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20.1.1 Advanced Modeling with Splines

With the tensor-product spline-patch surfaces defined in Chapter 11, more control vertices
must be added to gain a higher level of detail. The Oslo algorithm and its descendents
[COHESO; BART87] can be applied to the control mesh of such splines to produce new
control meshes with more vertices but identical resulting surfaces. This refinement of the
control mesh is shown for a line spline in Fig. 20.1. The circled black dots control the shape
of the thickened segment in the figure; if one of these is moved, the shape of the thickened
segment changes. But how many control vertices do we need to redraw the arc in its changed
form? For the portions outside the thickened segment, we can use the (comparatively few)
white vertices; for the portion inside the thickened segment, we can use the circled black
vertices. This localization of detail is the fundamental notion of hierarchical B-spline
modeling developed by Forsey and Bartels [FORS88].

Two problems arise: maintaining a data structure for the hierarchical spline, and
altering the large-scale spline without damaging the small-scale one. These two problems
can be solved together. We wish to alter the large-scale spline so that the small-scale spline
follows the alteration. We do this alteration by describing the locations of the (adjustable)
control vertices for the small-scale spline in a coordinate system based on the larger spline.
This prescribes the data structure for the splines as well—a tree in which the control
vertices of each spline are specified in coordinates based on its parent node in the tree. The
initial position of each control vertex defines the origin of its coordinate system, and the
displacements along the normal to the large spline and in the directions tangent to the
coordinate curves of the large spline determine a basis for this coordinate system. Thus,
when the large spline is altered, the origin and basis vectors for the displacement coordinate
system are moved as well.

Figure 20.2 shows how this procedure works for a line spline. Color Plate IV .4(a) is an
example of the impressive results this technique can yield. Notice that the final object is just
a union of portions of various spline patches, so the conventional rendering techniques that
can handle splines (including polygonal and ray-tracing renderers) can be adapted to render
these objects. About 500 control nodes, each of which contains a parametric position, a
level of overlay (i.e., depth in the heirarchy) and an offset, were used to define the dragon’s
head. By defining the offsets of control vertices relative to particular segments in a skeletal
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Fig. 20.1 The spline curve in (a) is generated from the control vertices shown there.
This collection of control vertices can be refined as shown in (b). The black dots in (b)
are the new control vertices; the circled black dots are the ones that contribute to the
thickened segment.
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Fig. 20.2 (a) A line spline with its control points. (b) The same spline with subdivided
control points in the central segment. Only the middle control point can be moved if
continuity is to be maintained. The coordinate system for the displacement of the
middle control point is shown as well. (c) The middle control point after it is moved,
along with the displacement vector in the new coordinate system.

model (instead of relative to the parent surface), Forsey and Bartels have extended this
technique to automate the production of skin, as shown in Color Plate IV.4(b).

Sederberg and Parry describe a different approach to altering spline models [SEDE86]
that can be used to alter arbitrary models, although it is based on spline deformations of
3-space. A function from 3-space to 3-space may be thought of as a way to assign new
positions to each point in space. Suppose we have such a function and it leaves most points
unmoved, but deforms some region of space. (Figure 20.3 shows an analogous deformation
in a region of the plane.) If a solid is described by the coordinates of its points in the original
space, then applying the function to the coordinates of every point of the solid yields a solid
that has been deformed by the function, just as the shaded area was deformed in Fig. 20.3.

Sederberg and Parry use functions from 3-space to 3-space that are based on Bernstein
polynomials, which have the form'

0, () = (‘;‘) F -0, O0srs1.

These polynomials have the property that EJ.:DQ,I;[!] = | (see Exercise 20.1) and that the
individual (s are always between 0 and 1.

If we establish a coordinate system in 3-space defined by an origin X and three basis
vectors §, T, and U, we can form an (n + 1) X (m + 1) X (p + 1) lattice of points in
3-space by considering all points

Po=X+(iin)S+({iimIl+kpU,0=i=n0=j=m0=k=p,

which is a gridlike arrangement of points in a parallelepiped based at X with sides
determined by S, T and U. Any linear combination 2.c;, P, of these points satisfying 0 =
cu = 1 and 2cy = 1 lies within the convex hull of the points Py, that is, within the
parallelepiped. Furthermore, every point within the parallelepiped can be expressed as a
combination P = X + 5§ + T + uU for some triple of numbers 0 < s, r, u = 1. Suppose
we define a function on the parallelepiped by the formula

'The notation (':) means nl/(iln — i)
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Fig. 20.3 The plane is deformed so that the region inside the rectangle is distorted,
but the rest of the plane remains fixed. A figure drawn within the rectangle is also
deformed.

F(X + s§ + T + ul))

-$22() ()@ -rva-rwa-are,
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Then because of the convexity property of the Bernstein polynomials, the parallelepiped
maps to itself, with the boundary going to the boundary. In fact, if the Py are left in the
positions defined previously, F sends each point in the parallelepiped to itself. If the P s
are moved, the map is no longer the identity. As long as only internal Pys are moved,
however, the map will remain the identity on the boundary of the parallelepiped. Thus, the
P 4s provide shape control over any item within the box. Color Plate IV.5 shows an example
of adjusting a free-form shape; Color Plate IV.6 shows a hammer modeled using free-form
deformations.

Computing vertices of a polygonal object after transformation by a trivariate Bernstein
polynomial is simple (we just express each vertex as a linear combination X + s§ + T +
ul/ and substitute in the formula for F), so the method is suited for use with all polygonal
renderers. It is less clear how to ray-trace these deformed objects, although the specialized
methods described for another class of deformations by Barr [BARRS4] might be applied.

20.1.2 Noise-Based Texture Mapping

Peachey [PEACS5] and Perlin [PERL85] have extended traditional texture mapping by
using solid rextures. Recall that in traditional bump mapping or pattern mapping the texture
was extracted from a 2D image that was mapped onto the surface to be rendered (see
Chapters 14 and 16). Described differently, for each point of the surface, a point in the 2D
texture is computed, the values surrounding this point are averaged by some filter, and the
resulting texture value is assigned to the surface point.

This mechanism is altered slightly for solid textures. A texture value is assigned to each
point in a 3D rexture space. To each point of the object to be textured, there is associated
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some point in the texture space; the value of the texture at that point is also associated with
the surface point. We can illustrate this solid texturing by considering an analogous physical
example. If we take a block of marble (the texture space), then each point of the marble,
both on the surface and in the inside, has some color. Thus, if we carve a sphere from this
marble block, the points on the surface of the sphere are also colored. If we carve the sphere
from a different section of the marble, the colors are different, of course.

The two tasks associated with this mechanism are the generation of textures and the
mapping from objects to the texture space (i.e., the association of points on the object with
points in the texture space). The mapping to texture space is easy in systems where the
object is modeled in some space, then is transformed into **world space’” before rendering.
In this case, the natural choice for texture space is modeling space. During rendering, a 3D
point on the object is transformed by the inverse of the modeling transformation to give a
point in modeling space whose coordinates provide the index into the solid texture (this
situation corresponds to our carving in marble). When this is done, changing the
world-space position of the object does not affect its pattern. Using world-space coordinates
as indices into the solid texture can provide interesting special effects. If the marble sphere
is translated in the course of an animation, the texture slides through it, and it appears to be
continuously recarved from new marble. In other systems, some coordinate system (or else
some map from world space to texture space) must be chosen to associate each point on the
object with a texture value.

Generating textures is a different matter. Before discussing it, let us reconsider the
function of texture mapping. When a texture map is used for environment mapping onto a
reflective surface, there is no underlying solid texture. The same is true when a texture map
is used, say, to put a label on a box, or when bump mapping is applied to an object to
simulate architectural details such as regularly spaced ceiling tiles, or to generate surface
characteristics such as the directional reflections on brushed metals. But when we simulate
the texture of a material such as concrete, wood, or marble, the internal structure of the
underlying material determines the resulting appearance of the object. In such cases, solid
textures are most applicable.

One type of intermediate case, too, that is handled nicely by solid textures is surface
characteristics, such as the texture of stucco, that should be statistically independent of their
surface position. Here ordinary pattern mapping tends to produce an orientation because of
the coordinate system in which the pattern map is defined, and because of the
transformation from the mapping space onto the object, which tends to compress or expand
the pattern in some places (e.g., when mapping onto a sphere with standard coordinates,
one tends to compress the pattern near the poles). Solid textures handle this problem by
associating values that can be made effectively independent of the shape of the surface (see
Color Plate IV.7c).

Generating a solid texture requires associating one or more numbers with each point in
some volume. We can specify these numbers by generating them at each point of a 3D
lattice (this is sometimes called a 3D image), and then interpolating to give intermediate
values, or simply by giving one or more real-valued functions on a region in 3-space.

Most of the functions used by Perlin are based on noise functions. He defines a
function Noise(x, y, z) with certain properties: statistical invariance under rigid motions and
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20.1 Extensions of Previous Techniques 1017

band limiting in the frequency domain. The first of these means that any statistical
property, such as the average value or the variance over a region, is about the same as the
value measured over a congruent region in some other location and orientation. The second
condition says that the Fourier transform of the signal is zero outside of a narrow range of
frequencies (see Section 14.10). In practical terms, this means that the function has no
sudden changes, but has no locations where the change is too gradual, either. One way of
expressing the band limiting is that, for any unit vector (a, b, ¢) and any point (x;, v, z),
the integral

j Noise(x; + ta, y, + th, z, + c)f(mit) dt
1]

is zero when f(r) = sin(r) or cos(r), and m is outside some small range of values.
Essentially, this says that the noise along a parameterized line in the (a, b, ¢) direction has
no periodic character with period m.

Such a noise function can be generated in a number of ways, including direct Fourier
synthesis, but Perlin has a quick and easily implemented method. For each point in the
integer lattice (i.e., for each point (x,, v, z,) with x; v, and z, all integers) we compute and
store four pseudorandom® real numbers (a, b, ¢, d). Compute d' = d — (ax, + by, + cz;).
Notice that if we substitute the point (x;, ¥,, Z,) into the formula ax + by + cz + d' we get
the value d. We now define the Noise function at an arbitrary point (x, v, z) by the two rules:
If (x, y, z) is a point of the integer lattice, then Noise(x, y, z) = the d value at that lattice
point = ax, + by, + ¢z, + d'. For any point not on the lattice, the values of a, b, ¢, and d’
are interpolated from the values at the nearby lattice points (Perlin recommends a cubic
interpolation—first in x, then in y, then in z) to give values for a, b, ¢, and d' at the point
(x, v, 2). Now Noise(x, v, z) is computed: Noise(x, vy, z) = ax + by + ¢z + d'.

Since the coefficients a, b, ¢, and d' are interpolated by cubics on the integer lattice, it
is clear that there are no discontinuities in their values (in fact, they will all be differentiable
functions with well-behaved derivatives). Hence, the value of Noise(x, v, z) is also well
behaved and has no high-frequency components (i.e., sudden changes).

Noise functions can be used to generate textures by altering colors, normal vectors, and
so on [PERL85]. For example, a random gray-scale value can be assigned to a point by
setting its color to (r, g, b) = Noise(x, y, z) * (1.0, 1.0, 1.0) (assuming that the Noise()
function has been scaled so that its values lie between 0 and 1). A random color can be
assigned to a point by (r, g, b) = (NoiseA(x, y, 2), NoiseB(x, v, z), NoiseClx, y, z)), where
NoiseA(), NoiseB() and NoiseC() are all different instances of the Noise() function. An
alternate way to assign random colors is to use the gradient of the noise function:

Dnoise(x, y, z) = (dNoiseldx, dNoiseldy, dNoise/dz),

which generates a vector of three values at each point. These values can be mapped to color
values.

*Pseudorandom-number generation is provided by the Random() function in many systems. See also
[KNUT69].
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If an object has sufficiently great extent, it may not be practical to generate a texture for
its entire bounding box. Instead, as in Chapter 16, we generate the texture on a finite box
(perhaps 256 by 256 by 256) and use the low-order bits of the point’s coordinates to index
into this array (using modular arithmetic to wrap around from 255 to 0). We can use this
finite texture array to generate another type of noise by defining Noise2(x, v, z) = Noise(2x,
2y, 2z). Noise2 will have features that are one-half of the size of those generated by Noise().
By generating a combination of such multiples of Noise(), we can create a number of
fascinating textures; see Exercises 20.2 and 20.3. Perlin has extended solid textures to allow
the modification of geometry as well [PERL89]. Some examples of the results are shown in
Color Plates 1V.8 and IV.9.

Peachey [PEACB5] uses somewhat different mechanisms for specifying solid textures.
One of the most interesting is what he calls projection textures, although the term
“*extrusion textures’’ might apply as well. In such textures, the value of the texture function
is constant along certain parallel lines in the volume. For example, such a texture might be
constant along each line parallel to the z axis, while on any (x, y)-plane cross-section it
might look like a conventional 2D texture. The effect is like that of a (nonperspective) slide
projector: When someone walks in front of the screen, the image is mapped onto the person
instead of onto the screen. These textures are most interesting when several are combined.
If the textures are constant along different lines, the results can effectively simulate
completely random textures. The textures in Color Plate IV.10 are all based on projection
textures.

20.2 PROCEDURAL MODELS

Procedural models describe objects that can interact with external events to modify
themselves. Thus, a model of a sphere that generates a polygonal representation of the
sphere at a requested fineness of subdivision is procedural: The actual model is determined
by the fineness parameter. A model that determines the origin of its coordinate system by
requesting information from nearby entities is also procedural. A collection of polygons
specified by their vertices is not a procedural model.

Procedural models have been in use for a long time. One of their best features is that
they save space: It is far easier to say ‘‘sphere with 120 polygons' than to list the 120
polygons explicitly. Magnenat-Thalman and Thalman [MAGNS85] describe a procedural
model for bridges in which a bridge consists of a road, a superstructure, piers, and parapets,
and is specified by giving descriptions of these along with an orientation to determine the
bridge’s position. Each of the pieces (road, piers, etc.) is specified by a number of
parameters (length of the road, number of joints in the road, height of the pier, etc.) and the
procedure then generates the model from these. This is akin to the primitive instancing of
Chapter 12, but differs in that the geometric or topological nature of the object may be
influenced by the parameters. Also, the model generated does not need to consist of a
collection of solids; it might be a collection of point light sources used to exhibit the bridge
in a night scene, for instance. In any case, specifying a few parameters leads to the creation
of a very large model. In the case of the bridge, the only things created are various sorts of
bridges. In subsequent procedural models, such as particle systems, however, highly
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20.2 Procedural Models 1019

variable classes of objects are supported under a single class of procedures.

One important aspect of procedural models is their ability to interact with their
environment. Amburn, Grant, and Whitted introduce two extensions to standard procedur-
al models: a communication method through which independent procedures can influence
one another’s behaviors, and a generalization of the notion of subdivision to include a
change of representation [AMBUS6].

Interobject communication can be used to control the shapes of objects defined by
procedures. Amburn, Grant, and Whitted use as an example a road passing through wooded
terrain. The terrain is generated by stochastic subdivision of triangles (see Section 20.3),
the trees are generated using grammar-based models (see Section 20.4), and the road is
generated by extrusion of a line along a spline path, At the top level, the road must follow
the geometry of the terrain. At a finer level of detail, however, the terrain is bulldozed to let
the road be smooth. Each of these objects thus must control the other. The bases of the trees
must be placed on the terrain, but not too close to the road. To execute this interobject
control, each of the subdivision procedures proceeds for a few steps, then checks its
progress against that of the others.

This interobject checking can be extremely expensive; the road may be modeled with
hundreds of rectangles and the terrain with thousands of triangles. Checking for
intersections among these and establishing communications between each pair is prohibi-
tively laborious. Instead, during the construction of the road, bounding boxes for the road,
for each pair of control points for the road, and for each segment of the road were
constructed. Similar bounding boxes were maintained during the subdivision of the
triangles. As soon as the bounding box of a child triangle no longer intersected that of the
road, communications between the two were severed. Thus, there were only a few overlaps
at the finest level of subdivision.

These subdivisions were also subject to changes of representation. At some point in a
subdivision process, the current model representation may no longer seem adequate to the
modeler; and the modeler (or some other procedure in the model) may request that some
procedural object change its representation. Thus, a shape that is initially modeled with
Bezier spline patches, recursively subdivided, may at some point be altered to implement
further changes using stochastic subdivision to make a “‘crinkly’’ material of some specific
overall shape. Amburn, Grant, and Whitted store these changes of representation in a script
associated either with the individual object or with the class of the object; the script might
say, for example, **At the third level of subdivision, change from Bezier to stochastic. At
the fifth level, change to a particle system representation.”” The human modeler is also
allowed to interact with the objects as the procedural modifications take place. Our hope is
that, in the future, such interactions will no longer be necessary, and that the models will be
able to determine for themselves the best possible representation.

Most of the remaining models in this chapter are procedural in some way. Many of
them are generated by repeated subdivision or repeated spawning of smaller objects. The
subdivision terminates at a level determined by the modeler, the model, or (depending on
implementation) the renderer, which can request that no subpixel artifacts be generated, for
example. The power of these models is manifested in how they amplify the modeler’s effort:
Very small changes in specifications can result in drastic changes of form. (Of course, this
can be a drawback in some cases, if the modeler cannot direct a tiny change in the result.)
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20.3 FRACTAL MODELS

Fractals have recently attracted much attention [VOSS87; MANDS2; PEIT86]. The images
resulting from them are spectacular, and many different approaches to generating fractals
have been developed. The term fractal has been generalized by the computer graphics
community to include objects outside Mandelbrot’s original definition. It has come to mean
anything which has a substantial measure of exact or statistical self-similarity, and that is
how we use it here, although its precise mathematical definition requires statistical
self-similarity at all resolutions. Thus, only fractals generated by infinitely recursive
processes are true fractal objects. On the other hand, those generated by finite processes
may exhibit no visible change in detail after some stage, so they are adequate approxima-
tions of the ideal. What we mean by self-similarity is best illustrated by an example, the von
Koch snowflake. Starting with a line segment with a bump on it, as shown in Fig. 20.4, we
replace each segment of the line by a figure exactly like the original line. This process is
repeated: Each segment in part (b) of the figure is replaced by a shape exactly like the entire
figure. (It makes no difference whether the replacement is by the shape shown in part (a) or
by the shape shown in part (b); if the one in part (a) is used, the result after 2" steps is the
same as the result after n steps if each segment of the current figure is replaced by the entire
current figure at each stage.) If this process is repeated infinitely many times, the result is
said to be self-similar: The entire object is similar (i.e., can be translated, rotated, and
scaled) to a subportion of itself.

An object that is not exactly self-similar may still seem fractal; that is, it may be
substantially self-similar. The precise definition of statistical self-similarity is not necessary
here —we need only to note that objects that “‘look like'* themselves when scaled down are
still called fractal.

Associated with this notion of self-similarity is the notion of fractal dimension. To
define fractal dimension, we shall examine some properties of objects whose dimension we
know. A line segment is 1D; if we divide a line into N equal parts, the parts each look like
the original line scaled down by a factor of N = N'1. A square is 2D: if we divide it into N
parts, each part looks like the original scaled down by a factor of VN = N2, (For example,
a square divides nicely into nine subsquares; each one looks like the original scaled by a
factor of §.) What about the von Koch snowflake? When it is divided into four pieces (the
pieces associated with the original four segments in Fig. 20.4a), each resulting piece looks
like the original scaled down by a factor of 3. We would like to say it has a dimension d,
where 4" = 3. The value of d must be log(4)/log(3) = 1.26 . . .. This is the definition of
fractal dimension.

S0P Wittty e (SPSRE o oy

(a) (b) ()
Fig. 20.4 Construction of the von Koch snowflake: each segment in (a) is replaced by

an exact copy of the entire figure, shrunk by a factor of 3. The same process is applied
to the segments in (b) to generate those in (c).
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(a)

Fig. 20.5 (a) The Julia—Fatou set for ¢ = —0.12375 + 0.056805/; (b) the Julia—Fatou
set forc = -0.012 + 0.74..

The most famous two fractal objects deserve mention here: the Julia—Fatou set and the
Mandelbrot set. These objects are generated from the study of the rule x — x* + ¢ (and
many other rules as well—this is the simplest and best known). Here x is a complex
number,® x = a + bi. If a complex number has modulus < 1, then squaring it repeatedly
makes it go toward zero. If it has a modulus > 1, repeated squaring makes it grow larger
and larger. Numbers with modulus 1 still have modulus 1 after repeated squarings. Thus,
some complex numbers ‘“fall toward zero’” when they are repeatedly squared, some *‘fall
toward infinity,”’ and some do neither—the last group forms the boundary between the
numbers attracted to zero and those attracted to infinity.

Suppose we repeatedly apply the mapping x — x* + ¢ to each complex number x for
some nonzero value of ¢, such as ¢ = —0.12375 + 0.056805i; some complex numbers will
be attracted to infinity, some will be attracted to finite numbers, and some will go toward
neither. Drawing the set of points that go toward neither, we get the Julia—Fatou set shown
in Fig. 20.5(a).

Notice that the region in Fig, 20.5 (b) is not as well connected as is that in part (a) of
the figure. In part (b), some points fall toward each of the three black dots shown, some go

*If you are unfamiliar with complex numbers, it suffices to treat i as a special symbol and merely to
know the definitions of addition and multiplication of complex numbers. If z = ¢ + di is a second
complex number, then x + z is defined to be (a + ¢) + (b + d)i, and 1z is defined to be (ac — bd) +
(ad + bc)i. We can represent complex numbers as points in the plane by identifying the point (a, b)
with the complex number (@ + bi). The modudus of the number a + bi is the real number (a* + b))%,
which gives a measure of the *‘size’’ of the complex number.
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to infinity, and some do neither. These last points are the ones drawn as the outline of the
shape in part (b). The shape of the Julia—Fatou set evidently depends on the value of the
number ¢. If we compute the Julia sets for all possible values of ¢ and color the point ¢ black
when the Julia—Fatou set is connected (i.e, is made of one piece, not broken into disjoint
“‘islands’") and white when the set is not connected, we get the object shown in Fig. 20.6,
which is known as the Mandelbrot set. Note that the Mandelbrot set is self-similar in that,
around the edge of the large disk in the set, there are several smaller sets, each looking a
great deal like the large one scaled down.

Fortunately, there is an easier way to generate approximations of the Mandelbrot set:
For each value of ¢, take the complex number 0 = 0 + 0i and apply the process x — x* + ¢
to it some finite number of times (perhaps 1000). If after this many iterations it is outside
the disk defined by modulus < 100, then we color ¢ white; otherwise, we color it black. As
the number of iterations and the radius of the disk are increased, the resulting picture
becomes a better approximation of the set. Peitgen and Richter [PEIT86] give explicit
directions for generating many spectacular images of Mandelbrot and Julia—Fatou sets.

These results are extremely suggestive for modeling natural forms, since many natural
objects seem to exhibit striking self-similarity. Mountains have peaks and smaller peaks
and rocks and gravel, which all look similar; trees have limbs and branches and twigs,
which all look similar; coastlines have bays and inlets and estuaries and rivulets and
drainage ditches, which all look similar. Hence, modeling self-similarity at some scale
seems to be a way to generate appealing-looking models of natural phenomena. The scale at
which the self-similarity breaks down is not particularly important here, since the intent is
maodeling rather than mathematics. Thus, when an object has been generated recursively
through enough steps that all further changes happen at well below pixel resolution, there is
no need to continue.

Fournier, Fussell, and Carpenter [FOUR82] developed a mechanism for generating a
class of fractal mountains based on recursive subdivision. It is easiest to explain in 1D.

Fig. 20.6 The Mandelbrot set. Each point ¢ in the complex plane is colored black if the
Julia set for the process x — x* + ¢ is connected.
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Fig. 20.7 (a) A line segment on the x axis. (b) The midpoint of the line has been
translated in the y direction by a random amount. (c) The result of one further iteration.

Suppose we start with a line segment lying on the x axis, as shown in Fig. 20.7(a). If we
now subdivide the line into two halves and then move the midpoint some distance in the v
direction, we get the shape shown in Fig. 20.7(b). To continue subdividing each segment,
we compute a new value for the midpoint of the segment from (x;, ¥,) to (x;,,, ¥,.,) as
follows: X = 3(X + X1 1), Voew = 30 + ¥iu)) + Plxu; — x;) R(x,.,), where P() is a
function determining the extent of the perturbation in terms of the size of the line being
perturbed, and R() is a random number* between 0 and 1 selected on the basis of x_, (see
Fig. 20.7¢c). If P(s) = s, then the first point cannot be displaced by more than 1, each of the
next two points (which are at most at height  already) cannot be displaced by more than 4,
and so on. Hence, all the resulting points fit in the unit square. For P(s) = s, the shape of
the result depends on the value of a; smaller values of a yield larger perturbations, and vice
versa. Of course, other functions, such as P(s) = 27, can be used as well.

Fournier, Fussell, and Carpenter use this process to modify 2D shapes in the following
fashion. They start with a triangle, mark the midpoint of each edge, and connect the three
midpoints, as shown in Fig. 20.8 (a). The y coordinate of each midpoint is then modified in
the manner we have described, so that the resulting set of four triangles looks like Fig. 20.8
(b). This process, when iterated, produces quite realistic-looking mountains, as shown in
Color Plate IV.11 (although, in an overhead view, one perceives a very regular polygonal
structure).

Notice that we can start with an arrangement of triangles that have a certain shape, then
apply this process to generate the finer detail. This ability is particularly important in some
modeling applications, in which the layout of objects in a scene may be stochastic at a low
level but ordered at a high level: The foliage in an ornamental garden may be generated by a
stochastic mechanism, but its arrangement in the garden must follow strict rules. On the
other hand, the fact that the high-level structure of the initial triangle arrangement persists
in the iterated subdivisions may be inappropriate in some applications (in particular, the
fractal so generated does not have all the statistical self-similarities present in fractals based

“R() is actually a random variable, a function taking real numbers and producing randomly distributed
numbers between O and 1. If this is implemented by a pseudorandom-number generator, it has the
advantage that the fractals are repeatable: We can generate them again by supplying the same seed to
the pseudorandom-number generator.
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(@) (b)

Fig. 20.8 (a) The subdivision of a triangle into four smaller triangles. The midpoints of
the original triangle are perturbed in the y direction to yield the shape in (b).

on Brownian motion [MANDS2]). Also, since the position of any vertex is adjusted only
once and is stationary thereafier, creases tend to develop in the surface along the edges
between the original triangles, and these may appear unnatural.

Voss [VOSS85] describes a modified version of this algorithm in which stage n + 1 of a
model is created by adding a random displacement to every vertex of the model at stage n,
together with the midpoints of the edges at that stage. This method removes many of the
artifacts of the original subdivision algorithm but lacks the control provided by that
algorithm. Voss also discusses methods that produce models with even greater statistical
invariance under scaling and have other mathematical properties more consistent with the
original definition of fractals [VOSS85]. In particular, the Weierstrass—-Mandelbrot random
fractal function gives a computationally tractable mechanism for generating fractal
functions of one variable, and can doubtless be extended to two or more.

Mandlebrot has developed another improvement of the midpoint-displacement algo-
rithm [PEIT88]. His first observation is that the displacements in the original midpoint-
displacement algorithm are symmetric, so when a fractal mountain of this sort is inverted, it
has the same statistical properties as when upright. Real mountains look very different from
inverted valleys, and Mandlebrot models this asymmetry by choosing the displacements
from a nonsymmetric distribution, such as a binomial distribution. He also relieves some of
the “‘creasing’’ of the midpoint model by choosing a different subdivision method. Rather
than starting with an initial mesh of triangles, he starts from an initial mesh of hexagons.
Noting that height values need to be associated with only the vertices in a mesh, he changes
the topology of the mesh during subdivisions so that the initial edges of the hexagon are no
longer edges in the subdivision. Instead, he replaces the hexagon with three smaller .
hexagons, as shown in Fig. 20.9. The central vertex has its height computed as in the
triangle algorithm—as an average of the neighboring vertices in the original hexagon, plus
a displacement. The other six new vertices are given heights that are weighted averages of
the vertices of the hexagon. Mandlebrot says that different choices of weights give
substantially different results. The principle feature of this subdivision is that the edges of
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(a) {b)

Fig. 20.9 (a) The initial hexagon mesh. One hexagon has been drawn in heavier lines.
{b) The subdivided hexagon mesh, with the descendants of the outlined hexagon drawn

in heavy lines.

the original hexagons, along which creases might have formed, are now distorted into
multiple edges, so that the creases will be far less apparent. The fractals so generated are
extremely impressive.

For further fractal algorithms, see [VOSS85; PEIT86].

Other iterative processes can be used to generate a great many interesting images. The
grammar-based models and particle systems described in the following sections give some
sense of the power of this approach. The changes in those models at deep levels of recursion
illustrate a deficiency of the self-similarity model for natural objects. The structure of a tree
may be self-similar at certain levels—branches and twigs look a lot alike—but the leaves of
a tree do not really look much like a tree.

Rendering fractals can be difficult. If the fractals are rendered into a z-buffer,
displaying the entire object takes a long time because of the huge number of polygons
involved. In scan-line rendering, it is expensive to sort all the polygons so that only those
intersecting the scan line are considered. But ray tracing fractals is extremely difficult, since
each ray must be checked for intersection with each of the possibly millions of polygons
involved. Kajiya [KAJI83] gave a method for ray tracing fractal objects of the class
described in [FOURS2), and Bouville [BOUV8S] improves this algorithm by finding a
better bounding volume for the objects.

Kajiya points out that, if one starts with a triangle and displaces points within it in the
vertical direction, as described in [FOURS2], the resulting object lies within a triangular
prism of infinite extent, whose cross-section is the original triangle. If the displacements of
the points of the triangle are small enough, then their sum remains finite, and the shape
based at the triangle is contained in a truncated triangular prism (*‘slice of cheesecake™’; see
Fig. 20.10). We could thus ray trace a fractal mountain by first checking whether a ray hits a
cheesecake slice for each of the original triangles; if not, no further checking of that
triangle’s descendants is necessary. By creating additional slices of cheesecake for further
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[ Original triangle

=
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Fig. 20.10 A slice of cheesecake that bounds a fractal perturbation of a triangle.

subdivided triangles, we could further reduce intersection testing, although creating a slice
for every single facet in the fractal can require prohibitive space.

This method has two disadvantages: detecting whether a ray intersects a cheesecake
slice requires computing intersections with several planes (i.e., solving several algebraic
equations), and the slice of cheesecake is not a tight bounding volume —lots of rays hit the
cheesecake but never hit the fractal. Bouville observed that, when a triangle is subdivided
and interior vertices are displaced, the original vertices remain fixed [BOUV85]. He
therefore proposed fitting an ellipsoid around the subdivided triangle so that the original
three vertices lay on an equator of the ellipsoid, and the displaced internal vertices all lay
within the ellipsoid. In fact, as long as the displaced internal vertices lie within the ellipsoid
with high probability, the results are attractive (determining this probability requires artistic
rather than scientific judgment). If the ellipsoid is made so large as to be certain to contain
all possible displaced vertices, it may be a bad bounding region, in the sense that many rays
hit the ellipsoid but not the fractal object within. Notice that testing ray—ellipsoid
intersection is easy: It amounts to solving one quadratic equation. This makes the Bouville
method far faster than is the slice-of-cheescake method. Furthermore, the ellipsoids include
much less extraneous volume than do the slices of cheesecake, so fewer levels of recursion
are expected.

One other form of fractal modeling deserves mention, and that is the iterated function
systems (IFSs) described in Chapter 17. The IFSs described there differ from all the other
forms of modeling in this chapter, in that they model the image rather than the objects in the
image. That is, a specification of a collection of contractive affine maps, associated
probabilities, and a coloring algorithm, as described in Section 17.7.2, simply provides a
compact description of a pixmap. For example, in the scene shown in Color Plate IV.1,
altering a single affine map might distort the image substantially, shearing a limb away from
every tree (and a branch away from every limb, and a twig away from every branch). It
might also cause a branch to appear where one was not wanted.

IFSs can be used to generate images with great complexity. Since images of this sort
are often desirable for pattern mapping, we can expect to see [FSs become a standard part
of the modeler’'s toolkit.

A careful study of IFSs reveals that the technique does not actually depend on the
dimension, so IFS models of 3D objects can be made as well. In some sense, the
grammar-based models discussed next are quite similar: New parts of a model are generated
by transformation of old parts to smaller-sized copies of some or all of the original parts.
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20.4 GRAMMAR-BASED MODELS

Smith [SMIT84] presents a method for describing the structure of certain plants, originally
developed by Lindenmayer [LIND68], by using parallel graph grammar languages
(L-grammars), which Smith called graftals. These languages are described by a grammar
consisting of a collection of productions, all of which are applied at once. Lindenmayer
extended the languages to include brackets, so the alphabet contained the two special
symbols, *‘[’* and **]."" A typical example is the grammar with alphabet {A, B, [, ]} and
two production rules:

1. A— AA
2. B — A[BJAA[B]

Starting from the axiom A, the first few generations are A, AA, AAAA, and so on; starting
from the axiom B, the first few generations are

0. B
1. A[BJAA[B]
2. AA[A[BJAA[B]JAAAA[A[BJAA[B]]

and so on. If we say that a word in the language represents a sequence of segments in a
graph structure and that bracketed portions represent portions that branch from the symbol
preceding them, then the figures associated with these three levels are as shown in Fig.
20.11.

This set of pictures has a pleasing branching structure, but a somewhat more balanced
tree would be appealing. If we add the parentheses symbols, “‘(** and **),"" to the language
and alter the second production to be A[BJAA(B), then the second generation becomes

2. AA[A[BJAA(B)JAAAA(A[BJAA(B))

If we say that square brackets denote a left branch and parentheses denote a right branch,
then the associated pictures are as shown in Fig. 20.12. By progressing to later generations
in such a language, we get graph structures representing extremely complex patterns. These
graph structures have a sort of self-similarity, in that the pattern described by the

AA A
I A
B B A
B — A
AA A |A

A |
B — A
A B B A

B ——

Fig. 20.11 Tree representations of the first three words of the language. All branches
are drawn to the left of the current main axis.
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Fig. 20.12 Tree representations of the first three words, but in the language with
two-sided branching. We have made each segment of the tree shorter as we progress
into further generations.

nth-generation word is contained (repeatedly, in this case) in the (n + 1)th-generation
word.

Generating an object from such a word is a process separate from that of generating the
word itself. Here, the segments of the tree have been drawn at successively smaller lengths,
the branching angles have all been 45°, and the branches go to the left or to the right.
Choosing varying branching angles for different depth branches, and varying thicknesses for
the lines (or even cylinders) representing the segments gives different results; drawing a
“flower’” or “‘leaf”’ at each terminal node of the tree further enhances the picture. The
grammar itself has no inherent geometric content, so using a grammar-based model
requires both a grammar and a geometric interpretation of the language.

This sort of enhancement of the languages and the interpretation of words in the
language (i.e., pictures generated from words) has been carried out by several researchers
[REFF88; PRUS88]. The grammars have been enriched to allow us to keep track of the
““age’” of a letter in a word, so that the old and young letters are transformed differently
(this recording of ages can be done with rules of the fomA—B,B—=C,C—D, ...,
Q — QG[Q], so that no interesting transitions occur until the plant has “*aged’’). Much of
the work has been concentrated on making grammars that accurately represent the ac-
tual biology of plants during development.

At some point, however, a grammar becomes unwieldy as a descriptor for plants: Too
many additional features are added to it or to the interpretation of a word in it. In Reffye’s
model [REFF88], the simulation of the growth of a plant is controlled by a small collection
of parameters that are described in biological terms and that can be cast in an algorithm.
The productions of the grammar are applied probabilistically, rather than deterministically.

In this model, we start as before with a single stem. At the tip of this stem is a bud,
which can undergo one of several transitions: it may die, it may flower and die, it may sleep
for some period of time, or it may become an internode, a segment of the plant between
buds. The process of becoming an internode has three stages: the original bud may generate
one or more axillary buds (buds on one side of the joint between internodes) a process
that is called ramification; the internode is added; and the end of the new internode becomes
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Apical bud

Node

Leaf

Internode
Axillary bud

Fig. 20.13 The bud at the tip of a segment of the plant can become an internode; in so
doing, it creates a new bud (the axillary bud), a new segment (the internode), and a new
bud at the tip (the apical bud).

an apical bud (a bud at the very end of a sequence of internodes). Figure 20.13 shows
examples of the transition from bud to internode.

Each of the buds in the resulting object can then undergo similar transitions. If we say
the initial segment of the tree is of order I/, we can define the order of all other internodes
inductively: Internodes generated from the apical bud of an order-i internode are also of
order-i; those generated from axillary buds of an order-i internode are of order (i + 1).
Thus, the entire trunk of a tree is order 1, the limbs are order 2, the branches on those limbs
are order 3, and so on. Figure 20.14 shows a more complicated plant and the orders of
various internodes in the plant.

The discussion so far describes the topology of the plant, but does not describe the
shape at all—whether the branches point up, down, or sideways has not been recorded. The

Order-3 axis

Order-2 axis

Order-1 axis

Fig. 20.14 A more complex plant (see Fig. 20.13), with orders attached to the various
internodes.

1091



1030 Advanced Modeling Techniques

£ 2

Fig. 20.15 (a) Two different arrangements of leaves: spiraled and distic. (b) The
effects of different branching angles.

placement of axillary buds on a sequence of order-i internodes may occur in different ways
(see Fig. 20.15a), and the angles at which the order-(i + 1) internodes (if any) branch out
from the order-i axillary buds also determine the shape of the plant (see Fig. 20.15b). There
are also some anomalies in tree growth, in which the behavior of a collection of order-
(i + 1) internodes is not standard, but instead resembles that of some lower order (this is
called reiteration), and this too must be modeled.

Finally, converting this description into an actual image of a tree requires a model for
the shapes of its various components: an order-1 internode may be a large tapered cylinder,
and an order-7 internode may be a small green line, for example. The sole requirement is
that there must be a leaf at each axillary node (although the leaf may fall at some time).

To simulate the growth of a plant in this model, then, we need the following biological
information: the current age of the model, the growth rate of each order of internode, the
number of axillary buds at the start of each internode (as a function of the order of the
internode), and the probabilities of death, pause, ramification, and reiteration as functions
of age, dimension, and order. We also need certain geometric information: the shape of
each internode (as a function of order and age), the branching angles for each order and age,
and the tropism of each axis (whether each sequence of order-i internodes is a straight line,
or curves toward the horizontal or vertical). To draw an image of the plant, we need still
more information: the color and texture of each of the entities to be drawn— internodes of
various orders, leaves of various ages, and flowers of different ages.

Pseudocode to simulate the growth process is shown in Fig. 20.16.

We can cast this entire discussion in terms of the grammar models that inspired it by
assigning different letters in the alphabet to apical and axillary buds of various ages, and
associating probabilities with the productions of the language. Since the application of
productions amounts to the processing in the pseuadocode, however, it is not clear that such
a reformulation is particularly valuable.

Varying the values for the probabilities and angles can produce a wide variety of
extremely convincing tree models, a few of which are shown in Color Plates 1V.12 and
IV.13. The correct choices for these parameters depend on knowledge of plant biology or
on the modeler’s artistic eye; by using the wrong values, we can also generate plants bearing
no resemblance at all to anything real.

These plant models are the most spectacular examples of grammar-based modeling.
The method has been used in other applications as well, including architecture [STIN78].
In any domain in which the objects being modeled exhibit sufficient regularity, there may be
an opportunity to develop a grammar-based model.
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for (each clock fime) {
for (each bud that is still alive) {
determine from order, age, etc., what happens to bud,
if (bud does not die)
if (bud does not sleep) {
create an internode (with geometric information
about its position, direction, etc.);
create apical bud,
for (each possible bud at old bud location)
if (ramification)
create axillary buds;
} feif o/
} /% for «/
} I+ for

Fig. 20.16 Pseudocode for the plant-growth algorithm. Adapted from [REFF88].

20.5 PARTICLE SYSTEMS

Particle systems are an intriguing approach to modeling objects whose behavior over time
cannot easily be described in terms of the surface of the objects (i.e., objects whose
topology may change) [REEVS3; REEVSS5]. A particle system is defined by a collection of
particles that evolves over time. The evolution is determined by applying certain
probabilistic rules to the particles: they may generate new particles, they may gain new
attributes depending on their age, or they may die (disappear from the object). They also
may move according to either deterministic or stochastic laws of motion. Particle systems
have been used to model fire, fog, smoke, fireworks, trees, and grass.

Particles have been used for years as elementary entities in graphics modeling,
especially in early video games, where they denoted bullets or exploding spaceships. These
particles however, were deterministic and had to be placed individually. The effects of large
collections of particles have also been used before and since to model the transmission and
reflection of light in fog and in other diffuse media [BLIN82a; NISH87; RUSH87]. The
essence of particle systems is that the positions of the particles are generated automatically,
their evolution is controlled automatically, and the individual particles affect the final image
directly.

In his first paper on particle systems [REEV83], Reeves describes their use in modeling
fire, explosions, and fireworks. Reeves and Blau went on [REEV85] to use them in
modeling the grass and trees in a forest. In this context, the particle systems look a great
deal like the probabilistic grammar-based models described in the previous section. For
example, the trees are modeled as particle systems in which each branch is a particle, each
of which is placed randomly along the trunk’s length; and each branch may fork or extend
according to some probability. The branching angles or the various segments are selected
from a distribution, as is the length of the branch (depending on its position in the tree).
The particles in this system are like the letters of the alphabet in the grammar-based
approach, and the rules for particle birth, death, and transformation correspond to the
productions in the grammar.
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The modeling of fire in [REEVS3] is quite different. Here, the particles have a tree
structure (particles have child particles), but the tree structure is not incorporated into the
resulting image. Two levels of particle systems were used in modeling the Genesis effect in
Color Plate IV.14. The first generated a collection of particles on circles of varying radii
centered at a single point on the planet’s surface; the particles were distributed about these
circles at random positions selected from a probability distribution. Each of these particles
was then used as the starting location for a new particle system of a different type (an
explosion particle system).

In the Genesis effect, an explosion particle system is used to model a small burst of
sparks from a region on the planet’s surface (such systems can also be used to model
fireworks and similar phenomena.) The particles of the system are generated in a small disk
on the planet’s surface with an initial direction of motion that is upward from the surface
but may have some horizontal component as well (see Fig. 20.17). The position of each
particle at subsequent times is computed by adding its velocity vector to its current position;
the velocity vector may be updated by an acceleration vector (which may include gravity) as
well. The placement of the particles in the disk, the rate at which they are generated, the
initial velocities, and the lifetimes of the particles are all randomly chosen. In each such
choice, the value of the property is chosen by a rule of the form

property = centralValueForProperty + Random() * VarianceOfProperty,

so the central value and variance of the property must be specified as well.

The colors of the particles are initially set to red, with some green and a little blue, and
alter over time to fade away, with the red component lasting longer than the green or blue, to
simulate the cooling of a white-hot material.

Rendering particle systems is a different matter altogether. Ray tracing a particle
system would be impossible, since computing the intersection of each ray with even a
bounding box for each of several million particles would be immensely time consuming. To
render the fire in the Genesis sequence, Reeves simply took each particle as a small point of
light and computed the contribution of this light source to the final image. Since the
particles were moving, he actually computed a short line segment representing the path of
the particle during the frame being rendered, and then rendered this line segment
(antialiased) into the final pixmap.® Each pixel value was computed by accumulating the
values from each particle, so some pixels that were affected by many particles became
clamped to the maximum values of red, green, and blue (especially red, since that was the
dominant particle color). Particles that were actually behind other particles still contributed
to the image, so no occluding of particles was done at all. Two tricks were used for the
numerous fires burning on the planet. First, all the particles on the hidden side of the planet
were rendered, then the planet was rendered, and then the front particles were rendered.
These were composited together in the order back particles—planet—front particles to prevent
the particles on the back from showing through the planet’s surface (i.e., no z information
was stored with the rendered images of the particles). Also, the particle systems contributed
light only to the screen image, whereas actual fires would illuminate the nearby portions of

“This constitutes motion blur, which is discussed in Chapters 14 and 21.
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Plate IV.3 Antialiased text as displayed by the YODA display
(Courtesy of Satish Gupta, IBM T. J. Wason Resaarch Centar.)

Plate IV.4(a) A dragon modeled with hierarchical splines
Plates (a) and (b) courtesy of David Forsay, Computer
Graphics Laboratory, University of Waterloo.)
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Plate IV.4(b) Skin modeled by
defining hierarchical spline offsets
relative to a skeletal model.

Plate IV.6 The end of a surface is placed
within a box and the control points for the box
are adjusted. The surface within the box is
dragged along as well to form a new shape.
(Courtesy of Thomas Sederberg and

Scott Parry.)

Plate IV.6 A hammer modeled using free-

form deformations. (Courtesy of Thomas
Sederberg and Alan Zundel.)
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Plate IV.7 Solid textures (a-d). The stucco doughnut is particularly effective.
(Courtesy of Ken Perlin.)

(b}

{ch
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Plate IV.8 (a) A hairy donut
modelled with hypertexturas.
(b} A hypertextured blob
iCourtesy of Ken Perlin.)
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Plate IV.19 A beach at sunset. (Courtesy of Bill Reaves, Pixar, and Alain Fournier,
University of Toronto.)

Plate IV.20 A late afternoon scene with a scattering medium in a room. (Holly
Rushmeier, Courtesy of Program of Computer Graphics, Cornell University.)
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Plate IV.21 A marble vase modeled with solid textures, (Courtesy of Ken Perlin.|
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Plate IV.28 A self-assembling system modeled with dynamic constraints. (Cour-
tesy of Caltech Computer Graphics Group, Ronen Barzel and Alan Barr.)
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Initial velocities
of several particles

Ejection angle

Particle-creation Center of explosion system
region

Fig. 20.17 The initial stage of a particle system for modeling an explosion.

the planet. Reeves achieved the nearby lighting by placing a conical light source of high
intensity near the surface of the planet, instead of computing the direct illumination from
the particles.

In the forest scene for the movie *“*André and Wally B.”" [REEVS5; LUCAS84], a
different rendering scheme was required, since the particle systems were no longer light
emitters, but instead were trees and grass, which acted as light reflectors. Special-purpose
techniques were developed to render the particle systems; some trees obscured others,
various portions of the trees were in shadow, the grass was sometimes in shadow from the
trees, and so on. The solutions were two-fold: developing probabilistic models for
shadowing and using modified z-buffer techniques to compute obscuring. The particles in
the tree (leaves and stems) were shaded by computing the depth of the particle into the tree
along a ray from the light source to the particle (see Fig. 20.18). This depth was used to
compute an exponential drop off in the diffuse component of the light: D = e ™, where D is
the diffuse component, k is a constant, and d is the depth of the particle. Particles with
small values of d had stochastically computed specular highlights; if d was small and the
direction of the light and the direction of the branch were nearly perpendicular, a specular
highlight might be added. Finally, the ambient light, which is small inside the tree and
larger near its edge, was computed by setting A = max(e™®, A_,), where j is a constant, s is
the distance from the particle to the edge of the tree (in any direction), and A_;, is a lower
bound for the ambient light (even the deepest parts of the tree are slightly illuminated). If a

Fig. 20.18 Each point in a tree lies at some depth along the line from the light source to
the particle. This distance determines the likelihood of the particle being illuminated.
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Fig. 20.19 The plane from an adjacent tree, which determines the shadowing of a
tree.

tree is in shadow from another tree, the specular and diffuse components should not be
added. This was implemented by determining planes from nearby trees to the tree under
consideration; the plane contained the top of the nearby tree and the light source, and had
the largest possible y component in its normal, as shown in Fig. 20.19. Particles above this
plane were lit with all three components, whereas those below were given (probabilistically)
less and less diffuse and specular light as the distance from the plane increased.

Even with these simplified lighting computations, visible surfaces still had to be
determined. The trees in the scene were sorted back to front, and were rendered in that
order. Trees were rendered with a bucket-sort type of z-buffer. Each tree’s depth extent was
divided into a great many buckets; every particle that was generated was inserted into the
bucket for its depth in the tree. When all particles had been generated, they were rendered
in back-to-front bucket order. Each particle was drawn as a small circle or short line
segment (antialiased). After each tree was rendered, the information about the tree was
discarded. The result of this ordering is that a branch of a nearby tree may obscure a branch
of one slightly farther away, even though the second branch lies in front of the first, since
the first branch is part of a tree that is rendered (entirely) after the second. In scenes with
sufficient complexity, this sorting error seems not to be a problem.

Still, this difficulty in rendering the scene does highlight a drawback of particle systems
in general: The modeler gets considerable power, but special-purpose rendering techniques
may need to be developed for each new application.

20.6 VOLUME RENDERING

Volume rendering is used to show the characteristics of the interior of a solid region in a 2D
image. In a typical example, the solid is a machined part that has been heated, and the
temperature has been computed at each point of the interior through some physical or
mathematical means. It is now of interest to display this temperature visually. This is not,
strictly speaking, a modeling issue, as the shape of the part and the characteristics to be
displayed are both available a priori. But the conversion of these data to information in a
pixel map is a form of modeling; namely, the modeling of the transformation from 3D 10
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2D. In another example, the density of human or animal tissue may have been computed at
each point of a 3D grid through computed tomography (CT). The display of this
information should indicate the boundaries of the various types of tissue (as indicated by
density changes). The surfaces defining these boundaries must be inferred from the sample
data in order to render the solid.

A number associated with each point in a volume is called the value at that point. The
collection of all these values is called a scalar field on the volume. The set of all points in
the volume with a given scalar value is called a level surface (if the scalar field is sufficiently
continuous, this set of points actually does form a surface). Volwme rendering is the process
of displaying scalar fields. It is important to realize that the data being displayed may not be
ideal. If the data have been sampled at the points of a regular grid, the scalar field they
represent may contain frequencies higher than the Nyquist frequency for the sampling (see
Chapter 14). In tomography, for example, the transition from flesh to bone is very abrupt,
and hence contains very high frequencies, but the sampling rate is likely to be too low to
represent this change accurately. Also, the data that describe the interior of a solid may be
clustered in some irregular pattern, as might arise in geographic data taken from core
samples, where it may be impossible to sample uniformly.

Several approaches to volume rendering have been developed. They can be divided into
two categories: those that compute level surfaces and those that display integrals of density
along rays. The two can be combined by assigning density only to certain level surfaces and
then ray tracing the result (which amounts to creating a different volume to be displayed). If
animation is available, a third category of display is possible: a series of 2D slices of the
data is computed and displayed sequentially, using color or brightness to indicate the scalar
value at each point of the slices. If interactive control of the slice direction and level is
provided, this approach can give an excellent sense of the interior structure of the scalar
field.

Nonetheless, it is sometimes useful to view data in the aggregate, rather than by slices.
One approach (though by no means the first) is the marching-cubes algorithm. In this
algorithm, scalar values are assumed to be given at each point of a lattice in 3-space. A
particular level surface can be approximated by determining all intersections of the level
surface with edges of a lattice.® We look for pairs of adjacent lattice points whose field
values surround the desired value (i.e., the value of one vertex is greater than the chosen
level, the value of the other is less). The location of an intersection of the level surface with
the edge is then estimated by linear interpolation.

Each cube in the lattice now has some number of edges marked with intersection
points. The arrangement of the intersection points on the edges can be classified into 256
cases (each of eight vertices of each cube in the lattice is either above or below the target
value, giving 2* = 256 possible arrangements). For each case, a choice is made of how to
fill in the surface within the cube. Figure 20.20 shows two such cases.

°A lattice is an array of points and lines in space, much like a children’s jungle gym. The points of the
lattice are evenly spaced in the x, y, and z directions, and they are joined by line segments parallel to
the coordinate axes. The set of all points with integer coordinates and of all axis-parallel line segments
joining them constitutes an example, called the integer lattice.
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Fig. 20.20 Two possible arrangements of intersections of a level surface with a cube
in the integer lattice, with choices of how to fill in a surface for each.

The collection of all the surface pieces just defined constitutes a surface. This surface
can be assigned (at each subpolygon) a normal vector to be used for shading in the following
manner. At each vertex of the cube, a numerical estimate of the gradient of the scalar field is
made. These values are interpolated to estimate the gradient vector at some point of the
subsurface. Since the gradient of a scalar field always lies in the direction of the normal
vector to the level surface, this interpolated value provides a good estimate for the normal
vector. (The special case of zero must be handled separately.)

The resulting level surface can be rendered with conventional techniques. This strategy
can be of use in medical imaging to show the shape of the boundary between different types
of tissue. Unfortunately, it computes only one shape at a time, and the relative positions of
different layers are difficult to see.

Upson and Keeler [UPSO88] also assume that the scalar field varies linearly between
sample points, and they present two methods for its display. In both, the user first creates
four functions, R, G, B, and O, where O is opaciry. The arguments of these functions are
values of the scalar field; we therefore assume that the scalar field has been normalized to
have values between 0 and 1. The choices of the R, G, B, and O functions drastically affect
the resulting image. If the functions are chosen to have tight peaks at particular values of the
scalar field, the level surfaces for those values are highlighted. If the functions are chosen to
vary smoothly over the field values, then color can be used to indicate field value (see Fig.
20.21). Thus, in effect, we obtain sophisticated color-map pseudocoloring.

The interpolation of the scalar field over each cube in the lattice of sample points is a
linear equation in each variable, and hence is trilinear in 3-space (i.e., of the form S(x, v, z) =
A+ Bx+ Cy+ Dz + Exy + Fxz + Gyz + Hxyz). If we parameterize a ray in the form
(x, v,2) = (a, b, ¢) + (u, v, w) as in ray tracing, then the value of S at points of the ray is a
cubic function of 1.

The ability to compute this cubic rapidly forms the basis for Upson and Keeler’s first
rendering method, based on a ray-tracing mechanism for volume data developed in
[KAJIB4). For each ray from the eyepoint through an image pixel, the R, G, B, and O
values are accumulated for the ray as it passes through the volume data. This accumulation
stops when the opacity reaches a value of 1 or the ray exits the volume, whichever happens
first. Actually, far more is accumulated: the scalar field, shading function, opacity, and
depth cueing are all computed at each of several steps within each pixel volume so as to
integrate the cubic interpolant accurately.
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Fig. 20.21 Two different choices for the shapes of the R,G,B, and O functions. In (a),
certain level surfaces of the scalar field are highlighted in red, green, and blue. In (b}, the
color will change gradually as a function of the scalar field.

Upson and Keeler's second rendering method uses the same basic notion of integration
along rays, but accumulates values in pixels by processing the cubes in the lattice of values
in front-to-back order (which can be easily determined for any particular view orientation).
The authors take great pains to ensure the computational efficiency of the process by using
adaptive quadrature methods for the integrations and never solving a system of equations
more than once at each point (when performing interpolations). It is important to observe,
as they do, that this method ‘‘is designed as an analytic tool, not as a technique to
synthesize realistic images’’ [UPSO88, p. 64].

Sabella takes a similar approach [SABES8]. He assigns a density emitter to each point
in the volume to be rendered, to simulate light coming from translucent objects. The
simulation models only part of the effects of light in such media; namely, the occlusion of
parts deeper in the medium by those nearer the front. Sabella deliberately ignores
shadowing and the variation in color due to differences in scattering at different
wavelengths, asserting that they may actually detract from the perception of density
variation. The density emitters are imagined to be tiny particles that both emit and scatter
light. The density of such particles within each small region of space is given by the value of
the scalar field there. The light reaching the eye along any ray is computed by summing up
the emission from all the emitters along the ray, and then attenuating the light from each
emitter by the probability that it is scattered during its travel to the eye. Sabella computes
four numbers: M, the peak value of the scalar field along the ray; D, the distance at which
that peak is encountered; /, the attenuated intensity just described; and C, the ‘‘center of
gravity”” of the density emitters along the ray. By mapping combinations of these numbers
into various color scales (e.g., using hue—saturation—value, he maps M to hue, D to
saturation, and / to value), he can highlight various characteristics of the scalar field. He
further allows for *“‘lighting’’ effects by giving a directionality to the particle emissions.
Each particle’s emissions are attenuated by a Lambert lighting model: Several light sources
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are positioned around the volume to be rendered, and the emission from a particle at
location (x, y, z) is determined by summing the dot products of the gradient of the scalar
field and the lighting directions, and multiplying the result by the density at the point. The
result is that surfaces of high density look more like reflective surfaces, an effect that helps
the eye to disambiguate the information presented.

Even further from the determination of surfaces is the approach taken by Drebin,
Carpenter, and Hanrahan at Pixar [DREB88]. These researchers make several important
assumptions about the scalar fields being rendered: the volume array of data representing
the field is assumed to be sampled at about the Nyquist frequency of the field (or the field
has been filtered to ensure this before sampling); the scalar field is modeled by a
composition of one or more materials (e.g., bone, fat, and soft tissue) or the volume has
several scalar fields attached to it, such as stress and strain in a material. For a
multiple-material scalar field, they assume that the materials can be (at least statistically)
differentiated by the scalar value at each point, or that information regarding the material
composition of each volume element is provided in addition to the scalar field.

Given such information, they create several new scalar fields on the array of sample
points: the material percentage volumes (they use the term volume to mean a scalar field on a
volume). The value at a grid point in a material percentage volume is the percentage of one
material present in the volume element (or voxel) surrounding that point. If multiple fields
are specified in the original data, computing these material percentages may be simple. If
only a single field is given, the material percentages may have to be estimated by Bayesian
analysis.

After computing the material percentage volumes, the authors associate a color and
opacity with each material; they then form composite colors and opacities by taking a linear
combination of all the colors and opacities for each of the material percentage volumes.
(Opacity here is used in the sense of the @ channel described in Section 17.6, and the linear
combinations are the same as the combinations described there. In particular, the colors are
premultiplied by the opacity values before combination.) They further allow compositing
with matte volumes, which are scalar fields on the volume with values between 0 and 1. By
multiplying these matte volumes with the color/opacity volumes, they can obtain slices or
portions of the original volumetric data. Making a smooth transition between 0 and 1
preserves the continuity of the data at the matte boundaries.

The lighting model used here is similar to that in the other two algorithms. A certain
amount of light enters each voxel (the light from voxels behind the given voxel), and a
different amount exits from it. The change in light can be affected by the translucence of the
material in the voxel, or by ““surfaces’’ or “‘particle scatterers’’ contained in the voxel that
may both attenuate the incoming light and reflect light from external light sources. These
effects are modeled by (1) requiring that light passing through a colored translucent voxel
have the color of that voxel plus the incoming light multiplied by (1 — a) for that voxel (this
is the over operation of the Feibush—Levoy—Cook compositing model in Section 17.6), and
(2) determining surfaces and their reflectance and transmission properties.

The surface determination is not as precise as the ones described previously; each voxel
is assigned a density that is a weighted sum of the densities of the component materials for
the voxels (weighted by the material percentages). **Surfaces’ are simply places where this
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composite density changes rapidly. The strength of a surface is the magnitude of the
gradient of the density, and the surface normal used in shading calculations is the direction
vector of the gradient. To compute the surface shading, we divide each voxel into regions in
front of, on, and behind the surface. The intensity of light leaving the voxel, /', is related to
the intensity entering, /, by the rule I' = (Cj,,, over (C, .. Over (Cy,. over [))). The three
terms associated with the voxel can be precomputed and mixed because the over operator is
associative. The surface color is computed by a Cook-Torrance-style model to give both
specular and diffuse components; these values are weighted by the strength of the surface so
that no reflective lighting appears in homogeneous solids. The colors of the front and back
are computed by estimating from which material they came and by using colors from those
materials.

The results are excellent. Color Plate 1.1 shows the process as applied to data from
a CT scan of a child's head. The process is expensive, however. Multiple volumes (i.e.
multiple scalar fields) are created in the course of generating the image, and the memory
requirements are vast. Also, the assumption that the fields are sampled at or above the
Nyquist frequency may not be practical in all cases: sometimes, the data are given, and we
wish to see the results even with some aliasing. Finally, the assumption that the data are
from a heterogeneous mixture of materials is not always valid, so the applications of the
method are limited.

20.7 PHYSICALLY BASED MODELING

The behavior and form of many objects are determined by the objects’ gross physical
properties (as contrasted with biological systems, whose behavior may be determined by the
systems’ chemical and microphysical properties). For example, how a cloth drapes over
objects is determined by the surface friction, the weave, and the internal stresses and strains
generated by forces from the objects. A chain suspended between two poles hangs in an arc
determined by the force of gravity and the forces between adjacent links that keep the links
from separating. Physically based modeling uses such properties to determine the shape of
objects (and even their motions in some cases). Current work on this subject is collected in
[BARRR9].

Most of this modeling uses mathematics well beyond the scope of this book, but we can
give the general notions of the techniques. It is in this sort of modeling that the distinction
between graphics and other sciences is most blurred. The computations that produce a tear
in a model of a thin cloth when it is dropped over an obstruction are purely in the domain of
solid mechanics. But such computations would not be done unless the results could be
displayed in some fashion, so the motivation for physical research is now being provided by
the ability (or desire) to visualize results. At the same time, the wish to generate more
realistic graphics models drives research in the physical modeling process. In this section,
we discuss a few of the more impressive examples. The next section describes models of
natural phenomena that are less directly based on scientific principles and may contain
some (or many) compromises in order to produce attractive results. There is a continuous
variation between scientific foundations and ad hoc approaches, and the dividing line is not
at all clear.
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20.7.1 Constraint-Based Modeling

When constructing an object out of primitive objects using Boolean operations, we find it
convenient to be able to say ‘I want to put this sphere on top of this cube so that they touch
only at one point."”" Even with an interactive program that lets the user position objects by
eye, it may be difficult to make the two objects touch at a single point.” Rules such as this
one are called constraints. Constraint-based modeling systems allow the user to specify a
collection of constraints that the parts of the model are supposed to satisfy. A model may be
underconstrained, in which case there are additional degrees of freedom that the modeler
can adjust (e.g., the location of the point of contact of the sphere and the cube), or
overconstrained, in which case some of the constraints may not be satisfied (which could
happen if both the top and bottom of the sphere were constrained to lie on the top face of
the cube). In constraint-based modeling, the constraints must be given a priority, so that the
most important constraints can be satisfied first.

The specification of constraints is complex. Certain constraints can be given by sets of
mathematical equalities (e.g., two objects that are constrained to touch at specific points),
or by sets of inequalities (e.g., when one object is constrained to lie inside another). Other
constraints are much more difficult to specify. For example, constraining the motion of an
object to be governed by the laws of physics requires the specification of a collection of
differential equations. Such constraint systems, however, lie at the heart of physically based
modeling.

The earliest constraint-based modeling was done by Sutherland in the Sketchpad
system, described in Chapter 21. Many constraint-based modeling systems have been
developed since, including constraint-based models for human skeletons [ZELT82;
KORES2; BADL87], in which connectivity of bones and limits of angular motion on joints
are specified, the dynamic constraint system of [BARRSS], and the energy constraints of
[WITK87; WILH87]. These fall into two classes: those in which general constraints can be
specified, and those that are tailored for particular classes of constraints. In modeling
skeletons, for example, point-to-point constraints, in which corresponding points on two
bones are required to touch, are common, as are angular limit constraints, in which the
angle between bones at a joint is restricted to lie in a certain range. But constraints that
specify that the distance between the centers of mass of two objects be minimized are not so
likely to occur. Special-purpose constraint systems may admit analytic solutions of a
particular class of constraints, whereas the general-purpose systems are more likely to use
numerical methods.

In the energy-constraint system we mentioned, for example, constraints are represented
by functions that are everywhere nonnegative, and are zero exactly when the constraints are
satisfied (these are functions on the set of all possible states of the objects being modeled).
These are summed to give a single function, E. A solution to the constraint problem occurs
at a state for which E is zero. Since zero is a minimum for E (its component terms are all
nonnegative), we can locate such states by starting at any configuration and altering it so as
to reduce the value of E. Finding this minimum is done using numerical methods. In the

"Typing in numbers is not an adequate compromise, since it may require that the modeler solve a
system of equations before typing the numbers.
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course of such a process, we may get “‘stuck’” at a local minimum for E, but if we do not,
we will eventually reach a global minimum. Such a global minimum is either zero, in which
case all constraints are satisfied, or nonzero, in which case some constraints may not be
satisfied. By changing the coefficients of the individual constraints in the funtion E, we can
stress the importance of some constraints over others. In the case where the system reaches
a local minimum, the modeler may start with a different initial configuration, or, in an ideal
system, may give a “‘push™ to the configuration to make it move away from the local
minimum and toward the global minimum. The sequence of configurations that occurs as
the assembly is moving toward a minimum of the function E can be an interesting
animation, even though the initial intent was just to model an assembly that satsifies the
constraints. In fact, an animation of this sequence of events can be useful in determining
characteristics of the function-minimizing algorithm being used.

Further examples of constraint-based modeling are described in Section 20.9 and in
Chapter 21.

20.7.2 Modeling Cloth and Flexible Surfaces

Several approaches to modeling cloth and other surfaces have been developed in recent
years [WEIL86; WEIL87; TERZ88]. Weil assumes that the cloth is a rectangular weave of
threads, each of which is inelastic. The warp and woof positions of a point on the surface
provide a coordinate system in which to describe events internal to the cloth, whereas each
such point has some 3D location as well. The first assumption in Weil's model is that the
cloth is suspended by holding certain points on the cloth at certain positions in 3-space;
thus, the *‘position”” of the cloth is initially determined at some finite number of points.
The line between any two such points (in the intrinsic coordinate system) is assumed to map
onto a catenary curve (which is the shape in which a chain hangs). This determines the
positions of several lines in the cloth. Notice that, at a point where two lines cross, the
position of the intersection point is overdetermined; Weil simply ignores the lower catenary
in any such case. The lines between suspension points on the surface determine regions in
the cloth, each of which is filled in with more catenaries. The shape of the cloth has now
been determined (at least initially). So far, the structure of the cloth has been ignored: The
threads making up the cloth may be stretched, whereas they were supposed to be inelastic.
Weil proceeds to a relaxation process that iteratively moves the points in a manner to relieve
the *“tension’’ in the threads, by computing the direction vectors between each point and its
neighbors. These vectors are multiplied by their own lengths, then are averaged to compute
a displacement for the point itself (the multiplication ensures that larger errors have greater
effects). This process is iterated until the surface is sufficiently close to satisfying the
constraints. A similar method is used to model stiffness of the cloth. Color Plate IV.15
shows the results of this model and the modified model described in [WEIL87].
Terzopoulos and Fleischer [TERZ88) take a more sophisticated approach, and model
media more general than cloth as well. They assume that a material is arranged as a grid
(possibly 3D, but 2D for cloth), and that adjacent points in the grid are connected by units
consisting of springs, dashpots (which are like shock absorbers), and plastic slip units. A
spring responds to a force by deforming elastically in an amount proportional to the force;
when the force goes away, so does the deformation. A dashpot responds to a force by
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Fig. 20.22 A plastic slip unit connected in series with one spring and in parallel with
another creates a unit that responds to a deforming force in a springlike fashion until the
force reaches a threshold value. Then the slip unit slips, and retains the deformation until
a sufficiently great force restores the unit to its original state.

deforming at a rate proportional to the force. Thus, a constant force causes a dashpot to
stretch until the force is removed, at which point the dashpot stops deforming. A plastic slip
unit responds to a force by doing nothing until the force reaches a certain level, and then
slipping freely; these units are best used in combination with other units, such as spring
units. Placing a plastic and two spring units in the arrangement shown in Fig. 20.22 creates
a unit that stretches gradually (both springs stretching, plastic unit static) until the force on
the plastic unit reaches its threshold. At this point, the plastic unit slips and the spring
attached to it contracts for a moment, until the other spring takes up some of the load. Thus,
at that point, it is as though the system consisted of only the solo spring. Once the applied
force is reduced, the lower spring takes up some (compression) load, until the force
becomes sufficiently negative to cause the plastic slip unit to slip again.

A grid of such units, subject to laws of physics (modeled globally by rigid-body
dynamics but locally by stress and strain rules related to the structure of the units in the
material in an internal coordinate system), deforms and stretches. In particular, if threads in
the cloth are modeled by plastic slip units, then at some level of tension the units will slip
(i.e., the thread will break), and a tear will result. Color Plate IV.16 shows an example of
the results.

20.7.3 Modeling Solids

The Terzopoulos and Fleischer model discussed in the previous section can also be used to
describe either linear or solid assemblies as collections of points linked by units of varying
elasticity or viscosity. Platt and Barr [PLAT88] have done similar work in modeling
deformable solids (e.g., putty or gelatin) by combining the solid mechanics underlying
such structures with the tools of dynamic constraints. The essence of their work is to set up
large collections of differential equations that determine the state of the particle assemblies
(or finite-element mesh) at each time, subject to the goals that certain functions (such as
energy) be minimized while certain constraints (such as noninterpenetration of objects) are
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met. Their actual model considers the constraints as objectives to be achieved, along with
the minimization of the functions, and thus the constraints are met only approximately. The
stronger the effect of each constraint, the more difficult the solution of the differential
equations becomes. Despite this numerical difficulty, the results are certainly impressive
enough to warrant further research (see Color Plate IV.17).

20.7.4 Modeling Terrain

In another instance of physically based modeling, Kelley and associates [KELLS8] extend
stream-crosion models from geomorphology. They begin with statistical observations about
the distribution of tributaries, the relationships between link length (a link is a segment of a
system of tributaries between two junctions or between a source and its first junction) and
stream gradient, and the mean valley-sidewall slopes. They use these to model the 2D
layout of the pattern of streams for a given gross initial terrain, and then to alter the terrain
in the vertical dimension so as to compute the finer detail that fits the stream system so
constructed. Color Plate IV. |8 shows the results for a simple initial drainage system.

20.8 SPECIAL MODELS FOR NATURAL AND SYNTHETIC OBJECTS

A great deal of work has been done on the modeling of natural phenomena by techniques
that are not directly related to the underlying causes of the phenomena; modeling of clouds
as patterned ellipsoids is a good example. Much work has also gone into the modeling of
phenomena that have no specific visual appearance, such as molecules. The examples in
this section lie at all points of the range between scientific accuracy and clever
manipulations for generating attractive pictures. These models are meant as tools for
graphics, rather than as strict scientific visualizations. [t is essential that people creating
these models understand the underlying phenomena while recognizing the benefits of a
good fake.

20.8.1 Waves

Ocean waves were among the earliest natural phenomena modeled in graphics. Ripples
resemble sine waves emanating from either a point or a line, and are simple to model as
such. If the distance from the eye to the waves is large enough, it may be unnecessary
actually to perturb the surface at all, and the entire effect of the ripples can be generated
through bump mapping (although one of the first widely shown examples actually raytraced
a complete height field [MAXS81]). More complex patterns of ripples or waves can be
assembled by summing up band-limited noise to make texture maps describing wave trains
[PERLSS], and then using these to texture map a planar surface. These patterns look best
viewed from above, of course, since realistic side views of waves should show the variations
in the height of the surface.

Fournier and Reeves [FOURS6], taking a much more sophisticated approach, model
the surface of a body of water as a parametric surface rather than as a height field, allowing
the possibility of waves curling over, They take into account much of the theory of
deep-water waves as well as the effects of underwater topography on surface waves and the
refraction and reflection of waves about obstacles (e.g., the way that waves bend around the
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end of a breakwater). Conversely, in simulating breaking waves, where theoretical
knowledge is limited, they provide some clever approximations that generate good results.
Their waves are unfortunately somewhat too smooth near the break, and lack a sharp edge
between the leading surface and the trailing edge as the wave is about to break.
Nonetheless, the results are extremely good (see Color Plate IV.19). Similar work by
Peachey [PEACS8S5] uses a somewhat less complex model; the overall appearance of the
waves is not as realistic, but breaking waves are modeled better.

20.8.2 Clouds and Atmosphere

Fog and haze can both be modeled stochastically and then composited onto images. To
enhance the realism, we can weight the effect of the fog by the z values of the image onto
which it is composited, so that points farther away are more obscured than are those close
by. Similarly, fog and haze can be fitted into ray-tracing schemes by attenuating the image
by some power of the distance from the eye to the first intersection point (or, even better, for
nonuniform fog, by integrating the fog density along the ray to compute an attenuation
function). These techniques have some basis in physics, since light is scattered more as it
travels farther through fog. Several distinct models of clouds and of atmospheric haze have
been developed. Voss [VOSS85] has generated clouds based on fractals, whereas Gardner
[GARDS84; GARDB8S5] has modeled clouds as textured ellipsoids. Voss’s technigue is to
generate a fractal in 4-space whose fourth coordinate represents a water-vapor density. By
allowing local light scattering to vary with the water-vapor density, he generates some
realistic clouds (he uses fractal dimensions 3.2 to 3.5).

By contrast, Gardner's method is based completely on the observed shape of
clouds—the clouds look like sheets or blobs, and so are modeled as textured planes and
ellipsoids. This model consists of a sky plane, in which thin cloud layers reside, ellipsoids
(used to model thick clouds, such as cumuli), and a texturing function for each, that handles
the varying shading and translucence of the clouds and sky plane.

Gardner creates a particularly simple texture function, akin the ones used by Perlin for
solid textures. He defines

T(x, y, 2) = kX [c; sin(f; x + p) + T) 2 c; sin(g, y + g) + T,
t=]

i=1

where the ¢; are the amplitudes of the texture at various frequencies, the f; and g, are
frequencies in the x and y directions, respectively, and the p, and g, are corresponding phase
shifts. This function has different characteristics depending on the values of the various
constants. Assigning values with f,,, = 2f, ., = 2g and ¢;,, = V2/2 ¢, produces
variations at several different frequencies, with the amplitudes of variations decreasing as
the frequencies increase. Notice how similar this is to the fractal models of terrain height:
The mountains have large height variations, the boulders on them are smaller, the sharp
corners on the boulders are even smaller.

The phase shifts p; and g, are used to prevent all the sine waves from being synchronized
with one another—that is, to generate randomness (if these are omitted, the texture
function has a visible periodicity). For planar texturing, Gardner suggests p, = (7/2) sin(g,
y/2), and similarly for ¢,. For ellipsoidal textures, he defines p, = (#/2) sin(g;, w2) +
w sin( f; z/2), which generates phase shifts in all three dimensions, and he finds that using
values 0 = i = 6 provides rich textures.
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This set of values defines the texture function. The texture function and the sky plane or
cloud ellipsoid must now be combined to generate an image. Gardner uses a lighting model
of the form

L=(01=-sL+sl,L=(0-0L+d,I=(1—-a)l, +a,

where /; and /, are the specular and Lambert components of the intensity, computed as in
Chapter 16: 1, is T(x, y, z); and a, ¢, and s determine the fractions of ambient, texture, and
specular reflection, respectively. In addition, to get the effect of a cloud rather than of an
ellipse with a cloud painted on it, the edges of the cloud must be made translucent. For
clouds in the sky plane, regions of the plane must be made translucent. This is done by
defining the translucence, V, by the rule

0 if , =V, + D,
Veil-({-— VD fVi+D>L =V,
1 otherwise,

where V| and D together determine the range over which the translucence varies from O to 1:
at /, = V, the translucence is 1; at [, = V, + D, the translucence has decreased to 0. This is
adequate for sky-plane clouds, but for an ellipsoidal cloud, we expect the translucence to be
higher at the edges than it is at the center. Gardner determines a function g(), which is 1 at
the center of the projection of the ellipsoid onto the film plane and 0 on the edge of the
projection. With this function, a different translucence function V for ellipsoids can be
created, with two different values, V, and V,, determining the translucence threshold at the
edge and at the center:

V=1=(-V,— (V= V)1 = gO)D.

This value must be clamped between 0 and 1. Combining the lighting and translucence

models gives extremely realistic clouds (especially if they are clustered nicely).
Atmospheric effects with less “*substance’ than clouds—such as haze, dust, and

fog—have been generated using scattering models, typically with the assumption that light
is scattered only infrequently within any small volume. Blinn's model of the rings of Saturn

[BLIN82a] handled the special case of nearly planar scattering layers made of tiny spherical

particles by considering four aspects of scattering:

1. Phase function—a tiny spherical particle reflects incident light to a viewer in much the
same way as the moon reflects the sun’s light to us, which depends on the relative
positions of the earth, sun, and moon.

2. Low albedo—if the reflectivity of each particle is low, then multiple scattering effects
(i.e., the light from reflections bouncing off two or more particles) are insignificant.

3. Shadowing and masking— particles more distant from a light source are shadowed by

particles in front of them, and light emitted from a particle is attenuated by particles
between it and the viewer, and both attenuations are exponential functions of depth into
the particle layer.

4. Transparency—the transparency of a cloud layer can be described as the probability
that a ray passing through it hits no particles, and is an inverse exponential function of
the length of the ray contained in the layer.
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Max [MAXB86] extends this model, by incorporating the shadow volumes developed by
Crow [CROWT7a]. He computes the light reaching the eye from a surface by taking the
light reflected from the surface and adding to it all the light reflected by the intervening
atmosphere, just as in Blinn’s model; however, some portions of the intervening
atmosphere (those in the shadow volumes) reflect no additional light. This generates the
appearance of columns of shade (or light) in a reflective atmosphere, like the beams one
sees coming through a window in a dusty room. Nishita, Miyawaki, and Nakamae
[NISH87] developed a similar technique that handles multiple light sources, light sources
with varying intensities (discussed later), and scattering media of varying densities. Their
technique is based on determining, for each ray in a ray-tracing renderer, through exactly
which volumes of illuminated atmosphere the ray passes, and what illumination comes from
each such patch. They incorporate a phase function, different from Blinn’s, which is based
on an approximation to a more complex scattering theory for relatively small particles, such
as dust or fog.

Even further along the same direction is Rushmeier and Torrance's extension of the
radiosity model to handle scattering [RUSH87], based on similar theories for modeling heat
transfer. In their model, each volume in space (which is divided into small cubes) is dealt
with as a separate radiosity element, and not only surface-to-surface interactions, but also
surface-to-volume and volume-to-volume interactions, are considered. This can generate
extremely complicated systems of equations, but the results are extremely realistic—they
constitute some of the most impressive images generated by computer graphics so far (see
Color Plate 1V.20).

Nishita and Nakamae have also studied the effects of scattering on illumination: A light
source that might have been purely directional (such as the light of the sun on the moon's
surface) can be diffused by an atmosphere (such as the earth’s) and become a scattered
source of illumination. An object set on the ground outdoors is illuminated not only by
direct sunlight, but also by the light from other regions of the sky (by atmospheric
scattering). They model the entire sky as a hemispherical light source with varying
intensity, then compute the lighting for an object by integrating over this hemisphere. Color
Plate 111.22(c) shows an interior scene illuminated by this hemisphere.

20.8.3 Turbulence

The accurate mathematical modeling of turbulence has been of interest for many years, and
good fluid-mechanics simulators are now available. These can be used to model turbulence
directly, as done by Yeager and Upson [YEAG86], or more empirical models can be used to
generate good approximations of the effects of turbulence, as done by Perlin [PERLSS].
Perlin’s model is particularly simple to replicate in the form of a solid texture (see Section
20.1.2). The wrbulence at a point p = (x, y, z) is generated by summing up a collection of
Noise() functions of various frequencies; pseudocode for this is given in Fig. 20.23.
The resulting Turbulence() function can be used to generate marble textures by defining
Marble(x, v, z) = MarbleColor(sin(x + Turbulence(x, y, 2))), where MarbleColor maps
values between — 1 and | into color values for the marble. The x within the sin() is used to
generate a smoothly varying function, which is then perturbed by the turbulence function.
If MarbleColor has sufficiently high derivatives (i.e., sufficiently great intensity changes) at
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double Turbulence (double x, double v, double z)
{

double turb = 0.0; f+ Turbulence is a sum of Noise () terms +/
double s = 1.0; /+ s = scale of the noise; 1 = whole image +/

while (s is greater than pixel size) {
turb 4= fabs (s * Noise ( x/s, v/s, 2/5) );
5 /=20,

t

return turb;

} /% Turbulence =/
Fig. 20.23 Pseudocode for the turbulence function.

a few points, there will be sharp boundaries between the basic marble and the veins that run
through it (see Color Plate IV.21).

20.8.4 Blobby Objects

Molecules are typically portrayed by ball-and-stick models. But the actual physics of
molecules reveals that the electron clouds around each atom are not spherical, but rather are
distorted by one another’s presence (and by other effects as well). To get a better image of
surfaces of constant electron density, we must consider the effects of neighboring atoms. In
the same way, any collection of items, each of which creates a spherically symmetric scalar
field and whose fields combine additively, has isosurfaces (surfaces along which the field is
constant) modeled not by a collection of overlapping spheres, but rather by some more
complex shape. Computing the exact isosurfaces may be impractical, but several good
approximations have been made. This was first done independently by Blinn [BLIN82b], in
whose system the fields created by each item decayed exponentially with distance and by
Nishimura et al. for use in the LINKS project [NISH83a]. Wyvill, McPheeters, and Wyvill
[WYVI86] modify Blinn's technique nicely. They model *‘soft objects’” by placing a
collection of field sources in space and then computing a field value at each point of space.
The field value is the sum of the field values contributed by each source, and the value from
each source is a function of distance only. They use a function of distance that decays
completely in a finite distance, R, unlike Blinn's exponential decay. Their function,

—@r*R® + GDrYR* — Br¥R® + 1  f0=r=R,
0 ifR<r,

has the properties that C(0) = 1, C(R) = 0, C'(0) = 0, C'(R) = 0, and C(R/2) = 4. Figure
20.24 shows a graph of C(r). These properties ensure that blending together surfaces gives
smooth joints, and that the field has a finite extent. They compute a number, m, with the
property that the volume of the set where C(r) = m is exactly one-half the volume of the set
where 2C(r) = m. If two sources are placed at the same location and the level-m isosurface
is constructed, it therefore has twice the volume of the isosurface for a single source. Thus,

C(r) = {
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C(r)
&
1

m | =

A

LTk

Fig. 20.24 The function Cir).

when soft objects merge, their volumes add. (Notice that, if two sources are far apart, the
isosurface may have two separate pieces.)

An isosurface of the field can be computed by an algorithm that resembles the
marching-cubes algorithm discussed in Section 20.6, but that is far faster. By evaluating the
field at a sequence of grid points along one axis extending from each source, we find a cube
with an edge intersected by the isosurface (the edge lies between the last grid point whose
value was greater than m and the first whose value is less than m). Because the field value for
each source decreases with distance, this collection of cubes (called seed cubes) has the
property that each piece of the isosurface intersects at least one of them. Thus, by working
outward from these seed cubes, we can locate the entire level surface. Additional work can
be avoided by flagging each cube that has been processed (these flags, together with various
function values, can be stored in a hash table to prevent excessively large data structures).
(Another method for computing implicit surfaces is given in [BLOOS88].)

The objects modeled with this technique resemble plasticine models [WYVI88] and
can be used for molecular modeling, or for modeling droplets of fluid that flow into one
another. See Color Plate IV.22 for an example.

20.8.5 Living Things

The plants described in Section 20.4, with their basis in L-grammars, are comparatively
simple living things, and the regularity of their form makes them relatively easy to model.
Models for shells and coral [KAWASB2] and for imaginary living things [KAWASS] have
been developed as well. Some biologically simple animals have been modeled recently by
physically based techniques, but these models have been adapted to produce good pictures
at the cost of some biological realism [MILL88a]. As Miller notes, **One of the great
advantages of modeling something like worms is that no one wants to look at them too
closely’” [MILL88b]. Although the computational costs of biologically and physically
realistic models are still prohibitive, the implication of Miller’s observation is impor-
tant—a good eye for appearance may be entirely sufficient to model a peripheral aspect of a
scene.

Miller’s model of worms and snakes is based on interactions between masses and
springs, with muscle contractions modeled as changes in spring tension. The forward
motion of the worms and snakes is modeled by adding in directional friction as a
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force—each segment is allowed to move only forward, and trying to move backward
instead draws forward the more tailward segments of the creature. Miller uses bump
mapping and pattern mapping to model the appearance of the snakes and worms. He also
generates hair for caterpillars by stochastically distributing the bases of the hairs over the
body, and distributing the hair ends in a local coordinate system for each hair based on the
surface normal and tangent directions to the surface at the base of the hair. He thus can
model directional hair. One of his snakes is shown in Color Plate 1V.23.

The flight and flocking of birds and schooling of fish have been modeled by Reynolds
[REYNS87]. The simulation of behavior is so good in this model that the rough appearance
of the creatures is only somewhat distracting. As modeling proceeds to the higher genera,
the necessity for accuracy increases, since our familiarity with such creatures makes it
impossible for us to ignore modeling flaws.

20.8.6 Humans

The modeling of humans is the final frontier. Our ability to recognize and distinguish faces
is remarkable; computer graphics images of people must be extremely convincing to satisfy
our demands for realism. It is far easier to model a roomful of realistic objects than it is to
create one realistic face.

The need for such models has been recognized for some time. Many of the scenes with
which we are familiar have people in them, and it would be useful to model these people in a
nondistracting way. The eventual goal is to move from this use of people as “‘extras’” in
computer-generated movies to their use in “*bit parts’” and eventually in leading roles.
Some progress has been made in this area. Catmull has modeled hands [CATM72] as
polygonal objects. The pieces of the hand (fingers, individual joints, etc.) are structured
hierarchically, so moving a finger moves all of its joints. Furthermore, each vertex within a
joint may be specified either as being a part of the joint itself or in the description of its
parent in the hierarchy (the next joint closer to the palm). Thus, when the parent is moved,
the shape of the joint may change.

Parke [PARKS2|, Platt and Badler [PLAT81], and Waters [WATES7] have all
developed facial models. Waters models the face as a connected network of polygons whose
positions are determined by the actions of several muscles; these muscles are modeled as
sheets that can contract. Some of these muscle sheets are anchored to a fixed point in the
head, and some are embedded in the skin tissue. The former act by a contraction toward the
anchor point, and the latter by contraction within themselves. The facial polygons are
modeled by giving their vertices as points on the muscle sheets. Activating a muscle
therefore distorts the face into an expression. This arrangement is an improvement on a
similar model by Platt and Badler, in which the muscles were modeled as contractable
networks of lines, rather than as sheets. Parke also extends this work by allowing control of
both the expression and the conformation (the characteristics that make one person’s face
different from another’s). In all these models, an essential feature is that the control of the
expression is reduced to a few parameters, so that the modeler does not need to place each
vertex of each polygon explicitly.

Zeltzer [ZELT82] has done extensive work in modeling the motions of skeletal
creatures. The actual structure of the skeletons is comparatively simple (a hierarchical
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jointed collection of rigid bodies); it is the modeling of the motion that is more
complicated. Recent work by Girard [GIRA87] on the motion of legged animals is
extremely promising. The modeling of motion is discussed further in Chapter 21.

20.8.7 An Example from the Entertainment Industry

One final example of special-purpose modeling comes from the entertainment industry, in
which computer graphics has been widely applied. In the movie Young Sherlock Holmes,
there is a scene in which a priest hallucinates that he is being attacked by a glass knight that
has jumped out from a stained-glass window. The effect would have been quite difficult to
produce by conventional animation techniques, as any armatures used to control the
knight’s motion would have been readily visible through the semi-transparent glass.
Computer graphics therefore were used instead.

The series of images in Color Plate 1V.24 shows the various techniques involved in
modeling the glass. Virtually all of these were implemented by modifying the reflectance
function using pattern- and bump-mapping techniques. Part (a) shows a single piece of
glass, the shoulder guard, with a color map applied to it, defining its gold stripes. In part
(b), an environment map has been applied, showing the church scene behind the piece of
glass. In part (c), a bump map has been added, together with an illumination function, and
together these modify the environment map of part (b), so that the environment appears
refracted through the glass. The shape of the arches is still just barely visible. In part (d),
spots of dirt and small bubbles have been added to all the previous effects. In part (e),
additional bump maps describe the uneven surfaces on the front of the glass and along the
glass’s right edge. Part (f) shows a detail of the object. Altogether, three color maps, three
bump maps, one transparency map, and one environment map were required to give the
glass its realistic appearance. Part (g) shows the complete figure; the shoulder piece is in the
upper right.

The pieces of glass were assembled into a hierarchical model and animated using a 3D
keyframe animation program. “‘Spotlights’" were strategically placed in the scene so that
glints would appear on the knight’s sword just as he thrusts it toward the priest. In one shot,
the movie camera that photographed the live action was moving, and so the synthetic
camera recording the computer-generated action has to move as well, matching the motion
of the movie camera exactly. The final effect is most impressive, and in one instance quite
startling: When the camera swivels around to show the back side of the knight, we see the
same motion, but instead of seeing the back of the knight's head, we see his face again.
This gives the motion an uncanny effect, since the limbs seem to bend the wrong way.

20.9 AUTOMATING OBJECT PLACEMENT

Most of this chapter has discussed the creation of objects; some of these objects, such as the
terrain molded by erosion, constitute the environment for a scene, but most of them must be
placed in a scene. Often, a human modeler chooses a location and puts a tree, a flag, or a
handkerchief there. When many objects need to be placed in a scene, however, some
automation of the process may be necessary. Considering another dimension, we see that
the position of a single object at two times may be known, but its position at all intermediate
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times may need to be determined. This is really the subject of animation, which involves
modeling the changes of position and attributes of objects over time, as discussed further in
Chapter 21. In situations in which realistic motion of energy-minimizing assemblies is
being modeled, we can do the intermediate animation automatically (human motion may be
of this form, since humans often try to get from one place to another in the most efficient
manner possible). We shall discuss this special case of object placement as well.

Automatic object placement in scenes has not been studied widely. Reeves and Blau
[REEV85] discuss a special case in which the trees in a forest are placed automatically by
applying a general stochastic rule. The modeler provides a grid size determining spacing
between trees and a parameter determining the minimum distance between any two trees,
the regions of the horizontal plane to be forested, and the surface contour over these
regions, which determines the elevation of the base of the tree. The program then generates
at most one tree per grid point, randomly displacing the trees in the x and y directions to
avoid giving a gridlike appearance in the final result. If after displacement the new tree
would be too close to others, it is eliminated and the algorithm proceeds to the next grid
point. This model has some small realism to it: The placement of trees is somewhat
random, and forest densities tend to be nearly constant, so that one rarely sees lots of trees
all in the same area. Reeves and Blau also let the placement of their trees affect the
modeling of the individual trees. The elevation of the tree determines (probabilistically)
whether a tree is deciduous (low elevations) or evergreen (higher elevations). This
interaction between the terrain and the trees is similar in form to the interacting procedural
models of Amburn, Grant, and Whitted [AMBUS&6], described in Section 20.2, in which
characteristics of the terrain influenced the placement of the trees.

Gardner [GARD84] uses a mechanism that encompasses both random displacements
and interaction with the terrain, while also forming clusters of objects rather than a regular
grid. To determine placements of features in a scene (where to put a tree, for example), he
uses a function much like the texture function used in his models for clouds. When this
“texture”’ function is above some critical value, a feature is generated. Using this
technique, Gardner generates some exceptionally realistic distributions of features in scenes
(Color Plate 1V.25).

In all these cases, it is important to avoid both regularity and complete randomness.
Much work remains to be done, but it appears that, for such applications, a stochastic
control mechanism that can interact with the environment will provide good results.

Another type of automatic object placement is determining the intermediate stages in
animations of constrained objects. In some cases, an object’s positions in the course of an
animation are completely determined by physics; actually computing these position may be
very difficult. Witkin and Kass describe a method for determining these intermediate
positions [WITK88]. The basic idea is simple: Assuming that an object has been modeled
as a physical assembly with various muscles (parts of the assembly that can produce energy)
to move other parts, we can describe the states (positions and velocities) of all the parts of
the assembly as a function of time (these states include the amount of energy being
expended by each muscle at each time, which is related to the muscle tension). This
function can be thought of as taking a time value, ¢, between an initial and a final time, and
associating with it a collection of numbers describing the state of the assembly. Thus, the
function can be thought of as a path through some high-dimensional space. (The dimension
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Fig. 20.25 Luxo Jr. is asked to jump from one position on the table to another. An
initial path is specified in which Luxo moves above the table. Iterations of a variational
technique lead Luxo to find a crouch—stretch—followthrough approach to the motion

of the space is about twice the number of degrees of freedom in the assembly.) Among the
collection of all such functions, there are some whose total energy expenditure is lower than
that of others. There also are some whose initial position for the parts is the desired initial
position and whose ending position is the desired ending position, and we can measure how
far a path is from satisfying these conditions. Some functions will represent physically
possible sequences of events (e.g., in some paths, the momentum of each part will be, in
the absence of external forces, proportional to the derivative of the part’s position).

To compute the path of the object over time, we now take an approach called
variational calculus, which is similar to gradient methods used for finding minima of
ordinary real-valued functions. We start with any path and alter it slightly by moving certain
points on the path in some direction. We now determine whether the path is closer to a good
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that minimizes energy and satisfies the constraints. (Courtesy of Michael Kass and
Andrew Witkin.)

path (where *‘good’’ means ‘‘low energy expenditure,’” *‘laws of physics satisfied,”” and
“‘starting and ending conditions satisfied’") or is farther away. If it is closer, it becomes our
new path, and we repeat the operation. If it is farther away, we alter the original path by
exactly the opposite perturbations, and let this be our new path. As we iterate this process,
we get closer and closer to a low-energy path that satisfies the constraints. Once we reach a
path satisfying the constraints, we can continue the process until we reach the lowest-energy
path possible. It turns out that the best alteration to the path at any time can be determined,
s0 we approach a minimum-energy path very quickly.

The actual mechanism by which this alteration is effected is extremely complex, but the
underlying idea is simple. Figure 20.25 is an example of the method in action; a model of
““Luxo Jr.”” from a Pixar animation [PIXA86], is supposed to jump from one position on
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the table to another. Luxo is composed of a head, three segments, and a base. Each joint is
frictionless and has a muscle to determine the joint angle. The initial path for the
computation is the motion of Luxo from one point above the table to a distant point above
the table. This path is gradually modified to consist of an initial compression of the body, a
stretch and leap, a pulling-up-and-forward of the base and a followthrough to prevent
toppling. This motion is remarkable in a number of ways: it is completely synthetic—the
crouch and the stretch are not “‘programmed in"’—and at the same time it shows the
remarkable intuition of traditional animators, who drew a similar motion for the object and
thereby implicitly solved an immensely complex variational problem. Witkin and Kass
remark that the solution is general; we can create many constraints to be satisfied and still
find the solution using this general technique. Needless to say, however, the method is
computationally extremely expensive. One direction for future research is enabling a
modeler to suggest directions of modification of the path to accelerate finding the solution.

20.10 SUMMARY

More and more disciplines are contributing to the modeling of complex phenomena in
computer graphics, and the richness of the images we now see being generated is due to the
variety of techniques used together to produce these phenomena. Successful models still
have two forms: those based on replicating the underlying structure or physics of the objects
being modeled, and those based on making something that looks good. The second often
precedes the first. We anticipate seeing a wider variety of objects modeled in the future.
Modeling human form and motion, and animal appearance and behavior, are particularly
significant challenges. Even within the realms discussed in this chapter, there is substantial
room for further work. The modeling of plants and trees can be extended to modeling of the
ecology of a small region, including competition between plant forms for various resources.
The modeling of waves can be extended to include more accurately the effects of wind and
the appearance of breaking waves. The modeling of interconnected structures such as cloth,
clay, and liquids can be extended to include models of fracture, mixed media (how does the
movement of a slurry differ from that of a liquid?) and changes of state (e.g., melting ice).
We look forward to seeing these new models and their successors, and eagerly await the day
when computer-synthesized scenes are routinely mistaken for photographs. Although this
ability to fool the eye may not always be the final goal in modeling, it is a good measure of
the power available to computer graphics: If we can model reality, we can model anything.

EXERCISES

20.1 Shqw that the Bernstein polynomials Q,. (1) used in the Sederberg-Parry deformation technique
satisfy 2, o0, {f) = 1 by using the binomial theorem, which says that

E(?)a‘b‘“ =(a + b).

i=0
20.2 Implement the Perlin texturing model on your computer. Can you fine tune the model to
compute textures at only the points of a specific surface (such as a sphere), so that you can generate a
real-time texture editor? What are the difficulties in generating multifrequency noise in real time? Try
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bump mapping the normal vectors by the dNoise() function described in the text—that is, by
adjusting the normals by a rule of the form newNormal = oldNormal + dNoise (currentPoinr). Let
Jf(x) be a function that is 0 for x < a and is | for x > b, where a and b are positive numbers with
a < b, If you assume you do bump mapping with the rule newNormal = oldNormal + { (Noise
(currentPoint)) = dNoise (currentPoint), what do you expect the result to look like for various values of
a and b? Try to replicate the Perlin’s stucco texture using this method.

20.3 Perlin uses cubic interpolation to generate values for the coefficients used in computing noise.
Can you think of an easy way to speed this process using look-up tables? Can you think of a quicker
way to generate band-limited noise?

20.4 Implement a particle system for fireworks, by making the first-stage particle follow a parabolic
trajectory, and subsequent particles follow smaller parabolic trajectories. Can you combine this
system with the soft-object model to make exploding blobs of water?

20.5 Implement Gardner's cloud model and try 1o tune the parameters to give good-looking cumulus
clouds.

20.6 Think about how you could model a natural 1D, 2D, or 3D phenomenon. By a 1D object, we
mean an object on which position can be measured by a single number, such as a curve in the plane
(the single number is distance from the starting point of the curve). By a 2D object, we mean an object
on which position can be measured by two numbers. For example, the surface of the sphere is a 2D
object because position can be measured by longitude and latitude. Notice that 1D phenomena such as
hair are difficult to render, since a 1-pixel line is likely to be far wider than is the desired image of the
hair. Solving this problem requires an understanding of the filtering theory in Chapters 14 and 17.
Some interesting 2D objects are flower petals (can you think of a way to make a movie of a rose
unfolding?), ribbed surfaces (such as umbrellas, or skin over a skeleton), and ribbons (can you model
the shape of a ribbon by specifying only where a few points lie, and letting mechanics determine the
rest?). Some 3D objects you might want to consider are sponge (or is this really fractal?), translucent
glass, and mother-of-pearl.
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Animation

To animate is, literally, to bring to life. Although people often think of animation as
synonymous with motion, it covers all changes that have a visual effect. It thus includes the
time-varying position (motion dynamics), shape, color, transparency, structure, and texture
of an object (update dynamics), and changes in lighting, camera position, orientation, and
focus, and even changes of rendering technique.

Animation is used widely in the entertainment industry, and is also being applied in
education, in industrial applications such as control systems and heads-up displays and
flight simulators for aircraft, and in scientific research. The scientific applications of
computer graphics, and especially of animation, have come to be grouped under the
heading scientific visualization. Visualization is more than the mere application of graphics
to science and engineering, however; it can involve other disciplines, such as signal
processing, computational geometry, and database theory. Often, the animations in
scientific visualization are generated from simulations of scientific phenomena. The results
of the similations may be large datasets representing 2D or 3D data (e.g., in the case of
fluid-flow simulations); these data are converted into images that then constitute the
animation. At the other extreme, the simulation may generate positions and locations of
physical objects, which must then be rendered in some form to generate the animation. This
happens, for example, in chemical simulations, where the positions and orientations of the
various atoms in a reaction may be generated by simulation, but the animation may show a
ball-and-stick view of each molecule, or may show overlapping smoothly shaded spheres
representing each atom. In some cases, the simulation program will contain an embedded
animation language, so that the simulation and animation processes are simultaneous.,

1067
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If some aspect of an animation changes too quickly relative to the number of animated
frames displayed per second, temporal aliasing occurs. Examples of this are wagon wheels
that apparently turn backward and the jerky motion of objects that move through a large
field of view in a short time. Videotape is shown at 30 frames per second (fps), and
photographic film speed is typically 24 fps, and both of these provide adequate results for
many applications. Of course, to take advantage of these rates, we must create a new image
for each videotape or film frame. If, instead, the animator records each image on two
videotape frames, the result will be an effective 15 fps, and the motion will appear jerkier.'

Some of the animation techniques described here have been partially or completely
implemented in hardware. Architectures supporting basic animation in real time are
essential for building flight simulators and other real-time control systems; some of these
architectures were discussed in Chapter 18.

Traditional animation (i.e., noncomputer animation) is a discipline in itself, and we do
not discuss all its aspects. Here, we concentrate on the basic concepts of computer-based
animation, and also describe some state-of-the-art systems. We begin by discussing
conventional animation and the ways in which computers have been used to assist in its
creation. We then move on to animation produced principally by computer. Since much of
this is 3D animation, many of the technigues from traditional 2D character animation no
longer apply directly. Also, controlling the course of an animation is more difficult when
the animator is not drawing the animation directly: it is often more difficult to describe how
to do something than it is to do that action directly. Thus, after describing various
animation languages, we examine several animation control technigues. We conclude by
discussing a few general rules for animation, and problems peculiar to animation.

21.1 CONVENTIONAL AND COMPUTER-ASSISTED ANIMATION

21.1.1 Conventional Animation

A conventional animation is created in a fairly fixed sequence: The story for the animation
is written (or perhaps merely conceived), then a storyboard is laid out. A storyboard is an
animation in outline form—a high-level sequence of sketches showing the structure and
ideas of the animation. Next, the soundtrack (if any) is recorded, a detailed layout is
produced (with a drawing for every scene in the animation), and the soundtrack is
read —that is, the instants at which significant sounds occur are recorded in order. The
detailed layout and the soundtrack are then correlated.” Next, certain key frames of the
animation are drawn—these are the frames in which the entities being animated are at
extreme or characteristic positions, from which their intermediate positions can be inferred.
The intermediate frames are then filled in (this is called inberweening), and a trial film is
made (a pencil test). The pencil-test frames are then transferred to cels (sheets of acetate

'This lets the animator generate only half as many frames, however. In some applications, the time
savings may be worth the tradeoff in quality.

*The order described here is from conventional studio cartoon animation. In fine-arts animation, the
soundtrack may be recorded last; in computer-assisted animation, the process may involve many
neratons.
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film), either by hand copying in ink or by photocopying directly onto the cels. In multiplane
animation, multiple layers of cels are used, some for background that remains constant
(except perhaps for a translation), and some for foreground characters that change over
time. The cels are colored in or painted, and are assembled into the correct sequence; then,
they are filmed. The people producing the animation have quite distinct roles: some design
the sequence, others draw key frames, others are strictly inbetweeners, and others work
only on painting the final cels. Because of the use of key frames and inbetweening, this type
of animation is called key-frame animation. The name is also applied to computer-based
systems that mimic this process.

The organizational process of an animation is described [CATM78a] by its storyboard;
by a route sheet, which describes each scene and the people responsible for the various
aspects of producing the scene; and by the exposure sheer, which is an immensely detailed
description of the animation. The exposure sheet has one line of information for each frame
of the animation, describing the dialogue, the order of all the figures in the frame, the
choice of background, and the camera position within the frame. This level of organization
detail is essential in producing a coherent animation. For further information on
conventional animation, see [LAYB79; HALA68; HALA73).

The entire process of producing an animation is supposed to be sequential, but is often
(especially when done with computers) iterative: the available sound effects may cause the
storyboard to be modified slightly, the eventual look of the animation may require that
some sequences be expanded, in turn requiring new sound-track segments, and so on.

21.1.2 Computer Assistance

Many stages of conventional animation seem ideally suited to computer assistance,
especially inbetweening and coloring, which can be done using the seed-fill techniques
described in Section 19.5.2. Before the computer can be used, however, the drawings must
be digitized. This can be done by using optical scanning, by tracing the drawings with a data
tablet, or by producing the original drawings with a drawing program in the first place. The
drawings may need to be postprocessed (e.g., filtered) to clean up any glitches arising from
the input process (especially optical scanning), and to smooth the contours somewhat. The
composition stage, in which foreground and background figures are combined to generate
the individual frames for the final animation, can be done with the image-composition
techniques described in Section 17.6.

By placing several small low-resolution frames of an animation in a rectangular array,
the equivalent of a pencil test can be generated using the pan-zoom feature available in some
frame buffers. The frame buffer can take a particular portion of such an image (the portion
consiting of one low-resolution frame), move it to the center of the screen (panning), and
then enlarge it to fill the entire screen (zooming)." This process can be repeated on the

*The panning and zooming are actually effected by changing the values in frame-buffer registers. One
set of registers determines which pixel in the frame-buffer memory corresponds to the upper-left
corner of the screen, and another set of registers determines the pixel-replication factors —how many
times each pixel is replicated in the horizontal and vertical direction. By adjusting the values in these
registers, the user can display cach of the frames in sequence, pixel-replicated to fill the entire
screen.
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several frames of the animation stored in the single image; if done fast enough, it gives the
effect of continuity. Since each frame of the animation is reduced to a very small part of the
total image (typically one twenty-fifth or one thirty-sixth), and is then expanded to fill the
screen, this process effectively lowers the display device's resolution. Nonetheless, these
low-resolution sequences can be helpful in giving a sense of an animation, thus acting as a
kind of pencil test.

21.1.3 Interpolation

The process of inbetweening is amenable to computer-based methods as well, but many
problems arise. Although a human inbetweener can perceive the circumstances of the object
being interpolated (is it a falling ball or a rolling ball?), a computer-based system is
typically given only the starting and ending positions. The easiest interpolation in such a
situation is linear interpolation: Given the values, v, and v,, of some attribute (position,
color, size) in the starting and ending frames, the value v, at intermediate frames is v, =
(1 = 1y, + 1 v,; as the value r ranges from 0 to 1, the value of v, varies smoothly from v, to
v,. Linear interpolation (sometimes called lerping—Linear intERPolation), although
adequate in some circumstances, has many limitations. For instance, if lerping is used to
compute intermediate positions of a ball that is thrown in the air using the sequence of three
key frames shown in Fig. 21.1 (a), the resulting track of the ball shown in Fig. 21.1(b) is
entirely unrealistic. Particularly problematic is the sharp corner at the zenith of the
trajectory: Although lerping generates continuous motion, it does not generate continuous
derivatives, so there may be abrupt changes in velocity when lerping is used to interpolate
positions. Even if the positions of the ball in the three key frames all lie in a line, if the
distance between the second and third is greater than that between the first and second, then
lerping causes a discontinuity in speed at the second key frame. Thus, lerping generates
derivative discontinuities in time as well as in space (the time discontinuities are measured
by the parametric continuity described in Chapter 11).

Because of these drawbacks of lerping, splines have been used instead to smooth out
interpolation between key frames. Splines can be used to vary any parameter smoothly as a
function of time. The splines need not be polynomials.' For example, to get smooth
initiation and termination of changes (called slow-in and slow-out) and fairly constant rates
of change in between, we could use a function such as f(r) in Fig. 21.2. A value can be
interpolated by setting v, = (1 = f(n)v, + f(r)v,. Since the slope of fis zero at both = 0
and r = |, the change in v begins and ends smoothly. Since the slope of fis constant in the
middle of its range, the rate of change of v is constant in the middle time period.

Splines can make individual points (or individual objects) move smoothly in space and
time, but this by no means solves the inbetweening problem. Inbetweening also involves
interpolating the shapes of objects in the intermediate frames. Of course, we could describe
a spline path for the motion of each point of the animation in each frame, but splines give
the smoothest motion when they have few control points, in both space and time. Thus, it is
preferable to specify the positions of only a few points at only a few times, and somehow to

“This is an extension of the notion of spline introduced in Chapter 11, where a spline was defined to
be a piecewise cubic curve. Here we use the term in the more general sense of any curve used to
approximate a set of control points.
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Fig. 21.1 Linear interpolation of the motion of a ball generates unrealistic results. (a)
Three key-frame positions for the ball. (b) The resulting interpolated positions.

extend the spline interpolation over intermediate points and times. At least one special case
deserves mention: A figure drawn as a polyline can be interpolated between key frames by
interpolating each vertex of the polyline from its starting to ending position. As long as the
key frames do not differ too much, this is adequate (for examples where this fails, see
Exercise 21.1).

Several approaches to this have been developed. Burtnyk and Wein [BURT76] made a
skeleton for a motion by choosing a polygonal arc describing the basic shape of a 2D figure
or portion of a figure, and a neighborhood of this arc (see Fig. 21.3). The figure is
represented in a coordinate system based on this skeleton. They then specify the thickness
of the arc and positions of the vertices at subsequent key frames and redraw the figure in a
new coordinate system based on the deformed arc. Inbetweening is done by interpolating
the characteristics of the skeleton between the key frames. (A similar technique can be
developed for 3D, using the trivariate Bernstein polynomial deformations or the heirarch-
ical B-splines described in Chapter 20.)

Reeves [REEV81] designed a method in which the intermediate trajectories of
particular points on the figures in successive key frames are determined by hand-drawn
paths (marked by the animator to indicate constant time intervals). A region bounded by
two such moving-points paths and an arc of the figure in each of the two key frames

fit)

0 ! > |
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Fig. 21.2 The graph of a function f(t) with zero derivative at its endpoints and constant
derivative in its middle section.
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Fig. 21.3 Use of a neighborhood of a skeleton to define interpolated shapes.
(Courtesy of M. Wein and N. Burtnyk, National Research Council of Canada.)

determines a patch of the animation. The arc of the figure is interpolated by computing its
intermediate positions in this patch. The intermediate positions are determined so as to
make the motion as smooth as possible.

Both these techniques were devised to interpolate line drawings, but the same problems
arise in interpolating 3D objects. The most important difference is that, in most
computer-based animation, the 3D objects are likely to be modeled explicitly, rather than
drawn in outlines. Thus the modeling and placement information is available for use in
interpolation, and the animator does not, in general, need to indicate which points on the
objects correspond in different key frames. Nonetheless, interpolation between key frames
is a difficult problem.
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For the time being, let us consider only the interpolation of the position and orientation
of a rigid body. Position can be interpolated by the techniques used in 2D animation: The
position of the center of the body is specified at certain key frames, and the intermediate
positions are interpolated by some spline path. In addition, the rate at which the spline path
is traversed may be specified as well (e.g., by marking equal-time intervals on the
trajectory, or by specifying the speed along the interpolating path as a function of time).
Many different animation systems implement such mechanisms; some of these are
discussed in Section 21.2.3.

Interpolating the orientation of the rigid body is more difficult. In fact, even specifying
the orientation is not easy. If we specify orientations by amounts of rotation about the three
principal axes (called Euwler angles), then the order of specification is important. For
example, if a book with its spine facing left is rotated 90° about the x axis and then —90°
about the y axis, its spine will face you, whereas if the rotations are done in the opposite
order, its spine will face down. A subtle consequence of this is that interpolating Euler
angles leads to unnatural interpolations of rotations: A rotation of 90° about the z axis and
then 90° about the y axis has the effect of a 120° rotation about the axis (1, 1, 1). But
rotating 30° about the z axis and 30° about the y axis does not give a rotation of 40° about
the axis (1, 1, 1)—it gives approximately a 42° rotation about the axis (1, 0.3, 1)!

The set of all possible rotations fits naturally into a coherent algebraic structure, the
quaternions [HAMIS3]. The rotations are exactly the unit quaternions, which are symbols
of the form a + bi + cj + dk, where a, b, c, and d are real numbers satisfying a* + V* + ¢
+ d* = 1; quaternions are multiplied using the distributive law and the rules i¥ = jf = k* =
=1,ij = k = —ji, jk = i = —kj, and ki = j = —ik. Rotation by angle ¢ about the unit
vector [b ¢  d]' corresponds to the quaternion cos ¢/2 + b sin /2 i + ¢ sin /2 j + d sin
&2 k. Under this correspondence, performing successive rotations corresponds to
multiplying quaternions. The inverse correspondence is described in Exercise 21.7.

Since unit quaternions satisfy the condition @* + b* + ¢ + d* = 1, they can be thought
of as points on the unit sphere in 4D. To interpolate between two quaternions, we simply
follow the shortest path between them on this sphere (a grear arc). This spherical linear
interpolation (called slerp) is a natural generalization of linear interpolation. Shoemake
[SHOESS] proposed the use of quaternions for interpolation in graphics, and developed
generalizations of spline interpolants for quaternions.

The compactness and simplicity of quaternions are great advantages, but difficulties
arise with them as well, three of which deserve mention. First, each orientation of an object
can actually be represented by two quaternions, since rotation about the axis v by an angle ¢
is the same as rotation about —v by the angle —d¢; the corresponding quaternions are
antipodal points on the sphere in 4D. Thus to go from one orientation to another, we may
interpolate from one quaternion to either of two others; ordinarily we choose the shorter of
the two great arcs. Second, orientations and rotations are not exactly the same thing: a
rotation by 360° is very different from a rotation by 0° in an animation, but the same
quaternion (1 + 0i + 0j + Ok) represents both. Thus specifying multiple rotations with
quaternions requires many intermediate control points.

The third difficulty is that quaternions provide an isotropic method for rotation—the
interpolation is independent of everything except the relation between the initial and final
rotations. This is ideal for interpolating positions of tumbling bodies, but not for
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interpolating the orientation of a camera in a scene: Humans strongly prefer cameras to be
held upright (i.e., the horizontal axis of the film plane should lie in the (x, z) plane), and are
profoundly disturbed by tilted cameras. Quaternions have no such preferences, and
therefore should not be used for camera interpolation. The lack of an adequate method for
interpolating complex camera motion has led to many computer animations having static
cameras or very limited camera motion.

21.1.4 Simple Animation Effects

In this section, we describe a few simple computer-animation tricks that can all be done in
real time. These were some of the first techniques developed, and they are therefore
hardware-oriented.

In Section 4.4.1, we discussed the use of color look-up tables (luts) in a frame buffer
and the process of double-buffering; and in Section 17.6, we described image compositing
by color-table manipulations. Recall that lut animation is generated by manipulating the lut.
The simplest method is to cycle the colors in the lut (to replace color i with color i — 1 mod
n, where n is the number of colors in the table), thus changing the colors of the various
pieces of the image. Figure 21.4 shows a source, a sink, and a pipe going between them.
Each piece of the figure is labeled with its lut index. The lut is shown at the right. By cycling
colors | through 5, we can generate an animation of material flowing through the pipe.

Using this lut animation is a great deal faster than sending an entire new pixmap to the
frame buffer for each frame. Assuming 8 color bits per pixel in a 640 by 512 frame buffer, a
single image contains 320 KB of information. Transferring a new image to the frame buffer
every thirtieth of a second requires a bandwidth of over 9 MB per second, which is well
beyond the capacity of most small computers. On the other hand, new values for the lut can
be sent very rapidly, since luts are typically on the order of a few hundred to a few thousand
bytes.

Lut animation tends to look jerky, since the colors change suddenly. This effect can be
softened somewhat by taking a color to be made visible and changing its lut entry gradually
over several frames from the background color to its new color, and then similarly fading it
out as the next lut entry is being faded in. Details of this and other tricks are given by Shoup
[SHOU79].

Lut animation can be combined with the pan-zoom movie technique described

(o nEBEER
5

o Look-up table

Fig. 21.4 The look-up—table entries can be cycled to give the impression of flow
through the pipe.
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previously to make longer pan-zoom movies with less color resolution. To make a very long
two-color pan-zoom movie on a frame buffer with eight planes of memory, for example, we
can generate 200 frames of an animation, each at one-twenty-fifth of full screen resolution.
Frames 1 through 25 are arranged in a single image to be used for a pan-zoom movie. The
same is done with frames 26 through 50, and so on up to frames 176 through 200, giving a
total of eight bitmaps. These are combined, on a pixel-by-pixel basis, into a single
8-bit-deep image, which is then downloaded to the frame buffer. We make all the lut entries
black except entry 00000001, which we make white. We then run a 25-frame pan-zoom
movie and see the first 25 images of the animation. Then, we set entry 00000001 to black
and entry 00000010 to white. Running another 25-frame pan-zoom movie shows us the
next 25 images. Continuing in this fashion, we see the full 200-frame animation. By
allocating several planes to each image, we can generate shorter pan-zoom movies with
additional bits of color.

Finally, let’s look at the hardware-based animation technique called sprires. A sprite is
a small rectangular region of memory that is mixed with the rest of the frame-buffer
memory at the video level. The location of the sprite at any time is specified in registers in
the frame buffer, so altering the values in these registers causes the sprite to move. The
sprites may hide the frame-buffer values at each pixel, or may be blended with them. We
can use sprites to implement cursors in frame buffers, and also to generate animations by
moving the sprite (or sprites) around on top of a background image. Some frame buffers
have been designed to allow several sprites with different priorities, so that some sprites can
be “‘on top of'" others.

One of the most popular uses of sprites is in video games, where the animation in the
game may consist almost entirely of sprites moving over a fixed background. Since the
location and size of each sprite are stored in registers, it is easy to check for collisions
between sprites, which further enhances the use of sprites in this application.

21.2 ANIMATION LANGUAGES

There are many different languages for describing animation, and new are constantly
being developed. They fall into three categories: linear-list notations, general-purpose
languages with embedded animation directives, and graphical languages. Here, we briefly
describe each type of language and give examples. Many animation languages are mingled
with modeling languages, so the descriptions of the objects in an animation and of the
animations of these objects are done at the same time.

21.2.1 Linear-List Notations

In linear-list notations for animation such as the one presented in [CATM72], each event in
the animation is described by a starting and ending frame number and an action that is to
take place (the evenr). The actions typically take parameters, so a statement such as

42, 53,B ROTATE ""PALM", |, 30

means ‘‘between frames 42 and 53, rotate the object called PALM about axis | by 30
degrees, determining the amount of rotation at each frame from table B.”” Thus, the actions
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are given interpolation methods to use (in this case a table of values) and objects to act on as
well. Since the statements describe individual actions and have frame values associated with
them, their order is, for the most part, irrelevant. If two actions are applied to the same
object at the same time, however, the order may matter: rotating 90° in x and then 90° in y is
different from rotating 90° in y and then 90° in x.

Many other linear-list notations have been developed, and many notations are supersets
of the basic linear-list idea. Scefo (SCEne FOrmat) [STRABE], for example, has some
aspects of linear-list notation, but also includes a notion of groups and object hierarchy and
supports abstractions of changes (called actions) and some higher-level programming-
language constructs (variables, flow of control, and expression evaluation) distinguishing it
from a simple linear list. Scefo also supports a model of animation that differs from many
animation languages in that it is renderer-independent. A Scefo script describes only an
animation; the individual objects in the script can be rendered with any renderer at all, and
new renderers can easily be added to the animation system of which Scefo is the core.

21.2.2 General-Purpose Languages

Another way to describe animations is to embed animation capability within a general-
purpose programming language [REYN8S2; SYMB85; MAGN85]. The values of variables
in the language can be used as parameters to whatever routines actually generate
animations, so the high-level language can actually be used to generate simulations that then
generate animations as a side effect. Such languages have great potential (e.g., they can
certainly do everything that linear-list notations do), but most of them require considerable
programming expertise on the part of the user.

Such systems can use the constructs of the surrounding language to create concise
routines that have complex effects. Of course, these can sometimes be cryptic. ASAS
[REYNBS82] is an example of such a language. It is built on top of LISP, and its primitive
entities include vectors, colors, polygons, solids (collections of polygons), groups
(collections of objects), points of view, subworlds, and lights. A point of view consists of a
location and an orientation for an object or a camera (hence, it corresponds to the
cumulative transformation matrix of an object in PHIGS). Subworlds are entities associated
with a point of view; the point of view can be used to manipulate the entities in the subworld
in relation to the rest of the objects in the animation.

ASAS also includes a wide range of geometric transformations that operate on objects;
they take an object as an argument and return a value that is a transformed copy of the
object. These transformations include up, down, left, right, zoom-in, zoom-out, forward,
and backward. Here is an ASAS program fragment, describing an animated sequence in
which an object called my-cube is spun while the camera pans. Anything following a
semicolon is a comment. This fragment is evaluated at each frame in order to generate the
entire sequence.

(grasp my-cube) : The cube becomes the current object
(cw 0.035) ; Spin it clockwise by a small amount
(grasp camera) ; Make the camera the current object

(right panning-speed) ; Move it to the right
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The advantage of ASAS over linear-list notations is the ability to generate procedural
objects and animations within the language. This ability comes at the cost of increased skill
required of the animator, who must be an able programmer. Scefo lies in the middle
ground, providing some flow-of-control constructs, and the ability to bind dynamically
with routines written in a high-level language, while being simple enough for nonpro-
grammers to learn and use readily.

21.2.3 Graphical Languages

One problem with the textual languages we have described is that it is difficult for an
animator to see what will take place in an animation just by looking at the script. Of course,
this should not be surprising, since the script is a program, and to the extent that the
program’s language allows high-level constructs, it encodes complex events in compact
form. If a real-time previewer for the animation language is available, this is not a problem;
unfortunately the production of real-time animations is still beyond the power of most
hardware.

Graphical animation languages describe animation in a more visual way. These
languages are used for expressing, editing, and comprehending the simultaneous changes
taking place in an animation. The principal notion in such languages is substitution of a
visual paradigm for a textual one: rather than explicitly writing out descriptions of actions,
the animator provides a picture of the action. Some of the earliest work in this area was
done by Baecker [BAEC69], who introduced the notion of P-curves in the GENESYS
animation system. A P-curve is a parametric representation of the motion (or any other
attribute) of an object or assembly of objects within a scene. The animator describes an
object path of motion by graphically specifying its coordinates as a function of time (just as
splines do, where functions X(t), ¥(t), and Z(t) specify the 3D location of a point on a curve
as a function of an independent variable). Figure 21.5(a) shows a motion path in the plane;
Fig. 21.5(b) of that figure shows the path’s x and y components as functions of time. Notice
that the curves in part (b)) uniquely determine the curve in part (a), but the opposite is not
true: One can traverse the path in part (a) at different speeds. By marking the path in part (a)
to indicate constant time steps, we can convey the time dependence of the path, as shown in
part (c), which is what Baecker calls a P-curve. Note that part (c) can be constructed as
shown in part (d) by graphing the x and y components as functions of 7, on coordinate
systems that are rotated 90° from each other, and then drawing lines to connect
corresponding time points. Thus, editing the components of a parametric curve induces
changes in the P-curve, and editing the placement of the hash marks on the P-curve induces
changes in the components.

The diagrammatic animation language DIAL [FEIN82b] retains some of the features
of linear-list notations, but displays the sequence of events in an animation as a series of
parallel rows of marks: A vertical bar indicates the initiation of an action, and dashes
indicate the time during which the action is to take place. The actions are defined in a DIAL
script (by statements of the form **% t1 translate “*block’* 1.0 7.0 15.3,"" which defines
action t1 as the translation of an object called “*block’" by the vector (1.0, 7.0, 15.3)), and
then the applications of the actions are defined subsequently. The particular instructions
that DIAL executes are performed by a user-specified back end given at run time. DIAL
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Fig. 21.5 (a) A parametric path in the plane. (b} Its x and y components as functions of
time. (c) The original curve marked to indicate equal time steps. (d) The construction of a
P-curve from component functions.

itself knows nothing about animation; it merely provides a description of the sequence in
which instructions are to be performed. The following is a typical DIAL script (lines
beginning with a blank are comments):

Read in an object from a file, and assign it the name *"block"
! getsurf *block.d" 5 5 "block"
Define a window on the xy plane
! window -20 20 -20 20
Define two actions, (1) a translation,
% tl translate "block™ 10 0 O
and (2) a rotation in the xy plane by 360 degrees
% rl rotate "block™ 0 1 360

Now describe a translation, spin, and a further translation:
tl | ===

rl | ==mmmm-

rl i L e e e

The line labeled “‘t1"" indicates that action tl is to take place from frames 1 to 10 (and
hence is to translate by one unit per frame, since linear interpolation is the default), and
then again from frames 17 to 25. At frame 11, the block stops translating and rotates 40°
per frame for six frames (the first line labeled *‘rl1"" indicates this), and then rotates and
translates for the next three, and then just translates.
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For longer animations, each tick mark can indicate multiple frames, so that animations
of several seconds’ duration can be specified easily without indicating every frame. Long
animations can be described by starting a new sequence of tick marks on a new line,
following a completely blank line. (The second line labeled *‘r1”" above is an example: it
indicates that a 360° turn should take place between frames 26 and 50.) The format is much
like that of a conductor’s score of a symphony: Each action corresponds to an instrument in
the orchestra, and each group of lines corresponds to a staff in the score. DIAL and many
linear-list notations have the advantage of being specified entirely in ASCII text, making
them portable to different machines (although a back end for the language must be written
for each new machine).

The S-Dynamics system [SYMBS85] takes this visual paradigm one step further and
combines it with parametric descriptions of actions similar to P-curves. To do this,
S-Dynamics uses the full power of a bitmapped workstation. Figure 21.6 shows an
S-Dynamics window. Just as in DIAL, time runs horizontally across the window. The
period during which actions are to take effect is indicated by the width of the region
representing the action. Each action (or sequence in S-Dynamics terminology) can be
shown as a box that indicates the time extent of the action, or the box can be
“‘opened"’ —that is, made to show more internal detail. A sequence may be a composite of
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Select sequence Save script Display frame Animate script “Flayback Lhange modes

Fig. 21.6 An S-Dynamics window. (Courtesy of Symbolics Graphics Division. The
software and the SIGGRAPH paper in which this image first appeared were both written
by Craig Reynolds.)
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several serial or parallel actions, each of which can be opened to show even more detail,
including a graph indicating the time dependence of a parameter of the action.

21.3 METHODS OF CONTROLLING ANIMATION

Controlling an animation is somewhat independent of the language used for describing
it—most control mechanisms can be adapted for use with various types of languages.
Animation-control mechanisms range from full explicit control, in which the animator
explicitly describes the position and attributes of every object in a scene by means of
translations, rotations, and other position- and attribute-changing operators, to the highly
automated control provided by knowledge-based systems, which take high-level descrip-
tions of an animation (*‘make the character walk out of the room"") and generate the explicit
controls that effect the changes necessary to produce the animation. In this section, we
examine some of these techniques, giving examples and evaluating the advantages and
disadvantages of each.

21.3.1 Full Explicit Control

Explicit control is the simplest sort of animation control. Here, the animator provides a
description of everything that occurs in the animation, either by specifying simple changes,
such as scaling, translation, and rotation, or by providing key-frame information and
interpolation methods to use between key frames. This interpolation may be given explicitly
or (in an interactive system) by direct manipulation with a mouse, joystick, data glove, or
other input device.

The BBOP system [STER83] provides this interactive sort of control. The underlying
object model consists of hierarchical jointed polyhedral objects (i.e., stick figures with
pivot points between adjacent sticks), and the animator can control transformation matrices
at each of the joints using a joystick or other interactive device. Such interactions specify the
transformations at key frames, and interactive programs define the interpolations between
key frames. Notice that, in such a system, a sequence of actions defined between key frames
may be difficult to modify; extending one action may require shortening the neighboring
actions to preserve coherence of the animation. For example, consider an animation in
which one ball rolls up and hits another, causing the second ball to roll away. If the first ball
is made to move more slowly, the start of the second action (the second ball rolling away)
must be delayed.

21.3.2 Procedural Control

In Chapter 20, we discussed procedural models, in which various elements of the model
communicate in order to determine their properties. This sort of procedural control is
ideally suited to the control of animation, Reeves and Blau [REEV85] modeled both grass
and wind in this way, using a particle system modeling technique (see Section 20.5). The
wind particles evolved over time in the production of the animation, and the positions of the
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Fig. 21.7 The linkage in (a) is moved by rotating the drive wheel. The constraints
generate the motions shown in (b), (c), and (d).

grass blades were then determined by the proximity of wind particles. Thus, the particle
system describing the grass was affected by aspects of other objects in the scene. This sort
of procedural interaction among objects can be used to generate motions that would be
difficult to specify through explicit control. Unfortunately, it also requires that the animator
be a programmer.

Procedural control is a significant aspect of several other control mechanisms we
discuss. In particular, in physically based systems, the position of one object may influence
the motion of another (e.g., balls cannot pass through walls); in actor-based systems, the
individual actors may pass their positions to other actors in order to affect the other actors’
behaviors.

21.3.3 Constraint-Based Systems

Some objects in the physical world move in straight lines, but a great many objects move in
a manner determined by the other objects with which they are in contact, and this
compound motion may not be linear at all. For example, a ball rolls down an inclined
plane. If gravity were the only force acting on the ball, the ball would fall straight down. But
the plane is also pushing up and sideways, and so the ball rolls down the plane rather than
passing through it. We can model such motion by constraints. The ball is constrained to lie
on one side of the plane. If it is dropped from a height, it strikes the plane and bounces off,
always remaining on the same side. In a similar way, a pendulum swings from a pivot,
which is a point constraint.

Specifying an animated sequence using constraints is often much easier to do than is
specifying by using direct control. When physical forces define the constraints, we move
into the realm of physically based modeling (see Section 21.3.7), especially when the
dynamics’ of the objects are incorporated into the model. Simple constraint-based
modeling, however, can generate interesting results. If constraints on a linkage are used 1o
define its possible positions, as in Fig. 21.7(a), we can view an animation of the linkage by
changing it in a simple way. In the figure, for example, the animator can generate an
animation of the linkage just by rotating the drive wheel, as shown in parts (b), (c), and (d).

Sutherland’s Sketchpad system [SUTH63] was the first to use constraint-based
animation of this sort (see Fig. 21.8). It allowed the user to generate parts of an assembly in
the same way as 2D drawing programs do today. The parts (lines, circles, etc.) of an
assembly could be constrained by point constraints (**this line is free to move, but one end

*Here we use dynamics in the sense of physics, to mean the change in position and motion over time,
not merely to mean “*change,”” as in earlier chapters.
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Fig. 21.8 Constraint definition and satisfaction in Sketchpad. (Adapted from
[SUTH63].)

is held fixed at this point’’), linkage constraints (**these lines must always remain joined end
to end’’), or angular constraints (*‘these lines must always be parallel’” or “*these lines must
meet at a 60° angle’’). This allowed the user to draw four lines in a quadrilateral, put
linkage constraints on the corners, to put a point constraint at one corner, and to put angular
constraints on opposite sides to make them parallel. This generated a parallelogram with
one corner held fixed. Constraints were satisfied by a relaxation technique in which the
assembly was moved so that the constraints came closer to being satisfied. Thus, the user
could watch an assembly move so as to satisfy constraints gradually.® Of course, it is
possible to overconstrain a system, by requiring, for example, that a line have a length of
one unit, but that its ends be joined to two points that are three units apart. The constraints
in Sketchpad are described by giving an error function—a function whose value is 0 when a
constraint is satisfied, and is positive otherwise. Relaxation attempts to make the sum of
these functions 0; when it fails, many constraints may be unsatisfied. Similarly, a system
may be underconstrained, and have many solutions that satisfy all the constraints. In this
case, the relaxation technique finds one solution that is close to the initial configuration.

Borning’s similar ThingLab [BORN79] was really a metasystem: It provided a
mechanism for defining systems like Sketchpad, but a user could define a system for
modeling electrical circuits in the same framework. This system design was later improved
to include a graphical interface [BORN86b]. A system, once designed, provided a world in
which a user could build experiments. In a world meant to model geometry, for instance,
the user could instantiate lines, point constraints, midpoint constraints, and so on, and then
could move the assembly under those constraints. Figure 21.9 shows an example; the user
has instantiated four MidpointSegments (segments with midpoints), has constrained their
ends to be joined, and has also drawn four lines between adjacent midpoints. The user can
vary the outer quadrilateral and observe that the inner quadrilateral always remains a
parallelogram. For related work, see [BIER86a].

The extension of constraint-based animation systems to constraint systems supporting
hierarchy, and to constraints modeled by the dynamics of physical bodies and the structural

“The animations therefore served two purposes: they generated assemblies satsifying the constraints,
and they gave a visualization of the relaxation technigue,
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characteristics of materials (as in the plasticity models described in Section 20.7.3), is a
subject of active research.

21.3.4 Tracking Live Action

Trajectories of objects in the course of an animation can also be generated by tracking of
live action. There are a number of methods for doing tracking. Traditional animation has
used rotoscoping: A film is made in which people (or animals) act out the parts of the
characters in the animation, then animators draw over the film, enhancing the backgrounds
and replacing the human actors with their animation equivalents. This technique provides
exceptionally realistic motion. Alternatively, key points on an object may be digitized from
a series of filmed frames, and then intermediate points may be interpolated to generate
similar motion.

Another live-action technique is to attach some sort of indicator to key points on a
person’s body. By tracking the positions of the indicators, one can get locations for
corresponding key points in an animated model. For example, small lights are attached at
key locations on a person, and the positions of these lights are then recorded from several
different directions to give a 3D position for each key point at each time. This technique has
been used by Ginsberg and Maxwell [GINS83] to form a graphical marionette; the position
of a human actor moving about a room is recorded and processed into a real-time video
image of the motion. The actor can view this motion to get feedback on the motion that he
or she is creating. If the feedback is given through a head-mounted display that can also
display prerecorded segments of animation, the actor can interact with other graphical
entities as well.

Another sort of interaction mechanism is the data glove described in Chapter 8, which
measures the position and orientation of the wearer’s hand, as well as the flexion and
hyperextension of each finger joint. This device can be used to describe motion sequences in
an animation as well, much like a 3D data tablet. Just as 2D motion can be described by
drawing P-curves, 3D motion (including orientation) can be described by moving the data
glove.

21.3.5 Actors

The use of actors is a high-level form of procedural control. An actor in an animation is a
small program invoked once per frame to determine the characteristics of some object in
the animation. (Thus, an actor corresponds to an *‘object’” in the sense of object-oriented
programming, as well as in the sense of animation.) An actor, in the course of its
once-per-frame execution, may send messages to other actors to control their behaviors.
Thus we could construct a train by letting the engine actor respond to some predetermined
set of rules (move along the track at a fixed speed), while also sending the second car in the
train the message “‘place yourself on the track, with your forward end at the back end of the
engine.”’ Each car would pass a similar message to the next car, and the cars would all
follow the engine.

Such actors were originally derived from a similar notion in Smalltalk [GOLD76] and
other languages, and were the center of the ASAS animation system described in Section
21.2.2. The concept has been developed further to include actors with wide ranges of
“*behaviors’” that they can execute depending on their circumstances.
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21.3.6 Kinematics and Dynamics

Kinematics refers to the positions and velocities of points. A kinematic description of a
scene, for example, might say, ““The cube is at the origin at time ¢ = 0. It moves with a
constant acceleration in the direction (1, 1, 5) thereafter.’” By contrast, dynamics takes into
account the physical laws that govern kinematics (Newton’s laws of motion for large bodies,
the Euler-Lagrange equations for fluids, etc.). A particle moves with an acceleration
proportional to the forces acting on it, and the proportionality constant is the mass of the
particle. Thus, a dynamic description of a scene might be, ** At time 1 = 0 seconds the cube
is at position (0 meters, 100 meters, 0 meters). The cube has a mass of 100 grams. The
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Fig. 21.9 A ThinglLab display.{Courtesy of Alan Borning, Xerox PARC and University
of Washington.)

force of gravity acts on the cube.”” Naturally, the result of a dynamic simulation” of such a
model is that the cube falls.

Both kinematics and dynamics can be inverted; that is, we can ask the question, **What
must the (constant) velocity of the cube be for it to reach position (12, 12, 42) in 5
seconds?"" or, ““What force must we apply to the cube to make it get to (12, 12, 42) in 5
seconds?"" For simple systems, these sorts of questions may have unique answers; for more
complicated ones, however, especially hierarchical models, there may be large families of

"This simulation could be based on either an explicit analytical solution of the eguations of motion or
a numerical solution provided by a package for solving differential equations.
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solutions. Such approaches to modeling are called inverse kinematics and inverse dynamics,
in contrast to the forward kinematics and dynamics already described.

For example, if you want to scratch your ear, you move your hand to your ear. But when
it gets there, your elbow can be in any of a number of different positions (close to your body
or stuck out sideways). Thus, the motions of your upper and lower arm and wrist are not
completely determined by the instruction, ‘*move your hand to your ear.”” Solving inverse
kinematic problems can therefore be difficult. In general, however, it is easier to solve
equations with unique solutions than it is to solve ones with multiple solutions, so if we add
constraints to the problem (e.g., “‘make the potential energy of your arm as small as
possible at each stage of the motion""), then the solution may become unique. Note that you
are constrained by the way that your body is constructed and by other objects in the
environment—scratching your ear is more difficult when you are wearing a spacesuit than it
is when you are wearing a bathing suit.

This type of problem, especially in the animation of articulated human figures, has
received wide attention [CGAB2; GIRA85; WILH87]. The systems of equations arising
from such inverse problems are typically solved by numerical iteration techniques. The
starting point for the iteration may influence the results profoundly (e.g., whether a robot’s
arms reach under a table or above it to grab an object on the other side depends whether they
are above or below the table on this side), and the iterative techniques may also take a long
time to converge.

Dynamic models using constraints have also been studied [BARRS88]. In this case, the
dynamics of the model may be much more complex. For example, the force that a floor
exerts on the bottom of your foot is proportional to your weight (assuming for the moment
that neither you nor the floor is moving). In general, the force of the floor on your foot (even
if you are walking or running) is exactly enough to prevent your foot from moving into the
floor. That is to say, the force may not be known a priori from the physics of the situation.®
To simulate the dynamic behavior of such a system, we can use dynamic constraints, which
are forces that are adjusted to act on an object so as either to achieve or to maintain some
condition. When the forces necessary to maintain a constraint have been computed, the
dynamics of the model can then be derived by standard numerical techniques. By adding
forces that act to satisfy a constraint, we can generate animations showing the course of
events while the constraint is being satisfied (much as in Sketchpad). For example,
constraining the end of a chain to connect to a post makes it move from where it is toward
the post. This example was the subject of an animation by Barr and Barzel, one frame of
which is shown in Color Plate 1V.26.

21.3.7 Physically Based Animation

The dynamics we have described are examples of physically based animations. So, in
animated form, are the physically based models of cloth, plasticity, and rigid-body motion
described in Chapter 20. These models are based on simulations of the evolution of physical

*Of course, the floor actually does move when you step on it, but only a very small amount. We
usually want to avoid modeling the floor as a massive object, and instead just model it as a fixed
object.
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systems. Various formulations of classical mechanical behavior have been developed
[GOLDBSO]; they all represent the evolution of a physical system as a solution to a system of
partial differential equations. The solutions to these equations can be found with
numerical-analysis packages and can be used to derive animation sequences. In the
Kass-Witkin motion modeling described in Chapter 20, the situation is complex. The
forces acting on an assembly are not all known beforehand, since the object may be able to
supply its own forces (i.e., use its muscles). This allows for physically based animation of a
different sort: One seeks the forces that the muscles must apply to generate some action. Of
course, there may be many solutions to such a problem, and the Kass—Witkin approach is to
choose the path with the minimal work. This sort of animation ties together the work on
constraints, dynamics, procedural control, and the actors that we have described. It is also
extremely complex; determining the equations governing a mechanical assembly can be
very difficult, since these equations may contain hundreds of interrelated variables.

21.4 BASIC RULES OF ANIMATION

Traditional character animation was developed from an art form into an industry at Walt
Disney Studio between 1925 and the late 1930s. At the beginning, animation entailed little
more than drawing a sequence of cartoon panels—a collection of static images that, taken
together, made an animated image. As the techniques of animation developed, certain basic
principles evolved that became the fundamental rules for character animation, and are still
in use today [LAYB79; LASS87]. Despite their origins in cartoon-character animation,
many of them apply equally to realistic 3D animations. These rules, together with their
application to 3D character animation, are surveyed in [LASS87]. Here, we merely discuss
a few of the most important ones. It is important to recognize, however, that these rules are
not absolute. Just as much of modern art has moved away from the traditional rules for
drawing, many modern animators have moved away from traditional rules of animation,
often with excellent results (see, e.g., [LEAF74; LEAF77]).

The single most important of the traditional rules is squash and stretch, which is used
to indicate the physical properties of an object by distortions of shape. A rubber ball or a
ball of putty both distort (in different ways) when dropped on the floor. A bouncing rubber
ball might be shown as elongating as it approachs the floor (a precursor to motion blur),
flattening out when it hits, and then elongating again as it rises. By contrast, a metal sphere
hitting the floor might distort very little but might wobble after the impact, exhibiting very
small, high-frequency distortions. The jump made by Luxo Jr., described in Chapter 20
and simulated by the physically based modeling described in this chapter, is made with a
squash and stretch motion: Luxo crouches down, storing potential energy in his muscles;
then springs up, stretching out completely and throwing his base forward; and then lands,
again crouching to absorb the kinetic energy of the forward motion without toppling over. It
is a tribute to the potential of the Kass—Witkin simulation that it generated this motion
automatically; it is also a tribute to traditional animators that they are able, in effect, to
estimate a solution of a complex partial differential equation.

A second important rule is to use slow-in and slow-out to help smooth interpolations.
Sudden, jerky motions are extremely distracting. This is particularly evident in interpolat-
ing the camera position (the point of view from which the animation is drawn or computed).
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An audience viewing an animation identifies with the camera view, so sudden changes in
camera position may make the audience feel motion sickness. Thus, camera changes should
be as smooth as possible.

A third rule that carries over naturally from the 2D character-animation world to 3D
animations, whether they are for the entertainment industry or for scientific visualization, is
to stage the action properly. This includes choosing a view that conveys the most
information about the events taking place in the animation, and (when possible) isolating
events so that only one thing at a time occupies the viewer’s attention. In the case of
animations for scientific visualization, this isolation may not be possible—the events being
simulated may be simultaneous—but it may be possible to view the scene from a position
in which the different events occupy different portions of the image, and each can be
watched individually without visual clutter from the others.

There are many other aspects of the design of animations that are critical. Many of
these are matters of *‘eye’” rather than strict rules, although rules of thumb are gradually
evolving. The appropriate use of color is too often ignored, and garish animations in which
objects are obscured by their colors are the result. The timing of animations is often driven
by computing time instead of by final appearance; no time is given to introducing actions,
to spacing them adequately, or to terminating them smoothly, and the resulting action
seems to fly by. The details of an animation are given too much attention at the cost of the
overall feeling, and the result has no aesthetic appeal. When you are planning an animation,
consider these difficulties, and allot as much time as possible to aesthetic considerations in
the production of the animation.

21.5 PROBLEMS PECULIAR TO ANIMATION

Just as moving from 2D to 3D graphics introduced many new problems and challenges, the
change from 3D to 4D (the addition of the time dimension) poses special problems as well.
One of these problems is temporal aliasing. Just as the aliasing problems in 2D and 3D
graphics are partially solved by increasing the screen resolution, the temporal aliasing
problems in animation can be partially solved by increasing temporal resolution. Of course,
another aspect of the 2D solution is antialiasing; the corresponding solution in 3D is
temporal antialiasing.

Another problem in 4D rendering is the requirement that we render many very similar
images (the images in an ideal animation do not change much from one frame to the
next—if they did, we would get jerky changes from frame to frame). This problem is a lot
like that of rendering multiple scan lines in a 2D image: each scan line, on the average,
looks a lot like the one above it. Just as scan-line renderers take advantage of this
inter—scan-line coherence, it is possible to take advantage of interframe coherence as well.
For ray tracing, we do this by thinking of the entire animation as occupying a box in 4D
space—time —three spatial directions and one time direction. Each object, as it moves
through time, describes a region of 4D space~time. For example, a sphere that does not
move at all describes a spherical tube in 4D. The corresponding situation in 3D is shown in
Fig. 21.10: If we make the 2D animation of a circle shown in part (a), the corresponding
box in 3D space—time is that shown in part (b). The circle sweeps out a circular cylinder in
space—time. For the 4D case, each image rendered corresponds to taking a 2D picture of a
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(a) (b}

Fig. 21.10 The circle in (a) moves from lower left to upper right. By stacking these
pictures along a third axis, we get the space—time animation shown in (b); the set of
circles has become a tube in space—time.

3D slice of the 4D space—time. That is to say, we cast rays from a particular space—time
point (x, y, z; 1) whose direction vectors have a time component of zero, so that all rays hit
points whose time coordinate is also ¢. By applying the usual space-subdivision tricks for
ray tracing to this 4D space—time, we can save a lot of time. A single hyperspace
subdivision can be used for the entire course of the animation, so the time spent in creating
the space subdivision does not need to be repeated once per frame. This idea and other uses
of interframe coherence in ray tracing are described in [GLASS8)].

High temporal resolution (many frames per second) may seem unnecessary. After all,
video motion® seems smooth, and it is achieved at only 30 fps. Movies, however, at 24 fps,
often have a jerkiness about them, especially when large objects are moving fast close to the
viewer, as sometimes happens in a panning action. Also, as noted before, wagon wheels in
movies sometimes appear to roll backward because of strobing. Higher temporal resolution
helps to solve these problems. Doubling the number of frames per second lets the wagon
wheel turn twice as fast before it seems to turn backward, and it certainly helps to smooth
out the motion of fast-moving objects on the screen. The new Showscan technology
[SHOW89] involves making and showing movies at 60 fps, on 70-millimeter film; this
produces a bigger picture, which therefore occupies a larger portion of the visual field, and
produces much smoother motion.

Temporal antialiasing can be done by taking multiple samples of a signal and
computing their weighted average. In this case, however, the multiple samples must be in
the time direction rather than in the spatial direction, so we compute the intensity at a point
in the image for several sequential times and weight these to get a value at a particular
frame. Many approaches to temporal-aliasing problems have been developed; super-
sampling, box filtering in the time domain, and all the other tricks (including postfiltering!)
from spatial antialiasing have been applied. One of the most successful is the distributed ray
tracing described in Chapter 16 [COOKS86].

Another trick for reducing temporal aliasing deserves mention; animation on fields. A
conventional video image is traced twice; all the even-numbered scan lines are drawn, then

*We mean video motion filmed by a camera, not synthetically generated.
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all the odd-numbered ones, and so on. Each scan line is redrawn every 37 second, but the
even-numbered and odd-numbered scan lines are drawn in two different passes. Thus, the
electron beam passes over the screen 60 times per second. If the colors of the pixels of the
even-numbered scan lines are computed at time ¢ in the animation, and those for the
odd-numbered scan lines are computed at time 7 + 5 second, and these are composed into a
single pixmap, and this process is iterated for each frame, then when the animation is
displayed the effect is something like a 60-fps animation, even though each scan line is
refreshed only every 5 second. This trick has some cost, however: The still frames from an
animation do not look as good as they might, since they are composites of images taken at
two different times, and they thus seem to flicker if shown on an interlaced display. Also,
twice as many frames must be rendered, so twice as many interpolated positions of the
objects must be computed, and so on. Despite these drawbacks, the technigue is widely
employed in the computer-animation industry.

At the other extreme in animation is the process of animating on twos, or threes, and so
on, in which the animation is produced at a temporal resolution lower than the display's
refresh rate. Typically, each frame of the animation is displayed for two frames of video
(*“‘on twos""), so the effective refresh rate for video becomes 12 fps rather than 24 fps. This
approach necessarily produces jerkier images (if no temporal antialiasing is done) or
blurrier images (if it is). Animating on multiple frames and then filling in the intermediate
ones can be useful in developing an animation, however, since it allows the animator to get a
sense of the animation long before the individual frames have all been created (see Exercise
21.2))

21.6 SUMMARY

Computer animation is a young field, and high-level animation is a recent development. As
the computational power available to animators increases and as animation systems become
more sophisticated, generating a high-quality computer animation will become simpler. At
present, however, many compromises must be accepted. Simulation software is likely to
advance rapidly, and the automated generation of graphical simulations is just a step away.
On the other hand, until animation software contains knowledge about the tricks of
conventional animation, computer character animation will remain as much an art as a
science, and the “‘eye’" of the animator will continue to have an enormous effect on the
quality of the animation.

EXERCISES

21.1 Consider a unit square with corners at (0, 0) and (1, 1). Suppose we have a polygonal path
defined by the vertices (0, 1), (1, 1), and (1, 0), in that order, and we wish to transform it to the
polygonal path defined by the vertices (1, 0), (0, 0), and (0, 1) (i.e., we want to rotate it by 180°).
Draw the intermediate stages that result if we linearly interpolate the positions of the vertices. This
shows that strict interpolation of vertices is not adequate for key-frame interpolation unless the key
frames are not too far apart.

21.2 Suppose that you are creating an animation, and can gencrate the frames in any order. If the
animation is 128 frames long, a first *‘pencil sketch’ can be created by rendering the first frame, and
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displaying it for a full 128 frames. (This is very low temporal resolution!). A second approximation
can be generated by displaying the first frame for 64 frames, and the sixty-fourth frame for the next
64. Suppose you have a video recorder that can record a given image at a given video-frame number,
for a given number of video frames. Write pseudocode for a sequential-approximation recording
scheme based on the idea of rendering frames and recording them such as to show approximations of
the entire animation, which successively approach the ideal. You should assume the number of frames
in the entire animation is a power of 2. (This exercise was contributed by Michael Natkin and Rashid
Ahmad.)

21.3 Using a color-table-based display device, implement the animation depicted in Fig. 21.4 . Can
you think of ways to generate smoother motion?

21.4 Using a frame-buffer that supports pan and zoom operations, implement the pan-zoom movie
technigue described in Section 21.1.2.

21.5 Make an animation of fireworks, using the particle systems of Section 20.5. If you do not have

a frame buffer capable of displaying the images, you may instead be able to program the particle

systems in POSTSCRIPT, and to display them on a printer. Hold the resulting pictures as a book and

riffle through them, making a flip-book animation.

21.6 Suppose you were trying to make a 2D animation system that started with scanned-in hand

drawings. Suggest techniques for cleaning up the hand drawings automatically, including the closing

of nearly closed loops, the smoothing of curved lines, but not of sharp corners, etc. The automation
of this process is extremely difficult, and trying to imagine how to automate the process suggests the
value of interactive drawing programs as a source for 2D animation material.

21.7 a. Suppose that ¢ and r are quaternions corresponding to rotations of ¢ and @ about the axis v.
Explicitly compute the product gr and use trigonometric identities to show that it
corresponds to the rotation about v by angle ¢ + 6.

b. Show that the product of two unit quaternions is a unit quaternion.

c. If g is the unit quaternion a + bi + cj + dk, and s is the quaternion xi + yj + zk, we can
form a new quaternion s' = gsg~', where g~ = a — bi — cj — dk. If we write s’ = x'i +
y'j + 2'k, then the numbers x’, ¥', and 2’ depend on the numbers x, y, and z. Find a matrix
Qsuchthat [x' ¥ ']'=Q[x y :z]'. When we generate rotations from quaternions, it
is this matrix form that we should use, not an explicit computation of the quaternion
product.

d. Show that the vector [b ¢ d]' is left fixed under multiplication by Q, so that Q represents
a rotation about the vector [b ¢ d]. It actually represents a rotation by angle 2cos ™' (a),
so that this describes the correspondence between quaternions and rotations.
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Appendix:
Mathematics for
Computer Graphics

This appendix reviews much of the mathematics used in the book. It is by no means
intended as a text on linear algebra or geometry or calculus. The approach we take is
somewhat unconventional, since most modern books on linear algebra do not mention
affine spaces, and we choose to emphasize them. The text is liberally laced with exercises,
which you should work through before looking at the solutions provided. The solutions are
generally brief, and are intended to let you know whether you did the problem correctly,
rather than to tell you how to do it.

The assumption we make in this appendix is that you have had courses in plane
geometry, calculus, and linear algebra, but that your familiarity with all three subjects has
faded somewhat. Thus, we give definitions for many important terms and state some
important results, but the proofs are, for the most part, omitted; we have found that students
interested in such proofs can generally construct them, and that those who are not interested
in them find them distracting. Readers interested in reviewing this material in more detail
should consult [BANCS3; HOFF61;, MARSSS].

The first part of the appendix describes the geometry of affine spaces in some detail. In
later sections, in which the material should be more familiar, we give considerably less
detail. The final section discusses finding roots of real-valued functions, and is unrelated to
the rest of the material.

A.1 VECTOR SPACES AND AFFINE SPACES

A vector space is, loosely, a place where addition and multiplication by a constant make
sensc. More precisely, a vector space consists of a set, whose elements are called vectors

1083
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Fig. A.1 Addition of vectors in the plane.

(which we will denote by boldfaced letters, usually w, v, or w), together with two
operations: addition of vectors, and multiplication of vectors by real numbers (called scalar
multiplication).! The operations must have certain properties. Addition must be commuta-
tive, must be associative, must have an identity element (i.e., there must be a vector,
traditionally called 0, with the property that, for any vector v, 0 + v = v), and must have
inverses (i.e., for every vector v, there is another vector w with the property that v + w = 0;
w is written “‘—v""). Scalar multiplication must satisfy the rules (aB)v = a(Bv), Iv = v,
(a+ B)Yy =av + Bv, and alv +w) = av + aw.

This definition of a vector space abstracts the fundamental geometric properties of the
plane. We can make the plane into a vector space, in which the set of vectors is precisely the
set of points in the plane. This identification of vectors and points is temporary, and is used
for this example only. For now, we consider a point in the plane and a vector to be the same
thing. To make the plane into a vector space, we must first choose a particular point in the
plane, which we call the origin. We define addition of vectors by the well known
parallelogram rule: To add the vectors v and w, we take an arrow from the origin to W,
translate it so that its base is at the point v, and define v + w as the new endpoint of the
arrow, If we also draw the arrow from the origin to v, and do the corresponding process, we
get a parallelogram, as shown in Fig. A.l. Scalar multiplication by a real number a is
defined similarly: We draw an arrow from the origin to the point v, stretch it by a factor of
a, holding the end at the origin fixed, and then av is defined to be the endpoint of the
resulting arrow. Of course, the same definitions can be made for the real number line or for
Euclidean 3-space.

Exercise: Examine the construction of the vector space in the preceding paragraph. °
Does it depend in any way on assigning coordinates to points in the plane, or is it a purely
geometrical construction? Suppose that we assign coordinates to points of the plane in the
familiar fashion used in graphing. If we add the vectors whose coordinates are (a, b) and
(¢, d), what are the coordinates of the resulting vector? Suppose that instead we lay down
coordinate lines so that one set of lines runs horizontally, but the other set, instead of

'Scalars (i.e., real numbers) will be denoted by Greek letters, typically by those near the start of the
alphabet.
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running vertically, runs at 30° away from vertical. What are the coordinates of the sum
now?

Answer: No, it is purely geometrical (where geometry includes distance measure). The
vector sum has coordinates (a + ¢, b + d), in both cases.

The classic example of a vector space is R", the set of all ordered n-tuples of real
numbers. Addition is defined componentwise, as is scalar multiplication. Elements of R"
are written vertically, so that a sample element of R? is

1

3|.
1
We can sum elements;
1 2 3
3|+ |3]|=|6
1 6 7

Most of graphics is done in R?, R?, or R,

Given the two operations available in a vector space, there are some natural things to do
with vectors. One of these is forming linear combinations, A linear combination of the
vectors ¥, ..., V, is any vector of the form awv, + aw, + ...+ a,v,. Linear
combinations of vectors are used for describing many objects. In the Cartesian plane
example, the line through a nonzero point v and the origin can be described as the set of all
vectors of the form av, where a ranges over the real numbers. The ray from the origin
through v is the same thing, except with & ranging over the nonnegative reals. These are
both examples of linear “‘combinations™ of a single vector. We will encounter more
complex combinations later.

In general, the collection of all possible linear combinations of a set of vectors is called
the span of the set. The span of a nonzero vector in the Cartesian plane example was a line
through the origin. The span of two vectors that point in different directions is a plane.

Before we go further with vector spaces, we shall discuss affine spaces. An affine space
is approximately describable as a set in which geometric operations make sense, but in
which there is no distinguished point. (In a vector space, the vector 0 is special, and this is
reflected in the example of the Cartesian plane, in which the origin plays a special role in the
definition of addition and scalar multiplication.) A more precise definition of an affine
space is that it consists of a set, called the points of the affine space; an associated vector
space; and two operations. Given two points, P and @, we can form the difference of P and
Q, which lies in the vector space; given a point, P, and vector, v, we can add the vector to
the point to get a new point, P + v. Again, there are certain properties that these operations
must satisfy, suchas (P +v)+w=P+ (v+ w),and P + v = Pif and only if v = 0.

This definition is based on a more classical model of geometry, in which there is no
preferred origin. If you think of the surface of a table as an example of a (truncated) plane,
there is no natural origin—no point of the table is preferred to any other. But if you take a
point, P, on the table, and place a set of coordinate axes with their origin at P, every other
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point of the table can be measured by specifying its displacement from P using that
coordinate system. By translating all the points of the coordinate axes by some fixed
amount, we get new coordinate axes at another point. In this model, the points of the affine
space are the points of the tabletop, and the vectors are arrows between them. Adding a
vector v to a point P amounts to laying down the arrow with its base at P, and seeing where
its end is (the endpoint is called P + v). Taking the difference of two points Q and P, Q —
P, consists of finding an arrow that goes from P to Q.

Affine planes make a natural model for computer graphics. Often, there is no preferred
point in graphics. When you are modeling a room, for example, there is no natural point of
the room to choose as an origin. Therefore, we shall discuss vector spaces and affine spaces
side by side.

Linear combinations of points in an affine space make no sense (there is not even a
definition of scalar multiplication), but we can define an affine combination of the points P
and Q by the real number t. This affine combination is meant to correspond to a point that is
a fraction ¢ of the way from P to Q. (If ¢ lies between 0 and 1, this is called a convex
combination.) We can consider the difference of Q and P, v = Q — P, which we think of as
a vector pointing from P to Q. If we multiply this by 7, we get a vector that is 7 times as long.
Adding this vector back to P, we get the affine combination of P and Q by 1, which is
therefore

P+ 1O - P)

It is often tempting to rewrite this equation by gathering together the terms involving P,
to get (1 — #)P + 1Q; this makes no sense at all, however, since multiplication of points by
scalars is undefined. Rather than outlaw this suggestive notation, however, we simply define
it: If @ and 8 are scalars that sum to 1, and P and Q are points in an affine space, we define
aP + BQ tobe P + B(Q — P).

Affine combinations of more points are defined similarly: Given n points, Py, . . ., P,,
and n real numbers 1, . . ., 1,, satisfying , + ...+ 1, = 1, we define the affine
combination of the Ps by the tstobe P, + (P, — P,) + . . . + 1, (P, — P,), which we also
rewrite as ,P, + . . . + t,P,.

Exercise: Every vector space can be made into an affine space. The points of the affine
space are the vectors in the vector space. The associated vector space is the original vector
space. The difference of points is just defined to be the difference of vectors, and the sum of
a point and a vector is the ordinary vector sum. Show that, in this case, the point we have
defined as aP + B0 (where & + B = 1) is actually equal, using the operations in the vector
space, to the vector aP + BQ.

Answer: aP + BQ is defined to be P + B(Q — P). But ordinary vector operations
apply, so this is just P + B0 — BP = (1 — B)P + BQ = aP + BO.
A.1.1 Equation of a Line in an Affine Space

If P and Q are two points in an affine space, the set of points of the form (1 — HP + 1Q
forms a line passing though P and ; this form of a line is sometimes called the parametric

1162



A1 Vector Spaces and Affine Spaces 1087

form, because of the parameter t. The Cartesian plane, whose points are labeled with
coordinates (x, y), is an affine space, and the parametric line between the point (a, b) and
the point (¢, d) is therefore given by

L={((1=na+te, (1 =nb+td]|tisareal number}.

Exercise: Show that the set of all triples of real numbers of the form (a, b, 1) also
forms an affine space, with an associated vector space R?, provided we define the difference
of two points (a, b, 1) and (c, d, 1) to be the vector (a — ¢, b — d), and define the sum of a
point and a vector similarly. Show that, using the definition of a parametric line given
previously, the line between the points (1, 5, 1) and (2, 4, 1) consists entirely of points
whose last coordinate is 1.

Answer: The definition of the line is the set of points of the form (1 — (1, 5, 1) + #(2,
4, 1), which in turn is defined to mean (1, 5, 1) + (1, —1). These are points of the form (1
+ t, 5 —t, 1); hence, their last coordinate is 1.

A.1.2 Equation of a Plane in an Affine Space

If P, Q, and R are three points in an affine space, and they are not colinear (i.e., if R does
not lie on the line containing P and Q), then the plane defined by P, Q, and R is the set of
points of the form

(1 =51 =0HP+1Q) + sR.

Exercise: Explain why the preceding expression makes geometric sense.

Answer: The expression is an affine combination of two points. The first point is (1 —
)P + 1Q; the second is R. The first point is an affine combination of the points P and Q.
Hence, all terms make sense.

Once again, this description of the plane is called parametric, because of the two
parameters s and .

Exercise: The set E*, consisting of all triples of real numbers, is an affine space, with
an associated vector space R?, whose elements are also ordered triple of real numbers, but
which have componentwise addition and scalar multiplication defined on them. The
difference of two points in E? is defined componentwise as well, as is the sum of a point and
a vector. What points lie in the plane that contains the points (1, 0, 4), (2, 3, 6) and
(0,0, 7)?

Answer: The points of the plane are all points of the form (1 — s)((1 — (1, 0, 4) +
12, 3, 6)) + s(0, 0, 7). Because all operations are defined componentwise, we can express
this as the set of all points of the form ((1 — s)(1 — #) + 2(1 — s}, 3(1 — ), 41 — )
(1 =10+ 6t + 7s).
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A.1.3 Subspaces

If we have a vector space, V, and a nonempty subset of V called S, then S is a linear
subspace of V if, whenever v and w are in §, so are v + w and av, for every real number a.
For example, if v is a vector, then the set of all vectors of the form av constitutes a
subspace, because when any two scalar multiples of v are added, we get a third, and a scalar
multiple of a scalar multiple of v is another scalar multiple of v. In R?, the subspaces can be
listed explicitly. They are (1) the origin, (2) any line through the origin, (3) any plane
containing the origin, and (4) R? itself.

Exercise: Show that any linear subspace of a vector space must contain the 0 vector.

Answer: Let v be any vector in §. Then —1v = —v is also in §, and therefore v + (—v)
is in 5. But this is exactly the 0 vector. Merely scaling by 0 is not an adequate answer, since
there is no a priori reason that Ov = 0 in a vector space. As it happens, since (1 + (—1))v =
v + (=v) = 0, it is actually true that Ov = v; this statement merely happens not to be one of
the axioms.

An affine subspace is a more general object. A nonempty subset § of a vector space V
is called an affine subspace if the set S’ = {u — v| u, v in S} is a linear subspace of V. For
example, any line in the Cartesian plane is an affine subspace. If § is such a line, then §’ is
precisely the line parallel to it through the origin.

If § is an affine subspace of a vector space, then S can be thought of as an affine space in
its own right. (Note that it is nor a vector space. Consider the line x = 1 in R®. Both ;] and
[1] are in this affine subspace, but their sum, [3], is not.) The affine-space structure is given
as follows: The associated vector space is just §'; the difference of two points in § lies in §'

by definition, and the sum of a point in § with a vector in §' is another point in S.

Important Exercise: Show that S, the set of points of the form (x, y, z, 1), forms an
affine subspace of R'. What is the associated vector space? What is the difference of two
points in this affine subspace?

Answer: The difference of any two points in § has the form (a, b, ¢, 0), and the set of all
points of this form is a vector space under the usual operations of addition an multiplication
(in fact, it is essentially ‘‘the same’’ as R*). The associated vector space is the set of
quadruples of the form (a, b, ¢, 0). The difference of (x, y, z, 1) and (x', ¥, 2', 1) is just
x—=x,y=y,z-12,0).

The preceding example is important because it is the basis for all the material in
Chapter 5. We can see in the example a clear distinction between points in the space, which
are the things used to specify positions of objects in a graphics world, and vectors, which
are used to specify displacements or directions from point to point. It is an unfortunate
coincidence that a point of the form (x, y, z, 1) can be stored in an array of three reals in
Pascal, and a vector of the form (a, b, ¢, 0) can too. Because of this, many people make the
error of thinking that points and vectors are interchangeable. Nothing could be further from
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the truth. Denoting points in both the affine space and the ambient space by columns of
numbers,

L~ T~ -~

further confuses the issue, but it has become standard practice. We refer to the set of points
in R whose last coordinate is | as the standard affine 3-space in R*. We correspondingly
define the standard affine 2-space in R* (which we call the standard affine plane), and so on.

Figure A .2 shows the standard affine plane in R®. This picture is far easier to draw than
is the standard affine 3-space in R', and we use it to provide intuition into that more
complex case.The points in the standard affine plane are triples of the form

X
¥

and the vectors have the form

(We have labeled the horizontal plane with the letters ““x’* and **y,”" and the vertical axis
with the letter **h.”* This choice is meant to indicate the special nature of the third
coordinate.) The set of points of the affine space forms a plane at height 1 above the (x, y)
plane. The endpoints of the vectors (i.e., differences between points in the affine space) all
lie in the (x, y) plane, if the starting point is placed at the origin (0, 0, 0), but are drawn as
arrows in the affine plane to illustrate their use as differences of points. If we take two
points, P and Q, in the affine space as shown, their sum (as vectors in R?) lies one full unit
above the affine space. This shows geometrically the perils of adding points.

Fig. A.2 The standard affine plane in R*, embedded as the plane ath = 1. Pand Q are
points in the plane, but their sum lies above the plane. The difference of the points A and
B is a horizontal vector.
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Figure A.3 shows an important operation on this affine space: homogenization. If we
take an arbitrary point
x
¥
h

in 3-space, and connect it to the origin by a line, it will intersect the affine plane at a single
point,

Exercise: Determine this point of intersection.
Answer: The line from

We want to find the point whose third coordinate is 1. This point will be located precisely
where ah = 1; that is, where @ = 1/h. The coordinates of this point are therefore

xh x'h
yih | = | yth
h'h |

Naturally, this operation fails when h = 0, but this is no surprise, geometrically: A
point in the (x, y) plane is connected to the origin by a line that never intersects the affine
space.

-

h {x, . h)

‘A.HI {{{ﬂ,my
et

y

Fig. A.3 The homogenization operation in R®. The point (x, y, h) is homogenized to the
point (h, yih, 1).
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A.2 SOME STANDARD CONSTRUCTIONS IN VECTOR SPACES

A.2.1 Linear Dependence and Spans

We have defined the span of a set of vectors as the set of all linear combinations of
those vectors. If we consider the special case of R?, the span of a single vector (except for 0)
is the line through the origin containing the vector; the span of a pair of vectors (both
nonzero, and neither lying in the span of the other) is a plane through the origin containing
both; the span of three (sufficiently general) vectors is all of R’

When one of the unusual cases (i.e., the cases rules out by the parenthetical conditions)
in the preceding paragraph occurs, the vectors involved are said to be linearly dependent (or
simply dependent). Essentially, a set of vectors is linearly dependent if one of them lies in
the span of the rest.

Exercise: Show that the three vectors a = [}], b = [2], and ¢ = [{] are dependent by
showing that b lies in the span of a and ¢. Show also that ¢, however, does not lie in the span
of a and b.

Answer: b = 2a + Oc. On the other hand, the span of a and b consists of all vectors of

the form
& 2] _t+2s] 1].
mrw=[1]+ 2] =550 = er o [3):

hence, any vector in this span must be a scalar multiple of [ 1I'.] The vector ¢ is not.

The more precise definition of linear dependence is that the vectors vy, . . ., v, are
linearly dependent if there exist scalars a,, . . ., @, such that (1) at least one of the a.s is
nonzero, and (2) ayv, + . . . + a,¥, = 0.

Exercise: Show that, if the vectors v,, . . ., v, are dependent, then one of them lies in
the span of the others.

Answer: There are scalars «, . . ., @, suchthat ay¥, + . . . + a,v, = 0 and the scalars
are not all zero, since the vectors are dependent. Suppose, by rearranging the order if
necessary, that a; is nonzero. Then we can solve the preceding equation for v, to get v, =
(Vay)agy, + . . . + (Va,)a,v,, showing that v, is in the span of the remaining vectors.

The vectors v;, . . ., ¥, are said to be linearly independent (or just independent) if they
are not dependent. This definition is troublesome, because it requires verifying a negative
statement. Later, we shall see that, at least for vectors in R", we can restate it in a positive
form: A set of vectors is independent if and only if a certain number (the determinant of a
matrix) is nonzero.

We can define dependence and span for affine spaces as well. The span of a set of points
Py, ..., P, in an affine space can be defined in several ways. It is the set of all affine
combinations of points in the set. We can also describe it by considering the vectors
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Spanofuandv

Affine span of Pand Q

Fig. A.4 The relation between the vector space span of the vectors u and v in R?,
whose endpoints are the points P and Q in the affine plane, and the affine span of P and
Q.

P,—P,P,— P, ..., P, — P,in the associated vector space, taking the span of these
vectors, S, and then defining the affine span to be all points of the form P, + v, where v is in
S,

Just as for vector spaces, a collection of points in an affine space is said to be dependent
if any one of them lies in the (affine) span of the others. It is independent if it is not
dependent.

Consider again the special case of the standard affine plane consisting of points of the
form

X

y
1

in R, If we take two points in this affine space, we can form their affine span, which will be
the line containing them. We can also form their span in a different way, by considering
them as vectors in R” and forming the vector-space span. Figure A.4 shows the relationship
between these two spans—the affine span is the intersection of the vector-space span (a
plane through the origin) with the affine space.

A.2.2 Coordinates, Coordinate Systems, and Bases

We can describe some large sets in a vector space using a compact notation, if we use the
notion of spans. For example, we have described lines and planes as the spans of one and
two vectors, respectively. We could describe a line by choosing two vectors that both lie in
it, and saying it is the span of the two vectors, but that would be redundant—each of the
two vectors would already be in the span of the other, in general.

A minimal spanning set for a vector subspace (or for an entire space) is called a basis.
Minimal means the following: Any smaller set of vectors has a smaller span. Thus, in our
previous example, the two vectors that spanned the line were not minimal, because one
could be deleted and the remaining one would still span the line.
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Exercise: Show that a basis of a subspace of a vector space is always linearly
independent.

Answer: Letv,, . . ., v, be a basis for the subspace S, and suppose that v, . . ., v, is
dependent. Then (by renumbering if necessary), we can find scalars ay, . . ., a, such that v,
=@V, + ...+ ay,. Atypical element of the spanof v, . . ., v, is v, + ... + By,
This expression can be rewritten as B(av, + . . . +a¥,)+ Bv, + . .. + By, Thiscan
be rearranged into a linear combination of the vectors v,, . . . , v,. Thus, any vector in the
span of v, . . ., v, is also in the span of v, . . ., V,, SO ¥}, . . ., ¥, is not a minimal
spanning set. Hence, the assumption that v,, . . ., v, was dependent must have been false.

Suppose we have a basis for a vector space. Then, every vector v in the space can be
written as a linear combination v, + . . . + a,¥,. Suppose we write v as a different linear
combination, v = Byv, + ... + B.v,. Then, by subtraction, we get 0 = (B, — a)v,
+ ...+ (B, — a,v,. Since we assumed that the two linear combinations were different,
some a; must differ from the corresponding B8;. By renumbering, we can assume that a, #
B,. But then, just as before, we can solve for v, in terms of the remaining vectors, so the set
¥4y - -« » ¥, could not have been a minimal spanning set. Thus, every vector in a vector
space can be written uniquely as a linear combination of the vectors in a basis.

If we have a basis for a vector space, B = {v,, . . . , v}, and a vector v in the vector
space, we have just shown that there is a unique set of scalars a;, . . ., a, such that v = ay,
+ ... *+ a,v,. This set of scalars can be thought of as an element of R", and this element
of R",

is called the coordinate vector of v with respect to the basis ¥, . . ., ¥,.

Exercise: In R?, there is a standard basis, E = {e,, ¢,, ¢,}, where

I 0 0
e, =0, e=|1], ande=]|0].
0 0 I

What are the coordinates of the vector

with respect to this basis?
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Answer: They are

because v = 3e, + de, + 2e,.

The corresponding definition in an affine space is quite similar. A set of independent
points in an affine space, whose affine span is the entire affine space, is called a coordinate
system. If Py, . . ., P, is a coordinate system, then every point of the affine space can be
written uniquely as an affine combination of P,, . . ., P,; the coefficients are called the
daffine coordinates of the point with respect to the coordinate system Py, . . ., P,.

Exercise: Show that, if P, . . ., P, is a coordinate system for an affine space, then P,
= Py, ..., P, — P, is a basis for the associated vector space.

Answer: Let v be a vector in the associated vector space, and let Q = P, + v. Then Q
can be written as an affine combination of P,, . . ., P,. So there are scalars a,, . . ., @,
suchthatay + .. . +ta,=land Q=P+ &P + .. . + a, P, = P, + ay(P, — P)
+ ...+ a,(P, — P,). But this implies that v = ay(P; — P)) + . .. + a, (P, — P)).
Hence, the set P, — P,, . . ., P, — P, spans the associated vector space. If the set were
dependent, the corresponding set of points P,, . . ., P, in the affine space would be
dependent. Hence, it must both span and be independent, so it is a basis.

A.3 DOT PRODUCTS AND DISTANCES

The vector spaces and affine spaces we have discussed so far are purely algebraic objects.
No metric notions—such as distance and angle measure—have been mentioned. But the
world we inhabit, and the world in which we do graphics, both do have notions of distance
and angle measure. In this section, we discuss the dot (or inner) product on R", and
examine how it can be used to measure distances and angles. A critical feature of distance
measure and angle measure is that they make sense for vectors, not points: To measure the
distance between points in an affine space, we take the difference vector and measure its
length.

A.3.1 The Dot Product in R"

Given two vectors

in R", we define their inner product or dot product to be xy, + ... + xv,. The dot
product of vectors v and w is generally denoted by v - w.
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The distance from the point (x, y) in the plane to the origin (0, 0) is V£ + )~

In_general, the distance from the point (x,, ..., x,) to the origin in n-space is
XN+ ...+ x. If we let v be the vector
k2

we can see that this is just Vv + v. This is our definition of the length of a vector in R". We
denote this length by || v ||. The distance between two points in the standard affine n-space is
defined similarly: The distance between P and Q is the length of the vector Q — P.

-

both lie in the standard affine plane, as well as in R*. What is the distance from each of
them to the origin in R*? What is the distance between them? What is the distance from

each to the point
0
0
1

in the standard affine plane? What is the dot product of the two vectors

I

Answer: The distances to the origin are V11 and V30, respectively. The distance
bﬁmﬂumimisﬁ.ﬂxdisumm

;

are V10 and V/29 respectively. The dot product is 18. Note that asking for the dot products
of the two points in the affine space makes no sense—dot products are defined only for
vectors.

Exercise: The points

A.3.2 Properties of the Dot Product

The dot product has several nice properties. First, it is symmetric: v - w = w - v, Second, it
is nondegenerate: v - ¥ = 0 only when v = 0. Third, it is bilinear: v+ (u + aw) =v-u +
aly - W),
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The dot product can be used to generate vectors whose length is 1 (this is called
normalizing a vector.) To normalize a vector, v, we simply compute v/ = v / || v ||. The
resulting vector has length 1, and 1s called a unit vecror.

Exercise: What is the length of the vector

4
317
0
What do we get if we normalize this vector? Consider the points
1 2

P=]|l and Q=|3
I 1

in the standard affine plane. What is the unit vector pointing in the direction from P to 7
Answers: The length of the vector is 5. The normalized vector is

4/5
35].
0

The unit direction vector from P to Q is
/V'5
V5|,
0

Dot products can also be used to measure angles (or, from a mathematician’s point of
view, to define angles). The angle between the vectors v and w is

o {iife)
vl |l wll/
Note that, if v and w are unit vectors, then the division is unnecessary.
If we have a unit vector v and another vector w, and we project w perpendicularly onto

v, as shown in Fig. A.5, and call the result u, then the length of u should be the length of w
multiplied by cos(#), where # is the angle between v and w. That is to say,

Note that the last component is 0.

lull = wl cos (&)
A VW
il S (u VW ﬂ)
=V-.W,

since the length of v is 1. This gives us a new interpretation of the dot product: The dot
product of v and w is the length of the projection of w onto v, provided v is a unit vector.
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Fig. A.5 The projection of w onto the unit vector v is a vector u, whose length is || w ||
times the cosine of the angle between v and w.

Exercise: Show that, if v and w are unit vectors, then projection of v onto w and the
projection of w onto v have the same length.

Answer: Both of these are represented by v - w, so they are the same.

Since cos # = 0 precisely when # = 90°, 270°, and so on, we can use the dot product of
vectors to determine when they are perpendicular. Two vectors v and w are perpendicular
exactly when v - w = (.

A.3.3 Applications of the Dot Product

Since dot products can be used to measure lengths, we can generate some simple equations
using them. For example, if we have a point, P, in an affine plane, the equation for a circle
with center P and radius r is easy to write. We simply want all points Q whose distance from
P is exactly r. Thus, the equation is

le-~2|=r

We can rewrite this as

V@-P)-(@-P) =r,
or as
Q@-P-Q@-P=r-

In the standard affine 3-space, the equation of the plane passing through a point P and
perpendicular to a vector v is also easy to express. A point Q on this plane is characterized
by having the difference Q — P be perpendicular to the vector v. Hence, the equation is just

Q@—-P)-v=0.

Exercise: Suppose P and Q are points of the standard affine plane; P is the point
a
b
1
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and Q is the indeterminate

X

y|-
1

What is the equation, in coordinates, for the circle of radius r about P?
Answer: Itis (x — a)* + (y = b)* = r®, which is the familiar formula from high-school
algebra.

Exercise: If P is the point

— L) b =

in the standard affine 3-space, and v is the vector

2
2
3 L]
0
what is the equation of the plane perpendicular to v and passing through P?

Answer: If we let the indeterminate point be

- N

then the equation becomes 2(x — 1) + 2y — 2) + 3(z — 3) = 0.
In general, the equation for a plane through the point

Xo
Yo
o

-I-

and normal to the vector

is A(x = x,) + B(y — y,) + C(z = z,) = 0. This can be rewritten as Ax + By + Cz = Ax, +
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By, + Cz,. If we are working in R? (instead of the standard affine 3-space), this equation
just says that the dot product of

with

must be the same as the dot product of

with

B

The constant term (on the right side of the equation above) is precisely this second dot
product. If

is @ unit vector, then this dot product measures the length of the projection of
F-‘d
Yo

L%,

onto the unit vector, and hence tells us how far the plane is from the origin in R

In the equation for a plane, we are characterizing the plane by specifying its normal
vector. This is dangerous in one sense, since normal vectors and ordinary vectors are
different in a quite subtle manner, as we shall discuss later.

A.3.4 Distance Formulae

If we define a plane through P, perpendicular to v, by the equation (Q — P) - v = 0, we can
ask how far a point R is from the plane. One way to determine this distance is to compute
the projection of R — P onto the vector v (see Fig. A.6). The length of this projected vector
is just the distance from R to the plane. But this length is also the dot product of R — P and
the vector v, divided by the length of v. Thus, if we consider a plane defined by the equation
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Fig. A.6 We can measure the distance from the point A to the plane by projecting R
onto the normal to the plane.

Ax + By + Cz + D = 0, the distance from a point (r, s, 1) to the plane is exactly (Ar + Bs +
Ct + D)/ VA* + B* + C°. Note that the square root in the denominator is just the length of
the normal vector to the plane, so if the plane was defined using a unir normal vector, no
division is necessary.

Exercise: Suppose we are given a line in an affine space in parametric form, as the set
of all points P(r) = P, + v, and a point R not on the line. What is the distance from R to the
line?

Answer: The distance from a point to a line is defined as the minimum of all distances
from the point to points on the line. This minimum will occur when the line from R to the
point on the line is perpendicular to the line—that is, when (R — P(z)) - ¥ = 0. Expanding
this, we get

(R_Pn_”}"={}1
{R_Pn]'v=ﬁ'v,
I={R-Po)'¥

V-V 4

So this is the value of r at which the distance is minimized. Plugging this into the formula
for points on the line, we find that the point closest to R is exactly

+(R—F5]-lr

P
o V-

Y.

We obtain the distance from R to this point by subtracting the point from R (to get a
vector) and then computing its length. The formula fails when v = 0; in this case, however,
P(t) = P, + tv does not define a line.

A.3.5 Intersection Formulae

Suppose that, in the standard affine plane, we have a circle, (X = P) - (X — P) = r*, and a
line, S(r) = Q + rv. What points lie on the intersection of these two? Well, such a point
must be 5(¢) for some value of ¢, and it must satisfy the equation of the circle, so we must
solve

(S(r) — P) - (S(t) — P) = r.
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Algebraic manipulations reduce this expression to
POV-N+1QV-Q-P)+(@Q@-P)-(@-P)~r)=0,

which is a quadratic equation in ¢. Solving this with the quadratic formula gives the possible
values for ¢, which can then be used in the formula for S(r) to determine the actual points of
intersection. Notice that this in no way depends on the number of coordinates. If we take
the set of points in the standard affine 3-space defined by (X — P) - (X — P) = r®, whichisa
sphere, the same solution gives us the two points of intersection of a line with the sphere.

Exercise: Determine the intersections of the line through the point

4

I
]

(in the standard affine plane) in the direction

with the circle of radius 5 centered at

Answer: Let 1, and 1, be (=2 = 2V 31)/5. The intersections occur at

4 2
1| +12{1],
] 0

fori =1, 2.
Suppose we are given a line and a plane in the standard affine 3-space. How can we
determine their intersection? If the plane is given in point-normal form, as (X — P) - v =0,

and the line is given in parametric form, as Q(r) = Q + rw, we can simply replace X by Q(¢)
and solve:

Q+mw-—P-v=10.
Solving this equation for 1 gives

pa e
w-v '
and the intersection point is at
(F-=0)-y
Q+—w.? w.
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This technique for finding intersections is quite general. If we have a surface in the
standard affine 3-space defined by the equation F(x, y, z, 1) = 0, we can substitute the point
P + 1 v for the argument (x, y, z, 1), which yields an equation in the single variable 1.
Solving for ¢ gives the parametric value for the point on the ray at the intersection point.
Substituting this ¢ value into P + ¢ v gives the actual point of intersection.

In general, an implicitly defined surface (i.e., a surface defined by an equation of the
form F(x, v, z, 1) = 0 in the standard affine 3-space) has a surface normal vector at the
point (x, y, z, 1); the coordinates of this vector are given by the partial derivatives of F at the
point. (The corresponding situation in the plane was discussed in the scan-conversion of
ellipses in Chapter 3.) The normal vector is thus

oF
ﬂx[x. Y. &5 1)
aF

ﬂy(x' ¥y z,D

aF
azlx, »zl)

0

A.3.6 Orthonormal Bases

Two vectors, u and v, are said to be orthogonal ifu-v=0.1fB = {b,, . . ., b,} is a basis
for a vector space, and each b, is a unit vector, and every two vectors in the basis are
orthogonal, the basis is said to be an orthonormal basis. We can express these conditions
more simply by saying that B is an orthonormal basis if b, - b; = 0 unless i = j, in which
case hj y hjl = 1.

Orthonormal bases have a number of convenient properties that other bases lack. For
example, if B is an orthonormal basis, and we wish to write a vector v as a linear
combination of the vectorsin B, v = a,b, + . . . + a,b,, it is easy to find the value of a;
It is just v - b,.

Exercise: Show that in R", the standard basis E = {e,, . . ., e,}, (where ¢, has all
entries 0 except the ith, which is 1), is an orthonormal basis. Show that the vectors

2] = [4]

form an orthonormal basis for R®. What are the coordinates of the vector [i] in this basis?

?wr: The first two parts are direct computations., The coordinates are 1 1/V'S and
-2UVS.

Because of this convenient property, it is often desirable to convert a basis into an
orthonormal basis. This is done with the Gram—Schmidt process. The idea of this process is
to take each vector in turn, to make it orthogonal to all the vectors considered so far, and
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then to normalize it. If we start with a basis vy, vy, ¥;, the process is this:
Let v/ = v, (no vectors have been considered so far, so this is trivial).
Letw, = v/ /| v/ ||.
Let vy = vy — (v, * W)W, (this is orthogonal to w,).
Letwy = vy /|| vz ||.
Let vy = vy — (v5 * W)W, = (¥3 * W)W,
Letwy = v /|| v |.

The vectors w,, w,, and w, are an orthonormal basis. The process for a larger number
of vectors is similar. The last step, for the case of three vectors, can be simplified; see
Exercise A.7.

A.4 MATRICES

A matrix is a rectangular array of numbers. Its elements are doubly indexed, and by

convention the first index indicates the row and the second indicates the column.

Mathematical convention dictates that the indices start at |; certain programming languages

use indices that start at 0. We leave it to programmers in those languages to shift all indices

by 1. Thus, if A is a matrix, then a, , refers to the element in the third row, second column.

When symbolic indices are used, as in a;, the comma between them is omitted.
Elements of R", which we have been writing in the form

X

can be considered to be n X | matrices.

A.4.1 Matrix Multiplication

Matrices are multiplied according to the following rule: If A is an n X k matrix with entries
a;, and B is a k X p matrix with entries b, then AB is defined, and is an n X p matrix with
entries ¢;, where c; = 3. a,b,. If we think of the columns of B as individual vectors,
B,. .. .. B, and the rows of A as vectors A,, . . ., A, as well (but rotated 90° to be
horizontal), then we see that ¢ is just A, - B;. The usual properties of multiplication hold,
except that matrix multiplication is not commutative: AB is, in general, different from BA.
But multiplication distributes over addition: A(B + C) = AB + AC, and there is an
identity element for multiplication—namely, the identity matrix, 1, which is a square
matrix with all entries 0 except for 1s on the diagonal (i.e., the entries are &, where &; = 0
unless i = j, and &, = 1).

A.4.2 Determinants

The determinant of a square matrix is a single number that tells us a great deal about the
matrix. The columns of the matrix are linearly independent if and only if the determinant of
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the matrix is nonzero. Every n X n matrix represents a transformation from R" to R", and
the determinant of the matrix tells us the volume change induced by this transformation
(i.e., it tells us how much the unit cube is expanded or contracted by the transformation).

Computing the determinant is somewhat complicated, because the definition is
recursive, The determinant of the 2 X 2 matrix [“b 4| is justad — be. The determinant of an
n X n matrix is defined in terms of determinants of smaller matrices. If we let A, denote the
determinant of the (m — 1) X (n — 1) matrix gotten by deleting the first row and ith column
from the n X n matrix A, then the determinant of A is defined by

det A =3 (-1)*" g, A,
i=]

An alternate way to compute the determinant is to use Gaussian elimination. Gaussian
elimination works by sequences of row operations. There are three types of row operations
on a matrix: (1) exchanging any two rows, (2) multiplying a row by a nonzero scalar, and (3)
adding a multiple of row i to row j (row i is left unchanged, and row j is replaced with
(row j) + alrow i)). The algorithm for reducing an n X n matrix A by Gaussian elimination
is simple: Arrange (by exchanging rows and scaling) that a,, = 1. For each j # 1, subtract
a;, times row |1 from row j, so that a;, then becomes zero. Now, by exchanging the second
row with subsequent rows (if necessary) and scaling, arrange that a, = 1. For each j # 2,
subtract a;, times row 2 from row j. Continue this process until the matrix becomes the
identity matrix.

In the course of this process, it may be impossible to make a; = 1 for some i (this
happens when the entire column i is zero, for example); in this case, the determinant is
zero. Otherwise, the determinant is computed by taking the multiplicative inverse of the
product of all the scalars used in type-2 row operations in Gaussian elimination, and then
multiplying the result by (—1)*, where k is the number of row exchanges done during
Gaussian elimination.

One special application of the determinant works in R the cross-product. The
cross-product of two vectors

"’I- W
V= v and W= |w
Vi w
is computed by taking the determinant of the matrix,
ok S &
i Vi Vi,
(W) W, W

where the letters i, j, and k are treated as symbolic variables. The result is then a linear
combination of the variables i, j, and k; at this point, the variables are replaced with the
vectors ¢,, €, and e, respectively. The result is the vector

\l"wl —_ \I'IW:
VW — V“1Wa |,
iWy = VW,
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which is denoted by v X w. It has the property that it is perpendicular to the plane defined
by v and w, and its length is the product ||v|| ||w]| |sin 8], where 8 is the angle between v and
w. It also has the property that a matrix whose columns are v, w, and v X w will always
have nonnegative determinant.

This last characteristic is an interesting one, and can be used to define orientation. Two
bases for R" are said to have the same orientation if, when the vectors in each basis are used
to form the columns of a matrix, the two resulting matrices have determinants of the same
sign. A basis is said to be positively oriented if it has the same orientation as the standard
basis; it is negatively oriented otherwise.

Exercise: Show that the basis {e,, e, e,, e} is a negatively oriented basis for R'.
Answer: The determinant of the corresponding matrix is —1.

Exercise: Suppose two planes are defined by the equations (X — P) - v = 0 and
(X = Q)+ w = 0. What is the direction vector for the line of intersection of the two planes?

Answer: Since the line of intersection lies in each plane, its direction vector must be
orthogonal to the normal vectors to each plane. One such vector is the cross product v X w.
If v and w are parallel, then the planes either are identical or do not intersect at all; so, in the
case where v X w = 0, the problem is degenerate anyway.

A.4.3 Matrix Transpose

An n X k matrix can be flipped along its diagonal (upper left to lower right) to make ak X n
matrix. If the first matrix has entries a; (i = 1, . . ., m j= 1, . . ., k), then the resulting
matrix has entries b, (i = 1, .. ., ki j= 1, .. ., n), with b; = a,. This new matrix is
called the rranspose of the original matrix. The transpose of A is written A", If we consider
a vector in R" as an n X 1 matrix, then its transpose is a | X n matrix (sometimes called a
row vector). Using the transpose, we can give a new description of the dot product in R";
namely, u - v = u'v.

Exercise: Compute one example indicating, and then prove in general, that if A isn X
kand B is k X p, then (AB) = B'A".

Answer: We leave this problem to you.

A.4.4 Matrix Inverse

Matrix multiplication differs from ordinary multiplication in another way: A matrix may
not have a multiplicative inverse. In fact, inverses are defined only for square matrices, and
not even all of these have inverses. Exactly those square matrices whose determinants are
nonzero have inverses.

If A and B are n X n matrices, and AB = BA = I, where 1 is the n X n identity
matrix, then B is said to be the inverse of A, and is written A™'. For n X n matrices with
real number entries, it suffices to show that either AB = I or BA = I—if either is true, the
other is as well.
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If we are given an n X n matrix, there are two basic ways to find its inverse: Gaussian
elimination and Cramer’s rule. Gaussian elimination is the preferred method for anything
larger than 3 X 3.

The inverse of a matrix can be computed using Gaussian elimination by writing down
both A and the identity matrix. As you perform row operations on A to reduce it to the
identity, you perform the same row operations on the identity. When A has become the
identity matrix, the identity matrix will have become A, If, during Gaussian elimination,
some diagonal entry cannot be made 1, then, as we noted, the determinant is 0, and the
inverse does not exist. This technique can be improved in numerous ways. A good
reference, including working programs for implementation, is [PRESS88].

A different method for computing inverses is called Cramer's rule. It builds the inverse
explicitly, but at the cost of computing many determinants. Here is how it works.

To compute the inverse of an n X n matrix A with entries a;, we build a new matrix,
A, with entries A;. To compute A,;, we delete rows i and j from the matrix A, and then
compute the determinant of the resulting (n — 1) X (n — 1) matrix. Multiplying this
determinant by (—1)'*/ gives the value for A;. Once A’ is computed, the inverse of A is just
(17 det A) (A"

Because of the large number of determinants involved, Cramer’s rule is impractical for
large matrices. For the 2 X 2 case, however, it is quite useful. It tells us that

a ere.. 1 d -
[c d’] _ad—bc[-c a]‘

One last special case for matrix inversion deserves mention, Suppose that U is a matrix
whose columns form an orthonormal basis. This means that w; - uw; = §; for all i and .
Consider what happens when we compute U'U. We have noted that the ij entry of the
product is the dot product of the ith row of the first factor and the jth column of the second
factor. But these are just u; and uj; hence, their dot product is &;. This tells us that U'U = I,

and hence that U~! = U". Note, by the way, that this means that the columns of U" also
form an orthonormal basis!

A.5 LINEAR AND AFFINE TRANSFORMATIONS

A linear transformation is a map from one vector space to another that preserves linear
combinations. More precisely, it is a map T with the property that T(ayv, + auv, + . . . +
ay,) = aT(v,) + aT(v,) + ...+ ,T(v,). Linear transformations are the ones we
describe in great detail in Chapter 5.

An affine transformation is a map from one affine space to another that preserves affine
combinations. More precisely, it is a map T with the property that T(P + a(Q — P)) =
T(P) + a(T(Q) — T(P)). T extends naturally to a map on the associated vector space. We
define T(v) to be T(P) — T(Q), where P and Q are any two points with Q — P = v. Affine
transformations include translations, rotations, scales, and shearing transformations. Note
that the transformations defined in Chapter 5 are both affine and linear transformations.
They are linear transformations from R* to R*, but they take the standard affine 3-space (the
points of R* whose last coordinate is 1) to itself, so that they also describe affine
transformations on this affine space.
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A.5.1 The Matrix for a Transformation on R"

Suppose we have n independent vectors, by, . . . , b, in R", and we wish to find a linear
transformation T from them to the vectors a,, . . ., a,. (We have chosen this odd naming
convention because the b;s, being independent, form a basis.) How can we do this? The
simplest way to express a linear transformation on R" is to give a matrix for it. That is to
say, we will find an n X n matrix A such that T(v) = Ay for all v in R".

We begin by solving a simpler problem. We find a matrix for the transformation that
takes the standard basis vectors, e,, . . ., e, to an arbitrary set of vectors v, . . ., ¥,.

Suppose we take any n X n matrix Q with entries g;; and multiply it by e;. If we letr =
Qe,, then r; = q;. That is, multiplying a matrix by the jth standard basis vector extracts the
Jth column of the matrix. We can reverse this observation to find the matrix that transforms
the standard basis vectors into ¥, . . ., ¥,; We just use the vectors v, . . ., ¥, as the
columns of the matrix.

Exercise: Find a matrix taking the standard basis of R* to the vectors [}] and [3].

Answer: [é g] -

To solve the original problem of this section, finding a transformation taking the b;s to
the a;s, we apply the solution for the simpler problem twice. First, we find a matrix B
(whose columns are the bs) that takes the standard basis to the b;s; then, we find a matrix A
that takes the standard basis to the a;s. The matrix B~ will do just the opposite of B, and
take the b;s to the standard basis, so the matrix AB ™" is the solution to the original problem.
It is a matrix taking the b;s to the as.

Exercise: Find a matrix transformation taking [5] and {g] to [H and [3] , respectively.

Answer: The matrix taking the standard basis to the first pair of vectors is [} 2]; the
matrix taking the standard basis to the second pairis [} 3]. The solution is therefore T(v)

RS T W o

A.5.2 Transformations of Points and Normal Vectors

When we apply a matrix linear transformation to the points of the standard affine n-space,
how do the differences between points (i.e., the vectors of the affine space) transform?
Suppose our transformation is defined by T(P) = AP, and further suppose that this
transformation sends the affine plane to itself (i.e., that there is no homogenization required
after the transformation—this is equivalent to saying the last row of A is all Os, except the
bottom-right entry, which isa 1). Then, T(Q — P) = A(Q — P). But Q — Phas a0 in its
last component (since both P and Q have a 1 there). Hence, the last column of A has no
effect in the result of the transformation. We therefore define A’ to be the same as A, but
with its last column replaced by all Os except the last entry, which we make 1. This matrix,
A’, can be used to transform vectors in the affine space.
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We mentioned previously that the definition of a plane by its normal vector was
dangerous, and here we see why. Suppose we have a plane whose points satisfy (X —P) -
v = 0. When we transform this plane by A, we will get a new plane containing AP, so it
will have an equation of the form (¥ — AP) - w = (0 for some vector w. We want those
points of the form AX, where X is on the original plane, to satisfy this second equation. So
we want to find a vector w with the property that (AX — AP) - w = 0 whenever (X — P) -
v = 0. Expressed differently, we want

(AX — APYw =10 whenever (X — P) - v = 0.
By distributing the transpose operator, we see this reduces to
X=-P)Aw=0 whenever (X — P) - v = (.

This equation will certainly hold if A'w = v—that is, if w = (A")"'v. Thus, (A")'vis
the normal vector to the transformed plane. In the event that A is an orthogonal matrix (as it
is, €.g., in the case of rotations), we know that (AY)~' = A, so the normal vector transforms
in the same way as the point (but with no translation, because the last component of the
vector is 0). But this is not true for general matrices. The computation of the inverse
transpose of A can be somewhat simplified by computing instead the inverse transpose of A’,
whose effect on vectors is the same as that of A. Since A’ is effectively a smaller matrix (its
last row and column are the same as those of the identity matrix), this is often much easier.”

Computing the inverse of a matrix may be difficult—and, if you use Cramer’s rule, it
involves dividing by the determinant. Since the normal vector, after being transformed, will
probably no longer be a unit vector and will need to be normalized, leaving out this division
does no harm. Thus, people sometimes use the matrix of cofactors for transforming
normals. Entry ij of this matrix is (=1)'*/ times the determinant of the matrix resulting
from deleting row i and column j from A.

A.6 EIGENVALUES AND EIGENVECTORS

An eigenvector of a transformation T is a vector v such that T(v) is a scalar multiple of v. If
T(v) = Av, then A is called the eigenvalue associated with v. The theoretical method for
finding eigenvalues (at least for a matrix transformation T(v) = Av)istolet B = A — I,
where 1 is the identity matrix, and x is an indeterminate. The determinant of B is then a
polynomial in x, p(x). The roots of p are precisely the eigenvalues. If A is one such
eigenvalue, and A is a real number, then T(¥) = Av must be true for some vector v. By
rearranging, we get that Av — Av = 0, or A — AI)v = (. Thus, finding all solutions to this
last equation gives us all the eigenvectors corresponding to A.

Although this approach is theoretically feasible, in practice it is not very useful,
especially for large matrices. Instead, numerical methods based on iterating the transforma-

*Differential geometers refer to vectors such as the normal vector as covectors, since these vectors are
defined by a dot-product relation with ordinary (or tangent) vectors. The set of all covectors is
sometimes called the cotangent space, but this term has no relation to trigonometric functions. More
complex objects, called rensors, can be made up from mixtures of tangent and cotangent vectors, and
the rules for transforming them are correspondingly complex.
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tion are used. Chief among these is Gauss—Seidel iteration; for details of this technique, see
[PRESS8S].
We conclude this section with a particularly interesting pair of exercises.

Exercise: Show that eigenvectors of a symmetric matrix (one for which M' = M)
corresponding to distinct eigenvalues are always orthogonal. Show that for any square
matrix A, the matrix A'A is symmetric.

Answer: Suppose Mv = Av, and Mu = pu. Let us compute u'My in two different
ways:
My = w'Av = Au'v= A (u-v).
But
u'Mv = (@MY v = (Mu)vy = pu'v= u(u-v.

Thus, A (m + ¥) = wu (u + v); hence, (A — p)u + v) = 0. Since A and g are distinct
eigenvalues, we know that (A — u) # 0. Hence, (u - v) = 0,

The transpose of (A'A) is just A'(A")"; but the transpose of the transpose is the original
matrix, so result is just A'A. Hence, A'A is symmetric.

Exercise: Suppose that T(x) = Ax is a linear transformation on R, and that we apply
it to all points of the unit circle. The resulting set of points forms an ellipse whose center is
the origin. Show that squares of the lengths of the major and minor axes of the ellipse have
lengths equal to the maximum and minimum singular values of A, where a singular value of
A is defined to be an eigenvalue of A'A.

Answer: The points on the transformed circle are of the form Ax, where x - X = |. The
square of the distance from such a transformed point to the origin is just Ax + Ax, or,
rewriting, X'(A'A)x. Let u and v be the two unit eigenvectors of A'A, with corresponding
eigenvalues A and p. Because they are orthogonal, they form a basis for R®, We can
therefore write X as a linear combination of them: x = cos #u + sin #v. If we now compute
x'(A'A)x, we get

X'{A'A)x = (cos #u' + sin 8 v') (cos # A'Au + sin 6 A'Av)
= (cos @u' + sin @ V") (cos # Au + sin 8 uv)
= A cos® 6 + u sin® 6.

This function has its extreme values at # = multiples of 90° —that is, when X = *uor
* v, The values at those points are just A and p.

A.7 NEWTON-RAPHSON ITERATION FOR ROOT FINDING

If we have a continuous function, f, from the reals to the reals, and we know that f(a) > 0
and f(b) < 0, then there must be a root of f between a and b. One way to find the root is
bisection: We evaluate f at (a + b)2; if it is positive, we search for a root in the interval
between (a + b)/2 and b; if it is negative, we search for a root between a and (a + b)V2; if it
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is zero, we have found a root. lterating this until the value of f is very near zero will give a
good approximation of a root of f.

We can improve this slightly by taking the line between (a, f(a)) and (b, f(b)), seeing
where it crosses the x axis, and using this new point as the subdivision point.

If f happens to be differentiable, we can do somewhat better than this. We can evaluate f
at a point, and evaluate its derivative there as well. Using these, we can compute the
equation of the tangent line to f at the point. If the graph of f is close enough to the graph of
this tangent line, then the place where the tangent line crosses the x axis will be a good
approximation of a root of f (see Fig. A.7). If it is not a good enough approximation, we can
use it as a starting point and iterate the process (see Fig. A.8).

If the initial guess is x,, then the equation of the tangent line is

y = flxg) = (%) (x = x).
This crosses the x axis when y = 0, which happens at the point
5=z 52
In general, we can find the next point, x.,, from the point x; by a corresponding

formula, and repeat the process until a root is found. This process is called Newton's
method or Newton-Raphson iteration.

Exercise: Apply Newton's method to the function f(x) = x* — 2, starting at x = 1.
Answer: x, = 1, x, = 1.5, x, = 1.4166, x, = 1.4142...., and so on.

The method can fail by cycling. For example, it is possible that x, = x;, and then the
process will repeat itself forever without getting to a better approximation. For example, the
function f(x) = x* — 5x has a root at x = 0, but starting this iterative technique at x, = 1 will
never find that root, because the subsequent choices will be x, = —1, x, = |, and so on.

If the function f is sufficiently nice, the method can be guaranteed to succeed. In
particular, if fhas everywhere positive derivative and negative second derivative, the method
will certainly converge to a root.

Root of f

Fig. A.7 If the graph of the tangent line to a function is close enough to the graph of the
function, the zero-crossing of the tangent line will be a good approximation 1o a
zero-crossing of the function graph.
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p.r{x}-/

Fig. A.8 lteration of the process described in Fig. A.7.

EXERCISES

A.1 Light reflects from a plane (in a simple model) according to the rule, **The angle of incidence is
equal to the angle of reflection,”” If the normal to the plane is the vector m, and the ray from the light is
described by the parametric ray P + (v, what is the direction vector a for the reflected ray?

Answer: If we express v as a sum of two components—one in the direction of m and one
perpendicular to n—we can easily describe u: It is the same as v, except with the component in the n
direction negated. The component of v in the m direction is just (v - m) n/ || n ||, so the final result is
thatu=(v—(v-ma/[lalh=-m)n/||n)l=v=2v-n)n/| n|.Ifnisaunit vector, this is
just ¥ = 2(v - m) n. (Note that the light ray is the opposite of the ray L in Chapter 16.)

A.2 Find a tranformation from the standard affine plane to itself that leaves h coordinates fixed, but
transforms (x, ¥) coordinates so that, in any constant-h plane, the unit square [0, 1] X [0, 1] is sent to
[=1, 1] % [=1, 1]. What is wrong with the following purported solution to the problem?

““The space in which we are working is 3D, so we will specify the transformation by saying

where three basis vectors get sent. Clearly,

I '
0 goes to 2 § |
Dol 2 o—
and
0] [~
| goes to |
- =l u-
Also,
0 B
0 goes to wi]
1) [ 1]
So the matrix must be
1 =1 =1
=] I =1}."
0 0 1]

Partial Answer: The assumption begin made in the purported solution is that the map is a linear
map on R'. It is actually an affine map, and includes a translation.

A.3 You are given a list of vertices v{1], . . ., v[n] as xyz triples in R*, but with each z coordinate
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equal to zero, defining a closed polygon in the plane (the polygon's edges are vvs, vovy, . . ., ¥, _ ¥,
v,¥;). You wish to define a polyhedron that consists of this object, extruded along the z axis from z =
Otoz = 1. Assume a right-hand coordinate system.

a. How would you check that the polygon ¥[1], . . ., v[n] is counterclockwise (i.e., as you
traverse the edges of the polygon, its interior is to your left)?

b. Describe an algorithm for generating the polygons of the extruded object. For the *'sides,"
you cah either use rectangular faces or divide them into triangles. The descriptions of these
polygons should be indices into a list of vertices.

c. Each of the faces given in part (b) consists of a list of vertices. Suppose that you walk around
the boundary of a polygon, and the polygon interior is to your right. Did you choose your
order for the vertices so that the exterior of the extruded polyhedron is always overhead? If
not, modify your answer to part (b).

d. Each edge of the extruded polyhedron is part of two faces, so during the traversals in part (c),
each edge is traversed twice. Are the two traversals always in the same direction? Always in
opposite directions? Or is there no particular pattern?

A4 Given that P = (x,, w) and Q = (x,, v,) are points in the plane, show that the equation of the line
between them is (y; — ¥) x — (x; = %) ¥ = ¥ — X This formulation is especially nice, because it
provides a general form for lines in any direction, including vertical lines.

A5 Given' tiit 35 o) e % Wackor 1n:the phine, dhiow Gt w s | 2] is ortogonel %0/t This is
sometimes called (in analogy with the corresponding case in 3D) the cross-product of a single vector
in the plane. The cross-product of m — | vectors in R® can also be defined.

A6 If P, Q, and R are three points in the standard affine 3-space, then

He-pnx®-p|

is the area of the triangle APQR. If P, Q, and R all lie in the xy plane in the standard affine 3-space,
then
0

% 0 . (Q-P)xX(R-=P)
|
gives the signed area of the triangle—it is positive if APQR is a counterclockwise loop in the plane
and negative otherwise. (Counterclockwise here means **counterclockwise as viewed from a point on
the positive z axis, in a right-handed coordinate system."")
a. Find the signed area of the triangle with vertices P = (0,0), 0 = (x, y), and R =
(%4 10 Yis)-

Am':-;'t&}'iu - et M)

b. Suppose we have a polygon in the plane with vertices v,,..., v,, (v, = »), and v, = (x, ) for
each i. Explain why the signed area of the polygon is exactly

1
2 =i
Compare this with Eq. 11.2.

A.7 The Gram-Schmidt process described in Section A.3.6 for three vectors can be slightly
simplified. After computing w, and w;, we seek a third unit vector, w, which is perpendicular to the
first two. There are only two choices possible: w; = = w, X w,, Show that the Gram-Schmidt process
chooses the sign in this formula to be the same as the sign of v, * (w, X wy). This implies that if you
know that v,, ¥, ¥, is positively oriented, then you need not even check the sign: w; = w, X w,,

v

X Yisr = Kis1 i
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What follows is an extensive bibliography in computer graphics. In addition to being a list of
references from the various chapters, it is also a fine place to browse. Just looking at the titles of the
books and articles can give you a good idea of where research in the field has been and where it is
going.

Certain journals are referenced extremely frequently, and we have abbreviated them here. The
most important of these are the ACM SIGGRAPH Conference Proceedings, published each year as an
issue of Computer Graphics, and the ACM Transactions on Graphics. These two sources make up
more than one-third of the bibliography.
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CGIP Computer Graphics and Image Processing
CVGIP Computer Vision, Graphics, and Image Processing (formerly
CGIP)
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Abort command, 409410
A-buffer algorithm, 671, 693695
Accelerator keys, 367-368, 411-412, 436
ACE, 601
Achromatic light, 563-573
Action, 1066, 1068-1070
Action routines, 457
Active values, 466
Active zone, 560
Active-edge table, 97, 681, 886
Active-surface table, 684
Actors, 1073
‘Spatial partitioning
Additive color primaries, 585
Address space, 166, 177
single, 177-179
Addressability, 146, 170
Adjoint, classical, 217, 1108
Aerial perspective, 610
Affine combination, 1086
Affine space, 1083-1108, 1085
Affine transformation, see Transformation,
affine
Aliasing, 612, 627-628, 671, see also
Antialiasing
artifact, 14
in scan conversion, 1008
in scan converting conics, 957
sliver polygons, 96
temporal, 1058, 1078
Alignment
for patterns, 101
a (angle between R and V), 729, 813
Alpha_l, 540-541, 547
a-channel, see Compositing, a-channel
Ambient light, 564, 612, 722-723
Ambient reflection coefficient (k,), 723
American National Standards Institute, see
ANSI
Ampex digital optics (ADO), 8§29
Anchor, of pattern, 101
Andrew, 441, 452
Animation, 5, 1057-1081
basic rules, 1077-1078

carloon-character, 1077
control, 1070-1078
conventional, 1058-1059
on fields, 1079
flip-book, 1081
graphical languages, 1067
key-frame, 1058, 1059
lincar-list notations, 1065
look-up table, 180181, 1064-1065
physically based, 1076
staging of, 1078
on twos, 1080
Animation control
constraint-based, 1071
explicit, 1070
key-frame, 1070
procedural, 1070
tracking live action, 1073
ANSI (American National Standards
Organization), 16, 285
Antialiased brushes, 974
Antialiasing, 14, 132-142, 598, 612,
617646, B17-818, 909, 965-976, see
also Filter, Area sampling
circles, 969-971
conics, 971-974
general curves, 974
Gupta-Sproull line algorithm, 137-142
Gupta-Sproull techniques, 969, 975-976
lines, 967-969, 975
multiple lines, 968
polygons, 975
rectangles, 975
temporal, 819, 1079
text, 977
2-bit, 968
Ardent Titan, 890-891
Area sampling
unweighted, 132-135
weighted, 135-142
Area subdivision algorithm, Warnock, 550
Area subdivision algorithms, 686-695
Artificial reality, 21, 357, see also Virtual
world
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ASAS, 1066, 1073
Atmosphere, 1044
ic attenuation, 727-728

AT&T Pixel Machine, 889, 911-912
Attribute bundle, PHIGS, 332
Attribute, 18, 19

cosmetic, 945

geometric, 945

inheritance, 318-321

nongeometric, 298

output primitives, 30-40

SPHIGS, 298, 318-321

SRGP, 38
Audio, see Voice input-output
Autocompletion, command, 362
Axial ray, 787

B (radiosity), 793
B-rep, see Boundary
Back distance (B), 241
Back-face culling, 663-664, 807
Background, color attribute, 35
Backing store, 996, 997
Backus—Naur form, 461
Bandwidth, 158, 180
Bandwidth limiting, 629
Baseline, text, 39
Basis
standard, 1093
of a vector space, 1092
Basis matrix, 483, 489, 493, 505, 510
Batch, screen updates, 328
BBN Butterfly, 911
Beam, 784
Beam current, 163
Beam tracing, 787
Bernstein polynomials, 489490, 494
trivariate, 1014, 1054
B (angle between N and H), 731, 813
f-splines, see Splines
Bézier curves, see Splines, Bézier curves
Bias parameter, -spline, 505-506
Bicubic surface, 473
Bicubic surfaces, drawing, 523-528
Bidirectional reflectivity (p), 763
diffuse (p,), 763
specular (p,), 763
Bilevel CRT, see Bilevel display
Bilevel display, 12, 564, 568, 570
Bilinear, 1095
Binary space-partitioning (BSP) tree
regularized Boolean set operations, 546,
556-557

shadow algorithm, 751
for solid modeling, 555-557, 559
visible-surface determination, 675-680
Binding, see Hardware binding
Binocular disparity, 616
Bintree, 552, 784
BitBlt, 69, 986-992, see also CopyPixel,
PixBht
implementation, 132
managing windows, 996-998
on-the-fly assembly, 991-992
, 988
Bitmap, |, 13, see also Pixmap
characters, 127
offscreen, see Canvas, offscreen
pattern, 34-36
scaling of, 851
Blanking, 12
Blending functions, curves, 483, 485,
493-494, 497
Blobby objects, 1047
Bloom, phosphor, 158
Bohm algorithm, for cubic curves, 510
Boldface, see Character
Boolean operations on polygons, 937
Boolean operations on solids, see Regularized
boolean set operations
ing, 831, 832-833
Boundary fill, see Filling algorithms,
boundary fill
Boundary representation, 542-548, 559, 560
adjacency relationships, 546
non-polyhedral, 547-548
regularized Boolean set operations,

Bounding box, 660, see also Extent
Box filter, see Filter, box
Bresenham, circle scan conversion, see Scan
conversion, midpoint circle
Bresenham, line scan conversion, see Scan
conversion, midpoint line
Brewster angle, 771
Brightness, of light, 563, 584
BRIM, 849
BSP tree, see Binary-partitioning tree
Brush, see also Antialiased brush
orientation, 104
shape, 104
B-spline, see Curved surfaces, Curves
B-spline curves, see Splines, B-spline curves
B-spline surfaces, see Splines, B-spline
surfaces
Buffer, see Refresh buffer

Bump mapping, 1043
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Button mask, locator, 47-48
By-example specification, 464

Cabinet projection, see Projection
CAD, see Computer-aided design
Callback procedures, 450-452
Calligraphic display, 9, see also
Random-scan display
Camera, viewing, 249
Camera interpolation, see Interpolation,
camera
Cancel command, 409410
Canvas, 53-54
offscreen, 69
Cartography, 6
CAT scan, see Computed tomography
Catenary, 1041
Cathode-ray tube (CRT), 155-160, 564, 570,
641, B56, see also Flat tension mask,
Flicker, Focus
shadow-mask, 158
Catmull subpixel area-subdivision algorithm,
693
Catmull-Rom splines, see Splines,
Catmull-Rom
Cavalier projection, see Projection
Cel, 1059
Cell decomposition, 548-549, 558
Center of projection (COP), 230
Center of window (COW), 238
Central Structure Storage, 293-295, see also
Structure network
Channel, 844
Character
alignment, 129
boldface, 131
descender, 39, 129
font, 129
italic, 131
recognition, 373
roman, 129
typeface, 127, 129
width, 129
Charge-coupled device (CCD), 195-196
Choice logical device, 42, 188, 195, 352,
436, 452
Choice set, 361
Chord, locator button state, 44
Chroma, color, 574
Chromaticity, color, 580-583, 589
Chromaticity coordinates, 580, 586, 589,
600
Chromaticity diagram, see CIE chromaticity
diagram

Index 1155

CIE (Commission Internationale de
I'Eclairage), 579
CIE chromaticity diagram, 579-584
CIE color model, 585
CIE LUV uniform color space, 584, 594
CIE primaries, 579-580
Circle, implicit equation of, 1097
Circles, see Scan conversion, general circles
Classical adjoint, see Adjoint, classical
Click and drag interaction, 386
Client, 440
Clip rectangle, 55
Clipping, 71, 924
analytical, 110
characters, 127
Cohen—Sutherland line algorithm, 113
Cyrus—Beck-Liang—Barsky algorithm, 925
depth, 870
endpoints, 112
to general windows, 995
in homogeneous coordinates, 272, 870
Liang—Barsky line algorithm, 121-124
Liang—Barsky polygon algorithm, 929,
930-937, 1006
lines, 111-124, 925
Nichol-Lee—Nichol line algorithm, 115,
177, 925-928, 1006
polygon, 124-127, 924, 929
in PostScriet, 1002
to rectangular windows, 924
Sutherland-Hodgman polygon-clipping
algorithm, 124-129, 274, 929
text string, 127

3D, 271-274, 659, 869-870, 878-879
3D Cohen-Sutherland line algorithm, 271
3D Cyrus-Beck, 271
3D Liang-Barsky, 271
trivial acceptance, trivial rejection, 868,
878
2D primitives in a raster world, 110-127
2D raster graphics, 55
vertical polygon edges, 935
Weiler polygon algorithm, 929, 937-945,
1006
Clipping plane
back (yon), 240
front (hither), 240
Closure, visual, 418-419
Cloth, 1041
Clouds, 10441045
fractal-based, 1044
Cluster, 675
Cluster priority, 676
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Clustered-dot ordered dither, 568, 570, 572
CMY color model, 584, 587-589, 600
CMYK color model, 588
Coding
information, 404
redundant, 422, 424
visual, 387, 422-425
Coding categories, 422
Cohen—Sutherland line-clipping algorithm,
see Clipping, Cohen—Sutherland line
algorithm
Coherence, 91, 657
area coherence, 657, 686
depth coherence, 657, 684
edge coherence, 91, 657, 680
face coherence, 657
frame coherence, 657, 664, 715
implied edge coherence, 657
invisibility coherence, 685
object coherence, 657, 751, 784
scan-line coherence, 91, 657, 680, 715
span coherence, 657, 681
spatial coherence, 881
Color, see Chromaticity, Dominant
wavelength, Hue, Luminance, Metamer
Color blind, see Color deficient
Color coding, 422424, 602
Color deficient, 422, 424, 601-602
Color gamuts, 583-584
Color harmony, 601
Color interpolation, 598-599
Color map, see Video look-up table
Color matching functions, 578-580

Color models, 584-595, see also CIE, CMY,

HLS, HSB, HSV, HVC, RGB, YIQ
Color table, 32, see alse Video look-up table
Color usage rules, 602
Colorimeter, 582, 586
Colorimetry, 575
Column-preserving map, 828
Comb function, 636-637
Command language, 348, 402, 403
Command mode, 416417

Commission Internationale de I'Eclairage, see

CIE
Commutativity, matrix operations, 209-210
Complementary colors, 582-583, 590
Composite architecture, see
Image-composition architecture
Composite interaction task, see Interaction
tasks
Composite modeling transformation matrix
(CMTM), 316
Composite video, 180

Compositing
a-channel, 835-840
hardware, 840-842
image, 815, 835-843, 850
Composition, see Transformation,
composition
matrix, 205
Compositor, 901, 906
Computed tomography, 816, 1035, 1039
Computer-aided design (CAD), 5, 7, 471,
514, 516
Conceptual design, of user interface,
394-395, 404, 429, 430
Conductor, 767, 770-771
Cone filter, 136
Cone receptors in eye, 576
Cone tracing, 786-T87, see also Ray tracing
Cones, 733
Conics, see Scan conversion, general conics
Connection Machine, see Thinking Machines
Connection Machine
Connectivity of regions, 979
Consistency
user interface, 404405
visual, 425-426
Constraint, 360, 378, 454, 1040
dynamic, 1040, 1076
energy, 1040
in line drawing, 384
Constraint-based modeling, 1040
Constructive planar geometry, 938
Constructive solid geometry (CSG),
557-558, 559, 560, 672, 901
Containment tree, 943, 1007
Context, POSTSCRIPT, 1000
Context switching, 907-908
Context-sensitivity, user interface, 409, 412,
413, 417, 457, 459
Contiguous partitioning, 887-888, see also
Parallel rasterization architectures,
image-parallel
Continuity, see Curves
curved surface, 480482
Contouring, intensity, 569
Control grid, of CRT, 155, 565
Control points, see Curves and Curved
surfaces
Control to display ratio (C/D ratio), 351,
352, 375
Convergence of electron beam, 156
Conversion between color models, 584-596
Conversion between curve representations,
510-511
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Convex hull, 488, 490491, 492, 494, 496,

509

Convolution, 629633, see also Filter

graphical, 632-633

precomputed tables, 695
Cook-Torrance, see [llumination,

Cook-Torrance

Coons’ patch, 519
Coordinate system, 1092, 1094

application, 60, 280

camera, 280

device, 210, 281

eye, 280

left-handed, 280

local, 280, 378

logical device, 280

modeling, 280

normalized device, 280-28]

normalized projection, 241, 278, 280

object, 280, 359

problem, 280

raster, 281

right-handed, 214, 280

screen, 280-281, 359, 379

in SRGP, 26

(u, v, n), 238, 280

(u, v, VPN), 280

view reference, 238, 280

world, 210, 280, 359
Coordinates

absolute, 185

in an affine space, 1094

relative, 185

in a vector space, 1093
Coordinate-system representation, 72
CopyPixel, 56, 986-992
Coral, 1048
Core Graphics System, 15
Correct command, 409410
Correlation, see Pick correlation
COUSIN, 465
Cramer’s rule, 1106
Cross-hatching, see Vector cross-hatching
Cross-product, 1104
CRT, see Cathode ray tube
CS5G, see Constructive solid geometry
C5S, see Central Structure Storage
CT scan, see Computed tomography
Cube architecture, 914
Cuberille, 549
Cubic curve, 472, see also Splines

drawing, 511-514
Culling, structure network, 340
Current command, 415
Current path, PosTSCRIPT, 1003

Index 1167

Current point, 415
Current position (CP), 171-174
Currently selected object (C50), 416, 417,
459460, 463
Cursor, 3D, 672
Curved surfaces, 516-529 see also Surface
patch
adaptive subdivision, 527
display methods, 913
forward differences, 913
tesselation, 807
Curves, see also Splines
parametric polynomial, 472
parametric cubic, 478-516
Cyrus—Beck line clipping algorithm, 117-124

D (microfacet distribution function), 764
Beckmann, 764-765
Trowbridge-Reitz, 764
dy, (distance from point source to surface),
725
D/A conversion, see Digital-to-analog
conversion
Damage repair, 37, see also Regeneration

strategy
Data flow, 468

Data model, 466
Data tablet, see Tablet
Database, see Display model
Database amplification, 1011
DataGlove, 355-357, 1073
DC (direct current), 625, 630, 637
DDA, see Digital differential analyzer
Decision variable

for circle scan conversion, 84

for ellipse scan conversion, 88

for line scan conversion, 76
Deflection coils, 155
Deformable solids, 1042
Degree elevation, parametric curves, 507
Degrees, rectangular, 30
Demultiplex events, 447
Density emitter, 1037
Dependence, linear, 1091
Depth buffer, see z-Buffer
Depth clipping, 611
Depth cueing, 610, 727-728
Depth of field, 615, 774-775, 789
Depth-sort algorithm, 673, 715-716
Descender, character, see Character,

descender
Design objective, user interface, 391-392,
405, 421, 458

Design rules, visual, 426428
Desktop metaphor, 347
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Detectability, filter, 333
Determinant, see Matrix, determinant of
Device-independence
graphics, 15
interface, 67
DIAL, 1067
Dialogue box, 381-382, 411, 414, 425426,
445, 452
Dicing, 811
Dielectric, 766, 770-771
Diffuse reflection, 723-727
coefficient (ky), 724
Digital differential analyzer, 74
Digital Equipment Corporation (DEC), 430
Digital holography, 918-919
Digital typography, see Typography, digital
Digital-to-analog conversion, 860
Digitize, 350, 355, see also Scanning
Dimension, fractal, 1020
Direct manipulation, 2
Direct manipulation user interfaces, 348,
397-398, 403, 412, 465
Direction of projection (DOP), 231, 238
Direction of reflection (R), 729
Direct-view storage tube (DVST), 10, 161
Discrete Fourier transform, 625
Discretely shaped B-splines, 507
Dispersed-dot ordered dither, 570, 572
Dispersion, 757
Display controller, 11, 69
Display coprocessor, see Graphics display
processor
Display devices, raster, 25
Display list, 9
Display list storage, 176
Display model, 862
distributed, 881
Display procedura.
Display processing umt 861-866, see also

Display program, see Display list
Display traversal, 294, 299, 308-331,
867868, 877, BRO-8R1
attribute inheritance, 318-321
immediate mode, 867
implementation, 334-338
modeling transformation, 315-317, 336
optimization, 336-337, 340-341
retained mode, 867
viewing transformation, 299-302
Distance formula, from point to line, 1100
Distributed frame buffer, see Parallel
rasterization architectures, image-parallel

Distributed ray tracing, 788-792
jittering, 788
Poisson distribution, 788
Dither matrix, 569-572
Dithering, 569, 599, see also Ordered dither,
Random dither
Do what | mean (DWIM), 362
Do-it command, 417
Domain
frequency, 623
spatial, 618, 623

temporal, 618
Dominant wavelength, color, 575-576, 580,

582

Doré, 810

Dot product, 1094

in region classification, 118

Dot size, 146, 158

Double buffering, 13, 177, 337-338,
858859, 886

Double-hexcone HLS color model, 592,
594

Dragging, 386

DRAM (Dynamic random-access memory),
857-858, 871, 890

Drawing octants, 953

DVST, see Direct-view storage tube

Dynamic constraints, see Constraint, dynamic

Dynamic Digital Displays Voxel Processor,
914

Dynamic random-access memory, see DRAM
Dynamic range, intensity, 564, 566-567
Dynamics, 615, 1071, 1074-1076

geometric modeling, 311-314

inverse, 1076

motion, 4, 1057

update, 4, 1057

E,; (incident irradiance), 762

Echo, see Feedback

Edge coherence, 96

Edge detection, 820

Edge enhancement, 820

Edge table, 681

Editing, of structure network, 324-327
Eigenvalue, 1108

Eigenvector, 1108

8 by 8 display, 889

B-connected region, 979

Elasticity, 1042

Electroluminescent (EL) display, 164
Electromagnetic energy, 573
Electron gun, 155, 159
Electrophoretic display, 164
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Element, structure network, 293, 295, 324
Ellipse
arc specification, 30
specification, 951, 1007, see also Scan
conversion, general ellipses
Elliptical weighted-average filter, B27-828
Energy distribution, see Spectral energy
distribution
Environment mapping, see Reflection

mapping
Ergonomics, see Human factors
Error diffusion, Floyd-Steinberg, 572-573
Ermmor measure, 73
Error rates, 391, 403
selection task, 360, 370
Error recovery, 409411
Errors, user, 394, 409411
Tus T (indices of refraction), 757
Euler angles, 1063
Euler operators, 544, 561
Euler's formula, 543
Evans & Sutherland Computer Corp., 886,
919
Even-odd rule, 965
Event, 20

Event mode, input devices, 437439
Event queue, 42, 437440
Event routing

dispaicher, 450

listener, 449

notifier, 450

real-estate based, 448

user, 448-450
Event-driven interaction, 42—48
Mﬂ purity, color, 575-576, 582, 583,

1

Expert system, 413, 425, 466467, 601
Explicit functions, 478
Extensibility of user interface, 393, 403, 413
Extent, 660-663, 887

minmax, 661

text, 39

3D object, 336
Extinction, coefficient of (x,), 767
Extrusion textures, 1018
Eye, 564
Eye tracker, 351
Eye-hand coordination, 350, 360

F, (Fresnel term), 764, 766-767

Index 11569

fus (light-source attenuation factor), 725

Faces, modeling, 1049

Factoring of user interface commands, 415,
418

Fade operator, 839

Fast Fourier transform, 626

Feedback, 360, 362, 375, 393, 404408,
414, 437

Filled primitives, see Scan conversion, filled
primitives
Filling
circle, 99-100
ellipse, 99-100
pattern, 100-104
polygon, 92-99
rectangle, 91
Filling algorithms, 842, 979
boundary fill, 979-980
flood fill, 979-980
seed fill, 980
soft fill, 979, 983-986
tint fill, 979
Film recorder, 153-154, 570, 641
Filter, 136 see also Prefiltering, Postfiltering
Bartlent, 637
“1 mn ﬂs
convolution kernel, 631
cut-off, 629
finite support, 631
FIR, 635
Gaussian, 635, 641
highlighting/visibility, 332-333
IR, 635
infinite support, 633
negative lobes, 634
ringing, 633
support, 631
triangle, 635
windowed, 633
Filtering, 628-636, 695, 817
Finite element mesh, 1041-1042
Fireworks, 1031, 1055
Fitts* law, 371
Flaps, 733
Flat tension mask CRT, 160
Flicker, CRT, 12, 157
Flight simulator, 4, 919
Flocking behavior, 1049
Flood fill, see Filling algorithms, flood fill
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Floodlight, 733

Fluorescence, phosphor, 157
Flux, 760, see alse Irradiance
Flyback, see Vertical retrace
Focus, CRT, 156

Fog, 1031

Font, see Character

Font cache, 127

Foot switch, 352

Footmouse, 351

Footprint, 106, 108
interaction device, 350

Footprint processor, 888-889, 902

Footprint processor, see Parallel rasterization

architectures, image-parallel
Foreshortened surface area, 761-762
Form fill-in, 398, 402403
Form follows function (Bauhaus), 431
Forward differences, 511-514, 524-525
adaptive, 514
in conic scan conversion, 955-957
4-connected region, 979
Fourier analysis, 625
Fourier transform, 625, see also Inverse
Fourier Transform
Fractal dimension, see Dimension, fractal
Fractal models, 10201026
Frame buffer, 14, 166-169, 178, 816, 856
distributed, 887890
memory-access problem, 856, 873
Frame buffer synergy, 816
Fresnel term, see F,
Fromt distance (F), 240, 265
Function key, 195, 352, 372, 406, 412
Functional design, user interface, 394-395,
404, 406, 429-430
Fundamental frequency, 623
Fusion frequency, critical, 157

G (geometrical attenuation factor), 764-766
Gamma correction, 564-568, 600
Gaussian elimination, 1104, 1106
Gauss—Seidel iteration, 1109
General Electric, 919

General Electric NASA 11, 899-900
Generalized cylinder, see Sweep
Generic commands, 405

Genesis effect, 840, 1032
GENESYS, 1067

Genisco SpaceGraph, 917

Genus of a polyhedron, 543
Geometric aliasing, 472

Geometric continuity, 480482

Geometric extents, see Extents
Geometric modeling, see Hierarchy,
Structure network
interactive, 315
object hierarchy, 288-291
Geometry Engine, 878-879
Geometry matrix, 517, 520, 521
Geometry vector, 483—486, 488489, 492,
510, 516-517
Geomod, 547
Geomorphology, 1043
Gestalt rules, 418-422
Gibbs phenomenon, 633-634
GKS, 16, 176, 436, 439
Global transformation matrix, 316
Glue operator, 548
GMSOLID, 560
Goniometric diagram, 732
Good continuation, visual, 418-419
Gouraud, see Shading, Gouraud
Gradient search, 1052
Graftals, 1027
Grammar-based models, 1027-1031
Gram—Schmidt process, 1102, 1112
Graphic alphabet, 425426
Graphical languages, see Animation,
graphical languages
Graphics display processors, 166179
Graphics pipeline, 866871
Graphics subroutine packages, 25, 285
Graphics workstation, see Workstation
Girass, 1031
Gravity, 376, 378, 385-386, 388
Great arc, 1063
Grid-line distance, 946
Grids, positioning, 360, 378, 427
Group technology, 539
Growth sequence, 569
Gupta—Sproull algorithms, see Antialiasing,
Gupta—Sproull technigues
GWUIMS, 466

H (halfway vector), 731

Hair, 1049

Halftone pattern, 777

Halftoning, 568-569, 897-898

Halfway vector (), 731

Handles for user interaction, 386, 388

Hands, modeling of, 1049

Hardware binding design, 395, 404, 406,
429

Harmonic, 623

Head mouse, 351-352

Head-motion parallax, see Parallax
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Head-mounted display, 357, 917-918
Help facility, 412, 414, 457
Hermite curves, 482, 483488, 491,
515-516, see also Splines
Hexcone HSV color model, 591
Hidden-surface elimination, see Visible-
surface determination
Hidden-line determination, see Visible-line
determination
Hierarchical B-spline refinement, see Splines,
Hierarchical B-spline refinement
Hierarchical display list, 176, 291
Hierarchical menu selection, 365-367
Hierarchical object selection, 362-364
Hierarchy, 665, see also Display traversal,
Structure network, Ray tracing
automated generation, 707-710
data, 344
efficient traversal, 707
limitations in modeling, 341
object, 362, 397
object modeling, 288-291
procedure, 343
Highlighting, in geometric model, 332
Hiﬂi?* clipping plane, see Clipping plane,
ront
HLS color model, 584, 592-595
Hologram, see Digital holography
coordinates, 204-208,
213-217
ization, 1090
HSB color model, 585, see also HSV color
maodel
HSV color model, 584, 590-592, 596-598
Hue, color, 574-575, 579, 584, 590
Human factors, 40, 391
Humans, animation, 1076
HUTWindows, 459
HVC color model, 584, 594, 597
Hybrid parallelism, see Parallel rasterization
architectures, hybrid-parallel
Hyperbola, specification, 1007
Hypermedia, 5

i, V=1, 625
14, (depth cue color), 727
1, (incident radiance), 762
1, (point light source intensity), 724
I, (reflected radiance), 763
Icon, 369, 395, 397-398

design goals, 399
Iconic user interfaces, 398402
IFS, see lterated function system
Illuminant C, 581-582
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Hlumination, see also Light source
anisotropic, 770-771
Cook-Torrance, 764
equation, 722
global, 722, 775
Hall model, 785-786
local, 775
model, 721
off-specular peak, 767
Phong, 729-730, 731, 769
physically based models, 760-771
polarization state, 771
Torrance—Sparrow, 764

abstract, 816
blending, #35
digital, 817
discrete, 817
as primitive in POSTSCRIPT, 1003
rotation, 851
scaling, 63, 821
shearing, 822
translation, 820
Image attributes, 849-850
Image compositing, see Compositing, Image
Image composition language (ICL), 842
Image irradiance, 763
Image parallelism, see Parallel rasterization
architectures,
Image processing, 2, 820
Image storage, 815, 843-850
Image-assembly tree, 843
Image-composition architecture, 906-907,
see also Parallel rasterization
architectures, hybrid-parallel
Image-order rasterization, see Rasterization
algorithms, scan line
Image-precision, see Visible surface
determination
Imaging model, 999
Implicit equations, 478528
Inbetweening, 1058
Incremental methods, 72
Independence, linear, 1091
Index of refraction, complex (7,), 767
Input, see Interaction handling
Input devices, 188195, 348-359, see also
Interaction tasks, Logical input device
Input pipeline, 68
Inside, see Odd-parity rule, Winding rule,
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Intel 82786 Graphics Coprocessor, 908
Intel i860 Microprocessor, 864866
Intensity, 722-723, 760-763
light, 563-573
of line as function of slope, 80
profile, 973
radiant, 761
resolution, 568
Interaction, see Logical input device
Interaction handling, 20
sampling vs. event, 4244
in SPHIGS, 328-331
in SRGP, 40-52
Interaction tasks, 348-349, 358-381
composite, 381-388
position, 349, 358-361, 376-378, 381
quantify, 349, 374-376
select, 349, 361-373, 377, 381
text, 349, 373-374
3D, 376-381
3D rotation, 379-381
Interaction techniques, 348-349, 358-381,
394-395, 430, 451
color specification, 595-598
Interaction toolkits, 451-456
Interdot distance, 146
Interlaced scan, 179-180
Interleaved partitioning, 888, see also Parallel
rasterization architectures, image-parallel
International Standards Organization, see
ISO
Internode, 1028
Interobject communication, 1019
Interobject reflections, 758-761
Interpolation, 1051, see also Shading
camera, 1064, 1077
color, 598-599
linear, 1060
orientation, 1063
spherical linear, 1063
Intersection formula
between circle and line, 1100
between line and plane, 1101
InterViews, 452
Inverse, see Matrix, inverse of
Inverse Fourier transform, 625
Invisible-surface table, 685
Irradiance, 762
ISO (International Standards Organization),
16, 285
Isosurface, 1035-1036, 1047
Italic, see Character, italic, Font
Item buffer, 782, 796

Iterated function system (IFS), 846-849
modeling, 1026

Jaggies, 14, 132, 628, see also Aliasing,
Antialiasing

Joystick, 191, 350-351, 355, 358, 360

Joyswitch, 191, 360

JPL, 607

Julia-Fatou set, 1021

Just-noticeable color difference, 578

k, (ambient-reflection coefficient), 723
ky (diffuse-reflection coefficient), 724
k; (intrinsic color), 722-723
k, (specular-reflection coefficient), 729
k, (transmission coefficient), 754
Kerning, 129
Keyboard, 194, 351, 358, 362, 372-373,
377, 404, 406
chord, 352
logical input device, 46, 52, 188,
436
Key-frame, 1058
Kinematics, 1074-1076
Knight, stained glass, 1050
Knot, cubic curve, 491, 496
Kochanek—Bartels spline, see Splines,
Kochanek-Bartels

L (vector to light L), 723
Label, structure element, 324
Lambertian reflection, 723
Lambert's law, 724

form, 394
meaning, 394
Lap-dissolve, 841
Latency, 874, 917
Lateral inhibition, 735
Law of least astonishment, 404, 413
Lazy evaluation, 785
Lazy menus, see Menus, drop-down
LCD, 641, see also Liquid crystal display
Length, of a vector, 1095
Lerp, see Linear interpolation
Level surface, 1035-1036, 1047, see also
Isosurface
Lexical design, 395, see also Hardware
binding design
Lexidata Lex 90, 908
L-grammars, 1027
Liang—Barsky line-clipping algorithm, see
Clipping, Liang-Barsky line algorithm
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Light, see Ambient light, diffuse light,
illumination, etc.
Light-emitting diode (LED), 355
Light pen, 193, 350
Light source see also Illumination
attenuation, 725-727
attenuation factor (f,), 725
colored, 725-726
cones, 733
directional, 612, 725
extended, 613, 772-773, 789, 793, 799
flaps, 733
floodlight, 733
goniometric diagram, 732
overflow, 734
point, 612, 723
sky, 799
spotlight, 733
Warn controls, 731-734
Light valve display, 164
Lighting, 868869, B78, see also
Illumination
Lightness, color, 574-575, 579
Line, see also Scan conversion
contour, 667
haloed, 667-668
implicit equation, 1112
parametric equation, 1086
style, 109, 945
thickness, 945
Line drawing, 9
Linear combination, 1085
Linear expression, 895-896
Linear-list notations, see¢ Animation,
linear-list notations
LinearSoftFill, 983, 984
Linguistic interaction task, 360, 374
LINKS-1, 911
Liquid crystal display (LCD), 161-163, 372
List-priority algorithms, 672-680, see also
O

spacc-partitioning

Local control, cubic curves, 491, 493
Locator, 20, 917
Locator logical device, 188, 436439

absolute, 350

continuous, 350-351

direct, 350

discrete, 350-351

indirect, 350

relative, 350

3D, 328, 355-357

Index 1163

2D, 41-51

Logical input device, 41-42, 188, 349,
436-439, see also Keyboard, Locator

Logical visual organization, 418-422

Logic-enhanced memory, B93-899, see also
Parallel rasterization architectures,
image-parallel

Look-up table (LUT), B45, see also Video
look-up table

Low-pass filtering, 629

Luminance, color, 563, 575-576, 589, 590

Luminescence, 837, 839

Luminous efficiency function, 576-577, 579

Luminous energy, 581

Luxo, Jr., 1052, 1077

m (RMS of microfacets), 765
Mach bands, 735-736, 738
Macintosh, 348, 353, 368, 371, 373, 397,
400, 411, 413, 425, 430, 441, 444
operating system, 996
Macro command, 413
Mandelbrot set, 1021-1022
Mandrill, smiling face of, 618
Man-machine dialogue, see User-computer
dialogue
Marble, 1046
Marching cubes, 820, 1035, 1048
Marionette, graphical, 1073
Marker, output primitive, 28
Master, object hierarchy, 291
Material volume, 1038
Material properties, 613, 723
Matrix
determinamt of, 11031105
identity, 1103
inverse of, 1105-1106
multiplication of, 1103
transpose of, 1105
Matrix addressing of display, 162
Matrix Multiplier, 877-878
Matte volume, 1038
McDonnell-Douglas, 919
Measure, logical input devices, 42, 45-47
Measure of an interaction device, 436
Median-cut algorithm
color, 600
Medical imaging, 816, 1037-1039
Megatek Sigma 70, 891
Memorization, 413-414

recall, 402, 414
recognition, 402, 414

1238



1164  Index

Menus, 402-404, 410-411, 420
appearing, 367
. 369
hierarchical, 364-367
order, 364
pie, 370
pop-up, 348, 367-368, 370
pull-down, 49-50, 54-58, 367
pull-out, 367, 369
static, 367
Metafile, 333, 844
Metamer, color, 576, 579
Mickey UIMS, 455456
Microfacets, 764
Micropolygons, 811
Microsoft, 348, 368, 373, 382
MIKE UIMS, 465
MIMD, see Parallelism
MIP map, 826
Mitering, 962
Mnemonic command names, 413
Modality, attribute specification, 30
Mode, input devices, 44
Modeling, 286-288
Modeling, see Geometric modeling
Modeling transformation, see Transformation,
modeling
Modes
context-sensitive syntax, 417
harmful, 414
useful, 414
user interface, 414418
Mole interaction device, 351
Molecular modeling, 607, 698, 10471048,
1057
Monochrome, see Bilevel
Moon, non-Lambertian surface, 763
Motion blur, 615, 789
Mountains, fractal 1022-1024
Mouse, 15, 191, 350-351, 354, 357,
360-361, 364, 371, 373, 376, 380,
406, 411, 416, see also Locator
Mouse ahead, 438
Moving-points path, 1061
Multipass transformation, 821-822, 828-832
Multiple control points, curves, 495-496,
499
Multiple instruction multiple data (MIMD),
see Parallelism
Multiprocessing, 873-876
Munsell color-order system, 574

N (surface normal), 723

n (specular reflection exponent), 729
Name set, PHIGS, 332
NASA, 607
NASA 11, see General Electric NASA 11
National Television System Committee
(NTSC), 180, 589-590
Natural cubic spline, 491
Natural language dialogue, 402-403
Natural phenomena, 1043
Necker cube illusion, 608
Negative orientation, 1105
Network, see Structure network
Newell-Newell-Sancha algorithm, see
Depth-sort algorithm
NeWS window system, 440444, 452
iteration, 699, 1109-1110
Newton's method, 1110
NeXT, 353, 400, 468
Nicholl-Lee-Nicholl algorithm, see Clipping,
Nicholl-Lee—Nicholl line algorithm
Noise function, 1016
Noise-based modeling, 1043
Noise-based texture mapping, 10161018
Noll box, 355
Nominative information, coding, 422424
Nonexterior rule, 965
Nonspectral color, 583
Normal
to bicubic surface, 522-523
to plane, 217, 476
to quadric surface, 529
to surface, 807
Normalizing transformation
parallel, 260-267
perspective, 268-271
Notches, in scan conversion, 971
NTSC, see National Television System
Committee
Number wheel interaction technique, 375
NURBS, see Splines, Nonuniform, rational
B-splines (NURBS)
Nyquist rate, 627628, 788-790

0y (object diffuse color), 726

0,, (object specular color), 730

Object buffer, 672

Object hypothesis, 608

Object modeling, see Geometric modeling
Object parallelism, see Parallel rasterization
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Object-precision, see Visible surface
determination
Octree, 550-555, 559-560
linear notation, 554-555
neighbor finding, 552-554
PM octree, 555
regularized Boolean set operations,
552-553
rotation, 552
visible-surface determination, 695-698
Odd-parity rule, polygons, 34
Omnimax film format, 230
Opacity, 754
Opague operator, 839
OPEN LOOK, 452
Open Software Foundation (OSF), 430, 452
Ordered dither, 568
Ordinal information, coding, 422424
Orientation of a basis, 1105
Orthogonal, 1102
Orthonormal basis, 1102
Oslo algorithm, cubic curves, 510
Ostwald color-order system, 574
Outcode, clipping, 113
Output pipeline, 68, see also Rendering
Output primitives, 18, 19
area-defining, 107
geometric modeling, 296-298
raster graphics, 26-30
respecification, 61-63
Overhauser splines, see Splines,
Catmull-Rom

Page mode, 858
Page-description languages, 998-1006
Painter's algorithm, 674
Painting
implementation, 45
versus drawing, 61
PAL television standard, 180
Palette, 41
Pan-zoom movie, 1059, 1064-1065
Parabola, specification, 1007
Parallax, 915
Parallel front-end architectures, 880882
Parallel projection
front, 232, 250
oblique, 232
orthographic, 232, 250
side, 232
top, 232, 251
Parallel rasterization architectures, 887-899
hybrid-parallel, 902-907
image-parallel, B87-899
object-parallel, 899902
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Parallelism, 875-876
multiple instruction multiple data
(MIMD), 876
single instruction multiple data (SIMD),
B75-876
Parallelogram rule, 1084
Parametric surfaces, 471, 516-528
Parametric bivariate polynomial surface
patches, 472, see also Splines
Parametric continuity, 480482
Parametric cubic curves, see Curves,
parametric cubic
Parametric polynomial curves, see Curves,
parametric polynomial
Parametric representation, in line clipping,
118
Parametric velocity, 482
Paraxial ray, 787
Parity rule, 965
Particle systems, 1031-1034
Partitioned frame buffer, see Parallel
rasterization architectures,
image-parallel
Patch, see Splines, surface patch
Path tracing, 792
Pattern, output attribute, 34-37
Pattern filling, see Filling, pattern
Pattern mapping, see Surface detail
Pattern recognition interaction technigue,
370, 372
P-curves, 1067
Pel, 1
Pen, sonic, 357
Pen polygon, 1010
Pen style, 109
Pencil, 787
test, 1058
tracing, 787
Perceived intensity of light, 563
Perceptually uniform color space, 584
Peridot, 456, 464
Perpective transformation, see
Transformation, perspective
Persistence, phosphor, 157
Person-to-person dialogue, 393
Perspective foreshortening, 231, 280
Perspective projection
one-point, 231
three-point, 232
two-point, 232, 247, 249
Perspective transformation, 657-660
Phantom vertices, cubic curves, 495
Phase, 977
angle, 626
shift, 624
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PHIGS, 16, see also SPHIGS
PHIGS +, 16, 862
Phoenix Data Systems Insight, 914
Phong, see lllumination, Phong, and
Shading, Phong
Phosphor, 155, 157, 564, 583, 580
Phosphorescence, 157
Photometer, 564, 587
Photorealism, 605
rendering, 16
Physically based modeling, 1039-1047
Pick
correlation, 4850
correlation implementation, 338
correlation object hierarchy, 329-331
identifier, 331
logical device, 188, 436437
logical input device, 42, 330
point, 113

Pixar Image Computer, 914
PixBit, 166, 863, see also BitBht
Pixel, 1

geometry, 133

cache, B85

replication, 105
Pixel-Planes, 894-897, 902
Pixel-Planes §, 905
Pixel-stream editor, B10-811
Pixmap, 13, 166, see also Bitmap, Canvas

patiern, 36
Planar geometric projection, 230
Plane

equation, 216, 476, 895-896

Plotter, 148-154, 564
drum, 149
electrostatic, 149
flatbed, 148
ink-jet, 152
Point light source, see Light source, point
Point of evaluation, 84
Polhemus, 3D digitizer 355-357

Polling, see Sampling

gon
area of, 1112
interior test, 34
Polygon clipping, see Clipping, polygon
Polygon creation, 383-384, 388
Polygon mesh, 471, 472, 473476, 871,
920-921
consistency, 475-476
Polygon table, 681
Polyhedron, 543
simple, 543
SPHIGS, 297
Polyline, 27, see also Scan conversion,

polylines
Portability, 15
application programs, 285
Positioning interaction task, see Interaction
task
Positive orientation, 1105
Postconditions, 465467
Postfiltering, 642, 818
PosSTSCRIPT, 441442, 514, 923-924, 963,
999-1006, 1081
Potentiometer, 352, 375, 594
POWER IRIS, 889-893
Preconditions, 465-467
Prefiltering, 642
Primaries, color, 577, 585, 587-588
Primitive instancing, 539
Primitives, see Output primitives
Printer
dot-matrix, 148
laser, 151
thermal-transfer, 152-153
Priority, display, 302
Procedural models, 1018-1019
Processing mode, keyboard, 46
Progressive refinement, 812, see also
Radiosity
Projection, 229
axonometric parallel, 233, 610
cabinet parallel, 235-236, 258
cavalier parallel, 235-236, 252, 258
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isometric parallel, 233, 252
oblique, 610
oblique parallel, 233

ic parallel, 232
paraliel, 230, 243

Projection plane, 230

Projection reference point (PRP), 238
Projection textures, 1018

Projector, 230

Prompts, 411-412

Pmlumty. visual, 418419

Put that there, 403

Putty, 1042

Quadratic interpolation, 497
polynomials, 504

Quadratic
Quadric surface, 471, 473, 528, 546, 698
Quadrilateral mesh, see Polygon, mesh
Quadtree, 550, 697

for image storage, 846

linear notation, 554555

neighbor finding, 552-554
Quantify interaction task, see Interaction task
Quantitative invisibility, 666
Quantization effects, see Antialiasing
Quaternion, 1063, 1081
Question-answer dialogue, 403
QuickDraw, 16, 963
R (direction of reflection), 729

Race conditions, 449
Radiance, 761

Radio button interaction technique, 369, 426,

452
Radiosity (8), 793
Radiosity methods, 722, 753, 775, 793-806
ambient term, 801
color bleeding, 795
delta form factors, 798
extended form factors, BD6
z-buffer, 806

Index 1167

form factor (F;), 794-799, 803-804
gathering, 801
Gauss—Seidel iteration, 795
Gouraud shading, 795, 806
hemicube, 796
mirror world, 805-806
progressive refinement, 800804
radiosity equation, T93-795
ray tracing, 803, 804-806
reflection frustum, 805
shooting, 801
specular reflection, 804806
substructuring, 799-800
vertex radiosities, 795
RAMDAC, see Video look-up table
Random dither, 568
Random scan, 9, 12
Random-scan display processor, 184-187
Rapid recall, 392
Raster, 11
display, 166, 187, 851861, see also
Cathode Rly Tube
Rnster;nphics
Raster image processor, 14 71
Raster lines, 11
Raster operation, 177-178, see also BitBlt,
PixBlt, Write mode
Raster scan, 12
Raster Technologies, Inc., 882
Rastering, 641
Rasterization, 606, 870-871, 882, see also
Scan conversion, Sludmg Visibility
determination
polygon, BE3-885, 891803, B9
scan-line algorithms, 870
speed of, 873
z-buffer algorithm, 870871
RasterOp, 172-174, 368, see also Raster

operation
Raster-scan generator, 167-168
Ratio information, coding, 422-424
Ray, eye, 701
Ray casting, 701 see also Ray tracing
in b-rep Boolean set operations, 546
Ray Casting Machine, 901
Ray tracing, 701-715, 753, 776-793,
804-806 see also Distributed ray tracing
adaptive supersampling, 714-715
adaptive tree-depth control, 783
antialiasing, 714-715
area sampling, 786787
beam tracing, 787, 793
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bounding volume, 705-706
compuling intersections, 702-704,
705-706

cone tracing, 786787

constructive solid geometry, 712-713

distributed ray tracing, 788-792

efficiency, 704-712, 782-785

from light sources, 792

hierarchy, 706-712

Kay-Kajiya bounding volume, 705-708

light buffers, 783-784

mass properties, 719

numerical precision problems, 781

octrees, 711

pencil tracing, 787

polygons, 703-704

primary rays, 778

ray classification, 784-785

ray tree, 778-779, 781

real time, 890

recursive, 722, 776-793

reflection mapping, 782

reflection rays, 778

refraction rays, 778

regularized Boolean set operations,

712-713

secondary rays, 778

shadow rays, 777

shadows, 776-777

slab, 705

space-time, 1078

spatial partitioning, 710-712

spheres, 702-703

stochastic sampling, 788-791

surface normal, 703-704
Ray-tracing architectures, 910-912
Reaction Handler, The, 458
Realism, see Photorealism
Reconstruction, 619, 636-642

sample and hold, 641

Rectangle write, 102

511, 512-514, 526-528
Redo command, 409410
Reference model, 945
Refinement, curves, 507
Reflected light, 574

Reflection, 614, see also Diffuse reflection,
direction of reflection, Specular reflection

Reflection mapping, 758-761, 782
antialiasing, 759

Refraction, 614

Refraction vector (T), 757

Refresh, 10, 12, 155, 157-158, 856, see also

I traversal
Refresh rate, 155, 170

chm:rllmnwg‘?ﬁ

bﬂundary-deﬁned 980
interior-defined, 980
Region checks, clipping, 113
Regularized Boolean set operations,
535-539, 547-548, 561, 702 see also
Constructive solid geometry
for binary space partitioning trees,
556-557
for boundary representations, 546-547
compared with ordinary Boolean set
operations, 536-538
for octrees, 552-553
for sweeps, 541
ray tracing, 712-713
Relaxation techniques, 1072
Renderers, design, 810-812
Rendering, 606
POSTSCRIPT, 999
Rendering, SPHIGS, see Display traversal
types, 323
Rendering equation, 776, 792
Rendering pipeline, 806-812
z-buffer, B06-808
global illumination, 809
Gouraud shading, 806-807
Iml-[ﬂ:n'mr 808
local illumination, 806—809
Phong shading, 808
ray tracing, 810
RenderMan, 280, 281, 811
Repeat command, 416
Request mode, 436-439
Resampling, 817, 832
Residual, 946-947
Resolution, 147, 153, 158, 160, 183,
B60-861
interaction tasks, 359, 375

Response time, see Latency
Reyes, 811-812

RGB color model, 584-587, 596-597

p (bidirectional reflectivity), 763

py (diffuse bidirectional reflectivity), 763

p, (specular bidirectional reflectivity),
T63-764

RIFF, 849

Right justification, 129

Ringing, 633

RIP, see Raster image ptmm.ur

Root, structure network, 299
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Root finding, 1109
Rotation
dynamic, 387
D, 215
2D, 203, 206
Rotation interaction task, see Interaction task
Rothstein code, 821
Route sheet, 1059

Row-preserving map, 828
Rubberband

circle drawing, 383

ellipse drawing, 383

feedback, 51-52

line drawing, 382

rectangle drawing, 382
Run-length encoding, 845, 854

S, (shadow coefficient), 745
Sample, SRGP input mode, 44-45
Sample and hold, 641
Sample mode, 437
Sample-driven interaction, 4244
SampleLocator, 438, 439
SamplePick, 437
SampleString, 437
Sampling, 619
area sampling, 621-623
importance sampling, 790-791
point sampling, 619621
sampling theory, 621, 623-628
unweighted area sampling, 621, 714
weighted area sampling, 622
Saturation, color, 574-575, 579-580, 584,
590-591
Saturn's rings, 1045
Scalar field, 1035, see also Image scaling
differential, 202, 210
D, 215
2D, 202, 205-206
Scan conversion, 14, 71, 870, 945065, see
also Rasterization
antialiased lines, 132-142
characters, 127-132
circles, 81-87
conics in gray-scale, 957
ellipse, 88-91
evaluation of algorithms, 946
filled primitives, 964-965
general circles, 949-951
general conics, 951-961
general ellipses, 951-961
general lines, 948-949
incremental line, 73-74
line, 72-81

Index 1169

midpoint circle, 8387
midpoint ellipse, 88-91
midpoint line, 74-81
outline primitives, 81
polylines, 949
rectangle, 91
text, 976-979
text strings, 130-132
thick general curves, 963-964
thick primitives, 104-109, 961
trapezoid, 99
triangle, 99
triangle mesh, 99
Scan line, 751, B83-884
Scan Line Access Memory (SLAM),
B97-899
Scan-line algorithm, 97, 680-686, 715, 737
regularized Boolean set operations, 684
Scan-line system, see Pipeline rasterization
architectures, i
Scanner, 195-197, 374
Scefo, 1066-1067
Scene radiance, 763
Schrider stairway illusion, 608-609
Scientific visualization, 5, 1057
Scissoring, 71, 110, 143, 870, 924, 995
Score, conductor's, 1069
Screen, printing, 570
Screen angle, printing. 568
Scroll, 182, 365
S-dynamics, 1069
SECAM television standard, 182
Second-order differences, circle scan
conversion, 85-87
Sectoring, 747
Segment, 176, 442
Segment storage, local, 176
Segments, in GKS, 16
Select interaction task, see Interaction task
Selection
by naming, 362
by pointing, 362-364
Self-luminous object, 574-575, 580
Self-occlusion, 724
Self-similarity, 1020
Semantic design, see Functional design
Sequence, see Action
Sequencing design, 394-395, 404, 406
ing rules, 393
Serpent UIMS, 466
Server-client window management system,
eI Y]
Set

boundary points, 535
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closed, 535
closure, 535
interior, 535
open, 535
regular, 536
regularization, 535
Shade, color, 574
Shade trees, 810
Shader, 810-811
Shading, 868-869, 870-871, see also
Rasterization
constant (flat, faceted), 734-735
dot-product interpolation, 739
Gouraud (intensity interpolation),
598-599, 613, 736-738
interpolated, 613, 735
model, 721
Phong (normal interpolation), 738-739
polygon mesh, 735-739
problems with interpolated shading,
739-740
Shadow map, 752
Shadows, 614, 745-753, 910
fake, 746
penumbra, 773
percentage-closer filtering, 753
region of influence, 749
scan-line, 746
shadow polygon, 749
shadow volume, 749, 772-773
tree, 751
sphere of influence, 749

two-pass z-buffer algorithm, 751-753

Shielding, viewports, 302
Shrinking raster, 157
Side effects, 409
SIGGRAPH, 15, 519
SIGHT, 911
Signal, 618
continuous, 618
discrete, 618

frequency spectrum, 623, 628

Silhouette edge, 698

Silicon Graphics POWER SERIES, 879,
B89-893

SIMD, see Parallelism

Similarity, visual, 418-421, 424

Simulation, 5, 1057

Sinc function, 632-635, 966

Singer/Link, 919

Single instruction multiple data (SIMD), see
Parallelism

Skeletal motion, 1049

Skeleton, 1061

Sketchpad, 8, 1040, 1071, 1076

Skin, 1014, 1049

Skitter, 378

Slerp, see Interpolation, spherical linear

Sliver polygons, 95

Slow-in/slow-out, 1060

Smalltalk, 996, 1073

SmethersBames prototyper, 454, 464

Smoke, 1031

Snakes, 1048

Snell’s law, 756, 778

Soft objects, 1047

Solid angle, 760-761

Solid nmdl:tiug. 532—5152 572, see also

Solid modeling representation
comparison, 559
conversion, 559-560
evaluated model, 559-560
unevaluated model, 559-560
Solid textures, 1015-1018
Sorting, bucket, 886, 903-904
Span, 883-884, 886, 980
of a set of vectors, 1085
Span calculation, 99, 108
Spatial integration, 568, 599
Spatial occupancy enumeration, 549-550,
558, 559
Spatial partitioning, 664, 686, 710-712
adaptive, 664
Spatial partitioning representations,
548-557
Spatial resolution, 568-569
Spatial subdivision, see Spatial partitioning
Spatial task, 360, 374
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Special orthogonal matrix, 207, 216
Spectral energy distribution, 575-576,
579-580, 582
Spectral sampling, 773
Spectral-response functions, 576-577
Spectroradiometer, 576, 582, 586
Spectrum, 575
Specular reflection, 728-731
coefficient of (k,), 729
color shift, 768
exponent (n), 729
Speech recognition, see Voice recognition
Speech synthesizer, see Voice synthesizer
Speed of learning, 391-392, 403, 418
Speed of use, 391-392, 398, 403, 411
SPHIGS, 16, 285-346, 482, see also
Hierarchy, structure network, Structure
network, and Structure
interaction handling, 328-33]
object modeling, 304-314
output attributes, 298
output primitives, 296-298
viewing operations, 299-302
Splines, 482
Bézier curves, 482, 488-491, 515-516
Bézier surfaces, 521-522
B-spline curves, 491
B-spline surfaces, 522
B-splines, 505-507, 515-516
Catmull-Rom, 504-505, 515-516
deformations, 1014
hierarchical, 1012-1014
hierarchical B-spline refinement, 510
Kochanek-Bartels, 507, 515-516
nonuniform, nonrational B-spline curves,
495-500, 515-516
nonuniform, rational B-splines (NURBS),
502, 547
curve segments, 501-504
use in animation, 1060
used for characters, 131
Spot size, see Dot size
Spotlight, 733
Sprite, 180, 1065
Square wave, 626
Squash and stretch, 1077
SRAM (Static random-access memory), 857
SRGP, 16, 25-66, 436
framebuffer control, 52-60
interaction handling, 40-52
output attributes, 30-38

Index 1171

output primitives, 26-30
SRGPcopyPixel, 69

implementation, 132
Staging, see Animation, staging of
Staircasing, 132
Standard affine plane, 1089
Standard affine, 3-space 1089
Standard graphics pipeline, see Graphics

pipeline

Standardized object, 304
Standards, 15

graphics packages, 285
Starter kit of commands, 392, 413
State variables, 457-464, 466
State-transition diagram, 363, 382, 383, 384,

404, 457-464

Static random-access memory, see SRAM
Stellar GS2000, 889, 910, 912-913
Steradian, 760-761
Stereo

display, 915-916
pair, 616, 376
Stereopsis, 616-617
Stimulus-response (S-R) compatibility, 359,
378-380
Stochastic sampling, 788-791, 812
Storage, see Structure network
Storage, primitives, see Structure network
Storyboard, 430, 1058
Stream erosion, 1043
String logical device, 436
Stroke, 9
logical input device, 42
Structure, 293, 295, see also Hierarchy,
structure network
referral, 341, see also Display traversal,
Hi
editing, 295, 324-327
elision, 340
example, 311-314

hierarchy, 308-314
modeling transformation, 304-308, 315,
336

pick correlation, 329
Structured display file, see Hierarchical
display list
Structures, 16
Stucco, 1055
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Summed area table, 826-827
SunView, 452-454
Superposition, principle of, 966
Supersampling, 620
adaptive, 643-644
stochastic, 644-645, 788-791
Support, of filter, 136, 631
Surface detail. 741-745
bump mapping, 744
displacement mapping, 745
solid texture, 745
surface-detail polygons, 741
texture mapping, 741-744, 800
transparency mapping, 745
Surface modeling, 471
Surface normal
in Boolean set operations, 537-539, see
also Normal, to surface
for implicitly defined surfaces, 1102
Surface patch, see also Curved surfaces
Blinn display algorithm, 698699
Catmull recursive-subdivision display
algorithm, 698-699
Clark display algorithm, 700-701
cracks, 527-528, 701, 737
display algorithm,
700-701

Whitted display algorithm, 698699
Surface table, 684
Sutherland-Hodgman Polygon—Clipping

algorithm, see Clipping,

poutﬁx. 416
prefix, 415, 416, 418

Synthetic camera, 299
Systolic Array Graphics Engine (SAGE),
903-904

T (refraction vector), 757

Tablet, 188, 350-351, 353-354, 359, 372
resistive, 189
sonic, 189
stylus, 188

Tactile continuity, 371

TAE-Plus, 430

Tangent vector, 479-488

Tearing, 1042

Tektronix, 161

Template, 201

T&wg; procedure, geometric modeling,

Temporal aliasing, see Aliasing, temporal
Tension parameter, S-splines, 505-506
Texas Instruments TMS34020, 862-864
Texel, 742, see also Character
output primitive, 3840
Text entry speed, 374
Text-extent, 129
Texture, 611, 614
surface, 910
Texture mapping, see Surface detail
Texture space, 1015
#, (angle between L and N), 723
6, (angle of incidence), 756
6, (angle of refraction), 756
Thick lines, see Scan conversion of thick
primitives
Thickness, 105
ThingLab, 1072
Thinking Mad:;;: Connection Machine, 911
Tiling, 101
Time delay, input, 439
Timt, color, 574
Tint fill, see Filling algorithms, tint fill
Tone, color, 574
Top-down design, user interface, 404, 429
~ parrow, see [llumination,
orrance—Sparrow
Total internal reflection, 758, 778
Touch panel, 193, 350-351, 354-355, 359
Trackball, 191, 350, 355, 379-380
Tracking system, see Locator
Transformation, 201-226
affine, 207, 598, 1106
construction of, 1107
of coordinate system, 222-226
geometric, 16, 877-878
image, 182-183
incremental, 213
linear, 1106
modeling, 280, B68
of normal vectors, 217
normalizing, 259
in object modeling, 291, 304-308, 315,
336

perspective, 275
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of points in an affine space, 1107
rigid body, 207
of vectors in a vector space, 1107
vmng‘ 869
viewing in SPHIGS, 299-302
window-to-viewport, 210-212
Transformation composition, 208-210,
217-222
Transformation matrix, 210, see also
State-transition network
augmented (ATN), 461463
augmented recursive, 462-463
recursive (RTN), 460-463
Translation
ib, 214
2D, 201-202
Transmission coefficient (k,), 754, 778
Transparency, 614, 754-758
approximation to changing k,, 756
critical angle, 758
filtered, 755
z-buffer implementations, 755-756
interpolated, 754-755
nonrefractive, 754-756
refractive, 757
screen-door, 755
of surfaces, 909-910
total internal reflection, 758
Transpose, see Matrix, transpose of
Traversal, see Display traversal
Trees, modeling of, 1022, 1027-1031
Triangle, signed area of, 1112
Triangle Processor and Normal Vector
Shader, 900
Triangle strip, see Polygon, mesh
Triangulation, 143

Trimming curves, 528

Tristimulus theory, color, 576

Tristimulus values, 582

Trivariate Bernstein polynomials, see
Bernstein polynomials, trivariate

Trivial acceptance, 113

Trivial rejection, 113

Turbulence, 1046

Turning vertex, 932

Tweaking, 544, 558, 561

Two-bit graphics, 853

2-manifolds, 542-543, 547-548

Two-pass transformation, see Multipass
transformation

Typeahead, 438

Typeface, see Character, typeface

Typography, digital, 977

Marin 34

Index 1173

Ultimate display, 917

Undercolor removal, 599

Undo command, 404, 409-410, 460

Uniform nonrational B-spline curves,
491495, 515-516

Uniformly shaped B-spline curves, 505-506

Update, screen, see Display traversal

User characteristics, 429

User interface, 5, 561

User interface design, 348, 391-392, 405,
421, 429, 458

User Interface Design Environment (UIDE),
466467

User interface language, see Language

User Interface Management System (UIMS),
348, 456468

User interface prototype, 430

User profile, 413

User requirements, 429

User-computer dialogue, 380, 392-395

User-computer interaction, see Interaction

User's model, HComuplmldmign

Utah Raster Toolkit, 845, 849

V (direction to viewpoint), 729
Valuator logical device, 42, 188, 194, 352,
436
Value discretization, 817
Vanishing points, 231
Variational calculus, 1052
Variation-diminishing property, curves, 509
Varifocal mirror, 916-917
Vector cross-hatching, 945
Vector display, see Random-scan display
Vector generator, 9
Vector graphics, 9
Vector space, 1083-1108
Vectorize, 196-197
Vectors
angle between, 1096
normalization of, 1096
projection of, 1097
Vertical retrace, 168, 856

445
_ . 164168, 179-184
fields, , video

Video games, 1065
vw 16921709 369, 565,

mw 447
Video mixing, 184
Video multiplexer, 860
Video RAM (VRAM), 178
Video random-access memory, see VRAM
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Video signal, 640
View, 19
mapping matrix, 242, 261
orientation matrix, 242, 261
plane, 237-240
plane normal (VPN), 237
reference point (VRP), 237
up vector (VUP), 238
View volume, 229, 239, 253, 260, 868
canonical, 259, 275-276
Viewing operation, 86, 258
SPHIGS, 299—!123_23“
Viewing process, 2
Vir.wpﬁ‘l, 210, 241-242, 278, 443-445
SPHIGS, 300-302
Virtual buffers, 902-903
Virtual buffers, see Parallel rasterization
architectures, hybrid-parallel
parallel, Mm
Virtual processors,
Virtual world, 4, 617, see also Artificial
reality, Head-mounted display
Visibility, in geometric model, 332
Visibility determination, see Rasterization
Visible-line determination, 611, 649
Appel’s algorithm, 666-667
Roberts’s algorithm, 665-666
Visible-surface determination, 13, 612,
649-720, see also Arca-subdivision
algorithm, Depth-sort algorithm,
List-priority algorithm, Ray tracing
algorithm, Scan line algorithm, Subpixel
area subdivision algorithm, Warnock's
algorithm, Weiler-Atherton algorithm,
z-buffer algori
curved surfaces, 698-701
efficiency, 656-665
formalization, 717-718
functions of two variables, 651-656
horizon-line algorithm, 652
image precision, 650
object precision, 650
octree, 695-698
sorting, 715
voxels, 697
Visual
acuity, 569
balance, 427
continuity, 368, 408
elements, 425
organization rules, 418-422
proportion, 427
Voice recognition, 352-353, 362, 402
Voice synthesizers, 353, 452

Volume rendering, 914, 1034-1039
Von Koch snowflake, 1020
Voxel, 549
visible-surface determination, 697
VRAM (video random-access memory),
B859-861, 890, 894, 921

wheel illusion, 1058
WaitEvent, 438439
Warn lighting controls, 731-734
Warnock’s algorithm, 686689, 714, 716
Waves, 1043
Wedges, 100
Weiler polygon algorithm, see Clipping,
Weiler polygon algorithm

Weiler—Atherton algorithm, 689-693, 747
What you see is what you get (WYSIWYG),
Wheel of reincarnation, 175
Widget, 452-456
Width scans, 972
Winding rule, 965
Window

hardware-assisted, 907-908

hierarchical, 445446

1D bits, 908

pick, see Pick window

priority, 908

world coordinate, 210, 229, 237, 443445
Window events, 447-451
Window management systems, 439443, 451
Window manager, 1, 176, 439-451, 601
Window system, 440
Window-to-viewport mapping, 210, 359
Winged-edge data structure, 545-546
Wireframe, 560

rendering, 323
Workstation, 145, 866, 890-893
World-coordinate system, 60
Write mode, 58

X Window System, 16, 440-441, 452, 963,
996
Xerox, 348, 364, 397

¥ldwblor model, 584, 589-590, 597
Yon clipping plane, see Clipping plane, back
Young Sherlock Holmes, 1050

z-Buffer algorithm, 13, 668-672, 685, 698,
716, 751-753, 799, 812

z w problem, 718-719

Zoom, 182, 362, 639
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