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Fig. 15.22 The z-buffer. A pixel" s shade is shown by its color, its z value is shown as a 
number. (a) Adding a polygon of constant z to the empty z-buffer. (b) Adding another 
polygon that intersects the first. 

the surface has not been determined or if the polygon is not planar (see Section 11.1.3), 
z(x, y) can be determined by interpolating the z coordinates of the polygon's vertices along 
pairs of edges, and then across each scan line, as shown in Fig. 15.23. Incremental 
calculations can be used here as well . Note that the color at a pixel does not need to be 
computed if the conditional determining the pixel 's visibility is not satisfied. Therefore, if 
the shading computation is time consuming, additional efficiency can be gained by 
performing a rough front-to-back depth sort of the objects to display the closest object~ 
first. 

The z-buffer algorithm does not require that objects be polygons. Indeed, one of its 
most powerful attractions is that it can be used to render any object if a shade and a z-value 

y 

Fig. 15.23 Interpolation of z values along polygon edges and scan lines. z. is 
interpolated between z, and z2; z0 between z, and z3; z0 between z. and z0. 
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15.4 The z-Buffer Algorithm 671 

can be determined for each point in its projection; no explicit intersection algorithms need 
to be written. 

The z-buffer algorithm perfomts radix sons in x andy, requiring no comparisons, and 
its z sort takes only one comparison per pixel for each polygon containing that pixel. The 
time taken by the visible-surface calculations tends to be independent of the number of 
polygons in the objects because, on the average, the number of pixels covered by each 
polygon decreases as the number of polygons in the view volume increases. Therefore, the 
average size of each set of pairs being searched tends to remain fixed. Of course, it is also 
necessary to take into account the scan-conversion overhead imposed by the additional 
polygons. 

Although the z-buffer algorithm requires a large amount of space for the z-buffer, it is 
easy to implement. If memory is at a premium, the image can be scan-converted in strips, 
so that only enough z-buffer for the strip being processed is required, at the expense of 
performing multiple passes through the objects. Because of the z-buffer's simplicity and the 
lack of additional data structures, decreasing memory costs have inspired a number of 
hardware and firmware implementations of the z-buffer, examples of which are discussed in 
Chapter 18. Because the z-buffer algorithm operates in image precision, however, it is 
subject to aliasing. The A-buffer algorithm [CARP84], described in Section 15.7. 
addresses this problem by using a discrete approximation to unweighted area sampling. 

The z-buffer is often implemented with 16- through 32-bit integer values in hardware, 
but software (and some hardware) implementations may use floating-point values. 
Allhough a 16-bit z-buffer offers an adequate range for many CAD/CAM applications, 16 
bits do not have enough precision to represent environmentS in whicb objectS defined with 
millimeter detail are positioned a kilometer apart. To make matters worse, if a perspective 
projection is used , the compression of distant z values resulting from the perspective divide 
has a serious effect on the depth ordering and intersections of distant objects. Two pointS 
that would transform to different integer z values if close to the view plane may transform to 
the same z value if they are farther back (see Exercise 15.13 and [HUGH89)). 

The z-buffer's finite precision is responsible for another aliasing problem. Scan­
conversion algorithms typically render two different setS of pixel.s when drawing the 
common part of two collinear edges that stan at different endpoints. Some of those pixels 
shared by the rendered edges may also be assigned slightly different z values because of 
numerical inaccuracies in performing the z interpolation. This effect is most noticeable at 
the shared edges of a polyhedron's faces. Some of the visible pixels along an edge may be 
part of one polygon, while the rest come from the polygon's neighbor. The problem can be 
fixed by inserting extra vertices to ensure that vertices occur at the same points along the 
common pan of two collinear edges. 

Even after the image has been rendered, the z-buffer can still be used to advantage. 
Since it is the only data structure used by the visible-surface algorithm proper, it can be 
saved along with the image and used later to merge in other objects whose z can be 
computed. The algorithm can also be coded so as to leave the z-buffer contents unmodified 
when rendering selected objects. l f the z-buffer is masked off this way, then a single object 
can be written into a separate set of overlay planes with hidden surfaces properly removed 
(if the object is a single-valued function of x and y) and then erased without affecting the 
contents of the z-buffer. Thus, a simple object, such as a ruled grid, can be moved about the 
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672 Visible-surface Determination 

image in x, y, and z. to serve as 3 "30 cursor" that obscures and is obscured by the objects 
in the environment. Cutaway views can be created by making the z-buffer and frame-buffer 
writes contingent on whether the z value is behind a cutting plane. If the objects being 
displayed have a single z value for each (x, y), then the z-buffer contents can also be used to 
compute area and \IQiume. Exercise 15.25 e11plains how to use the z-buffer for picking. 

Rossignac and Requicha [ROSS86] discuss how to adapt the z-buffer algorithm to 
handle objects defined by CSG. Each pixel in a surface's projection is written only if it is 
both closer in z and on a CSG object constructed from the surface. Instead of storing only 
the point with closest z at each pixel , Atherton suggests saving a list of all points, ordered by 
z and accompanied by each surface's identity, to fonn an object buffer [ATHE8 1 ]. A 
postprocessing stage determines how the image is displayed. A variety of effects, such as 
transparency, clipping, and Boolean set operations, can be achieved by processing each 
pixel's list , without any need to rc-scan convert the objects. 

15.5 LIST-PRIORITY ALGORITHMS 

List-priority algorithms detem1ine a visibility ord.ering for objects e nsuring that a correct 
picture results if the objects are rendered in that order. For exumple, if no object overlaps 
another in z, then we need only to sort the objects by increasing z, and to render them in that 
order. Farther objects are obscured by closer ones as pixels from the closer polygons 
overwrite those of the more d istant ones. If objects overlap in z, we may still be able to 
detcnnine a correct order, as in Fig. 15.24(a). If objects cyclically overlap each other, as 
Fig. t5 .24(b) and (c), or penetrate each other, then there is no correct order. In these cases, 
it will be necessary to split one or more objects to make a linear order possible. 

List-priority algorithms are hybrids that combine both object-precision and image­
precision operations. Depth comparisons and object splitting are done with object 
precision. Only scan conversion, which relies on the ability of the graphics device to 
overwrite the pixels of previously drawn objects, is done with image precision. Because the 
list of sorted objects is created with object precision, however, it can be redisplayed 
correctly at any resolution. As we shall see, list-priority algorithms differ in how they 
detennine the sorted order, as well as in which objects get split , and when the splitting 
occurs. The sort need not be on z, some objects may be split that neither cyclically overlap 
nor penetrate others, and the splitting may even be done independent of the viewer's 
position. 

y y 

(a) (b) (c) 

Fig. 15.24 Some cases in which z extents of polygons overlap. 
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15.5 List-priority Algorithms 673 

15.5 .1 The Depth-Sort Algorithm 

The basic idea of the depth-sort algorithm. developed by Newell, Newell , and Sancha 
[NEWE72], is to paint the polygons into the frame buffer in order of decreasing distance 
from the viewpoint. Three conceptual steps are performed: 

I. Sort all polygons according to the smallest (farthest) z coordinate of each 

2. Resolve any ambiguities this may cause when the polygons' z extents overlap, splitting 
polygons if necessary 

3. Scan convert each polygon in ascending order of smallest z coordinate (i.e., back to 
front). 

Consider the use of explicit priority, such as that associated with views in SPHl GS. 
The explicit priority takes the place of the minimum z value, and there can be no depth 
ambiguities because each priority is thought of as corresponding to a different plane of 
constant z. This simplified version of the depth-sort a.lgorithm is often known as the 
painter's algorithm, in reference to how a painter might paint closer objects over more 
distant ones. Environments whose objects each exist in a plane of constant z, such as those 
of VLSJ layout, cartography, and window management, are said to be ~ and can be 
correctly handled with the painter's algorithm. The painter's algorithm may be applied to a 
scene in which each polygon is not embedded in a plane of constant z by sorting the 
polygons by their minimum z coordinate or by the z coordinate of their centroid. ignoring 
step 2. Although scenes can be constructed for which this approach works, it does not in 
general produce a correct ordering. 

Figure 15.24 shows some of the types of ambiguities that must be resolved as part of 
step 2. How is this done? Let the polygon currently at the far end of the sorted list of 
polygons be called P. Before th.is polygon is scan-converted into the frame buffer, it must 
be tested against each polygon Q whose z extent overlaps the z extent of P, to prove that P 
cannot obscure Q and that P can therefore be written before Q. Up to five tests are 
perfom1ed, in order of increasing complexity. As soon as one succeeds, P has been shown 
not to obscure Q and the next polygon Q overlapping Pin z is tested. lf all such polygons 
pass, then Pis scan-converted and the next polygon on the list becomes the new P. The five 
tests are 

I. Do the polygons' x extents not overlap? 

2. Do the polygons' y extents not overlap? 

3. ls P entirely on the opposite side of Q's plane from the viewpoint? (This is not the case 
in Fig. 15.24(a), but is true for Fig. 15.25.) 

4. Is Q entirely on the same side of P's plane as the viewpoint? (This is not the case in 
Fig. 15.24(a), but is true for Fig. 15.26.) 

5. Do the projections of the polygons onto the (x, y) plane not overlap? (This can be 
determined by comparing the edges of one polygon to the edges of the other.) 

· Exercise 15.6 suggests a way to implement tests 3 and 4. 
If all five tests fail, we assume for the moment that P actually obscures Q, and therefore 

test whe.ther Q can be scan-converted before P. Tests I , 2, and 5 do not need to be repeated, 
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674 Visible-surface Determination 

.-------------x 

z 

Fig. 15.25 Test 3 is true. 

but new versions of tests 3 and 4 are used, with the polygons reversed: 

3'. Is Q entirely on the opposite side of P 's plane from the viewpoint? 

4'. Is P entirely on the same side of Q's plane as the viewpoint? 

ln the case of Fig. 15.24(a), test 3' succeeds. Therefore, we move Q to the end of the list 
and it becomes the new P. In the case of Fig 15.24(b), however, the tests are still 
inconclusive; in fact, there is no order in which P and Q can be scan-converted correctly. 
Instead, either P or Q must be split by the plane of the other (see Section 3.14 on polygon 
clipping, treating the clip edge as a clip plane). The original unsplit polygon is discarded, 
its pieces are inserted in the list in proper z order, and the algorithm proceeds as before. 

Figure 15.24(c) shows a more subtle case. It is possible for P, Q, and R to he oriented 
such that each polygon can always he moved to the end of the list to place it in the correct 
order relative to one, but not both, of the other polygons. This oould result in an infinite 
loop. To avoid looping, we must modify our approach by marking each polygon that is 
moved to the end of the list. Then, whenever the first five tests fail and the current polygon 
Q is marked, we do not try tests 3' and 4'. Instead, we split either P or Q (as if tests 3' and 
4' had both failed) and reinsert the pieces. 

Can two polygons fail all the tests even when they are already ordered correctly? 
Consider P and Q in Fig. 15.27(a). Only the z coordinate of each vertex is shown. With P 
and Q in their current position, both the simple painter' s algorithm and the full depth-sort 
algorithm scan convert P first. Now, rotate Q clockwise in its plane until it hegins to 
obscure P, but do not allow P and Q themselves to intersect, as shown in Fig. 15.27(b). 
(You can do this nicely using your bands asP and Q, with your palms facing you.) P and Q 

.----------X 

z 

Fig. 15.26 Test 3 is false, but test 4 is true. 
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Fig. 15.27 Correctly ordered polygons may be split by the depth-sort algorithm. 
Polygon vertices are labeled with their z values. (a) Polygons P and Q are scan-converted 
without splitting. (b) Polygons P and Q fail all five tests even though they are correctly 
ordered. 

have overlapping z extents , so they must be compared. Note that tests I and 2 (x and y 
extent) fail, tests 3 and 4 fail because neither is wholly in one half-space of the other, and 
test 5 fails because the projections overlap. Since tests 3' and 4' also fail, a polygon will be 
split. even though P can be scan-<Jonverted before Q. Although the simple painter's 
algorithm would correctly draw P first because P has the smallest minimum z coordinate, 
try the example again with z = -0.5 at P's bottom and z = 0.5 at P's top. 

15.5 .2 Binary Space-Partitioning Trees 

The binary space-partitioning (BSP) tree algorithm, developed by Fucbs, Kedem, and 
Naylor [FUCH80; FUCH83], is an extremely efficient method for calculating the visibility 
relationships among a static group of 30 polygons as seen from an arbitrary viewpoint. It 
trades off an initial time- and space-intensive preprocessing step against a linear display 
algorithm that is executed whenever a new viewing specification is desired. Thus, the 
algorithm is well suited for applications in which the viewpoint changes, but the objects do 
not. 

The BSP tree algorithm is based on the work of Schumacker [SCHU69], who noted 
that environments can be viewed as being composed of clusters (collections of faces), as 
shown in Fig. 15.28(a). U a plane can be found that wholly separates one set of clusters 
from another, then clusters that are on the same side of the plane as the eyepoint can 
obscure, but cannot be obscured by, clusters on the other side. Each of these sets of clusters 
can be recursively subdivided if suitable separating planes can be found. As shown in Fig. 
J5 .28(b), this partitioning of the environment can be represented by a binary tree rooted at 
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Fig. 15.28 Cluster priority. (a) Clusters 1 through 3 are divided by partitioning planes 
Pl and P2, determining regions A through Din which the eyepoint may be located. Each 
region has a unique cluster priority. (b) The binary-tree representation of (a). (Based on 
(SUTH74a).) 

the first partitioning plane chosen. The tree 's internal nodes are the partitioning planes; its 
leaves are regions in space. Each region is associated with a unique order in which clusters 
can obscure one another if the viewpoint is located in that region. Determining the region in 
which the eyepoint lies involves descending the tree from the root and choosing the left or 
right child of an internal node by comparing the viewpoint with the plane at that node. 

Schumacker selects the faces in a cluster so that a priority ordering can be assigned to 
each face independent of the viewpoint, as shown in Fig. 15.29. After back-face culling has 
been performed relative to the viewpoint , a face with a lower priority number obscures a 
face with a higher number wherever the faces' projections intersect. For any pixel, the 
correct face to display is the highest-priority (lowest-numbered) face in the highest-priority 
cluster whose projection CO\'efS the pixel. Schumacker used special hardware to determine 
the front most face at each pixel. Alternatively, clusters can be displayed in order of increasing 
cluster priority (based on the viewpoint), with each cluster's faces displayed in order of their 
increasing face priority. Rather than take this two-part approach to computing an order in 
which faces should be scan-converted, the BSP tree algorithm uses a generalization of 
Schumacker's approach to calculating cluster priority. lt is based on the observation that a 
polygon will be scan-converted correctly (i.e., will not incorrectly OVCTiap or be incorrectly 

3 

1 

3 
1 

(a) (b) 
Viewpoint 

Fig. 15.29 Face priority. (a) Faces in a cluster and their priorities. A lower number 
indicates a higher priority. (b) Priorities of visible faces. (Based on (SUTH74a).) 
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15.5 List-priority Algorithms 617 

overlapped by other polygons) if all polygons on the other side of it from the viewer are 
scan-converted first, then it, and then all polygons on the same side of it as the viewer. We 
need to ensure that this is so for each polygon. 

The algorithm makes it easy to determine a correct order for scan conversion by 
building a binary tree of polygons, the BSP tree. Tbe BSP tree's root is a polygon selected 
from those to be d.isplayed; the algorithm works correctly no matter which is picked. The 
root polygon is used to partition the environment into two half-spaces. One half-space 
contains all remaining polygons in front of the root polygon, relative to its surface normal; 
the other contains all polygons behind the root polygon. Any polygon lying on both sides of 
the root polygon's plane is split by the plane and its front and back pieces are assigned to the 
appropriate half-space. One polygon each from the root polygon's front and back 
half-space become its front and back children, and each child is recursively used to divide 
the remaining polygons in its half-space in the same fashion. The algorithm terminates 
when each node contains only a single polygon. Pseudocode for the tree-building phase is 
shown in Fig. 15.30; Fig. 15.31 shows a tree being built. 

Remarkably, the BSP tree may be traversed in a modified in-order tree walk to yield a 
correct priority-ordered polygon list for an arbitrary viewpoint. Consider the root polygon. 
It divides the remaining polygons into two sets, each of which lies entirely on one side of the 
root's plane. Thus, the algorithm needs to only guarantee that the sets are displayed in the 
correct relative order to ensure both that one set's polygons do not interfere with the other's 
and that the root polygon is displayed properly and in the correct order relative to the others. 
U tbe viewer is in the root polygon's front half-space, then the algorithm must first display 
all polygons in the root's rear half-space (those that could be obscured by the root), then the 
root, and finally all polygons in its front half-space (those that could obscure the root). 
Alternatively, if the viewer is in the root polygon's rear half-space, then the algorithm must 
first display all polygons in the root's front half-space, then the root, and finally all 
polygons in its rear half-space. U the polygon is seen on edge, either display order suffices. 
Back-face culling may be accomplished by not displaying a polygon if the eye is in its rear 
half-space. Each of the root's children is recursively processed by this algorithm. 
Pseudocode for displaying a BSP tree is shown in Fig. I 5.32; Fig. 15.33 shows bow the tree 
of Fig. l5.31 (c) is traversed for two different projections. 

Each polygon's plane equation can be transformed as it is considered, and the 
polygon's vertices can be transformed by the displayPolygon routine. The BSP tree can also 
assist in 30 clipping. Any polygon whose plane does not intersect the view volume has one 
subtree lying entirely outside of the view volume that does not need to be considered 
further. 

Which polygon is selected to serve as the root of each subtree can have a significant 
effect on the algorithm's performance. Ideally, the polygon selected should cause the fewest 
splits among all its descendants. A heuristic that is easier to satisfy is to select the polygon 
that splits the fewest of its children. Experience shows that testing just a few (five or six) 
polygons and picking the best provides a good approximation to the best case [FUCH83]. 

Like the depth-sort algorithm, the BSP tree algorithm performs intersection and 
sorting entirely at object precision, and relies on the image-precision overwrite capabilities 
of a raster device. Unlike depth sort, it performs all polygon splitting during a pre­
processing step that must be repeated only when the environment changes. Note that more 
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678 Visible-surface Determination 

typeder struct { 
polygon root; 
BSP.tree •backChild, •frontChild; 

} BSP.tree; 

BSP. tree •BSP.makeTree (polygon •polylist) 
{ 

polygon root; 
polygon •backList, •frontlist: 
polygon p, backPart,frontPart; I• We assume each polygon is convex. •I 

if (palyUst == NULL) 
return NULL; 

else { 

} 

root = BSP.seleclAndRemovePoly (&polylist}; 
backlisr = NULL: 
frontList = NlJLL: 
for (each remaining polygon pin poly list) { 

If (polygon pin from of root} 
BSP.addToList (p, &fronrUst}; 

} 

else If (polygon pin back of root) 
BSP. addToList (p, &backlist}; 

else { I• Polygon p must be sptiL • I 

} 

BSP.splitPoly (p, root, &fronrParr, &backPart}; 
BSP.addToList (fronrPart , &fronrlisr): 
BSP.addToList (backParr, &backList}; 

return BSP.combineTree (BSP.makeTree (fronrlist) , 
root, 
BSP. makeTree (backlist)); 

} /• BSP. makeTree •/ 

Fig . 15.30 Pseudocode for building a BSP tree. 

polygon splitting may occur than in the depth-sort algorithm. 
List-priority algorithms allow the use of hardware polygon scan converters that are 

typically much faster than are those that check the z at each pixel. The depth-sort and BSP 
tree algorithms display polygons in a back-to-front order, poss.ibly obscuring more distant 
ones later. Thus, like the z-buffer algorithm, shading calculations may be computed more 
than once for each pixel. Alternatively, polygons can instead be displayed in a front-to-back 
order, and each pixel in a polygon can be written only if it has not yet been. 

If a list-priority algorithm is used for bidden-line removal , special attention must be 
paid to the new edges introduced by the subdjvision process. If tbese edges are 
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Fig. 15.31 BSP trees. (a) Top view of scene w ith BSP tree before recursion with 
polygon 3 as root. (b) After building left subtree. (c) Complete tree. (d) Alternate tree 
with polygon 5 as root. (Based on (FUCH83).) 
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680 Visible-surface Determination 

void BSP. displayTree (BSP.tree •me) 
{ 

if (tree != NULL) { 
if (viewer is in front oftree->root) { 

f• Display back child. root. and front child. •f 
BSP.displayTree (tree- >backChild); 
displayPolygon (tree- > root); 
BSP. displayTree (tree->frontChild); 

} else { 
f• Display front child, root, and back child. •f 
BSP.displayTrec (tree->frontChiid) ; 
displayPolygon (tree- >roor); f• Only if back-face culling not desired •f 

} 
BSP. displayTree (tree->backChild}; 

} 
} f• BSP. displayTree *' 

Fig. 1 5.32 Pseudocode for displaying a BSP tree. 

scan-converted like the original polygon edges, they will appear in the picture as 
unwelcome artifacts, and they thus should be ftagged so that they will not be scan­
converted. 

15.6 SCAN-LINE ALGORITHMS 

Scan-line algorichms, first developed by Wylie, Romney, Evans, and Erdahl rWYLI67] , 
Bouknight rsOUK70a; BOUK70b], and Watkins [WATK70], operate at image precision to 
create an image one scan line at a time. The basic approach is an extension of the polygon 
scan-conversion algorithm described in Section 3.6, and thus uses a variety of forms of 
cohe.rence, including scan-line coherence and edge coherence. The difference is that we 
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Fig. 15.33 Two traversals of the BSP tree corresponding to two different projections. 
Projectors are shown as thin lines. White numbers indicate drawing order. 
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15.6 Scan-line Algorithms 681 

deal not with just one polygon, but rather with a set of polygons. The first step is to create 
an edge table (Ef) for all nonhorizontal edges of all polygons projected on the view plane. 
As before, horizontal edges are ignored. Entries in the ET are sorted into buckets based on 
each edge's smaller y coordinate, and within buckets are ordered by increasing x coordinate 
of their lower endpoint. Each entry contains 

I. The x coordinate of the end with the smaller y coordinate 

2. The y coordinate of the edge's other end 

3. The x increment, tu, used in stepping from one scan line to the next (tu is the inverse 
slope of the edge) 

4. The polygon identification number, indicating the polygon to which the edge belongs. 

Also required is a polygon table (PT) that contains at least the following information 
for each polygon, in addition to its ID: 

I . The coefficients of the plane equation 

2. Shading or color information for the polygon 

3. An in-out Boolean flag, initialized to false and used during scan-line processing. 

Figure 15.34 shows the projection of two triangles onto the (x, y) plane; hidden edges 
are shown as dashed lines. The soned ET for this figure contains entries for AB. AC. FD. 
FE, CB, and DE. The PT has entries for ABC and DEF. 

The active-edge table (AET) used in Section 3.6 is needed here also. It is always kept in 
order of increasing x. Figure 15.35 shows ET, PT, and AET entries. By the time the 
algorithm has progressed upward to the scan line y = a, the AET contains AB and AC, in 
that order. The edges are processed from left to right. To process AB, we first invert the 
in-out flag of polygon ABC. ln this case, the flag becomes true; thus, the scan is now ''in" 
the polygon, so the polygon must be considered. Now, because the scan is "in" only one 
polygon (ABC), it must be visible, so the shading for ABC is applied to the span from edge 
AB to the next edge in the AET, edge AC. This is an instance of span coherence. At this 

y E 

L------------------------------------+ X 
Fig. 15.34 Two polygons being processed by a scan-line algorithm. 
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682 Visible-surface Determination 

AET contents 
ET entry X Y.,... /!i)( 10 • Scan line Entries 

a AB AC 

fJ AB AC FD FE 

In-out I y, Y+ 1 AB DE CB FE 
PT entry 10 Planeeq. Shading info 

Y+ 2 AB CB DE FE 

Fig. 15.35 ET. PT. AET for the scan-line algorithm. 

edge the Hag for ABC is inverted to false, so that the scan is no longer "in" any polygons. 
Furthermore, because AC is the last edge in the AET, the scan-line processing is completed. 
The AET is updated from the ET and is again ordered on x because some of its edges may 
have crossed, and the next scan line is processed. 

When the scan line y "' fJ is encountered, the ordered AET is AB, AC, FD, and FE. 
Processing proceeds much as before. There are two polygons on the scan line, but the scan 
is · • in" only one polygon at a time. 

For scan line y = 1· things are more interesting. Entering ABC causes its Hag to 
become true. ABC's shade is used for the span up to the next edge, DE. At this point, the 
flag for DEF also becomes true, so the scan is "in" two polygons. (It is useful to keep an 
explicit list of polygons whose in-<>ut Hag is true, and also to keep a count of how many 
polygons are on the list.) We must now decide whether ABC or DEF is closer to the viewer, 
which we dete.rmine by evaluating the plane equations of both polygons for z at y • 1 and 
with x equal to the intersection of y = 1 with edge DE. This value of xis in the AET entry 
for DE. In our example, DEF bas a larger z and thus is visible. Therefore, assuming 
nonpenetrating polygons, the shading for DEF is used for the span to edge CB, at which 
point ABC's flag becomes false and the scan is again "in" only one polygon DEF whose 
shade continues to be used up to edge FE. Figure 15.36 shows the relationship of the two 
polygons and they = 1 plane; the two thick lines are the intersections of the polygons with 
the plane. 

X 

z 

Fig. 15.36 Intersections of polygons ABC and DEF with the plane y = y. 
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r 

G 

Fig. 16.37 Three nonpenetrating polygons. Depth calculations do not need to be 
made when scan line y leaves the obscured polygon ABC, since nonpenetrating 
polygons maintain their relative z order. 

Suppose there is a large polygon GHIJ behind both ABC and DEF, as in Fig. 15.37. 
Then, when they = 'Y scan line comes to edge CB, the scan is still " in" polygons DEF and 
GHIJ, so depth calculations are perfonned again. These calculations can be avoided, 
however, if we assume that none of the polygons penetrate another. This assumption means 
that, when the scan leaves ABC, the depth relationship between DEF and GHIJ cann01 
change, and DEF continues to be in front. Therefore, depth computations are unnecessary 
when the scan leaves an obscured polygon, and are required only when it leaves an 
obscuring polygon. 

To use this algorithm properly for penetrating polygons, as shown in Fig. 15.38, we 
break up KLM into KLL' M' and L' MM' , introducing the false edge M' L' . Alternatively, the 
algorithm can be modified to find the point of penetration on a scan line as the scan line is 
processed. 

Another modification to this algorithm uses depth coherence. Assuming that polygons 
do not penetrate each other, Romney noted that, if the same edges are in the AET on one 
scan line as are on the immediately preceding scan line, and if they are in the same order, 
then no changes in depth relationships have occurred on any part of the scan line and no new 
depth computations are needed [ROMN68]. The record of visible spans on the previous 
scan line then defines the spans on the current scan line. Such is the case for scan lines y = 'Y 

s 

T 

K 

Fig. 15.38 Polygon KLM pierces polygon RSTat the line L'M'. 
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and)' = 'Y + I in Fig. l5.34, for both of which the spans from AB to DE and from DE to 
FE are visible. The depth coherence in this figure is lost, however, as we go from y = y + I 
to y = y + 2, because edges DE and CB change order in the AET (a situation that the 
algorithm must accommodate). The visible spans therefore change and. in this case, 
become AS to CB and DE to FE. Hamlin and Gear [HAMLn] show how depth coherence 
can sometimes be maintained even when edges do change order in the AET. 

We have not yet discussed how to treat the background. The simplest way is to initialize 
the frame buffer to the background color, so the algorithm needs to process only scan lines 
that intersect edges. Another way is to include in the scene definition a large enough 
polygon that is farther back than any others are, is parallel to the projection plane, and has 
the desired shading. A final alternative is to modify the algorithm to place the background 
color explicitly into the frame buffer whenever the scan is not "in'' any polygon. 

Although the algorithms presented so far deal with polygons, the scan-line approach 
has been used extensively for more genera.! surfaces, as described in Section 15.9. To 
accomplish this, the ET and AET are. replaced by a surface table and active-surfare table, 
sorted by the surfaces' (x. y) extents. When a surface is moved from the surface table to the 
active-surface table. additional processing may be performed. For example, the surface may 
be decomposed into a set of approximating polygons, which would then be discarded when 
the scan leaves the surface's)' extent: this eliminates the need to maintain all surface data 
throughout the rendering process. Pseudocode for this general scan-line algorithm is shown 
in Fig. 15.39. Atherton [ATHE83] discusses a scan-line algorithm that renders polygonal 
objects combined using the regularized Boolean set operations of constructive solid 
geometry. 

A scan-line approach that is appealing in its simplicity uses a z-buffer to resolve the 
visible-surface problem [MYER75]. A single-scan-line frame buffer and z-buffer are 
cleared for each new scan line and are used to accumula.te the b-pans. Because only one scan 
line of storage is needed for the buffers, extremely high-resolution images are readily 
accommodated. 

add suifausto suiftu:e table: 
initialiu active-suiface table: 

tor (each scan line) { 

} 

up<late active-suifau table: 

for (t>ach pi.ul on scan line) { 

} 

dett>mrine suifacu in activtt-suiftu:tt table that projttctto pixel; 
find clostll such suiface; 
dettrmint closest suifau 's shade ar pixel; 

Fig. 15.39 Pseudocode for a general scan-line algorithm. 
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Crocker [CROC84] uses a scan-line z-buffer to exploit what he calls invisibility 
coherence, the tendency for surfaces that are invisible on one scan tine to be invisible on the 
next. When the active-surface table is made up for a given scan line, a separate 
invisib/e-suiface table is also built. A surface is added to the invisible-surface table if its 
max.imum z value for the current scan line is less than the z values in the previous line's z 
buffer at the surface's minimum and maximum x values. For example, given the cube and 
contained triangle shown in Fig 15.40(a), the triangle and the contents of the previous scan 
line's z-buffer projected onto the (x, z) plane are shown in Fig. 15.40(b). The triangle's z""" 
is less than the previous scan line's z-buffer values at the triangle' s .x,;. and x,... so the 
triangle is added to the invisible-surface table. Placing a surface in the invisible-surface 
table eliminates it from much of the visible-surface processing. Some surfaces in the 
invisible-surface table may not belong there. To remedy this , as each pixel on the current 
scan line is processed, surfaces are removed from the invisible-surface table and are added 
to the active-surface table if their maximum z value is greater than the z value of what is 
currently determined to be the visible surface at .the pixel. For example, even though the 
triangle shown in Fig. 15.40(c) was placed in the invisible-surface table, it is actually 
visible because the cube has been clipped, and it will be removed and added to the 
active-surface table. 

Sechrest and Greenberg [SECH82] have developed an object-precision algorithm for 
nonintersecting polygons that is somewhat in the spirit of a scan-line algorithm. Their 
algorithm relies on the fact that the visibHity of edges can change only at vertices and edge 
crossings. It sorts venices and edge crossings by y, effectively dividing up the scene into 
horizontal bands inside of which the visibility relationships are constant (see Fig. 15.41). 
Object-precision coordinates of the edge segments visible in each strip are output as the 
strip is processed and are supplemented with information from which the contours of visible 
polygons can be reconstructed for scan conversion. Initially, only vertices that are local 
minima are inspected in sorted order. An AET is kept, and is modified whenever a vertex is 
encountered in the scan. Edge crossings are determined on the fly by testing only the active 
edges for intersections. 

z 
(a) 

old z-buffer 

z 

(b) (C) 

Fig. 15.40 Invisibility coherence. (a) Triangle in a box. (b) Triangle is correctly placed 
in invisible table . (c) Triangle is incorrectly placed in invisible-surface table . (Based on 
(CROC84).) 
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~ I/ 
Fig. 15.41 The Sechrest and Greenberg object-precision algorithm divides the picture 
plane into horizontal strips at vertices and edge crossings. (Courtesy of Stuart Sechrest 
and Donald P. Greenberg, Program of Computer Graphics, Cornell Univeristy, 1982.) 

15 .7 AREA-SUBDIVISION ALGORITHMS 

Area-subdivision algorithms all follow the divide-and-conquer strategy of spatial partition­
ing in the projection plane. An area of the projected image is eJ(arnined. U it is easy to 
decide which polygons are visible in the area, they are displayed. Otherwise, the area is 
subdivided into smaUer areas to which the decision logic is applied recursively. As the areas 
become smaller, fewer polygons overlap each area, and ultimately a decision becomes 
possible. This approach eJ(ploits area coherence, since sufficiently small areas of an image 
will be contained in at most a single visible polygon. 

15.7.1 Warnock's Algorithm 

The area-subdivision algorithm developed by Warnock [WARN69] subdivides each area 
into four equal squares. At each stage in the recursive-subdivision process, the projection of 
each polygon has one of four relationships to the area of interest (see Fig. 15.42): 

I. Surrounding polygons completely contain the (shaded) area of interest (Fig. 15.42a) 

2. Intersecting polygons intersect the area (Fig. 15.42b) 

3. Contained polygons are completely inside the area (Fig. 15.42c) 

4. Disjoint polygons are completely outside the area (Fig. 15.42d). 

Disjoint polygons clearly have no influence on the area of interest. The part of an 
intersecting polygon that is outside the area is also irre.levant, whereas the part of an 
intersecting polygon that is interior to the area is the same as a contained polygon and can 
be treated as such. 

1n four cases, a decision about an area can be made easily , so the area does not need to 
be divided further to be conquered: 

I. All the polygons are disjoint from the area. The background color can be displayed in 
the area. 
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• 
(a) Surrounding (b) Intersecting (c) Contained (d) Disjoint 

Fig. 15.42 Four relations of polygon projections to an area element: (a) surrounding, 
(b) intersecting, (c) contained, and (d) disjoint. 

2. There is only one intersecting or only one contained polygon. The area is first filled 
with the background color, and then the part of the polygon contained in the area is 
scan-converted. 

3. There is a single surrounding polygon, but no intersecting or contained polygons. The 
area is filled with the color of the surrounding polygon. 

4 . More than one polygon is intersecting, contained in, or surrounding the area, but one is 
a surrounding polygon that is in front of all the other polygons. Determining whether a 
surrounding polygon is in front is done by computing the z coordinates of the planes of 
all surrounding, intersecting, and contained polygons at the four corners of the area; if 
there is a surrounding polygon whose four corner z coordinates are larger (closer to the 
viewpoint) than are those of any of the other polygons, then the entire area can be filled 
with the color of this surrounding polygon. 

Cases I , 2, and 3 are simple to understand. Case 4 is further illustrated in Fig. 15.43. 

,---------~----~-------+ X 

~ ~ r Contained polygon 
: . • • . 

b 
---i===-::7 Intersecting ? 0 polygon 

z 
\\=t: ;~~#F=-:11 Surrounding 
' polygon 

Area of interest 

(a) 

Area of interest 

z 

(b) 

Surrounding 
polygon 

Fig. 1 5.43 Two examples of case 4 in recursive subdivision. (a) Surrounding polygon 
is closest at all corners of area of interest. (b) Intersecting polygon plane is closest at left 
side of area of interest. x marks the intersection of surrounding polygon plane; o marks 
the intersection of intersecting polygon plane; • ma rks the intersection of contained 
polygon plane . 
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688 Visible-surface Determination 

In pan (a), the four intersections of the surrounding polygon are all closer to the viewpoint 
(which is at infinity on the +z axis) than are any of the other intersections. Consequently, 
the entire area is filled with the surrounding polygon's color. In pan (b), no decision can be 
made, even though the surrounding polygon seems to be in front of the intersecting 
polygon, because on the left the plane of the intersecting poly~:on is in front of the plane of 
the surrounding polygon. Note that the depth-son algorithm accepts this case without 
further subdivision if the intersecting polygon is wholly on the side of the surrounding 
polygon that is farther from the viewpoint. Warnock's algorithm, however, always 
subdivides the area to simpli fy the problem. After subdivision, only contained and 
intersecting polygons need to be reexamined: Surrounding and disjoint polygon of the 
original area are surrounding and disjoint polygons of each subdivided area. 

Up to this point , the algorithm ha.~ operated m object precision, with the exception of 
the actual scan conversion of the background and clipped polygo ns in the four cases. These 
image-precision scan-conversion operations. however. can be replaced by object-precision 
operations that output a precise representation of the visible surfaces: either a square of the 
area's size (cases I. 3. and 4) or a single polygon clipped to the area. along with its Boolean 
complement relative to the area, representing the visible part of the background (case 2). 
What about the cases that are not one of these four? One approach is to stop subdividing 
when the resolution of the display device is reached. Thus, on a 1024 by 1024 raster 
display, at most 10 levels of subdivision are needed. If, after this maximum number of 
subdivisions, none of cases I to 4 have occurred, then the depth of all relevant polygons is 
computed at the center of this pixel-sized, indivisible area. The polygon with the closest z 
coordinate defines the shading of the area. Alternatively, for anti aliasing, several further 
levels of subdivision can be used to determine a pixel's color by weighting the color of each 

2 

2 

2 

Fig. 15.44 Area subdivision into squares. 
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2 

2 2 

Fig. 15.45 Area subdivision about circled polygon vertices. The first subdivision is at 
vertex A; the second is at vertex B. 

of its subpixel-sized areas by its size . . It is these image-precision operations, perfonned 
when an area is not one of the simple cases, that makes this an image-precision approach. 

Figure 15.44 shows a simple scene and the subdivisions necessary for that scene's 
display. The number in each subdivided area corresponds to one of the four cases; in 
unnumbered areas, none of the tour cases are true. Compare this approach to the 20 spatial 
partitioning performed by quadtrees (Section 12.6.3). An alternative to equal-area 
subdivision, shown in Fig. 15.45, is to divide about the verte)( of a polygon (if there is a 
verte)( in the area) in an attempt to avoid unnecessary subdivisions. Here subdivision is 
limited to a depth of five for purposes of illustration. 

1 5. 7. 2 The Weiler-Atherton Algorithm 

Warnock 's algorithm was forced to use image-precision operations to terminate because it 
could clip a polygon only against a rectangular area. Another strategy, developed later by 
Weiler and Atherton [WEIL77], subdivides the screen area along polygon boundaries rather 
than along rectangle boundaries. This approach requires a powerful clipping algorithm, 
such as that described in Section 19.1.4, that can clip one concave polygon with holes 
against another. The first step, not mandatory but useful to improve efficiency, is to sort 
polygons on some value of z, such as on their nearest z coordinate. The polygon closest to 
the viewer by tbis criterion is then used to clip all the polygons, including the clip polygon, 
into two lists containing the pieces inside and outside the clip polygon. All polygons on the 
inside list that are behind the cl ip polygon are then deleted, since they are invisible. If any 
polygon on the inside list is closer than is the clip polygon. the initial sort did not give a 
correct priority order (in fact, such a priority order does not C)(ist in the case of cyclic 
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690 Visible-surface Determination 

overlap discussed in Section 15.5). Each such offending polygon is processed recursively to 
cl ip the pieces on the inside list against it. When this recursive subdivision is over. the inside 
list is displayed. The algorithm then continues to process the polygons on the outside list. 
Clipping is always performed with a copy of one of the original polygons as the clip 
polygon, never a fragment, since clipping to the original polygon is assumed to be less 
expensive than clipping to one or more fragmented pieees of the original polygon. Thus, 

void WA..visibleSurface (•·old) 
{ 

polyg01r •poi)•Ust = lisr of copies of all polygons; 
sort poly List by decreasing value of mtwmum z; 
clear srack; 

I• Process each remaining polygonal region. •I 
whlle (poi)•Usr != NUL.L) 

WA.subdivide (firsr polygon on polyList, &polyUsr); 
} /• WA..visibleSurfaoe o/ 

void WA.subdivide (polygon clip Polygon, polygon npolyUst) 
{ 

polygon •inUst; 
polygon •ourUsr; 

inLisr = NUL.L; 
owlisr = NUL.L; 

I• Fragments inside clipPolygon •I 
I• Fragments outside clipPolygon •I 

for (each polygon in opo/yUst) 
clip polygon ro ancestor of clipPolyg01r, placing inside piues on 

inUsr, ourside piecu on outlist; 

remo••e polygons behind clip Polygon from inUst; 

I• Process incorrectly ordered fragments recursively. •I 
for (each polygon in inL/.rrrhat is nor 011 srack and nor a port of clipPolygon) { 

push clip Polygon onto stack; 
WA.subdivide (polygon, &inUsr) ; 
popsrack; 

} 

I• Display remaining polygons inside clipPolygon. •I 
for (each polygon in inUsr) 

display polygon; 

opo/yUsr = ourUsr; I• Subtract inUsr from •polyUsr. •I 
} I• WA.subdivide •I 

Fig . 15.46 Pseudocode for the Weller- Atherton visible surface algorithm. 
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when a polygon is clipped, each piece must point back to the original input polygon from 
which it is derived. As a further efficiency consideration, the clipping algorithm can treat 
any polygon derived from the clip polygon as a special case and place it on the inside list 
with no additional testing. 

The algorithm uses a stack to handle those cases of cyclic overlap in which one polygon 
is both in front of and behind another, as in Fig. 15.24(b). The stack contains a list of 
polygons that are currently in use as clipping polygons, but whose use has been interrupted 
because of recursive subdivision. If a polygon is found to be in front of the current clip 
polygon, it is searched for in the stack. If it is on the stack , then no more recursion is 
necessary since all polygon pieces inside and behind that polygon have already been 
removed. Pseudocode for the algorithm is shown in Fig. 15.46. 

For the simple example of Fig. I 5.47, triangle A is used as the first clip polygon 
because its nearest z coordinate is the largest. A is placed on its own inside list; next, 
rectangle 8 is subdivided into two polygons: Bg,A, which is added to the inside list, and 
8 00f\, which is placed on the outside list. 81.,A is then removed from the inside list, since it 
is behind A. Now, since no member of the inside list is closer than A, A is output. B,.,,A is 
processed next, and is trivially output since it is the only polygon remaining. 

Figure 15.48 shows a more complex case in which the original sorted order (or any 
other order) is incorrect. Pan (a) depicts four polygons whose vertices are each marked with 
their z value. Rectangle A is considered to be closest to the viewer because its maximum z 
coordinate is greatest. Therefore, in the first call to WA.subdivide, A is used to clip all the 
polygons, as shown in part (b). The inside list is A, B;,A, C.,A, and D;.,A; the outside list is 
B.,.,A, C..,.A, and Dou.A· B.,A and D;.,A arc discarded because they arc farther back than A is, 
leaving only A and CmA on the inside list. Since C;.,A is found to be on the near side of A's 
plane, however, it is apparent that the polygons were ordered incorrectly. Therefore, 
recursive subdivision is accomplished by calling WA.subdivide to clip the current inside Hst 
against C, the ancestor of the offending polygon, as shown in part (c). The new inside list 
for this level of recursion is A10C and C1.,A; the new outside list is A..,,c. A.,C is removed 
from the inside list because it is behind C. Only C1.,A is left on the inside li~t; since it is a 
pan of the clip polygon, it is displayed. Before returning from the recursive call to 
WA_subdivide, polyLisr is set to the new outside list containing only A..,,C. SincepolyList is 
the caller's inLisr, AcM.C is displayed next , as shown in pan (d) . in which displayed 

y 

z 

Fig. 15.47 Subdivision of a simple scene using the Weiler-Atherton algorithm. 
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Fig. 15.48 Using the Weiler-Atherton algorithm with recursion. Clip polygon is 
shown with heavy outline. Displayed polygons are shaded. Numbers are vertex z 
values. (a) Original scene. (b) Polygons clipped to A . (c) A 's inside list clipped to C during 
recursive subdivision. (d) Visible fragments inside A displayed. (e) Polygons clipped to 
B. (f) All visible fragments displayed at completion. 
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fragments are shaded. The initial invocation of WA_subdivide then sets polyList to its 
outside list (BwtA, Cou~A, and DwtA) and returns. 

Next , WA_subdivide is used to process BwtA with the new polyList containing only 
B..,.A, C..,,A and D .. ,A. s •• ,A's ancestor 8 is used to clip these polygons, producing an inside 
List of BwtA and C..,.A;,.B and an outside list of C001A0018 and DwtA, as shown in part (e) . 
c •• .AJJ is discarded because it is behind 8, leaving only B..,,A on the inside list , which is 
then displayed. The polygon list is then set to the new outside list before WA_subdivide 
returns. Next, WA_subdivide is called once each to process and display C..,,A..,,B and D .. ,A. 
The complete set of displayed fragments is shown in pa.rt (f). 

15.7 .3 Subpixel Area-Subdivision Algorithms 

As is true of any object-precision algorithm, the Weiler-Atherton algorithm potentially 
requires comparing every polygon with every other. Spatial subdivision, discussed in 
Section 15.2.5 , can reduce the number of comparisons by breaking up the screen into areas 
(or the environment into volumes) whose objects are processed separately [WEIL77). Even 
so, the polygons produced must ultimately be rendered , raising the issue of antialiasing. If 
spatial subdivision is performed at the subpixel level, however, it can also be used to 
accomplish antialiasing. 

Catmull's object-precision antialiasing algorithm. Catmull [CATM78b] has devel­
oped an accurate but expensive scan-line algorithm that does antialiasing by performing 
object-precision unweighted area sampling at each pixel , using an algorithm similar to the 
Weiler-Atherton algorithm. In essence, the idea is to perform a full visible-surface 
algorithm at every pixel, comparing only the polygon fragments that project to each pixel. 
Catmull first uses the Sutherland-Hodgman algorithm of Section 3.14.1 to clip each 
polygon intersecting the scan line to the pixels on the line it overlaps, as shown in Fig. 
15.49(a). This determines the polygon fragments that project to each pixel , spatially 
partitioning them by the pixel grid. Then an algorithm similar to the Weiler-Atherton 
algorithm, but designed for simpler polygon geometry, is executed at each pixel to 
determine the amount of the pixel covered by the visible part of each fragment, as shown in 
Fig. 15.49(b). This allows a weighted sum of the visible parts' colors to be computed, and 
to be used to shade the pixel. Thus, each pixel's sbadc is determined by box filtering the 
polygon fragments that project to it. 

The A-buffer. Using a full object-precision visible-surface algorithm at each pixel is 
expensive! Carpenter's A-buffer algorithm [CARP84] addresses this problem by approxi­
mating Catmull's per-pixel object-precision area sampling with per-pixel image-precision 
operations performed on a subpixel grid. It thus provides a discrete approximation to area 
sampling with a box filter. Polygons are first processed in scan-line order by clipping them 
to each square pixel they cover. This creates a list of clipped polygon fragments for each 
pixel. Each fragment is associated with a 4 by 8 bit mask of those parts of the pixel it covers, 
as shown in Fig. 15.49(c). The bit mask for a fragment is computed by xoring together 
masks representing each of the fragment's edges. An edge mask has Is on the edge and to 
the right of the edge in those rows through which the edge passes, as sbown in Fig. 
15.49(d). When all polygons intersecting a pixel have been processed, the area-weighted 
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average of the colors of the pixel's visible surfaces is obtained by selecting fragments in 
depth-sorted order and using their bit masks to clip those of farther fragments. The bit 
masks can be manipulated efficiently with Boolean operations. For example, two fragment 
bit masks can be anded together to determine the overlap between them. The A-buffer 
algorithm saves only a small amount of additional information with each fragment. For 
example, it includes the fragment's z extent, but no information about which part of the 
fragment is associated with these z values. Thus, the algorithm must make assumptions 
about the subpixel geometry in cases in which fragment bit masks overlap in z. This causes 
inaccuracies, especially where multiple surfaces intersect in a pixel. 

Using precomputed convolution tables for better filtering. Both subpixel area­
subdivision algorithms described so far use unweighted area sampling; thus, they restrict a 
fragment's influence to the single pixel to which it is clipped. If owe would like to use filters 
with wider support, however, we must take into account that each fragment lies within the 
support of a number of filters positioned over nearby pixels, as shown in Fig. 15.49(e). 
Abram, Westover, and Whitted [ABRA85] describe how to incorporate better filters in 
these algorithms by classifying each visible fragment into one of a number of classes, based 
on the fragment's geometry. For each pixel within whose filter the fragment lies (pixels A 
through I in Fig 15.49e), the fragment's class and its position relative to the pixel are used to 
index into a look-up table. The look-up table contains the precomputed convolution of the 
desired filter kernel with prototype fragments at a set of different positions. The selected 
entry is multiplied by the fragment 's intensity value and is added to an accumulator at that 
pixel. Those fragments that do not fit into one of the classes are approximated either as 
sums and differences of simpler fragments or by using bit masks . 

15.8 ALGORITHMS FOR OCTREES 

Algorithms for displaying octree-encoded objects (see Section 12.6.3) take advantage of the 
octree's regular structure of nonintersecting cubes. Since the octree is spatially presorted, 
list-priority algorithms have been developed that yield a correct display order for parallel 
projections [DOCf8 I; MEAG82a; GARG86]. In a back-to-front enumeration, nodes are 
listed in an order in which any node is guaranteed not to obscure any node listed after it. For 
an orthographic projection, a correct back-to-front enumeration can be determined from 
the VPN alone. One approach is to display the farthest octant first, then those three 
neighbors that share a face with the farthest octant in any order, then those three neighbors 
of the closest octant in any order, then the closest octant. In Fig. 15.50, one such 
enumeration for a VPN from 0 to Vis 0, I , 2, 4, 3, 5, 6, 7. No node in this enumeration can 
obscure any node enumerated after it. As each octant is displayed, its descendants are 
displayed recursively in this order. Furthermore, because each leaf node is a cube, at most 
three of its faces are visible, the identities of which may also be determined from the VPN. 

Fig. 15.49 Subpixel area-subdivis ion algorithms. (a) Sample pixel contents. (b) Catmull 
algorithm subpixel geometry. (c) A-buffer algorithm subpixel geometry. (d) A-buffer 
algorithm subpixel mask for a fragment is computed by xoring together masks for its 
edges. (e) Abram, Westover, and Whitted algorithm adds polygon's contribution to all 
pixels it affects. (Parte is based on (ABRA85).) 
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Fig. 15.5 0 Octree enumeration for back-to-front display. (Node 0 is at the lower-left 
back comer.) For a VPN from the origin to V. nodes may be recursively displayed using 
several different ordering systems. 

Table 15. 1 shows eight different back-to-front orders as determined by the signs of the 
three coordinates of the VPN and the visible octant faces associated with each. (Note that 
only the first and last octants in each order are fixed .) A positive or negative VPN x 
coordinate means the right (R) or left (L) face is visible. respectively. Similarly, the y 
coord inate determines the visibility of the up (U) and down (D) faces, and the z coordinate 
controls the front (F) and back (B) faces. If any VPN coordinate is zero, then neither of the 
faces associated with it is visible. Only the VPN's nonzero coordinates are significant in 
determining an order. Since all octree nodes are identically oriented, the visible faces and 
their relative polygonal projections for all nodes need to be determined only once. Arbitrary 
parallel projections can be accommodated by considering the DOP instead of the VPN. 

Another approach to back-to-front enumeration for orthographic projections iterates 
through the octants in slices perpendicular to one of the axes, and in either rows or columns 

TABLE 15.1 BACK-TO-FRONT ENUMERATION AND 
VISIBLE FACES 

VPN 
l y X Back-to-from order Visible faces• 

7 ,6.5,3,4,2, 1,0 B,D.L 
+ 6.7 ,4,2,5,3,0,1 B,O,R 

+ 5,4,7, 1,6,0,3,2 B,U,L 
+ + 4,5,6,0,7 ,1.2.3 B,U,R 

+ 3.2.1,7,0,6,5,4 F,D,L 
+ + 2,3,0,6,1,7 ,4,5 F,D,R 
+ + 1,0.3.5,2.4.7.6 F,U.L 
+ + + 0,1 ,2,4,3,5,6,7 F,U,R 

' R • righ1. L • lcll; U • up; 0 • down: F • front: B • back. 
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within each slice. The sign of each component of the VPN determines the d.irection of 
iteration along the corresponding octree axis. A positive component indicates increasing 
order along its axis, whereas a negative component indicates decreasing order. The order in 
which the axes are used does not matter. For example, in Fig. 15.50, one such enumeration 
for a VPN with all positive coordinates is 0, 4 , 2, 6, I , 5, 3, 7, varying first z, then y, and 
then x. This approach is easily generalized to operate on voxel arrays [FRIE85]. 

li is not neces..~ to display all an object's voxels, since those that are surrounded 
entirely by others will ultimately be invisible; more efficient scan conversion can be 
accomplished by rendering only the voxels on the octree's border [GARG86]. The set of 
border voxels can be determined using the algorithm presented in Section 12.6.3. Further 
improvement may be obtained by noting that, even when only border voxels are displayed, 
some faces may be drawn and then overwritten. Gargantini [GARG86] uses the information 
obtained during border extraction to identify for each voxel those faces that abut another 
voxel. These faces need not be drawn, since they will always be obscured. Rather than scan 
convert each voxel as a small cube, it is also possible to approximate each voxel with a single 
upright rectangle (a pixel in the limiting case). 

Meagher fMEAG82bl describes a front-to-back algorithm that uses the reverse of the 
back-to-front order described previously. It represents the image being rendered as a 
quad tree that is initially empty. Each full or partially full octree node is considered in 
front-to-backorder and is compared with the quadtree nodes that its projection intersects. 
Those octree nodes whose projections intersect only full quadtree nodes are invisible; they 
and their descendants are not considered further. If a partially full octree node's projection 
intersects one or more partially full quadtree nodes, then the octree node' s children are 
compared with the children of these quad tree nodes. lf a full octree node' s projection 
intersects partially full quadtree nodes, then only these partially full quadtree nodes are 
further subdivided to determine the previously empty nodes that are covered by the 
projection. Any empty quadtree node enclosed by a full octree node's projection is shaded 
with the octree node's value. 

As shown in Fig. 15.51, Meagher bounds each octree-node projection with an upright 
rectangular extent. Any extent needs to be compared with only four of the lowest-level 
quadtree nodes whose edge size is at least as great as the extent's largest dimension. These 

32 33 

2 

30 31 

~ h 

12 
13 

0 

10 11 

Fig. 15.51 Front-to-back octree scan conversion. Each octree node's projection and 
its rectangular extent are compared with four quadtree nodes, here 12. 13. 30. and 31. 
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are the quadtree node containing the extent's lower-left comer and the three adjacent 
quadtree nodes in the N, E, and NE directions. In Fig. 15.51, for example, these are 
quadtree nodes 12, 13, 30, and 31. If the rectangular extent intersects a rectangular 
quadtree node, then whether the octree node's projection (a con \'eX polygon) also intersects 
the quadtree node can be determined efficiently [MEAG82b]. In contraSt to the list-priority 
bad-to-front algorithms, this front-to-back algorithm operates at image precision because 
it relies on an image-precision, quadtree representation of the projections on the image 
plane. 

15.9 ALGORITHMS FOR CURVED SURFACES 

All the algorithms presented thus far, with the exception of the z-buffer, have been 
described only for objects defined by polygonal faces. Objects such as the curved surfaces 
of Chapter II must first be approximated by many smaiJ facets before polygonal versions of 
any of the algorithms can be used. Although this approximation can be done, it is often 
preferable to scan convert curved surfaces directly, eliminating polygonal artifacts and 
avoiding the extra storage required by polygonal approximation. 

Quadric surfaces, djscussed in Section 11.4, are a popular choice in computer 
graphics. Visible-surface algorithms for quadrics have been developed by Weiss [WEIS66), 
Woon [WOON71], Mahl [MAHL72], Levin [LEVI76], and Sarraga [SARR83]. They aiJ 
find the intersections of two quadrics, yielding a fourth-order equation in x, y, and z whose 
roots must be found numerically. Levin reduces this to a second-order problem by 
parameterizing the intersection curves. Spheres, a special case of quadrics, are easier to 
work with, and are of particular interest because molecules are often displayed as 
collections of colored spheres (see Color Plate 0 .19). A number of molecular display 
algorithms have been developed [KNOW77; ST'AU78; MAX79; PORT79; FRANS I; 
MAX84). Section 15. 10 discusses how to render spheres using ray tracing. 

Even more flexibility can be achieved with the parametric spline surfaces introduced in 
Chapter II , because they are more general and allow tangent continuity at patch 
boundaries. Catmull [CATM74b; CATM75] developed the first display algorithm for 
bicubics. In the spirit of Warnock's algorithm, a patch is recursively subdivided ins and r 
into four patches until its projection covers no more than one pixel. A z-buffer algorithm 
determines wbether the patch is visible at this pixel. If it is, a shade is calculated for it and is 
placed in the frame buffer. The pseudocode for this algorithm is shown in Fig. 15.52. Since 
checking the size of the curved patch itself is time consuming, a quadrilateral defined by the 
patch's comer vertices may be used instead. Extra efficiency may be gained by comparing 
each patch (or its extent) with the clip window. If it is wholly inside the window, then no 
patch generated from it needs to be checked for clipping. If it is wholly outside the window, 
then it may be discarded. FinaiJy, if it may be partiaiJy visible, then each patch generated 
from it must be checked. 

Since then, Blinn and Whitted [LANE80b] have each developed scan-line algorithms 
for bicubics that track the visible edges of the surface from one scan line to the next . Edges 
may be defined by actual patch boundaries or by silhoueue edges. as shown in Fig. 15.53. 
At a silbouerte edge, the z component of the surface normal in the 30 screen coordinate 
system is zero as it passes between positive and negative values. 
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for (each patch) { 

} 

push patch onto stack; 

wblle (stack n01 empty) { 
pop patch from stack; 

} 

if (patch covers 5 I pixel) { 
If (porch s pixel closer in <) 

detemune shade and draw 
} else { 

} 

subdivide patch into 4 subpatches; 
push subpOiches onto stack: 

Fig. 15.52 Pseudocode for the Catmull recursive-subdivision algorithm. 
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Blinn deals directly with the parametric representation of the patch. For the scan line 
y = a, he finds all s and t values that satisfy the equation 

y(s. r) - a = 0. ( 15.8) 

These values of sand 1 are then used to evaluate x(s, r) and z(s, r). Unfortunately, Eq. ( 15.8) 
does not have a closed-form solution and its roots are therefore found numerically using 
Newton-Raphson iteration (see Appendix). Since the root-finding algorithm requires an 
initial value, coherence can be exploited by beginning with the previous scan line's solution 
for the current scan line. There are also special cases in which the roots cannot be found , 
causing the algorithm to fail. Similarly, Whitted uses numerical methods plus some 
approximations to the curve in the (x. z) plane defined by the intersection of they = a plane 

Silhouette edge 

~ 

Fig. 15.53 The visible edges of a patch are defined by its boundary edges and 
silhouette edges. 
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with the bicubic surface patch. Whitted 's algorithm fails to handle certain silhouette edges 
properly, however; an algorithm that does a more robust job of silhouette-edge detection is 
described in [SCHW82]. 

One highly successful approach is based on the adaptive subdivision of each bicubic 
patch until each subdivided patch is within some given tolerance of ·being flat. This 
tolerance depends on the resolution of the display device and on the orientation of the area 
being subdivided with respect to the projection plane, so unnecessary subdivisions are 
eliminated. The patch needs to be subdivided in only one direction if it is already flat 
enough in the other. Once subdivided sufficiently, a patch can be treated like a 
quadrilateral. The small polygonal areas defined by the four comers of each patch are 
processed by a scan-line algorithm, allowing polygonal and bicubic surfaces to be readily 
intermixed. 

Algorithms that use this basic idea have been developed by Lane and Carpenter 
[LANE80b] , and by Clark [CLAR79]. They differ in the choice of basis functions used 
to derive the subdivision difference equations for the surface patches and in the test 
for flatness . The Lane-Carpenter algorithm does the subdivision only as required when 
the scan line being processed begins to intersect a patch, rather than in a preprocessing 
step as does Clark's algorithm. The Lane-Carpenter patch subdivision algorithm is des­
cribed in Section 11.3.5. Pseudocode for the Lane-Carpenter algorithm is shown in 
Fig. 15.54. 

add patches to patch table; 
initialize acrive-palch table; 

for (each scan line) { 

} 

updare active-patch table; 

for (each patch in active-parch table) { 

} 

If (parch can be approximaudy by planar quadrilateral) 
add patch to polygon table; 

el'll! { 

} 

split patch into subpatches; 
for (each new subpatch) { 

} 

It (subpatch intersects scan line) 
add to active-patch table; 

else 
add to patch table; 

process polygon table for current scan line; 

Fig. 15.54 Pseudocode for the Lane-Carpenter algorithm. 
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15.10 Visible-surface Ray Tracing 701 

Since a patch's control points define its convex hull , the patch is added to the 
active-patch table for processing at the scan line whose y value is that of the minimum y 
value of its control points. This saves large amounts of memory. The test for flatness must 
determine whether the patch is sufficiently planar and whether the boundary curves are 
sufficiently linear. Unfortunately, subdivision can introduce cracks in the patch if the same 
patch generates one patch that is determined to be flat and an adjacent patch that must be 
subdivided further. What should be a common shared edge between the patches may, 
instead, be a single line for the first patch and a piecewise linear approximation to a curve 
for the subpatches derived from the second patch. This can be avoided by changing the 
tolerance in the flatness test such that patches are subdivided more finely than necessary. An 
alternative solution uses Clark's method of subdividing an edge as though it were a straight 
line, once it has been determined to be sufficiently Hat. 

15.10 VISIBLE-SURFACE RAY TRACING 

Ray tracing, also known as ray casting, determines the visibility of surfaces by tracing 
imaginary rays of light from the viewer's eye to the objects in the scene.2 This is exactly the 
prototypical image-precision algorithm discussed at the beginning of this chapter. A center 
of projection (the viewer's eye) and a window on an arbitrary view plane are selected. The 
window may be thought of as being divided into a regular grid, whose elements correspond 
to pixels at the desired resolution. Then, for each pixel in the window, an eye ray is fired 
from the center of projection through the pixel's center into the scene, as shown in Fig. 
15.55. The pixel 's color is set to that of the object at the closest point of intersection. The 
pseudocode for this simple ray tracer is shown in Fig. 15.56. 

Ray tracing was first developed by Appel [APPE68] and by Goldstein and Nagel 
[MAGI68; GOLD71]. Appel used a sparse grid of rays used to determine shading, 
including whether a point was in shadow. Goldstein and Nagel originally used their 
algorithm to simulate the trajectories of ballistic projectiles and nuclear particles; only later 

1Although roy casting and ray tracing are often used synonymously, sometimes ray casting is used to 
refer to only this section's visible-surface algorithm, and ray trocing is reserved for the recursive 
algorithm of Section J 6. 12. 

Center 
of 
projection 

Fig. 15.55 A ray is fired from the center of projection through each pixel to which the 
window maps, to determine the closest object intersected. 
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702 Visible-surface Determination 

select center of projection and window on viewplane; 
for (each scan line in image) { 

} 

for (each pixel in scan line) { 

} 

determine ray from center of projection through pixel; 
for (each abject in scene) { 

} 

l.f (object is intersected and is closest considered thus far) 
record imersection and object name; 

set pixels color to that at closest object intersection; 

Fig. 15.56 Pseudocode for a simple ray tracer. 

did they apply it to graphics. Appel was the first to ray trace shadows, whereas Goldstein 
and Nagel pioneered the use of ray tracing to evaluate Boolean set operations. Whitted 
[WHIT80] and Kay [KAY79a] extended ray tracing to handle specular reflection and 
refraction. We discuss shadows, reflection, and refraction-the effects for which ray tracing 
is best known-in Section 16.12, where we describe a full recursive ray-tracing algorithm 
that integrates both visible-surface determination and shading. Here, we treat ray tracing 
only as a visible-surface algorithm. 

1 5.1 0.1 Computing Intersections 

At the heart of any ray tracer is the task of determining the intersection of a ray with an 
object. To do this task, we use the same parametric representation of a vector introduced in 
Chapter 3. Each point (x, y, z) along the ray from (.to. y0, z0) to (x1, y1, z1) is defined by some 
value 1 such that 

X = ·to + I (x1 - Xo), Y = Yo+ I (yl -Yo), z = z0 +I (z1 - zo). (15.9) 

For convenience, we define !:v:, Ay, and Az such that 

Ay = Y1- Yo· ( 15. 10) 

Thus, 

X= Xo +I Ax, y =Yo+ I Ay. Z = z0 + I Az. (15.11) 

If (.to. y0, z0) is the center of projection and (x1• y1, z1) is the center of a pixel on the window, 
then 1 ranges from 0 to I between these points. Negative values of 1 represent points behind 
the center of projection, whereas values of 1 greater than I correspond to points on the side 
of the window farther from the center of projection. We need to find a representation for 
each kind of object that enables us to determine 1 at the object's intersection with the ray. 
One of the easiest objects for which to do this is the sphere, which accounts for the plethora 
of spheres observed in typical ray-traced images! The sphere with center (a, b, c) and radius 
r may be represented by the equation 

(x- a)2 + (y- W + (z- c)2 = r 2• (15.12) 
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The intersection is found by expanding Eq. (15.12), and substituting the values of x, y, 
and z from Eq. (15.1l) to yield 

x2 - 2ax + til + 1 - 2by + If + r - 2cz + ct = r2. ( 15.13) 

(Xo + 1/lxf - 2a(x0 + ttlx) + til + (y0 + 1~y)2 - 2b(y0 + l~y) + If ( 15.14) 

+ (zo + 1~)2 - 2c(zo + I~) + <f = r, 
4 + 2xoflxl + ~(2 - 2ax0 - 2atlxl + til (15.15) 

+ Yo + 2yo ~yl + ~lfl - 2by0 - 2b~yl + If 

+ fo + 2zo ~I + ~r - 2cz0 - 2c~l + <f = r. 
Collecting terms gives 

(~ + ~~ + ~r)fl + 21[6.x(Xo - a) + ~y(yo - b) + ~z(Zo - c)] (15.16) 

+ <.to - 2aXo + til + Yo - 2byo + If + to - 2czo + <f) - r = 0, 

(~ + ~~ + ~)r! + 21[/lx (x0 - a) + d y(y0 - b) + ~(z0 - c)] (15. 17) 

+ (Xo - a)2 + (yO - W + (zo - C)2 - r = 0. 

Equation ( 15. 17) is a quadratic in 1, with coefficients expressed entirely in constants derived 
from the sphere and ray equations, so it can be solved using the quadratic formula. If there 
are no real roots, then the ray and sphere do not intersect; if there is one real root, then the 
ray grazes the sphere. Otherwise, the two roots are the points of intersection with the 
sphere; the one that yields the smallest positive 1 is the closest. It is also useful to normal ize 
the ray so that the distance from (x0, y0, z0} to (x1, y1, z1) is 1. This gives a value of 1 that 
measures distance in WC units, and simplifies the intersection calculation, since the 
coefficient of r in Eq. (15.17) becomes I. We can obtain the intersection of a ray with the 
general quadric surfaces introduced in Chapter I I in a similar fash ion. 

As we shall see in Chapter 16, we must determine the surface normal at the point of 
intersection in order to shade the surface. This is particularly easy in the case of the sphere, 
since the (unnormalized) normal is the vector from the center to the point of intersection: 
The sphere with center (a, b, c) has a surface nom1al ((x - a)l r , (y - b)lr . (z - c)lr ) at the 
point of intersection (x, y, z). 

Finding the intersection of a ray with a polygon is somewhat more difficult . We can 
detem1ine where a ray intersects a polygon by first determining whether the ray intersects 
the polygon's plane and then whether the point of intersection lies within the polygon. 
Since the equation of a plane is 

Ax + By+ Cz + D = 0, ( 15. 18) 

substitution from Eq. (15. 1'1) yields 

A(x0 + 1/lx) + B(y0 + t~y) + C(z0 + t~z) + D = 0, 

I(Atlx + B~y+ C~) + (Ax0 + By0 + Cz0 + D) = 0, 

(Ax0 + By0 + Cz0 + D) 
t= 

(Atlx + B~y + C~) . 

(15. 19) 

(15.20) 

(15.21) 
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y 

z 

Fig. 15.57 Determining whether a ray Intersects a polygon. The polygon and the ray's 
point of Intersection p with the polygon· s plane are projected onto one of the three 
planes defining the coordinate system. Projected point p' is tested for containment 
within the projected polygon. 

lfthedenominatorofEq. (15.21) is 0, then the ray and plane are parallel and do not 
intersect. An easy way to determine whether the point of intersection lies within the 
polygon is to project the polygon and point orthographically onto one of the three planes 
defining the coordinate system, as shown in Fig. 15.57. To obtain the most accurate resu lts, 
we ~hould select the axis along which to project that yields the largest projection. Thi.s 
corresponds to the coordinate whose coefficient in the polygon's plane equation has the 
largest absolute value. The orthographic projection is accomplished by dropping this 
coordinate from the polygon's venices and from the point. The polygon-containment test 
for the point can then be performed entirely in 20 , using the point-in-polygon algorithm of 
Section 7 .12.2. 

Like the z-buffer algorithm, ray tracing has the attraction that the only intersection 
operation performed is that of a projector with an object. There is no need to dete.rmine the 
intersection of two objects in the scene directly. The z-buffer algorithm approximates an 
object as a set of z values along the projectors that intersect the object. Ray tracing 
approximates objects as the set of intersections along each projector that intersects the 
scene. We can extend a z-buffer algorithm to handle a new kind of object by writing a 
scan-conversion and z-calculation routine for it. Similarly. we can extend a visible-surface 
ray tracer to handle a new kind of object by writing a ray-intersection routine for it. In both 
cases, we must also write a routine to calculate surface normals for shading. Intersection 
and surface-normal algorithms have been developed for algebraic surfaces [HANR83], for 
parametric surfaces [KAJI82; SEDE84; TOTH85; JOY86], and for many of the objects 
discussed in Chapter 20. Surveys of these algorithms are provided in [HATN89; HANR89). 

15.10.2 Efficiency Considerations for Visible-Surface Ray Tracing 

At each pixel, the z-buffer algorithm computes information only for those objects that 
project to that pixel, taking advantage of coherence. In contrast, the simple but expensive 
version of the visible-surface ray tracing algorithm that "'oe have discussed, intersects each of 
the rays from the e)'e with each of the objects in the scene. A 1024 by 1024 image of 100 
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objects would therefore require I OOM intersection calculations. It is not surprising that 
Whitted found that 75 to over 95 percent of his system's time was spent in the intersection 
routine for typical scenes [WHIT80). Consequently, the approaches to improving the 
efficiency of visible-surface ray tracing we discuss here attempt to speed up individual 
intersection calculations, or to avoid them entirely. As we shall see in Section 16. 12, 
recursive ray tracers trace additional rays from the points of intersection to determine a 
pixel 's shade. Therefore, several of the techniques developed in Section 15.2, such as the 
perspective transformation and back-face culling, are not in general useful, since all rays do 
not emanate from the same center of projection. ln Section 16.12, we shall augment the 
techniques mentioned here with ones designed specifically to handle these recursive rays. 

Optimizing intersection calculations. Many of the terms in the equations for object­
ray intersection contain expressions that are constant either throughout an image or for a 
particular ray. These can be computed in advance, as can, for example, the orthographic 
projection of a polygon onto a plane. With care and mathematical insight, fast intersection 
methods can be developed: even the simple intersection formula for a sphere given in 
Section 15. 10. 1 can be improved (HAIN89]. If rays are transformed to lie along the z axis, 
then the same transformation can be applied to each candidate object, so that any 
intersection occurs at x = y = 0. This simplifies the intersection calculation and allows the 
closest object to be determined by a z sort . The intersection point can then be transformed 
back for use in shading calculations via the inverse transformation. 

Bounding volumes provide a particularly attractive way to decrease the amount of time 
spent on intersection calculations. An object that is relatively expensive to test for 
intersection may be enclosed in a bounding volume whose intersection test is less expensive, 
such as a sphere [WHJT80), ellipsoid ( BOUV85], or rectangular solid (RUB ISO; TOTH85(. 
The object does not need to be tested if the ray fails to intersect with its bounding volume. 

Kay and Kajiya (KAY86) suggest the use of a bounding volume that is a convex 
polyhedron formed by the intersection of a set of infinite slabs, each of which is defined by 
a pair of parallel planes that bound the object. Figure 15.58(a) shows in 20 an object 
bounded by four slabs (defined by pairs of parallel lines), and by thei r intersection. Thus, 
each slab is represented by Eq. (15. 18), where A, 8 , and Care constant, and Dis either D.mn 
or D...,.. If the same set of parameterized slabs is used to bound all objects, each bound can 
be described compactly by the D...,. and D,... of each of its slabs. A ray is intersected with a 
bound by considering one slab at a time. The intersection of a rdy with a slab can be 
computed using Eq. (15.21) for each of the slab's planes, producing near and far values of 1. 

Using the same set of parameterized slabs for all bounds, however, allows us to simplify 
Eq.( I 5.21 ), yielding 

I = (S + D)T, ( 15.22) 

where S = Axo + By0 + Cz0 and T = -II(Aax + BAy + CAz). Both S and T can be 
calculated once for a given ray and parameterized slab. 

Since each bound is an intersection of slabs, the intersection of the ray with an entire 
bound is just the intersection of the ray 's intersections with each of the bound's slabs. This 
can be computed by taking the maximum of the near values of 1 and the minimum of the far 
values of 1. In order to detect null intersections quickly. the maximum near and minimum 
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Il n 

(a) 

(b) 

Fig . 16.68 Bounds formed intersection of slabs. (a) Object bounded by a fixed set of 
parameterized slabs. (b) The bounding volume of two bounding volumes. 

far values of 1 for a bound can be updated as each of its slabs is processed, and the 
processing of the bound terminated if the former ever exceeds the latter. 

Avoiding intersection calcula tions. Ideally, each ray should be tested for intersection 
only with objects that it actually intersects. Furthermore, in many cases we would like each 
ray to be tested against only that object whose intersection with the ray is closest to the my's 
origin. There is a variety of techniques that attempt to approximate this goal by 
preprocessing the environment to partition rays and objects into equivalence classes to help 
limit the number of intersections that need to be performed. These techniques include two 
complementary approaches introduced in Section 15.2: hierarclties and spatial partitioning. 

Hierarchies. Although bounding volumes do not by themselves determine the order or 
frequency of intersection tests, bounding volumes may be organized in nested hierarchies 
with objects at the leaves and internal nodes that bound their children [RUBI80; WEGH84; 
KAY86) . For example, a bounding volume for a set of Kay- Kajiya bounding volumes can 
be computed by taking for ea.ch pair of planes the minimum o .... and the maximum D,_ of 
the values for each child volume, as shown in Fig. 15.58(b). 

A child volwne is guaranteed not to intersect with a ray if its parent does not . Thus, if 
intersectio n tests begin with the root, many branches of the hierarchy (and hence many 
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objects) may be trivially rejected. A simple method to traverse the hierarchy is 

void HlER_traverse (ray r, node n) 
{ 

it (r intersects n s bounding volume) 
if (11 is a leaf) 

intersect r with n :r object; 
else 

for (each child c of n) 
HIER..traverse (r, c); 

} I• HIER-lraverse •/ 

707 

Efficient hierarchy traversal. HTER_traverse explores a hierarchy depth first. In 
contrast, Kay and Kajiya [KAY86] have developed an efficient method for traversing 
hierarchies of bounding volumes that takes into account the goal of finding the closest 
intersection. Note that the intersection of a ray with a Kay- Kajiya bound yields two values 
of 1, the lower of which is a good estimate of the distance to the object. Therefore, !he best 
order in which to select objects for intersection tests is !hat of increasing estimated distance 
from the ray's origin. To find the closest object intersected by a ray, we maintain the list of 
nodes to be tested in a priority queue, implemented as a heap. Initially. the heap is empty. 
If the root's bound is intersected by the ray, then the root is inserted in the heap. As long as 
the heap is not empty and its top node's estimated distance is closer than the closest object 
tested so far, nodes are extracted from the heap. lf the node is a leaf, then its object's ray 
intersection is calculated. Otherwise, it is a bound, in which case each of its children's 
bounds is tested and is inserted in !he heap if it is intersected, keyed by the estimated 
distance computed in the bound-intersection calculation. The se.Jection process terminates 
when the heap is empty or when an object has been intersected that is closer than the 
estimated distance of any node remaining in the heap. Pseudocode for the algorithm is 
shown in Fig. 15.59. 

Automated hierarchy generation. One problem wilh hierarchies of bounding volumes, 
such as those used by the Kay-Kajiya algorilhm, is that generating good hierarchies is 
difficult. Hierarchies created during the modeling process tend to be fairly shallow, with 
structure designed for controlling objects rather than for minimizing the intersections of 
objects with rays. In addition, modeler hierarchies are typically insensitive to the actual 
position of objects. For example, !he fingers on two robot hands remain in widely separated 
parts of the hierarchy, even when the hands are touching. Goldsmith and Salmon 
[GOLD87] have developed a method for generating good hierarchies for ray tTacing 
automatically. Their method relies on a way of determining the quality of a hierarchy by 
estimating the cost of intersecting a ray with it. 

Consider how we might estimate the cost of an individual bounding volume. Assume 
that each bounding volume has the same cost for computing whelher a ray intersects it. 
Therefore, the cost is directly proportional to !he number of times a bounding volume will 
be hit. The probability !hat a bounding volume is hit by an eye ray is the percentage of rays 
from the eye that will hit it. This is proportional to the bounding volume's area projected on 
the view plane. On the average, for convex bounding volumes, this value is roughly 
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void KayKajiya (void) 
{ 

object •p = NULL; 
double 1 = oo; 

I• Pointer to neares t object hit • I 
I • Distance to nearest object hit •I 

precompure ray intersection; 
if (ray hits root 's bound) { 

insen root into heap; 
} 
while (heap is not empty and distance to top node < t) { 

node • c = top node removed from heap; 

} 

if (cis a leaf) { 
inter.rect ray with c :f object; 
if (ray hits it and disumce < t) { 

t = distance; 
p =object: 

} 
} else { I• c is a bound • I 

} 

for (each child of c) { 

} 

imersec1 ray with child's bound; 
if (ray hits child's bound) 

insert child into heap; 

} I• KayKajiya • I 

Fig. 15.59 Pseudocode for using Kay-Kajiya bounds to find the closest object 
intersected by a ray. 

proportional to the bounding volume's surface area. Since each bounding volume is 
contained within the root 's bounding volume, the conditional probability that a ray will 
intersect the ith bounding volume if it intersects the root can be approximated by A1 I A,, 
where A1 is the surface area of the ith bounding volume and A. is the surface area of the root. 

If a ray intersects a bounding volume, we assume that we must perform an intersection 
calculation for each of the bounding volume's k children. Thus, the bounding volume's 
total estimated cost in number of intersections is kA1 I A,. The root's estimated cost is just iis 
number of children (since A1 I A. = I), and the cost of a leaf node is zero (since k = 0). To 
compute the estimated cost of a hierarchy, we sum the estimated cosis of each of its 
bounding volumes. Consider, foreltample , the hierarchy shown in Fig. 15.60 in which each 
node is marked with its surface area. Assuming the root A is hit at the cost of one 
intersection, the root's estimated cost is 4 (its number of children). Two of its children (C 
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A10 

Fig. 15.60 Estimating the cost of a hierarchy. Letter is node name; number is node 
surface area. 

and E) are leaves, and therefore have zero cost. 8 has two children and a surface area of 5. 
Thus, its estimated cost is 2(5/10) = 1.0. D has three children and a surface area of 4 , so its 
estimated cost is 3(4110) = 1.2. The only other nonleaf node is F, which has two children 
and a surface area of 3, giving an estimated cost of 2(3/ 10) = .6. The total estimated cost is 
I (to hit the root) + 4 + 1.0 + 1.2 + .6 = 7 .8 expected intersections. 

Since we are interested in only relative values, there is no need to divide by the root 's 
surface area. Furthermore, we do not need the actual surface area of the bounding 
volume-we need only a value proportional to it. For example, rather than use 2/w + 
2/h + 2wh for a rectangular prism, we can factor out the 2 and rearrange terms to yield 
(w +h)/+ wh. 

Goldsmith and Salmon create the hierarchy incrementally, adding one new node at a 
time. The order in which nodes are added affects the algorithm. The modeler's order can be 
used, but for many scenes better results can be obtained by randomizing the order by 
shuffling nodes. Each node may be added by making it a child of an existing node or by 
replacing an existing node with a new bounding volume node that contains both the original 
node and the new node. ln each case, instead of evaluating the cost of the new tree from 
scratch, the incremental cost of adding the nod.e can be determined. If the node is being 
added as a child of an existing node, it may increase the parent 's surface area, and it also 
increases the parent's number of children by I. Thus, the difference in estimated cost of the 
parent is k (A- - A0ld) + A..,., where A..,., and A.ld are the parent • s new and old surface 
areas, and k is the original number of children. If the node is added by creating a new parent 
with both the original and new nodes as children, the incremental cost of the newly created 
parent is 2A ...... In both cases, the incremental cost to the new child's grandparent and older 
ancestors must also be computed as k(A,_ - ~), where k, A • ..,. and Ao1d are the values for 
the ancestor node. This approach assumes that tbe position at which the node is placed has 
no effect on the size of the root bounding volume. 

A brute-force approach would be to evaluate the increased cost of adding the new node 
at every possible position in the tree and to then pick the position that incurred the least 

0756



71 0 Visible-surface Determination 

increase in cost. Instead, Goldsmith and Salmon use a heuristic search that begins at the 
root by evaluating the cost of adding the node to it as a child. They then prune the tree by 
selecting the subtree that would experience the smallest increase in its bounding volume's 
surface area if the new node were added as a child. The search then continues with this 
subtree, the cost of adding the node to it as a child is evaluated, and a subt.ree of it is 
selected to follow based on the minimum surface area increase criterion. When a leaf node 
is reached, the cost is evaluated of creating a new bounding volume node containing the 
original leaf and the new node. When the search te.rminates, the node is inserted at the point 
with the smallest evaluated increase. Since determining the insertion point for a single node 
requires an O(log n) search, the entire hierarchy can be built in O(rr log n) time. The search 
and evaluation processes are based on heuristics, and consequently the generated 
hierarchies are not optimal. Nevertheless, these techniques can create hierarchies that 
provide significant savings in intersection costs. 

Spatial partitioning. Bounding-volume hierarchies organize objects bottom-up; in 
contrast, spatial partitioning subdivides space top-down. The bounding box of the scene is 
calculated first. In one approach, the bounding box is then divided into a regular grid of 
equal-sized extents, as shown in Fig. 15.61. Each partition is associated with a list of 
objects it comains either wholly or in pan. The lists are filled by assigning each object to the 
one or more partitions that contain it. Now, as shown in 20 in Fig. 15.62, a ray needs to be 
intersected with only those object~ that are contained within the partitions through which it 
passes. ln addition, the partitions can be examined in the order in which the ray passes 
through them; thus, as soon as a partition is found in which there is an intersection, no more 
partitions need to be inspected. Note that we must consider all the remaining objects in the 
partition, to determine the one whose intersection is closest. Since the partitions follow a 
regular grid, each successive partition lying along a ray may be calculated using a 3D 
version of the line-drawing algorithm discussed in Section 3.2.2, modified to list every 
partition through which the ray passes [FUJI85; AMAN87]. 

If a ray intersects an object in a partition, it is also necessary to check whether the 
intersection itself lies in the partition; it is possible that the intersection that was found may 
be further along the ray in another partition and that another object may have a closer 
intersection. For example, in Fig. 15.63, object 8 is intersected in partition 3 although it is 
encountered in partition 2. We must continue traversing the partitions until an intersection is 
found in the partition currently being traversed, in this case with A in partition 3. To avoid 

Fig. 15.61 The scene is partitioned into a regular grid of equal-sized volumes. 
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Fig. 15.62 Spatial partitioning. Ray R needs to be intersected with only objects A. 8, 
and C, since the other partitions through which it passes are empty. 

recalculating the intersection of a ray with an object that is found in multiple partitions, the 
point of intersection and the ray's ID can be cached with the object when the object is first 
encountered. 

Dippe and Swensen [DIPP84] discuss an adaptive subdivision algorithm that produces 
unequal-sized partitions. An alternative adaptive spatial-subdivision method divides the 
scene using an octree [GLAS84]. In this case, the octree neighbor-finding algorithm 
sketched in Section 12.6.3 may be used to determine the successive partitions lying along a 
ray [SAME89b]. Octrees, and other hierarchical spatial partitionings, can be thought of as a 
special case of hierarchy in which a node's children are guaranteed ·not to intersect each 
other. Because these approaches allow adaptive subdivision, the decision to subdivide a 
partition further can be sensitive to the number of objects in the subdivision or the cost of 
intersecting the objects. This is advantageous in heterogeneous, unevenly distributed 
environments. 

Spatial partitioning and hierarchy can be used together to combine their advantages. 
Snyder and Barr [SNYD87] describe an approach that uses hand-assembled hierarchies 
whose internal nodes are either lists or regular 3D grids. Th.is allows the person designing 
an environment to choose lists for small numbers of sparsely arranged objects and grids for 

Fig. 15 .63 An object may be intersected in a different voxel than the current one. 
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large numbers of regularly distributed objects. Color Plate ill. I shows a scene with 2 x I IF' 
primitives that was ray-traced with Snyder's and Barr's system. 

15.10.3 Computing Boolean Set Operations 

Goldstein and Nagel [GOL0 71] were the first researchers to ray trace combinations of 
simple objects produced using Boolean set operations. Determining the 30 union, 
difference, or intersection of two solids is difficult when it must be done by direct 
comparison of one solid with another using the methods in Chapter 12. In contrast, ray 
tracing allows the 30 problem to be reduced to a set of simple I 0 calculations. The 
intersections of each rdy and primitive object yield a set of 1 values, each of which specifies 
a point at which the ray enters or exits the object. Each t value thus defines the beginning of 
a span in which the ray is either in or out of the object. (Of course, care must be taken if the 
ray grazes the object, intersecting it only once.) Boolean set operations are calculated one 
ray at a time by determining the I 0 union, difference, or intersection of spans from the two 
objects along the same ray. Figure I 5.64 shows the spans defined by a ray passing through 
two objects, and the combinations of the spans that result when the set operations are 

.... 

Left Right 

L: ---... ---------.. -----
R: ------ ---.. ------------- --

Lv R: 
___ .. ____ _ 

L n R: ------ ••--• ------- -----------

L- R: --- ••--• --------- ____ ... ---- -

Lv R L n R L - R 

Fig. 15.64 Combining ray-object intersection span lists. (Adapted from (ROTH82] 
with permission.) 
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span •CSGJn~en;ecl (Ray •ray, CSG.node •node) 
{ 

span •leftlntersecr, •rightlmersecr; I• lists of spans •I 

if (node is composite) { 
leftlmersect = CSGJn1ersec1 (ray, 110de->leftChild): 
if (leftlnrersecr ==NULL && node- >op != UNJON) 

return NULL; 
else { 

} 

riglu/nrersecr = CSOJmersect (ray, node->rightChild); 
return CSG.combine (node->op, leftlntersect, rightlnrersect); 

} else I• node is primilive •I 
return imersections of object with ray; 

} I• CSGJmersec1 •/ 

7 13 

Fig. 15.65 Pseudocode for evaluating the intersection of a ray with a CSG hierarchy. 

performed. The CSG hierarchy is traversed for each ray by evaluating the left and right 
intersection lists at each node, as shown in the pseudocode of Fig. 15.65. Color Plate 10.2 
is a ray-traced bowl defined by a CSG hierarchy. 

Roth points out that, if there is no intersection with the left side of the tree, then there is 
no reason to intersect with the right side of the tree if the operation is a difference or 
intersection [ROTH82]. Only if the operation is a union can the result be nonempty. In fact, 
if we need to determine only whether or not the compound object is intersected (rather than 
the actual set of intersections), then the right-hand side need not be evaluated if the 
left-hand side intersectS and the operation is a union. 

The CSG_combine function takes two lists of intersection records, each ordered by 
increasing t , and combines them according to the operation being performed. The lists are 
merged by removing the intersection record that has the next largest value oft. Whether the 
ray is " in" the left list or the right list is noted by setting a flag associated with the list from 
which the record is removed. Whether the span starting at that intersection point is in the 
combined object is determined by table lookup based on the operator and the two "in" 
flags , using Table I 5.2. A record is then placed on the combined list only if it begins or 

TABLE 15.2 POINT CLASSIFICATION FOR 
OBJECTS COMBINED BY BOOLEAN SET 
OPERATIONS 

Left Righi u n 
in in in in out 
in out in out in 
OUI in in out out 
out OUI OUI OUI OUI 
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ends a span of the combined object, not if it is internal to one of the combined object's 
spans. Lf a ray can begin inside an object, the flags must be initialized correctly. 

15.10.4 Antialiased Ray Tracing 

The simple ray trJcer described so far uses point sampling on a regular grid, and thus 
produces aliased images. Whitted IWHIT80] developed an adaptive method for tiring more 
rays into those parts of the image that would otherwise produce the most severe aliasing. 
These additional santples are used to compute a better value for the pixel. His adaptive 
suptrmmpling associates rays with the comers, rather than with the centers, of each pixel, 
as shown in Fig. 15.66(a) and (b). Thus, at first, only an extra row and an extra column of 
rays are needed for the image. After rays have been tired through all four comers of a pixel, 
the shades they determine are averaged: the average is then used for the pixel if the shades 
differ from it by only a small nmounL If they differ by too much, then the pixel is 
subdivided further by firing rays through the midpoints of its sides and through its center, 
forming four subpixels (Fig. 15.66c). The rays at the four comers of eacb subpixel are tben 
compared using the same criterion. Subdivision proceeds recursively until a predefined 
maximum subdivision depth is reached, as in the Warnock algorithm, or until the ray shades 
are determined to be sufficiently similar. The pixel's shade is the area-weighted average of 
its ubpixels' shades. Adaptive supersampling thus provides an improved approximation to 
unweighted area sampling, without the overhead of a uniformly higher sampling rate. 

Consider, for example, Fig. 15.66(a), which shows the rays fired through the comers of 
two adjacent pixels, with a maximum subdivision depth of two. If no further subdivision is 
needed for the pixel bordered by rays A, 8, D. and E in pan (b), then, representing a ray's 
shade by its name, the pixel's shade is (A + 8 + D + £)14. The adjacent pixel requires 
further subdivision. so rays G. H, I . J, and K are traced, defining the vertices of four 
subpixels in part (c). Each subpixel is recursively inspected. In this case, only the 
lower-right subpixel is subdivided again by tracing rays L, M, N. 0. and P, as shown in pan 
(d). At this point, the maximum subdivision depth is reached. This pixel's shade is 

~ [ B+G+H+I +~ [G+L+M+N+L+C+N+O M+N+I + P+ 
4 4 4 4 4 + 4 

N+O+P+J ] +H+l+E+K+I+J+K+F ] 
4 4 4 . 

Aliasing problems can also arise when the rays through a pixel miss a small object. 
This produces visible effects if the objects are arranged in a regular pattern and some are nor 
visible. or if a series of pictures of a moving object show that object popping in and out of 
view as iris alternately hit and missed by the nearest ray. Whitted 3\'0ids these effects by 
surrounding each object with a spherical bounding volume rhar is sufficiently large always to 
be intersected by ut lcast one rJy from the eye. Since !he rays converge at rhe eye, the size of 
the bounding volume is a function of the distance from the eye. If a ray intersects the 
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D E F 
c 

A 8 

(b) 
E K F 
~~---. 

(c) 

E K F 

(a) 

(d) 

Fig. 15.66 Adaptive supersampling. (a) Two pixels and the rays fired through their 
corners. (b) The left pixel is not subdivided. (c) The right pixel is subdivided. (d) The 
lower-right subpixel is subdivided. 

bounding volume but does not intersect the object, then all pixels sharing that ray are further 
subdivided until the object is intersected. Severa.! more recent approaches to antialiased ray 
tracing are discussed in Section 16.12. 

15.11 SUMMARY 

Sutherland, Sproull, and Schumacker [SUTH74a] stress that the heart of visible-surface 
determination is sorting. Indeed, we have seen many instances of sorting and searching in 
the algorithms, and efficient sorting is vital to efficient visible-surface determination. 
Equally important is avoiding any more sorting than is absolutely necessary, a goal typically 
achieved by exploiting coherence. For example, the scan-line algorithms use scan-line 
coherence to eliminate the need for a complete sort on x for each scan line. Hubschman and 
Zucker usc frame coherence to avoid unnecessary comparisons in animation sequences 
[HUBS82J . 

Algorithms can be classified by the order in which they sort. The depth-sort algorithm 
sons on z and then on x and y (by use of extents in tests I and 2); it is thus called a zxy 
algorithm. Scan-line algorithms son on y (with a bucket son), then son on x (initially with 
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an insertion sort, then with a bubble sort as each scan line is processed), and finally search 
in z for the polygon nearest the viewpoint; therefore, they are yx. algorithms. Warnock's 
algorithm does a parallel sort on x and y, and then searches in z, and hence is an (xy)z 
algorithm (sorting on a combination of dimensions is indicated by parentheses). The 
z-buffer algorithm does no explicit sorting and searches only in z; it is called an (xyz) 
algorithm. 

Sancha has argued that the order of sorting is unimportant: There is no intrinsic benefit 
in sorting along any particular axis first as opposed to another because, at least in principle, 
the average object is equally complex in all three dimensions [SUTH74a]. On the other 
hand, a graphics scene, like a Hollywood set, may be constructed to look best from a 
particular viewpoint, and this may entai l building in greater complexity along one axis than 
along another. Even if we assume roughly symmetric object complexity, however, all 
algorithms are still not equally efficient: They differ in how effectively coherence is used to 
avoid sorting and other computation and in the use of space-time tradeoffs. The resul!s 
reported in [SUTH74a, Table VII] , which compare the estimated performance of four of 
the basic algorithms we have presented, are summarized in Table 15.3. The authors suggest 
that, because these arc only estimates, small differences should be ignored , but that "we 
feel free to make order of magnitude comparisons between the various algorithms to learn 
something about the effectiveness of the various methods" [SUTH74a, p. 52]. 

The depth-sort algorithm is efficient for smaH numbers of polygons because the simple 
overlap tests almost always suffice to decide whether a polygon can be scan-converted. With 
more polygons, the more complex tests arc needed more frequently and polygon 
subdivision is more likely to be required. The z-buffer algorithm has constant performance 
because, as the number of polygons in a scene increases, the number of pixels covered by a 
single polygon decreases. On the other hand, its memory needs arc high. The individual 
tests and calculations involved in the Warnock area-subdivision algorithm arc relatively 
complex, so it is generally slower than are the other methods. 

In addition to these informal estimates, there has been some work on formalizing the 
visible-surface problem and analyzing its computational complexity [GIL078; FOUR88; 
FIUM89]. For example, Fiume [FIUM89] proves that object-precision visible-surface 
algorithms have a lower bound that is worse than that of sorting: Even the simple task of 

TABLE 15.3 RELATIVE ESTIMATED 
PERFORMANCE OF FOUR ALGORITHMS FOR 
VISIBLE-SURFACE DETERMINATION 

Number of polygonal faces in 
scene 

Algorithm 

Depth son 
z-bulfer 
Scan line 
Warnock area subdivision 

100 
I* 
54 
5 
II 

2500 
10 
54 
21 
64 

*Entries are nom1aliz.ed such thac this ca.~ is unity. 

60,000 
507 
54 
100 
307 
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computing the visible surfaces of a set of n convex polygons can result in the creation of 
O(n!) polygons, requiring O(n!) time to output, as shown in Fig. 15.67. 

In general, comparing visible-surface algorithms is difficult because not all algorithms 
compute the same information with the same accuracy. For example, we have discussed 
algorithms that restrict the kinds of objects, relationships among objects, and even the kinds 
of projections that are allowed. As we shall see in the following chapter, the choice of a 
visible-surface algorithm is also influenced by the kind of shading desired. If an expensive 
shading procedure is being used, it is better to choose a visible-surface algorithm that 
shades only parts of objects that are visible, such as a scan-line algorithm. Depth sort would 
be a particularly bad choice in this case, since it draws a.ll objects in their entirety. When 
interactive performance is important, hardware z-buffer approaches are popular. The 
BSP-tree algorithm, on the other hand, can generate new views of a static environment 
quickly, but requires additional processing whenever the environment changes. Scan-line 
algorithms allow extremely high resolution because data structures need to represent fully 
elaborated versions only of primitives that affect the line being processed. As with any 
algorithm, the time spent implementing the algorithm and the ease with which it can be 
modified (e.g., to accommodate new primitives) is also a major factor. 

One imponant consideration in implementing a visible-surface algorithm is the kind of 
hardware suppon available. If a parallel machine is available , we must recognize that, at 
each place where an algorithm takes advantage of coherence, it depends on the results of 
previous calculations. Exploiting parallelism may entail ignoring some otherwise useful 
form of coherence. Ray tracing has been a particularly popular candidate for parallel 
implementation because, in its simplest form, each pixel is computed independently. As we 
shall see in Chapter 18, there are many architectures that have been designed to execute 
specific visible-surface algorithms. For example, plummeting memory costs have made 
hardware z-buffer systems ubiquitous. 

Fig. 15.67 n/2 rectangles laid across n/2 more distant rectangles can yield n/2 visible 
whole rectangles + (fl/2) (/1/2 + 1) visible fragments. This is 0(n2) visible polygons. 
(After (FIUM89).) 
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EXERCISES 

15.1 Prove that the ttansformation Min Section 15.2.2 preserves (a) straight lines, (b) planes, and 
(c) depth relationships. 

15.2 Gi.-en a plane Ax + By + Cz + D ~ 0, apply M from Section 15.2.2 and find the new 
coefficients of the plane equation. 

15.3 How can a scan-line algorithm be extended to deal with polygons with shared edges? Should a 
shared edge be represented once, as a shared edge, or twice, once for each polygon it borders, with no 
record kept that it is a shared edge? When the depth of two polygons is evaluated at their common 
shared edge. the depths will, of course, be equal. Which polygon should be declared visible, given 
that the scan is entering both? 

15.4 Warnock's algorithm generates a quadtree. Show the quadtree corresponding to Fig. 15.44. 
Label all nodes to indicate bow the triangle (7) and the rectangle (R) relate to the node, as (a) 
surrounding, (b) intersecting, (c) contained, and (d) disjoint. 

15.5 For each of the visible-surface algorithms discussed, explain how piercing polygons would be 
handled. Are they a special case that must be treated explicitly, or are they accommodated by the 
basic a lgorithm? 

15.6 Consider tests 3 and 4 of the depth-sort algorithm. How might they be implemented efficiently? 
Consider examining the sign of the equation of the plane of polygon P for each vertex of polygon Q, 
and vice versa. How do )'QU know to which side of the plane a positive value of the equation 
corresponds? 

IS. 7 How can the algorithms discussed be adapted to work with polygons containing holes? 

15.8 Describe how the visible-line algorithms for functions of two variables, described in Section 
15. I , can be modified to work as visible-surface algorithms using the approach taken in the painter's 
algorithm. 

15.9 Why does the RobertS visible-line algorithm not eliminate all lines that are edges of a 
back-facing polygon? 

15.10 One of the advantages of the z-butfer algorithm is that primitives may be presented to it in any 
order. Does this mean that two images created by sending primitives in different orders wi ll have 
identical values in their z-buffers and in their frame buffers? Explain )'QUr ansm:r. 

15.11 Consider merging two images of identical size, represented by their frame-buffer and z-butfer 
contents. If you know the :..., and z.,.. of each image and the values of z to which they originally 
corresponded, can you merge the images properly? Is any additional information needed? 

15.12 Section 15.4 mentions the z-compression problems caused by rendering a perspective 
projection using an integer z-buffer. Choose a perspective viewing specification and a small number of 
object points. Show how, in the perspective ttansfonnation , two points near the center of projection 
are mapped to different z values, whereas two points separated from each other by the same d.istance, 
but farther from the center of projecrion, are mapped to a single z value. 

15.13 a. Suppose view volume V has a front clipping plane at distance F and a back clipping plane at 
distance 8 , and that view volume V' has clipping planes at F' and 8 '. Aft.er transformation 
of each view volume to the canonical-perspective view volume, the back clipping plane of V 
wiU be at z ~ -I , and the front clipping plane at z ~A. For V', the front clipping plane will 
be at z ~A'. Show that, if 8 I F~ 8' I F'. then A ~A'. 
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b. Part (a) shows that, in considering the effect of perspective, we need to consider only the 
ratio of back-plane to front-plane distance. We can therefore simply study the canonical 
view volume with various values of the front-plane distance. Suppose, then, that we have a 
canonical-perspective view volume, with front clipping plane z = A and back clipping plane 
z = -I, and we transform it, through the perspective transformation, to the parallel view 
volume between z = 0 and z = - I . Write down the formula for the transformed z 
coordinate in terms of the original z coordinate. (Your answer will depend on A, of course.) 
Suppose that the transformed z values in the parallel view volume are multiplied by 2", and 
then are rounded to integers (i.e., they are mapped to an integer z-buffer). Ftnd two values 
of z that are as far apart as possible. but that map. under this transformation, to the same 
integer. (Your answer will depend on n and A.) 

c. Suppose you want to make an image in which the bac.kplane-to-frontplane ratio is R, and 
objectS that are more than distance Q apart (in z) must map to different values in the 
z-buffer. Using your work in part (b). write a formula for the number of bits of z-buffer 
needed . 

15.14 Show that the back-to-front display order determined by traversing a BSP tree is not 
necessarily the same as the back-to-front order determined by the depth-son algorithm, even when no 
polygons are split. (Hint: Only two polygons are needed .) 

15.15 How might you modify the BSP-tree algorithm to accept objectS other than polygons? 

15.16 How might you modify the BSP-tree algorithm to allow limited motion? 

15.17 Suppose that you are designing a ray tracer that supports CSG. How would you handle a 
polygon that is not pan of a polyhedron? 

15.18 Some graphics systems implement hardware transformations and homogeneous-coordinate 
clipping in X, Y, and Z using the same mathematics. so that clipping limits are 

- IV s X s IV, - IV :s Y :s IV, -IV S Z S W, 

instead of 

-W s X s IV, - IV :s Y :s W, -wszso. 
How would you change the viewing matrix calculation to take this into account? 

15.19 When ray tracing is performed, it is typically necessary to compute only whether or not a ray 
intersects an extent, not what the actual points of intersection are. Complete the ray-sphere 
intersection equation (Eq. 15: 17) using the quadratic formula , and show bow it can be simplified to 
determine only whether or not the ray and sphere intersect. 

15.20 Ray tracing can also be used to determine the mass properties of objectS through numerical 
integration. The fuU set of intersections of a ray with an object gives the total portion of the ray that is 
inside the object. Show how you can estimate an object's volume by firing a regular array of parallel 
rays through that object. 

15.21 Derive the intersection of a ray with a quadric surface. Modify the method used to derive the 
intersection of a ray with a sphere in Eqs. (15.13) through ( 15. 16) to handle the definition of a 
quadric given in Section 11.4. 

15.22 ln Eq. ( 15.5), 0 , the cost of performing an object intersection test, may be partially 
underwritten by 8 , the cost of performing a bounding-volume intersection test, if the results of the 
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720 Visible-surface Determination 

bounding-volume intersection test can be reused to simplify the object intersection test . Describe an 
object and bounding volume for which this is possible. 

15.23 Implement one of the polygon visible surface algorithms in this chapter, such as a z-buffer 
algorithm, scan-line algorithm, or BSP tree algorithm. 

15.24 Implement a simple ray tracer for spheres and polygons. including adaptive supersampling. 
(Choose one of the illumination models from Section 16. 1.) Improve your program's performance 
through the use of spatial partitioning or hierarehles of bounding volumes. 

15.25 If you have implemented the :-buffer algorithm, then add hit detection to it by extending the 
pick-window approach described in Section 7 . 12. 2 to take visible-surface determination into account. 
You will need a SetPickMode procedure that is passed a mode flag, indicating whether objects are to 
be d111Wn (drawing mode) or instead tested for hits (pick mode). A SetPick Window procedure will let 
the user set a rectangular pick window. The :-buffer must already have been filled (by drawing all 
objects) for pick mode to work. When in pick mode , neither the frame-buffer nor the : -buffer is 
updated, butt he z-value of each of the primitive's pixels that fulls inside the pick window is compared 
with the corresponding value in the z-buffer. If the new v-.Uue would have caused the object 10 be 
drawn in drawing mode, then a flag is set . The flag can be inquired by calling lnquirePick, which then 
resets the flag. If lnquirePick is called after each primitive's routine is called in pick mode, picking 
can be done on a per-primitive basis. Show how you can use lnquirePick 10 determine which object is 
actually visible at a pixel. 
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16 
Illumination 

and Shading 

ln this chapter, we discuss how to shade surfaces based on the position, orientation, and 
characteristics of the surfaces and the light sources illuminating them. We develop a number 
of different illumination models that express the factors determining a surface's color at a 
given point. Dlumination models are also frequently called lighting models or shading 
models. Here, however, we reserve the term shading model for the broader fram~rk in 
which an illumination model fits. The shading model determines when the illumination 
model is applied and what arguments it will receive. For example, some shading models 
invoke an illumination model for every pixel in the image, whereas others invoke an 
illumination model for only some pixels, and shade the remaining pixels by interpolation. 

When we compared the accuracy with which the visible-surface calculations of the 
previous chapter are performed, we distinguished between algorithms that use the a..:tual 
object geometry and those that use polyhedral approximations, between object-precision 
and image-precision algorithms, and between image-precision algorithms that take one 
point sample per pixel and those that use better filters. ln all cases, however, the single 
criterion for determining the direct visibility of an object at a pixel is whether something 
lies between the object and the observer along the projector through the pixel. In contrast, 
the interaction between lights and surfaces is a good deal more complex. Graphics 
researchers have often approximated the underlying rules of optics and thermal radiation, 
either to simplify computation or because more accurate models were not known in the 
graphics community. Consequently, many of the illumination and shading models 
traditionally used in computer graphics include a multitude of kludges, " hacks," and 
simpl ifications that have no firm grounding in theory, but that work well in practice. The 
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fust part of this chapter covers these simple models, wnich are still in common use because 
they can produce attractive and useful results with minimal computation. 

We begin, in Section 16.1, with a discussion of simple illumination models that tak.e 
into account an individual point on a surface and the light sources directly illuminating it. 
We first develop illumination models for monochromatic surfaces and lights, and then show 
how the computations can be generalized to handle the color systems discussed in Chapter 
13. Section 16.2 describes the most common shading models that are used with these 
illumination models. In Section 16.3, we expand these models to simulate textured 
surfaces. 

Modeling refraction, reHection, and shadows requires additional computation that is 
very similar to, and often is integrated with, hidden-surface elimination. Indeed, these 
effects occur because some of the "hidden surfaces" are not really hidden at all - they are 
seen through, reHected from, or cast shadows on the surface being shaded! Sections 16.4 
through 16.6 discuss how to model these effects. We next introduce, in Section 16.7, 
illumination models that more accurately characterize how an individual surface interacts 
with the light sources directly illuminating it. This is followed by coverage of additional 
ways to generate more realistic images, in Section 16.8 through 16. JO. 

Sections 16.11 through 16. 13 describe global illumifllllion mcdtls that attempt to take 
into account the interchange of light between all surfaces: recursive ray tracing and radiosity 
methods. Recursive ray tracing ell:tends the visible-surface ray-tracing algorithm introduced 
in the previous chapter to interleave the determination of visibility, illumination, and 
shading at each pixel. Radiosity methods model the energy equilibrium in a system of 
surfaces; they determine the illumination of a set of sample points in the environment in a 
view-independent fashion before visible-surface determination is performed from the 
desired viewpoint. More detailed treatments of many of the illumination and shading 
models covered here may be found in LGLAS89; HALL89]. 

Finally, in Section 16. 14, we look at several different graphics pi.pelines that integrate 
the rasterization techniques discussed in this and the previous chapters. We examine some 
ways co implement these capabilities to produce systems that are both efficient and 
extensible. 

16.1 ILLUMINATION MODELS 

16.1 . 1 Ambient Ught 

Perhaps the simplest illumination model possible is that used implicitly in this book's 
earliest chapters: Each object is displa)':d using an intensity intrinsic to it. We can think of 
this model , which has no external light source, as describing a rather unrealistic world of 
nonrefleccive, self-luminous objects. Each object appears as a monochromatic silhouette, 
unless its individual parts, such as the polygons of a polyhedron, are given different shades 
when the objecl is created. Color Plate 0 .28 demonstrates chis effect. 

An illumination model can be expressed by an illrmri11ation equation in variables 
associated with the point on the object being shaded. The illumination equation thai 
expresses this simple model is 

I = k;. (16.1) 
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16.1 Illumination Models 723 

where I is the resulting intensity and the coefficient k; is the object's intrinsic intensity. 
Since this illumination equation contains no terms that depend on the position of the point 
being shaded, we can evaluate it once for each object. The process of evaluating the 
illumination equation at one or more points on an object is often referred to as lighting the 
object. 

Now imagine, instead o~ self-luminosity, that there is a diffuse, oondirectional source 
of light, the product of multiple reftections of light from the many surfaces present in the 
environment. This is known as ambient light. If we assume that ambient light impinges 
equally on all surfaces from all directions, then our illumination equation becomes 

I = I,)c •. (16.2) 

I, is the intensity of the ambient light, assumed to be constant for all objects. The amount of 
ambient light reftected from an object's surface is determined by k., the ambient-reflection 
coefficient, which ranges from 0 to I. The ambient-reftection coefficient is a material 
property. Along with the other material properties that we will discuss, it may be thought of 
as characteriting the material from which the surface is made. Like some of the other 
properties, the ambient-reflection coefficient is an empirical convenience and does not 
correspond directly to any physical property of real materials. Furthermore, ambient light 
by itself is not of much interest. As we see later, it is used to account for all the complex 
ways in which light can reach an object that are not otherwise addressed by the illumination 
equation. Color Plate ll.28 also demonstrates illumination by ambient light. 

16.1.2 Diffuse Reflection 

Although objects illuminated by ambient Hght are more or less brightly lit in direct 
proportion to the ambient intensity, they are still uniformly illuminated across their 
surfaces. Now consider illuminating an object by a point light source, whose rays emanate 
uniformly in all directions from a single point. The object's brightness varies from one part 
to another, depending on the direction of and distance to the light source. 

Lambertian reflection. Dull, matte surfaces, such as chalk, exhibit diffuse reflection, 
also known as Lambertian reflection. These surfaees appear equally bright from all viewing 
angles because they reflect light with equal intensity in all directions. For a given surface, 
the brightness depends only on the angle ()between the direction L to the light source and 
the surface normal N of Fig. 16.1. Let us examine why this occurs. There are two factors at 
work here. First, Fig. 16.2 shows that a beam that intercepts a surface covers an area whose 
size is inversely proportional to the cosine of the angle ()that the beam makes with N. If the 

[ 

Fig. 16.1 Diffuse reflection. 
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724 Illumination and Shading 

Surface 1 Surface 2 

Fig. 16.2 Beam (shown in 20 cross-section) of infinitesimal cross-sectional area dA at 
angle of incidence 8 intercepts area of dA I cos 8. 

beam has an infinitesimally small cross-sectional differential area dA, then the beam 
intercepts an area dA I cos (Jon the surface. Thus, for an incident light beam, the amount of 
light energy that falls on dA is proportional to cos 9. This is true for any surface, 
independent of its material. 

Second, we must consider the amount of light seen by the viewer. Lamberti an surfaces 
have the property, often known as Lambert's law, that the amount of light reflected from a 
unit differential area dA toward the viewer is directly proportional to the cosine of the angle 
between the direction to the viewer and N. Since the amount of surface area seen is 
inversely proportional to the cosine of this angle, these two factors cancel out. For example, 
as the viewing angle increases, the viewer sees more surface area, but the amount of light 
reflected at that angle per unit area of surface is proportionally less. Thus, for Lambertian 
surfaces, the amount of light seen by the viewer is independent of the viewer's direction and 
is proportional only to cos (J, the angle of incidence of the light. 

The diffuse illumination equation is 

(16.3) 

/P is the point light source's intensity; the material 's dijfuse-rejkction coefficient kd is a 
constant between 0 and I and varies from one material to another. The angle (J must be 
between (j' and 90° if the light source is to have any direct effect on the point being shaded. 
This means that we are treating the surface as self-occluding, so that light cast from behind a 
point on the surface does not illuminate it. Rather than include a max(cos 8, 0) term 
explicitly here and in the following equations, we assume that 8 lies within the legal range. 
When we want to light self-occluding surfaces, we can use abs(cos 8) to invert their surface 
normals. This causes both sides of the surface to be treated alike, as if the surface were Lit by 
two opposing lights. 

Assuming that the vectors N and L have been normalized (see Appendix), we can 
rewrite Eq. (16.3) bf using the dot product: 

I = l.J<d (N . L). ( 16.4) 

The surface normal N can be calculated using the methods discussed in Chapter II. If 
polygon normals are precomputed and transformed with the same matrix used for the 
polygon vertices, it is important that nonrigid modeling transformations, such as shears or 
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Fig. 16.3 Spheres shaded using a diffuse-reflection model (Eq. 16.4). For all spheres, 
'• = 1.0. From left to right, k0 = 0.4, 0.55, 0. 7, 0.85, 1.0. (By David Kurlander, Columbia 
University.) 

differential scaling, not be performed; these transformations do not preserve angles and may 
cause some normals to be no longer perpendicular to their polygons. The proper method to 
transform normals when objects undergo arbitrary transformations is described in Section 
5.6. ln any case, the illumination equation must be evaluated in the WC system (or in any 
coordinate system isometric to it), since both the normalizing and perspective transforma· 
lions will modify e. 

If a point light source is sufficiently distant from the objects being shaded, it makes 
essentially the same angle with all surfaces sharing the same surface normal. In this case, 
the light is called a directional light source, and I is a constant for the light source. 

Figure 16.3 shows a series of pictures of a sphere illuminated by a single point source. 
The shading model calculated the intensity at each pixel at which the sphere was visible 
using the illumination model of Eq. (16.4). Objects illuminated in this way look harsh , as 
when a flashlight illuminates an object in an otherwise dark room. Therefore, an ambient 
term is commonly added to yield a more realistic illumination equation: 

I = l.k,. + lrf'd (N · [). (16.5) 

Equation ( 16.5) was used to produce Fig. 16.4. 

Light·source attenuation. If the projections of twO parallel surfaces of identical 
material , lit from the eye, overlap in an image, Eq. (16.5) will not distinguish where one 
surface leaves off and the other begins, no matter how different are their distances from the 
light source. To do this, we introduce a light·source attenuation factor,/.,., yielding 

(16.6) 

Fig. 16.4 Spheres shaded using ambient and diffuse reflection (Eq. 16.5). For all 
spheres,/, = '• = 1.0. k0 = 0 .4. From left to right, k, = 0 .0, 0.15, 0.30. 0.45, 0.60. (By 
David Kurlander. Columbia University.) 
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726 Illumination and Shading 

An obvious choice for f.u. takes into account the fact that the energy from a point light 
source that reaches a given part of a surface falls off as the inven;e square of dL, the distance 
the light travels from the point source to the surface. In this case, 

I 
fw. = dt (16.7) 

In practice, however, this often does not work well . lf the I igbt is far away, J I d[ does not 
vary much; if it is very close, it varies widely, giving considerably different shades to 
surfaces with the same angle 8 between N and I. Although this behavior is correct for a 
point light source, the objects we see in real life typically are not illuminated by point 
sources and are not shaded using the simplified illumination models of computer graphics. 
To complicate matters, early graphics researchers often used a single point light source 
positioned right at the viewpoint. They expected f .. , to approximate some of the effects of 
atmospheric attenuation between the viewer and the object (see Section 16.1.3), as well as 
the energy density falloff from the light to the object. A useful compromise, which allows a 
richer range of effects than simple square-law attenuation, is 

f ... = min( + } + d', 1). Ct Ct L C1 L 
(16.8) 

Here c1, c,, and c1 are user-defined constants associated with the light source. The constant 
c1 keeps the denominator from becoming too small when the light is close, and the 
expression is clamped to a maximum of I to ensure that it always attenuates. Figure 16.5 
uses this illumination model with different constants to show a range of effects. 

Colored lights and surfaces. So far, we have described monochromatic lights and 
surfaces. Colored lights and surfaces are commonly treated by writing separate equations 
for each component of the color model. We represent an object's diffuse color by one value 
of Od for each component. For example, the triple (OdR• Oo10, OciB) defines an object's 
diffuse red, green, and blue components in the RGB color system. ln this case, the 
illuminating light's three primary components, l pa. lpe. and / pH• are reHected in proportion 
to kdOdR• ~0<10, and kdOdB• respectively. Therefore, for the red component, 

(16.9) 

Similar equations are used for 10 and /8 , the green and blue components. The use of a single 
coefficient to scale an expression in each of the equations allows the user to control the 
amount of ambient or diffuse reHection, without altering the proportions of its components. 
An alternative formulation that is more compact, but less convenient to control, uses a 
separate coefficient for each component; for example, substituting kaR for k.0dR and kdR for 
kdOdR· 

A simplifying assumption is made here that a three-component color model can 
completely model the interaction of Light with objects. This assumption is wrong, as we 
discuss in Section 16.9, but it is easy to implement and often yields acceptable pictures. In 
theory, the illumination equation should be evaluated continuously over the spectral range 
being modeled; in practice, it is evaluated for some number of discrete spectral samples. 
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Fig. 16.5 Spheres shaded using ambient and diffuse reflection with a light-source· 
attenuation term (Eqs. 16.6 and 16.8). For all spheres, 1, = /0 = 1.0. k, = 0. 1, kd = 0.9. 
From left to right, sphere's distance from light source is 1.0, 1.375, 1. 75, 2.125. 2.5. 
Top row: c, = c2 = 0 .0. c3 = 1.0 (1/d~). Middle row: c, = c2 = 0.25, c3 = 0.5. Bottom 
row: c, = 0.0 , c2 = 1.0, c3 = 0.0 (1/dJ. (By David Kurlander, Columbia University.) 

Rather than restrict ourselves to a particular color model, we e)(plicitly indicate those terms 
in an illumination equation that are wavelength-dependent by subscripting them with a A. 
Thus, Eq. (16.9) becomes 

I, = Iu k.O.u + f,./oAkptU (N · L). 

16.1.3 Atmospheric Attenuation 

( 16. 10) 

To simulate the atmospheric attenuation from the object to the viewer, many systems 
provide depth cueing. In this technique, which originated with vector-graphics hardware, 
more distant objects are rendered with lower intensity than are closer ones. The PHJGS + 
standard recommends a depth-cueing approach that also makes it possible to approximate 
the shift in colors caused by the intervening atmosphere. Front and back depth-cue 
referenc-e planes are defined in NPC; each of these planes is associated with a scale factor, sr 
and sb, respectively, that ranges between 0 and I. The scale factors determine the blending 
of the original intensity with that of a depth-cue color, / d<A · The goal is to modify a 
previously computed I, to yield the depth-cued value I; that is displayed. Given z., the 
object's z coordinate, a scale factors. is derived that will be used to interpolate between I, 
and I"''' to determine 

( J6.1J ) 
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1 I I 
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Fig. 16.6 Computing the scale factor for atmospheric attenuation. 

If z. is in front of the front depth-cue reference plane's z coordinate z, then s. = s,. If z. is 
behind the back depth-cue reference plane's z coordinate z~, then s. = s0• Finally, if z. is 
between the two planes, then 

(z - z Vs - s' 
S • $ + • 1>1' I lol. 
• • z, - z. 

( 16. 12) 

The relationship between s. and z. is shown in Fig. I 6.6. Figure 16.7 shows spheres shaded 
with depth cueing. To avoid complicating the equations, we ignore depth cueing as we 
develop the illumination model further. More realistic ways to model atmospheric effects 
are discussed in Section 20.8.2. 

16.1 .4 Specular Reflection 

Sp«ular rtjl«:tion can be observed on any shiny surface. Dluminate an apple with a bright 
white light: The highlight is caused by specular re8ection, whereas the light re8ected from 
the rest of the apple is the result of diffuse re8ection. Also note that, at the highlight, the 
apple appears to be not red, but white, the color of the incident light. ObjectS such as waxed 
apples or shiny plastics have a transparent surface; plastics, for example, are typically 
composed of pigment panicles embedded in a transparent material. Light specularly 
re8ected from the colorless surface has much the same color as that of the light source. 

Fig. 16.7 Spheresshadedusingdepthcueing(Eqs. 16.5,16.11 . and 16. 12). 0istance 
from light is constant . For all spheres, I. -1. = 1.0 , k. - 0. 1, kd = 0.9, z, = 1.0 , z.- 0 .0 . 
s, - 1.0, s, • 0.1, radius • 0.09. From left to right, z at front of sphere is 1.0 , 0. 77. 
0.55, 0.32, 0.09. (By David Kurlander. Columbia University.) 
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L 

Fig. 16.8 Specular reflection. 

Now move your head and notice how the highlight also moves. It does so because shiny 
surfaces reflect light unequally in different directions; on a perfectly shiny surface, such as a 
perfect mirror, light is reflected only in the direction of reflection R, which is L mirrored 
about N. Thus the viewer can see specularly reflected light from a mirror only when the 
angle a in Fig. 16.8 is zero; a is the angle between Rand the direction to the viewpoint V. 

The Phong illumination model. Phong Bui-Tuong [BUmS] developed a popu.lar 
illumination model for nooperfect reflectors , such as the apple. It assumes that maximum 
specular reflectance occurs when a is zero and falls off sharply as a increases. This rapid 
falloff is approximated by cos• a , where n is the material 's specular-reflection exponent. 
Values of n typically vary from I to several hundred, depending on the surface material 
being simulated. A value of I provides a broad, gentle falloff, whereas higher values 
simulate a sharp, focused highlight (Fig. 16.9). For a perfect reflector, n would be infinite. 
As before, we treat a negative value of cos a as zero. Pbong's illumination model is based 
on earlier worlc by researchers such as Warnock [WARN69], who used a cos• 8 term to 
model specular reflection with the light at the viewpoint. Phong, however, was the first to 
account for viewers and lights at arbitrary positions. 

The amount of incident light specularly reflected depends on the angle of incidence 8. 
If W(IJ) is the fraction of specularly reOected light, then Phong's model is 

lA = laJ.k.O.u + /.,,./.,.. (k.JOcU cos 8 + W(IJ) cos• a]. (16.13) 

If the direction of reOection R, and the viewpoint direction V are normalized, then cos a = 
R · V. In addition, W(B) is typicaiJy set to a constant k., the material's specular-reflection 
coefficient, which ranges between 0 and I. The value of k. is selected experimentally to 

cos a cos2 a cossa cos~ a 
1 1 

QL---------~ QL---------~ 
0 '--.;,.._ ___ _ 

oo goo oo goo oo so• o• oo· 

Fig. 16.9 Different values of cos" a used in the Phong illumination model. 
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produce aesthetically pleasing results. Then, Eq. (16.13) can be rewritten as 

I~ = lt)k.Od). + J..,fpA[~Od).(N . L) + k, (R . V)"]. (16.14) 

Note that the color of the specular component in Phong's illumination model is not 
dependent on any material property; thus, this model does a good job of modeling specular 
reflections from plastic surfaces. As we discuss in Section 16.7, specular reflection is 
affected by the properties of the surface itself, and, in general, may have a different color 
than diffuse reflection when the surface is a composite of several materials. We can 
accommodate this effect to a first approximation by modifying Eq. ( 16.14) to yield 

(16. 15) 

where 0., is the object's specular color. Figure 16.10 shows a sphere illuminated using Eq. 
(16.14) with different values of k, and n. 

Calculating the reflection vector. Calculating R requires mirroring L about N. As 
shown in Fig. 16.11, this can be accomplished with some simple geometry. SioceN and L 
are normalized, the projection ofL onto N is N cos (J. Note that R = N cos (J + S, where lSI 
is sin 0. But, by vector subtraction and congruent triangles, Sis just N cos (J- I.. Therefore, 
R = 2 N cos (J - I.. Substituting N • L for cos (J and R · V for cos a yields 

R = 2N (N · L) - I, 
R · v = (2N (N · L) - L) · v. 

(16.16) 

(16.17) 

Fig. 16.10 Spheres shaded using Phong's illumination model (Eq. 16.14) and different 
values of k, and n. For all spheres,/,= /P = 1.0, k, = 0 .1, kd = 0.45. From left to right, n = 
3.0, 5.0, 10.0, 27.0, 200.0. From top to bottom, k, = 0 .1 , 0 .25, 0.5. (By David 
Kurlander, Columbia University.) 
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Fig. 16.11 Calculating the reflection vector. 

lf the light source is at infinity, N · f. is constant for a given polygon, whereas R · V varies 
across the polygon. For curved surfaces or for a light source not at infinity, both N · f. and 
R · V vary across the surface. 

The halfway vector. An alternative formulation of Phong 's illumination mode.l uses the 
halfway vector H , so cal.led because its direction is halfway between the directions of the 
light source and the viewer, as shown in Fig. 16.12. H is also known as the direction of 
maximum highlights. (f the surface were oriented so that its normal were in the same 
direction as H, the viewer would see the brightest specular highlight, since R and V would 
also point in the same direction. The new specular-reflection term can be expressed as 
(N · H)", where H = (L + V) t iL + Vj. When the light source and the viewer are both at 
infinity, then the use of N · H offers a computational advantage, since H is constant. Note 
that {J, the angle between Nand H, is not equal to a , the angle between R and V, so the 
same specular exponent n produces different results in the two formulations (see Exercise 
16.1). Although using a cos• term allows the generation of recognizably glossy surfaces, 
you should remember that it is based on empirical observation, not on a theoretical model 
of the specu.lar-retlection process. 

16.1.5 Improving the Point-Ught-Source Model 

Real light sources do not radiate equally in all directions. Warn [WARN83) has developed 
easily implemented lighting controls that can be added to any illumination equation to 
model some of the directionality of the lights used by photographers. In Phong's model, a 
point light source has on.ly an intensity and a position. In Warn's model, a light L is 
modeled by a point on a hypothetical specular reflecting surface, as shown in Fig. 16. 13. 
This surface is illuminated by a point light source L' in the direction I'. Assume that f.' is 
norma.! to the hypothetica.l reflecting surface. Then, we can use the Phong illumination 

v 

Fig. 16.12 H. the halfway vector, is halfway between the direction of the light source 
and the viewer. 
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Point light 
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N 

Fig. 16.13 Warn's lighting model. A light is modeled as the specular reflection from a 
single point illuminated by a point light source. 

equation to determine the intensity of L at a point on the object in terms of the angle 'Y 
between Land L'. If we further assume that the reflector reflects only specular light and bas 
a specular coefficient of I , then the light's intensity at a point on the object is 

(16.18) 

where IL'A is the intensity of the hypothetical point light source, pis the reflector's specular 
exponent, and 'Yis the angle between-Land the hypothetical surface's normal, I:, which 
is the direction to L' . Equation (16.18) models a symmetric directed light source whose 
axis of symmetry is L', the direction in which the light may be thought of as pointing. Using 
dot products, we can write Eq.( l6.18) as 

fw (-L · L' )P. (16.19) 

Once again, we treat a negative dot product as zero. Equation (16.19) can thus be 
substituted for the light-source intensity /fll in the formulation of Eq. (16.15) or any other 
illumination equation. Contrast the intensity distribution of the uniformly radiating point 
source with thecosP distribution of the Warn light source in Fig. 16.14. Each distribution is 
plotted in cross-section, showing intensity as a function of angular direction around the 
light's axis in polar coordinates. l.' is shown as an arrow. These plots are called goniomerric 
diagrams. The larger the value of p, the more the light is concentrated along L'. Thus, a 

180' 

unnormly radiating 
point source 

180' 

cos y 

180' 180' 

cos• y cos32 y 

Fig. 16.14 Intensity distributions for uniformly radiating point source and Warn light 
source with different values of p. 
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(a) (b) (c) (d) (e) 

Fig. 16.15 Cube and plane illuminated using Warn lighting controls. (a) Uniformly 
radiating point source (or p = 0). (b) p = 4. (c) p = 32. (d) Flaps. (e) Cone with 8 = 18•. 
(By David Kurlander, Columbia University.) 

large value of p can simulate a highly directional spotlight, whereas a small value of p can 
simulate a more diffuse floodlight. If p is 0 , then the light acts like a uniformly radiating 
point source. Figure 16.15(a-c) shows the effects of different values of p. Verbeck 
[VERB84) and Nishita et al. [NISH85b] have modeled point light sources with more 
complex irregular intensity and spectral distributions. In general, however, once we 
determine a point light source 's intensity as seen from a particular direction, this value can 
be used in any illumination equation. 

To restrict a light 's effects to a limited area of the scene , Warn implemented flaps and 
cones. Flaps, modeled loosely after the "barn doors" found on professional photographic 
lights, confine the effects of the light to a designated range in x, y, and z world coordinates. 
Each light has six flaps, corresponding to user-specified minimum and maximum values in 
each coordinate. Each flap also has a flag indicating whether it is on or off. When a point's 
shade is determined, the illumination model is evaluated for a light only if the point's 
coordinates are within the range specified by the minimum and maltimum coordinates of 
those flaps that are on. For example, ifL' is parallel to the y 8lCiS, then the x and z flaps can 
sharply restrict the light's effects, much Uk.e the photographic light 's barn doors. Figure 
16.16(a) shows the use of the x flaps in this situation. They flaps can also be used here to 

y 

z 

I Light I 
I 

(a) (b) 

Fig. 16.16 The Warn intensity distribution may be restricted with (a) flaps and 
(b) cones. 
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734 Illumination and Shading 

restrict the light in a way that has no physical counterpart, allowing only objects within a 
specified rdllge of distances from the light to be illuminated. ln Fig. 16.J5(d) the cube is 
aligned with the coordinate system, so two pairs of flaps can produce the effects shown. 

Warn makes it possible to create a sharply delineated spotlight through the use of a 
cone whose apex is at the I ight source and whose 3lUs lies along T:. As shown in Fig. 
J6.16(b}, a cone with a generating angle of 8 may be used to restrict the light source's 
effects by evaluating the illumination model only when 'Y < 8 (or wben cos 'Y > cos 8, since 
cos 'Y bas already been calculated). The PHJGS+ illumination model includes the Warn 
cosP 'Y term and cone angle 8. Figure 16.15(e) demonstrates the use of a cone to restrict the 
light of Fig. 16. 1 S(c). Color Plate Il. l7 shows a car rendered with Warn 's lighting controls. 

16.1.6 Multiple Light Sources 

If there are m light sources, then the terms for each light source are summed: 

I , = L .... k.OdA + L f.uJp).; [kpdA(N · LJ + k.O,. (R, · V)•]. 
I :Si$ .111 

( 16.20) 

The summation harbors a new possibility for error in that /4 can now exceed the maximum 
displayable pixel value. (Although this can also happen for a single light, we can easily 
avoid it by an appropriate choice of f.1, and the material coefficients.) Several approaches 
can be used to avoid overflow. The simplest is to clamp each I4 individually to its maximum 
value. Another approach cons.iders all of a pixel's /4 values together. lf at least one is too 
big, each is divided by the largest to maintain the hue and saturation at the expense of the 
value. If all the pixel values can be computed before display, image-processing transforma­
tions can be applied to the entire picture to bring the values within the desired range. Hal.! 
[HALL89) discusses the tradeoffs of these and other techniques. 

16.2 SHADING MODELS FOR POLYGONS 

l t should be clear that we can shade any surface by calculating the surface normal at each 
visible point and applying the desired illumination model at that point. Unfortunately , this 
brute-force shading model is expensive. ln this section, we describe more efficient shading 
models for surfaces defined by polygons and polygon meshes. 

16.2 .1 Constant Shading 

The simplest shading model for a polygon is constant shading, also known as faceted 
sluuling or flat shading. This approach applies an illumination model once to determine a 
s.ingle intensity value that is then used to shade an entire polygon. l.n essence, we are 
sampling the value of the illumination equation once for each polygon, and holding the 
value across the polygon to reconstruct the polygon • s shade. This approach is val.id if 
several assumptions are true: 

I. The light source is at infinity, soN ·I is constant across the polygon face 

2. The viewer is at infinity , so N · V is constant across the polygon face 

3. The polygon represents the actual surface being modeled, and is not an approximation 
to a curved surface. 
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16.2 Shading Models for Polygons 735 

If a visible-surface algorithm is used that outputs a list of polygons, such as one of the 
list-priority algorithms, constant shading can take advantage of the ubiquitous single-color 
20 polygon primitive. 

If either of the first two assumptions is wrong, then , if we are to use constant shading, 
we need some method to determine a single value for each of I and V. For example, values 
may be calculated for the center of the polygon, or for the polygon's first vertex. Of course, 
constant shading does not produce the variations in shade across the polygon that should 
occur in this situation. 

16.2.2 Interpolated Shading 

As an alternative to evaluating the illumination equation at each point on the polygon, 
Wylie, Romney, Evans, and Erdahl [WYLI67] pioneered the use of interpolated shading, 
in which shading information is linearly interpolated across a triangle from values 
determined for its vertices. Gouraud [GOUR71] generalized this technique to arbitrary 
polygons. This is particularly easy for a scan-line algorithm that already interpolates the z 
value across a span from interpolated z values computed for the span 's endpoints. For 
increased efficiency, a difference equation may be used, like that developed in Section 15.4 
to determine the z value at each pixel. Although z interpolation is physically correct 
(assuming that the polygon is planar), note lhat interpolated shading is not, since it only 
approximates evaluating the illumination model at each point on lhe polygon. 

Our final assumption, that the polygon accurately represents the surface being 
modeled, is most often the one that is incorrect, which has a much more substantial effect 
on the resulting image than does the failure of the other two assumptions. Many objects are 
curved, rather than polyhedral, yet representing them as a polygon mesh allows the use of 
efficient polygon visible-surface algorithms. We discuss next how to render a polygon mesh 
so !hat it looks as much as possible like a curved surface. 

16.2 .3 Polygon Mesh Shading 

Suppose that we wish to approximate a curved surface by a polygonal mesh. If each 
polygonal facet in the mesh is shaded individually, it is easily distinguished from neighbors 
whose orientation is different, producing a "faceted" appearance, as shown in Color Plate 
Il.29. This is true if the polygons are rendered using constam shading, interpolated 
shading, or even per-pixel illumination calculations, because two adjacent polygons of 
different orientation have different intensities along their borders. The simple solution of 
using a finer mesh turns out to be surprisingly ineffective, because the perceived difference 
in shading between adjacent facets is accentuated by the Mach band effect (discovered by 
Mach in 1865 and described in detail in [RATL72]), which exaggerates the intensity change 
at any edge where there is a discontinuity in magnitude or s.lope of intensity. At the border 
between two facets, the dark facet looks darker and the light facet looks lighter. Figure 
16.17 shows, for two separate cases, the actual and perceived changes in intensity along a 
surface . 

Mach banding is caused by lateral inhibition of the receptors in lhe eye. The more light 
a receptor receives, the more that receptor inhibits the response of the receptors adjacent to 
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Distance along surface 
(a) 

~ 
"' c 
"' £ 

Distance along surface 
(b) 

Fig. 1 6.1 7 Actual and perceived intensities in the Mach band effect. Dashed lines are 
perceived intensity; solid lines are actual intensity. 

it. The response of a receptor to light is inhibited by its adjacent receptors in inverse relation 
to the distance to the adjacent receptor. Receptors directly on the brighter side of an 
intensity change have a stronger response than do those on the brighter side that are farther 
from the edge, because they receive less inhibition from their neighbors on the darker side. 
Similarly, receptors immediately to the darker side of an intensity change have a weaker 
response than do those farther into the darker area, because they receive more inhibition 
from their neighbors on the brighter side. The Mach band effect is quite evident in Color 
Plate 0.29, especiaiJy between adjacent polygons that are close in color. 

The polygon·shading models we have described determine the shade of each polygon 
individually. T'wo basic shading models for polygon meshes take advantage of the 
information provided by adjacent polygons to simulate a smooth surface. In order of 
increasing complexity (and realistic effect), they are lcnown as Gouraud shading and Phong 
shading, after the researchers who developed them. Current 3D graphics ~ricstations 
typically suppon one or both of these approaches through a combination of hardware and 
firmware. 

16.2.4 Gouraud Shading 

Gouraud slutdirlg [GOUR71), also caiJed intensity inurpolation shading or color interpola· 
tlon shading, eliminates intensity disoontinuities. Color Plate ll .JO uses Gouraud shading. 
AJthough most of the Mach banding of Color Plate 0 .29 is no longer visible in Color Plate 
0 .30, the bright ridges on objects such as the torus and cone are Macb bands caused by a 
rapid, although not discontinuous, change in the slope of the intensity curve; Gouraud 
shading does not completely eliminate such intensity changes. 

Gouraud shading extends the concept of interpolated shading applied to individual 
polygons by interpolating polygon venex illumination va.lues that take into account the 
surface being approximated. The Gouraud shading process requires that the normal be 
known for each vertex of the polygonal mesh. Gouraud was able to compute these vertex 
rwrmols directly from an analytical description of the surface. AJtematively, if the vertex 
normals are not stored with the mesh and cannot be determined directly from the actual 
surface, then, Gouraud suggested, we can approximate them by averaging the surface 
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16.2 Shading Models for Polygons 737 

Fig. 16.1 8 Normalized po_!ygon surface normals may be averaged to obtain vertex 
normals. Averaged normal N. is Lui~• N, I I L,., •• N, 1. 

normals of all polygonal facets sharing each vertex (Fig. 16. 18). If an edge is meant to be 
visible (as at the joint between a plane's wing and body), then we find I'M> vertex normals, 
one for each side of the edge, by averaging the normals of polygons on each side of the edge 
separately. Normals were not averaged across the teapot' s patch cracks in Color Plate 0 .30. 
(See caption to Color Plate ll.21.) 

The next step in Gouraud shading is to find vertex intensities by using the vertex 
normals with any desired iJiumination model. Finally, each polygon is shaded by linear 
interpolation of vertex intensities along each edge and then between edges along each scan 
line (Fig. 16.19) in the same way that we described interpolating z values in Section 15.4. 
The term Gouraud shading is often genera.lized to refer to intensity interpolation shading of 
even a single polygon in isolation, or to the interpolation of arbitrary colors associated with 
polygon vertices. 

The interpolation along edges can easily be integrated with the scan-line visible-surface 
algorithm of Section 15.6. With each edge, we store for each color component the starting 
intensity and the change of intensity for each unit change in y. A visible span on a scan line 
is filled in by interpolating the intensity values of the I'M> edges bounding the span. As in aU 
linear-interpolation algorithms, a difference equation may be used for increased efficiency. 

y 

I, 
y, 

Scan line 
Ys 1----:-r--_.--~<---'-:.::.........c:.c...._ 

Y2 /2 

Fig. 16.19 Intensity interpolation along polygon edges and scan lines. 
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738 Illumination and Shading 

16.2 .5 Phong Shading 

Phcng shading [BUI175], also known as normal-vector interpolation shading, interpolates 
the surface normal vector N, rather than the intensity. Interpolation occurs across a polygon 
span on a scan line, between starting and ending normals for the span. These normals are 
themselves interpolated along polygon edges from vertex normals that are computed, if 
necessary, just as in Gouraud shading. The interpolation along edges can again be done by 
means of incremental calculations, with all three components of the normal vector being 
incremented from scan line to scan line. At each pixel along a scan line, the interpolated 
normal is normalized, and is backmapped into the WC system or one isometric to it, and a 
new intensity calculation is performed using any illumination model. Figure 16.20 shows 
two edge normals and the normals interpolated from them, before and after normalization. 

Color Plates 0 .31 and 0 .32 were generated using Gouraud shading and Pbong shading 
respectively, and an illumination equation with a specular-reflectance term. Phong shading 
yields substantial improvements over Gouraud shading when such illumination models are 
used, because highlights are reproduced more faithfully, as shown in Fig. 16.21 . Consider 
what happens if n in the Pbong cos• a illumination term is large and one vertex has a very 
small a , but each of its adjacent vertices bas a large a. The intensity associated with the 
venex that bas a small a will be appropriate for a highlight, whereas the other venices will 
have nonhighlight intensities. lf Gouraud shading is used, then the intensity across the 
polygon is linearly interpolated between the highlight intensity and the lower intensities of 
the adjacent vertices, spreading the highlight over the polygon (Fig. 16.2la). Contrast this 
with the sharp drop from the highlight intensity that is computed if linearly interpolat.ed 
normals are used to compute the oos• a term at each pixel (Fig. 16.21b). Furthermore, if a 
highlight fails to fall at a vertex, then Gouraud shading may miss it entirely (Fig. 16.21c), 
since no interior point can be brighter than the brightest venex from which it is interpolated. 
ln conlrast, Pboog shading allows highlights to be located in a polygon's interior (Fig. 
16.2 1d). Compare the highlights on the ball in Color Plates U.31 and 0 .32. 

Even with an illumination model that does not take into account specular reflectance, 
the results of normal-vector interpolation are in general supe.rior to intensity interpolation, 
because an approximation to the normal is used at each point. This reduces Mach-band 
problems in most cases, but greatly increases the cost of shading in a straightforward 
implementation, since the interpolated normal must be normalized every time it is used in 
an illumination model. Duff (DUFF79) has developed a combination of difference 

Fig. 16.20 Normal vector interpolat ion. (After (BUIT75).) 
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(a) (b) (c) (d) 

Fig. 16.21 A specular-reflection illumination model used with Gouraud shading and 
Phong shading. Highlight falls at left vertex: (a) Gouraud shading, (b) Phong shading. 
Highlight falls in polygon interior: (c) Gouraud shading, (d) Phong shading. (By David 
Kurlander, Columbia University.) 

equations and table lookup to speed up the calculation. Bishop and Weimer [BlSH86] 
provide an excellent approximation of Phong shading by using a Taylor series expansion that 
offers even greater increases in shading speed. 

Another shading model, intermediate in complexity between Gouraud and Phong 
shading, involves the linear interpolation of the dot products used in the illumination 
models. As in Phong shading, the illumination model is evaluated at each pixel, but the 
interpolated dot products are used to avoid the expense of computing and normalizing any 
of the direction vectors. This model can produce more satisfactory effects than Gouraud 
shading when used with specular-reflection illumination models, since the specular term is 
calculated separately and has power-law, rather than linear, falloff. As in Gouraud shading, 
however, highlights are missed if they do not fall at a vertex, since no intensity value 
computed for a set of interpolated dot products can exceed those computed for the set of dot 
products at either end of the span. 

16.2 .6 Problems with Interpolated Shading 

There are many problems common to all these interpolated-shading models, several of 
which we I ist bere. 

Polygonal s ilhouette. No matter how good an approximation an interpolated shading 
model offers to the actual shading of a curved surface, the silhouelte edge of the mesh is still 
clearly polygonal. We can improve this situation by breaking the surface into a greater 
number of smaller polygons , but at a corresponding increase in expense. 

Perspective dis tortion. Anomalies are introduced because interpolation is performed 
after perspective transformation in the 30 screen-coordinate system, rather than in the we 
system. For example, linear interpolation causes the shading information in Fig. 16.19 to 
be incremented by a constant amount from one scan line to another along each edge. 
Consider what happens when vertex I is more distant than vertex 2. Perspective 
foreshortening means that the difference from one scan line to another in the untransformed 
z value along an edge increases in the direction of the farther coordinate. Thus, if y. = (y1 + 
y2) I 2, tben I. = (11 + !2J 12, but z, will not equal (z1 + z2) I 2. This problem can also be 
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Fig. 16.22 Interpolated values derived for point P on the same polygon at different 
orientations differ from (a) to (b). P Interpolates A B. 0 in (a) and A B. C in (b). 

reduced by using a larger number of smaller polygons. Decreasing the size of the polygons 
increases the number of points at which the information to be interpolated is sampled, and 
therefore increases the accuracy of the shading. 

Orientation dependence. The results of interpolated·shading models are not indepen­
dent of the projected polygon's orientation. Since values are interpolated between vertices 
and across hori:rontal scan lines, the results may differ when the polygon is rotated (see Fig. 
16.22). This effect is particularly obvious when the orientation changes slowly between 
successive frames of an animation. A similar problem can also occur in visible-surface 
determination when the z value at each point is interpolated from the z values assigned to 
each Yertex. Both problems can be soiYed by decomposing polygons into triangles (see 
Exercise 16.2). Alternatively, Duff [DUFFi9) suggests rotation-independent, but expen­
siYC, interpolation methods that solYC this problem without the need for decomposition. 

Problems at shared vertices. Shading discontinuities can occur when two adjacent 
polygons fail to share a vertex that lies along their common edge. Consider the three 
polygons of Fig. 16.23, in which vertex Cis shared by the two polygons on the right, but 
not by the large polygon on the left. The shading information determined direct.ly at C for 
the polygons at the right will typically not be the same as the information interpolated at 
that point from the values at A and B for the polygon at the left. As a result, there will be a 
discontinuity in the shading. The discontinuity can be eliminated by inserting in the 

A 

c 

8 

Fig. 16.23 Ver.tex Cis shared by the two polygons on the right, but not by the larger 
rectangular polygon on the left. 
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Fig. 16.24 Problems with computing vertex normals. Vertex normals are all parallel. 

polygon on the left an extra vertex that sbares C's shading information. We can preprocess a 
static polygonal database in order to eliminate this problem; alternatively, if polygons will 
be split on the fly (e.g., using the BSP-tree visible-surface algorithm), then extra 
bookkeeping can be done to introduce a new vertex in an edge that shares an edge that is 
split. 

Unrepresentative vertex normals. Computed vertex normals may not adequately 
represent the surface's geometry. For example, if we compute vertex normals by averaging 
the normals of the surfaces sharing a vertex, all of the vertex normals of Fig. 16.24 will be 
parallel to one another, resulting in little or no variation in shade if the light source is 
distant. Subdividing the polygons further before vertex normal computation will solve this 
problem. 

Although these problems have prompted much work on rendering algorithms that handle 
curved surfaces directly, polygons are sufficiently faster (and easier) to process that they 
still form the core of most rendering systems. 

16.3 SURFACE DETAIL 

Applying any of the shading models we have described so far to planar or bicubic surfaces 
produces smooth, uniform surfaces-in marked contrast to most of the surfaces we see and 
feel. We discuss next a variety of methods developed to simulate this missing surface detail. 

16.3 .1 Surface-Detail Polygons 

The simplest approach adds gross detail through the use of surface-detail polygons to show 
features (such as doors, windows, and lettering) on a base polygon (such as the side of a 
building). Each surface-detail polygon is coplanar with its base polygon, and i.s flagged so 
that it does not need to be compared with other polygons during visible-surface 
determination. When the base polygon is shaded, its surface-detail polygons and their 
material properties take precedence for those parts of the base polygon that they cover. 

16.3 .2 Texture Mapping 

As detail becomes finer and more intricate, explicit modeling with polygons or other 
geometric primitives becomes less practical. An alternative is to map an image, either 

0788



742 Illumination and Shading 

digitized or synthesized, onto a surface, a technique pioneered by Catmull [CATM74b] and 
refined by Blinn and Newell [BLIN76). This approach is known as texture mapping or 
pauem mappi11g; the image is called a texture map, and its individual elements are often 
called texels. The rectangular texture map resides in its own (u, v) texture coordinate space. 
Alternatively, the texture may be defined by a procedure. Color Plate 0 .35 shows several 
examples of texture mapping, using the textures shown in Fig. 16.25. At each rendered 
pixel , selected texels.are used e ither to substitute for or to scale one or more of the surface's 
material properties, such as its diffuse color components. One pixel is often covered by a 
number of texels . To avoid aliasing problems, we must consider all relevant texels. 

As shown in Fig. 16.26, texture mapping can be accomplished in rwo steps . A simple 
approach startS by mapping the four comers of the pixel onto the surface. For a bicubic 
patch, this mapping naturally defines a set of points in the surface's (s. t ) coordinate space. 
Next , the pixel's comer points in the surface's (s. t) coordinate space are mapped into the 
texture's (11, v) coordinate space. The four (u, v) points in the texture map define a 
quadrilateral that approximates the more complex shape into which the pixel may actually 
map due to surface curvature. We compute a value for the pixel by summing all texels that 
lie within the quadrilateral, weighting each by the fraction of the texel that lies within the 
quadrilateral . lf a transformed point in (u, v) space falls outside of the texture map, the 
texture map may be thought of as being replicated, like the patterns of Section 2. 1.3. 

(8) (b) (c) 

(d) (e) (f) 

Fig. 16.25 Textures used to create Color Plate 11.35. (a) Frowning Mona. (b) Smiling 
Mona. (c) Painting. (d) Wizard's cap. (e) Floor. (f) Film label. (Copyright® 1990, Pixar. 
Images rendered by Thomas Williams and H. B. Siegel using Pixar"s PhotoRealistic 
RenderManr .. software.) 
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Fig. 16.26 Texture mapping from pixel to the surface to the texture map. 
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Rather than always use the identity mapping between (s, /) and (u, v), we can define a 
correspondence between the four comers of the 0-to-1 (s, t) rectangle and a quadrilateral in 
(u. v). When the surface is a polygon, it is common to assign texture map coordinates 
directly to its vertices. Since, as we have seen, linearly interpolating values across arbitrary 
polygons is orientation-dependent, polygons may be decomposed into triangles first. Even 
after triangulation, however, linear interpolation will cause distortion in the case of 
perspective projection. This distortion will be more noticeable than that caused when 
interpolating other shading information, since texture features will not be correctly 
foreshortened . We can obtain an approximate solution to this problem by decomposing 
polygons into smaller ones, or an exact solution, at greater cost, by performing the 
perspective division while interpolating. 

The approach just described assumes square pixel geometry and simple box filtering. It 
also fails to take into account pixels that map to only part of a surface. Fe ibush, Levoy, and 
Cook [FEffi80] address these problems for texture-mapping polygons. Think of the square 
pixel in Fig. 16.26 as the bounding rectangle of the support of an arbitrary filter centered at 
a pixel. Pixels and texels can then be treated as points. In effect, all texels that lie within the 
mapped intersection of the transformed bounding rectangle and polygon are selected, and 
these texels ' coordinates are transformed into the coordinate system of the bounding 
rectangle. Each texel's transformed coordinates are used to index into a filter table to 
determine the texel's weighting, and the weighted average of the texel intensities is 
computed. This weighted average must in tum be weighted by the percentage contribution 
that the polygon makes to the pixel 's intensity. The process is repeated for each polygon 
whose projection intersects the pixel , and the values are summed. Section 17.4.2 discusses 
this algorithm in more detail. 

The Feibusb, Levay, and Cook algorithm can be quite inefficient. Consider mapping a 
checkerboard pattern onto an infinite ground plane. An extremely large number of texels 
may have to be weighted and summed just to texture a single distant ground-plane pixel. 
One solution to this problem is to prefilter the texture and to store the results in a way that is 
space-efficient and that allows quick determination of the weighted average of texels 
mapping to a pixel. Algorithms by Williams [WlLL83]. Crow [CROW84]. Glassner 
[GLAS86], and Heckbert [HECK86a] that take this approach are discussed in Section 
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17.4.3. Catmull and Smith's efficient technique (CATMSO] for mapping an entire texture 
map directly to a surface is discussed in Exercise 17 . I 0. Heck ben [HECK86) provides a 
thorough survey of texture-mapping methods. 

16.3 .3 Bump Mapping 

Texture mapping affects a surface's shading, but the surface continues to appear 
geometrically smooth. If the texture map is a photograph of a rough surface, the surface 
being sbaded will not look quite right, because the direction to the light source used to 
create the texture map is typically different from the direction to the light source 
illuminating the surface. Blinn [BL1N78b] developed a way to provide the appearance of 
modified surface geometry that avoids explicit geometrical modeling. His approach 
involves perturbing the surface normal before it is used in the illumination model, just as 
slight roughness in a surface \\Ould perturb the surface normal. This method is known as 
bump mopping, and is based on texture mapping. 

A bump mop is an array of displacements, each of which can be used to simulate 
displacing a point on a surface a little above or below that point's actual position. Let us 
represent a point on a surface by a vector P, where P = (x(s. t) , y(s, t), z(s, t)] . We call the 
partial derivatives of the surface at P with respect to the surface's sand 1 parameterization 
axes, P, and P,. Since each is tangent to the surface, their cross-product fonns the 
(unnormalized) surface normal at P. Thus, 

N = P. X P,. (16.21) 

We can displace point P by adding to it the normalized normal scaled by a selected 
bump-map value B. The new point is 

- - BN 
P' = p + IN!' 

Blinn shows that a good approximation to the new (unnormaliz.ed) normal N' is 

N' = N + B.(N x P.) - B, (N x P.) 
IN! . 

(16.22) 

(16.23) 

where B. and B, are the partial derivatives of the selected bump-map entry B with respect to 
the bump-map parameterization axes, u and v. N' is then normalized and substituted for the 
surface normal in the illumination equation. Note that only the partial derivatives of the 
bump map are used in Eq. ( 16.23), not its values. Bilinear interpolation can be used to 
derive bump-map values for specified (u, v) posit.ions, and finite differences can be used to 
compute B. and B,. 

The results of bump mapping can be quite convincing. Viewers often fail to notice that 
an object's texture does not affect its silhouette edges. Color Plates LU.3 and fll .4 show two 
examples of bump mapping. Unlike texture mapping, aliasing cannot be dealt with by 
filtering values from tbe bump map, since these values do not correspond linearly to 
intensities; filtering the bump map just smooths out tbe bumps. Instead, subpixel intensities 
may be computed and filtered for each pixel, or some prefiltering may be perfonned on the 
bump map to improve gross aliasing. 
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16.3.4 Other Approaches 

Although 20 mapping can be effective in many situations, it often fails to produce 
convincing results. Textures frequently betray their 20 origins when mapped onto curved 
surfaces, and problems are encountered at texture "seams." For example, when a 
wood-grain texture is mapped onto the surface of a curved object, the object wi.lllook as if 
it were painted with the texture. Peachey [PEAC85) and Perlin [PERL85] have investigated 
the use of solid textures for proper rendering of objects "carved" of wood or marble, as 
exemplified by Color Plat.e rv.21. In this approach, described in Section 20.8.3, the texture 
is a 30 function of its position in the object. 

Other surface properties can be mapped as well. For example, Gardner [GARD84) has 
used transparency mapping to make impressionistic trees and clouds from otherwise simple 
shapes, as described in Section 20.8.2. Color Plate IV .24 shows the application of a 
complex functional transparency texture to objects formed from groups of quadric surfaces. 
Cook has implemented displacement mapping, in which the actual surface is displaced, 
instead of only the surface normals [COOK84a); this process, which must be carried out 
before visible-surface determination, was used to modify the surfaces of the cone and torus 
in Color Plate 11.36. Using fractals to create richly detailed geometry from an initial simple 
geometric description is discussed in Section 20.3. 

So far, we have made the tacit assumption that the process of shading a point on an 
object is unaffected by the rest of that object or by any other object. But an object might in 
fact be shadowed by another object between it and a light source; might transmit light, 
allowing another object to be seen through it; or might reflect other objects, allowing 
another object to be seen because of it. In the following sections, we describe how to model 
these effects. 

16.4 SHADOWS 

Visible-surface algorithms determine which surfaces can be seen from the viewpoint ; 
shadow algorithms determine which surfaces can be "seen" from the light source. Thus, 
visible-surface algorithms and shadow algorithms are essentially the same. The surfaces 
that are visible from the light source are not in shadow; those that are not visible from the 
light source are in shadow. When there are multiple light sources, a surface must be 
classified relative to each of them. 

Here, we consider shadow algorithms for point light sources; extended light sources are 
discussed in Sections 16.8, 16.12, and 16.13. Visibility from a point light source is, like 
visibility from the viewpoint, all or nothing. When a point on a surface cannot be seen from 
a light source, then the illumination calculation must be adjusted to take it into accoum. The 
addition of shadows to the illumination equation yields 

(16.24) 

where 

s. = {0, if light i is blocked at this point; 
' I, if light i is not blocked at this point. 
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Note that areas in the shadow of all point light sources are still illuminated by the ambient 
light. 

Although computing shadows requires computing visibility from the light source, as 
we have pointed out, it is also possible to generate "fake" shadows without performing any 
visibility tests. These can be created efficiently by transforming each object into its 
polygonal projection from a point light source onto a designated ground plane, without 
clipping the transformed polygon to the surface that it shadows or checking for whether it is 
blocked by intervening surfaces [BUN88). These shadows are then treated as surface-detail 
polygons. For the general case, in which these fake shadows are not adequate, various 
approaches to shadow generation are possible. We could perform all shadow processi11g 
first, interleave it with visible-surface processing in a variety of ways, or even do it after 
visible-surface processing has been performed. Here we examine algorithms that follow 
each of these approaches, building on the dassification of shadow algorithms presented in 
[CROW77a). To simpl.ify the explanations, we shall assume that all objects are polygons 
unless otherwise specified. 

16.4 .1 Scan-Une Generation of Shadow s 

One of the oldest methods for generating shadows is to augment a scan-line algorithm to 
interleave shadow and visible-surface processing [APPEL68; BOUK70b]. Using the light 
source as a center of projection, the edges of polygons that might potentially cast shadows 
are projected onto the polygons intersecting the current scan Line. When the scan crosses 
one of these shadow edges, the colors of the image pixels are modified accordingly. 

A brute-force implementation of this algorithm must compute all n(n-1) projections 
of every polygon on every other polygon. Bouknight and Kelley [BOUK70b) instead use a 
clever preprocessing step in which all polygons are projected onto a sphere surrounding the 
light source, with the light source as center of projection. Pairs of projections whose extents 
do not overlap can be eliminated, and a number of other special cases can be identified to 
limit the number of polygon pairs that need be considered by the rest of the algorithm. The 
authors then compute the projection from the light source of each polygon onto the plane of 
each of those polygons that they have determined it could shadow, as shown in Fig. 16.27. 
Each of these shadowing polygon projections has associated information about the 
polygons casting and potentially receiving the shadow. While the scan-line algorithm's 
regular scan keeps track of which regular polygon edges are being crossed, a separate, 
parallel shadow scan keeps track of which shadowing polygon projection edges are crossed, 
and thus which shadowing polygon projections the shadow scan is currently "in." When 
the shade for a span is computed, it is in shadow if the shadow scan is "in" one of the 
shadow projections cast on the polygon's plane. Thus span be in Fig. 16.27(a) is in shadow, 
while spans ab and cd are not. Note that the algorithm does not need to clip the shadowing 
polygon projections analytically to the polygons being shadowed. 

16.4.2 A Two-Pass Object-Precision Shadow Algorithm 

Atherton, Weiler, and Greenberg have developed an algorithm that performs shadow 
determination before visible-surface determination [ATHE78). They process the object 
description by using the same algorithm twice, once for the viewpoint, and once for the 
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Fig. 16.27 A scan-line shadow algorithm using the Bouknight and Kelley approach. 
Polygon A casts shadow A' on plane of B. 

light source. The results are then combined to determine the pieces of each visible part of a 
polygon that are lit by the Light source, and the scene is scan-converted. Thus, since the 
shadows are not dependent on the viewpoint, aU the shadow calculations may be performed 
just once for a series of images of the same objects seen from many different viewpoints, as 
long as the light source and objects are fixed. 

The algorithm, shown in overview in Fig. 16.28, first determines those surfaces that 
are visible from the light source's viewpoint, using the Weiler-Atherton visible-surface 
algorithm discussed in Section 15.7 .2. The output of this pass is a list of lit polygons, each 
of which is tagged with the identity of its parent polygon. All the objects must fit into the 
light source's view volume, since parts of the objects that do not fit are not recognized as 
lit. If a Light source's view volume cannot encompass all the objects, multiple 
nonoverlapping view volumes can be constructed that radiate out from the light source, a 
technique called sectoring. 

Next, the lit polygons are transformed back into the modeling coordinateS and are 
merged with a copy of the original database as surface-detail polygons (Section 16.3), 
creating a viewpoint-independent merged database, shown in Fig. 16.29. Note that the 
implementation illustrated in Fig. 16.28 performs the same transformations on both 
databases before merging them. Hidden-surface removal is then performed on a copy of this 
merged database from the viewpoint of an arbitrary observer, again using the Weiler­
Atherton algorithm. All processing so far is performed with object precision and results in a 
list of polygons. A polygon scan-conversion algorithm is then used to render the image. 
Visible surfaces covered by surface-detail polygons are rendered as lit, whereas uncovered 
visible surfaces are rendered in shadow. Color Plate ill.S was generated using this 
approach. Multiple light sources can be handled by processing the merged database from 
the viewpoint of each new light source, merging the results of each pass. 
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Fig. 16.29 Lit surface-detail polygons. 

1 6.4 .3 Shadow Volumes 

749 

Crow [CROW77a] describes how to generate shadows by creating for each object a shadow 
volume that the object blocks from the light source. A shadow volume is defined by tbe light 
source and an object and is bounded by a set of invisible shadow polygons. As shown in 
Fig. 16.30, there is one quadrilateral shadow polygon for each si.lhouette edge of the object 
relative to the light source. Three sides of a shadow polygon are defined by a silhouette edge 
of the object and the two lines emanating from the light source and passing through that 
edge' s endpoints. Each shadow polygon has a normal that points out of the shadow volume. 
Shadow volumes are generated only for polygons facing the light. In the implementation 
described by Bergeron [BERG86a], the shadow volume-and hence each of its shadow 
polygons-is capped on one end by the original object polygon and on the other end by a 
scaled copy of the object polygon whose normal has been inverted. This scaled copy is 
located at a distance from the light beyond which its attenuated energy density is assumed to 
be negligible. We can think of this distance as the light's sphere of influence. Any point 
outside of the sphere of influence is effectively in shadow and does not require any 
additional shadow processing. In fact, there is no need to generate a shadow volume for any 
object wholly outside the sphere of in.tluence. We can generalize this approach to apply to 
nonuniformly radiating sources by considering a region of influence, for example by culling 

Fig. 16.28 Shadow creation and display in the Atherton, Weiler, and Greenberg 
algorithm. (Images by Peter Atherton, Kevin Weiler, Donald P. Greenberg, Program of 
Computer Graphics, Cornell University, 1978.) 
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Fig. 16.30 A shadow volume is defined by a light source and an object. 

objects outside of a light' s flaps and cone. The shadow volume may also be further clipped 
to the view volume if the view volume is known in advance. The cap polygons are also 
treated as shadow polygons by the algorithm. 

Shadow polygons are not rendered themselves, but are used to determine whether the 
other objects are in shadow. Relative to the observer, a front-facing shadow polygon 
(polygon A or 8 in Fig. 16.30) causes those objects behind it to be shadowed; a back-facing 
shadow polygon (polygon C) cancels the effect of a front-facing one. Consider a vector 
from the viewpoint V to a point on an object. The point is in shadow if the vector intersects 
more front-facing than back-facing shadow polygons. Thus, points A and C in Fig. 16.31 (a) 
are in shadow. This is the only case in which a point is shadowed when Vis not shadowed; 
therefore, point 8 is lit. If V is in shadow, there is one additional case in which a point is 
shadowed: when all the back-facing shadow polygons for the object polygons shadowing the 
eye have not yet been encountered. Thus, points A, 8, and C in Fig. 16.3 l(b) are in shadow, 

r------------------------+x 

v 
z 

(a) (b) 

Fig. 16 .31 Determining whether a point is in shadow for a viewer at V. Dashed lines 
define shadow volumes (shaded in gray). (a) Vis not in shadow. Points A and Care 
shadowed; point 8 is lit. (b) Vis in shadow. Points A , 8 , and Care shadowed. 
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even though the vector from V to 8 intersects the same number of front-facing and 
back-facing shadow polygons as it does in part (a). 

We can compute whether a point is in shadow by assigning to each front-facing (relative 
to the viewer) shadow polygon a value of + 1 and to each back-facing shadow polygon a 
value of - I. A counter is initially set to the number of shadow volumes that contain the eye 
and is incremented by the values associated with all shadow polygons between the eye and 
the point on the object. The point is in shadow if the counter is positive at the point. The 
number of shadow volumes containing the eye is computed only once for eacb viewpoint, 
by taking the negative of the sum of the values of all shadow polygons intercepted by an 
arbitrary projector from the eye to infinity. 

Although is is possible to compute a shadow volume for each polygon, we can take 
advantage of object coherence by computing a siJlgle sliadow volume for each connected 
polyhedron. This can be accomplished by generating shadow polygons from only those 
edges that are silhouette edges relative to the light source; these are the contour edges 
relative to the light source (as defined in Section 15.3.2). 

Multiple light sources can be handled by building a separate set of shadow volumes for 
each light source, marking the volume's shadow polygons with their light source identifier, 
and keeping a separate counter for each light source. Brotman and Sadler [BROT84) have 
implemented a z-butfer version of the shadow-volume algorithm, and Bergeron [BERG86a) 
discusses a scan-l.ine implementation that efficiently handles arbitrary polyhedral objects 
containing nonplanar polygons. 

Chin and Feiner [CH1N89] describe an object-precision algorithm that builds a single 
shadow volume for a polygonal environment, using the SSP-tree solid modeling representa­
tion discussed in Section 12.6.4. Polygons are processed in front-to-backorder relative to 
the light source. Each polygon facing the light source is filtered down the tree, dividing the 
polygon into lit and shadowed fragments . Only lit fragments cast shadows, so the 
semi-infinite pyramid defined by the light source and each lit fragment is added to the 
volume. Because of the front-to-backorder, every polygon is guaranteed not to lie between 
the light source and the polygons processed previously. Therefore, since no polygon needs 
to be compared with the plane of a previously processed polygon, the polygons themselves 
do not need to be added to the shadow volume. As with the Atherton- Weiler-Greenberg 
algorithm, the lit fragments may be added to the environment as surface-detail polygons or 
the lit and shadowed fragments may be displayed together instead. Multiple light sources 
are accommodated by filtering the polygon fragments of one shadow-volume BSP tree 
down the shadow-volume BSP tree of the next light source. Each fragment is tagged to 
indicate the light sources that illuminate it, allowing the resulting fragmented environment 
to be displayed with any polygon visible-surface algorithm. Because of the shadow volume 
representation, lights may be positioned anywhere relative to the objects; thus, sectoring is 
not necessary. Several optimizations and a parallel version of the algorithm are discussed in 
[CHIN90). Color Plate ID.6(a) is rendered with the algorithm; Color Plate ID.6(b) shows 
the fragments created in fi ltering the polygons down the shadow-volume BSP tree. 

1 6.4 .4 A Two-Pass z-Buffer Shadow Algorithm 

Williams [WTLL78] developed a shadow-generation method based on two passes through a 
z-buffer algorithm, one for the viewer and one for the light source. His algorithm, unlike the 
two-pass algorithm of Section 16.4.2, determines whether a surface is shadowed by using 
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image-precision calculations. Figure 16.32(a) shows an overview of an environment lit by a 
light at L; a shadow less image from viewpoint Vis shown in Fig. 16.32(d). The algorithm 
begins by calculating and storing just the z-buffer for the image from the viewpoint of the 
light (Fig. 16.32b). In Fig. 16.32(b), increasing int.ensities represent increasing distance. 
Next , the z-buffer (Fig. l6.32c) and the image (Fig. 16.32e) are calculated from the 
viewpoint of the observer using a z-buffer algorithm with the foLlowing modification. 
Whenever a pixel is determined to be visible, its object-precision coordinates in the 
observer's view (x. , y. , zJ are transformed into coordinates in the light source's view (x'. , 
y~. z~. The transformed coordinates x: and y~ are used to select the value z1• in the light 
source's z-buffer to be compared with the transformed value z~. If zL is closer to the light 
than is z~, then there is something blocking the light from the point, and the pixel is shaded 
as being in shadow; otherwise the point is visible from the light and it is shaded as lit. In 
analogy to texture mapping, we can think of the light's z-buffer as a shadow map. Multiple 
light sources can t>e' accommodated by use of a separate shadow map for each light source. 

Like the regu lar z-buffer visible-surface algorithm, this algorithm requires that each 
rendered pixel be shaded. Here, this means that shadow calculations must be performed for 
the pixel, even if it is ultimately painted over by closer objects. Williams has suggested a 
variation on his algorithm that exploits the ease with which the z-buffer algorithm can 
interleave visible-surface determination with illumination and shading, and eliminates 
shadow calculations for obscured objects. Rather than computing just the shadow map first, 
the modified algorithm also computes the regular shaded image from the observer's point of 
view (Fig. 16.32d), along with its z-buffer (all these computations can use conventional 
z-buffer-based hardware). Shadows are then added IISing a postprocess that is linear in the 

(a) (b) (c) 

(d) (e) (f) 

Fig. 16.32 z-buffer shadow-generation method. (a) Overview. (b) Lighfs z-buffer. (c) 
Observer"s z-buffer. (d) Observer"s image. (e) Observer"s image with shadows. (f) 
Observer"s image with post-processed shadows. (By David Kurlander. Columbia 
Univers ity.) 
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Fig. 16.33 Shadow map used to create Color Plate 11 .36. (Copyright © 1 ggo, Pixar. 
Shadow map rendered by Thomas Williams and H. B. Siegel using Pixar's 
PhotoRealistic RenderManrM software.) 

number of pixels in the image to produce Fig. 16.32(f). The same trdllsformation and 
comparison operation as before are performed for each pixel in the observer's image. If zL is 
closer to the light than is z~. then the pixel 's previously computed shade in the observer's 
image is darkened. Although this approach is significantly more efficient than is the original 
algorithm, it results in artifacts; most noticeably, shadowed objects will have (darkened) 
specular highlights, even though there should be no specular highlights on an object that is 
shielded from the light source. In addition, the z0 to be transformed is at object precision in 
the first version, but at the typically lower z-bulfer precision here. (See Exercise 16.15.) 

Unlike the other shadow algorithms discussed so far, Williams's algorithm makes it 
especially easy to generate shadows for any object that can be scan-converted, including 
curved surfaces. Because all operations are performed in image precision, however, 
allowance must be made for the limited numerical precision. For example, the trans forma­
tion from z0 to z~ should also move z~ a little closer to the light source, to avoid having a 
visible point cast a shadow on itself. Like the z-buffer visible-surface algorithm from which 
it is constructed, this shadow algorithm is prone to aliasing. Williams describes how 
tiltering and dithering can reduce the effects of aliasing. Reeves, Salesin, and Cook 
[REEV87) demonstrate improvements using percentage closer filtering. Each z~ is 
compared with values in a region of the shadow map, and the percentage of closer values 
determines the amount of shadowing. This improved algorithm was used to render Color 
Plates 0 , F, and ll.36. Figure 16.33 shows the shadow map used to create Color Plate 
ll .36. 

16.4 .5 Global Illumination Shadow Algorithms 

Ray-tracing and radiosity algorithms have been used to generate some of the most 
impressive pictures of shadows in complex environments. Simple ray tr<lcing has been used 
to model shadows from point light sources, whereas more advanced versions allow 
extended light sources. Both are discussed in Section 16.12. Radiosity methods, discussed 
in Section 16.13, model light sources as light-emitting surfaces that may have the same 
geometry as any other surface; thus, they implicitly support extended light sources. 
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16.5 TRANSPARENCY 

Much as surfaces can have specular and diffuse re8ection, those that transmit light can be 
transparent or translucent. We can usuaUy see clearly through transparent materials, such as 
glass, although in general the rays are refracted (bent). Diffuse transmission occurs through 
tra/IS/ucem materials, such as frosted glass. Rays passing through translucent materials are 
jumbled by surface or int.ernal irregularities, and thus objects seen through translucent 
materials are blurred. 

16.5 .1 Nonrefractive Transparency 

The simplest approach to modeling transparency ignores refraction, so light rays are not 
bent as they pass through the surface. Thus, whatever is visible on the line of s.ight through a 
transparent surface is also geometrically located on that line of sight. Although refraction­
less transparency is not realistic, It can ofien be a more useful effect than refraction. For 
example, it can provide a distortionless view through a surface, as depicted in Color Plate 
m.7. As we have noted before, total photographic realism is not always the objective in 
making pictures. 

Two different methods have been commonly used to approximate the way in which the 
colors of t~ objects are combined when one object is seen through the other. We shall 
refer to these as inJerpolated and filtered transparency. 

Interpolated transparency. Consider wbat happens when transparent polygon I is 
between the viewer and opaque polygon 2, as shown in Fig. 16.34. Interpolated 
traiiSparency determines the shade of a pixel in the intersection of two polygons' 
projections by linearly interpolating the individual shades calculated for the ~ polygons: 

/A = (I - k.,)/AJ + k.l~o~• (16.25) 

The traiiSmission coefficient k., measures the traiiSparency of polygon I, and ranges between 
0 and I. When k., is 0, the polygon is opaque and transmits no light; when k,, is I , the 
polygon is perfectly transparent and contributes nothing to the intensity lA; The value I - k., 
is ca.lled the polygon's opacity. Interpolated transparency may be thought of as modeling a 
polygon that consists of a fine mesh of opaque material through which other objects may be 
seen; k,, is the fraction of the mesh's surface that can be seen through. A totally transparent 

r------------------.x 
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Une of sight 

Fig. 16.34 Cross-section of two polygons. 
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polygon that is processed this way will not have any specular reflection. For a more realistic 
effect, we can interpolate only the ambient and diffuse components of polygon I with the 
full shade of polygon 2, and then add in polygon l 's specular component [KAY79b]. 

Another approach, often called screen-door transparency, literally implements a mesh 
by rendering only some of the pixels associated with a transparent object's projection. The 
low-order bits of a pixel's (x, y) address are used to index into a transparency bit mask. If 
the indexed bit is I, then tbe pixel is written; otherwise, it is suppressed, and the next closest 
polygon at tbat pixel is visible. The fewer I bits in the mask, the more transparent the 
object's appearance. This approach relies on having our eyes perform spatial integration to 
produce interpolated transparency. Note, however, that an object fully obscures any other 
object drawn with tbe same transparency mask and that other undesirable interactions 
between masks are difficult to avoid. 

Filtered transparency. Filtered transparency treats a polygon as a transparent filter that 
selectively passes different wavelengths; it can be modeled by 

I , = 1,, + k,,OuJu, ( 16.26) 

where Ou is polygon l's transparency color. A colored filter may be modeled by choosing a 
different value of Ou for each A (but see Section 16.9). ln either interpolated or filtered 
transparency, if.additional transparent polygons are in front of these polygons, then the 
calculation is invoked recursively for polygons in back-to-front order, each time using the 
previously computed '• as /J.J. 

Implementing transparency. Several visible-surface algorithms can be readily adapted 
to incorporate transparency, including scan-line and list-priority algorithms. In list-priority 
algorithms, the color of a pixel about to be covered by a transparent polygon is read back 
and used in the illumination model while the polygon is being scan-conYerted. 

Most z-buffer-based systems support screen-<loor transparency because it allows 
transparent objects to be intermingled with opaque objects and to be drawn in any order. 
Adding transparency effects that use Eqs. (16.25) or ( 16.26) to the z-buffer algorithm is 
more ditllcult, because polygons are rendered in the order in which they are encountered. 
Imagine rendering several overlapping transparent polygons, followed by an opaque one. 
We would I ike to slip the opaque polygon behind the appropriate transparent cnes. 
Unfortunately. tbe z-buffer does not store the information needed to determine which 
transparent polygons are in front of the opaque polygon, or even the polygons ' relative 
order. One simple, although incorrect, approach is to render transparent polygons last, 
combining their colors with those already in the frame buffer, but not modifying the 
z-buffer; when two transparent polygons overlap, however, their relative depth is not taken 
into account. 

Mammen [MAMM89] describes how to render transparent objects properly in 
back-to-front order in a z-buffer-based system through the use of multiple rendering passes 
and additional memory. First , all the opaque objects are rendered using a conventional 
z-buffer. Then, transparent objects are processed into a separate set of buffers tbat contain, 
for each pixel, a transparency value and a ftag bit, in addition to the pixel's color and z 
value. Each flag bit is initialized to off and each z value is set to the closest possible value. lf 
a transparent object • s z value at a pixel is closer than the value in the opaque z-buffer, but is 
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more distant than that in the transparent z-buffer, then the color, z value, and transparency 
are saved in the transparent buffers, and the flag bit is set. After all objects have been 
processed, the transparent object buffers contain information for the most distant 
transparent object at each pixel whose flag bit is set. Information for flagged pixels is then 
blended with that in the original frame buffer and z-buffer. A flagged pixel's transparency 
z-value replaces that in the opaque z-buffer and the flag bit is reset. This process is repeated 
to render uccessively closer objects at each pixel. Color Plate m. 7 was made using this 
algorithm. 

Kay and Greenberg [KAY79b] have implemented a useful approximation to the 
increased attenuation that occurs near the silhouette edges of thin curved surfaces, where 
light passes through more material. They define k, in tenns of a nonlinear function of the z 
component of the surface normal after perspective transformation, 

(16.27) 

where "- and k,_ are the object's minimum and maximum transparencies, zN is the z 
component of the normalized surface normal at the point for whicb Jc. is being computed, 
and m is a power factor (typically 2 or 3). A higher m models a thinner surface. This new 
value or Jc. may be used ask,, in either Eq. ( 16.25) or (16.26). 

16.5.2 Refractive Transparency 

Refractive transparency is significantly more difficult to model than is nonrefractive 
transparency, because the geometrical and optical lines of sight are different. lf refraction is 
considered in Fig. 16.35, object A is visible through the transparent object along the lioe of 
sight showo; if refraction is ignored, object 8 is visible. The relationship between the angle 
of incidence ~ and the angle of refraction e. is given by Snell's law 

( 16.28) 

Une of sight 

Fig. 16.35 Refraction. 
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where 11u and 1Ju are the indic~s of refraction of the materials through which the light 
passes. A material's index of refraction is the ratio of the speed of light in a vacuum to the 
speed of I ight in the material. It varies with the wavelength of the light and even with 
temperature. A vacuum has an index of refraction of 1.0, as does the atmosphere to close 
approximation; all materials have higher values. The index of refraction's wavelength­
dependence is evident in many instances of refraction as dispersion-the familiar, but 
difficult to model, phenomenon of refracted light being spread into itS spectrum [THOM86; 
MUSG89). 

Calculating the refraction vector. The un.it vector in the direction of refraction, 'f, can 
be calculated as 

T = sin 9, M - cos 91 N, ( 16.29) 

where M is a unit vector perpendicular to N in the plane of the incident ray 7 and N 
[HECK84) (Fig. 16.36). Recalling the use of S in calculating the reflection vector R in 
Section 16. 1.4, we see that M = (N cos 91 - I) I sin~· By substitution, 

- sin IJ, - - -
T = ...,....-j(N cos 9; - I) - cos 9, N. 

SID V j 

If we let TlrA = 'T/i.4 I T/u = sin 9, I sin 9;, then after rearranging terms 

T = ( 'TirA COS 9, - COS 9J N - 'TirA j. 

Ncos~ - i 

T 

-R 

Fig. 16.36 Calculating the refraction vector. 

(16.30) 

(16.31) 
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Note that cos 8; is N · i, and cos 01 can be computed as 

Thus, 

(16.33) 

Total internal reflection. When light passes from one medium into another whose index 
of refraction is lower, the angle 0, of the transmitted ray is greater than the angle 8;. If 8; 
becomes sufficiently large, then 8, exceeds 90• and the ray is reflected from the interface 
between the media, rather than being transmitted. This phenomenon is known as total 
internal reflection. and the smallest 8; at which it occurs is called the critical angle. You can 
observe total internal reflection easily by looking through the front of a filled fish tank and 
trying to see your hand through a side wall. When the viewing angle is greater than the 
critical angle, the only visible parts of your hand are those pressed firmly against the. tank , 
with no intervening layer of air (which has a lower index of refraction than glass or water). 
The critical angle is the value of 81 at which sin 0, is I. If sin 81 is set to I in Eq. (16.28), we 
can see that the critical angle is sin-1(17u / 17"). Total internal reflection occurs when the 
square root in Eq. (16.33) is imaginary. 

Section 16.12 discusses the use of Snell's law in modeling refractive transparency with 
ray tracing; translucency is treated in Sections 16.12.4 and 16.13. An approximation of 
refraction can also be incorporated into renderers that proceed in back-to-front order 
[KAY79b]. 

16.6 INTEROBJECT REFLECTIONS 

lnterobject reflections occur when a surface reflects other surfaces in its environment. 
These effects range from more or less sharp specular reflections that change with the 
viewer's position (like specular highlights) , to diffuse reflections that are insensitive to 
the viewer's position. Ray tracing (Section 16.12) and radiosity methods (Section 16.13) 
have produced some of the most visually impressive pictures exhibiting specular and 
diffuse interobject reflections; earlier techniques , however, can also produce attractive 
results. 

Blinn and Newell [BLIN76] developed rejlecrian mapping (also known as environment 
mapping) to model specular interobject reflection. A center of projection is chosen from 
which to map the environment to be reflected onto the surface of a sphere surrounding the 
objects to be rendered. The mapped environment can then be treated as a 2 0 texture map. 
At each point on an object to be displayed, the reflection map is indexed by the polar 
coordinates of the vector obtained by reflecting V about N. The reftection map's x and 
y axes represent longitude (from o· to 360") and latitude (from -9()• to 90°), respectively. 
as shown in Fig. 16.37(a). Hall [HALL86] suggests a variant in which they axis is sin (lati­
tude), so that equal areas on the sphere map to equal areas on the reflection map (Fig. 
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Fig. 16.37 Reflection map coordinate systems. (a) Latitude-longitude. (b) Sin 
(latitude)- longitude. 

16.37b). Alternatively, six projections onto the sides of a surrounding cube may be 
used. The cube is aligned with the WC axes, so that the largest coordinate of !he 
normalized reflection vector indicates the appropriate side to index. Figure 16.38(a) 
shows the correspondence between the unfolded sides and the cube; Fig. 16.38(b) is the 
reflection map used for the teapot in Color Plate Il.37. As in texture mapping, anti aliasing is 
accomplished by filtering some number of reflection-map values surrounding the 
indexed value to determine the reflected light at the given point on the object. In Fig. 
16.38(b) an angle slightly wider than 900 was used to provide a margin about each side's 
borders that helps avoid the need to consider more than one side at a time when 
filtering. 

Although reHection mapping can be used to produce a number of useful effects 
[GREE86], it provides only an approximation to the correct reflection information. By 
taking into account just the surface' s reflection direction and not its position in the sphere, it 
models an infinitely large environment sphere. This problem can be partly remedied by 
using the surface' s position to help determine the part of the reHection map to index, 
modeling a sphere of finite size. In either case, however, the farther a surface is from the 
center of projection used to create the map, the more distorted a view of the world it shows, 
since the reflection map takes into account visibility relationships at only a single point. A 
useful compromise is to create multiple reflection maps, each centered about a key object, 
and to index into the one closest to an object whose surface is being mapped. Simple but 
effective reflection effects can be obtained with even a I D reflection map. For example, the 
y component of the reflection of V may be used to index into an array of intensities 
representing the range of colors from ground through horizon to sky. 

Planar surfaces present difficulties for reflection mapping, because the reflection angle 
changes so slowly. If reflections from a planar surface are to be viewed from only a single 
viewpoint, however, another technique can be used. The viewpoint is reflected about the 
surface's plane and ao inverted image of the scene is rendered from the. reflected viewpoint, 
as shown in cross-section in Fig. 16.38(c). This image can then be merged with the original 
image wherever the surface is visible. Figure 16.38(d) was created with this technique and 
was used to render the reflections on the floor in Color Plate Il.37. 
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16.7 PHYSICALLY BASED ILLUMINATION MODELS 

The illumination models discussed in the previous sections are largely the result of a 
common-sense , practical approach to graphics. Although the equations used approximate 
some of the ways Hght interacts with objects, they do not have a physical basis. In this 
section. we discuss physically based illumination models, relying in part on the work of 
Cook and Torrance (COOK82). 

Thus far, we have used the word inrensity without defining it, referring informally to the 
intensity of a light source, of a point on a surface, or of a pixel. It is time oow to formalize 
our terms by introducing the radiometric terminology used in the study of thermal 
radiation, which is the basis for our understanding of how light interacts with objects 
[NIC077; SPARR78; SIEG81 ; IES87J . We begin with flux, which is the rate at which light 
energy is emitted and is measured in watts (W). To refer to the amount of ftux emined in or 
received from a given direction, we need the concept of a solid angle, which is the angle at 
the apex of a cone. Solid angle is measured in terms of the area on a sphere intercepted by a 
cone whose apex is at the sphere's center. A steradian (sr) is the solid angle of such a cone 
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Planar reflector 

V' 
(C) 

(d) 

Fig. 1 6 .38 Reflection maps. (a) Cube reflection map layout. (b) Reflection map for 
teapot in Color Plate 11 .37. (c) Geometry of planar reflection. (d) Reflected image merged 
with floor in Color Plate 11 .37. (Copyright @ 1990. Pixar. Images in (b) and (d) rendered 
by Thomas Williams and H. B. Siegel using Pixar's PhotoRealistic RenderManTM 
software.) 

that intercepts an area equal to the square of the sphere' s radius r . If a point is on a surface, 
we are concerned with the hemisphere above it . Since the area of a sphere is 41TTt, there are 
4=t 12rt = 21rsr in a hemisphere. Imagine projecting an object's shape onto a hemisphere 
centered about a point on the surface that serves as tbe center of projection. Tile solid angle 
w subtended by the object is the area on the hemisphere occupied by the projection, divided 
by the square of the hemisphere's radius (the division eliminates dependence on the size of 
the hemisphere). Thus, for convenience, we often speak of solid angle in tenns of the area 
projected on a unit sphere or hemisphere, as shown in Fig . 16.39. 

Radiant intensity is the flux radiated into a unit solid angle in a particular direction and 
is measured in W I sr. When we used the word intensiry in reference to a point source, we 
were referring to its radiant intensity. 

Radiance is the radiant intensity per unit foreshortened surface area, and is measured in 
W I (sr · m2). Foreslrorte11ed surface area. also known as projected surface area, refers to 
the projection of the surface onto the plane perpendicular to the direction of radiation. The 
foreshortened surface area is found by multiplying the surface area by cos 9,, where 9, is the 
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Fig. 16.39 The solid angle subtended by an object from a point on a surface is the area 
covered by the object's projection onto a unit hemisphere above the point. 

angle of the radiated light relative to the surface normal. A small solid angle dw may be 
approximated as the object's foreshortened surface area divided by the square of the 
distance from the object to the point at which the solid angle is being computed. When we 
used the word intensity in reference to a surface, we were referring to its radiance. Finally, 
irradiance, also known as flux density, is the incident flux per (unforeshortened) unit 
surface area and is measured in W 1 m2. 

In graphics, we are interested in the relationship between the light incident on a surface 
and the light reflected from and transmitted through that surface. Consider Fig. J 6.40. The 
irradiance of the incident light i.s 

(16.34) 

where/1 is the incident light's radiance, and N · I is cos 81. Since irradiance is expressed per 

Fig. 16.40 Reflected radiance and incident irradiance. 
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un.it area, whereas radiance is expressed per unit foreshortened area, multiplying by N · I 
converts it to the equivalent per unit unforeshortened area. 

It is not enough to consider just /1 (the incident radiance) when determining /, (the 
reflected radiance); £ 1 (the incident irradiance) must instead be taken into account. For 
example, an incident beam that has the same radiant intensity (W I sr) as another beam but a 
greater solid angle has proportionally greater £1 and causes the surface to appear 
proportionally brighter. The ratio of the reflected radiance (intensity) in one direction to the 
incident irradiance (flux density) responsible for it from another direction is known as the 
bidirectional reflectivity, p, which is a function of the directions of incidence and reflection, 

P 
= I, 

£. ' 
I 

Thus, substituting for £1 from Eq. ( 16.34), we get 

I, = plj(N . L)dtu,. 

(16.35) 

(16.36) 

The irradiance incident on a pixel in the image (the image irradiance) is proportional to 
the radiance emitted by the scene (the scene radiance) that is focused on the pixel 
[HORN79]. The factor of proportionality is a function of the imaging system being used. 

As we have seen, it is conventional in computer graphics to consider bidirectional 
reflectivity as composed of diffuse and specular components. Therefore, 

(16.37) 

where Pd and p, are respectively the diffuse and specular bidirectional reflectivities, and kd 
and k, are respectively the diffuse and specular reflection coefficients introduced earlier in 
this chapter; kd + k, = I. It is important to note that Eq. (16.37) is a useful approximation 
that is not applicable to all surfaces. For example, the lunar surface has a p that peaks in the 
direction of incidence [SIEG81]. During a full moon, when the sun, earth, and moon are 
nearly in line, this accounts for why the moon appears as a disk of roughly uniform 
intensity. If the moon had a Lambertian surface, it would, instead, reflect more light at its 
center than at its sides. 

In addition to the effects of direct light-source illumination, we need to take into 
account illumination by light reflected from other surfaces. The lighting models discussed 
so far have assumed that this ambient light is equally incident from all directions , is 
independent of viewer position, and is not blocked by any nearby objects. Later in this 
chapter we shall discuss how to lift these restrictions. For now we retain them, modeling the 
ambient term as p,J,, where p1 is the nondirectional ambient reflectivity , and I, is the 
incident ambient intensity. 

The resulting illumination equation for n light sources is 

1, = p,l. + L I11(N · Li) dwiJ(kdpd + k,p,). (I 6.38) 
tsj s,. 

To reinterpret the illumination model of Eq. (16.15) in terms of Eq. ( 16.38), we expressed 
diffuse reflectivity as the object's diffuse color, and specular reflectivity using the product 
of the object's specular color and a cos" a term. We have already noted some of the 
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inadequacies of that specular reflectivity formulation. Now we shall examine how to re• 
place it. 

16.7. 1 Improving the Surface Model 

The Torrance-Sparrow model [TORR66; TORR67), developed by applied physicists, is a 
physically based model of a reflecting surface. Blinn was the first to adapt the 
Torrance-Sparrow model to computer graphics, giving the mathematical details and 
comparing it to the Pbong model in [BLJN77a); Cook and Torrance [COOK82] were the 
first to approximate the spectral composition of reflected light in an implementation of the 
model. 

In the Torrance-Sparrow model , the surface is assumed to be an isotropic collection of 
planar microscopic facets, each a perfectly smooth reflector. The geometry and distribution 
of these microfacets and the direction of the light (assumed to emanate from an infinitely 
distant source, so that all rays are parallel) determine the intensity and direction of specular 
reflection as a function of 1, (the point light source intensity), N, L, and V. Experimental 
measurements show a very good correspondence between the actual reflection and the 
reflection predicted by this model [TORR67). 

For the specular component of the bidirectional reflectivity, Cook and Torrance use 

-F. DG 
p, - w (N · V)(N · L) ' 

(16.39) 

where D is a distribution function of the microfacet orientations, G is the geometrical 
auenulllion factor, which represents the masking and shadowing effects of the microfacets 
on each other, and F. is the Fresnel term computed by Fresnel's equation (described later), 
which, for specular reflection, relates incident light to reflected light for the smooth surface 
of each microfacet. The 1T in the denominator is intended to account for surface roughness 
(but see [JOY88, pp. 227-230) for an overview of how the equation is derived). TheN· V 
term makes the equation proportional to the surface area (and hence to the number of 
micro facets) that the viewer sees in a unit piece of foreshortened surface area, whereas theN 
· L term makes the equation proportional to the surface area that the light sees in a unit 
piece of foreshortened surface area. 

16.7 .2 The Microfacet Distribution Function 

Since the microfacets are considered to be perfect specular reflectors, the model considers 
only those microfacets whose normals lie along tbe halfway vector H, introduced in Section 
16.1.4. Only a fraction D of the microfacets have this orientation. Torrance and Sparrow 
assumed a Gaussian distribution function for D in their original work. Blinn used the 
Trowbridge and Reitz distribution [TROW75], and Cook and Torrance used the Beckmann 
distribution function [BECK63]. Cook and Torrance point out the Beckmann distribution 
has a good theoretical basis and has no arbitrary constants, unlike the distributions used by 
Torrance and Sparrow, and by Blinn. The Beckmann distribution function for rough 
surfaces is 

D .. I e-1<"'" IJ)IMJt 
4nrcos'{J ' 

(16.40) 
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(b) 

Fig. 16.41 Beckmann microfacet distribution function for (a) m = 0.2 and (b) m = 0.6 . 
(From (COOK82) with permission. By Robert Cook, Program of Computer Graphics, 
Cornell University.) 

where f3 is the angle between N and H, and m is the root-mean-square slope of the 
microfacets.1 When m is small, the microfacet slopes vary only slightly from the surface 
nonnal and, as we would expect, the reHection is highly directional (Fig. 16.4la). When m 
is large, the microfacet slopes are steep and the resulting rough surface spreads out the light 
it reflects (Fig. 16.41b). To model surfaces that have multiple scales of roughness, Cook 
and Torrance use a weighted sum of distribution functions, 

D = L w;D(m), 
I $j:Sa 

(16.41) 

where the sum of the weights wi is I . 

18.7 .3 The Geometrical Attenuation Factor 

The model takes into account that some microfacets may shadow others. Torrance and 
Sparrow and Blinn discuss the calculation of G, considering three different situations. 
Figure 16.42(a) shows a microfacet whose incident light is totally reflected. Figure 
16.42(b) shows a microfacet that is fully exposed to the rays, but has some reflected rays 
that are shielded by other microfacets. These shielded rays ultimately contribute to the 
diffuse reflection. Figure 16.42(c) shows a microfacet that is partially shielded from the 
light. The geometric attenuation factor G ranges from 0 (total shadowing) to J (no 
shadowing). 

'Hall [HALL89) mentions that [COOK82) is missing the 4 in the denominator. 
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N H 

(a) (b) (C) 

Fig. 16.42 Light rays reflecting from surface microfacets in the Torrance-Sparrow 
model. (a) No interference. (b) Partial interception of reflected light. (c) Partial intercep­
tion of incident light. (After [BLIN77a].) 

To simplify the analysis, the microfacets are assumed to form V-shaped grooves that 
are symmetric about the average surface normal N. In Fig. 16.42(a), all the incident Light is 
reflected to the viewer; thus, G, is 1. In both other cases, the ratio of intercepted light is 
given by m I I , where I is the total area of the facet and m is the area whose reflected light is 
blocked (Fig. 16.42b) or that is itself blocked (Fig 16.42c) from the light. Therefore, Gb = 
G, = 1 - m fl. Blinn gives a trigonometric derivation of the proportion of reflected light in 
Fig. 16.42(b) as 

G = 2(N · H)(N · V) 
b (V. H) . 

(16.42) 

The ratio for the case in Fig. 16.42(c) follows by noticing that it is the same as the case in 
part (b). except that rand v trade places: 

G = 2(N · H)(N · L) 
• (V. H) . 

(16.43) 

The denominator does not need to change because (V · H) = (L · H) by definition of H as 
the halfway vector between V and L. 

G is the minimum of the three values: 

G = min {I 2(N . 'ii)(N . V> 2(N . 'ii)(N . L)}. 
' (V · H) ' (V · H) 

(16.44) 

16.7 .4 The Fresnel Term 

The Fresnel equation for uopolarized Light specifies the ratio of reflected light from a 
dielectric (nonconducting) surface as 

F. = ! (tan2
(1J1 - 8J + sin2(~- IJl)) =.!. sin2

(1J1 - IJJ ( 1 + cos2(8. + IJJ) ( I6.4S) 
4 2 tan2(1J1 + IJJ sin2(1J1 + IJ1) 2 sin2(1J1 + OJ cos2(9, - OJ ' 
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where 81 is the angle of incidence relative to H (i.e., cos- 1 (f.· H)), and, as before, 8, is the 
angle of refraction; sin 8, = ('7u I '7u)sin 81, where '7u and '7u are the indices of refraction of 
the two media. The Fresnel equation can also be expressed as 

F. = ! (g - c"/ (I + [c(g + c) - 1]2) (16.46) 
• 2 (g + c)2 [c(g - c) + I ]2 ' 

wherec =cos 0, =I· H, g2 = 7f. + CZ- I, and 77, = '7u I '1u· 
In a conducting medium, which attenuates light, it is necessary to refer to 71,, the 

material's complex index of refraction, defined as 

( 16.47) 

where K• is the material 's coefficient of extinction, which measures the amount that the 
material attenuates intensity per unit path length. To simplify the reflection computations 
for conductor.;, K, can be assumed to be zero and a single equivalent real value for '1• can be 
determined. 

Blinn created Figs. 16.43 and 16.44, comparing the effects of the Phong illumination 
model and the Torranco-Sparrow model. He made the simplifying assumptions that the 
specular term depends on only the color of the incident light, and that the viewer and Light 
source are both at infinity. Figures 16.43 and 16.44 show the reflected illumination from a 
surface for angles of incidence of 30• and 70°, respectively. In each figure, the vertical 
arrow represents the surface normal, the incoming arrow represents the direction of light 
rays, and the oulgoing arrow represents the direction of reflection for a perfect reflector. 
The rounded part of each figure is t.he diffuse reflection, whereas the bump is the specular 
reflection. For the 30° case in Fig. 16.43, the models produce nearly similar results, but for 
the 70° case in Fig. 16.44, the Torranco-Sparrow model has much higher specular 
reflectance and the peak occurs at an angle greater than the angle of incidence. This 
so-called off-specular peak is observed in actual environments. Figure 16.45, also by Blinn, 
shows a marked difference in the visual effect of the two models as the light source moves 
away from the viewpoint lo the side and then to the rear of a metallic sphere. 

(a) Phong model (b) Torrance-Sparrow model 

Fig. 16.43 Comparison of Phong and Torrance-Sparrow illumination models for light 
at a 300 angle of incidence. (By J. Blinn [BLIN77a], courtesy of the University of Utah.) 
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(a) Phong model (b) Torrance-Sparrow model 

Fig. 16.44 Comparison of Phong and Torrance-Sparrow illumination models for light 
at a 700 angle of incidence. (By J . Blinn [BLIN77a). courtesy of the University of Utah.) 

Tbe specular-reOection color shift. Like Blinn, Cook and Torrance use the Torrance­
Sparrow surface model to detennine the specular tenn. Unlike Blinn, hOWC\'eT, they make 
the color of the specular reflection a function of the interact ion between the material and the 
incident light, depending both on the light's wavelength and on its angle of incidence. This 
is correct because the Fresnel equation, Eq. ( 16.45), is responsible for a shift in the specular 
reflection color based on the angle the incident Light makes with the microfacer nonnal H, 
as shown in Fig. 16.46. 

When the incident light is in the same direction asH, then 81 = 0, soc= I and g = 11•· 
Substituting these values in Eq. (16.46) yields the Fresneltenn for~ = 0, 

11 - I 
( )

! 

F.,.= 11: + I . ( 16.48) 

(a) Phong model (b) Torrance-Sparrow model 

Fig. 16.45 Comparison of Phong and Torrance-Sparrow illumination models for a 
metallic sphere illuminated by a light source from different directions. Differences are 
most apparent for back-lit cases (bottom rows) . (By J . Blinn [BUN77a). courtesy of the 
University of Utah.) 
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Fig. 16.46 Fresnel term for a copper mirror as a function of wavelength and angle of 
incidence. (By Robert Cook, Program of Computer Graphics, Cornell University.) 

When the incident light grazes the surface of the microfacet, then 81 = 1T I 2, soc = 0. 
Substituting in Eq. (16.46) yields the Fresnel term for 81 = 1T I 2, 

F,, = I. (16.49) 

Thus, if light is normal to the surface, then F,0, and hence the specular reflectance p,, are 
functions of the surface's index of refrnction, which in tum varies with the wavelength. 
When the light grazes the surface (and when the viewer is looking J so• opposite from the 
light, since only microfacets with normals of H are considered), F,.,, and hence the 
specular reflection, are both J. Specular reflectance depends on "h for all 8; except 1T 12. 
For metals, essentially all reflection occurs at the surface and is specular. Only at extreme 
glancing angles is the specular reflection not influenced by the object's material. Notice 
how this differs from the Phong specular-reflection term, which was always unaffected by 
the object color. Cook and Torrance point out that the monochromatic Phong specular term 
is a good model of plastic, which is colored by pigment particles embedded in a transparent 
substrate. The presence of these particles Cl!uses the diffuse reflection, resulting from Ugbt 
bouncing around in the substrate, to be a function of the pigment and light colors. Specular 
reflection occurs from the transparent surface, however, and therefore is unaffected by the 
pigment color. This is why objects rendered with a Phong illumination model loo.k plastic. 

If the indices of refraction at different wavelengths are known, they may be used 
directly in the Fresnel equation. More typically, however, they are not known. Reflectance, 
however, has been measured for many materials with 8; = 0 at a variety of wavelengths, as 
recorded in sources such as [TOUL70; TOUL72a; TOUL72b]. ln this case, each TJ. may be 
determined from Eq. (16.48), as 

_I+~ 
TJA- • r;:-' 

I - vF.o 
(16.50) 

A derived value of TJA may then be used in the Fresnel equation to determine F;, for an 
arbitrary 81• Rather than perform this calculation for each value of A, Cook and Torrance 
simplify the computationally expensive color shift calculation by calculating F. .. ,, for T/a.g• 

0816



770 Illumination and Shading 

the average index of refraction for average nom1al reflectance. They use the value computed 
for F.<,,. to interpolate between the color of the material at 81 = 90• and the color of the 
material at B; = o• for each component of the color model. Because F..n is always I, the 
color of the material at B; = 90" is the color of the I ight source. Thus, when the light grazes 
the surface at a 90° angle of incidence, the color of the reflected light is that of the incident 
light. Using the RGB system, we call the red component of the material at 81 = 0°, Re<Jo, 
and the red component of tbe light, Redo12. Redo is calculated by integrating the product of 
F0, the spectrum of the incident light, and the color-matching curves of Fig. 13.22, and 
applying the inverse of matrix M ofEq. (13.24) to the result. Redo12 is obtained by applying 
tbe inverse of M to Eq. (13.18). The approximation computes the color of the material at B; 
as 

Red,; = Red
0 

+ (Red.r2 - Redo) max(O, F,;,.,,. - F,;vr!J). 
F.vgo/2 - F.vgO 

(16.51) 

Red11 is then used in place ofF,. in Eq. (16.39). Because the approximation takes the light's 
spectrum into account, Eq. (16.38) must be modified to multiply the specular term by a 
wc~velength-independent intensity scale factor, instead of by the light's spectrum. Hall 
[HALL89] suggests an alternative approximation that interpolates a value for F,.,,, given F,.0• 

Since F..r2 is always I (as is F.vr•/2 in Eq. 16.51), 

F. = F. + (I _ F. , max (0, F. ... ,, - F,;,gO). 
All .10 w 1-F. 

••cO 
(16.52) 

Color Plate ill.8 shows two copper vases rendered with the Cook-Torrance model, 
both of which use the bidirectional reflectance of copper for the diffuse term. The first 
models the specular term using the reflectance of a vinyl mirror and represents results 
similar to those obtained with the original Phong illumination model of Eq. (16.14). The 
second models the specular term with the reflectance of a copper mirror. Note bow 
accounting for the dependence of the specular highlight color on both angle of incidence 
and surface material produces a more convincing image of a metallic surface. 

In general, the ambient , diffuse, and specular components are the color of the material 
for both dielectrics and conductors. Composite objects, such as plastics, typically have 
diffuse and specular components that are different colors. Metals typically show little 
diffuse reflection and have a specular component color that ranges between that of the metal 
and that of the Light source as B; approaches 90°. This observation suggests a rough 
approximation to the Cook- Torrance model that uses Eq. (16. 15) with o .. chosen by 
interpolating from a look-up table based on B;. 

Further work. Kajiya [KAJI85] has generalized the Cook-Torrance illumination model 
to derive anisotropic illumination models whose reflective properties are not symmetric 
about the surface normal. These more accurately model the way that light is reflected by 
bair or burnished metal-surfaces whose microfeatures are preferentially oriented. To do 
this . Kajiya extends bump mapping to perturb not just the surface normal, but also the 
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tangent and a binormal formed by the cross-product of the tangent and normal. Together 
these form a coordinate system that determines the orientation of the surface relative to the 
anisotropic illumination model. The surface shown in Fig. 16.47 is mapped to an 
anisotropic texture that represents a cross-weave of threads. Cabral, Max and Springmeyer 
[CABR87) have developed a method for determining G and p for a surface finish specified 
by an arbitrary bump map by computing the shadowing and mas'dng effect~ of the bumps. 

The Fresnel equation used by Blinn and by Cook and Torrance is correct only for 
unpolarized I ight. The polarization state of light changes, however, when I ight is reflected 
from a surface, and a surface's pis a function of the polarization state of the light incident 
on it. Wolff and Kurlander [WOLF90] have extended the Cook-Torrance model to take this 
into account and have generated images that evidence two effects that are most visible after 
two or more interobject reflections. First, dielectrics have an angle of incidence, known as 
the Brewster angle. at which incident ligbt is completely polarized when reflected, or is not 
reflected at all if it is inappropriately polarized. If interobject specular reflection of initially 
unpolarized Hght occurs between two dielectric surfaces such that the angle of incidence of 
each reflection is equal to the Brewster angle, and the plane defined by N and I. on one 
surface is perpendicular to that of the other, then no light at all will be specularly reflected 
from the second object; we can produce noticeable, but less dramatic, attenuation if the 
angles and orientations are varied. Second, colored conductors (metals such as copper or 
gold) tend to polarize Jlght at different wavelengths differently. Therefore, when a colored 
conductor is reflected from a dielectric surface, the reflection will have a color slightly 
different from that when polarization is not taken into account. 

Fig. 16.47 Anisotropic texture. (By J. Kajiya [KAJ185], California Institute of Tech­
nology.) 
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- Umbra 

- Penumbra 

Fig. 16.48 Umbra and penumbra. 

16.8 EXTENDED UGHT SOURCES 

The light sources discussed thus far have been point lights. In contrast, extended or 
distributed light sources actuaUy have area and consequently cast "soft" shadows 
containing areas only partially blocked from the source, as shown in Fig. 16.48. The part of 
a light source's shadow that is totally blocked from the Light source is the shadow's umbra; 

. Umbra 

. Penumbra 

Fig. 16.49 Determining the penumbra and umbra volumes. (After [NISH85a).J 
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that part of the shadow that is only partially shielded from the source is the shadow's 
penumbra. All of a point light source's shadow is umbra. An obvious approach to modeling 
an extended light source is to approximate it with closely clustered point light sources 
[VERB84; BROT84]. The process is computationally expensive, however, and the results 
are less than satisfactory unless there are very many point sources and no specular 
reflection. 

Nishita and Nakamae [NISH83; NISH85a; NISH85b) have developed an extension of 
shadow volumes for modeling linear, convex polygonal, and convex polyhedral light 
sources with Lambertian intensity distributions. Their method employs an object-precision 
algorithm for determining shadow volumes for convex polyhedral objects. As shown in Fig. 
16.49, the shadow volumes defined by each vertex of the source and the polyhedron are 
determined. The penumbra volume is then the smallest convex polyhedron containing these 
shadow volumes (their convex bull), and the umbra volume is the intersection of the shadow 
volumes. The volumes are then intersected with the faces of the objects to determine the 
areas in each penumbra or umbra volume. Any point lying within an umbra volume defined 
by a light source and any other polyhedron is not affected by the light source. Determining 
the color of a point in a penumbra involves computing those parts of the light source visible 
from the point on the object. A SSP-tree-based approach is d.iscussed in [CHIN90). 

Excellent simulations of extended light sources have been achieved by using variations 
on ray-tracing (Section 16.12) and radiosity methods (Section 16.13). 

16.9 SPECTRAL SAMPLING 

As light is reflected from a surface, the spectral energy distribution P• of the incident light is 
modified by the spectral reflectance function of the surface, p,. This curve specifies the 
percentage of light of each wavelength A that is reflected. Therefore, the spectral energy 
distribution of the reflected light is P.p •. Similarly, light passing through a material is 
modified by the spectral transmittance function of the material, r •. Once a final spectral 
energy distribution for light falling on the eye at a particular point (i.e., for a particular 
pixel) is determined, then Eq. (13.18) can be used to find the corresponding CIE XYZ 
specification for the light, and this result can be converted to RGB using the inverse of M of 
Eq. (13.24). 

It is tempting to assume that p, and r, can be replaced by equivalent tristimulus RGB or 
XYZ color specifications. If this could be done, then the product P.p. could be replaced by 
a sum of the tristimulus values for each of P, and p,, of the form 

(16.53) 

This is clearly incorrect. Consider the P, and PA shown in Fig. 16.50. P, is uniform except 
for a narrow interval around 600 nanometers, whereas p, reflects light only at the same 
narrow intervcli. The product P.p, is thus zero everywhere, and the surface appears black. 
On the other hand, the XYZ components of P. will be nonzero (this can be seen by applying 
the inverse of M to the results of Eq. (13.18). Similarly, substituting p, for P, in Eq. 
( 13.18) and applying the inverse of M gives nonzero values for p8 , Pc. p8 , so the product 
(Eq. 16.53) is also nonzero! This is the wrong answer, and demonstrates that p, and r, 
cannot in general be replaced by an equivalent tristimulus color specification. As Hall 
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Fig. 16.50 P. and p, whose product is 0 everywhere. 

700 

[HALL83J points out, this approach fails because it is actually point sampling in color 
space and consequently is prone to aiJ the problems that arise from undersampling. 

A more accurate representation of a light source's spectral distribution or a surface's 
reflectivity or transmissivity can be obtained by representing either one as a curve that 
interpolates a sufficiently large set of samples spaced across the visible spectrum. Color 
Plate m .9 shows images, generated with different color models, of two overlapping filters 
lit by a 06500 Light source. The filters do not pass a common band of wavelengths, so no 
transmitted light should be visible where they overlap. Color Plate ID.9(a), the control 
picture, was generated using spectra maintained at 1-nm intervals from 360 to 830 
nanometers. Color Plates IJI.9(b) and ID.9(c) were generated with three samples for the 
primaries of the CIE and RGB color spaces, respectively. Color Plate ill. 9(d) approximates 
the spectra of Color Plate III.9(a) with nine spectral values. Note how much more closely 
Color Plate m .9(d) matches the control picture than do the others. 

16.10 IMPROVING THE CAMERA MODEL 

Thus far, we have modeled the image produced by a pinhole camera: each object, regardless 
of its position in the environment, is projected sharply and without distortion in the image. 
Real cameras (and eyes) have lenses that introduce a variety of distortion and focusing 
effects. 

Depth of field. Objects appear to be more or less in focus depending on their distance 
from the lens, an effect known as d~pth offi~ld. A lens has a focal length F corresponding to 
the distance from the lens at which a perfectly focused image of an object converges. If a 
poinr is out of focus, its image converges on a plane that is closer or farther than F. An 
out-of-focus point projects on a plane at F as a circle known as the circle of confusion. 

Potmesil and Chakravarty [POTM82) have developed a postprocessing technique for 
simulating some of the effects of depth of field and other properties of real lenses, 
demonstrJted in Color Plate 11.38. Their system first produces images using a conventional 
pinhole-lens renderer that generates not only the intensity at each point, but also that point's 
z value. Each sampled point is then turned into a circle of confusion with a size and 
intensity distribution detennined by its z value and the lens and aperture being used. The 
intensity of each pixel in the output image is calculated as a weighted average of the 
intensities in the circles of confusion that overlap t.he pixel. Sioce the image is initially 
computed from a single point at the center of projection, the results of this t.echnique are 
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still only an approximation. A real lens's focusing effect causes light rays that would not 
pass through the pinhole to strike the Ieos and to converge to form the image. These rays see 
a slightly different view of the scene, including, for example, parts of surfaces that are not 
visible to the rays passing through the pinhole. This information is lost in the images 
created with the Potmesil and Chakravarty model. 

Molion blur. Motion blur is the streaked or blurred appearance that moving objects have 
because a camera's shutter is open for a finite amount of time. To achieve this effect, we 
need to solve the visible-surface problem over time, as well as over space, to determine 
which objects are visible at a given pixel and when they are visible. Korein and Sadler 
[KORE83) describe two contraSting approaches: an analytic algorithm that uses continuous 
functions to model the changes that objects undergo over time, and a simple image­
precision approach that relies on temporal supersampling. In the temporal-supersampling 
method, a separate image is rendered for each point in time to be sampled. The 
motion-blurred image is created by taking a weighted sum of the images, in essence 
convolving them with a temporal filter. For example, if each of n images is weighted by lin, 
this corresponds to temporal box filtering. The more closely the samples are spaced, the 
better the results. Temporal supersampling, like spatial supersampliog, suffers (rom 
aliasing: Unless samples are spaoed sufficiently close together in time, the final image will 
appear to be a set of discrete multiple exposures. Potmesil and Chakravarty [POTM83] have 
extended their depth-<>f-field work to model the ways in which actual camera shutters move. 
As we shall see in Section 16. 12, the stochastic sampling techniques used in distributed ray 
tracing offer a uniform framework for integrating lens effects, motion blur, and spatial 
antialiasing demonstrated in Color Plates U.39 and ID.16. 

16-11 GLOBAL ILLUMINATION ALGORITHMS 

An illumination model computes the color at a point in terms of light directly emitted by 
light sources and of light that reaches the point after reflection from and transmission 
through its own and other surfaces. This indirectly reflected and transmitted light is often 
called global illumination. In contrast, local illumination is light that comes directly from 
the light sources to the point being shaded. Thus far, we have modeled global illumination 
by an ambient illumination term that was held constant for all points on all objects. It did 
not depend on the positions of the object or the viewer, or on the presence or absence of 
nearby objects that could block the ambient light. In addition, we have seen some limited 
global illumination effects made possible by shadows, transparency, and reflection maps. 

Much of the light in real-world environments does not come from direct light sources. 
Two different classes of algorithms have been used to generate pictures that emphasize the 
contributions of global illumination. Section 16.12 discusses extensions to the vi.sible­
surface ray-tracing algorithm that interleave visible-surface determination and shading to 
depict shadows, reflection, and refraction. Thus, global specular reflection and transmis­
sion supplement the local specular, diffuse, and ambient illumination computed for a 
surface. In contraSt, the radiosity methods discussed in Section 16. 13 completely separate 
shading and visible-surface determination. They model all an environment's interac1ions 
with light sources first in a view-independent stage, and then compute one or more images 
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for the desired viewpoints using conventional visible-surface and interpolative shooing 
algorithms. 

The distinction between view-dependent algorithms, such as ray traeing, and view­
independent ones , such as radiosity, is an importanl one. View-dependent algorithms 
discretize the view plane to determine points at which to evaluate the illumination equation, 
given the viewer's direction. In contrast, view-independent algorithms discretize the 
environment. and process it in order to provide enough information to evaluate the 
illumination equation at any point and from any viewing direction. View-dependent 
algorithms are -,veil-suited for handling specular phenomena that are highly dependent on 
the viewer's position, but may perform extra work when modeling diffuse phenomena that 
change little over large areas of an image, or between images made from different 
viewpoints. On the other hand, view-independent algorithms model diffuse phenomena 
efficiently, but require overwhelming amounts of storage to capture enough information 
about specular phenomena. 

Ultimately, all these approaches attempt to solve what Kajiya (KAJI86] has referred to 
as the rendering equaJion, which expresses the light being transferred from one point to 
another in terms of the intensity of the light emitted from the first point to the second and 
the intensity of light emitted from all other points that reaches the first and is reflected from 
the first to the second. The light transferred from each of these other points to the first is, in 
tum, expressed recursively by the rendering equation. Kajiya presents the rendering 
equation as 

I (x. x') = g(x. x') [ e(x, x') + [ p{x, x', x") /(x'. x'')dx''] , ( 16.54) 

where x. x'. and x'' are points in the environment. /(x. x') is related to the intensity passing 
from x' to x. g(x. x') is a geometry term that- is 0 when x and x' are occluded from each 
other, and I / rt when they are visible to each other, where r is the distance between them. 
e(x. x') is related to the intensity of light that is emitted from x' to x. The initial evaluation 
of g(x. x')e(x. x') for x at the viewpoint accomplishes visible-surface determination in the 
sphere about x. The integral is over all points on all surfaces S. p{x, x', x'') is related to the 
intensity of the light reflected (including both specular and diffuse reflection) from x'' to x 
from the surface at x'. Thus. the rendering equation states that the light from x' that reaches 
x consists of light emitted by x' itself and light scattered by x' to x from all other surfaces, 
which themselves emit light and recursively scatter light from other surfaces. 

As we shall see, how successful an approach is at solving the rendering equation 
depends in large part on how it handles the remaining terms and the recursion, on what 
combinations of diffuse and specular reflectivity it supports, and on bow well the visibility 
relationships between surfaces arc modeled. 

16.12 RECURSIVE RAY TRACING 

In this section. we extend the basic ray-tracing algorithm of Section 15. 10 to handle 
shadows, reflection, and refraction. This simple algorithm determined the color of a pixel at 
the closest intersection of an eye ray with an object, by using any of the illumination models 
described previously. To calculat.e shadows, we fire an additional ray from the point of 
intersection to each of the light sources. This is shown for a single light sowce in Fig. 
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Fig. 16.51 Determining whether a point on an object is in shadow. (Courtesy of Arthur 
Appel, IBM T.J. Watson Research Center.) 

16.51 , which is reproduced from a paper by Appel [APPE68j- the first paper published on 
ray tracing for computer graphics. If one of these shadow rays intersects any object along 
the way, then the object is in shadow at that point and the shading algorithm ignores the 
contribution of the shadow ray's light source. Figure 16.52 shows two pictures that Appel 
rende.red with this algorithm, using a pen plotter. He simulated a halftone pattern by placing 
a different size "+" at each pixel in the grid, depending on the pixel's intensity. Th 
compensate for the grid's coarseness, he drew edges of visible surfaces and of shadows 
using a visible- line algorithm. 

Fig. 16.52 Ear1y pictures rendered with ray treeing. (Courtesy of Arthur Appel. IBM 
T.J . Watson Research Center.) 
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The illumination model developed by Whined [WHTT80] and Kay rKAY79a) 
fundamentally extended ray tracing to include specular reflection and refractive transparen­
cy. Color Plat.e ill.IO is an early picrure generated with these effects. In addition to shadow 
rays, Whined's recursive ray-tracing algorithm conditionally spawns reflection rays and 
refraction rays from the point of intersection, as shown in Fig. 16.53. The shadow, 
reflection, and refraction rays are often called secondary rays, to distinguish them from the 
primary rays from the eye. if the object is specularly reflective, then a reflection ray is 
reflected about the surface nonnal in the direction of R, which may be computed as in 
Section 16. 1.4. If the object is tranSparent, and if total internal reflection does not occur, 
then a refraction ray is sent into the object along Tat an angle detennined by Snell's law, as 
described in Section 16.5.2. (Note that your incident ray may be oppositely oriented to 
those in these sections.) 

Each of these reflection and refraction rays may, in tum, recursively spawn shadow, 
reflection, and refraction rays, as shown in Fig. 16.54. The rays thus fonn a ray tree, such 
as that of Fig. 16.55. In Whitted's algorithm, a branch is tenninated if the reflected and 
refracted rays fail to intersect an object, if some user-specified maximum depth is reached 
or if the system runs out of storage. The tree is evaluated bottom-up, and each node's 
intensity is computed as a function of its children's intensities. Color Plate ill .ll(a) and (b) 
were made with a recursive ray-tracing algorithm. 

We can represent Whined 's illumination equation as 

14 "' l .... k.OdJ. + L S;/,u/pA1[kd0dJ.(N ·I~ + k,(N · H,)'] + k,I,A + kiu.• (16.55) 
Isis• 

where 1,4 is the intensity of the reflected ray, k, is the transmission coefficielll ranging 
between 0 and I, and lu. is the intensity of the refracted transmitted ray. Values for 1,4 and lu 
are detennined by recursively evaluating Eq. (16.55) at the closest surface that the reflected 
and tranSmitted rays intersect. To appi"'lUmate attenuation with distance, Whitted multi­
plied the 14 calculated for each ray by the inverse of the distance traveled by the ray. Rather 
than treating S1 as a delta function, as in Eq. (16.24), be also made it a continuous function 

iii 

Fig. 16.53 Reflection, refraction, and shadow rays are spawned from a point of 
intersection. 
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VI8WI)Oint Point light source 
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Fi1 Refle<:ted ray 

[, Shadow ray 

7; Transmitted ray 

Fig. 16.54 Rays recursively spawn other rays. 
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of the k, of the objects intersected by the shadow ray, so that a transparent object obscures 
less light than an opaque one at those points it shadows. 

Figure 16.56 shows pseudocode for a simple recursive ray tracer. RT_trace determines 
the closest intersection the ray makes with an object and calls RT ..:;hade to determine the 
shade at that point. Fi.rst, RT..:;hade determines the intersection's ambient color. Next , a 
shadow ray is spawned to each light on the side of the surface being shaded to determine its 
contribution to the color. An opaque object blocks the light totally, whereas a trdnsparent 
one scales the light's contribution. If we are not too deep in the ray tree, then recursive calls 
are made to RT _trace to handle reflection rays for reflective objects and refraction rays for 
transparent objects. Since the indices of refraction of two media are needed to determine 
the direction of the refraction ray, the index of refraction of the material in wbich a ray is 
traveling can be included with each ray. RT _trace retains the ray tree only long enough to 
determine the current pixel's color. If the ray trees for an entire image can be preserved, 
then surface properties can be altered and a new image recomputed relatively quickly, at the 

Viewpoint 

Fig. 1 6.55 The ray tree for Fig. 16.54. 
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select center of projection and window on view plane; 
for (each scan line in image) { 

} 

for (each pixel in scan line) { 

} 

determine ray from center of projection through pixel; 
pixel = RT..trace (ray, I): 

I• Intersect ray wilh objects and compute shade at closest intersection. •I 
I• Deplh is current depth in ray tree. •I 

RT.color RT.trace (RT..ray ray, int depth) 
{ 

detennine closest inrersecrion of ray with an object; 

it (object hit) { 
compute nomwl at intersection; 
return RT..shade (closest object hit, ray, intersection, nomwl, depth); 

} else 
return BACKGROUND. VALUE; 

} I• RT. trace •I 

I• Compute shade at point on object, tracing rays for shadows, reflection and refraction. •I 
RT. color RT_ shade ( 

RT_object object, 
RT_ray ray, 

I• Object intersected •I 
I• Incident ray •I 

{ 

RT_ point point, 
RT.. normal nonnal, 
int depth) 

RT.. color color; 
RT. ray rRay, tRay, sRay; 
RT.. color rColor, tCclor. 

color= ambient rem•: 
for (each light) { 

I• Point of intersection to shade •I 
I• Normal at point •I 
I• Depth in ray tree •I 

I• Color of ray •I 
I• Rctlected. refracted, and shadow rays oJ 
I• Rellected and refracted ray colors •I 

sRay = ray to light from point; 

} 

if (dot product ofnonno.l and direction to light is positive) { 

} 

compwe how much light is blocked by opaque and transparent surfaces, 
and use ro scale diffuse and specular renns before adding them to color; 

Fig. 16.56 (Cont'd.) 
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if (depth < maxDeprh} { /• Return if depth is 100 deep. •I 

} 

if (object is reflective) { 

} 

rRay = ray in reflection direction from point; 
rColor = RT.uace (rRay, depth + I) ; 
scale rColor by specular coefficient and add to color; 

if (object is transparent} { 

} 

tRay= ray in refraction direction from point; 
if (total internal reflection does not occur) { 

tColor = RT. trace (tRay, depth + I) ; 
scale tColor by transmission coefficient and add to color; 

} 

return color; I• Return color of ray •I 
} I• RT_ shade •I 

Fig. 16.56 Pseudocode for simple recursive ray tracing w ithout antialiasing. 
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cost of only reevaluating the trees. Sequin and Smyrl [SEQU89] present techniques that 
minimize the time and space needed to process and store ray trees. 

Figure 16.54 shows a basic problem with how ray tracing models refraction: The 
shadow ray La is not refracted on its path to the light. In fact, if we were to simply refract La 
from its current direction at the point where it eltits the large object, it would not end at the 
light source. In addition, when the paths of rays that are refracted are determined, a single 
index of refraction is used for each ray. Later, we discuss some ways to address these 
failings. 

Ray tracing is particularly prone to problems caused by limited numerical precision. 
These show up when we compute the objects that intersect with the secondary rays. After 
the x, y, and z coordinates of the intersection point on an object visible to an eye ray have 
been computed, they are then used to define the starting point of the secondary ray for 
which we must determine the parameter 1 (Section 15.10.1). If the object that was just 
intersected is intersected with the new ray, it will often have a small, nonzero 1, because of 
numerical-precision limitations. If not dealt with, this false intersection can result in visual 
problems. For example, if the ray were a shadow ray, then the object would be considered 
as blocking light from itself, resulting in splotchy pieces of incorrectly "self-shadowed" 
surface. A simple way to solve this problem for shadow rays is to treat as a special case the 
object from which a secondary ray is spawned, so that intersection tests are not performed 
on it. Of course, this docs oot work if objects are supported that really could obscure 
themselves or if transmitted rays have to pass through the object aod be reflected from the 
inside of the same object. A more general solution is to compute abs(l) for an intersection, 
to compare it with a small tolerance value, and to ignore it if it is below the tolerance. 
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The paper Whitted presented at SIGGRAPH '79 [WHIT80], and the movies he made 
using the algorithm described there, started a renaissance of interest in ray tracing. 
Recursive ray tracing makes possible a host of impressive effects- such as shadows, 
specular reflection, and refractive transparency- that were difficult or impossible to obtain 
previously. In addition, a simple ray tracer is quite easy to implement. Consequently, much 
effort has been directed toward improving both the algorithm's efficiency and its image 
quality. We provide a brief overview of these issues here, and discuss several parallel 
hardware implementations that take advantage of the algorithm • s intrinsic parallelism in 
Section 18.11.2. For more detail, see [GLAS89]. 

16.12.1 Efficiency Considerations for Recursive Ray Tracing 

Section 15.10.2 discussed bow to use extents, hierarchies, and spatial partitioning to limit 
the number of ray-<>bject intersections to be calculated. These general efficiency techniques 
are even more important here than in visible-surface ray tracing for several reasons. First, a 
quick glance at Fig. 16.55 reveals that the number of rays that must be p.rocessed can grow 
exponentially with the depth to which rays are traced. Since each ray may spawn a reflection 
ray and a refraction ray, in the \\Qrst case, the ray tree will be a complete binary tree with 
2• - I rays, where the tree depth is n. In addition, each reflection or refraction ray that 
intersects with an object spawns one shadow ray for each of them light sources. Thus, there 
are potentially m(2" - I) shadow rays for each ray tree. To make matters worse, since rays 
can come from any direction, traditional efficiency ploys, such as clipping objects to the 
view volume and culling back-facing surfaces relative to the eye. cannot be used in recursive 
ray tracing. Objects that would otherwise be invisible, including back faces, may be 
reflected from or refracted through visible surfaces. 

Item buffers. One way of ~']>Ceding up ray tracing is simply not to use it at aU when 
determining those objects directly visible to the eye. Weghorst, Hooper, and Greenberg 
[WEGH84] describe how to create an item buffer by applying a less costly visible-surface 
algorithm, such as the z-buffer algorithm, to the scene, using the same viewing 
specification. Instead of determining the shade at each pixel, however, they record in the 
item buffer pixel the identity of the closest object. Then. only this object needs to be 
processed by the ray tracer to determine the eye ray's exact intersection for this pixel, so that 
further rays may be spawned. 

Reflection maps. Tracing rays can be avoided in other situations, too. HaJJ [HALL86] 
sbows bow to combine ray tracing with the reflection maps discussed in Section 16.6. The 
basic idea is to do less work for the secondary rays than for primary rays. Those objects that 
are not directly visible in an image are divided into two groups on the basis of an estimation 
of their indirect visibility. Ray tracing is used to determine the global lighting contributions 
of the more visible ones, whereas indexing into a suitably prepared reflection map handles 
the others. One way to estimate the extent to which an object is indirectly visible is to 
measure the solid angle subtended by the directly visible objects as seen from the centroid 
of the indirectly visible object. If the solid angle is greater than some threshold, then the 
object will be included in the environment to be traced by reflection rays (this environment 
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includes the directly visible objects); otherwise, the object will be represented only in the 
reflection map. When ray tracing is performed, if a reflection ray does not intersect one of 
the objects in the reflection-ray environment, then the ray is used to index into the reflection 
map. Hall also points out that reflected and refracted images are often extremely distorted. 
Therefore, good resu.lts may be achieved by intersecting the reflection and refraction rays 
with object definitions less detailed than those used for the eye rays. 

Adaptive tree-depth control. Although ray tracing is often used to depict highly 
specular objects, most of an image's area is usually not filled with such objects. 
Consequently, a high recursion level often results in unnecessary processing for large parts 
of the picture. Hall [HALL83] introduced the use of adaptive tree-depth control, in which a 
ray is not cast if its contribution to the pixel's intensity is estimated to be below some preset 
threshold. This is accomplished by approximating a ray's maximum contribution by 
calculating its intensity with the assumption that the ray's child rays have intensities of 1. 
This allows the ray's contribution to its parent to be estimated. As the ray tree is built, the 
maximum contribution of a ray is multiplied by those of its ancestors to derive the ray's 
maximum contribution to the pixel. For example, suppose that R1 and R2 in Fig. 16.55 are 
spawned at surfaces with k. values of .I and .05, respectively. At the first intersection, we 
estimate the maximum contribution to the pixel of R1 to be. I. At the second intersection, 
we estimate the maximum contribution to the pixel of R2 to be .05 x . I = .005. If this is 
below our threshold, we may decide not to cast R2• Although adaptive tree-depth control has 
been shown to work well for many images, it is easy to design cases in which it will fail . 
Although one uncast ray may have an imperceptible effect on a pixel's shade, a pixel may 
receive a significant amount of light from a large number of individually insignificant rays. 

Light buffers. We noted that m shadow rays are spawned for each reflection or refraction 
ray that bits an object. Shadow rays are special, however, in that each is fired toward one of 
a relatively small set of objects. Haines and Greenberg [HAIN86] have introduced the 
notion of a light buffer to increase the speed with which shadow rays are processed. A light 
buffer is a cube centered about a light source and aligned with the world-coordinate axes, as 
shown in Fig. 16.57(a). Each s.ide is tiled with a regular grid of squares, and each square is 
associated with a depth-sorted list of surfaces that can be seen through it from the light. The 
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Fig. 16.57 Light buffer centered about a light source. (a) Volume defined by one 
square. (b) Cross-section shows volume of square in 20 with intersected surfac-es. 
Square's depth-sorted list is initially A 8 , £, G. H, and/. 
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lists are filled by scan converting the objects in the scene onto each face of the light buffer 
with the center of projection at the light. The scan-oonversion algorithm plaoes an object on 
the list of every square covered by that object's projection, no matter how small the overlap. 
Figure 16.S7(b) shows a square' s set of intersecting surfaces. A shadow ray is processed by 
determining the light-buffer square through which it passes. The ray needs to be tested only 
for intersection against that square's ordered list of surfaces. Thus, a light buffer 
implements a kind of 30 spatial partitioning of the 30 view of its light. 

A number of efficiency speedups are possible. For example, any object whose 
projection onto the light buffer totally covers a square (e.g., G in Fig. 16.S7b) can be 
associated with a special " full -occlusion" record in the square's list; any object more 
distant from the light than a fully occluding object is purged from the list. In this case, H 
and I are purged. Whenever the ray from an intersection point is tested against a square's 
List , the test can be terminated immediately if there is a full-occlusion record closer to the 
light than the intersection point. In addition, back-face culling may be used to avoid adding 
any faces to a list that are both part of a closed opaque solid and back facing relative to the 
light. Color Plate ill.l2 was made using the light-buffer technique. 

Haines and Greenberg also mention an interesting use of object coherence to 
determine shadows that can be applied even without using light buffers. A pointer is 
associated with each light and is initialized to null . When an object is found to be shadowed 
from a light by some opaque surface, t.he light's pointer is set to the shadowing surface. The 
next time a shadow ray is cast for the light, it is first intersected with the object pointed at by 
the light's pointer. If the ray hits it, then intersection testing is finished; otherwise, the 
pointer is set to null and testing continues. 

Ray classification. The spatial-partitioning approaches discussed in Section IS. I0.2 
make it possible to determine which objects lie in a given region of 30 space. Arvo and 
Kirk [ARV087) have extended this concept to partition rays by the objects that they 
intersect, a technique called ray classification. A ray may be specified by its position in SO 
ray space, determined by the 30 position of its origin in space and its 20 direction in 
spherical coordinates. A point in ray space defines a single ray. whereas a finite subset of 
ray space defines a family of rays or beam. Ray classification adoptively partitions ray space 
into subsets, each of which is associated with a list of objects that it contains (i.e, . that one 
of its rays could intersect). To determine the candidate objects that may be intersected by 
any ray , we need only to retrieve the list of objects associated with the subset of ray space in 
which the ray resides. 

Instead of using spherical coordinates to specify direction, Arvo and Kirk use the (u. v) 
coordinate system on each of the six sides of an axis-aligned cube centered about a ray's 
origin. They subdivide ray space with six copies of a SO bintree (Section 12.6.3); one copy 
is needed for each direction along an axis , since a (11, v) pair specifies a position on the 
cube's side, but not the side itself. As shown in Fig. 16.S8(a), in 20 a set of ray origins (a 
rectangle in (x , y)), combined with a set of ray directions (an interval in u on one of four 
sides), define a partially bounded polygon that defines the beam. In 30, shown in Fig. 
16.S8(b), a set of ray origins (a rectangular parallepiped in (x. y, z}), combined with a set of 
ray directions (a rectangle in (u. v)), defines a partially bounded polyhedral volume that 
defines the beam. Objects (or their extents) may be intersected with this volume (e.g., using 
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Origins D 
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(a) (b) 

Fig. 18 .58 Ray classification: (a) 2-space beams; (b) 3-space beams. (After 
[ARV087).) 

the SSP-tree-based approach of Section 12.6.4) to detennine whether they are contained in 
it. Initially, each unpartitioned binuee represeniS positions in aJJ of the environment 's 
3-space extent, and directions that pass through any part of the bintree' s designated side. 
Each bintree is initially associated with all the objects in the environment. 

Arvo and Kirk use lazy evaluation to build the trees at the same time that they trace 
rays. When a ray is traced, its direction selects the root of the bintree whose (11, v) 
coordinate system it will intersect. If more than some threshold number of objects exist at 
the node, tbe bintree is subdivided equally along each of itS five axes. With each 
subdivision, only the child node in which the ray resides is processed; it inherits from its 
parent those objects that lie within the child. When subdivision stops, only those objectS 
associated with the ray' s partition are returned for intersection. Partitioning data structures 
as the rays are traced minimizes the amount of processing done for objectS that are not 
intersected. 

16.12.2 A Better Illumination Model 

It is possible to make a number of extensions to Eq. (16.55). Hall [HALL83) bas developed 
a model in which the specular light expressions are scaled by a wavelength-dependent 
Fresnel reflectivity term. An additional term for transmitted loeal Light is added to take into 
account the contribution of transmitted light directly emitted by the light soUJ~es. and is 
also scaled by the Fresnel transmissivity tenn. The global reflected and refracted r.1ys 
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further take into account the transmittance of the medium through which they travel . Hall's 
model may be expressed as 

'· = I .. k.OdA + L SJ .. ; /pAl [kdOdA(N. LJ + k,(N. HJ"F, + k,(N. H'J"T,] 
ls i.sm 

(16.56) 

where ~ is the distance traveled by the reflected ray , d, is the distance traveled by the 
transmitted ray, A, is the transmissivity per unit length of material for the reflected ray, and 
A, is the transmissivity per unit length of material for the transmitted ray. H' is the normal 
for those microfacets that are aligned such that they will refract light directly from the light 
source to the viewer. II may be computed as 

H' = V - ( 71 •• ,,, I 71avJ•t)L 
( 71, ... ,, I 71,.,,J - I ' 

( 16.57) 

where 71,.,,, is the average coefficient of refraction of the object through which the ray to the 
light passes. :Z:. is the Fresnel transmissivity term for the material. Note that k,. is not used 
here; instead, k, is scaled by either F;, or :z;.. Since all light that is not reflected is transmitted 
(and possibly) absorbed, F;, + :Z:. = I. 

Color Plate ID.I3 shows the same scene rendered with Whitted's model and with 
Hall 's model. The color of the glass sphere in part (b) clearly shows the filtering effects 
resulting from the use of the transmissivity terms. 

16.12.3 Area-Sampling Variations 

One of conventional ray tracing's biggest drawbacks is that this technique point samples on 
a regular grid. Whitted LWHIT80] suggested that unweighted area sampling could be 
accomplished by replacing each I inear eye ray with a pyramid defined by the eye and the 
four comers of a pixel. These pyramids would be intersected with the objects in the 
environment, and sections of them would be recursively refracted and reflected by the 
objects that they intersect. A pure implementation of this proposal would be exceedingly 
complex. however, since it would have to calculate exact intersections with occluding 
objects , and to determine how the resulting pyramid fragments are modified as they are 
recursively reflected from and refracted by curved surfaces. Nevertheless, it has inspired 
several interesting algorithms that accomplish antialiasing, and at the same time decrease 
rendering time by taking advantage of coherence. 

Cone tracing. Cone tracing, developed by Amanatides [AMAN84], generalizes the 
linear rays into cones. One cone is fired from the eye through each pixel, with an angle wide 
enough to encompass the pixel. The cone is intersected with objects in its path by 
calculating approximate fractional blockage values for a small set of those objects closest to 
the cone's origin. Refraction and reflection cones are determined from the optical laws of 
spherical mirrors and lenses as a function of the surface curvature of the object intersected 
and the area of intersection. The effects of scattering on reflection and refraction are 
simulated by further broadening the angles of the new reflection and refraction cones. The 
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soft-edged shadows of extended light sources are reproduced by modeling the sources as 
spheres. A shadow cone is generated whose base is the cross-section of the light source. 
The light source's intensity is then scaled by the fraction of the cone that is unblocked by 
interwning objects. Color Plate m.l4 was rendered using cone tracing; the three spheres 
have successively rougher surfaces, and all cast soft shadows. 

Beam tracing. Beam tracing, introduced by Heckbert and Hanrahan [HECK84), is an 
object-precision algorithm for polygonal environments that traces pyramidal beams, rather 
than linear rays. Lnstead of tracing beams through each pixel, as Whitted suggested, 
Heckbert and Hanrahan take advantage of coherence by beginning with a single beam 
defined by the viewing pyramid. The viewing pyramid's beam is intersected with each 
polygon in the environment, in front-to-back sorted order, relative to the pyramid's apex. If 
a polygon is intersected, and therefore visible, it must be subtracted from the pyramid using 
an algorithm such as that described in Section 19.1.4. For each visible polygon fragment, 
two polyhedral pyramids are spawned, one each for reflec.tion and refraction. The algorithm 
proceeds recursively, with termination criteria similar to those used in ray tracing. The 
environment is transformed into each new beam's coordinate system by means of an 
appropriate transformation. Although beam tracing models reflection correctly, refraction 
is not a Linear transformation since it bends straight lines, and the refracted beam is thus 
only approximated. Beam tracing produces an object-precision beam tree of polygons that 
may be recursively rendered using a polygon scan-conversion algorithm. Each polygon is 
rendered using a local illumination equation, and then its reflected and refracted child 
polygons are rendered on top and are averaged with it, taking into account the parent's 
specular and transmissive properties. Beam tracing takes advantage of coherence to provide 
impressive speedups over conventional ray tracing at the expense of a more complex 
algorithm, limited object geometry, and incorrectly modeled refraction. Color Plate ffi. l5 
was rendered using this algorithm. 

Beam tracing can accommodate shadows by using a variant of the Atherton- Weiler­
Greenberg shadow algorithm (Section 16.4.2). Beams are traced from the point of view of 
each light source to determine all surfaces directly visible from the light sources, and the 
resulting polygons are added to the data structure as lit detail polygons that affect only the 
shading. This produces shadows similar to those obtained with conventional ray tracing. 

Pencil tracing. Shinya, Takahashi, and Naito [SHIN87] have implemented an approach 
called pencil tracing that solves some of the problems of cone tracing and beam tracing. A 
pencil is a bundle of rays consisting of a central axial ray, surrounded by a set of nearby 
paraxial rays. Each paraxial ray is represented by a 40 vector that represents its relationship 
to the axial ray. Two dimensions express the paraxial ray's intersection with a plane 
perpendicular to the axial ray; the other two dimensions express the paraxial ray's direction. 
In many cases, only an axial ray and sol.id angle suffice to represent a pencil. If pencils of 
sufficiently small sol.id angle are used, then reflection and refraction can be approximated 
well by a linear transformation expressed as a 4 x 4 matrix. Shinya, Takahashi, and Naito 
have developed error-estimation techniques for determining an appropriate sol.id angle for a 
pencil. Conventional rays must be traced where a pencil would intersect the edge of an 
object, however, since the paraxial transformations are not valid in these cases. 
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16.12.4 Distributed Ray Tracing 

The approaches we have just discussed avoid the aliasing problems of regular point 
sampling by casting solid beams rather than infinitesimal rays. In contrast, distributed ray 
tracing, developed by Cook, Porter, and Carpenter [COOK84b], is based on a stochastic 
approach to supersampling that trades off the objectionable artifacts of aliasing for the less 
offensive artifacts of noise [COOK86]. As we shall see, the ability to perform antialiased 
spatial sampling can also be exploited to sample a variety of other aspects of the scene and 
its objects to produce effects such as motion blur, depth of field, extended light sources, and 
specular reflection from rough surfaces. The word distributed in this technique's name 
refers to the fact that rays are stochastically distributed to sample the quantities that produce 
these effects. The basic concepts have also been applied to other algorithms besides ray 
tracing [COOK87). 

Stochastic sampling. As explained in Section 14. 10, aliasing results when a signal is 
sampled with regularly spaced samples below the Nyquist rate. This is true even if we 
supersample and filter to compute the value of a pixel. If the samples are not regularly 
spaced, however, the sharply defined frequency spectrum of the aliases is replaced by noise, 
an artifact that viewers find much less objectionable than the individually recognizable 
frequency components of regular aliasing, such as staircasing. 

Jt is not enough, however, merely to replace ray tracing's regular grid of eye rays with 
an equal number of rays passing through random points on the image plane, since purely 
random samples cluster together in some areas and leave others unsampled. Cook 
[COOK86) suggests the desirability of a minimum-distance Poisson distribution in which 
no pair of random samples is closer than some minimum distance. Calculating such a 
distribution is expensive, however, and even if one is created in advance, along with filters 
to determine each sample's contributions to neighboring pixels, a very large look-up table 
will be required to store the information. Instead, a satisfactory approximation to the 
minimum-distance Poisson distribution is obtained by displacing by a small random 
distance the position of each element of a regularly spaced sample grid. This technique is 
called jittering. In sampling the 20 image plane, each sample in a regular grid is jittered by 
two uncorrelated random quantities, one each for :x andy, both generated with a sufficiently 
small variance that the samples do not overlap (Fig. 16.59). Figure 16.60 shows a 
minimum-distance Poisson distribution and a jittered regular distribution. In fact, if the 

" • 
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• )( 

" • . .. 
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)( 

" original position 
• position after jitter 

Fig. 16.59 Jittered sampling. Each sample in a regular 20 grid is jittered by two small 
uncorrelated random quantities. x = original position; • = position after jitter. 
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Fig. 1 6.60 (a) A minimum distance Poisson distribution. (b) A jittered regular distribu­
tion. (Courtesy of Mark A- Z. Oippe and Earl Wold, University of California. Berkeley.) 

amount of jitte.r is small compared to the filter width, then the filter can be precomputed, 
taking into account the positions of the unjinered samples. Cook, Porter, and Carpenter 
found that a 4 x 4 subpixel grid is adequate for most situations. Poisson and jittered 
sampling are analyzed in [DIPP85], and strategies for performing adaptive stochastic 
sampling, including the statistical analysi.s of samples to determine whether to place new 
ones, are discussed in [DIPP85; LEE85b; KAJI86; MJTC87). 

Figure 16.61 compares the use of regularly spaced samples with and without added 
jitter to sample frequencies at rates above and below the Nyquist rate. In Fig. 16.61(a), 
sampling above the Nyquist rate, the shape of the signal is captured well , but with 
some added noise. In Fig. 16.61(b), the sampled amplitude is totally random if there 
is an integral number of cycles in the sampled range. If there is a fractional number of 
cycles in the range, then some pans of the waveform have a better chance of being sampled 
than do others, and thus a combination of aliasing and noise will result. The higher the 
frequency, the greater the proportion of noise to aliasing. Figure 16.62 demonstrates how a 
comb of regularly spaced triangles, each (n + I )In pixels wide, produces an aliased image 
when it is sampled by regularly spaced sample points, and produces a noisy image when the 
sample points are jittered. 

Samplln11 other dimensions. As long as the extra rays needed for spatial antialiasing 
have been cast, this same basic technique of stochastic sampling can also be used to 
distribute the rays to sample other aspects of the environment. Motion blur is produced by 
distributing rays in time. Depth of field is modeled by distribut.ing the rays Q\leJ' the area of 
the camera lens. The blurred specular reflections and translucent refraction of rough 
surfaces are simulated by distributing the rays according to the spec;nlar reflection and 
transmission functions. Soft shadows are obtained by distributing the shadow rays Q\leJ' the 
solid angle subteoded by an extended light source as seen from the point being shaded. In 
alJ cases, distributed ray tniCing uses stochastic sampling to perturb the same rays that 
would be cast to accomplish spatial antialiasing alone. 
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(a) 

(b) 

Fig. 16.61 Use of regularly spaced samples with added jitter to sample frequencies (a) 
above and (b) below the Nyquist rate. The nominal position of each sample is shown as 
a dot (e). Horizontal arrows indicate the range of jittered sample positions. Vertical 
arrows indicate how much sampled values can vary. (After [COOK86).) 

Sampling in a nonspatial dimension is accomplished by associating each of the pixel 's 
subsampled rays with a range of the value being sampled. Jittering is then used to determine 
the exact sample point. The ranges may be allocated by partitioning the entire interval being 
sampled into the same number of subintervals as there are subpixels and randomly 
allocating subintervals to subpixels. Thus, subpixel ij of each pixel is always associated with 
the same range for a particular dimension. It is important to ensure that the method of 
allocating the ranges for each dimension does not correlate the values of any two 
dimensions. For example, if temporally earlier samples tended to sample the left side of an 
extended light source, and later samples tended to sample the right side, then obscuring the 
right side of the light early in the temporal interval being depicted might have no effect on 
the shadow cast. ln the case of temporal sampling, each object being intersected must first 
be moved to its position at the point in time associated with the sampling ray. Cook 
[COOK86] suggests computing a bounding box for th.e object's entire path of motion, so 
that the bounding-box test can be performed without the expense of moving the object. 

A weighted distribution in some dimension can be simulated by applying unequal 
weights to evenly distributed samples. Figure 16.63(a) shows such a distribution. A more 
attractive alternative, however, is to use importance sampling, in which proportionately 
more sample points are located at positions of higher weight. This is accomplished by 
dividing the weighting fil ter into regions of equal area and assigning the same number of 
equally weighted sample points to each, as shown in Fig. 16.63(b). The amount of jitter 
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Fig. 16.62 Aliasing vs. noise. (a) A comb with regularly spaced triangles, each 
(n + 1)/n pixels wide, sampled with one sample per pixel. o = samples that fall outside 
comb; • = samples that fall inside comb. (b) A comb with 200 triangles, each 1.01 
pixels wide and 50 pixels high. 1 sample/pixel, regular grid. (c) 1 sample/ pixel, tittered 
:t~ pixel. (d) 16 samples/pixel, regular grid. (e) 16 samples/ pixel, jittered : 8 pixel. 
(Images (b)-(e) by Robert Cook, Lucasfilm Ltd.) 

associated with a region also varies in proportion to its size. Color Plate ffi.l6 was created 
using distributed ray tracing. It shows five billiard balls with motion blur and penumbrae 
cast by extended light sources. Note the blurred shadows and reflections of the rour moving 
billiard balls. 

(a) 

I I 
I I 
1 I I 

I I I 

(b) 

Fig. 16.63 Importance sampling is accomplished by partitioning the weighting func· 
tion into regions of equal area. The horizontal axis is the dimension sampled; the vertical 
axis is the weighting. Dots show nominal position of samples; arrows show jitter range. 
(a) Evenly distributed, unequally weighted samples. (b) Importance sampling: unevenly 
distributed, equally weighted samples. 
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Path tracing and the integral equation method. Kajiya [KAIJ86] has implemented an 
efficient variation on distributed ray tracing called path tracing. Rather than each ray being 
grown into a binary tree, exactly one reflection or refraction ray is fired at each intersection 
to form a linear path, along with one ray to each light source. The decision to shoot either a 
reflection or a refraction ray is guided by the desired distribution of the different kinds of 
rays for each pixel. Kajiya has also extended this algorithm to develop a solution to the 
rendering equation (Eq. 16.54), called the integral equation method, that takes into account 
all ways in which light can reach a point. He uses variance·reduction methods to calculate a 
random variable based on the specular, diffuse, and transmission coefficients at each 
intersection. The random variable is used to determine whether the single ray cast from the 
intersection will be a specular reflection, diffuse reflection, or refraction ray, and the ray's 
direction is then chosen by sampling. In addition, a shadow ray is cast to a point on a light 
source, also chosen using variance-reduction methods. Because diffuse rays are traced, thi.s 
approach models diffuse interobject reflections, an effect that we shall discuss in Section 
16.13. Color Plate ill.l7 was rendered with the integral equation method. All objects 
shown are gray, except for the floor and green glass balls. The gray objects reflect green 
light focused by the balls and reddish light diffusely reflected from the floor, phenomena 
not modeled by conventional ray tracing (or by path tracing). 

Kajiya's two approaches evaluate the diffuse reflection separately at each pixel, even 
though diffuse reflection tends to change relatively litlle from one pixel to the next. Ward, 
Rubinstein, and Clear [WARD88] have supplemented a ray tracer with a recursive diffuse 
reflection stage in which rays are used to trace some number of diffuse bounces from a 
surface to others illuminating it. Rather than computing the diffuse reflection for each pixel 
separately, they instead cache all of the values computed. When a pixel is processed, they 
use an estimate of the illuminance gradient at each cached diffuse reflection value 
" nearby" the pixel 's intersection point to estimate the error associated with using that 
value. U the error is considered acceptable, then a weighted average of these cached values 
is used to compute a new value for the pixel; otherwise, a new diffuse calculation is made by 
tracing rays that sample the hemisphere, and its value is cached. The cached values can then 
be reused in computing other views of the same scene. Color Plate ll.l8 shows a series of 
images rendered using this technique, with different numbers of diffuse bounces. Color 
Plate ill. 19 contrasts a photograph of a conference room with a rendered image. 

16.12.5 Ray Tracing from the Ught Sources 

One serious problem with ray tracing is caused by tracing all rays from the eye. Shadow rays 
are cast only to direct sources of light that are treated separately by the algorithm. 
Therefore, the effects of indirect reflected and refracted light sources, such as mirrors and 
lenses, are not reproduced properly: Light rays bouncing off a mirror do not cast shadows, 
and the shadows of transparent objects do not evidence refraction, since shadow rays are 
cast in a straight line toward the light source. 

It might seem that we would need only to run a conventional ray tracer "backward" 
from the light sources to the eye to achieve these effects. This concept has been called 
backward ray tracing, to indicate that it runs in the reverse direction from regular ray 
tracing, but it is also known as forward ray tracing to stress that it follows the actual path 
from the lights to the eye. We call it ray tracing from the light sources to avoid confusion! 
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Done naively, ray tracing from the Light sources results in new problems, since an 
insufficient number of rays ever would strike the image plane, let alone pass through the 
focusing lens or pinhole. Instead, ray tracing from the light sources can be used to 
supplement the lighting information obtained by regular ray tracing. Heckben and 
Hanrahan [HECK84] suggest an elaboration of their proposed beam-tracing shadow 
method (Section 16.12.3) to accomplish this. If a light's beam tree is traced recursively, 
successive levels of the tree below the first level represent indirectly illuminated polygon 
fragments. Adding these to the database as surface-detail polygons allows indirect specular 
illumination to be modeled. 

Arvo [ARV086] has implemented a ray tracer that uses a preprocessing step in which 
rays from each light source are sent into the environment. Each ray is assigned an initial 
quota of energy, some of which is deposited at each intersection it makes with a diffusely 
reflecting object. He compensates for the relative sparseness of ray intersections by mapping 
each surface to a regular rectangular grid of counters that accumulate the deposited energy. 
Each ray's contribution is bilinearly panitioned among the four counters that bound the grid 
box in which the ray hits. A conventional ray-tracing pass is then made, in which the first 
pass's interpolated contributions at each intersection are used, along with the intensities of 
the visible light sources, to compute the diffuse reflection. Unfortunately, if a light ray 
strikes an object on the invisible side of a silhouette edge as seen from the eye, the ray can 
affect the shading on the visible side. Note that both these approaches to ray tracing from 
the light sources use purely specular reflectivity geometry to propagate rays in both 
directions. 

1 6.13 RADIOSITV METHODS 

Although ray tracing does an exceUent job of modeling specular reflection and 
dispersionless refractive transparency, it still makes use of a directionless ambient-lighting 
term to account for all other global lighting contributions. Approaches based on 
thermal-engineering models for the emission and reflection of radiation eliminate the need 
for the ambient-lighting term by providing a more accurate treatment of interobject 
reflections. First introduced by Goral, Torrance, Greenberg, and Battaile (GORA84) and 
by Nishita and Nakamae [NISH85a], these algorithms assume the conservation of light 
energy in a closed environment. All energy emitted or reflected by every surface is 
accounted for by its reflection from or absorption by other surfaces. The rate at which 
energy leaves a surface, called its radiosity, is the sum of the rates at which the surface emits 
energy and reflects or transmits it from that surface or other surfaces. Consequently, 
approaches that compute the radiosities of the surfaces in an environment have been named 
radiosity methods. Unlike conventional rendering algorithms, radiosity methods first 
determine all the light interactions in an environment in a view-independent way. Then, 
one or more views are rendered, with only the overhead of visible-surface determination 
and interpolative shading. 

16.13.1 The Radiosity Equation 

In the shading algorithms considered previously, light sources have always been treated 
separately from the surfaces they illuminate. In contrast, radiosity methods allow any 
surface to emit light; thus, all light sources are modeled inherently as having area. Imagine 
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breaking up the environment into a finite number n of discrete patches, each of which is 
assumed to be of finite size, emitting and reflecting light uniformly over its entire area. If we 
consider each patch to be an opaque Lambertian diffuse emitter and reflector, then, for 
surface i, 

( 16.58) 

81 and B1 are the radiosities of patches i and j, measured in energy/unit time/unit area (i.e., 
W I mZ). £1 is the rate at which light is emitted from patch i and has the same units as 
radiosity. P; is patch i's reflectivity and is dimensionless. fj_1 is the dimensionless form 
factor or configuration factor, which specifies the fraction of energy leaving the entirety of 
patch j that arrives at the entirety of patch i, taking into account the shape and relative 
orientation of both patches and the presence of any obstructing patches. ~and A1 are the 
areas of patches i and j. 

Equation (16.58) states that the energy leaving a unit area of surface is the sum of the 
light emitted plus the light re.flected. The reflected light is computed by scaling the sum of 
the incident light by the reflectivity. The incident light is in tum the sum of the light leaving 
the entirety of each patch in the environment scaled by the fraction of that light reaching a 
unit area of the receiving patch. B1Fj_; is the amount of light leaving a unit area of A, that 
reaches a.ll of~- Therefore, it is necessary to multiply by the area r<~tio A1 I A; to determine 
the light leaving all of A1 that reaches a unit area of A1• 

Conveniently, a simple reciprocity relationship holds between form factors in diffuse 
environ.ments , 

AJ'i-J = A1Fj-;. (16.59) 

Thus, Eq. (16.58) can be simplified, yielding 

B, = E, +Pi L BJFi-J· 
lsj s 14 

(16.60) 

Rearranging terms, 

B, - P; L B,Fi-J = E;. (16.61) 
t sjsrs 

Therefore, the interaction of light among the patches in the environment can be stated 
as a set of simultaneous equations: 

l - P1Fi - 1 
-~¥r- 1 

-p.F..-1 -p.F..-2 

- pli -. 
-p.J't_. 

- P.F..-• 

81 E1 
Bt £2 

- (16.62) 

B. E. 

Note that a patch's contribution to its own reflected energy must be taken into account 
(e.g., it may be concave); so, in the general case, each term along the diagonal is not merely 
I. Equation (16.62) must be solved for each band of wavelengths considered in the Lighting 
model, since p1 and £1 are wavelength-dependent. The form factors, however, are 
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Fig. 16.64 Computing vertex radiosities from patch radiosities. 

independent of wavelength and are solely a function of geometry, and thus do not need to be 
recomputed if the lighting or surface reflectivity changes. 

Equation (16.62) may be solved using Gauss-Seidel iteration [PRES88], yielding a 
radiosity for each patch. The patches can then be rendered from any desired viewpoint with 
a conventional visible-surface algorithm; the set of radiosities computed for the wavelength 
bands of each patch are that patch's intensities. Instead of using faceted shading, we can 
compute vertex radiosities from the patch radiosities to allow intensity interpolation 
shading. 

Cohen and Greenberg [COHE85] suggest the following approach for determining 
vertex radiosities. U a verte1t is interior to a surface, it is assigned the average of the 
radiosities of the patches that share it. If it is on the edge, then the nearest interior vertex v is 
found. The radiosity of the edge vertex when averaged with B. should be the average of the 
radiosities of the patches that share the edge vertex. Consider the patches in Fig. 16.64. The 
radiosity for interior vertex e is B, = (81 + 82 + 83 + 8.) 14. The radiosity for edge vertex b 
is computed by finding its nearest interior vertex, e, and noting that b is shared by patches I 
and 2. Thus, to determine 86, we use the preceding definition; (86 + BJ /2 = (81 + 82) /2. 
Solving for 86, we get 86 = 8 1 + B2 - B,. The interior vertex closest to a is also e, and a is 
part of patch I alone. Thus, since (B0 +.BJ / 2 = B1, we get B.= 2B1 - B,. Radiosities for 
the other vertices are computed similarly. 

The first radiosity method was implemented by Goral et al. [GORA84], who used 
contour integrals to compute exact form factors for convex environments with no occluded 
surfaces, as shown in Color Plate ill.20. Note the correct "color-bleeding" effects due to 
diffuse reflection between adjacent surfaces, visible in both the model and the rendered 
image: diffuse surfaces are tinged with the colors of other diffuse surfaces that they reflect. 
For radiosity methods to become practical, however, ways to compute form factors between 
occluded surfaces had first to be developed. 

16.13.2 Computing Form Factors 

Cohen and Greenberg [COHE85] adapted an image-precision visible-surface algorithm to 
approximate form factors for occluded surfaces efficiently. Consider the two patches shown 
in Fig. 16.65. The form factor from differential area dA1 to differential area dAi is 

d ,. _ cos 81cos ~ H dA 
r di - dj - 2 v j · 

7Tr 
(16.63) 
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Fig. 16.66 Computing the form factor between a patch and a differential area. 

For the ray between differential areas dA, and dA1 in Fig. 16.65, 81 is the angle that the ray 
makes with A;'s normal, 81 is the angle that it makes with A/ s normal, and r is the ray's 
length. Hv is either I or 0, depending on whether or not dA; is visible from dA1• To 
determine Fdi _ 1, the form factor from differential area dA, to finite area A;. we need to 
integrate over the area of patch j. Thus, 

(16.64) 

Finally, the form factor from A; to A; is the area average of Eq. (16.64) over patch i: 

1 I I cos 8-cos 8-Fi-J = A- ' 2 
1 Hii dA1 dA1• 

I Al Ai "" 

(16.65) 

If we assume that the center point on a patch typifies the patch's other points, then Fi -; can 
be approximated by f;; _1 computed for dA; at patch i's center. 

Nusselt has shown [SIEG81] that computing Fdi -J is equivalent to projecting those parts 
of A; that are visible from dA1 onto a unit hemisphere centered about dA;. projecting this 
projected area orthographically down onto the hemisphere's unit circle base, and dividing 
by the area of the circle (Fig. 16.66). Projecting onto the unit hemisphere accounts for 
cos 81 f r

2 in Eq. (16.64), projecting down onto the base corresponds to a multiplication by 
cos 8;, and dividing by the area of the unit circle accounts for the 1r in the denominator. 

Rather than analytically projecting each A; onto a hemisphere, Cohen and Greenberg 
developed an efficient image-precision algorithm that projects onto the upper half of a cube 
centered about dA;. with the cube's top parallel to the surface (Fig. 16.67). Each face of this 
hemicube is divided into a number of equal-sized square cells. (Resolutions used in pictures 
included in this book range from 50 by 50 to several hundred on a faoe.) All the other 
patches are clipped to the view-volume frusta defined by the center of the cube and each of 
its upper five faces, and then each of the clipped patches is projected onto the appropriate 
face of the hemicube. An item-buffer algorithm (Section 16.12.1) is used that records the 
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Fig. 16.66 Determining the form factor between a differential area and a patch using 
Nusselt's method. The ratio of the area projected onto the hemisphere's base to the 
area of the entire base is the form factor. (After [SIEG81 ).) 

dA, 

Fig. 16.67 The hemicube is the upper half of a cube centered about the patch. (After 
[COHE85).) 
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identity of the closest intersecting patch at each cell. Each hemicube cell p is associated 
with a precomputed delta form factor value, 

(16.66) 

where e, is the angle between the cell p's surface normal and the vector between dA; and p, 
r is this vector's length, and lU is the area of a cell, as shown in Fig. 16.68. Assume that 
the hemicube has its own (x. y, z) coordinate system, with the origin at the center of the 
bottom face. For the top face in Fig. 16.68(a), we have 

r = y' X: + Yi + I , 

I 
cos B; = cos e, = -, 

r 

(16.67) 

where x., and Yp are the coordinates of a hemicube cell. Thus, for the top face, Eq. (16.66) 
simplifies to 

(16.68) 

For a side face perpendicular to the hemicube's x axis, as shown i.n Pig. J6.68(b), we have 

r = v'y2 + z1 + 1 p p • 

z cosO, =...!. , 
r 

Here, Eq. (16.66) simplifies to 

I 
cos8 =-, r 

t.F. = z, IU. 
P 1T(y; + z; + 1)2 

(16.69) 

(16.70) 

Because of symmetry, the values of flF, need to be computed for only one-eighth of the top 
face and one-quarter of a single side half face. 

z z 

(a) • (b) 

Fig. 16.68 Delta form factors. (a) The top face. (b) A side face. (After [COHE85).) 
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We can approximate F~; _ 1 for any patch j by summing the values of M, associated with 
each cell pin A/s hemicube projections. (Note that the values of M, for all the bemicube's 
cells sum to 1.) Assuming that the distance between the patches is large relative to the size 
of the patches, these values for F111 _1 may be used as the values of fi-; in Eq. (16.62) to 
compute the patch radiosities. Color Plate m .21 (a-b) was made with the hcmicubc 
algorithm. Because much of the computation performed using the bemicube involves 
computing item buffers, it can take advantage of existing z-buffer hardware. On the other 
hand, because it uses image-precision operations, the bemicube is prone to aliasing. 

Nishita and Nakamae [NISH8Sa] have adopted a different approach to computing form 
factors in occluded environments by incorporating their shadow algorithm for area light 
sources (Section 16.8) into a radiosity algorithm that was used to make Color Plate 
ID.22(a-b). Color Plate ID.22(c) [NISH86] adds to this a model of slcy light, approximated 
by a large hemispherical source of diffuse light. The hemisphere is divided into bands that 
are transversely uniform and longitudinally nonuniform. As with other luminous surfaces, 
the effects of occluding objects are modeled. 

16.13.3 Substructuring 

The finer the patch parametrization, the better the results, at the expense of increased 
computation time for rr form factors. To prevent this square-law increase in the number of 
form factors, Cohen, Greenbe.rg, Immel, and Brock ICOHE86] adaptively subdivide 
patches into subpatches at places in the patch mesh at which a rugh railiosity gradient is 
found. The subpatches created by this substructurlng process are not treated like 
full-fledged patches. Whenever a patch I is subdivided into subpatches, the form factors F, _1 
from each subpatch s to each patch j are computed using the hemicube technique, but form 
factors from the patches to the subpatches are not computed. After a patch bas been broken 
into subpatches, however, the previously calculated values of each form factor from the 
patch to Other patches are replaced by the more accurate area-weighted average of the form 
factors from its m subpatches: 

(16.71) 

After patch rcldiosities are calculated as described before, the radiosity of each subpatch s of 
patch i can be computed as 

B, = E, + p1 L B1F. -r (16.72) 
lsj s• 

The algorithm iterates, adaptively subdiviiliog subpatches at places of high radiosity 
gradient, until the differences reach an acceptable level. The final subpatch radiosities are 
then used to determine the venex radiosities. Color Plate TD.2l(b), made using a 
nonadaptive version of the algorithm in which subdivision is specified by the user, shows 
that the same image takes substantially less time to compute when patches are divided into 
one level of subpatcbes, than when an equivalent number of patches are used. The adaptive 
version of the algorithm is initialized with a "first guess" subdivision specified by the user. 
Color Plate ill .21 (c) was created by adaptively subdividing the subpatches of Color Plate 
ID.21(b). Note the improved shadow resolution about the table's legs. 
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800 Illumination and Shading 

Substructuring allows subpatch radiosities to be determined without changing the size 
of the matrix to be solved in Eq. (16.62). Note that a subpatch's contribution to other 
patches is still approximated coarsely by its patch's radiosity, but this is a second-order 
effect in diffuse environments.ln a similar fashion, texture mapping can be implemented by 
computing a single average reflectivity value for a texture-mapped patch that is used for the 
radiosity computations [COHE86]. When each pixel in the texture-mapped surface is 
finally rendered, its shade is scaled by the ratio of the texture-map reflectivity value 
computed for the pixel and the average reflectivity used for the patch. 

16.13.4 Progres.sive Refinement 

Given the high costs of executing the radiosity algorithm described thus far, it makes sense 
to ask whether it is possible to approximate the algorithm's results incrementally. Can we 
produce a useful, although perhaps inaccurate, image early on, which can be successively 
refined to greater accuracy as more time is allocated? The radiosity approach described in 
the previous sec.tions wiU not let us do this for two reasons. First, an entire Gauss-Seidel 
iteration must take place before an estimate of the patch radiosities becomes available. 
Second, form factors are calculated between all patches at the start and must be stored 
throughout the computation, requiring 0(~ time and space. Cohen, Chen, Wallace, and 
Greenberg [COHE88] have developed a progressive-refinement radiosity algorithm that 
addresses both of these issues. 

Consider the approach described thus far. Evaluating the ith row of Eq. (16.62) 
provides an estimate of patch i's radiosity, B;, expressed in Eq. (16.60), based on the 
estimates of the other patch radiosities. Each term of the summation in Eq. ( 16.60) 
represents patch j' s effect on the radiosity of patch i: 

B; due to Bi = p,BiFi-i• for all j. (16.73) 

Thus, this approach gathers the light from the rest of the environment. In contrast, the 
progressive-refinement approach shoots the radiosity from a patch into the environment. A 
straightforward way to do this is to modify Eq. (16.73) to yield 

for all j. (16.74) 

Given an estimate of B;. the contribution of patch i to the rest of the environment can be 
determined by evaluating Eq. (16.74) for each patch j. Unfortunately, this will require 
knowing /j-; for each}, each value of which is determined with a separate hemicube. This 
imposes the same overwhelmingly large space-time overhead as does the original approach. 
By using the reciprocity relationship ofEq. (16.59), however, we can rewrite Eq. (16.74) as 

A · 
Bi due to B; = piB;Fi -i A~ , 

I 

for all j. (16.75) 

Evaluating this equation for each j requires only the form factors calculated using a single 
hemicube centered about patch i. If the form factors from patch i can be computed quickly 
(e.g., by using z-buffer hardware), then they can be discarded as soon as the radiosities shot 
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from patch i have been comput.ed. Thus, only a single hemicube and its form factors need to 
be computed and stored at a time. 

As soon as a patch's radiosity has been shot, another patch is selected. A patch may be 
selected to shoot again after new light has been shot to it from other patches. Therefore, it is 
not patch i 's total estimated radiosity that is shot, but rather fl81, the amount of radiosity 
that paich i has received since the last time that it shot. The algorithm iterates until the 
desired tolerance is reached. Rather than choose patches in random order, it makes sense to 
select the patch that will make the most difference. This is the patch that has the most 
energy left to radiate. Since radiosity is measured per unit area , a patch i is picked for which 
flB,A, is the greatest. Initially. 81 = fl81 = E; for all patches, which is nonzero only for light 
sources. The pseudocode for a single iteration is shown in Fig. 16.69. 

Each eJtecution of the pseudocode in Fig. 16.69 will cause another patch to shoot its 
unshot radiosity into the environment. Thus, the only surfaces that are illuminated after the 
first execution are those that are light sources and those that are illuminated directly by the 
first patch whose radiosity is shot. If a new picture is rendered at the end of each execution, 
the first picture will be relatively dark, and those following will get progressively brighter. 
To make the earlier pictures more useful , we can add an ambient term to the radiosities . 
With each additional pass through the loop, the ambient term will be decreased, until it 
disappears. 

One way to estimate the ambient term uses a weighted sum of the unshot patch 
radiosities. First, an average diffuse reflectivity for the environment, p •• , is computed as a 
weighted sum of the patch diffuse reflectivities, 

P •• ,= L p;A;I LA,. (16.76) 
l $iS JI I SiS • 

This equation is used to compute an overall reflection factor R, intended to take into 
account the different reflected paths through which energy can travel from one patch to 
another, 

ultct patch i: 

calculate F,_ 1 f ar each patch]; 

for (tttch patch ]} { 

} 

IJ.Radiosiry = p1 tJJJ,F,- 1A,fAJ: 
t.B, += IJ.Radiosity: 
Bi += IJ.Radiosiry; 

liB,= 0: 

Fig. 16.69 Pseudocode for shooting radiosity from a patch. 

(16.77) 
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for (each patch i) { 
M ; =E,; 

} 

for (each subpatc/1 s i11 i) 
B. = E;; 

AreaSum = LA;; 
1 ~iS:n 

Ambiem = R L (M,A;)/AreaSum; 
1$t.Sn 

while (not converged) { 
se/ut patch i with greatest t;JJ;A,; 
determine F,_, for all subpatches sin all parches; 

I • AEnergy is initialized to the total energy shot. •I 
liEnergy = t;JJ,A,; -

I• Shoot radiosity from pat.ch i. •I 
for (each patclr j seen by i} { 

0/dt;JJ = t;JJi; 

} 

for (each subpatch s i11 j seen by i) { 
I!.Radiosiry = PJM;F,_,A;fA,; 
B. +- I!.Radiosiry; 
t:.B1 += I!.Radiosit)• A,fAJ; 

} 
I• Decrement t.Energy by total energy gained by patch j. •I 
liEttergy - = (M 1 - Oldt;JJ} A,; 

determine venex radiosities from subpatch radiosities, using 
8, + p1 Ambiem as radiosiry ofsubpatch s ofpatchj; 

If (radiosiry gradie111 between adjacent vertices is too high) 
subdivide offending subpatches and reshoot from patch i to rhem; 

t;JJ, = 0; 

perfom• view-dependent visible-surface determination arul shading; 

I• Use AEnergy (energy absorbed by patches hit) to determine new value of Ambiem. •I 
Ambie/11 - = R liEnergy / AreaSum; 

} I• while •/ 

Fig. 16.70 Pseudocode for progressive-refinement radiosity method with ambient 
light and substructuring . 
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Each patch's unshot radiosity is weighted by the ratio of the patch's area to the 
environment's area, providing an approximation to the form factor from an arbitrary 
differential area to that patch. Thus, the estimate of the ambient term accounting for unshot 
radiosity is 

Ambient = R L (M1A;) I L A1• (16.78) 
ls isa l s;s. 

This ambient term is used to augment the patch's radiosity for display purposes only, 
yielding 

Bi = B; + P;Ambietll. (16.79) 

Figure 16.70 shows the pseudocode for the entire algorithm. Substructuring is provided by 
shooting radiosity from patches to subpatches to determine subpatch radiosities. Thus, 
hemicubes are created for patches, but not for subpatches. Adaptive subdivision is 
accomplished by subdividing a patch further when the radiosity gradient between adjacent 
subpatch vertices is found to be too high. Color Plate ill.23, which is rendered using an 
ambient term, depicts stages in the creation of an image after 1, 2, 24, and 100 iterations. 

16.13.5 Computing M ore Accurate Form Factors 

Although the use of fast z-buffer hardware makes the hemicube an efficient algorithm, the 
technique has a number of failings [BAUM89; WALL89]: 

• Recall that the identity of only one patch is stored per hemicube pixel. Therefore, a 
grid of patches may al.ias when projected onto a side of the hemicube, just as they 
would when processed with a z-buffer algorithm. This can show up as a regular pattern 
of patches that are not represented in the hemicube. Furthermore, a patch that is small 
when projected on the hemicube may be large when project.ed on the image plane. 

• Use of the hemicube assumes that the center point of a patch is representative of the 
patch's visibility to other patches. If this assumption is shown to be untrue, the surface 
can be broken up into subpatches, but there is only a single subdivision granularity for 
the patch; the same patch cannot be subdivided to different levels for different patches 
that it views. 

• Patches must be far from each other for the hemicube approach to be correct. This is a 
serious problem if two patches are adjacent; since all calculations are done from the 
center of the bemicube, the form factor will be underestimated, because the 
calculations do not take into account the proximity of the adjacent parts of the patches . 

A progressive radiosity approach developed by Wallace, Elmquist, and Haines 
[WALL89) uses ray tracing to evaluate form factors, instead of the hemicube. Wben a 
source patch is to shoot its radiosity, rays are fired from each vertex in the scene to the 
source to compute the form factor from the source to the vertex. This is accomplished by 
decomposing the source patch into a number of small finite subareas, each of which is the 
target of a ray shot from a vertex. If the ray is not occluded, then the target is visible, and 
the form factor between the differential vertex and the finite area target is computed, using 
an analytic expression, based on some simplifying geometric assumptions. If desired, the 
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ray intersection calculations can be performed with a resolution-independent true curved­
surface database, so that the time for an individual ray test does oot depend on the number 
of polygons. 'The form factor between the vertex and the entire source is computed as an 
area-weighted average of the form factors between each subarea and the venex, and the 
result is used to compute the contribution of the source to the venex. This approach has a 
number of advantages. Radiosities are computed at the venices themselves, where they are 
u.himately needed for shading. Venex normals can be used , allowing polygonal meshes that 
approximate curved surfaces. Nonphysical point light sources can be handled by tracing a 
single ray to the light source and using its illumination equation to determine the irradiance 
at each venex. The number of areas into which a source is decomposed and whether rays are 
actually tired (i.e., if shadow testing is to be performed) can all be determined individually 
for each venex. Color Plates m .24 and m .25 were created using this algorithm. 

A contrasting approach to solving inaccuracies caused by the hemicube is taken by 
Baum, Rushmeier, and Winget [BAUM89]. They recognize that the hemicube form factors 
often are accurate; therefore, they have developed error-analysis tests to choose, for each 
patch, when to use the hemicube, when to subdivide the patch funher, and when to use a 
more expensive, but more accurate, analytic technique for computing form factors. 

16.13 .6 Specular Reflec1ion 

'The radiosity methods described so far treat only diffuse reflection. Therefore, all of a 
patch's radiosity may be treated uniformly when it is dispersed to other patches: The 
radiosity leaving a patch in any direction is influenced by the patch's total radiosity, not by 
the directions from which its incoming energy was acquired. Immel, Cohen, and 
Greenberg [JMME86] extended the radiosity method to model specular reflection. Rather 
than compute a single radiosity value for each patch, they partition the hemisphere OYer the 
patch into a finite set of solid angles , each of which establishes a direction for incoming or 
outgoing energy. Given the patch's bidirectional reflectivity (Section 16.7), they compute 
the outgoing radiosity in each direction in terms of its emiuance in that direction and the 
incident light from each of the set of directions, weighting each direction's contribution 
accordingly. Finally, they render a picture from intensities that are determined at each 
vertex by using the direction from the venex to the eye to interpolate among the closest 
directional radiosities. Although the results shown in Color Plate m .26 are promising, the 
approach has a tremendous OYerhead in bolh rime and space, which will only increase if 
highly specular surfaces are modeled. One solution is to combine a radiosity method with 
ray tracing. 

16.13. 7 Combining Radioaity and Ray Tracing 

Consider the tradeotfs between radiosity methods and ray tracing. Radiosity methods are 
well suited to diffuse reflection because a diffuse surface's bidirectional reflectivity is 
constant in all outgoing directions. Thus, all radiosities computed are view-independent. 
On the other hand, the pure radiosity method for specular surfaces described previously is 
001 practical, because specular reflection from a surface is highly dependent on the angle 
with which an observer (or another surface) views the surface. Therefore, much extra 
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information must be computed, because no information about the desired view is provided. 
In addition, this directional information is discretized and must be interpolated to 
accommodate a specific view. Not only does the interpolation make it impossible to model 
sharp reflections, but also the sampling performed by the discretization can result in 
aliasing. 

In contrast, ray tracing calculates specular reflections well, since the eyepoint is known 
in advance. Although conventional ray tracing does not model global diffuse phenomena, 
some of the approaches discussed in Section 16.12.4 do. Correctly solving for the diffuse 
reflection from a piece of surface requires that all the surfaces with which a surface 
exchanges energy be taken into account; in short, it requires a radiosity method. 

It makes sense to combine ray tracing and radiosity to take advantage of ray tracing's 
ability to model specular phenomena and of the radiosity method's ability to model ditfuse 
interactions. Unfortunately, simply summing the pixel values computed by a diffuse 
radiosity method and a specular ray tracer will not suffice. For example, the diffuse 
radiosity method will fail to take into account the extra illumination falling on a diffuse 
surface from a specular surface. It is necessary to account for transfer from diffuse to 
diffuse, diffuse to specular, specular to diffuse, and specular to specular reflection. 

Wallace, Cohen, and Greenberg [WALL87) describe a two-pass approach that 
combines a view-independent radiosity method, executed in the first pass, with a 
view-dependent ray-tracing approach, executed in the second pass. As mentioned previous­
ly, the first pass must take into account specular, as well as diffuse, reflection. If only 
perfect, mirrorlike specular reflection is allowed, this can be supported by reflecting each 
patch about the plane of a specular surface [RUSH86]. Each specular patch is thus treated as 
a window onto a "mirror world." The form factor from a patch to one of these mirror 
reflections accounts for the specular reflection from the patch that is doing the mirroring. 

In the second view-dependent pass, a reflection frustum is erected at each point on a 
surface that corresponds to a pixel in the image. As shown in Fig. 16.71 , the reflection 
frustum consists of a little z-buffer, positioned perpendicular to the reflection direction, and 
covering the small incoming solid angle that is most significant for the surface's 

Secondary 
reflection frustum 

Fig. 16.71 The reflection frustum. (After [WALL87).) 
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bidirectional reftectivity. Tile patches are z-buffered onto lbe frustum, using Gouraud 
shading to interpolate lhe patches' first-pass diffuse intensities across !heir projections. A 
ray is traced recurs.ively through each pixel on the frustum that sees a specular surface, 
spawning a new reHection frustum at each intersection. The values computed for each 
frustum pixel are then weighted to model the surface's p,. The second pass thus uses 
specular transport to combine radiosities determined during the first pass. Transparency can 
be accommodated by e.recting a transmission frustrum in the direction of refraction. The 
image on lhe cover of this book (Color Plate 1.9) was created using this algorithm. 

Tile mirror-world approach used in the first pass handles only perfect specular 
reftection and results in a proliferation of fonn factors. Shao, ~ng, and Liang [SHA088) 
have implemented a !WO-pass approach that allows Phong-like bidirectional reftectance 
functions in the first pass, without the need to duplicate patches. 

Sillion and Puecb [STLL89] extend the !WO-pass technique to calculate extended form 
factors in the first pass that model any number of specular reftections or refractions. Rather 
than proliferating miTror-reftection form factors, they instead use recursive ray tracing to 
compute the form factors, as well as in the view-dependent second pass. Color Plate rTJ .27 
demon trates wby lhe diffuse first pass must take specular reflection into account. Color 
Plate rn .27(a) shows lhe results of a conventional diffuse radiosity approach. (Tile part of 
the table near the mirror is lit by light diffusely reftected from lhe inside of the tall lamp.) 
The conventional diffuse first pass was augmented with a pure ray-tracing second pass to 
produce Color Plate ill .27(b), which includes a specular reftection from the mirror. In 
contrast, Color Plate III.27(c) shows the results of Sillion and Puech's two-pass approach. 
lt shares the same ray-tracing second pass as Color Plate m .27(b), but uses extended form 
factors in the first pass. Each surface acts as a diffuse illuminator in the first pass, but the 
use of the extended form factors means that the diffusely emitted energy takes specular 
interreftection into account. Note the light specularly reftected from lbe mirror onto lbe 
table and the back of the vase during the first pass. Color Plate m .28 is a more complex 
example that includes a reftecting sphere. 

16.14 THE RENDERING PIPELINE 

Now that we have seen a variety of different ways to perform visible-surface determination, 
illumination, and shading, we shall review how these processes fit into the standard 
graphics pipeline introduced in Chapter 7 and depicted in Fig. 7 .26. For simplicity, we 
assume polygonal environments, unless otherwise specified. Chapter 18 provides a more 
detailed discussion of how some of these pipelines may be implemented in hardware. 

16.14.1 Local Illumination Pipelines 

t-bu.ft'e r and Gouraud s hading. Perhaps the most straightforward modification to the 
pipeline occurs in a system that uses the z-butfer visible-surface algorithm to render 
Gouraud-shaded polygons, as shown in Fig. 16.72. The z-butfer algorithm has the 
advantage that primitives may be presented to it in any order. Therefore, as before, 
primitives are obtained by trave.rsing the database, and are transformed by the modeling 
transformation into the we system. 

Primitives may have associated surface normals that were specified when the model was 
built. Since the lighting step will require lbe use of surface normals, it is important to 
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Fig. 16 .72 Rendering pipeline for z-buffer and Gouraud shading. 

remember that normals must be transformed correctly, using the methods discussed in the 
Appendix. Furthermore, we cannot just ignore stored normals and attempt to recompute 
new ones later using the correctly transformed vertices. The normals defined with the 
objeets may represent the true surface geometry, or may specify user-defined surface 
blending effects, rather than just being the averages of the normals of shared faces in the 
polygonal mesh approximation. 

Our next step is to cull primitives that fall entirely outside of the window and to 
perform back-face culling. This trivial-reject phase is typically performed now because we 
want to eliminate unneeded processing in the lighting step that follows. Now, because we 
are using Gouraud shading, the illumination equation is evaluated at each vertex. Tllis 
operation must be performed in the we system (or in any coordinate system isometric to 
it), before the viewing transformation (which may include skew and perspective transforma­
tions), to preserve the correct angle and distance from each light to the surface. If vertex 
normals were not provided with the object, they may be computed immediately before 
lighting the vertices. Culling and lighting are often performed in a lighting coordinate 
system that is a rigid body transformation of we (e.g., VRC when the view orientation 
matrix is created with the standard PHIGS utilities). 

Next objects are transformed to NPC by the viewing transformation, and clipped to the 
view volume. Division by W is performed, and objects are mapped to the viewport. If an 
object is partially clipped, correct intensity values must be calculated for vertices created 
during clipping. At this point, the clipped primitive is submitted to the z-buffer algorithm, 
which performs rasterization, interleaving scan conversion with tile interpolation needed to 
compute the z value and color-intensity values for each pixel. If a pixel is determined to be 
visible, its color-intensity values may be further modified by depth cueing (Eq. 16.11), not 
shown here. 

Although this pipeline may seem straightforward, there are many new issues that must 
be dealt with to provide an efficient and correct implementation. For example, consider the 
problems raised by handling curved surfaces, such as B-spline patches, which must be 
tessellated. Tessellation should occur after transformation into a coordinate system in which 
screen size can be determined. This enables tessellation size to be determined adaptively, 
and limits the amount of data that is transformed. On the other hand, tessellated primitives 
must be lit in a coordinate system isometric to world coordinates. Abi-Ezzi [ABIE89] 
addresses these issues, proposing a more efficient , yet more complex, formulation of tile 
pipeline that incorporates feedback loops. This new pipeline uses a lighting coordinate 
system that is an isometric (i.e., rigid or Euclidean) transformation of We, yet is 
computationally close to DC to allow tessellation decisions to be made efficiently. 
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Fig. 16.73 Rendering pipeline for z-buffer and Phong shading. 

t -buffer and Phong shading. This simple pipeline must be modified if we wish to 
accommodate Phong shading, as shown in Fig. 16.73. Because Phong shading interpolates 
surface normals, rather than intensities, the vertices cannot be lit early in the pipeline. 
Instead, each object must be clipped (with properly interpolated normals created for each 
newly created vertex), transformed by the viewing transformation, and passed to the 
z-buffer algorithm. Finally, Hghting is performed with the interpolated surface normals that 
are derived during scan conversion. Thus, each point and its normal must be backmapped 
into a coordinate system that is isometric to we to evaluate the illumination equation. 

List-priority algorithm and Phong shading. When a list-priority algorithm is used, 
primitives obtained from traversal and processed by the modeling transformation are 
inserted in a separate database, such as a BSP tree, as part of preHminary visible-surface 
determination. Figure 16.74 presents the pipeline for the S SP tree algorithm, whose 
preliminary visible-surface determination is view-independent. As we noted in Chapter 7, 
the application program and the graphics package may each keep separate databases. Here, 
we see that rendering can require yet another database. Since, in this case, polygons are 
split, correct shading information must be determined for the newly created vertices. The 
rendering database can now be traversed to return primitives in a correct, back-to-front 
order. The overhead of building this database can, of course, be applied toward the creation 
of multiple pictures. Therefore, we have shown it as a separate pipeline whose output is a 
new database. Primitives extracted from the rendering database are cHpped and norma­
lized, and are presented to the remaining stages of the pipeline. These stages are structured 
much like those used for the z-buffer pipeline, except that the only visible-surface process 
they need to perform is to guarantee that each polygon will correctly overwrite any 
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Fig. 16.74 Rendering pipeline for list-priority algorithm and Phong shading. 
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Plate 111.2 Ray tracing CSG (Section 
15 10.3) Bowl with stars and moons. tal 
Objects used in CSG operations lbl 
Cross·section of (a). lc) Bowl formed by 
CSG operatoons. Red sphere is truncated 
by mtorsectlon with blue cylinder. and 
result Is hollowed by subtracting internal 
grey sphere visible on (b). Extruded 
moons (formed by subtracting green 
cylinders from orange cylinders) and 
extruded while stars cut holes in bowl 
when subtracted from earlier result. 
RaOection mapping (SectJon 16.6) and 
Cook- Torrance illumination model 
(Section 16.7) are used to give bowl a 
metallic appearance. !Courtesy of David 
Kurlander, Columbia UniverSity. I 

Plata 111.1 Grass and trees 2 x 10" 
objects, organozed in a hierarchy of 
lists and grids !Section 15.10.2). 
Ray traced at 512 x 612 resolutoon 
with 16 rayS/pixel. takmg 16 hours 
on an iBM 4381/Group 12.(John 
Snyder and Alan Barr, C Caltech 
ComputerGraphocsGroup.l 
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Plate 111.5 Ob1ec1s woth shadows 
generated by two pass obJect 
precosion algorothm of Sectoon 16.4.2. 
(a) One light source. (b) Two light 
sources. (Peter Athenon. Kevon 
Weiler, end Donald P Greenberg, 
Program of Computer Grephocs, 
Cornell University, 1978.1 

(8) 

Plate 111.3 A torus bump mapped 
wtth a hand-generated bump function 
(Section 16.3.3). {By Jim Blinn. 
Counesy of UniverSity of Ulllh.) 

Plate 111.4 A strawberry bump 
mapped w ith a hand-generated bump 
function (Sectoon 16.3.3) . IBy Jom 
Blonn. Counesy of Unover&ity of Utah.) 

(b) 
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Plate Ill . 7 Non refractive trans­
parency using extended .r-buffer 
algorithm of Sectron 16 5.1. Unter· 
lafette database rs counesy of CAM I 
(Computer Aided Manufactunng 
lnterneuonal, lnc .. Arlington. TX) 
(Rendered on a Stardent 1000 by 
Abraham Mammen.) 

Pl•t• lll.e Room wrth 
shadows generated by object· 
precision shadow-volume 
SSP tree algorithm of Section 
16.4.3. (a) Scene with two 
pornt light sources. (b) Same 
scene with black lines 
Indicating polygon !ragmen· 
teuon. Dar1< grey fragments 
are lrt by no lights, light gray 
fragments are lit by one light, 
and non-gray fragments ere 
ht by both lights. (Counesy of 
Norman Chin, Columbia 
University.) 

(b ) 
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Plete 111.8 Two vases 
rendered With the 
Cook· Torrance illummalion 
model !Section 18.71. Both are 
lit by two lights with 11, I • 
CIE standard illuminant 06500, 
liw,, • 0.0001, and dto1, • 0.0002, 
'• • 0 011, : Pd • the bidirectional 
reflectivity of copper for normal 
1ntidence, p. • IIPd· (al Copper· 
colored plasuc· k1 • 0 I; F 
rellecuvity of a vinyl mirror 
D. Beckmann function w1th 
m- 0. 15; led • 0.9 {b) Copper 
metal lc1 • 1 0, F reflectivity of 
a copper mirror; D • Beckmann 
function with m, • 0.4, w,. () 4, 
m, 0.2. w1 • 0.6; led • 0.0. (By 
Roben Cook, Program of 
Computer GraphiCS, Cornell 
University.) 

Plete 111.9 Companson of 
specttalsamphng teehn1ques 
for two overlapping filters 
!Section 16 91. Plots show RGB 
values for marked scan line 
w1th red !RI, green !GI. and 
magenta IBI lines Ia I One 
sample per nm from 360-830 
nm !b) 3 CIE XYZ samples. (c) 
3 RGB samples.(d)9 spectral 
samples !Roy A. Hall and 
Donald P. Greenberg, Program 
of Computer Graphics, Cornell 
University, 1983.) 

tb) 

Ia I (b) 

(C) (d) 
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Plate 111 .10 Spheres and checkerboard. An early image produced 
with recursive ray tracing (Section 16 121 (Courtesy ofTurner 
Whitted, Bell Laboratories.) 

Plate 111.11 Ray-traced 
images, (a) Scene from short 
111m Ouest(1985). (Michael 
Sctulh, James Arvo. and 
Melt$sa White. C Hewlett 
Packard.) (bt "Haute Air,• 
Functions were used to modify 
color, surface normals, end 
transparency at nearly every 
pixel. !Courtesy of David 
Kurlander, Cotumbta Unover 
slty, 1986.) 
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Plata 11112 Images ray-traced w•th the hght buffer algorothm ISect10n 16.12 11. Rendered 
w•th SO SO hght buffers on • VAX 11/180 lel Glass-leaved tree. 768 obc~ 16 polygons. 256 
5Pherea, 511 quadr.cslend 3 hghta. A 612" 480 resolution veraion was rendered in 412 
m1nutet with hght buffers. 1311 mmutos w1thout. (bl K1tchen. 224 obJectS C 1298 polygons, 4 
spheres, 78 cyhnders, 35 quadricalend 5 lights. A 436 x 479 resolut1on version was rendered 1n 
246 m1nute1 w1th light buffers. 602 m1nutes without I Eric Haines end Donald P Greenberg. 
Program of Computer Graphlce, Cornell UntVtfSity, 1986.) 

(bl 
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Plate 111.13 Comparison of 
illumination models lor ray 
tracing (Sectoon 16.12.2). Note 
dofferences in reflecllvoty of the 
base of the dosh, and the color 
of the transparent and renee· 
rive $phares. tal Who ned 
illumination model. (b) Hall 
illumonation model !Roy A. 
Hall and Donald P. Greenberg, 
Program of Computer Graph­
ics. Cornell Universoty, 1983.1 

tal 

(bl 

Plate Ill. 14 Cone 
tracing (5ec1oon 16 12.31. 
Throe spheres Dull re 
flecuons are created by 
oncreasong the angular 
spread of reflected rays 
byO.O, 0.2, and 0 4 
radians. respeetovely, for 
spheres lrom left to 
roght. (Courtesy ol John 
Amanatodes, UnovcrsotV 
ofToronto.l 

0862



Pl•t• 111.15 Beam tracing (SeC1ion 16.12.31 A mirrored cube in a 
teKture-mapped room. (Paul Heckbert and Pat Hanrahan, CNYIT 
1984.) 

Pl•t• 111 .15 1984 Rendered using distributed ray lracong !Section 
16 12.41 at 4096" 3550 pixels wrth 16 samples per pixel. Note the mo 
tron·b lurred reflectrons and shadows with penumbrae cast by extended 
light sources. (By Thomas Porter C P1xar 1984. All Rights Reserved.) 
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Plete 111.18 Oaylot office rendered by 
ray tracing with diffuse interreflection 
(Section 16 12.4). Ia) Direct lllumo 
nation only.lb) 1 doffuse bounce. 
lcl 7 diffuse bounces !Courtesy or 
Greg Ward. lawrence Berkeley 
Laboratory.) 

[ 

(cl 

Plete 111.17 Scene rendered 
with integral equation method 
(Section 16.1 2.4). All opaque 
objects are Lambertian Note 
intarobject reflections. 
Computed at 512x 512 
resolution wnh 40 pathS/pixel 
in 1221 minutes on an IBM 
3081. IJ Katiya. California 
lnstotute oiTechnology.l 

(b) 
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Platelll.20 Radoosoty (Sac:tl(ln 16 13 1). Cube woth Sll< 
doffulil willS lemo!ll>ove whote front wallos not shown). 
lal Pho1ograph of actual cube.tbl Model rendered wnh 
49 patch .. par sode. usong cons11n1 shadong. lcl Model 
rendered wolh 49 palches per aide, uaong tnterpolaled 
ahadtng. (Cindy M . Goral. Kenneth E. Torrance, lbl 
Donald P. Greenberg. and Bennelt Banaole, Program of 
Com puler Graphlce, Cornell University, 1984.) 

Ia! 

lei 

Plata Ill. 19 Conference room. 
oal Pholograph of actual room 
fbi Model rendered by ray 
!racing usong same aohware 
used for Color PI ale 111 18. bul 
without lnterrellec:loon calcule· 
uon. !Courtesy of Greg Ward, 
Anet Grynberg, and Francia 
RubinSiein, Lawrence Borkeley 
Laboralory.) 

fel 
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(c) 

Plate lll.21 Redoosoty algonthm, usong hemicube to compute form factors (Sections 
16.13.2- 3). (a) Coarse patch solutoon (145 patches, 10 minutes). (b) Improved solution using 
enher more patches (1021 patches, 175 minutes) or substructuring ( 1021 subpatches, 62 
monutos). lcl Refinement of substructured version of (b) using adaptive subdovisoon (1306 sub­
patches, 24 additional m lnutes).(Mochael F Cohen, Program or Computer Graphics, Cornell 
University, 1985.1 
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(b) 

Plata 111.22 M achone room rendered with 
different lighting models (Sectoons 16.13.2 and 
20.8.21 and shadow volumes for extended 
hghts (Section 16.8). (a) lit by area hght source 
window. (b) Lit by overhead panelloghts. (c) Lot 
by model of clear skylight. (d) Lit by model 
oncludong atmospheric scanerong. Parts (a-c) 
use a radoosity algorothm. (T. Nosh ita 
(Fukuyama Unoversrty) und E. Nakamae 
(HiroshomaUniverslty).) 
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(b) 

(d) 

Plata 111.23 Office rendered w ith 
progress•ve-refinement homicube 
radios•tyalgomhm I Section 
16.13.41; 500 patches. 7000 
subpatches. Estimated ambient 
radlosity •s added Computing and 
displaying each iteration took 
about 15 seconds on an HP 9000 
Model825 SRX. Ia) I Iteration. (b) 
2 iterations. (c) 24 iterations. (d) 
100 iterations. (Shenchang Eric 
Chen. M ichael F. Cohen. John R. 
Wallace, and Donald P. Greenberg, 
Program of Computer Graphics, 
Cornell University, 1988.) 
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Plate 111.24 Nave of Chanres cathedral rendered woth progressove-refinement radiosoty 
algONhm u11ng ray lracmg to compute form faetora (Sectoon 16.13.51. Two bays, contammg 
9916 polygoM. were processed and copoed three moretome1. SolCty oteralions took 59 m onutes 
on HP 9000 Modol83& TurboSRX. <By John Wallace and John Lon, usong Hewtett·Paclcard's 
Starbase Rad•osoty 1nd Ray Tracing software. 01989, Hewlen Paclcard Co.l 
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Plate 111.215 Booler room rendered wolh progressove·relonement radoosoty algonthm. using rey 
tracing to compute form factors (By John Wallace, John Lon, and Eric Haines, u11ng Hewlett 
Packard's Starbase Radoosoty and Rey Tracmg software. C 1989, Hewlen-Pac:kard Company I 

Plat e 111.215 Specultr redoosoty algonthm ISectoon 
16 13 61; 64 specular pllches and 237 doffuse petchea 
(Oavod S Immel. M ocnael f . Cohen, Donald P. Greenberg, 
Program ol Computer Graphocs. Cornell Unoveraity, 
1966.) 
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Plate 111.28 Room rend ­
ered W1th combined 
rad10S1ty and ray aracong 
(Courtesy of Fran(:OIS 
Sillion. Liens. Ecole Normal a 
Supeneure, Pans, France.) 

tb) 

Plate 111.2 7 Comb1nong radiosity and ray 
tracing ISection 16.13.71. Cal Diffuse 
radios•ty algorithm. lb) Diffuse first pass 
end ray-traced second pass. (c) Diffuse first 
pass wnh extended form factors and ray 
traced second pass. tCounesy of Fren~ois 
S1llion. Liens. Ecole Normale Supeneure. 
Pans. France.) 
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16.14 The Rendering Pipeline 809 

New db 

Fig. 16.75 Rendering pipeline for radiosity and Gouraud shading. 

previous.ly scan-converted polygon that it intersects. Even !;his simple overwrite capability is 
not needed if we instead use an object-precision algorithm that generates a list of fully 
visible primitives, such as the Weiler- Atherton algorithm. 

16.14.2 Global Illumination Pipelines 

Thus far, we have ignored global illumination. As we have noted before, incorporating 
global illumination effects requires information about the geometric relationships between 
the object being rendered and the other objects in the world. One approach, of which we 
have seen many examples, is to calculate needed information from a specific viewpoint in 
advance of scan conversion and to store it in tables (e.g., reflection maps and shadow 
maps) . This eliminates the need to access the full db representation of other objects while 
processing the current object. In the case of shadows, which depend only on the position of 
the light source, and not on that of the viewer, preprocessing the environment to add 
surface-detail polygon shadows is another way to allow the use of an otherwise conventional 
pipeline. 

Radiosity. The diffuse radiosity algorithms offer an interesting example of how to take 
advantage of the conventional pipeline to achieve global-illumination effects. These 
algorithms process objects and assign to them a set of view-independent vertex intensities. 
These objects may then be presented to a modified version of the pipeline for z-buffer and 
Gouraud shading, depicted in Fig. 16.75, that eliminates the lighting stage. 

Ray tracing. Finally, we consider ray tracing, whose pipeline, shown in Fig. 16. 76, is 
the simplest because those objects that are visible at each pixel and their illumination are 
determined entirely in we. Once objects have been obtained from the database and 
transformed by the modeling transformation, they are loaded into the ray tracer's we 
database, which is typically implemented using the techniques of Sections 15.10.2 and 
16.12.1, to support efficient ray intersection calculations. 

Fig. 16.76 Rendering pipeline for ray tracing. 
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810 Illumination and Shading 

16.14.3 Designing Flexible Renderers 

As we have seen, a wide variety of illumination and shading models has been created. 1lle 
choice of which to use may be based on concerns as diverse as increasing efficiency, 
increasing realism, or obtaining visually interesting effects. Simply put, there is no one 
model that pleases all users. Therefore, several design approaches have been suggested to 
increase the ease with which illumination and shading algorithms may be implemented and 
used. 

Modularization. A straightforward approach is to modularize the illumination and 
shading model in a part of the rendering system that is often known as its shadu. Whitted 
and Weimer [WHIT82) showed that, by establishing a standard mechanism for passing 
parameters to shaders, different shaders can be used in the same system; the decision about 
which shader to call can even be made at run time based on some attribute of the object. 
Their system performs scan conversion using a scan-tine algorithm, and accumulates results 
as a linked list of spans for each line. Each span contains information about a set of values 
associated with its endpoints, including their :c and z values, and additional information 
such as normal components, and intensities. The shader interpolates specified values across 
each span. (Since it typically uses the interpolated z values to perform visible-surface 
determination with a scan-line z-buffer, the term shadu is being used quite loosely.) 

The Dori graphics system IARDE89) is designed to offer the programmer additional 
flexibility . It provides a standard way of expressin.g a scene database in terms of a set of 
objects that have methods for performing operations such as rendering, picking, or 
computing a bounding volume. The display list and its traversal functions form a common 
core that is intended to make it easy to interface to different rendering systems. A 
programmer can use the standard set of objects, metbods, and attributes, or can design her 
own using the framev.Qrk. 

Specialluguages. In contrast to providing extensibility at the level of the programming 
language in which the system is built, it is possible to design special languages that are 
better suited to specific graphics tasks. Cook [COOK84a] has designed a special-purpose 
language in which a shader is built as a tree expression called a shade tree. A shade tree is a 
tree of nodes, each of which takes parameters from its children and produces parameters for 
its parent. The parameters are the terms of the illumination equation, such as the specular 
coefficient, or the surface normal. Some nodes, such as diffuse, specular, or square f'()()t, 

are built into the language with which shade trees are specified. Others can be defined by 
the user and dynamically loaded when needed. All nodes can access information about the 
lights. Figure 16.77 shows a shade tree for a description of copper. A shade tree thus 
describes a particular shading process and is assoc.iated with one or more objects through 
use of a separate modeling language. Different objects may have different shade trees, so 
that an image can be rendered in which a multiplicity of different special-purpose models 
are mixed. Similarly, in Cook's system, lights and their parameters are defined by light 
trees, and atmospheric effects, such as haze, are defined by atmosphere trees. 

Perlin [PERL85] has developed the notion of a piul-stream editor that takes as input 
and produces as output arrays of pixels. A pixel is not rigidly defined and may include 
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Fig. 16.77 Shade tree for copper. (After [COOK84).) 

811 

arbitrary data for a point in the image, such as the material identifier or normal vector at that 
point. An output pixel need not have the same structure as an input pixel. The pixel-stream 
editor executes a program written by the user in a high-level language oriented toward pixel 
manipulation. Thus, the user is encouraged to think of creating images in a series of passes, 
with intermediate results represented by arrays of pixels that may differ in the kind of 
information they encode. 

The flexibility of shade trees and pixel-stream editors may be combined by designing a 
rendering system that allows its users to write their own shaders in a special programming 
language and to associate them with · selected objects. This approach is taken in the 
RenderMan Interface [PIXA88; UPST89], a scene description specification that provides 
such a shading language. RenderMan defines a set of key places in the rendering process at 
which user-defined or system-defined shaders can be called. For example, the most 
common kind of shader, called a surface shader, returns the light reflected in a specified 
direction given a point on the surface, its orientation, and a set of Light sources. A 
user-provided surface shader could implement an illumination equation totally different 
from those discussed so far. Other shaders include atmosphere shaders that modify the 
color of light passing between two points, and-in another example of how the 'M:>rd shader 
can be stretched - projection shaders that allow user-defined projections implementing 
other than parallel or linear perspective projections. 

An example. Cook, Carpenter, and Catmull 's Reyes Rendering Architecture 
[COOK87], which was used to produce Color Plates U.24-37, D, and F, provides an 
interesting example of how to structure a renderer. Reyes chops all objects up into 
micropolygons: small, constant-shaded quadrilaterals that are approximately 1> pixel on a 
side. This approach, known as dicing, ·occurs along boundaries th.at are natural for the 
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812 Illumination and Shading 

object. A patch, for example, is diced parallel to its (s,t) coordinate system. Dicing is 
performed prior to perspective transfonnation, based on an estimate of the size of the 
resulting micropolygons after projection. Much like Catmull's patch subdivision algorithm 
of Section 15.9, which subdivides patches until they are pixel-sized, Reyes subdivides 
objects until they are sufficiently small. Each kind of object is associated with a procedure 
that determines whether it should be subdivided further into other primitives or diced. An 
object is subdivided further if no method has been provided for dicing it directly, if it is 
determined that it would give rise to too many micropolygons, or if it is estimated that its 
micropolygons would differ too much in their final projected size. This recursive 
subdivision must ultimately result in objects that can be diced. To avoid the need to clip 
objects analytically to the view volume, when Reyes subdivides objects, only those parts 
that are at least partially within the view volume are kept. Perspective problems that would 
result from projecting an object that is too close to or behind the eye are avoided by 
subdividing further any object that spans both the hither plane and another plane that lies 
slightly in front of the eye. 

Dicing an object results in a quadrilateral mesh of micropolygons that is shaded in WC. 
Because the micropolygons are sufficiently small, each is given a single shade, avoiding all 
the interpolated shading problems discussed in Section 16.2.6. Since a patch is diced 
parallel to its (s,t) coordinate system, some of the texture-mapping approaches discussed in 
Chapter 17 are particularly efficient to use. Dicing and shading can both take advantage of 
incremental algorithms. Reyes relies on the mapping techniques discussed in this chapter 
for its global lighting effects. 

Visible surface determination is done with a subpixel z-buffer whose subpixel centers 
are jittered 10 accomplish stochastic sampling. The closest micropolygon covering a 
subpixel center is visible at that subpixel. To avoid the need to store micropolygon meshes 
and subpixel z and intensity values for the entire image, Reyes uses spatial partitioning. The 
image is divided into rectangular partitions into which each object is sorted by the upper left 
hand comer of its extent. The partitions are then processed left to right, top to bottom. As 
objects are subdivided or diced, the resulting subobjects or micropolygons are placed in the 
partitions that they intersect. Thus, only enough z-buffer memory is need.ed for a single 
partition, and other storage needed for a partition can be freed after it is processed. 

16.14.4 Progressive Refinement 

One interesting modification to the pipelines that we have discussed takes advantage of the 
fact that the image is viewed for a finite time. Instead of attempting to render a final version 
of a picture all at once, we can first render the picture coarsely, and then progressively refine 
it, to improve it. For example, a first image might have no antialiasing, simpler object 
models, and simpler shading. As the user views an image, idle cycles may be spent 
improving its quality (FORR85]. If there is some metric by which to determine what to do 
next, then refinement can occur adaptively. Bergman, Fuchs, Grant, and Spach [BERG86b] 
have developed such a system that uses a variety of heuristics to determine how it should 
spend its time. For example, a polygon is Gouraud-shaded, rather than constant-shaded, 
only if the range of its vertex intensities exceeds a threshold. Ray-tracing [PAIN89] and 
radiosity [COHE88] algorithms are both amenable to progressive refinement. 
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Exercises 8 1 3 

16.15 SUMMARY 

In this chapter, we encountered many different illumination models, some inspired 
primarily by the need for efficiency, others that attempt to account for the physics of how 
surfaces actually inte.ract with light. We saw how interpolation could be used in shading 
model.s , both to minimize the number of points at which the illumination equation is 
evaluated, and to allow curved surfaces to be approximated by polygonal meshes. We 
contrasted local illumination approaches that consider in isolation each surface point and 
the lights illuminating each point directly, with global approaches that support refraction 
and reflection of other objects in the environment. In each case, we noted that there are 
some methods that use the full geometric description of the environment in computing 
global effects, and others that use simpler descriptions, such as reflection maps. 

As we have stressed throughout this chapter, the wide range of illumination and 
shading algorithms gives rise to a corresponding diversity in the images that can be 
produced of the same scene with the same viewing specification. The decision about which 
algorithms should be used depends on many factors, including the purposes for which an 
image is to be rendered. Although photorealism is often sacrificed in return for efficiency, 
advances in algorithms and hardware wi ll soon make real-time implementations of 
physically correct, global illumination models a reality. When efficiency is no longer an 
issue, however, we may still choose to render some images without texture, shadows, 
reflections, or refraction, because in some cases this will remain the best way to 
communicate the desired information to the viewer. 

EXERCISES 

16.1 (a) Describe the difference in appearance you would expect between a Pbong illuroi.oation 
model that used (iii · H)' and one that used (R · ii)•. (b) Show that a = 2/3 when all vectors of Fig. 
16. 12 are coplanar. (c) Show that this relationship is not true in general. 

16.2 Prove that the results of interpolating vertex information across a polygon's edges and scan 
lines are independent of orientation in the case of triangles . 

16.3 Suppose there are polygons A, B, and C intersecting the same projector in order of increasing 
distance from the viewer. Show that, in general, if polygons A and B are transparent, the color 
computed for a pixel in the intersection of their projections will depend on whether Eq. ( 16.25) is 
evaluated with polygons A and 8 treated as polygons I and 2 or as polygons 2 and I. 

16.4 Consider the use of texture mapping to modify or replace different material properties. List the 
effects you can produce by mapping properties singly or in combination. How would you apply 
antialiasing to them? 

16.S Although using a reflection map may appear to require precomputing the lighting for tbe 
environment, a reflection map containing object identities and surface normals could be used 
instead . What are the disadvantages of using this kind of map? 

16 .6 fuplaio how to simulate re6ections from surfaces of different roughness using a reflection 
map. 

16.7 What other lighting effects can you think of that would generalize Warn's Haps and cones? 

16.8 Suppose that tbe array of patches sbowo in Fig. 16.64 is continued for another two rows, adding 
patches 5 and 6, and that the radiosity values for the patches are 8 1 = Bt = 2, 81 = B, = 4, 85 = .86 = 
6. Show that 8• and 8, are 5 and 3, respecti...ely . Then show that 80 is I. Is this a reasonable value? 
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814 Illumination and Shading 

Notice that it extends t.he linear trend from h to e. What happens as you add more rows of patches in a 
similar pattern? Suppose !.hat you added a mirror image of !.he patches about the line ac and computed 
the radiosity values. Then 86 would be 2. Does this seem contradictory? Explain your aoswer. 

16.9 Implement a simple recursive ray tracer based on the material in Sections 15.10 and 16. 12. 

16.10 Make your ray tracer from Exercise 16.9 more efficient by using some of l.he techniques 
discussed in Section 16. 12. I. 

16.11 Extend your ray tracer from Exercise 16. 10 to do distributed rdy tracing. 

16.12 Implement a progressive-refinement radiosity algorithm, based on l.he pseudocode of Fig. 
16. 70. Use l.he hemicube method of computing form factors. Begin by computing only patch to patch 
exchange (ignoring substructuring). Leave out the ambient computation to make coding and visual 
debugging easier. Check your hemicube code by verifying !.hat the delta form factors sum to 
(approximately) I. 

To display your images, you will need to implement a polygon visible-surface algorithm (perhaps 
the one used by your hemicube) or have access to an existing grdphics system. Using constant-shaded 
polygons will improve interactivity if shaded graphics hardware is not available (and will make 
programming and debugging easier). 

16.13 Explain why lighting must be done before clipping in l.he pipeline of Fig. 16.72. 

16.14 Implement a testbed for experimenting with local illllDlination models . Store an image that 
contains for each pixel its visible surface's index into a table of materia.! properties, the surface 
normal , the distance from the viewer, and the distance from and normalized vector to one or more 
light sources. Allow the user to modify the illllDlination equation, the intensity and color of the lights, 
and the surface properties. Each time a change is made, render the surface. Use Eq. (16.20) with 
light-source attenuation (Eq. 16.8) and depth-cueing {Eq. 16.1 1) . 

16.15 Add a shadow algorithm to a visible-surface algorithm that you have already implemented. 
For example, if you have built a z-buffer system, you might W'dnt to add the two-pass z-butfer shadow 
algorithm discussed in Section 16.4.4. (The postprocessing variant may be particularly easy to add if 
you bave access to a graphics system that uses a hardware z-buffer. Explain how extra scorage a1 each 
pixel, as described in Exercise 16. 14, could be used co design a shadow postprocess that produced 
correc1 shading and proper highlights .) 

16.16 Add interobjecl reflections to a visible-surface algorilhm. Use reflection mapping for curved 
surfaces and che mirror approach for pranar surfaces, as described in Section 16.6. 
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17 
Image 

Manipulation 
and Storage 

ln this chapter, ~ explore methods for manipulating and storing images efficiently. We 
begin by considering the kinds of operations ~ would like to perform on images. Bear in 
mind !hat !he images ~ are manipulating may be used either as images in their own right, 
or in !he manufacture of some subsequent image, as in the environment mapping described 
in Chapter 16. 

Several sorts of operations on images immediately come to mind. One is combining 
two images by overlaying or blending them, known as compositing. One application of 
compositing is in animation, when we wish to show a character moving around in front of a 
complicated background !hat remains unchanged. Rather than rerendering the background 
for each frame, ~can instead render the background once and !hen generate many frames 
of the character moving about on a black background. We can then composite these 
individual frames as overlays to !he background frame, thus producing images of a character 
moving about on the background. ln compositing operations like this, antialiasing becomes 
extremely important to ensure that the outline of !he character is not jagged against the 
background. It is also necessary to distinguish the background of an image from the 
content; in our example, tbe black background against which !he character is drawn is the 
background, and the character itself is the contefll. 

Often, the images to be compos.ited are of different sizes, so we may wish to translate, 
scale, or rotate them before !he composition. We may even wish to distort an image, so !hat 
it appears in perspective or appears to have be drawn on a rubber sheet and then stretched. 
Although we could make these changes by rerendering !he image with an appropriate 
geometric transformation, !his is often so difficult or time consuming as to be impractical. 
Indeed, it can be impossible if, say, the image has been obtained from an optical scan of a 
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photograph, or if the original program or parameters used to create it have been lost. 
We might also wish to apply various filters to an image so as to produce false colors, to 

blur the image, or to accentuate color or intensity discontinuities. This sort of fi ltering is 
applied to satellite photographs and to computed-tomography (CT') data, where the 
intensity of a point in the image reflects the density of material in the body. For example, 
very slight changes in intensity may indicate the boundaries between normal and cancerous 
cells, and we may wish to highlight these boundaries. 

Images tend to be very large collections of data. A 1024 by 1024 image in which the 
color of each pixel is represented by a n-bit number takes n/8 MB of memory (in an 
8-bit-per-byte machine). As described in Chapter 4, many graphics systems dedicate a 
great deal of memory to image storage (the frame buffer). If the image memory is 
accessible by other programs, then it may be used for output by one program, and then for 
input by another, or even for output by two different progr.tms. This happens, for example, 
when we use a pixel-painting program to adjust individual pixels of a rendered image. This 
use of image memory (and the rigid structure of the memory, which constitutes a database 
format for diverse programs) has been called "frame-buffer synergy" by Blinn [BLlN85]. 

When an image is being stored in secondary memory, it is often convenient to 
compress the stored data (but not the image). Several schemes have been developed. The 
look-up tables (WTs) described in Chapter 4, for example, significantly reduce the storage 
needed for an image, provided the image contains substantial color repetition. Of course, 
storing LUTs is typically done only when the fmme buffers used for displaying the image 
support LUTs. We discuss several more sophisticated methods in Section 17.7. 

Here we begin by reexamining our notion of an image. Then we describe some 
elementary operations on images: filtering and geometric tmnsformations. We then discuss 
techniques for storing additional data with each pixel of an image, and using these data in 
compositing. Following this, we discuss various image storage formats; finally , we describe 
a few special effects that can be performed at the image level rather than in modeling or 
rendering. 

17.1 WHAT IS AN IMAGE? 

images, as described in Chapter 14, are (at the most basic level) arrays of values, where a 
value is a collection of numbers describing the attributes of a pixel in the image (in bitmaps, 
e.g., the values are single binary digits). Often these numbers are fixed-point representa­
tions of a rdnge of real numbers; for example, the integers 0 through 255 often are used to 
represent the numbers from 0.0 to 1.0. Often, too, these numbers represent the intensity at 
a point in the image (gray scale) or the intensity of one color component at that point. The 
dimensions of the array are called the width and heigh I of the image, and the number of bit~ 
associated with each pixel in the array is called the depth. 

We often consider an image as more than a mere array of values , however. An image is 
usually intended to represent an abstract image, which is a function of a continuous 
variable; each position in the abstract image has some value.1 The images we work with 

1What we are really 1alking about is a function whose domain is a rectangle in the Euclidean plane , 
rather 1han a discrete lattice of points in the plane. 
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(sometimes called digital images or discrete images) are functions of a discrete variable; for 
each [i,J] pair, a value is associated wilh the pixel labeled [i,j]. As described in Chapters 3 
and 14, choosing the best discrete image to represent an abstract image is difficult . In this 
chapter, we sometimes discuss reconstructing the abstract image in order to take new 
samples from it. Of course, we do not actually perform this reconstruction, since to do so 
we would need to generate values at infinitely many points. But we can reconstruct any 
individual value in the abstract image- in particular, we can reconstruct the finitely many 
values we want to sample. 

If we create a discrete image from an abstract image by sampling (see Chapter 14), then 
reconstruct an abstract image from the digilal image, Lhe reconstructed abstract image and 
the original abstract image may or may not be the same. lf the original abstract image had 
no high-frequency components, then the reconstructed image would be the same as the 
original, and the reconstruction would be said to be faithful. On the olher hand, if the 
original image had components whose frequencies were too high, then the sampled image 
could not represent it accurately, and the reconstructed image would differ from the 
original. 

One other aspect of images is important. Although filtering Lheory tells us a great deal 
about selecting a discrete image to represent an abstract image most accurately, much of the 
Lheory a.sumes Lhat the abstract-image values at each point are real numbers and Lhat Lhe 
discrete-image values at each pixel will also be real numbers. ln the case of bitmaps, 
however, nothing could be further from the truth: The values are binary. In more complex 
pixmaps, the va.lues may be small binary numbers (e.g., 4 bits per pixel), or may range over 
so large a collection of numbers as to be effectively continuous. This value discretization 
leads to significant questions in image manipulation, such as how beSt to compress a 
bitmap. l f 4 pixels-2 white and 2 black-are to be compressed into I, should the 
compressed pixel be black or white? We discuss the consequences of value discretization 
when they are known and significant, but note that there is much that we do not yet 
understand. 

17 .2 FILTERING 

Suppose we have an image produced without any antialiasing-for example, a drawing of a 
graph that was read into memory with an optical scanner that sampled the drawing at an 
array of points. How can we improve its appearance? The image certainly bas jaggies that 
we would like to remove. But every image we can create is correct for some source image 
(where by correct we mean that it accurately represents a sample of the source image after 
low-pass fi ltering). If applying some mechanism a.llers and improves one image, applying 
the same mechanism to another image may damage that image. Thus, the mechanism we 
are about to describe should be used only on images that need smoothing. If jagged steps 
are present in a image that has been generated properly, then they are meant to be Lhere, and 
postfiltering will only blur the image. (After all, what should an image of a staircase look 
like?) 

Suppose we do want to smooth out an image to hide some jaggies. What can we do? An 
obvious start is to replace each pixel with the average of itself and its neighbors. This 
process, applied to Lhe discrete image rather than to the abstract image. is called 
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postfiltering. With postfiltering, pixels near the stair steps in the jaggies are blended so as to 
hide the steps: see Fig. 17 .I, in which the filtering bas been exaggerated. As we saw in 
Chapter 14, this constitutes filtering with a box filter; other, more sophisticated filters may 
yield better results. Before we examine other filters, let us consider the drawbacks of even 
this simple filtering method. 

Suppose that we point sample a photograph of a picket fence. The pickets and the gaps 
between them are of the same width, the pickets are white, and the background is black. 
The pickets are spaced in the photograph so that the width of nine pickets and nine gaps 
covers a width of 10 pixels in the image. What will the sampled image look like? If the 
photograph is positioned so that the first pixel is exactly at the left-hand edge of the first 
picket, then the first pixel will be white, the next 5 pixels will be black , but the sixth through 
tenth pixels will be at pickets and hence will be white. The next 5 pixels will be black, and 
so on (see Fig. 17 .2). 

Now, what does our postfiltering do in this situation? It smoothes out the boundary 
between the sixth and seventh pixels, and leaves a large block of black followed by a large 
block of white. It cannot possibly fix all the problems implicit in the image. Clearly, 
postfiltering is not a good solution to the aliasing problem. In addition, since postfiltering 
will also blur any other edges in the image (even those that should be there) , the resulting 
image will be unpleasantly fuzzy. 

This problem can be partly remedied at the cost of shrinking the image: We can convert 
a 2n by 211 image into an n by 11 image by imagining that the source image is overlaid with a 
grid, each square of the grid enclosing 4 pixels of the source image. We can then average the 
4 pixel.s in the square to create I pixel in the target image for each grid square. This amounts 
to postfiltering the image, then selecting alternate pixels on alternate scan lines. Note that 
less filtering computation is involved; we need to apply the filt.er to compute values for only 
those pixels included in the final image. That is, for only those pixeis to appear in the output 
image, we compute a weighted average of pixels around the corresponding point in the 
source image. Of course, the resulting image is one-fourth the size of the original. 

We can see how this works by recalling the analysis in Chapter .14. If the source image 
is produced by sampling at a frequency of 2w, then any component of the original signal 
whose frequency is between 0 and w will be accurately represented. For any frequency 
above w, say w + 4>, the sampled signal will contain an alias at frequency w - 4>. Box 
filtering the sampled signal with a filter of width 2 substantially (but not completely) filters 
nut t.he components of this signal with frequencies greater than w/2 (because the Fourier 
transform of the box fiiter is a sine function, which tapers off rapidly as the frequency 
increases). Resampling at alternate pixels yields an effective sampling rate of w; with this 

•• ••••• •••• ••••• 
••• • ••••••• •••••••••••• • •••••••••••••• • ••••••••• • ••••• 

Fig. 17.1 The stair steps are smoothed by box filtering. 

0881



17.2 Filtering 819 

line 

Sampling points 

Samples 

Fig. 17.2 Aliasing in a sampled image. 

sampling rate, all frequencies up to w/2 can be accurately represented. But after applying 
the filter, these are eJtactly the frequencies that remain. If the original signal had 
components w + 4> for which 4> was large (i.e., greater than w/2), then the aliases of these 
components occur at frequencies below w/2, and hence persist in the final image. But for 
small values of 4>, the aliases are filtered out, and so supersampling and postfiltering really 
do help reduce aliases. 

Remember that the signals that represent such primitives as lines , rectangles , and any 
other geometric objects with clearly defined edges have components of arbitrarily high 
frequencies, so there is no hope of representing these correctly by any such method. At 
best, we can hope posrfiltering wilJ improve a bad image at the cost of fuzziness. 

Other filters, such as the sine filter, the Catmull-Rom filter, and the triangle filter, can 
produce better postfiltering results than can a pure box filter. The analysis of those filters 
given in Chapter 14 applies here as well. As a convenient rule of thumb, Whitted has 
suggested that postfiltering a high-resolution image produces obvious fuzziness, but that a 
2048 by 2048 image can usually be postfiltered and sampled down to a 512 by 512 image 
with good results [WHJT85]. 

Now consider a temporal analogue of this problem: The spokes on a wagon wheel pass 
by a pixel on the screen very fast in an animation of a rolling wagon (this is the temporal 
analog of an object being striped with rapidly changing color; i.e., to closely spaced 
stripes). The frequency with which the spokes pass a point may be far greater than 30 times 
per second, the speed of typical video recording. Temporal aliasing is the inevitable result: 
The spokes appear to stand still or to tum backward. We are used to seeing this effect in 
movies , of cou.rse. In a movie, however, we actually see a blurred wagon wheel moving 
backward, because, in each exposure of a movie frame, the shutter is open for a brief (but 
not infinitesimal) time period (about one half of the time allocated to the frame; the 
remaining half is dedicated to moving the film forward). The shutter effectively applies a 
box filter to the scene in the time dimension. The result is some blurring, but aliases are still 
present. The blurring is due to the box filtering, and the aliases are due to the narrowness of 
the filter. All the box filters taken together cover only about half of the time sequence of the 
movie-the remainder is lost while the shutter is closed. The implication for computer 
graphics is clear: To get movie-quality frames for animation, we need to do (at the very 
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least) box filtering-prefiltering-over time. Postfiltering removes some ill effects, but 
many remain. Notice that, to get really accurate images, we should actually do sine filtering 
over the time domain. lf movie cameras did this (or even had wider box filters), the wagon 
wheels >M>uld look the way they do in life-they >M>uld appear to roll forward and then to 
blend into a continuous blur. 

17.3 IMAGE PROCESSING 

Now we briefty tum to a different problem: How can we highlight or suppress certain 
features in an image? This question is really in the domain of image processing rather than 
computer graphics, but a few basic ideas are >M>rth discussing. By scanning an image for 
rapid changes in value at adjacent points , we can do edge detection and enhancement . At 
places where the values of adjacent points differ sufficiently, we can push the values even 
further apart. If an image is noisy-that is, if rdndom displacements have been added to its 
pixel values-then it can be smoothed by the filtering techniques discussed in the previous 
section. If the noise is sufficiently random, then fi ltering , which computes averages of 
adjacent pixels, should average out the noise, or at least filter its high-frequency 
components. 

Another image-processing technique is thresholding, in which the points of an image at 
or near a particular value are highlighted. In a gray-scale image, this highlighting can be 
done by converting all pixels below some value to black, and all pixels above that value to 
white, producing a threshold edge between the black and white regions. The marching­
cubes algorithm discussed in Chapter 20 gives a different mechanism for thresholding (in 
30 ): It expliciily constructs the boundary between the tv.Q regions as a surface (or a curve, 
in the 2 D case). The components of this boundary can then be rendered into a new image 
with appropriate antia(jasing to give a smoother indication of the threshold. For further 
information on this, see [GONZ87; SIG85]. 

17.4 GEOMETRIC TRANSFORMATIONS OF IMAGES 

Suppose we wish to transform an image geometrically. Such transformations include 
translation, rotation, scaling, and other, nonlinear, operations. How can we do this? 

Translating an image makes sense only if the image is thought of as a subimage of some 
larger image. Suppose we wish to move an n by k array of pixels (the source), whose 
upper-left comer is at (a, b), to a new position, with the upper-left comer at position (c. d) 
(the target). This transformation should be easy; we simply copy pixels from the source 
position to the target position, and (if we want) replace all source pixels that are not target 
pixels with the background color (see Fig. 17.3). Provided that care is taken to ensure that 
the copying is done in an order that prevents overwriting source pixels, when the source and 
destination overlap, and provided that the four numbers a, b, c, and dare all integers, this 
approacb >M>rks fine. 

But what if the starting and ending positions are not integers? Then we wish to 
reconstruct the abstract image for the source image, to translate it , and to sample this 
translated version. To do this explicitly is not feasible-we certainly do not wish to 
reconstruct the abstract image at every possible location, and then to select just a few of 
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(a. b) 

Fig. 17.3 A simple translation of an image. 

these (infinitely many) points. Indeed, the same objection holds for scaling and rotation. 
Algorithms ha\'e been developed, however, that perform these operations in ways that are 
computationally correct (in various senses). Weiman has developed algorithms for 
performing scaling and shearing of images by rational amounts [WEIM80]. Rotations can 
be performed by a clever combination of these algorithms (see Exercise 17.1). Finding a 
similar algorithm for trdllslating by arbitrary rational amounts is posed as Exercise 17 .2. 

17 .4 . 1 Basic Geometric Transformations 

Weiman posits that a gray-scale pixmap represents an abstract image in the following 
fashion: The abstract image is divided into squares (one square per pixel), and the average 
intensity of this abstract image in the square is the va.lue assigned to the pixel. He thus 
assumes that he can perform a faithful reconstruction by drawing a picture consisting of 
gray squares whose tone is determined by the pixel values. Stretching a pixmap by a factor 
of plq takes q columns of the original and stretches them to cover p columns of the target 
image. Performing area sampling on the result then generates the target image. Filtering 
theory tells us that this assumption about the nature of a sampled image and the consequent 
stretching algorithm are wrong in every sense: An abstract image should never be sampled 
while it has frequency components above the Nyquist frequency, and hence a proper 
reconstruction of an abstrdCt image from a sampled one never bas high-frequency 
components. An image in which adjacent squares have different (constant) values is a 
perfect example of an image with lots of high-frequency components, so this is certainly a 
bad reconstruction. And finally, filtering theory says that when converting such an image to 
a pix map, we should use sine filtering rather than box filtering. Nevertheless, if Weiman's 
hypotheses are aiiO\\'ed, his algorithm for performing these linear transformations is quite 
clever. II is also the basis for a very good bitmap-scaling algorithm (see Exercise 17 .3). 

Suppose -.-.oe wish to scale an image by. a factor plq (where p > q, and p and q are 
integers with no common factors). The first step is to generate a Rothstein code [ROTH76] 
for the number plq. This code is a binary sequence that describes a Line whose slope is qlp 
(any scan-converted line can be used to generate a similar code). Figure 17.4 shows a line of 
slope t with 15 tick marks on it. As the line passes from left to right through the figure, it 
crosses the horizontal grid lines. If a column contains such a grid-line crossing , it is marked 
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Fig. 17.4 The Roths tein code for a line of slope f. 

with a I ; otherwise, is marked with a 0. Each column contains three tick marks; the bit 
associated with the column is 0 unless one of the three tick marks is at a multiple of 5, since 
multiples of 5 are where horizontal-line crossings occur. Thus, the interval between mark 9 
and mark 12 is assigned a l, since mark 10 lies within it. (A tick at the left side of a column 
is considered to be in the column, whereas ticks on the right are not.) 

The Rothstein code may be viewed as a mechanism for distributing q Is evenly an10ng 
p binary digits. We can therefore use it to tell us how to distribute each of the q columns of 
the source image among p columns of the target image. Unfortunately. using the Is in the 
Rothstein code as indicators of where to copy the source data leaves some of the target 
columns blank. The Rothstein code can be cyclically permuted, however, to give different 
mappings of source to destination. 2 Taking the average of these gives the result. 

The pseudocode for this procedure is shown in Fig. 17 .5. 
To scale by a number smaller than I, we simply reverse the process. The Rothstein code 

for qlp tells us which of the source columns should appear in the target (a I in the Rothstein 
code tells us to select that column). Again, we average over all cyclic permutations of the 
code. 

The Rothstein code can also be used to generate a description of shearing. A I in the 
Rothstein code indicates that the corresponding column of the source pixmap should be 
shifted up I pixel. Over the course of q columns, there are p shifts, resulting in a vertical 
shear of amount qlp. Once again, we should cyclically permute and average the results. 

17 .4 .2 Geometric Transformations with Filtering 

F.eibush, Levoy, and Cook give a somewhat more sophisticated mechanism for transform­
ing images [FEffi80). (Their algorithm is developed for use in an algorithm for mapping 
textures onto surfaces-see Chapter 16.) Before discussing the details, we note the 
algorithm's good and bad points. The algorithm has the advantage that it computes 
reasonable values for boundary pixels: If an image is rotated so that some target pixel is 
only partly covered by a source pixel, the algorithm recognizes that pixel as a special case 
and processes it accordingly. It computes values by applying a weighted filter to the source 
image ro determine pixel values for the target image, which helps to reduce aliasing in the 
resulting image. But since this filter is more than I pixel wide, if the algorithm is used to 

tA cyclic permutation of a binary sequence is the repeated application of logical shift operations to the 
sequence. 
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I• Expand the width of an image by p/q. •I 
void WeimanExpansioo( 

{ 

const grayscalePixmap source, 
grayscalePixmap target, 
lot 11, lot k, 
lot p, lnt q) 

char roth[MAX); 
inl i , j , s; 

I• Source image. siz.e 11 x k •I 
I• Target image, width at least k • plq *I 
I• Siz.e of source image •I 
I• Scale factor is plq •I 

I• The array must hold at least p items. •I 
I• Loop indices • I 

I• Source image is 11 x k. target image is to be 11 x ceil (k • plq).3 •I 
lot target Width = ceil (k • p /(double} q); 

823 

Rothstein (roth, p, q) ; 
SetToBiank (target , n, target\Vuith}; 
for (i = 0; i < p; i++) { 

I• Store the Rothstein oode for pfq in array roth. •I 
I• Clear the target array. •I 

} 

lnt sourceCol = 0; 
Permute (roth ); 
I• For each column of the target •I 
for U = O;j < target Width;}++) { 

I• For several passes through the algorithm. .. •I 

I• Apply cyclic permutation to Rothstein code. • I 

If (rothlt1 == I) { I• If code says to copy source column *I 
for (s = 0; s < n; s++) { I• Copy aU the pixels. •I 

target[sJit1 += source[sJisourcecoq; 
} 
souroeCol++: I • Go to next column. •I 

} 
} 

I• Divide by q to compensate for adding each source column to target q times. •I 
for (i = 0; i < n; I++) 

for U = O;j < targetWidJh;J++) 
target(iJV) =riot (target(iJVJ / (double} q): 

} I• WeimanExpansion •I 

Fig. 17.5 The Weiman algorithm for expanding an image. 

perform the identity transformation on an image, it blurs the values. ln Section 17 .5.3, we 
discuss this and other drawbacks of transformation algorithms.• 

At this point , it is worthwhile to separate two aspects of image transformation. The first 
is computing which point in the source image is mapped to the center of the pixel in the 

"The ceiling of a number is the smallest integer greater than or equal to the number; ceiling(l.6) = 2. 
ceiling( I. I) = 2, and ceiling(6.0) = 6. 
'Feibush, Levoy and Cook note that any filter can be used, but describe the algorithm in terms of a 
filter of diameter 2. The algorithm generally performs better wit.h this filter than it does with a 
unit-area box filter. 
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Fig. 17.6 The relationship of the source space, source image, target space, and target 
image in the Feibush- levoy- Cook algorithm. 

target image. The second is computing the value for the pixel in the target image. The first 
task is merely algebraic, in that it involves computing values (and inverse values) of a 
transformation. This may be done efficiently by various incremental methods. The second 
task also has numerous solutions, all of which involve choosing some filtering function to 
apply to the original image. The method described in the next few pages assumes a filtering 
function that is circularly symmetric and has a modest size (i.e., is nonzero only on a small 
part of the plane). 

The algorithm starts with a source image (thought of as lying in one copy of the 
Euclidean plane, c.alled the source space), a projective map5 from another copy of the 
Euclidean plane (the target space) to the source space, and a polygonal region in the target 
space. The target image is the collection of pixels in the target space that are near the 
polygonal region, and it is these pixels whose values need to be assigned (see Fig. 17.6). 
Note that the projective map here goes from target to source, the reverse of the usual 
naming convention for mathematical functions. 

To start, we choose a symmetric filter function that is nonzero only for (x, y) very close 
to (0, 0) (perhaps within a 2-pixel distance). The support of this filter function is the set of 
points on which it is nonzero. We take a copy of the bounding rectangle for the support of 
the filter and translate it to each pixel in the target space. Whenever this rectangle intersects 
the target polygon, the pixel is considered to be in the target image. This translated 
rectangle is called the bounding rectangle for the target pixel, and the translated support of 
the filter function is called the pixel 's convolution mask (see Fig. 17.7). 

The vertices of the target polygon are transformed to source space just once, for 
repeated use. The resulting polygon is called the source polygon. The bounding rectangle of 
each target pixel is transformed to the source space, where it becomes a quadrilateral. A 
bounding rectangle for this quadrilateral is computed, then is clipped by the source polygon 
(because clipping a rectangle by the source polygon is much easier than clipping a general 
quadrilateral). The pixels in the source space that lie in this clipped quadrilateral are 
transformed to the target space; only those that fall within the target pixel 's bounding 
rectangle are retained. 

' A projectil'<' map is a map represented by a 3 X 3 matrix operating on the plane using homogeneous 
coordinates, in the manner described in Chapter 5. 
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Transform 

Source polygon Convolution mask 

Fig. 17.7 Terms used in the Feibush-levoy-cook algorithm. 

These transfonned pixels are then averaged together by the weights given by the fi Iter to 
yield a value for the target pixel . This target pixel value is correct only if the entire pixel is 
within the transfonned image boundaries. If the image has been rotated , for example, then 
the transformed edges of the image may cut across pixels (more precisely, across their 
convolution masks). 

Thus pixels are not entirely determined by the value just computed; that value only 
contributes to the pixel' s value , in proportion to the coverage of the pixels. The contribution 
can be determined analytically. Figure 17.8 shows the transformed edge of the source 
image passing through a pixers bounding rectangle, and within that rectangle passing 
through the pixel' s convolution mask. To find the contribution of the computed value to the 
pixel 's final value, we do the following: 

I . Clip the image polygon against the bounding rectangle for the pixel (see Fig. 17 .9). 
The points of intersection with the edges of the bounding rectangle were already 
computed in determining whether the pixel was in the target image. 

2. For each vertex of the clipped polygon (in Fig. 17 .9, a single triangle with vertices 

- ---Transformed 
po4ygon edge 

Convolution mask 
or filter support 

Fig. 17.8 Filtering for a pixel at the edge of the polygon. 
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Side 1 Side1 Side2 

A 

Base 

Side2 Base 

Fig. 17.9 The steps in f iltering an edge. 

labeled A, 8 , and C, in clockwise order), construct a triangle with sides BASE (the edge 
from this vertex to the next vertex in clockwise order around the polygon), SIDE/ (the 
edge from this vertex to the center of the pixel) and SJDE2 (the edge from the next 
vertex to the center of the pixel). 

3. Consider the filter function as being planed in a third dimension above the convolution 
mask. The weight a region contributes to the total for a pixel is proportional to the 
volume above that region and under the graph of the filter. So we now compute the 
volumes above each triangle. As Fig. 17.9 shows, some of these volumes must be 
added and some subtracted to create the correct total contribution for the region. The 
rule is that the volume is added if the cross-product of SIDE/ and SJDE2 points into the 
page; otherwise, it is subtracted (see Exercise 17 .4). 

Computing the volumes in step 3 is easier than it might appear, in that they can be 
precomputed and then extracted from a look-up table during the actual filtering process. 
Exercise 17.5 shows how to do this precomputation. 

17 .4.3 Other Pattern Mapping Techniques 

The Feibush-Levoy·Cook algorithm provides excellent results for pattern mapping onto 
polygons, but requires computing a filtered value at each point, so that for each pixel in the 
image a filtering computation is perfonned. In a perspective picture of a plane (receding to a 
vanishing point) a single pixel in the final image may correspond to thousands of pixels in 
the source pattern, and thus require an immense filtering computation. Several techniques 
have been developed to produce more rapid (if sometimeS slightly less accurate) filtering . 

Williams [W1LL83] takes the source image and creates a M£P (multum in parvo­
many things in a small place) map, which occupies t of the memory of the original. If the 
original image is a 512 by 512 pixel, 24-bit true color image, using 8 bits each for the red , 
green, and blue information, the MIP map is a 1024 by 1024 by 8 bit image. The red, 
green, and blue parts of the original image each occupy one quarter of the MIP map, and 
the remaining quarter is filled with filtered versions of these, as shown in Fig. 17 .10. When 
a target pixel is covered by a collection of source pixels, the MIP map pixels corresponding 
to this collection most closely are used to give a filtered value. Linear interpolation between 
levels of filtering is used to further smooth the values. 

Crow [CROW84] devised a scheme by which box filtering of an image over any aligned 
rectangle can be done rapidly. For quick pattern mapping, this suffices in many cases-a 
rectangular box corresponding closely to the shape of the transformed target pixel is used to 
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G A 

G A 
B 

G A 
B 

B 

Fig. 17.10 A MIP map. The red, green, and blue channels of the original image fill three 
quarters of the MIP map. Each is filtered by a factor of 4, and the three resulting images 
fill up three quarters of the remaining quarter. The process is continued until the MIP 
map is filled. 

compute a filtered pattern value for the pixel. The scheme is based on the algebraic identity 
(x + a)(y +b)- (x +a) y- x (y +b)+ xy = ab. Interpreted geometrically, this says that 
the area of the small white rectangle in Fig. 17 .I I can be computed by taking the area of the 
large rectangle and subtracting the areas of both the vertically and the horizontally shaded 
rectangles, and then adding back in the crosshatched rectangle (which has been subtracted 
twice). By taking the source image and creating a new image, whose value at pixel (x, y) is 
the sum of all the values in the source image in the rectangle with comers (0, 0) and (x, y), 
we create a summed area table, S. We can now compute the sum of the pixels in the 
rectangle with comers at (x, y) and (x +a, y +b), for example, by taking S[x +a, y +b) 
- S[x + a, y] - S[x, y + b) + S[x, y]. 

Glassner [GLAS86] observes that if the transformed pixel is not approximately an 
aligned rectangle, then summed area tables may blur the result excessively. He therefore 
develops a system in which the excess area in the aligned bounding box for the pixel is 
systematically trimmed, in order to provide a more accurate estimate of the filtered source 
image at the point. This requires detecting the geometry of the inverse-mapped target pixel 
relative to its bounding box. 

Heckbert [HECK86a) proposes a system using both the Feibush-Levoy-Cook method 
and MIP maps. He maps the target pixel's filter support (which is supposed to be circular, 

(0, y +b) 

(0. y) 

(0, 0) (x, 0) 

(x +a, y + b) 

(x + a , 0) 

Fig. 17 .11 The area of the small white rectangle in the image is computed by 
subtracting the horizontally and vertically shaded areas from the area of the large 
rectangle, and then adding back in the area of the crosshatched rectangle. 
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(a) {b) 

(C) (d) 

Fig. 1 7.12 (a) Point sampling of the source image. (b) MIP map filtering. (c) Summed 
area table filtering . (d) Elliptical weighted average using MIP maps and a Gaussian filter. 
(Courtesy of P. Heckbert.) 

and is defined by a quadratic function) to an elliptical region in the source image (defined 
by a different quadratic). Depending on the size of this region in the source image. an 
appropriate level in a MIP map for the source image is selected, and the pixels within it are 
collected in a weighted sum over the elliptical region. This weighted sum is the value 
assigned to the target pixel. This combines the accuracy of the Feibush-Levoy-Cook 
technique with the efficiency of the MIP map system. A comparison of pattern-mapping 
results is shown in Fig. 17 .12. 

17.5 MULTIPASS TRANSFORMATIONS 

Suppose that we take the image shown in Fig. 17 .13(a) and apply a vertical shearing 
transformation to it, as shown in part (b), and then we follow this with a horizontal shearing 
transformation,• as shown in pan (c). Provided we choose the right transformations, the net 
effect is to rotate the image as shown [CATM80]. Such a two-pass technique may be much 

"'The t"1> ~hearing transformations are actually shear-and-scale transformations. Tile first takes a 
column of pixels and translates and compresses it in the venical direction. The second does the same 
for a WN of pixels. 
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Multipass Transformations 829 

Fig. 17.13 A rotation may be expressed 
as a composit ion of a column-preserving 
and a row-preserving transformation. (a) 
The original image. (b) A column-preserving 
transformation has been applied to the im­
age. (c) A row-preserving transformation 
has been applied to the second image. 
(Courtesy of George Wolberg, Columbia 
University.) 

(c) 

faster to compute than a direct application of the rotation transformation, since it operates 
on one vertical or horizontal line of pi~s at a time, and the computations within each such 
line can be performed incrementally. Also , in many cases, the filtering necessary to a\'Oid 
aliasing artifacts can be performed line by line as well . More important still is that a wide 
class of trans formations can be implemented as multipass transformations [CATMSO, 
SMIT87 j . This multipass technique has been implemented in the Ampex digital optics 
(ADO) machine [BENN84), which is widely used in video production. A survey ofthis and 
other image warping techniques is given in [WOLB90] . 

Implementing t'M:l-pass (or multipass) transformations can be divided into two 
subtasks: finding the correct transformations for the individual passes, which is a purely 
algebraic problem, and applying the correct filtering to generate new pixels , which is an 
antialiasing problem. Since the second part will depend on the solution to t_he first , we 
begin by solving the first problem in the case of a rotation. 
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17.5 .1 The Algebra of Multipass Transforms 

To simplify the discussion, we will use three different sets of coordinates. 'The original 
image will be written in (x, y) coordinates , the vertically sheared image in (u, v) 
coordinates. and the final image in (r, s) coordinates. The first shearing transformation will 
be called A, the second 8, and their composition, which is the rotation, will be called T. 
Thus, 

(~) = A ~). 
and 

From Chapter 5, we know the formula forT: 

(:) = t) = (~~~:; ;: :). 

From this, we will determine the formulae for A and B. 
The transformation A is supposed to be column preserving; that is, it must send each 

column of the original image into the corresponding column of the transformed image. 
Thus, if the pixel (x, y) is sent to (11, v) by A, then 11 = x. In other 'Mlrds, A must be wriuen 
in the form 

(11)-ix)-( x) v - \y - f(x, y) 

for some function f. In the same way, 8 is supposed to be row preserving, so 8 must be 
written in the form 

for some function g. To determine the formulae for A and 8 , we need to find the functions f 
and g. 

Writing out the composite. we have 

(') = s(") = s(ix)) = 8( x ) = (s<x.f(x, Y»). 
s v \y j(x, y) f(x, y) 

From this equation, we see that s andf(x, y) are equal. Thus, the formula for sin terms of x 
andy gives the formula for f(x, y):j(x, y) = x sin t/> + y cos tf>. Determining the formula for 
g(u, v) is more complex. We know that, in terms of x and y, we can write g(u, v) = x cost/> 
- y sin tf>. To write this in terms of 11 and v, we must solve for x andy in terms of 11 and v and 
substitute. Solving for x is easy. ince we observed previously thatu = x. Solving for y is 
slightly more difficult: v = j(x, y) "' x sin t/> + y cos t/>, soy = (v - x sin t/>) I cos t/> = 
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(v- u sin 1/>) I cos if>. Substituting this result into the formula for g(u, v) in terms of x andy. 
we get 

v- 11 sin 4> . 
g(11 , v) = 11 cos 4> - .l. san 4> = 11 sec 4> - v tan 1/>. 

cos'+' 

In summary, if we define 

ix) = ( x ) \y xsinl/>+ycosl/>' 

and 

s(~) =("sec 4>: v tan 4>). 

then computing the composite gives 

s(AC)) = (~~: t ; ;: :). 
as desired. 

To do this for a general tranSformation T. we must do exactly the same work. If 

rC) = (:j;: ~0· 
then we define 11 = x and v = f(x , y) = t2(x, y). To define g(u, v), we need to solve for y in 
terms of 11 and v, using these definitions-that is, to find a function h such that (u, v) = 
(x. t.f.x, y)) is equivatent to (x, y) = (11, h(u, v)). When we have found h, the formula for 
g(u, v) is just g(u, v) = t,/.11 , h(u, v)). 

The difficult part of the process is finding h. ln fact, in our example, h(u. v) = 
(v- u sin 1/>) I cos 4>, which is undefined if cos 4> = 0-that is, if 4> = 90" or 2700-so that 
finding h may be impossible. Fortunately, rotating by 90" is very easy (just map (x, y) to 
( -y, x)), so that this is not a problem. ln fact, we shall see that, to rotate nearly 90°, it is 
better to rotate the full 90" and then to rotate a small amount back; thus, to rotate 87", we 
would rotate 90" and then -3". Algebraically, there is no difference between the two maps; 
at the pixel level , however, where filtering is involved, the difference is significant. 

A rotation can also be broken into three tranSformations so as to avoid this bouftntck 
problem [PAET86; TANA86; WOLB90). The decomposition for a rotation by 4> is [:: ~= :J = [~ -~ 4>12) [ si~ 4> ~] [~ -t~ 4>12). 
Note that each transformation involves a computation with one multiplication and one 
addition. Also, when 4> > 90", we can do the rotation by first rotating by 180" and then by 
180" - 1/>, so that the argument of the tangent function is never greater than 45".1 

"The tangent functioo is -tl behaved for angles neat 0", but has singularities at z90". Evaluating it 
for angles near 0" is lbcreforc preferable. 
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832 Image Manipulation and Storage 

To show lhatthe multipass technique is notlimiu:d to rotations, let us factor a different 
map, which distorts a square into a trJpezoid. (Such maps arise in the perspective 
transformations described in Chapter 6.) As an example, we take 

.../x) = ( :d(y + I)) 
I \y \yt(y + I ) . 

Just as before, we wish to find functions 

and 

such that B(A(y)) = r(y). In lhis case, v = f(x, y) = t.f..x, y) = yl(y + I ). We need to find 
g(u, v) so that g(u, v) = :d(y + 1). Solving the equation of/for y, we get y = -vl(v- 1). 
Thus (recalling lhatu = x), we can writeg(u, v) = u l (-vl(v- I)+ I)= u l(-ll(v- I ))= 
u(l - v). Ourtwo passes become 

and (;) = (u( l : v>). 

You should check that the composition of these transformations is really the original 
transformation T. 

The technique has been generalized to handle other map by Smith and colleagues 
ISMIT87l. Translation, rotation, scaling. and shearing all work easily. In addition, Smith 
considers functions of the form 

T(x, y) = S(m(x) h.(y), m(x) ht<J)), 

where Sis a standard computer grapbics transform-that is, a transformation of the plane 
by translation, scaling. rotation, and perspective transformations-and m(x) . h1(y) and h.f..y) 
are arbitrary. He also considers maps T whose component functions t1(x, y) and t.f..x. y) are 
bicubic functions of x and y, under the special hypothesis thai Tis injective (i.e .• no two 
(x. y) points map to I he same (r , s) point). 

1 7 .5.2 Generating Transformed Images with Filtering 

When we transform an image by a row-preserving (or column-preserving) transformation, 
the source pixels are likely not to map exactly to the target pixels. For example, the pixels in 
a row might all be translated by Jt pixels to the right. In this case, we must compu1e values 
for the target pixels by taking combinations of the source pixels. What we are doing, in 
effect, is considering the values of the source pixels as samples of a function on a real line 
(the row); the values at t.he target pixels will be different samples of lhis same function. 
Hence. t.he process is called resampling. 

The theoretically ideal resampling process is to take, for a given target pixel , a weighted 
averdge ofthe source pixels whose transformed positions are near it. The weights associated 
wilh each source pixel should be sioc(kd), where d is the distance from lhe 1ransformed 
source pixel to the targel pixel and k is some constant. Unfortunately, lhis requires lhat 
every source pixel in a row contribute to every target pixel. As usual. ~-e can instead work 
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