled certain opera.
tions on separately rendered images with «Z components to be combined. In
this section we will look at multi-pass rendering which means composing a sin-
gle image of a scene from a combination of images of that scene rendered by
passing it through the pipeline with different values for the rendering parame-
ters. This approach is possible due to the continuing expansion of hardware and
memory dedicated to rendering, manifested in texture mapping hardware which
has substantially increased the visual complexity of real time imagery generated
on a PC, and the availability of multiple screen resolution buffers such as a sten.
cil buffer and an accumulation buffer (as well as the frame buffer and Z-buffer),
The accumulation buffer is a simplified version of the A-buffer and the avail-
ability of such a facility has led to an expansion of the algorithms that employ
a multi-pass technique.

As the name implies, an accumulation buffer accumulates rendered images
and the standard operations are addition and multiplication combined into an
‘add with weight’ operation. In practice an accumulation buffer may have higher
precision than a screen buffer to diminish the effect of rounding errors. The use
of an accumulator buffer enables the effect of particular single pass algorithms
to be obtained by a number of passes. After the passes are complete the final
result in the accumulation buffer is transferred into the screen buffer.

The easiest example is the common anti-aliasing algorithm (see Section 14.7
for full details of this approach) which is to generate a virtual image, at n x the
resolution of the final image, then reduce this to the final image by using a
filter. The same effect can be obtained by jittering the view port and generating
n images and accumulating these with the appropriate weighting value which is
a function of the jitter value. In Figure 6.25, to generate the four images that are
required to sample each pixel four times we displace the view window through
a '/ pixel distance horizontally and vertically. To find this displacement we only
have to calculate the size of the view port in pixel units. (Note that this cannot
be implemented using the simple viewing system given in Chapter 5, which
assumes that the view window is always centred on the line through the view
point.)

In this case we only save on memory. However, in many instances an algo-
rithm implemented as a multi-pass rendering is of lower complexity than the
single pass equivalent. Additional examples of motion blur, soft shadows and
depth of field are given in Haeberli and Akeley (1990). These effects can be
achieved by distributed ray tracing as described in Chapter 10 and the marked
difference between the complexity of the two approaches is obvious.

To create a motion blurred image it is only necessary to accumulate a series of
images rendered while the moving objects in the scene change their position over
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Figure 6.25

Multi-pass super-sampling.
{a) Aliased image

{1 sample/pixel). (b) A one
component/pass of the
anti-aliased image (four
samples/pixel or four
passes). For this pass the
view point is moved up
and to the left by '/: pixel
dimension).

MULTI-PASS RENDERING AND ACCUMULATION BUFFERS

time. Exactly analogous to the anti-aliasing example, we are now anti-aliasing in
the time domain. There are two approaches to motion blur. We can display a sin-
gle image by averaging n images built up in the accumulation buffer. Alternatively
we can display an image for every calculated image by averaging over a window
of n frames moving in time. To do this we accumulate n images initially. At the
next step the frame that was accumulated n-1 frames ago is re-rendered and sub-
tracted from the accumulation buffer. Then the contents of the accumulation
buffer are displayed. Thus, after the initial sequence is generated, each time a
frame is displayed two frames have to be rendered - the (n - 1)th and the current
one.

Simulating depth of field is achieved (approximately) by jittering both the
view window as was done for anti-aliasing and the view point, Depth of field is
the effect seen in a photograph where, depending on the lens and aperture set-
ting, objects a certain distance from the camera are in focus where others nearer
and farther away are out of focus and blurred. Jittering the view window makes
all objects out of focus and jittering the view point at the same time ensures
objects in the equivalent of the focal plane remain in focus. The idea is shown
in Figure 6.26. A plane of perfect focus is decided on. View port jitter values and
view point perturbations are chosen so that a common rectangle is maintained
in the plane of perfect focus. The overall transformation applied to the view frus-
tum is a shear and translation. Again this facility cannot be implemented using
the simple view frustum in Section 5.2 which does not admit shear projections.
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Figure 6.26

Simulating depth of field by
shearing the view frustum
and translating the view
point.

View point

T

View plane

Plane of perfect focus

Soft shadows are easily created by accumulating n passes and changing the
position of a point light source between passes to simulate sampling of an area
source. Clearly this approach will also enable shadows from separate light
sources to be rendered.
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Slmulating Iight—ob]ect
interaction: local reflection
models

7.1 Reflection from a perfect surface

7.2 Reflection from an imperfect surface

7.3 The bi-directional reflectance distribution function

7.4 Diffuse and specular components

7.5 Perfect diffuse — empirically spread specular reflection (Phong)
7.6 Physically based specular reflection

7.7 Pre-computing BRDFs

7.8 Physically based diffuse component

Introduction

Local reflection models, and in particular the 'hong model (introduced in Chapter
5), have been part of mainstream rendering since the mid-1970s. Combined with
interpolative shading of polygons, local reflection models are incorporated in
almost every conventional renderer. The obvious constraint of locality is the
strongest disadvantage of such models but despite the availability of ray tracers and
radiosity renderers the mainstream rendering approach is still some variation of the
strategy described earlier - in other words a local reflection model is at the heart of
the process. However, nowadays it would be difficult to find a renderer that did not
have ad hoc additions such as texture mapping and shadow calculation (see
Chapters 8 and 9). Texture mapping adds interest and variety, and geometrical
shadow calculations overcome the most significant drawback of local models.
Despite the understandable emphasis on the development of global models,
there has been some considerable research effort into improving local reflection
models. However, not too much attention has been paid to these, and most
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@Tr e

renderers still use the Phong model: in one sense a tribute to the efficacy and
simplicity of this technique, in another, an unfortunate ignoring of the real
advances that have been made in this area.

An important point concerning local models is that they are used in certain
global solutions. As will be discovered in Chapter 12, most simple ray tracers are
hybrid models that combine a local reflection model with a global ray traced
model. A local model is used at every point to evaluate a contribution that is due
to any direct illumination that can be seen from that point. To this is added a
(ray traced) component that accounts for indirect illumination. {In fact, this is
inconsistent because different parameters are used for the local and global con-
tribution, but it is a practice that is widely adopted.)

In this chapter we will look at a representative selection of local models, delv-
ing into such questions as: how do we simulate the different light reflection
behaviour between, say, shiny plastic and metal that is the same colour? We can
usually perceive such subtle differences in real objects and it is appropriate that
we should be able to simulate them in computer graphics.

The foundation of most local reflection models involves an empirical or imi-
tative approach in which we devise an easily evaluated function to imitate reflec-
tion of light from a surface or the theory of reflection from a perfect surface
together with the simulation of an imperfect surface.

SRS ) AR L LR g L et W RS PR S i PO T e PR R ark SR R T AR e b Sl i Bt LR ]
Reflection from a perfect surface

We begin by examining the behaviour of light incident on an optically smooth
surface — a perfect mirror. This is determined by the Fresnel formulae - them-
selves derived from Maxwell's wave equations. This is the source of the ray trac-
ing formulae given in Section 1.4.6. The formula is a coefficient that relates the
ratio of reflected and transmitted energy as a function of incident direction,
polarization and the properties of the material. Assuming for simplicity that the
light is unpolarized (the approach usually taken in computer graphics) and trav-
elling through air (approximated as a vacuum) and assuming that a factor
known as the extinction coefficient (see Section 7.6.4) is zero we have:

sin® (9 — @) tan® (¢ — 6)

1
k=75 sin (6 +8)  tan? (6 + 6)

[7.1]

where:

¢ is the angle of incidence
6 is the angle of refraction
sin 8 = sing/p (where p is the refractive index of the material)

These angles are shown in Figure 7.1. F is minimum, that is most light is
absorbed when ¢ = 0 or normal incidence. No light is absorbed by the surface
and F is equal to unity for ¢ = n/2. The wavelength dependent property of F
comes from the fact that p is a function of wavelength.
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Figure 7.1

The Fresnel equation.

(a) Angles in the Fresnel
equation. (b) Two examples
showing the behaviours of
the equation.
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Reflection from an im;ﬁerféct surface

In practice, surfaces are not optically perfect. With the exception of glass or still
water, surfaces exhibit a microgeometry. We can, however, still use the Fresnel
equation if we incorporate it in a model that simulates the microgeometry.
Figure 7.2 shows one way of doing this — we consider the surface to be a collec-
tion of microfacets which are for simplicity considered as symmetric V-shaped
pits. Over a small region we can describe the reflection of light incident on a rep-
resentative region of such grooves to form a lobe which we can parametrize.

Of course, surface microgeometry is not the only imperfection that occurs in
reality. For example, shiny metal surfaces age and acquire a film of dirt as well as
large imperfections like scratches. This kind of ‘real’ surface is much more diffi-
cult to model and it has to be emphasized that a surface whose microgeometry
is modelled in the way described is still assumed to be perfectly clean - an
unlikely practical event.
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Figure 7.2

Simulating a rough surface
with a collection of
microfacets each considered
as a perfect mirror,

(a) Modelling a surface as

a collection of Veshaped
grooves, (b) Reflection lobes
for different values of min a
Gaussian distribution,

) Average surface
1' normal

Distribution of
microfacet orientation

Average surface
normal origntation

Symmetric V-shaped
grooves = ‘microfacets’

(a)

Gaussian, m = 0,2 Gaussian, m = (06

(b)

The bi-directional reflectance distribution function

In general, light reflected from a point on the surface of an object is categorized
by a bi-directional reflection distribution function, or BRDF. This term empha-
sizes that the light reflected in any particular direction (in computer graphics
we are mostly interested in light reflected along the viewing direction V) is a
function not only of this direction but also of the direction of the incoming
light. A BRDF can be written as:

BEDF = r(Hm, ¢|m. ﬁe.-r, ¢'rr|}= ﬂf—,w

and many models used in computer graphics differ amongst themselves accord-
ing to which of these dependencies are simulated. Figure 7.3 shows these angles
together with a BRDF computed for a particular set of angles. The rendered BRDF
shows the magnitude of the reflected light (in any outgoing direction) for an
infinitely thin beam of light incident in the direction shown. In practice, light
may be incident on a surface point from more than one direction and the total
reflected light would be obtained by considering a separate BRDF for each
incoming light beam and integrating.
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THE BI-DIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION

b

@ (b}
Figure 7.3 For many years computer graphics has worked with simple, highly constrained
::'d”'?(““["‘;'f;:;l:'hl" BRDFs such as that shown in Figure 7.3. Figure 7.4 gives an idea of the difference

netion. (2 relates L . .

light incident in direction betweren Sur:h_ computer graphics _models and what a'f.‘TU-ElllY happens in pracnj:e.
L to light reflected along The illustrations are cross-sections of the BRDF in the plane contain-
direction ¥ as a function of ing L and R, the mirror direction for different angles of 8, the angle of incidence
the angles Ba, §un, Brel, frer- {and reflection). In particular, note the great variation in the shape of the reflec-

(b} An example of a BROF. tion lobes as a function of the wavelength of the incident light, the angle of inci-
dence and the material. In the case of aluminium we see that it can behave either
like a mirror surface or a directional diffuse surface depending on the wavelength
of the incident light. When we also take into account that, in practice, incident
light is never monochromatic (and we thus need a separate BRDF for each wave-
length of light that we are considering) we see that the behaviour of reflected
light is a far more complex phenomenon than we can model by using simple
approximations like the Phong model at three wavelengths.

An important distinction that has to be made is between isotropic and
anisotropic surfaces. An isotropic surface exhibits a BRDF whose shape is inde-
pendent of the incoming azimuth angle ¢ (Figure 7.3). An anisotropic surface is,
for example, brushed aluminium or a surface that retains coherent patterns from
a milling machine. In the case of a brushed surface the magnitude of the specu-
lar lobe depends on whether the incoming light is aligned with the grain of the
surface or not.

Another complication that occurs in reality is the nature of the atmosphere.
Most BRDFs used in local reflection models are constrained to apply to light
reflected from opaque materials in a vacuum. We mostly do not consider any
scattering of reflected light in an atmosphere (in the same way that we do not
consider light scattered by an atmosphere before it reaches the object). The rea-
son for this is, of course, simplicity and the subsequent reduction of light inten-
sity calculations to simple comparisons between vectors categorizing surface
shapes, light directions and viewing direction.

We might imagine that if we have a BRDF for a material that the light—object
interaction is solved. However, a number of problems remain to this day despite
a quarter of a century of research. Some of these are:
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Figure 7.4

BRDF crass-section for
different materials and
wavelengths (after an
illustration by He et af.
{1991)).
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DIFFUSE AND SPECULAR COMPONENTS (211)

e Where do we get the BRDF from (particularly for real as opposed to perfect
materials)? Some data are available for some materials in the metallurgical
literature but this is by no means complete.

® At what scale do we attempt to represent a BRDF? What is the area of the
region that we should consider receives incident light? Should this be large
enough so that the statistical model is consistent over the surface? Should it
be large enough to include surface imperfections such as scratches? This is
very much an unaddressed problem.

® How do we represent the BRDF? This final point accounts for most variation
amongst models. In particular, the distinction between empirical and
physically based models is often made. An empirical model is one that
imitates light-object interaction. For example, in the Phong model a simple
mathematical function is used to represent the specular lobe. In the Cook
and Torrance model a statistical ditribution represents the surface geometry
and this is termed a physically based model (Cook and Torrance 1982). It is
interesting to note that there is no general agreement on the visual efficacy
of empirical versus physically based models. Often a better result can be
obtained by carefully tuning the parameters of an empirical model than by
using a physically based model.

What follows is a review of the early local reflection models and a short selec-
tion of more recent advances. In particular we start by looking at the defects
inherent in the Phong model and how these can be overcome. The material is
by no means a comprehensive review, but is intended as a representation of
these departures from the Phong model that have been simulated to provide
ever more subtle variations on the way in which light ‘paints” an object.

7.4 | Diffuse and specular components

Local reflection models used in computer graphics are normally considered as a
combination of a diffuse and a specular component. This works well for many
cases but it is a simplification. The simpler models of specular reflection consider
some imperfect behaviour to be a modification of perfect specular reflection.
Perfect specular reflection occurs when light strikes a perfect mirror surface and
a thin beam of light incident on such a surface reflects according to the well-
known law: the outgoing angle is equal to the angle of incidence, Perfect diffuse
reflection eccurs when incident light is scattered equally in all directions from a
perfect matte surface, which could in practice be a very fine layer of powder.
Combining separately calculated specular and diffuse components imitates the
behaviour of real surfaces and is an enabling assumption in many computer
graphics models. Imitating the subtle visual differences between real surfaces has
mostly been achieved by incorporating various effects into the specular compo-
nent as we shall now examine by looking at a selection of such madels. These
are:

L—_
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7.5

(1) The Phong model - perfect diffuse reflection combined with empirically
spread specular reflection {(Phong 1975).

(2) A physically based specular refection model developed by Blinn (1977) and
Cook and Torrance (1982).

(3) Pre-calculating BRDFs to be indexed during a rendering process Cabral et al,
(1987).

(4) A physically based diffuse model developed by Hanrahan and Kreuger (1993),

This selection is both an historical sample and an illustration of the diverse
approaches of researchers to local reflection models.

Perfect diffuse — empirically spread specular reflection (Phong 1975)

This is, in fact, the Phong reflection model. We have already discussed the prac-
ticalities of this, in particular, how it is integrated into a rendering system or
strategy. Here we will look at it from a more theoretical point of view that
enables a comparison with other direct reflection models.

The Phong reflection model accounts for diffuse reflection by Lambert's
Cosine Law, where the intensity of the reflected light is a function of the cosine
between the surface normal and the incoming light direction.

Phong used an empirically spread specular term. Here the idea is that a prac-
tical surface, say, shiny metal, reflects light in a lobe around the perfect mirror
direction because it can be considered to be made up of tiny mirrors all oriented
in slightly different directions, instead of being made up of a perfectly smooth
mirror that takes the shape of the object. Thus the coarseness or roughness of the
(shiny) surface can be simulated by the index n - the higher n is, the tighter the
lobe and the smoother the surface. All surfaces simulated by this model have a
plastic-like appearance.

Geometrically, in three-dimensional space the model produces a cone of rays
centred on R whose intensity drops off exponentially as the angle between the
ray and R increases.

A more subtle aspect of real behaviour, and one that accounts for the differ-
ence in the look of plastic and shiny metal, is missing entirely from this model.
This is that the amount of light that is specularly reflected depends on the ele-
vation angle 8, {Figure 7.3) of the incoming light. Drive a car into the setting sun
and you experience a blinding glare from the road surface - a dull surface at mid-
day with little or no specular component. [t was to account for this behaviour,
which for any object accounts for subtle changes in the shape of a highlight as
a function of the incoming light direction, that an early local reflection model,
based on a physical microfacet simulation of the surface, emerged.

We can say that, although the direction of the specular bump in the Phong
maodel depends on the incident direction - the specular bump is symmetrically
disposed about the mirror direction - its magnitude does not vary and the Phong
model implements a BRDF ‘reduced’ to:

| A
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BRDF = f{Beet, threr)

The BRDF shown in Figure 7.3 was calculated using the Phong reflection model.

ST L L R NI MR N W R T A o Y e R T T R N T o e N G R S e e g
Physlcally based specular reflection (Blinn 1977; Cn:mk
and Torrance 1982)

Two years after the appearance of Phong's work in 1975, . Blinn (1977) pub-
lished a paper describing how a physically based specular component could be
used in computer graphics. In 1982, Cook and Torrance extended this model to
account for the spectral composition of highlights - their dependency on mate-
rial type and the angle of incidence of the light. These advances have a subtle
effect on the size and colour of a highlight compared with that obtained from
the Phong model. The model still retains the separation of the reflected light
into a diffuse and specular component, and the new work concentrates entirely
on the specular component, the diffuse component being calculated in the same
way as before. The model is most successful in rendering shiny metallic-like sur-
faces, and through the colour variation in the specular highlight being able to,
for example, render similarly coloured metals differently.

The problem of highlight shape is quite subtle. A highlight is just the image
of a light source or sources reflected in the object. Unless the object surface is pla-
nar, this image is distorted by the object, and as the direction of the incoming
light changes, it falls on a different part of the object and its shape changes.
Therefore we have a highlight image whose overall shape depends on the cur-
vature of the object surface over the area struck by the incident light and the
viewing direction, which determines how much of the highlight is visible from
the viewing direction, These are the primary factors that determine the shape of
the patches of bright light that we see on the surface of an object and are easily
calculated by using the Phong model.

The secondary factors which determine the highlight image are the depen-
dence of its intensity and colour on the angle of incoming light with respect to
a tangent plane at the point on the surface under consideration. This identifies
the nature of the material to us and enables us to distinguish between metallic
and non-metallic objects.

Curiously, despite producing more accurate highlights, these models were not
taken up by the graphics community and the cheaper and simpler Phong model
remained the more popular, as indeed it does to this day. The possible reason for
this is that the differences produced by the more elaborate models are subtle.
Objects rendered by the Phong model, although inaccurate and incorrect in
highlight rendering, produce objects that look real. In most graphics applica-
tions, then and now, this is all that is required. Photo-realism, the much stated
goal, of three-dimensional computer graphics, depends on very many factors
other than local reflection models. To make objects look more real, only in this
manifestly narrow sense, was perhaps not deemed to be worth the cost.
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7.6.1

7.6.2

What is meant by a physical simulation in the context of light reflection is
that we attempt to model the micro-geometry of the surface that causes the light
ta reflect, rather than simply imitating the behaviour, as we do in the Phong
maodel, with an empirical term.

This early simulation of specular highlights has four components, and is
based on a physical microfacet model consisting of symmetric V-shaped grooves
occurring around an average surface (Figure 7.2). We now describe each of these
components in turn.

Modelling the micro-geometry of the surface

A statistical distribution is set up for the orientation of the microfacets and this
gives a term I} for the light emerging in a particular (viewing) direction. A sim-
ple Gaussian can be used:

D =k exp[-(c/m)?)]

where o is the angle of the microfacet with respect to the normal of the (mean)
surface, that is the angle between N and H, and m is the standard deviation of
the distribution. Evaluating the distribution at this angle simply returns the
number of microfacets with this orientation, that is the number of microfacets
that can contribute to light emerging in the viewing direction. Two reflection
lobes for m = 0.2 and 0.6 are shown in Figure 7.2(b).

Using microfacets to simulate the dependence of light reflection on surface
roughness makes two enabling assumptions:

(1) Itis assumed that the microfacets, although physically small, are large with
respect to the wavelength of light,

(2) The diameter of the incident beam is large enough to intersect a number of
microfacets that is sufficient to result in representative behaviour of the
reflected light.

In BRDF terms this factor controls the extent to which the specular role bulges.

Shadowing and masking effects

Where the viewing vector, or the light orientation vector begins to approach the
mean surface, interference effects occur. These are called shadowing and mask-
ing. Masking occurs when some reflected light is trapped and shadowing when
incident light is intercepted, as can be seen from Figure 7.5.

The degree of masking and shadowing is dependent on the ratio li/l2 (Figure
7.5(b}) which describes the proportionate amount of the facets contributing to
reflected light that is given by:

G=1-h/
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Figure 7.5
The interaction of light with

a microfacet reflecting
surface. (a) Shadowing and
masking. (b) Amount of
light which escapes depends
on 1= hil.
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7.6.4

In the case where I reduces to zero then all the reflected light escapes and:
G=1

A detailed derivation of the dependence of i/l; on L, V and H was given by
Blinn (1977). For masking:

Gm = 2(N-H)(N-V)/ V-H

For shadowing the situation is geometrically identical with the role of the vec-
tors L and V interchanged. For masking we have:

G = Z(N-HY(N-L)/V-H
The value of G that must be used is the minimum of G; and Gw. Thus:

(r = min [1, Gs. Gm}

Viewing geometry

Another pure geometric term is implemented to account for the glare effect
mentioned in Section 7.5. As the angle between the view vector and the mean
surface normal is increased towards 90°, an observer sees more and more micro-
facets and this is accounted for by a term:

1I/N-V

that is, the increase in area of the microfacets seen by a viewer is inversely pro-
portional to the angle between the viewing direction and the surface normal, If
there is incident light at a low angle then more of this light is reflected towards the
viewer than if the viewer was intercepting light from an angle of incidence close
to normal. This effect is countered by the shadowing effect which comes into play
also as the viewing orientation approaches the mean surface orientation.

The Fresnel term

The next term to consider is the Fresnel term, F (see Section 7.1). This term con-
cerns the amount of light that is reflected as opposed to being absorbed - a
factor that depends on the material type considered as a perfect mirror surface -
which our individual microfacets are. In other words we now consider behaviour
for a perfect planar surface having previously modelled the entire surface as a set
of such microfacets which individually behave as perfect mirrors. This factor
determines the strength of the reflected lobe as a function of incidence angle and
wavelength. The wavelength dependence accounts for subtle colour effects in
the specular highlight.

The coefficients required to calculate F for any angle of incidence are not usu-
ally known and Cook and Torrance {1982) suggest a practical compromise which

| - ,

0237




R T T

PHYSICALLY BASED SPECULAR REFLECTION

is to use known (measured) values of Fo - the value of F at normal incidence -
to calculate p then to use Equation 7.1 to evaluate F for any angle of incidence.
At normal incidence, Equation 7.1 reduces to:

_ -1y
S w1y

(u is, in fact, complex and contains an imaginary term - the extinction coeffi-
cient. This is zero for dielectrics — plastics, for example — and it is also zero for
conductors, for metals at normal incidence; and it can thus be ignored for both
categories of materials at normal incidence.)

Another way of calculating F for any incidence angle from Fo is due to Schlick
(1993) and is the formula:

Fo

Fs=Fo+ (1 - cos ¢)*(1 - Fo)

The practical effect of this term is to account for subtle changes in colour of the
specular highlight as a function of angle of incidence. For any material, when
the light is incident at an angle nearly parallel to the surface then the colour of
the highlight approaches that of the light source. For other angles the colour
depends on both the angle of incidence and the material. An example of this
dependency is shown for polished copper in Figure 7.6.

The effect of this term is to cause the reflected intensity to increase as the
angle of incidence increases (just as did the previous term 1/N-V) - less light
is absorbed by the material and more is reflected. (A more subtle effect is that
the peak of the specular lobe shifts away from the perfect mirror direction as the
angle of incidence increases - see Figure 7.7.)

Thus putting these together the specular term now becomes:

specular component = DGF/(N-V)
where:

[ is the micro-geometry term

G is the shadowing/masking term
F is the Fresnel term

(N-¥) is the glare effect term

Summarizing we have:

{1) A factor that models reflected light intensity as a function of the physical
nature of the surface to within the approximations of the geometric
simulation.

(2) Two interacting factors that simulate the behaviour of the ‘glare’ effect
which occurs when light is incoming at a high angle (with respect to N, the
surface normal) of incidence.

(3) A factor that relates the reflected light intensity at each (perfect mirror)

microfacet to the electro-optical properties of the material. This is a function
of the direction of the incoming light and controls subtle second order

0238



SIMULATING LIGHT-OBJECT INTERACTION: LOCAL REFLECTION MODELS

Figure 7.6

Fresnel equation and
polished copper.
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effects concerning the shape and the colour of the highlight. This effect is
important when trying to simulate the difference between, say, shiny plastic
and metals. Gold, for example, exhibits yellow highlights when illuminated
with white light and the highlight only tends to white when the light grazes
the surface,

The specular term is separately calculated and combined with a uniform diffuse
term:

BRDF = sR. + dRy  {where s + d = 1)

For example, metals are simulated, usually with @ = 0 and s = 1 and shiny plas-
tics with d = 0.9 and 5 = 0.1. Note that if d is set to zero tor metals the specular
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PRE-COMPUTING BROFs

Figure 7.7 term controls the colour of the object over its entire surface. Compare this with

BROFs for different angles the Phong reflection model where the colour of the object is always controlled

:%;;j;n:c:;;he sline by the diffuse component. The Phong model, because of this, is incapable of pro-
ducing metallic looking surfaces and all surfaces rendered using Phong have a
distinct plastic look.

In this model the reflected light intensity depends on the elevation angle of
the incoming light but the model is independent of the azimuth angle of the
incident light. Whatever the azimuthal direction of the incoming light, it
encounters the same statistical distribution of long, parallel, symmetric V-shaped
grooves (a somewhat impossible situation in practice). Thus:

BRDOF = fiBin, B, Grer)

A pair of BRDFs for a low and high angle of incidence are shown in Figure 7.7.
This shows a specular lobe increasing in value (and also moving away from the
mirror reflection direction) as the angle of incidence is increased towards the
grazing angle. Figure 7.8 (Colour Plate) gives an idea of the variety of object
appearances that can be achieved using this model.

7.7 _. Pre-computing BRDFs

One of the main inadequacies of the previous approach is that it cannot be used
to model anisotropic surfaces. Many surfaces exhibit anisotropy reflection char-
acteristics. Cloth and ‘brushed’ metal used in ‘decorative’ engineering applica-
tions — like car wheels - are two examples. Consider cloth, for example: this
exhibits anisotropic reflection because it is made up of parallel threads with
circular cross-sections. Fach thread scatters light narrowly when the incident
light is in a plane parallel to the direction of the thread, and more widely when
the incident plane is parallel to the circular cross-section of the thread. The two
3 popular approaches to including anisotropic behaviour in BRDFs have been to
set up special surface models - usually based on cylinders - and pre-calculation.

In 1987 a model (Cabral et al. 1987) was reported that could deal with
the dependence of the azimuth angle of the incoming light. The model pre-

_
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Figure 7.9

Modelling a surface with
height-field perturbed
triangular microfacets.

calculates a BRDF for each L represented by a hemisphere divided into bing
indexed by V. The BRDF is calculated by ray tracing for each incoming direction
a bundle of parallel, randomly positioned rays as they strike the surface angd
reflect to hit the surrounding hemisphere. The dependency of the BRDF an
angles is then:

BRDF = ﬂBIm ¢|n, ﬂ:rh ¢Jt1'j

The BRDF is generated by firing rays or beams onto a surface element that
encompasses a sufficiently large area of the microsurface. The surface element is
madelled by an array or grid of triangular microfacets. The rays that hit the ele-
ment without being shadowed and emerge without being masked make a con-
tribution to the BRDF, and the complete function is the sum of all such
contributions. This information is built up by dividing a hemisphere into a num-
ber of cells or bins. A representation of this process is shown in Figure 7.9. The
surface microfacets are perturbed out of the mean plane by a bump map as the
figure suggests. Note that an advantage of this approach is that there is no
restriction on the small-scale geometry - the microfacets do not need to form a
Gaussian distribution, for example.

Hemisphere surrounding microsurface element
is divided into 24 x 24 cells

Triangular
microfacets

Veriex heights
perturbed by
a bump map
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PHYSICALLY BASED DIFFUSE COMPOMNENT @

The BRDF is then a coarsely sampled version of a continuous BRDF. The pre-
calculation is built up by considering each cell to be a source of incoming light
and calculating the resulting reflection into the hemisphere. When a surface is
being rendered the hemisphere closest to the angle of incident light is selected.
The north pole of this distribution then has to be aligned with the surface nor-
mal at the point and the pre-calculated BRDF then gives the reflected intensity
in the viewing direction.

TR TR e R N A T T e D s O] R T

Physically based diffuse cﬁmponent (Hanrahan and Kreuger 1993)

Until fairly recently local reflection models in computer graphics have concen-
trated almost exclusively on the specular component of reflected light and, as we
have seen, these have been based on physical microsurface modelling.

Diffuse light is usually modelled on Lambert’s Cosine Law which assumes that
reflected light is isotropic and proportional in intensity to the cosine of the angle
of incidence. Surface simulations of diffuse light are not possible because diffuse
reflection originates from light that actually enters the material. This component
is absorbed and scattered within the reflecting material. The wavelength-
dependent absorption accounts for the colour of the material - incident white
light is, in effect, filtered by the material. It is the multiple scattering within the
material that causes the emerging light to be (approximately) isotropic. Thus a
physical simulation of diffuse reflection would have to be based on subsurface
scattering.

We could ask the question: what is wrong with sticking with Lambert’s Law?
The answer to this would be the same as the motivation for the development of
physically based specular models — there are subtle effects produced by diffusely
reflecting light that are responsible for the distinctive look of certain materials.
Recent work by Hanrahan and Kreuger (1993) develops a physically based model
for diffuse reflection that the authors claim is particularly appropriate for layered
materials appearing in nature, such as biological tissues (skin, leaves and so on)
and inorganic substances like snow and sand. The outcome of the model is, of
course, anisotropy - reflecting the fact that very few real materials exhibit
isotropic diffuse behaviour.

Hanrahan and Kreuger specify the reflected light from a point on the surface as

Le= Lo+ Liv

where L. is the reflected light due to surface scattering - imperfect specular
reflection - and Lw is the reflected light that is due to subsurface scattering. The
algorithm that determines the subsurface scattering is based on a 1D transport
model solved using a Monte Carlo approach. The details are outside the scope of
this text; more important for our purposes is a conceptual understanding of the
advances made by these researchers and their visual ramifications.

The combination of those two components produces anisotropic behaviour
because of a number of factors that we will now describe. First, consider the angle
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Figure 7.10

Reflection behaviour due to
Hanrahan and Kreuger's
model {after Hanrahan and
Kreuger (1993)).

Surface specular
= ft-.@__ ._XL_ _ % reflection

Subsurface reflection
and transmission

Sum of surface and
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. _ modulated by the
D ()

Fresnel coefficients

of incidence of the light. For a plane surface the amount of light entering the sur-
face depends on Fresnel’s law — the more light that enters the surface, the higher
will be the contribution or influence from subsurface events to the total reflected
light L.. So the influence of L depends on the angle of incidence. Subsurface scat-
tering depends on the physical properties of the material. A material is modelled
by a suspension of scattering sites or particles and parametrized by absorption
and scattering cross-sections. These express the probability of occurrence per unit
path length of scattering or absorption. The relative size of these parameters
determines whether the scattering is forward, backward or isotropic.

The effect of these two factors is shown, for a simple case, in Figure 7.10. The
first row shows high/low specular reflection as a function of angle of incidence,
The behaviour of reflected light is dominated by surface scattering or specular
reflection when the angle of incidence is high and by subsurface scattering when
the angle of incidence is low. As we have seen, this behaviour is modelled, to
a certain extent, by the Cook and Torrance model of Section 7.6. The second
row shows reflection lobes due to subsurface scattering and it can be seen that
materials can exhibit backward, isotropic or forward scattering behaviour. (The
bottom lobes do not, of course, contribute to L, but are nevertheless important
when considering materials that are made up of multiple layers and thin translu-
cent materials that are backlit.) The third row shows that the combination of L«
and L will generally result in non-isotropic behaviour which exhibits the fol-
lowing general attributes:

® [leflection increases as material layer thickness increases due to increased
subsurface scattering.
® Subsurface scattering can be backward, isotropic or forward.

® Reflection from subsurface scattering tends to produce functions that are
flattened on top of the lobe compared with the (idealized) hemisphere of
Lambert's law.

Such factors result in the subtle differences between the model and Lambert's law.
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Mapping techniques

8.1 Two-dimensional texture maps to polygon mesh objects

8.2 Two-dimensional texture domain to bi-cubic parametric patch
objects

8.3 Billboards

8.4 Bump mapping

8.5 Light maps

8.6 Environment or reflection mapping

8.7 Three-dimensional texture domain techniques
8.8 Anti-aliasing and texture mapping

8.9 Interactive techniques in texture mapping

Introduction

In this chapter we will lock at techniques which store information (usually) in a
two-dimensional domain which is used during rendering to simulate textures.
The mainstream application is texture mapping but many other applications are
described such as reflection mapping to simulate ray tracing. With the advent of
texture mapping hardware the use of such facilities to implement real time ren-
dering has seen the development of light maps. These use the texture facilities
to enable the pre-calculation of (view independent) lighting which then
‘reduces’ rendering to a texture mapping operation.

Texture mapping became a highly developed tool in the 1980s and was the
technique used to enhance Phong shaded scenes so that they were more visually
interesting, looked more realistic or esoteric. Objects that are rendered using
only Phong shading look plastic-like and texture mapping is the obvious way to
add interest without much expense.

Texture mapping developed in parallel with research into global illumination
algorithms - ray tracing and radiosity (see Chapters 10, 11 and 12). It was a
device that could be used to enhance the visual interest of a scene, rather than
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its photo-realism and its main attraction was cheapness - it could be grafted
onto a standard rendering method without adding too much to the processing
cost. This contrasted to the global illumination methods which used completely
different algorithms and were much more expensive than direct reflection
models.

Another use of texture mapping that became ubiquitous in the 1980s was to
add pseudo-realism to shiny animated objects by causing their surrounding
environment to be reflected in them. Thus tumbling logos and titles became
chromium and the texture reflected on them moved as the objects moved. This
technique - known as environment mapping - can also be used with a real pho-
tographed environment and can help to merge a computer animated object with
a real environment. Environment mapping does not accomplish anything that
could not be achieved by ray tracing - but it is much more efficient. A more
recent use of environment mapping techniques is in image-based rendering
which is discussed in Chapter 16.

As used in computer graphics, ‘texture’ is a somewhat confusing term and
generally does not mean controlling the small-scale geometry of the surface of a
computer graphics object - the normal meaning of the word. It is easy to mod-
ulate the colour of a Phong shaded object by controlling the value of the three
diffuse coefficients and this became the most common object parameter to be
controlled by texture mapping. (Colour variations in the physical world are not,
of course, generally regarded as texture.) Thus as the rendering proceeds at pixel-
by-pixel level, we pick up values for the Phong diffuse reflection coefficients and
the diffuse component (the colour) of the shading changes as a function of the
texture map(s). A better term is colour mapping and this appears to be coming
into common usage.

This simple pixel-level operation conceals many difficulties and the geometry
of texture mapping is not straightforward. As usual we make simplifications that
lead to a visually acceptable solution. There are three origins to the difficulties:

(1) We mostly want to use texture mapping with the most popular representation
in computer graphics - the polygon mesh representation. This, as we know, is
a geometric representation where the object surface is approximated, and this
approximation is only defined at the vertices. In a sense we have no surface -
only an approximation to one - so how can we physically derive a texture
value at a surface point if the surface does not exist?

(2) We want to use, in the main, two-dimensional texture maps because we
have an almost endless source of textures that we can derive by frame-
grabbing the real world, by using two-dimensional paint software or by
generating textures procedurally. Thus the mainstream demand is to map a
two-dimensional texture onto a surface that is approximated by a polygon
mesh. This situation has become consolidated with the advent of cheap
texture mapping hardware facilities.

(3) Aliasing problems in texture mapping are usually highly visible. By
definition textures usually manifest some kind of coherence or periodicity.
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Aliasing breaks this up and the resulting mess is usually high visible. This
effect occurs as the periodicity in the texture approaches the pixel
resolution.

We now list the possible ways in which certain properties of a computer

graphics model can be modulated with variations under control of a texture
map. We have listed these in approximate order of their popularity (which also
tends to relate to their ease of use or implementation). These are:

(1

(2)

(3)

(4)

(5)

Colour As we have already pointed out, this is by far the most common
object property that is controlled by a texture map. We simply modulate the
diffuse reflection coefficients in the Phong reflection model with the
corresponding colour from the texture map. (We could also change the
specular coefficients across the surface of an object so that it appears shiny
and matte as a function of the texture map. But this is less common, as
being able to perceive this effect on the rendered object depends on
producing specular highlights on the shiny parts if we are using the basic
Phong reflection model.)

Specular ‘colour’ This technique - known as environment mapping or
chrome mapping - is a special case of ray tracing where we use texture map
techniques to avoid the expense of full ray tracing. The map is designed so
that it looks as if the (specular) object is reflecting the environment or
background in which it is placed.

Normal vector perturbation This elegant technique applies a
perturbation to the surface normal according to the corresponding value in
the map. The technique is known as bump mapping and was developed by
a famous pioneer of three-dimensional computer graphic techniques -
J. Blinn. The device works because the intensity that is returned by a Phong
shading equation reduces, if the appropriate simplifications are made, to a
function of the surface normal at the point currently being shaded. If the
surface normal is perturbed then the shading changes and the surface that
is rendered looks as if it is textured. We can therefore use a global or general
definition for the texture of a surface which is represented in the database as
a polygon mesh structure.

Displacement mapping Related to the previous technique, this
mapping method uses a height field to perturb a surface point along the
direction of its surface normal. It is not a convenient technique to
implement since the map must perturb the geometry of the model rather
than modulate parameters in the shading equation.

Transparency A map is used to control the opacity of a transparent
object. A good example is etched glass where a shiny surface is roughened
(to cause opacity) with some decorative pattern,

There are many ways to perform texture mapping. The choice of a particular
method depends mainly on time constraints and the quality of the image
required. To start with we will restrict the discussion to two-dimensional texture
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Figure B.1

Two ways of viewing the
process of two-dimensional
texture mapping.

(a) Forward mapping.

{B) Inverse mapping.

maps — the most popular and common form - used in conjunction with poly.
gon mesh objects. (Many of the insights detailed in this section are based on
descriptions in Heckbert's (1986) defining work in this area.)

Mapping a two-dimensional texture map onto the surface of an object then
projecting the object into screen space is a two-dimensional to two-dimensional
transformation and can thus be viewed as an image warping operation. The most
common way to do this is to inverse map - for each pixel we find its corre-
sponding ‘pre-image’ in texture space (Figure B.1(b)). However, for reasons that
will shortly become clear, specifying this overall transformation is not straight.
forward and we consider initially that texture mapping is a two-stage process
that takes us from the two-dimensional texture space into the three-dimensional
space of the object and then via the projective transform into two-dimensional
screen space (Figure 8.1(a)). The first transformation is known as parametrization
and the second stage is the normal computer graphics projective transformation,
The parametrization associates all points in texture space with points on the
object surface.

The use of an anti-aliasing method is mandatory with texture mapping. This
is easily seen by considering an object retreating away from a viewer so that its
projection in screen space covers fewer and fewer pixels. As the object size
decreases, the pre-image of a pixel in texture space will increase covering a larger
area. If we simply point sample at the centre of the pixel and take the value of
Tiu, v) at the corresponding point in texture space, then grossly incorrect results
will follow (Figure 8.2(a), (b) and (c)). An example of this effect is shown in Figure
8.3. Here, as the chequerboard pattern recedes into the distance, it begins to break
up in a disturbing manner. These problems are highly visible and move when ani-
mated. Consider Figure 8.2(b) and (c). Say, for example, that an object projects
onto a single pixel and moves in such a way that the pre-image translates across
the T{u, v). As the object moves it would switch colour from black to white.

Texture space Objpect space Screen space
{8, V) (¥w, Yo Tu) (£

\
Pre-image” of pixel
(b}
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Figure 8.2
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Anti-aliasing in this context then means integrating the information over the
pixel pre-image and using this value in the shading calculation for the current
pixel (Figure 8.2(d)). At best we can only approximate this integral because

we have no knowledge of the shape of the quadrilateral, only its four corner
points.
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Figure 8.3
Aliasing in texture mapping.

The pattern in (b) is a super-

sampled (anti-aliased)
version of that in (a). Allases
still occur but appear at a
higher spatial frequency.

Two-dimensional texture maps to polygon mesh objects

The most popular practical strategy for texture mapping is to associate, during
the modelling phase, texture space coordinates (4, ¥) with polygon vertices. The
task of the rendering engine then is to find the appropriate (i, v) coordinate for
pixels internal to each polygon. The main problem comes about because the
geometry of a polygon mesh is only defined at the vertices - in other words there
is no analytical parametrization possible. (If the object has an analytical defini-
tion - a cylinder, for example - then we have a parametrization and the map-
ping of the texture onto the object surface is trivial,)

There are two main algorithm structures possible in texture mapping, inverse
mapping (the more common) and forward mapping. (Heckbert refers to these as
screen order and texture order algorithms respectively.) Inverse mapping (Figure
8.1(b)) is where the algorithm is driven from screen space and for every pixel we
find by an inverse mapping its ‘pre-image’ in texture space. For each pixel we
find its corresponding (4, v) coordinates. A filtering operation integrates the
information contained in the pre-image and assigns the resulting colour to the
pixel. This algorithm is advantageous if the texture mapping is to be incorpo-
rated into a Z-buffer algorithm where the polygon is rasterized and depth and
lighting interpolated on a scan line basis. The square pixel produces a curvilin-
ear quadrilateral as a pre-image.

In forward mapping the algorithm is driven from texture space. This time a
square texel in texture space produces a curvilinear quadrilateral in screen space
and there is a potential problem due to holes and overlaps in the texture image
when it is mapped into screen space. Forward mapping is like considering the
texture map as a rubber sheet - stretching it in a way (determined by the param-
etrization) so that it sticks on the object surface thereby performing the normal
object space to screen space transform.
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Inverse mapping by bilinear interpolation

Although forward mapping is easy to understand, in practical algorithms inverse
mapping is preferred and from now on we will only consider this strategy for
polygon mesh objects. For inverse mapping it is convenient to consider a single
(compound) transformation from two-dimensional screen space (x, y) to two-
dimensional texture space (u, v). This is just an image warping operation and it
can be modelled as a rational linear projective transform:

- au + bv +¢ _ durev+of [8.1)
T ogu+ i y= gu+hv+i ’

This is, of course, a non-linear transformation as we would expect. Alternatively,
we can write this in homogeneous coordinates as:

i ab c||u
Yi=lde f||v
w g hillg

where:
() =(xYw, yiw) and (u, v) = (u'fq, VIg)

This is known as a rational linear transformation. The inverse transform - the
one of interest to us in practice - is given by:

i ABC||Ix
V][=|DE F||y
iq GHIJlw

ei-fh ch-bi bf-ce a
=| fe-di ai-cg cd-af VY
dh-eg bg-ah ae-bd w

Now recall that in most practical texture mapping applications we set up, dur-
ing the modelling phase, an association between polygon mesh vertices and tex-
ture map coordinates. 50, for example if we have the association for the four
vertices of a quadrilateral we can find the nine coefficients (a, b, o defghi.
We thus have the required inverse transform for any point within the polygon.
This is done as follows. Return to the first half of Equation 8.1, the equation for
x. Note that we can multiply top and bottom by an arbitrary non-zero scalar con-
stant without changing the value of y, in effect we only have five degrees of free-
dom - not six - and because of this we can, without loss of generality set i = 1.
Thus, in the overall transformation we only have 8 coefficients to determine and
our quadrilateral-to-quadrilateral association will give a set of 8 equations in 8
unknowns which can be solved by any standard algorithm for linear equations
- Gaussian elimination, for example. Full details of this procedure are given in
Heckbert (1986).
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A better practical alternative is to achieve the same effect by bilinear interpo.
lation in screen space. So we interpolate the texture coordinates at the same time
as interpolating lighting and depth. However, we note from the above that it is
the homogeneous coordinates (', v, q) that we have to interpolate, because the
u and v do not change linearly with x and y.

Assuming vertex coordinate/texture coordinate for all polygons we consider
each vertex to have homogeneous texture coordinates:

'V, q
where:

u=ulg
v=V/g
qg=1fz

We interpolate using the normal bilinear interpolation scheme within
the polygon (see Section 1.5) using these homogeneous coordinates as vertices
to give (i, v, q') for each pixel then the required texture coordinates are given

(u, v) = u'fq, vVig

Note that this costs two divides per pixel. For the standard incremental imple-
mentation of this interpolation process we need three gradients down each edge
{in the current edge-pair) and three gradients for the current scan line,

Inverse mapping by using an intermediate surface

The previous method for mapping two-dimensional textures is now undoubt-
edly the most popular approach. The method we now describe can be used
in applications where there is no texture coordinate-vertex coordinate corre-
spondence. Alternatively it can be used as a pre-process to determine this
correspondence and the first method then used during rendering.

Two-part texture mapping is a technique that overcomes the surface parame-
trization problem in polygoen mesh objects by using an ‘easy’ intermediate sur-
face onto which the texture is initially projected. Introduced by Bier and Sloan
(1986), the method can also be used to implement environment mapping and is
thus a method that unifies texture mapping and environment mapping.

The process is known as two-part mapping because the texture is mapped
onto an intermediate surface before being mapped onto the object. The inter-
mediate surface is, in general, non-planar but it possesses an analytic mapping
function and the two-dimensional texture is mapped onto this surface without
difficulty. Finding the correspondence between the object point and the texture
point then becomes a three-dimensional to three-dimensional mapping.

The basis of the method is most easily described as a two-stage forward map-
ping process (Figure 8.4):
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Figure 8.4
Two-stage mapping as a
foward process. (a) §
mapping. (b) O mapping.

TWO-DIMENSIONAL TEXTURE MAPS TO POLYGON MESH OBJECTS (231)

(a) ib)

(1) The first stage is a mapping from two-dimensional texture space to a simple
three-dimensional intermediate surface such as a cvlinder.

T, v) = Tx, », 1)
This is known as the § mapping.

(2) A second stage maps the three-dimensional texture pattern onto the object
surface.

T, Fu 2} —- E){Xn-, Vs Zw:l
This is referred to as the O mapping.

These combined operations can distort the texture pattern onto the object in a
‘natural’ way, for example, one variation of the method is a ‘shrinkwrap’ map-
ping, where the planar texture pattern shrinks onto the object in the manner
suggested by the eponym,

For the S mapping, Bier describes four intermediate surfaces: a plane at any
orientation, the curved surface of a cylinder, the faces of a cube and the surface
of a sphere. Although it makes no difference mathematically, it is useful to con-
sider that T(u, v) is mapped onto the interior surfaces of these objects. For exam-
ple, consider the cylinder. Given a parametric definition of the curved surface of
a cylinder as a set of points (8, /1), we transform the point (u, v) onto the cylin-
der as follows. We have:

Scytingert (8, H) = (1, v)
=[r 1
(£ ©-60, 2 0e-no)

where ¢ and d are scaling factors and 8 and hy position the texture on the cylin-
der of radius r.

Various possibilities occur for the O mapping where the texture values for
O(xw, ¥, 2«) are obtained from T'(x, y, 2), and these are best considered from a
ray tracing point of view. The four O mappings are shown in Figure 8.5 and are:

(1) The intersection of the reflected view ray with the intermediate surface, T",
(This is, in fact, identical to environment mapping described in Section 8.6.
The only difference between the general process of using this O mapping and
environment mapping is that the texture pattern that is mapped onto the
intermediate surface is a surrounding environment like a room interior.)
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Figure B.5

The four possible O
mappings that map the
intermediate surface texture
T’ onto the object

(1 ¥ 21)

(2) Object normal

{3} Object centroid () Intermediate surface normal

{2) The intersection of the surface normal at (xw, yw, 2«) with T".

(3) The intersection of a line through (xw, yw, 2«) and the object centroid with T".

(4} The intersection of the line from (x., }w, Z) to T' whose orientation is given
by the surface normal at (x;, p, z). If the intermediate surface is simply a
plane then this is equivalent to considering the texture map to be a slide in
a slide projector. A bundle of parallel rays of light from the slide projector
impinges on the object surface. Alternatively it is also equivalent to three-
dimensional texture mapping (see Section 8.7) where the field is defined by
‘extruding’ the two-dimensional texture map along an axis normal to the
plane of the pattern.

Let us now consider this procedure as an inverse mapping process for the
shrinkwrap case. We break the process into three stages (Figure 8.6).

(1) Inverse map four pixel points to four points (xw, yw, 2«) on the surface of the
object.

(Z) Apply the O mapping to find the point (8, h) on the surface of the cylinder.
In the shrinkwrap case we simply join the object point to the centre of the
cylinder and the intersection of this line with the surface of the cylinder
gives us (x, w, 2.

Xw, Yooy 2w —= (8, h1)
= {tan_l{}'wfl.tw], Zw)
(3) Apply the § mapping to find the point (i, v) corresponding to (8, k).
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Figure 8.6
Inverse mapping using the
shrinkwrap method.

TWO-DIMENSIONAL TEXTURE MAPS TO POLYGON MESH OBJECTS  (233)

3)

2)

(1

Tiwv)

T8, i

T "{x, Yo &)

(8, k) == (u, v)
(F (8= B0), J (- h)

(X, Fu, Tu) —= (@), ’l}
(tan~'(ya lva), ze)

i
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Figure 8.7 (Colour Plate) shows examples of mapping the same texture onto an
object using different intermediate surfaces. The intermediate objects are a plane
(equivalently no intermediate surface - the texture map is a plane), a cylinder
and a sphere. The simple shape of the vase was chosen to illustrate the different
distortions that each intermediate object produces. There are two points that can
be made from these illustrations. First, vou can choose an intermediate mapping
that is appropriate to the shape of the object. A solid of revolution may be best
suited, for example, to a cylinder. Second, although the method does not place
any constraints on the shape of the object, the final visual effect may be deemed
unsatisfactory. Usually what we mean by texture does not involve the texture
pattern being subject to large geometric distortions. It is for this reason that
many practical methods are interactive and involve some strategy like pre-
distorting the texture map in two-dimensional space until its produces a good
result when it is stuck onto the object,

Two-dimensional texture domain to bi-cubic parametric patch
objects

If an object is a quadric or a cubic then surface parametrization is straightfor-
ward. In the previous section we used quadrics as intermediate surfaces exactly
for this reason. If the object is a bi-cubic parametric patch, texture mapping is
trivial since a parametric patch by definition already possesses (u, v) values every-
where on its surface.

The first use of texture in computer graphics was a method developed
by Catmull. This technique applied to bi-cubic parametric patch models; the
algorithm subdivides a surface patch in object space, and at the same time
executes a corresponding subdivision in texture space. The idea is that the
patch subdivision proceeds until it covers a single pixel (a standard patch
rendering approach described in detail in Chapter 4). When the patch
subdivision process terminates the required texture wvalue(s) for the pixel
is obtained from the area enclosed by the current level of subdivision in the
texture domain. This is a straightforward technique that is easily imple-
mented as an extension to a bi-cubic patch renderer. A wvariation of this
method was used by Cook where object surfaces are subdivided into ‘micro-
polygons’ and flat shaded with values from a corresponding subdivision in
texture space.

An example of this technique is shown in Figure 8.8 (Colour Plate). Here
each patch on the teapot causes subdivision of a single texture map, which is
itself a rendered version of the teapot. For each patch, the i, v values from
the parameter space subdivision are used to index the texture map whose u, v
values also vary between 0 and 1. This scheme is easily altered to, say, map four
patches into the entire texture domain by using a scale factor of two in the u, v

mapping.
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Figure 8.9

Providing the viewing
direction is approximately
parallel to the ground plane,
objects like trees can be
represented as a billboard
and rotated about their

¥ axis so that they are
oriented normal to the Log
VECTOr.

BILLBOARDS (235)

:B'II;IE.Jar&s: o

Billboard is the name given to a technique where a texture map is considered as
a three-dimensional entity and placed in the scene, rather than as a map that con-
trols the colour over the surface of an object. It is a simple technique that util-
izes a two-dimensional image in a three-dimensional scene by rotating the plane
of the image so that it is normal to its viewing direction (the line from the view
point to its position). The idea is illustrated in Figure 8.9, Probably the most
common example of this is the image of a tree which is approximately cylindri-
cally symmetric. Such objects are impossible to render in real time and the visual
effect of this trick is quite convincing providing the view vector is close to the
horizontal plane in scene space. The original two-dimensional nature of the
object is hardly noticeable in the two-dimensional projection, presumably
because we do not have an accurate internal notion of what the projection of the
tree should look like anyway. The billboard is in effect a two-dimensional object
which is rotated about its y axis (for examples like the tree) through an angle
which makes it normal to the view direction and translated to the appro-
priate position in the scene. The background texels in the billboard are set to
transparent,
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The modelling rotation for the billboard is given as:
B=nx= l:ﬂs_’[l-m'sn}
where:

B is the normal vector of the billboard, say (0,0,1)

L., is the viewing direction vector from the view point to the required posi-
tion of the billboard in world coordinates

Given 8 and the required translation we can then construct a modelling trans-
formation for the geometry of the billboard and transform it. Of course, this sim-
ple example will only work if the viewing direction is parallel or approximately
parallel to the ground plane. When this is not true the two-dimensional nature
of the billboard will be apparent.

Billboards are a special case of impostors or sprites which are essentially pre-
computed texture maps used to by-pass normal rendering when the view point
is only changing slightly. These are described in detail in Chapter 14.

Bump mapping, a technique developed by Blinn (1978), is an elegant device that
enables a surface to appear as if it were wrinkled or dimpled without the need to
model these depressions geometrically. Instead, the surface normal is angularly
perturbed according to information given in a two-dimensional bump map and
this ‘tricks’ a local reflection model, wherein intensity is a function mainly of the
surface normal, into producing (apparent) local geometric variations on a
smooth surface. The only problem with bump mapping is that because the pits
or depressions do not exist in the model, a silhouette edge that appears to pass
through a depression will not produce the expected cross-section. In other words
the silhouette edge will follow the original geometry of the model.

It is an important technique because it appears to texture a surface in the nor-
mal sense of the word rather than modulating the colour of a flat surface, Figure
8.10 (Colour Plate) shows examples of this technique.

Texturing the surface in the rendering phase, without perturbing the geom-
etry, by-passes serious modelling problems that would otherwise occur. If the
object is polygonal the mesh would have to be fine enough to receive the
perturbations from the texture map - a serious imposition on the original mod-
elling phase, particularly if the texture is to be an option. Thus the technique
converts a two-dimensional height field B(u, v), called the bump map, and
which represents some desired surface displacement, into appropriate pertur-
bations of the local surface normal. When this surface normal is used in the
shading equation the reflected light calculations vary as if the surface had been
displaced.

Consider a point P(u, v) on a (parameterized) surface corresponding to B{u, v).
We define the surface normal at the point to be:
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Figure 8.11

A one-dimensional example
of the stages Involved in
bump mapping (after Blinn
(1978)).

BUMP MAPPING

ar ar
N=
=P.x P,

where P, and P, are the partial derivatives lying in the tangent plane to the sur-
face at point P. What we want to do is to have the same effect as displacing
the point P in the direction of the surface normal at that point by an amount
B(u, v) - a one-dimensional analogue is shown in Figure 8.11. That is:

P'(u, v) = P(u, v) + Blu, N

Locally the surface would not now be as smooth as it was before because of this
displacement and the normal vector N to the ‘new’ surface is given by differen-
tiating this equation:

m=Fn+F|
Fl‘pn"‘ﬂn.”*k[“, F]Nll
P'. = P, + B.N + B{u, v)N.

Piuj
Original Surface

B

W A bump map

Pl

Lengthening or shortening
) using Bru)

Niu)
The vectors to the
/\ new surfice
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Figure B.12
Geometric interpretation of
bump mapping.

8.4.1

4
Surface normal D is given by
at point P D=8,A-B B
N=P.xP,

If B is small we can ignore the final term in each equation and we have:
N=N+BNxP.+BP.xN
or
N=N+BNx=xP.-BN=xP,
=N+ (B.A - B.B)
=N+D

Then D is a vector lying in the tangent plane that ‘pulls’ N into the desired ori-
entation and is calculated from the partial derivatives of the bump map and the
two vectors in the tangent plane (Figure 8.12).

A multi-pass technique for bump mapping

For polygon mesh objects McReynolds and Blythe (1997) define a multi-pass
technique that can exploit standard texture mapping hardware facilities. To do
this they split the calculation into two components as follows, The final inten-
sity value is proportional to N'-L where:

N-L=NL+ DL

The first component is the normal Gouraud component and the second compo-
nent is found from the differential coefficient of two image projections formed
by rendering the surface with the height field as a normal texture map. To do
this it is necessary to transform the light vector into tangent space at each ver-
tex of the polygon. This space is defined by N, B and T, where:
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N is the vertex normal
T is the direction of increasing u (or ¥) in the object space coordinate system
B=NxT

The normalized components of these vectors defines the matrix that transforms
points into tangent space:

Tx Tr Tz O
Bx By B: 0
In= | e N N 0 £

o0 0 1
The algorithm is as follows:

(1) The object is rendered using a normal renderer with texture mapping
facilities. The texture map used is the bump map or height field.

(2) T and B are found at each vertex and the light vector transformed into tan-
gent space.

(3) A second image is created in the same way but now the texture/vertex cor-
respondence is shifted by small amounts in the direction of the X, ¥ com-
ponents of Lis. We now have two image projections where the height field
or the bump map has been mapped onto the object and shifted with respect
to the surface. If we subtract these two images we get the differential coeffi-
cient which is the required term D-L. (Finding the differential coefficient of
an image by subtraction is a standard image processing technique - see, for
example, Watt and Policarpo (1998)).

(4) The object is rendered in the normal manner without any texture and this
component is added to the subtrahend calculated in step (3) to give the final
bump-mapped image.

Thus we replace the explicit bump mapping calculations with two texture
mapped rendering passes, an image subtract, a Gouraud shading pass then an
image added to get the final result.

A pre-calculation technique for bump mapping

Tangent space can also be used to facilitate a pre-calculation technique as
proposed by Peercy et al. (1997). This depends on the fact that the perturbed
normal N's in tangent space is a function only of the surface itself and the bump
map. Peercy et al. define this normal at each vertex in terms of three pre-
calculated coefficients,

It can be shown (Peercy et al. 1997) that the perturbed normal vector on
tangent space is given by:

a, b, ¢

N'I!I [—ﬂ].ﬁb’i‘.ﬁ]'ﬂ

0260



MAPPING TECHNIQUES

where:
a=-HB(B.P)
b == (BIP.l - BJT.Py))
=Py x

For each point in the bump map these points can be pre-computed and a map
of perturbed normals is stored for use during rendering instead of the bump
map.

Light maps

Light maps are an obvious extension to texture maps that enable lighting to be
pre-calculated and stored as a two-dimensional texture map. We sample the
reflected light over a surface and store this in a two-dimensional map. Thus
shading reduces to indexing into a light map or a light modulated texture map.
An advantage of the technique is that there is no restriction on the complexity
of the rendering method used in the pre-calculation - we could, for example, use
radiosity or any view-independent global illumination method to generate the
light maps.

In principle light maps are similar to environment maps (see Section 8.6). In
environment mapping we cache, in a two-dimensional map, all the illumination
incident at a single point in the scene. With light maps we cache the reflected
light from every surface in the scene in a set of two-dimensional maps.

If an accurate pre-calculation method is used then we would expect the tech-
nique to produce better quality shading and be faster than Gouraud interpola-
tion. This means that we can incorporate shadows in the final rendering. The
obvious disadvantage of the technique is that for moving objects we can only
invoke a very simple lighting environment (diffuse shading with the light source
at infinity). A compromise is to use dynamic shading for moving objects and
assume that they do not interact, as far as shading is concerned, with static
objects shaded with a light map.

Light maps can either be stored separately from texture maps, or the object’s
texture map can be pre-modulated by the light map. If the light map is kept as
a separate entity then it can be stored at a lower resolution than the texture map
because view-independent lighting, except at shadow edges, changes more
slowly than texture detail. It can also be high-pass filtered which will ameliorate
effects such as banding in the final image and also has the benefit of blurring
shadow edges (in the event that a hard-edged shadow generation procedure has
been used).

If an object is to receive a texture then we can modulate the brightness of the
texture during the modelling phase so that it has the same effect as if the
(unmodulated) texture colours were injected into, say, a Phong shading

0261



Figure 8.13

Forming a light map in the
‘maximal’ world coordinate
Plane.

LIGHT MAPS

equation. This is called surface caching because it stores the final value required
for the pixel onto which a surface point projects and because texture caching
hardware is used to implement it. If this strategy is employed then the texture
mapping transform and the transform that maps light samples on the surface of
the object into a light map should be the same.

Light maps were first used in two-pass ray tracing (see Section 10.7) and are
also used in Ward’s (1994) RADIANCE renderer. Their motivation in these appli-
cations was to cache diffuse illumination and to enable the implementation of a
global illumination model that would work in a reasonable time. Their more
recent use in games engines has, of course, been to facilitate shading in real time.

The first problem with light maps is how do we sample and store, in a two-
dimensional array, the calculated reflected light across the face of a polygon in
three-dimensional space. In effect this is the reverse of texture mapping where
we need a mapping from two-dimensional space into three-dimensional object
space. Another problem concerns economy. For scenes of any complexity it
would clearly be uneconomical to construct a light map for each polygon -
rather we require many polygons to share a single light map.

Zhukov ef al. (1998) approach the three-dimensional sampling problem by
organizing polygons into structures called ‘polypacks’. Polygons are projected
into the world coordinate planes and collected into polypacks if their angle with
a coordinate plane does not exceed some threshold (so that the maximal pro-
jection plane is selected for a polygon) and if their extent does not overlap in the
projection. The world space coordinate planes are subdivided into square cells
(the texels or ‘lumels’) and back projected onto the polygon. The image of a
square cell on a polygon is a parallelogram (whose larger angle = 102°). These are
called patches and are the subdivided polygon elements for which the reflected
light is calculated. This scheme thus samples every polygon with almost square
elements storing the result in the light map (Figure 8.13).

These patches form a subdivision of the scene sufficient for the purpose
of generating light maps and a single light intensity for each patch can be
calculated using whatever algorithm the application demands (for example
Phong shading or radiosity). After this phase is complete there exists a set of
(parallelogram-shaped) samples for each polygon. These then have to be ‘stuffed”

‘Maximal' world
coordinate plane
divided into square
‘lumels”

Back projection of \"_
‘lumel” onto polygon
forms a patch
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into the minimum number of two-dimensional light maps in each coordinate
plane. Zhukov et al. (1998) do this by using a ‘first hit decreasing’ algorithm
which first sorts each polygon group by the number of texels.

Another problem addressed by the authors is that the groups of samples
corresponding to a polygon have to be surrounded by ‘sand’ texels. These are
supplementary texels that do not belong to a face group but are used when
bilinear interpolation is used in conjunction with a light map and prevent visual
lighting artefacts appearing at the edges of polygons. Thus each texture
map consists of a mixture of light texels, sand texels and unoccupied texels.
Zhukov ef al. (1998) report that for a scene consisting of 24 000 triangles (700
patches) 14 light maps of 256 x 256 texels were produced which exhibited a
breakdown of texels as: 75% light texels, 15% sand texels and 10% unoccupied
texels.

A direct scheme for computing light maps for scenes made up of triangles and
for which we already have vertex/texture coordinate association is to use this
correspondence to derive an affine transformation between texture space and
object space and then use this transformation to sample the light across the face
of a triangle. The algorithm is then driven from the texture map space (by scan-
converting the polygon projection in texture space) and for each texel finding
its corresponding point or projection on the object surface from:

HRHAIE

where (x, y, 2) is the point on the object corresponding to the texel (u, v). This
transformation can be seen as a linear transformation in three-dimensional
space with the texture map embedded in the z = 1 plane. The coefficients are
found from the vertex/texture coordinate correspondence by inverting the U
matrix in:

Xo X1 X2 abc Hg Wy U
rownyl=|lde fllwwnwr
ghi

Zn ) Iz 111

writing this as:
X=AU

we have:
A =Xl

The inverse UF' is guaranteed to exist providing the three points are non-
collinear. Note that in terms of our treatment in Section 8.1 this is a forward
mapping from texture space to object space. Examples of a scene lit using this
technique are shown in Figure 8.14 (Colour Plate).
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Environment or reflection mapping

Originally called reflection mapping and first suggested by Blinn and Newell
(1976), environment mapping was consolidated into mainline rendering tech-
niques in an important paper by Greene (1986). Environment maps are a short-
cut to rendering shiny objects that reflect the environment in which they are
placed. They can approximate the quality of a ray tracer for specular reflections
and do this by reducing the problem of following a reflected view vector to
indexing into a two-dimensional map which is no different from a conventional
texture map. Thus processing costs that would be incurred in ray tracing pro-
grams are regulated to the (off-line) construction of the map(s). In this sense it
is a classic partial off-line or pre-calculation technique like pre-sorting for hidden
surface removal. An example of a scene and its corresponding (cubic) environ-
ment map is shown in Figure 18,8,
The disadvantages of environment mapping are:

® Itis (geometrically) correct only when the object becomes small with res pect
to the environment that contains it. This effect is usually not noticeable in
the sense that we are not disturbed by ‘wrong’ reflections in the curved
surface of a shiny object. The extent of the problem is shown in Figure 18.9
which shows the same object ray traced and environment mapped.

® An object can only reflect the environment - not itself - and so the
technique is ‘wrong’ for concave objects. Again this can be seen in Figure
18.9 where the reflection of the spout is apparent in the ray traced image.

® A separate map is required for each object in the scene that is to be
environment mapped.

® In one common form of environment mapping (sphere mapping) a new
map is required whenever the view point changes.

In this section we will examine three methods of environment mapping
which are classified according to the way in which the three-dimensional
environment information is mapped into two-dimensions, These are cubic,
latitude-longitude and sphere mapping. (Latitude-longitude is also a spherical
mapping but the term sphere mapping is now applied to the more recent form.)
The general principles are shown in Figure 8.15. Figure 8.15(a) shows the
conventional ray tracing paradigm which we replace with the scheme shown
in Figure 8.15(b). This involves mapping the reflected view vector into a
two-dimensional environment map. We calculate the reflected view vector as
(Section 1.3.5):

R.=2(N-V)N-V 8.2]

Figure 8.15(c) shows that, in practice, for a single pixel we should consider the
reflection beam, rather than a single vector, and the area subtended by the beam
in the map is then filtered for the pixel value, A reflection beam originates either
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Figure 8.15

Ernvironment mapping

{a) The ray tracing model -
that part of the environment
reflected at point Pis
determined by reflecting the
view ray R.. (b) We try to
achieve the same effect as

in (a) by using a function

of R, to index into a two-
dimensional map. (c) A pixel
subtends a reflection beam.

® MR

(b) AL

Area subtended in
environmental map
\

(4] View point

2D envirenmeental map

from four pixel corners if we are indexing the map for each pixel, or from poly-
gon vertices if we are using a fast (approximate) scheme. An important point to
note here is that the area intersected in the environment map
the curvature of the projected pixel area on the object surface. However, because
we are now using texture mapping techniques we can employ pre-filtering anti-

aliasing methods (se¢ Section 8.8).
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Figure B.16

Cubic emvironment
mapping: the reflection
beam can range over
more than one map.

ENVIRONMENT OR REFLECTION MAPPING

In real time polygon mesh rendering, we can calculate reflected view vectors
only at the vertices and use linear interpolation as we do in conventional texture
mapping. Because we expect to see fine detail in the resulting image, the quality
of this approach depends strongly on the polygon size.

In effect an environment map caches the incident illumination from all direc-
tions at a single point in the environment with the object that is to receive the
mapping removed from the scene. Reflected illumination at the surface of an
object is calculated from this incident illumination by employing the aforemen-
tioned geometric approximation - that the size of the object itself can be consid-
ered to approach the point and a simple BRDF which is a perfect specular term -
the reflected view vector. It is thus a view-independent pre-calculation technique.

Cubic mapping

As we have already implied, environment mapping is a two-stage process that
involves - as a pre-process - the construction of the map. Cubic mapping is pop-
ular because the maps can easily be constructed using a conventional rendering
system. The environment map is in practice six maps that form the surfaces of a
cube (Figure 8.16). An example of an environment map is shown in Figure 18.8.
The view point is fixed at the centre of the object to receive the environment
map, and six views are rendered. Consider a view point fixed at the centre of a
room. If we consider the room to be empty then these views would contain the

-

B]tl'lcl:l.im hea

Texture arca subtended
by reflection beam

[
.
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Figure 8.17
Cubic environment map
convention.

four walls and the floor and ceiling. One of the problems of a cubic map is that
if we are considering a reflection beam formed by pixel corners, or equivalently
by the reflected view vectors at a polygon vertex, the beam can index into more
than one map (Figure 18.16). In that case the polygon can be subdivided so that
each piece is constrained to a single map.

With cubic maps we need an algorithm to determine the mapping from the
three-dimensional view vector into one or More two-dimensional maps. (With
the techniques described in the next section this mapping algorithm is replaced
by a simple calculation.) If we consider that the reflected view vector is in the
same coordinate frame as the environment map cube (the case if the view were
constructed by pointing the (virtual or real) camera along the world axes in both
directions), then the mapping is as follows.

For a single reflection vector:

(1) Find the face it intersects - the map number. This involves a simple
comparison of the components of the normalized reflected view vector
against the (unit) cube extent which is centred on the origin.

wylamel
y v
"'?"i "'.“li
—_— +X

— xface} u| —xfaced u

™

— i face 4 o
L
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(2) Map the components into (u, v) coordinates. For example, a point
(X, ¥, ) intersecting the face normal to the negative z axis is given by:
w=x+0.5
v==z+05

for the convention scheme shown in Figure 8.17.

One of the applications of cubic environment maps (or indeed any environment
map method) that became popular in the 1980s is to ‘matte” an animated com-
puter graphics object into a real environment. In that case the environment
map is constructed from photographs of a real environment and the (specular)
computer graphics object can be matted into the scene, and appear to be part of
it as it moves and reflects its surroundings.

Sphere mapping

The first use of environment mapping was by Blinn and Newell (1976) wherein
a sphere rather than a cube was the basis of the method used. The environment
map consisted of a latitude-longitude projection and the reflected view vector,
R., was mapped into (u, v} coordinates as:

u:% [H—‘l tan™! (ﬁ")) -x<tan <x

Re: 41
V= —

2

The main problem with this simple technique is the singularities at the poles. In
the polar area small changes in the direction of the reflection vector produce
large changes in {u, v) coordinates. As R — £1, both R and Ry, — 0 and R./R.s
becomes ill-defined. Equivalently, as v — 1 or 0 the behaviour of u starts to break
down causing visual disturbances on the surface. This can be ameliorated by
modulating the horizontal resolution of the map with sin 6 (where 8 is the
elevation angle in polar coordinates).

An alternative sphere mapping form (Haeberli and Segal 1993; Miller et al.
1998) consists of a circular map which is the orthographic projection of the
reflection of the environment as seen in the surface of a perfect mirror sphere
(Figure 8.18). Clearly such a map can be generated by ray tracing from the view
plane. (Alternatively a photograph can be taken of a shiny sphere.) Although the
map caches the incident illumination at the reference point by using an ortho-
graphic projection it can be used to generate, to within the accuracy of the
process, a normal perspective projection.

To generate the map we proceed as follows. We trace a parallel ray bundle -
one ray for each texel (u, v) and reflect each ray from the sphere. The point on
the sphere at the point hit by the ray from (u, v) is P, where:
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Figure 8.18

Constructing a spherical
map by ray tracing from the
map texels onto a reflective

Environment

sphere.

Environment map

Pi=u Po=v
P.=(1.0- P2 - P/

This is also the normal to the sphere at the hit point and we can compute the
reflected vector using Equation 8.2.

To index into the map we reflect the view vector from the object (either for
each pixel or for each polygon vertex) and calculate the map coordinates as:

R
m
Ry

v — +
m

Ml-—-

= +

=10

where:

m=2(R2 + R + (R + 112

Environment mapping: comparative points

Sphere mapping overcomes the main limitation of cubic maps which require, in
general, access to a number of the face maps, and is to be preferred when speed
is important. However, both types of sphere mapping suffer more from non-
uniform sampling than cubic mapping. Refer to Figure 8,19 which attempts to
demonstrate this point. In all three cases we consider that the environment map
is sampling incoming illumination incident on the surface of the unit sphere.
The illustration shows the difference between the areas on the surface of the
sphere sampled by a texel in the environment map. Sampling only approaches
uniformity when the viewing direction during the rendering phase aligns with
the viewing direction from which the map was computed. For this reason this
type of spherical mapping is considered to be view dependent and a new map
has to be computed when the view direction changes.
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Figure 8.19
Sampling the surface

of a sphere. (a) Cubic

tive: under-sampling
at the centre of the map
{equator and meridian)
compared to the corners.
(b) Mercator or
latitude-longitude: severe
over-sampling at edges of
the map in the v direction
(poles). (c) Orthographic:
severe under-sampling at
the edges of the map in the
u direction (equator).

B.6.4

ENVIROMMENT OR REFLECTION MAPPING

Surface properties and environment mapping

S0 far we have restricted the discussion to geometry and assumed that the object
which is environment mapped possesses a perfect mirror surface and the map is
indexed by a single reflected view ray. What if we want to use objects with
reflecting properties other than that of a perfect mirror. Using the normal Phong
local reflection model, we can consider two components - a diffuse component
plus a specular component - and construct two maps. The diffuse map is
indexed by the surface normal at the point of interest and the specular map is
indexed by the reflected view vector. The relative contribution from each map is
determined by diffuse and specular reflection coefficients just as in standard
Phong shading, This enables us to render objects as if they were Phong shaded
but with the addition of reflected environment detail which can be blurred to
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simulate a non-smooth surface. (Note that this approximates an effect that
would otherwise have to be rendered using distributed ray tracing.)

This technique was first reported by Miller and Hoffman (1984). (This refer-
ence is to SIGGRAPH course notes. These, particularly the older ones, are gener-
ally unavailable and we only refer to them if the material does not, as far as we
know, appear in any other publication) and it is their convention that we follow
here. Both the diffuse and specular maps are generated by processing the envi-
ronment map. Thus we can view the procedure as a two-step process where the
first step - the environment map - encodes the illumination at a point due to
the scene with the object removed and the second step filters the map to encode
information about the surface of the object.

Miller and Hoffman (1984) generate the diffuse map from the following

definition:
ZIm x Area(L) x fa (N-L)
D(N) = 4n
where:

N is the surface normal at the point of interest

I{L) is the environment map as a function of L the incident direction to
which the entry [ in the map corresponds

Area is the area on the surface of the unit sphere associated with L
fa is the diffuse convolution function:
folx) = kex for x>0 and fix)=0forx =0
ks is the diffuse reflection coefficient that weights the contribution of D(N) in
summing the diffuse and specular contributions

Thus for each value of N we sum over all values of L the area-weighted dot
product or Lambertian term.
The specular map is defined as:

z.'u.} x Area(L)  f; (R-L)

S(R) = in

where:
R is the reflected view vector
f. is the specular convolution function;
fix)=k x"forx>0 and fix)=0forx=0
k, is the specular reflection coefficient

(Note that if f; is set to unity the surface is a perfect mirror and the environment
map is unaltered.)
The reflected intensity at a surface point is thus:

D(N) + 5(R)
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Three-dimensional texture domain dtechniques' o

We have seen in preceding sections that there are many difficulties associated
with mapping a two-dimensional texture onto the surface of a three-dimen-
sional object. The reasons for this are:

(1) Two-dimensional texture mapping based on a surface coordinate system can
produce large variations in the compression of the texture that reflect a
corresponding variation in the curvature of the surface.

(2) Attempting to continuously texture map the surface of an object possess-
ing a non-trivial topology can quickly become very awkward. Textural
continuity across surface elements that can be of a different type and can
connect together in any ad hoc manner is problematic to maintain.

Three-dimensional texture mapping neatly circumvents these problems since
the only information required to assign a point a texture value is its position in
space. Assigning an object a texture just involves evaluating a three-dimensional
texture function at the surface points of the object. A fairly obvious requirement
of this technique is that the three-dimensional texture field is procedurally gen-
erated. Otherwise the memory requirements, particularly if three-dimensional
mip-mapping is used, become exorbitant. Also, it is inherently inefficient to con-
struct an entire cubic field of texture when we only require these values at the
surface of the object.

Given a point (x, y, Z) on the surface of an object, the colour is defined as
Tix, y, z), where T is the value of texture field. That is, we simply use the iden-
tity mapping (possibly in conjunction with a scaling):

H=X ¥=y W=g
where:
(u, v, w) is a coordinate in the texture fReld

This can be considered analogous to actually sculpting or carving an object out
of a block of material. The colour of the object is determined by the intersection
of its surface with the texture field. The method was reported simultaneously by
Perlin (1985) and Peachey (1985) wherein the term ‘solid texture’ was coined.

The disadvantage of the technique is that although it eliminates mapping prob-
lems, the texture patterns themselves are limited to whatever definition that you
can think up. This contrasts with a two-dimensional texture map; here any texture
can be set up by using, say, a frame-grabbed image from a television camera.

Three-dimensional noise

A popular class of procedural texturing techniques all have in common the fact
that they use a three-dimensional, or spatial, noise function as a basic modelling
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primitive. These techniques, the most notable of which is the simulation of tur-
bulence, can produce a surprising variety of realistic, natural-looking texture
effects. In this section we will concern ourselves with the issues involved in the
algorithmic generation of the basic primitive - solid noise.

Perlin (1985) was the first to suggest this application of noise, defining a func-
tion noise() that takes a three-dimensional position as its input and returns a
single scalar value. This is called model-directed synthesis — we evaluate the
noise function only at the point of interest. Ideally the function should possess
the following three properties:

(1) Statistical invariance under rotation.
(2) Statistical invariance under translation.
(3) A narrow bandpass limit in frequency.

The first two conditions ensure that the noise function is controllable - that is,
no matter how we move or orientate the noise function in space, its general
appearance is guaranteed to stay the same. The third condition enables us to
sample the noise function without aliasing. Whilst an insufficiently sampled
noise function may not produce noticeable defects in static images, if used in
animation applications, incorrectly sampled noise will produce a shimmering or
bubbling effect.

Perlin's method of generating noise is to define an integer lattice, or a set of
points in space, situated at locations (i, j, k) where i, j and k are all integers. Each
point of the lattice has a random number associated with it. This can be done
either by using a simple look-up table or, as Perlin (1985) suggests, via a hash-
ing function to save space. The value of the noise function, at a point in space
coincident with a lattice point, is just this random number. For points in space
not on the lattice - in general (u, v, W) - the noise value can be obtained by lin-
ear interpolation from the nearby lattice points. If, using this method, we gen-
erate a solid noise function T(u, v, w) then it will tend to exhibit directional (axis
aligned) coherences. These can be ameliorated by using cubic interpolation but
this is far more expensive and the coherences still tend to be visible. Alternative
noise generation methods that eliminate this problem are to be found in Lewis
(1989); however, it is worth bearing in mind that the entire solid noise function
is sampled by the surface and usually undergoes a transformation (it is modu-
lated, for example, to simulate turbulence) and this in itself may be enough to
eliminate the coherences.

Simulating turbulence

A single piece of noise can be put to use to simulate a remarkable number of
effects. By far the most versatile of its applications is the use of the so-called tur-
bulence function, as defined by Perlin, which takes a position x and retums a
turbulent scalar value. It is written in terms of the progression, a one-dimensional
version of which would be defined as:
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E i
turbulence(x) = z abs (nuls-;'!z-x; ]

The summation is truncated at k which is the smallest integer satisfying:

—2-1—. < the size of a pixel

The truncation band limits the function ensuring proper anti-aliasing. Consider
the difference between the first two terms in the progression, noise (x) and noise
(2x)/2. The noise function in the latter term will vary twice as fast as the first -
it has twice the frequency - and will contain features that are half the size of the
first. Moreover, its contribution to the final value for the turbulence is also scaled
by one-half. At each scale of detail the amount of noise added into the series is
proportional to the scale of detail of the noise and inversely proportional to the
frequency of the noise. This is self-similarity and is analogous to the self-
similarity obtained through fractal subdivision, except that this time the sub-
division drives not displacement, but octaves of noise, producing a function that
exhibits the same noisy behaviour over a range of scales. That this function
should prove so useful is best seen from the point of view of signal analysis,
which tells us that the power spectrum of turbulence() obeys a 1/f power law,
thereby loosely approximating the 1/f* power law of Brownian motion.

The turbulence function in isolation only represents half the story, however.
Rendering the turbulence function directly results in a homogeneous pattern that
could not be described as naturalistic. This is due to the fact that most textures
which occur naturally, contain some non-homogeneous structural features and so
cannot be simulated by turbulence alone. Take marble, for example, which has eas-
ily distinguished veins of colour running through it that were made turbulent
before the marble solidified during an earlier geological era. In the light of this fact
we can identify two distinct stages in the process of simulating turbulence, namely:

(1) Representation of the basic, first order, structural features of a texture
through some basic functional form. Typically the function is continuous
and contains significant variations in its first derivatives.

(2) Addition of second and higher order detail by using turbulence to perturb
the parameters of the function.

The classic example, as first described by Perlin, is the turbulation of a sine wave
to give the appearance of marble. Unperturbed, the colour veins running
through the marble are given by a sine wave passing through a colour map. For
a sine wave running along the x axis we write:

marble(x) = marble_colour (sin{x))

The colour map marble_colour() maps a scalar input to an intensity. Visualizing
this expression, Figure 8.20(a) is a two-dimensional slice of marble rendered with

the colour spline given in Figure 8.20(b). Next we add turbulence:
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]

Figure 8.20

Simulating marble.

(a) Unturbulated slice
obtained by using the spline
shown in (b). (b) Colour
spline used to produce (a).
(c) Marble section obtained
by turbulating the shice
shown in (a).

L] Il

marble(x) = marble_colour (sin{x + turbulence(x))

to give us Figure 8.20(c), a convincing simulation of marble texture. Figure 8.21
(Colour Plate) shows the effect in three dimensions.

Of course, use of the turbulence function need not be restricted to modulate
just the colour of an object. Any parameter that affects the appearance of an
object can be turbulated. Oppenheimer (1986) turbulates a sawtooth function to
bump map the ridges of bark on a tree. Turbulence can drive the transparency of
objects such as clouds. Clouds can be modelled by texturing an opacity map
onto a sphere that is concentric with the earth. The opacity map can be created
with a paint program; clouds are represented as white blobs with soft edges that
fade into complete transparency. These edges become turbulent after perturba-
tion of the texture coordinates. In an extension to his earlier work, Perlin (1989)
uses turbulence to volumetrically render regions of space rather than just evalu-
ating texture at the surface of an object. Solid texture is used to modulate the
geometry of an object as well as its appearance. Density modulation functions
that specify the soft regions of objects are turbulated and rendered using a ray
marching algorithm. A variety of applications are described, including erosion,
fire and fur.

Three-dimensional texture and animation

The turbulence function can be defined over time as well as space simply by
adding an extra dimension representing time, to the noise integer lattice, So the
lattice points will now be specified by the indices (i, j, k, /) enabling us to extend
the parameter list to noise (x, f) and similarly for turbulence (x, ). Internal
to these procedures the time axis is not treated any differently from the three
spatial axes.

For example, if we want to simulate fire, the first thing that we do is to try to
represent its basic form functionally, that is, a ‘flame shape’. The completely ad
hoc nature of this functional sculpting is apparent here. The final form decided
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Figure 8.23
Animating turbulence for a
two-dimensional object.

THREE-DIMENSIONAL TEXTURE DOMAIN TECHNIQUES  (255)

on was simply that which after experimentation gave the best results. We shall
work in two space due to the expense of the three-dimensional volumetric
approach referred to at the end of the last section.

A flame region is defined in the xy plane by the rectangle with minimax co-
ordinates (b, 0), (b, h). Within this region the flame’s colour is given by:

flame(x) = (1 - y/h) flame_colour{abs{x/b))

This is shown schematically in Figure 8.22 (Colour Plate). Flame_colour (x) consists
of three separate colour splines that map a scalar value x to a colour vector. Each of
the R, G, B splines have a maximum intensity at x = 0 which corresponds to the
centre of the flame and a fade-off to zero intensity at x = 1, The green and blue
splines go to zero faster than the red. The colour returned by flame_colour() is
weighted according to its height from the base of the flame to get an appropriate
variation along y. The flame is rendered by applying flame() to colour a rectangular
polygon that covers the region of the flames definition. The opacity of the polygon
is also textured by using a similar functional construction. Figure 8.22 also shows
the turbulated counterpart obtained by introducing the turbulence function thus:

flame(x, t) = (1 - y/h) Aame_colour(abs{x/b) + turbulence(x, f)

To animate the flame we simply render successive slices of noise which are per-
pendicular to the time axis and equispaced by an amount corresponding to the
frame interval. It is as if we are translating the polygon along the time axis.
However, mere translation in time is not enough, recognizable detail in the
flame, though changing shape with time, remained curiously static in space.
This is because there is a general sense of direction associated with a flame, con-
vection sends detail upwards. This was simulated, and immediately gave better
results, by moving the polygon down in y as well as through time, as shown in
Figure 8.23. The final construction is thus:

Flame shape
.. - [ )
2 A

| TP —-
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flame(x, H=(1 - y}h}ﬂame_colcur[abs(xfb}q-turbulence{xﬂu. tay, 0), 6)

where Ay is the distance moved in y by the polygon relative to the noise per unit
time.

Three-dimensional light maps

In principle there is no reason why we cannot have three-dimensional light
maps - the practical restriction is the vast memory resources that would be
required. In the event that it is possible we have a method of caching the
reflected light at every point in the scene. We use any view-independent render-
ing method and assign the calculated light intensity at point (x, y, ) In object
space to Tix, y, ). It is interesting to now compare our pre-calculation mapping
methods.

With environment mapping we cache all the incoming illumination at a
single point in object space in a two-dimensional map which is labelled by the
direction of the incoming light at the point. A reflected view vector is then used
to retrieve the reflected light directed towards the user. These are normally used
for perfect specular surfaces and give us fast view-dependent effects.

With two-dimensional light maps we cache the reflected light for each surface
in the scene in a set of two-dimensional maps. Indexing into these maps during
the rendering phase depends on the method that was used to sample three-
dimensional object space. We use these to cache view-independent non-
dynamic lighting.

With three-dimensional light maps we store reflected light at a point in a
three-dimensional structure that represents object space. Three-dimensional
light maps are a subset of light fields (see Chapter 16).

Anti-aliasing and texture mapping
As we have discussed in the introduction to this chapter, artefacts are extremely
problematic in texture mapping and most textures produce visible artefacts
unless the method is integrated with an anti-aliasing procedure. Defects are
highly noticeable, particularly in texture that exhibits coherence or periodicity,
as soon as the predominant spatial frequency in the texture pattern approaches
the dimension of a pixel. (The classic example of this effect is shown in Figure
8.3.) Artefacts generated by texture mapping are not well handled by the com-
mon anti-aliasing method - such as supersampling - and because of this stan-
dard two-dimensional texture mapping procedures usually incorporate a specific
anti-aliasing technique.

Anti-aliasing in texture mapping is difficult because, 10 do it properly, we
need to find the pre-image of a pixel and sum weighted values of T(u, v) that fall

within the extent of the pre-image to get a single texture intensity for the pixel.
Unfortunately the shape of the pre-image changes from pixel to pixel and this
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Figure 8.24

Mip-mapping
approximations. (a) The
pre-image of a pixel is a
cunrvilinear quadrilateral

in texture space.

(b) A pre-image can be
approximated by a square.
() Compression is required
when a pixel maps

onto many texels,

(d) Magnification is required
when a pixel maps onto less
than one texel.

ANTI-ALIASING AND TEXTURE MAPPING

filtering process consequently becomes expensive. Refer again to Figure 8.2. This
shows that when we are considering a pixel its pre-image in texture space is, in
general, a curvilinear quadrilateral, because the net effect of the texture mapping
and perspective mapping is of a non-linear transformation. The figure also
shows, for the diagonal band, texture for which, unless this operation is per-
formed or approximated, erroneous results will occur. In particular, if the texture
map is merely sampled at the inverse mapping of the pixel centre then the sam-
pled intensity may be correct if the inverse image size of the pixel is sufficiently
small, but in general it will be wrong.

In the context of Figure 8.24(a), anti-aliasing means approximating the
integration shown in the figure. An approximate, but visually successful, method
ignores the shape but not the size or extent of the pre-image and pre-calculates
all the required fltering operations. This is mip-mapping invented by Williams
{1983) and probably the most common anti-aliasing method developed specifi-
cally for texture mapping. His method is based on pre-calculation and an assump-
tion that the inverse pixel image is reasonably close to a square. Figure 8.24(b)
shows the pixel pre-image approximated by a square. It is this approximation that
enables the anti-aliasing or filtering operation to be pre-calculated. In fact there
are two problems. The first is more common and is known as compression or
minification. This occurs when an object becomes small in screen space and con-
sequently a pixel has a large pre-image in texture space. Figure 8.24(c) shows this
situation. Many texture elements (sometimes called ‘texels’) need to be mapped
into a single pixel. The other problem is called magnification. Here an object
becomes very close to the viewer and only part of the object may occupy the
whole of screen space, resulting in pixel pre-images that have less area than one
texel (Figure 8.24(d)). Mip-mapping deals with compression and some elabora-
tion to mip-mapping is usually required for the magnification problem.

Texture space Image Texture space Image
Tiu,v) space Tin, v) space
e 3
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Figure B.25
Showing the principle of
mip-mapping-

In mip-mapping, instead of a texture domain comprising a single image,
williams uses many images, all derived by averaging down the original image
to successively lower resolutions. In other word they form a set of pre-filtered tex-
ture maps. Each image in the sequence is exactly half the resolution of the previ-
ous. Figure 8.25 shows an approximation to the idea. An object near to the viewer,
and large in screen space, selects a single texel from a high-resolution map. The
same obiject further away from the viewer and smaller in screen space selects a sin-
gle texel from a low-resolution map. An appropriate map is selected by a parame-
ter D. Figure 8.26 (Colour Plate) shows the mip-map used in Figure 8.8,

In a low-resolution version gf the image each texel represents the average of a
number of texels from the previous map. By a suitable choice of D, an image at
appropriate resolution is selected and the filtering cost remains constant - the many
texels to one pixel cost problem being avoided. The centre of the pixel is mapped
into that map determined by [ and this single value is used. In this way the origi-
nal texture is filtered and, to avoid discontinuities between the images at varying
resolutions, different levels are also blended. Blending between levels occurs when
D is selected. The images are discontinuous in resolution but D is a continuous pa-
rameter. Linear interpolation is carried out from the two nearest levels.

256
64
'] 128 1
i ’:H sfl] .10
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Williams selects ) from:

EZ ﬂv::z.ﬂz EZI:’?

D= maxo((CGF A 5] (G F {51
where dut and dv are the original dimensions of the pre-image in texture space
and dx = dy = 1 for a sguare pixel.

A ‘correct’ or accurate estimation of D is important. If ) is too large then the
image will look blurred, too small and aliasing artefacts will still be visible.
Detailed practical methods for determining depending on the mapping context
are given in Watt and Watt (1992).

In a theoretical sense the magnification problem does not exist. Ideally we
would like mip-maps that can be used at any level of detail, but in practice, stor-
age limitations restrict the highest resolution mask to, say, 512 = 512 texels. This
problem does not seem to have been addressed in the literature and the follow-
ing two approaches are supplied by Silicon Graphics for their workstation fam-
ily. Silicon Graphics suggest two solutions. First, to simply extrapolate beyond
the highest resolution mip-map, and a more elaborate procedure that extracts
separate texture infermation into low and high frequency components.

Extrapolation is defined as:

LOD(+1) = LOD(0) + (LOD(0) = LOD{=1))
where LOD (level of detail) represents mip-maps as follows:

LODi{+1) is the extrapolated mip-map
LODID) is the highest resolution stored mip-map
LODi{-1) is the next highest resolution stored mip-map

This operation derives an extrapolated mip-map of blocks of 4 x 4 pixels over
which there is no variation. However, the magnification process preserves edges
= hence the name.

Extrapolation works best when high frequency information is correlated with
low frequency structural information, that is when the high frequency informa-
tion represents edges in the texture. For example, consider that texture pattern
is made up of block letters. Extrapolation will blur/magnify the interior of the
letters, while keeping the edges sharp.

When high frequency information is not correlated with low frequency infor-
mation, extrapolation causes blurring. This occurs with texture that tends to
vary uniformly throughout, for example wood grain. Silicon Graphics suggest
separating the low and high frequency information and converting a high reso-
lution (unstorable at, say, 2K = 2K) into a 512 x 512 map that stores low
frequency or structural information and a 256 x 256 map that stores high fre-
quency detail. This separation can be achieved accurately using classical
filtering techniques. Alternatively a space domain procedure is as follows:

(1) Make a 512 x 512 low frequency map by simply re-sampling the original
2K x 2K map.
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(2) Make the 256 x 256 detail mask as follows:

(i) Select a 256 = 256 window from the original map that contains repre-
sentative high frequency texture,
(ii) Re-sample this to 64 x 64 and re-scale to 256 = 256 resulting in a blurred
version of the original 256 » 256 map.
(iif) Subtract the blurred map from the original, adding a bias to make the
subtrahend image unsigned. This results in a 256 x 256 high frequency.

Now when magnification is required a mix of the 512 x 512 low resolution tex-
ture with the high resolution detail is used.
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Interactive techniques in texture mapplng

One of the main problems in designing a conventional two-dimensional texture
map is the visualization of the result on the rendered object. Say an artist or a
designer is creating a texture map by painting directly in the two-dimensional uv
space of the map. We know that the distortion of the map, when it is ‘stuck’ on
the object is both a function of the shape of the object and the mapping method
that is used. To design a texture interactively the artist needs to see the final ren-
dered object and have some intuition of the mapping mechanism so that he can
predict the effect of changes made to the texture map.

We will now describe two interactive techniques. In the first the designer
paints in uv or texture space. The second attempts to make the designer think
that he is painting directly on the object in 3D world space.

The first technique is extremely simple and was evolved to texture animals/objects
that exhibit a plane of symmetry. It is simply an interactive version of two-part tex-
ture mapping with a plane as the intermediate object (see Section 8.1.2). The overall
idea is shown in Figure 8.27. The animal model is enclosed in a bounding box. The
texture map Tlu, v) is then ‘stuck’ on the two faces of the box using the ‘minimax’
coordinates of the box and points in T(u, v) are projected onto the object using a par-
allel projection, with projectors normal to the plane of symmetry.

The second technigue is to allow the artist to interact directly with the ren-
dered version on the screen. The artist applies the texture using an interactive
device simulating a brush and the effect on the screen is as if the painter was
applying paint directly to the 3D object. It is easy to see the advantages of such
a method by looking first at how it differs from a normal 2D paint program
which basically enables a user to colour selected pixels on the screen.

Say we have a sphere (circle in screen space). With a normal paint program,
if we selected, say, the colour green and painted the sphere, then unless we
explicitly altered the colour, the sphere’s projection would be filled with the
selected uniform green colour. However, the idea of using a paint interaction in
object space is that as you apply the green paint its colour changes according to
the application of the Phong shading equation, and if the paint were gloss a
specular highlight would appear. Extending the idea to texture mapping means
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Figure 8.27
Interactive texture mapping
- painting in T{w,v) space.
(a) Texture is painted
wsing an interactive paint
am. (b) Using the
ﬁt'ﬁ bounding box,
the texture map points are
projected onto the object.
All projectors are parallel to
each other and normal to
the bounding box face. (¢)
The object is rendered, the
‘distortion” visualized and
the artist repeats the cycle if
necessary.

INTERACTIVE TECHNIQUES IN TEXTURE MAPPING
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that the artist can paint the texture on the object directly and the program,
reversing the normal texture mapping procedure, can derive the texture map
from the object. Once the process is complete, new views of the object can be
rendered and texture mapped in the normal way,

This approach requires a technique that identifies, from the screen pixel that
is being pointed to, the corresponding point on the object surface. In the
method described by Hanrahan and Haeberl (1990} an auxiliary frame buffer,
known as an item buffer, is used. Accessing this buffer with the coordinates of
the screen cursor gives a pointer to the position on the object surface and the
corresponding (1, v) coordinate values for the texture map. Clearly we need an
object representation where the surface is everywhere parametrized and
Hanrahan and Haeberli (1990) divide the object surface into a large number of
micropolygons. The overall idea is illustrated in Figure 8.28,
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Figure 8.28 ¥
Iterative texture mapping - ltem buffer
painting in object space.
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Geometric shadows

9.1 Properties of shadows used in computer graphics
9.2 Simple shadows on a ground plane
9.3 Shadow algorithms

- Ir_nt_roductlon

This chapter deals with the topic of ‘geometric’ shadows or algorithms that
calculate the shape of an area in shadow but only guess at its reflected light
intensity. This restriction has long been tolerated in mainstream rendering; the
rationale presumably being that it is better to have a shadow with a guessed
intensity than to have no shadow at all.

Shadows like texture mapping are commonly handled by using an empirical
add-on algorithm, They are pasted into the scene like texture maps. The other
parallel with texture maps is that the easiest algorithm to use computes a map
for each light source in the scene, known as a shadow map. The map is accessed
during rendering just as a texture map is referenced to find out if a pixel is in
shadow or not. Like the Z-buffer algorithm in hidden surface removal, this algo-
rithm is easy to implement and has become a pseudo-standard. Also like the Z-
buffer algorithm it trades simplicity against high memory cost.

Shadows are important in scenes. A scene without shadows looks artificial.
They give clues concerning the scene, consolidate spatial relationships between
objects and give information on the position of the light source. To compute
shadows completely we need knowledge both of their shape and the light inten-
sity inside them. An area of the scene in shadow is not completely bereft of light.
It is simply not subject to direct illumination, but receives indirect illumination
from another nearby object. Thus shadow intensity can only be calculated tak-
ing this into account and this means using a global illumination model such as
radiosity. In this algorithm (see Chapter 11) shadow areas are treated no differ-
ently from any other area in the scene and the shadow intensity is a light inten-
sity, reflected from a surface, like any other.

Shadows are a function of the lighting environment. They can be hard edged
or soft edged and contain both an umbra and a penumbra area. The relative size
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Figure 9.1
Shadows cast by spherical
light sources.,

of the umbra/penumbra is a function of the size and the shape of the light source
and its distance from the object (Figure 9.1). The umbra is that part of a shadow
that is completely cut off from the light source, whereas the penumbra is an area
that receives some light from the source, A penumbra surrounds an umbra and
there is always a gradual change in intensity from a penumbra to an umbra. In
computer graphics, if we are not modelling illumination sources, then we usually
consider point light sources at large distances, and assume in the simplest case
that objects produce umbrae with sharp edges. This is still only an approxima.
tion. Even although light from a large distance produces almost parallel
rays, there is still light behind the object due to diffraction and the shadow
grades off. This effect also varies over the distance a shadow is thrown. These
effects, that determine the quality of a shadow, enable us to infer information
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SIMPLE SHADOWS ON A GROUND PLANE

conceming the nature of the light source and they are clearly important to us as
human beings perceiving a three-dimensional environment. For example, the
shadows that we see outdoors depend on the time of day and whether the sky is
overcast or not.

B A Ty P T o o S el ShE SR R T e e
Properties of shadows used in computer graphlcs

A number of aspects of shadows are exploited in the computer generation of the
phenomenon. These are:

® Ashadow from polygon A that falls on polygon B due to a point light source
can be calculated by projecting polygon A onto the plane that contains
polygon B. The position of the point light source is used as the centre of
projection.

® No shadows are seen if the view point is coincident with the (single) light
source. An equivalent form of this statement is that shadows can be
considered to be areas hidden from the light source, implying that maodified
hidden surface algorithms can be used to solve the shadow problem.

& [f the light source, or sources, are point sources then there is no penumbra
to calculate and the shadow has a hard edge.

® For static scenes, shadows are fixed and do not change as the view point
changes. If the relative position of objects and light sources change, the
shadows have to be re-calculated. This places a high overhead on three-
dimensional animation where shadows are important for depth and
movement perception.

Because of the high computational overheads, shadows have been regarded in
much the same way as texture mapping - as a quality add-on, They have not
been viewed as a necessity and compared with shading algorithms there has
been little consideration of the quality of shadows. Most shadow generation
algorithms produce hard edge point light source shadows and most algorithms
deal only with polygon mesh models.

o T T TR T 3 A L T R P R, AL LD i 1 . K
Simple shadows on a grnund plane

An extremely simple method of generating shadows is reported by Blinn {1988).
[t suffices for single object scenes throwing shadows on a flat ground plane. The
method simply involves drawing the projection of the object on the ground
plane. It is thus restricted to single object scenes, or multi-object scenes where
objects are sufficiently isolated so as not to cast shadows on each other. The
ground plane projection is easily obtained from a linear transformation and the
projected polygon can be scanned into a Z-buffer as part of an initialization pro-
cedure at an appropriate (dark) intensity.

:
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If the usual illumination approximation is made - single point source at an
infinite distance - then we have parallel light rays in a direction L = (x, M, &) as
shown in Figure 9.2. Any point on the object I = (x,, Vs, 2p) will cast a shadow
at § = (s, puy, 0). Considering the geometry in the figure, we have:

§=P-al

and given that z. = O, we have:

0=z, - an
a = Zplz
and:

e = Xp = (Zp/2)) X)
Vaw = Yo = (Zol2)) p1

As a homogeneous transformation this is

Xow 1 0 -xfz, 0 Xy
V| O 1 —pfz 0 Yo
o] jo0o 0 o Zp
1 oa 0 1 1

Note from this that it is just as easy to generate shadows on a vertical back or
side plane. Blinn also shows how to extend this idea to handle light sources that
are at a finite distance from the object.

This type of approximate shadow (on a flat ground plane) is beloved by
traditional animators and its use certainly enhances movement in three-
dimensional computer animation,.

X ¥ )

Lilight}

Figure 9.2
Ground plane shadows for
single objects.
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G3) """ Shadow algorithms | | R

Unlike hidden surface removal algorithms, where one or two algorithms now
predominate and other methods are only used in special cases, no popular can-
didate has emerged as the top shadow algorithm. In fact, shadow computation
is a rather neglected area of computer graphics. What follows, therefore, is a brief
description of four major approaches. Shadow generation in ray tracing is sepa-
rately described in Chapter 12.

9.3.1 Shadow algorithms: projecting polygons/scan line

This approach was developed by Appel {1968) and Bouknight and Kelley (1970).
Adding shadows to a scan line algorithm requires a pre-processing stage that
builds up a secondary data structure which links all polygons that may shadow
a given polygon. Shadow pairs - a polygon together with the polygon that it can
possibly shadow - are detected by projecting all polygons onto a sphere centred
at the light source. Polygon pairs that cannot interact are detected and discarded.
This is an important step because for a scene containing n polygons the number
of possible projected shadows is n{n - 1).

The algorithm processes the secondary data structure simultaneously with a
normal scan conversion process to determine if any shadows fall on the polygon
that generated the visible scan line segment under consideration. If no shadow
polygon(s) exists then the scan line algorithm proceeds as normal. For a current
polygon: if a shadow polygon exists then using the light source as a centre of
projection, the shadow is generated by projecting onto the plane that contains
the current polygon. Normal scan conversion then proceeds simultaneously
with a process that determines whether a current pixel is in shadow or not. Three
possibilities now occur:

(1) The shadow polygon does not cover the generated scan line segment and
the situation is identical to an algorithm without shadows.

(2) Shadow polygons completely cover the visible scan line segment and the
scan conversion process proceeds but the pixel intensity is modulated by an
amount that depends on the number of shadows that are covering the
segment. For a single light source the segment is either in shadow or is not.

i (3) A shadow polygon partially covers the visible scan line segment. In this case
the segment is subdivided and the process is applied recursively until a
solution is obtained.

A representation of these possibilities is shown in Figure 9.3. These are, in order
along the scan line:

{a) Polygon A is visible, therefore it is rendered.
{(b) Polygon B is visible and is rendered.

L .
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Figure 93

Polygons that receive a
shadow from another
polygon are linked in 2
secondary data structure.
Scan line segments are now
delineated by both view
point projection boundaries
and shadow boundaries,

Scan line

/'

View point

(¢} Polygon B is shadowed by polygon A and is rendered at an appropriately
reduced intensity.

(d) Polygon B is visible and is rendered.

Shadow algorithms: shadow volumes

The shadow volume approach was originally developed by Crow (1977) and
subsequently extended by others. In particular Brotman and Badler (1984) used
the idea as a basis for generating ‘soft” shadows — that is, shadows produced by a
distributed light source.

A shadow volume is the invisible volume of space swept out by the shadow
of an object. It is the infinite volume defined by lines emanating from a point
light source through vertices in the object. Figure 9.4 conveys the idea of a
shadow volume. A finite shadow volume is obtained by considering the inter-
section of the infinite volume with the view volume. The shadow volume is
computed by first evaluating the contour or silhouette edge of the object, as seen
from the light source. The contour edge of a simple object is shown in Figure
9.4(a). A contour edge of an object is the edge made up of one or more con-
nected edges of polygons belonging to the object. A contour edge separates those
polygons that can receive light from the light source from those that cannot.

Polygons defined by the light source and the contour edges define the bound-
ing surface of the shadow volume as shown in Figure 9.4(b). Thus each object,
considered in conjunction with a point light source, generates a shadow volume
object that is made up of a set of shadow polygons. Note that these shadow poly-
gons are “invisible’ and should not be confused with the visible shadow polygons
described in the next section. These shadow polygons are themselves used to
determine shadows - they are not rendered.
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figure 9.4

[ustrating the formation
of a shadow volume.

(a) Silhouette edge of an
object. (B) Finite shadow
yolume defined by a
silhouette edge palygon,
a paint fight source and a
view volume.

SHADOW ALGORITHMS

(a)
Light source

T

Silhouette cdge

by Point light source
Silhoueue cdge polygon
Semi-infinite shadow volume
produced by polygon
Inersection of
semi-infinite
shadow volume
with view volume
Wiew
volume

This scheme can be integrated into a number of hidden surface removal algo-
rithms and the polygons that define the shadow volume are processed along
with the object polygons except that they are considered invisible. A distinction
is made between ‘front-facing’ polygons and ‘back-facing’ polygons and the rela-
tionship between shadow polygons labelled in this way and object polygons is
examined. A point on an object is deemed to be in shadow if it is behind a front-
facing shadow polygon and in front of a back-facing polygon. Thatis, if it is con-
tained within a shadow volume. Thus a front-facing shadow polygon puts
anything behind it in shadow and a back-facing shadow polygon cancels the
effect of a front-facing one.

As it stands, the algorithm is most easily integrated with a depth priority hid-
den surface removal algorithm. Consider the operation of the algorithm for a
particular pixel. We consider a vector or ray from the view point through the
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Figure 9.5

Front-facing and back-facing
shadow polygons and the
shadow counter value.

pixel and look at the relationship between real polygons and shadow polygons
along this vector. For a pixel a counter is maintained. This is initialized to 1 jf
the view point is already in shadow, 0 otherwise. As we descend the d
list of polygons, the counter is incremented when a front-facing polygon is
passed and decremented when 2 back-facing polygon is passed. The value of this
counter tells us, when we encounter a real polygon, whether we are inside 3
shadow volume. This is shown schematically in Figure 9.5.

Brotman and Badler (1984) use an enhanced Z-buffer algorithm and thjs
approach has two significant advantages:

epth sorted

(1) The benefits of the Z-buffer rendering approach are retained.

(2} Their method is able to compute soft shadows or umbra/penumbra effects,

The price to be paid for using a shadow volume approach in conjunction with a
Z-buffer is memory cost. The Z-buffer has to be extended such that each pixel
location is a record of five fields. As shadow polygons are ‘rendered’ they mod-
ify counters in a pixel record and a decision can be made as to whether a point
is in shadow or not.

Soft shadows are computed by modelling distributed light sources as arrays of
point sources and linearly combining computations due to each point source,

The original shadow volume approach places heavy constraints on the database
environment; the most serious restriction is that objects must be convex polyhe-
drons. Bergeron ( 1986) developed a general version of Crow's algorithm that over-
comes these restrictions and allows concave objects and penetrating polygons.

Shadow
polygons

View point

Shadow volume

Front facing ) /

Back facing /

Real
polygons

Shadow
polygons

—

Palygon not

in shadow
/ Value of
Front facing 0 shadow counter

Shudow -
volume

Polygon
in shadow
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Shadow algorithms: derivation of shadow polygons from light
source transformations

This approach was developed by Atherton et al. (1978) and relies on the fact that
applying hidden surface removal to a view from the light source produces poly-
gons or parts of polygons that are in shadow. It also relies on the object space
polygon clipping algorithm (to produce shadow polygons that are parts of exist-
ing polygons) by Weiler and Atherton (1977).

A claimed advantage of this approach is that it operates in object space. This
means that it is possible to extract numerical information on shadows from the
algorithm. This finds applications, for example, in architectural CAD.

The algorithm enhances the object data structure with shadow polygons to
produce a ‘complete shadow data file’. This can then be used to produce any
view of the object with shadows. It is thus a good approach in generating ani-
mated sequences where the virtual camera changes position but the relative
position of the object and the light source remain unchanged. The working of
the algorithm is shown for a simple example in Figure 9.6. A single shadow poly-
gon is shown for clarity. Referring to Figure 9.6, the first step in the algorithm is
to apply a transformation such that the object or scene is viewed from the light
source position. Hidden surface removal then produces visible polygons, that is
polygons that are visible to the light source and are therefore not in shadow.
These are either complete or clipped as the illustration implies. This polygon set
can then be combined with the original object polygons, provided both data sets
are in the same coordinate system. The process of combining these sets results
in a complete shadow data file - the original polygon set enhanced by shadow
polygons for a particular light source. Transforming the database to the required
view point and applying hidden surface remowval will then result in an image
with shadows, This algorithm exploits the fact that shadow polygons are view
point independent. Essentially the scene is processed twice for hidden surface
removal. Once using the light source as a view point, which produces the
shadow polygons, and once using normal hidden surface removal (from any
view point).

Shadow algorithms: shadow Z-buffer

Possibly the simplest approach to the shadow computation, and one that is eas-
ily integrated into a Z-buffer-based renderer is the shadow Z-buffer developed by
Williams (1978). This technique requires a separate shadow Z-buffer for each
light source and in its basic form is only suitable for a scene illuminated by a sin-
gle light source. Alternatively a single shadow Z-buffer could be used for many
light sources and the algorithm executed for each light source, but this would be
somewhat inefficient and slow.

The algorithm is a two-step process. A scene is ‘rendered’ and depth informa-
tion stored in the shadow Z-buffer using the light source as a view point. No

—— e e
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Figure 9.6

Derivation of shadow
polygons from
transformations.

(a) Simple polygonal object
in modelling coordinate
system. (b) Plan view
showing the position of the (a)

light souree, {c) Hidden {:}
surface removal from the
light source as a view paint,
{d) Visible palygons from
(<) transformed back into
maodelling coordinate
systern. (€] Parts () and (b}
(d) merged to produce a
database that contains
shadow polygons, (f) Part
(e} can produce any view of
the object with shadows,

s

_

N=

(c)

0293




i SHADOW ALGORITHMS (273

intensities are calculated. This computes a ‘depth image’ from the light source,
of these polygons that are visible to the light source.

The second step is to render the scene using a Z-buffer algorithm. This process
is enhanced as follows: if a point is visible, a coordinate transformation is used to
map {(x, y, z), the coordinates of the point in three-dimensional screen space (from
the view point) to (x', ¥/, #'), the coordinates ot the point in screen space from the
light point as a coordinate origin. The (x', /) are used to index the shadow Z-
buffer and the corresponding depth value is compared with z'. If Z'is greater than
the value stored in the shadow Z-buffer for that point, then a surface is nearer to
the light source than the point under consideration and the point is in shadow,
thus a shadow ‘intensity’ is used, otherwise the point is rendered as normal. An
example of shadow maps is shown in Figure 18.8. Note that in this particular
example we have generated six shadow maps. This enables us to render a view of
the room from a view point situated anywhere within the scene.

Apart from extending the high memory requirements of the Z-buffer hidden
surface removal algorithm, the algorithm also extends its inefficiency. Shadow
calculations are performed for surfaces that may subsequently be ‘gverwritten’ —
just as shading calculations are.

Anti-aliasing and the shadow Z-buffer

In common with the Z-buffer algorithm, the shadow Z-buffer is susceptible to
aliasing artefacts due to point sampling. Two aliasing opportunities occur. First,
straightforward point sampling in the creation phase of the shadow Z-buffer pro-
duces artefacts. These will be visible along shadow edges - we are considering a
hard-edged shadow cast by a point light source. The second aliasing problem is
created when accessing the shadow Z-buffer. It is somewhat analogous to the
sampling problem created in texture mapping. This problem arises because we
are effectively projecting a pixel extent onto the shadow Z-buffer map. This is
shown schematically in Figure 9.7. If we consider the so-called pre-image of a
square pixel in the shadow Z-buffer map then this will, in general, be a quadri-
lateral that encloses a number of shadow Z-buffer pixels. It is this many map pix-
els to one screen pixel problem that we have to deal with. It means that a pixel
may be partly in shadow and partly not and if we make a binary decision then
aliasing will occur. We thus consider the fraction of the pixel that is in shadow
by computing this from the shadow Z-buffer. This fraction can be evaluated by
the z' comparisons over the set of shadow Z-buffer pixels that the screen pixel

projects onto. The fraction is then used to give an appropriate shadow intensity.
[ The process in summary is:

(1) For each pixel calculate four values of (¥, ¥) corresponding to the four
corner points. This defines a quadrilateral in shadow Z-bufter space.

(2) Integrate the information over this quadrilateral by comparing the z value
for the screen pixel with each z' value in the shadow Z-buffer quadrilateral.
This gives a fraction that reflects the area of the pixel in shadow.

L |
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View point

Light
Lource

Figure 8.7 (3) We use this fraction to give an appropriate attenuated intensity. The visual
‘Pre-image’ of a pixel in the

h effect of this is that the hard edge of the shadow will be softened for those
shadow Z buffer. pixels that straddle a shadow boundary.

i Full details of this approach are given in Reeves ¢f al. (1987). The price paid for
:t-' this anti-aliasing is a considerable increase in processing time. Pre-filtering tech-
niques (see Chapter 14) cannot be used and a stochastic sampling scheme for

integrating within the pixel pre-image in the shadow Z-buffer map is suggested
in Reeves et al. (1987),
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Global illumination

10.1 Global illumination models

10.2 The evolution of global illumination algorithms

10.3 Established algorithms - ray tracing and radiosity

10.4 Monte Carlo techniques in global illumination

10.5 Path tracing

10.6 Distributed ray tracing

10.7 Two-pass ray tracing

10.8 View dependence/independence and multi-pass methods
10.9 Caching illumination

10.10 Light volumes

10.11 Particle tracing and density estimation

lntrodi.uctiori

In computer graphics, global illumination is the term given to models which
render a view of a scene by evaluating the light reflected from a point x taking
into account all illumination that arrives at a point. That Is we consider not only
the light arriving at the point directly from light sources but all indirect illumi-
nation that may have originated from a light source via other objects.

It is probably the case that in the general pursuit of photo-realism, most
research effort has gone into solving the global illumination problem. Although,
as we have seen in Chapter 7, considerable parallel work has been carried out
with local reflection models, workers have been attracted to the difficult prob-
lem of simulating the interaction of light with an entire environment. Light has
to be tracked through the environment from emitter(s) to sensor(s), rather than
just from an emitter to a surface then directly to the sensor or eye. Such an
approach does not then require add-on algorithms for shadows which are sim-
ply areas in which the illumination level is reduced due to the proximity of a
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nearby object. Other global illumination effects such as reflection of objects in
each other and transparency effects can also be correctly modelled.

It is not clear how important global illumination is to photo-realism. Certainly
it is the case that we are accustomed to ‘closed’ man-made environments, where
there is much global interaction, but the extent to which this interaction has to
be simulated, to achieve a degree of realism acceptable for most computer graph-
ics applications, is still an open question. Rather, the problem has been vigorously
pursued as a pure research problem in its own right on the assumption that
improvements in the accuracy of global interaction will be valuable.

Two established (partial) global algorithms have now emerged. These are ray
tracing and radiosity and, for reasons that will soon become clear, they both, in
their most commonly implemented forms, simulate only a subset of global inter-
action: ray tracing attending to (perfect) specular interaction and radiosity to
(perfect) diffuse interaction. In other words, current practical solutions to the
problem deal with its inherent intractability by concentrating on particular
global interactions, ignoring the remainder and by considering interactions to
be perfect. In the case of specular interaction ‘perfect’ means that an infinitesi-
mally thin beam hitting a surface reflects without spreading - the surface is
assumed perfect. In the case of perfect diffuse interaction we assume that an
incoming beam of light reflects equally in all directions into the hemisphere
centred at the point of reflection. ’

Ignoring Anite computing resources, a solution to the global interaction prob-
lem is simply stated. We start at the light source(s) and follow every light path
(or ray of light) as it travels through the environment stopping when the light
hits the eye point, has its energy reduced below some minimum due to absorp-
tion in the objects that it has encountered, or travels out of the environment
into space. To see the relevance of global illumination algorithms we need ways
of describing the problem -~ models that capture the essence of the behaviour of
light in an environment. In this chapter we will introduce two models of global
illumination and give an overview of the many and varied approaches to global
illumination. We devote separate chapters to the implementation details of the
two well-established methods of ray tracing and radiosity.

We should note that it is difficult to categorize global illumination algorithms
because most use a combination of techniques. Is two-pass ray tracing, for exam-
ple, to be considered as a global illumination method or as an extension to ray
tracing? Thus the breakdown by technique that appears in this chapter
inevitably contains algorithms that straddle more than one category and the
sorting is simply the author’s preference.

Global illumination models
We start by introducing two ‘models’ of the global illumination problem. The

first is a mathematical formulation and the second is a classification in terms of
the nature of the type of interaction that can occur when light travels from one
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surface to the other. The value of such models is that they enable a comparison
between the multitude of global illumination algorithms most of which evalu-
ate a less than complete solution. By their nature the algorithms consist of a
wealth of heuristic detail and the global illumination models facilitate a com-
parison in terms of which aspects are evaluated and which are not.

The rendering equation

The first model that we will look at was introduced into the computer graphics
literature in 1986 by Kajiya (Kajiya 1986) and is known as the rendering equa-
tion. It encapsulates global illumination by describing what happens at a point
xon a surface, Itisa completely general mathematical statement of the problem
and global illumination algorithms can be categorized in terms of this equation.
In fact, Kajiya states that its purpose;

is to provide a unified context for viewing them [rendering algorithms] as more or less
accurate approximations to the solution for a single equation.

The integral in Kajiya's original notation is given by:
Iix, x') = glx, ¥)elx, x) + j' plx, &', 2%) Iix', x")dx"]

where:

fix, X'} is the transport intensity or the intensity of light passing from point x
to point x. Kajiya terms this the unoccluded two point transport intensity,

&lx, x') is the visibility function between x and A" If x and x' cannot ‘see’ each
other then this is zero. If they are visible then & varies as the inverse square of
the distance between them.

e(x, X') is the transfer emittance from x' to x and is related to the intesity of
any light self-emitted by point x' in the direction of x,

plx, X', x7) is the scattering term with respect to direction &' and x", It is the
intensity of the energy scattered towards x by a surface point located at ¥
arrlving from point or direction x". Kajiya calls this the unoccluded three-
point transport reflectance, It is related to the BRDF (see Chapter 7) by:

plx, &', x") = p(0'is, ¢, B'rei, &'t} COS B COS B et
where 8' and ¢' are the azimuth and elevation angles related to point x' (see

Section 7.3) and @ is the angle between the surface normal at point x and the
line x'x.

The integral is over s, all points on all surfaces in the scene, or equivalently over
all points on the hemisphere situated at point x'. The equation states that the
transport intensity from point x' to point x is equal to (any) light emitted from
A" towards x plus the light scattered from x' towards x from all other surfaces in
the scene - that is, that originate from direction x".
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(10.1.2)

Expressed in the above terms the rendering equation implies that we must
have:

® A model of the light emitted by a surface &().
® A representation of the BRDF p() for each surface.
@ A method for evaluating the visibility function,

We have already met all these factors; here the formulation gathers them into a
single equation. The important general points that come out of considering the
rendering equation are:

(1) The complexity of the integral means that it cannot be evaluated
analytically and most practical algorithms reduce the complexity in some
way. The direct evaluation of the equation can be undertaken by using
Monte Carlo methods and many algorithms follow this approach.

(2) It is a view-independent statement of the problem. The point x' is every
point in the scene. Global illumination algorithms are either view
independent - the common example is the radiosity algorithm - or view
dependent where only those points x' visible from the viewing position are
evaluated. View dependence can be seen as a way in which the inherem
complexity of the rendering equation is reduced. (See Section 10.8 for a
more detailed discussion on view dependence/independence.)

(3) It is a recursive equation - to evaluate I{x, x') we need to evaluate I(x', x")
which itself will use the same equation. This gives rise to one of the most
popular practical methods for solving the problem which is to trace light
from the image plane, in the reverse direction of light propagation,
following a path that reflects from object to object. Algorithms that adopt
this approach are: path tracing, ray tracing and distributed ray tracing, all of
which will be described later.

Radiance, irradiance and the radiance equation

The original form of the rendering equation is not particularly useful in global
illumination methods and in this section we will introduce definitions that
enable us to write it in a different form called the radiance equation.

Radiance L is the fundamental radiometric quantity and for a point in three-
dimensional space it is the light energy density measured in W/(sr-m?). The radi-
ance at a point is a function of direction and we can define a radiance
distribution function for a point. This will generally be discontinuous as the two-
dimensional example in Figure 10.1 demonstrates. Such a distribution function
exists at all points in three-dimensional space and radiance is therefore a five-
dimensional quantity. Irradiance is the integration of incoming radiance over all
directions:

E=j Lix cos 8 do

n
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Figure 10.1
Radiance, irradiance and
irradiance distribution
function (after Creger e al.
(1998))-

(a) A two-dimensional
radiance distribution for a
point in the centre of a
room where each wall

exhibits a different radiance.

(b) The field radiance for a
paint on a surface element.
Irradiance E is the cosine

weighted average of the

radiance - in this case 3.5 x.

(c) If the surface element
is rotated an irradiance
distribution function is
defined,

GLOBAL ILLUMINATION MODELS

vd

E=15r

(3]
where:

Lix is the incoming or field radiance from direction w
8 is the angle between the surface normal and ©

If Lin is constant, we have for a diffuse surface:
Laittuse = PE.I".'E

The distinction between these two quantities is important in global illumination
algorithms as the form of the algorithm can be classified as ‘shooting’ or ‘gath-
ering’. Shooting means distributing radiance from a surface and gathering means
integrating the irradiance or accumulating light flux at the surface. (Radiosity B
is closely related to irradiance having units W/m?.)

An important practical point concerning radiance and irradiance distribution
functions is that while the former is generally discontinuous the latter is gener-
ally continuous, except for shadow boundaries. This is demonstrated in Figure
10.1 which shows that in this simple example the irradiance distribution func-
tion will be continuous because of the averaging effect of the integration.
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Figure 10.2
The radiance equation.

(a) The domain of
integration is the
hemisphere of all incoming
directions.

(b) Symbols used to define
the directional dependence.

(c) cos 8o dA/ lIx — %117 is the
projected area of dA visible
in the direction ..

The rendering equation can be recast as the radiance equation which in its
simplest form is:

Lo = J- pLia
Including the directional dependence, we then write:
Liet (X, ret) = Le (X, oer) + J PX, 0 — Oou)Lin (X, 03)COS 8o dukn

i

where the symbaols are defined in Figure 10.2(b). This can be modified so that the
integration is performed over all surfaces - usually more convenient in practical
algorithms - rather than all incoming angles and this gives the rendering equa.
tion in terms of radiance:

cos BodA

Leet (X, @rer) = Le (X, tnei) + I P(X, tha — Wow)Lin (X', @)X, X')C0S B 7515
5

which now includes the visibility function. This comes about by expressing the
solid angle dox, in terms of the projected area of the differential surface region
visible in the direction of ax. (Figure 10.2(c)):
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Figure 10.3

The four “mechanisms’ of
light transport: (a) diffuse
1o diffuse; (b) specular to
diffuse; (c) diffuse to
$pecular; (d) specular to
pecular (after Wallace ef af.
(1987)).

diin,

cos BodA
TP

Path notation

GLOBAL ILLUMINATION MODELS

Another way of categorizing the behaviour of global illumination algorithms is
to detail which surface-to-surface interactions that they implement or simulate.
This is a much simpler non-mathematical categorization and it enables an easy
comparison and classification of the common algorithms. We consider which
interactions between pairs of interacting surfaces are implemented as light trav-
els from source to sensor. Thus at a point, incoming light may be scattered or
reflected diffusely or specularly and may itself have originated from a specular
or diffuse reflection at the previous surface in the path. We can then say that for
pairs of consecutive surfaces along a light path we have (Figure 10.3):

Diffuse to diffuse transfer.
Specular to diffuse transfer.
Diffuse to specular transfer.
Specular to specular transfer.

(a)

(bl
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Figure 10.4

A selection of global
illuminations paths in a
simple environment. See
also the Colour Plate version
of this figure.

In an environment where only diffuse surfaces exist only diffuse-diffuse
interaction is possible and such scenes are solved using the radiosity method,
Similarly an environment containing only specular surfaces can only exhibit
specular interaction and (Whitted) ray tracing deals with these. Basic radiosity
does not admit any other transfer mechanism except diffuse-diffuse and it
excludes the important specular-specular transfer. Ray tracing, on the other
hand can only deal with specular-specular interaction. More recent algorithms,
such as ‘backwards’ ray tracing and enhancements of radiosity for specular inter-
action require a categorization of all the interactions in a light journey from
source to sensor, and this led to Heckbert’s string notation (Heckbert 1990) for
listing all the interactions that occur along a path of a light ray as it travels from
source (L) to the eye (E). Here a light path from the light source to the first hit is
termed L, subsequent paths involving transfer mechanisms at a surface point are
categorized as DD, $D, DS or $5. Figure 10.4 (also a Colour Plate) shows an exam-
ple of a simple scene and various paths. The path that finally terminates in the
eye is called E. The paths in the example are:

(1) LDDE For this path the viewer sees the shadow cast by the table. The light
reflects diffusely from the right-hand wall onto the floor. Note that any light
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reflected from a shadow area must have a minimum of two interactions
between L and E.

(2) LDSE + LDDE Here the user sees the dark side of the sphere which is not
receiving any direct light. The light is modelled as a point source, so any area
below the ‘equator’ of the sphere will be in shadow. The diffuse illumination
reflected diffusely from the wall is directed towards the eye and because the
sphere is shiny the reflection to the eye is both specular and diffuse.

(3) LSSE + LDSE Light is reflected from the perfect mirror surface to the eye
and the viewer sees a reflection of the opaque or coloured ball in the mirror
surface.

(4) LSDE Here the viewer sees a shadow area that is lighter than the main
table shadow. This is due to the extra light reflected from the mirror and
directed underneath the table.

(5) LSSDE This path has three interactions between L and E and the user sees
a caustic on the table top which is a diffuse surface, The first specular
interaction takes place at the top surface of the sphere and light from the
point source is refracted through the sphere. There is a second specular
interaction when the light emerges from the sphere and hits the diffuse
table surface. The effect of the reflection is to concentrate light rays
travelling through the sphere into a smaller area on the table top than they
would occupy if the transparent sphere was not present. Thus the user sees
a bright area on the diffuse surface.

A complete global illumination algorithm would have to include any light path
which can be written as L(DIS)*E, where | means ‘or’ and * indicates repetition.
The application of a local reflection model implies paths of type LDIS (the inten-
sity of each being calculated separately then combined as in the Phong reflection
model) and the addition of a hidden surface removal algorithm implies simula-
tion of types LDISE. Thus local reflection models only simulate strings of length
unity (between L and E) and viewing a point in shadow implies a string which
is at least of length 2.

“_‘ -

The evolution of global illumination algorithms
We will now look at the development of popular or established global illumina-
tion algorithms using as a basis for our discussion the preceding concepts. The
order in which the algorithms are discussed is somewhat arbitrary; but goes from
incomplete solutions (ray tracing and radiosity) to general solutions. The idea of
this section is to give a view of the algorithms in terms of global interaction,
Return to consideration of the brute force solution to the problem. There we
considered the notion of starting at a light source and following every ray of
light that was emitted through the scene and stated that this was a computa-
tionally intractable problem. Approximations to a solution come from con-
straining the light-object interaction in some way and/or only considering a
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Figure 10.5

Whitted ray tracing.

small subset of the rays that start at the light and bounce around the scene. The
main approximations which led to ray tracing and radiosity constrained the
scene to contain only specular reflectors or only (perfect) diffuse reflectors
respectively.

In what follows we give a review of ray tracing and radiosity sufficient for
comparison with the other methods we describe, leaving the implementation
details of these important methods for separate chapters.

 Established algorithms - ray tracing and radiosity
Whitted ray tracing

Whitted ray tracing (visibility tracing, eye tracing) traces light rays in the reverse
direction of propagation from the eye back into the scene towards the light
source. To generate a two-dimensional image plane projection of a scene using
ray tracing we are only interested in these light rays that end at the sensor or eye
point and therefore it makes sense to start at the eye and trace rays out into the
scene. It is thus a view-dependent algorithm. A simple representation of the
algorithm is shown in Figure 10.5. The process is often visualized as a tree where
each node is a surface hit point. At each node we spawn a light ray and a
reflected ray or a transmitted (refracted) ray or both.

Whitted ray tracing is a hybrid - a global illumination model onto which is
added a local model. Consider the global interaction. The classic algorithm only
includes perfect specular interaction. Rays are shot into the scene and when they
hit a surface a reflected (and transmitted) ray is spawned at the point of intersec-
tion and they themselves are then followed recursively. The process stops when

Eye

N
ﬂ Initial ray

Pixel
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Figure 10.6

Whitted ray tracing: the
relationship between light
paths and local and global
contributions for one of the
cases shown in Figure 10.4.

ESTABLISHED ALGORITHMS - RAY TRACING AND RADIOSITY

the energy of a ray drops below a predetermined minimum or if it leaves the scene
and travels out into empty space or if a ray hits a surface that is perfectly diffuse.
Thus the global part of ray tracing only accounts for pure specular-specular inter-
action. Theoretically there is nothing to stop us calculating diffuse global interac-
tion, it is just that at every hit point an incoming ray would have to spawn
reflected rays in every direction into a hemispherical surface centred on the point.

To the global specular component is added a direct contribution calculated by
shooting a ray from the point to the light source which is always a point source
in this model. The visibility of the point from the light source and its direction
can be used to calculate a local or direct diffuse component - the ray is just L in
a local reflection model. Thus (direct) diffuse reflection (but not diffuse-diffuse)
interaction is considered. This is sometimes called the shadow ray or shadow
feeler because if it hits any object between the point under consideration and the
light source then we know that the point is shadow. However, a better term is
light ray to emphasize that it is used to calculate a direct contribution (using a
local reflection model) which is then passed up the tree. The main problem with
Whitted ray tracing is its restriction to specular interaction - most practical
scenes consist of predominantly diffuse surfaces.

Consider the LSSE + LDSE path in Figure 10.4, reproduced in Figure 10.6
together with the ray tree. The initial ray from the eye hits the perfect mirror

Recursion
f erminates  (b) Ray tree for paths

- Light ray
{no contribution)

refraction sphere

() Contributions from global and local components

no local

LSSE - LDSE + onarfbotion
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sphere. For this sphere there is no contribution from a local diffuse model. At the
next intersection we hit the opague sphere and trace a global specular compo-
nent which hits the ceiling, a perfect diffuse surface, and the recursion is termi-
nated. Also at that point we have a contribution from the local diffuse model for
the sphere and the viewer sees in the pixel associated with that ray the colour of
the reflected image of the opaque sphere in the mirror sphere.

A little thought will reveal that the paths which can be simulated by Whitted
ray tracing are constrained to be LS*E and LDS*E. Ray traced images therefore
exhibit reflections in the surfaces of shiny objects of nearby objects. If the
objects are transparent any objects that the viewer can see behind the transpar-
ent object are refracted. Also, as will be seen in Chapter 12, shadows are calcu-
lated as part of the model - but only ‘perfect’ or hard-edged shadows.

Considering Whitted ray tracing in terms of the rendering equation the
following holds. The scattering term p is reduced to the law for perfect reflection
{and refraction). Thus the integral over all § - the entire scene - reduces to cal-
culating (for reflection) a single outgoing ray plus the light ray which gives
the diffuse component and adding these two contributions together. Thus the
recursive structure of the rendering equation is reflected perfectly in the algo-
rithm but the integral operation is reduced to a sum of three analytically calcu-
lated components - the contributions from the reflected, transmitted and light

Tays.

Radiosity

Classic radiosity implements diffuse-diffuse interaction. Instead of following
individual rays ‘interaction’ between patches (or polygons) in the scene are con-
sidered. The solution is view independent and consists of a constant radiosity for
every patch in the scene. View independence means that a solution is calculated
for every point in the scene rather than just those points that can be seen from
the eye (view dependent). This implies that a radiosity solution has to be fol-
lowed by another process or pass that computes a projection, but most work is
carried out in the radiosity pass. A problem or contradiction with classical radios-
ity is that the initial discretization of the scene has to be carried out before the
process is started but the best way of performing this depends on the solution.
In other words, we do not know the best way to divide up the scene until after
we have a solution or a partial solution. This is an outstanding problem with the
radiosity method and accounts for most of its difficulty of use.

A way of visualizing the radiosity process is to start by considering the light
source as an (array of) emitting patches. We shoot light into the scene from the
source(s) and consider the diffuse—diffuse interaction between a light patch and
all the receiving patches that are visible from the light patch - the first hit
patches. An amount of light is deposited or cached on these patches which are
then ordered according to the amount of energy that has fallen onto the patch
and has yet to be shot back into the scene. The one with the highest unshot
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energy is selected and this is considered as the next shooting patch. The process
continues iteratively until a (high) percentage of the initial light energy is dis-
tributed around the scene. At any stage in the process some of the distributed
energy will arrive back on patches that have already been considered and this is
why the process is iterative. The process will eventually converge because the
reflectivity coefficient associated with each patch is, by definition, less than
unity and at each phase in the iteration more and more of the initial light is
absorbed. Figure 10.7 (Colour Plate) shows a solution in progress using this algo-
rithm. The stage shown is the state of the solution after 20 iterations. The four
illustrations are:

{1) The radiosity solution as output from the iteration process. Each patch is
allocated a constant radiosity.

(2) The previous solution after it has been subject to an interpolation process.

(3) The same solution with the addition of an ambient term. The ambient ‘lift’
is distributed evenly amongst all patches in the scene, to give an early well
lit solution (this enhancement is described in detail in Chapter 11).

(4) The difference between the previous two images. This gives a visual
indication of the energy that had to be added to account for the unshot
radiosity.

The transfer of light between any two patches - the diffuse-diffuse interaction -
is calculated by considering the geometric relationship between the patches
(expressed as the form factor). Compared to ray tracing we follow light from the
light source through the scene as patch-to-patch diffuse interaction, but instead
of following individual rays of light, the form factor between two patches aver-
ages the effect of the paths that join the patches together. This way of consider-
ing the radiosity methed is, in fact, implemented as an algorithm structure. It is
called the progressive refinement method.

This simple concept has to be modified by a visibility process (not to be con-
fused by the subsequent calculation of a projection which includes, in the nor-
mal way, hidden surface removal) that takes into account the fact that in general
a patch may be only partially visible to another because of some intervening
patch. The end result is the assignment of a constant radiosity to each patch in
the scene — a view-independent solution which is then injected into a Gouraud-
style renderer to produce a projection. In terms of path classification, conven-
tional radiosity is LD*E.

The obvious problem with radiosity is that although man-made scenes usu-
ally consist mostly of diffuse surfaces, specular objects are not unusual and these
cannot be handled by a radiosity renderer. A more subtle problem is that the
scene has to be discretized into patches or polygons before the radiosities are
computed and difficulties occur if this polygonization is too coarse.

We now consider radiosity in terms of the rendering equation. Radiosity is the
energy per unit time per unit area and since we are only considering diffuse illu-
mination we can rewrite the rendering equation as:
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B(x) = e(2") + p(x") J B(x)F(x, x")dx

where now the only directional dependence is incorporated in the form factor F.
The equation now states that the radiosity of a surface element x is equal to the
emittance term plus the radiosity radiated by all other elements in the scene
onto x. The form factor F is a coefficient that is a function only of the spatial rela-
tionship between x and x' and this determines that fraction of B(x") arriving at x,
F also includes a visibility calculation.

i - E e T . B BT B e i = et e b T R - |
Monte Carlo techniques in global illumination
In this section we will give an intuitive introduction to Monte Carlo techniques,
The mathematical details are outside the intended scope of this text (see
Glassner (1995) for a comprehensive treatment of Monte Carlo theory and its
application to global illumination) and it is the case that the methods that use
Monte Carlo techniques can be explained in algorithmic terms. However, some
intuition concerning the underlying factors is necessary to appreciate the par-
ticular strategies employed by the examples which we will describe. Without this
intuition it is, for example, difficult to appreciate the difference between
Whitted ray tracing and Kajiya's Monte Carlo approach which he termed path
tracing (Section 10.5).

Monte Carlo techniques are used to solve integrals like the rendering equa-
tion which have no analytical or numerical solution. They do this by comput-
ing the average of random samples of the integrand, adding these together and
taking the average. The visual effect of this process in the final rendered image
is noise. The attraction of Monte Carlo techniques is that they are easy to imple-
ment because they are conceptually simple. An equally important advantage is
their generality. No a priori simplifications have to be made (like perfect reflec-
tors in Whitted ray tracing and perfect diffusers in radiosity). This comes about
because they point sample both the geometry of the scene and the optical prop-
erties of the surface. The problem with Monte Carlo methods comes in devising
techniques where an accurate or low variance estimate of the integral can be
obtained quickly.

The underlying idea of Monte Carlo methods for estimating integrals can be
demonstrated using a simple one-dimensional example. Consider estimating the
integral:

I= } flx) dx
v}

I can be estimated by taking a random number § €[0,1] and evaluating fig).
This is called a primary estimator. We can define the variance of the estimate as:

o = | f2 ()dx - F(E)
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Figure 10.8
Stratified sampling of £x).

MONTE CARLO TECHNIQUES IN GLOBAL ILLUMINATION

which for a single sample we would expect to be high. In practice we would take
N samples to give a so-called secondary estimate and it is easily shown that:

_ i
Ohec= =

This observation, that the error in the estimate is inversely proportional to the
square root of the number of samples, is extremely important in practice. To
halve the error, for example, we must take four times as many samples.
Equivalently we can say that each additional sample has less and less effect on
the result and this has to be set against the fact that computer graphics imple-
mentations tend to involve an equal, and generally high cost, per sample. Thus
the main goal in Monte Carlo methods is to get the best result possible with a
given number of samples N. This means strategies that result in variance reduc-
tion. The two common strategies for selecting samples are stratified sampling
and importance sampling.

The simplest form of stratified sampling divides the domain of the integration
into equal strata and estimates each partial integral by one or more random sam-
ples (Figure 10.8). In this way each sub-domain is allocated the same number of
samples. Thus:

1
I = fix) dx

- i | fidx

=l %
1 N
=i EI, fié)
This estimate results in a variance that is guaranteed to be lower than that
obtained by distributing random samples over the integration domain. The most
familiar example of stratified sampling in computer graphics is jittering in pixel
sampling. Here a pixel represents the domain of the integral which is subdivided

into equal strata and a sample point generated by jittering the centre point of
each stratum (Figure 10.9).

ﬂrj s
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Figure 10.9 3 °

Stratified sampling in + | * o+ 4
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As the name implies, importance sampling tends to select samples in impor-
tant regions of the integrand. Importance sampling implies prior knowledge of
the function that we are going to estimate an integral for, which at first sight
appears to be a contradiction. However, most rendering problems involve an
integrand which is the product of two functions, one of which is known a priori
as in the rendering equation. For example, in a Monte Carlo approach to ray
tracing a specular surface we would choose reflected rays which tended to clus-
ter around the specular reflection direction thus sampling the (known) BRDF in
regions where it is likely to return a high value. Thus, in general, we distribute
the samples so that their density is highest in the regions where the function has
a high value or where it varies significantly and quickly. Considering again our
simple one-dimensional example we can write:

[ poy 12

I= { PLx) 555 dX
where the first term p(x) is an importance weighting function. This function p(x)
is then the probability density function (PDF) of the samples. That is the sam-
ples need to be chosen such that they conform to p(x). To do this we define P(x)
to be the cumulative function of the PDF:

P(x) = | pitydt
L1

and choose a uniform random sample T and evaluate £ = P-Y1). Using this
method the variance becomes:

Fomp =£ %]‘pmm -

plx)

The question is how do we choose p(x). This can be a function that satisfies the
following conditions:

=j B e
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Figure 10.10
Hlustrating the idea of
importance sample.

MONTE CARLO TECHNIQUES IN GLOBAL ILLUMINATION

pix) =0
I plajdx =1

P(x) is computable

For example, we could choose pix) to be the normalized absolute value of fix) or
alternatively a smoothed or approximate version of flx) (Figure 10.10}. Any func-
tion fix) that satisfies the above conditions will not necessarily suffice. If we
choose an fix) that is too far from the ideal then the efficiency of this technique
will simply drop below that of a naive method that uses random samples.
Importance sampling is of critical importance in global illumination algorithms
that utilize Monte Carlo approaches for the simple and obvious reason that
although the rendering equation describes the global illumination at each and
every point in the scene we do not require a solution that is equally accurate. We
require, for example, a more accurate result for a brightly illuminated specular
surface than for a dimly lit diffuse wall. Importance sampling enables us to build
algorithms where the cost is distributed according to the final accuracy that we
require as a function of light level and surface type.

An important practical implication of Monte Carlo methods in computer graph-
ics is that they produce stochastic noise. For example, consider Whitted ray tracing
and Monte Carlo approaches to ray tracing. In Whitted ray tracing the perfect spec-
ular direction is always chosen and in a sense the integration is reduced to a deter-
ministic algorithm which produces a noiseless image. A crude Monte Carlo
approach that imitated Whitted ray tracing would produce an image where the
final pixels’ estimates were, in general, slightly different from the Whitted solution.
These differences manifest themselves as noticeable noise. Also note that in
Whitted ray tracing if we ignore potential aliasing problems we need only initiate
one ray per pixel. With a Monte Carlo approach we are using samples of the ren-
dering equation to compute an estimate of intensity of a pixel and we need to fire
many raysfpixels which bounce around the scene. In Kajiya's pioneering algorithm
{Kajiya 1986), described in the next section, he used a total of 40 rays per pixel,

Global illumination algorithms that use a Monte Carlo approach are all based
on these simple ideas. Their inherent complexity derives from the fact that the
integration is now multi-dimensional.

E..: E: i &j i E: -E,r.-
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Path tracing 1

In his classic paper that introduced the rendering equation, Kajiya (1986) was
the first to recognize that Whitted ray tracing is a deterministic solution to the
rendering equation. In the same paper he also suggested a non-deterministic
variation of Whitted ray tracing - a Monte Carlo method that he called path
tracing.

Kajiya gives a direct mathematical link between the rendering equation and
the path tracing algorithm by rewriting the equation as:

I=ge+gMI

where M is the linear operator given by the integral in the rendering equation.
This can then be written as an infinite series known as a Neuman series as:

I'=ge + gMge + g(MgVe + g(Mg)le + . ..

where [ Is now the sum of a direct term, a once scattered term, a twice scattered
term, etc. This leads directly to path tracing, which is theoretically known as a
random walk. Light rays are traced backwards (as in Whitted ray tracing) from
pixels and bounce around the scene from the first hit point, to the second, to
the third, etc. The random walk has to terminate after a certain number of steps
- equivalent to truncating the above series at some point when we can be sure
that no further significant contributions will be encountered.

Like Whitted ray tracing, path tracing is a view-dependent solution.
Previously we have said that there is no theoretical bar to extending ray tracing
to handle all light-surface interactions including diffuse reflection and trans-
mission from a hit point; just the impossibility of the computation. Path tracing
implements diffuse interaction by initiating a large number of rays at each pixel
(instead of, usually, one with Whitted ray tracing) and follows a single path for
each ray through the scene rather than allowing a ray to spawn multiple
reflected children at each hit point. The idea is shown in Figure 10.11 which can
be compared with Figure 10.5. All surfaces, whether diffuse or specular can
spawn a reflection/transmission ray and this contrasts with Whitted ray tracing
where the encounter with a diffuse surface terminates the recursion. The other
important difference is that a number of rays (40 in the original example) are in-
itiated for each pixel enabling BRDFs to be sampled. Thus the method simulates
full L{(DIS)*E interaction.

A basic path tracing algorithm using a single path from source to termination
will be expensive. If the random walks do not terminate on a light source then
they return zero contribution to the final estimate and unless the light sources are
large, paths will tend to terminate before they reach light sources. Kajiya addressed
this problem by introducing a light or shadow ray that is shot towards a point on
an (area) light source from each hit point in the random walk and accumulating
this contribution at each point in the path (if the reflection ray from the same
point directly hits the light source then the direct contribution is ignored).
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Figure 10.11
Two rays in path tracing
(initiated at the same pixel),

PATH TRACING
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Kajiya points out that Whitted ray tracing is wasteful in the sense that as the
algorithm goes deeper into the tree it does more and more work. At the same
time the contribution to the pixel intensity from events deep in the tree
becomes less and less. In Kajiya's approach the tree has a branching ratio of one,
and at each hit point a random variable, from a distribution based on the spec-
ular and diffuse BRDFs, is used to shoot a single ray. Kajiya points out that this
process has to maintain the correct proportion of reflection, refraction and
shadow rays for each pixel.

In terms of Monte Carlo theory the original algorithm reduces the variance
for direct illumination but indirect illumination exhibits high variance. This is
particularly true for LS*DS* E paths (see Section 10.7 for further consideration of
this type of path) where a diffuse surface is receiving light from an emitter via a
number of specular paths. Thus the algorithm takes a very long time to produce
a good quality image. (Kajiya quotes a time of 20 hours for a 512 x §12 pixel
image with 40 paths per pixel.)

Importance sampling can be introduced into path/ray tracing algorithms by
basing it on the BRDF and ensuring that more rays are sent in directions that will
return large contributions. However, this can only be done approximately
because the associated PDF cannot be integrated and inverted. Another problem
is that the BRDF is only one component of the integrand local to the current sur-
face point — we have no knowledge of the light incident on this point from all
directions over the hemispherical space - the field radiance (apart from the light
due to direct illumination). In conventional path/ray tracing approaches all rays
are traced independently of each other, accumulated and averaged into a pixel.
No use is made of information gained while the process proceeds. This impor-
tant observation has led to schemes that cache the information obtained during
the ray trace. The most familiar of these is described in Section 10.9.
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Figure 10.12

Perfect refraction through a
solid glass sphere is
indistinguishable from
texture mapping.

Distributed ray tracing

Like path tracing, distributed ray tracing can be seen as an extension of Whitted
ray tracing or as a Monte Carlo strategy. Distributed ray tracing (distribution ray
tracing, stochastic ray tracing), developed by Cook in 1986 (Cook 1986), was pre-
sumably motivated by the need to deal with the fact that Whitted ray tracing
could only account for perfect specular interaction which would only occur in
scenes made up of objects that consisted of perfect mirror surfaces or perfect
transmitters. The effect that a Whitted ray tracer produces for (perfect) solid glass
is particularly disconcerting or unrealistic. For example, consider a sphere of per-
fect glass. The viewer sees a circle inside of which perfectly sharp refraction has
occurred (Figure 10.12). There is no sense of the sphere as an object as one would
experience if scattering due to imperfections had occurred.

As far as light interaction is concerned, distributed ray tracing again only con-
siders specular interaction but this time imperfect specular interaction is simulated
by using the ray tracing approach and constructing at every hit point a reflection
lobe. The shape of the lobe can depend on the surface properties of the material.
Instead of spawning a single transmitted or reflected ray at an intersection a group
of rays is spawned which samples the reflection lobe. This produces more realistic
ray traced scenes. The images of objects reflected in the surfaces of nearby objects
can appeared blurred, transparency effects are more realistic because scattering
imperfections can be simulated. Area light sources can be included in the scene to
produce shadows. Consider Figure 10.13: if, as would be the case in practice, the
mirror surface of the sphere was not physically perfect, then we would expect to
see a blurred reflection of the opaque sphere in the mirror sphere.

Thus the path classification scheme is again LDS*E or LS*E but this time all
the paths are calculated (or more precisely an estimation of the effects of all the
paths is calculated by judicious sampling). In Figure 10.13 three LDSE paths may
be discovered by a single eve ray. The points on the wall hit by these rays are
combined into a single ray (and eventually a single pixel).

As well as the above effects, Cook et al.’s (1984) method considered a finite aper-
ture camera model which produced images that exhibit depth of field, motion blur

|
Ill
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Figure 1013

pistributed ray tracing for
reflection (see Figure 10.4
for the complete geometry
of this case).

Figure 10.15

Distributed ray tracing:
four rays per pixel. The
Pixel, lens and light source
are siratified; the reflection

lobe is importance sampled.

DISTRIBUTED RAY TRACING

due to moving objects and effective anti-aliasing (see Chapter 14 for the anti-alias-
ing implications of this algorithm). Figure 10.14 (Colour Plate) is an image ren-
dered with a distributed ray tracer that demonstrates the depth of field
phenomenon. The theoretical importance of this work is their realization that all
these phenomena could be incorporated into a single multi-dimensional integral
which was then evaluated using Monte Carlo techniques. A ray path in this algo-
rithrm is similar to a path in Kajiya's method with the addition of the camera lens.
The algorithm uses a combination of stratified and importance sampling. A pixel
is stratified into 16 sub-pixels and a ray is initiated from a point within a sub-pixel
by using uncorrelated jittering. The lens is also stratified and one stratum on the
pixel is associated with a single stratum on the lens (Figure 10.15). Reflection and
transmission lobes are importance sampled and the sample point similarly jittered.
Cook et al. (1984) pre-calculate these and store them in look-up tables associated
with a surface type. Each ray derives an index as a function of its position in the

&

Light source
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Figure 10.16
Distributed ray tracing and
reflected rays.

pixel. The primary ray and all its descendants have the same index. This means
that a ray emerging from a first hit along a direction relative to R, will emerge from
all other hits in the same relative R direction for each object (Figure 10.16). This
ensures that each pixel intensity, which is finally determined from 16 samples, is
based on samples that are distributed, according to the importance sampling cri-
terion, across the complete range of the specular reflection functions associated
with each object. Note that there is nothing to prevent a look-up table being two-
dimensional and indexed also by the incoming angle. This enables specular reflec-
tion functions that depend on angle of incidence to be implemented. Finally, note
that transmission is implemented in exactly the same way using specular trans-
mission functions about the refraction direction.
In summary we have:

(1) The process of distributing rays means that stochastic anti-aliasing becomes
an integral part of the method (Chapter 14).

(2) Distributing reflected rays produces blurry reflections.

(3) Distributing transmitted rays produces convincing translucency.

{4) Distributing shadow rays results in penumbrae.

(5) Distributing ray origins over the camera lens area produces depth of field,

{6) Distributing rays in time produces motion blur (temporal anti-aliasing).

| Pre-sampled reflection / .
| function for object 2

Pre-sampled
reflection function
for object 1
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Figure 10.17

Tiwo-pass ray tracing for the
LSSDEpiIi'thI-g.I'e 10.4.

TWO-PASS RAY TRACING
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Two-pass ray tracing

Two-pass ray tracing (or bi-directional ray tracing) was originally developed to
incorporate the specular-to-diffuse transfer mechanism into the general ray trac-
ing model. This accounts for caustics which is the pattern formed on a diffuse
surface by light rays being reflected through a medium like glass or water. One
can usually see on the bottom and sides of a swimming pool beautiful elliptical
patterns of bright light which are due to sunlight refracting at the wind-
disturbed water surface causing the light energy to vary across the diffuse surface
of the pool sides. Figure 10.17 shows a ray from the scene in Figure 10.4
emanating from the light source refracting through the sphere and contributing
to a caustic that forms on the (diffuse) table top. This is an LSSDE path.

Two-pass ray tracing was first proposed by Arvo (1986). In Arvo's scheme, rays
from the light source were traced through transparent objects and from specular
objects. Central to the working of such a strategy is the question of how infor-
mation derived during the first pass is communicated to the second. Arvo sug-
gests achieving this with a light or illumination map, consisting of a grid of data
points, which is pasted onto each object in the scene in much the same way that
a conventional texture map would be.

In general, two-pass ray tracing simulates paths of type LS*DS*E. The algorithm
‘relies’ on there being a single D interaction encountered from both the light
source and the eye. The first pass consists of shooting rays from the light source
and following them through the specular interactions until they hit a diffuse sur-
face (Figure 10.17). The light energy from each ray is then deposited or cached on
the diffuse surface, which has been subdivided in some manner, into elements or

0318



GLOBAL ILLUMINATION

Figure 10.18

An example of an LSDE path
(see also Figures 10.4 and
10.17 for examples of SDE
paths). An eye ray can
‘discover’ light ray L and
reflected ray R but cannot
find the LSDE path.

bins. In effect the first pass imposes a texture map or illumination map - the vary-
ing brightness of the caustic - on the diffuse surface. The resolution of the illu-
mination map is critical. For a fixed number of shot light rays, too fine a map may
result in map elements receiving no rays and too coarse a map results in blurring,

The second pass is the eye trace — conventional Whitted ray tracing - which
terminates on the diffuse surface and uses the stored energy in the illumination
map as an approximation to the light energy that would be obtained if diffuse
reflection was followed in every possible direction from the hit point. In the
example shown, the second pass simulates a DE path (or ED path with respect to
the trace direction). The ‘spreading’ of the illumination from rays traced in the
first pass over the diffuse surface relies on the fact that the rate of change of dif-
fuse llumination over a surface is slow. It is important to note that there can
only be one diffuse surface included in any path. Both the eye trace and the light
trace terminate on the diffuse surface - it is the ‘meeting point’ of both traces.

It is easy to see that we cannot simulate L3*D paths by eye tracing alone. Eye
rays do not necessarily hit the light and we have no way of finding out if a sur-
face has received extra illumination due to specular to diffuse transfer. This is
illustrated for an easy case of an LSDE path in Figure 10.18.

The detailed process is illustrated in Figure 10.19. A light ray strikes a surface
at P after being refracted. It is indexed into the light map associated with the

- Light
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Figure 10.19
Two-pass ray tracing and
light maps. (a) First pass:
light is depasited in a light
map using a standard
texture mapping T.
(b) Second pass: when
object 2 is conventionally
traced extra illumination
at Pis obtained by indexing
the light map with T.

TWO-PASS RAY TRACING
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object using a standard texture mapping function T. During the second pass an
eye ray hits P. The same mapping function is used to pick up any illumination
for the point P and this contribution weights the local intensity calculated for
that point.

An important point here is that the first pass is view independent - we con-
struct a light map for each object which is analogous in this sense to a texture
map - it becomes part of the surface properties of the object. We can use the light
maps from any view point after they are completed and they need only be com-
puted once for each scene.

Figure 10.20{a) and (b) (Colour Plate) shows the same scene rendered using a
Whitted and two-pass ray tracer. In this scene there are three LSD paths:

(1) Two caustics from the red sphere - one directly from the light and one from
the light reflected from the curved mirror.

(2) One (cusp) reflected caustic from the cylindrical mirror.
(3) Secondary illumination from the planar mirror {a non-caustic LSDE path).

Figures 10.20{c)-(e} were produced by shooting an increasing number of light
rays and show the effect of the light sprinkled on the diffuse surface. As the
number of rays in the light pass increases, these can eventually be merged to
form well-defined LSD paths in the image. The number of rays shot in the light
pass was 200, 400 and 800 respectively.

Two-pass ray tracing, as introduced by Arvo (1986) was apparently the first
algorithm to use the idea of caching illumination. This approach has subse-
quently been taken up by Ward in his RADIANCE renderer and is the basis of
most recent approaches to global illumination (see Section 10.9), We have also
introduced the idea of light maps in Chapter 8. The difference between light
maps in the context of this chapter and those in Chapter 8 is in their applica-
tion. In global illumination they are used as part of the rendering process to
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make a solution more efficient or feasible. Their application in Chapter B was as
a mechanism for by-passing light calculations in real time rendering. In that
context they function as a means of carrying pre-calculated rendering operations
into the real time application.

View dependence/independence and multi-pass methods

In Section 10.5 we introduced path tracing as a method that implemented full
L(DIS)* E interaction but pointed out that this is an extremely costly approach
to solving the global illumination problem. In this section we will look at
approaches which have combined established partial solutions such as ray trac-
ing and radiosity and these are termed multi-pass methods.

A multi-pass method in global illumination most commonly means a combi-
nation of a view-independent method (radiosity) with a view-dependent
method (ray tracing). (Although we could categorize two-pass ray tracing as a
multi-pass method we have chosen to consider it as an extension to ray tracing.)
Consider first the implications of the difference between a view-dependent and
a view-independent approach. View-independent solutions normally only rep-
resent view-independent interactions (pure diffuse-diffuse) because they are
mostly solutions where the light levels at every point in the scene are written
into a three-dimensional scene data structure. We should bear in mind, however,
that in principle there is nothing to stop us computing a view-independent solu-
tion that stores specular interactions, we would simply have to increase the
dimensionality of the solution to calculate/store the direction of the light on a
surface as well as its intensity. We return to this point in Section 10.11.

A pure view-independent algorithm evaluates only sufficient global illumina-
tion to determine the final image and if a different view is required the algorithm
starts all over again. This is obvious. A more subtle point is that, in general, view-
dependent algorithms evaluate an independent solution for each pixel. This is
wasteful in the case of diffuse interaction because the illumination on large dif-
fuse surfaces changes only slowly. It was this observation that led to the idea of
caching illumination.

View-independent algorithms on the other hand are generally more expen-
sive and do not handle high frequency changes such as specular interaction
without significant cost in terms of computation and storage. Multi-pass
algorithms exploit the advantages of both approaches by combining them.

A common approach is to post-process a radiosity solution with a ray-tracing
pass. A view-independent image with the specular detail added is then obtained.
However, this does not account for all path types. By combining radiosity with
two-pass ray tracing the path classification, LS*D5*E can be extended to
LS*(D*)S*E, the inclusion of radiosity extending the D component to D*. This
implies the following ordering for an extended radiosity algorithm. Light ray
tracing is employed first and light rays are traced from the source(s) through all
specular transports until a diffuse surface is reached and the light energy is
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10.21
The virtual environment
method for incorporating
pSD paths in the radiosity
method.
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deposited. This accounts for the LS* paths. A radiosity solution is then invoked
using these values as emitting patches and the deposited energy Is distributed
through the D* chain. Finally an eye pass is initiated and this provides the final
projection and the ES* or ES*D) paths.

Comparing the string L5*(D*)S*E with the complete global solution, we see
that the central D* paths should be extended to (D*5*D*)* to make
LS*(D*S*D*)*S*E which is equivalent to the complete global solution L(SID)*E.
Conventional or classical radiosity does not include diffuse-to-diffuse transfer
that takes place via an intermediate specular surface. In other words once we
invoke the radiosity phase we need to include the possibility of transfer via an
intermediate specular path D5D.

The first and perhaps the simplest approach to including a specular transfer
into the radiosity solution was based on medifying the classical radiosity algo-
rithm for flat specular surfaces, such as mirrors, and is called the virtual window
approach. This idea is shown in Figure 10.21. Conventional radiosity calculates
the geometric relationship between the light source and the floor and the LDE
path is accounted for by the diffuse-diffuse interaction between these two sur-
faces. (Note that since the light source is itself an emitting diffuse patch we can
term the path LDE or DDE). What is missing from this is the contribution of
light energy from the LSD or DSD path that would deposit a bright area of light
on the floor. The DSD path from the light source via the mirror to the floor can
be accounted for by constructing a virtual environment ‘seen’ through the mir-
ror as a window. The virtual light source then acts as if it was the real light source
reflected from the mirror. However, we still need to account for the LSE path
which is the detailed reflected image formed in the mirror. This is view depen-
dent and is determined during a second pass ray tracing phase. The fact that this
algorithm only deals with what is, in effect, a special case illustrates the inher-
ent difficulty of extending radiosity to include other transfer mechanisms.

Caching illumination

Caching illumination is the term we have given to the scheme of storing three-
or five-dimensional values for illumination, in a data structure associated with
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Figure 10.22

Adaptive importance
sampling in path tracing
(after Lafortune and
Williams (1995)).

(a) Incoming radiance at

a point Pis cached in a
5D tree and builds up

into a distributien function,
(b} A future reflected
direction from P is selected
an the basis of both the
BRDF and the field radiance
distribution function.

the scene, as a solution progresses. Such a scheme usually relates to view.
dependent algorithms. In other words the cached values are used to speed up or
increase the accuracy of a solution; they do not comprise a view-dependent solu.
tien in their own right. We can compare such an approach with a view-
independent solution such as radiosity where final illumination values are effec.
tively cached on the (discretized) surfaces themselves. The difference between
such an approach and the caching methods described in this section is that the
storage method is independent of the surface. This means that the meshing
problems inherent in surface discretization methods (Chapter 11) are avoided,
llumination values on surfaces are stored in a data structure like an octree which
represents the entire three-dimensional extent of the scene.
Consider again the simplified form of the radiance equation:

Listace = J- pLlia

The BRDF is known but Ly is not and this, as we pointed out in Section 10.4,
limits the efficacy of importance sampling. An estimate of L can be obtained as
the solution proceeds and this requires that the values are stored. The estimate
can be used to improve importance sampling and this is the approach taken by
Lafortune and Williams (1995) in a technique that they call adaptive importance
sampling. Their method is effectively a path tracing algorithm which uses pre-
viously calculated values of radiance to guide the current path. The idea is
shown in Figure 10.22 where it is seen that a reflection direction during a path
trace is chosen according to both the BRDF for the point and the current value
of the field radiance distribution function for that point which has been built up

(&)

i)
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from previous values. Lafortune and Willlams {1995) cache radiance values in a
five-dimensional tree - a two-dimensional extension of a (three-dimensional)
octree.

The RADIANCE renderer is probably the most well-known global illumina-
tion renderer. Developed by Ward (1994) over a period of nine years, it is a strat-
egy, based on path tracing, that solves a version of the rendering equation under
most conditions. The emphasis of this work is firmly on the accuracy required
for architectural simulations under a variety of lighting conditions varying from
sunlight to complex artificial lighting set-ups. The algorithm is effectively a com-
bination of deterministic and stochastic approaches and Ward (1994) describes
the underlying motivations as follows:

The key to fast convergence is in deciding what to sample by removing those parts of the
integral we can compute deterministically and gauging the importance of the rest so as to
maximise the payback from our ray calculations,

Specular calculations are made separately and the core algorithm deals with in-
direct diffuse interaction. Values resulting from (perfect) diffuse interaction are
cached in a (three-dimensional) octree and these cached values are used to inter-
polate a new value if a current hit point is sufficiently close to a cached point.
This basic approach is elaborated by determining the ‘irradiance gradient’ in the
region currently being examined which leads to the use of a higher-order {cubic)
interpolation procedure for the interpolation. The RADIANCE renderer is a path
tracing algorithm that terminates early if the cached values are ‘close enough’.

Finally Ward expresses some strong opinions about the practical efficacy of
the radiosity method. It is unusual for such criticisms to appear in a computer
graphics paper and Ward is generally concerned that the radiosity method has
not migrated from the research laboratories. He says:

For example, most radiosity systems are not well automated, and do not permit general
reflectance models or curved surfaces . . .. Acceptance of physically based rendering is
bound to improve, but researchers must first demonstrate the real-life applicability of their
techniques. There have been few notable successes in applying radiosity to the needs of
practising designers. While much research has been done on improving efficiency of the
basic radiosity method, problems associated with more realistic complicated geometries,
have only recently got the attention they deserve, For whatever reason it appears that
radiosity has yet to fulfil its promise, and it is time to re-examine this technique in the
light of real-world applications and other alternatives for solving the rendering equation.

An example of the use of the RADIANCE renderer is given in the comparative
image study in Chapter 18 (Figure 18.19).

Light volumes

Light volume is the term given to schemes that cache a view-independent global

illumination by storing radiance or irradiance values at sample points over all
space (including empty space). Thus they differ from the previous schemes
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which stored values only at point on surfaces. In Chapter 16 we also encounter
light volumes (therein termed light fields). Light fields are the same as light vol.
umes and differ only in their intended application. They are used to efficiently
store a pre-calculated view-independent rendering of a scene. In global illumi.
nation, however, they are used to facilitate a solution in some way,

An example of the application of light volumes is described by Greger et al,
(1998). Here the idea is to use a global illumination solution in ‘semi-dynamic’
environments. Such an environment is defined as one wherein the moving
objects are small compared to the static objects, implying that their position in
the scene does not affect the global illumination solution to any great extent. A
global solution is built up in a light volume and this is used to determine the
global illumination received by a moving object - in effect the moving object
travels through a static light volume receiving illumination but not contributing
to the pre-processed solution.

Particle tracing and d-e;'nsity' estimation

In this final section we look at a recent approach (Walter et al. 1997) whose
novelty is to recognize that it is advantageous to separate the global problem
into light transport and light representation calculations. In this work rather
than caching illumination, particle histories are stored. The reason for this is
that light transport - the flow of light between surfaces — has high global or inter-
surface complexity. On the other hand the representation of light on the surface
of an object has high local or intra-surface complexity. Surfaces may exhibit
shadows, specular highlights caustics etc. (A good example of this is the radios-
ity algorithm where transport and representation are merged into one process.
Here the difficulty lies in predicting the meshing required - for example, to
define shadow edges - to input into the algorithm. That is, we have to decide on
a meshing prior to the light transport solution being available.)
The process is divided into three sequential phases:

@ Particle tracing [n a sense this is a view-independent form of path
tracing. Light-carrving particles are emitted from each light source and
travel through the environment. Each time a surface is hit this is recorded
(surface identifier, point hit and wavelength of the particle) and a reflection/
transmission direction computed according to the BRDF of the surface. Each
particle generates a list of information for every surface it collides with and
a particle process terminates after a minimum of interactions or until it is
absorbed. Thus a particle path generates a history of interactions rather than
returning a pixel intensity.

@ Density estimation After the particle tracing process is complete each
surface possesses a list of particles and the stored hit points are used to
construct the illumination on the surface based on the spatial density of the
hit points. The result of this process is a Gouraud shaded mesh of triangles.
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@ Mesh optimization The solution is view independent and the third
phase optimizes or decimates the mesh by progressively removing meshes as
long as the resulting change due to the removal does not drop below a
{perceptually based) threshold. The output from this phase is an irregular
mesh whose detail relates to the variation of light over the surface.

Walter et al. (1997) point out that a strong advantage of the technique is that its
modularity enables optimization for different design goals. For example, the
light transport phase can be optimized for the required accuracy of the BRDFs.
The density phase can vary its criteria according to perceptual accuracy and the
decimation phase can achieve high compression while maintaining perceptual
quality.

A current disadvantage of the approach is that it is a three-dimensional view-
independent selution which implies that it can only display diffuse-diffuse
interaction. However, Walter ¢t al. (1997) point out that this restriction comes
out of the density estimation phase. The particle tracing module can deal with
any type of BRDF.
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The radiosity method

11.1  Radiosity theory

11.2 Form factor determination

11.3 The Gauss-5eidel method

11.4 Seeing a partial solution — progressive refinement
11.5 Problems with the radiosity method

11.6 Artefacts in radiosity images

11.7 Meshing strategies

Intruductlbn

Ray tracing, the first computer graphics model to embrace global interaction, or
at least one aspect of it - suffers from an identifying visual signature: you can
usually tell if an image has been synthesized using ray tracing. It only models
one aspect of the light interaction - that due to perfect specular reflection and
transmission. The interaction between diffusely reflecting surfaces, which tends
to be the predominant light transport mechanism in interiors, is still modelled
using an ambient constant (in the local reflection component of the model).
Consider, for example, a room with walls and ceiling painted with a matte ma-
terial and carpeted. If there are no specularly reflecting objects in the room, then
those parts of the room that cannot see a light source are lit by diffuse interac-
tion. Such a room tends to exhibit slow and subtle changes of intensity across its
surfaces.

In 1984, using a method whose theory was based on the principles of
radiative heat transfer, researchers at Cornell University, developed the
radiosity method (Goral et al. 1984). This is now known as classical radiosity and
it simulates LD*E paths, that is, it can only be used, in its unextended
form, to render scenes that are made up in their entirety of (perfect) diffuse
surfaces.

To accomplish this, every surface in a scene is divided up into elements called
patches and a set of equations is set up based on the conservation of light energy.
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A single patch in such an environment reflects light received from every other
patch in the environment. It may also emit light if it is a light source - light
sources are treated like any other patch except that they have non-zero self-
emission. The interaction between patches depends on their geometric relation-
ship. That is distance and relative orientation. Two parallel patches a short
distance apart will have a high interaction. An equilibrium solution is possible
if, for each patch in the environment, we calculate its interaction between it and
every other patch in the environment.

One of the major contributions of the Cornell group was to invent an effi-
cient way - the hemicube algorithm - for evaluating the geometric relationship
between pairs of patches; in fact, in the 1980s most of the innovations in radios-
ity methods have come out of this group.

The cost of the algorithm is O{N®) where N is the number of patches into
which the environment is divided. To keep processing costs down, the patches
are made large and the light intensity is assumed to be constant across a patch.
This immediately introduces a quality problem - if illumination discontinuities
do not coincide with patch edges artefacts occur. This size restriction is the prac-
tical reason why the algorithm can only calculate diffuse interaction, which by
its nature changes slowly across a surface. Adding specular interaction to the
radiosity method is expensive and is still the subject of much research. Thus
we have the strange situation that the two global interaction methods - ray
tracing and radiosity - are mutually exclusive as far as the phenomena that they
calculate are concerned. Ray tracing cannot calculate diffuse interaction and
radiosity cannot incorporate specular interaction. Despite this, the radiosity
method has produced some of the most realistic images to date in computer
graphics.

The radiosity method deals with shadows without further enhancement. As
we have already discussed, the geometry of shadows is more-or-less straight-
forward to calculate and can be part of a ray tracing algorithm or an algorithm
added onto a local reflection model renderer. However, the intensity within a
shadow is properly part of diffuse interaction and can only be arbitrarily approx-
imated by other algorithms. The radiosity method takes shadows in its stride.
They drop out of the solution as intensities like any other. The only problem is
that the patch size may have to be reduced to delineate the shadow boundary to
some desired level of accuracy. Shadow boundaries are areas where the rate
of change of diffuse light intensity is high and the normal patch size may cause
visible aliasing at the shadow edge.

The radiosity method is an object space algorithm, solving for the intensity
at discrete points or surface patches within an environment and not for pixels
in an image plane projection. The solution is thus independent of viewer
position, This complete solution is then injected into a renderer that computes
a particular view by removing hidden surfaces and forming a projection.
This phase of the method does not require much computation (intensities
are already calculated) and different views are easily obtained from the general
solution.
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Radiosity theory

Elsewhere in the text we have tried to maintain a separation between the algo-
rithm that implements a method and the underlying mathematics. It is the case,
however, that with the radiosity method, the algorithm is so intertwined with
the mathematics that it would be difficult to try to deal with this in a separate
way. The theory itself consists of nothing more than definitions - there is no
manipulation. Readers requiring further theoretical insight are referred to the
book by Siegel and Howell (1984).

The radiosity method is a conservation of energy or energy equilibrium
approach, providing a solution for the radiosity of all surfaces within an
enclosure. The energy input to the system is from those surfaces that act as emit-
ters. In fact, a light source is treated like any other surface in the algorithm
except that it possesses an initial (non-zero) radiosity. The method is based
on the assumption that all surfaces are perfect diffusers or ideal Lambertian
surfaces.

Radiosity, B, is defined as the energy per unit area leaving a surface patch per
unit time and is the sum of the emitted and the reflected energy:

BAA, = EdA; + RBFidA;

Expressing this equation in words we have for a single patch i:
radiosity x area = emitted energy + reflected energy

E is the energy emitted from a patch. The reflected energy is given by multiply-
ing the incident energy by R; the reflectivity of the patch. The incident
energy is that energy that arrives at patch i from all other patches in the envi-
ronment; that is we integrate over the environment, for all j (j=i), the term
BiFsdA;. This is the energy leaving each patch j that arrives at patch i. Fyis a
constant, called a form factor, that parametrizes the relationship between
patches j and i.
We can use a reciprocity relationship to give:

FyAs = Fpdj
and dividing through by dA;, gives:
&=E+&Pﬁ

For a discrete environment the integral is replaced by a summation and constant
radiosity is assumed over small discrete patches, giving:

Ei=E|+RIZB,|.FJ;
=

such an equation exists for each surface patch in the enclosure and the complete
environment produces a set of n simultaneous equations of the form:
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Fgure 11.1

Form factor geometry for
two patches i and | (after
Goral et al, (1984)).
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Solving this equation is the radiosity method. Out of this solution comes B; the
radiosity for each patch. However, there are two problems left. We need a way of
computing the form factors. And we need to compute a view and display the
patches. To do this we need a linear interpolation method - just like Gouraud
shading - otherwise the subdivision pattern - the patches themselves - will be
visible.

The Es are non-zero only at those surfaces that provide illumination and
these terms represent the input illumination to the system. The Ris are known
and the Fys are a function of the geometry of the environment. The reflectivities
are wavelength-dependent terms and the above equation should be regarded as
a monochromatic solution; a complete solution being obtained by solving for
however many colour bands are being considered. We can note at this stage that
Fi = 0 for a plane or convex surface — none of the radiation leaving the surface
will strike itself. Also from the definition of the form factor the sum of any row
of form factors is unity.

Since the form factors are a function only of the geometry of the system they
are computed once only. The method is bound by the time taken to calculate the
form factors expressing the radiative exchange between two surface patches A
and A;. This depends on their relative orientation and the distance between them
and is given by:

Radiative energy leaving surface A: that strikes A directly
Radiative energy leaving surface A; in all directions in the
hemispherical space surrounding A;

FJ;:
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