
20.1 Extensions of Previous Techniques
/

20.1 . 1 Advanced Modeling with Splines

1013

With the tensor-product spline-patch surfaces defined in Chapter II , more control vertices
must be added to gain a higher level of detail. The Oslo algorithm and its descendents
[COHE80; BART87] can be applied to the control mesh of such splines to produce new
control meshes with more vertices but identical resulting surfaces. This refinement of the
cont.rol mesh is shown for a line spline in Fig. 20.1. The circled black dots control the shape
of the thickened segment in the figure; if one of these i.s moved, the shape of the thickened
segment changes. But bow many control vertices do we need to redraw tbe arc in its changed
form? For tbe portions outside the thickened segment, we can use the (comparatively few)
white vertices; for tbe portion inside the thickened segment, we can use the circled black
vertices. This localization of detail is the fundamental notion of hierarchical B-spline
modeling developed by Forsey and Bartels [FORS88].

Two problems arise: maintaining a data structure for the hierarchical spline, and
altering the large-scale spline without damaging the small-scale one. These two problems
can be solved together. We wish to alter the large-scale spline so that the small-scale spline
follows the alteration. We do this alteration by describing the locations of tbe (adjustable)
control vertices for the small-scale spline in a coordinate system based on the larger spline.
This prescribes the data structure for the splines as well - a tree in which the control
vertices of each spline are specified in coordinates based on its parent node in the tree. The
initial position of each control vertex defines the origin of its coordinate system, and the
displacements along the normal to the large spline and in the directions tangent to the
coordinate curves of the large spline determine a basis for this coordinate system. Thus,
when the large spline is altered, the origin and basis vectors for the displacement coordinate
system are moved as well.

Figure 20.2 shows how this procedure works for a line spline. Color Plate IV.4(a) is an
example of the impressive results this technique can yield. Notice that the final object is just
a union of portions of various spline patches, so the conventional rendering techniques that
can handle splines (including polygonal and ray-tracing renderers) can be adapted to render
these objects. About 500 control nodes. each of which contains a parametric position, a
level of overlay (i.e., depth in the heirarchy) and an offset, were used to define the dragon's
head. By defining the offsets of control vertices relative to particular segments in a skeletal

0 0

0 o'-o--o o'---o---1 o o .._o--o
(a) (b)

Fig. 20.1 The spline curve in (a) is generated from the control vertices shown there.
This collection of control vertices can be refined as shown in (b). The black dots in (b)
are the new control vertices; the circled black dots are the ones that contribute to the
thickened segment.

1075

cmccleskey
Typewritten Text
Volkswagen 1010 - Part 7 of 7

1014 Advanced Modeling Techniques

0

.,'-o-~ ··'---(a) (b) (C)

Fig. 20.2 (a) A line spline with its control points. (b) The same spline with subdivided
control points in the central segment. Only the middle control point can be moved if
continuity is to be maintained. The coordinate system for the displacement of the
middle control point is shown as well. (c) The middle control point after it is moved,
along with the displacement vector in the new coordinate system.

model (instead of relative to the parent surface), Forsey and Bartels have extended this
technique to automate the production of skin, as shown in Color Plate JV.4(b).

Sederberg and Parry describe a different approach to altering spline models [SEDE86]
that can be used to alter arbitrary models, although it is based on spline deformations of
3-space. A function from 3-space to 3-space may be thought of as a way to assign new
positions to each point in space. Suppose we have such a function and it leaves most points
unmoved, but deforms some region of space. (Figure 20.3 shows an analogous deformation
in a region of the plane.) !fa solid is described by the coordinates of its points in the original
space, then applying the function to the coordinates of every point of the solid yields a solid
that has been deformed by the function, just as the shaded area was deformed in Fig. 20.3.

Sederberg and Parry use functions from 3-space to 3-space that are based on Bernstein
polynomials, which have the form'

Q •.• (1) = (~) ,, <t - ,r •. o < , < t.

These polynomials have the property that L1=0Q. ,,{t) = I (see Exercise 20.1) and that the
individual Qs are always between 0 and I.

If we establish a coordinate system in 3-space defined by an origin X and three basis
vectors S, T, and U, we can form an (n + I) x (m + I) x (p + I) lattice of points in
3-space by considering all points

Pijl =X + (i!n) S + (j!m)T + (kip) U , 0 < is n, 0 < j < m, 0 :s k < p,

which is a gridlike arrangement of points in a parallelepiped based at X with sides
determined b~...S· T and U. Any linear combination 'i.c~iik of these points satisfying 0 s
C;ik s I and 2,;cijl = I lies within the convex hull of the points Pijl, that is, within the
parallelepiped. Furthermore, every point within the parallelepiped can be expressed as a
combination P = X + sS + IT + uU for some triple of numbers 0 s s, 1, u s I. Suppose
we define a function on the parallelepiped by the formula

1The notation e) means n!l(i !(n - i)!).

1076

20.1 Extensions of Previous Techniques 1015

Fig. 20.3 The plane is deformed so that the region inside the rectangle is distoned,
but the rest of the plane remains fixed. A figure drawn within the rectangle is also
deformed.

F(X + sS + ff + uU)

= ± f t (~) ("!) (p) t1 (I - 1)• - 1 sl (I - s)'•-i u• (I - u)P-• P 111
••0 }•0 1•0 I J /(

Then because of the convexity property of the Bernstein polynomials, the parallelepiped
maps to itse.lf, with the boundary going to the boundary. In fact, if the PiiJt are left in the
positions defined previously, F sends each point in the parallelepiped to itself. If the P iJits
are moved, the map is no longer the identity. As long as only internal P iJits are moved,
however, the map will remain the identity on the boundary of the parallelepiped. Thus, the
PuaS provide shape control over any item within the b<»t . Color Plate IV.S shows an example
of adjusting a free-form shape; Color Plate IV .6 shows a hammer modeled using free-form
deformations.

Computing vertices of a polygonal object after transformation by a trivariate Bernstein
polynomial is simple (we just express each vertex as a linear combination X + sS + ff +
uU and substitute in the formula for F), so the method is suited for use with all polygonal
renderers. It is less clear how to ray-trace these deformed objects, although the specialized
methods described for another class of deformations by Barr (BARR84] might be applied.

20.1 .2 Noise-Based Texture Mapping

Peachey [PEAC85) and Perlin [PERL85) have extended traditional texture mapping by
using solid textures. Recall that in traditional bump mapping or panern mapping the texture
was extracted from a 2D image that was mapped onto the surface to be rendered (see
Chapters 14 and 16). Described differently, for each point of the surface, a point in the 2D
texture is computed, the values surrounding this point are averaged by some filter, and the
resulting texture value is assigned to the surface point.

This mechanism is altered slightly for solid textures. A texture value is assigned to each
point in a 3D texture spaa. To each point of the object to be textured, there is associated

1077

1016 Advanced Modeling Techniques

some point in the texture space; the value of the texture at that point is also associated with
the surface point. We can illustrate this solid texturing by considering an analogous physical
example. If ~-e take a block of marble (the texture space), then each point of the marble,
both on the surface and in the inside, has some color. Thus, if we carve a sphere from this
marble block, the points on the surface of the sphere are also colored. If we carve the sphere
from a different section of the marble, the colors are different, of course.

The two tasks associated with this mechanism are the generation of textures and the
mapping from objects to the texture space (i.e. , the association of points on the object with
points in the texture space). The mapping to texture space is easy in systems wllere the
object is modeled in some space, then is transformed into "world space" before rendering.
In this case, the natural choice for texture space is modeling space. During rendering, a 30
point on the object is transformed by the inverse of the modeling transformation to give a
point in modeling space whose coordinates provide the index into the solid texture (this
situation corresponds to our carving in marble). When this is done, changing the
world-space position of the object does not affect its pattern. Using world-space coordinates
as indices into the solid texture can provide interesting special effects. If the marble sphere
is translated in the course of an animation, the texture slides through it, and it appears to be
continuously recarved from new marble. In other systems, some coordinate system (or else
some map from world space to texture space) must be chosen to associate each point on the
object with a texture value.

Generating textures is a different matter. Before discussing it, Jet us reconsider the
function of texture mapping. When a texture map is used for environment mapping onto a
reflective surface, there is no underlying solid texture. The same is true when a texture map
is used, say, to put a label on a box, or when bump mapping is applied to an object to
simulate architectural details such as regularly spaced ceiling tiles, or to generate surface
characteristics such as the directional reflections on brushed metals. But when we simulate
the texture of a material such as concrete, wood, or marble, the internal structure of the
underlying material determines the resulting appearance of the object. In such cases, solid
textures are most applicable.

One type of intermediate case, too, that is handled nicely by solid textures is surface
characteristics, such as the texture of stucco, that should be statistically independent of their
surface position. Here ordinary pattern mapping tends to produce an orientation because of
the coordinate system in which the pattern map is defined, and because of the
transformation from the mapping space onto the object, which tends to compress or expand
the pattern in some places (e.g., when mapping onto a sphere with standard coordinates,
one tends to compress the pattern near the poles). SoHd textures handle this problem by
associating values that can be made effectively independent of the shape of the surface (see
Color Plate IV. 7c).

Generating a solid texture requires associating one or more numbers with each point in
some volume. We can specify these numbers by generating them at each point of a 30
lattice (this is sometimes called a 3D image), and then interpolating to give intermediate
values, or simply by giving one or more real-valued functions on a region in 3-space.

Most of the functions used by Perlin are based on noise functions. He defines a
function Noise(x, y, z) with certain properties: statistical invariance under rigid motions and

1078

20.1 Extensions of Previous Techniques 1017

band limiting in the frequency domain. The first of these means that any statistical
property, such as the average value or the variance over a region, is about the same as the
value measured over a congruent region in some other location and orientation. The second
condition says that the Fourier transform of the signal is zero outside of a narrow range of
frequencies (see Section 14.10). In practical terms, this means that the function has no
sudden changes, but has no locations where the change is too gradual, either. One way of
expressing the band limiting is that, for any unit vector (a. b, c) and any point (Xo. y0 , zo),
the integral

~

J Noise(x0 + ta, Yo + tb , z0 + rc)f(mt) dr
0

i.s zero when /(r) = sin(t) or cos{l), and m is outside some small range of values.
Essentially, this says that the noise along a parameterized line in the (a, b, c) direction has
no periodic character with period m.

Such a noise function can be generated in a number of ways, including direct Fourier
synthesis, but Perlin has a quick and easily implemented method. For each point in the
integer lattice (i.e., for each point (x0, y0, zo) with x0 Yo and z0 all integers) we compute and
store four pseudorandom2 real numbers (a, b, c , d). Computed' = d- (ax0 + by0 + cz0).

Notice that if we substitute the point (Xo, y0 , z0) into the formula ax + by + cz + d' we get
the value d. We now define the Noise function at an arbitrary point (x, y, z) by the r~ rules:
lf (x, y, z) is a point of the integer lattice, then Noise(x, y, z) = the d value at that lattice
point = ax0 + by0 + cz0 + d'. For any point not on the lattice, the values of a, b , c, and d'
are interpolated from the values at the nearby lattice points (Perlin recommends a cubic
interpolation- first in x, then in y, then in z) to give values for a, b, c, and d' at the point
(x, y, z). Now Noise(x, y, z) is computed: Noise(x, y, z) = ax + by + cz + d'.

Since the coefficients a, b, c, and d' are interpolated by cubics on the integer lattice, it
is clear that there are no discontinuities in their values (in fact, they will all be differentiable
functions with well-behaved derivatives). Hence, the value of Noise(x, y, z) is also well
behaved and has no high-frequency components (i.e., sudden changes).

Noise functions can be used to generate textures by altering colors, normal vectors, and
so on [PERL85]. For example, a random gray-scale value can be assigned to a point by
setting its color to (r, g, b) = Noise(x, y, z) * (1.0, 1.0, 1.0) (assuming that the Noise()
function has been scaled so that its values I ie between 0 and I). A random color can be
assigned to a point by (r, g, b)= (NoiseA(x, y, z), NoiseB(x, y, z), NoiseC(x, y, z)), where
NoiseAO , NoiseB() and NoiseC() are all different instances of the Noise() function. An
alternate way to assign random colors is to use the gradient of the noise function:

Dnoise(x, y, z) = (dNoise/dx, dNoise/dy, dNoiseldz),

which generates a vector of three values at each poinL These values can be mapped to color
v-.tlues.

2Pseudorandom-number generation is provided by the RandomO function in many systems. See also
[KNUT69].

1079

1018 Advanced Modeling Techniques

If an object has sufficiently great extent, it may not be practical to gen.erate a texture for
its entire bounding box. Instead, as in Chapter 16, we generate the texture on a finite box
(perhaps 256 by 256 by 256) and use the low-order bits of the point's coordinates to index
into this array (using modular arithmetic to wrap around from 255 to 0). We can use this
finite texture array to generat.e another type of noise by defining Noise2(x, y, z) = Noise(2x,
2y, 2z). Noise2 will have features that are one-half of the size of those generated by NoiseO.
By generating a combination of such multiples of NoiseO, we can create a number of
fascinating textures; see Exercises 20.2 and 20.3. Perlin has extended solid textures to allow
the modification of geometry as well [PERL89). Some examples of the results are shown in
Color Plates IV.8 and IV.9.

Peachey [PEAC85] uses somewhat different mechanisms for specifying solid textures.
One of the most interesting is what he calls projection textures, although the term
"extrusion textures" might apply as well. ln such textures, the value of the teltture function
is constant along certain parallel lines in the volume. For example, such a texture might be
constant along each line parallel to the z axis, while on any (x, y)-plane cross-seetion it
might look like a conventionai2D texture. The effect is like that of a (nonperspective) slide
projector: When someone walks in front of the screen, the image is mapped onto the person
instead of onto the screen. These textures are most interesting when several are combined.
If the teJttures are constant along different lines, the results can effectively simulate
completely random textures. The textures in Color Plate IV. 10 are all based on projection
textures.

20.2 PROCEDURAL MODELS

Procedural models describe objects that can interact with external events to modify
themselves. Thus, a model of a sphere that generates a polygonal representation of the
sphere at a requested fineness of subdivision is procedural: The actual model is determined
by the fineness parameter. A model that determines the origin of its coordinate system by
requesting information from nearby entities is also procedural. A collection of polygons
speci lied by their vertices is not a procedural model.

Procedural models have been in use for a long time. One of their best features is that
they save space: It is far easier to say "sphere with 120 polygons" than to list the 120
polygons explicitly. Magnenat-Thalman and Thalman [MAGN85] describe a procedural
model for bridges in which a bridge consists of a road, a superstructure, piers, and parapets,
and is specified by giving descriptions of these aloqg with an orientation to determine the
bridge's position. Each of the pieees (road, piers, etc.) is specified by a number of
parameters (length of the road, number of joints in the road, height of the pier, etc.) and the
procedure then generates the model from these. This is akin to the primitive instancing of
Chapter 12, but differs in that the geometric or topological nature of the object may be
influenced by the parameters. Also, the model generated does not need to consist of a
collection of solids; it might be a collection of point light sources used to exhibit the bridge
in a night scene, for instance. In any case, specifying a few parameters leads to the creation
of a very large model. In the case of the bridge, the only things created are various sorts of
bridges. In subsequent procedural models, such as particle systems, however, highly

1080

20.2 Procedural M odels 1019

variable classes of objects are supported under a single class of procedures.
One important aspect of procedural models is their ability to interact with their

environment. Amburn, Grant, and Whitt.ed introduce two eKtensions to standard procedur
al models: a communication method through which independent procedures can influence
one another's behaviors, and a genera.lization of the notion of subdivision to include a
change of representation [AMBU86].

lnterobject communication can be used to control the shapes of objects defined by
procedures. Amburn, Grant, and Whitted use as an eKample a road passing through wooded
terrain. The terrain is generated by stochastic subdivision of triangles (see Section 20.3),
the trees are generated using grammar-based models (see Section 20.4), and the road is
generated by eKtrusion of a line along a spline path. At the top level, the road must follow
the geometry of the terrain. At a finer level of detail, however, the terrain is bulldozed to let
the road be smooth. Each of these objects thus must control the other. The bases of the trees
must be placed on the terrain, but not too close to the road. To execute this interobject
control, each of the subdivision procedures proceeds for a few steps, then checks its
progress against that of the others .

This interobject checking can be eKtremely expensive; the road may be modeled with
hundreds of rectangles and the terrain with thousands of triangles. Checking for
intersections among these and establishing communications between each pair is prohibi
tively laborious. lnstead, during the construction of the road, bounding boKes for the road,
for each pair of control points for the road, and for each segment of the road were
constructed. Similar bounding boxes were maintained during the subdivision of the
triangles. As soon as the bounding box of a child triangle no longer intersected that of the
road, communications between the two were severed. Thus, there were only a few overlaps
at the finest level of subdivision.

These subdivisions were also subject to changes of representation. At some point in a
subdivision process, the current model representation may no longer seem adequate to the
modeler; and the modeler (or some other procedure in the model) may request that some
procedural object change its representation. Thus, a shape that is initially modeled with
Bezier spline patches, recursively subdivided, may at some point be altered to implement
further changes using stochastic subdivision to make a ''crinkly'' material of some specific
overall shape. Amburn, Grant, and Whitted store these changes of representation in a script
associated either with the individual object or with the class of the object; the script might
say, for example, "At the third level of subdivision, change from Bezier to stochastic. At
the fifth level, change to a particle system representation. " The human modeler is also
allowed to interact with the objects as the procedural modifications take place. Our hope is
that, in the future, such interactions will no longer be necessary, and that the models will be
able to determine for themselves the best possible representation.

Most of the remaining models in this chapter are procedural in some way. Many of
them are generated by repeated subdivision or repeated spawning of smaller objects. The
subdivis.ion terminates at a level determined by the modeler, the model , or (depending on
implementation) the renderer, which can request that no subpixel artifacts be generated, for
example. The power of these models is manifested in how they amplify the modeler's effort:
Very small changes in specifications can result in drastic changes of form. (Of course, this
can be a drawback in some cases, if the modeler cannot direct a tiny change in the result.)

1081

1 020 Advanced Modeling Techniques

20.3 FRACTAL MODELS

Fractals have recently attracted much attention (VOSS87; MAND82; PEIT86]. The images
resulting from them are spectacular, and many different approaches to generating fractals
have been developed. The term fractal has been generalized by the computer graphics
community to include objects outside Mandelbrot's original definition. It has come to mean
anything which has a substantial measure of exact or statistical self-similarity, and that is
how we use it here, although its precise mathematical definition requires statistical
self-similarity at all resolutions. Thus, only fractals generated by infinitely recursive
processes are true fractal objects. On the other hand, those generated by finite processes
may exhibit no visible change in detail after some stage, so they are adequate approxima
tions of the ideal. What we mean by self-similarity is best illustrated by an example, the von
Koch snowflake. Starting with a line segment with a bump on it, as shown in Fig. 20.4, we
replace each segment of the line by a figure exactly like the original line. This process is
repeated: Each segment in part (b) of the figure is replaced by a shape exactly like the entire
figure. (It makes no difference whether the replacement is by the shape shown in part (a) or
by the shape shown in part (b); if the one in part (a) is used, the result after 2• steps is the
same as the result after n steps if each segment of the current figure is replaced by the entire
current figure at each stage.) If this process is repeated infinitely many times, the result is
said to be self-similar: The entire object is similar (i.e., can be translated, rotated , and
scaled) to a subportion of itself.

An object that is not exactly self-similar may still seem fractal ; that is, it may be
substantially self-similar. The precise definition of statistical self-similarity is not necessary
here- we need only to note that objects that "look like" themselves when scaled down are
still called fractal.

Associated with this notion of self-similarity is the notion of fractal dimension. To
define fractal dimension, we shaiJ examine some properties of objects whose dimension we
know. A l.ine segment is ID; if we divide a line into N equal parts, the parts each look like
the original I ine scaled down by a factor of N = N JJ1. A square is 20: if we divide it into N
parts, each part looks like the original scaled down by a factorofvN = N112• (Foreltample,
a square divides nicely into nine subsquares; each one looks I ike the original scaled by a
factor oft.) What about the von Koch snowflake? When it is divided into four pieces (the
pieces associated with the original four segments in Fig. 20.4a), each resulting piece looks
like the original scaled down by a factor of 3. We would like to say it bas a dimension d,
where 411d = 3. The value of d must be Jog(4)/log(3) = 1.26 This is the definition of
fractal dimension.

(a) (b) (c)

Fig. 20.4 Construction of the von Koch snowflake: each segment in (a) is replaced by
an exact copy of the entire figure, shrunk by a factor of 3. The same process is applied
to the segments in (b) to generate those in (c).

1082

20.3 Fractal Models 1021

Fig. 20.5 (a) The Julia-Fatou set for c = -0.12375 + 0 .056805i; (b) the Jutia-Fatou
set for c = -0.012 + 0 .74i.

The most famous two fractal objects deserve mention here: the Julia-Fatou set and the
Mandelbrot set. These objects are generated from the study of the rule x -+ .1- + c (and
many other rules as well - this is the simplest and best known). Here x is a complex
number,3 x =a + bi. If a complex number has modulus< I, then squaring it repeatedly
makes it go toward zero. If it bas a modulus > I, repeated squaring makes it grow larger
and larger. Numbers with modulus I still have modulus I after repeated squarings. Thus.
some complex numbers "fall toward zero" when they are repeatedly squared, some "fall
toward infinity, " and some do neither-the last group forms the boundary between the
numbers attracted to zero and those attracted to infinity.

Suppose we repeatedly apply the mapping x --. .1- + c to each complex number x for
some nonzero value of c, such as c = - 0.12375 + 0 .056805i; some complex numbers will
be attracted to infinity, some will be attracted to finite numbers, and some will go toward
neither. Drawing the set of points that go toward neither, we get the Julia-Fatou set shown
in Fig. 20.5(a).

Notice that the region in Fig. 20.5 (b) is not as well connected as is that in part (a) of
the figure. In part (b), some points fall toward each of the three black dots shown, some go

•tr you are unfamiliar with complex numbers, it suffices to treat i as a special symbol and merely to
know the definitions of addition and multiplication of complex numbers. lf t = c + di is a second
complex number, then x + z is defined to be (a + c) + (b + d)i, and xz is defined to be (ac - bd) +
(ad + bc)i. We can represent complex numbers as points in the plane by identifying the point (a, b)
with the complex number (a + bi). The modulus of the number a + bi is the real number (lr + iJ)'",
which gives a measure of the "size" of the complex number.

1083

1022 Advanced M odeling Techniques

to infinity. and some do neither. These last points are the ones drawn as the outline of the
shape in part (b). The shape of the Julia-Fatou set evidently depends on the value of the
number c. If we compute the Julia sets for all possible values of c and color the point c black
when the Julia-Fatou set is connected (i.e, is made of one piece, not broken into disjoint
"islands") and white when the set is not connected, we get the object shown in Fig. 20.6,
which is known as the Mandelbrot set. Note that the Mandelbrot set is self-similar in that,
around the edge of the large disk in the set, there are several smaller sets, each looking a
great deal like the large one scaled down.

Fortunately, there is an easier way to generate approximations of the Mandelbrot set:
For each value of c, take the complex number 0 = 0 + Oi and apply the process x-+ J! + c
to it some finite number of times (perhaps 1000). If after this many iterations it is outside
the disk defined by modulus < I 00, then we color c white; otherwise, we color it black. As
the number of iterations and the radius of the disk are increased, the resulting picture
becomes a better approximation of the set. Peitgen and Richter [PEIT86] give explicit
directions for generating many spectacular images of Mandelbrot and Julia-Fatou sets.

These results are extremely suggestive for modeling natural forms, since many natural
objects seem to exhibit striking self-similarity. Mountains have peaks and smaller peaks
and rocks and gravel, which all look similar; trees have limbs and branches and twigs,
which all look similar; coastlines have bays and inlets and estuaries and rivulets and
drainage ditches, which all look similar. Hence, modeling self-similarity at some scale
seems to be a way to generate appealing-looking models of natural phenomena. The scale at
which the self-similarity breaks down is not particularly important here, since the intent is
modeling rather than mathematics. ThlL~, when an object has been generated recursively
through enough steps that all further changes happen at well below pixel resolution, there is
no need to continue.

Fournier, Fussell, and Carpenter [FOUR82] developed a mechanism for generating a
class of fractal mountains based on recursive subdivision. It is easiest to explain in 10.

Fig. 20.6 The Mandelbrot set. Each point c in the complex plane is colored black if the
Julia set for the process x -+ II- + c is connected.

1084

20.3 Fractal Models 1023

y y y

~------------L----.x X X
0 0 0

(a) (b) (c)

Fig. 20.7 (a) A line segment on the x axis. (b) The midpoint of the line has been
translated in they direct ion by a random amount. (c) The result of one further iteration.

Suppose we start with a tine segment lying on the x axis, as shown in Fig. 20. 7(a). lf we
now subdivide the line into two halves and then move the midpoint some distance in they
direction, we get the shape shown in Pig. 20.7(b). To continue subdividing each segment,
we compute a new value for the midpoint of the segment from (x,, y,) to (x,. 1, y .. ,) as
follows: x,... = i{.x; + x, . 1), y_ = t(y, + y,. ,) + P(.x;., - x;) R(x.,..), where PO is a
function determining the extent of the perturbation in terms of the size of the line being
perturbed, and R() is a random number' between 0 and 1 selected on the basis of x,_ (see
Fig. 20. 7c). If P(s) = s, then the first point cannot be displaced by more than 1, each of the
next two points (which are at most at heightia!ready) cannot be displaced by more than t.
and so on. Hence, all the resulting points fit in the unit square. For P(s) = t', the shape of
the result depends on the value of a; smaller values of a yield larger perturbations, and vice
versa. Of course, other functions, such as P(s) = 2 -•, can be used as well.

Fournier, Fussell, and Carpenter use this process to modify 20 shapes in the following
fashion. They start with a triangle, mark the midpoint of each edge, and connect the three
midpoints, as shown in Fig. 20.8 (a). They coordinate of each midpoint is then modified in
the manner we have described, so that the resulting set of four triangles looks like Fig. 20.8
(b). This process, when iterated, produces quite realistic-looking mountains, as shown in
Color Plate IV .11 (although, in an overhead view, one perceives a very regular polygonal
structure).

Notice that we can start with an arrangement of triangles that have a certain shape, then
apply this process to generate the finer detail. This ability is particularly important in some
modeling applications, in which the layout of objects in a scene may be stochastic at a low
level but ordered at a high level: The foliage in an ornamental garden may be generated by a
stochastic mechanism, but its arrangement in the garden must follow strict rules. On the
other hand, the fact that the high-level structure of the initial triangle arrangement persists
in the iterated subdivisions may be inappropriate in some applications (in particular, the
fractal so generated does not have all the statistical self-similarities present in fractals based

'R() is actually a rondcm variable, a function taking real numbers and producing randomly distributed
numbers between 0 and I. lf this is implemented by a pseudorandom-number generator, it has the
advantage that the fractals are repeatable: We can generate them again by supplying the same seed to
the pseudorandom-number generator.

1085

1024 Advanced Modeling Techniques

(a) (b)

Fig. 20.8 (a) The subdivision of a triangle into four smaller triangles. The midpoints of
the original triangle are perturbed in the y direction to yield the shape in (b).

on Brownian motion [MAND82]). Also, since the position of any vertex is adjusted only
once and is stationary thereafter, creases tend to develop in the surface along the edges
between the original rriangles , and these may appear unnatural.

Voss [VOSS85] describes a modified version of thls algorithm in which stage n + I of a
model is created by adding a random displacement to every vertex of the model at stage n,
together with the midpoints of the edges at that stage. This method removes many of the
artifacts of the original subdivision algorithm but lacks the control provided by that
algorithm. Voss also discusses methods that produce models with even greater statistical
in variance under scaling and have other mathematical properties more consistent with the
original definition of fractals [VOSS85}. In particular, the Weierstrass-Mandelbrot random
fractal function gives a computationally trdctable mechanism for generating fractal
functions of one variable, and can doubtless be extended to two or more.

Mandlebrot has developed another improvement of the midpoint-displacement algo
rithm [PEIT88}. His first observation is that the displacements in the original midpoint
displacement algorithm are symmetric, so when a fractal mountain of this sort is inverted, it
has the same statistical properties as when uprighL Real mountains look very different from
inverted valleys, and Mandlebrot models thls asymmetry by choosing the displacements
from a nonsymmetric distribution, such as a binomial distribution. He also relieves some of
the "creasing" of the midpoint model by choosing a different subdivision method. Rather
than starting with an initial mesh of triangles, he starts from an initial mesh of hexagons.
Noting that height values need to be associated with only the vertices in a mesh, he changes
the topology of the mesh during subdivisions so that the initial edges of the hexagon are no
longer edges in the subdivision. Instead, he replaces the hexagon with three smaller
hexagons, as shown in Fig. 20.9. The central vertex has its height computed as in the
triangle algorithm-as an average of the neighboring vertices in the original hexagon, plus
a displacemen!. The other six new vertices are given heights that are weighted averages of
the vertices of the hexagon. Mandlebrot says that different choices of weights give
substantially different results. The principle feature of this subdivision is that the edges of

1086

20.3 Fractal Models 1025

(a) (b)

Fig. 20.9 (a) The initial hexagon mesh. One hexagon has been drawn in heavier lines.
(b) The subdivided hexagon mesh, with the descendants of the outlined hexagon drawn
in heavy lines.

the original hexagons, along which creases might have fonned, are now distoned into
multiple edges, so that the creases will be far less apparent. The fractals so generated are
extremely impressive.

For funher fractal algorithms. see [VOSS85; PEIT86].
Other iterative processes can be used to generate a great many interesting images. The

grammar-based models and panicle systems described in the following sections give some
sense of the power of this approach. The changes in those models at deep levels of recursion
illustrate a deficiency of the self-similarity model for natural objects. The structure of a tree
may be self-similar at cenain levels- branches and twigs look a lot alike-but the leaves of
a tree do not really look much like a tree.

Rendering fractals can be difficult. If the fractals are rendered into a z-buffer,
displaying the entire object takes a long time because of the huge number of polygons
involved. In scan-l ine rendering, it is expensive to son all the polygons so that only those
intersecting the scan line are considered. But ray tracing fractals is extremely difficult, since
each ray must be checked for intersection with each of the possibly millions of polygons
involved. Kajiya fKAJ183) gave a method for ray tracing fractal objects of the class
described in [FOUR82], and Bouville [BOUV85) improves this algorithm by finding a
better bounding volume for the objects.

Kajiya points out that , if one s1ans with a triangle and displaces points within il in the
venical direction, as described in IFOUR82], the resulting objec1 lies within a triangular
prism of infinite extent , whose cross-section is the original triangle. If the displacements of
the points of the triangle are small enough, then their sum remains finite, and the shape
based at the triangle is contained in a truncated triangular prism ("slice of cheesecake"; see
Fig. 20. 1 0). We could thus ray trace a fractal mountain by first checking whether a ray hits a
cheesecake slice for each of the original triangles; if not , no funher checking of thai
triangle' s descendants is necessary. By creating additiona.l slices of cheesecake for funher

1087

1026 Advanced Modeling Techniques

Original triangle

Bounding volume

Fig. 20.10 A slice of cheesecake that bounds a fractal perturbation of a triangle.

subdivided triangles, we could further reduce intersection testing, although creating a slice
for every single facet in the fractal can require prohibitive space.

This method has two disadvantages: detecting whether a ray intersectS a cheesecake
slice requires computing intersections with several planes (i.e., solving seve.ral algebraic
equations), and the slice of cheesecake is not a tight bounding volume- lots of rays hit the
cheesecake but never hit the fractal. Bouville observed that, when a triangle is subdivided
and interior vertices are displaced, the original vertices remain fixed [BOUV85]. He
therefore proposed fitting an ellipsoid around the subdivided triangle so that the original
three vertices lay on an equator of the ellipsoid, and the disph1ced internal vertices all lay
within the ellipsoid. In fact, as long as tbe displaced internal vertices lie within the ellipsoid
with high probability, the results are attr.tctive (determining this probability requires artistic
rather tban scientific judgment). U the ellipsoid is made so large as to be certain to contain
all possible displaced vertices, it may be a bad bounding region, in the sense that many rays
bit the ellipsoid but not the fractal object within. Notice that testing ray-ellipsoid
intersection is easy: Tt amounts to solving one quadratic equation. This makes the Bouville
method far faster than is the slice-of-cheescake method. Furthermore, the ellipsoids include
much less extraneous volume than do the slices of cheesecake, so fewer levels of recursion
are expected.

One other form of fractal modeling deserves mention, and that is the iterated function
systems (lFSs) described in Chapter 17. The lFSs described there differ from all the other
forms of modeling in this chapter, in that they model the image rather than the objects in the
image. That is, a specification of a collection of contractive affine maps. associated
probabilities, and a coloring algorithm, as described in Section 17.7. 2, simply provides a
compact description of a pixmap. For example, in the scene shown in Color Plate IV. ! ,
altering a single affine map might distort the image substantially, shearing a limb away from
every tree (and a branch away from every limb, and a twig away from every branch). lt
might also cause a branch to appear where one was not wanted.

£FSs can be used to generate images with great complexity. Since images of this sort
are often desirable for pattern mapping, we can expect to see IFSs become a standard part
of the modeler's toolkit.

A careful study of lFSs reveals that the technique does not actually depend on the
dimens.ion, so lFS models of 30 objects can be made as well. In some sense, the
grammar-based models discussed next are quite similar: New partS of a model are generated
by transformation of old parts to smaller-sized copies of some or all of the original parts.

1088

20.4 Grammar-based M odels 1027

20.4 GRAMMAR-BASED MODELS

Smith [SMIT84] presents a method for describing the structure of certain plants, originally
developed by Lindenmayer [LIND68), by using parallel graph grammar languages
(L-grammars), which Smith called graftals. These languages are described by a grammar
consisting of a collection of productions, all of which are applied at once. Lindenmayer
extended the languages to include brackets, so the alphabet contained the two special
symbols, 'T' and"). " A typical example is the grammar with alphabet {A, B, [,]}and
two production rules:

l.A-+AA

2. B -+ A[B)AA[B)

Starting from the axiom A, the first few generations are A, AA. AAAA, and so on; starting
from the axiom B, the first few generations are

0. B

I. A[B)AA[B)

2. AA[A(B)AA[B]]AAAA[A[B)AA[B])

and so on. lf we say that a word in the language represents a sequence of segments in a
graph structure and that bracketed portions represent portions that branch from the symbol
preceding them, then the figures associated with these three levels are as shown in Fig.
20.11.

This set of pictures has a pleasing branching structure, but a somewhat more balanced
tree would be appealing. If we add the parentheses symbols, "(" and ")," to the language
and alter the second production to be A(B]AA(B), then the second generation becomes

2. AA[A[B)AA(B))AAAA(A[B]AA(B))

If we say that square brackets denote a left branch and parentheses denote a right branch,
then the associated pictures are as shown in Fig. 20.12. By progressing to later generations
in such a language, we get graph structures representing extremely complex patterns. These
graph structures have a sort of self-similarity, in that the panem described by the

AA A

A
B B A

:~:
A

AA A A

A
B B A 8 -

Fig. 20.11 Tree representations of the first three words of the language. All branches
are drawn to the left of the current main axis.

1089

1028 Advanced Modeling Techniques

Fig. 20.12 Tree representations of the first three words, but in the language with
two-sided branching. We have made each segment of the tree shorter as we progress
into further generations.

nth-generation word is contained (repeatedly, in this case) in the (II + l)tb-generation
\.\'()rd.

Generating an object from such a word is a process separate from that of generating the
word itself. Here, the segments of the tree have been drawn at successively smaller lengths,
the branching angles have all been 45•, and the branches go to the left or to the right.
Choosing varying branching angles for different depth branches, and varying thicknesses for
the lines (or even cylinders) representing the segments gives different results; drawing a
"flower" or "leaf' at each terminal node of the tree further enhances the picture. The
grammar itself has no inherent geometric content, so using a grammar-based model
requires both a grammar and a geometric interpretation of the language.

This sort of enhancement of the languages and the interpretation of words in the
language (i.e., pictures generated from \.Y()rds) has been carried out by several researchers
[REFF88; PRUS88). The grammars have been enriched to allow us to keep track of the
"age" of a Jetter in a word, so that the old and young letters are transformed differently
(this recording of ages can be done with rules of the form A-.. B, B- C, C-D, ... ,
Q-+ QG[Q], so that no interesting transitions occur until the plant has "aged"). Much of
the \.Y()rk has been concentrated on making grammars that accurately represent the ac
tual biology of plants during development.

At some point, however, a grammar becomes unwieldy as a descriptor for plants: Too
many additional features are added to it or to the interpretation of a word in it. In Reffye's
model [REFF88], the simulation of the growth of a plant is controlled by a small collection
of parameters that are described in biological terms and that can be cast in an algoritltrn.
The productions of the grammar are applied probabilistically, rather than deterministically.

fn this model, we start as before with a single stem. At the tip of this stem i.s a bud,
which can undergo one of several t.ransitions: it may die, it may flower and die, it may sleep
for some period of time, or it may become an internode, a segment of the plant between
buds. The process of becoming an internode has three stages: the original bud may generate
one or more axillary buds (buds on one side of the joint between internodes) a process
that is called ramification; the internode is added; and the end of the new internode becomes

1090

20.4 Grammar-based Models 1029

Fig. 20.13 The bud at the tip of a segment of the plant can become an internode; In so
doing, it creates a new bud (the axillary bud) , a new segment (the internode), and a new
bud at the t.lp (the apical bud).

an apical bud (a bud at the very end of a sequence of internodes). Figure 20.13 shows
ellamples of the transition from bud to internode.

Each of the buds in the resulting object can then undergo similar transitions. If we say
the initial segment of the tree is of order I, we can define the order of all other internodes
inductively: Internodes generated from the apical bud of an order-i internode are also of
order-i; those generated from axillary buds of an order-i internode are of order (i + I).
Thus, the entire trunk of a tree is order I, the limbs are order 2, the branches on those limbs
are order 3, and so on. Figure 20.14 shows a more complicated plant and the orders of
various internodes in the plant.

The discussion so far describes the topology of the plant, but does not describe the
shape at all-whether the branches point up, down, or sideways has not been recorded. The

Fig. 20.14 A more complex plant (see Fig. 20. 13), w ith orders anached to the various
internodes.

1091

1030 Advanced Modeling Techniques

(a) (b)

Fig. 20.15 (a) Two different arrangements of leaves: spiraled and distic. (b) The
effects of different branching angles.

placement of axillary buds on a sequence of order-i internodes may occur in different ways
(see Fig. 20.15a), and the angles at which the order-(i + I) internodes (if any) branch out
from the order-i axillary buds also determine the shape of the plant (see Fig. 20.15b). There
are also some anomalies in tree growth, in which the behavior of a collection of order
(i + I) internodes is not standard, but instead resembles that of some lower order (this is
called reiteration), and this too must be modeled.

Finally, converting this description into an actual image of a tree requires a model for
the shapes of its various components: an order-1 internode may be a large tapered cylinder,
and an order-7 internode may be a small green line, for example. The sole requirement is
that there must be a leaf at each axillary node (although the leaf may fall at some time).

To simulate the growth of a plant in this model, then, we need the following biological
information: the current age of the model, the growth rate of each order of internode, the
number of axillary buds at the start of each internode (as a function of the order of the
internode), and the probabilities of death, pause, ramification, and reiteration as functions
of age, dimension, and order. We also need certain geometric information: the shape of
each internode (as a function of order and age), the branching angles for each order and age,
and the tropism of each allis (whether each sequence of order-i internodes is a straight line,
or curves toward the horizontal or vertical). To draw an image of the plant, we need still
more information: the color and teltture of each of the entities to be drawn- internodes of
various orders, leaves of various ages, and ftowers of different ages.

Pseudocode to simulate the growth process is shown in Fig. 20.16.
We can cast this entire discussion in terms of the grammar models that inspired it by

assigning different letters in the alphabet to apical and axillary buds of various ages, and
associating probabilities with the productions of the language. Since the application of
productions amounts to the processing in the pseudocode, however, it is not clear that such
a reformulation is particularly valuable.

Varying the values for the probabilities and angles can produce a wide variety of
extremely convincing tree models, a few of which are shown in Color Plates IV .12 and
IV .13. The correct choices for these parameters depend on knowledge of plant biology or
on the modeler's artistic eye; by using the wrong values, we can also generate plants bearing
no resemblance at all to anything real.

These plant models are the most spectacular examples of grammar-based modeling.
The method has been used in other applications as well, including architecture [STIN78].
In any domain in which the objects being modeled exhibit sufficient regularity, there may be
an opportunity to develop a grammar-based model.

1092

20.5 Pa rticle Systems

ror (each clock tim11) {
ror (each bud that is still alive) {

determinl1 from orrkr, age, etc., what happens to bud;
If (bud does nor die)

If (bud does not sleep) {
create 011 imemode (with geom11tric ilifonnation

abom its position, dlrt!ction, etc.);
crt!ate apical bud;
ror (each possible bud at old bud location}

If (ramification)
Crt!Ole axillary buds;

} , . if . ,
} /• for •/

} /• for • I

1031

Fig. 20.16 Pseudocode for the plant-growth algorithm. Adapted from [REFF88).

20.5 PARTICLE SYSTEMS

Particle systems are an intriguing approach to modeling objects whose behavior over time
cannot easily be described in terms of the surface of the objects (i.e. , objects whose
topology may change) [REEVgJ; REEV85]. A particle system is defined by a collection of
particles that evolves over time. The evolution is determined by applying certain
probabilistic rules to the particles: they may generate new particles, they may galn new
attributes depending on their age, or they may die (disappear from the object). They also
may move according to either deterministic or stochastic laws of motion. Panicle systems
have been used to model fire, fog, smoke, fireworks, trees, and grass.

Particles have been used for years as elementary entities in graphics modeling,
especially in early video games, where they denoted bullets or exploding spaceships. These
particles however, were deterministic and had to be placed individually. The effects of large
collections of particles have also been used before and since to model the transmission and
reflection of light in fog and in other diffuse media [BLIN82a; NTSH87; RUSH87]. The
essence of particle systems is that the positions of the particles are generated automatically,
their evolution is controlled automatically, and the individual particles affect the final image
directly.

In his first paper on particle systems [REEV83], Reeves describes their use in modeling
fire, explosions, and fii'C\VOrks. Reeves and Blau went on (REEV85] to use them in
modeling the grass and trees in a forest. In this context, the particle systems look a great
deal like the probabilistic grammar-based models described in the previous section. For
example, the trees are modeled as particle systems in which each branch is a particle, each
of which is placed randomly along the trunk's length; and each branch may fork or extend
according to some probability. The branching angles or the various segments are selected
from a distribution, as is the length of the branch (depending on its position in the tree) .
The particles in this system are like the letters of the alphabet in the grammar-based
approach, and the rules for particle birth, death, and transformation correspond to the
productions in the grammar.

1093

1032 Advanced Modeling Techniques

The modeling of fire in [REEV83) is quite different. Here, the particles have a tree
suucture (particles have child particles), but the tree suucture is not incorporated into the
resulting image. ~ levels of particle systems were used in modeling the Genesis effect in
Color Plate rV. I4. The first generated a collection of particles on cireles of varying radii
centered at a single point on the planet's surface; the particles were distributed about these
circles at random positions selected from a probability distribution. Each of these panicles
was then used as the starting location for a new particle system of a different type (an
explosion particle system).

In the Genesis qfect, an explosion particle system is used to model a small burst of
sparlcs from a region on the planet's surface (such syst.ems can also be used to model
fireworks and similar phenomena.) The particles of the system are generated in a small disk
on the planet's surface with an initial direction of motion that is upward from the surface
but may have some horizontal component as well (see Fig. 20.17). The position of each
particle at subsequent times is computed by adding its velocity vector to its current position;
the velocity vector may be updated by an acceleration vector (which may include gravity) as
well. The placement of the particles in the disk, the rate at which they are generated, the
initial velocities, and the lifetimes of the particles are all randomly chosen. In each such
choice, the value of the property is chosen by a rule of the fonn

property = cenrrafValueForProperty + Random() • VarianceOjProperty,

so the central value and variance of the property must be specified as well .
The colors of the particles are initially set to red, with some green and a little blue, and

alter over time to fade aw-ay , with the red component lasting longer than the green or blue, to
simulate the cooling of a white-hot material.

Rendering particle systems is a different maner altogether. Ray tracing a particle
system would be impossible, since computing the intersection of each ray with even a
bounding box for each of several million particles would be immensely time consuming. To
render the fire in the Genesis sequence, Reeves simply took each particle as a small point of
light and computed the contribution of this light source to the final image. Since the
particles were moving, he actually computed a short line segment representing the path of
the particle during the frame being rendered, and then rendered this line segment
(antialiased) into the final pixmap.6 Each pixel value was computed by accumulating the
values from each particle, so some puels that were affected by many particles became
clamped to the maximum values of red, green, and blue (especially red, since that was the
dominant particle color). Particles that were actually behind other particles still contributed
to the image, so no occluding of particles was done at all. ~ tricks were used for the
numerous fires burning on the planet. First, all the particles on the hidden side of the planet
were rendered, then the planet was rendered, and then the front particles were rendered.
These were composited together in the order back particles-planet- front particles to prevent
the particles on the back from showing through the planet's surface (i.e. , no z information
was stored with the rendered images of the particles). Also, the particle systems contributed
light only to the screen image, whe.reas actual fires ~uld illuminate the nearby portions of

.,_.is constitutes mQiion blur, which is discussed in Chapt~ 14 and 21.

1094

Plete IV.1 An omage genera1ed wolh an uerated function system
The function syS1em contaons fewer lhan 120 affine maps. (Courtesy
of M ichael Barnsley, Arnaud Jacquin, Fran~ols Malassenet.
laurie Reuler. and Alan Sloan.)

Plete IV.2 S1rokes drawn wi1h an anlialiased brush.
(Courtesy of Turner Whined, Bell Laboratoroes.)

··- ~

f\- ...
f.- ;:H·'· ...
f.- . ,... ··:-~··;:~
1-
~

1095

Plate IV.3 Antrahesed te•tes d•spleyed by the VOOA d•splay.
!Couneav of Set•sh Gupta, IBM T. J . Watson Research Center.)

Plate IV.4(a) A dragon modeled wrth hrerarchrcalaplrnea.
!Pietu (I) and lbl counesy of Oavrd Forsey, Computer
Grophrcs Laboratory, Un•vers•tv of Weterloo .)

1096

Plate IV .41b) Skon modeled by
defining hoerarchic81 spline offsets
rei alive to a skeletal model.

Plate IV.15 The end of a surface is placed
within a box and the control poonts for the box
are adJUSted. The surface wothon the box is
dragged along as well to form a new shape.
!Courtesy ofThomas Soderberg end
Scott Parry.)

Plate IV.6 A hammer modeled usong free
form daformatlons. ICourtesy of Thomas
Soderberg and Alan Zundel .)

1097

(a)

PlateiV.7 Solid textures (HI. The stucco doughnut os particularly eHecbve.
(Courtesy of Ken Perlin.!

(bl

(C)

1098

(b)

Plate IV.a (a) A haory donut
modelled woth hypertextures.
(b) A hypertextured blob
(Courtesy of Ken Perlin.)

Cal

1099

Pleu IV.9 A hypertextured
cube, show• no how the
textunng aHectathe geometry
aa well es the colors end
nor meta oftheaurl~tte.
(Counesy or Ken Perhn)

Plate IV.10 Solid textures
generatod using protection
texture• . Note that the patterns
d1ffer • long each of the three
prinop11 axes. CCopynght
1985 by Oarwyn Peachey, Un1v.
or Seshtchewan, repr~nted
from IPEAC851).

PlateiV. 11 "Vol L1bre R1dge" :
Fr~tttal moun tams generated
w1th the Fourn•er-Funeii
Carpenter algorithm ICounoay
of Loren Carpenter.)

1100

Plate IV .12 Simple
trees modeled using
probabilistic grammars·
(a) a palm tree; (b) and
(c) fir trees. (Courtesy of
Atelier de Modilisation et
d' Architecture des
Plantes. C AMAP).

1101

Plate IV. 13 More complex tre .. modeled
w1th the umetechn•qu• es •n Color Plate
IV 12 but w•th d•fferent parameters . lei A
w•llow tree, lbla fru•ttree m Spflng !Courtesy
of Ateher de Modd•sallon et d'Arch•tecture des
P1antts. C AMAPI.

lei

lbl

Plate fV.14 From St/Jr Trek II Tha Wr/Jth of Khan: One frame from the
Gen•••• effect partocle-system en•m.r•on of en explos•on e•pand•ng 1nto a wall
of f•rethet engulfs a planet !Courtesy of Ralph Guggenhe•m, P1xlf. C 1982
Paramount Poctur• CorporatJon. all nghts reserved

1102

Plate1V.15 tal A piece ol
cloth suspended at five pomts.
(b) Multiple shoats or cloth.
(Courtesy ol Jerry Weil l AT&T
Bell Ulboratories)

(a)

Plate IV.16 A net fellmg over a sphencal obstacle, wath lrae1ures developing.
!Courtesy ol Demetro Tel'lopoulos and Kurt Fleischer. Schlumberger.)

1103

Plate IV.17 An elastic modol 11 squashed by a farge sphere end then returns
to 1ts rest shape. (Courtesy of Caftech Computer Science Graphics Group, John
Plan end Alen Barr.)

PlateiV.18 ·shre-ve Valley."
The tc.rratn IS de roved from 1
almple onotoalterra1n con.,stong
of two slopong wella formong a
aongle sloping valley (wh1ch
becomes the pr1ncopal1tr"m
in the picture). (Courtesy of
G N1elson, Ar1zona State
UniVer&oty.l

1104

Plate IV.19 A beach at sunset. (Counesy of Boll Reeves, Pixar, and AJaon Fournoer,
Unoversoty of Toronto.)

Pl111e IV.20 A late afternoon scene woth a scattering medium on a room. (Holly
Aushmeoer. Counesy of Program of Computer Graphics. Cornell University.)

1105

Plate IV .21 A marble vase modeled wrth solid texturH. (Counesy of Ken Perhn.l

1106

• Plete IV.22 A traon modeled
woth soft objects. ("Entering
Mandrill Space• from The
Great Train Rubbery by Brian
Wyvill and Angus Davis,
Unoversity of Calgary.)

Plate IV .23 The snake was
produced bv Alias Research for
the September 1988 cover of
IEEE Computer Graphics and
AppliC81ions. The snake was
modeled woth the ALIAS
system and rendered woth a
color texture map for the skin
markings and a bump map for
the scales. (Produced by Gavon
Molter and Robert LeBlanc of
Ahas.l

1107

(a} I b)

(c) (d)

(e) (0

1108

Plata IV.24 The construction
of the glass knight for the
mov1e, Young Sherlock
Holmes. (a) The basic shape of
the shoulder guard. w1th a
color map, lb) the piece w1th an
environment map. (c) the
environment map modified by
a bump map and illummation
funct1on, (d) spots of d1n and
small bubbles are added, (e) an
additional color map is added
to provide the stains for the
seams and rivets, (f) n detail of
the piece, (g) the complete
figure; the shoulder piece is in
the upper right (Copyright 0
1989 Paramount Pictures. All
rights reserved. Counesy of
Industrial Ught & Magic.)

(g)

~--~~~---------,

Plate IV .26 The trees in these
scenes were positioned w1th an
automatic placement mecha·
nism. The objects are gener·
a ted using textured quadrics
and fractal models. (Counesy
of G.Y. Gardner, Grumman
Data Systems.)

1109

PiaU IV .215 A self·assembhng system modeled with dyne moe constraints. (Cour·
tesy orCaJtech Computer Graphics Group, Ronan Barzel and Alan Barr,)

1110

20.5

Initial velocities
of several particles

Ejection angle

Particle-creation
region

Particle Systems 1033

Fig. 20.17 The initial stage of a particle system for modeling an explosion.

the planet. Reeves achieved the nearby lighting by placing a conical light source of high
intensity near the surface of the planet, instead of computing the direct illumination from
the particles.

In the forest scene for the movie " Andre and Wally B." [REEV85; LUCA84), a
different rendering scheme was required , since the particle systems were no longer light
emitters, but instead were trees and grass, which acted as light reflectors. Special-purpose
techniques were developed to render the particle systems; some trees obscured others,
various portions of the trees were in shadow, the grass was sometimes in shadow from the
trees , and so on. The solutions were two-fold: developing probabilistic models for
shadowing and using modified z-buffer techniques to compute obscuring. The particles in
the tree (leaves and stems) were shaded by computing the depth of the particle into the tree
along a ray from the light source to the particle (see Fig. 20. 18). This depth was used to
compute an exponential drop off in the diffuse component of the light: D = e-l:d, where Dis
the diffuse component, k is a constant, and d is the depth of the particle. Particles with
small values of d had stochastically computed specu.lar highlights; if d WdS small and the
direction of the light and the direction of the branch were nearly perpendicular, a specular
highlight might be added. Finally, the ambient light, which is small inside the tree and
larger near its edge, was computed by setting A= max(e-.it, Amill), wherej is a constant, s is
the distance from the particle to the edge of the tree (in any direction) , and Amu. is a lower
bound for the ambient light (even the deepest parts of the tree are slightly illuminated). If a

•

Fig. 20.18 Each point in a tree lies at some depth along the line from the light source to
the particle. This distance determines the likelihood of the particle being illuminated.

1111

1034 Advanced Modeling Techniques

Fig. 20.19 The plane from an adjacent tree, which determines the shadowing of a
tree.

tree is in shadow from another tree, the specular and diffuse components should not be
added. This was implemented by determining planes from nearby trees to the tree under
consideration; the plane contained the top of the nearby tree and t.he light source, and had
the largest possible y component in its normal, as shown in Fig. 20.19. Panicles above this
plane were lit with all three components, whereas those below were given (probabilistically)
less and less djffuse and specular light as the distance from the plane increased.

Even with these simplified lighting computations, visible surfaces sti ll had to be
determined. The trees in the scene were sorted back to front, and were rendered in that
order. Trees were rendered with a bucket-sort type of z-buffer. Each tree's depth extent was
divided into a great many buckets; every particle that was generated was inserted into the
bucket for its depth in the tree . When all particles bad been generated, they were rendered
in back-to-front bucket order. Each particle was drawn as a small circle or short line
segment (antialiased). After each tree was rendered, the information about the tree was
discarded. The result of this ordering is that a branch of a nearby tree may obscure a branch
of one slightly farther away, even though the second branch lies in front of the first, since
the flrst branch is part of a tree that is rendered (entirely) after the second. In scenes with
sufficient complexity, this sorting error seems not to be a problem.

Still , this difficulty in rendering the scene does highlight a drawback of particle systems
in general: The modeler gets considerable power, but special-purpose rendering techniques
may need to be developed for each new application.

20.6 VOLUME RENDERING

Volume rendering is used to show the characteristics of the interior of a solid region in a 20
image. In a typical example. the solid is a machined part that has been heated, and the
temperature has been computed at each point of the interior through some physical or
mathematical means. It is now of interest to display this temperature visually. This is not ,
strictly speaking, a modeling issue, as the shape of the part and the characteristics to be
displayed are both available a priori. But the conversion of these data to information in a
pixel map is a form of modeling; namely, the modeling of the transformation from 3D to

1112

20.6 Volume Rendering 1035

20. In another example, the density of human or animal tissue may have been computed at
each point of a 30 grid through computed tomography (Cf). The display of this
information should indicate the boundaries of the various types of tissue (as indicated by
density changes). The surfaces defining these boundaries must be inferred from the sample
data in order to render the solid.

A number associated with each point in a volume i.s called the value at that point. The
collection of all these values is called a scalar field on the volume. The set of all points in
the volume with a given scalar value is called a level surface (if the scalar field is sufficiently
continuous, this set of points actually does fonn a surface). Volwne re11dering is the process
of displaying scalar fields. It is important to realize that the data being displayed may not be
ideal. If the data have been sampled at the points of a regular grid, the scalar field they
represent may contain frequencies higher than the Nyquist frequency for the sampling (see
Chapter 14). In tomography, for example, th.e transition from flesh to bone is very abrupt,
and hence contains very high frequencies, but the sampling rate is likely to be too low to
represent this change accurately. Also, the data that describe the interior of a solid may be
clustered in some irregular pattern, as might arise in geographic data taken from core
samples, where it may be impossible to sample uniformly.

Several approaches to volume rendering have been deve.loped. They can be divided into
t~ categories: those that compute level surfaces and those that display integrals of density
along rays. The t~ can be combined by assigning density only to certain level surfaces and
then ray tracing the result (which amounts to creating a different volume to be displayed). If
animation is available, a third category of display is possible: a series of 20 slices of the
data is computed and displayed sequentially, using color or brightness to indicate the scalar
value at each point of the slices. If interactive control of the slice direction and level is
provided, this approach can give an excellent sense of the interior structure of the scalar
field.

Nonetheless, it is sometimes useful to view data in the aggregate, rather than by slices.
One approach (though by no means the first) is the marching-cubes algorithm. In this
algorithm, scalar values are assumed to be given at each point of a lattice in 3-space. A
particular level surface can be approximated by determining all intersections of the level
surface with edges of a lattice.6 We look for pairs of adjacent latrice points whose field
values surround the desired value (i.e., the value of one vertex is greater than the chosen
level, the value of the other is less). The location of an intersection of the level surface with
the edge is then estimated by linear interpolation.

Each cube in the lattice now has some number of edges marked with intersection
points. The arrangement of the intersection points on the edges can be classified into 256
cases (each of eight vertices of each cube in the lattice is either above or below the target
value, giving 28 = 256 possible arrangements). For each case, a choice is made of how to
fill in Lhe surface within the cube. Figure 20.20 shows t~ such cases.

•A I au ice is an array of point~ and lines in space. much like a children's jungle gym. The points of the
lattice are evenly spaced in the x, y, and z directions, and they are joined by line segments parallel to
the coordinate axes. The set of all points with integer coordinates and of all axis-parallel line segments
joining them constitutes an example, called the integer /auice.

1113

1036 Advanced Modeling Techniques

+

+
_,.,-----/1 +

+

+ .,..-----,., +

+
+

+

Fig. 20.20 Two possible arrangements of intersections of a level surface with a cube
in the integer lattice, with choices of how to fill in a surface for each.

The collection of aU the surface pieces just defined constitutes a surface. This surface
can be assigned (at each subpolygon) a normal vector to be used for shading in the following
manner. At each venex of the cube, a numerical estimate of the gradient of the scalar field is
made. These values are interpolated to estimate the gradient vector at some point of the
subsurface. Since the gradient of a scalar field always lies in the direction of the normal
vector to the level surface, this interpolated value provides a good estimate for the normal
vector. (The special case of zero must be handled separately.)

The resulting level surface can be rendered with conventional techniques. This strategy
can be of use in medical imaging to show the shape of the boundary between different types
of tissue. Unfonunately, it computes only one shape at a time, and the relative positions of
different layers are difficult to see.

Upson and Keeler [UPS088] also assume that the scalar field varies linearly between
sample points, and they present two methods for its display. In both, the user first creates
four functions, R, G, B, and 0, where 0 is opacity. The arguments of these functions are
values of the scalar field; we therefore assume that the scalar field bas been normalized to
have values between 0 and I . The choices of the R, G, B, and 0 functions drastically affect
the resulting image. If the functions are chosen to have tight peaks at panicular values of the
scalar field , the level surfaces for those values are highlighted. lf the functions are chosen to
vary smoothly over the field values, then color can be used to indicate field value (see Fig.
20.21). Thus, in effect, we obtain sophisticated color-map pseudocoloring.

The interpolation of the scalar field over each cube in the lattice of sample points is a
I inear equation in each variable, and hence is trilinear in 3-space (i.e., of the form S(x, y, z) =
A + Bx + Cy + Dz + Exy + Fxz + Gyz + Hxyz). If we parameterize a ray in the form
(x, y , z) = (a, b, c) + t(u, v, w) as in ray tracing, then the value of Sat points of the ray is a
cubic function of 1.

The ability to compute this cubic rapidly forms the basis for Upson and Keeler's first
rendering method, based on a ray-tracing mechanism for volume data developed in
[KAJI84]. For each ray from the eyepoint through an image pixel, the R, G, B, and 0
values are accumulated for the ray as it passes through the volume data. This accumulation
stops when the opacity reaches a value of J or the ray exits the volume, whichever happens
first. Actually, far more is accumulated: the scalar field, shading function, opacity, and
depth cueing are all computed at each of several steps within each pixel volume so as to
integrate the cubic interpolant accurately.

1114

20.6 Volume Rendering 1037

A G B 0

L....--L-~ s s s s
(a)

A G 8 0

1£.... __ ~--. s s s s
(b)

Fig. 20.21 Two different choices for the shapes of the R,G,B, and 0 functions. In (a),
certain level surfaces of the scalar field are highlighted in red, green, and blue. In (b), the
color will change gradually as a function of the scalar field.

Upson and Keeler's second rendering method uses the same basic notion of integration
along rays, but accumulates values in pixels by processing the cubes in the lattice of values
in front-to-backorder (which can be easily determined for any particular view orientation).
The authors take great pains to ensure the computational efficiency of the process by using
adaptive quadrature methods for the integrations and never solving a system of equations
more than once at each point (when performing interpolations). It is important to observe,
as they do, that this method "is designed as an analytic tool, not as a technique to
synthesize realistic images" [UPS088, p. 64].

Sabella takes a similar approach [SABE88]. He assigns a density emiuer to each point
in the volume to be rendered, to simulate light coming from translucent objects. The
simulation models only part of the effects of I ight in such media; namely, the occlusion of
parts deeper in the medium by those nearer the front. Sabella deliberately ignores
shadowing and the variation in color due to differences in scattering at different
wavelengths, asserting that they may actually detract from the perception of density
variation. The density emitters are imagined to be tiny particles that both emit and scatter
light. The density of such particles within each small region of space is given by the value of
the scalar field there. The light reaching the eye along any ray is computed by summing up
the emission from all the emitters along the ray, and then attenuating the light from each
emitter by the probability that it is scattered during its trdvel to the eye. Sabella computes
four numbers: M, the peak value of the scalar field along the ray; D, the distance at which
that peak is encountered;/, the attenuated intensity just described; and C, the .. center of
gravity" o f the density emitters along the ray. By mapping combinations of these numbers
into various color scales (e.g., using hue-saturation-value, he maps M to hue , D to
saturation, and I to value), he can highlight various characteristics of the scalar field. He
further allows for " lighting" effects by giving a directionality to the particle emissions.
Each particle 's emissions are attenuated by a Lambert lighting model: Several light sources

1115

1038 Advanced Modeling Techniques

are positioned around the volume to be rendered, and the emission from a particle at
location (x, y, z) is determined by summing the dot products of the gradient of the scalar
field and the lighting directions, and multiplying the result by the density at the point. The
result is that surfaces of high density look more like reflective surfaces, an effect that helps
the eye to disambiguate the information presented.

Even further from the determination of surfaces is the approach taken by Drebin,
Carpenter, and Hanrahan at Pixar [DREB88]. These researchers make several important
assumptions about the scalar fields being rendered: the volume array of data representing
the field is assumed to be sampled at about the Nyquist frequency of the field (or the field
has been filtered to ensure this before sampling); the scalar field is modeled by a
composition of one or more materials (e.g., bone, far, and soft tissue) or the volume has
several scalar fields attached to it, such as stress and strain in a material. For a
multiple-material scalar field, they assume that the materials can be (at least statistically)
differentiated by the scalar value at each point, or that information regarding the material
composition of each volume element is provided in addition to the scalar field.

Given such information, they create several new scalar fields on the array of sample
points: the material percentage volumes (they use the term volume to mean a scalar field on a
volume). The value at a grid point in a material percentage volume is the percentage of one
material present in the volume element (or voxel) surrounding that point. If multiple fields
are specified in the original data, computing these material percentages may be simple. If
only a single field is given, the material percentages may have to be estimated by Bayesian
analysis.

After computing the material percentage volumes, the authors associate a color and
opacity with each material; they then form composite colors and opacities by taking a linear
combination of all the colors and opacities for each of the material percentage volumes.
(Opacity here is used in the sense of the a channel described in Section 17 .6, and th~ linear
combinations are the same as the combinations described there . In particular, the colors are
premultiplied by the opacity values before combination.) They further allow compositing
with matte volumes, which are scal.ar fields on th.e volume with values between 0 and I . By
multiplying these matte volumes with the color/opacity volumes, they can obtain slices or
portions of the original volumetric data. Making a smooth transition between 0 and I
preserves the continuity of the data at the matte boundaries.

The lighting model used here is similar to that in the other two algorithms. A certain
amount of light enters each voxel (the light from voxels behind the given voxel), and a
different amount exits from it. The change in light can be affected by the translucence of the
material in the voxel, or by "surfaces" or "particle scatterers" contained in the voxel that
may both attenuate the incoming light and reflect light from external light sources. These
effects are modeled by (I) requiring that l.ight passing through a colored translucent voxel
have the color of that voxel plus the incoming light multiplied by (I - a) for that voxel (this
is the over operation of the Feibush-Levoy-Cook compositing model in Section 17 .6), and
(2) determining surfaces and their reflectance and transmission properties.

The surface determination is not as precise as the ones described previously; each voxel
is assigned a density that is a weighted sum of the densities of the component materials for
the voxels (weighted by the material percentages). "Surfaces" are simply places where this

1116

20.7 Phys ically Based Modeling 1039

composite density changes rapidly. The strength of a surface is the magnitude of the
gradient of the density, and the surface normal used in shading calculations is the direction
vector of the gradient. To comput.e the surface shading, we divide each voxel into regions in
front of, on, and behind the surface. The intensity of light leaving the voxel, I', is related to
the intensity entering, I , by the rule/' = (Ctroo, over (C...m.. ove.r (Cbd over !))). The three
terms associated with the voxel can be precomputed and mixed because the over operator is
associative. The surface color is comput.ed by a Cook- Torrance-style model to give both
specular and diffuse components; these values are weighted by the strength of the surface so
that no reflective lighting appears in homogeneous solids. The colors of the front and back
are computed by estimating from which material they carne and by using colors from those
materials.

The results are excellent. Color Plate 1.1 shows the process as applied to data from
a CT scan of a child's head. The process is expensive, however. Multiple volumes (i.e.
multiple scalar fields) are created in the course of generating the image, and the memory
requirements are vast. Also, the assumption that the fields are sampled at or above the
Nyquist frequency may not be practical in a.ll cases: sometimes, the data are given, and we
wish to see the results even with some aliasing. Finally, the assumption that the data are
from a heterogeneous mixture of materials is not always valid, so the applications of the
method are limited.

20.7 PHYSICALLY BASED MODELING

The behavior and form of many objects are determined by the objects ' gross physical
properties (as contrasted with biological systems, whose behavior may be determined by the
systems' chemical and microphysical properties). For example, how a doth drapes over
objects is determined by the surface friction, the weave, and the internal stresses and strains
generated by forces from the objects. A chain suspended between two poles bangs in an arc
determined by the force of gravity and the forces between adjacent links that keep the links
from separating. Physically based modeling uses such properties to determine the shape of
objects (and even their motions in some cases). Current work on this subject is collected in
[BARR89J.

Most of this modeling uses mathematics well beyond the scopeoftb.is book, but we can
give the general notions of the techniques. ll is i.n this sort of modeling that the distinction
between graphics and other sciences is most blurred. The computations that produce a tear
in a model of a thin cloth when it is dropped over an obstruction are purely in the domain of
solid mechanics. But such computations would not be done unless the results could be
displayed in some fashion, so the motivation for physical research is now being provided by
the ability (or desire) to visualize results. At the same time, the wish to generate more
realistic graphics models drives research in the physical modeling process. In this section,
we discuss a few of the more impressive examples. The next section describes models of
natural phenomena that are less directly based on scientific principles and may contain
some (or many) compromises in order to produce attractive results. There is a continuous
variation between scientific foundations and ad hoc approaches, and the dividing line is not
at all clear.

1117

1040 Advanced Modeling Techniques

20.7 .1 Constraint-Based Modeling

When constructing an object out of primitive objects using Boolean operations, we find it
convenient to be able to say '' I want to put this spbere on top of tbis cube so that they touch
only at one point." Even with an interactive program that lets the user position objects by
eye, it may be difficult to make the two objects touch at a single point.7 Rules such as this
one are called constraims. Constraint-based modeling systems allow the user to specify a
collection of constraints that the parts of the model are supposed to satisfy. A model may be
underconstrained, in which case there are additional degrees of freedom that the modeler
can adjust (e.g., the location of the point of contact of the sphere and the cube), or
overconstrained, in which case some of the constraints may not be satisfied (which could
happen if both the top and bottom of the sphere were constrained to lie on the top face of
the cube). In constraint-based modeling, the constraints must be given a priority, so that the
most important constraints can be satisfied first.

The specification of constraints is complex. Certain constraints can be given by sets of
mathematical equalities (e.g. , two objects that are constrained to touch at specific points),
or by sets of inequalities (e.g. , when one object is constrained to lie inside another). Other
constraints are much more difficult to specify. For example, constraining the motion of an
object to be governed by the laws of physics requires the specification of a collection of
differential equations. Such constraint systems, however, Jje at the heart of physically based
modeling.

The earliest constraint-based modeling was done by Sutherland in the Sketchpad
system, described in Chapter 21 . Many constraint-based modeling systems have been
developed since, including constraint-based models for human skeletons [ZELT82;
KORE82; BADL87), in which connectivity of hones and limits of angular motion on joints
are specified, the dynamic constraim system of [BARR88], and the energy constraims of
[W1TK87; WILH87]. These fall into tv.'O classes: those in which general constraints can be
specified, and those that are tailored for particular classes of constraints. In modeling
skeletons, for example, point-to-point constraints, in which corresponding points on two
hones are required to touch, are common, as are angular limit constraints, in which the
angle between hones at a joint is restricted to lie in a certain range. But constraints that
specify that the distance between the centers of mass of two objects be minimized are not so
likely to occur. Special-purpose constraint systems may admit analytic solutions of a
particular class of constraints, whereas the general-purpose systems are more likely to use
numerical methods.

In the energy-constraint system we mentioned, for example, constraints are represented
by functions that are everywhere nonnegative, and are zero exactly when the constraints are
satisfied (these are functions on the set of aU possible states of the objects being modeled).
These are summed to give a single function , E. A solution to the constraint problem occurs
at a state for which E is zero. Since zero is a minimum forE (its component terms are all
nonnegative), we can locate such states by starting at any configuration and altering it so as
to reduce the value of E. Finding this minimum is done using numerical methods. [n the

"ryping in numbers is not an adequate compromise, since it may require that the modeler solve a
system of equations before typing the numbers.

1118

20.7 Physically Based Modeling 1041

course of such a process, we may get "stuck" at a local minimum forE, but if we do not,
we will eventually reach a global minimum. Such a global minimum is either zero, in wbich
case all constraints are satisfied, or nonzero, in which case some constraints may not be
satisfied. By changing the coefficients of the individual conStrdints in the funtion E, we can
stress the importance of some constraints over others. In the case where the system reaches
a local minimum, the modeler may start with a different initial configuration, or, in an ideal
system, may give a "push" to the configuration to make it move away from the local
minimum and toward the global minimum. The sequence of configurations that occurs as
the assembly is moving toward a minimum of the function E can be an interesting
animation, even though the initial intent was just to model an assembly that satsifies the
constraints. In fact , an animation of this sequence of events can be useful in determining
characteristics of the function-mjnimizing algorithm being used.

Further examples of constraint-based modeling are described in Section 20.9 and in
Chapter 21.

20.7 .2 Modeling Cloth and Flexible Surfaces

Several approaches to modeling cloth and other surfaces have been developed in recent
years [WElL86; WEIL87; TERZ88]. Wei! assumes that the cloth is a rectangular weave of
threads, each of which is inelastic. The warp and woof positions of a point on the surface
provide a coordinate system in which to describe events internal to the cloth, whereas each
such point has some 30 location as well. The first assumption in Weil's model is that the
cloth is suspended by holding certain points on the cloth at certain positions in 3-space;
thus, the "position" of the cloth is initially detem1ined at some finite number of points.
The line between any two such points (in the intTinsic coordinat.e system) is assumed to map
onto a catenary curve (which is the shape in which a chain hangs). This determines the
positions of several lines in the cloth. Notice that, at a point where two lines cross, the
position of the intersection point is overdetermined; Wei! simply ignores the lower catenary
in any such case. The lines between suspension points on the surface deternline regions in
the cloth, each of which is filled in with more catenaries. The shape of the cloth has now
been determined (at least initially). So far, the structure of the cloth has been ignored: The
threads making up the cloth may be stretched, whereas they were supposed to be inelastic.
Wei! proceeds to a relaxation process that iteratively moves the points in a manner to rel ieve
the "tension" in the threads, by computing the direction vectors between each point and its
neighbors. These vectors are multiplied by their own lengths, then are averaged to compute
a displacement for the point itself (the multiplication ensures that larger errors have greater
effects). This process is iterated until the surface is sufficiently close to satisfying the
constraints. A similar method is used to model stiffness of the cloth. Color Plate !V.IS
shows the results of this model and the modified model described in [WEIL87].

Thrzopoulos and Fleischer [TERZ88] take a more sophisticated approach, and model
media more general than cloth as weU. They assume that a material is arranged as a grid
(possibly 30, but 20 for cloth), and that adjacent points in the grid are connected by unit.s
consisting of springs, da~hpots (which are like shock absorbers), and plastic slip units. A
spring responds to a force by deforming elastically in an amount proportional to the force;
when the force goes away, so does the deformation. A dashpot responds to a force by

1119

1042 Advanced Modeling Techniques

1+------ X ---- +i•l

x Both springs active

Plastic unit slips
under tension

Plastic unit slips
under compression

Plastic unit
grabs again

F; Force
applied

Fig. 20.22 A plastic slip unit connected in series with one spring and in parallel with
another creates a unit that responds to a deforming force in a springlike fashion until the
force reaches a threshold value. Then the slip unit slips, and retains the deformation until
a sufficiently great force restores the unit to its original state.

deforming at a rate proportional to the force. Thus, a constant force causes a dashpot to
stretch until the force is removed, at which point the dashpot stops deforming. A plastic slip
unit responds to a force by doing nothing until the force reaches a certain level , and then
slipping freely; these units are best used in combination with other units, such as spring
units. Placing a plastic and two spring units in the arrangement shown in Fig. 20.22 creates
a unit that stretches gradually (both springs stretching, plastic unit static) until the force on
the plastic unit reaches its threshold. At this point, the plastic unit slips and the spring
attached to it contracts for a moment , until the other spring takes up some of the load. Thus ,
at that point, it is as though the system consisted of only the solo spring. Once the applied
force is reduced, the lower spring takes up some (compression) load, until the force
becomes sufficiently negative to cause the plastic slip unit to slip again.

A grid of such units , subject to laws of physics (modeled globally by rigid-body
dynamics but locally by stress and strain rules related to the structure of the units in the
material in an internal coordinate system), deforms and stretches. In particular, if threads in
the cloth are modeled by plastic slip units, then at some level of tension the units will slip
(i.e. , the thread will break), and a tear will result. Color Plate IV .16 shows an example of
the results.

20.7.3 Modeling Solids

The Terzopoulos and Flei.scher model discussed in the previous section can also be used to
describe either linear or solid assemblies as collections of points linked by units of varying
elasticity or viscosity. Platt and Barr [PLAT88] have done similar work in modeling
deformable solids (e.g., putty or gelatin) by combining the solid mechanics underlying
such structures with the tools of dynamic constraints. The essence of their work is to set up
large collections of differential equations that determine the state of the particle assemblies
(or finite-element mesh) at each time, subject to the goals that certain functions (such as
energy) be minimized while certain constraints (such as noninterpenetration of objects) are

1120

20.8 Special M odels for Natural and Synthetic Objects 1043

met. Their actual model considers the constraints as objectives to be achieved, along with
the minimization of the functions, and thus the constraints are met only approximately. The
stronger the effect of each constraint, the more difficult the solution of the diffe.rential
equations becomes. Despite this numerical difficulty, the results are certainly impressive
enough to warrant further research (see Color Plate IV . 17).

20.7 .4 Modeling Terrain

In another instance of physically based modeling, Kelley and associates [J<El ISS] extend
stream-erosion models from geomorphology. They begin with statistical observations about
the distribution of tributaries, the relationships between link length (a linlc is a segment of a
system of tributaries between t~ junctions or between a source and its first junction) and
stream gradient, and the mean valley-sidewall slopes. They use these to model the 20
layout of the pattern of streams for a given gross initial terrain, and then to alter the terrain
in the vertical dimension so as to compute the finer detail that fits the stream system so
constructed. Color Plate lV .18 shows the results for a simple initial drainage system.

20.8 SPECIAL MODELS FOR NATURAL AND SYNTHETIC OBJECTS

A great deal of work has been done on t.he modeling of natural phenomena by techniques
that are not directly related to the underlying causes of the phenomena; modeling of clouds
as patterned ellipsoids is a good example. Much ~rk has also gone into the modeling of
phenomena that have no specific visual appearance, such as molecules. The examples in
this section lie at all points of the range between scientific accuracy and clever
manipulations for generating attractive pictures. These models are meant as tools for
graphics, rather than as strict scientific visualizations. It is essential that people creating
these models understand the underlying phenomena while recognizing the benefits of a
good fake.

20.8 .1 Waves

Ocean waves were among the earliest natural phenomena modeled in graphics. Ripples
resemble sine waves emanating from either a point or a line, and are simple to model as
such. If the distance from the eye to the waves is large enough, it may be unnecessary
actually to perturb the surface at all, and the entire effect of the ripples can be generated
through bump mapping (although one of the first widely shown examples actually raytraced
a complete height field [MAXSI)). More complex patterns of ripples or waves can be
assembled by summing up band-limited noise to make texture maps describing wave trains
(PERL85), and then using these to texture map a planar surface. These patterns look best
viewed from above, of course, since realistic side views of waves should show the variations
in the height of the surface.

Fournier and Reeves [FOUR86], taking a much more sophisticated approach. model
the surface of a body of water as a parametric surface rather t.han as a height field, allowing
the possibility of waves curling over. They take into account much of the theory of
deep-water waves as well as the effects of underwater topography on surface waves and the
refraction and reflection of waves about obstacles (e.g., the way that waves bend around the

1121

1044 Advanced Modeling Techniques

end of a breakw.tter). Conversely, in simulating breaking waves, where theoretical
knowledge is limited, they provide some clever approximations that generate good results.
Their waves are unfortunately somewhat too smooth near the break, and lack a sharp edge
between the leading surface and the trailing edge as the wave is about to break.
Nonetheless, the results are extf!:mely good (see Color Plate IV. I9). Similar work by
Peachey [PEAC85] uses a somewhat less complex model; the overall appearance of the
waves is not as realistic, but breaking waves are modeled bett.er.

20.8.2 Clouds and Atmosphere

Fog and haze can both be modeled stochastically and then composited onto images. To
enhance the realism, we can weight the effect of the fog by the z values of the image onto
which it is composited, so that points farther away are more obscured than are those close
by. Similarly, fog and haze can be fitted into ray-tracing schemes by attenuating the image
by some power of the distance from the eye to the first int.ersection point (or, even better, for
nonuniform fog, by integrating the fog density along the ray to compute an attenuation
function). These techniques have some basis in physics, since light is scattered more as it
travels farther through fog. Several distinct models of clouds and of atmospheric haze have
been developed. Voss rvoSS85] has generated clouds based on fractals, whereas Gardner
[GARD84; GARD85] has modeled clouds as textured ellipsoids. Voss' s technique is to
generate a fractal in 4-space whose fourth coordinate represents a water-vapor density. By
allowing local light scattering to vary with the water-vapor density, he generates some
realistic clouds (be uses fractal dimensions 3.2 to 3.5).

By contrast, Gardner's method is based completely on the observed shape of
clouds -the clouds look like sheets or blobs, and so are modeled as textured planes and
ellipsoids. This model consists of a sky plane, in which thin cloud layers reside, ellipsoids
(used to model thick clouds, such as cumuli), and a texturing function for each, that handles
the varying shading and translucence of the clouds and sky plane.

Gardner creates a particularly simple texture function , akin the ones used by Perlin for
solid textures. He defines

• •
T(x, y , z) = k~[c1 sin(/; x + piJ + T0]~[c1 sin(g1 y + q1) + T0],

i• l i• l

where the c1 are the amplitudes of the texture at various frequencies, the /; and g1 are
frequencies in the x andy directions, respectively, and the p1 and q1 are corresponding phase
shifts. This function has different characteristics depending on the values of the various
constants. Assigning values with /; . 1 = 2/;, g1• 1 = 2g1 and c1+l = V212 c1 produces
variations at several different frequencies, with the amplitudes of variations decreasing as
the frequencies increase. Notice how similar this is to the fractal models of terrain height:
The mountains have large height variations, the boulders on them are smaller, the sharp
comers on the boulders are even smaller.

The phase shifts p1 and q1 are used to prevent all the sine waves from being synchronized
with one another--that is, to generate randomness (if these are omitted, the texture
function has a visible periodicity). For planar texturing, Gardner suggests p1 = (m2) sin(g1
y/2), and similarly for q1• For ellipsoidal textures, he defines p1 = (7T/2) sin(g1 y/2) +
7T sin(/; z/2), which generates phase shifts in all three dimensions, and he finds that using
values 0 < i < 6 provides rich textures.

1122

20.8 Special Models for Natural and Synthetic Objects 1045

This set of values defines the texture function. The texture function and the sky plane or
cloud ellipsoid must now be combined to generate an image. Gardner uses a lighting model
of the form

/ 1 = (I - s) Id +sf,, 12 = (I - t) / 1 + t/1, I= (l -a) /2 +a,

where ld and /, are the specular and Lambert components of the intensity, computed as in
Chapter 16; /1 is T(x, y, z); and a, 1, and s determine the fractions of ambient, texture, and
specular refiectioo, respectively. In addition, to get the effect of a cloud rather than of an
ellipse with a cloud painted on it, the edges of the cloud must be made translucent. For
clouds in the sky plane, regions of the plane must be made translucent. This is done by
defining the rranslucence, V, by the rule

if I, > V1 + D,

if V1 + D > 11 > V1,

otherwise,

where V1 and D together determine the range over which the translucence varies from 0 to I:
at /1 = V1 the translucence is I; at /1 = V1 + D, the translucence has decreased to 0. This is
adequate for sky-plane clouds, but for an ellipsoidal cloud, we expect the translucence to be
higher at the edges than it is at the center. Gardner determines a function g() , which is 1 at
the center of the projection of the ellipsoid onto the film plane and 0 on the edge of the
projection. With this function, a different translucence function V for ellipsoids can be
created, with two different values, V1 and V2 , determining the translucence threshold at the
edge and at the center:

V = I - (11 - V1 - (\12 - V1)(1 - g()))ID.

This value must be clamped between 0 and I. Combining the lighting and translucence
models gives extremely realistic clouds (especially if they are clustered nicely).

Armospberic effects with Jess "substance" than clouds-such as haze, dust, and
fog-have been generated using scattering models, typically with the assumption that light
is scattered only infrequently within any small volume. Blinn's model of the rings of Saturn
[BUN82a] handled the special case of nearly planar scattering layers made of tiny spherical
particles by considering four aspects of scattering:

I. Phase function- a tiny spherical particle reflects incident light to a viewer in much the
same way as the-moon reflects the sun's light to us, which depends on the relative
positions of the earth, suo, and moon.

2. Low albedo-if the reflectivity of each particle is low, then multiple scattering effec.ts
(i.e. , the light from reflections bouncing off two or more particles) are insignificant.

3. Shadowing and masking-particles more distant from a light source are shadowed by
particles in front of them, and light emitted from a particle is attenuated by particles
between it and the viewer, and both attenuations are exponential functions of depth into
the particle layer.

4. Transparency-the transparency of a cloud layer can be described as the probability
that a ray passing through it hits no particles, and is an inverse exponential function of
the length of the ray contained in the layer.

1123

1046 Advanced Modeling Techniques

Max fMAX86] extends this model, by incorporating the shadow volumes developed by
Crow (CROW77a). He computes the light reaching the eye from a surface by taking the
light reflected from the surface and adding to it aU the light reflected by the intervening
atmosphere, just as in Blinn's model; however, some portions of the intervening
atmosphere (those in the shadow volumes) reflect no additional light. This generates the
appearance of columns of shade (or light) in a reflective atmosphere, like the beams one
sees coming through a window in a dusty room. Nishita, Miyawaki, and Nalcamae
[NISH87] developed a similar technique that handles multiple light sources, light sources
with varying intensities (discussed later), and scattering media of varying densities. Thei.r
technique is based on determining, for each ray in a ray-traeing renderer, through exactly
which volumes of illuminated atmosphere the ray passes, and what illumination comes from
each such patch. They incorporate a phase function, different from Blinn 's, which is based
on an approximation to a more complex scauering theory for relatively small particles, such
as dust or fog.

Even further along the same direction is Rushmeier and Torrance's extension of the
radiosity model to handle scattering [RUSH87], based on similar theories for modeling heat
transfer. In their model , each volume in space (which is divided into smaU cubes) is dealt
with as a separate radiosity element, and ll()(only surface-to-surface interactions, but also
surface·to-volume and volume-to-volume interactions, are considered. This can generate
extremely complicated systems of equations, but the results are extremely realistic-they
constitute some of the most impressive images generated by computer graphics so far (see
Color Plate fV.20).

Nishita and Nakarnae have also studied the effects of scattering on illumination: A light
source that might have been purely directional (such as the light of the sun on the moon's
surface) can be diffused by an atmosphere (such as the earth's) and become a scattered
source of illumination. An object set on the ground outdoors is illuminated not only by
direct sunlight , but also by the light from other regions of the sky (by atmospheric
scattering). They model the entire sky as a hemispherical light source with varying
intensity, then compute the lighting for an object by integrating over this hemisphere. Color
Plate IIJ .22(c) shows an interior scene illuminated by this hemisphere.

20.8 .3 Turbulence

The accurate mathematical modeling of turbulence has been of interest for many ~ars. and
good fluid-mechanics simulators are now available. These can be used to model turbulence
directly, as done by Yeager and Upson fYEAG86], or more empirical models can be used to
generate good approximations of the effects of turbulence, as done by Perlin [PERL85].
Perlin 's model is particularly simple to replicate in the form of a solid texture (see Section
20. 1.2). The turbulence at a point p = (x. y, z) is generated by summing up a collection of
Noise() functions of various frequencies; pseudocode for this is given in Fig. 20.23.

The resulting Thrbulence() function can be used to generate marble textures by defining
Marble(x, y, z) = MarbleColor(sin(x + Thrbulence(x, y, z))), where MarbleColor maps
values between - I and I into color values for the marble. The x within the sin() is used to
generate a smoothly varying function , which is then perturbed by the turbulence function.
lf MarbleColor has sufficiently high derivatives (i.e., sufficiently great intensity changes) at

1124

20.8 Special Models for Natural and Synthetic Objects 1047

double Thrbulence (double x, double y, doublez)
{

double turb = 0.0;
doubles = 1.0;

I• Thrbulence is a sum of Noise 0 terms •I
I• s = scale of the noise; 1 = whole image •I

whlle (s is greater than pixel size) {

"-J

rurb += fabs (s • Noise (xfs, yfs, z/s});
s /= 2.0;

return turb;
} /• Thrbulence •I

Fig. 20.23 Pseudocode for the turbulence function.

a few points, there will be sharp boundaries between the basic marble and the veins that run
th.rough it (see Color Plate IV.21).

20.8.4 Blobby Objects

Molecules are typically portrayed by ball-and-stick models. But the actual physics of
molecules reveals that the electron clouds around each atom are not spherical, but rather are
distorted by one another's presence (and by other effects as well). To get a better image of
surfaces of constant electron density, we must consider the effects of neighboring atoms. In
the same way, any collection of items, each of which creates a spherically symmetric scalar
field and whose fields combine additively, has isosurfaces (surfaces along which the field is
constant) modeled not by a collection of overlapping spheres, but rather by some more
complex shape. Computing the exact isosurfaces may be impractical, but several good
approximations have been made. This was first done independently by Blinn [BLIN82b), in
whose system the fields created by each item decayed exponentially with distance and by
Nishimura et al. for use in the LINKS project [NISH83a]. Wyvill, McPheeters, and Wyvill
[WYVI86) modify Blinn's technique nicely. They model "soft objects" by placing a
collection of field sources in space and then computing a field value at each point of space.
The field value is the sum of the field values contributed by each source, and the value from
each source is a function of distance only. They use a function of distance that decays
completely in a finite distance, R, unlike Blinn's exponential decay. Their function,

C(r) = [-(t)r61R6 + (lf)r•t

0

R• - (!f)r2/R2 + I if 0 :s r :s R,

ifR < r ,

has the properties that C(O) = I, C(R) = 0, C'(O) = 0, C'(R) = 0, and C(R/2) = t- Figure
20.24 shows a graph of C(r). These properties ensure that blending together surfaces gives
smooth joints, and that the field has a finite extent. They compute a number, m, with the
property that the volume of the set where C(r) ~ m is exactly one-half th.e volume of tbe set
where 2C(r) > m. If two sources are placed at the same location and the level-m isosurface
is constructed, it therefore has twice the volume of the isosurface for a single source. Thus,

1125

1048 Advanced M odeling Techniques

O(r)

1

!!
2

Fig. 20.24 The function C(n.

when soft objects merge, their volumes add. (Notice that, if two sources are far apart, the
isosurface may have two separate pieces.)

An isosurface of the field can be computed by an algorithm that resembles the
marching-cubes algorithm discussed in Section 20.6, but that is far faster. By evaluating the
field at a sequence of grid points along one axis extending from each source, we find a cube
with an edge intersected by the isosurface (the edge lies between the last grid point whose
value was greater than m and the first whose value is less than m). Because the field value for
each source decreases with distance, this collection of cubes (called seed cubes) has the
property that each piece of the isosurface inte.rsects at least one of them. Thus, by working
outward from these seed cubes, we can locate the entire level surface. Additional worlc can
be avoided by flagging each cube that has been processed (these flags, together with various
function values, can be stored in a hash table to prevent excessively large data structures).
(Another method for computing implicit surfaces is given in [BL0088].)

The objects modeled with this technique resemble plasticine models [WYVI88] and
can be used for molecular modeling, or for modeling droplets of fluid that flow into one
another. See Color Plate IV .22 for an example.

20.8 .5 Living Things

The plants described in Section 20.4, with their ba~is in L-grammars, are comparatively
simple living things, and the regularity of their form makes them relatively easy to model.
Models for shells and C{)ral [KAWA82) and for imaginary living things [KAWA88) have
been developed as well. Some biologically simple animals have been modeled recently by
physically based techniques, but these models have been adapted to produce good pictures
at the cost of some biological realism [M1LL88a]. As Mi.ller notes, "One of the great
advantages of modeling something like worms is that no one wants to look at them too
closely" [M1LL88b). Although the computational costs of biologically and physically
realistic models are still prohibitive, the implication of Miller's observation is impor
tant- a good eye for appearance may be entirely sufficient to model a peripheral aspect of a
scene.

Miller's model of worms and snakes is based on interactions between masses and
springs, with muscle contractions modeled as changes in spring tension. The forward
motion of the worms and snakes is modeled b.y adding in directional friction as a

1126

20.8 Special M odels for Natural and Synthetic Objects 1049

force-each segment is allowed to move only forward, and trying to move backward
instead draws forward the more tailward segments of the creature. Miller uses bump
mapping and pattern mapping to model the appearance of the snakes and worms. He also
generates hair for caterpillars by stochastically distributing the bases of the hairs over the
body, and distributing the hair ends in a local coordinate system for each hair based on the
surface normal and tangent directions to the surface at the base of the ha.i.r. He thus can
model directional hair. One of his snakes is shown in Color Plate IV.23.

The flight and flocking of birds and schooling of fish have been modeled by Reynolds
[REYN87]. The simulation of behavior is so good in this model that the rough appearance
of the creatures is only somewhat distracting. As modeling proceeds to the higher genera,
the necessity for accuracy increases, since our familiarity with such creatures makes it
impossible for us to ignore modeling flaws.

20.8.6 Humans

The modeling of humans is the final frontier. Our ability to recognize and distinguish faces
is remarkable; computer graphics images of people must be extremely convincing to satisfY
our demands for realism. It is far easier to model a roomful of realistic objects than it is to
create one realistic face.

The need for such models has been recognized for some time. Many of the scenes with
which we are familiar have people in them, and it would be useful to model these people in a
nondistracting way. The eventual goal is to move from this use of people as "extras" in
computer-generated movies to their use in "bit parts" and eventually in leading roles.
Some progress has been made in this area. Catmull has modeled hands [CATM72] as
polygonal objects. The pieces of the hand (fingers, individual joints, etc.) are structured
bierarcbically, so moving a finger moves all of its joints. Furthermore, each vertex within a
joint may be specified either as being a part of the joint itself or in the description of its
parent in the hierarchy (the next joint closer to the palm). Thus, when the parent is moved,
the shape of the joint may change.

Parke [PARK82], Platt and Badler [PLAT81], and Waters [WATE87j have all
developed facial models. Waters models the face as a connected network of polygons whose
positions are determined by the actions of several muscles; these muscles are modeled as
sheets that can contract. Some of these muscle sheets are anchored to a fixed point in the
head, and some are embedded in the skin tissue. The former act by a contraction toward the
anchor point, and the latter by contraction within themselves. The facial polygons are
modeled by giving their vertices as points on the muscle sheets. Activating a muscle
therefore distorts the face into an expression. This arrangement is an improvement on a
similar model by Platt and Badler, in which the muscles were modeled as con tractable
networks of lines, rather than as sheets. Parke also extends this work by allowing control of
both the expression and the conformation (the characteristics that make one person's face
different from another's). In all these models, an essential feature is that the control of the
expression is reduced to a few parameters, so that the modeler does not need to place each
vertex of each polygon explicitly.

Zelt:zer [ZELT82] has done extensive work in modeling the motions of skeletal
creatures. The actual structure of the skeletons is comparatively simple (a hierarchical

1127

1050 Advanced M odeling Techniques

jointed collection of rigid bodies); it is the modeling of the motion that is more
complicated. Recent work by Girard [GIRA87J on the motion of legged animals is
extremely promising. The modeling of motion is discussed further in Chapler 21 .

20.8 .7 An Example from the Entertainment Industry

One final example of special-purpose modeling comes from the entertainment industry, in
which computer graphics has been widely applied. ln the movie Young Sh~rlock Holm~.
there is a scene in which a priest hallucinates that he is being attacked by a glass knight that
has jumped out from a stained-glass window. The effect would have been quite difficult to
produce by conventional animation techniques, as any annatures used to control the
knight's motion would have been readily visible through the semi-tranSparent glass .
Computer graphics therefore were used instead.

The series of images in Color Plate IV .24 shows the various techniques involved in
modeling the glass. Virtually all of these were implemented by modifying the reHectance
function using pattern- and bump-mapping techniques. Part (a) shows a single piece of
glass , the shoulder guard, with a color map applied to it. defining its gold stripes. ln part

(b), an environment map has been applied, showing the church scene behind the piece of
glass . In part (c), a bump map has been added, together with an illumination function, and
together these modify the environment map of part (b), so that the environment appears
refracted through the glass. The shape of the arches is still just barely visible. ln part (d) ,
spots of dirt and small bubbles have been added to all the previous effects. In part (e) ,
additional bump maps describe the uneven surfaces on the front of the glass and along the
glass's right edge. Part (f) shows a detail of the object. Altogether, three color maps, three
bump maps , one transparency map, and one environment map were required to give the
glass its realistic appearance. Part (g) shows the complete figure; the shoulder piece is in the
upper right.

The pieces of glass were assembled into a hierarchical model and animated using a 30
keyframe animation program. " Spodights" were strategically placed in the scene so that
glints would appear on the knight's S\\~rd jUSt as he thrusts it toward the priest . In one shot,
the movie camera that photographed the live action was moving, and so the synthetic
camera recording the computer-generated action has to move as well, match ing the motion
of the movie camera exactly. The final effect is most impressive, and in one instance quite
startling: When the camera swivels around to show the back side of the knight , we see the
same motion, but instead of seeing the back of the knight's head, we see his face again.
This gives the motion an uncanny effect, since the limbs seem to bend the wrong way.

20.9 AUTOMATING OBJECT PLACEMENT

Most of this chapter bas discussed the creation of objects; some of these objects , such as the
terrain molded by erosion, constitute the environment for a scene, but most of them must be
placed in a scene. Often, a human modeler chooses a location and puts a tree, a flag , or a
handkerchief there. When many objects need to be placed in a scene, however, some
automation of the process may be necessary. Considering another dimension, we see that
the position of a single object at two times may be known, but its position at all inteonediate

1128

20.9 Automating Object Placement 105 1

times may need to be determined. This is really the subject of animation, which involves
modeling the changes of position and attributes of objects over time, as discussed further in
Chapter 21. ln situations in which realistic motion of energy-minimizing assemblies is
being modeled, we can do the intermediate animation automatically (human motion may be
of this form , since humans often try to get from one place to another in the most efficient
manner possible). We shall discuss this special case of object placement as well.

Automatic object placement in scenes has not been studied widely. Reeves and Blau
[REEV85) discuss a special case in which the trees in a forest are placed automatically by
applying a general stochastic rule. The modeler provides a grid size determ.ining spacing
between trees and a parameter determining the minimum distance between any two trees,
the regions of the horizontal plane to be forested, and the surface contour over these
regions, which determines the elevation of the base of the tree. The program then generates
at most one tree per grid point, randomly displacing the trees in the x and y directions to
avoid giving a gridlike appearance in the final result. lf after displacement the new tree
would be too close to others, it is eliminated and the algorithm proceeds to the next grid
point. This model has some small realism to it: The placement of trees is somewhat
random, and forest densities tend to be nearly constant, so that one rarely sees lots of trees
all in the same area. Reeves and Blau also let the placement of their trees affect the
modeling of the individual trees. The elevation of the tree determines (probabilistically)
whether a tree is deciduous (low elevations) or evergreen (higher elevations). This
interaction between the terrain and the trees is similar in form to the interacting procedural
models of Amburn, Grant, and Whitted [AMBU86), described in Section 20.2, in which
characteristics of the terrain influenced the placement of the trees.

Gardner [GARD84] uses a mechanism that encompasses both random displacements
and interaction with the terrain, while also forming clusters of objects rather than a regular
grid. To determine placements of features in a scene (where to put a tree, for example), he
uses a function much like the texture function used in his models for clouds. When this
"texture" function is above some critical value, a feature is generated. Using this
technique, Gardner generates some exceptionally realistic distributions of features in scenes
(Color Plate TV.25).

In all these cases, it is important to avoid both regularity and complete randomness .
Much work remains to be done, but it appears that, for such applications, a stochastic
control mechanism that can interact with the environment will provide good results.

Another type of automatic object placement is determining the intermediate stages in
animations of constrained objects. ln some cases, an object's positions in the course of an
animation are completely determined by physics; actually computing these position may be
very difficult. Witkin and Kass describe a method for determining these intermediate
positions [WTTK88]. The basic idea is simple: Assuming that an object has been modeled
as a physical assembly with various muscles (parts of the assembly that can produce energy)
to move oth.er parts, we can desc.ribe the states (positions and velocities) of al l the parts of
the assembly as a function of time (these states include the amount of energy being
expended by each muscle at each time, which is related to the muscle tension). This
function can be thought of as taking a time value, t, between an initial and a final time, and
associating with it a collection of numbers describing the state of the assembly. Thus, the
function can be thought of as a path through some high-dimensional space. (The dimension

1129

1052 Advanced Modeling Techniques

I
I

I I

l
\ \ \

I
I I \

I
I

\
\ \
\ \

Fig. 20.25 Luxo Jr. is asked to jump from one position on the table to another. An
initial path is specified in which Luxo moves above the table. Iterations of a variational
technique lead Luxo to find a crouch-stretch-followthrough approach to the motion

of the space is about twice the number of degrees of freedom in the assembly.) Among the
collection of all such functions, there are some whose total energy expenditure is lower than
that of others. There also are some whose initial position for the parts is the desired initial
position and whose ending position is the desired ending position, and we can measure how
far a path is from satisfying these conditions. Some functions will represent physically
possible sequences of events (e.g., in some paths, the momentum of each part will be, in
the absence of external forces, proportional to the derivative of the part's position).

To compute the path of the object over time, we now take an approach called
variational calculus, which is similar to gradient methods used for finding minima of
ordinary real-valued functions. We start with any path and alter it slightly by moving certain
points on the path in some direction. We now determine whether the path is closer to a good

1130

20.9 Automating Object Placement 1053

that minimizes energy and satisfies the constraints. (Courtesy of Michael Kass and
Andrew Witkin.)

path (where "good" means "low energy expenditure, " "laws of physics satisfied," and
"starting and ending conditions satisfied") or is farther away. lf it is closer, it becomes our
new path, and we repeat the operation. lf it is farther away, we alter the original path by
exactly the opposite perturbations, and let this be our new path. As we it.erate this process,
we get closer and closer to a low-energy path that satisfies the constraints. Once we reach a
path satisfying the constraints, we can continue the process until we reach the lowest-energy
path possible. It turns out that the best alteration to the path at any time can be determined,
so we approach a minimum-energy path very quickly.

The actual mechanism by which this alteration is effected is extremely complex, but the
underlying idea is simple. Figure 20.25 is an example of the method in action; a model of
"Luxo Jr." from a Pixar animation [PIXA86], is supposed to jump from one position on

1131

1054 Advanced Modeling Techniques

the table to another. Luxo is composed of a head, three segments, and a base. Each joint is
frictionless and has a muscle to determine the joint angle. The initial path for the
computation is the motion of Luxo from one point above the table to a distant point above
the table. This path is gradually modified to consist of an initial compression of the body, a
stretch and leap, a pulling-up-and-forward of the base and a followthrough to prevent
toppling. This motion is remarkable in a number of ways: it is completely synthetic-the
crouch and the stretch are not "programmed in"-and at the same time it shows the
remarkable intuition of traditional animators, who drew a similar motion for the object and
thereby implicitly solved an immensely complex variational problem. Witkin and Kass
remark that the solution is general; we can create many constraints to be satisfied and still
find the solution using this general technique. Needless to say, however, the method is
computationally extremely expensive. One direction for future research is enabling a
modeler to suggest directions of modification of the path to accelerate finding the solution.

20.10 SUMMARY

More and more disciplines are contributing to the modeling of complex phenomena in
computer graphics, and the richness of the images we now see being generated is due to the
variety of techniques used together to produce these phenomena. Successful models still
have two forms: those based on replicating the underlying structure or physics of the objects
being modeled, and those based on making something that looks good. The second often
precedes the first. We anticipate seeing a wider variety of objects modeled in the future.
Modeling human form and motion, and animal appearance and behavior, are particularly
significant challenges. Even within the realms discussed in this chapter, there is substantial
room for further work. The modeling of plants and trees can be extended to modeling of the
ecology of a small region, including competition between plant forms for various resources.
The modeling of waves can be extended to include more accurately the effects of wind and
the appearance of breaking waves. The modeling of interconnected structures such as cloth,
clay, and liquids can be extended to include models of fracture, mixed media (how does the
movement of a slurry differ from that of a liquid?) and changes of state (e.g., melting ice).
We look forward to seeing these new models and their successors, and eagerly await the day
when computer-synthesized scenes are routinely mistaken for photographs. Although this
ability to fool the eye may not always be the final goal in modeling, it is a good measure of
the power available to computer graphics: If we can model reality, we can model anything.

EXERCISES

20.J Sh!J.W that the Bernstein polynomials Q .. ~t) used in the Sederberg-Parry defonnation technique
satisfy 2:r.oQ.,,{r) = I by using the binomial theorem, which says that

± (~)a•b"-r = (a + b)".
i•O t

20 .2 Implement the Perlin texturing model on your computer. Can you fine tune the model to
compute textures at only the points of a specific surface (such as a sphere), so that you can generate a
real-time texture editor? What are the difficulties in generating muhifrequency noise in real time? Try

1132

Exercises 1055

bump mapping the normal vecum by the dNoise() function described in the lellt-lhat is, by
adjusting the normals by a rule of the form newNormal = oldNormal + dNoise (curnntPoint). Let
f(x) be a function that is 0 for x < a and is I for x > b, where a and b are positive numbers with
a < b. If you assume you do bump mapping with the rule newNormal = o/t/Norma/ + f (Noise
(currtntPoim)) • dNoise (curnnrPoint), what do you expect the result to look like for various values of
a and b? Try to replicate the Perlin's stUcco lellture using this method.

20.3 ~in uses cubic interpolation to generate values for the coefficients used in computing noise.
Can you think of an easy way to speed this process using look-up tables? Can you think of a quicker
way to generate band-limited noise?

20.4 Implement a particle system for fireworks, by making the first-stage particle follow a parabolic
trajectory, and subsequent partic.les follow smaller parabolic trajectories. Can you combine this
system with the soft-object model to make exploding blobs of water?

20.5 Implement Gardner's cloud model and try to tune the parametcrs to give good-looking cumulus
clouds.

20.6 Think about bow you could model a natuml 10, 20, or 30 phenomenon. By a 10 object , we
mean an object on which position can be measured by a single number, such as a curve in the plane
(the single number is distance from the starting point of the curve). By a 20 object, we mean an object
on which position can be measured by two numbers. For example, the surface of the sphere is a 20
object because position can be measured by longitude and latitude. Notice that I 0 phenomena such as
hair are difficult to render. since a 1-pi:l!el line is likely to be far wider than is the desired image of the
hair. Solving th.is problem requires an understanding of the filtering theory in Chapters 14 and 17.
Some interesting 20 objects are Hower petals (can you think of a way to make a movie of a rose
unfolding?), ribbed surfaces (such as umbrellas, or skin over a skeleton), and ribbons (can you model
the shape of a ribbon by specifying only where a few points lie, and !cuing mechanics determine the
rest?). Some 30 objects you might want to consider are spooge (or is this really fractal?), translucent
glass, and mother-of-pearl .

1133

21
Animation

To tmim(lfe is, literally, to bring to life. Although people often think of animation as
synonymous with motion, it covers all changes that have a visual effect. ll thus includes the
time-varying position (motion dynamics), shape, color. transparency, slructure, and texture
of an object (update dynamics). and changes in lighting, camera position, orientation, and
focus, and even cbanges of rendering technique.

Animation is used widely in the entenainmcnt industry, and is also being applied in
education, in industrial applications such as control systems and heads-up displays and
Hight simulators for aircraft , and in scientific research. The scientilic applications of
computer graphics, and especially of animation, have come to be grouped under the
heading scientific visualization. Visualization is more than the mere application of graphics
to science and engineering, however; it can involve other disciplines, such as signal
processing, computational geometry, and database theory. Often, the animations in
scientific visualization are generated from simulations of scientific phenomena. The results
of the simi lations may be large dataSCts representing 20 or 30 data (e.g., in the case of
Huid-flow simulations); these data are converted into images that then constitute the
animation. At the other extreme, the simulation may generate positions and locations of
physical objects, which must then be rendered in some form to generate the animation. This
happens, for example, in chemical simulations, where the positions and orientations of the
various atoms in a reaction may be generated by simulation, but the animation may show a
ball-and-stick view of each molecule. or may show overlapping smoothly shaded spheres
representing each atom. In some cases, the simulation program will contain an embedded
animation language, so that the simulation and animation processes are simultaneous.

1057

1134

1058 Animation

If some aspect of an animation changes too quickly relative to the number of animated
frames displayed per second, t~mporat aliasing occurs. Examples of this are wagon wheels
that apparently tum backward and the jerky motion of objects that move through a large
field of view in a short time. Videotape is shown at 30 frames per second (fps), and
photographic film speed is typically 24 fps, and both of these provide adequate results for
many applications. Of course, 10 take advantage of these rates, we must create a new image
for each videotape or film frame. If, instead, the animator records each image on t~
videotape frames, the result will be an effective 15 fps, and the motion will appear jerkier.•

Some of the animation techniques described here have been partially or completely
implemented in hardware. Architectures supporting basic animation in real time are
essential for building Bight simulators and other real-time control systems; some of these
architectures were discussed in Chapter 18.

Traditional animation (i.e., noncomputer animation) is a discipline in itself, and we do
not discuss all its aspects. Here, we concentrate on the basic concepts of computer-based
animation, and also describe some state-of-the-art systems. We begin by discussing
conventional animation and the ways in which computers have been used to assist in its
creation. We then move on to animation produced principally by computer. Since much of
this is 3D animation. many of the techniques from traditional 2D character animation no
longer apply directly. Also, controlling the course of an animation is more difficuh when
the animator is not drawing the animation direclly: it is often more difficult to describe how
to do something than it is to do that action directly. Thus. after describing various
animation languages, we examine several animation control techniques. We conclude by
discussing a few general ru les for animation, and problems peculiar to animation.

21 .1 CONVENTIONAL AND COMPUTER-ASSISTED ANIMATION

21 .1.1 Conventional Animation

A conventional animation is created in a fairly fixed sequence: The story for the animation
is written (or perhaps merely conceived), then a storyboard is laid out. A storyboard is an
animation in outline form - a high-level sequence of sketches showing the structure and
ideas of the animation. Next, the soundtrack (if any) is recorded, a detailed layout is
produced (with a drawing for every scene in the animation), and the soundtrack is
read- that is, the instants at which significant sounds occur are recorded in order. The
detailed layout and the soundtrack are then correlated.! Next, certain key frames of the
animation are drawn-these are the frames in which the entities being animated are at
extreme or characteristic positions, from which their intermediate positions can be inferred.
The intermediate frames are then filled in (this is called inbetweening), and a rrial film is
made (a pencil test). The pencil-test frames are then transferred to eels (sheets of acetate

1This lets the animator generate only half as many frames, however. In some applications, the time
savings mil)' be wonh the tntdeotf in quality.
•The order dc$cribed here is from conventional studio c:a11oon animation. In tine-arts animation, the
soundiJ'IId: may be recorded last: in computer-assisted animation, the process may in•'Oive many
i tCJllt ions.

1135

21 .1 Conventional and Computer-assisted Animation 1059

film), either by band copying in ink or by photocopying directly onto the ceis. In mulliplane
animation, multiple layers of eels are used , some for background that remains constant
(except perhaps for a translation), and some for foreground characters that change over
time. The eels are colored in or painted, and are assembled into the correct sequence; then,
they are fi lmed. The people producing the animation have quite distinct roles: some design
the sequence, others draw key frames, others are strictly inbctweeners, and others work
only on painting the final eels. Because of the use of key frames and inbctweening, this type
of animation is called key-frame animation . The name is also applied to computer-based
systems that mimic this process.

The organizational process of an animation is described [CATM78a) by its storyboard;
by a ro111e sheet , wbicb describes each scene and the people responsible for the various
aspects of producing the scene; and by the exposure sheet , which is an immensely detailed
description of the animation. The exposure sheet has one line of information for each frame
of the animation, describing the dialogue, the order of all the figures in tbe frame, the
choice of background, and the camera position within the frame. This level of organization
detail is essential in producing a coherent animation. For further information on
conventional animation, see (LAYB79; HALA68; HALA73).

The entire process of producing an animation is supposed to be sequential, but is often
(especially when done with computers) iterative: the available sound effects may cause the
storyboard to be modified slightly, the eventual look of the animation may require that
some sequences be expanded, in tum requiring new sound-track segments , and so on.

21 .1.2 Computer Assistance

Many stages of conventional animation seem ideally suited to computer assistance,
especially inbetweening and coloring, which can be done using the seed-fill techniques
described in Section 19.5.2. Before the computer can be used, however, the drawings must
be digitized. This can be done by using optical scanning, by tracing the drawings with a data
tablet, or by producing the original drawings with a drawing program in the first place. The
drawings may need to be postproccssed (e.g., filtered) to clean up any glitches arising from
the input process (especially optical scanning), and to smooth the contours somewhat. The
composition stage, in which foreground and background figures are combined to generate
the individual frames for the final animation, can be done with the image-composition
techniques described in Section 17 .6.

By placing several small low-resolution frames of an animation in a rectangular array,
the equivalent of a pencil test can be generated using the pan-zoom feature available in some
frame buffers. The frame buffer can take a particular portion of such an image (the portion
consiting of one low-resolution frame), move it to the center of the screen (panning), and
then enlarge it to fill the entire screen (zooming).3 This process can be repeated on the

1The panning and zooming are actually effected by changing the values in frame-buffer registers. One
set of registers determines which pixel in the frame-buffer memory ~ponds to the upper-lcfi
comer of the screen, and another set of registers determines the pixel-replication factors- how many
times each pixel is replicated in the horizontal and vertical direction . By adjusting the values in these
registers, the user can display each of the frames in sequence, pixel-replicated to fill the entire
screen.

1136

1060 Animation

several frames of lhe animation stored in lhe single image; if done fasr enough, it gives the
effect of continuity. Since each frame of the animation is reduced to a very small part of the
total image (typically one twenty-fifth or one thirty-sixth), and is then expanded to fill the
screen, this process effectively lowers the display device's resolution. Nonetheless, these
low-resolution sequences can be helpful in giving a sense of an animation, thus acting as a
kind of pencil test.

21 .1 .3 Interpolation

The process of inbetweening is amenable to comput.er-based methods as well, but many
problems arise. Although a human inbetweener can perceive lhe circumstances of the object
being interpolated (is it a falling ball or a rolling ball?), a computet"-based system is
typically given only the starting and ending positions. The easiest interpolation in such a
situation is linear interpolation: Given the values, v, and v., of some attribute (position,
color, size) in the starting and ending frames, the value v, at intermediate frames is v, =
(I - t)v, + 1 v,; as the value 1 ranges from 0 to I , the value of v, varies smoothly from v, to
v,. Linear interpolation (sometimes called /erping- Linear intERPolation), although
adequate in some circumstances, has many limitations. For instance, if lerping is used to
compute intermediate positions of a ball that is thrown in the air using the sequence of three
key frames shown in Fig. 21. 1 (a), lhe resulting track of the ball shown in Fig. 21. 1(b) is
entirely unrealistic. Particularly problematic is the sharp comer at lhe zenith of lhe
trajectory: Although lerping generates continuous motion, it does not generate continuous
derivatives, so there may be abrupt changes in velocity when lerping is used to interpolate
positions. Even if the positions of the ball in the three key frames all lie in a line, if the
distance between the second and third is greater than that between the first and second, then
lerping causes a discontinuity in speed at the second key frame. Thus, lerping generates
derivative discontinuities in time as well as in space (the time discontinuities are measured
by the parametric continuity described in Chapter II).

Because of these drawbacks of lerping, splines have been used instead to smooth out
interpolation between key frames . Spl ines can be used to vary any parameter smoothly as a
function of time. The splines need not be polynomials.' For example, to get smooth
initiation and termination of changes (called slow-in and slow-out) and fairly constant rates
of change in between, we could use a function such as f(t) in Fig. 2 1.2. A value can be
interpolated by setting v, = (I - f(l))v, + f(t)v,. Since the slope off is zero at both 1 = 0
and 1 • I, the change in v begins and ends smoothly. Since the slope of fis constant in the
middle of its range, the rate of change of v is constant in the middle time period.

Splines can make individual points (or individual objects) move smoothly in space and
time, but this by no means solves the inbetweening problem. lnbetweening also involves
interpolating the shapes of objects in the intermediate frames . Of course, we could describe
a spline path for the motion of each point of the animation in each frame, but splines give
the smoothest motion when they have few control points, in both space and time. Thus, it is
preferable to specify the positions of only a few points at only a few times, and somehow to

'This is an c:uensioo of lhe notion of spline introduced in Chapter II, where a spline was defined to
be a piecewise cubic curve. Here we use lhe term in the m0<e general sense of any curve used to
approximate a set of control poinLS.

1137

21 .1 Conventional and Computer-assisted Animation

0

0 0
(a)

0
CD
00

0 0
0 0

0 0
(b)

1061

Fig. 21 .1 Linear interpolation of the motion of a ball generates unrealistic results. (a)
Three key-frame positions for the ball. (b) The resulting interpolated positions.

eJttend the spline interpolation over intermediate points and times. At least one special case
deserves mention: A figure drawn as a polyline can be interpolated between key frames by
interpolating each verteJt of the polyline from its starting to ending position. As long as the
key frames do not differ too much, this is adequate (for examples where this fails, see
Exercise 21.1).

Several approaches to this have been developed. Burtnyk and Wein [BURT76] made a
skeleton for a motion by choosing a polygonal arc describing the basic shape of a 20 figure
or portion of a figure, and a neighborhood of this arc (see Fig. 21.3). The figure is
represented in a coordinate system based on this skeleton. They then specify the thickness
of the arc and positions of the vertices at subsequent key frames and redraw the figure in a
new coordinate system based on the deformed arc. lnbetweening is done by interpolating
the characteristics of the skeleton between the key frames. (A similar technique can be
developed for 30 , using the trivariate Bernstein polynomial deformations or the heirarch
ical B-splines described in Chapter 20.)

Reeves [REEV81] designed a method in which the intermediate trajectories of
particular points on the figures in successive key frames are determined by hand-drawn
paths (marked by the animator to indicate constant time intervals). A region bounded by
two such moving-points poths and an arc of the figure in each of the two key frames

f(!)

Fig. 21.2 The graph of a function f(t) with zero derivative at its endpoints and constant
derivative in its middle section.

1138

1 062 Animation

(a)

\ I '

I I)
u.,_ "-'-L'-

(b)

(c)

Fig. 21 .3 Use of a neighborhood of a skeleton to define interpolated shapes.
(Courtesy of M. Weinand N. Burtnyk, National Research Council of Canada.)

determines a patch of the animation. The arc of the figure is interpolated by computing its
intermediate positions in this patch. The intermediate positions are determined so as to
mak.e the motion as smooth as possible.

Both these techniques were devised to interpolate line drawings, but the same problems
arise in interpolating 30 objects. The most important difference is that , in most
computer-based animation, the 3D objects are likely to be modeled explicitly, rather than
drawn in outlines. Thus the modeling and placement information is available for use in
interpolation, and the animator does not, in general, need to ind.icate which points on the
objects correspond in different key frames. Nonetheless, interpolation between key frames
is a d.iflicult problem.

1139

21 .1 Conventional and Computer-assisted Animation 1063

For the time being, let us consider only the interpolation of the position and orientation
of a rigid body. Position can be interpolated by the techniques used in 20 animation: The
position of the center of the body is specified at certain key frames, and the intermediate
positions are interpolated by some spline path. In addition, the rate at which the spline path
is traversed may be specified as well (e.g., by marking equal-time intervals on the
trajectory, or by specifying the speed along the interpolating path as a function of time).
Many different animation systems implement such mechanisms; some of these are
discussed in Section 21.2.3.

Interpolating the orientation of the rigid body is more difficult. In fact, even specifying
the orientation is not easy. If we specify orientations by amounts of rotation about the three
principal axes (called Euler angles), then the order of specification is importllllt . For
example, if a book with its spine facing left is rotated 90" about the x axis and then - 90"
about the y axis, its spine will face you, whereas if the rotations are done in the opposite
order, its spine will face down. A subtle consequence of this is that interpolating Euler
angles leads to unnatural interpolations of rotations: A rotation of 90" about the z axis and
then 90° about they axis has the effect of u 120° rotation about the axis (l , I, 1). But
rotating 30• about the z axis and 30" about they axis does not give a rotation of 40° about
the axis (l , l , I)-it gives approximately a 42• rotation about the ax.is (l , 0.3, I)!

The set of all possible rotations fits naturally into a coherent algebraic structure, the
quotunions [HAM153). The rotations are exactly the unit quatt rnions, which are symbols
of the form a+ bi + cj + dk, where a, b. c, and dare real numbers satisfying tr + If + <!
+ d1 "' l ; quatemions are multiplied using the distributive law and the rules i2 = jt = kt =
- I , ij "' k = - ji, jk ... i = - kj, and ki = j = - ik. Rotation by angle <P about the unit
vector [b c d)' corresponds to the quatemion cos 4>12 + b sin 4>12 i + c sin <P/2 j + d sin
4>12 lc. Under this correspondence, performing successive rotations corresponds to
multiplying quatemions. The inverse correspondence is described in Exercise 21 .7.

Since unit quat.emions satisfy the condition tr + If +<!-+ d1 = l , they can be thought
of as points on the unit sphere in 40. Th interpolate between two quatemions, we simply
follow the shortest path between them on this sphere (a great arc). This spherical linear
interpolation (called slerp) is a natural generalization of linear interpolation. Shoemake
[SHOE85] proposed the use of quatemions for interpolation in graphics, and developed
generalizations of spline interpolaots for quatemions.

The compactness and simplicity of quatemions are great advantages, but difficulties
arise with them as well. three of which deserve mention. First, each orientation of an object
can actually be represented by two quaternions, since rotation about the axis v by an angle <P
is the same as rotation about - v by the angle -<P; the corresponding quaternions are
antipodal points on the sphere in 40. Thus to go from one orientation to another, we may
interpolate from one quat.emion to either of two others; ordinarily we choose the shorter of
the two great arcs. Second, orientations Md rotations are not exactly the same thing: a
rotation by 360° is very dilferent from a rotation by 0" in an animation, but the same
quatemion (I + Oi + Oj + Ok) represents both. Thus specifying multiple rotations with
quatemions requires many intermediate control points.

The third difficulty is that quaternions provide an isotropic method for rotation- the
interpolation is independent of everything except the relation between the initial and final
rotations. This is ideal for interpolating positions of tumbling bodies. but not for

1140

1064 Animation

interpolating the orientation of a camera in a scene: Humans strongly prefer cameras to be
held upright (i.e., the horizontal axis of the film plane should lie in the (x, z) plane), and are
profoundly disturbed by tilted cameras. Quaternions have no such preferences, and
therefore should not be used for camera interpolation. The lack of an adequate method for
interpolating complex camera motion has led to many computer animations having static
cameras or very limited camera motion.

21 .1.4 Simple Animation Effects

ln this section, we describe a few simple computer-animation tricks that can all be done in
real time. These were some of the first techniques developed, and they are therefore
hardware-oriented.

In Section 4.4.1, we discussed the usc of color look-up tables (luts) in a frame buffer
and the process of double-buffering; and in Section 17.6, we described image compositing
by color-table manipulations. Recall that lut animation is generated by manipulating the Jut.
The simplest method is to cycle the colors in the lut (to replace color i with color i - I mod
n , where n is the number of colors in the table), thus changing the colors of the various
pieces of the image. Figure 21.4 shows a source, a sink, and a pipe going between them.
Each piece of the figure is labeled with its lut index. The lut is shown at the right. By cycling
colors I through 5, we can generate an animation of material flowing through the pipe.

Using this lut animation is a great deal faster than sending an entire new pixmap to the
frame buffer for each frame. Assuming 8 color bits per pixel in a 640 by 512 frame buffer, a
single image contains 320 KB of information. Transferring a new image to tbe frame buffer
every thirtieth of a second requires a bandwidth of over 9 MB per second, which is well
beyond the capacity of most small computers. On the other hand, new values for the lut can
be sent very rapidly, since luts are typically on the order of a few hundred to a few thousand
bytes.

Lut animation tends to look jerky, since the colors change suddenly. This effect can be
softened somewhat by taking a color to be made visible and changing its lut entry gradually
over several frames from the background color to its new color, and then similarly fading it
out as the next lut entry is being faded in. Details of this and other tricks are given by Shoup
[SHOU79] .

Lut animation can be combined with the pan-zoom movie technique described

0

0
11---1
2 ~':'T"".,j
3
4
5

Look-up table

Fig. 21 .4 The look-up-table entries can be cycled to give the Impression of flow
through the pipe.

1141

21 .2 Animation Languages 1065

previously to make longer pan-zoom movies with less color resolution. To make a very long
rv.o<olor pan-zoom movie on a frame buffer with eight planes of memory, for example, we
can generate 200 frames of an animation, each at one-twenty-fifth of full screen resolution.
Frames I through 25 are arranged in a single image to be used for a pan-zoom movie. The
same is done with frames 26 through 50, and so on up to frames 176 through 200, giving a
total of eight bitmaps. These are combined, on a pixel-by-pixel basis, into a single
8-bit-deep image, which is then downloaded to the frame buffer. We make all the Jut entries
black except entry 00000001 , which we make white. We then run a 25-frame pan-zoom
movie and see the first25 images of the animation. Then, we set entry 00000001 to black
and entry ()()()()()()I 0 to white. Running another 25-frame pan-zoom movie shows us the
next 25 images. Continuing in this fashion , we see the full 200-frame animation. By
allocating several planes to each image, we can generate shoner pan-zoom movies with
additional bits of color.

Finally, let's look at the hardware-based animation technique called sprites. A sprite is
a small rectangular region of memory that is mixed with the rest of the frame-buffer
memory at the video level. The location of the sprite at any time is specified in registers in
the frame buffer, so altering the values in these registers causes the sprite to move. The
sprites may hide the frame-buffe.r values at each pixel, or may be blended with them. We
can use sprites to implement cursors in frame buffers, and also to generate animations by
moving the sprite (or sprites) around on top of a background image. Some frnme buffers
have been designed to allow several sprites with different priorities, so that some sprites can
be "on top or. others.

One of the most popular uses of sprites is in video games, where the animation in the
game may consist almost entirely of sprites moving over a fixed background. Since the
location and size of each sprite are stored in registers, it is easy to check for collisions
between sprites, which further enhances the use of sprites in this application.

21 .2 ANIMATION LANGUAGES

There are many different languages for describing animation, and new ones are constantly
being developed. They fall into three categories: linear-list notations, geneml-purpose
languages with embedded animation directives, and graphical languages. Here, we brieHy
describe each type of language and give examples. Many animation languages are mingled
with modeling languages, so the descriptions of the objects in an animation and of the
animations of these objects are done at the same time.

21 .2.1 Linear-List Notations

In linear-list notations for animation such as the one presented in [CATM72], each event in
the animation is described by a starting and ending frame number and an action that is to
take place (the event). The actions typically take parameters, so a statement such as

42, 53,8 ROTATE " PALM". I, 30

means "between frames 42 and 53, rotate the object called PALM about axis I by 30
degrees, determining the amount of rotation at each frame from table B." Thus, the actions

1142

1066 Animation

are given interpolation methods to use (in this case a table of values) and objects to act on as
well. Since the statements describe individual actions and have frame values associated with
them, their order is, for the most part, irrelevant. lf two actions are applied to the same
object at the same time, however, the order may matter: rotating 90" in x and then 90• in y is
different from rotating 90° in y and then 90" in x.

Many other linear-list notations have been developed, and many notations are supersets
of the basic linear-list idea. Scefo (SCEne FOrmat) [STRA88], for example, has some
aspects of linear-List notation, but also includes a notion of groups and object hierarchy and
supports abstractions of changes (called actions) and some higher-level programming
language constructs (variables, flow of control, and expression evaluation) distinguishing it
from a simple linear List. Scefo also supports a model of animation that differs from many
animation languages in that it is renderer-independent. A Scefo script describes only an
animation; the individual objects in the script can be rendered with any renderer at all, and
new renderers can easily be added to the animation system of which Scefo is the core.

21 .2 .2 General-Purpose Languages

Another way to describe animations is to embed animation capability within a general
purpose programming language [REYN82; SYMB85; MAGN85]. The values of variables
in the language can be used as parameters to whatever routines actually generate
animations, so the high-level language can actually be used to generate simulations that then
generate animations as a side effect. Such languages have great potential (e.g., they can
certainly do everything that linear-list notations do), but most of them require considerable
programming expertise on the part of the user.

Such systems can use the constructs of the surrounding language to create concise
routines that have complex effects. Of course, these can sometimes be cryptic. ASAS
[REYN82] is an example of such a language. It is built on top of USP, and its primitive
entities include vectors, colors, polygons, sol.ids (collections of polygons), groups
(collections of objects), points of view, subworlds, and lights. A point of view consists of a
location and an orientation for an object or a camera (hence, it corresponds to the
cumulative transformation matrix of an object in PHIGS). Subworlds are entities associated
with a point of view; the point of view can be used to manipulate the entities in the subworld
in relation to the rest of the objects in the animation.

ASAS also indudes a wide range of geometric transformations that operate on objects;
they take an object as an argument and return a value that is a transformed copy of the
object. These transformations include up, down, left, right, zoom-in, zoom-out, forward,
and backward. Here is an ASAS program fragment, describing an animated sequence in
which an object called my-cube is spun while the camera pans. Anything following a
semicolon is a comment. This fragment is evaluated at each frame in order to generate the
entire sequence.

(grasp my-cube)
(C'ft' 0.05)
(grasp camera)
(right panning-speed)

; The cube becomes the current object
; Spin it clockwise by a small amount
; Make the cameta the current object
; Move it to the right

1143

21 .2 Animation Languages 1067

The advantage of ASAS over linear-list notations is the ability to generate procedural
objects and animations within the language. This ability comes at the cost of increased skill
required of the animator, who must be an able programmer. Scefo lies in the middle
ground, providing some flow-of-control constructs, and the ability to bind dynamically
with routines written in a high-level language, while being simple enough for nonpro
grammers to learn and use readily.

21 .2 .3 Graphical Languages

One problem with the textual languages we have described is that it is difficult for an
animator to see what will take place in an animation just by looking at the script. Of course,
this should not be surprising, since the script is a program, and to the extent that the
program's language allows high-level constructs, it encodes complex events in compact
form . If a real-time previewer for the animation language is available, this is not a problem;
unfortunately the production of real-time animations is still beyond the power of most
hardware.

Graphical animation languages describe animation in a more visual way. These
languages are used for expressing, editing, and comprehending the simultaneous changes
taking place in an animation. The principal notion in such languages is substitution of a
visual paradigm for a textual one: rather than explicitly writing out descriptions of actions,
the animator provides a picture of the action. Some of the earliest work in this area was
done by Baecker [BAEC69], who introduced the notion of P-curves in the GENESYS
animation system. A P-curve is a parametric representation of the motion (or any other
attribute) of an object or assembly of objects within a scene. The animator describes an
object path of motion by graphically specifying its coordinates as a function of time Gust as
splines do, where functions X(t), Y(t), and Z(t) specify the 3D location of a point on a curve
as a function of an independent variable). Figure 21 .5(a) shows a motion path in the plane;
Fig. 21.5(b) of that figure shows the path's x andy components as functions oftime. Notice
that the curves in part (b)) uniquely determine the curve in part (a), but the opposite is not
true: One can traverse the path in part (a) at different speeds. By marking the path in part (a)
to indicate constant time steps, we can convey the time dependence of the path, as shown in
part (c), which is what Baecker calls a P-curve. Note that part (c) can be constructed as
shown in part (d) by graphing the x and y components as functions of 1, on coordinate
systems that are rotated 90° from each other, and then drawing lines to connect
corresponding time points. Thus, editing the components of a parametric curve induces
changes in the P-curve, and editing the placement of the hash marks on the P-curve induces
changes in the components.

The diagrammatic animation language DIAL [FEJN82b] retains some of the features
of linear-list notations, but displays the sequence of events in an animation as a series of
parallel rows of marks: A vertical bar indicates the initiation of an action, and dashes
indicate the time during which the action is to take place. The actions are defined in a DIAL
script (by statements of the form"% tl translate "block" 1.0 7.0 15.3," which defines
action tl as the translation of an object called "block'' by the vector (1.0, 7 .0, 15.3)), and
then the applications of the actions are defined subsequently. The particular instructions
that DIAL executes are performed by a user-specified back end given at run time. DIAL

1144

1068 Animation

y X y y

(a) (c)

I

OC....---1 '-"~:..._-x
(d)

Fig. 21 .6 (a) A parametric path in the plane. (b) Its x andy components as functions of
time. (c) The original curve marked to indicate equal time steps. (d) The construction of a
P-curve from component functions.

itself knows nothing about animation: it merely provides a description of the sequence in
which instructions are to be performed. The following is a typical DIAL script (lines
beginning with a blank are comments):

Read in an object from a file, and ass iqn it the name "block"
qetsurf •block.d" 5 5 "block"

Define a window on the xy plane
window -20 20 -20 20

Define t wo action•, (1) a translation,
' t1 translate • block• 10 0 0

and (2) a rotation in tbe xy plane by 360 deqrees
' r1 rotate •block• 0 1 360

!low describe a tranalation, spin, and a further translation:

t1 1--------- l--------
r1 1--------

r1 1------------------------
The line labeled "tl " indicates that action tl is to take place from frames I to 10 (and
hence is to translate by one unit per frame, since linear interpolation is the default), and
then again from frames 17 to 25. At fT81Tle II, the block stops translating and rotates 40"
per frame for six frames (the first line labeled "rl" indicates this), and then rotates and
translates for the next three, and then just translates.

1145

21 .2 Animation Languages 1069

For longer animations, each tick mark can indicate multiple frames, so that animations
of several seconds' duration can be specified easily without indicating every frame. Long
animations can be described by starting a new sequence of tick marks on a new line,
following a completely blank line. (The second line labeled "rl" above is an example: it
indkates that a 360° turn should take place between frames26 and 50.) The format is much
like that of a conductor's score of a symphony: Each action corresponds to an instrument in
the orchestra, and each group of lines corresponds to a staff in the score. DIAL and many
linear-list notations have the advantage of being specified entirely in ASCIJ text, making
them portable to different machines (although a back end for the language must be written
for each new machine).

The S-Dynamics system [SYMB85] takes this visual paradigm one step further and
combines it with parametric descriptions of actions similar to P-curves. To do this,
S-Dynamics uses the full power of a bitmapped workstation. Figure 21.6 shows an
S-Dynamics window. Just as in DIAL, time runs horizontally across the window. The
period during which actions are to take effect is indicated by the width of the region
representing the action. Each action (or seque11ce in S-Dynamics terminology) can be
shown as a box that indicates the time extent of the action, or the box can be
"opened" - that is, made to show more internal detail. A sequence may be a composite of

", I• t , • '"

' '

'

Fig. 21 .6 An S-Dynamics window. (Courtesy of Symbolics Graphics Division. The
software and the SIGGRAPH paper in which this image first appeared were both written
by Craig Reynolds.)

1146

1070 Animation

several serial or parallel actions, each of which can be opened to show even more demil,
including a graph indicating the time dependence of a parameter of the action.

21 .3 METHODS OF CONTROUING ANIMATION

Controlling an animation is somewhat independent of the language used for describing
it-most control mechanisms can be adapted for use with various types of languages.
Animation-control mechanisms range from full explicit control, in which the animator
explicitly describes the position and attributes of every object in a scene by means of
translations, rollltions, a.nd other position- and attribute-changing operators, to the highly
automated control provided by knowledge-based systems, which take high-level descrip
tions of an animation(' 'make the charact.er walk out of the room'') and generate the explicit
controls that effect the changes necessary to produce the animation. In this section, we
examine some of these techniques, giving examples and evaluating the advantages and
disadvantages of each.

21 .3 .1 Full Explicit Control

Explicit comrol is the simplest sort of animation control. Here, the animator provides a
description of everything that occurs in the animation, either by specifying simple changes,
such as scaling, translation, and rotation, or by providing key-frame information and
interpolation methods to use between key frames. This interpolation may be given explicitly
or (in an interactive system) by direct manipulation with a mouse, joystick, data glove, or
other input device.

The BBOP system [STER83] provides this interactive sort of control. The underlying
object model consists of hierarchical jointed polyhedral objects (i.e., stick figures with
pivot points between adjacent sticks), and the animator can control transformation matrices
at each of the joints using a joystick or other interactive device. Such interactions specify the
tmnsformations at key frames, and interactive programs define the interpolations between
key frames. Notice that, in such a system, a sequence of actions defined between key frames
may be difficult to modify; extending one action may require shortening the neighboring
actions to preserve coherence of the animation. For example, consider an animation in
which one ball rolls up and hits another, causing the second ball to roll away. lf the first ball
is made to move more slowly, the slllrt of the second action (the second ball rolling away)
must be delayed.

21 .3 .2 Procedural Control

In Chapter 20, we discussed procedural models. in which various elements of the model
communicate in order to determine their properties. This sort of procedural control is
ideally suited to the control of animation. Reeves and Blau [REEV85] modeled both grass
and wind in this way, using a particle system modeling technique (see Section 20.5). The
wind particles evolved over time in the production of the animation, and the positions of the

1147

21 .3 Methods of Controlling Animation 1071

I G-7-?> 7
(a) (b) (c) (d)

Fig. 21 .7 The linkage in (a) Is moved by rotating the drive wheel. The constraint s
generate the motions shown in (b), (c), and (d).

grass blades ~ then determined by the proximity of wind particles. Thus, tbe panicle
system describing the grass was affected by aspects of other objects in the scene. This son
of procedural interaction among objects can be used to generate motions that would be
difficult to specify through explicit controL Unfortunately, it also requires that the animator
be a programmer.

Procedural control is a significant aspect of several other control mechanisms we
discuss. In particular, in physically based systems, the position of one object may influence
the motion of another (e.g., balls cannot pass through walls); in actor-based systems, the
individual actors may pass their positions to other actors in order to affect the other actors'
behaviors.

21 .3 .3 Constraint-Based Systems

Some objects in the physical world move in straight lines, but a great many objects move in
a manner determined by the other objects with which they are in contact, and this
compound motion may not be linear at alL For exan1ple, a ball rolls down an inclined
plane. If gravity were the only force acting on the ball, the ball would fall straight down. But
the plane is also pushing up and sidewnys, and so the ball rolls down the plane rather than
passing through it. We can model such motion by constraints. The ball is constrained to lie
on one side of the plane. lf it is dropped from a height, it strikes the plane and bounces off,
always remaining on the same side. In a similar way, a pendulum swings from a pi\'Ot,
which is a point constraint.

Specifying an animated sequence using constraints is often much easier to do than is
specifying by using direct control. When physical forces define the constraints, we move
into the realm of physically based modeling (see Section 21.3. 7), especially when the
dynamics' of the objects are incorporated into the modeL Simple constraint-based
modeling, however, can generate interesting results. lf constraints on a linkage are used to
define its possible positions, as in Fig. 21. 7(a), we can view an animation of the linkage by
changing it in a simple way. In the figure, for example, the animator can generate an
animation of the linkage just by rotating the drive wheel , as shown in pans (b), (c), and (d).

Sutherland's Sketchpad system [SUTH63) was the first to use constraint-based
animation of this sort (see Fig. 21 .8). It allowed the user to generate parts of an assembly in
the same way as 20 drawing programs do today. The parts (lines, circles, etc.) of an
assembly could be constrained by point constraints ("this line is free to move, but one end

6Here we use dynamics in the sense of physics, to mean the change in position and mocion over time.
1101 merely to mean " change." as in earlier chapters.

1148

1072 Animation

(a) Operation definition (b) Picture to constrain (c) Constraints satisfied

\ -"<§). Equal length - \

Fig. 21 .8 Constraint definition and satisfaction in Sketchpad. (Adapted from
[SUTH63].)

is held fixed at this point"),linkage constraints ("these lines must always remain joined end
to end"), or angular constraints ("these lines must always be parallel" or " these lines must
meet at a 60° angle"). This allowed the user to draw four lines in a quadrilateral , put
linkage constraints on the comers, to put a point constraint at one comer, and to put angular
constraints on opposite sides to make them parallel. This generated a parallelogram with
one comer held fixed . Constraints were satisfied by a reltuation technique in which the
assemb_ly was moved so that the constraints came closer to being satis fied. Thus, the user
could watch an assembly move so as to satisfy constraints grddually. 6 Of course, it is
possible to overconstrain a system, by requiring, for example, that a line have a length of
one unit, but that its ends be joined to two points that are three units apart. The constraints
in Sketchpad are described by giving an error function- a function whose value is 0 when a
constraint is satisfied, and is positive otherwise. Relaxation attempts to make the sum of
these functions 0; when it fails, many constraints may be unsatisfied . Similarly , a system
may be underconstrained, and have many solutions that satisfy all the constraints. ln this
case, the relaxation technique finds one solution that is close to the initial configuration.

Boening's similar Thinglab [BORN79] was really a metasystem: It provided a
mechanism for defining systems like Sketchpad, but a user could define a system for
modeling electrical circuits in the same framework. This system design was later improved
to include a graphical interface [BORN86b]. A system, once designed, provided a world in
which a user could build experiments. In a "M>rld meant to model geometry, for instance,
the user could instantiate lines, point constraints, midpoint constraints, and so on, and then
could move the assembly under those constraints. Figure 21.9 shows an example; the user
has instantiated four MidpointSegments (segments with midpoints), has constrained their
ends to be joined, and has also drawn four Lines between adjacent midpoints. The user can
vary the outer quadrilateral and observe that the inner quadrilateral always remains a
parallelogram. For related "M>rk, see [BIER86a].

The extension of constraint-based animation systems to constraint systems supporting
hierarchy, and to constraints modeled by the dynamics of physical bodies and the structural

' The animations therefore served IWO purposes: they generated assemblies satsifying the constrainls,
and they gave a visualization of the relaxation technique.

1149

21.3 Methods of Controlling Animation 1073

characteristics of materials (as in the plasticity models described in Section 20.7.3) , is a
subject of active research.

21 .3.4 Tracking Live Action

Trajectories of objects in the course of an animation can also be generated by tracking of
live action. There are a number of methods for doing tracking. Traditional animation bas
used rotoscoping: A film is made in which people (or animals) act out the parts of the
characters in the animation, then animators draw over the film, enhancing the backgrounds
and replacing the human actors with their animation equivalents. This technique provides
exceptionally realistic motion. Alternatively, key points on an object may be digitized from
a series of fi lmed frames, and then intermediate points may ~ interpolated to generate
similar motion.

Another live-action technique is to attach some sort of indicator to key points on a
person 's body. By tracking the positions of the indicators, one can get locations for
corresponding key points in an animated model. For example, small lights are attached at
key locations on a person, and the positions of these lights arc then recorded from several
different directions to give a 30 position for each key point at each time. This technique has
been used by Ginsberg and Maxwell [GINS83] to form a graphical marionette; the position
of a human actor moving about a room is recorded and processed into a real-time video
image of the motion. Tbe actor can view this motion to get feedback on the motion that he
or she is creating. If the feedback is given through a head-mounted display that can also
display prerecorded segments of animation, the actor can interact with other graphical
entities as v.ell.

Another sort of interaction mechanism is the data glove described in Chapter 8, which
measures the position and orientation of the wearer's hand, as well as the flexion and
hyperextension of each finger joint. This device can be used to describe motion sequences in
an animation as well, much like a 30 data tablet. Just as 20 motion can be described by
drawing P-curves, 30 motion (including orientation) can be described by moving the data
glove.

21 .3 .5 Actors

The use of actors is a high-level form of procedural control. An actor in an animation is a
small program invoked once per frame to determine the characteristics of some object in
the animation. (Thus. an actor corresponds to an ' 'object" in the sense of object-oriented
programming, as well as in the sense of animation.) An actor, in the course of its
once-per-frame execution, may send messages to other actors to control their behaviors.
Thus we could construct a train by letting the engine actor respond to some predetermined
set of rules (move along the track at a fixed speed), while also sending the second car in the
train the message "place yourself on the track , with your forward end at tbe back end of the
engine." Each car would pass a similar message to the next car, and the cars would all
follow the ·engine.

Such actors were originally derived from a similar notion in Smalltalk [GOL076] and
other languages, and were the center of the ASAS animation system described in Section
21.2.2. The concept bas been developed further to include actors with wide ranges of
"behaviors•· that they can execute depending on their circumstances.

1150

1074 Animation

(b) ~-. ___ _______________ __.

21 .3 .6 Kinematics and Dynamics

Kinematics refers to the positions and velocities of points. A kinematic description of a
scene, for example, might say, "The cube is at the origin at time 1 = 0. II moves with a
constant acceleration in the direction (I , I, 5) thereafter.'' By contrast, dynamic.s takes into
account the physical laws that govern kinematics (Newton's laws of motion for large bodies,
the Euler-Lagrange equations for fluids , etc.). A particle moves with an acceleration
proportional to the forces acting on it , and the proportionality constant is the mass of the
particle. Thus, a dynamic description of a scene might be, " At timet= 0 seconds the cube
is at position (0 meters, 100 meters, 0 meters). The cube has a mass of 100 grams. The

1151

21 .3 Methods of Controlling Animation 1075

(dl~---------------------1

Fig. 21 .9 A Thinglab disptay.(Courtesy of Alan Borning, Xerox PARC and University
of Washington.)

force of gravity acts on the cube." Naturally. the result of a dynamic simulation7 of such a
model is that the cube falls.

Both kinematics and dynamics can be inverted; that is, we can ask the question, ''What
must the (constant) velocity of the cube be for it to reach position (12, 12 , 42) in 5
seconds?" or, " What force must we apply to the cube to make it get to (12, 12, 42) in 5
seconds?" For simple systems, these sorts of questions may have unique answers; for more
complicated ones, however, especially hierarchical models, there may be large families of

7Th is simulation could be based on either an Cltpticit analytical solution of the equations of motion or
a numerical solution provided by a package for solving differemial equations.

1152

1076 Animation

solutions. Such approaches to modeling are called inverse kinematics and inverse dynamics,
in contrast to the fonvard kinematics and dynamics already described.

For example, if you want to scratch your ear, you move your hand to your ear. But when
it getS !here, your elbow can be in any of a number of different positions (close to your body
or stuck ou1 sideways). Thus, the motions of your upper and lower arm and wrist are not
completely determined by the instruction, "move your hand to your ear." Solving inverse
kinematic problems can therefore be difficult. In general, however, it is easier to solve
equations with unique solutions than it is to solve ones with multiple solutions, so if we add
constraints to the problem (e.g., "make the potential energy of your arm as small as
possible at each stage of the motion"), then the solution may become unique. Note that you
are constrained by the way that your body is constructed and by other objects in the
environment-scratching your ear is more difficult when you are wearing a spacesuit than it
is when you are wearing a bathing suit.

This type of problem, especially in the animation of articulated human figures, has
received wide attention [CGA82; GIRA85; WILH87]. The systems of equations arising
from such inverse problems are typically solved by numerical iteration techniques. The
starting point for the iteration may influence the results profoundly (e.g., whether a robot's
arms reach under a table or above it to grab an object on the other side depends whether they
are above or below the table on this side), and the iterative techniques may also take a long
time to converge.

Dynamic models using constraints have also been studied [BARR88). ln this case, the
dynamics of the model may be much more complex. For example, the force that a floor
exerts on the bottom of your foot is proportional to your weight (assuming for the moment
that neither you nor the floor is moving). In general , the force of the floor on your foot (even
if you are walking or running) is exactly enough to prevent your foot from moving into the
floor. That is to say, the force may not be known a priori from the physics of the situation. 8

To simulate the dynamic behavior of such a system, we can use dynamic constraints, which
are forces that are adjusted to act on an object so as either to achieve or to maintain some
condition. When the forces necessary to maintain a constraint have been computed, the
dynamics of the model can then be derived by standard numerical techniques. By adding
forces that act to satisfy a constraint, we can generate animations showing the course of
eventS while the constraint is being satisfied (much as in Sketchpad}. For example,
constraining the end of a chain to connect to a post makes it move from where it is toward
the post. This example was the subject of an animation by Barr and Barzel, one frame of
which is shown in Color Plate £V.26.

21 .3 . 7 Physically Based Animation

The dynamics we have described are examples of physically based animations. So, in
animated form , are the physically based models of cloth, plasticity, and rigid-body motion
described in Chapter 20. These models are based on simulations of the evolution of physical

80r course, the tloor actually does move when you step on it. but only a very small amount. We
usually want to avoid modeling the floor as a massive object, and instead just model it as a fixed
object.

1153

2 1 .4 Bas ic Rules of Anim ation 1077

systems. Various formulations of classical mechanical behavior have been developed
[GOLD80]; they all represent the evolution of a physical system as a solution to a system of
partial differential equations. The solutions to these equations can be found with
numerical-analysis packages and can be used to derive animation sequences. In the
Kass-Witkin motion modeling described in Chapter 20, the situation is complex. The
forces acting on an assembly are not all known beforehand, since the object may be able to
supply its own forces (i.e., use its muscles). This allows for physically based animation of a
different sort: One seeks the forces that the muscles must apply to generate some action. Of
course, there may be many solutions to such a problem, and the Kass-Witkin approach is to
choose the path with the minimal work. This sort of animation ties together the work on
constraints, dynamics, procedural control, and the actors that we have described. It is also
extremely complex; determining the equations governing a mechanical assembly can be
very difficult, since these equations may contain hundreds of interrelated variables.

21 .4 BASIC RULES OF ANIMATION

Traditional character animation was developed from an art form into an industry at Walt
Disney Studio between 1925 and the late 1930s. At the beginning, animation entailed little
more than drawing a sequence of cartoon panels-a collection of static images that , taken
together, made an animated image. As the techniques of animation developed, certain basic
principles evolved that became the fundamental rules for character animation, and are still
in use today [LAYB79; LASS87]. Despite their origins in cartoon-character animation,
many of them apply equally to realistic 30 animations. These rules, together with their
application to 30 character animation, are surveyed in [LASS87]. Here, we merely discuss
a few of the most important ones. It is important to recognize, however, that these rules are
not absolute. Just as much of modem art has moved away from the traditional rules for
drawing, many modem animators have moved away from traditional ru.les of animation,
often with excellent results (see, e.g., [LEAF74; LEAF77]).

The single most important of the traditional rules is squash and stretch, which is used
to indicate the physical properties of an object by distortions of shape. A rubber ball or a
ball of putty both distort (in different ways) when dropped on the floor. A bouncing rubber
ball might be shown as elongating as it approachs the floor (a precursor to motion blur),
flattening out when it hits, and then elongating again as it rises. By contraSt, a metal sphere
hitting the floor might distort very little but might wobble after the impact, exhibiting very
small, high-frequency distortions. The jump made by Luxo Jr., described in Chapter 20
and simulated by the physically based modeling described in this chapter, is made with a
squash and stretch motion: Luxo crouches down, storing potential energy in his muscles;
then springs up, stretching out completely and throwing his base forward; and then lands,
again crouching to absorb the kinetic energy of the forward motion without toppling over. It
is a tribute to the potential of the Kass-Witkin simulation that it generated this motion
automatically; it is also a tribute to traditional animators that they are able , in effect, to
estimate a solution of a complex partial differential equation.

A second important rule is to use slow-in and stow-out to help smooth interpolations.
Sudden, jerky motions are extremely distracting. This is particularly evident in interpolat
ing the camera position (the point of view from which the animation is drawn or computed).

1154

1078 Animation

An audience viewing an animation identifies with the camera view. so sudden changes in
camera position may make the audience feel motion sickness. Thus, camera changes should
be as smooth as possible.

A third rule that carries over naturally from the 20 character-animation world to 30
animations, whether they are for the entertainment industry or for scientific visualization, is
to stage the action properly. This includes choosing a view that conveys the most
information about the events taking pla.ce in the animation, and (when possible) isolating
events so that only one thing at a time occupies the viewer's attention. In the case of
animations for scientific visualization, this isolation may not be possible-the events being
simulated may be simultaneous-but it may be possible to view the scene from a position
in which the different events occupy different portions of the image, and each can be
watched individually without visual clutter from the others.

There are many other aspects of the design of animations that are critical. Many of
these are matters of "eye" rather than strict rules, although rules of thumb are gradually
evolving. The appropriate use of color is too often ignored, and garish animations in which
objects are obscured by their colors are the result. The timing of animations is often driven
by computing time instead of by final appearance; no time is given to introducing actions,
to spacing them adequately, or to terminating them smooth.ly, and the resulting action
seems to fly by. The details of an animation are given too much attention at the cost of the
overall feeling, and the result has no aesthetic appeal. When you are planning an animation,
consider these difficulties, and allot as much time as possible to aesthetic considerations in
the production of the animation.

21 .5 PROBLEMS PECULIAR TO ANIMATION

Just as moving from 20 to JO graphics introduced many new problems and chaUenges, the
change from 30 to 40 (the addition of the time dimension) poses special problems as well.
One of these problems is temporal aliasing. Just as the aliasing problems in 20 and 30
graphics are partially solved by increasing the screen resolution, the temporal aliasing
problems in animation can be partially solved by increasing temporal resolution. Of course,
another aspect of the 20 solution is antialiasing; the corresponding solution in 30 is
temporal antialiasing.

Another problem in 40 rendering is the requirement that we render many very similar
images (the images in an ideal animation do not change much from one frame to tbe
next- if they did, we would get jerky changes from frame to frame). This problem is a lot
like that of rendering multiple scan lines in a 20 image: each scan line, on the average,
looks a lot like the one above it. Just as scan-line renderers take advantage of this
inter-scan-line coherence, it is possible to take advantage of interframe coherence as well.
For ray tracing, we do this by thinking of the entire animation as occupying a box in 40
space-time-three spatial directions and one time direction. Each object, as it moves
through time, describes a region of 40 space-time. For example, a sphere that does not
move at all describes a spherical tube in 40. The corresponding situation in 3D is shown in
Fig. 21.10: If we make the 20 animation of a circle shown in part (a), the corresponding
box in 30 space-time is that shown in part (b). The circle sweeps out a circular cylinder i.n
space-time. For the 40 case, each image rendered corresponds to tak.ing a 20 picrure of a

1155

21 .5 Problems Peculiar to Animation 1079

y

1 2

3 4
(a) (b)

Fig. 21 .10 The circle in (a) moves from lower left to upper right. By stacking these
pictures along a third axis, we get the space-time animation shown in (b); the set of
circles has become a tube in space-time.

30 slice of the 40 space-time. That is to say, we cast rays from a particular space-time
point (x, y, z; t) whose direction vectors have a time component of zero, so that all rays hit
points whose time coordinate is also t. By applying the usual space-subdivision tricks for
ray tracing to this 40 space-time, we can save a lot of time. A single hyperspace
subdivision can be used for the entire course of the animation, so the time spent in creating
the space subdivision does not n.eed to be repeated once per frame. This idea and other uses
of int.erframe coherence in ray tracing are described in [GLAS88] .

High temporal resolution (many frames per second) may seem unnecessary. After all ,
video motion9 seems smooth, and it is achieved at only 30 fps. Movies, however, at24 fps,
often have a jerkiness about them, especially when large objects are moving fast dose to the
viewer, as sometimes happens in a panning action. Also, as noted before, wagon wheels in
movies sometimes appear to roll backward because of strobing. Higher temporal resolution
helps to solve these problems. Doubling the number of frames per second lets the wagon
wheel tum twice as fast before it seems to tum bac.kward, and it certainly helps to smooth
out the motion of fast-moving objects on the screen. The new Showscan technology
[SHOW89] involves making and showing movies at 60 fps, on 70-millimeter film; this
produces a bigger picture, which therefore occupies a larger portion of the visual field, and
produces much smoother motion.

Temporal antialiasing can be done by taking m.ultiple samples of a signal and
computing their weighted average. ln this case, however, the mu.ltiple samples must be in
the time direction rather than in the spatial direction, so we compute the intensity at a point
in the image for several sequential times and weight these to get a value at a particular
frame. Many approaches to temporal-aliasing problems have been developed; super
sampling, box filtering in the time domain, and all the other tricks (including postfiltering!)
from spatial antialiasing have been applied. One of the most successful is the distributed ray
tracing described in Chapter 16 [COOK86].

Another trick for reducing temporal aliasing deserves mention: animation on fields . A
conventional video image is traced twice; all the even-numbered scan lines are drawn, then

1We mean video motion filmed by a camera, not synthetically generated.

1156

1080 Animation

all the odd-numbered ones, and so on. Each scan line is redrdWn every if second, but the
even-numbered and odd-numbered scan lines are drawn in two different passes. Thus, the
electron beam passes over the screen 60 times per second. If the colors of the pixels of the
even-numbered scan Lines are computed at time 1 in the animation, and those for the
odd-numbered scan lines are computed at time 1 + k second, and these are composed into a
single pixmap, and this process is iterated for each frame, then when the animation is
displayed the effect is something like a 60-fps animation, even though each scan line is
refreshed only C'--eryjrsecond. This trick has some cost, however: The still frames from an
animation do not look as good as they might, since they are composites of images taken at
two different times, and they thus seem to flicker if shown on an interlaced display. Also,
twice as many frames must be rendered, so twice as many interpolated positions of the
objects must be computed, and so on. Despite these drawbacks, the technique is widely
employed in the computer-animation industry.

At the other extreme in animation is the process of animating on twos, or threes. and so
on, in which the animation is produced at a tempora.l resolution lower than the display's
refresh rate. Typically, each frame of the animation is displayed for two frames of video
("on twos"), so the effective refresh rate for video becomes 12 fps rather than 24 fps . This
approach necessarily produces jerkier images (if no temporal antialiasing is done) or
blurrier images (if it is). Animating on multiple frames and then filling in the interrnediate
ones can be useful in developing an animation, however, since it allows the animator to get a
sense of the animation long before the individual frames have all been created (see Exercise
2 1.2.)

21 .6 SUMMARY

Computer animation is a young field , and high-level animation is a recent development. As
the computational power available to animators increases and as animation systems become
more sophisticated, generating a high-quality computer animation will become simpler. At
present, however, many compromises must be accepted. Simulation software is likely to
advance rapidly, and the automated generation of graphical simulations is just a step away.
On the other hand, until animation software contains knowledge about the tricks of
conventional animation, computer character animation wilt remain as much an art as a
science, and the "eye" of the animator will continue to have an enormous effect on the
quality of the animation.

EXERCISES

21.1 Consider a unit square with comers at (0, 0) and (I, 1). Suppose we have a polygonal path
defined by the vertices (0, 1), (I. 1), and (1. 0). in that order, and we wish to transform it to the
polygonal path defined by t.he vertices (I , 0) , (0, 0), and (0, 1) (i .e., we want to rotate it by 180°).
Draw the intermediate stages that result if we linearly interpolate the positions of the vertices. This
shows that strict interpolation of venices is not adequate for key-frame interpolation unless the key
frames are not too far apart.

2 1.2 Suppose that you are creating an animation, and can generate the frames in any order. If the
animation is 128 frames long, a first ""pencil sketch" can be created by rendering the first frame. and

1157

Exercises 1081

displaying it for a full 128 frames. (This is very low temporal resolution!). A second approximation
can be generated by displaying the first frame for 64 frames, and the sixty-fourth fmme for the next
64. Suppose you have a video recorder that can record a given image at a given video-frame number,
for a given number of video frames. Write pseudocode for a sequential-approximation· recording
scheme based on the idea of rendering frames and recording them such as to show approximations of
the entire animation, which successively approach the ideal. You should assume the number of frames
in the entire animation is a power of 2 . (This exercise was contributed by Michael Natldn and Rashid
Ahmad.)

21.3 Using a color-table-based display device, implement the animation depicted in Fig. 21.4 . Can
you think of ways to generate smoother motion?

21.4 Using a frame-buffer that supports pan and zoom operations , implement the pan-room movie
technique described in Section 21.1.2.

'ZI .S Make an animation of fireworks, using the particle systems of Section 20.5. Tf you do not have
a frame buffer capable of displaying the images, you may instead be able to program the particle
systems in POsTSCRIPT, and to display them on a printer. Hold the resulting pictures as a book and
riffle through them, making a flip-book animation.

21.6 Suppose you were trying to make a 20 animation system that started with scanned-in hand
drawings. Suggest techniques for cleaning up the hand drdwings automatically, including the closing
of nearly dosed loops, the smoothing of curved lines , but not of sharp comers, etc. The automation
of this process is extremely difficult, and trying to imagine how to automate the process suggests the
value of interactive drawing programs as a source for 20 animation material.

21.7 a. Suppose thatq and r arequatemions corresponding to rotations of 4>and 8aboutthe axis v.
Explicitly compute the product qr and use trigonometric identities to show that it
corresponds to the rotation about v by angle 4> + 8.

b. Show that the product of two unit quat.emions is a unit quatemion.
c. If q is the unit quatemion a + bi + cj + dk, and sis the quatemion xi + yj + zk , we can

form a new quatemion s' = qsq- 1, where q· • = a - bi - cj - dk. If we writes' = x'i +
y'j + z' k , then the numbersx', y', and z' depend on the numbersx, y, and z. Find a matrix
Q such that [x' y' z']' = Q(x y zJ'. When we generate rotations from quatemions, it
is this matrix form that we should use, not an explicit computation of the quatemion
product.

d . Show that the vector [b c d]' is left fixed under multiplication by Q, so that Q represents
a rotation about the vector [b c d] . It actually represents a rotation by angle 2cos· • (a),
so that this describes the correspondence between quatemions and rotations.

1158

Appendix:
Mathematics for

Computer Graphics

This appendix reviews much of the mathematics used in the book. It is by no means
intended as a text on linear algebra or geometry or calculus. The approach we take is
somewhat unconventional , since most modem books on linear algebra do not mention
affine spaces, and we choose to emphasize them. The text is liberally laced with exercises,
which you should work through before loolcing at the solutions provided. The solutions arc
generally brief, and arc intended to let)(>U know whether)(>U did the problem correctly,
rather than to tell)(>U how to do it.

The assumption we make in this appendix is that)(>U have had courses in plane
geometry, calculus, and linear algebra, but that your familiarity with all three subjects has
faded somewhat. Thus, we give definitions for many imponant terms and state some
important results , but the proofs are, for the most part , omitted; we have found that students
interested in such proofs can generally construct them, and that those who arc not interested
in them find them distracting. Readers interested in reviewing this material in more detail
should consult [BANC83; HOFF61; MARS85].

The first part of the appendix describes the geometry of affine spaces in some detail. In
later sections, in which the material should be more familiar, we give considerably less
detail. The final section discusses finding roots of real-valued functions, and is unrelated to
the rest of the material.

A.1 VECTOR SPACES AND AFFINE SPACES

A vector space is, loosely, a place where addition and multiplication by a constant make
sense. More precisely, a vector pace consists of a set, whose elements are called wcrors

1083

1159

1084 Appendix

y

Fig. A.1 Addition of vectors in the plane.

(which we will denote by boldfaced letters, usually u, v, or w), together with t\m
operations: addition of vectors, and multiplication of vectors by real numbers (called scalar
mulriplication).1 The operations must have certain properties. Addition must be commuta
tive, must be associative, must have an identity element (i.e., there must be a vector,
traditionally called 0, with the property that, for any vector v, 0 + v = v), and must have
inverses (i.e., for every vector v, there is another vector w with the property that v + w = 0;
w is written " - v"). Scalar multiplication must satisfy the rules {a{I)v = a({Jv), tv = v,
(a+ {I) v = av + {Jv, and a{v +w) = av + aw.

This definition of a vector space abstracts the fundamental geometric properties of the
plane. We can make the plane into a vector space, in which the set of vectors is precisely the
set of points in the plane. This identification of vectors and points is temporary, and is used
for th is example only. For now, we consider a point in the plane and a vector to be the same
thing. To make the plane into a vector space, we must first choose a particular point in the
plane, which '-'"'e call the origin. We define addition of vectors by the well known
parallelogram rule: To add the vectors v and w, we take an arrow from the .origin to w,
translate it so that its base is at the point v, and define v + w as the new endpoint of the
arrow. If we also draw the arrow from the origin to v, and do the corresponding process, we
get a parallelogram, as shown in Fig. A. I. Scalar multiplication by a real number a is
defined similarly: We draw an arrow from the origin to the point v, stretch it by a factor of
a, holding the end at the origin fixed, and then av is defined to be the endpoint of the
resulting arrow. Of course, the same definitions can be made for the real number line or for
Euclidean 3-space.

Exercise: Examine the construction of the vector space in the preceding paragraph.
Does it depend in any way on assigning coordinates to points in the plane, or is it a purely
geometrical con.struction? Suppose that we assign coordinates to points of the plane in the
familiar fashion used in graphing. If we add the vectors whose coordinates are (a, b) and
{c, d), what are the coordinates of the resulting vector? Suppose that instead we lay down
coordinate lines so that one set of lines runs horizontally, but the other set, instead of

1Scalars (i.e., real numbers) will be denoted by Greek leners, typically by those near the start of the
alphabet.

1160

A.1 Vector Spaces and Affine Spaces 1085

running vertically, runs at 30• away from vertical. What are the coordinates of the sum
now?

Answer: No, it is purely geometrical (where geometry includes distance measure). The
vector sum has coordinates (a + c, b + d), in both cases.

The classic example of a vector space is R•, the set of all ordered n-tuples of real
numbers. Addition is defined componentwise, as is scalar multiplication. Elements of R"
are written vertically, so that a sample element of R3 is

We can sum elements;

m+m=m.
Most of graphics is done in R2, R3, or R4•

Given the two operations available in a vector space, there are some natural things to do
with vectors. One of these is forming linear combinations. A linear combination of the
vectors v1, ••• , v. is any vector of the form a 1v1 + ~v2 + .. . + a .v •. Linear
combinations of vectors are used for describing many objects. In the Cartesian plane
ex.ample, the line through a nonzero point v and the origin can be described as the set of all
vectors of the form av, where a ranges over the real numbers. The ray from the origin
through v is the same thing, except with a ranging over the nonnegative reals. These are
both examples of linear "combinations" of a single vector. We will encounter more
complex combinations later.

In general, the collection of all possible linear combinations of a set of vectors is called
the span of the set. The span of a nonzero vector in the Cartesian plane example W'dS a line
through the origin. The span of two vectors that point in different directions is a plane.

Before we go further with vector spaces, we shall discuss affine spaces. An affine space
is approximately describable as a set in which geometric operations make sense, but in
which there is no distinguished point. (In a vector space, the vector 0 is special, and this is
reflected in the example of the Cartesian plane, in which the origin plays a special role in the
definition of addition and scalar multiplication.) A more precise definition of an affine
space is that it consists of a set, called the poims of the affine space; an associated vector
space; and two operations. Given two points, P and Q, we can form the difference of P and
Q, which lies in the vector space; given a point, P, and vector, v, we can add the vector to
the point to get a new point, P + v. Again, there are certain properties that these operations
must satisfy, such as (P + v) + w = P + (v + w), and P + v = P if and only ifv = 0.

This definition is based on a more classical model of geometry, in which there is no
preferred origin. If you think of the surface of a table as an example of a (truncated) plane,
there is no natural origin-no point of the table is preferred to any other. But if you take a
point , P, on the table, and place a set of coordinate axes with their origin at P, every other

1161

1086 Appendix

point of the table can be measured by specifying its displacement from P using that
coordinate system. By translating all the points of the coordinate axes by some fixed
amount, we get new coordinate axes at another point. In this model, the points of the affine
space are the points of the tabletop, and the vectors are arrows between them. Adding a
vector v to a point P amounts to laying down the arrow with its base at P, and seeing where
its end is (the endpoint is called P + v). Taking the difference of two points Q and P, Q -
P, consists of finding an arrow that goes from P to Q.

Affine planes make a natural model for computer graphics. Often, there is no preferred
point in graphics. When you are modeling a room, for example, there is no natural point of
the room to choose as an origin. Therefore, we shall discuss vector ~-paces and affine spaces
side by side.

Linear combinations of points in an affine space make no sense (there is not even a
definition of scalar multiplication), but we can define an affine combination of the points P
and Q by the real number t. This affine combination is meant to correspond to a point that is
a fraction t of the way from P to Q. (If 1 lies between 0 and I, this is called a convex
combinalion.) We can consider the difference of Q and P, v = Q - P, which we think of as
a vector pointing from P to Q. lf we multiply this by 1, we get a vector that is 1 times as long.
Adding this vector back to P , we get the affine combination of P and Q by 1, which is
therefore

P + t(Q- P).

It is often tempting to rewrite this equation by gathering together the terms involving P,
to get (I - 1)P + tQ; this makes no sense at all, however, since multiplication of points by
scalars is undefined. Rather than outlaw this suggestive notation, however, we simply define
it: If a and pare scalars that sum to I, and P and Q are points in an affine space, we define
(lp + f3Q to be P + {J{Q - P).

Affine combinations of more points are defined similarly: Given n points, P1, ••• , P ••
and n real numbers 11, ••• , r., satisfying t 1 + .. . + 1. = 1, we define the affine
combinationofthePsbytherstobeP1 + t2(P2 - P1) + ... + I~ (P.- P1), which we also
rewrite as t 1P1 + ... + r,P •.

Exercise: Every vector space can be made into an affine space. The points of the affine
space are the vectors in the vector space. The associated vector space is the original vector
space. The difference of points is just defined to be the difference of vectors, and the sum of
a point and a vector is the ordinary vector sum. Show that, in this case, the point we have
defined asaP+ f3Q (where a+ p = I) is actually equal, using the operations in the vector
space, to the vector aP + f3Q.

Answer: (lp + PQ is defined to be P + {3{Q - P). But ordinary vector operations
apply, so this is just P + PQ - PP = (I - p)P + PQ = (lp + PQ.

A.1.1 Equation of a Une in an Affine Space

lf P and Q are two points in an affine space, the set of points of the form (I - t)P + tQ
forms a line passing though P and Q; this form of a line is sometimes called tbe porametric

1162

A.1 Vector Spaces and Affine Spaces 1087

form, because of the parameter 1. The Cartesian plane, whose points are labeled with
coordinates (x, y), is an affine space, and the parametric line between the point (a, b) and
the point (c, d) is therefore given by

L ={((I - 1)a + 1c, (I - l)b + 1d) I 1 is a real number}.

Exercise: Show that the set of all triples of real numbers of the form (a, b, I) also
forms an affine space, with an associated vector space R2

, provided we define the difference
of two points (a, b, I) and (c, d, I) to be the vector (a - c, b- d), and define the sum of a
point and a vector similarly. Show that, using the definition of a parciiiietric line given
previously, the line between the points (I, 5, I) and (2, 4, I) consists entirely of points
whose last coordinate is I .

Answer: The definition of the line is the set of points of the form (I - 1)(I , 5, I) + t(2,
4, I), which in tum is defined to mean (I, 5, I)+ t(l, - I). These are points of the form (I
+ t, 5 - t, I); hence, their last coordinate is I.

A .1 .2 Equation of a Plane in an Affine Space

If P, Q, and Rare three points in an affine space, and they are not colinear (i.e., if R does
not lie on the line containing P and Q) , then the plane defined by P, Q, and R is the set of
points of the form

(I - s) ((I - 1) P + tQ) + sR.

Exercise: Explain why the preceding expression makes geometric sense.

Answer: The expression is an affine combination of two points. The first point is (I -
t)P + tQ; the second i.s R. The first point is an affine combination oftbe points P and Q.
Hence, all terms make sense.

Once again, this description of the plane is called parametric. because of the two
parameters s and 1.

Exercise: The set E', consisting of all triples of real numbers, is an affine space, with
an associated vector space R', whose elements are also ordered triple of real numbers, but
which have componentwise addition and scalar multiplication defined on them. The
difference of two points in E' is defined componentwise as well , as i.s the sum of a point and
a vector. What points lie in the plane that contains the points (1, 0, 4), (2, 3, 6) and
(0, o. 7)?

Answer: The points of the plane are all points of the form (I - s)((I - t)(l , 0, 4) +
1(2, 3, 6)) + s(O, 0, 7). Because all operations are del'\ ned componentwise, we can express
this as the set of aU points of the form ((I - s)(I - 1) + 2(1 - s)t, 3(1 - s)t, 4(1 - s)
(I - t) + 6t + 7s).

1163

1088 Appendix

A.1.3 Subspaces

If we have a vector space, V, and a nonempty subset of V called S, then S is a linear
subspace of V if, whenever v and w are in S, so are v + w and av, for every real number a .
For example, if v is a vector, then the set of all vectors of the form av constitutes a
subspace, because when any 1>\Q scalar multiples of v are added, we get a third, and a scalar
multiple of a scalar multiple of v is another scalar multiple of v. In R3 , the subspaces can be
listed explicitly. They are (I) the origin, (2) any line through the origin, (3) any plane
containing the origin, and (4) R3 itself.

Exercise: Show that any linear subspace of a vector space must contain the 0 vector.

Answer: Let v be any vector inS. Then -I v = -vis also inS, and therefore v + (- v)
is inS. But this is exactly the 0 vector. Merely scaling by 0 is not an adequate answer, since
there is no a priori reason that Ov = 0 in a vector space. As it happens, since (I + (-l))v =
v + (-v) = 0, it is actually true that Ov = v; this statement merely happens not to be one of
the axioms.

An affine subspace i.s a more general object. A nonempty subsetS of a vector space V
is called an affine subspace if the setS' = {u - v I u, v inS} is a linear subspace of V. For
example, any line in the Cartesian plane is an affine subspace. If S is such a line, then S' is
precisely the line parallel to it through the origin.

If Sis an affine subspace of a vector space, then Scan be thought of as an affine srace in
its own right. (Note that it is 110t a vector space. Consider the linex = I in Rz. Both l~] and m are in this affine subspace, but their sum, m. is not.) The affine-space structure is given
as follows: The associated vector space is just S'; the difference of two points inS lies inS'
by definition, and the sum of a point inS with a vector in S' is another point inS.

Important Exercise: Show that S, the set of points of the form (x, y, z, 1), forms an
affine subspace of R~. What is the associated vector space? What is the difference of two
points in this affine subspace?

Answer: The difference of any two points in S has the form (a, b, c, 0), and the set of aU
points of this form is a vector space under the usual operations of addition an multiplication
(in fact, it is essentially " the same" as R3). The associated vector space is the set of
quadruples of the form (a. b. c. 0). The difference of (x, y, z, I) and (x'. y', z' , I) is just
(x- x', y- y', z - z', 0).

The preceding example is important because it is the basis for all the material in
Chapter 5. We can see in the example a clear distinction between paints in the space, which
are the things used to specify positions of objects in a graphics world, and vectors, which
are used to specify displacements or directions from point to point. It is an unfortunate
coincidence that a point of the form (x, y, z, I) can be stored in an array of three reals in
Pascal, and a vector oflhe form (a. b, c, 0) can too. Because of this, many people make the
error of thinking that points and veclors are interchangeable. Nothing could be further from

1164

A.1 Vector Spac:es and Affine Spaces 1089

the truth . Denoting points in both the affine space and the ambient space by columns of
numbers,

further confuses the issue, but it has become standard practice. We refer to the set of points
in R' whose last coordinate is I as the standard affine 3-space in R\ We correspondingly
define the standard affine 2-space in R1 (which we call the standard affine plane). and so on.

Figure A.2 shows the standard affine plane in R1. This picture is far easier to draw than
is the standard affine 3-space in R', and we use it to provide intuition into that more
complex case. The points in the standard affine plane are triples of the form

and the vectors have the form

(We have labeled t.be horizontal plane with the letters "x" and "y," and the vertical axis
with the leiter "h." This choice is meant to indicate the special nature of the third
coordinate.) The set of points of the affine space forms a plane at height I above the (x, y)
plane. The endpoints of the vectors (i.e., differences between points in the affine space) all
lie in the (x, y) plane, if the starting point is placed at the origin (0, 0, 0), but are drawn as
arrows in the affine plane to illustrate their use as differences of points. If we take two
points, P and Q, in the affine space as shown, their sum (as vectors in R~ lies one full unit
above the affine space. This shows geometrically the perils of adding points.

h

y

Fig. A.2 The standard affine plane in R•. embedded as the plane at h = 1. P and Q are
points in the plane, but their sum lies above the plane. The difference of the points A and
8 is a horizontal vector.

1165

1090 Appendix

Figure A.J shows an important operation on this affine space: homogenization. If we
take an arbitrary point

in 3-spacc, and connect it to the origin by a line, it will intersect the affine plane at a single
point.

Exercise: Determine this point of intersection.

An.m~r: The line from

to the origin consists of all points of the form

We want to find the point whose third coordinate is I . This point will be located precisely
where ath = I ; that is, where at = II h. The coordinates of this point are therefore

Naturally, this operation fails when h = 0, but this is no surprise, geometrically: A
point in the (x. y) plane is connected to the origin by a line that never intersects the affine
space.

h {x, y. h)

y

Fig. A.3 The homogenization operation in R•. The point (K, y, hi is homogenized to the
point (xlh. y/h. 1).

1166

A.2 Some Standard Constructions in Vector Spaces 1091

A.2 SOME STANDARD CONSTRUCTIONS IN VECTOR SPACES

A.2.1 Unear Dependence and Spans

We have defined the span of a set of vectors as the set of all linear combinations of
those vectors. If we consider the special case of Ra, the span of a single vector (except for 0)
is the line through the origin containing the vector; the span of a pair of vectors (both
nonzero, and neither lying in the span of the other) is a plane through the origin containing
both; the span of three (sufficiently general) vectors is all of Rs.

When one of the unusual cases (i.e., the cases rules out by the parenthetical conditions)
in the preceding paragraph occurs, the vectors involved are said to be linearly dependent (or
simply dependent). Essentially, a set of vectors is linearly dependent if one of them lies in
the span of the rest.

Exercise: Show that the three vectors a = UJ, b = m, and c = [1] are dependent by
showing that b lies in the span of a and c. Show also that c, however, does not lie in the span
of a and b.

Answer: b = 2a + Oc. On the other hand, the span of a and b consists of all vectors of
the form

ta + sb = [;,] + [~:] = (;,: ~] = (r + 2s) [~l
hence, any vector in this span must be a scalar multiple of m. The vector c is not.

The more precise definition of linear dependence is that the vectors v" ... , v. are
linearly dependent if there exist scalars a., ... , a. such that (I) at least one of the a,s is
nonzero, and (2) a 1v1 + ... + a,.v. = 0.

Exercise: Show that, if the vectors v., ... , v. are dependent, then one of them lies in
the span of the others.

Answer: There are scalars a1, ••• , a. such that a 1v1 + ... + a,.v. = 0 and the scalars
are not all zero, since the vectors are dependent. Suppose, by rearranging the order if
necessary, that a1 is nonzero. Then we can solve the preceding equa.tion for v, to get v, =
(l/a1)a2v1 + ... + (lla1)a.v., showing that v1 is in the span of the remaining vectors.

The vectors v1, ••• , v. are said to be linearly independent (or just independent) if they
are not dependent. This definition is troublesome, because it requires verifying a negative
statement. Later, we shall see that, at least for vectors in R•, we can restate it in a positive
form: A set of vectors is independent if and only if a certain number (the determinant of a
matrix) is nonzero.

We can define dependence and span for affine spaces as well. The span of a set of points
P1, ••• , P. in an affine space can be defined in several ways. It is the set of all affine
combinations of points in the set. We can also describe it by considering the vectors

1167

1092 Appendix

h

~- Span of u and v

Affine span of P and Q

y

Fig. A.4 The relation between the vector space span of the vectors u and v in R3,

whose endpoints a re the points P and Q in the affine plane, and the affine span of P and
Q.

P2 - P1, P3 - P1 •• •• , P. - P1 in the associated vector space, taking the span of these
vectors, S, and then defining the affine span to be all pointS of the fonn P1 + v, where vis in
s.

Just as for vector spaces, a collection of pointS in an affine space is said to be dependent
if any one of them lies in the (affine) span of the others. It is independent if it is not
dependent. ·

Consider again the special case of tbe standard affine plane consisting of pointS of the
form

in R3. If we rake two points in this affine space, we can fonn their affine span, which will be
the line containing them. We can also form their span in a different way, by considering
them as vectors in R3 and forming the vector-space span. Figure A.4 shows the relationship
between these two spans-the affine span is the intersection of the vector-space span (a
plane through the origin) with the affine space.

A .2 .2 Coordinates. Coordinate Systems. and Bases

We can describe some large setS in a vector space using a compact notation, if we use the
notion of spans. For example, we have described lines and planes as the spans of one and
two vectors, respectively. We could describe a line by choosing two vectors that both lie in
it, and saying it is the span of the two vectors, but that would be redundant-each of the
two vectors would already be in the span of the other, in general.

A minimal spanning set for a vector subspace (or for an entire space) is called a basis.
Minimal means the following: Any smaller set of vectors has a smaller span. Thus, in our
previous example, the two vectors that spanned the line were not minimal, because one
could be deleted and the remaining one would still span the line.

1168

A.2 Some Stenderd Constructions in Vector Specn 1093

Exercise: Show that a basis of a subspace of a vector space is always linearly
independent.

An.tW!1r: Let v1, ••• , v. be a basis for the subspace S, and suppose that v1, ••• , v. is
dependent. Then (by renumbering if necessary), we can find scalars a2, ••• , a. such that v1

= a2v2 + ... + a.v •. A typical element of the span of v1, ••• , v. is p ,v, + ... + P.v •.
This expression can be rewritten as P1(<rtv1 + ... + a.v.) + /Jtv1 + ... + P.v •. This can
be rearranged into a linear combination of the vectors v2, ••• , v •. Thus, any vector in the
span of v1, ••• , v. is also in the span of v1, •.• , v •• so v1, ••• , v. is not a minimal
spanning set. Hence, the assumption that v1, ••• , v. was dependent must have been false.

Suppose we have a basis for a vector space. Then, every vector v in the space can be
written as a linear combination a 1v1 + ... + a.v • . Suppose we write v as a dijferemlinear
combination, v = p,v, + ... + P.v •. Then, by subtraction, we get 0 = (p, - a 1)v1

+ ... + <P. - a.)v •. Since we assumed that the two linear combinations were different,
some a, must differ from the corresponding P;. By renumbering, we can assume that a1 "I
P1• But then, just as before, we can solve for v1 in terms of the remaining vectors, so the set
v., ... , v. could not have been a minimal spanning set. Thus, every vector in a vector
space can be written uniquely as a linear combination of the vectors in a basis.

If we have a basis for a vector space, 8 = {v1, ••• , vJ , and a vector v in the vector
space, we have just shown that there is a unique set of scalars a1, ••• , a. such that v = a 1v1

+ ... + a .v •. This set of scalars can be thought of as an element of R•, and this element
of R•,

is called the coordinate \'ector of v with respect to the basis v,, ... , '•·

Exercise: In R2, there is a standard basis, E = { e1, e1, eJ, where

e, = [~]. e2 = [!].
What are the coordinates of the vector

v = [~]
with respect to this basis?

1169

1094 Appendix

Answer: They are

because v = 3e1 + 4et + 2es.
The corresponding definition in an affine space is quite similar. A set of independent

points in an affine space, whose affine span is the entire affine space, is called a coordinate
system. lf P 1, ••• , P. is a coordinate system, then every point of the affine space can be
written uniquely as an affine combination of P 1, ••• , P.; the coefficients are called the
affine coordi11ates of the poilU with respect to the coordinate system P 1, • • • , P • .

Exercise: Show that, if P1, ••• , P. is a coordinate system for an affine space, then P2
- Pi, ... , P. - Pi is a basis for the associated vector space.

Answer: Let v be a vector in the associated vector space, and let Q = Pi + v. Then Q
can be written as an affine combination of Pi , .. . , P •. So there are scalars a 1, ••• , a.
such that a 1 + ... + a. = I and Q = a 1P1 + cxt!'t + ... + a. P. = P1 + atf..P2 - P 1)

+ ... + a.<P. - P1) . But this implies that v = atf..P2 - P1) + ... + a.(P. - Pi).
Hence, the set P2 - P , P. - P1 spans the associated vector space. lf the set were
dependent, the corresponding set of points P1, •• • , P. in the affine space would be
dependent. Hence, it must both span and be independent , so it is a basis.

A.3 DOT PRODUCTS AND DISTANCES

The vector spaces and affine spaces we have discussed so far are purely algebraic objects.
No metric notions-such as distance and angle measure-have been mentioned. But the
world we inhabit, and the world in which we do graphics, both do have notions of distance
and angle measure. In this section, we discuss the dot (or inner) product on R", and
examine bow it can be used to measure distances and angles. A critical feature of distance
measure and angle measure is that they make sense for vectors, not points: To measure the
distance between points in an affine space, we take the difference vector and measure its
length.

A.3.1 The Dot Product in R"

Given two vectors
Y1

and

x. Y.

in R•, we define their inner product or dot product to be XI)'1 + ... + X.Yo· The dot
product of vectors v and w is generally denoted by v · w.

1170

A.3 1085

The distance from the point (x, y) in the plane to the origin (0, 0) is V x' + y.
ln general, the distance from the point (x~o ... , x,.) to the origin in n·space is
V 4 + . . . + _x!. lf we let v be the vector

• •

x.

we can see that this is just vv-:v. This is our definition of the length of a vector in R•. We
denote this tength by 11 v 11. The distance between 1.\\U points in the standard affine n·space is
defined similarly: The distance between P and Q is the length of the vector Q - P.

Exercise: The points

and

both lie in the standard affine plane, as well as in R'. What is the distance from each of
them to the origin in R'? What is the distance between them? What is the distance from
each to the point

[~]
in the standard affine plane? What is the dot product of the two vectors

[~] and

Answt'r: The distances to the origin are v'IT and VJO, respectively. The distance
between the points is Vs. The distances to

[~]
are v'lo and V29 respectively. Tbe dot product is 18. Note that asking for the dot products
of the two points in the affine space makes no sense-dot products are defined only for
vectors.

A.3 .2 Properties of the Dot Product

The dot product has several nice properties. First , it is symmetric: v · w = w · v. Second, it
is nondegeneraJe: v · v "" 0 only when v "' 0. Third , it is bilinear: v · (u + aw) = " · u +
a(v · w).

1171

1096 Appendix

The dot product can be used to generate vectors whose length is 1 (this is called
normalizing a vector.) To normalize a vector, v, we simply compute v' = v I II v 11. The
resulting vector has length I, and is called a unit vector.

Exercise: What is the length of the vector

What do we get if we normalize this vector? Consider the points

p = [:] and Q=m
in the standard affine plane. What is the unit vector pointing in the direction from P to Q?

Answers: The length of the vector is 5. The normalized vector is

[
4/5]
3~5 .

The unit direction vector from P to Q is

Note that the last component is 0.

[I /~
2/~J'

Dot products can also be used to measure angles (or, from a mathematician 's point of
view, to define angles). The angle between the vectors v and w is

cos-{11 vvll ·llww II).
Note that, if v and w are unit vectors, then the division is unnecessary.

If we have a unit vector v and another vector w, and we project w perpendicularly onto
v, as shown in Fig. A.S, and call the result u , th.en the length ofu should be the length of w
multiplied by cos(8), where (J is the angle between v and w. That is to say,

II u II = II w II cos (B)

=II w II (II ,'ll ·llww II)
= v . w,

since the length of v is I. Th.is gives us a new interpretation of the dot product: The dot
product of v and w is the length of the projeccion of w onto v, provided v is a unit vector.

1172

A.3 Dot Products •nd DisUncet 1097

w

v

Fig. A.6 The projection of w onto the unit vector v is a vector u, whose length is II w II
times the cosine of the angle between v and w .

Exercise: Show that, if 'I' and w are unit vectors, then projection of v onto w and the
projection of w onto v have the same length.

AII.IWtr: Both of these are represented by 'I' • w, so they are the same.

Since cos 8 = 0 precisely when 8 = 90", 270", and soon, we can use the dot product of
vectors to determine when they are perpendicular. Two vectors 'I' and w are perpendicular
exactly when 'I' • w = 0.

A.3.3 Applications of the Dot Product

Since dot products can be used to measure lengths, we can generate some simple equations
using them. For example, if we haven point, P, in an affine plane, the equation for a circle
with center P and radius r is easy to write. We simply want a.ll points Q whose distance from
P is exactly r. Thus, the equation is

II Q - P II = r .

We can rewrite this as

V (Q - P) · (Q - P) = r,

or as

(Q - P) · (Q - P) = r1•

In the standard affine 3-space, the equation of the plane passing through a point P and
perpendicular to a vector v is also easy to express. A point Q on this plane is characterized
by having the difference Q - P be perpendicular to the vector v. Hence, the equation is just

(Q- P) · v = 0.

Exercise: Suppose P and Q are points of the standard affine plane; P is the point

[f]

1173

1098 Appendix

and Q is the indeterminate

What is the equation, in coordinates, for the circle of radius r about P?

Ans~r: It is (x- a 'I + (y- b'/ = r1
, which is the familiar formula from high-school

algebra.

Exercise: If P is the point

[i]
in the standard alii ne 3-space, and v is the vectO£

[il
what is the equation of the plane perpendicular to v and passing through P?

A~r: If we let the indeterminate point be

then the equation becomes 2(x - I) + 2(y - 2) + 3(z - 3) = 0.
In general , the equation for a plane through the point

[~]
and normal to the vector

[~]
is A(x - xt) + B(y - yJ + C(z - zJ = 0 . This can be rewritten as Ax + By + Cz = Aft +

1174

A.3 Dot Products and Distanc. 1099

By0 + Cz0• lf we are working in R1 (instead of the standard affine 3-space), this equation
just says that the dot product of

[~]
with

must be the same as the dot product of

[~]
with

The constant term (on the right side of the equation above) is precisely this second dot
product. l f

[~]
is a unit vector, then this dot product measures the length of the projection of

onto the unit vector, and hence tells us how far the plane is from the origin in R1.

In the equation for a plane, we are characterizing the plane by specifying ics normal
vector. This is dangerous in one sense, since normal vectors and ordinary vectors are
different in a quite subtle manner, as we shall discuss later.

A .3.4 Distance Formulae

If we define a plane through P, perpendicular to v, by the equation (Q - P) • v s 0, we can
ask how far a point R is from the plane. One way to determine this distance is to compute
the projection of R - Ponto the vector v (see Fig. A.6). The length of this projected vector
is just the distance from R to the plane. But this length is also the dot product of R - P and
the vector v, divided by the length ofv. Thus, if we consider a plane defined by the equation

1175

1100 Appendix

Fig. A.6 We can measure the distance from the point R to the plane by projecting R
onto the normal to the plane.

Ax + By + Cz + D = 0, the distance from a point (r, s, t) to the plane is exactly (Ar + Bs +
Ct +D) 1 VA2 + 82 + CZ. Note that the square root in the denominator is just the length of
the normal vector to the plane, so if the plane was defined using a unit normal vector, no
division is necessary.

Exercise: Suppose we are given a Hne in an affine space in parametric form, as the set
of all points P(t) = P0 + rv, and a point R not on the line. What is the distance from R to the
line?

Ans~~r: The distance from a point to a line is defined as the minimum of all distances
from the point to points on the line. This minimum will occur when the line from R to the
point on the line is perpendicular to the Hne-that is , when (R - P(t)) · v = 0. Expanding
this, we get

(R - P0 - rv) · v = 0,

(R- P0) • v = rv · v,

t =(R-Po) · v .
v · v

So this is the value oft at which the distance is minimized. Plugging this into the formula
for points on the line, we find that the point closest to R is exactly

p + (R - P0) • v v.
0 v · v

We obtain the distance from R to this point by subtracting the point from R (to get a
vector) and then computing its length. The formula fails when v = 0; in this case, however,
P(t) = P0 + rv does not define a line.

A.3 .5 Intersection Formulae

Suppose that, in the standard affine plane, we have a circle, (X - P) · (X - P) = r 2, and a
line, S(t) = Q + rv. What points lie on the intersection of these two? Well , such a point
must be S(t) for some value of 1, and it must satisfy the equation of the circle, so we must
solve

(S(t) - P) · (S(t) - P) = r2
•

1176

A.3 Dot Products and Distances 1101

Algebraic manipulations reduce this expression to

r (v · v) + t (2 v · (Q - P)) + ((Q - P) · (Q - P) - r 2) = 0,

which is a quadratic equation in t. Solving this with the quadratic fonnula gives the possible
values for t, which can then be used in the fonnula for S(t) to determine the actual points of
intersection. Notice that this in no way depends on the number of coordinates. If we take
the set of points in the standard affine 3-space defined by (X - P) · (X- P) = r 2, whicb is a
sphere, the same solution gives us the two points of intersection of a line with the sphere.

Exercise: Detennine the intersections of the line through the point

(in the standard affine plane) in the direction

[!]
with the circle of radius 5 centered at

[:].
Answer: Let 11 and 12 be (-2 ::!: 2V3i)t5. The intersections occur at

fori = I, 2.

Suppose we are given a I inc and a plane in the standard affine 3-space. How can we
determine their intersection? If the plane is given in point-nonnal fonn , as (X- P) · v = 0,
and the line is given in parametric fonn, as Q(l) = Q + rw, we can simply replace X by Q(1)
and solve:

(Q + rw - P) · v = 0.

Solving this equation for 1 gives

1
= (P- Q) · v

w . v '

and the intersection point is at

(P- Q) · v Q + w. w . v

1177

1102 Appendix

This technique for finding intersections is quite general. lf we have a surface in the
standard affine 3-space defined by the equation F(x, y, z, l) = 0, we can substitute the point
P + t v for the argument (x, y, z, 1), which yields an equation in the single variable 1.

Solving for t gives the parametric value for the point on the ray at the intersection poin1.
Substituting this t value into P + t v gives the actual point of intersection.

In general , an implicitly defined surface (i.e., a surface defined by an equation of the
form F(x, y, z. I) = 0 in the standard affine 3-space) bas a surface normal vector at the
point (x, y, z, l); the coordinates of tbis vector are given by the partial derivatives ofF at the
poinl. (The corresponding situation in the plane was discussed in the scan-conversion of
ellipses in Chapter 3.) The normal vector is thus

iJF
iJX (X, y, Z, I)

aF
ily (x, y, z. I)

iJF
ilz (x, y, z, I)

0

A.3 .6 Orthonormal Bases

Two vectors, u and v, are said to be orthogonaL if u · v = 0. If B = {b1, ••• , b.} is a basis
for a vector space, and each b1 is a unit vector, and every two vectors in the basis are
orthogonal , the basis is said to be an ortltonormol basis. We can express these conditions
more simply by saying that B is an orthonormal basis if b1 • b1 = 0 unless i = j, in which
case b; · b1 = I .

Orthonormal bases have a number of convenient properties that other bases lack. For
example, if B is an orthonormal basis, and we wish to write a vector v as a linear
combination of the vectors in B, v = a 1b1 + ... + a. b., it is easy to find the value of a;:
It is just v · b1•

Exercise: Show that in R•, the standard basis E = {e1, ••• , eJ, (where e1 has aU
entries 0 except the ith, which is I), is an orthonormal basis. Show that the vectors

[
ltv's] and
2/Vs [-2/Vs]

iNs

form an orthonormal basis for R2. What are the coordinates of the vector [~] in this basis?

Answer: The first two parts are direct computations. The coordinates are 11/Vs and
-21Ys.

Because of this convenient property, it is often desirable to convert a basis into an
orthonormal basis. This is done with the Gram-schmidt process. The idea of this process is
to take each vector in tum, to make it orthogonal to aU the vectors C{)osidered so far. and

1178

A.4

then to nonnalize it . If we slart with a basis Vu v" v1, the prooess is this:

Let v: = v1 (no vectors have been considered so far, so this is trivial).

Let w, = v: I II v: II·
Let v; = v2 - (v2 • w1)w1 (this is orthogonal to w1) .

Let w2 = v; I II v; 11.
Let v; = v1 - (v1 • w 1)w1 - (v1 • wr)w2•

Let w, = v; I II v; n.

1103

The vectors w1, w2, and w1 are an onhononnal basis. The prooess for a larger number
of vectors is similar. The last step, for the ease of three vectors , ean be simplified; see
Exercise A.7 .

A .4 MATRICES

A matrix is a rectangular array of numbers . Its elements are doubly indexed, and by
convention the first index indicates the row and the second indicates the column.
Mathematical convention dictates that the indices slart at I: certain programming languages
use indices that start at 0 . We leave it to programmers in those languages to shift all indices
by 1. Thus, if A is a matrix , then a1.% refers to the element in the third row, second column.
When symbolic indices are used , as in av• the comma between them is omitted.

Elements of R•, which we have been writing in the form

[J.
can be considered to be n X I matrices.

A.4 .1 Matrix Multiplication

Matrices are multiplied according to the following rule: If A is an n X k matrix with ent.ries
av• and B is a k X p matrix with entries bu• then AB is defined, and is ann x p matrix with
entries c.,. where cii = t a,.b.,. If we think of the columns of B as individual vectors ,
8 1, • • • , B, . and the rows of A as vectors A1, • • • , At as well (but rotated 9<f to be
horizontal), then we see that c11 is just A, · 81. The usual properties of multiplication hold,
except that matrix multiplication is not commutative: AB is, in general , different from BA .
But multiplication distributes over addition: A(B + C) = AB + AC, and there is an
identity element for multiplication- namely, the identity matrix, I , which is a square
matrix with all entries 0 except for Is on the diagonal (i.e. , the entries are li;;. where {jiJ = 0
unless i = j , and {jii = 1).

A.4.2 Determinants

The detenninant of a square matrix is a single number that tells us a great deal about the
matrix. The columns of the matrix are linearly independent if and only if the detenninant of

1179

1104 Appendix

the matrix is nonzero. Every n x 11 matrix represents a IIaiiSformation from R• to R•, and
the determinant of the matrix tells us the volume change induced by this transformation
(i.e., it tells us how much the unit cube is expanded or contracted by the transformation).

Computing the determinant is somewhat complicated, because the definition is
recursive. The determinant of the 2 X 2 matrix [b d] is just ad- be. The determinant of an
n x 11 matrix is defined in terms of determinants of smaller matrices. Lf we let Au denote the
determinant of the (n - I) x (11 - I) matrix gotten by deleting the first row and ith column
from the 11 x n matrix A, then the determinant of A is defined by

•
det A = L (- 1~+ 1 a~ A.,. ·-·

An alternate way to compute the determinant is to use GatlSsiall elimi110tio11 . Gaussian
elimination works by sequences of row operatio11s. There are three types of row operations
on a matrix: (I) exchanging any two rows, (2) multiplying a row by a nonzero scalar, and (3)
adding a multiple of row i to row j (row i is left unchanged, and row j is replaced with
(row;) + a(row i)). The algorithm for reducing an 11 x 11 matrix A by Gaussian elimination
is simple: Arrange (by exchanging rows and scaling) that a11 = I. For each j f: I, subtract
a11 times row I from row j, so that a11 then becomes zero. Now, by exchanging the second
row with subsequent rows (if necessary) and scaling, arrange thai ~Lt:z = I. For eachj f: 2,
subtract a1l times row 2 from row j. Continue this process until the matrix becomes the
identity matrix.

In the course of this process, it may be impossible to make a11 = I for some i (this
happens when the entire column i is zero, for example); in this case, the determinant is
zero. Otherwise, the detenninant is computed by taking the multiplicative inverse of the
product of all the scalars used in type-2 row operations in Gaussian elimination, and then
multiplying the result by (- It, where k is the number of row exch.anges done during
Gaussian elimination.

One special application of the determinant works in R1: the cross-product. The
cross-product of two vectors

and
w = [::]

is computed by taking the determinant of the matrix,

[~. ~2 ~] '
WI Wt W3

where the letters i, j , and k are treated as symbolic variable.~. The result is then a linear
combination of the variables i, j , and k; at this point, the variables are replaced with the
vectors e1, ~. and~ respectively. The result is the vector

1180

A.4 Matrices 1105

which is denoted by v x w. It has the property that it is perpendicular to the plane defined
by v and w, and its length is the product llvllllwlllsin oj, where 8 is the angle between v and
w. It also has the property that a matrix whose columns are v, w, and v x w will always
have nonnegative determinant.

This last characteristic is an interesting one, and can be used to define oriellfation. Two
bases for R• are said to bave the same orientation if, when the vectors in each basis are used
to form the columns of a matrix, the two resulting matrices have determinants of the same
sign. A basis is said to be positil-tly oriented if it bas the same orientation as the standard
basis; it is negatively oriented otherwise.

Exercise: Show that the basis {Ct. e1, Ct· e4} is a negatively oriented basis for R' .

AIISwer: The determinant of the corresponding matrix is -I.

Exercise: Suppose two planes are defined by the equations (X - P) · v = 0 and
(X - Q) · w = 0. What is the direction vector for tbe line of intersection of the two planes?

AnN-tr: Since the line of intersection lies in each plane, its direction vector must be
orthogonal to the normal vectors to each plane. One such vector is tbe cross product v x w.
lf v and w are parallel, then the planes either are identical or do not intersect at all; so, in the
case where v x w = 0, the problem is degenerate anyway.

A.4 .3 Matrix Transpose

Ann x k matrix can be flipped along its diagonal (upper left to lower right) to make a k x "
matrix. If the first matrix has entries au (i = I, ... , n; j = I, ... , k), then the resulting
matrix has entries b9 (i = I, ... , k; j = I, ... , fl), with bu = a". This new matrix is
called the transpose of the original matrix. The transpose of A is written A 1• lf "''e consider
a vector in R• as ann x I matrix, then its transpose is a I X n matrix (sometimes called a
row vector). Using the transpose, we can give a new description of the dot product in R•;
namely, u · v = u•v.

Exerc.ise: Compute one example indicating, and then prove in general, that if A is " x
k and 8 is k X p , then (AB)' = 8 'A'.

Answer: We leave this problem to you.

A.4 .4 M atrix Inverse

Matrix multiplication differs from ordinary multiplication in another way: A matrix may
not have a multiplicative inverse. In fact, inverses are defined only for square matrices, and
not even all of these bave inverses. Exactly those square matrices whose determinants are
nonzero have inverses.

If A and 8 are" x " matrices, and AB = 8 A = I, where I is then x n identity
matrix, then 8 is said to be the inverse of A, and is written A - •. For n x n matrices with
real number entries, it suffices to show that either AB = I or 8 A = 1-if either is true, the
other is as well.

1181

1106 Appendix

If .. ve are given an n x n matrix, there are two basic ways to find its inverse: Gaussian
elimination and Cramer's rule. Gaussian elimination is the preferred method for anything
larger than 3 X 3.

The inverse of a matrix can be computed using Gaussian elimination by writing down
both A and the identity matrix. As you perform row operations on A to reduce it to the
identity. you perform the same row operations on the identity. When A has become the
idemity matrix, the identity matrix will bave become A - 1

• lf, during Gaussian elimination,
some diagonal entry cannot be made I, then, as we noted, the determinant is 0, and the
inverse does not exist. This technique can be improved in numerous ways. A good
reference, including working programs for implementation, is [PRESS88].

A different method for computing inve.rses is called Cramer's rule. It builds the inverse
explicitly, but at the cost of computing many determinants. Here is how it works.

To compute the inverse of an n x n matrix A with entries au, we build a new matrix,
A', with entries Au. To compute A9, we delete rows i and j from the matrix A, and then
compute the determinant of the resulting (11 - I) X (n - I) matrix. Multiplying this
determinant by (- I i+ i gives the valuefor Au. Once A' is computed, the inverse of A is just
(I I det A) (A')'.

Because of the large number of determinants involved, Cramer's rule is impractical for
large matrices. For the 2 X 2 case, however, it is quite useful. It tells us that

[
a b]-1

I [d -b]
c d = ad - be -c a ·

One last special case for matrix inversion deserves mention. Suppose that U is a matrix
whose columns form an orthonormal basis. This means that u1 • u1 = SiJ for all i and j.
Consider what happens when we compute U'U. We have noted that the ij entry of the
product is the dot product of the ith row of the first factor and the jtb column of the second
factor. But these are just u1 and u1; hence, their dot product is Sii. This tells us that U'U = I ,
and hence that u-1 = U'. Note, by the way, that this means that the columns of U' also
form an orthonormal basis!

A .5 LINEAR AND AFFINE TRANSFORMATIONS

A linear transformation is a map from one vector space to another that preserves linear
combinations. More precisely, it is a map T with the property that T(a 1v1 + ~v2 + ... +
a,v.) = a 1T(v1) + ~ T (v2) + ... + a, T(v.). Linear transformations are the ones we
describe in great detail in Chapter 5.

An affille transformation is a map from one affine space to another that preserves affine
combinations. More precisely, it is a map T with the property that T(P + a(Q - P)) =
T(P) + a(T(Q) - T(P)). T extends naturally to a map on the associated vector space. We
define T(v) to be T(P)- T(Q), where P and Q are any two points with Q- P = v. Affine
transformations include translations, rotations, scales, and shearing transformations. Note
that the transformations defined in Chapter 5 are both affine and linear transformations.
They are linear transformations from R' to R', but they take the standard affine 3-space (the
points of R' whose last coordinate is I) to itself, so that they also describe affine
transformations on this affine space.

1182

A.S Unear and Affine Transformations 1107

A .5.1 The Matrix for a Transformation on R•

Suppose we haven independent vectors, b1, ••• , b. in R", and we wish to find a linear
transformation T from them to the vectors a" . . . , a •. (We have chosen this odd naming
convention because the b.s, being independent, form a basis.) How can we do this? The
simplest way to express a linear transformation on R" is to give a matrix for it. That is to
say, we will find ann X n matrix A such that T(v) = Av for all v in R•.

We begin by solving a simpler problem. We find a matrix for the transformation that
takes the standard basis vectors, e1, ••• , e. to an arbitrary set of vectors v1, •• • , v •.

Suppose we take any n x n matrix Q with entries q;j and multiply it by ei. If we let r =
Qej. then r ; = qii. That is, multiplying a matrix by the jth standard basis vector extracts the
jth column of the matrix. We can reverse this observation to find the matrix that transforms
the standard basis vectors into v., . .. , v.: We just use the vectors v1, ••• , v. as the
columns of the matrix.

Exercise: Find a matrix taking the standard basis of R2 to the vectors (i] and nJ .
Answer: [i ~] .
To solve the original problem of this section, finding a transformation taking the b.s to

the a.s, we apply the solution for the simpler problem twice. First, we find a matrix B
(whose columns are the b.s) that takes the standard basis to the b1s; then, we find a matrix A
that takes the standard basis to the a.s. The matrix B- 1 will do just the opposite of B, and
take the b.s to the standard basis, so the matrix AB- 1 is the solution to the original problem.
It is a matrix taking .the b.s to the a.s.

Exercise: Find a matrix transformation taking [i) and m to (D and m. respectively.

Answer: The matrix taking the standard basis to the first pair of vectors is ~ ;J; the
matrix taking the standard basis to the second pair is [: ~] . The solution is therefore T(v)
= Qv, where

Q = [! 3] [1 2]-l = [-1 I]
2 2 5 J 0 .

A.5 .2 Transformations of Points and Normal Vectors

When we apply a matrix linear transformation to the points of the standard affine n-space,
how do the differences between points (i.e., the vectors of the affine space) transform?
Suppose our transformation is defined by T(P) = AP, and further suppose that this
transformation sends the affine plane to itself (i.e., that there is no homogenization required
after the transformation - this is equivalent to saying the last row of A is all Os, except the
bottom-right entry, which is a 1). Then, T (Q - P) = A (Q - P). But Q- P has a 0 in its
last component (since both P and Q have a I there). Hence, the last column of A has no
effect in the result of the transformation. We therefore define A' to be the same as A, but
with its last column replaced by al.l Os except the last entry, which we make I. This matrix,
A', can be used to transform vectors in the affine space.

1183

•
1108 Appendix

We mentioned previously that the definition of a plane by its normal vector was
dangerous, and here we see why. Suppose we have a plane whose points satisfy (X -P) ·
v = 0. When we transform this plane by A, we will get a new plane containing AP, so it
will have an equation of the form (Y - AP) · w = 0 for some vector w. We want those
points of the form AX, where X is on the original plane, to satisfy this second equation. So
we want to find a vector w with the property that (AX - A P) · w = 0 whenever (X - P) ·
v = 0. Expressed differently, we want

(AX - AP)' w = 0 whenever (X- P) · v = 0.

By distributing the transpose operator, we see this reduces to

(X- P) · A'w = 0 whenever (X- P) · v = 0.

This equation will certainly hold if A1w = v- that is, if w = (A1)-1v. Thus, (A1)-1v is
the normal vector to the transformed plane. ln the event that A is an orthogonal matrix (as it
is, e.g., in the case of rotations), we know that (A 'r 1 = A, so the normal vector transforms
in the same way as the point (but with no translation, because the last component of the
vector is 0). But this is not true for general matrices. The computation of the inverse
transpose of A can be somewhat simplified by computing instead the inverse transpose of A',
whose effect on vectors is the same as that of A. Since A' is effectively a smaller matrix (its
last row and column are the same as those of the identity matriJt) , this is often much easier.2

Computing the inverse of a matrix may be difficult-and, if you use Cramer's rule, it
involves dividing by the determinant. Since the normal vector, after being transformed, will
probably no longer be a unit vector and will need to be normalized, leaving out this division
does no harm. Thus, people sometimes use the matrix of cofactors for transforming
normals. Entry ij of this matrix is (- I)1 + i times the determinant of the matrix resulting
from deleting row i and column j from A.

A.6 EIGENVALUES AND EIGENVECTORS

An eigenvector of a transformation T is a vector v such that T(v) is a scalar multiple of v. If
T(v) = Av, then A is called the eigenvalue associated with v. The theoretical method for
finding eigenvalues (at least for a matrix transformation T(v) = A v) is to let 8 = A - xl ,
where I is the identity matrix, and x is an indeterminate. The determinant of B is then a
polynomial in x, p(x). The roots of p are precisely the eigenvalues. If A is one such
eigenvalue, and A is a real number, then T(v) = Av must be true for some vector v. By
rearranging, we get that Av - Av = 0, or A - Al)v = 0. Thus, finding all solutions to this
last equation gives us all the eigenvectors corresponding to A.

Although this approach is theoretically feasible, in practice it is not very useful,
especially for large matrices. Instead, numerical methods based on iterating the transforma-

' Differential geometers refer to vectors such as the normal vector as covecrors, since these vectors are
defined by a dot-product relation with ordinary (or tangem) vectors. The set of all covectors is
sometimes called the cotangent space, but this term has no relation to trigonometric functions. More
complex objects , called tensors, can be made up from mixtures of tangent and cotangent vectors, and
the rules for transforming them are correspondingly complex.

1184

A.7 Newton-Raphson Iteration for Root Finding 1109

Lion are used. Chief among these is Gauss-Seidel iteration; for details of this technique, see
[PRES88].

We conclude this section with a particularly interesting pair of exercises.

Exercise: Show that eigenvectors of a symmetric matrix (one for which M' = M)
corresponding to distinct eigenvalues are always orthogonal. Show that for any square
matrix A, the matrix A'A is symmetric.

Answer: Suppose Mv = Av, and Mu = ~u. Let us compute u'Mv in two different
ways:

u'Mv = u'Av .. A u'v = A (u · v).

But

u1Mv = (u'M') v = (Mu)'v = ~ u'v = ~ (u · v).

Thus, A (u · v) = ~ (u · v); hence, (A - p.)(u · v) = 0. Since A and p. are distinct
eigenvalues, we know that (A - p.) -1 0. Hence, (u · v) = 0.

The transpose of (A'A) is just A'(A1)
1
; but the transpose of the transpose is the original

matrix, so result is just A1A. Hence, A'A is symmetric.

Exercise: Suppose that T(x) = Ax is a linear transformat.ion on R2, and that we apply
it to all points of the unit circle. The resulting set of points forms an ellipse whose center is
the origin. Show that squares of the lengths of the major and minor axes of the ellipse have
lengths equal to the maximum and minimum singular values of A, where a singular value of
A is defined to be an eigenvalue of A1A.

Answer. The points on the transformed circle are of the form Ax, where x · x = I. The
square of the distance from such a transformed point to the origin is just Ax • Ax, or,
rewriting, x'(A'A)x. Let u and v be the two unit eigenvectors of A'A, with corresponding
eigenvalues A and p.. Because they are orthogonal , they form a basis for R2• We can
therefore write x as a I inear combination of them: x = cos fJ u + sin fJ v. lf we now compute
x1(A'A)x, we get

x'(A'A)x = (cos 8 u' + sin 8 'I") (cos 8 A'Au + sin 8 A'Av)

= (cos 8 u' + sin 8 v') (cos 8 Au + sin 8 p.v)

= A cos2 8 + p. sin2 fJ.

This function has its extreme values at fJ = multiples of90"- that is, when x = ± u or
± v. The values at those points are just A and ~·

A.7 NEWTON- RAPHSON ITERATION FOR ROOT FINDING

lf we have a continuous function./, from the reals to the reals , and we know thatf(a) > 0
and/(b) < 0, then there must be a root of/between a and b. One way to find the root is
bisection: We evaluate f at (a + b)l2; if it is positive, we search for a root in the interval
between (a + b)/2 and b; if it is negative, we search for a root between a and (a + b)/2; if it

1185

1110 Appendix

is zero, we have found a 1'00(. Iterating this until the value of/is very near zero will give a
good approximation of a root of f.

We can improve this slightly by taking the line between (a, /(a)) and (b. /(b)), seeing
where it crosses the x axis, and using this new point as the subdivision point.

Iff happens to be differentiable, we can do somewhat better than this. We can evaluate/
at a point, and evaluate its derivative there as well. Using these, we can compute the
equation of the tangent line to fat the point. If the graph off is close enough to the graph of
this tangent line, then the place where the tangent line crosses the x axis will be a good
approximation of a root of/(see Fig. A. 7). If it is nOt a good enough approximation, we can
use it as a starting point and iterate the p10cess (see Fig. A.8).

If the initial guess is Xo· then the equation of the tangent line is

Y - /(Xo) = /' (Xo) (x - Xo).

This crosses the x axis when y • 0, which happens at the point

In general, we can find the next point, x,.1, from the point x; by a corresponding
formula, and repeat the process until a 1'00(is found . This process is called Newton's
method or Newton-Raphson iteralion.

Exercise: Apply Newton's method to the functionf(x) = r - 2, starting at x = I.

AIISWt'r: Xo = I , x1 = 1.5, xt = 1.4166, xt = 1.4142 ... , and so on.

The method can fail by cycling. For example, it is possible that xt = Xo· and then the
process will repeat itself forever without getting to a better approximation. For example, the
function f(x) = r - 5x has a root at X = 0, but starting this iterative technique at Xo = I wiU
never find that root, because the subsequent choices will be x1 = - I , xt = I, and so on.

If the function f is sufficiently nice, the method can be guaranteed to succeed. In
panicular, iffhas everywhere positive derivative and negative second derivative, the method
will certainly converge to a root.

Y• f(x)

Fig. A. 7 If the graph of the tangent line to a function is close enough to the graph of the
function, the zero-crossing of the tangent line will be a good approximation to a
zero-crossing of the function graph.

1186

ExerciMs 1111

y • f(X)

Fig. A.S Iteration of the process described in F.g. A . 7.

EXERCISES

A. I Light reflects from a plane (in a simple model) according to the rule, "The angle of incidence is
equal to the angle of reftection." If the normal to the plane is the vector 11, and the ray from the light is
described by the parametric ray P + " • what is the ciirection vector 11 for the reflected ray?

An.rwer: If we express v as a sum of two components-one in the direction of n and one
perpendicular to n- we can easily describe a : It is the same as v. except with the component in the a
direction nepted. The component of • in the D direction is just (Y • D) DIll D 11. so the final result is
that u • (v - (• · D) DIll D II> - (Y • a) D 111 D II ~ • - 2(• • a) DIll D 11. If Dis a unit vector, this is
just Y - 2(• · a) D. {Note that the light ray is the opposite of the ray r. in Chapter 16.)

A.l Find a tranformation from the standard affine plane to itself that leaves h coordinates fixed, but
transfonns (.x. y) coordinates so that, in any constant·h plane, the unit square (0, I 1 x [0, I 1 is sent to
[-I, I] X [- I , 1]. Wbat is wrong with the following purported solution to the problem?

"The space in which we are worting is 30, so we will specify the transformation by saying
where three basis vectors get sent. Clearly,

m
and

[!]
Also,

m
So the matrix must be

goes to

goes to

goes to

[-ll
[-ll
[=:].

[_: -: =:]."
0 0 I

Prutial An.nooo-: The assumption begin made in the purported solution is that the map is a liMfJJ'
map on R'. It is actually an affine map. and includes a llanSiation.

A.J You are given a list of vertices \If 1], v(n] as xyz triples in R'. but with each z coordinate

1187

1112 Appendix

equal to uro, defining a closed polygon in the plane (the polygon 's edges are v1v2• v2vt. ... , v • • 1v •.
v. v,). You wish to define a polyhedron that consisls of this object, extruded along the z axis from z •
0 to z • I. Assume a right-hand coordinate system.

a. How would you check that the polygon v(1), .. . , v(n) is counterclockwise (i.e .. as you
traverse lhe edges of the polygon , its interior is to your left)?

b. Describe an algorithm for generating the polygons of the extruded object. For the "sides,"
you cab eilher use rectangulaz faces or divide !hem into triangles . The descriptions of these
polygons should be indices into a list of \'Crtices.

c. Each of the faces gi\ICO in pan (b) consists of a list of venices. Suppose that you walk around
the boundary of a polygon, and the polygon interior is to your right. Did you choose your
order for the -uces so !hat the exterior of the extruded polyhedron is always o-.-erhead? If
not, modify your answer to part (b).

d. Each edge oflhe Cll.truded polyhedron is pan of two faces, so during the traversa.ls in part (c).
each edge is traversed twice. Are the two traversals always in the same direction? Always in
opposite directions? Or is there no particulaz pattern?

A.4 Given that P = (XQ, Y•) and Q • (x1• y1) are points in the plane, show that the equation of the line
between them is (y1 - y,) x - (x1 - xt) y • Y.X. - xv'•· This formulation is especially nice, because it
provides a general form for Jines in any direction, including venical lines.

A.S Gi\'CII that Y = ~) is a YCCtor in the plane, show !hat w • [7) is orthogonal to it. This is
sometimes called (in analogy with the ~ng case in 30) the cross-product of a single YCCtor
in the plane. The cross-product of n - I vectors in R• can also be defined .

A.6 If P. Q. and Rare lhree points in the standard affine 3-space, then

t II (Q - P) X (R - P) II
is the azea of lhe triangle APQR. If P. Q, and R aU lie in the xy plane in the standard affine 3-space,
then

i m . ((Q - P) X (R - P))

gives the signed area of the triangle-it is positive if APQR is a counterclockwise loop in the plane
and negath"C otherwise. (Counterclockwise here means " counterclockwise as viewed from a point on
the positive z axis, in a right-handed coordinate system. ")

a. Find the signed area of the triangle wilh vertices P • (0,0), Q = (Xf, yiJ , and R •
(Xr • " Y; • ,).

Answtr: f (x, Y;. 1 - Xi . I y;.)

b. Suppose....:: have a polygon in the plane wilh venices v1,. .. , v. , (v. = v1), and v1 = (Xj • .>V fllf'
each i. Explain why the signed area of the polygon is exactly

·-· ! }: Xf)';., - Xf • •>'··
2 1•1

Compare Ibis with Eq. 11 .2.

A.7 The Gram-Schmidt process described in Section A.3.6 for tnree vectors can be slightly
simplified. After computing w1 and w1, we seelc a !bird unit vector, w1 wbieb is perpendicular to the
first two. There are only two choices possible: • a = ± w, x w1. Show thai the Gra.m--Schmidt process
chooses lhe sign in this formula tO be the same as the sign of Ya • (w1 x wa). This impiX& !hat if you
know that Y1, Y1, Ya is positively oriented, then you need not even checlc the sign: w a = w 1 X w 1•

1188

Bibliography

What follows is an extensive bibliography in computer graphics. In addition to being a I ist of
references from the various chapters, it is also a fine place to browse. Just looking at the titles of the
books and articles can give you a good idea of where research in the field has been and where it is
going.

Certain journals are referenced extremely frequem.ly, and we have abbreviated them here. The
most important of these are the ACM SIGGRAPH Conference Proceedings, published each year as an
issue of Computer Graphics, and the ACM Transactions on Graphics. These two sources make up
more than one-third of the bibliography.

Abbreviations

ACMTOG
CACM
CG&A
CGIP
CVGJP

FJCC
JACM
NCC
SJCC

SIGGRAPH 76

SJGGRAPH.77

SIGGRAPH 78

AssocitJiion for Computing Machinery, Transactions on Graphics
Communications of the ACM
IEEE Compwer Graphics and Applications
Compmer Graphics and lmoge Processing
Computer Vision, Graphics, and Image Processing (formerly
CGIP)
Proceedings of the Fall Joint Computer Conference
Journal of the ACM
Proceedings of the National Computer Conference /
Proceedings of the Spring Joint Compmer Conference

Proceedings of SIGGRAPH '76 (Philadelphia, Pepnsylvania,
July 14-16, 1976). In Computer Graphics, t9t2). Summer
1976, ACM SIGGRAPH, New York.
Proceedings of SIGGRAPH '77 (San Jose,/Califomia, July
2()...22, 1977). In Computer Graphics, I 1(2), Summer 1977,
ACM SIGGRAPH, New York.
Proceedings of SIGGRAPH '78 (Atlanta, Georgia, August 23-
25, 1978). In Computer Graphics, ~2(3), August 1978, ACM
SIGGRAPH, New York.

1113

1189

1114 Bibliography

SIG<JRAPH 79

SIG<JRAPH 80

SIGGRAPH81

SIG<JRAPH 82

SIG<JRAPH 83

SIG<JRAPH 84

SIGGRAPH85

SIGGRAPH86

SIG<JRAPH 87

SIG<JRAPH 88

SIG<JRAPH 89

Proceedings ofSIGGRAPH '79 (Chicago, Illinois, August 8-IO,
1979). In Computer Grophics, 13(2), August 1979, ACM
SIGGRAPH, New York.
Proceedings of SIG<JRAPH '8Q (Seaule, Washington, July 14-
/8, 1980). In Computer Grophics. 14{3), July 1980, ACM
SIGGRAPH, New York.
Proceedings of SIGGRAPH '81 (Dallas, Texas, August 3-7,
1981). In Compuur Grophics, 15(3), August 1981, ACM
SIGGRAPH, New York.
Proceedings of SIG<JRAPH '82 (Boston, Massachusetts, July
26-30, 1982). In Ccmputer Grophics, 16(3), July 1982, ACM
SIGGRAPH, New York.
Proceedings ofSIGGRAPH '83 (Detroit, Michigan, July 25-29,
1983). In Ccmputer Grophics, 17(3), July 1983, ACM SJG
GRAPH, New York.
Proceedings of SIG<JRAPH '84 (Minneapolis, Minnesota, July
23-27. 1984). In Computer Grophics, 18(3), July 1984, ACM
SIGGRAPH, New York.
Proceedings of SIG<JRAPH '85 (San Francisco, California, July
22~26, 1985). In Computer Grophics, 19(3), July 1985, ACM
S!GGRAPH, New York.
Proceedings of SIG<JRAPH '86 (Dallas, Texas, August 18-22,
1986). In Computer Grophics, 20(4), August 1986, ACM
SIGGRAPH, New York.
Proceedings of SIG<JRAPH '87 (Anaheim, California, July
27-31, 1987). 1n Computer Graphics, 2 1(4), July 1987, ACM
SIGGRAPH, New York.
Proceedings of SIGGRAPH '88 (Atlanta. Gecrgia, August 1-5.
1988). In Computer Graphics. 22(4), August 1988, ACM
SIGGRAPH, New York.
Proceedings of SIG<JRAPH '89 (Boston, Massachusetts, July
31--August 4, 1989). In Ccmputer Grophics, 23(3), July 1989,
ACM SIGGRAPH, New York.

ABIE89 Abi-Eui, S.S., The Graphical PI'O<%Ssing of B-Splines in a Highly Dynamic Environ
ment, Ph.D. Thesis Rensselaer Polyteclmic Institute, Troy , NY, May 1989.

ABRA85 Abram, G., L. Westover, and T . Whitted. " Efficient Alias-Free Rendering Using
Bit-Masks and Look-Up Tables," SIG<JRAPH 85, 53-59.

ADOB85a Adobe Systems, Inc., PostScript Language Tutorial and Ccokbook, Addison-Wesley,
Reading , MA, 1985.

ADOB85b Adobe Systems, Inc., PostScript Language Reference Manual, Addison-Wesley, Read
ing, MA, 1985.

AKEL88 Akeley , K., and T. Jermoluk, " High-Performance Polygon Rendering," SIG<JRAPH
88. 239-246.

AKEL89 Akeley, K., "The Silicon Graphics 40/240GTX Supe""'rkstation," CG & A, 9(4),
July 1989, 71-83.

ALAV84 Alavi, M., " An Assessment of the Prototyping Approach to Information Systems
Development," CACM, 27(6), June 1984, 556-563.

AMAN84 Amanatides , J., " Ray Thlcing with Cones," SIG<JRAPH 84, 129-135.

1190

Bibliography 1115

AMAN87 Amanotides. J. and A. Woo, "A Fast Voxel Traversal Algorithm for Ray Thlcing," in
M~hai, G., ed., Eurogrophics 87: Proce~dings of the European Computer Graphics
Conference and Exhibition, Amst~rdam. August 24-28. 1987, North Holland. Amster·
dam, 1987,3-10.

AMBU86 Amburn , P. , E. Grant , and T . Whitted, " Managing Geometric Complexity with
Enhaooed Procedural Models," SJGGRAPH 86, 189-195.

ANDE!82 Anderson, D.P., " Hidden Line Elimination in Projected Grid Surfaces ," ACM TOG,
1(4), October 1982, 274-288.

ANDE83 Anderson , D., ''Techniques for Reducing ~n Plotting Time," ACM TOG, 2(3), July
1983, 197- 212.

ANSI85a ANSI (American National Standards Institute). ~rican National Standard for Human
Factors Engineering of Visual Display Terminal Workstations, ANSI, Washington, DC,
1985.

ANS185b ANSI (American National Stan<latdl Institute), ~rican National Standard for
JnfomuJtiol'l Proassing S)IStems-Compuur Grophics-Grophirol Kernel S)IStem
(GKS) Functional Description, ANSI X3. 124-1985, ANSI, New York, 1985.

ANS188 ANSI (American National Standards Institute), American National Standard for
Information Processing Systems-Programmer's Hierarchical lnreractive Graphics
S)IStem (PHIGS) Functional DescriptiOfl, Archive File Format, Clear-Text Encoding of
Archive File, ANSI, X3. 144-1988, ANSI, New York, 1988.

APGA88 Apgar, B., B. Ba$ack, and A. Mammen, " A Display System for the Stellar Graphics
Superoomputer Model GS 1000," SIGGRAPH 88, 255-262.

APPE67 Appel, A., "The Notion of Quantitative Invisibility and the Machine Rendering of
Solids,'' Proceedings of the ACM National Conference, Tilompson Books, Washington,
DC, 1967, 387- 393. Also in FREE80, 214-220.

APPE68 Appel , A., " Some Tedmiques for Shading Machine Renderings of Solids," SJCC.
1968. 37-45.

APPE!79 Appel , A .. F.J. Rohlf, and A.J . Stein, " The Haloed Line Effect for Hidden Line
Elimination," SIGGRAPH 79, 151- 157.

APPL85 Apple Computer, Lnc .. Inside Macintosh, Addison-Wesley, Reading, MA. 1985.

APPL87 Apple Computer, Inc., Human Inter/a« GuideliMs: The Apple Desklop Interface,
Addison-Wesley, Reading, MA, 1987.

APT85 Apt, C., "~ecting the Picture," IEEE Spectrum, 22(7) , July 1985, 60-66.

ARDE89 Ardent Computer Corp. (now Stardent), Dore Product Uterature, Sunnyvale, CA,
1989.

ARN088 Arnold, D. B., and P.R. Bono, CGM and CGI : Metafile and Inter/a« Srondards for
Computer Graphics, Springer-Verlag, Berlin, 1988.

AR\1086 Arvo, J. , " Backward Ray Tracing," in A.H. Barr, ed., Developments in Ray Tracing,
Course Notes 12 for SIGGRAPH 86, Dallas, TX, August 18- 22, 1986.

AR\1087 Arvo, J ., and D. Kirk, "F.ist Ray Tracing by Ray Classification," SJGGRAPH 87,
s~.

ATHE78 Atherton , P.R., K. Weiler, and D. Greenberg, " Polygon Shadow Generation,"
SIGGRAPH 78. 275-28 1.

ATHE81 Atherton, P.R., "A Method of Interactive Visualization of CAD Surface Models on a
Color Video Display," SIGGRAPH 81, 279-287.

ATHE83 Atherton, P.R., "A Scan-Line Hidden Surface Rernowl Procedure for Constructive
Solid Geometty," SIGGR!.PH 83, 73-82.

1191

111 6 Bibliography

A1'KIS4 Atkinson. H.H. , I. Gargantini , and M.V.S. Ramanath, "Determination of the 3D
Border by Repeated Elimination of Internal Surfaces," Computing. 32(4), October
1984, 279-295.

A1'KI86 Atkinson. W., U.S. Patent 4,622,545, November 1986.
AYAL85 Ayala, D., P. Brunet, R. Juan, and I. Navazo, "Object Representation by Means of

Nonminimal Division Quadtrees and Octrees," ACM TOG, 4(1), January 1985,
41-59.

BADL87 Sadler. N.l.. K.H. Manoochehri, and G. Walters. "Articulated Figure Positioning by
Multiple Constraints." CG & A, 7(6), June 1987, 28-38.

BAEC69 Baecker. R.M. , "Picture Driven Animation," SJCC, AFIPS Press, Montvale, NJ,
1969, 273-288.

BAEC87 Baecker, R., and B. Buxton, Readings in Human-Computer Interaction, Morgan
Kaufmann, Los Altos, CA. 1987.

BALD85 Baldauf, D., "The Workhorse CRT: New Life," IEEE Spectrum, 22(7), July 1985,
67-73.

BANC77 Banchoff. 1'.F., and C.M. Strauss, The Hypercube: Projections and Slicings. Film,
International Film Bureau, 1977.

BANC83 Banchoff, T .. and J. Wenner, Linear Algebra Through Geometry, Springer-Verlag, New
York, 1983.

BARN88a Bamsley, M., A. Jacquin, F. Ma1assenet, L. Reuter, and A.D. Sloan, "Harnessing
Chaos for Image Synthesis ," SlGGRAPH 88, 131-140.

BARN88b Barns ley, M .• " Harnessing Chaos for Image Synthesis." Lecture at ACM SIGGRAPH
'88 meeting in Atlanta, GA, August 1988.

BARR79 Barros. J., and H. Fuchs, " Generating Smooth 2-D Monocolor Line Drawings on
Video Displays," SlGGRAPH 79, 260-269.

BARRS4 Barr, A. , " Global and Local Deformations of Solid Primitives," SIGGRAPH 84,
21-30.

BARR88 Barr, A., and R. Batzel , "A Modeling System Based on Dynamic Constraints,"
SIGGRAPH 88. 179-188.

BARR88b Barry, P. and R. Goldman, "A Recursive Evaluation Algorithm for a Class of
Catmuii-Rom Splines," SIGGRAPH 88. 199-204.

BARR89a Barr, A.H., ed. , Topics in Physically Based Modeling. Addison-Wesley, Reading, MA,
1989.

BARS83 Barsky, B. , and J. Beatty, "Local Control of Bias and Tension in Beta-Splines,'' ACM
TOG, 2(2). April 1983, 109- 134.

BARS85 Barsky, B., and T. DeRose, "The Beta2-Spline: A Special Case of the Beta-Spline
Curve and Surface Representation," CG & A, 5(9), September 1985,46-58. See also
erratum in 7(3), March 1987, 15.

BARS87 Barsky, B., T . DeRose, and M. Dippt, An Adaptive Subdivision Method with Crack
Prevention for Rendering Beta-spline Objects, Report UCB/CSD 87/348, Department of
Computer Science, University of California, Berkeley, CA, 1987.

BARS88 Barsky, B., Computer Graphics and Geometric Modeling Using Beta-splines, Springer
Verlag, New York, 1988.

BART87 Bartels, R., J. Beatty, and B. Barsky, An Introduction to Splines for Use in Computer
Graphics and Geometric Modeling, Morgan Kaufmann, Los Altos, CA, 1987.

BASS88 Bass, L. , E. Hardy, K. Hoyt, M. Little, and R. Seacord, lntroduction to the Serpent
User Interface Management S}'stem, Software Engineering Institute, Carnegie-Mellon
University , Pittsburgh, PA, March 1988.

1192

Bibliography 1117

BAUM72 Baumgart, B.G., \Vinged·edge Polyhedron Representation, Technical Report SfAN-CS-
320, Computer Science Department, Stanford University, Palo Alto, CA, 1972.

BAUM74 Baumgart, B.G., Geometric Modeling for Computer Vision, Ph.D. Thesis, Report
AIM-249, SfAN-CS-74-463, Computer Science Department, Stanford University,
Palo Alto, CA, October 1974.

BAUM75 Baumgart, B.G., "A Polyhedron Representation for Computer Vision," NCC 75,
589-596.

BAUM89 Baum, D.R., H.E. Rushmeier, and J.M. Winget, "Improving Radiosity Solutions
Through the Use of Analytically Determined Form-Factors," SIGGRAPH 89, 325-334.

BAYE73 Bayer, B.E., "An Optimum Method for Two-Level Rendition of Continuous-Tone
Pictures," in Corrference Record of the International Conference on Communications,
1973, 26-11- 26-15.

BEAT82 Beatty, J.C., and K.S. Booth, eds., Tutorial: Computer Graphics. Second Edition,
IEEE Comp. Soc. Press, Silver Spring, MD, 1982.

BECK63 Beclanann, P., and A. Spizzichino, The Scauerlng of Electromagnetic Waves from
Rough Surfaces, Macmillan, New York, 1963.

BEDF58 Bedford, R. and G. Wyszecki, "Wavelength Discrimination for Point Sources," Jo11rnal
of the Optical Society of America, 48, 1958, 129-fl'.

BENN84 Bennet, P.P., and S.A. Gabriel, "System for Spatially Transforming [mages," U. S.
Patent 4,472,732, September 18. 1984.

BENT82 Benton, S.A., "Survey of Holographic Stereograms," Proceedings of SPIE, 367,
August 1982, 15-19.

BERG78 Bergeron, R .. P. Bono, and J. Foley, "Graphics Programming Using the Core
System," Computing Surveys (Special issue on Graphics Standards), 10(4), December
1978, 389-443.

BERG86a Bergeron, P., " A General Version of CTOw's Shadow Volumes," CG & A, 6(9),
September 1986, 17- 28.

BERG86b Bergman, L. , H. Fuchs, E. Grant, and S. Spach, "Image Rendering by Adaptive
Refinement," SIGGRAPH 86, 29-37.

BERK68 Berkeley Physics Course, Waves, Volume 3, McGraw-Hill, New York, 1968.

BERK82 Berk, T., L. Brownston, and A. Kaufman. "A New Color-Naming System for
Graphics Languages," CG & A, 2(3), May 1982, 37-44.

BERT81 Bertin, J., Graphics and Graphics Information Processing, de Gruyter, New York ,
1981. Translated by Berg, W. , and P. Scott from La Graphique et le Traitement
Graphique de 1'/nformaJion, Flammarion, Paris, 1977.

BERT83 Bertin, J., Semiology of Graphics, University of Wisconsin Press, Madison. WI. 1983.
Translated by W. Berg from Semiologie Graphique, Editions Gauthier-Villars, Paris;
Editions Mouton & Cie, Paris-La Haye; and Ecole Pratique des Hautes Etudes, Paris,
1967.

BEWL83 Bewley, W., T. Roberts , D. Schroit, and W. Verplank, " Human Factors Testing in the
Design of Xerox 's 8010 'Star' Office Workstation," in Proceedings CH/'83 H11man
FaCJors in Computing Systems Conference, ACM, New York, 1983, 72-77.

BEZI70 Bezier, P., Emploi des Machines 6 Commande Numerique, Masson et Cie, Paris, 1970.
Translated by Forrest, A. R., and A. F. Pankhurst as Btzier, P., N111nerical Comrol
-MOihemotics and Applications, Wiley, London, 1972.

BEZI74 Bezier, P., ''Mathematical and Practical Possibilities of UNISURF," in Barnhill, R.
E .. and R. F. Riesenfeld, eds., Computer Aided Geometric Design, Academic Press,
New York, 1974.

1193

1118

BIER86a

BfER86b

BlWI

BlNF71

BIRR61

BISH60

BISH86

BLES82

BLES86

BLES88a

BLES88b

BLIN76

BUN77a

BLlN77b

BLlN78a

BLIN78b

BLlN78c

BLLN82a

BLlN82b

BLIN85

BUN88

BLLN89a

BLIN89b

BL0088

BOLTSO

Bibliography

Bier, E., and M. Stone, "Snap-Dragging,'' SIGGRAPH 86, 233-240.

Bier, E .. "Sic.iuers and Jacks: Interactive 3D Positioning Thols ," in Proceedirrgs 1986
Workshop on lniUOCti~ 3D Graphics, ACM. New Yorlc, 1987, 183-196.

Billmeyer, F., and M. Sala.man, Principles of 0>/or Ttchnolcgy, se<Xllld edition.
Wiley, New York. 1981.

Binford, T . , in Visual Ptrctption by Computer, Proceedings of the IEEE Conference on
Systems and Contra/, Miami , FL. Decembc:T 1971 .

Birren, R. , Cnmive Color, Van Nostrand Reinhold, New York, 1961 .

Bishop, A. , and M. Crook, Absobae ldentijicarion of Color for Targt!ts p,_,td
AgaillSt Whiu and Colored Bockgrounds. Report WADD TR 60-611 , Wright Ait
Development Division, Wright Patterson AFB, Dayton, Ohio, 1960.

Bishop, G. , and D.M. Weimer, "Fast Phong Shading," SIGGRAPH 86, 103-106.

Bleser, T., and J. Foley, "Thwards Specifying and Evaluating the Human Factors of
User-Computer Interfaces," i.n Proceedings of the Hunwr MeiDl'$ in Computer Sy:rtems
Confertn«, ACM, New Yorlc, 1982, 309-314.

Bleser, B., and J. Ward, " Human Factors Affecting the Problem of Machine
Recognition of Hand-Printed Text,'' in Computer Graphics '86 Conference Proceedings,
Volume 3, NCGA, Fairfax, VA, 1986, 498-514.

Bleser, T., J. Sibert, and J. P. McGee, "Charcoal Sketching: Returning Control to the
Anis1," ACM TOG, 7(1), January 1988, 76-81

Bleser, T., TAE Plus Sry/eguide User Interface Description, NASA Goddard Space
Aight Center, Greenbelt, MD, 1988.

Blinn, J.P., and M.E. Nc:well, ''Texture and Reflection in Computer Generated
Image.~;· CACM. 19(10), October 1976, 542-547. Also in BEAT82, 456-461.

Blinn, J.P., "Models of Light Reflection for Computer Synthesized Pictures,"
SIGGRAPH 77, 192-198. Also in FREE80, 31&-322.

Blinn, J.P. , "A Homogeneous Formulat.ion for Lines in 3-Space," SIGGRAPH 77,
237- 241.

Blinn, J .P .. and M.E. Newell, "Clipping Using Homogeneous Coordinates," SIC
GRAPH 78, 245-251.

Blinn, J.P. , " Simulation of Wrinkled Surfaces," SIGGRAPH 78, 28&-292.
Blinn, J.P. , Computer Display of Cunotd Surfaces, Ph.D. Thesis, Oepanment of
Computer Science, University of Utah, Salt Lalc.e City, UT, December 1978.

Blinn, J.P .. "Light Reflect.ion Functions for the Simulation of Clouds and Dusty
Surfaces," SJGGRAPH 82, 21-29.

Blinn, J.P. , " A Generalization of Algebraic Surface Drawing," ACM TOG, 1(3), July
1982. 23S-256.

Blinn, J.P. , "Systems Aspects of Computer Image Synthesis and Computer Anima
tion," in Image Rendering Tricks, Course Notes 12for SIGGRAPH 85, New York, July
198S.

Blinn, J.P. , " Me and My (Fake) Shadow," CG & A, 9(1), January 1988, 82-86.

Blinn, J.P .• "What We Need Aroond Here is MoreAiiasina," CG & A, 9(1). January
1989. 7S-79.

Blinn, J.P. , " Return of the Jaggy," CG & A, 9(2), March 1989.82-89.

Bloornenthal, J., "Polygonisation of Implicit Surfaces," Computer Aided Geometric
Design, S, 1988, 341 -355.

Boh, R.A., ' "Put-Tbat-Tbere': Voice and Gesture at the Graphics Interface,"
SIGGRAPH IXJ. 262~270.

1194

Bibliography 1119

BOLT84 Bolt, R.A., The HUJn(Jn llrterface: Where People and Computers Meet. Lifetime
Learning Press, Belmont, CA, 1984.

BORD89 Borden, B.S., "Graphics Processing on a Graphics Supercomputer," CG & A. 9(4),
July I 989, 56-62.

BORN79 Boming, A., "Thinglab-A Constraint-Oriented Simulation Laboratory," Technical
Report SSI-79-3, Xerox Palo Alto Research Center, Palo Alto, CA, July 1979.

BORN86a Boming, A., and R. Duisberg, "Constraint-Based Tools for Building User Interfaces,"
ACM TOG, 5(4), October 1986, 345-374.

BORN86b Boming, A .• "Defining Constraints Graphically," in SIGCHI '86 Conference Proceed·
ings, ACM, New York, 1986, 137-143.

BOUK70a Bouknight, W.J., "A Procedure for Generation of Three-Dimensional Half-Toned
Computer Graphics Presentations," CACM. 13(9), September 1970, 527-536. Also in
FREE80, 292-301.

BOUK70b Bouknight, W .J., and K.C. Kelly, "An Algorithm for Producing Half-Tone Computer
Graphics Presentations with Shadows and Movable Light Sources," SJCC. AFIPS
Press, Montvale, NJ, 1970, 1-10.

BOUV85 Sou ville, C., "Bounding Ellipsoids for Ray-Fractal Intersection," SIGGRAPH 85,
45-52.

BOYN79 Boynton, R. M. , Human Color Vision, Holt, Rinehan, and Winston , New York, 1979.
BOYS82 Boyse, J.W., and J.E. Gilchrist, "GMSolid: Interactive Modeling for Design and

Analysis of Solids," CO & A. 2(2), March 1982, 27~0.

B0HM80 Biihm, W., " Inserting New Knots into B-spline Curves." Computer Aided Design.
12(4), July 1980, 199-201.

BOHM84 Biihm, W., G. Farin, and J. Kahmann , ''A Survey of Curve and Surface Methods in
CAGD," Computer Aided Geomecric Design. 1(1). July 1984, 1-60.

BRAJ78 Braid, I. C., R.C. Hillyard, and I.A. Stroud, Scepwise Consrruccion of Polyhedra in
Geometric Modelling, CAD Group Document No. 100, Cambridge University.
Cambridge, England, 1978. Also in K.W. Brodlie, ed., MachemtJcical Methods in
Computer Graphics and Design, Academic Press, New York, 1980, 123-141.

BRES65 Bresenham, J.E., "Algorithm for Computer Control of a Digital Plotter," IBM Systems
Journal, 4(1), 1965, 25-30.

BRES77 Bresenbam, J.E. "A Linear Algorithm for Incremental Digital Display of Circular
Arcs," Communications of the ACM, 20(2), February 1977, 100-106.

BRES83 Bresenham, J.E., D.G. Grice, and S.C. Pi , " Bi-Directional Display of Circular Ares,"
US Patent 4,37 1,933, February I, 1983.

BREW77 Brewer, H., and D. Anderson, " Visual Interaction with Overhaw;er Curves and
Surfaces," SIGGRAPH 77. 132.-137.

BRIG74 Brigham, E.O., The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ,
1974.

BRIT78 Brillon, E., J. Lipscomb, and M. Pique, ''Making Nested Rotations Convenient for the
User," SIGGRAPH 78, 222.-227.

BR0088 Brooktree Corporation, Product Databook 1988, Brooktrec Corporation, San Diego,
CA, 1987.

BROT84 Brotman, L.S., and N. l. Sadler, ''Generating Soft Shadows with a Depth Buffer
Algorithm," CG & A. 4(10), October 1984, 5-12.

BROW64 Brown. R., "On-Line Computer Recognition of Hand-Printed Characters," IEEE
Trans. Computers, Vol. EC-13(12), December 1964, 750-752.

BROW82 Brown, C.M., "PADL-2: A Technical Summary," CG &A. 2(2), March 1982,69-84.

1195

1120 Bibliography

BUmS Sui-Thong, Phong, "lllumination for Computer Generated Pictures," CACM, 18(6),
June 1975, 311-317. Also in BEAT82, 44~55.

BUNK89 Bunker, M., and R. Economy, Evolution of OE CIO Systems, SCSD Document,
Gene.ral Electric Company, Daytona Beach, FL, 1989.

BURT74 Burton, R.P. , and I. E. Sutherland, "'TWinkle Box: A Three-Dimensional Computer
Input Device," NCC 1974, AFlPS Press, Montvale, NJ, 1974, 513-520.

BURT76 Burtnyk, N., and M. Wein , "Interactive Skeleton Techniques for Enhancing Motion
Dynamics in Key Frame Animation," CACM, 19(10), October 1976, 564-569

Bt.Jl'L79 Butland, J .. "Surface Drawing Made Simple," Computer-Aided Design, 11(1), January
1979, 19-22.

BUXT83 Buxton, W., M.R. Lamb, D. Sherman, and K.C. Smith, " Towards a Comprehensive
User Interface Management System," S100RAPH 83, 35-42.

BUXT85 Buxton, W., R. Hill , and P. Rowley, ''Issues and Techniques in Touch-Sensitive Tablet
Input," S/OORAPH 85. 215-224.

BUXT86 Buxton, W., " There's More to Interaction Than Meets the Eye: Issues in Manual
Input," in Norman. D. , and S. Draper, eds., User-Centered System Design, Lawrence
Etlbaum, Hillsdale, NJ, 1986,3 19-337. Also in BAEC 87, 366-375.

BYTE85 BYTE Magazine. 10(5), May 1985. 151- 167.

CABR87 Cabral, B., N. Max. and R. Springmeyer, "Bidirectional Reflection Functions from
Surface Bump Maps.'' SIGGRAPH 87. 273-281.

CACM84 "Computer Graphics Comes of Age: An Interview with Andries van Dam." CACM,
27(7), July 1984, 638-648.

CALL88 Callahan, J., D. Hopkins , M. Weiser, and B. Shneiderman, "An Empirical Compari
son of Pie vs. linear Menus," in Proceedings of CHI 1988, ACM, New York, 95-100.

CARD78 Card, S., W. English, and B. Burr, ''Evaluation of Mouse, Rate-Controlled Isometric
Joystick, Step Keys, and Text Keys for Text Selection of a CRT," Ergonomics, 21(8),
August 1978. 601-613.

CARD80 Card, S., T. Moran, and A. Newell, "The KeystrOke-Level Model for User Perfor
mance Time with Interactive Systems," CACM, 23(7), July 1980, 398-410.

CARD82 Card, S., "User Perceptual Mechanisms in the Search of Computer Command
Menus," in Proceedings of the Human Factors in Computer Systems Conference, ACM,
New York, March 1982, 20-24.

CARD83 Card, S., T . Moran , and A. Newell, The Psychology of Human-Computer lnteractioll,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1983.

CARD85 Cardelli, L., and R. Pike, "Squeak: A Language for Communicating with Mice,"
S/OORAPH 85, 199-204.

CARD88 Cardelli, L., "Building User Interfaces by Direct Manipulation," in Proceedings of the
ACM SIGGRAPH Symposium on User Interface Softwore, ACM, New York, 1988,
152-166.

CARL78 Carlbom, I., and J. Paciorek, " Pia.nar Geometric Projections and Viewing Transforma
tions," Compwi11g Surveys. 10(4), December 1978, 465-502.

CARL85 Carlbom, 1. , I. Chakravarty, and D. Vanderschel , " A Hierarchical Data Structure for
Representing the Spatial Decomposition of 3-D Objects.'' CO & A. 5(4), April 1985,
24-31.

CARL87 Carlbom, 1., ··An Algorithm for Geometric Set Operations Using Cellular Subdivision
Techniques," CO & A. 7(5), May 1987, 44-55.

CARP84 Carpcnt.er, L .• "The A-buffer, an Antialiased Hidden Surface Method," SIOORAPH
84, 103-108.

1196

Bibliography 1121

CATM72 Catmull, E A System for Computer Generated Movies," in Proc. ACM Annual
Conferena, ACM, New York, NY, August 1972. 422-431.

CATM74a Catmull , E .• and R. Rom, "A Class of Local Interpolating Splines," in Barnhi ll . R ..
and R. Riesenfeld, eds., Compuur Aided Geometric Design, Academic Press. San
Francisco, 1974, 3 17-326.

CATM74b CaunuJJ, E., A Subdivision Algorithm for Compuur Display of Curved Surfaces. Ph.D.
Thesis, Report liTEC-CSc-74-133. Computer Science Department, Uni~ity of
Ulllh, Salt Lake City, liT, December 1974.

CATM75 Catmull, E .. "Computer Display of Curved Surfaces," in Proc. IEEE Conf. on
Computer Gmpilics. Pauem Recognition and Dmo Structures, May 1975. Also in
FREE80, 309-315.

CATM78a CaunuU. E .. "The Problems of Computer-Assisted Animation," SIGGRAPH 78,
348-353.

CATM78b Caunull, E., "A Hidden-Surface Algorithm with Anti-Aliasing," SIGGRAPH 78,
6-11. Also in BEAT82, 462-467.

CATM79 Catmull, E., "A Tutorial on Compensation Tables," SIGGRAPH 79. 279-285.

CATM80 Catmull, E .. and A.R. Smith, "3-D Transformations of Images in Scanline Order,"
SICCRAPH 80. 279-285.

CGA82 Special Issue on Modeling the Human Body for Animation, CG & A. 2(11) N. Sadler,
ed .. November 1982, 1-81.

CHAP72 Chapanis. A., and R. Kinkade. "Design of Controls," in Van Colt, H., and R.
Kinkade, eds., Human Engineering Guide to Equipmem Design, U.S. Government
Printing Office, 1972.

CHAS81 Chasen, S.H., "Historical Highlights of Interactive Computer Graphics," MechoniC(I/
Engineering, 103. ASME, November 1981, 32--41.

CHEN88 Chen, M .. J . Mountford, and A. Sellen, ''A Study in Interactive 3-D Rocation Using
2-D Control Devices." S/CCRAPH 88. 121-129.

CHIN89 Chin, N., and S. Feiner, ''Near Real-Time Shadow Generation Using BSP Trees,"
SIGGRAPH 89. 99-106.

CHIN90 Chin, N., Near Real-Time Objet:t-Precision Slwdow Generation Using BSP Trees, M.S.
Thesis. Department of Computer Science, Columbia University, New York, 1990.

CHRI75 Christ, R., "Review and Analysis of Color Coding for Visual Display." Human
Factors, 17(6). December 1975, 542-570.

CHUN89 Chung. J .C .. n a/., "Exploring Virtual \\brlds with Head-Mounted Displays.'' Proc.
SP/£ Muting on Non-Holographic True 3-Dimensiono/ Display Technologies. 1083, Los
Angeles , Jan . IS-20, 1989.

CLAR76 Clark, J.H., "Hierarchica.l Geometric Models for Visible Surface Algorithms,"
CACM. 19(10), October 1976, 547- 554. Also in BEAT82, 296-303.

CLAR79 Clark, J., .. A Fast Scan-Line Algorithm for Rendering Parametric Surfaces," abstract
in SIGGRAPH 79. 174. Also in Whined , T. , and R. Cook. eds., Image Rtndering
Tricks, Col~ Notes J6for SICCRAPH 86, Dallas, TX. August 1986. Also in JOY88,
88-93.

CLAR80 Clark, J .. and M. Hannah , ''Distributed Processing in a High-Performance Smart
Image Memory." Lllmbda (VLSI Desig11), 1(3) . Q4 1980, 40--45.

CLAR82 Clark, J., "The Geometry Efliline: A VLSI Geometry System for Graphics.''
SIGGRAPH 82, 127-133.

CLEA83 Cleary. J .. B. Wyvill, G. Birtwistle, and R. Vani, " Design and Analysis of a Parallel
Ray Tracing Computer," Proce~ings ofGro.phic:r lnterfan '83, May 1983. 33-34.

1197

1122 Bibliography

CLEV83 Cleveland, W., and R. McGill , "A Color-Caused Optical Illusion on a Statistical
Graph," The AIIU!riron Statistician, 37(2), May 1983. 101- 105.

CLBV84 Cleveland, W., and R. McGill , "Grnphical Perception: Theory, Experimentation and
Application to the Development of Graphical Methods," Journal of the American
Statistical Association, 79(387), September 1984. 531- 554.

CLEV85 CleYdand, W., and R. McGill , "Graphical Pe•oeption and Graphical Methods for
Analyzing Scientific Data," Scitma. 229. August 30. 1985, 828-833.

COHEBO Cohen, E .. T. lyche. and R. Riesenfeld, "Discrete 8 -Splines and Subdivision
Techniques in Computer-Aided Geometric Design and Computer Grnphics," CGIP,
14(2). October 1980, 87-111 .

COHE83 Cohen, E. , "Some Mathematical Tools for a Modeler's Workbench," CG & A. 3(n.
October 1983. 63-66.

COHE85 Cohen. M.F., and D.P. Greenberg. "The Hemi-Cube: A Radiosity Solution for
Complex EnvironmenlS," SIGGRAPH 85. 31-40.

COHE86 Cohen, M.P .. D.P. Greenberg, D.S. Immel, and P.J . Brock, "An Efficient Radiosity
Approach for Realistic Image Synthesis." CG & A. 6(3), March 1986. 26-35.

COHE88 Cohen, M.P .. S .E. Chen, J.R. Wallace, and D.P. Greenberg, "A Progressive
Refinement Approach to Fast Radiosity lmage Generation," SIGGRAPH 88, 75-34.

CONR85 Conrac Corporation, Raster Grophks Handbook, second edition , Van Nostrand
Reinhold. New York. 1985.

0001<82 Cook. R .• and K. Torrance, "A ReHectance Model for Computer Graphics," ACM
TOG, 1(1), January 1982,7-24.

COOK84a Cook. R.L .. "Shade Trees," SIGGRAPH 84. 223-231.

COOK84b Cook, R.L., T . Poner, and L. Carpenter, "Distributed Ray Tracing," SIGGRAPH 84.
137- 145.

0001<86 Cook, R.L .. "Stochastic Sampling in Computer Graphics," ACM TOG. 5(1). January
1986. 51-72.

COOK87 Cook, R.l ., l . Carpenter, and E. Catmull , ''The Reyes Image Rendering Architec
ture," SIGGRAPH 87. 95-102.

COON67 Coons, S. A., Surfaces for Computer Aided Design of Space Forms, MIT Project Mac,
TR-41 , MIT, Cambridge, MA. June 1967.

COSS89 Cossey. G., Prototyper, SmethersBames, Ponland, OR. 1989.

COWA83 Cowan, W., ··An Inexpensive Scheme for CaJibration of a Colour Monitor in Terms of
ClE Standard Coordinates," SIGGRAPH 83. 3 15-321.

CROC84 Crocker, G.A., " Invisibility Coherence for Faster Scan-Line Hidden Surface AI~
rithms," SIGGRAPH 84. 95-102.

CROW77a Crow, F.C .• "Shadow Algorithms for Computer Graphics." SIGGRAPH 77, 242- 247.
AJso in BEAT82, 442-448.

CROW77b Crow. F.C .• " The Aliasing Problem in Computer-Generuted Shaded Images ," CACM,
20(11), NoYC:mber 1977, 799-805.

CROW78 Crow. F.. " The Use of Grayscale for Improved Raster Display of Vectors and
Characters," SIGGRAPH 78. l-5.

CROWS I Crow, F.C., "A Comparison of Antialiasing Techniques,' ' CG & A, 1(1), January
1981. 40-48.

CROW84 Crow, F.C .. "Summed-Area Tables for Texture Mapping," SIGGRAPH 84. 207-212.

CYRU78 Cyrus, M. and J. Beck , "Generulized Tv.o- and Three-Dimensional Clipping,''
Computm and Graphics. 3(1), 1978. 23-28.

1198

Bibliography 1123

DALL80 Dallas, W.J ., "Compu~r Generated Holograms," in The Computer in Opticol
Research , Frieden, B.R., ed., Springer-Verlag, New York, 1980, 291-366.

DASI89 DaSilva, D., Raster Algorithms for 2D Primitives, Master's Thesis, Computer Science
Department, Brown UniYerSity , Providence, Rl, 1989.

DEB078 de Boor, C., A Procticol Guide to Splines, Applied Mathematical Sciences Volume 27,
Springer-Verlag, New York , 1978.

DECA59 de Casteljau, F., Outillage Mtthodes Co/cui, And!'\! Citrot!n Automobiles SA, Paris,
1~.

DEER88 Deering, M., S. Winner, B. Schediwy, C. Dulfy, and N. Hunt, "The Triangle
l'roc:css« and Normal Vector Shader: A VLSJ System for High Performance Graph
ics," SJGGRAPH U . 21- 30.

DELA88 Delany, H.C., " Ray ll'acing on a Connection Machine," in Proceedings of the 1988
International Confennce on Supercomputing, July 4-8, 1988, St. Malo, France ,
659-664.

DEME80 Demeuescu, S., A VL$1-&sed Reai-Ttme Hiddm-SU/'fa« ElimiNUion Display System,
Master's Thesis, Depanment of Computer Science, California Institute ofThc:hnology,
Pasadena, CA, May 1980.

DEME85 Demetreseu, S., " High Speed Image Rasterization Using Scan Line Access Memo
ries," in Proceedings of the 198S Chapel Hill Conference on VLSJ, Rockville, MD,
Computer Science I'Rss , 221-243.

DEY089 Deyo, R., and D. lngebtetson, " Notes on Real-Time Vehicle Simulation," in
lmplt -nting and Interacting with Reai-Ti- Micrrrworld.r, CaUI'$t Notes 29 for
SJGGRI<PH 89. Boston, MA, August 1989.

DIGI89 Digital Equipment Corporation, DEC XU/ Style Guide, Digital Equipment Corporation,
Maynard, M.A, 1989.

DIPP84 Di~. M. and J. Swensen, " An Adap«ive Subdivision Algorithm and Parallel
Architecture for Realistic Image Synthesis," SJGGRAPH 84. 149-158.

DLPP85 Di~, M., and E. H. Wold, "Antialiasing through Stochastic Sampling," SIGGRAPH
8S, 69-78.

OOCT81 Doctor. L., and J. Torborg, "Display Techniques for Ocuec-Encoded Object.s," CG &
A, 1(3), July 1981 , 29-38.

DONAS& Donato, N., and R. Rocchetli , "Techniques for Manipulating Arbitrary Regions," in
CaUI'$t Notes II for SIGGRAPH U . Atlanta , GA. August , 1988.

DREB88 Orebin, R.A., L. Carpenter, and P. Hanrahan, " Volume Rendering," SIGGRAPH 88,
65-74.

DUFF79 Duff, T. , " Smoothly Shaded Renderings of Polyhedral Object.s on Raster Displays,"
SIGGRAPH 79, 27(}...275.

DURB88 Ourbcck, R., and S. ShetT, ,cds. , Output Hardcopy Devicn, Academic I'Rss, New
York , 1988.

DUVA90 Ouvanenko. V .. W.E. Robbins, R.S. Gyurcsik, " Improved Line Segment Clipping,"
Dr. Dobb's Journal, July 1990, 36-45 , 98-100.

Dvoft43 DYO!ft , A., " Then: is a Better Typewriter Keyboard," N01/DI'Illl Bu.siness EdliCtllion
Quarterly, 12(2), 1943, 51- 58.

ELLS89 Ellsworth, D., Pixel-Plants S Rendering Control, Tech. Rep. TR89-003, Department of
Computer Science, University of North Carolina at Chapel Hill, Chapel Hill , NC,
!989.

EMER03 Emerson, R., "Essays: First Series-Self Reliance," in The Camplm Works of Ralph
Waldo Emtnon, Houghton MiJftin, Boston, M.A, 1903.

1199

11 24 Bibliography

ENCA72 Encamacao, J. , and W. Giloi, "PRADIS-An Advanced Programming System for
3-D-Display," SJCC. AFlPS Press, Montvale, NJ, 1972, 985- 998.

ENDE87 Enderle, G, K. Kansy, and G. Pfaff, Computer Graphics Programming , second edition,
Springer-Verlag, Berlin. 1987.

ENGE68 Engelhart, D.C., and W.K. English, A Research Cemer for Augmenting Human
Intellect , FJCC , Thompson Books, Washington, D.C., 395.

ENGL89 England, N., "Evolution of High Performance Graphics Systems," in Proceedings of
Graphics Interface '89, Canadian Information Processsing Society (Morgan Kauffman
in U.S.), 1989.

EVANS I Evans , K., P. Tanner, and M. Wein, " Tablet-Based Valuators that Provide One, Two or
Three Degrees of Freedom," SJGGRAPH 81 , 91-97.

EVAN89 Evans & Sutherland Computer Corporation, The Breadth of Visual Simulation
Technology, Evans & Sutherland Computer Corporation. Salt Lake City, UT, 1989.

EYLE88 Eyles, J .. J. Austin , H. Fuchs, T . Greer, and J. Poulton, " Pixel-Planes 4: A
Summary," in Advances in Computer Graphics Hardware II (1987 Eurographics
Workshop on Graphics Hardware), Eurographics Seminars, 1988, 183-208.

FARJS6 Farin, G., "Triangular Bernstein-B(!zier P.dtches," Computer Aided Geometric Design,
3(2), August 1986, 83-127.

FARISS Farin, G., Curves and Surfaces for Computer Aided Geometric Design , Academic Press,
New York, 1988.

FAUX79 Faux, I. D., and M. J. Pratt, Computational Geometry for D~sign and Manufacture,
Wiley , New York, 1979.

FEJB80 Feibush, E. A., M. Le\'Oy, and R.L. Cook, " Synthetic Texturing Using Digital Filters,"
SJGGRAPH 80, 294-301.

FEINS2a Feiner. S., S. Nagy, and A. van Dam, "An Experimental System for Creating and
Presenting Interactive Graphical Documents," ACMTOG, 1(1), January 1982, 59-77.

FEIN82b Feiner, S ., D. Salesin, and T. Bancholf, "DIAL: A Diagrammatic Animation
Language," CG & A, 2(7), September 1982, 43-54.

FEINS5 Feiner, S ., " APEX: An Experiment in the Automated Creation of Pictorial Explana
tions,' ' CG & A , 5(11), November 1985, 29-38.

FEIN88 Feiner, S., " A Grid-Based Approach to Automating Display l..a)Qut," in Proceedings
of Graphics Interface '88, Edmonton, Canada, June 1988, 192- 197.

FERG64 Ferguson, J. , " Multivariate Curve Interpolation," JACM, I 1(2), April 1964, 221-228.
FlEL86 Field, D., " Algorithms for Drawing Anti-Aiiased Circles and Ellipses," CGVIP,

33(1), January 1986. 1- 15.

FISH84 Fishkin, K.P., and B.A. Barsky, " A Family of New Algorithms for Soft Filling,"
SIGGRAPH 84, 235-244.

FTSH86 Fisher, S.S., M. McGreevy, J. Humphries, and W. Robinett, "Virtual Environment
Display System," in Proceedings of the /986 Chapel Hill Workshop on lmeractive 3D
Graphics, Chapel Hill , NC, 1986, 77~7.

PITT54 Fitts, P. , ' 'The Information Capacity of the Human Motor System in Controlling
Amplitude of Motion,'' Joumol of Experimemal Psychology, 47(6), June 1954,
381-391.

FIUM89 Fiume, E.L., The Mathematical Structure of Raster Graphics. Academic Press, San
Diego, 1989.

FLEC87 Plecchia, M. , and R. Bergeron, " Specifying Complex Dialogs in Algae,'' in
Proceedings of CHI+ Gl '87, ACM, New York, 1987, 229-234.

1200

Bibliography 1125

FLOY75 Floyd, R., and Ste.inberg, L., "An Adaptive Algorithm for Spatial Gray Scale," in
Society for lnforTIIIJtion Display 1975 Symposium Digest of Technical Papers, 1975, 36.

FOLE71 Foley, J., "An Approach to the Optimum Design of Computer Graphics Sys1erns,"
CACM. 14 (6), June 1971, 380--390.

FOLE74 Foley, J., and V. Wallace , " The An of Natural Man-Machine Communication,"
Proceedings IEEE, 62(4), April 1974, 462-470.

FOLE76 Foley, J., "I'. Thtorial on Satellite Graphics Systems," IEEE Computer 9(8), August
1976, 14-21.

FOLE82 Foley, J., and A. van Dam, Fundanumrals of Interactive Computer Graphics, Addison
Wesley, Reading, MA, 1982.

FOLE84 Foley, J., V. Wallace, and P. Chan, ''The Human Factors of Computer Grdphics
Interaction Techniques," CG & A , 4(11), November 1984, 13-48.

FOLE87a Foley, J., " Interfaces for Advanced Computing," Scientific American, 257(4), October
1987. 126-135.

FOLE87b Foley, J., W. Kim, and C. Gibbs, "Algorithms to Transform the Formal Specification
of a User Computer Interface," in Proct!edings INTERACT '87, 2nd IFIP Conference on
Human-Computer Interaction, Elsevier Science Publishers, Amsterdam, 1987, 1001-
1006.

FOLE87c Foley, J., and W. Kim, " ICL- Tbe Image Composition Language," CG & A, 7(11),
November 1987, 26-35.

FOLE88 Foley, J., W. Kim, and S. Kovacevic, "A Knowledge Base for User Interface
Management System," in Proceedings of CHI '88-1988 SIGCHI Computer-HUTII/Jn
Interaction Conference, ACM, New York, 1988, 67-72.

FOLE89 Foley, J., W. Kim, S. Kovacevic, and K. Murray, "Defining Interfaces at a High Level
of Abstraction." TEE£ Software, 6(1), January 1989, 25-32.

FORR79 Forrest, A. R., "On the Rendering of Surfaces," SIGGRAPH 79. 253-259.

FORR80 Forrest, A. R., " The Twisted Cubic Curve: A Computer-Aided Geometric Design
Approach," Computer Aided Design, 12(4), July 1980, 165-172.

FORR85 Forrest, A. R., "Anlialiasing in Practice" , in Earnshaw, R. A., ed. , Fundamental
Algorithms for Computer Graphics, NATO ASI Series F: Computer and Systems
Sciences, Vol. 17, Springer-Verlag, New Yodc:, 1985, 113-134.

FORS88 Forsey, D.R., and R.H. Banels , "Hierarchical B-splioe Refinement," SJGGRAPH 88,
205-212.

FOUR82 Fournier, A., D. Fussell, and L. Carpenter, "Computer Rendering of Stochastic
Models, " CACM. 25(6), June 1982, 371-384.

FOUR86 Fournier, A., and W.T. Reeves, "A Simple Model of Ocean Waves," SIGGRAPH 86,
75-84.

FOUR88 Fournier, A. and D. Fussell, "On the Power of the Frame Buffer," ACM TOG, 7(2),
April 1988, 103-128.

FRANS! Franklin, W.R. , " An Exact H.idden Sphere Algorithm that Operates in Linear Time,"
CGIP, 15(4), Aprill981 , 364-379.

FREESO Freeman, H. ed., Tutorial and Selected Readings in lnteracthoe Computer Graphics,
IEEE Comp. Soc. Press, Silver Spring, MD, 1980.

FRIESS Frieder, G., D. Gordon, and R. Reynolds, "Back-to-Front Display of Voxei-Based
Objects," CO & A, 5(1), January 1985, 52--ro.

FROM84 Fromme, F., "Improving Color CAD Systems for Users: Some Suggestions from
Human Factors Studies," IEEE Design and Test of Computers, 1(1), February 1984,
18-27.

1201

1128 Bibliography

FUCH77a Fuchs, H., J. Duran, and B. Johnson, ''A System for Automatic Acquisition of
Three-Dimensional Data," in Proceedif'8S of the 1977 NCC, AAPS Press. 1977,
49-53.

FUCH77b Fuchs, H., "Distributing a Visible Surface Algorithm o-er Multiple Processors."
Proceedings of the ACM Annual Confennce, Seattle, WA, October 1977.449-451.

FUCH79 Fuchs, H., and B. Johnson, "An Expandable Multiprocessor Architecture for Video
Graphics," Proceedif'8S of the 6th ACM-IEEE Symposium on Computer Archit~turt.
Philadelph.ia, PA. April 1979, 58-67.

FUCH80 Fuchs, H., Z.M. Kedem. and B. F. Naylor. "On Visible Surface Generation by A Priori
Tree SI1\IC[Ute$, .. SIGGRAPH 80, 124-133.

FUCHS! Fuchs, H. and J. POOiton. " Pilcel-Piaoes: A VLSI-<>ricnted Design for a Raster
Graphics Engine," VLSI Design. 2(3). Q3 1981 , 20-28.

FUCH82 Fuchs. H., S.M. Pizer, E.R. Heinz, S .H. Bloomberg, L. Tsai, and D.C. Strickland,
"Design of and Image Editing with a Space-Filling Three-Dimensional Display Based
on a Standard Raster Graphics System, .. Procuditi[JS of SPIE. 367, August 1982,
117-127.

FUCH83 Fuchs, H., G. D. Abram, and E. D. Grant, "Near Reai-T'une Shaded Display of Rigid
Objects, .. S/GGRAPH 83. 65-12.

FUCH85 Fuchs. H., J. Goldfeather, J. Hultquist, S. Spach, J. Austin, F. Brooks, J. Eyles, and J.
Poulton, "Fast Spheres, Shadows, Thttures, Transparencies, and Image Enhancements
in Pixel-Planes," SIGGRAPH 85, 111-120.

FUCH89 Fuchs, H .. J . Pl:lulton , J. Eyles, T. Greer, J. Goldfcather, D. Ellsworth, S. Molnar, G.
Thrk, B. Tebbs , and L. Israel , "Pixel-Planes 5: A Heterogeneous Multiprocessor
Graphics System Using Processor-Enhanced Memories," SIGGRAPH 89, 19-88.

FUJISS Fujimura, K., and Kunii, T. L., "A Hierarchica.l Space Indexing Method," in Kunii ,
T. L., ed., Computer Graphics: Visual Technology and Art , Proceedings ofComputu
Graphics Tokyo '85 Qmftrtnce, Springer-Verlag, 1985, 21-34.

FUSS82 Fussell, D., and B. D. Rathi, "A VLSI-Oriented Architecture for Real-Time Raster
Display of Shaded Polygons." in Proceedings of Graphics lnterfoa '82, Toronto, May
1982, 373-380.

GAINS4 Gaines, B., and M. Shaw. The An of Compuur Convt!notion, Prentice-Hall Interna
tional, Englewood Cliffs, NJ, 1984.

GALI69 Galimberti, R., and U. Montanari, "An Algorithm for Hidden Line Elimination,"
CACM. 12(4), April 1969, 206-211.

GARD84 Gardner, G.Y., "Simulation of Natural Scenes Using Textured Quadric Surfaces,"
SIGGRAPH 84, 11- 20.

GARD&5 Gardner, G. Y ., " Visual Simulation of Clouds," SIGGRAPH 85, 297-303.
GARG82 Gargantini, 1., "Linear Octtrccs for Fast Processing of Three-Dimensional Objects,"

CGIP, 20(4), December 1982, 365-374.
GARG86 Oargantini, 1. , T. 'Mllsh, and 0. Wu, " Viewing Transformations of Voui-Based

Objects via Linear Octrees," CG & A, 6(10), October 1986, 12-21.

GARRSO Garren, M., A Unified Non-Procedural Environment for Designing and Implementing
Graphical interfaces to Relational Data Base MOII(lgement Systems, Ph.D. dissertation,
Technical Report GWU-EEICS-80-13, Department of Elecltieal Engineering and
Computer Science, The George Washington University, Washington, DC, 1980.

GARR&2 Gam:n, M., and J. Foley, "Graphics Programming Using a Database System with
Dependency Declarations," ACM TOG, 1(2), April 1982, 109-128.

GHAR88 Gharacborloo, N., S. Gupta, E. Hokenek, P. Balasubramanian, B. Bogboltz, C.
Mathieu, and C. Zoulas , "Subnanosecond Pixel Rendering with Million Trans~tor
Chips,' ' SIGGRAPH 88, 41-49.

1202

Bibliography 1127

GHAR89 Gharacborioo, N., S. Gupta, R.F. Sproull, and I.E. Sutherland, "A Characterization
of Ten Rastcrization Techniques," SIGGRAPH 89, 35S-368.

GlL078 Giloi, W.K ., Int~roctiwComput~rGrophics-DataStructura, Algorithms, Lang~.
Prentice-Hall, Engl~ Cliffs, NJ, 1978.

GINS83 Ginsberg, C.M., and D. Maxwell, "Graphical Marionette," in Proc~~dings of th~
S/GGRAPH!S/GAKI' lnt~rdisciplinory Worlcshop on Motion: Representation and P~rc~p
tion, Toronto, April 4-6, 1983, 172-179.

GlRA85 Girard, M., and A.A. Maciejewslci, "Computational Modeling for the Computer
Animation of Legged Figures," SIGGRAPH 85, 263-270.

GIRA87 Girard, M., " lntenletiw: Design of3D Computer-Animated Legged Animal Moc.ion,"
CG & A. 7(6), June 1987, 39-51.

GLAS84 Glassner, A.S., "Space Subdivision for Fasl Ray Trlcing," CG & A. 4(10), October
1984, IS-22.

GLAS86 G~r. A.S., "Adaptive Precision in Texture Mapping," SIGGRAPH 86, 297- 306.

GLAS88 Glassner, A., "Spacetime Raytracing for Animation," CG & A, 8(2), March 1988,
60-70.

GLAS89 Glassner, A.S., ed., An Introduction to Ray Tracing. Academic Press. London, 1989.

GOLD71 Goldstein, R.A., and R. Nagd, "3-D VISUal Simulation," Silrudation, 16(1), January
1971, 2S-31.

GOID76 Goldberg, A., and Kay, A., SMALLTALX-72 Instruction Manual, Learning Research
Group, Xerox Palo Alto Resean:h Center, Palo Alto, CA. March 1976.

GOLD80 Goldstein, H. , Classical M~ics, Addison-Wesley, Reading, MA, 1980.

GOLD83 Goldberg , A., and D. Robson, SmalU'a/lc 8(): Th~ LAnguage and Its lmplemt!ntation,
Addison-Wesley, Reading, MA, 1983.

GOLD84 Goldwasser, S.M. , "A Generalized Object Display Processor Architecture," in
Pro«edings of th~ lith Annual lntunational Symposium on Comput" Archiuctun,
Ann Arbor, MJ , June S-7, 1984, SIGARCH Newslmtr, 12(3), June 1984, 38-47.

GOID86 Goldfeather, J., J.P.M. Hultquist, and H. Fuchs, "Fasl Constructiw: Solid Geometry
Display in t.he Pixel-Powers Graphics System," SIGGRAPH 86, 107- 116.

GOLD87 Goldsmith, J., and J. Salmon, "Automatic Creation of Object Hierarchies for Ray
Thlcing," CG & A, 7(5), May 1987, 14-20.

GOLD88 Goldwasser, S.M., R.A. Reynolds, D. A. Talton, and B.S. Walsh, "Techniques for the
Rapid Display and Manipulation of 3-D Biomedical Data," Comp. Mtd. /mag . and
Graphics, 12{1), 1988, 1-24.

GOID89 Goldfeather, J ., S. Molnar, G. 1\ut, and H. Fuchs, "Near Real-Time CSG Rendering
Using Tree Nonnalization and Geometric Pruning," CG & A. 9(3), May 1989, 2G-28.

GONZ87 Gonzalez, R., and P. Wintz, Digilal I~ Processing, second edition, Addison·
Wesley, Reading, MA, 1987.

GORA84 Goral, C.M., K.E. Torrance, D.P. Greenberg, and B. Battaile, " Modeling the
Interaction of Light Between Diffuse Surfaces," SIGGRAPH 84, 213-222.

GORI87 Goris, A., B. Fredricbon, and H.L. Baeverstad, Jr., " A Configurable Pixel Cache for
Fast Image Generation," CG & A, 7(3), MiliCh 1987, 24-32.

GOSL89 Gosling, J. , personal communication, March 1989.

GOSS88 Gossard, D .. R. Zuffante, and H. Salrurai, " Representing Dimensions, Tolerances, and
Features in MCAE Systems," CG & A. 8(2), March 1988, 51-59.

GOUR71 Gouraud, H., "Continuous Shading of Curved Surfaces," IEEE Trans. on Ccmput~n.
C-20(6), June 1971 , 623-629. Also in FREE80, 302-308.

1203

1128 Bibliography

GREE85a Green. M .• "The University of Alberta User Interface Management System,"
SIGGRioPH 85, 205-2 13.

GREE85b Green. M., Tlu Lnsign of Graphical User lnurfoces, Tccl!nical Report CSRl-170,
Department of Computer Science, University of Toronto, Toronto, 1985.

GREE85c Greene. R .. "The Drawing Prism: A Versatile Graphic Input Device," SIGGRioPH 85.
103-110.

GREE86 Greene, N., "Environment Mapping and Other Applications of World Projections,"
CG & A. 6(1 1), November 1986, 21-29.

GREE87a Green , M . . "A Survey of Three Dialog Models," ACM TOG, 5(3), July 1987,
244-275.

GREE87b Greenstein, J. and L. Amaut, " Human Factors Aspects of Manual Computer Input
Devices," in Salvendy, G., ed., Handbook ofHwniJn Factors, Wiley, New Yoric, 1987,
1450-1489.

GREG66 Gregory. R.L., Eye and Brain- The Psychology of Seeing , McGraw-Hill , New Yoric,
1966.

GREG70 Gregory, R.L .• Tlu lntelligem Eye. McGraw-Hill , London, 1970.

GR IM89 Grimes. J., L. Kohn, and R. Bharndhwaj, " The Intel 1860 64-Bit Processor: A
General-Purpose CPU with 3D Graphics Capabilities," CG & A, 9(4), July 1989,
85-94.

GSPC77 Graphics Standards Planning COmmittee. "Status Report of the Graphics Standards
Planning COmmittee of ACM/SIGGRAPH." Compuur Graphics, 11(3), Fall 1977.

GSPC79 Graphics Standards Planning Committee. "Status Report of the Graphics Standards
Planning Committee." Computer Graphics, 13(3), August 1979.

GTC082 GTCO COrporation, DIG I-PAD 5 User's Manool, GTCO Corporation, Rockville, MD,
1982.

GUPTSia Gupu, S .. and R.E. Sproull, "Filtering Edges for Gray-Scale Displays," SIGGRAPH
81. i- 5.

GUPTSlb Gupta , S., R. Sproull, and I. Sutherland, "A VLSI Architecture for Updating
Raster-Scan Displays," SIGGRAPH 81. 71- 78.

GUPT86 Gupta , S., D.F. Bantz, P.N. Sholtz, C.J. Evangelisti, and W.R. DeOrazio, YOLN\: An
AIJwJnMJ Display for Pef'SIOfiiJl Computen, ComputeT Science Research Report
RCII618 (-52213), 1BM Thomas J. Watson Research Center, Yorktown Heights, NY,
October 1986.

GURW81 Gurwitz, R. , R. Fleming and A. van Dam, " MIDAS: A Microprocessor Instructional
Display and Animation System," IEEE Tronsacrions on Education, February , 1981.

HAEU76 Haeusing, M., "Color Coding of Information on Electronic Displays," in Proceedings
of the Sixth Congress of the lntmUUilHUII ~ Associalion. 1976, 210-217.

HAGE86 Hagen , M., Vari~ries of Rt!Diism, Cambridge University Press, Cambridge, England,
1986.

HAGE88 Hagen, R.E., An Algorithm for Incremental Anti-loliaud Litres and Curves, Master's
Thesis. Department of Eleclrical Engineering and COmputer Science, Massachusetts
Institute of Technology. Cambridge, MA. Janu81)' 1988.

HAIN86 Haines, E.A., and D.P. Greenberg, "The Light Buffer. A Shadow-Testing AcooiCTa
tor, " CG & A, 6(9) . September 1986, 6-16.

HAIN89 Haines, E., "Essential Ray Tracing Algorithms," in Glassner, A.S., ed., An
lnrroduction to Ray Tracing, Academic Press , London, 1989, 33-77.

HALA68 Halas, J., and R. Manvel I, T/u T~hnique of Film AniiiiQtion, Hastings House, New
Yoric, 1968.

1204

HALA73

HALA82

HALL83

HALL86

HALL89

HAM153

HAML77

HANA80

HANR83
HANR89

HANS71

HARR88

HART89

HATF89

HAYE83

HAYE84

HAYE85

HECK82

HECK84

HECK86a
HECK86b

Bibliography 1129

Halas, J., eel., Visuo.l Scripting, Hastings House, New York, 1973.

Halasz, F. , and T. Moran, "Analogy Considered Harmful," in Proaedings of the
Human Factors in Computer Systems Conference. ACM, New York, 1982, 383-386.
Hall , R.A., and D.P. Greenberg, "A Testbed for Realistic !mage Synthesis," CC &A,
3(8), November 1983, 10--20.

Hall, R., "Hybrid Techniques for Rapid Image Synthesis," in Whined, T. , and R.
Cook, eds., Image Rendering Tricks, Course Notes 16 for SICCRAPH 86, DaUas, TX.
August 1986.

Hall, R., 11/umiiiOtion and Color in Computer Generated Imagery, Springer-Verlag,
New York, 1989.

Hamilton, W.R. , Lectures on Quo.ternions: Containing a SystematicSuuement of a New
Mathematical Method; of Which the Principles Were Communicated in 1843 to the Royal
Irish Academy: and Which Has Since Formed the Subject of Successive Courses of
Lectures, Delivered in 1848 and Subsequent Years, in the Halls of Trinity College,
Dublin: With Numerous Illustrative Examples, Hodges and Smith, Dublin, 1853.

Hamlin, G., Jr. , and C.W. Gear, "Raster-Scan Hidden Surface Algorithm Tech
niques," SIGGRAPH 77, 206-213. Also in FREE80, 264-271.

Hanau, P .• and D. Lenorovitz, "Prototyping and Simulation Tools for User/Computer
Dialogue Design," SIGGRAPH 80, 271-278.

Hanrahan, P., "Ray Thlcing Algebraic Surfaces,'' SIGGRAPH 83, 83-90.
Hanrahan. P., "A Survey of Ray-Surface Intersection Algorithms," in Glassner, A.S.,
ed., An Introduction to Ray Tracing, Academic Press, London, 1989, 79-119.

Hansen, W., "User Engineering Principles for Interactive Systems," in FJCC 1971.
AFTPS Press, Montvale, NJ , 1971, 523-532.

Harrington, S.J., and R.R. Buckley, lnterpress: The Source Book, Brady, New York,
1988.

Hartson, R., and D. Hix, "Human-Computer Interface Development: Ccncepis and
Systems," ACM Computing Surveys, 21(1), March 1989, ~92.

Hatfield, D., Ami-Aiiased, Transparent, and Diffuse Curves, ffiM Technical Computing
Systems Graphics Report 0001, International Business Machines , Cambridge, MA,
1989.

Hayes, P., and Szekely, P., "Graceful Interaction Through the COUSIN Command
Interface," lnteriiOtional Journal of Man-Machine Studies, !9(3), September 1983,
28~305.

Hayes, P., "Executable Interface Definitions Using Form-Based Interface Abstrac
tions," in Advances in Computer-Human Interaction, Hartson, H.R., ed., Ablex ,
Norwood, NJ, 1984.

Hayes, P., P. Szekely, and R. Lerner, "Design Alternatives for User Interface
Management Systems Based on Experience with COUSIN," in CHI '85 Proceedings,
ACM, New York, 1985, 169-175.

Heckbert , P., "Color Image Quantization for Frame Buffer Display," SIGGRAPH 82,
297-307.

Heckbert , P.S., and P. Hanrahan, " Beam Tracing Polygonal Objects," SIGGRAPH
84, 119-127.

Heckbert, P.S. , "Filtering by Repeated lmegratlon," SIGGRAPH 86, 315-321.
Heckbert, P.S. , "Survey of Texture Mapping," CG & A, 6(11), November 1986,
56-67.

1205

1130 Bibliography

HEDG82 Hedgley, D.R., Jr., A G~nerol Solution to th~ Hidtkn·Une Probl~m. NASA Reference
Publicatioo 1085. NASA Scieo1i6c and Technical lnfonnalion Branch, 1982.

HEME82 Hemenway, K., " Psychological Issues in the Usc of Icons in Command Menus," in
Proceedings Humon Factors in Computer Sysr~ms Conference, ACM, New York, 1982
20-23.

HER076 Hero1, C., "Graphicallnpul Through Machine Recognilion of Sketches," SIGGRAPH
76, 97- 102.

HER078 Hero! , C., and G. Weinzapfel , "One-~im Touch lnpul of Vector lnfonnalion for
Computer Displays," SIGGRAPH 78, 210-216.

HERZ80 Herzog, B. , " In Memoriam of Sle~~en Anson Coons," Computer Grophics, 13(4),
February 1980, 228-231.

HILL83 Hill, F.S., Jr., S. Walker, Jr. , and F. Gao, " lnleraclive lm~e Query System Using
Progressive Transmission," SIGGRAPH 83, 323-333.

HlLL87 Hill , R. , " Supponing Concurre.ncy , Communicalion , and Synchronizalion in Human
Compuler lnter-.tetion- The Sassafras UIMS," ACMTOG, 5(3), July 1986, 179- 2 10.

HIRS70 Hirsch, R., "Effects of Slandard vs. Alphabelical Keyboard Formats on Typing
Performance," Journal of AppliM Psychology, S4, December 1970, 484-490

HOB889 Hobby , J . D., "Rasteriz:ing Cul"\\es of Constanl Wtdlh," JACM, 36(2), April 1989,
209-229.

HODG85 Hodges, L., and D. McAllister, " Stereo and Allemaling-PairTecbniques for Display of
Computa-Generaled lm~es." CG & A. S(9) , September 1985, 38-45.

HOFF61 Hoffman, K., and R. Kunze, Uneor Algebro, Prentice-Hall, Englewood Clift's, NJ.
1961 .

HOLL80 HoUaday, T. M., ''An Oplimum Algorilhm for Holf1one Generation for Displays and
Hard Copies,' ' Procudings of the Society for Jnfortnotion Display, 2 1(2), 1980,
185-192.

HOPG86a Hopgood, F., D. Ouce. J . Gallop, and D. Su!clitre, Introduction to th~ Grophicol
Kmrd Syst~m (GKS), second edilioo. Academic Press, London, 1986.

HOPG86b Hopgood, F., D. Duce, E. Fielding, K. Robinson , and A. Williams, eds., Metlwdology
of Window Monogem~nr. Springer-Verlag, New Yorlt. 1986.

HORN79 Horn, B.K.P., and R.W. Sjoberg, "Calculaling the ReOeclance Map," App/iM
Optics, 18(11), June 1979, 1770-1779.

HUBS82 Hubschman, H. , and S.W. Zuck.cr, " Frame-to-Frame Coherence and 1hc Hidden
Surface Computation: Conslmints for a Convex WorM,' ' ACM TOG. 1(2), April 1982,
129-162.

HUDS86 Hudson, S., and R. King, "A Generator of Dinec1 Manipulation Office Sys~ems ,''
ACM TtrmSOcrioru on Offi« lnformmion Syst~ms. 4(2), April 1986, 132-163.

HUOS87 Hudsoo , S . • "UIMS Suppon for Direct Manipula1ion lmerfaces," ACM SIGGRAPH
Work.slrop on Software Tools for User Jrrurfoce MlUIIJBe~Mnl, in Computer Grophics,
21 (2), April 1987, 120-124.

HUDS88 Hudson, S., and R. King, "Semantic Feedback. in the Higgens UIMS,' ' IEEE
Tronsactions on Softwore Engineering, 14(8), August 1988, 1188-1206.

HUGH89 Hughes, J., Integer and Floating-Point Z-Buffer Resolmion, Depanrnenl of Compuler
Science Technical Report. Brown Universil)', Providence. Rl, 1989.

HULL87 Hull, R., and R. King, " Semantic Database Modeling: Survey, Applicalions. and
Researcb Issues," ACM Computing Surwys, 19(3) . September 1987, 201-260.

HUNTI8 Hunter, G .M., Ejfrci~nt Computation and Dolo Structurnfor Graphics. Ph.D. Thesis.
Depanment of Electrical Engineering and Cornpuler Science, Princc1oo Universily,
Princeton. NJ. 1978.

1206

Bibliography 113 1

HUNTI9 Hunter, G.M. and K. Steiglitz, "Operations on Images Using Quad Trees," IEEE
Trans. Pattern Anal. Mach. Intel/., 1 (2), April 1979, 145-153.

HUNTS I Hunter, G.M., Geometrees for lnreracth'f! Visualizmion of Geology: An Evaluation.
System Science Department, Schlumberger-Doll Research, Ridgefield , Cf, 1981.

HUNT87 Hunt, R.W., The Reproduction of Colour, founb edition, Fountain Press, Tolwonb.
England, 1987.

HURL89 Hurley, D., and J. Sibert, "Modeling User Interface-Application Interactions," IEEE
Software, 6(1), January 1989, 71-77.

HUTC86 Hutchins, E., J. Hollan, and D. Norman, "Direct Manipulation Interfaces> in
Norman, D. , and S. Dr.tper, eds., User Centered System Design, Erlbaum, Hillsdale,
NJ, 1986, 87- 124.

£ES87 Dluminating Engineering Society, Nomenclature Committee, ANSI liES RP-16-1986:
American Nationnl St01ulard: Nomenclature and DejinitiotiS for Illuminating Engineer
ing, Illuminating Engineering Society of North America, New York, 1987.

IMME86 Immel, D.S .. M.F. Cohen, and D.P. Greenberg, "A Radiosity Method for Non
Diffuse Environments," SJGGRAPH 86, 133-142.

lNFA85 lnfante, C. , ''On the Resolution of Raster-Scanned CRT Displays,'' Proceedings of the
Society for Information Display, 26(1), 1985,23-36.

INGA81 Ingalls, D .. "The SmalJTalk Graphics Kernel," BYTE, 6(8) , August 1981.

lNTE85 lnteraction Systems, lnc., TK-1000 Touch System. interaction Systems, Inc., Newton
ville, MA, 1985.

INTE88 International Standards Organization, Jmernationo/ Standard lnformatibn Processing
Systems- Computer Graphics- Graphical Kernel System for Three Dimensions (GKS
JD) Functional Description, ISO Document Number 8805: 1988(E), American National
Standards Institute, New York, 1988.

INTE89 Intel Corporation, i860 Microprocessor Family Product Briefs, lntel Corporation, Santa
Clara, CA. 1989.

IRAN71 lrani, K., and V. Wallace, "On Network Linguistics and the Conversational Design of
Queueing Networks," JACM. 18, October 1971, 616-629.

ISO International Standards Organization, Information Processing Text and Office Systems
Standard Page Description lAnguage (SPDL). ISO Document Number JTC I SCI 81
WG8N561, American National Standards lnstitute, New York.

JACK64 Jacks, E .• "A Laboratory for the Study of Man-Machine Communication," in FJCC
64, AF!PS, Montvale, NJ, 1964, 343-350.

JACK80 Jackins, C., and S.L. Tanimoto, "Oct-Trees and Their Use in Representing Three
Dimensional Objects," CGIP, 14(3), November 1980, 249-270.

JAC083 Jacob, R., "Using Fonnal Specifications in the Design of the User-Computer
Interface," CACM, 26(4), April 1983, 259-264.

JAC085 Jacob, R., "A State Transition Diagram Language for Visual Programming," IEEE
Computer, 18(8). August 1985, 51-59.

JAC086 Jacob, R., " A Specification Language for Direct-Manipulation User Interfaces, " ACM
TOG, 5(4), October 1986, 283-317.

JANS85 Jansen, F.W., " A CSG List Priority Hidden Surface Algorithm," in C. Vandoni, ed.,
Proceedings of Eurogrophics 85, North-Holland, Amsterdam, 1985, 51~2.

JANS87 Jansen, F.W., Solid Modelling with Faceted Primitives, Ph.D. Thesis, Department of
Industrial Design, Delft Uni-ersity of Technology, Netherlands, September 1987.

JARV76a Jarvis, J.F., C.N. Judice, and W.H. Ninke, " A Survey of Techniques for the !mage
Display of Continuous lbne Pictures on Bilevel Displays," CGIP, 5(1), March 1976,
13-40.

1207

1132

JARV76b

JENK89

JEVA89

JOBL78

JOHN78

JOHN82

JONE26

JOVA86

JOY86

JOY88

JUDD75

JUDI74

KAJI82

KAJJ83

KN184

KAJ I85

KNT86
KAPL85

KAPP85

KASI82

KAUF88a

KAUF88b

KAWA82

KAWA88

Bibliography

Jarvis , J.F., and C.S. Robens, "A New Technique for Displaying Continuous Tone
Images on a Bilevel Display,' ' IEEE Trans .. COMM-24(8). August 1976, 89 1-898.

Jenkins, R.A .. "New Approaches in Pa.rallel Computing," Compwers in Physics. 3(1).
January-February 1989, 24-32.

Jevans, D. A., "A Review of Multi-Computer Ray Tmcing,'' Ray Tracing News. 3(1},
May 1989, 8-15.

Joblove, G.H., and D. Greenberg, "Color Spaces for Computer Graphics,'' SIG·
GRAPH 78, 20-27.
Johnson, S., and M. Lesk, ''Language Development Tools,' ' Bell System Technical
Journal, 57(6,7), July- August 1978, 2155-2176.

Johnson, S.A .. "Clinical Varifocal Mirror Display System at the University of Utah,"
in Procudings of SPIE, 367, August 1982, 145-148.

Jones, L .. and E. Lowry, " Retinal Sensibility to Saturation Differences," Jouma/ of
the Oprical Sociery of America, 13(25), 1926.

Jovanovi~. B., Visual Programming of Functional Transformations in a D>•ramic
Process Visualization System, Report GWU-IIST-86-22, Department of Computer
Science, George Washington University, Washington, DC, 1986.

Joy , K.l., and M.N. Bhetanabbotla , " Ray Tracing Parametric Surface Patches Utilizing
Numerical Techniques and Ray Coherence,'' SIGGRAPfl 86, 279-285.

Joy , K., C. Grant, N. Max, and L. Hatfield , Tutorial: Computer Graphics: Image
Symhesis, IEEE Computer Society, Washington. DC, 1988.

Judd, D., and G. Wyszeck.i , Color in Business, Science, and Industry. Wiley. New
York, 1975.

Judice, J .N., J .F. Jarvis, and W. Ninke. "Using Ordered Dither to Display Continuous
Tone Pictures on an AC Plasma Panel ," Ptoceedings of the Sociery for Information
Display. Q4 1974, 161- 169.

Kajiya , J.T., " Ray Tracing Parametric Patches," SIGGRAPH 82, 245-254.

Kajiya, J., " New Techniques for Ray Tracing Procedurally Defined Objects,''
SIGGRAPH 83, 91-102.

Kajiya , J .. and B. Von Herren. " Ray Tracing Volume Densities,'' SICGRAPH 84,
165-173.

Kajiya, J.T. , "Anisotropic Reftection Models,'' SIGGRAPH 85, 15-21.

Kajiya, J.T. , "The Rendering Equation," StGGRAPf/86, 143-150.

Kaplan , G. , and E. Lerner, "Realism in Synthetic Speech," IEEE Spectrum, 22(4),
April 1985. 32-37.

Kappel , M. R. , " An Ellipse-Drawing Algorithm for Raster Displays,'· in Earnshaw, R.,
cd. Fundamemal Algorithms for Computer Graphics, NATO ASl Series, Springer
Verlag, Berlin, 1985, 257-280.

Kasik, D., "A User lnterface Management System," SIGGRAPfl 82, 99- 106.

Kaufmann, H. E., "User's Guide to the Compositor," Computer Graphics Group
Documentation, Brown University, Providence, Rl , May 1988.

Kaufman. A., and R. Bak.alash, "Memory and Processing Architecture for 3D
Voxei-Based Imagery," CG & A, 8(6), November 1988, 10-23.

Kawaguchi. Y. , "A Morphological Study of the Form of Nature," SIGGRAPH 82.
223-232.
Kawaguchi, Y., film , ACM SIGGRAPH 88 Electronic Theater and Video Review, 26,
1988.

1208

KAY79a

KAY79b

KAY86

KEDE84

KELL76

KELU8

KIER8S

KLEM71

KLIN71

KNOW71

KNOW80

KNUT69

KNUT87

KOBA87

KOCA87

KOCH84

KOIV88

KORE82

KORE83

KREB79

KRUE83

KURL88

KURL90

Bibliography 1133

Kay, D.S .. Ttansparrncy. Rtfracrion and Ray Tracing/or Computt'r Synthesiud Images,
M.S. Thesis, Program of Computer Graphics. Cornell University, lthaea, Y. January
1979.

Kay, D.S., and D. Greenberg, "TraMparency for Computer Synthesiud Images,"
SIGGRAPH 79. 158- 164.

Kay, T.L .. and J .T. Kajiya, "Ray Tracing Complex Scenes," SIGGRAPH 86. 269-218.
Kedem, G .. and J. L. Ellis, " The Raycasting Machine," in Proceedings of the 1984
lnr~rnational Conf~rence on Computer Design. October 1984, 533-538.

Kelly, K., and D. Judd. COLOR-Univ~l Language and Dictionary of Names.
National Bu~au of Standards Spec. Publ. 440, 003-003-01705-1, U.S. Government
Printing Office. Washington. DC. 1976.

Kelley, A.D., M.C. Malin, and G.M. Nielson, "Terrain Simulation Using a Model of
Stream Erosion," SIGGRAP/1 88, 263-268.

Kieras, D., and P. Polson. "An Approach to the Formal Analysis or User Complexity,"
lml!fnational Journ11l of Man-Machine Studies, 22(4), April 1985, 365-394.

Klemmer, E., "Keyboard Entry," Applied Ergonomics, 2(l), 1971. 2-6.

Klinger, A., ''Patterns And Sea~h Statistics," in Rustagi, J., ed., Optimizing Ml'thods in
Statistics. Academic Press. New York. 1971.303-337.

Knowlton, K., and L Cherry, ''ATOMS-A Th=-D Opaque Molecule System for
Color Pictures of Space-Filling or Ball-and-5tick Models," Computenand Chemistry. I,
1977, 161-166.

Knowlton, K. , "P~sive Transmission of Gray-Scale and Binary Pictures by Simple,
Efficient, and Loss-less Encoding Schemes," Proc. of IEEE. 68(7), 1980, 885- 896.

Knuth, D.E., The Art of Computer Programming, Volume 2: Seminumerical Algorithms,
Addison-Wesley, Rending, MA, 1969.

Knuth, D., " Digital Halnones by Dot Diffusion," ACM TOG, 6(4), October 1987,
245-273.

Kobayashi. H., T. Nakamur2, andY. Shigei, " Patallel Processing of an Object Synthesis
Using Ray Tracing." Visual Computer. 3(1), February 1987, 13-22.

K~.ak, H., Bisshopp, F., Laidlaw, D., and T . Banchofl', "Topology and Mechanics with
Computer Graphics: Linear Hamiltonian Systems in Four Dimensions," Ad•·ances in
Applied Mathemalics, 1986. 282-308.

Kochanek, D., and R. Bartels, " Interpolating Splines with Local Tension. Continuity.
and Bias Control," SIGGRAPH 84. 33-41.

Koivunen, M., and M. M4ntyl4, "HutWindows: An Improved Aschitecture for a User
Interface Management System," CG &A. 8{1). January 1988,43-52.

Ko~in, J.U .• and N.J. Sadler, ''Techniques for Generating the Goal-Directed Motion of
Aniculated Structures," CG & A. 2(11). November 1982,71-81.

Korein, J .. and N. Sadler, "Temporal Anti-Aliasing in Computer Generated Anima
tion," SIGGRAPH 8J. 371-388.

Krebs, M., and J. Wolf, "Design Principles for the Use of Color in Displays,"
Proceedings of the Society for Information Display, 20. 1979, 10-15.

Krueger, M., Artificial Reality, Addison-Wesley. Reading. MA. 1983.

Kurlander, D., and S. Feiner, "Editable Graphical Histories," in Proc. 1988 IEEE
JJ~rkshop on Vis11al Lang11ages, October I 0-12. 1988. Pittsburgh. PA, 129- 132.

Kurlander, D .. and S. Feiner, "A Visual Language for Browsing. Undoing. and
Redoing Graphical Interface Commands," in Chang. S .. ed., V'uual Languages and
Visual Programming. Plenum Press, New York. 1990. 257-275.

1209

1134 Bibliography

LAID86 Laidlaw, D. H., W.B. Trumbore, and J.F. Hughes, "Constructive Solid Geometry for
Polyhedral ObjeciS," SIGGRAPH 86. 161- 170.

LAND85 Landauer, T. , and D. Nachbar, "Selection from Alphabetic and Numeric Menu Trees
Using a Touch-Sensitive Screen: Breadth, Depth, and Width," in Proceedings CHI' 85
Hwnan Facwrs in Comparing Sysrems Conference, ACM, New York, 1985, 73-78.

LAN£79 Lane, J. , and L. Carpenter, "A Generalized Scan Line Algorithm for the Computer
Display of Parametrically Defined Surfaces," CGLP, I 1(3), November 1979,290-297.

LANE80a Lane, J., and R. Riesenfeld, ''A Theoretical Development for the Computer Generation
of Piecewise Polynomial Surfaces," IEEE Transactions on Pattem Analysis and
Machine Intelligence, PAMJ-2(1), January 1980, 3~6.

LANE80b Lane, J., L. Carpenter. T . Whitted, and J. Blinn. "Scan Line Methods for Displaying
Parametrically Defined Surfaces," CACM. 23(1), January 1980, 23-34. Also in
BEAT82, 468-479.

LANT84 Lantz, K., and W. Nowicki, "Structured Grapltics for Distributed Systems," ACM
TOG, 3(1), January 1984, 23-51.

LANT87 Lantz, K., P. Thnner, C. Binding, K. Huang. and A. Dwelly, " Reference Models,
Window Systems, and Concurrency," in Olsen, D .. ed., "ACM SIGGRAPH
Work.sbop on Software Tools for User interface Management," Computer Graphics,
21(2) , April 1987, 87- 97.

LASS87 Lasseter, J .. "Principles of Traditional Animation Applied to 3D Computer Anima-
tion ," SIGGRAPH 87, 35-44.

LAYB79 Layboume, K., The Animntion Book, Crown, New York, 1979.

LEAF74 Leaf, C., The Owl Who Married a Goose, film, National Film Board of Canada, 1974.

LEAF77 Leaf, C., The Meramorphosis of Mr. Samsa, film, National Film Board of Canada,
1977.

LEE85a Lee, S. , W. Buxton, and K. Smith, " A Multi-touch Three Dimensional Touch
sensitive Tablet ," in Proceedings of CHI'85 Hwnan Factors in Computing Systems
Conference, ACM. New York, 1985, 21-25.

LEE85b Lee, M.E., R.A. Redner, and S.P. Uselton, "Statistically Optimized Sampling for
Distributed Ray Tracing," STGGRAPH 85, 61-67.

LEVI76 Levin , J. , "A Parametric Algorithm for Drawing Pictures of Solid ObjeciS Composed
of Quadric Surfaces," CACM, 19(10), October 1976, 555- 563.

LEVI84 Levinthal , A. , and T. Poner, "Chap-a SIMD Gr.tpbics Processor," SIGGRAPH 84,
77-82.

LEV078 Levey, M. , Computer Assisted Cartoon Animation, Master's Thesis. Department of
Architecture, Cornell University, Ithaca, NY, August 1978.

LEV082 Levey, M., "Area Flooding Algorithms," in Two-Dimensional Computer Animarion,
Course Note.r 9 for SIGGRAPH 82 , Boston, MA, July 26-30, 1982.

LEV089 Levey. M. , " Design For a Real-Time High-Quality Volume Rendering Workstation," in
Proceedings of rite Volume Visualization Workshop, Depanment of Computer Science,
University of North Carolina at Chapel Hill , May 18-19, 1989, 85-90.

LIAN83 Liang, Y-D., and B.A. Barsky, "An Analysis and Algorithm For Polygon Clipping,"
CACM. 26(11), November 1983, 868-877, and Corrigendum, CACM, 27(2), February
1984, 151.

LIAN84 Liang, Y-D., and Barsky, B., " A New Concept and Method for Line Clipping," ACM
TOG. 3(1). January 1984, 1-22.

LIEB78 Lieberman, H. , " How to Color in a Coloring Book," S!GGRAPH 78. 111- 116.

LIEN87 Lien, S.L .• M. Shantz, and V. Pratt , "Adaptive Forward Differencing for Rendering
Curves and Surfaces," S!GGRAPH 87, 111- 118.

1210

Bibliography 1135

LIND68 Lindenmayer, A, "Mathematical Models for Cellular Interactions in DeYclopment .
Parts I and IJ," J. Thtor. Bioi., 18, 1968, 2ro-315.

LINT89 Linton , M., J. Vlissides, and P. Calder, " Composing User Interfaces with Inter·
Views," TEEE Computer. 22(2), February 1989, 8-22.

LIPS79 Lipscomb, J.S., Thrtt·Dimensionol Cues for a Mol«ular Computer Graphics System,
Ph.D. Thesis, Department of Computer Science, University of North Carolina at
Chapel Hill , 1979.

LOUTIO Loutrel , P.P. , " A Solution to the Hidden-Line Problem for Computer-Drawn Polyhe
dra, " IEEE Trans. on Compurm, EC-19(3), Mardi 1970, 205-213. Also in FREE80.
221- 229.

WCA84 Lucasfilm, Ltd .. The Adl-entuns of Andd and 1411/Jy B .• film, August 1984.

MACH78 Machover, C. , " A Brief Personal History of Computer Graphics," Computer, II (II),
November 1978. 38-45.

MACK86 Mackinlay, J. , "Automating !he Design of Graphical Presentation of Relational
Information," ACM TOG. 5(2), April 1986, 110-141.

MAGI68 Mathematical Applications Group, Inc. , "3-D Simulated Graphics Offered by Service
Bureau," Daramnrion, 13(1), February 1968, 69.

MAGN85 Magnenat-Thalmann, N., and Thalmann, D., Computer Animalion: Th«>ry and
PracJi«. Springer-Verlag, Tokyo, 1985.

MAHL72 Mahl , R., " Visible Surface Algorithms for Quadric Patches," IEEE Trans. on
Compurm, C-21(1), January 1972, 1-4.

MAHN73 Mahnkopf, P. , and J.L. Encama~o, FLAVIS- A Hlddtn lint Algorithm for Displnying
Spatial Constructs Gi>>tn by Point Sets, Technischer Bericht Nr. 148, Heinrich Hertt
lnstitut, Berlin, 1973.

MAMM89 Mammen, A. , "Transparency and Antialiasing Algorithms Implemented wilh the
Virtual Pixel Maps Technique," CG & A. 9(4), July 1989, 43-55.

MAN077 Mandelbrot. B., Fractals: Form. Chanct and Dimtnsion, W.H. Freeman, San
Francisco, CA, 1977.

MAND82 Mandelbrot, B., Technical Correspondence, CACM. 25(8), August 1982, 581-583.

MANT88 MlntyUi, M . Introduction ro Solid Modeling, Computer Science Press, Rockville, MD,
1988.

MARC80 Marcus, A .• "Computer-Assisted Chart Making from the Graphic Designer' s Perspec
tive," SIGGRAPH 80, 247- 253.

MARC82 Marcus, A. , " Color: A Tool for Computer Grdphics Communication," in Greenberg,
D .. A. Marcus, A. Schmidt, and V. Gorter, The Computer Image, Addison-Wesley,
Reading, MA, 1982, 76-90.

MARC84 Marcus, A., " Corporate Identity for Iconic Interface Design: Tbe Graphic Design
l'l:ispective," CG & A, 4{1 2), December 1984, 24-32.

MARK80 Markowsky, G., and M.A. Wesley, " Fleshing Out Wire Frames," IBM Jo11mal of
Research and 0~-elopmtnt, 24(5), September 1980, 582-597.

MARS85 Marsden , J. , and A. Weinstein, Colculus I, If, and Ill, second edition, Springer Verlag,
New York, 1985.

MART89 Martin , G. , "Tbe Utility of Speech Input in User-computer Interfaces," fmemarionol
Journof of Man-Machine Studies, 30(4), April 1989, 355-376.

MASS85 Massachusetts Computer Corporation (MASSCOMP). Graphics App/ietUion Program
ming Manual, Order No. M-SP~AP. MASSCOMP. ~ord. MA. 1985.

MAUL89 Maulsby, 0 ., and I. Willen, " Inducing Programs in a Direct Manipulation Environ
ment," in Practtdings CHI 1989, ACM, New York . 1989, 57~2.

1211

1136

MAX79

MAXSI

MAX82

MAX84

MAX86

MAXW46

MAXW51

MAYH90

MCIL83

MCLE88

MCMI87

MEAG80

Bibliography

Max, N.L., "ATOMLLL:- ATOMS with Shading and Highlights," SIGGRAPH 79,
165-173.

Max, N., Carla's Island, animation, ACM SIGGRAPH 81 Video Review, 5, 1981.

Max, N., "SIGGRAPH '84 Call for Omnimax Films," Computer Graphics, 16(4),
December 1982, 208-214.

Max, N.L., "Atoms with Transparency and Shadows," CVGIP, 27(1), July 1984,
46-63.

Max , N., "Atmospheric lllumination and Shadows," SIGGRAPH 86, 117-124.

Maxwell, E. A. , Methods of Plane Projective Geometry Based on the ·Use of General
Homogeneous Coordinates, Cambridge University Press , Cambridge, England, 1946.

Maxwell, E. A. , General Homogeneous Coordinates in Space of Three Dimensions,
Cambridge University Press, Cambridge, England, 1951.

Mayhew, D., Principles and Guidelines in User Interface Design, Prentice-Hall,
Englewood Cliffs, NJ, 1990.

Mcilroy, M.D., "Best Approximate Circles on Integer Grids," ACM TOG, 2(4),
October 1983, 237- 263.

McLeod, J .. " HP Delivers Photo Realism on an Interactive System," Electronics,
61(6) , March 17, 1988, 95-97.

McMillan , L., "Graphics at 820 MFLOPS," ESD: The Electronic Systems Design
Magazine, 17(9). September 1987, 87-95.

Meagher, D., Ocrree Encoding: A New Technique for the Representation, Manipulation,
and Display of Arbitrary 3-D Objects by Computer, Technical Repon lPL-TR-80-111,
Image Processing Laboratory, Rensselaer Polytechnic Institute. Troy, NY, October
1980.

MEAG82a Meagher, D., "Geometric Modeling Using Octree Encoding," CGIP. 19(2), June
1982, 129-147.

MEAG82b Meagher, D. , "Efficient Synthelic Image Generation of Arbitrary 3-D Objects," in
Proceedings of the IEEE Computer Society Conference on Pattern Recognition and Image
Processing, IEEE Computer Socitey Press , Washington, DC, 1982.

MEAG84 Meagher, 0., "The Sol.ids Engine: A Processor for Interactive Solid Modeling," in
Proceedings of NICOGRAPH '84, Thlcyo, November 1984.

MEAG85 Meagher, D., "Applying Solids Processing to Medical Planning," i.n Proceedings of
NCGA '85. Dallas, 1985, 101-109.

MEGA89 Megatek Corporation, Sigma 70 Advanced Graphics Workstations. Megatek Corpora
tion, San Diego, CA, 1989.

MEIE83 Meier, B., Brim, Computer Graphics Group Documentation, Computer Science
Depanment, Brown University, Providence, RI, 1983.

MEIE88 Meier, B., "ACE: A Color Expen System for User Interface Design," in Proceedings
of the ACM SIGGRAPH Symposium on User Interface Software, ACM, New York.,
117- 128, 1988.

MEYESO Meyer, G.W. , and D.P. Greenberg, "Perceptual Color Spaces for Computer Graph
ics," SIGGRAPH 80. 254-261.

MEYE83 Meyer, G .. Calorimetry m1d Computer Grophics, Program of Computer Graphics,
Cornell University, Ithaca , NY, 1983.

MEYE88 Meyer, G., and Greenberg, D. , "Color-defe~ive Vision and Computer Graphic
Displays," CG & A, 8(5), September 1988, 28-40.

MICH71 Michaels, S .. "QWERTY Versus Alphabetical Keyboards as a Function of Typing
Skill," Human Factors, 13(5), October 197 1, 419-426.

1212

Bibliography 1 1 37

MJCR89 Microsoft Corponu;on, Pr~mation Mo11Q8U. Microsoft Corporation. Bcllevue. WA,
1989.

M1LL87 Miller, J.R .. "Geometric Approaches to Nonplanar Quadric Surface Intersection
Curves," ACMTOG. 6(4), October 1987,274-307.

MlLL88a Miller, G.S.P., "The Motion Dynamics of Snakes and Wonns,'' SIGGRAPH 88.
169-178.

MLLL88b Miller, G.S.P., "The Motion Dynamics of Snakes and Worms," lecture at ACM
SIGGRAPH '88.

MJLL88c Miller, P., and M. Szczur, ''Transportable Application Environment (TAE) Plus
Experiences in 'Object'ively Modcrniting a User Interface Environment . .. in Procffii·
ings ofOOPSU '88, 58-70.

MJLL89 Miller, J.R., "Architectural Issues in Solid Modelers ,'' CG & A, 9(5), Sep1embcr
1989. 72--$7.

MINS84 Minsky, M .• " Manipulating Simulated Objects with Real-World Gesiures Using a
Force and Position Sensitive Screen,'' SIGGRAPH 84, 195-203.

MITC87 Mitchell , D.P., "Generating Antialiased Images at Low Sampling Densities," SIC
GRAPH 87. 65-12 .

MITC88 Mitchell , D.P., and A.N. Netravali, " Reconstruction FilterS in Computer Graphics,"
SIGGRAPH 88. 221-228.

MOLN88 Molnar, S., "Combining Z-Buffer Engines for Higher-Speed Rendering," 1988
Eurographics Worbhop on Graphics Hardware. Sophia-Antipolis, Fra.ncc, September,
1988. 1b appear in Kuijk , A.A.M .• ed., Advance itr Computer Graphics Hardware Ill ,
Proceedings of 1988 Eurogrophics Workshop on Graphics Hardw-are, Eurogrophics
Seminars, Springer-Verlag, Berlin, 1989.

MORR86 Morris. J. , M. Satyonamynnan. M.H. Conner. HI. Howard, D.S.H. Rosenthal. and
F.D. Smith, " Andrew: A Distributed Personal Computing Environment,'' CACM,
29(3), March 1986, 184-201.

MORT85 Mortenson, M., G-tric Madding, Wiley, New York, 1985.

MUNS76 Munsell Color Company, Book of Color, Munsell Color Company, Baltimore, MD,
1976.

MURC85 Murch. G., "Using Color Effectively: Designing to Human Specifications, .. Tt!Chnicol
CommuniCOiiOtiS, Q4 1985, Tektronix Corporation, Beavenon, OR, 14-20.

MUSG89 Musgrave, F.K., "Prisms and Rainbows: A Dispersion Model for Computer Graph
ics,'' in Proceedi11gs of Graphics Interface '89. London, Ontario, June 19-23, 1989,
227-234.

MYER68 Myer, T ., and I. Sutherland, "On !be Design of Display Processors." CACM. 11(6),
June 1968, 410-414.

MYER75 Myers. A.J., An Effici~nt Visible Surfaa Program. Report to ihe National Science
Foundation, Computer Graphics Research Group, Ohio State University, Columbus,
OH, July 1975.

MYER84 Myers, B., " The UserlntcrfaceforSapphire," CG & A, 4{ 12), December 1984, 13-23.

MYER85 Myers, 8 ., ''The lmporcance of Percent-Done Progress Indicators for Computer-Human
Interfaces;" in Proceedings CHI'85, ACM, New York , 1985, 11- 17.

MYER86 Myers , 8., "Creating Highly-Inter-active and Graphical User Interfaces by Demonstra
tion," SJGGRAPH 86. 249-257.

MYER88 Myers , B .. CrMtif18 ~r lnrerfaas by Demonstration, Academic Press. New York,
1988.

MYER89 Myers , B., "User-Interface Thols: Introduction and Survey," IEEE Soft»Ylrr, 6(1),
January 1989, 15-23.

1213

1138 Bibliography

NAIM87 Naiman, A., and A. Fournier, " Rectangular Convolution for Fast Filtering of
Characters. " SIGGRAPH 87, 233-242.

NARU87 Naruse. T., M. Yoshida, T. Takahashi, and S. Naito, "SIGHT - a Dedicated
Computer Graphics Machine," Computer Graphics Forum. 6(4), December 1987,
327-334.

NAVA89 Navazo, 1. , "Extended Octree Representation of General Solids with Plane Faces:
Model Structure and Algorithms," Compurer.f and Graphics, 13(1), January 1989,
5-16.

NAYL90 Naylor, B.F. , " Binary Space Partitioning Trees as an Alternative Representation of
Polytopes," CAD, 22(4), May 1990, 25(}...253.

NEM086 Nemoto, K. , and T . Omachi, " An Adaptive Subdivision by Sliding Boundary Surfaces
for Fast Ray Tracing," in Proceedings of Graphics Interface '86, 1986, 43-48.

NEWE72 Newell , M.E., R.G. Newell, and T.L. Sancha, " A Solution to the Hidden Surface
Problem,'' in Proceedings of the ACM National Conference /972, 443-450. Also in
FRE£80, 236-243.

NEWE74 Newell , M.E., The Uriliuuion of Procedure Models in Digital/mage Symhesis. Ph.D.
Thesis, Technical Report UTEC-CSc-76-218, NTIS AD/A039 008/LL, Computer
Science Department, University of Utah , Salt Lake City, UT, 1974.

NEWM68 Newman, W .. "A System for Interactive Graphical Programming," SJCC, Thompson
Books , Washington , DC, 1968, 47-54.

NEWM71 Newman, W. M., " Display Procedures," CACM, 14(10), 1971 , 651--660.

NEWM73 Newman, W., and R. Sproull, Principles of lnreracti•'t! Computer Graphics, McGraw
Hill , New York, 1973.

NEWM79 Newman, W., and R. Sproull , Principles of lnuraCJive Computer Graphics, 2nd ed.,
McGraw-Hill, New York, 1979.

N!CH87 Nicholl, T.M., D.T . Lee, and R.A. Nicholl , "An Efficient New Algorithm for 2- D
Line Clipping: Its Development and Analysis,'' SIGGRAPH 87. 253-262.

N!C077 Nicodemus, F.E., J.C. Richmond , J.J. Hsia, I.W. Ginsberg, and T. Limperis,
Geometrical Considerations and Nomenclature for Rejlecrance, NBS Monograph 160,
U.S. Department of Commerce, Washington DC, October 1977.

N!EL86 Nielson, G., and D. Olsen, Jr., " Direct Manipulation Techniques for 30 Objects Using
2D Locator Devices," in Proceedings of the 1986 Workshop on Interactive 3D Graphics,
ACM, New York. 1987, 175-182.

N!SH83a Nishimura, H. , H. Ohno, T . Kawata, I. Shirakawa, and K. Omura. "LINKS-I: A
Parallel Pipelined Multi microcomputer System for Image Creation," in Proceedings of
tile Tenth /11/ernational Symposium on Computer Architecture, ACM SIGARCH Newslet·
ter. 11 (3), 1983, 387- 394.

N!SH83b Nishita, T. and E. Nakamae, " Half-Tone Representation of3-D Objects Illuminated by
Area Sources or Polyhedron Sources," Proc. IEEE Computer Society International
Computer Software and Applications Conference (COMPSAC), IEEB Computer Society,
Washington, DC, November 1983, 237-241.

NISH85a Nishita , T. , and E. Nakamae, "Continuous Tone Representation of Three-Dimensional
Objects Taking Account of Shadows and lnterreflection," S/GGRAPH 85, 23-30.

NISH85b Nishita, T., I. Okamura, and E. Nakarnae, "Shading Models for Point and Linear
Sources,' ' ACM TOG, 4(2), April 1985, 124-146.

NISH86 Nishita, T ., and E. Nakamae, " Continuous Tone Representation ofThree-Dimensional
Objects Uluminated by Sky Light ,'' SIGGRAPH 86. 125-132.

NISH87 Nishita, T ., Y. Miyawaki, and E. Nakamae, "A Shading Model for Atmospheric
Scattering Considering Luminous Intensity Distribution of Light Sources, •• S/GGRAPH
87, 303-310.

1214

NOLL67

NORM88
0KIN84

OLIV85

OLSE83

OLSE84a

OLSE84b

OLSE86

Ol..SE87

Ol..SE88

Ol..SE89

OPEN89a

OPEN89b

OSTW31

PAIIT86

PAET89

PAJN89

PALA88

PARK80

PARK82

PARK88

PAVL81

PEAC85
PEAR86

Bibliography 1139

Noll. M A Computer Technique for Displaying N-dimensiooal Hyperobjecls, ..
CACM, 10(8). Aug~1 1967. 469-473.

Norman, D .• The P:rychology of E1-uyday Things, Basic Books, New York. 1988.
Okino, N., Y. Kakazu. and M. Morimoto, ''Extended Depth-Buffer Algorithms for
Hidden Surface Visualh:ation, .. CG & A, 4(5) , May 1984, 79-88.
Oliver. M .. "Display Algorithms for Quadtrees and Octtrees and their Hardware
Realisation." in Kessener. L., F. Peters, and M. van Licrop, cds .. Data Structurl'sfor
Raster Graphics. Springer-Verlag. Berlin, 1986, 9-37.
Olsen, D. , and E. Dempsey ... SYNGRAPH: A Graphical Userlnterface Generator ...
SIGGRAPH 83. 4}-50.

Olsen, D Pushdown Automata for User Interface Management,'' ACM TOG. 3(3),
July 1984, 177-203.

Olsen, D., W. Buxton, R. Ehrich. D. Kasik, J. Rhyne, and J. Siben ... A Context for
User Interface Management,'' CG & A, 4(12). December 1984, 3>-42.

Olsen, D., " MIKE: The Menu Interaction Kontrol Environment," ACM TOG, 5(4).
October 1986, 318-344.

Olsen, D. , cd., ACM SIGGRAPH Workshop on Software Tools for User Interface
Management. Computer Graphics, 21(2). April 1987, 71-147.
Olsen, D .. " Macros by Example in a Graphical UlMS ... CG & A. 8(1). January 1988.
68-78.
Olsen, D., "A Programming Language Basis for User Interface Management," in
Proceeding1 CHI '89. ACM, New York. 1989, 171- 176.
Open Software Foundation. OSF!MOTLF"' Manual. Open Software Foundation.
Cambridge. MA. 1989.
Open Software Foundation, OSFIMOTIF'" Style Guide. Open Software Foundation.
Cambridge, MA, 1989.

Ostwald, W .. Colour Science. Winsor & Winsor. London, 1931.
Paeth, A.W., "A Fast Algorithm Cor General Raster Rotation," in PT(}(%edings
Graphics Interface '86. Canadian Information Processing Society, 1986, 77-81.
Paeth. A. W., "Fast Algorithms for Color Correction," Proc~edings of the Society/or
lnfortrUJtion Display. 30(3), Q3 1989. 169-175, reprinted as Technical Repon
CS-89-42, Department of Computer Science. University of Waterloo, 'Mltcrloo,
Canada, 1989.
Painter, J., and K. Sloan, .. Antialiased Ray Tracing by Adaptive Progressi'-e Refine·
ment." SIGGRAPH 89. 281-288.
Palay, A., W . Hansen, M. Kozar, M. Sherman, M. 'Mldlow, T. Neucndorffer. Z.
Stern, M. Bader. and T. Peters , " The Andrew Toolkit: An 0'-erview," in PT(}(%ed/ngs
/988 Winter USEN/X, February 1988, 9-21.

Parke. F. , "Simulation a.nd Expected Performance Analysis of Multiple Processor
Z-Buffer Systems, .. SIGGRAPH 80. 48-56.

Parke. F.l., "Parameterized Models for Facial Animation, .. CG & A, 2(11), November
1982, 61-68.

P..u-ker, R .. Looking Good In Print: A Guide 10 Bosic D~sign for Desktop Publirhlng,
Ventana Press , Chapel Hill, NC. 1988.
Pavlidis. T. ' ·Contour Filling in Raster Graphics ... CGIP. 10(2), June 1979, 126-141.
Peachey. D.R., "Solid Texturing of Complex Surfaces," SIGGRAPH 8.5. 279-286.
Pearson, G., and M. Weiser, .. Of Moles and Men: The Design of Foot Controls for
Workstations," in PT(}(%edings CHI '86, ACM, New York. 1986, 33~339.

1215

1140

PEAR88

PEIT86

PEITSS

PERLS5

PERL89

PERRS5

PERR89

PERS85

PETES6

PHIGSS

PIKE83

PIKE84

PINK83

PITT67

PITT80

PITT87

PIXA86

PIXA88

PLATS I

PLAT88

POR179

PORT84

POSC89

POTM82

POTMS3

POTMS9

Bibliography

Pearson, G., and M. Weiser, "Exploratory Evd.luation of a Planar Foot-operdted Cursor
Positioning Device," in Proceedings CHI '88, ACM, New York, 1988. 13- 18.

Peitgen, H.-0., and P.H. Richter. The Beauty of Fractals: Images of Complex
Dynamical Systems, Springer-Verlag. Berlin , 1986.

Peitgen, H.-0., and D. Saupe, eds., The Science of Froctallmages, ·Springer-Verlag,
New York , 1988.

Perlin , K., " An lmage Synthesizer," S!GGRAPH 85. 287- 296.

Perlin , K., and E. Hoffert, " Hypertexture," SIGGRAPH 89, 253-262.

Perry, T., and P. Wallach , "Computer Displays: New Choices, New Tradeoffs ," IEEE
Spet·trum. 22(7), July 1985, 52-59.

Perry , T ., and J. Voelcker, " Of Mice and Menus: Designing the User-Friendly
Interface," IEEE Spectrum, 26(9), September 1989, 46-5 I.

Personics Corporation, View Control System, Concord. MA, 1985.

Peterson, J. W. , R.G. Bogart. and S. W. Thomas, The Utah Raster Toolkit. University
of Utah, Department of Computer Science, Salt Lake City, UT, 1986.

PHlGS+ Committee, Andries van Dam, chair, " PHIGS+ Functional Description,
Revision 3.0," Compmer Graphics, 22(3), July 1988, 125-218.

Pike, R., " Graphics in Overlapping Bitmap Layers ," ACM TOG. 17(3), July 83,
33 1-356.

Pike. R. , " Bitmap Graphics," in Course Notes 4 for SIGGRAPH 84, Minneapolis,
MN, July 23-27.1984.

Pinkham. R .. M. Novak. and K. Gunag, "Video RAM Excels at Fast Graphjcs,"
Electronic Design. 3 1(17). Aug. 18, 1983, 161-182.

Pitteway, M.L.V. , ''Algorithm for Drawing Ellipses or Hyperbolae with a Digital
Ploncr,'' Computer J .. 10(3), November 1967, 282-289.

Pittew.ty. M.L.V., and D. J. Watkinson, " Bresenham's Algorithm with Grey-Scale,"
CACM, 23(1 1), November 1980, 625-626.

Pitteway. M.L.V .. "Soft Edging Fonts,' ' Computer Graphics Technology and Sys
tems, in Proceedings of the Conference Held at Computer Graphics '87. London,
October 1987, Advanced computing series, 9 , Online Publications, London, 1987.

Pixar Corporation, Luxo. Jr., film. Pixar Corporation, San Rafael. CA. 1986.

Pixar Corporation, The RenderMan lmerface. Version 3.0, t'ixar Corporation , San
Rafael , CA, May 1988.

Platt, S.M. , and N. l. Sadler, "Animating Facial Expressions," SIGGRAPH 81,
245-252.

Plan , J.C., and A. H. Barr, "Constraint Methods for Flexible Models,'' SIGGRAPH
88, 279-288.

Porter, T ., " The Shaded Surface Display of Large Molecules," SIGGRAPH 79.
234-236.

Porter, T. , and T. Dulf, "Compositing Digital .Images,'' SIGGRAPH 84, 253-259.

Posch. K.C., and W.O. Fellner. "The Circle-Brush Algorithm." ACM TOG. 8(1),
January 1989, 1-24.

Potmesil , M., and I. Chakravarty, " Synthetic Image Generation with a Lens and
Aperture Camera Model ," ACM TOG, 1(2), April 1982, 85-108.

Potmesil , M .. and I. Chakl"'dVMty , " Modeling Motion Blur in Computer-Generated
Images." SIGGRAPH 83. 389-399.

Potrnesil , M., and E. Hoffert, "Pixel Machine: A P....-aUcl Image Computer. "
SIGGRAPH 89. 69-78.

1216

Bibliography 1141

POTI'88 l'l>tter, R. , L. Weldon, and B. Shneidennan, " Improving the Accuracy of Touch
Screens: An Experimental Evaluation of Three Strotegies,'' in Procet:dings CHI '88,
ACM. New York, 27-32.

PRAT84 Pratt. M., ''Solid Modeling and the Interface Between Design and Manufacture." CG
& A. 4(7), July 1984, 5~59.

PRAT85 Prau, V .. "Techniques for Conic Splines,'' SICORAPH 85. 151- 159.

PREP85 Preparata. F. P., and M.l. Shamos. Compmationa/ O~etry: An Introduction.
Springer-Verlag, New Yorl: , 1985.

PRES88 Press. W.H., B.P. Flannery. S.A. Teukolskym. and W.T. Vetterling. Numerical
Recipes inC: Tire An ofSciemijic Ccmpuring. C<mlbridge University Press, Cambridge,
England, 1988.

PRIN7 l Prince. D .. lmuacti•.., CraphicsforCompuur Aided Design. Addison-Weslc:y. Reading,
MA. 1971.

PRITI7 Pritchanl. D.H., "U.S. Color Television Fundamentals-A Review," IF.F.F.Transac
tions on Consumer Elmronics. CE-23(4), November 1977, 467~78.

PRUS88 Prusinkiewicz. P .. A. Lindcnmuyer, and J . Hanan, "Developmental Models of
Herbaceous Plants for Computer Imagery PurpOSes , .. SICCRAPH 88, 141- 1.50.

PUTN86 Putnam, L.K .. and P.A. Subrahmanyam, " Boolean Operations on n-Dimensional
Objects," CO & A, 6(6), June 1986. 43-51.

QUIN82 Quinlan. K.M., and J.R. Woodwatt, " A Spatially..$cgmented Solids Database
Justification and Design," in Proc. CAD '82 Ccnf. Fifth International Conference and
Exhibit on Computers in Design Engineering, Mar. 30-Apr I, 1982. Butterworth,
Guildford, Great Britain, 1982, 126-132.

RATL72 RatJiiT, F .. "Contour and Contrast ,'' Scientific Amerkan. 226(6), June 1972,91- 101.
Also in BEAT82, 3~375.

REDD78 Reddy . D .. and S. Rubin. Representation ofThru-Dimt:nsiotutl Obj«:ts, CMU·CS-78-
113. Computer Science Department. Carnegie-Mellon Unh-ersity, PittSburgh. PA,
1978.

REEV81 Reeves. W.T .. " lnbetweening for Computer Animation Utilizing Moving Point
Constraints,'' SICCRAPH 81, 263-269.

REEV83 Reeves. W.T ., " Particle Systems- A Technique for Modeling a Class of Fuzzy
Objects , .. SICORAPH 83, 359-376.

REEV8.5 Reeves, W.T .. and R. Blau. "Appi'Oltimate and Probabilistk: Algorithms for Shading
and Rendering Panicle Systems.'' SICCRAPH 85, 313-322.

REEV87 Ree-'CS, W.T .. D. H. Salesin , and R.L. Cook, " Rendering Antialiased Shadows with
Depth Maps,'' SICORAPH 87. 283-291.

REFF88 de Relfye, P., C. Edelin, J. Fran~on. M. Jaeger, and C. Puech, "Plant Models Faithful
to Bolllnical Structure and Deve.lopmcnt ," SICCRAPH 88. 151- 158.

REIS82 Reisner. P .. " Funher Developments Townrd Using Formal Grammar as a Design Tool ,"
in Proct'edings of lilt! HUm<Jn Facton in Compuur Sysums Conferena. ACM. New
York. 1982. 304-308.

REQU77 Requicha, A.A.G., MalhemtJiietll Models of Rigid Solids. Tech. Memo 28. Produaion
Automation Project. University of Rochester. Rochester. NY, 1977.

REQU80 Requicha, A.A.G., " Representations for Rigid Solids: Theory, Methods, and Sys
tents, " ACM Ccmputing Sllrl'eys. 12(4), December 1980. 437-464.

REQU82 Requicha. A.A.G., and H.B. Voelcker. "Solid Modeling: A Historical Summary and
Contemporary Assessment ... CO & A. 2(2). March 1982, 9-24.

REQU83 Requicha. A.A.G .. and H.B. Voelcker, "Solid Modeling: Current Status and Researdl
Directions," CO & A, 3(7). October 1983, 2.5-37.

1217

1142

REQU84

REQU85

REYN82

REYN87

RHOD89

RHYN87

ROBE63

ROBE65

ROGE85

ROG083

ROMN69

ROSE83

ROSE85

ROSS86

ROSS89

ROTH76

ROTH82

RUBE83

RUBE84

RUBE88

RUB180

Bibliography

Requicha , A.A.G., "Representation of Tolerances in Solid Modeling: Issues and
Alternative Approaches," in Pickett, M. , and J. Boyse, eds., Solid Modeling by
Computers, Plenum Press, New York, 1984, 3-22.

Requicha, A.A.G., and H.B. Voelcker. "Boolean Operations in Solid Modeling:
Boundary Evaluation and Merging Algorithms," Proc. IEEE. 73(1). January 1985,
30-44.
Reynolds. C.W., "Computer Animation with Scripts and Actors, " SIGGRAPH 82,
289- 296.

Reynolds, C.W., "Flocks, Herds and Schools: A Distributed Behavioral Model,"
SIGGRAPH 87, 25-34.

Rhoden , D., and C. Wilco.x, "Hardw-.rre Acceleration for Window Systems,"
SIGGRAPH 89. 61-{)7.

Rhyne, J .• " Dialogue Management for Gestural Interfaces," Proceedings ACM
SIGGRAPH Workshop 011 Tools for User Interface Ma11agement, in Computer Graphics,
2 1(2), April 1987, 137-145.

Roberts, L.G., MachiM PerceptiOII ofThree Dimensio11al Solids, Lincoln Laboratory,
TR 315, MIT, Cambridge, MA, May 1963. Also in Tippet, J.T ., et al .. eds., Optical
a11d Electro-Optical lnformatioll Processing, MIT Press, Cambridge, MA, 1964,
159-197.
RobertS, L.G .. Homogeneous Marrl.r Represenrarions and Manipulation of N-Dimen
siollal Consmtcts, Document MS 1405, Lincoln Laboratory, MIT, Cambridge, MA,
1965.

Rogers, D.F., Procedural Elememsfor Computer Graphics. McGraw-Hill , New York,
1985.

Rogowitz, B .. "The Human Visual System: A Guide for the Display Technologist,"
Proceedi11gs Society for /llformarion Display, 24(3), 1983.

Romney, G.W., G.S. Watkins, and D.C. Ev-.ms, " Real Time Display of Computer
Generated Half-Tone Perspective Pictures," in Proceetling.r 1968/FJP Congress. North
Holland Publishing Co., 1969, 973-978.

Rosenthal, D., " Managing Graphical Resources," Compwer Graphics, 17(1), January
1983, 38-45.

Rose, C., B. Hacker, R. Anders, K. Wittney, M. Mettler, S. Chemicotf, C. Espinosa,
A. Averill , B. Davis, and B. Howard, Inside Macimosh, l, Addison-Wesley, Reading,
MA, 1985, 1-35-1-213.
Rossignac, J.R .• and A.A.G. Requicha, " Depth-Buffering Display Techniques for
Constructive Solid Geometry," CG & A. 6(9), September 1986, 29-39.

Rossignac, J., and H. Voelcke.r, "Active Zones in CSG for Accelerating Boundary
Evaluation, Redundancy Elimination, [nrerference Detection, and Shading Algo
rithms," ACM TOG, 8(1), January 1989, 51-&7.

Rothstein, J ., and C.F.R. Weiman, " Parallel and Sequential Specification of a Context
Sensitive Language for Straight Lines on Grids," CGIP, 5(1), March 1976, 106-124.

Roth , S., " Ray Casting for Modeling Sol id~,'' CGIP, 18(2), February 1982, 109-144.

Rubel, A., "Graphic Based Applications-Tools to Fill the Software Gap," Digital
Design, 3(7}, July 1983, 17-30.

Rubenstein , R., and H. Hersh, The Human Factor- Designing Computer Systems for
People, Digital Press, Burlington, MA, 1984.

Rubenstein, R., Digital Typograph)•. Addison-Wesley, Reading, MA, 1988.

Rubin , S.M., and T . Whined, "A 3-Dimensional Representation for Fast Rendering of
Complex Scenes." SIGGRAPH 80. 110-1 16.

1218

RUSH86

RUSH87

SA BESS

SALE85

SALM96

SALV87

SAME84

SAMES Sa

SAME88b

SAME89a

SAME89b

SAME90a

SAME90b

SARR83

SCHA83

SCHE86

SCHE88a

SCHE88b

SCHM83

SCHM86

SCHU69

SCHUSO

SCHUSS

Bibliography 1143

Rushmeier, H.E., Extending the Radiosity Method to Transmitting and Specular/y
Rejleaing Surfaces, M.S. Thesis, Mechanical Engineering Department , Cornell Univer
sity, Ithaca, NY, 1986.

Rushrneier, H., and K. Torrance, "The Zonal Method for Calculating Light Intensities
in the Presence of a Participating Medium," SIGGRAPH 87. 293-302.

Sabella, P., " A Rendering Algorithm for Visualizing 3D Scalar Fields," SIGGRAPH
88. 51-58.

Salesin, D., and R. Batzel, Two-Bit Graphics, Computer Graphics Project, Computer
Division , Lucas61m, Ltd. , San Rafael, CA, 1985; also in CO & A, 6(6), June 1986,
36-42.

Salmon, G., A Treatise on Conic Sections, Longmans, Green, & Co .. lOth edition,
London 1896.

Salvendy, G., ed., Handbook of Human Factor$, Wiley, New York, 1987.

Samet, H., "The Quadtree and Related Hierarchical Data Structures," ACM Comp.
Surv., 16(2), June 1984, 187-260.

Samet, H., and R. Webber, " Hierarchical Data Structures and Algorithms for
Computer Graphics, P..u-t 1: Fundamentals," CG & A, 8(3), May 1988, 48-08.

Samet, H. and R. Webber, "Hierarchical Data Structures and Algorithms for Computer
Graphics, Part ll: Applications," CG & A, 8(4), July 1988, 59-75.

Samet, H., " Neighbor Finding in Images Represented by Octrees," CGVIP. 46(3).
June 1989, 367-386.

Samet, H., "Implementing Ray Tracing with Octrees and Neighbor Finding,"
Ccmputm and Graphics, 13(4), 1989, 445-460.

Samet, H., Design and Analysis ofSpaiial Data Structures. Addison-Wesley, Reading,
MA, 1990.

Samet, H., Applications of Spatial Data Structures: Computer Graphics, Image
Processing and GIS, Addison-Wesley, Reading, MA. 1990.

Sarraga, R.F., "Algebraic Methods for Intersections of Quadric Surfaces in
GMSOLID,'' CVGIP, 22(2), May 1983, 222-238.

Schachter, B., Computer Image GeneraLion, Wiley, New York, 1983.

Scbeifler, R., and J. Gettys, "The X Window System," ACM TOG, 5(2), April 1986,
79-109.

Scbeifler, R.W., J. Geuys, and R. Newman, X Window System, Digital Press, 1988.

Scherson, J.D., and E. Caspary, " Multiprocessing for Ray-Tracing: A Hierarchical
Self-balancing Approach," Visual Computer, 4{4), October 1988, 188- 196.

Schmid, C., Statistical Graphics: Design Principles and Practice, Wiley, New York ,
1983.

Schmucker, K., " MacApp: An Application Framev.'Ork," Byte, 11(8), August 1986.
189-193.

Schumacker, R., B. Brand, M. Gilliland , and W. Sharp, Study for Applying
Computer-Generated Images to Visual Simulation, Thcbnical Report AFHRL-TR-69-
14, NTIS AD700375, U.S. Air Force Human Resources Lab., Air Force Systems
Command, Brooks AFB, TX. September 1969.

Schumacker, R., " A New Visual System Architecture," in Proceedings of the Second
lnterservicellndustry Training Equipment Conference, Salt Lake City, UT, 16-20
November 1980.

Schulert, A., G. Rogers , and J. Hamilton, "ADM- A Dialog Manager," in CH/ '8.5
Proceedings, San Francisco, CA, Apr 14-18, 1985, 177-183.

1219

1144

SCHW82

SCHW87

SECH82

SEDE84

SEDE86

SEDG88

SELF79

SELI89

SEQU89

SHAN87

SHAN89

SHA088

SHAW91

SHER79

SHlN87

SHIR86

SHNE83

SHNE86

SHOE85

SHOU79

SHOW89

SrBE86

SJEG81

STG85

SlLL89

Bibliography

Schweitzer, 0 . , and E. Cobb, "Scanline Rendering of Parametric Surfaces," SIG
GRAPH 82, 265-271.

Schwan. M., W. Cowan, andJ. Beatty, ''An Experimental Comparison ofRGB, YTQ,
LAB, HSV, and Opponent Color Models," ACM TOG, 6(2), April 1987, 123-158.

Sechrest. S., and D.P. Greenberg, ''A Visible Polygon Reconstruction Algorithm,"
ACM TOG. 1(1), January 1982. 25-42.

Sederberg, T. W. , and D .C. Anderson, "Ray Tracing of Steiner Patches," SIGGRAPH
84. 159-164.

Sederberg, T .W. , and S.R. Parry, "Free-Fonn Defonnation of Solid Geometric
Models," SIGGRAPH 86, 151-160.

Sedgewick, R .. Algorithms, second edition, Addison-Wesley, Reading, MA. 1988.

Selfridge, P., and K. Sloan, Raster Image File Format (RIFF): An Approach to
Problems in Image Management, TR61, Department of Computer Science, University
of Rochester. Rochester, NY, 1979.

Seligmann, D. and S. Feiner, "Specifying Composite Illustrations with Communicative
Goals," Proceedings of ACM UIST '89, ACM, New York, 1989, 1-9.

S~quin, C.H. and E.K. Smyrl, "Parameterized Ray Tracing," SIGGRAPH 89,307-314.

Shantz, M., and S. Lien, "Shading Bicubic Patches," SIGGRAPH 87. 189-196.

Shantz, M. and S. Chang, "Rendering Trimmed NURBS with Adaptive Forward
Differencing," SIGGRAPH 89, 189- 198.

Shao, M.Z., Q.S. Peng, and Y.D. Liang, "A New Radiosity Approach by Procedural
Refinements for Realistic Image Synthesis," SJGGRAPH 88, 93-101.

Shaw, C.D., M. Green, and J. Schaeffer, "A VLSI Architecture for Image Composition,"
1988 £urographies Workshop on Graphics Hardwarc, Sophia-Antipolis, France, Sep
tember, 1988. In Kuijk, A.A.M., ed., Advances in Computer Graphics Hardware Ill,
Eurograpbics Seminars, Springer-Vedag, Berlin, 1991, 183-199.

Sherr, S., Electronic Displays, Wiley, New York, 1979.

Shinya, M., T. Takahashi, and S. Naito, "Principles and Applications of Pencil Tracing,"
SIGGRAPH 87, 45-54.

Shires, G., "A New VLSI Graphics Coprocessor-The Intel 82786," CG & A, 6(10),
October 1986, 49-55.

Shneiderman, B., "Direct Manipulation: A Step Beyond Programming Languages,"
IEEE Computer, 16(8), August 1983, 57-69.

Sbneiderman, B., Designing the User Interface: Strategies for Effective Human-Computer
Interaction, Addison-Wesley, Reading, MA, 1986.

Shoemake, K., "Animating Rotation with Quatemion Curves," SIGGRAPH 85. 245-
254.

Shoup, R.G., "Color Table Animation," SIGGRAPN 79, 8- 13.

Marketing Department, Brochure. Showscan Film Corp., Culver City, CA, 1989.

Sibert, J., W. Hurley, and T. Bleser, "An Object-Oriented User Interface Management
System," SIGGRAPN 86, 259-268.

Siegel, R., and J. Howell, Thermal Radiation Heat Transfer. second edition, Hemi
sphere, Washington, DC, 1981.

Introduction to Image Processing. Course Notes 26 for SfGGRAPH 85, San Francisco,
California, July 1985.

Sillion, F., and C. Puech, "A General Two-Pass Method Integrating Specular and
Diffuse ReOection," SJGGRAPH 89. 335-344.

1220

Bibliography 1145

SI.MP8S Simpson, C., M. McCauley, E. Roland, J. Ruth, and B. Williges, " System Design for
Speech Reeognition and Generation." HUIMII Factors. 27(2), April 1985, 115-142.

SIMP87 Simpson, C., M. McCauley, E. Roland, J. Ruth, and B. Williges, "Speech Conli'OI and
Displays," in Salvendy, G .• ed., HandboolcofHumon Factors, Wiley , New York, 1987,
1490-1525.

SIOC89 Siochi, A., and H. R. Hartson. ''Task-Oriented Representation of Asynchtonous User
Interfaces," in P~ttlings CHI '89, ACM, New York. 183-188.

SKl.A90 Sklar, D., "Implementation Issues for SPHIGS (Simple PHlGS)," Tecbnical Report .
Computer Science Department, Brown Univen;ity, Providence. RJ , August 1990.

SLOA79 Sloan, K.R .• and S.L. Tanifll()(o, "Progressive Refinement of Raster Images." IE££
Tronsactions on Computm, C-28(11), November 1979, 87 1-874.

SMIT78 Smith, A.R., "Color Gamut Transform Pairs," SIGGRAPH 78, I:Z,..I9.

SMJT79 Smith, A.R., "Tint Fill," SIGGRAPH 79, 27fr283.

SMIT82 Smith, D., R. Kimball, B. Verplank, and E. Harslem, "Designing the Star User
Interface," Byte, 7(4), April 1982, 242-282.

SMIT84 Smith, A.R., "Plants, Fractals and Formal Languages," SJGGRAPH 84, 1- 10.

SMIT87 Smith, A.R., "Planar 2-pass Texture Mapping and Warping," SIGGRAPH 87,
263-272.

SMIT88 Smith, D.N., "Buildina Interfaces Interactively," in Procettlings ACM SIGGRAPH
Symposium on User Interface Software, AC.M, New York. 1988, 144-151.

SMJT89 Smith, A.R., "Geometry vs. Imaging," in P~ttlings ofNCGA '89, Philadelphia ,
PA, April 1989, 359- 366.

SNOW83 Snowberry, K., S. P..u-kinson. and N. Sisson, "Computer Display Menus," Erg01oom·
ics, 26(7), July 1983. 699-712.

SNYD85 Snyder, H., " Image Quality: Measures and Visual Performance," in TANN85. 70-90.

SNYD87 Snyder, J.M. and A.H. Barr, "Ray Tracing Complex Models Containing Surface
Tessellations," SIGGRAPH 87, 119-128.

SPAR78 Sparrow, E.M., and R.D. Cess, RadiarilJn Heat Tronsfer, Hemisphere, Washington ,
DC, 1978.

SPR082 Sproull, R.F., "Using Program Transformations to Derive Line-Drawing Algorithms."
ACM TOG, 1(4), October 1982, 259-273.

SRIH81 Srihari, S., "Representation of Thtee-DimensionaJ Digital Images," ACM Computi•og
Surw:ys, 13(4), December 1981, 399-424.

STAU78 Staudhammer, J., " On Display of Space Filling Atomic Models in Real Time."
SIGGRAPH 78, 167- 172.

STEI89 Steinhart, J., ed., lmroduction to Wmdow MtJMgt-nt, Course Now II /« SIC·
GRAPH 89, Boston. MA. August 1989.

STER83 Stem, G., " Bbop- A System for 3D Keyframe Figure Animation," in Introduction to
Computer Animation. Course Notes 7 for SIGGRAPH 83, New York, July 1983.
240-243.

STIN78 Stiny, G. , and J. Gips, Algorithmic Aesthe1ics: Computer Models for Criticism and
Design in the Arts, University of California Press, Berkeley, 1978.

STON88 Stone, M., W. Cowan. and J. Beatty, "Color Gamut Mapping and the Printing of
Digital Color Images," ACM TOG, 7(3), October 1988, 249-292.

STOV82 Stover, H .. "True Thtee-Dimensional Display of Computer Data," in Pro«ttlings of
SPIE. 361, August 1982. 141- 144.

1221

1146 Bibliography

STRA88 Strauss, P .• BAGS: The Brown Animalicn Gmerarion S)'Stem. Ph.D. Thesis, Technl<:al
Report CS.SS-22. Computer Science Department, Brown UniYC:rSity, Providence. Rl,
May 1988.

SUKA88 Sukaviriya, P .• "Dynamic Construction of Animated Help from Application Context,"
in Prcx:eedings of the ACM SIGGRAPH Symposium on User Interface Software, ACM,
New York , 1988, 190-202.

SUKA90 Sukaviriya, P., and L. Moran, "User Interface for Asia," in Neilsen, J. , ed., Designing
User lnterfaas for International Use, Elsevier, Amsterdam, 1990.

SUN86a Sun Microsystems, ProgrcunntLr' s Referen« Manuo/ for the Sun Window S)I$Um. Sun
Microsystems, Mountain View, CA, 1986.

SUN86b Sun Microsystems , SunView'" Programmu's Guide, Sun Microsystems, Mountain
View, CA, 1986.

SUN87 Sun Microsystems, NtWS"" Technical Owuview, Sun Microsystcms, Mountain View,
CA, 1987.

SUN89 Sun Microsystems, OPEN WOK Graphical Ustr Interface, Sun Microsystems.
Mountain View, CA. 1989.

SUNF86 Sun Flex Corporation, Touchptn, Sun Flex, N011at0, CA, 1986.
SUTH63 Sutherland, I.E .. "Sicetchpad: A Man-Machine Graphical Communication System,"

in SJCC, Spartan Books, Baltimore, MD, 1963.
Suni6S Sutherland, I.E., "The Ultimate Display," in Prcx:etdif18s oftM 19651FIP Congrrss,

2, 196S, 506-SOS.
Sunl68 Sutherland, I.E., " A Head-Mounted Three Dimensional Display," in FJCC 1968,

Thompson Books, Washington, DC, 757-764.
SUTH74a Sutherland, I.E., R.P. Sproull, and R.A. Schumacker. "A Characterization of Te.n

Hidden-Surface Algorithms," ACM Qmrputing Surw)l$, 6(I), March 1974, I- SS. Also
in BEAT82, 3g7-441.

Sunl74b Sutherland, I.E., and Hodgman, G.W., " Reentrant Polygon Clipping," CACM, 17(1),
January 1974, 32-42.

SUTT78 Sutton, J., and R. Sprague, "A Survey of Business Applications," in Prcx:eedifl8s
Amoican Institute for Decision Scknces IOrh Annuol O>riferen«. Part II, Atlanta, GA.
1978, 278.

SUYD86 Suydham, B., "Lellidata Does Instant Wlndows," Computer Graphics World, 9(2),
February 1986, S1-S8.

SWAN86 Swanson. R .. and L. Thayer, "A Fast Shaded-Polygon Renderer," SIGGRAPH 86.
95-101.

SYMB8S Symbolics, Inc. , S-Dynamlcs, Symbolics, lnc., CAmbridge, MA, 1985.

TAMM82 Tamminen, M. and R. Sulonen, "The EXCELL Method for Efficient Geometric
Access to Data," in Proc. 19th .-.eM IEEE Daign Automotion Con/.. Las Veg;ls. June
1~16, 1982, 345-3SI.

TAMM84 Tammineo, M., and H. Samet, " Efficient Octrce Conversion by Connectivity
Labeling," SIGGR.-.PH 84. 43-51.

TANA86 Tanaka, A.M., M. Kameyama, S. Kazama, and 0. Watanabe, "A Rotation Method for
Raster Images Using Skew Transformation," in Proc. IEEE Conference on Computer
Vision and Pauun RtcOgnition, June 1986, 27'],...217.

TANI17 Tanimoto, S.L. , "A Graph-Theoretic Real-Time Visible Surface Editing Thchnique."
SIGGRAPH 77. 223-228.

TANN8S Tannas, L. Jr., ed .. Flot·I'Ond Displays and CRTs. Van Nostrand Reinhold, New York,
1985.

1222

Bibliography 114 7

TEIT64 Tcitelman, W., " Real-lime Recognition of Hand-Drawn Cbaracters," in FJCC 1964,
AFIPS OmJ. Proc., 24, Spartan Boob, Baltimore, MD, SS9.

TEIT86 Teitelman, W., "Ten Years of Window Systems- A Rctro5peC!ivc View," in
Hopgood, F.R.A., tt a/., eds., Methodology ofWinduw MaMgemtnt, Springer-Verlag ,
New York, 1986, 3S-46.

TERZ88 Terzopoulos, D., and K. Fleischer, " Modeling Inelastic Deformation: Viscoelasticity,
Plasticity, Fracture," SIGGRAPH 88, 269-278.

TESLBI Tesler, L., "The Smalltalk Environment," 8)1t, 6(8), August 1981 ,90-147.

TEXA89 Texas lnslruments, Inc:., TMSJ4Q20 and TMS34082 Usu' s Gllilk, Thus lnsttuments,
Dallas. TX, March 1989.

ntm87 Thibault, W.C ., and B.F. Naylor, "Set Operations on POlyhedra Usi.ng Binary Space
Partitioning Trees," SIGGRAPH 87, IS3-162.

11iOM84 Thomas, S.W .. Modtllng Volumts Bounded by 8-Sp/ine Surfaces, Ph.D. Thesis.
Technical Report UUCS-84-009, OepartmentofComputerScience, University of Utah,
Salt Lake City, UT, June 1984.

11iOM86 Thomas, S.W., " Dispersive Refraction in Ray Tracing," Tht Visual Computtr, 2(1),
January 1986, 3-8.

11i0R79 Thornton, R.W., "The Number Wheel: A Tablet-Based Valuator for Three-Dimen
sional Positioning," SIGGRAPH 79, 102- 107.

TILB76 Ttlbroot, D .. A Ntt4os~r ~ Layour Systtm, M.Sc. Thesis, Department of
Computer Science, University of Toronto, Toronto, Canada. 1976. Also see ACM
SIGGRAPH Vitko Ta(N Review, I, May 1980.

TILL83 Tiller, W., "Rational B-Splincs for Curve and Surface Representation," CO & A, 3(6),
September 1983, 61-69.

TIW80 Tilove, R.B., "Set Membership Classification: A Unified Approach to Geometric
Intersection Problems," IEEE Trans. on Computtl"$, C-29(10), October 1980, 847-
883.

TORB87 Torborg , J., " A Parallel Processor Architecture for Graphics Arilhmetic Operations,"
SIGGRAPH 87, 197- 204.

TORR66 Thnance, K.E., E.M. Sparrow, and R.C. Birkebak, "Polarization, Direc1ional
Distribution, and Off-Specular Peak Phenomena in Light Reflected from Roughened
Surfaces," J. Opt. Soc. Am •. S6(1), July 1966, 916-92S.

TORR67 Torrance, K .. and E.M. Sparrow, "Theory for Off-Specular Reflection from Rough
ened Surfaces," J. Opt. Soc. Am .. S7(9), September 1967, 1105-1114.

TOTH8S Toth, D.L., "On Ray Tracing Parametric Surfaces," SIGGRAPH 85, 171- 179.

TOUL70 'lbuloukian, Y .S., and D.P. DcWiu, eds., TMrmophysicaJ Pro(Nflies of Matt~r: TM
TPRC Dara Stries, Vol. 7 (TNrma/ Radiatil'f! Pro(Nflies: M~tallic EltmtiiiS and Allo:yJ}.
Plenum, New York, 1970.

TOUL72a Touloukian, Y.S., and D.P. DeWiu, eds., TMrmophysica/ Pro(Nrties of Mauu: Tht
TPRC Dara Si!ries, Vol. 8 (Thermal Radiatil'f! Pro(Nnies: Nonmetallic Solids}, Plenum,
New York, 1972.

TOUL72b 1bulouk.ian, Y.S., D.P. DeWiu, and R.S. Hemicz, eds., Thtrmoph)ttica/ Pro(Nrties of
Mattl!r: Thi! TPRC Data Series, Vol. 9 (Thermol Radiati>'e Proptnies: Coatings),
Plenum, New York , 1972.

TRAU67 Traub, A. C., '"Stercoscopic Display Using Rapid Yarifoeal Mirror Oscillations,"
l.pplitd Optics, 6(6), June 1967, 1085-1087.

TRIC87 Tricolcs, G., " Computer Generated Hologtarns: an Historical Review," Applitd
Optics, 26(20), October 1987, 4351-4360.

1223

1148

TROW75

TIJFT83

TURK82

TURN84

UUC87

UPS088

UPST89

VANA84

VANA85

VANA89

VANC72

VAN074

VERB84

VERS84

VITI84

VOSS85a

VOSS8Sb

VOSS87

WALD64

WALL87

WALL89

WAN88

WARD85

WAR088

Bibliography

Trowbridge, T.S., and K.P. Rcitt, ''AYentge lnqularity Representation of a Rough
Surface for Ray Reflection," J. Opt. Soc. Am., 65(5), May 1975, 531- 536.

1\Jfte, E., The Visual Display of Quantitati"f! JnformtJtion, Graphics Press, Cheshire ,
cr. 1983.

Thrkowski, K., "Anti-Aliasing Through the Use of Coordinate Transformations,"
ACM TOG, 1(3), July 1982, 215-234.

Thmec, J.A .. A Set-O~ration Algorithm for 7Wo and Three-Dimensional Geometric
0/Jjtas. Architecture and Planning Research Laboratory, College of Architecture,
Uni-.ersity of Michigan, AM Arllor, Ml, AugUSI 1984.

Ulicbney, R., Digital Halftonifvi, MIT Press, Cambridge, MA, 1987.

Upson, C., and M. Keeler, " V-BUFFER: Visible Volume Rendering," SIGGRAPH
88, 59-64.

Upstill, S . , The RenderMan Companion: A Programrru!r' s Guide to Realistic Compuur
Graphics, Addison-Wesley , Reading, MA, 1989.

VanAken, J. R., ·• An Efficient Ellipse-Drawing Algorithm," CG&A, 4(9), September
1984, 24-35.

Van Aken, J.R .. and M. Novak, "Curve-Drawing Algorithms for Raster Displays , "
ACM TOG, 4{2), April 1985. 147-169.

VanAken, J., personal oommunicatioo, January 1989.

Van Con, H. , and R. Kinkade, HIIIMII Engineerifvi Guide to Equiptnent Dnign,
008..051.0005(}.0, U.S. Government Printing Offi<:e, Washington, DC, 1972.

van Dam, A., G.M. Stabler, and R.J. Harrington, "Intelligent Satellites for IntenlCtivc
Graphics," Proceedings of the IEEE, 62(4), April 1974, 483-492.

Verbeck, C.P., and D.P. Greenberg, "A Comprehensive Light-Source Description for
Computer Graphics,' ' CG cl A, 4{7), July 1984, 66-75.
Versatron Corporation, FootmQu.se, Versatron Corporation, Healdsburg, CA. 1984.

Vitter, J .. "US&R: A New~ for Redoing," IEEE Soft·ware, 1(4). October
1984, 39-52.

Voss, R., "Random Ftactal Forgeries," in Earnshaw, R.A., ed., Fundamental
AlgorithmsforCompu.terGraphics, Springer-Verlag, Bertin , 1985; NATO ASI series F,
YOlume 17, 805--835.

Vossler, D., "Sweep-to-CSG Conversion Using P..mem Recognition Techniques," CG
cl A. 5(8), August 1985, 61-68.

Voss, R., "Fractals in Nature: Characterization, Measurement, and Simulation," in
Course Noti!S 15 for SIGGRAPH 87, Anaheim, CA, July 1987.

Wald, G., "The Receptors for Human Color VISion," Sci~na. 14S, 1964, 1007- 1017.

Wallace, J.R., M.F. Cohen, and D.P. Greenberg, "A Two-Pass Solution to the
Rendering Equation: A Synthesis of Ray Tracing and Radiosity Methods,'' SIGGRAPH
87, 311-320.

Wallace, J.R., K.A. Elmquist, and E.A. Haines, "A Ray Tracing Algorithm for
Progressive Radiosity ," SIGGRAPH 89, 315-324.

Wan, S. , K. Wong, and P. Prusinkiewicz, "An Algorithm for Multidimensional Data
Clustering," ACM Transactions on Mathematical Software, 14{2), June 1988, 153-
162.

Ward, J., and B. Blesser, "Interactive Recognition of Handprinted Characters for
Computer Input," CG cl A. 5(9), Sq>tember 198S. 24-37.

Ward, G.J. , F.M. Rubinstein, and R.D. Clear, "A Ray Tracing Solut.ion for Diffuse
lnterretlection," SIGGRIIPH 88, 85-92.

1224

WARE87

WARE88

WARN69

WARN83

WASS85

WATES7

WATK70

WEGH84

WEIL77

WEILSO

WEILS5

WEILS6

WEILS7

WEIL88

WEIM80

WEINS I

WEIN87

WEIN88

WEIS66

WELL76

WELL89

WEKI'39

Bibliography 1149

Ware, C., and J. Mikaelian, "An Evaluation of an Eye Tmcker as a Device for
Computer Input," in Proceedings of CHI+ Gl/987, ACM, New York, 183-188.

Ware, C., and J. Beatty, "Using Color Dimensions to Display Data Dimensions,"
Human Factors, 20(2), April 1988, 127-42.

Warnock, J., A Hidden-Surface Algorithm for Computer Generated HalfTone Pictures,
Technical Report TR 4-15, NTIS AD-753 671, Computer Science Department,
Uni~rsity of Utah, Salt Lake City, UT, June 1969.

Warn , D.R., " Lighting Controls for Synthetic Images," SIGGRAPH 83, 13-21.

Wassennan, A., "Extending Transition Diagrams for the Specification of Human·
Computer lntemction," IEEE Transactions on Software Engineering, SE- ll (8), August
1985, 699-713.

Waters, K., "A Muscle Model for Animating Three-Dimensional Facial Expressions, "
SIGGRAPH 87, 17-24.

Watkins, G.S., A Real Time Visible Surface Algorithm, Ph.D. Thesis, Technical Report
UTEC-CSc-70-101, NTIS AD-762 004, Computer Science Department, University of
Utah, Salt Lake City, UT, June 1970.

Weghorst , H. , G. Hooper, and D.P. Greenberg, "Improved Computational Methods
for Ray Tracing," ACM TOG, 3(1), January 1984, 52-09.

Weiler, K. and P. Atherton, " Hidden Surface Removal Using Polygon Area Sorting,"
SJGGRAPH 77, 214--222.

Weiler, K., "Polygon Comparison Using a Graph Representation," SIGGRAPH 80,
10-18.

Weiler, K.. "Edge-Based Data Structures for Solid Modeling in Curved-Surface
Environments," CG & A, 5(1), January 1985, 21-40.

Weil, J., "The Synthesis of Cloth Objects," SIGGRAPH 86, 49-54.

Wei! , J., "Animating Cloth Objects," personal communication, 1987.

Weiler, K., " The Radial Edge Structure: A Topological Representation for Non·
Manifold Geometric Modeling," in Wcn.ny, M. J. , H. Mclaughlin , and J . Encama~Ao,
eds., Geometric Modeling for CAD Applications, IFIP WG5.2 Working Conference,
Rensselaerville, NY, 12- 14 May 1986, North-Holland, 1988, 3-36.

Weiman, C.F.R., "Continuous Anti·Aiiased Rotation and Zoom of Raster Images,"
SIGGRAPH 80, 28~293.
Weinberg, R., "Parallel Processing Image Synthesis and Anti-Aliasing," SIGGRAPH
81, 55-01.

Weingarten, N., personal communication, 1987.

Weinand, A. , E. Gamma, and R. Marty, "ET++-An Object Oriented Application
Framework in C++," OOPSLA /988 Proceedings, ACM-SIGPLAN Notices, 23(11),
November 1988, ~57.

Weiss, R.A., "BE VISION, A Package of ffiM 7090 FOKI'RAN Programs to Draw
Orthogmphic Views of Combinations of Plane and Quadric Surfaces," JACM, 13(2),
April 1966, 194--204. Also in FREE80, 203-213.

Weller, D., and R. Williams, "Gmpbic and Relational Data Base Support for Problem
Solving," SIGGRAPH 76, 183-189.

Wellner, P. , "Statemaster: A UIMS Based on Statecharts for Prototyping and Target
Implementation," in Proceedings of CHI '89, ACM, New York, 177- 182.

Wertheimer, M., "Laws of Organization in Perceptual Forms," in Ellis, W.O., ed., A
Souru Book of Gestalt Psychology, Harcourt Brace, New York , 1939.

1225

1150

WESL81

WEST89

WHEL82

WHIT80

WHJT82

WHIT83

WHJT84

WHJT85

WILH87

WILL72

WILL78

WILL83

WJTK87

WITK88

WOLB88

WOLB89

WOLB90

WOLF87

WOLF90

W0085

WOOD70

Bibliography

Wesley, M.A., and G. Markowsky, " Fleshing Out Projections," IBM Journal of
Research and Development, 25(6), November 1981 , 934-954.

Westover, L., "Interactive Volume Rendering, " in Proceedings of Volume Visualization
Workshop, Department of Computer Science, University of North carolina at Chapel
Hill , May 18- 19, 1989, 9-16.

Whelan, D., "A Rectangular Area Filling Display System Architecture," SIGGRAPH
82. 147- 153.

Whitted, T., "An Improved Illumination Model for Shaded Display," CACM, 23(6),
June 1980, 34>-349.

Whitted, T., and S. Weimer, " A Software Testbed for the Development of3D Raster
Graphics Systems," ACM TOG, 1(1), January 1982, 4>-58.

Whitted, T., " Anti-Aliased Line Drawing Using Brush Extrusion," S/GGRAPH 83,
151-156.

Whitton, M., "Memory Design for Raster Graphics Displays," CG & A, 4(3), March
1984, 48-65.

Whitted, T. , " The Hacker's Guide to Making Pretty Pictures," in Image Rendering
Tricks, Course Notes 12 for SIGGRAPH 85, New York, July 1985.

Wilhelms , J., "Using Dynamic Analysis for Realistic Animation of Articulated
Bodies," CG & A. 7(6), June 1987, 12-27.

Williamson, H., "Algorithm 420 Hidden-Line Plotting Program," CACM, 15(2),
February 1972, 100-103.
Williams , L., "Casting CllfVIXI Shadows on Curved Surfaces,'' SIGGRAPH 78,
270-274.

Williams, L., "Pyramidal Parametrics," SIGGRAPH 83, I- ll.

Witkin , A. , K. Fleischer, and A. Barr, "Energy Constraints on Parameterized
Models," SIGGRAPH 87. 225-232.

Witkin, A., and M. Kass , "Spacetime Constraints," SJGGRAPH 88, 159-168.

Wolberg , G., Geometric Transformation Techniques for Digital Images: A Survey,
Technical Report CUCS-390-88, Department of Computer Science, Columbia Univer
sity, New York, December 1988. To appear as Wolberg, G., Digital/mage Warping,
IEEE Computer Society, Washington, DC, 1990.

Wolberg, G., and T.E. Boult, Separable Image Warping with Spatial Lookup Tables,
SIGGRAPH 89, 369-378.

Wolberg, G., Digital/mage Warping, IEEE Computer Society Press, Los Alamitos,
CA, 1990.

Wolf, C., and P. Moret-Samuels, " The Use of Hand-Drawn Gestures for Text
Editing," lnrernmional Journal ofMan·Machine Studies, 27(1), July 1987, 91-102.

Wolff, L., and D. Kurlander, " Ray Tracing with Polarization Pa.rameters," CG&A. 10(6),
November 1990, 44-SS.

Woo, T., ''A Combinatorial Analysis of Boundary Data Structure Schemata,'' CG &
A, 5(3), March 1985, 19-27.

Woods. W. , "Transition Network Grammars for Natural Language Analysis," CACM.
13 (10), October 1970, 591-006.

1226

Bibliography 1151

WOOD76 Woodsford, P. A., "The HRO..I Laser Display System," SIGGRAPH 76, 68- 73.

WOON71 Woon, P.Y., and H. Freeman, "A Procedure for Generating Visible-Line Projections of
Solids Bounded by Quadric Surfaces," in IFIP 1971. North-Holland Pub. Co., Amster
dam, 1971 , pp. 1120-1125. Also in FREE80, 230-235.

WRIG73 Wright, T.J., "A 1Wo Space Solution to the Hidden Line Problem for Plotting Functions
of 'TWo Variables," IEEE Trans. on Computers, 22{1), January 1973, 28-33. Also in
FREE80, 284-289.

WU89 Wu, X., and J.G. Rokne, "Double-Step Generation.of Ellipses," CG & A, 9(3), May
1989, 56-69.

WYU67 Wylie, C., G. W. Romney, D.C. Evans, and A.C. Erdahl, " Halftone Perspective Drawings
by Computer," FJCC 67. Thompson Books, Washington, DC, 1967, 49-58.

WYSZ82 Wyszecki, G., and W. Stiles, Color Science: Concepts and Methods, Quantitative Data
and Formulae, second edition, Wiley, New York, 1982.

WYVI86 Wyvill, G., C. McPheeters, and B. Wyvill, "Data Structures for Soft Objects,'' The
Visual Computer, 2{4), April 1986, 227- 234.

WYV188 Wyvill, B., "The Great Train Rubbery," ACM SJGGRAPH 88 Electronic Theater and
Video Review, 26, 1988.

YEAG86 Yeager, L., and C. Upson, "Combining Physical and Visual Simulation-Creation of
the Planet Jupiter for the Film '2010'," SIGGRAPH 86, 85-93.

ZDON90 Zdonik, S.B., and D. Maier, Readings in Object-Oriented Database Systems, Morgan
Kaufmann, San Mateo, CA, 1990.

ZELT82 Zeltzer, D., "Motor Control Techniqu.es for Figure Animation," CG & A, 2(11),
November 1982, 53- 59.

ZIMM87 Zimmennan, T., J. Lanier, C. Blanchard, S. Bryson, andY. Harvill, "A Hand Gesture
Interface Device," in Proceedings of the CHI+ Gl 1987 Conference, ACM, New York,
189- 192.

1227

Index

Abon command, 409-410
A-buffer a.lgorithm, 671, 693-695
Accelerator keys, 367-368, 411-412,436
ACE. 601
Achromatic light. 563-573
Action, 1066, 1068-1070
Action routines, 457
Active values, 466
Active rone, 560
Active-edge table, 97, 681 , 886
Acti\'e-surface table, 684
Actors, 1073
Adaptive subdivision, see Curved surfllccs,

Spatial partitioning
Additive color primaries. 585
Address space. 166. 177

single, 177-179
Addressabilily. 146, 170
Adjoint, classical, 217, 1108
Aerial perspective, 610
Affine combination, 1086
Affine space, 1083-1108, 1085
AHine transformation. see Transformation.

aHine
Aliasing. 612, 627~28, 671, su alsc

Antialiasing
artifact. 14
in scan conversion, 1008
in scan converting conics, 957
sliver polygons, 96
temporal, I 058, I 078

Alignment
for paucrns. 101

a (angle between Rand V), 729, 813
AlphiLI. 540-541. 547
a-channel. su Compositing, a-channel
Ambient light, 564, 612, 722-723
Ambient reflection coefficient (k,.), 723
American National Standards Institute, see

ANSI
Ampex digital optics (ADO), 829
Anchor. of pattern, I 0 I
Andrew. 441. 452
Animation, 5, 1057-1081

basic rules. 1077-1078

1153

canoon-cluiracter, I 077
conttol, 1070-1078
conventional, I 058-1059
on fields. 1079
flip-book . 108 I
graphical languages, 1067
key-frame, 1058, 1059
linear-list notations. 1065
look-up table, 180-181. 1064-1065
physically based, 1076
staging of. 1078
on tv.os, 1080

Animation control
constraint-based, 1071
explicit, 1070
key-frame, I 070
procedural, 1070
tracking live action, 1073

ANSI (American National Standards
Organization), 16, 285

Antialiased brushes, 974
Antialiasing, 14, 132-142, 598, 612,

617~. 817-818. 909, 965-976, see
also Filter, Area sampling

circles. 969-971
conics, 971-974
general curves. 974
Gupta-Sproull line algorithm, 137- 142
Gupta-Sproull techniques, 969, 975-976
lines, 967-969, 975
multiple lines, 968
polygons, 975
rectangles, 975
temporal, 819, 1079
text , 977
2-bit, 968

Application-dependent data, 844
Ardent Titan , 890-891
Area sampling

unweighted, 132- 135
weighted, 135- 142

Area subdivision algorithm, Warnock, 550
Area subdivision algor-ithms. 68~5
Artificial reality. 21. 357. see alsc Virtual

IOOrid

1228

1154 Index

ASAS, 1066, 1073
Atmosphere, I 044
Aunospheri<: attenuation, 727-728
AT&T PiJid Machine, 889. 911-912
Anribute bundle, PHIGS, 332
Attribute, 18, 19

~05mctic, 94S
geomcuic, 94S
inheritance, 318-321
nongeometric, 298
output primitives, 30-40
SPHlGS, 298, 318-321
SRGP, 38

Audio, see Voice input-ootput
Autocompletion, command, 362
Axial ray, 787

8 (radiosity). 793
B-rep, see Boundary reprcscnmtion
Back distaooe (B), 241
Back-face culling, 663-«>4, 807
Background, oolor attribute, 3S
Backing SIO<C, 996, 997
Backus-Naur form, 461
Bandwidth, ISS, 180
Bandwidth limiting, 629
Baseline, text , 39
Basis

SWidard, I 093
of a vector space, I 092

Ba.~is matrix, 483, 489, 493. 505, 510
Batch, screen updates, 328
BBN Butterfly, 911
Beam, 784
Beam current, 163
Beam tracing, 787
Bernstein polynomials, 489-490, 494

trivariate, 1014, 1054
Jl (angle between Rand R), 731. 813
,8-splines, see Splines
B~ier curves, see Splines, 86zier curves
Bias parameter, ,8-spline. SOS-506
Bicubic surface. 473
Bicubic surfaces, dnlwing, S2:>-S28
Bidirectional reflectivity (p), 763

diffuse (p4), 763
specular (p,), 763

Bilevel CIU, see Bilevel display
Bilevel display, 12, 564, 568, 570
Bilinear, 109S
Binary space-partitioning (BSP) tree

regularized Boolean set opemtions, 546,
556-SS1

shadow algorithm, 7S I
for solid modeling, SSS-551. 559
visible-surface determination, 67S-680

Binding, see Hardware binding
Binooular disparity, 616
Bintree, 552. 784
BitBit. 69, 986-992, see alsc CopyPixel,

PixBh
implementation, 132
managing windows, 996-998
on-the-fly assembly, 991-992
pseudocode, 988

Bitmap, I , 13, see alsc Pixmap
chlll'liC1erS, 127
offscreen, Sl!l! Canvas, offscrcen
pattern. 34-36
scaling of, 85 I

Blanking, 12
Blending functions . curves, 483, 485,

49:>-494, 497
Blobby objects, 1047
Bloom, ph05phor. ISS
BOhm algorithm, for cubic curves. S 10
Boldface, see Character
Boolean operations on polygons, 937
Boolean opemtions on solids, see Regularized

boolean set opemt ions
Bottleneclting, 831, 832-833
Boundary fi U. see Filling algorithms ,

boundary fill
Boundary representation, 542-548, 559. 560

adjacency relationships, S46
non-polyhedral , 547- 548
regularized Boolean set operations,

546-547
Bounding box, 660, Sl!l! also Extent
Box filter. see Filter, box
Brcsenham, circle scan oonversion, see Scan

oonversion. midpoint circle
Brcsenham, line scan oonYetSion, see Scan

oonvcrsion, midpoint line
Brewster angle. 771
Brightness, of I ight , 563, 584
BRIM, 849
BSP tree, see Binary-partitioning tree
Brush, see alsc Antialiased brush

orientation, 104
shape, 104

B-spline, see Curved surfaces, Curves
B-spline curves, see Splines, B-spline curves
B-spline surfaces, see Splines, B-spline

surfaces
Buffer, see Refresh buffer
Bump mapping, 1043

1229

Button mask. locator, 47-4S
By-example specification, 464

Cabinet projection, see Projection
CAD, su Computer-aided design
Callback procedures, 450-452
Calligraphic display, 9, see also

Random-scan display
Camera, viewing, 249
Camera interpolation, see Interpolation,

camera
Cancel command, 409--410
Canvas, 53-54

offscreen, 69
Cartogrdphy, 6
CAT scan, see Computed tomography
Catenary, 1041
Cathode-ray tube (CRT), 155-160, 564, 570,

641 , 856, see also Flat tension mask,
Flicker, Focus

shadow-mask, 158
Catmull subpix.el area-subdivision algorithm,

693
Catmull- Rom splines, see Splines,

Catmull-Rom
Cavalier projection, see Projection
Cel, 1059
Cell decomposition , 548-549, 558
Center of projection (COP), 230
Center of window (COW), 238
Central Structure Storage, 293-295, see also

Structure net~rk
Channel, 844
Character

alignment , 129
boldface, 131
descender. 39, 129
font, 129
italic. 131
recognition, 373
roman, 129
typeface, 127, 129
width. 129

Charge-coupled device (CCD), 195-196
Choice logical device, 42, 188, 195, 352,

436,452
Choice set. 361
Chord, locator button state, 44
Chroma, color , 574
Chromaticity, color, 580-583, 589
Chromaticity coordinates, 580, 586, 589,

600
Chromaticity diagram, see CIE chromaticity

diagram

Index

ClE (Commission lntemationale de
l'Eclairage), 579

CIE chromaticity diagram, 579-584
CIE oolor model, 585

1155

CIE LUV uniform color space. 584, 594
CIE primaries, 579-580
Circle, implicit equation of, I 097
Circles, see Scan conversion, general circles
Classical adjoint, see Adjoint, classical
Click and drag interaction, 386
Client, 440
Clip rectangle, 55
Clipping, 71, 924

analytical, 110
characters, 127
Cohen-Sutherland line algorithm, 113
Cyrus-Beck-Liang-Barsky algorithm, 925
depth, 870
endpoints, I 12
to general windows, 995
in homogeneous coordinates, 272, 870
Liang-Barsky line algorithm, 121-124
Liang-Barsky polygon algorithm, 929,

930-937, 1006
lines, 111- 124. 925
Nichol-Lee-Nichol line algorithm, 115.

177, 925-928, I 006
polygon, 124-127, 924, 929
in PosTSCRJYr, I 002
to rectangular windows, 924
Sutherland-Hodgman polygon-clipping

algorithm, 124-129, 274, 929
text string, 127

30, 271-274, 659, 869-870, 878-879
30 Cohen-Sutherland line algorithm, 271
30 Cyrus-Beck, 271
3P Liang-Barsky, 271
trivial acceptance, trivial rejection, 868,

878
20 primitives in a raster world, 110-127
20 raster graphics, 55
vert.ical polygon edges, 935
Weiler polygon algorithm, 929, 937-945,

1006

Clipping plane
back {;yon), 240
front (hither), 240

Closure, visual, 41~19
Cloth, 1041
Clouds, 1044-1045

fractal-based. 1044
Cluster, 675
Cluster priority, 676

1230

1156 Index

Clustered-dot ordered dither, 568, 570, 572
CMY color model, 584, 587-589, 600
CMYK color model, 588
Coding

information, 404
redundant, 422, 424
visual, 387, 422-425

Coding categories, 422
Cohen-Sutherland line-clipping algorithm,

see Clipping, Cohen-Sutherland line
algorithm

Coherence, 91, 657
area coherence, 657, 686
depth coherence, 657, 684
edge coherence, 91 , 657, 680
face coherence, 657
frame coherence, 657,664, 715
implied edge coherence, 657
invisibility coherence, 685
object coherence, 657, 75 I, 784
scan-line coherence, 91, 657,680, 715
span coherence, 657, 681
spatial coherence, 881

Color. see Chromaticity, Dominant
wavelength, Hue, Luminance, Metamer

Color blind, see Color deficient
Color coding, 422-424, 602
Color deficient, 422, 424, 601~2
Color gamuts, 583-584
Color barmoey, 60 I
Color interpolation, 598-599
Color map, see Video look-up table
Color matching functions, 578-580
Color models, 584-595, see also CIE, CMY,

HLS, HSB, HSV, HYC, RGB, YIQ
Color table, 32, see also Video look-up table
Color usage rules, 602
Colorimeter, 582, 586
Colorimetry, 575
Column-preserving map, 828
Comb function, 636-637
Command language, 348, 402, 403
Command mode, 416-417
Commission Intemationale de I'Eclairage, see

CIE
Commutativity, matrix operations, 209-210
Complementary colors, 582-583, 590
Composite architecture, see

Image-composition architecture
Composite interaction task, see Interaction

tasks
Composite modeling transformation matrix

(CMTM), 316
Composite video, 180

Compositing
a-channel, 835-840
hardware, 84()..a42
image, 815, 835-843, 850

Composition, see Transformation,
composition

matrix, 205
Compositor, 90 I, 906
Computed tomography. 816, 1035, 1039
Computer-aided design (CAD), 5, 7, 471,

514, 516
Conceptual design, of user interface,

394-395, 404, 429, 430
Conductor, 767, 770-771
Cone filter, 136
Cone receptors in eye, 576
Cone tracing, 786-787, see also Ray tracing
Cones, 733
Conics, see Scan conversion, general conics
Connection Machine, see Thinking Machines

Connection Machine
Connectivity of regions, 979
Consistency

user interface, 404-405
visual, 425-426

Constraint, 360, 378, 454. 1040
dynamic, 1040, 1076
energy, 1040
in line drawing, 384

Constraint-based modeling, 1040
Constructive planar geometry, 938
Constructive solid geometry (CSG),

557-558, 559, 560, 672, 901
Containment tree, 943, 1007
Context, PosrSCRll"'', 1000
Context switching, 907-908
Context-sensitivity, user interface, 409, 412,

413, 417,457, 459
Contiguous panitioning. 887-888, see also

Parallel rasterization architectures,
image-parallel

Continuity, see Curves
curved surface, 480-482

Contouring, intensity , 569
Control grid, of CRT, 155, 565
Control points, see Curves and Curved

surfaces
Control to display ratio (C/0 ratio), 351,

352, 375
Convergence of electron beam, 156
Conversion between color models, 584-596
Conversion between curve representations,

510-51 I

1231

Convex hull, 488,490-491,492,494,496,
509

Convolution, 62~33, see also Filter
graphical, 632-633
precomputed tables, 695

Cook- Torrance, see Illumination,
Cook-Torrance

Coons' patch, 519
Coordinate system, 1092, 1094

application, 60, 280
camera, 280
device, 210. 281
eye, 280
left-handed. 280
local, 280, 378
logical device, 280
modeling, 280
normalized device, 280-281
normalized projection, 241, 278, 280
object, 280, 359
problem, 280
raster, 281
right-handed, 214, 280
screen, 280-281, 359, 379
in SRGP, 26
(u, v, 11), 238, 280
(u, v, VPN), 280
view reference, 238, 280
world, 210, 280, 359

Coordinates
absolute, 185
in an affine space. I 094
relative, 185
in a vector space, 1093

Coordinate-system representation, 72
CopyPixel, 56, 986-992
Coral, 1048
Core Graphics System, I 5
Correct command, 409-410
Correlation. see Pick correlation
COUSIN, 465
Cramer's rule, 1106
Cross-hatching, see Vector cross-hatching
Cross-product, 1104
CRT, see Cathode ray tube
CSG, see Constructive solid geometry
CSS, see Central Structure Storage
CT scan, see Computed tomography
Cube architecture, 914
Cuberille, 549
Cubic curve, 472, see also Splines

drawing, 511-514
Culling, structure network, 340
Current command, 415
Current path, POSTSCRIPT, I 003

lndelt 1157

Current point, 415
Current position (CP), 171-174
Currently selected object (CSO), 416, 417,

459-460, 463
Cursor, 3D, 672
Curved surfaces, 516-529 see also Surface

patch
adaptive subdivision, 527
display methods, 913
forward differences, 913
tesselation, 807

Curves, see alw Splines
parametric polynomial, 472
parametric cubic, 478-516

Cyrus-Beck Line clipping algorithm, 117- 124

D (microfacet distribution function), 764
Beckmann, 764-765
Trowbridge-Reitz, 764

dL (distance from point source to surface),
725

DIA conversion, see Digital-to-analog
conversion

Damage repair, 37, see also Regeneration
strategy

Data flow, 468
Data model, 466
Data tablet, see Tablet
Database, see Display model
Database amplification, 1011
DataGiove, 355-357, 1073
DC (direct current), 625, 630, 637
DDA, see Digital differential analyzer
Decision variable

for circle scan conversion, 84
for ellipse scan conversion, 88
for line scan conversion, 76

Deflection coils, 155
Deformable solids, 1042
Degree elevation, parametric curves, 507
Degrees, recta11gular, 30
Demultiplex events, 447
Density emitter, 1037
Dependence, linear, 1091
Depth buffer, see z-Buffer
Depth clipping, 611
Depth cueing, 610, 727- 728
Depth of field, 615, 774-775, 789
Depth-sort algorithm, 673, 715-716
Descender, character, see Character,

descender
Design objective, user interface, 391- 392.

405, 421, 458
Design rules, visual, 426-428
Desktop metaphor, 34 7

1232

1158 Index

Detectability, filter, 333
Determinant, see Matrix, determinant of
Device-independence

graphics, 15
interface, 67

DIAL, 1067
Dialogue box, 381-382, 411, 414, 425-426,

445,452
Dicing, 811
Dielectric, 766, 770-771
Diffuse reflection, 723-727

coefficient (kJ, 724
Digital differential analyzer, 74
Digital Equipment Corporation (DEC), 430
Digital holography, 918-919
Digital typography, see Typography, digital
Digital-to-analog conversion, 860
Digitize, 350, 355, see also Scanning
Dimension, fractal, 1020
Ditee1 manipulation, 2
Direct manipulation user interfaces, 348,

397-398, 403, 412, 465
Direction of projection (OOP), 231, 238
Direction of reflection (R}, 729
Direct-view storage tube (DVST), 10, 161
Discrete Fourier transform, 625
Discretely shaped P-splines, 507
Dispersed-dot ordered dither, 570, 572
Dispersion, 757
Display controller, I I , 69
Display coprocessor, see Graphics display

processor
Display devices, raster, 25
Display list, 9
Display list storage, 176
Display model, 862

distributed, 881
Display procedure, 308
Display processing unit, 861-866. see also

Random-scan display processor, Display
controller

Display program, sa Display list
Display traVersal, 294,299,308-331,

867-868,877, 880-881
attribute inheritance, 318-321
immediate mode, 867
implementation, 334-338
modeling transformation, 315-317, 336
optinUzation, 336-337,340-341
retained mode, 867
viewing transformation, 299-302

Distance formula, from point to line, 1100
Distributed frame buffer, see Parallel

rasterization arcl1itectures, image-parallel

Distributed ray tracing, 788-792
jittering, 788
Poisson distribution, 788

Dither matrix, 569-572
Dithering, 569, 599, see also Ordered dither,

Random dither
Do what I mean (DWlM), 362
Do-it command, 417
Domain

frequency, 623
spatial, 618, 623
temporal , 618

Dominant wavelength, color, 575-576, 580,
582

Dore, 810
Dot product, 1094

in region classification, 118
Dot size. 146, 158
Double buffering, 13, 177,337-338,

858-859, 886
Double-hexcone H.LS color model, 592,

594
Dragging, 386
DRAM (Dynamic random-access memory),

857-858, 871, 890
Drawing octants, 953
DVST. see Direct-view storage tube
Dynamic constraints, see Constraint, dynamic
Dynamic Digital Displays Voxel Processor,

914
Dynamic random-access memory, see DRAM
Dynamic range, intensity, 564, 566-567
Dynamics, 615, 1071 , 1074-1076

geometric modeling, 311-314
inverse, 1076
motion, 4, 1057
update , 4, 1057

£1 (incident irradiance), 762
Echo, see Peedbaclc
Edge coherence, 96
Edge detection. 820
Edge e,nhancement, 820
Edge table, 681
Editing, of structure oet~rt. 324-327
Eigenvalue, II 08
Eigenvector, 1108
8 by 8 display, 889
8-connected region, 979
Elasticity , 1042
Electroluminescent (EL) display, 164
Electromagnetic energy, 575
Electron gun, 155, 159
Electrophoretic display, 164

1233

Element. sltUCture neeworic, 293, 295. 324
Ellipse

arc specification, 30
specification, 95 I , I 007, see also Scan

con.-ersion, general ellipses
Elliptical weighced-a..:rage filler, 827-828
Energy distribution, see Spectral energy

distribution
Environment mapping, see Refleaion

mapping
Ergonomics, see Human factors
Error diffusion , Aoyd-Steinbetg, 572-573
Error measure, 73
Error rates, 391, 403

selCCl ion task, 360, 370
Error reCQ\Iery, 409-411
Errors, user. 394. 409-411

""' "" (indices of refraction). 757
Euler angles. 1063
Euler operators, S44, S61
Euler's formula, S43
Evans & Sutherland Computer Corp., 886,

919
Even-«<d rule. 965
Event, 20

input, 42
SRGP input mode, 45--48
window system, 447-451

Event language. 462-463
EYent mode, input devices, 437-439
Eventqueue, 42, 437-440
Event routing

dispateher, 450
listener, 449
notifier, 450
real-estate based, 448
user, 448-450

Event.<Jriven interaction, 42-48
Excitation purity, color, 575-576, 582. 583,

591
Expert system, 413, 425, 466-467. 60 I
Explicit functions. 478
Extensibility of user interface, 393, 403, 413
Extent , ~3. 887

minmax. 661
text, 39
30 object, 336

Extinclion. coefficient of (KJ, 767
Extrusion textures , 1018
Eye. S64
Eye cnc1c«, 35 I
Eye-hand coordination, 350, 360

F, (Fresnel term), 764, 766-767

Index 1169

[,... (ligbc-source attenuation factor), 725
Faces, modeling, 1049
Factoring of user interface commaods, 415 ,

418
Fade operator, 839
Fast Fourier transform, 626
Feedback, 360,362, 375,393,404-408,

414, 437
input devices, S0-52

Feibush-Levoy-Cook algorithm. 823-826, 852
Fields, video, 1079
F(u). Fourier transfonn off, 625
j{x), signal, 625
Filled primitives, see Scan conversion, filled

primitives
Filling

circle, 99-100
ellipse. 99-100
pauern, 100-104
polygon. 92-99
rectangle. 91

Filling algorithms. 842, 979
boundary fill' 979-980
flood fill, 979-980
seed fill, 980
soft fill , 979, 983-986
lint fill , 979

Film recorder, 153-154, 570, 641
Filter, 136 see also Prefiltering, Postfiltcring

Bartleu, 637
bat. 636, 715
oonYOiution kernel, 631
cue-off. 629
finite suppon, 631
AR, 635
Gaussian. 635, 641
highlightingtvisibilicy, 332-333
UR, 635
infinite support . 633
negative lobes. 634
ringing. 633
suppon. 631
triangle, 635
windowed. 633

Filtering, 628-636. 695, 817
Finite element mesh, 1041-1042
Fireworks, 1031, 1055
Fitts' law. 371
Flaps, 733
Flat tension mask CRT, 160
Aider, CRT. 12. 157
Aighc simulator, 4, 9 19
Flocking behavior, 1049
Aood fill, see Filling algorithms, flood fill

1234

1160 Index

Floodlight, 733
Fluorescence, phosphor, 157
Flux, 7(J), see also lrradiance
Fly back, see Vertical retrace
Focus, CRT, 156
Fog, 1031
Font, see Character
Font cache, 127
Foot switch, 352
Footmouse, 351
Footprint, 106, 108

inter.tction device, 350
Footprint processor, 888-889, 902
Footprint processor, see Parallel rasterization

architectures, image-parallel
Foreshortened surface area, 761-762
Form fill-in. 398, 402-403
Form follows function (Bauhaus), 431
Forward differences, 511-514, 524-525

adaptive, 514
in conic scan conversion, 955-957

4-connected region, 979
Fourier analysis, 625
Fourier transform, 625, su also Inverse

Fourier Transform
Fractal dimension, see Dimension, fractal
Fractal models, 10~1026
Frame buffer, 14, 166-169, 178, 816, 856

di.stributed, 887--890
memory-access problem, 856, 873

Frame buffer synergy, 816
Fresnel term, see F,
Front distance (f), 240, 265
Fu.nction key, 195, 352, 372, 406, 412
Functional design , user interface, 394-395,

404. 406, 429-430
Fundamental frequency, 623
Fusion frequency, critical, 157

G (geomerrical attenuation factor), 764-766
Gamma correction, 564-568, 600
Gaussian elimination, 1104, 1106
Gauss-Seidel iteration, 1109
General Electric, 919
General Electric NASA n, 899-900
Generalized cylinder, see Sweep
Generic commands, 405
Genesis effect, 840, 1032
GENESYS, 1067
Genisco SpaceGraph, 917
Genus of a polyhedron, 543
Geometric aliasing, 472
Geometric continuity, 480-482

Geometric extents, see Extents
Geometric modeling, see Hierarchy,

Structure net~rk
interactive, 315
object hierarchy, 288-291

Geometry Engine, 878-879
Geometry matrix, 5 17, 520. 521
Geometry vector, 48~6, 488-489, 492,

510, 516-517
Geomod, 547
Geomorphology, 1043
Gestalt rules, 418-422
Gibbs phenomenon, 633-634
OKS, 16, 176, 436. 439
Global transformation matrix, 316
Glue operator, 548
GMSOLlD, 5(J)
Goniometric diagram, 732
Good continuation, visual, 418-419
Gouraud, see Shading, Gouraud
Gradient search, 1052
Graftals , 1027
Grammar-based models, 1027-1031
Gram-Schmidt process, 1102, 1112
Graphic alphabet, 425-426
Graphical languages, see Animation,

graphical languages
Graphics display processors, 166-179
Graphics pipeline, 866--871
Graphics subroutine packages, 25, 285
Graphics ~rkstation, see Workstation
Grass , 1031
Gravity, 376, 378, 385-386, 388
Great arc, 1063
Grid-line distance, 946
Grids, positioning, 3(J), 378, 427
Group technology, 539
Growth sequence, 569
Gupta-Sproull algorithms, see Antialiasing,

Gupta-Sproull techniques
GWUIMS, 466

Fl (halfway vector), 731
Hair, 1049
Halftone pattern, 777
Halftoning, 568-569, 897--898
Halfway vector (F/), 731
Handles for user interaction, 386, 388
Hands, modeling of, 1049
Hardware binding design, 395, 404, 406,

429
Harmonic, 623
Head mouse, 351-352
Head-motion parallax, see Parallax

1235

Head-mounted display, 357, 917-918
Help facility, 412, 414, 457
Hennit.e curYCS, 482, 483-488, 491,

51 S-516, ~~ also Splines
Hexcone HSV color model, 591
Hidden-surface elimination, see Visible·

surface determination
Hidden-line determination, s~~ Visible-line

determination
Hierarchical 8 -spline refinement, ~e Splines,

Hierarc:bical 8-spline refinement
Hierarc:bical display list, 176, 291
Hierarc:bical menu selection, 365-367
Hierarchical object selection, 362-364
Hierarchy, 665, su also Display traversal ,

Structure network, Ray tracing
automated generation, 707- 710
data, 344
efficient traversal, 707
limitations in modeling, 341
object, 362, 397
object modeling, 288-291
procedure, 343

Highlighting, in geometric model, 332
Hither clipping plane, se~ Clipping plane,

front
HLS color model, 584, 592-595
Hologram, s~e Digital holography
Homogeneous coordinates, 204-208,

213-217
Homogenization, 1090
H S8 color model, 585, Me also HSV color

model
HSV color model, 584, 590-592, 5~598
Hue, color, 574-575, 579, 584, 590
Human factors, 40, 391
Humans, animation, 1076
HUTWindows, 459
HVC color model, 584, 594, 597
Hybrid parallelism, su Parallel rastcrization

architectures, hybrid-parallel
Hyperbola, specification, I 007
Hype~ media. 5

i, v::l, 625
ldd {depth cue color), 727
/ 1 (incident radiance), 762
1, (point light scurce intensity), 724
I, (reflected radiance), 763
Icon, 369. 395, 397-398

design goals, 399
lcooic user interfaces, 398-402
lFS, see Iterated function system
llluminant C. 581-582

Index 1181

lllumination, see also Ught source
anisocropic, 770-771
Cook- Tomnce, 764
equation, 722
global , 722, 775
Hall model, 785- 786
local, 715
model, 721
off-specular peale, 767
Phong, 729-730, 731, 769
physically based models, 7~771
polarization Stale, 771
Torrance-Sparrow, 764

Image
abstract, 816
blending, 835
digital, 817
dlscrele, 8 17
as primiti"C in PooTSCIUPT, 1003
rotation. 85 I
scaling, 63, 821
shearing, 822
translation. 820

Image attributes, 849-850
lmage compositing, Sl!e Compositing, Image
Image composition language (lCL), 842
Image irradiance, 763
Image parallelism, see Parallel raslerization

architectures, image-parallel
Image processing. 2, 820
Image storage, 815, 843-850
Image-assembly tree, 843
Image-composition architecture, ~907,

see also Parallel rastcrization
architectures, hybrid-parallel

Image-order rastcrization, see Rastcrization
algorithms, scan line

Image-precision, see Visible surface
determination

Imaging model , 999
Implicit equations, 478-528
lnbetweening. 1058
Incremental methods. 72
Independence, I inear, I 091
Index of refracdon, complex (174), 767
Input, see Interaction handling
Input devices. 188-195, 348-359, see also

Interaction tasks, Logical input device
Input pipeline, 68
Inside, see Odd-parity rule, Winding rule,

Filling algorithms
InstanCe, object hierarchy, 291
Instance block, 325-327
Instance transformation, see Display traversal
Integral equation method, 792

1236

1162 Index

Intel 82786 Graphics Coprocessor, 908
Intel i860 Microprocessor, 864-866
Intensity, 722- 723, 760--763

light, 563-573
of line as function of slope, 80
profile, 973
radiant, 761
resolution, 568

Interaction, see Logical input devioe
Interaction handling, 20

sampling vs. event, 42-44
in SPHIGS, 328--331
in SRGP, 40-52

Interaction tasks, 348-349, 358-381
composite, 381-388
position, 349, 358-361, 376-378, 381
quantify , 349, 374-376
select, 349, 361- 373,377,381
text, 349, 373-374
30, 376-381
3Dnxation, 379-381

Interaction techniques, 348-349, 358-381 ,
394-395,430,451

color specification, 595--598
Interaction toolkits, 451-456
Interdot distance, 146
Interlaced scan, 179-180
Interleaved partitioning, 888, ue also Parallel

rasteriz.ation architectures, image-parallel
International Standards Organization, see

ISO
Internode, I 028
lnterobject communication, 1019
lnterobject reflections, 758-761
Interpolation, 1051 , see also Shading

camera, I 064, 1077
color. 598-599
linear, I 060
orienlation, 1063
spherical linear, 1063

Intersection formula
between circle and line, 1100
between line and plane, II 0 I

InterViews, 452
lnYerse, see Matrix , inverse of
lnYerse Fourier transform, 625
Invisible-surface !able, 685
Irradiance, 762
ISO (International Slandards Organization),

16, 285
lsosurface. 1035--1036, 1047
llalic, see Character, italic, Font
Item buffer, 782, 796

Iterated function system (IFS), 846-849
modeling, I 026

Jaggies, 14, 132, 628 , see also Aliasing,
Anti aliasing

Joystick, 191 , 350-351, 355, 358, 360
Joyswitcb, 191 , 360
JPL. 007
Julia-Fatou set, I 021
Just-noticeable color differenoe, 578

k, (ambient-reflection coefficient), 723
k.t (diffuse-reflection coefficient), 724
At (intrinsic color), 722-723
k, (specular-reftection coefficient), 729
k, (transmission coefficient), 754
Kerning, 129
Keyboard, 194, 351, 358, 362, 372-373,

377,404,406
chord, 352
logical input devioe, 46, 52, 188,

436
Key-frame, I 058
Kinematics, 1074-1076
Knight, stained glass, I 050
Knot, cubic curve, 491. 496
Kochanek-Bartels spline, see Splines,

Kochanek-Bartels

L (vector to light L), 723
Label, structure element, 324
Lambertian reflec,tion, 723
Lambert's law, 724
Language

form, 394
meaning, 394

Lap-dissolve, 841
Latency, 874, 917
Lateral inhibition, 735
Law of least astonishment, 404, 413
Lazy evaluation, 785
Lazy menus, see Menus, drop-down
LCD, 641 , ue also Liquid crystal display
Length, of a vector. I 095
Lerp, see Linear interpolation
Level surfaoe, 1035--1036, 1047, see also

lsosurface
Lexical design, 395, see also Hardware

binding design
Lexidata Lex 90, 908
L-grammars, 1027
Liang- Barsky line-clipping algorithm, see

Clipping, Liang- Barsky line algorithm

1237

Light, S« Ambient light, diffuse light ,
illumination, etc.

Light~miuing diode (LED), 355
Light pen, 193, 350
Light source see also Illumination

attenuation, 725-727
attenuation foetor (/.,), 725
colored, 725-726
cones, 733
directional , 612, 725
extended, 613, 772-773, 789, 793, 799
flaps, 733
floodlight , 733
goniometric diagram, 732
overflow, 734
point, 612, 723
sky, 799
spotlight, 733
Warn controls, 731-734

Light vaiYe display. 164
Lighting, 868-869, 878, su also

llluminatlon
Lightness, color, 574-575, 579
Une, see also Scan conYerSion

contour, 667
haloed, 667...&>8
implicit equation, 1112
parametric equation, 1086
style, 109, 945
thickness , 945

Line dnwing, 9
Linear combination, 1085
Linear expression, 895-896
Linear-list notations, see Animation,

linear-list notations
LinearSoftFill, 983, 984
Linguistic interaction task, 360, 374
UNKS-1, 911
Liquid crystal display (LCD) , 161- 163, 372
List-priority algorithms, 672-680, see also

Depth-son algorithm, Binary
space-partitioning IIeC

Local control, cubic curves, 491, 493
Local transformation matrix, 304
Locator, 20, 917
Locator logical device, 188, 436-439

absolute, 350
continuous, 35~351
direct, 350
discrete, 3~351
indirect. 350
relatiYe, 350
30. 328. 355-357

Index 1163

20.41-5 1
Logical inpul device, 41-42, 188, 349,

436-439, ste also Keyboard . Locator
Logical visual organization, 418-422
Logic-enhanced memory, 893-899, see also

Parallel rasteriz.ation architectures,
image-parallel

Look-up table (LUT), 845. see also Video
look-up table

Low-pass filtering, 629
Luminance,~. 563, 575-576, 589, 590
Luminescence, 837, 839
Luminous efficiency function, 576-577, 579
Luminous energy, 581
Luxo, Jr., 1052, 1077

m (RMS slope of microfocets), 765
Mach bands, 735-736, 738
Macintosh, 348, 353,368,371, 373, 397,

400.411 , 413, 425,430,441.444
operating system, 996

Macro command, 413
Mandelbrot set, 1021- 1022
Mandrill , smiling face of, 618
Man-machine dialogue, see User-computer

dialogue
Marble, 1046
Marching cubes, 820, 1035, 1048
Marionette, graphical, I 073
Marker, output primitiYe, 28
Master, object hierarchy, 29 J
Material percentage volume, 1038
Material ptopet1ies, 613, 723
Matrix

determinant of, 1103-1105
identity, II 03
inYerSC of, 1105-1106
multiplicalion of. 1103
transpoSe of. II 05

Matrix addressing of display. 162
Matrix Multiplier, 877-878
Matte volume, 1038
McDonnell-Douglas, 919
Measure. logical input devices, 42, 45-47
Measure of an interaction device, 436
Median-<:ut algorithm

color, 600
Medical imaging, 816, 1037- 1039
Megatek Sigma 70, 891
Memorization, 413-414
Meroory

recall, 402, 414
recognition, 402, 414

1238

1164 Index

Menus. 402-404,410-411, 420
appearing. 367
drop-down, 369
hierarchical, 364-367
order, 364
pie. 370
~up, 348, 367-368, 370
pull-down. 49-50, 54-58, 367
pull-out , 367, 369
static. 367

Me!atile. 333. 844
Metamer. col«, 576, 579
Mmphor, user interface, 394
Miclcey UIMS, 455-456
Microface!S, 764
Micropoly3ons. 811
Microson. 348, 368, 373, 382
MIKE UIMS, 465
MIMD. ~t Parallelism
MlP map. 826
Mitering. 962
Mnemonic command names, 413
Modality, auribu!e specification, 30
Mode. input devices, 44
Model ing. 286-288
Modeling. see Geometric modeling
Mode.ling transformation, see Transformation,

modeling
Modes

contcxt-scnsitive S)llltaX, 417
harmful. 414
useful, 414
user interface. 414-418

Mote interaction device, 351
Molecular modeling. 607, 698, 1047-1048,

1057
Monochrome, see Bilevel
Moon, non-Lambertian surface, 763
Motion blur, 615, 789
Moon~ains. fractal 1022-1024
Mouse. 15. 191. 350-351 , 354, 357.

36(}-361, 364, 371, 373, 376, 380,
406, 411. 416, SN also Locator

Mouse ahead, 438
Moving-points path. 1061
Multipass transformation, 821-822, 828-832
Multiple control points. curves. 495-496,

499
Multiple instruction multiple data (MJMD),

~e Parallel ism
Multiprocessing, 873-876
Munsell color-«der system, 574

R (surface normal). 723

n (specular reflection apooent), 729
Name set . PHIGS, 332
NASA. 607
NASA II . su General Electric NASA II
National Television System Committee

(NTSC), 180, 589-590
Natural cubic spline, 491
Natural language dialogue, 402-403
Natural phenomena, 1043
Necker cube illusion. 60S
Ncglltive orientation, 1105
Net\OOI'Ic . su Structure net\OOI'Ic
Neweli- Neweli-Sanclla algorithm, su

Depth-sort algorithm
NeWS window system, 440-444, 452
Newton- Raphson iteration, 699. 1109- 1110
Newton 's method, 1110
Ne>rr, 353,400,468
Nichoii-Leo-Nicholl algorithm, su Clippiqg,

Nichoii-Leo-Nicholl tine algorithm
Noise function. 1016
Noise-based modeling, 1043
Noise-based tature mapping, 1016-1018
Noll box, 355
Nominative information, coding, 422-424
Nonexterior rule, 965
Nonspectral color. 583
Normal

to bicubic surface, 522-523
to plane, 217, 476
to quadric surface. 529
to surface. 807

Normalizing transformation
parallel, 2~267
perspective. 268-271

Notches, in scan convc.rsion, 971
NTSC. su National Television System

Committee
Number wheel interaction technique, 375
NURBS, ~e Splines, Nonuniform, rational

B-splincs (NURBS)
Nyquist tale , 627~28. 788-790

o ... (object diffuse color), 726
0,., (object specular color). 730
Object buffer, 672
Object hypothesis, 608
Object modeling, see Geometric modeling
Object parallelism. see Parallel rasteriza!ion

architectures, object-parallel
Object placement. automatic, 1050
Object-«der rasteriz.ation, su Rasterization

algorithms, z-Buffer

1239

Object-precision, see Visible surface
determination

~tree. 550-555,559-560
linear notation, 5.54-555
neighbor finding, 552-554
PM octree, 555
regularized Boolean set operations,

552-553
rotation, 552
visible-surface determination, 695-698

Odd-parity rule, polygons, 34
Ornnimax film format, 230
Opacity, 754
Opaque operator, 839
OPEN LOOK, 452
Open Software Foundation (OSF), 430, 452
Ordered dither, 568
Ordinal information, coding, 422--424
Orientation of a basis, II 05
Orthogonal, 1102
Orthonormal basis, 1102
Oslo algorithm, cubic curves, 510
Ostwald color-order SYStem, 574
Outcode, clipping, 113
Output pipeline, 68, see also Rendering
Output primitives, 18, 19

area-defining, 107
geometric modeling, 296-298
raster graphics, 26-30
respecification, 61--{)3

Overhauser splines, see Splines,
Catmuii-Rom

Page mode, 858
Page-description languages, 998-1006
Painter's algorithm, 674
Painting

implementation, 45
versus drawing, 61

PAL television standard, I 80
Palette, 41
Pan-worn movie, 1059, 1064-1065
Parabola, specification, 1007
Parallax, 915
Parallel front-end architectures, 880-882
Parallel projection

front, 232, 250
oblique, 232
orthographic, 232, 250
side, 232
top, 232, 251

Parallel rasteriz.ation architectures, 887-899
hybrid-parallel, 902-907
image-parallel, 887-899
object-parallel, 899-902

Index

Parallelism, 875-876
multiple instruction multiple data

(MlMD), 876

1165

single instruction multiple data (SlMD),
875-876

Parallelogram rule, I 084
Parametric surfaces, 471, 516-528
Parametric bivariate polynomial surface

patches, 472, see also Splines
Parametric continuity, 480--482
Parametric C·ubic curves, see Curves,

parametric cubic
Parametric polynomial curves. see Curves,

parametric polynomial
Parametric representation, in line clipping,

118
Parametric velocity, 482
Paraxial ray, 787
Parity rule, 965
Particle SYStems, 1031-1034
Partitioned frame buffer, see Parallel

rasterization architectures,
image-parallel

Patch, see Splines, surface patch
Path tracing, 792
Pattern, output attribute, 34-37
Pattern fiJJing, see Filling, pattern
Pattern mapping, see Surface detail
Pattern recognition interaction technique,

370, 372
P-curves, 1067
Pel, I
Pen, sonic, 357
Pen polygon, 1010
Pen style, 109
Pencil, 787

test, 1058
tracing, 787

Perceived intensity of light, 563
Perceptually uniform color space, 584
Peridot, 456, 464
Perpective transformation, see

'Iran sf ormation, perspective
Persistence, phosphor, 157
Person-to-person dialogue, 393
Perspective foreshortening, 231, 280
Perspective projection

one-point, 231
three-point, 232
two-point, 232, 247, 249

Perspective transformation, 657--{)60
Phantom vertices, cubic curves, 495
Phase, 977

angle, 626
shift. 624

1240

1188 Index

PHJGS, 16, .-also SPHJGS
PHJGS+. 16, 862
Phoenix Data Systems Insight. 914
!'hong, set Illumination, !'hong, and

Shading, Phong
Phosphor, ISS , IS7, S64, S83, S89
Phosphorescence, IS7
P~ome~. S64.S87
~orealism, 60S

rendering, 16
Physic:ally based modeling, 1039-1047
Pid:

correlation, 48--SO
conelation implementation, 338
comlation object hierarchy. 329-331
identifier, 331
logical device, 188, 436-437
logical input device, 42, 330
point, 113
window, 113, 339

Picture hienrchy, .- Hierarcby, object
Piecewise apprc«imation, su Curves
Piecewise oontinuous polynomial, 478
Pimple, 977
Pipeline front-end architectures, 877-1180
Pipeline rasterization architectures, 883-1186

image-order, 885-1186
object-order, 883-118S

Pipelining, 874
Pitch, shadow mask CRT, IS9
Piueway, 7S
Piur, 280
Piur Image Computer, 914
Pilt.Bh, 166, 863. sa also BitBh
Pixel , I

geometry, 133
cache, 88S
replication, lOS

Pi~I·Pianes, 894-1197, 902
Pixel-Planes S, 90S
Pixel-stream editor, 810-1111
Pixmap, 13, 166, sn also Bitmap, Canvas

pattern, 36
Planar geometric projection, 230
Plane

equation, 216, 476, 895-1196
implicit equation, 109&-1099
parametric equation, 1087

Plane-parallel copy, 998
Plane-serial copy, 998
Plants, 1027-1031
Plasma panel display, 163-164
Plastic slip. I 041

Plouer, 14&-1 S4, S64
drum, 149
electrostatic, 149
flatbed , 148
inlc-jet, I 52

Point light source, see Light source, point
Point of evaluation, 84
Polhemus, 30 digitizer 355-3S7
Polling, see Sampling
Polygon

area of. 1112
interior test , 34

Polygon clipping, see Clipping, polygon
Polygon creation, 383-384, 388
Polygon mesh, 471 , 472,473-476,871,

920-921
consistency, 475-476

Polygon table, 681
Polyhedron, 543

simple, 543
SPHIGS, 297

Polyline, 27, su also Scan oonYerSion,
polylines

Popularity algorithm, color. 600
l'o<labil ity. Is

application programs. 28S
Positioning interaction task, see Interaction

task
Positive orientation, II OS
Postoonditions, 465-467
Posdil~ng. 642. 818
l'os'rSciUYr. 441-442, s 14, 923-924, 963.

999-1006, 1081
Potentiometer, 3S2, 37S, S94
POWER IRIS, 889-1193
P=onditions, 465-467
Prefihering, 642
Primaries, color, S77, S8S, 587-S88
Primitive instancing, S39
Primitives, su OutpUt primitives
Prin~

dot-matrix, 148
laser, lSI
thermal-transfer, IS2-IS3

Priority. display. 302
Procedural models, 101&-1019
Processing mode, keyboard, 46
Progressive refinement, 812, see also

Radiosity
Projection, 229

axonometric parallel, 233, 610
cabinet parallel , 235-236, 258
cavalier parallel , 235-236. 252, 258

1241

isometric parallel , 233, 252
oblique. 610
oblique parallel, 233
onhographic parallel, 232
parallel, 230, 243
perspective, 230, 611

Projection implementation
parallel, 2~267
perspeaiYe, 268-271

Projection matrix
general. 258
orthographic. 256
pe• spective, 254-256

Projection plane, 230
Projection reference point (PRP), 238
Projection textures, 1018
Projector, 230
PrompiS, 411-412
Proximity. visual. 418-419
Pruning. suucture net~. 340
Pseudorealism, rendering, ue Photooulism
Pulldown menu, SLe Menus, pulldown
Pulse function. 629
Purity , see Excitation purity
Put that there, 403
Putty, 1042

Quadratic interpolation, 497
Quadratic polynomials, 504
Quadricswf~.471,473,528,546,698
Quadrilateral mesh, SLe Polygon, mesh
Quad tree. 550, 697

for image Slootge, 846
linear notation, 5~555
neighbor finding, 552-554

Quantify interaction task, see Interaction caslc
Quantitative invisibility, 666
Quantization effects, see Antialiasing
Quatemion, 1063, 1081
Question-answer dialogue, 403
QuickDraw, 16, 963

"R (direction of reftectioo), 729
Race conditions, 449
Radiance. 761
Radio button interaction technique, 369, 426,

452
Radiosity (B), 793
Radiosity methods, 722. 753, 775, 793-806

ambient tenn, 80 I
color bleeding. 795
delta form factors, 798
extended form factors, 806
z-butfer, 806

Index 1167

form factor (F.,). 794-799, 803-804
form factor reciprocity relationship. 794
gathering, 801
Gauss-Seidel iteration, 795
Gouraud shading, 795, 806
hem icube, 796
mirror world, 805-806
progressiYe refinement, 800--804
radiosity equation, 793-795
ray tracing, 803, 804-806
rcOcction frustum, 805
shooting, 801
specular reflection, 804-806
substructuring. 799-300
vertex radiosities, 795

RAMDAC, ste Video look-up table
Random dither, 568
Random scan, 9, 12
Random-scan display processor. 184-187
Rapid recall, 392
RoSier. II

display, 166. 187, 851-861 , ue also
Cathode Ray Thbe

RoSier graphics pac~. 25
Raster image processor, 14, 71
Raster lines, I I
Raster operotion, 177- 178, see also BitBit,

Pix Bit, Write mode
Raster scan, 12
RaS1er Technologies, Inc., 882
Rastering, 641
RaSierization. 606, 870-871. 882. su also

Scan conYCrSion, Shading, Visibility
detennination

polygon. 883-885, 891-893, 896
scan-line algorithms. 870
speed of. 873
z-buffer algorithm. 870-871

RasterOp, 172-174, 368, see also Raster
operation

Raster-scan generator, 167- 168
Ratio information, coding, 422-424
Ray. eye. 701
Ray casling, 701 see also Ray tracing

in b-rep Boolean set operations, 546
Ray Casting Machine, 901
Ray tracing, 701-715, 753, 776-793,

804-806 see also Distributed l"ol)' tracing
adaptive supersampling, 714-715
adaptive tree-depth control, 783
antialiasing, 714-715
area sampling, 786-787
beam tracing. 787. 793

1242

1168 Index

bounding YOiurne, 705-706
computing intersections, 702-704.

705-706
cone tracing, 786-787
constructive solid geometry, 7 12-7 13
distributed ray trru:ing, 788-792
efficiency, 704-712, 782-785
from light sources, 792
hierarchy, 706-7 12
Kay-K-.jiya bounding YOiume, 705-708
light buffers. 783-784
mass properties, 719
numerical precision problems, 781
octrees. 711
pencil tracing. 787
polygons, 703-704
primary rays, 778
ray classification. 784-785
ray tree . 778-779, 781
real time. 890
recursive, 722, 776-793
reflection mapping, 782
reflection ~. 778
refraction rays, 778
regularized Boolean set operations.

7 12-713
secondary rays, 778
shadow rays. 777
shadows, 776-777
slab, 705
space-time. 1078
spatial partitioning, 710-712
spheres. 702-703
stochastic sampling, 788-791
surface normal, 703-704

Ray-tracing architectures, 910-912
Reaction Handler, The, 458
Realism, see Photoreal ism
Reoonstruction, 619, 636-642

sample and hold , 641
Rectangle write, 102
Recursive subdivision, curves and surfaces.

511, 512-514, 526-528
Redo command , 409-410
Reference model, 945
Refinement. curves, 507
Reflected light , 574
Reflection, 6 14, see also Diffuse rellcction ,

direction of reflec,tion, Specular reflection
Reflection mapping. 758-761, 782

antialiasing. 759
Ref 111etion. 614
Refraction vector (T). 757
Refresh, 10. 12, 155, 157-158, 856, see also

Display traYCrsal
Refresh rate, 155, 170
Regeneration strategy. 996
Region. 979

boundary-defined. 980
interior-dcfl ned, 980

Region checks, clipping, 113
Regularized Boolean set operations,

535-539, 547- 548, 561 , 702 su also
Constructi\'C solid geometry

for binary space partitioning trees,
556-557

for boundary representations, 546-547
compared with ordinary Boolean set

operations, 536-538
for octrees, 552-553
for sweeps, 541
ray tracing, 712- 713

Relaxation techniques, 1072
Rendems. design. 8 I 0-812
Rendering, 606

PosTScRIPT, 999
Rendering. SPHIGS, see Display traversal

types , 323
Rendering equation. 776, 792
Rendering pipeline, 806-812

z-buffer, 806-808
global illumination. 809
Gouraud shading, 806-807
list-priority, 808
local ilium i nation, 806-809
Pbong shading, 808
ray uacing. 81 0

RendcrMan, 280, 281 , 8 II
Repeat command, 416
Request mode. 436-439
Resampling, 8 17, 832
Residli'.ll , 946-947
Resolution, 147, 153. 158, 160, 183.

860-861
interaction tasks, 359, 375

Response rime. see Latency
Retained-mode graphics, see SPHIGS
Reyes, 811-812
RGB color model , 584-587, 596-597
p (bidirectional reflectivity), 763
p4 (diffuse bidirectional reflectivity). 763
p, (specular bidirectional reflectivity) ,

763-764
RlFF. 849
Right justification. 129
Ringing. 633
RIP. see Raster image processor
Roo!, struCture nctworli:. 299

1243

Roo! finding, 1109
Relation

dynamic, 387
30, 215
20, 203. 206

Rotation ioterolCtion task, see lnlcraction task
Roths1ein code, 821
Route sheet, 1 059
Row-preserving map, 828
Rubbetband

circle drawing, 383
ellipse drawing, 383
feedback, 51-52
line drawing, 382
rectangle drJwing. 382

Run-length encoding, 845, 854

S, (shadow coelllcient), 745
Sample, SRGP input mode, 44-45
Sample and hold, 641
Sample mode, 437
Sample-driven intetaction, 42-44
SompleLoca1or, 438, 439
SamplePick, 437
SampleString. 437
Sampling, 619

area sampling, 621-623
imponanee sampling, 790-791
poinl sampling. 619-621
sampling theory, 621, 623-628
unweighted area sampling, 621. 714
wcighled area sampling, 622

Sa1uration, color, 57~575, 579-580, 584.
590-591

Salum's rings, 1045
Scalnr field, 1035, see also Image scaling

differential, 202, 2 10
30,215
20. 202, 20.>-206

Sean con,-crsion, 14, 71, 870, 945-965. see
also Rasterizalion

anlialiased lines, 132-142
characters, 127-132
circles. 81-87
conics in gray-scale. 957
ellipse, 88-91
evalua1ion of algorithms, 946
filled primilives, 9~965
generoil circles, 949-951
general conics, 951-961
general ellipses, 95 1-961
general lines, 948-949
incremental lillC, 73-74
line, 72-81

midpoint circle. 83-87
midpoint ellipse, 88-91
midpoinl line. 74-81
outline primitives, 81
polylines, 949
rectangle, 91
texl , 976-979
texl strings, 130-132

Index

thick general curves, -963-964
thick primitives, 1~109, 961
trapezoid, 99
triangle. 99
triangle mesh, 99

Scan line, 751, 883-884
Scan Line Access Memory (SLAM),

897-899

1169

Scan-line algorithm, 97,680-686,715, 737
regularized Boolean set operation.~. 684

Scan-line s~tem, see Pipeline rasteriza1ion
architectures. image-on!~

Scan~. 19.>-197, 374
Scefo, 1066-1067
Scene radiance, 763
SchrOder stairway illusion, 608-609
Scientific visualization, 5, 1057
Scissoring, 71, 110. 143, 870, 924, 995
Score, conductor's, 1069
Screen, priming, 570
Screen angle, printing, 568
Scroll, 182, 365
S-<lynamics. 1069
SECAM television standard, 182
Second-order differences, circle sean

conversion, 85-87
Sectoring, 747
Segmenl, 176, 442
Segmen1 s1orage, local, 176
SegmeniS, in OKS. 16
Selec1 inleraction 1ask, su Interaction UISk
Selection

by naming. 362
by poinling. 362-364

Self-luminous objecl. 57~575, 580
Self-occlusion, 724
Self-similarily. I 020
Seman1ic design, see Functional design
Sequence, see Aclion
Sequencing design, 3~395, 404, 406
Seque.ncing rules. 393
Serpen1 UIMS, 466
Server-(;lienl window managemen1 system.

440-441
Set

boundary poiniS. 53S

1244

1170 Index

clo5cd. 535
closure , 535
interior. 535
open, 535
regular, 536
regularization, 535

Shade, color, 574
Shade trees, 810
Shader. 810-81 I
Shading, 868-869,870-871, su also

Rasterization
constant (011 , faceted}, 734-735
dot-product intupolatioo, 739
Gouraud (intensity interpolation).

598-599, 613,736-738
interpolated, 613, 735
model. 721
Phong (normal intupolation), 738-739
polygon mesh. 735-739
problems with intc:cpolated shading,

739-740
Shadow map, 752
Shadows, 614. 745-753, 910

fake. 746
penumbra, 773
peroentage.closer filtering . 753
region of inftuence, 749
scan-line, 746
shadow polygon, 749
shadow volume, 749, 772-773
shadow YOlume binary-space partitioning

ttec. 751
sphere of inllueoce. 749
two-pass z-buffer algorithm, 751- 753
two-pass object-precision algorithm,

746-749
umbra , 772

Shapes
algebra. 992-995
boolean operations on. 993-995
data structure. 992

Shear
30 , 216
20 . 207

Shielding, viewports, 302
Shrinking raster, 157
Side effects, 409
SIGGRAPH, 15, 5 19
SIGHT, 911
Signal, 618

continuous. 6 18
discrete, 618
frequency spectrum. 623. 628

Silhouette edge, 698
Silicon Graphics POWER SERIES, 879,

889-893
S!MD, see Parallelism
Similarity, visual, 418-42 1, 424
Simulation, 5, 1057
Sine function , 632~35, 966
Singer/Link. 919
Single instruction multiple data (SIMD), see

Parallel ism
Skeletal motion, 1049
Skeleton, 1061
Sketchpad, 8, 1040, 1071, 1076
Skin, 1014, 1049
Skitter, 378
Slerp, see Interpolation, spherical linear
Sliver polygons, 95
Slow-in/slow-out, 1060
Smalltalk, 996, 1073
SmetbersBarnes pro101yper, 454, 464
Smoke, 1031
Snakes. I 048
Snell's law, 756, 778
Soft object&, I 04 7
Solid angle, 760-76 1
Solid modeling, 532-562, 572, ue also

Geometric modeling
features, 561
point classification, 556
robusiiiCSS. 561
toleranced objects, 561
untokranced objects, 561
user interface. 561

Solid modeling represenw:ion
comparison, 559
con-;ersion , 559-560
evaluated model , 559-560
unevalu:ned model , 559-560

Solid textures. 1015-1018
Sorting, bucket, 886, 903-904
Span. 883-884.886,980

of a sec of vectors, 1085
Span cak:ulation, 99, 108
Spatial integration, 568, 599
Spatial occupancy enumeration, 549-550,

558, 559
Spatial partitioning, 664, 686,710-7 12

adapti-;e , 664
Spatial partitioning representations,

548-551
Spatial resolution, 568-569
Spatial subdivision, see Spatial partitioning
Spatial taSk, 360. 374

1245

Special 011hogonal matrix, 207, 216
Spectral energy distribution, 515-516,

519-580, 582
Spectral sampling, 773
Spectral-response functions, 516-571
Spectroradiometer, 576, 582, 586
Spectrum. 515
Specular retlection, 728-731

coefficient of (k,), 729
color shift, 768
exponent (n), 729

Speech recosnition, ue Voice recosnition
Speech synthesizer, ue Voice synthesizer
Speed of learning, 391-392, 403, 418
Speed of use, 391-392, 398, 403, 411
SPHIOS, 16, 285-346, 482, see also

Hierarchy, structure network, Structure
network, and Structure

interaction handling, 328-33 I
object modeling, 304-3 I 4
output attributes, 298
output primitives, 296-298

SPHIOS, screen updating, su
viewing operations. 299-302

Splines, 482
B<!zier curves, 482, 488-491, 515-516
B<!zier surfaces, 521-522
8 -spline curves, 491
8-spline surfaces, 522
~5plines. SOS-507, 5 I 5-516
Catmuii-Rom, ~SOS, 515-516
deformations, 1014
hietatdlicaJ, 1012-1014
hierarchical 8-spline refinement, 510
Kochanek-Bartels, 507, 515-516
nonunifonn, nonrational 8 -spline curves,

495-500,515-516
nonunifonn, rat.ional 8-splines (NUR8S),

502, 547
nonuniform, rational cubic polynomial

CUI"'e segments, SO I - 504
use in animation, I 060
used for characten, 13 I

S poe size, see Dot size
Spotlight, 733
Sprite, 180, 1065
Square wave, 626
Squash and stretch, I 077
SRAM (Static random-access memory), 857
SROP, 16, 25-66, 436

framebutfo- contrOl, 52~
interaCtion handling, 40-52
output attributes , 30-38

output primitives, 26-30
SROPcopyPi~~el, 69

implementation, 132

Index 1171

Staging, see Animation, staging of
Staircasing, 132
Standard affine plane, 1089
Standard affine, 3-space 1089
Standard graphics pipeline, ue Graphics

pipeline
Standardized object, 304
Standards, I 5

graphics paclcagcs, 285
Starta kit of commands, 392, 413
State variables, 457-464, 466
State-transition diagram, 363, 382, 383, 384,

404, 451-464
Static random-access memory, see SRAM
Stellar OS2000, 889, 910, 912-913
Steradian, 760-761
Stereo

display, 9 I 5-9 I 6
pair, 616, 376

Stereopsis, 616-6 I 7
Stimulus-response (S-R) compatibility, 359,

378-380
Stochastic sampling, 788-791, 812
Storage, see Structure network
Storage, primitives, see Structure network
Storyboard, 430, 1058
Stream erosion, 1043
String logical device, 436
Stroke, 9

logical input device, 42
Structure, 293, 295, see also Hierarchy,

structure network
referral, 341, see also Display traversal ,

Hierarchy
editing. 295, 324-327
eJ ision, 340
example, 311-314
hierarchy, 308-314
modeling transformation, 304-308, 315,

336
pick correlation, 329

Structured display tile, su Hierarchical
display list

Structures, 16
Stucco, 1055
Style guide, user interface, 430
Subdividing cubic curves, 507-510
Subpixel area~subdivision algorithms, 693
Subspace, affine or linear, 1088
Subcrlctive color primaries, 587-588

1246

1112 lndelt

Summed area table, 826-827
Sun View, 452-454
Superposition, principle of, 966
Supersampling, 620

adap«ive, 643-644
stochastic, 644-645, 788-791

Suppon, of filter. 136, 631
Surface deW!. 741-745

bump mapping, 744
displa<:ement mapping, 745
solid lCXtute, 745
surfa<:e-de!Bil polygons. 741
tex!ure mapping, 741-744, 800
transparency mapping, 745

Surface modeling, 471
SurfllCe nonnal

in Boolean set opera1ions, 537- 539, see
also Nonnal, to surface

for implicitly defined surfaces, II 02
Surface patch, see also Curved surfaces

Blinn display algorithm, 698-099
Catmull recursive-subdivision display

algorithm, 698-699
Clarlt display algorithm, 700-701
~ks. 527-528.701.737
Lane-Carpenter display algorithm,

700-701
Whined display algorithm, 698-099

Surface table, 684
Sutherland.-Hodgman Polygon-Clipping

algorithm, see Clipping,
Suthcriand-Hodgman Polygon.Clipping
algorithm

Sweep, 540--541
general. 540
I'O!ational, 540
translational , 540

Symbol, 201, 363
Syn14lt

free-fonn, 417
nofix, 417
poscfix, 416
prelh, 415,416,418

Synthetic camera, 299
Systolic Array Graphics &gine (SAGE),

903-904

T (refraction vector), 757
Tablet, 188,350-351 ,353-354,359,372

resistive, 189
sonic, 189
stylus, I 88

Tactile continuity, 37 1
TAE-Pius, 430
Tangent vector, 479-488
Tharing, I 042
Tektronix, 161
Template, 20 I
Template procedure, geometric modeling,

307
Temporal aliasing, see Aliasing, temporal
Tension par.tmeter, ,8-splines, 505-506
Texas lnstrumeniS TMS34020, 862-864
Texd, 742, see also Character

output primitive, 38-40
Text emry speed, 374
Text-extent , 129
Texture, 611, 614

surface, 910
Texture mapping, see Surface de!Bil
Texture spa<:e, I 0 IS
IJ, (angle between r and lil), 723
IJi (angle of incidence), 756
9t (angle of refract.ion), 756
Thick lines, su Scan conversion of thick

primitives
Thickness, I 05
Thinglab, 1072
Thinking Machines Connection Machine, 911
Thresholding, 820
Tiling, 101
Time delay, input, 439
Tint, color, 574
Tint fill, see Filling algorithms, tint fill
Tone, color, 574
Thp-down design, user interface, 404, 429
Tom.nco-Sparrow, see Olumination,

Tomnc.>-Sparrow
Total internal reflection, 758, 778
1buc:b panel, 193, 350-351. 35~355, 359
~1. 191 , 350, 355, 379-380
Tracking system, see Locator
Transfonnation, 201-226

affine, 207, 598, 1106
construction of, I I 07
of coordinate system, 222-226
geome~ric, 16, 877-878
image, 182-183
incremental, 213
linear, 1106
modeling, 280, 868
of nonnal vectors, 217
nonnalizing, 259
in object modeling, 291, ~308, 315,

336
perspective, 275

1247

of points in an affine space, 1107
rigid body. 207
of vectors in a vector space, II 07
viewing, 869
viewing in SPHIGS, 299-302
window-to-viewport, 210-212

Transformation composition, 208-210,
217-222

Transformation matrix . 210, see also
State-transition network

augmented (ATN), 461-463
augmented recursive, 462-463
r=irsive (RTN), 460-463

Translation
3D. 214
2D. 201-202

Transmission coefficient (kJ, 754, 778
Transparency. 614. 754-758

approximation to changing A;, 756
critical angle, 758
fi ltered, 755
z-buffer implementations, 755-756
interpolated, 754-755
nonrefractive. 754-756
refractive, 757
screen-door, 755
of surfaces, 909- 910
total internal reflection, 758

Transpose, see Matrix, transpose of
Traversal, see Display uaversal
Trees, modeling of, 1022, 1027-1031
Triangle, signed area of, 1112
Triangle Processor and Normal Vector

Shader, 900
Triangle strip, see I'Qiygon, mesh
Triangulation. 143
Trigger. 42. 436-439
Trimming curves, 528
Tristimulus theory , color, 576
Tristimulus values, 582
Trivariate Bernstein polynomials, su

Bernstein polynomials, triVatiate
Trivial accepcance, 113
Trivial rejeotioo, 113
Thrbulence, 1046
Thming vertex, 932 , ,
lWeaking, 544, 558, 561 ~TAnH
Two-bit graphics , 853
2-manifolds, 542-543, 547-548
Two-pass transformation, see Multipass

transformation
Typeahead. 438
Typeface, see Character, typeface
Typography, digital, 977

Ultimate display, 917
Underrolor removal , 599

Index

Undo command. 404, 409-410, 460
Uniform noorational B·spline curves,

491-495, 515-516

1173

Uniformly sbaped ,g.spline curves. 505-506
Update, screen, see Display lraversal
User characteristics, 429
User interface, 5, 561
User interface design. 348, 391-392, 405,

421, 429, 458
User Interface Des'sn Environment (UIOE),

466-467
User interface language, see Language
User Interface Management System (UIMS),

348, 456-468
User interface prolotype, 430
User profile, 413
User requirements. 429
User-computer dialogue, 380, 392-395
Use.r-computer interaction, see Interaction
User's model, see Conceptual design
Utah Raster lboltit, 845, 849

V (direction to viewpoint), 729
Valuator logical device, 42 , 188, 194, 352,

436
Value discretization, 817
Vanishing points, 231
Variational calculus, 1052
Variation-diminishing Jllopeil)', curves, 509
Varifocal mirror, 916-917
Vector cross-hatching, 945
Vector display, see Random-scan dIsplay
Vector generator, 9
Vector graphics, 9
Vector space, 1083-1108
Vectorize, 196-197
Vectors

angle betwo:en , I 096
normalization of, 1096
projection of. 1097

Vertical retrace, 168. 856

~~.,:-•• 164-168, 179-184
~d': fields, s&.lJetds, video
Video games, I()(!S
Vich lbolt~ table, t69llr~369. 565,

860
management, 44 7

Video mixing, 184
Video multiplexer, 860
Video RAM (VRAM), 178
Video random-access memory, se~ VRAM

1248

1174 Index

Video signal , 640
View, 19

mapping matrix, 242, 261
orientation matrix, 242, 261
plane. 237- 240
plane nonnal (VPN), 237
refereooe point (VRP), 237
up vector (VUP), 238

View volume, 229, 239, 253. 260, 868
canonical, 259, 275-276

Viewing operation. 86, 258
SPHIGS. 299-302

Viewing process, 229-230
Viewpon, 210, 241- 242. 278, 44l-445

SPHJGS. 300-302
Virtual buffers, ~3
Virtual buffers, su Parallel rasterization

architectures. hybrid-parallel
parallel , 904-906

Virtual processors. 903
Virtua.l 100rld, 4, 617, su also Anilicial

reality, Head-mounted display
Visibility, in geometric model, 332
Visibility determination, see Rasterization
Visible-line delermination , 611 , 649

Appel's algorithm, 666-667
Robens's algorithm. 665-666

Visible-surface determination. 13, 612,
649-720, su also Area-subdivision
algorithm, Depth-son algorithm,
List-priority algorithm, Ray tracing
algorithm, Scan line algorithm, Subpixel
area subdivision algorithm, Warnock's
algorithm, Weiler- Athenon algorithm.
z-buffer algorithm

curved surfaces. 698-70 I
efficiency, 656-665
fonnalization. 717-718
functions of two variables. 6SI~
horizon-line algorithm, 652
image precision. 650
object precision, 650
octree. 695-698
sorting, 715
voxels. 697

Visual
acuity, 569
balance, 427
continuity, 368, 408
dements. 425
organization rules, 418-422
proportion, 427

Voice recognition . 352-353, 362, 402
Voice synthesizers. 353, 452

Volume rendering, 914, 1034-1039
Von Koch snowflake, 1020
Voxel, 549

visible-surface determination. 697
VRAM (video random-access memory),

859-861, 890, 894, 921

Wagon wheel illusion. 1058
WaitEvent, 438-439
Warn I ighting controls , 731- 734
Warnock's algorithm. ~9. 714, 716
w.ws.. 1043
Wedges. 100
Weiler polygon algorithm, see Clipping,

Weiler polygon algorithm
Weiler- Athenon algorithm, 689-693, 747
What you see is what you get (WYSIWYG),

348, 396-397,398. 403
Wheel of reincarnation, 175
Widget, 452-456
Width scans, 972
Winding rule. 965
Window

hardware-assisted , 907-908
hierarchical, 445-446
ro bits, 908
pick, see Pick window
priority. 908
-..orld coordinate, 210,229, 237, 44l-445

Window events, 447-451
Window management systems, 439-443. 451
Window manager, I, 176, 439-45 I , 60 I
Window system, 440
Window-to-viewport mapping, 210, 359
Wingcd~ge data strUCture, 545-546
Wirefrarne, 560

rendering, 323
Woricstation, 145, 866. 890-893
'M>rld-<:Oordinate system, 60
Write mode, 58

X Window System, 16, 440-441 , 452, 963,
996

Xerox, 348, 364, 397

)i~or model, 584, 589-590, 597
Yon cllptling plane, see Clipping plane, back
Young Sherlock Holmes. 1050

z-Buffer algorithm, 13, 668-672, 685, 698,
716, 751-753, 799, 812

z compression problem, 718-719
picking, 720

Zoom, 182, 362, 639

1249

i9

.97
nory),

14, 716

pping,

)93, 747
YSIWYG),

n, 443-445

19-443, 451
51, 601

10, 359
-546

'452 , 963,

'597
plane, back

' 685, 698,

1!9

Graphics Software Packages: SRGP and SPHIGS

The SRGP and SPHIGS graphics packages described in this book are archived in
multiple formats, and are available on the World Wide Web free for your use .

http//:www.aw.com/cseng/authors/foley/compgrafix/compgrafix.sup.html

These formats allow you to run the packages on many PC, Apple Macintosh, and
UNIX platforms. The files are identical across platforms except for the method
used in compressing or archiving them. The website indicated above includes
specific directions for accessing each format.

PLEASE NOTE BELOW THE SPECIFIC PLATFORMS REQUIRED FOR
EACH FORMAT. THE SOFTWARE MAY NOT INSTALL OR RUN
PROPERLY ON ANY OTHER PLATFORM-UNDER SOME OTHER C
COMPILER, FOR EXAMPLE. WE REGRET THAT WE ARE UNABLE TO
OFFER ANY USER SUPPORT IN SUCH CASES.

Requirements:

UNIX Worksations: Requires a workstation running UNIX and the X Window
System; Xll release R4 or later; an ANSII C Compiler (gee is recommended); v4.3 or
4.4 BSD, System V UNIX, or Solaris 2.0.

Apple Macintosh: Requires any model Apple Macintosh with a minimum
of 1 megabyte of RAM; 2 megabytes of RAM are required to run the debugger;
System Software v7.0 or later; Metrowerks CodeWarrior v.lO or later.

Microsoft Windows for the PC Family: Requires any PC using an 80826 or
higher microprocessor with a minimum of 1 megabyte of RAM (combined conventional
and extended memory); Hercules monochrome adapter, or EGA color monitor or better;
Microsoft Mouse or compatible pointing device; Microsoft Windows v3.1, Windows95,
or DOS v5.0 or later; Microsoft Software Development Kit for Windows; Borland
Turbo C v2.0 or later.

Instructors Note:

Instructors who adopt this book may obtain a free copy of the Apple Macintosh
or Microsoft Windows files on a diskette. Contact your local Addison Wesley
Longman representative, send e-mail to aw.cse@aw.com, or (in the U.S.) call
1-800-322-1377. Be sure to specify the format you need.

1175

1250

1251

1252

ISB· 0-201-~4840-6

1253

ISBM U-EDI-EHEH-ID-EISBM U-EDI-EHEH-ID-E

