
11 .2 Parametric Cubic Curves 505

splinu (8REW77), are useful for this situation. One member of this spline family is able to
interpolate the points P1 to P,. _1 from the sequence of points P0 toP •. In addition, the
tangent vector at point P; is parallel to the line connecting points P;_ 1 and P;.1, as shown in
Fig. 11.32. However, these splines do not posess the convex-hull property. The natural
(interpolating) splines also interpolate points, but without the local control afforded by the
Catmuii- Rom splines.

Designating MeR as the Catrnull-Rom basis matrix and using the same geometry
matrix Ga.. of Eq. (I 1.32) as was used for 8 -splines, the representation is

[

- 1 3 -3 I] [P;-al I 2 -5 4 - 1 p._
Q'(t) = T · MeR · Ga.. = 2 · T · -I O I O p;_~ .

0 2 0 0 P1

(I 1.47)

A method for rapidly displaying Catmuii- Rom curve.~ is given in [BARR88b].
Another spline is the uniformly shaped {J-spline [BARS88; 8ART87}, which has 1~

additional parameters, /31 and f3r, to provide further control over shape. It uses the same
geometry matrix Gs.; as the 8-spline, and has the convex hull property. The {J-spline basis
matrix M1 is

-2{3~ 2(/3t + /3~ + /3~ + 13.> -2(/3r + /3l + 13. + I) 2

I 6M - 3(/3t + 2{3f + 2{3'{) 3(f3r + 2/3~) 0 M =-
" s -6{3~ 6<Pr - P.> 6f3t 0

2{3~ f3r + 4{{3f + 13.> 2 0

s = f3r + 2/3: + 4/3f + 4/3. + 2. (I 1.48)

The first parameter, {3., is cal led the bias parameter; the second parameter, f3r, is called
the tension parameter. If /31 = I and f3r = 0, M, reduces to Ms. (Eq. (I 1.34)) for 8-splines.
As /31 is increased beyond I, the spline is " biased," or influenced more, by the tangent
vector on the parameter-increasing side of the points, as shown in Fig. 11 .33. For values of
/31 less than I , the bias is in the other direction. As the tension parameter f3t increases , the
spline is pulled closer to the lines connecting the control points, as seen in Fig. 11.34.

p

'•

Fig. 11 .32 A Catmuii-Rom spline. The points are interpolated by the spline. which
passes through each point in a direction parallel to the line between the adjacent points.
The straight line segments indicate these directions.

0538

cmccleskey
Typewritten Text
Volkswagen 1010 - Part 4 of 7

506 Representing Curves and Surfaces

y(l)
• • • • •

1\ J\
• • • •

JJ,. 1 (J, = 2

• • • • • • •

v
• • • • •

fJ, . 4 fJ, = 8 tJ, ·-L------------------------ *l
Fig. 11 .33 Effect on a uniformly shaped ,8-spline of increasing the bias parameter {J,
from 1 to infinity.

y(t)
• • • • • •

1\ 1\
• • • •

JJ2. 0 {\= 4

• • • •

• •
{\ = 16 ~--

'----------------- *)

Fig. 11 .34 Effect on a uniformly shaped ,8-spline of increasing the tension parameter
fJ.; from 0 to infinity.

0539

11 .2 Parametric Cubic Curves 507

These ,8-splines are called uniformly slulped because {31 and f3z apply uniformly, over
all curve segments. This global effect of {31 and f3z violates the spirit of local control.
Continuously shaped {3-sp/ines and discretely slulped {3 splines associate distinct values of {31

and f3z with each control point, providing a local, rather than a global, effect [BARS83;
BART87].

Although ,8-splines provide more shape generality than do 8-splines, they are (fl but
only CJ continuous at the join points. This is not a drawback in geometric modeling, but can
introduce a velocity discontinuity into an animation's motion path. In the special case
{31 = I, the ,8-splines are C1 continuous.

A variation on the Hermite form useful for controlling motion paths in animation was
developed by Kochanek and Bartels [KOCH84). The tangent vector R1 at point P1 is

11 = (I - ai)(l + bi)(l + c1)(P· _ p .) +(I - a;)(l - b;)(l - ci)(P _ p .\
" 1 2 I t -1 2 (+1 lh

(11.49)

and the tangent vector RH 1 at point P;. 1 is

R· + (I - a;. 1)(1 + b1• 1)(1 - ci+1)(P,- _ P,-_ ,)
t+l 2

+ (I - a1 ..)(1 - b1• 1X I + c1• 1)(P _ P;)
2 i+l . . (11.50)

See Exercise 11.16 for how to find the basis matrix MKB.
The parameters a1, b1, and c1 control different aspects of the path in the vicinity of point

P1: a1 controls how sharply the curve bends, b1 is comparable to f3 .. the bias of ,8-splines,
and c1 controls continuity at P1• This last parameter is used to model the rapid change in
direction of an object that bounces off another object.

11 .2 . 7 Subdividing Curves

Suppose you have just created a connected series of curve segments to approximate a shape
you are designing. You manipulate the control points, but you cannot quite get the shape
you want. Probably, there are not enough control points to achieve the desired effect. There
are two ways to increase the number of control points. One is the process of degree
elevation: The degree of the splines is increased from 3 to 4 or more. Th.is adjustment is
sometimes necessary, especially if higher orders of continuity are needed, but is generally
undesirable because of the additional inflection points allowed in a single curve and the
additional computational time needed to evaluate the curve. In any case, the topic is beyond
the scope of our discussion; for more details, see [FARI86).

The second, more useful way to increase the number of control points is to subdivide
one or more of the curve segments into two segments. For instance, a Bezier curve segment
with its four control points can be subdivided into two segments with a total of seven control
points (the two new segments share a common point). The two new segments exactly match
the one original segment until any of the control points are actually moved; then, one or
both of the new segments no longer matches the original. For nonuniform 8 -splines, a more
general process know as refinement can be used to add an arbitrary number of control points

0540

508 Representing Curves and Surfaces

10 a curve. Another reason for subdividing is to display a curve or surface. We elaborate on
this in Section 11 .2.9, where we discuss tests for stopping the subdivision.

Given a .Bezier curve Q(t) defined by points P1, P1, P1, and P4, we want to find a left
curve defined by points L~> Lt. L,, and L4 , and a right curve defined by points R~> R1, R,. and
R4, such that the left curve is coincident with Q on the interval 0 :s t < tand the right curve
is coincident with Q on the interval t :s t < I. The subdivision can be accomplished using a
geometric construction technique developed by de Casteljau (DECA59] to evaluate a .Bezier
curve for any value oft. The point on the curve for a parameter value oft is found by
drawing the construction line LaH so that it divides P1P1 and P,P1 in the ratio of t :(l - t),
HR1 so that it similarly divides P,P1 and P,P4, and 4Rt 10 likewise divide LaH and HR1• The
point L4 (which is also R1) divides L,R1 by the same ratio and gives the point Q(t). Figure
11 .35 shows the construction for 1 = f, the case of interest.

All the points are easy to compute with an add and shift to divide by 2:

La = (P1 + P1)/2, H "' (P1 + Pr)/2, La = (l..t + H)/2, R3 = (P3 + PJI2,

R1 = (H + Ra)/2, L4 = R1 = (L, + R,)/2 . (ll.S I)

These results can be reorganized into matrix form , so as to give the left .Bezier division
matrix Of; and the right .Bezier division matrix ~ These matrices can be used to find the
geometry matrices G{; of points for the left Bezier curve and ~ for the right Bezier curve:

~ = ~ . G, " k[~ ~ l m~J
! ~ m~J [

I
I 0

~ = ~ . Gs = 8 0

0

(11.52)

Notice that each of the new control points L; and R1 is a weighted sum of the points P1,

with the weights positive and summing to I. Thus, each of the new control points is in the
convex hull of the set of original control points. Therefore, the new control points are no
fanher from the curve Q(t) than are the original control points, and in general are closer

P • R • •
Fig. 11 .35 The Bezier curve defined by the points P, is divided at t = t into a left
curve defined by the points L, and a right curve defined by the points R,.

0541

•
11 .2 Parametric Cubic Curves 50 9

!han the original points. This variation-diminishing property is true of all splines !hat have
the convct-hull property. Also notice the symmetry between Dfi and ~. a consequence of
the symmetry in the geometrical construction.

Dividing the Bezier curve att =torten gives the interactive user !he control needed,
but it might be better to allow the user to indicate a point on the curve at which a split is to
occur. Given such a point, it is easy to find !he approximate corresponding value of 1. The
splitting then proceeds as described previously, except that the construction Lines are
divided in the t:(l - t) ratio (see Exercise 11.22).

The corresponding matrixes Dfj, and Dt for B-spline subdivision are

[' 4 0 '] [P,_,l I I 6 I 0 P;-t
G~ = Dfi. · Gu., = S ~ 4 4 0 P,_ 1 '

6 I P,

['
6 I J•-•] I 0 4 4 0 P,_, (11.53) R - • --Gu., - ~ G~~~; - g ~ I 6 I P,_

1
•

0 4 4 P1

Careful examina.ion of these tv.u equations shows !hat the four control points of G0.,

are replaced by a total of five new control points, shared between GIJ., and G~. However,
the spline segments on either s.ide of !he one being divided are still defined by some of the
control points of Gu.,. Thus, changes to any of the five new control points or four old control
points cause the 8 -spline to be no longer connected. This problem is avoided with
nonuniform 8 -splines.

Subdividing nonuniform 8-splines is not as is simple as specifying two splitting
matrices, because there is no explicit basis matrix: The basis is defined recursively. The
basic approach is to add knots to the knot sequence. Given a nonuniform 8-spline defined
by !he control points P0, • •• , P. and a value of 1 = t' at which to add a knol (and hence to
add a control point), we want to find !he new control points Q0, ••• , Q.H !hat define the
same curve. (The value t ' might be determined via user interaction-see Exercise 11 .21.)
The value t' satisfies 1; < t' < 'i• l· 8ohm [86HM80] has shown that the new control points
are given by

Qo = Po

Q1 = (I - a1)Pi-l + a;P;, I :s i :s n (11 .54)

Q •• l = P.

where a, is given by:

a, = I . l:Si:Sj-3

t' - I · a,= • '
I; .a t,

j - 2:Si:Sj (division by zero is zero) (11.55)

a1 = 0, j + I :s i :s " ·

0542

61 0 Representing Curves and Surfaces

This algorithm is a special case of the more general Oslo algorithm [COHE80], which
inserts any number of knotS into a 8 -spline in a single set of oomputations. lf more than a
few knotS are being inserted at once, the Oslo algorithm is more efficient than is the BOhm
algorithm.

AsanexampleofBOhmsubdivision,considertheknotsequence(O, O,O,O,I,I,I, 1),
the four x coordinates of the control point vector (5.0, 8.0. 9.0, 6.0), and a new knot at
1 = 0.5 (i.e., n = 3, j = 3). The a1 values defined by Eq. (11 .55) are (0.5, 0.5, 0.5).
Applying Eq. (11 .54) we find that the x coordinates of the new Q; control pointS are (5.0,
6.5. 8.5, 7.5, 6.0).

Notice that adding a knot causes two old control pointS to be replaced by three new
oontrol pointS. Furthermore, segments adjacent to the subdivided segment are defined only
in terms of the new control points. Contrast this to the less attractive case of uniform-S­
spline subdivision, in which four old control pointS are replaced by five new ones and
adjacent segments are defined with the old control points, which are no longer used for the
two new segments.

Hierarchical 8-spline refinement is another way to gain finer control over the shape of a
cuM: [FORS89]. Additional control points are added to local regions of a cuM:, and a
hierarchical data structure is built relating the new control points to the original points. Use
of a hierarchy allows further additional refinement. Storing the hierarchy rather than
replacing the old control points with the larger number of new oontrol points means that the
original control points can continue to be used for coarse overall shaping of the curve, while
at the same time the new control points can be used for oontrol of details .

11 .2 .8 Conversion Between Representations

It is often necessary to convert from one representation to another. That is, given a curve
represented by geometry vector C1 and basis matrix M1, we want to find the equivalent
geometry matrix C2 for basis matrix M2 such that the two curves are identical: T · M2 • C2 =
T · M1 • C1• This equality can be rewritten as M1 • C2 = M1 • C1• Solving for C2• the
unknown geometry matrix, we find

Mi 1 • M2 • G2 = M2-
1 • M1 • C1, or C2 = Mi 1 • M1 • C1 = M1.2 • C1• (11.56)

That is, the matrix that converts a known geometry vector for representation I into the
geometry vector for representation 2 is just Mu = M2-

1 • M1•

As an example, in converting from 8-spline to Shier form , the matrix MBt.8 is

Mko • Mi' M• • ~[1 ~ j !] (I 1 57)

The inverse is

M.., • MO' M, • [~
-7 2

~] 2 - I
(11 .58)

-I 2
2 -7

0543

11 .2 Paramet ric Cubic Curves 511

Nonuniform B-splines have no explicit basis matrix; recall that a nonuniform B-spline
over four points with a knot sequence of (0, 0, 0, 0, I, I , I , I) is just a B~zier curve. Thus,
a way to convert a nonuniform B-spline to any of the other forms is first to convert to B&ier
form by adding multiple knots using either the Biihm or Oslo algorithms mentioned in
Section II. 2. 7, to make all knots have multiplicity 4. Then the B~zier form can be
converted to any of the other forms that have basi.s matrices.

11 .2 .9 Drawing Curves

There are two basic ways to draw a parametric cubic. The first is by iterative evaluation of
.x(1), y(1), and z(l) for incrementally spaced values of 1, plotting lines between successive
points. The second is by recursive subdivision that stops when the control points get
suffic.iently close to the curve itself.

In the introduction to Section 11.2, simple brute-force iterative evaluation display was
described, where the polynomials were evaluated at successive values of 1 using Horner's
rule. The cost was nine multiplies and I 0 additions per 30 point. A much more efficient
way repeatedly to evaluate a cubic polynomial is with forward differences. The forward
difference 11/(1) of a function /(I) is

11/(1) = /(1 + 8) - /(1), 8 > 0, (11.59)

which can be rewritten as

/(1 + 8) = /(1) + 11/(1). (1 1.60)

Rewriting Eq. (11 .60) in iterative terms, we have

fu 1 =f. + 11/,, (11.61)

where f is evaluated at equal intervals of size 8, so that 1, = n8 and f. = /(IJ.
For a third-degree polynomial,

/(1) = a13 + b12 + Cl + d = T · C, (II. 62)

so the forward difference is

11/(1) = a(1 + 8}3 + b(1 + 8)2 + c(1 + 8) + d - (at3 + b12 + c1 + d) (11.63)

= 3al28 + t(3a82 + 2M) + a83 + M 2 + c8.

Thus, 11/(1) is a second-degree polynomial. This is unfortunate , because evaluating Eq.
(11.61) still involves evaluating 11/(1), plus ao addition. But forward differences can be
applied to 11/(1) to s implify its evaluation. From Eq. (11.6 1), we write

11o/(1) = 11(11/(1)) = l1f(1 + 6) - 11/(1). (11.64)

Applying tbis to Eq. (11.63) gives

112j'(1) = 6a821 + 6a83 + 2b82• (11.65)

This is now a first-degree equation in 1. Rewriting (11.64) and using the index n, we obtain

11'lJ. = l1f. + 1 - l1f.. (11.66)

0544

512 Representing Curves and Surfaces

Reorganizing and replacing 11 by 11 - I yields

tJ.f. = tJ.f. - 1 + tJ."f. - 1· (11.67)

Now, to evaluate tJ.f. for use in Eq. (I 1.61), we evaluate tJ."f.-1 and add it to tJ.f. _1.
Because tJ."f. _1 is linear in 1, this is less work than is evaluating tJ.f. directly from the
second-degree polynomial Eq. (II . 63).

The process is repeated once more to avoid direct evaluation of Eq. (11.65) to find
tJ."f(t):

tJ."f(r) = tJ.(tJ."f(r)) = tJ."f(r + 8) - tJ.":f(t) = 6ao1. (11.68)

The third forward difference is a constant, so further forward differences are not needed.
Rewriting Eq. (11.68) with n, and with tJ."f. as a constant yields

One further rewrite, replacing 11 with 11 - 2, completes the development:

tJ."f.- 1 = tJ.":f. - 2 + 6ao3.

(11.69)

(11.70)

This result can be used in Eq. (11.67) to calculate A/., which is then used in Eq. (11 .61) to
find/.+ 1•

To use the forward differences in an algorithm that iterates from 11 = 0 to 110 = I, we
compute the initial conditions with Eqs. (11.62), (11.63), (11.65), and (11.68) fort= 0.
They are

fo = d, tJ.fo = ao3 + b02 +co, tJ."fo = 6al>3 +2M2, tJ.% = 6ao3. (11.71)

These initial condition calculations can be done by direct evaluation of the four equations.
Note that , however, if we define the vector of initial differences as D, then

D = [£~] = [k 2~2 g i] [:] .
tJ.% 603 0 0 0 d

(11 .72)

Rewriting, with the 4 x 4 matrix represented as £(8), yields D = E(li)C. Because we are
dealing with three functions, x(t), y(t), and z(t), there are three corresponding setS of initial
conditions, D. = E(li)C •• D, = E(li)C,. and D, = E(li)C,.

Based on this derivation, the algorithm for displaying a parametric cubic curve is given
in Fig. 11.36. This procedure needs just nine additions and no multiplies per 3D point, and
just a few adds and multiplies are used for initialization I This is considerably better than the
I 0 additions alld nine multiplies needed for the simple brute-force iterative evaluation using
Homer's rule. Notice, however, that error accumulation can be an issue with this algorithm,
and sufficient fractional precision must be carried to avoid it. For instance, if n = 64 and
integer arithmetic is used, then 16 bitS of fractional precision are needed; if 11 = 256, 22 bits
are needed [BART87).

Recursive subdivision is the second way to display a curve. Subdivision stops
adaptively, when the curve segment in question is flat enough to be approximated by a line.

0545

11 .2 Parametric Cubic Curves

void DrawCurveFwdDif (

)

{

lot n, I• number of steps used to draw a curve • I
double x, double ru, double t.?x, double tlx,
I• initial values for .t{l) polynomial at I = 0, computed as Dr = £(6)Cz. •I
double y, double fly, double A1y, double !l3y,
I• initial values for y(l) polynomial 011 = 0, computed as D• = £(6)C •. •I
double z, double /lz, double ll2t, double A3z
I • initial values for z(t) polynomial at I = 0, computed as D. = £(6)C •. •I
I • The step size 6 used to calculate Dr . D •• and D. is 1/rr . •I

int i:

MoveAbs3 (x, y, z); I• Go to stan of curve •I
ror (i = 0; 1 < n; i++) {

x += ru; 4K + =A1.r; A2x += A3x:
y += fly; Ay += A2y; A2y += A3y;
t += l!.z; llz += A2z; A1t += A3z;
UnMbsJ (x, y, z); I• Draw a shon line segment • I

}
} I• DrawCurveFwdDif • I

Fig. 11 .36 Procedure to display a parametric curve using forward differences.

613

Details vary for each type of curve, because the subdivision process is slightly different for
each curve, as is the flatness test. The general algorithm is given in Fig. I 1.37.

The Bezier representation is particularly appropriate for recursive subdivision display.
Subdivision is fast, requiring only six shiftS and six adds in Eq. (I 1.51). The test for
"straightness" of a Bezier curve segment is also simple, being based on the convex hull
formed by the four control pointS; see Fig. 11.38. lf the larger of distances t4 and d1 is less
than some threshold E, then the curve is approximated by a straight line drawn between the
endpointS of the curve segment. For the Bezier form, the endpointS are P1 and P., the first
and last control points. Were some other form used, the flatness test would be more
complicated and the endpointS might have to be calculated. Thus, conversion to B~zier
form is appropriate for display by recursive subdivision.

More detail on recursive-subdivision display can be found in fBARS85; BARS87;
LANE80]. If the subdivision is done with integer arithmetic, less fractional precision is

void DrawCurveRecSub (cun.oe, ')
{

If (Straigbt (curve, f)) I• Test control points to be witltin t of a line •I
Drawline (curve);

else {

}

SubdivideCurve (cr~rve, lefiCurve, rightCurve);
OrawCurveRecSub (lefiCt~rve, t);
DrawC\lrveRecSub (righ1Curve, t):

} I • DrawCurveRecSub •I

Fig. 11 .37 Procedure to display a curve by recursive subdivision. Straight is a
procedure that returns true if the curve is sufficiently flat.

0546

514 Representing Curves and Surfaces

Fig. 11 .38 Flatness test for a curve segment. If dl and d3 are both less than some£, the
segment is declared to be flat and is approximated by the line segment P,P,.

needed than in the forward difference method. If a.t most eight levels of recursion arc needed
(a reasonable expectation), only 3 bits of fractional precision are necessary; if 16, 4 bi.ts.

Recursive subdivision is attractive because it avoids unnecessary computation, whereas
forward differencing uses a fixed subdivision. The forward-difference step size 6 must be
small enough that the portion of the curve with the smallest radius of curvature is
approximated satisfactorily. For nearly straight portions of the curve, a much larger step
size would be acceptable. LLANE80a] gives a method for calculating the step size 6 to
obtain a given maximum deviation from the true curve. On the other hand , recursive
subdivision takes time to test for flatness. An alternative is to do recursive subdivision down
to a fixed depth, avoiding the flatness test at the cost of some extra subdivision (see Exercise
11.30).

A hybrid approach, adaptive forward differencing [LIEN87; SHAN87; SHAN89], uses
the best features of both the forward differencing and subdivision methods. The basic
strategy is forward differencing, but an adaptive step size is used. Computationally efficient
methods to double or halve the step size are used to keep it close to I pixel. This means that
essentially no straight-line approximations arc used bet\veen computed points.

11 .2 .1 0 Comparison of the Cubic Curves

The different types of parametric cubic curves can be compared by several different criteria,
such as ease of interactive manipulation, degree of continuity at join points, generality, and
speed of various computations using the representations. Of course, it is not necessary to
choose a single representation, since it is possible to convert between all representations, as
discussed in Section 11.2.8. For instance, nonuniform rational B-splines can be used as an
internal representation, while the user might interactively manipulate Bezier control points
or Hem1ite control points and tangent vectors. Some interactive graphics editors provide the
user with Hermite curves while representing them internally in the B~zier form supported
by PostScript [ADOB85a].ln general, the user of an interactive CAD system may be given
several choices, such as Hermite, Bezier, uniform B-splines, and nonuniform B-splines.
The nonuniform rational B-spline representation is likely to be used inte.rally, because it is
the most general.

Table 11 .2 compares most of the curve forms mentioned in this section. Ease of
interactive manipulation is not included explicitly in the table, because the latter is quite

0547

TABLE 11 .2 COMPARISON OF SEVEN DIFFERENT FORMS OF PARAMETRIC CUBIC CURVES

Unifonnly
Uniform shaped Nonuniform

Hennite ~z.ier B·s21ine P·spline B·s21inc Catmull- Rom Kochanek- Bartels
Convex bull NIA Yes Yes Yes Yes No No
defined by
control points
Interpolates Yes Yes No No No Yes Yes
some control
points
Interpolates Yes No No No No Yes Yes
all control
points
Ease of Good Best Avg Avg High Avg Avg
subdivision

Continuities ~ ~ C' ~ C' c• c•
inherent in (j G' G' G' G' G' G'
repm;eotatioo
Continuities c• C' C' c• C' c• c•
easily achieved G' G' (JI• (JI• G'" G' G'
Number of 4 4 4 6t s 4 7
parameters
controlling
a curve segment

•ExcqK for special case di.aiSSCd in Section 11.2.
tFour of 1be parameletS are local so each sqment. 1wo are globalro the enlire CUM:.

... ...
N

.,
• il
3
!
:::1 • ...
(')
c:
2: ...
(')
c:
< • •
111 ...
111

0548

516 Representing Curves and Surfaces

application specific. " Number of parameters controlling a curve segment" is the four
geometrical constraints plus other parameters, such as knot spacing for nonuniform splines,
/31 and f3.t. for /3-splines, or a, b, or c for the Kochanek-Bartels case. "Continuity easily
achieved" refers to constraints such as forcing control points to be collinear to allow G1

continuity. Because C" continuity is more restrictive than G", any form that can attain C"
can by definition also attain at least c·.

When only geometric continuity is required, as is often the case for CAD, the choice is
narrowed to the various types of splines, all of which can achieve both G1 and G2 continuity.
Of the three types of splines in the table, uniform B-splines are the most limiting. The
possibility of multiple knots afforded by nonuniform B-splines gives more shape control to
the user, as does the use of the /31 and f3.z shape parameters of the /3-splines. Of course, a
good user interface that allows the user to exploit this power easily is important.

To interpolate the digitized points of a camera path or shape contour, CatmuU-Rom or
Kochanek-Bartels splines are preferable. When a combination of interpolation and tangent
vector control is desired, the Bezier or Hermite form is best.

It is customary to provide the user with the ability to drag control points or tangent
vectors interactively, continually displaying the updated spline. Figure 11.23 shows such a
sequence forB-splines. One of the disadvantages of B-splines in some applications is that
the control points are not on the spline itself. It is possible, however, not to display the
control points, allowing the user instead to interact with the knots (which must be marked
so they can be selected). When the user selects a knot and moves it by some(~. ~y), the
control point weighted most heavily in determining the position of the join point is also
moved by(~. ~y). The join does not move the full(~. ~y), because it is a weighted sum
of several control points , only one of which was moved. Therefore, the cursor is
repositioned on the join. This process is repeated in a loop until the user stops draggi11g.

11 .3 PARAMETRIC BICUBIC SURFACES

Pardmetric bicubic surfaces are a generalization of parametric cubic curves. Recall the
general form of the parametric cubic curve Q(t) = T · M · G, where G, the geometry vector,
is a constant. First, for notational convenience, we replace t with s, giving Q(s) = S · M · G.
If we now allow the points in G to vary in 3D along some path that is parameterized on t , we
have

Q(s t) = S · M · G(t) = S · M · [g:~~~l ' G3(t) ·

G,(t)

(I I. 73)

Now. for a fixed t1, Q(s, t1) is a curve because G(t1) is constant. Allowing t to take on some
new value-say, tr-where tz - t1 is very small, Q(s, 1) is a slightly different curve.
Repeating this for arbitrarily many other Vdlues of t2 between 0 and I , an entire family of
curves is defined , each arbirrarily close to another curve. The set of all such curves defines a
surface. Lf the G/.t) are themselves cubics, the surface is said to be a parametric bicubic
surface.

0549

11 .3 Parametric Bicubic Surfaces 5 17

Continuing with the case that the G,(l) are cubics, each can be represented as G/.1) =
T · M · G1, where G; = 16n l c g11 g,.]T (the G and 1 are used to distinguish from the G
used for the curve). Hence, I n is the first element of the geometry vector for curve G/.1), and
so on.

Now let us transpose the equation G;(l) = T · M · G1, using the identity (A · 8 · C? =
cr. sr. AT. The result is G,(l) = G,T. MT. rr = [gn l f2 l i3 1 .. 1 . MT. rr. If we now
substitute this result in Eq. (11.73) for each of the four points, we ha\'e

or

[

l u I tt g., ' ••]
Q(s, 1) = S . M . l u l rz l u g,. . M1 . J'r

g, I Jt I a 1,.
, ., 1.: l .s 1 ..

Q(s, 1) = s . M . G . MT. rr, 0 s s, I s I.

Written separately for each of x, y, and z, the form is

x(s, 1) = S · M · G, · M1 · J'r,

}~s. 1) = s. M . c,. MT · rr.
z(s, 1) = S · M · G, · MT · J'r.

(11.74)

(11 .75)

(11.76)

Gi\'en this general form, we now move on to examine specific ways to specify surfaces using
different geometry matrixes.

11 .3 .1 Hermite Surfaces

Hermite surfaces are completely defined by a 4 x 4 geometry matrix G8 . Derivation of Gu
follows the same approach used to find Eq. (11.75). We further elaborate the derivation
here, applying it justto x(s, 1). First, we replace 1 by s in Eq. (11.13), to get x(s) = S • M" ·
G~~,. Rewriting this further so that the Hermite geometry vector Gu, is not constant, but is
rather a function of 1, we obtain

(11.77)

The functions P1,(1) and P ._(1) define the x components of the starting and ending points for
the curve in parameters. Similarly, R1,(1) and R4,{1) are the tangent vectors at these points.
For any specific value of 1, there are two specific endpoints and tangent vectors. Figure
11.39 shows P1(1), P4(t) , and the cubic ins that is defined when t = 0.0, 0.2, 0.4, 0.6, 0.8,
and 1.0 . The surface patch is essentially a cubic interpolation between P1(1) = Q (0, 1) and
P4(t) • Q (l, 1) or, altemati\'ely, between Q(s, 0) and Q(s, 1).

In the special case that the four intcrpolants Q(O, 1), Q(l , l), Q(s, 0), and Q(s, I) are
straight lines, the result is a ruled surface. If the intcrpolants are also coplanar, then the
surface is a four-sided planar polygon.

0550

518 Rel)fesenting Curves and Surfaces

Fig. 11 .39 lines of constant parameter values on a bicubic surface: P,(t) is at s • 0,
P,(t) is at s • 1.

Continuing with the derivation, let each of P1(t), Pit), R1(t), and Rit) be represented in
Hennite fonn as

['Ill P (t) = T · M 111
I, H f u '

lu •

These four cubics can be rewritten together as a single equation:

[P 1(r) P4(r) R1(t) R.(t)), = T • MH • Gl;,,

where

G,._ = It~ Ia I a ~~ .
[

l u I tt l u l ul

I ll l u 1'43 I s.
, ., 142 143 g ..

•
Transposing both sides of Eq. (I 1.79) resultS in

Pc(r) _ l t1 l u I a
[

P,(t)l [fu f11 f u

R1(r) - g11 f u g,
Rit) l c1 l o l o

•

' 14] 1~ ~ . rr = GH. . MJ . rr.
l u
g ..

z

(11.78)

(11.79)

(11.80)

(11.81)

0551

11 .3 Parametric Bicubic Surfaces 619

Substituting Eq. (11.81) into Eq. (I I.TI) yields

x(s, t) = S · M8 • G8, • M~ · 7"; (11.82)

similarly,

y(s, t) = S · M8 • Gu, · M~ · 7", z(s, 1) = S · Mn · Gn, · M~ · 7". (11.83)

The three 4 x 4 matrixes Gn,• Gn,• and Gn, play the same role for Hermite surfaces as
did the single matrix G8 for curves. The meanings of the 16 elements of Gu can be
understood by relating them back to Eqs. (11.77) and (11.78). The element l u. is x(O, 0)
because it is the starting point for P1,(1), which is in tum the starting point for x(s, 0).
Similarly, g1~ is x(O, I) because it is the ending point of P1,(1), which is in tum the starting
point for x(s, 1). Furthermore, g11, is ax1a1(0, 0) because it is the starting tangent vector for
P1,(t), and l aa, is a2xJasa1(0, 0) because it is the starting tangent vector of R1,(1), which in
tum is the starting slope of x(s, 0).

Using these interpretations, we can write Gn, as

x(O, 0) x(O, I) a
alx(O, 0)

a
atx(O, I)

x(I, 0) x(l , I) a a
GH,= alx(I, 0) alx(l, I) (11.84)

a a (J! a!
asx(O, 0) asx(O, I) asalx(O, 0) asalx(O, I)

a
asx(l , 0)

a
asx(l , I)

a2
asalx(I ' 0)

a!
asalx(l, I)

The upper-left 2 x 2 portion of Gu, contains the x coordinates of the four comers of
the patch. The upper-right and lower-left 2 x 2 areas give the x coordinates of the tangent
vectors along each parametric direction of the patch. The lower-right 2 x 2 portion has at
its comers the partial derivatives with respect to both sand t. These partials are often called
the twists, because the greater they are, the greater the coricscrewlike twist at the comers.
Figure 11.40 shows a patch whose comers are labeled to indicate these parameters.

This Hermite form of bicubic patches is an alternative way to express a restricted form
of the Coons patch [COON67]. These more general patches permit boundary curves and
slopes to be any curves. (The Coons patch was developed by the late Steven A. Coons
[HERZSO), an early pioneer in CAD and computer graphics after whom SIGGRAPH's
prestigious S1~~n A. Coons A.,..'O.rdfor Outstanding Contributions 10 Computer Graphics is
named.) When the four twist vectors in the Hermite form are all -zero, the patches are also
called Ferguson surfaces after another early developer of surface representations [FERG64;
FAUX79].

Just as the Hermite cubic permits C1 and G1 continuity from one curve segment to the
next, so too the Hermite bicubic permits C1 and G1 continuity from one patch to the next.
First, to have CO continuity at an edge, the matching curves of the two patches must be
identical, which means the control points for the two surfaces must be identical along the
edge. The necessary conditions for C1 continuity are that the control points along the edge
and the tangent and !Wist vectors across the edge be equal. For G1 continuity, the tangent

0552

520 Representing Curves and Surfaces

0 (0, 1)

i
i2 a; 0 (1, 0)

hii 0 (0, 0)

0(0, 0)

s

i
a, 0 (1, 1)

d h 0 (1, 1)

Fig . 11 .40 Components of the geometry matrix for a Hermite surface. Each vector is a
3 -tuple, the x component of which is given by Eq . (1 1 .84).

vector requirement is relaxed so that the vectors must be in the same direction, but do not
need to have the same magnitude. If the common edge for patch I is at s = I and that for
patch 2 is at s = 0, as in Fig. 11.41 , then the values in some rows of the geometry matrices
for the ~~ patches must reflect the G1 conditions, as indicated here:

Patch I Patch 2

[
-

I n

I n

It~ Ia
I tA l ~ .. k> 0. (11.85)

[

l tl

~··

t - 1

Patch 1

t • O

Fig. 11 .41 Two joined surface patches.

0553

11 .3 Parametric Bicubic Surfaces 521

Fig. 11 .42 Sixteen control points for a Bezier bicubic patch.

Entries marked with a dash can have any value. If four patches joined at a common comer
and along tbe edges emanating from that comer are to have G' continuity, then the
relationships are more complex; see Exercise 11 .25.

11 .3 .2 Bezier Surfaces

The B6zier bicubic formulation can be derived in exactly the same way as the Hermite
cubic. The results are

x(s, 1) = S · M o · Ga, · M1 · 1"'.

y(s 1) = S· M ·G ·M"!.·T" , B Br B ' (11 .86)

z(s, 1) = S · Mo · Go, · M1 · 1"'.

The 86zier geometry matrix G consists of 16 control points, as shown in Fig. 11.42.
B~zier surfaces are attractive in interactive design for the same reason as Bezier curves are:
Some of the control points interpolate the surface, giving convenient precise con­
trol, whereas tangent vectors also can be controlled explicitly. When Bezier surfaces are
used as an internal representation, their convex-hull property and easy subdivision are
attractive.

CO and G" continuity across patch edges is created by making the four common control
points equal. G' continuity occurs when the two sets of four control points on either side of
the edge are collinear with the points on the edge. ln Fig. 11.43, the following sets of
control points are collinear and define four line segments whose lengths all have the same
ratio k: (P 13, P14 , P15), (P13 , Pu, P'lliJ, (P13 , P#A, Pat) , and (P13, P14, P16) .

An alternative way to maintain interpatch continuity, described in more detail in
[FAUX79; BEZ170], requires that, at each corner of an edge across which continuity is
desired, the comer control points and the control points immediately adjacent to the corner
be coplanar.

0554

522 Representing Curves and Surfaces

Fig. 1 1 .43 Two B~zier patches joined along the edge P,., P2,, P34, and P ...

11 .3 .3 B-Spline Surfaces

B-spline patches are represented as

x(s, 1) = S ·Me.· G81, • Me,T · TT,

y(s, 1) = S · Me.· G8,, · Ms.T · TT,

z(s, 1) = S · M s. · Ge,, · M 8.T • TT.

(11.87)

(!l continuity across boundaries is automatic with B-splines; no special arrangements of
control points are needed except to avoid duplicate control points, which create discontinui­
ties.

Bicubic nonuniform and rational B-spline surfaces and other rational surfaces are
similarly analogous to their cubic counterparts. All the techniques for subdivision and
display carry over directly to the bicubic case.

11 .3 .4 Normals to Surfaces

The normal to a bicubic surface, needed for shading (Chapter 16), for performing
interference detection in robotics, for calculating offsets for numerically controlled
machining, and for doing other calculations, is easy to find. From Eq. (II. 75), the s tangent
vector of the surface Q(s, 1) is

ii a ii
- Q(s 1) = - (S · M · G · iff · fl') = - (S) · M · G · iff · fT ~ . ~ ~

= [3st 2s 1 0) · M · G · iff · fl', (I 1.88)

0555

11 .3 Parametric Bicubic Surfaces

and the 1 tangem vector is

},acs, t) = :,(S · M · G • MT · 7'1) = S · M · G · MT · ~
= s. M . G . MT. (3t2 21 I O]T.

523

(I 1.89)

Both tangent vectors are parallel to the surface at the point (s, r) and, therefore, their
cross-product is perpendicular to the surface. Notice that , if both tangent vectors are zero,
the cross-product is zero, and there is no meaningful surface normal. Recall that a tangent
vector can go to zero at join points that have C' but not G1 continuity.

Each of the tangent vectors is of course a 3-tuple, because Eq. (11 .75) represents the x,
y, and z components of the bicubic. With the notation x, for the x component of the s
tangent vector, y, for they component, and z, for the z component, the normal is

iJ iJ
03

Q(s, t) x
01

Q(s, r) = ly,z1 - y.z, z,x, - z,x, x,y, - x.y,]. (I 1.90)

The surface normal is a biquintic (two-variable, fifth-degree) polynomial and hence is
fairly expensive to compute. [SCHW82) gives a bicubic approximation that is satisfactory
as long as the patch itself is relatively smooth.

11 .3 .5 Displaying Bicubic Surfaces

Like curves , surfaces can be displayed either by iterative evaluation of the bicubic
polynomials or by subdivision, which is essentially an adaptive evaluation of the bicubic
polynomials. We consider first iterative evaluation, and then subdivision.

Iterative evaluation is best suited for displaying bicubic patches in the style of Fig.
11 .44. Each of the curves of constant s and constant r on the surface is itself a cubic, so
display of each of the curves is straightforward, as in Fig. 11.45.

Fig. 11 .44 A single surface patch displayed as curves of constant s and constant t.

0556

524 Representing Curves and Surfaces

typedef double Coeffs[4)[4)[3);
>'Old DrawSurface (

{

Coeffs coefficients,
lot n,,
lot n,,
lot n)

I• Coefficients for Q(s,l) •I
I• No. of curves of constant s to draw, typically 5-10 •I
I• No. of curves of constant 1 to draw, typically 5-10 •I
I• No. of steps used to draw each curve, typically 2G-I 00 •I

double 6 = I .0 I n;
doubl.e 6, = 1.0 I (n,-1);
double 6, = 1.0 I (n, - 1);
lot i,j; double s, 1;

I• Step size to use in drawing each curve •I
I• Step size in s to increment to next curve of constant 1 •I
I• Step size in 1 to increment to next curve of constants •I

I• Draw "• curves of constant s, for s = 0, 6., 26,, ... I •I
for (i = 0, s = 0.0; i < n,; i++, s += 6,) {

}

I• Draw a curve of constants, varying 1 from 0 to I. •I
I• X, Y, and Z are functions to evaluate the bicubics. •I
MoveAbs3 (X (s, 0.0), Y (s, 0.0), Z (s, 0.0));
for U= l , 1=6; } < n;j++, 1+=6) {

}

I• n- l steps are used as r varies from 6 to I for each curve. •I
LineAbs3 (X (s, 1), Y (s, 1), Z (s, 1));

I• Draw n1 curves of constant I, for 1 = 0, 6,, 26,, ... I •I
for (i = 0, 1 = 0.0; i < n,; i++, 1 += 6t) {

}

I• Draw a curve of C·Onstant 1, varying s from 0 to I. •I
MoveAbs3 (X (0.0, 1), Y (0.0, 1), Z (0.0, 1));
tor (}= l , s= 6;j < n;j++, s+=6) {

}

I• n- 1 steps are used as s varies from 6 to I for each curve. •I
LineAbs3 (X (s, 1), Y (s, 1), Z (s, r));

} I• DrawSurface •I

Fig. 11 .45 Procedure to display bicubic patch as a grid. Procedures X(s, t), Y(s, t), and
Z(s. t) evaluate the surface using the coefficient matrix coefficients.

Brute-force iterative evaluation for surfaces is even more expensive than for curves,
because the surface equations must be evaluated about 2111 times. For I)= 0.1, this value is
200; for I)= 0.01 , it is 20,000. These numbers make the alternative, forward differencing
even more attractive than it is for curves. The basic forward-differencing method was
developed in Section 11.2.9. The step remaining is to understand bow to calculate the
initial forward dilfe.rences for curve i + I from the forward diffe.rences for curve i.

The derivation in Section 11.2.9 used to find D = £(/)) · C for curves can be used to
find

DD. = E(li,) · A, · E(l)jT (11.91)

where B, is the step size in s, 1>, is the step size in t, and A. is the 4 x 4 matrix of coefficients
for x(s, t). The 4 x 4 matrix DD, has as its first row the values x(O, 0), dr(O, 0), d~x(O, 0),

0557

11 .3 Parametric Bicubic Surfaces 525

and d~x(O, 0) (the notation d 1 means forward difference on f, as opposed to s). Thus, the
first row can be used to calculate x(O, f) in increments of 8,.

After x(O, f) has been computed, how can x(8, , f) be computed, to draw another curve
of constant s? (This is the step of calculating the initial forward differences for curve i + I
from the forward differences for curve i.) The other rows of DD, are the first, second, and
third forward differences on s of the first row's forward differences. Therefore, applying the
following equations to the rows of DD,

typedef double Coe.ffs[4JI4JI3);

void DrawSurfaceFwdDif (

row I := row I + row 2

row 2 := row 2 + row 3

row 3 := row 3 + row 4

Coeffs A , I• Coefficients for Q(s, f) •I
lnt n, , I• Number of curves of constant s to be drawn, typically 5 to I 0. •I
lnt n1 , I• Number of curves of constanttto be drawn, typically 5 to I 0. •I

(11.92)

lnt n) I• Number of steps to use in drawing each curve, typically 20 to I 00. •I
{

I• Initialize •I
double 6, = 1.0 f (n, - 1.0); double 6, = 1.0 / (n, - 1.0);
I• "•" indicates matrix multiplication •I
DD~ = £(6,) • Az • £(6,)T;
DDv = £(6,) • Ay • E(61)T;
DD, = £(6,) •A, • E(6t)T;

I• Drawn, curves of constants, for s = 0. 6,, 26,, ... I •I
for (I= 0; i < n,; I++) {

I• Procedure from Section 11.2.9 to draw a curve •I
DrawCurveFwdDif (n, First row of DDz, First row of DD., First row of DD,);
I• Prepare for next iteration •I ·
Apply equation 11.92to DDz, DD. , and DD, ;

}
I• Transpose DD~. DD •• DD, so can continue working witb rows •I
DD,. = DD,. T; DDy = DDy T; DD. = DD. T;

I• Draw nc curves of constant 1, fort= 0, 6,, 261, 30., .. . I •I
for (i = 0; i < n1; i++) {

}

DrawCurveFwdDif (n, First row of DD,., First row ofDDy, First row of DD.);
I• Prepare for next iteration •I
Apply equation 11.92to DD,., DDy, and DD,;

} I• DrawSurfaceFwdDif *'
Fig. 11 .46 Procedure to display a parametric surface as lines of constant s and r.

0558

526 Representing Curves and Surfaces

void DrawSurfaceRecSub (suiface, e)
{

I• Test whether control p<>ints are within e of a plane •I
if (Flat (suiface, e))

OrawQuadrilateral (suiface); I• If within e, draw the surface as a quadrilateral •I

else { I• lf not flat enough, subd.ivide into four patches • I

}

SubdivideSurface (suiface, &suifaceU, &suifaceLR, &suifaceRL, &suifaceRR);
OrawSurfaceRecSub (suifaceLL, E);
DrawSurfaceRccSub (suifaceLR, e);
DrawSurfaceRecSub (suifaceRL, E);
DrawSurfaceRecSub (suifaceRR, E);

} I• OrawSurfaceRecSub • I

Fig. 11 .47 Procedure to display a parametric surface as a shaded surface. DrawOuad­
rilateral renders individual, nearly flat quadrilaterals. Flat returns true if the surface is
within £ of being flat.

yields in the first row of DD, the terms x(ll,, 0), A1x(ll,, 0), A~x(ll,, 0), and A~x(ll,, 0). These
quantities are now used to compute x(ll,, 1), using forward differences, as before. Then the
steps of Eq. (11.92) are again repeated, and the first row of Dis used to compute x(28,, 1),
and so on.

Drawing the curves of constant 1 is done similarly. To calculate x(s, 0), we apply Eq.
(11.92) to DD. but substitute column for row. Alternatively, DD'[can be used in place of
DD., so that rows are still used to calculate x(s, 0), x(s, 6,), x(s, 28;), and so on.

The algorithm for displaying a surface as lines of constant s and t using forward
differences is shown in Fig. 11 .46.

Surface display using recursive subdivision is also a simple extension from the pro­
cedure DrawCurveRecSub of Section 11.2.9, and is presented in Fig. 11.47. Nearly planar
quadrilaterals are created, then are displayed by procedure DrawQuadrilateral as shaded flat
quadrilaterals using the methods described in Chapters 15 and 16. The process is again
simplest if the B62ier form is used.

s = O.S (1,1)

rr

s (1, 0)

Fig. 11 .48 A surface subdivided into four surfaces, II, lr. rl. and rr, each of which is
'flatter' than the original surface.

0559

11 .3 Parametric Bicubic Surfaces

Crack in
approximation to
surface

527

Fig. 11 .49 A subdivided surface whose three approximating quadrilaterals introduce a
crack into the approximation.

Flatness is tested by computing the plane passing through three of the four comer
control points and finding the distance from each of the other 13 control points to the plane;
the maximum distance must be less than &. This is just a generalization of the flatness test
used for curves. [LANE79] discusses a different way to perform a more efficient flatness
test. Of course, the recursion can again be done to a constant depth, el iminating the flatness
test at the price of needless subdivisions.

Surface subdivision is done by splitting the surface along one parameter, say s, and
then splitt ing each of the two resulting surfaces along 1. The curve-splitting methods
discussed in Section 11.2.7 are applied to each set of four control pointS running in the
direction of the parameter along which the split is being made. Figure 11.48 shows the idea,
with the resulting four surfaces labeled 1/, lr, rl, and rr as an extension of the notation used
in Fig. 11.35. Alternatively, the patch can be split along only one par.!meter, if the patch is
locally flat along the other parameter. [LANE80a] gives a thorough theoretical account of
the subdivision process and also describes how it can be used to find curve-curve and
surface-surface intersections.

One critical problem with adaptive subdivision is the possibility of cracks between
approximating quadri laterals, as seen in Fig. 11.49. The cr.tcks occur because of the
different levels of subdivision applied to adjoining patches. They can be avoided by
subdividing to a fixed depth or by making the flatness threshold e very small. Both
solutions, however, cause needless subdivisions. Another way to avoid cracks is to modify
adjoining approximating quadrilaterals , as suggested in Fig. 11.50. This basic strategy is

H

Fig. 11 .50 Crack e limination in recursive subdivision. A naive algorithm displays
quadrilaterals ABC£, EFGD, and GDCH. A more sophisticated algorithm displays
quadrilaterals ABC£, EFGD', and GD'CH. Vertex 0 ' is used instead of D.

0560

528 Representing Curves and Surfaces

8

Fig. 11 .5 1 A quadrilateral ABCD to be displayed is first subdivided into four triangles.
The new point Pis the average of points A, 8 , C, and D.

used by Clark [CLAR79) and by Barsky, DeRose, and Dippe IBARS87].
Procedure DrawQuadrilateral is given a nearly Hal quadrilareral to display. The besr

way 10 di~'J)lay the quadrilareral as a shaded surface is to subdivide it further inlo four
triangles, as shown in Fig. 11 .51. This strategy avoids visual artifacts.

It is sometimes desirable to display only a portion of a bicubic surface. For instance,
there may be a hole in a patch caused by a pipe going through the surface. Displaying only a
portion can be dooe with trimming cun~s. whicb are just spline curves defined in (s, r)
parameter space instead of in (.r, y. z) space on the bicubic surface. When displaying a
surface thar is constrained by a trim curve using DrawSurfaceFwdDif (see Fig. 11 .46), the
(s, r) values of the trim curve are used 10 start and stop rhe ireration.

Ocher useful ways to display bicubic surfaces are presented in [FORR79].

11 .4 QUADRIC SURFACES

The implicir surface equation of the form

f(.r, y, z) = a.x1 + by1 + cz1 + 2dxy + 2eyz + 2fn + 2g.r + 2hy + 2jz + k "" 0
(11.93)

defines rhe family of quadric surli1ces. For example, if a = b = c = -k = I and the
remaining coefficients are zero, a unit sphere is deli ned at the origin. If a through/are zero,
a plane is defined. Quadric surfaces are particularly useful in specialized applications such
as molecular modeling [PORT79; MAX79], and have also been inregrated into solid­
modeling systems. Recall , too, that rational cubic curves can represent conic sections;
similarly, rational bicubic surfaces can represent quadrics. Hence, the implicit quadratic
equarion is an alternative to rarional surfaces, if only quadric surfaces are being represented.
Ocher reasons for using quadrics include ease of

0

0

0

Computing the surface normal

Testing whether a poinr is on rhe surface (just subsritute rhe point into Eq. (11 .93),
evaluare, and test for a resuh wirhin some e of zero)

Compuring z given x and y (important in bidden-surface algorithms-see Chapter 15)
and

0561

11.5 Summary 529

• Calculating intersections of one surface with another.

An alternative representation of Eq. (11.93) is:

pT. Q • p = 0, (11.94)

with Q = [~g ; ~ ~] and

h j k

(11.95)

The surface represented by Q can be easily translated and scaled. Given a 4 x 4
transformation matrix M of the form developed in Chapte.r 5, the transformed quadric
surface Q' is given by

{11.96)

The normal to the implicit surface defined by f{x, y, z) = 0 is the vector
[djldx djldy dfldzJ. This surface normal is much easier to evaluate than is the surface
normal to a bicubic surface discussed in Section 11.3.4.

11 .5 SUMMARY

This chapter has only touched on some of the important ideas concerning curve and surface
representation, but it has given sufficient information so that you can implement interactive
systems using these representations. Theoretical treatments of the material can be found in
texts such as [BARTS?; DEB07S; FARISS; FAUX79; MORT85].

Polygon meshes, which are piecewise linear, are well suited for representing flat-faced
objects but are seldom satisfactory for curve-faced objects. Piecewise continuous paramet­
ric cubic curves and bicubic surfaces are widely used in computer graphics and CAD to
represent curve-faced objects because they

•
•
•

•

•
•

•

Permit multiple values for a single value of x or y

Represent infinite slopes

Provide local control, such that changing a control point affects only a local piece of the
curve

Can be made either to interpolate or to approximate control points, depending on
application requirements

Are computationally efficient

Permit refinement by subdivision and knot addition, facilitating display and interactive
manipulation

Are easily tranSformed by transformation of control points .

Although we have discussed only cubics, higher- and lower-order surfaces can also be used.
The texts mentioned previously generally develop parametric curves and surfaces for the
general case of order n.

0562

530 Representing Curves and Surfaces

EXERCISES

I 1.1 De.elop the equations, simi.larto Eq. (11.2), for the coefficiems A and 8 of the plane equation.
Assume that the polygon vertices are enumerated counterclockwise as viewed toward the plane from
the positive side of the plane. The surface normal-given by A, 8, and C-points toward the posirive
side of the plane (which accounts for the need to negate the area computed for 8 , as discussed in
Section II. 1 .3).

11.2 Write a program to calculate the plane equation coefficients, given 11 vertices of a polygon that is
approllimately planar. The vertices are enumerated in a counterclockwise direction, as defined in
Exereise 11 . 1 . Test the program with 11 = 3 for several known planes; then rest it for larger 11.

11.3 Find the geometry matrix and basis matrill for the parametric representation of a straight line
given in Eq. (II. II).

11.4 Implement the procedure DrawCurve given in Fig II . 18. Display a number of curves, varying
the coefficients ex. cy, and cz. Try to make the curve correspond to some of the curve segments shown
in figures in this chapter. Why it this difficult to do1

11 . .5 Show that, for a 2D curve [x(1) y(l)], G' continuity means that the geometric slope dyldx is
equal ar the join points between segments.

11.6 Let ')'(1) = (1, 1') for 0 s 1 :s 1, and let 77(1) = (21 + I, t 3 + 41 + I) for 0 s 1 s I. Notice that
)'(I)= (1, I)= 77(0), so -yand 71join with CO continuity.

a. Plot '!)(1) and ')'(1) for 0 :s 1 s I.

b. Do '1){1) and ')'(1) meet with C' continuity at the join point? (You will need to compute the

vectors 1:/.d (I) and 1:!1.(0) to check this.)
1 d1

c. Do 77(1) and ')'(1) meet with G1 continuity at the join point? (You will need to check ratios
from pan (b) to determine this).

II.. 7 Consider the paths

')'(1) = (1t- 21 + I, t*- 21t + 1) and 77(1) = (r + I, h

both defined on the interval 0 :s 1 :s I. The curves join, since')'(I) = (I, 0) = 77(0). Show that they
meet with C1 continuity, but not with G' continuity. Plot both curves as functions of tto demonstrate
Cllactly why this happens.

11.8 Show that the two curves ')'(1) = (12 - 2t. 1) and 77(1) = (t t + I. 1 + I) are both C1 and G1

continuous where they join at)'(I) = '1)(0).

11.9 Analyze the effect on a 8-spline of having in sequence four collinear control points.

11.10 Write a progr.un to accept an arbitrary geometty matrix , basis matrix, and list of control
points, and to draw the corresponding curve.

11.11 Find the conditions under which t\\U joined Hermite curves have C1 continuity.

Jl . 12 Suppose the equations relating the Hermite geometry to the 8ezier geometry were of the fonn
R1 = {3(P, - P1), R, = {3(P, - P3). Consider the four equally spaced 8~ier comrol points P1 =
(0, 0), P, = (I, 0), P3 = (2, 0), P, = (3, 0). Show that, for the parametric curve Q(t) to have constant
velocity from P1 toP,, the coefficient f3 must be equal to 3.

11.13 Write an interactive program that allows the user to create and refine piecewise continuous
cubic curves. Represent the curves internally as 8-splines. Allow the user to specify how the curve is
to be interactively manipulated-as Hermite, 8ezier, or 8-splines.

J 1.14 Show that duplicate interior control points on a 8 -spline do not affect the ct continuity at the

0563

Exercises 531

join point. Do this by writing out the equations for the two curve segments formed by the control
points P1• 1, Ph P1. ,, Pl+t = P1.,, P1•1• Evaluate the second derivative of the first segment at 1 = I.
and that of the second segment at 1 = 0. They should be the same.

11 .15 Find the blending functions for the CatmuU- Rom splines of Eq. (11.47). Do they sum to I,
and are they everyone nonzero? If not, the spline is not contained in the convex buU of the points.

11 .16 Using Eqs. (11.49), (11.50), and (11.19), find the basis matrix M KB for the Kochanek-Bartels
spline, using the geometry matrix GB.(of Eq. (11.32).

11.17 Write an interactive program that allows the user to create, to manipulate interactively, and to
refine piecewise continuous tJ-spline curves. Experiment with the effect of varying /J1 and IJ..
11.18 Write an interactive program that allows the user to create, to manipulate interactively, and re­
fine piecewise continuous Kochanek-Bartels curves. Experiment with the effect of varying a, b, and c.

11.19 Implement both the forward-difference and recursive-subdivision curve-display procedures.
Compare execution times for displaying various curves such that the curves are equally smooth to the
eye.
11 .20 Why is Eq. (11.36) for uniform B-splines written as Q1(1 - 1i), whereas Eq. (11.43) for
nonuniform B-splines is written as Q.(1)?

11.21 Given a 2D nonuniform B-spline and an (x, y) value on the curve, write a program to find the
corresponding value of 1. Be sure to consider the possibility that, for a given value of x (or y), there
may be multiple values of y (or x). ·

11.22 Given a value 1 at which a Bezier curve is to be split, use the de Casteljau construction shown
in Fig. 11.35 to find the division matrices Dl;(l) and on(r).

11.23 Apply the methodology used to derive Eq. (II .82) for Hermite surfaces to derive Eq. (II .86)
for Bezier surfaces.

11.24 Write programs to display parametric cubic curves and surfaces using forward differences and
recursive subdivision. Vary the step siz.e lJ and error measure £ to determine the effects of these
parameters on the appearance of the curve.

IJ .2S Given four Hermite patches joined at a common comer and along the edges emanating from
that comer, show the four geometry matrices and the relations that must hold between elements of the
matrices.

11.26 Let 10 = 0, t 1 = I, 11 = 3, t1 = 4, 1, = 5. Using these values. compute Bo.o and each of the
functions used in its definition. Then plot these functions on the interval -3 s 1 s 8.
11.27 Expand the recurrence relation of Eq. (11.44) into an explicit expression for Bu(l). Use Fig.
11.26 as a guide.

tt .28 Write a program that displays a nonuniform, non-rational B-spline, given as input a knot
sequence and control points. Provide a user-comrollable option to calculate the B;,.{l) in two ways: (a)
using the recurrence relations of Eq. (1 1.44). and (b) using the explicit expression found in Exercise
11.27. Measure how much time is taken by each method. Is the faster method necessarily the beUer
one?

11.29 Expand the program from Exercise 11.28 to allow interactive input and modification of the
a-splines.

11.30 Write procedures to subdivide a curve recursively in two ways: adaptively, with a Oatness test,
and fixed, with a uniform level of subdivision. Draw a curve first with the adaptive subdivision, noting
the deepest level of subdivision needed. Now draw the same curve with fixed subdivision as deep as
that needed for the adaptive case. Compare the execution lime of the two procedures for a variety of
curves.

0564

12
Solid

Modeling

The representations discussed in Chapter II allow us to describe curves and surfaces in 20
and 30. Just as a set of 20 lines and curves does not need to describe the boundary of a
closed area, a collection of 30 planes and surfaces does not necessarily bound a closed
volume. In many applications, however, it is important to distinguish between the inside,
outside, and surface of a 30 object and to be able to compute properties of the object that
depend on this distinction. In CAD/CAM, for example, if a solid object can be modeled in a
way that adequately captures its geometry, then a variety of useful operations can be
performed before the object is manufactured. We may wish to determine whether two
objects interfere with each other; for example, whether a robot arm wW bump into objects in
its environment, or whether a cutting tool will cut only the material it is intended to re­
move. ln simulating physical mechanisms, such as a gear train, it may be important to
compute properties such as volume and center of mass. Finite-element analysis is applied to
solid models to determine response to factors such as stress and temperature through
finite-element modeling. A satisfactory representation for a solid object may even make it
possible to generate instructions automatically for computer-controlled machine tools to
create that object. In addition, some graphical techniques, such as modeling refractive
transparency, depend on being able to determine where a beam of light enters and exits a
solid object. These applications are all examples of solid modeling. The need to model
objects as solids has resulted in the development of a variety of specialized ways to
represent them. This chapter provides a br ief introduction to these representations.

533

0565

534 Solid Modeling

12.1 REPRESENTING SOLIDS

A representation's ability to encode things that look like solids does not by itself mean that
the representation is adequate for representing solids. Consider bow we have represented
objects so far, as collections of straight lines, curves, polygons, and surfaces. Do the lines
of Fig. 12.1(a) define a solid cube? If each set of four lines on each side of the object is
assumed to bound a square face, then the figure is a cube. However, there is nothing in the
representation given that requires the lines to be interpreted this way. For example, the same
set of lines would be used to draw the figure if any or all of the faces were missing. What if
we decide that each planar loop of connected lines in the drawing by definition determines a
polygonal face? Then, Fig. 12.1(b) would consist of all of the faces of Fig. 12.1(a), plus an
extra "dangling'' face, producing an object that does not bound a volume. As we shall see
in Section 12.5, some extra constraints are needed if we want to ensure that a representation
of this sort models only solids.

Requicha (REQUSO] provides a list of the properties desirable in a solid representation
scheme. The domain of representation should be large enough to allow a useful set of
physical objects to be represented. The representation should ideally be unambiguous:
There should be no question as to what is being represented, and a given representation
should correspond to one and only one solid, unlike the one in Fig. 12.l(a). An
unambiguous representation is also said to be complete. A representation is unique if it can
be used to encode any given solid in only one w«y. If a representation can ensure
uniqueness, then operations such as testing two objects for equality are easy. An accurate
representation allows an object to be represented without approximation. Much as a
graphics system that can draw only straight lines forces us to create appro1timations of
smooth curves, some solid modeling representations represent many objects as appro1tima­
tions. Ideally, a representation scheme should make it impossible to create an invalid
representation (i.e., one that does not correspond to a solid), such as Fig. 12.1(b). On the
other hand, it should be easy to create a valid represemarion, typically with the aid of an
interactive solid modeling system. We would like objects to maintain closure under

/ D {
H

A

/ /

c Vertices Lines
A r,o,o A8
8 1, 0, 0 8C
c 1' 1, 0 CD
D 0, 1, 0 DA
E r.0.1 EF

8 F 1, 0,1 FG
G 1, 1, 1 GH
H 0, 1, 1 HE

AE
8F

F

CG
DH

(a)

/ D

H

A

1/
E

J

/
{ c

I~'
I/ Ext ra

Vertices F
I (1,0,-1!
J (1,1, - 1

(b)

Extra
Lines
81
IJ
JC

Fig. 1 2.1 (a) A wireframe cube composed of 12 straight lines. (b) A wireframe cube
with an extra face. ·

0566

12.2 Regularized Boolean Set Operations 535

rotation, translation, and other operations. This means that performing these operations on
valid solids should yield only valid solids. A representation shou.ld be compact to save
space, which in turn may save communication time in a distributed system. Finally, a
representation should allow the use of efficient algorithms for computing desired physical
properties, and, most important for us, for creating pictures.

Designing a representation with all these properties is difficult indeed, and compromis­
es are often necessary. As we discuss the major representations in use today, our emphasis
will be on providing enough detail to be able to understand how these representations can be
interfaced to graphics software. More detail , with an emphasis on the solid modeling
aspects, can be found in [REQU80; MORT85; MANT88].

12.2 REGULARIZED BOOLEAN SET OPERATIONS

No matter how we represent objects, we would like to be able to combine them in order to
make new ones. One of the most intuitive and popular methods for combining objects is by
Boolean set operations, such as union, difference, and intersection, as shown in Fig. 12.2.
These are the 30 equivalents of the familiar 20 Boolean operations. Applying an ordinary
Boolean set operation to two solid objects, however, does not necessarily yield a solid
object. For example, the ordinary Boolean intersections of the cubes in Fig. 12.3(a)
through (e) are a solid, a plane, a line, a point, and the null object, respectively.

Rather than using the ordinary Boolean set operators, we will instead use the
regularized Boolean set operators [REQU77], denoted u•, n •, and - •, and defined such
that operations on solids always yield solids. For example, the regularized Boolean
intersection of the objects shown in Fig. 12.3 is the same as their ordinary Boolean
intersection in cases (a) and (e), but is empty in (b) through (d).

To explore the difference between ordinary and regularized operators, we can consider
any object to be defined by a set of points, partitioned into interior points and boundary
points , as shown in Fig. 12.4(a). Boundary points are ~hose points whose distance from the
object and the object's complement is zero. Boundary points need not be part of the object.
A closed set contains all its boundary points, whereas an open set contains none. The union
of a set with the set of its boundary points is known as the set's closure, as shown in Fig.
12.4(b), which is itself a closed set. The boundary of a closed set is the set of its boundary
points, whereas the interior, shown in Fig. 12.4(c), consists of all of the set's other points ,
and thus is the complement of the boundary with respect to tbe object. The regularizaJion of

8

(a) (b) (c) (d) (e)

Fig. 12.2 Boolean operations. (a) Objects A and B. (b) A u B. (c) A n B.
(d) A - B. and (e) B - A.

0567

536 Solid Modeling

I'

/

/ /

(a) (b) (C) (d) (e)

Fig. 12.3 The ordinary Boolean intersection of two cubes may produce (a) a solid. (b) a
plane, (c) a line, (d) a point, or (e) the null set.

a set is defined as tbe closure of the set's interior points. Figure 12.4(d) shows the closure of
the object in Pig. 12.4(c) and, therefore, the regularization of the object in Fig. 12.4(a). A
set that is equal to its own regularization is known as a regular set. Note that a regular set
can contain no boundary point that is not adjacent to some interior point; thus. it can have
no "dangling" bou.ndary points, lines, or surfaces. We can define each regularized Boolean
set operator in terms of the corresponding ordinary Boolean set operator as

A op* 8 = closure(interior(A op 8)), (12. 1)

where op is one of U , n , or - . The regularized Boolean set operators produce only regular
sets when applied to regular sets.

We now compare the ordinary and regularized Boolean set operations as performed on
regular sets. Consider the two objects of Fig. 12.5(a), positioned as shown in Fig. 12.5(b).
The ordinary Boolean intersection of two objects contains the intersection of the interior
and boundary of each object with the interior and boundary of the other, as shown in Pig.
12.5(c). In contrast , the regularized Boolean intersection of two objects, shown in Fig.
12.S(d) , contains the intersection of their interiors and the intersection of the interior of
each with the boundary of the other, but only a subset of the intersection of their
boundaries. The criterion used to define this subset determines how regularized Boolean

(a) (c) (d)

Fig. 12 .4 Regularizing an object. (a) The object is defined by interior points, shown in
light gray, and boundary points. Boundary points that are part of the object are shown in
black; the rest of the boundary points are shown in dark gray. The object has dangling
and unattached points and lines, and there is a boundary point in the interior that is not
part of the object . (b) Closure of the object. All boundary points are part of the object.
The boundary point embedded in the interior of (a) is now part of the interior. (c) Interior
of the object. Dangling and unattached points and lines have been eliminated. (d)
Regularization of the object is the closure of its interior.

0568

12.2 Regularized Boolean Set Operations 537

(a) (b)

(C) (d)

Fig. 12.5 Boolean intersection. (a) Two objects, shown in cross-section. (b) Positions
of object prior to intersection. (c) Ordinary Boolean intersection results in a dangling
face, shown as line CD in cross-section. (d) Regularized Boolean intersection includes a
piece of shared boundary in the resulting boundary if both objects lie on the same side
of it (AB), and excludes it if the objects lie on opposite sides (CD). Boundary-interior
intersections are always included (BC) .

intersection differs from ordinary Boolean intersection, in which all parts of the intersection
of the boundaries are included.

Intuitively, a piece of the boundary-boundary intersection is included in the regula­
rized Boolean intersection if and only if the interiors of both objects lie on the same side of
this piece of shared boundary. Since the interior points of both objects that are directly
adjacent to that piece of boundary are in the intersection, the boundary piece must also be
included to maintain closure. Consider the case of a piece of shared boundary that lies in
coplanar faces of two polyhedra. Determining whether the interiors lie on the same side of a
shared boundary is simple if both objects are defined such that their surface normals point
outward (or inward). The interiors are on the same side if the normals poim in the same
direction. Thus, segment AB in Fig. 12.5(d) is included. Remember that those parts of one
object's boundary that intersect with the other object's interior, such as segment BC, are
always included.

Consider what happens when the interiors of the objects lie on opposite sides of the
shared boundary, as is the case with segment CD. ln such cases, none of the interior points
adjacent to the boundary are included in the intersection. Thus, the piece of shared
boundary is not adjacent to any interior points of the resulting object and therefore is not
included in the regularized intersection. This additional restriction on which pieces of
shared boundary are included ensures that the resulting object is a regular set. The surface
normal of each face of the resu lting object's boundary is the surface normal of whichever
surface(s) contributed that part of the boundary. (As we shall see in Chapter 16, surface
normals are important in shading objects.) Having determined which faces lie in the

0569

538 Solid M odeling

TABLE 12.1 REGULARIZED BOOLEAN
SET OPERATIONS

Set A u• 8 A n• 8 A -• 8

A,n B1 • •
A1 - 8 • •
81 - A •
A• n 81 •
8• n A, • •
A•- 8 • •
8•- A •
A• n 8• same • •
A, n 8• diff •

boundary, we include an edge or vertex of the boundary-boundary intersection in the
boundary of the intersection if it is adjacent to one of these faces .

The results of each regularized operator may be defined in terms of the ordinary
operators applied to the boundaries and interiors of the objects. Table 12.1 shows how the
regularized operators are defined for any objects A and 8 ; Fig. 12.6 shows the results
of performing the ope-rations. A6 and A, are A' s boundary and interior, respectively.
Ab n 8 6 same is that part of the boundary shared by A and 8 for which A1 and 81 lie on the
same side. This is the case for some point bon the shared boundary if at least one point i
adjacent to it is a member of both A; and 8 1• A6 n 8b diff is that part of the boundary shared
by A and 8 for which A1 and 81 lie on opposite sides. This is true forb if it is adjacent to no
such point i. Each regularized operator is defined by the union of the sets associated with
those rows that have a • in the operator's column.

Note that, in all cases, each,piece of the resulting object's boundary is on the boundary
of one or both of the original objects. When computing A u• 8 or A n• 8, the surface
normal of a face of the result is inherited from the surface normal of the corresponding face
of one or both original objects. In the case of A - • 8 , however, the surface normal of each

A and B A;-8

Fig. 12 .6 Ordinary Boolean operations on subsets of two objects.

0570

12.3 Primitive Instancing 539

face of the result at which B has been used to excavate A must point in the opposite direction
from B's surface normal at that face. This corresponds to the boundary pieces Ab n B• diff
and Bb n A;. Alternatively, A -• B may be rewritten as A n• B. We can obtain 8 (the
complement of B) by complementing B' s interior and reversing the normals of its boundary.

The regularized Boolean set operators have been used as a user-interface technique to
build complex objects from simple ones in most of the representation schemes we shall
discuss. They are also included explicitly in one of the schemes, constructive solid
geometry. In the following sections, we shall describe a variety of ways to represent solid
objects unambiguously.

12.3 PRIMITIVE INSTANCING

In primitive instancing, the modeling system defines a set of primitive 30 solid shapes that
are relevant to the application area. These primitives are typically parameterized not just in
terms of the transformations of Chapter 7, but on other properties as well. For example, one
primitive object may be a regular pyramid with a user-defined number of faces meeting at
the apex. Primitive instances are similar to parameterized objects, such as the menus of
Chapter 2, except that the objects are solids. A parameterized primitive may be thought of
as defining a family of parts whose members vary in a few parameters, an important CAD
concept known as group technology. Primitive instancing is often used for relatively
complex objects, such as gears or bolts, that are tedious to define in tem1s of Boolean
combinations of simpler objects , yet are readily characterized by a few high-level
parameters. For example, a gear may be parameterized by its diameter or number of teeth,
as shown in Fig. 12.7.

Although we can build up a hierarchy of primitive instances, each leaf-node instance is
still a separately defined object. In primitive instancing, no provisions are made for
combining objects to form a new higher-level object, using, for example, the regularized
Boolean set operations. Thus, the only way to create a new kind of object is to write the
code that defines it. Similarly, the routines that draw the objects or determine their mass
properties must be written individually for each primitive.

gear 0 gear

diam • 4.3 diam • 6.0
hub • 2.0 hub •1.0
thickness = 0.5 thickness • 0.4
teeth= 12 teeth . 18
hole= 0.3 hole= 0.3

(a) (b)

Fig. 12.7 Two gears defined by primitive instancing.

0571

540 Solid Modeling

12 .4 SWEEP REPRESENTATIONS

Sweeping an object along a trajectory through space defines a new object, called a sv.V!ep.
The simplest kind of sweep is defined by a 2D area swept along a linear path nonnal to the
plane of the urea to create a volume. This is known as a translational sweep or extrusion and
is a natural wily to represent objects made by extruding metal or plastic through a die with
the desired cross-section. ln these simple cases, each sweep's volume is simply the swept
object's area limes the length of the sweep. Simple extensions involve scaling the
cross-section as it is swept to produce a tapered object or sweeping the cross-section along a
linear path that is not nonnal to it. Rotational Sl•'l!eps are de lined by rotating an area about
an axis. Figure 12.8 shows two objects and simple translational and rotational sweeps
generated using them.

The object being swept does not need to be 20. Sweeps of solids are useful in modeling
the region swept out by a machine-tool cutting head or robot following a path, as shown in
Fig. 12.9. Sweeps whose generating area or volume changes in size, shape, or orientation
as they are swept and thai follow an arbitrary curved trajectory are called general sv.'l!eps.
General sweeps of 2D cross-sections are known as generalized cylinders in computer vision
[BitfF11] and are usually modeled as parameterized 2D cross-sections swept at right angles
along an arbitrary curve. General sweeps are particularly difficult to model efficiently. For
example, the trajectory and object shape may make the swept object intersect itself, making
volume calculations complicated. As well. general sweeps do not always generate solids.
For example, sweeping a 20 area in its own plane generates another 2D area.

Fig. 12 .8 Sweeps. (a) 20 areas are used to define (b) translational sweeps and (c)
rotational sweeps. (Created using the Alpha_1 modeling system. Courtesy of the
University of Utah.)

0572

12.4

(a)

(c)

Sweep Representations 541

Fig. 12.9 (a) Path of a cutting tool, mod·
eled as a solid sweep, is used to define (b)
model of an aircraft part. (c) Photograph
of actual part that is milled from automati­
cally generated instructions. (Created
using the Alpha_l modeling system.
Courtesy of the University of Utah.)

In general , it is difficult to apply regularized Boolean set operations to sweeps without
first converting to some other representation. Even simple sweeps are not closed under
regularized Boolean set operations. For example, the union of two simple sweeps is in
general not a simple sweep, as shown in Fig. 12.10. Despite problems of closure and
calculation, however, sweeps are a natural and intuitive way to construct a variety of
objects. For this reason, many solid modeling systems allow users to construct objects as
sweeps, but store the objects in one of the other representations that we shall discuss.

(a) (b)

Fig. 12.10 (a) Two simple sweeps of 20 objects (triangles). (b) The union of the
sweeps shown in (a) is not itself a simple sweep of a 20 object.

0573

542 Solid Modeling

Fig . 12.11 How many faces does this object have?

12.5 BOUNDARY REPRESENTATIONS

Boundary representations (also known as b-reps) resemble the naive representations that we
discussed in Section 12. 1 in that they describe an object in terms of its surface boundaries:
venices, edges, and faces. Some b-reps are restricted to planar, polygonal bounda.ries, and
may even require faces to be convex polygons or triangles. Determining what constirutes a
face can be particularly difficult if curved surfaces are allowed, as shown in Fig. 12. 11 .
Curved faces are often approximated with polygons. Alternatively, they can also be
represented as su.rface patches if the algorithms that process the representation can treat the
resulting intersection curves, which will, in general, be of higher o.rder than the original
surfaces. B-reps grew out of the simple vector representations used in earlier chapters and
are used in many current modeling systems. Because of their prevalence in graphics, a
number of efficient techniques have been developed to create smooth shaded pictures of
polygonal objects: many of these are discussed in Chapter 16.

Many b-rep systems suppon only solids whose boundaries are 2-marrifo/ds. By
definition, every point on a 2-manifold bas some arbitrarily small neighborhood of points
around it that can be considered topologically the same as a disk in the plane. This means
that there is a continuous one-te>-one correspondence between the neighborhood of points
and the disk , as shown in Fig. 12.12(a) and (b). For ~:)(ample, if more than twO faces share
an edge, as in Fig. 12.12(c), any neigbbo.rbood of a point on that edge contains points
from each of those faces. It is intuitively obvious that there is no continuous one-to-one

(a) (b) (c)

Fig. 12.12 On a 2-manifold, each point, shown as a black dot, has a neighborhood of
surrounding points that is a topological disk. shown in gray in (a) and (b). (c) If an object
is not a 2-manifold. then it has points that do not have a neighborhood that is a
topological disk.

0574

12.5 Boundary Representations 543

correspondence between this neighborhood and a disk in the plane, although the
mathematical proof is by no means trivial. Thus, the surface in Fig. 12.12(c) is not a
2-manifold. Although some current systems do not ha~ this reslriction, we limit our
discussion of b-reps tO 2-manifolds, except where we state otheJWise.

12.5 .1 Polyhedra and Euler's Formula

A polyhedron is a solid that is bounded by a set of polygons whose edges are each a member
of an even number of polygons (exactly two polygons in the case of 2-manifolds) and that
satisfies some additional constraints (discussed later). A simple {JOiyhedron is one that can
be deformed into a sphere; that is, a polyhedron that, unlike a torus, has no holes. The
b-rep of a simple polyhedron satisfies Euler' s formula, which expresses an invariant
relationship among the number of vertices, edges, and faces of a simple polyhedron:

V- E + F = 2, (12.2)

where Vis the number of venices, E is the number of edges, and F is the number of faces .
Figure 12. 13 shows some simple polyhedra and their numbers of venices, edges. and faces.
Note that the fonnula still applies if curved edges and nonplanar faces are allowed. Euler's
fonnula by itself states necessary but not sufficient conditions for an object to be a simple
polyhedron. One can construct objects that satisfy the lonnula but do not bound a volume,
by attaching one or more dangling faces or edges to an otherwise valid solid, as in Pig.
12.1(b). Additional constraints are needed to guarantee that the object is a solid: each edge
must connect two venices and be shared by exactly two faces , at least three edges must meet
at each vertex. and faces must not interpenetrate.

A generalization of Euler's fonnula applies to 2-manifolds that have faces with holes:

V - E + F - H = 2(C - G), (12.3)

where H is t.he number of holes in the faces , G is the number of holes that pass through the
object, and Cis the number of separate components (partS) of the object, as shown in Fig.
12.14. If an object has a single component, its G is known as its genus; if it has multiple
components, then its G is the sum of the genera of its components. As before, additional
constraints are also needed to guarantee that the objects are solids.

v- a ~ E= 12
Fa6

Fig. 12.13 Some simple polyhedra with their V, E, and F values. In each case V - E + F
: 2.

0575

544 Sol id Modeling

V- £: + F- H • 2(C - G)
t -· 24 36 15 3

Fig. 12.14 A polyhedron classif.ed according to Eq. (12.3). with two holes in its top
face and one hole in its bottom face.

Baumgart introduced the notion of a set of Euler operators that operate on objects
satisfying Buler's formula to transform the objecL~ into new objects that obey the formula as
well, by adding and removing vertices, edges, and faces (BAUM74]. Braid, Hillyard, and
Stroud (BRAI78] show how a small number of Euler oper.uors can be composed to
transform objects, provided that intermediate objects are not required to be valid solids,
whereas Mantyla [MANT88} proves that aU valid b-reps ean be constructed by a finite
sequence of Euler operators. Other operators that do not affect the number of vertices,
edges, or faces may be defined that tweak an object by moving the e.ltisting vertices, edges,
or faces, as shown in Fig. 12. 15.

Perhaps the simplest possible b-rep is a list of polygonal faces, each represented by a
list of vertex coordinates. To represent the direction in which each polygon faces, we list a
polygon's vert.ices in clockwise order, as seen from the exterior of the solid. To avoid
replicating coordinates shared by faces, we may inStead represent each vertex of a face by an
index into a liSt of coordinates. In this representation, edges are represented implicitly by

A A

c
8

{a) t ~
(b)

A

A

c

8

8 {d)

Fig. 12.15 (a) An object on which tweaking operations are performed to move (b)
venex A , (c) edge AB. and (d) face ABC.

0576

12.5 Boundary Representations 545

the pairs of adjacent vertices in the polygon vertt:lt lists. Edges may instead be represented
explicitly as pairs of verti~es. with each face now defined as a list of indices into the list of
edges. These representations were discussed in more detail in Section 11 . 1.1 .

12.5 .2 The Winged-Edge Representation

Simple representation make certain computations quite expensive. For eltample, discover­
ing the two faces shared by an edge (e.g., to help prove that a representation encodes a valid
solid) requires searching the edge lists of all the faces. More complex b-reps have been
designed to decrease the cost of these computations. One of the most popular is the
winged-edge data structure developed by Baumgart [BAUM72; BAUM75]. As shown in
Fig. 12.16, each edge in the winged-edge data structure is represented by pointers to its two
vertices, to the two faces sharing the edge, and to four of the additional edges emanating
from its vertices. Each vertt:lt has a backward pointer to one of the edges emanating from it,
whereas each face points to one of its edges. Note that we traverse the vertices of an edge in
opposite directions when following the vertices of each of its two faces in clockwise order.
Labeling the edge's vertices n and p, we refer to the face to its right when tro~versing the
edge from 11 top as its p face, and the fo~ce to its right when traversing the edge from p to 11

as its 11 face. For edge £1 in Fig. 12.16, if 11 is VI and pis V2, then Fl is £1 's p face, and
F2 is its 11 face. The four edges to which each edge points can be classified as follows. The
two edges that share the edge's n vertex are the next (clockwise) edge of the" face, and the
previous (counterclockwise) edge of the p face, £3 and E2, respectively. The two edges that
share the edge's p vertex are the ot:ltt (clockwise) edge of the p face, and the previous
(counterclockwise) edge of the 11 face, £4 and £5, respectively. These four edges are the
"wings" from which the winged-edge data structure gets its name.

NOte that the data structure described here handles only faces that have no holes. This
limitation can be removed by representing each face as a set of edge loops-a clockwise
outer loop and zero or more counterclockwise inner loops for its holes-as described in

Fig. 12.16 W inged-edge data structure for £1 . Each of Vl. V2. Fl. and F2 also have a
backward pointer to one of their edges (not shown).

0577

546 Solid Modeling

Section 19. 1. Alternatively, a special au~tiliary edge can be used to join each hole's
boundary to the outer boundary. Each auxiliary edge is traversed twice, once in each
direction. when a circuit of its face's edges is completed. Since an auxiliary edge has the
same face on both of its sides, it can be easily identified because its two face pointers point
to the same face.

A b-rep aiJows us to query which faces, edges, or vertices are adjacent to each face,
edge, or vertex. These queries correspond to nioe kinds of adjacency relationships. The
winged-edge data structure makes it possible to determine in comunt time which vertices
or faces are associated with an edge. It takes longer to compute other adjacency
relationships. One attractive propcny of the winged edge is that the data structures for the
edges. faces. and "'!rtices are each of a small, constant size. Only the number of instances
of each data structure varies among objects. Weiler (WEIL85] and Woo [W0085) discuss
the space-time efficiency of the winged edge and a variety of alternative b-rep data
structures.

12.5.3 Boolean Set Operations

B-reps may be combined. using the regularized Boolean set operators, to create new b-reps
[REQU85[. Sarraga [SARR831 and Miller [MILL87l discuss algorithms tbat determine the
intersections between quadric surfaces. Algorithms for combining polyhedral objects are
presented in [TURN84: REQU85; PUTN86; LAID86]. and Thibault and Naylor [THIB87j
describe a method based on the binary space-partitioning tree representation of solids
discussed in Section 12.6.4.

One approach [LAJD86[is to inspect the polygons of both objects, splitting them if
necessary to ensure that the intersection of a "'!rtex, edge, or face of one object with any
\>'eflex, edge. or face of another, is a \'l!rtex, edge, or face of both. The polygons of each
object are then classified relative to the other object to determine whether they lie inside,
outside. or on its boundary. Referring back to Table 12.1, we note that since this is a b-rep.
we are concerned with only the last six rows, each of which represents some part of one or
both of the original object boundaries, A6 and B6• After splitting, each polygon of one object
is either wholly inside the other object (A• n B; or Bb n A1), wholly outside the other object
(A0 - B or B6 - A). or part of the shared boundary (A6 n B• same or A6 n B6 difl).

A polygon may be classified by the ray-casting technique discussed in Section 15. 10.1.
Here. ,,,.e construct a \'eCtor in the direction of the polygon's surface normal from a point in
the polygon's interior, and then find the closest polygon that intersects the vector in the
other object. Lf no polygon is intersected. the original polygon is outside the other object. If
the closest intersecting polygon is coplanar with the original polygon. then this is a
boundary- boundary intersection, and comparing polygon normals indicates what kind of
intersection it is (A6 n B6 same or A6 n B6 difl). Otherwise, the dot product of the two
polygons' normals is inspected. A positive dot product indicates that the original polygon is
inside the other object, whereas a negative dot product indicates that it is outside. A zero
dot product occurs if the vector is in the plane of the intersected polygon; in this case, the
vector is perturbed slightly and is intersected again with the other object's polygons.

Vertex-adjacency information can be used to a\'Oid the 0\'l!rhead of classifying each
polygon in this way. Lf a polygon is adjacent to (i.e., shares "'!rtices with) a classified

0578

12.5 Boundary Representations 547

polygon and does not meet the surface of the o!her object, then it is assigned the same
classification. All vertices on the common boundary between objects can be marked during
the initial polygon-splitting phase. Whether or not a polygon meets !he other object's
surface can be determined by checking whether or not it has boundary vertices.

Each polygon's classification determines whether it is retained or discarded in the
operation creating !he composite object, as described in Section 12.2. For example, in
forming the union, any polygon belonging to one object that is inside the other object is
discarded. Any polygon from either object !hat is not inside !he other is retained, except in
the case of coplanar polygons. Coplanar polygons are discarded if tbey have opposit.e
surface normals, and only one of a pair is retained if !he directions of the surface normals
are !he same. Deciding which polygon to retain is important if the objects are made of
different materials. Although A u• 8 has the same geometric meaning as 8 u• A, the two
may have visibly different results in this case, so !he operation may be defined to favor one
of its operands in the case of coplanar polygons.

12.6 .4 Nonpolyhedral b·Reps

Unfortunately, polyhedral representations can only approximate objects that are not
themselves polyhedral, and can require large amounts of data to approximate objects with
curved surfaces acceptably. Consider the problem of representing a cylindrical object in a
cylindrical hole with polyhedral b-reps, as shown in Fig. 12. 17. If the boundaries of the
actual objects touch, then even if the boundaries of the two polyhedral approximations are
initially coincident as well, the approximations will intersect if one is slowly rotated, no
matter how many polygons are used in the approximation.

One promising approach to exact b-reps allows sculpted surfaces defined by curves.
The Alpha . .l (COHE83] and Geomod [TlLL&J] modeling systems model such free-form
surfaces as tensor products of NURBS (see Section 11.2.5). Since each individual surface
may not itself be closed, Thomas (THOM84) has developed an algorithm for Alpha. . .l !hat
performs regularized Boolean set operations on objects whose boundaries are only partially
specified, as shown in Fig. 12.18. The objects in Color Plate 1.31 were modeled with
Alpha,. I.

Because b-reps tile an object's surface, they do not provide a unique representation of a
solid. In addition, as mentioned previously, many b·rep-based systems handle only objects
whose surfaces are 2-manifolds. Note that 2-manifolds are not closed under regularized

(a) (b) (C)

Fig. 12.17 (a) Cross-section of a cylinder in a round hole. (b) Polygonal approximation
of hole and cylinder. (c) Interference occurs if approximated cylinder is tumed relative to
hole .

0579

548 Solid Modeling

(8) (b)

Fig. 12.18 Boolean set operations on partially bounded objects. (a) Six partially
bounded sets. (b) Intersection of sets defines a wavy cube. (Courtesy of Spencer W.
Thomas. University of Utah.)

Boolean set operations. The regularized union of two b-rep cubes positioned such that they
share exactly one common edge, for example, should produce four faces sharing that
common edge. This configuration is not allowed in some systems, however, such as those
based on the winged-edge representation. Weiler [WEIL88) describes a nonmanifold,
boundary-based modeling system that can handle wireframe objects, in addition to surfaces
and solids, as illustrated in Color Plate 1.32.

12.6 SPATIAL-PARTITIONING REPRESENTATIONS

In spatial-partitioning representations, a solid is decomposed into a collection of adjoining,
non intersecting solids that are more primitive than, although not necessarily of the same
type as, the original solid. Primitives may vary in type, size, position, parameterization ,
and orientation, much like the diO'erent-shapcd blocks in a child's block set. How far we
decompose objects depends on how primitive the solids must be in order to perform readily
the ope rat ions of interest .

12.6.1 Cell Decomposition

One of the most general forms of spatial partitioning is called cell decomposition. Each
cell-decomposition system defines a set of primitive cells that are typicaJJy parameterized
and are often curved. Cell decomposition differs from primitive instancing in that we can
compose more complex objects from simple, primitive ones in a bottom-up fashion by
"gluing" them together. The glue operation can be thought of as a restricted form of union
in which the objects must not intersect. Further restrictions on gluing cells often require that
No cells share a single point. edge. or face. Although cell-decomposition representation of
an object is unambiguous, it is not necessarily unique , as shown in Fig. 12.19. Cell

0580

12.6 Spatial-Partitioning Representations 54 9

(a) (b) (C)

Fig. 12 .19 The cells shown in (a) may be transformed to construct the same object
shown in (b) and (c) in different ways. Even a single cell type is enough to cause
ambiguity.

decompositions are also difficult to validate, since each pair of cells must potentially be
tested for intersection. Nevertheless, cell decomposition is an important representation for
use in finite element analysis.

12.6 .2 Spatial-Occupancy Enumeration

Spatial-occupancy errumerotion is a special case of cell decomposition in which the solid is
decomposed into identical cells arranged in a fixed, regular grid. These cells are often called
ro.uls (volume elements), in analogy to pixels. Figure 12.20 shows an object represented by
spatial-occupancy enumeration. The most common cell type is the cube, and the
representation of space as a regular array of cubes is called a cuberille. When representing
an object using spatial-occupancy enumeration, v,.oe control only the presence or absence of
a single cell at each position in the grid. To represent an object, v,.oe need only to decide
which cells are occupied and which are not. The object can thus be encoded by a unique and
unambiguous list of occupied cells. It is easy to find out whether a cell is inside or outside of
the solid, and detenniniog whether t'II.Q objects are adjacent is simple as well. Spatial-

Fig. 12 .20 Torus represented by spatial-occupancy enumeration. {By AHJ Christen­
sen, SIGGRAPH ·so Conference Proceedings. Compurer Graphics (14)3, July 1980.
Courtesy of Association for Computing Machinery, Inc.)

0581

550 Solid Modeling

occupancy enumeration is ofien used in biomed.icaJ applications to represent volumetric
data obtained from souroes such as computerized axial tomography (CAT) scans.

For aU of its advantages, however, spatial-occupancy enumeration has a number of
obvious failings that parallel those of representing a 20 shape by a 1-bit-deep bitmap. There
is no concept of "partial" occupancy. Thus, many solids can be only approximated; the
torus of Fig. 12.20 is an example. If the cells are cubes, then the only objects that can be
represented WICtly are those whose faces are parallel to the cube sides and whose venices
fall WICtly on the grid. Like pixels in a bitmap, cells may in principle be made as small as
desired to increase the accuracy of the representation. Space becomes an important issue,
howe\ler, since up torr' occupied cells are needed to represent an object at a resolution of n
IIOXels in each of three dimensions.

12 .6 .3 Octrees

Octrees are a hierarchical variant of spatial-occupancy enumeration, designed to address
that approach's demanding storage requirements . Octrees are in tum derived from
quadtrti!S, a 20 representation format used to encode images (see Section 17. 7). As
detailed in Samet's comprehensive survey [SAME84), both representations appear to have
been discovered independently by a number of researchers, quadtrees in the late 1960s to
early 1970s [e.g., WARN69; KLIN71] and octrees in the late 1970s to early 1980s [e.g.,
HUNT78; RE0078; JACK80; MEAG80; MEAG82a].

The fundamental idea behind both the quadtree and octree is the divide-and-conquer
power of binary subdivision. A quad tree is derived by successively subdividing a 20 plane
in both dimensions to form quadrants, as shown in Fig. 12.21. When a quadtree is used to
represent an area in the plane, each quadrant may be full, partially full, or empty (also
called black, gray, and white, respectively), depending on how much of the quadrant
intersects the area. A partially fuJI quadrant is recursively subdivided into subquadrants.
Subdivision continues until aU quadrants are homogeneous (either fuJI or empty) or until a
predetermined cutoff depth is reached. Whenever four sibling quadrants are uniformly full
or empty, they are deleted and their partially full parent is replaced with a full or empty
node. (A bottom-up approach can be used instead to avoid this deletion and merging
process [SAME90b].) In Fig. 12.21, any partially full node at the cutoff depth is classified
as full. The successive subdivisions can be represented as a tree with partially full quadrants
at the internal nodes and full and empry quadrants at the leaves, as shown in Fig. 12.22.

(a) (b)

Fig. 12.2 1 An object represented using (a) spatial-occupancy enumeration (b) a
quadtree.

0582

12.6 Spatial-Partitioning Representations 551

2 3
Quadrant numbering

0 1

Fig. 12.22 Quadtree data structure for the object in Fig. 12.21. F = full, P = partially
full, E = empty.

This idea can be compared to the Warnock area-subdivision algorithm discussed in Section
15.7 .I. If the criteria for classifying a node as homogeneous are relaxed, allowing nodes
that are above or below some threshold to be classified as full or empty, then the
representation becomes more compact, but less accurate. The octree is similar to the
quadtree, except that its three dimensions are recursively subdivided into octants, as shown
in Fig. 12.23.

Quadrants are often referred to by the numbers 0 to 3, and octants by numbers from 0
to 7. Since no standard numbering scheme has been devised, mnemonic names are also
used. Quadrants are named according to their compass direction relative to the center of
their parent: NW, NE, SW, and SE. Octants are named similarly, distinguishing between
left (L) and right (R), up (U) and down (D), and front (F) and back (B): LUF, LUB, LDF,
LOB, RUF, RUB, RDF, and ROB.

y

/2/3/

/ / 2/3/
3 6 / 6 /7/ 3

6 7 7 ~ / 6 v
4 5 5 !/ 1 I/

4 5
5 / v

X

z

Fig. 12.23 Octree enumeration. Octant 0 is not visible.

0583

552 Solid Modeling

With the exception of a few worst cases, it can be shown that the number of nodes in a
quadtree or octree representation of an object is proponional to the object's perimeter or
surface. respectively [HUNT78; MEAG80]. This relation holds because node subdivision
arises only from the need to represent the boundary of the object being encoded. The only
internal nodes that are split are those through which part of the boundary passes. Thus, any
operation on one of these data structures that is linear in the number of nodes it contains
also executes in time proponional to the size of its perimeter or area.

Although the divide-and-conquer approach of the quadtree and octree can be
generalized to objects of arbitrary dimension. it is also possible to represent objects using
only binary trees. Rather than dividing along all axes at each node of the tree , a bintree
panitions space into equal halves nbout a single axis at each node , cycling through a new
axis at each level [TAMM84J. A bintree often has more nodes than its equivalent quadtree
or octree. but has at most the same number of leaves; as well , many processing algorithms
can be formulated more simply for bintrees.

Boolean set operations and transformations. Much work has been done on develop­
ing etrlcient algorithms for storing and processing quadtrees and octrees [SAME84;
SAME90a; SAME90b]. For example, Boolean set operations are straightforward for both
quadtrees and octrees [HUNT79J. To compute the union or intersection U of two trees , S
and T, we traverse both trees top-down in parallel. Figure 12.24 shows the operations for
quadtrees; the generalization to octrees is straightforward. Each matching pair of nodes is
examined. Consider the case of union. If either of the nodes in the pair is black, then a
corresponding black node is added to U. U one of the pair's nodes is white , then the
corresponding node is created in U with the value of the other node in the pair. If both
nodes of the pair are gray, then a gray node is added to U, and the algorithm is applied
recursively to the pair's children. In this l.ast case, the children of the new node in U must be
inspected after the algorithm has been applied to them. If they are all black, they are deleted
and their parent in U is changed from gray to black. The algorithm for performing
intersection is similar, except the roles of black and white are interchanged. lf either of the
nodes in a pair is white, then a corresponding white node is added to U. If one of the pair's
nodes is black, then the corresponding node is created in U with the value of the other node
in the pair. II both nodes of the pair are gray, then a gray node is added to U, and the
algorithm is applied recursively to the pair's children. As in the union algorithm, if both
nodes arc gray, then after t.he algorithm has been applied to the children of the new node in
U, the children must be inspected. In this case, if they are all white, they are deleted and
their parent in U must be changed from gray to white.

It is easy to perform simple transformations on quadtrees and octrecs. For example,
rotation about an axis by multiples of 90" is accomplished by recursively rotating the
children at each level. Scaling by powers of 2 and reflections are also straightforward.
Translations arc somewhat more complex, as are general transformations. In addition, as in
spatial-occupancy enumeration in general, the problem of aliasing under general transfor­
mations is severe.

Neig hbor finding. One imponant operation in quadtrees and octrees is finding a node's
neighbor, that is, finding a node that is adjacent to the original node (sharing a face, edge,
or \'eftCX) nnd of equal or greater size. A quadtree node has neighbors in eight possible

0584

12.6 Spa tial-Pa rtitio ning Representatio ns 553

Fig. 12 .24 Performing Boolean set operations on quadtrees. (a) Object S and its
quadtree. (b) Object T and its quadtree. (c) S u T. (d) S n T.

directions. Its N, S , E, W neighbors are neighbors along a common edge, whereas its NW,
NE, SW, and SE neighbors are neighbors along a common vertex. An oc1ree node has
neighbors in 26 possible directions: 6 neighbors along a face, 12 neighbors along an edge,
and 8 neighbors along a vertex.

Samet [SAME89a) describes a way to find a node's neighbor in a specified direction.
The method starts at the original node and ascends the quadtree or oc1ree until the first
common ancestor of the original node and neighbor is found. The lree is then 1raversed
downward to find the desired neighbor. 1Wo problems must be solved efficiently here:
find ing the common ancestor and determin ing which of its descendants is the neighbor. The
simplest case is finding an oclree node 's neighbor in the direction d of one of its faces: L, R,
U, 0 , F, or B. As we ascend the tree starting at the original node, the common ancestor
will be the first node that is not reached from a child on the node's d side. For example, if
the search is for an L neighbor, then the first common ancestor is the first node that is not
reached from an LUF, WB, LDF, or LOB child. This is true because a node that has been
reached from one of these chi ldren cannot have any child that is left of (is an L neighbor of)

0585

554 Solid M odeling

the original node. When the common ancestor is found, its subtree is descended in a mirror
image of the path from the original node to the ancestor, reflected about the common
border. Only part of the reflected path is followed if the neighbor is larger than the original
node.

A similar method can be used to find a quadtree node's neighbor in the direction of one
of its edges. For example, to find the N neighbor of node A of Fig. 12.25, we begin at A,
which is a NW child, and follow the path depicted by the thick line in the figure. We ascend
from the NW to its parent , from the NW again to its grandparent, and finally from the SW
to its great grandparent, the root, stopping because we have approached it from an S nod.e,
rather than from an N node. We then follow the mirror-in1age path downward (reflected
about the N-S border), to the root's NW chi ld, and finally to this node's SW child, which is
a leaf. Samet [SAME89a] describes the more elaborate algorithms for finding edge and
vertex neighbors in octrees, and provides an elegant recursive implementation that uses
table lookup to perform such operations as computing the reflected path.

Linear notations. Although a tree data structure with pointers might at first seem
necessary to represent a quadtree or octree, pointerless notations are possible. In the linear
quadtree or linear octree notation [GARG82] , each full node is represented as a sequence of
digits that repre.<;ents its fully qualified address. There are as many digits as there are levels.
Only black leaf nodes need to be stored to represent the object. Nodes that are not at the
lowest level include an additional padding character (e .g., " X ") in each of their trailing

1... I/ "'\
D -

~

"' J
A :7

~ ll [/
~

A

Fig. 12.25 Finding the neighbor of a quadtree node.

0586

12.6 Spatial-Partitioning Representations 555

digits. For example, a linear octree can be encoded compactly using base-9 numbers
(conveniently represented with 4 bits per digit), with 0 through 7 specifying octants and 8
indicating padding. The nodes in the linear octree are stored in sorted order, which
represents a postorder traversal of the octree. For example, the linear quadtree representa­
tionoftheobjectinFig.l2.21 isOOX,Ol0,0 11,020,022, 100,102,103, 12X, 130,132,
20X, 21X, 220,222,223,230,231,232, 3XX.

A number of operations can be performed efficiently with the linear-quadtree or
linear-octree representation. For example, Atkinson, Gargantini, and Ramanath [ATKJ84]
present an algorithm for determining the voxels that form an octree's border by making
successive pa~ses over a list of the octree's nodes. Full nodes of the largest size are
considered first. Each such node that abuts full nodes of the same s i.ze on all six sides is
internal to the object and is therefore not part of the border, it is eliminated from the list.
(Each neighbor's code may be derived by simple arithmetic manipulation of the node's
code.) Any other node of this size may contain voxels that are part of the border; each of
these nodes is broken into its eight constituent nodes, which replace it in the list. The
algorithm is repeated for successively smal ler node sizes, stopping after voxel-sized nodes
are considered. Those nodes remaining are all the voxels on the object's border.

PM octrees. A number of researchers have developed hybrid representations that
combine octrees and b-reps to maintain the precise geometry of the original b-rep from
which the object is derived [HUNTS I ; QUIN82; AYAL85; CARL85; FUJ185]. These PM
octrees (PM stands for Polygonal Map) expand on a similar quad tree variant [SAME90a].
The octree is recursively divided into nodes until the node is one of five different leaf types.
ln addition to full and empty, three new leaf nodes are introduced that are actually special
kinds of partially full nodes: vertex nodes, which contain a single vertex and its connected
faces and edges; edge nodes, which contain part of a single edge and its faces; and surface
nodes, which are cut by a piece of a single face. Restricting the new leaf types to a set of
simple geometries, each of which divides the node into exactly two parts , simplifies the
algorithms that manipulate the representation, such as Boolean set operations [CARL87;
NAVA89].

Section 18. 11.4 discusses a number of architectures based on voxel and octree models.
Section 15.8 discusses visible-surface algorithms for octrees.

12.6.4 Binary Space-Partitioning Trees

Octrees recursively divide space by planes that are always mutually perpendicular and that
bisect all three dimensions at each level of the tree. ln contrast, binary space-partitioning
(BSP) trees recursively divide space into pairs of subspaces, each separated by a plane of
arbitrary orientation and position. The binary-tree data structure created was originally
used in determining visible surfaces in graphics, as described in Section 15.5.2. Thibault
and Naylor [TH1B87] 1ater introduced the use of BSP trees to represent arbitrary polyhedra.
Each internal node of the BSP tree is associated with a plane and has two child pointers, one
for each side of the plane. Assuming that normals point out of an object, the left child is
behind or inside the plane, whereas the right child is in front of or outside the plane. If the
half-space on a side of the plane is subdivided further, then its child is the root of a subtree;
if the half-space is homogeneous , then its child is a leaf. representing a region either

0587

556 Solid Modeling

entirely inside or entirely outside the polyhedron. These homogeneous regions are called
" in" cells and "out" cells. To account for the limited numerical precision with which
operations are performed, each node also has a "thickness" associated with its plane. Any
point lying within this tolerance of the plane is considered to be "on" the plane.

The subdivision concept berund BSP trees , like that underlying octrees and quadtrees,
is dimension-independent. Thus, Fig. 12.26(a) shows a concave polygon in 20, bordered
by black lines. " In" cells are shaded light gray, and the lines defining the half-spaces are
shown in dark gray, with normals pointing to the outside. The corresponding BSP tree is
shown in Fig. 12.26(b). Ln 20, the " in" and "out" regions form a convex polygonal
tessellation of the plane; in 30, the "in" and " out" regions form a convex polyhedral
tessellation of3-space. Thus, a BSP tree can represent an arbitrary concave solid with holes
as a union of convex " in" regions. Unlike octrees, but like b-reps, an arbitrary BSP tree
does not necessarily represent a bounded solid. For example, the 30 BSP tree consisting of
a single internal node, with "in" and "out" nodes as children, defines an object that is a
half-space bounded by only one plane.

Consider t.he task of determining whether a point lies inside, outs.ide, or on a solid, a
problem known as point classification (TLL080]. A BSP tree may be used to classify a point
by filtering that point down the tree, beginning at the root. At each node, the point is
substituted into the node's plane equation and is passed recursively to the left child if it lies
behind (inside) the plane, or to the right child if it lies in front of (outside) the plane. If the
node is a leaf, then the point is given the leafs value , either " out" or " in." If the point Lies
on a node' s plane, then it is passed to both children, and the classifications are compared. If
they are the same, then the point receives that value; if they are different, then the point lies
on the boundary between "out" and "in" regions and is classified as "on." This approach
can be extended to classify lines and polygons. Unlike a point, however, a line or polygon
may lie partially on both sides of a plane. Therefore, at each node whose plane intersects
the line or polygon, the line or polygon must be divided (clipped) into those parts that are in
front of, in back of, or on the plane, and the partS classified separately.

Thibault and Naylor describe algorithms for building a BSP tree from a b-rep, for
performing Boolean set operations to combine a BSP tree with a b-rep, and for determining
those polygonal pieces that lie on a BSP tree's boundary [THffi87]. These algorithms
operate on BSP trees whose nodes are each associated with a list of polygons embedded in

a----
/ b'-..... / .J. .. ,
c e k out ""'' / / / d' out./\ / g'- m out

in out m out / h' out

in / i'
in out

(a) (b)

Fig. 12.26 A BSP tree representation in 20. (a) A concave polygon bounded by black
lines. lines defining the half-spaces are dark gray, and "in" cells are light gray. (b) The
BSP tree.

0588

12.7 Constructive Solid Geometry 557

the node's plane. Polygons are inserted into the tree using a variant of the BSP tree building
algorithm presented in Section 15.5.2.

Although BSP trees provide an elegant and simple representation, polygons are
subdivided as the tree is constructed and as Boolean set operations are performed, making
the notation potentially less compact than other representations. By taking advantage of the
BSP tree's inherent dimension-independence, however, we can develop a closed Boolean
algebra for 30 BSP trees that recursively relies on representing polygons as 20 trees, edges
as 10 trees, and points as 00 trees [NAYL90].

12 .7 CONSTRUCTIVE SOLID GEOMETRY

In constructive solid geometry (CSG), simple primitives are combined by means of
regularized Boolean set operators that are included directly in the representation. An object
is stored as a tree with operators at the internal nodes and simple primitives at the leaves
(Fig. 12.27). Some nodes represent Boolean operators, whereas others perform translation,
rotation , and scaling, much like the h.ierarchies of Chapter 7. Since Boolean operations are
not , in general, commutative, the edges of the tree are ordered.

To determine physical properties or to make pictures, we must be able to combine the
properties of the leaves to obtain the properties of the root. The general processing strategy
is a depth-first tree walk , as in Chapter 7, to combine nodes from the leaves on up the tree.
The complexity of this task depends on the representation in which the leaf objects are
stored and on whether a full representation of the composite object at the tree's root must
actually be produced. For example, the regularized Boolean set operation algorithms for
b-reps, discussed in Section 12.5, combine the b-reps of two nodes to create a third b-rep
and are difficult to implement. The much simpler CSG algorithm discussed in Section
15 . I 0.3, on the other hand, produces a picture by processing the representations of the
leaves without explicitly combining them. Other algorithms for creating pictures of CSG
representations include [ATHE83; OKIN84; JANS85]; architectures that support CSG are
discussed in Sections 18.9.2, 18.10.2 and 18.1 1.4.

Fig. 12.27 An object defined by CSG and its tree.

0589

558 Solid Modeling

(a) (b) A - · 8 (c) A u· 8

(d) (e)

Fig. 12.28 The object shown in (a) may be defined by different CSG operations, as
shown in (b) and (c) . Tweaking the top face of (b) and (c) upward yields different objects.
shown in (d) and (e).

In some implementations, the primitives are simple solids, such as cubes or spheres ,
ensuring that all regularized combinations are valid solids as well. ln other systems,
primitives include half-spaces , which themselves are not bounded solids. For example, a
cube can be defined as the intersection of six half-spaces, or a finite cylinder as an infinite
cylinder that is capped off at the top and bottom by planar half-spaces. Using half-spaces
introduces a validity problem, since not all combinations produce solids. Half-spaces are
useful , however, for operations such as slicing an object by a plane, which might otherwise
be performed by using the face of another solid object. Without half·spaces, extra overhead
is introduced, since the regularized Boolean set operations must be performed with the full
object doing the slicing, even if only a single slicing face is of interest.

We can think of the cell-decomposition and spatial-occupancy enumeration techniques
as special cases of CSG in which the only operator i.s the implicit glue operator: the union of
t\I.U objects that may touch, but must have disjoint interiors (i.e ., the objects must have a
null regularized Boolean intersection).

CSG does not provide a unique representation. This can be particularly confusing in a
system that lets the user manipulate the leaf objects with tweaking operators. Applying the
same operation to t\I.U objects that are initially the same can yield t\I.U different results, as
shown in Fig. 12.28. Nevertheless, the ability to edit models by deleting, adding, replacing,
and modifying subtrees, coupled with the relatively compact form in which models are
stored, have made CSG one of the dominant solid modeling representations.

12.8 COMPARISON OF REPRESENTATIONS

We have discussed five main kinds of representations: primitive instancing, sweeps, b-reps,
spatial partitioning (including cell decomposition , spatial-occupancy enumeration, OCtreeS,

and BSP rrees), and CSG. Let us compare them on the basis of the criteria introduced in
Section 12.1.

0590

12.8 Comparison of Representations 559

•

•

•

•

•

•

Accuracy. Spatial-partitioning and polygonal b-rep methods produce only approxima­
tions for many objects. 1n some applications, such as finding a path for a robot, this is
not a drawback, as long as the approximation is computed to an adequate (often
relatively coarse) resolution. The resolution needed to produce visually pleasing
graphics or to calculate object interactions with sufficient accuracy, however, may be
too high to be practical. The smooth shading techniques discussed in Chapter 16 do not
fix the visual artifacts caused by the all-too-obvious polygonal edges. Therefore,
systems that support high-quality graphics often use CSG with nonpolyhedral
primitives and b-reps that allow curved surfaces. Primitive instancing also can produce
high-quality pictures, but does not allow tm> simpler objects to be combined with
Boolean set operators.
Doln(lin. The domain of objects that can be represented by both primitive instancing
and sweeps is limited. In comparison, spatial-partitioning approaches can represent
any solid , although often only as an approximation. By providing other kinds of faces
and edges in addition to polygons bounded by straight lines, b-reps can be used to
represent a very wide class of objects. Many b-rep systems, however, are restricted to
simple surface types and topologies. For example, they may be able to encode only
combinations of quadrics that are 2-manifolds.

Uniqueness. Only octree and spatial-occupancy-enumeration approaches guarantee
the uniqueness of a representation: There is only one way to represent an object with a
specified size and position. In the case of octrees, some processing must be done to en­
sure that the representation is fully reduced (i.e. , that no gray node bas all black child­
ren or all white children). Primitive instancing does not guarantee uniqueness in general:
for example, a sphere may be represented by both a spherical and an elliptical primi­
tive. lf the set of primitives is chosen carefully, however, uniqueness can be ensured.

Validity. Among all the representations, b-reps stand out as being the most difficuh to
validate. Not only may vertex, edge, and face data structures be inconsistent, but also
faces or edges may intersect. In contrast, any BSP tree represents a valid spatial set, but
not necessarily a bounded solid. Only simple local syntactic checking needs to be done
to validate a CSG tree (which is always bounded, if its primitives are bounded) or an
octree, and no checking is needed for spatial-occupancy enumeration.

Closure. Primitives created using primitive instancing cannot be combined at all , and
simple sweeps are not closed under Boolean operations. Therefore, neither i.s typically
used as an internal representation in modeling systems. Although particular b-reps may
suffer from closure problems under Boolean operations (e.g. , the inability to represent
other than 2-manifolds), these problem cases can often be avoided.

Compactness and efficiency. Representation schemes are often classified by whether
they produce "evaluated' · or "unevaluated" models. Unevaluated models contain
information that must be further processed (or evaluated) in order to perform basic
operations, such as determining an object's boundary. With regard to the use of
Boolean operations, CSG creates unevaluated models, in that each time computations
are perfom1ed, we must walk the tree, evaluating the expressions . Consequently, the
advantages of CSG are its compactness and the abil icy to record Boolean operations
and changes of transformations quickly, and to undo all of these quickly since they
involve only tree-node building. Octrees and BSP trees can also be considered

0591

560 Solid M odeling

unevaluated models, as can a sequence of Euler opennors that creates a b-rep. B-reps
and spatial-occupancy enumeration, on the other hand, are often considered evaluated
models insofar as any Boolean operations used to create an object have already been
performed. Note that the use of these terms is relative; if the operation to be performed
is determining whether a point is inside an object, for example, more work may be
done evaluating a b-rep than evaluating the equivalent CSG tree.

As discussed in Chapter 15, a number of efficient algorithms exist for generating
pictures of objects encoded using b-reps and CSG. Although spatial-occupancy
enumeration and octrees can provide only coarse approximations for most objects, the
algorithms used to manipulate them are in general simpler than the equivalents for
other representations. They have thus been used in hardware-based solid modeling
systems intended for applications in which the increased speed with which Boolean set
operations can be performed on them outweighs the coarseness of the resulting images.

Some systems usc multiple representations because some operations are more efficient
with one representation than with another. For example, GMSOLTD [BOYS82] uses CSG
for compactness and a b-rep for quick retrieval of useful data not explicitly specified in
CSG, such as connectivity. Although GMSOLID' s CSG representation always reHects the
current state of the object being modeled, its b-rep is updated only when the operations that
require it are executed. Updating may be done by a background process, so that the user can
perform other oper.ltions while waiting for the result. In addition to systems that maintain
two completely separate representations, deriving one from the other when needed, there
are also hybrid sylitems that go down to some level of detail in one scheme, then switch to
another, but never duplicate information. The PM octrees discussed in Section 12.6.3 that
combine octrees with b-reps provide examples. Some of the issues raised by the use of
multiple representations and hybrid representations are addressed in [MILL89).

It is relatively easy to convert all the representations we have discussed to spatial­
occupancy-enumeration or octree representations, but only as approximations. Such
conversions are not invertible, because they lose information. ln addition , it is easy to
convert al l representations exactly to b-reps and PM octrees. An algorithm for performing
Boolean operations on b-reps, such as the one described in Section 12.5, can be used to
convert CSG to b-rep by successive application to each level of the CSG tree, beginning
with the polyhedral descriptions of the leaf primitives. Rossignac and Voelcker [ROSS89]
have implemented an efficient CSG-to-b-rep conversion algorithm that identifies what they
call the active zone of a CSG node-that part of the node that, if changed, will affect the
final solid; only the parts of a solid within a node's active zone need be considered when
Boolean operations are performed. On the other hand, conversion from b-rep into CSG is
difficult , especially if an encoding into a minimal number of CSG opemtions is desired.
Vossler [VOSS85b] describes a method for converting sweeps tO CSG by automatically
recognizing patterns of simpler sweeps that can be combined with Boolean operations to
form the more complex sweep being converted.

As pointed out in Section 12.1 , wireframe representations containing only vertex and
edge information, with no reference to faces, are inherently ambiguous. Markowsky and
Wesley, however, have developed an algorithm for deriving al l polyhedra that could be
represented by a given wirefnune [MARK80) and a companion algorithm that generates all
polyhedra that could produce a given 20 projection [WESL81).

0592

12.10 Summary 561

12.9 USER INTERFACES FOR SOLID MODELING

Developing the user interface for a solid modeling system provides an excellent opportunity
to put into practice the interface des.ign techniques discussed in Chapter 9. A variety of
techniques lend themselves well to graphical interfaces, including the direct application of
regularized Boolean set operators. tweaking, and Euler operators. In CSO systems the user
may be allowed to edit the object by modifying or replacing one of the leaf solids or
subtrees. Blending and chamfering operations may be defined to smooth the transition from
one surface to another. The user interfaces of successful systems are largely independent of
the internal representation chosen. Primitive instancing is an exception. however, since it
encourages user to tllink of objects in terms of special-purpose parameters.

In Chapter I I , we noted that there are many equivalent ways to describe the same
curve. For example, the user interface to a curve-drawing system can let the user enter
curves by controlling Hermite tangent vectors or by specifying Bezier control points, while
storing curves only as Bezier control points. Similarly, a solid modeling system may let the
user create objects in tern1s of several different representations, while storing them in yet
another. As with curve representations, each different input representation may have some
expressive advantage that makes it a natural choice for creating the object. For example, a
b-rep system may allow an object to be defined as a translational or rotational sweep. The
user interface may also provide different ways to define the same object within a single
representation . . For example, two of the many ways to define a sphere are to specify its
center and a point on its surface, or to specify the t\1.'0 endpoints of a diameter. The first may
be more useful for centering a sphere at a point, whereas the second may be better for
positioning the sphere between two supports.

The precision with which objects must be specified often dictates that some means be
provided to determine measurements accurately; for example, through a locator device or
through numeric entry. Because the position of one object often depends on those of others,
interfaces often provide the ability to constrain one object by another. A related technique is
to give the user the ability to define grid lines to constrain object positions, as discussed in
Section 8.2.1 .

Some of the most fundamental problems of designing a solid modeling interface are
those caused by the need to manipulate and display 3D objects with what are typically 2D
interaction devices and displays. These general issues were discussed in more detail in
Chapters 8 and 9. Many systems address some of these problems by providing multiple
display windows that allow the user to view the object simultaneously from different
positions.

12.1 0 SUMMARY

As we have seen, solid modeling is important in both CAD/CAM and graphics. Although
useful algorithms and systems exist that handle the objects described so far, many difficult
problems remain unsolved. One of the most important is the issue of robustness. Solid
modeling systems are typica.lly plagued by numerical instabilities. Commonly used
algorithms require more precision to hold intermediate floating-point results than is
available in hardware. For example, Boolean set operation algorithms may fail when
presented with two objects, one of which is a very slightly trans fonncd copy of the first.

0593

562 Solid Modeling

Represenwtions are needed for nonrigid, flexible , jointed objects. Work on transforma­
tions that bend and twist objects is described in Chapter 20. Many objects cannot be
specified with total accuracy; rather, their shapes are defined by parameters constrained to
lie within a range of values. These are known as "toleranced" objects, and correspond to
real objects turned out by machines such as lathes and stampers [REQU84]. New
representations are being developed to encode toleranced objects [GOSS88).

Common to all designed objects is the concept of "features," such as holes and
chamfers, that are designed for specific purposes. One current area of research is exploring
the possibility of recognizing features automatically and inferring the designer's intent for
what each feature should accomplish [PRAT84]. This will allow the design to be checked to
ensure that the features perform as intended. For example, if certain features are designed to
give a part strength under pressure, then their ability to perform this function could be
val idatcd automatically. Future operations on the object could also be checked to ensure
that the features' functionality was not compromised.

EX ERCISES

12.1 Define the resuiLS of perfonning u• and - • for two polyhedral objecl,S in the same way as the
result of perfonning n• was defined in Section 12.2. Explain how the resulting object is constrained
to be a regular set, and specify how the nonnal is determined for each of the object's faces.

12.2 Consider the task of detennining whether or not a legal solid is the null object (which has no
volume). How difficult is it to perfonn this test in each of the representations discussed?

12.3 Consider a system whose objects are represented as sweeps and can be operated on using the
regularized Boolean set operators. What restrictions must be placed on the objecLS to ensure closure?

12.4 Implement the algorithms for perfonning Boolean set operations on quadtrees or on octrees.

12.5 Explain why an implementation of Boolean set operations on quadtrees or octrees does not
need to address the distinction between the ordinary and regularized operations described in Section
12.2.

12.6 Although the geometric implications of applying the regularized Boolean set operators are
unambiguous , it is Jess clear how object properties should be treated. For example, what propenies
should be assigned to the intersection of two objects made of different materials? In modeling actual
objects, this question is of little imponance, but in the artificial world of graphic.~. it is possible to
intersect any two materials. What solutions do you think would be useful?

12.7 Explain how a quadtree or octree could be used to speed up 20 or 3D picking in a graphics
package.

12.8 Describe how to perfonn point classification in primitive instancing. b-rep, spatial occupancy
enumeration, and CSG.

0594

13
Achromatic

and
Colored Light

The growth of raster graphics has made color and gray scale an integral part of
contemporary computer graphics. Color is an immensely complex subject, one that draws
on concepts and results from physics, physiology, psychology, art, and graphic design.
Many researchers' careers have been fruitfully devoted to developing theories, measurement
techniques, and standards for color. In this chapter, we introduce some of the areas of color
that are most relevant to computer graphics.

The color of an object depends not only on the object itself, but also on the light source
illuminating it, on the color of the surrounding area, and on the human visual system.
Furthermore, some objects reflect light (wall, desk, paper), whereas others also transmit
light (cellophane, glass). When a surface that reflects only pure blue light is illuminated
with pure red light, it appears black. Similarly, a pure green light viewed through glass that
transmits only pure red will also appear black. We postpone some of these issues by
starting our discussion with achromatic sensations-that is, those described as black, gray,
and white.

13.1 ACHROMATIC LIGHT

Achromatic light is what we see on a black-and-white television set or display monitor. An
observer of achromatic light normally experiences none of the sensations we associate with
red, blue, yellow, and so on. Quantity of light is the only attribute of achromatic light.
Quantity of light can be discussed in the physics sense of energy, in which case the terms
intensity and luminance are used, or in the psychological sense of perceived intensity, in
which case the term brightness is used. As we shall discuss shortly, these t\VO concepts are

563

0595

564 Achromatic and Colored Ught

related but are not the same. It is useful to associate a scalar with different intensity levels,
defining 0 as black and I as white; intensity levels between 0 and I represent different grays.

A black-and-white television can produce many different intensities at a single pixel
position. Line printers , pen plotters , and electrostatic plotters produce only 1~ levels: the
white (or light gray) of the paper and the black (or dark gray) of the ink or toner deposited
on the paper. Certain techniques, discussed in later sections, allow such inherently bilevel
devices to produce additional intensity levels.

13.1 .1 Selecting Intensities-Gamma Correction

Suppose we want to display 256 different intensities. Which 256 intensity levels should we
use? We surely do not want 128 in the range ofO to 0 . 1 and 128 more in the range of0.9 to
1.0, since the transition from 0.1 to 0.9 ~uld certainly appear discontinuous. We might
initially distribute the levels evenly over the range 0 to I , but this choice ignores an
important characteristic of the eye: that it is sensitive to ratios of intensity levels rather than
to absolute values of intensity. That is, we perceive the intensities 0. 10 and 0.11 as differing
just as much as the intensities 0.50 and 0.55. (This nonlinearity is easy to observe: Cycle
through the settings on a three-way ~100-150-wau lightbulb;)'OU will see that the step
from 50 to 100 seems much greater than the step from 100 to 150.) On a brightness (that is,
perceived intensity) scale, the differences between intensities of 0.10 and 0 . 11 and between
intensities of 0.50 and 0.55 are equal . Therefore, the intensity levels should be spaced
logarithmically rather than linearly, to achieve equal steps in brightness.

To find 256 intensities starting with the lowest attainable intensity 10 and going to a
maximum intensity of 1.0, with each intensity r times higher than the preceding intensity ,
we use the following relations:

I,= 1,, I I = rl,, It = r/1 = rl,, Ia = rlr = rl,, Ira. = r"/o = I. (13.1)

Therefore,

r = (IIIJIII!R, 11 = ,Jf0 "" (1/10'!""' /0 = J0/1!!16 - J)llfl6

and in general for n + I intensities,

for 0 s j < 255, (13.2)

r = (lllo)1ia, /J = J0!•-JJ/• for 0 s j s n. (13.3)

With just four intensities (n = 3) and an 18 oft (an unrealistically large value chosen for
illusuation only), Eq. (13.3) tells us that r = 2, yielding intensity values oft. t. t. and I.

The minimum attainable intensity 1, for a CRT is anywhere from about k up to1Jof the
maximum intensity of 1.0. Therefore, typical values of /0 are between 0.005 and 0.025. The
minimum is not 0, because of light reflection from the phosphor within the CRT. The ratio
between the maximum and minimum intensities is called the dynamic range. The exact
value for a specific CRT can be found by displaying a square of white on a field of black and
measuring the t~ intensities with a photometer. This measurement is taken in a completely
darkened room, so that reflected ambient light does not affect the intensities. With an /0 of
0.02, corresponding to a dynamic range of 50, Eq. (13.2) yields r = 1.0154595 ... , and
the first few and last twO intensities of the 256 intensities from Eq. (13. I) are 0 .0200,
0 .0203, 0 .0206, 0.0209, 0.0213, 0 .0216, .. . , 0 .9848, 1.0000.

0596

13.1 Achromatic Light 565

Displaying the intensities defined by Eq. (13.1) on a CRT is a tricky process, and
recording them on film is even more difficult, because of the nonlinearities in the CRT and
film. For instance, the intensity of light output by a phosphor is related to the number of
electrons N in the beam by

I= kN' (13.4)

for constants k and y. The value of y is in the range 2.2 to 2.5 for most CRTs. The number
of electrons N is proportional to the control-grid voltage, whkh is in tum proportional to
the value V specified for the pixel. Therefore, for some other constant K,

I = KV"I, or V = (IIK) 11Y. (13.5)

Now, given a desired intensity I, we first determine the nearest 11 by searching through a
table of the available intensities as calculated from Eq. (13.1) or from its equivalent:

j = ROUND(log,f.IIIJ). (13.6)

After j is found, we calculate

(13.7)

The next step is to determine the pixel value V1 needed to create the intensity 11, by using Eq.
(13.5):

(13.8)

If the raster display has no look-up table, then v1 is placed in the appropriate pixels. If there
is a look -up table, then j is placed in the pixel and v1 is placed in entry j of the table.

The values of K, y, and I0 depend on the CRT in use, so in practice the look-up table is
loaded by a method based on actual measurement of intensities [CATM79; COWA83;
HALL89]. Use of the look-up table in this general manner is called gamma correction, so
named for the eJ~poneot in Eq. (13.4). If the display has hardware gamma correction, then I1
rather than v1 is placed in either the refresh buffer or look-up table.

Without the use of ratio-based intensity values aod gamma correction, quantization
errors (from appfOllimating a true intensity value with a displayable intensity value) will be
more conspicuous near black than near white. For instance, with 4 bitS and hence 16
intensities, a quantization round-off error of as much asllt = 0.031 is possible. This is 50
percent of intensity value 1~, and only 3 pe.rcent of intensity value 1.0. Using the ratio-based
intensities and gamma correction, the maximum quantization error as a percentage of
brightness (perceived intensity) is constant.

A natural question is, " How many intensities are enough?" By "enough," we mean
the number needed to reproduce a continuous-tone black-and-white image such that the
reproduction appears to be continuous. This appearance is achieved when the ratio r is 1.0 I
or less (below this ratio, the eye cannot distinguish between intensities I1 and I1 + 1)

[WYSZ82, p. 569]. Thus, tbe appropriate value for n, the number of intensity levels, is
found by equating r to 1.01 in Eq. (13.3):

or (13.9)

0597

566 Ac hromatic and Colored l ight

TABLE 13.1 DYNAMIC RANGE P / /o) AND NUMBER OF REQUIRED INTENSITIES
n - log, 01(1/ /o) FOR SEVERAL DISPLAY MEDIA

Display media Typical dynamic range Number of intensities, n
CRT
Photographic prinlS
Photographic slides
Coated paper printed in stw•
Coated paper printed in color
Newsprint printed in B/W

• 8IW • black and white.

Solving for 11 gives

50-200
100
1000
100
50
10

4~530
465
700
465
4()()

234

II = log1_01(1//0), (13.10)

whe.re 11/0 is the dynamic range of the device.
The dynamic range 1//0 for several display media, and the corresponding n , which is the

number of intensity levels needed to maintain r = 1.0 I and at lhe same time to use the full
dynamic range, are shown in Table 13.1. These are theoretical values, assuming perfect
reproduction processes. In practice, slight blurring due to ink bleeding and small amounts
of random noise in the reproduction decreases n considerably for prim media. For instance,
Fig. 13. 1 shows a continuous-tone photograph; and the succeeding five Figs. 13.2 to 13.6
reproduce the same photogrdph at4, 8, 16, 32, and 64 intensi ty levels. With four and eight
levels, the transitions or contours between one intensity level and the next are qu ite
conspicuous, because the ratio r between successive intensities is considerably greater that
lhe ideal 1.0 I. Contouring is barely detectable with 32 levels, and for these panicular

Fig. 1 3.1 A continuous-tone photo­
graph.

Fig. 13.2 A continuous-tone photo·
graph reproduced w ith four intensity
levels. (Counesy of Alan Paeth, Uni­
versity of Waterloo Computer Graph­
ics Lab.)

0598

13.1

Fig. 13.3 A cont inuous-tone photo­
graph reproduced with eight intensity
levels. (Courtesy of Alan Paeth, Uni­
versity of Waterloo Computer Graph­
ics Lab.)

Fig. 13.5 A continuous-tone photo­
graph reproduced with 32 intensity
levels. (Courtesy of Alan Paeth, Uni­
versity of Waterloo Computer Graph­
ics Lab.)

A chromatic Ught 567

Fig. 13.4 A continuous-tone photo­
graph reproduced with 16 intensity
levels. (Courtesy of Alan Paeth, Uni­
versity of Waterloo Computer Graph­
ics Lab.)

Fig. 13.6 A continuous-tone photo­
graph reproduced with 64 intensity
levels. Differences from the picture in
Fig. 13.5 are quite subtle. (Courtesy
of Alan Paeth, University of Waterloo
Computer Graphics Lab.)

images disappears with 64. This suggests that 64 intensity levels is the absolute minimum
needed for contour-free printing of continuous-tone black-and-white images on paper such
as is used in this book. For a well-adjusted CRT in a perfectly black room, however. the
higher dynamic range means that many more levels are demanded.

0599

568 Achromatic and Colored Ught

Fig. 1 3. 7 Enlarged halftone pattem. Dot sizes vary inversely with intensity of original
photograph. (Courtesy of Alan Paeth, University of Waterloo Computer Graphics Lab.)

13.1 .2 Halftone Approximation

Many displays and hardcopy devices arc bilevel-they produce just two intensity
levels-and even 2- or 3-bit-per-pixcl raster displays produce fewer intensity levels than we
might desire. How can we expand the range of available intensities? The answer lies in the
spatial imegration that our ~ perl'orrn. If we view a very small area from a sufficiently
large viewing distance, our eyes average fine detail within the small area and record only the
overall intensity of the area.

This phenomenon is exploited in printing black-and-white photographs in newspapers,
magazines. and books, in a technique called ha/jtOni~~g (also called clustered-dot ordered
dither in computer graphics) . Each small resolution unit is imprinted with a circle of black
ink whose area is proportional to the blackness I - I (where I = intensiry) of the area in the
original photograph. Figure 13.7 shows part of a halftone pattern, greatly enlarged. Note
that the pattern makes a 45• angle with the horizontal, called the screen a11gle. Newspaper
halftones use 60 to 80 variable-sized and variable-shaped areas [ULIC87l per inch, whereas
halftones in magazines and books use 110 to 200 per inch.

Graphics output devices can appl'Ollimate the variable-area circles of halftone
reproduction. For example. a 2 x 2 pixel area of a bilevel display can be used to produce
five different intensity levels at the cost of halving the spatial resolution along each axis. The
patterns shown in Fig. 13.8 can be used to fill the 2 x 2 areas with the number of "on"
pixels that is proponional to the desired intensity. Figure 13.9 shows a face digitized as a
351 x 351 image array and displayed with 2 x 2 patterns.

An 11 x 11 group ofbilevcl pixels can provide 11' + I intensity levels. In general, there is
a tradeoff between spatial resolution and intensity resolution. The usc of a 3 X 3 panern

1The " ordered dither" contr.lSts with "rondom dither. " an infrequently used technique.

0600

13.1 Achromatic Ught 569

EB
0 1 2 3 4

Fig. 13.8 Five intensity levels approximated with four 2 x 2 dither patterns.

cuts spatial resolution by one-third on each axis, but provides 10 intensity levels. Of course,
the tradeoff choices are limited by our visual acuity (about I minute of arc in normal
lighting), the distance from which the image is viewed, and the dots-per-inch resolution of
the graphics device.

One possible set of patterns for the 3 x 3 ca~e is shown in Fig. 13.10. Note that these
patterns can be represented by the dither matrix

[
6 8 4]
I 0 3 .
5 2 7

(13. 11)

To display an intensity I , we tum on all pixels whose values are less than /.
The 11 X 11 pixel patterns used to approltimate the halftones must be designed not to

introduce visual artifacts in an area of identical intensity va.lues. For instance, if the pattern
in Fig. 13. 11 were used, rather than the one in Fig. 13. 1 0, horizontal lines would appear in
any large area of the image of intensity 3. Second, the patterns must fom1 a grow1h sequence
so that any pixel intensified for intensity level j is also intensified for all levels k > j. This
minimizes the differences in the patterns for successive intensity levels , thereby minimizing
the contouring effects. Third , the patterns must grow outward from the center,to create the
effect of increasing dot size. Fourth, for hardcopy devices such as laser printers and film
recorders that are poor at reproducing isolated ' 'on" pixels, all pixels that are "on" for a

Fig. 13.9 A continuous-tone photograph, digitized to a resolution of 351 x 351 and
displayed using the 2 x 2 patterns of Fig. 13.8. (Courtesy of Alan Paeth, University of
Waterloo Computer Graphics Lab.)

0601

670 Achromatic and Colored Ught

0 2 3 4

~ ~.,. ~

..
" ~~ ~~ ~

~ ~.,. ~

..
" ~- ~,. ~

..
~ ~'" :•

.. ,. "'~'" "'
5 6 7 8 9

Fig. 1 3 .1 0 Ten intensity levels approximated with 3 x 3 dither patterns.

particular intensity must be adjacent to other " on" pixels; a pattern such as that in Fig.
13. 12 is not acceptable. This is the meaning of the term clustered-dot in .. clustered-dot
ordered dither." Holladay [HOLL80) has developed a widely used method for defining
dither matrices for clustered-dot ordered dither. For high-quality reproduction of images •. n
must be 8 to 10, theoretically allowing 65 to 101 intensity levels. To achieve an effect
equivalent to the 150-circle-per-inch printing screen, we thus require a resolution of from
150 x 8 = 1200 up to 150 x 10 = 1500 pixels per inch. High-quality film recorders can
auain this resolution, but cannot actually show all the intensity levels because patterns made
up of single black or white pixels may disappear.

Halftone approximation is not limited to bilevel di&'jllays . Consider a display with 2 bits
per pixel and hence four intensity levels. The halftone technique can be used to increase the
number of intensity levels. If we use a 2 X 2 pattern, we have a total of 4 pixels at our
disposal, each of which can take on three values besides black; this allows us to display 4 x
3 + I = 13 intensities. One possible set of growth sequence patterns in this situation is
shown in Fig. 13. 13.

Unlike a laser printer, a CRT display is quite able to display individual dots . Hence, the
clustering requiremeot on the patterns discussed previously can be relaxed and dispersed·dot
ordered dither can be used. There are many possible dither matrices: Bayer [BAY£73) has
developed dither matrices that minimize the texture introduced into the displayed images.
For the 2 X 2 case, the dither matrix, called Dt:ri, is

~2) = [~ il (13. 12)

Fig. 1 3 .1 1 A 3 x 3 dither pattern inappropriate for halftoning.

0602

13.1 Achromatic Light 571

0 1 2 3 4

Fig. 13.12 Part of a 4 x 4 ordered dither dot pattern in which several of the patterns
have single, nonadjacent dots. Such disconnected patterns are unacceptable for
halftoning on laser printers and for printing presses.

This represents the set of patterns of Figure 13.8.
Larger dither matrices can be found using a recurrence relation [JUD£74) to compute

IJ'-2•> from o(•J. With i.fo'l defined as ann x 11 matrix of Is, that is,

the recurrence relation is

Applying this relation to [)00 produces

ow~ [~
15

8
4
I l
7

l
l

4D'-OII'lJ + D~l C}OII'lJ]
4D'-OII'lJ + ow (jOII'lJ •

2

~] 14
I 9 .

13 5

(13. 13)

(13. 14)

(13. 15)

The techniques presented thus far have assumed that the image array being shown is smaller
than the display device's pixel array, so that multiple display pixels can be used for one

~rnrnrnrnrnrn
~~rnrnrnrnrn

0 1 2 3 4 5

ITJITJITJITJrnrn rn ITJ ITJ rn rn rn
7 8 9 10 11 12

6

Fig. 13. 13 Dither patterns for intensity levels 0 to 13 approximated using 2 x 2
patterns of pixels, w ith 2 bits (four intensity levels) per pixel. The intensities of the
individual pixels sum to the intensity level for each pattern.

0603

572 Achromatic and Colored Ught

image pixel. What if the image and display device arrays are the same size? A simple
adaptation of the ordered-dither (either clustered-dot or dispersed-dot) approach can be
used. Whether or not to intensify the pixel at point (x. y) depends on the desired intensity
S(x, y) at that point and on the dither matrix. To display the point at (x, y), we compute

Then, if

i = x modulo n,
j = y modulo 11.

S(x, y) > o<~.

(13.16)

(13. 17)

the point at (x. y) is intensified; otherwise, it is not. That is, I pixel in the image array
controls I pixel in the display array. Notice that large areas of fixed image intensity are
displayed exactly as when the image-array size is less than the display-array size, so the
effect of equal image and display arrays is apparent only in areas where intensity varies.

Figure 13. 14(a) is a face digitized at 512 x 5 12 and shown on a 512 x 512 bilevel
display using [)'$J. Compare this bilevel result to the multilevel pictures shown earlier in this
section. Further pictures displayed by means of ordered dither appear in [JARV76a;
JARV76b; ULIC87], where more ways to display continuous-tone images on bilevel
displays are described.

Error diffusion, another way to handle the case when the image and display array sizes
are equal, W<IS developed by Floyd and Steinberg [FLOY75]; itS visual resultS are often
satisfactory. The error (i.e., the difference between the exact pixel value and the
approximated value actually displayed) is added to the values of the four image-array pixels
to the right of and below the pixel in question:~ of the error to the pixel to the right, ~ to
the pixel below and to the left, 1

5
6 to the pixel immediately below, and -fr to the pixel below

(b)

Fig. 13 .14 A continuous-tone photograph reproduced with (a) £PI ordered dither, and
(b) Floyd-Steinberg error diffusion. (Courtesy of Alan Paeth, University of Waterloo
Computer Graphics lab.)

0604

13.1 Achrom atic Light 573

and to the right. This has the effect of spreading, or diffusing, the error over several pixels in
the image array. Figure 13.14(b) was created using this method.

Given a pictureS to be displayed in the intensity matrix/, the modified values inS and
the displayed values in I are computed for pixels in scan-line order, working downward from
the topmost scanline.

double error,
K =Approximate (S(x][y]);
l(x)[y) = K;
error = S!x) [y) - K;

I• ApproximateS to nearest displayable intensity • I
I • Draw the pixel at (x, y). •I
I • Error tenn • I

I• Step I : spread {6 of error into the pixel to the right, at (x + I , y). •I
Six + I) [y) += h error/ 16;

I• Step 2 : spread ~ of error into pixel below and to the left. •I
Six - l) [y - I) += 3 urror/ 16;

I• Step 3: spread f. of error into pixel below. •I
S[x)[y - 1] += 5o error/ 16;

I• Step 4: spread 1~ of error below and to the right. •I
S[x + l)[y- 1) += error/ 16;

To avoid introducing visual artifacts into the displayed image, we must ensure that the four
errors sum exactly to error; no roundoff errors can be allowed. Tttis can be done by
calculating the step 4 error term as error minus the error terms from the first tttree steps.
The function Approximate returns the displayable intensity value closest t.o the actual pixel
value. For a bilevel display, the value of S is·simply rounded to 0 or I.

Even better results can be obtained by alternately scanning left to right and right to left;
on a right-to-left scan, the left-right directions for errors in steps l , 2, and 4 are reversed.
For a detailed discussion of this and other error-diffusion methods, see [ULIC87]. Other
approaches are discussed in [KNUT87].

Suppose the size of the image array is less than the size of the display array, the number
of intensities in the image and display are equal, and we wish to display the image at the s.ize
of the display array. A simple case of this is an 8-bit-per-pixel, 512 x 512 image and an
8-bit-per-pixel, 1024 x 1024 display. If we simply replicate image pixels horizontally and
vertically in the display array, the replicated pixels on the display will form squares that are
quite obvious to the eye. To avoid this problem, we can interpolate intensities to calculate
the pixel values. For instance, if an imageS is to be displayed at double resolution, then the
intensities I to display (with x = 2x' and y = 2y') are

! [xJ[y]

l [x + l][y]

I!x][y + I)

= S[.x'][y'J;

= !(S[.x'] [y'J + S[.x' + I J [y']);

= t(s(.x'][y'J + S[.x'J[y' + 1]);

J!x + l](y +I] = l{S[.x'] [y'J + S(.x' + l][y'J + S(.x'][y' + I)+ S[.x' + l)[y' + I]};

See Section 17.4 for a discussion of two-pass scaling transformations of images, and
Section 3.17 for a description of the fi ltering and image-reconstruction techniques that are
applicable to this problem.

0605

574 Achromatic and Colored Ught

13.2 CHROMATIC COLOR

The visual sensations caused by colored light are much richer than those caused by
achromatic light. Discussions of color perception usually involve three quantities, known as
hue, saturation, and lightness. Hue distinguishes among colors such as red, green, purple,
and yellow. Saturation refers to how far color is from a gray of equal intensity. Red is highly
saturated; pink is relatively unsaturated; royal blue is highly saturated; sky blue is relatively
unsaturated. Pastel colors are relatively unsaturated; unsaturated colors include more white
light than do the vivid, saturated colors. Ughmess embodies the achromatic notion of
perceived intensity of a reflecting object. Brighmess, a fourth term, is used instead of
lightness to refer to the perceived intensity of a self-luminous (i.e., emitting rather than
reflecting light) object, such as a light bulb, the sun, or a CRT.

It is necessary to specify and measure colors if we are to use them precisely in computer
graphics. For reflected light, we can do this by visually comparing a sample of unknown
color against a set of "standard" samples. The unknown and sample colors must be viewed
under a standard light source, since the perceived color of a surface depends both on the
surface and on the light under which the surface is viewed. The widely used Munsell
color-order system includes sets of publi hed standard colors (M UNS76) organized in a 30
space of hue, value (what we have defined as lightness), and chroma (saturation). Each
color is named, and is ordered so as to have an equal perceived "distance" in color space
(as judged by many observers) from its neighbors. [KELL 76) gives an extensive discussion
of standard samples, charts depicting the Munsell space, and tables of color names.

In the printing industry and graphic design profession, colors are typically specified by
matching to printed color samples. Color Plate 1.33 is taken from a widely used
color-matching system.

Artists often specify color as different tints, shades, and tones of strongly saturated, or
pure, pigments. A tint results from adding white pigmenc to a pure pigment, thereby
decreasing saturation. A shade comes from adding a black pigment to a pure pigment,
thereby decreasing lightness. A lOIII! is the consequence of adding both black and white
pigments to a pure pigment. All these steps produce different colors of the same hue, with
varying saturation and lightness. Mixing just black and white pigments creates grays. Figure
13. 15 shows the relationship of tints. shades, and tones. The percentage of pigments that
must be mixed to match a color can be us&! as a color specification. The Ostwald
[OS1W31] color-order system is similar to the artist's model.

Tints "Pure· White .., ____ ..,. color

Tones
Grays Shades

Black

Fig . 13 .15 Tints. tones. and shades.

0606

13.2

400
Violet Wavelength, nm

Chromatic Color

700
Red

Fig. 13.16 Typical spectral energy distribution P(A) of a light.

13.2 .1 Psychophysics

575

The Munsell and anists' pigmem-mixing methods are subjective: They depend on human
observers' judgments, the lighting. the size of the sample, the surrounding color, and the
overall lightness of the environment. An objective, quantitative way of specifying colors is
needed, and for this we tum to the branch of physics known as colorimetry. Important terms
in colorimetry are dominant wavelength, excitation purity, and luminance.

Dominant wavelength is the wavelength of the color we "see·' when viewing the light ,
and corresponds to the perceptual notion of hue2; excitation purity corresponds to the
saturation of the color; luminance is the amount or intensity of light. The excitation purity
of a colored light is the proportion of pure light of the dominant wavelength and of white
light needed to define the color. A completely pure color is 100 percent saturated and thus
contains no white light, whereas milttures of a pure color and white light have saturations
somewhere between 0 and 100 percent. White light and hence grays are 0 percent saturated,
containing no color of any dominant wavelength. The correspondences between these
perceptual and colorimetry terms are as follows:

Perceptual term
Hue
Saturation
Lightness (retlecting objectS)
Brightness (self-luminous objects)

Colorimetry
Dominant wavelength
Excitation purity
Luminance
Luminance

Fundamentally, light is electromagnetic energy in the 400- to 700-nm wavelength part of
the spectrum, which is perceived as the colors from violet through indigo, blue, green,
yellow, and orange to red. Color Plate 1.34 shows the colors of the spectrum. The amount of
energy present at each wavelength is represented by a spectral energy distribution P(.A), such
as shown in Fig. 13.16 and Color Plate 1.34. The distribution represents an infinity of
numbers , one for each wavelength in the visible spectrum (in practice, the distribution is
represented by a large number of sample points on the spectrum, as measured by a

tsome colors, such as purple, have no true dominant wavelength, as we shall see later.

0607

576 Achromatic and Colored Ught

spectroradiometer). Fortunately, we can describe the visual effect of any spectral
distribution much more concisely by the triple (dominant wavelength, excitation purity,
luminance). This implies that many different spectral energy distributions produce the same
color: They "look" the same. Hence the relationship between spectral distributions and
colors is many-to-one. Two spectral energy distributions that look the same are called
metamers.

Figure 13.17 shows one of the infinitely many spectral distributions P(A), or me tamers,
that produces a certain color sensation. At the dominant wavelength, there is a spike of
energy of level e2• White light, the uniform distribution of energy at level e1, is also present.
The excitation purity depends on the relation between e1 and e2: when e1 = e2o excitation
purity is 0 percent; when e1 = 0, excitation purity is 100 percent. Brightness, which is
proportional to the integral of the product of the curve and the luminous efficiency function
(defined later), depends on both e1 and e2• In general, spectral distributions may be more
complex than the one shown, and it is not possible to determine the dominant wavelength
merely by looking at the spectral distributions. In particular, the dominant wavelength may
not be the one whose component in the spectral distribution is largest.

How does this discussion relate to the red, green, and blue phosphor dots on a color
CRT? And bow does it relate to the rristimulus theory of color perception, which is based on
the hypothesis that the retina has three kinds of color sensors (called cones), with peak
sensitivity to red, green, or blue lights? Experiments based on this hypothesis produce the
spectral-response functions of Fig. 13.18. The peak blue response is around 440 nm; that
for green is about 545 nm; that for red is about580 nm. (The terms "red" and "green" are
somewhat misleading here, as the 545 nm and 580 nm peaks are actually in the yellow
range.) The curves suggest that the eye's response to blue light is much less strong than is its
response to red or green.

Figure 13.19 shows the luminous-efficiency fimction, the eye's response to light of
constant luminance, as tbe dominant wavelength is varied: our peak sensitivity is to
yellow-green light of wavelength around 550 nm. There is experimental evidence that this
curve is just the sum of the three curves shown in Fig. 13.18.

The tristimulus theory is intuitively attractive because it corresponds loosely to the
notion that colors can be specified by positively weighted sums of red, green, and blue (the
so-called primary colors). This notion is almost true: The three color-matching functions in

I

Dominant
wavelength

I
400 700

Violet Wavelength, nm Red

Fig. 13.17 Spectral energy distribution, P(A), illustrating dominant wavelength, excita­
tion purity, and luminance.

0608

13 .2 Chromatic Color 577

.20

.18

.16

~ .. .14
gc:

.12 .08
"'o
~~ .10

o-<= .08 c:"' o"'
· - Q) U>- .06 "'"" -u.

.04

.02

~00 440 480 520 560 600 640 680 }.
Wavelength (nm)

Fig. 13.18 Spectral-response functions of each of the three types of cones on the
human retina.

Fig. 13.20 show the amounts of red, green, and blue light needed by an average observer to
match a color of constant luminance, for all values of dominant wavelength in the visible
spectrum.

A negative value in Fig. 13.20 means that we cannot match the color by adding together
the primaries. However, if one of the primaries is added to the color sample, the sample can
then be matched by a mixture of the other two primaries. Hence, negative values in Fig.
13.20 indicate that the primary was added to the color being matched. The need for
negative values does not mean that the notion of mixing red, green, and blue to obtain other

0~~~--L-~_L~~
400

Violet
500 600

Wavelength, (nm)
700
Red

Fig. 13 .19 luminous-efficiency function for the human eye.

0609

578 Achromatic and Colored light

0.4

.. .,
:::>

~
0.2

(/)

:::>
:;
E
·~

~ 0

~.2 L---'-::...._-----'------'-..._-...:....:...--L.. ___ ..).
400 500 600 700

Wavelength,). (nm)

Fig. 13.20 Color-matching functions, showing the amounts of three primaries needed
to match all the wavelengths of the visible spectrum.

colors is invalid; on the contr.rry, a huge range of colors can be matched by positive
amounts of red, green, and blue. Otherwise, the color CRT would not work! It does mean,
however, that certain colors cannot be produced by RGB mixes, and hence cannot be shown
on an ordinary CRT.

The human eye can distinguish hundreds of thousands of different colors in color
space, when different colors are judged side by side by different viewers wbo state whether
the colors are the same or different. As shown in Fig. 13.21, when colors differ only in hue,
the wavelength between just noticably different colors varies from more than 10 nm at the
extremes of the spectrum to less than 2 nm around 480 nm (blue) and 580 om (yellow).

16

14

~ 12

I 10

~ 8
6

4

2L__L __ ~~i_~~~------~.t
400 500 600 700

Wavelength, .< (nm)

Fig. 13.21 Just-noticable color differences as a function of wavelength A. The
ordinate indicates the minimum detectable difference in wavelength between adjacent
color samples. (Source: Data are from (BEDF58).)

0610

13.2 Chromatic Color 679

Except at the spectrum extremes, however, most distinguished hues are within 4 nm.
Altogether about 128 fully saturated hues can be distinguished.

The eye is less sensitive to hue changes in less saturated light. This is not surprising: As
saturation tends to 0 percent, all hues tend to white. Sensitivity to changes in saturation for a
fixed hue and lightness is greater at the extremes of the visible specuum, where about 23
distinguishable steps exist. Around 575 nm, only 16 saturation steps can be distinguished
[JONE26].

13.2.2 The CIE Chromaticity Diagram

Matching and therefore defining a colored light with a mixture of three fixed primaries is a
desirable approach to specifying color, but the need for negative weights suggested by Fig.
13.20 is awkwurd. In 1931, the Commission lmemationalt de l'tclairoge (CIE) defined
three standard primaries, called X, Y, and Z, to replace red , green, and blue in this
matching process. The three corresponding color-matching functions, x,, y,, and z,, are
shown in Fig. 13.22. The primaries can be used to match, with only positive weights , all the
colors we can see. The Y primary was intentionally defined to have a color-matching
function y, that exactly matches the luminous-efficiency function of Fig. 13. 19. Note that
x,, y,, and z, are not the spectral distributions of the X, Y, and Z colors, just as the curves
in Fig. 13.20 are not the spectral distributions of red , green, and blue. They are merely
auxilliary functions used to compute how much of X, Y, and Z should be mixed together to
generate a metamer of any visible color.

The color-matching functions are defined tabularly at 1-nm intervals, and are found in
texts such as [WYSZ82; BILLS I]. The distributions were defined for color samples that

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

!!1 1.0
'iii 0.9
> 0.8

0.7
0.6
0.5
0.4
0.3
0.2
0.1

i

o ~.:::::..__:~~---'--~-.r.- -'
400 500 600 700

Wavelength, A. • (nm)

Fig. 13.22 The color-matching functions x,. y,, and z,. for the 1931 CIE X, Y, z
primaries.

0611

580 Achromatic and Colored Ught

subtend a 2" field of view on the retina. The original 1931 tabulation is normally used in
wort relevant to computer graphics. A later 1964 tabulation for a 10" field of view is not
generally useful, because it emphasizes larger areas of constant color than are normally
found in graphics.

The three CIE color-matching functions are linear combinations of the color-matching
functions from Fig. 13.20. This means that the definition of a color with red, green, and
blue lights can be converted via a linear transformation into its definition with the CIE
primaries, and vice versa.

The amounts of X, Y, and Z primaries needed to match a color with a spectral energy
distribution P(A), are:

X = k J P(A) XA dA , y = k J P(A) YA dA , z = k J P(A) ZA dA . (13.18)

For self-luminous objects like a CRT, k is 680 lumensfwatt. For reflecting objects, k is
usually selected such that bright white has a Y value of 100; then other Y values will be in
the range of 0 to 100. Thus,

k = 100
I p ,/..A)yA dA

(13.19)

where P ,/..A) is the spectral energy distribution for whatever light source is chosen as the
standard for white. In practice, these integrations are performed by summation, as none of
the energy distributions are expressed analytically.

Figure 13.23 shows the cone-shaped volume of XYZ space that contains visible colors.
The volume extends out from the origin into the postive octant, and is capped at the smooth
curved line terminating the cone.

Let (X. Y, Z) be the weights applied to the CTE primaries to match a color C, as found
using Eq. (13.18). Then C = X X + Y Y + Z Z . We define chromaticity values (which
depend only on dominant wa\-elength and saturation and are independent of the amount of

y

z
Fig. 13.23 The cone of visible colors in ClE color space is shown by the lines radiating
from the origin. The X+ Y + Z • 1 plane is shown. (Courtesy of Gary Meyer, Program of
Computer Graphics. Cornell University. 1978.)

0612

13.2 Chromatic Color 581

luminous energy) by normalizing against X + Y + Z, which can be thought of as the total
amount of light energy:

X Y Z
X = (X + y + Z)' y = (X + y + Z). z = (X + y + Z). (13.20)

Notice that x + y + z = I. That is, x, y, and z are on the (X + Y + Z = I) plane of Fig.
13.23 . Color plate D. l shows the X+ Y + Z = I plane as part ofCIEspace, and also shows
an orthographic view of the plane along with the projection of the plane onto the (X, Y)
plane. This Iauer projection is just the CIE chromaticity diagram.

If we specify x andy, then z is determined by z = I - x- y. We cannot recover X, Y,
and Z from x and y, however. To recover them, we need one more piece of information,
typically Y, which carries luminance information. Given (x, y, Y), the transformation to the
corresponding (X, Y, Z) is

X X = - Y,
y

y = Y, z = 1 -X- Yy ,
y

(13.2 1)

Chromaticity values depend ooly on dominant W'dveleogtb and saturation and are
independent of the amount of luminous energy. By plotting x and y for all visible colors, we
obtain the ClE chromaticity diagram shown in Fig. 13.24, which is the projection onto the
(X, Y) plane of the (X+ Y + Z = I) plane of Fig. 13.23. The interior and boundary of the
horseshoe-shaped region represent all visible chromaticity values. (All perceivable colors
with the same chromaticity but different luminances map into the same point within this
region.) The 100 percent spectrally pure colors of the spectrum are on the curved part of the
boundary. A standard white light, meant to approximate sunlight, is formally defined by a

y

0.9
520

0.8

0.7

0.6

0.5

0.4

0.3
700

0.2

0.1

X
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 13.24 The CIE chromaticity diagram. Wavelengths around the periphery are in
nanometers. The dot marks the position of illuminant C.

0613

582 Achromatic and Colored Light

light source illuminant C, marked by the center dot. It is near but not at the point where x =
y = z = t. llluminant C was defined by specifying a spectral power distribution that is close
to daylight at a correlated color temperature of 6774° Kelvin.

The CIE chromaticity diagram is useful in many ways. For one, it allows us to measure
the dominant wavelength and excitation purity of any color by matching the color with a
mixture of the three CIE primaries. (Instruments called colorimeters measure tristimulus X,
Y, and Z values, from which chromaticity coordinates are computed using Eq. (13.20).
Spectroradiometers measure both the spectral energy distribution and the tristimulus
values.) Now suppose the matched color is at point A in Fig. 13.25. When t\\Q colors are
added together, the new color lies somewhere on the straight line in the chromaticity
diagram connecting the t\\Q colors being added. Therefore, color A can be thought of as a
mixture of "standard" white light (illuminant C) and the pure spectral light at point B.
Thus, 8 defines the dominant wavelength. The ratio of length ACto length BC, expressed as
a percentage, is the excitation purity of A. The closer A is to C, the more white light A
includes and the less pure it is.

The chromaticity diagram factors out luminance, so color sensations that are
luminance-related are excluded. For instance; brown, which is an orange-red chromaticity
at ve.ry low luminance relative to its surrounding area, does not appear. It is thus important
to remember that the chromaticity diagram is not a full color palette. There is an infinity of
planes in (X, Y, Z) space, each of which projects onto the chromaticity diagram and each of
which loses luminance information in the process. The colors found on each such plane are
all different.

Complementary colors are those that can be mixed to produce white light (such as D
and E in Fig. 13.25). Some colors (such as F in Fig. 13.25) cannot be defined by a

y

520
0.8

0.7

0.6

0.5

0.4

0.3
700

0.2

0.1

X

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 13.25 Colors on the chromaticity diagram. The dominant wavelength of color A is
that of color 8. Colors D and E are complementary colors. The dominant wavelength of
color F is defined as the complement of the dominant wavelength of color A.

0614

13.2 Chromatic Color 583

dominant wavelength and are thus called nonspectrol. ln this case, the dominant wavelength
is said to be the complement of the wavelength at which the line through F and C intersects
the horseshoe pan of the curve at point 8 , and is designated by a "c" (here about 555 nm
c). The excitation purity is still defined by the ratio of lengths {here CF to CG). The colors
that must be expressed by using a complementary dominant wavelength are the purples and
magentas; they occur in the lower part of the CIE diagram. Complementary colors still can
be made to fit the dominant wavelength model of Fig. 13. 17, in the sense that if we take a
flat spect.ral distribution and delete some of the light at frequency B, the resulting color will
be perceived as F.

AllOiher use of the CIE chromaticity diagram is to define wlor gamuu, or color ranges,
that show the effect of adding colors together. Any two colors, say I and J in Fig. 13.26, can
be added to produce any color along their connecting line by varying the relative amounts of
the two colors being added. A third color K (see Fig. 13.26) can be used with various
mixtures of I and J to produce the gamut of all colors in triangle IJK, again by varying
relative amounts. The shape of the diagram shows why visible red, green, and blue cannot
be additively mixed to match all colors: No triangle whose vertices are within the visible
area can completely cover the visible area.

The chromaticity diagram is also used to compare the gamuts available on various color
display and hardcopy devices. Color Plate U.2 shows the gamuts for a color television
monitor, film, and print. The chromaticity coordinates for the phosphors in two typical
monitors are these:

X

y

Short-persistence phosphors Long-persistence phosphors

Red Green Blue Red Green Blue
0.61 0.29 0. 15 0.62 0.21 0.15
0.35 0.59 0.063 0.33 0.685 0.063

y

520
0.8

0.7

0.6

0.5

0.4

0.3
700

0.2

0.1

X

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 13.26 Mixing colors. All colors on the line IJ can be created by mixing colors /and
J; all colors in the triangle IJK can be created by mixing colors /, J, and K.

0615

584 Achromatic and Colored Ught

The smallness of the print gamut with respect to the color-monitor gamut suggests that,
if images originally seen on a monitor must be faithfully reproduced by printing, a reduced
gamut of colors should be used with the monitor. Otherwise, accurate reproduction will not
be possible. If, however, the goal is to make a pleasing rather than an exact reproduction ,
small differences in color gamuts are less important. A discussion of color-gamut
compression can be found in [HALL89].

There is a problem with the CTE system. Consider the distance from color C1 = (X1, Y1,

Z1) to color C1 +~c. and the distance from colorC2 = (X2, Y2 , ~ tocolorC2 + ~c. where
~C = (~. ~Y. ~. Both distances are equal to ~C. yet in general they will not be
perceived as being equal. This is because of the variation, throughout the spectrum, of the
just noticable differences discussed in Section 13.2. 1. A perceptuclly uniform color space is
needed, in which two colors that are equally distant are perceived as equally distant by
viewers.

The 1976 CIE LUV uniform color space was developed in response to this need. With
(X., Y., Z.) as the coordinates of the color that is to be defined as white, the space is defined
by

L* = 116 (YIY.)IJS - 16, YIY. > 0.01

u• = 13 L * (11' - u',.),

v• = 13 L* (v' - v'.),

, _ 4X , 9Y
II -X+ 15Y + 3Z' v =X+ 15Y + 3Z'

, _ 4X. , _ 9Y.
11
•- X + ISY + 3Z ' v •- X + 15Y + 3Z . " . . " .. "

(13.22)

The shape of the 3D volume of visible colors defined by these equations is of course
different from that for CIE (X. Y. Z) space itself (Fig. 13.23).

With this background on color, we now tum our attention to color in computer
graphics.

13.3 COLOR MODELS FOR RASTER GRAPHICS

A color model is a specification of a 3D color coordinate system and a visible subset in the
coordinate system within which all colors in a particular color gamut lie . For instance, the
RGB color model is the unit cube subset of the 3D Cartesian coordinate system.

The purpose of a color model is to allow convenient specification of colors within some
color gamut. Our primary interest is the gamut for color CRT monitors, as defined by the
RGB (red, green, blue) primaries i.n Color Plate ll.2. As we see in this color plate, a color
gamut is a subset of all visible chromaticities. Hence, a color model cannot be used to
specify all visible colors. This is emphasized in Fig. 13.27, which shows that the gamut of a
CRT monitor is a subset of (X, Y, Z) space.

Three hardware-oriented color models are RGB, used with color CRT monitors, Y1Q,
the broadcast TV color system, and CMY (cyan, magenta, yellow) for some color-printing
devices. Unfortunately, none of these mod.els are particularly easy to use, because they do
not relate directly to intuitive color notions of hue, saturation, and brightness. Therefore,

0616

13.3

y

z

Color Models for Raster Graphics

o;splayable
colors

585

Fig. 13.27 The color gamut for a typical color monitor w ithin the CIE color space. The
range of colors that can be displayed on the monitor is clearly smaller than that of all
colors visible in CIE space. (Courtesy of Gary Meyer, Program of Computer Graphics,
Cornell University, 1978.)

another class of models has been developed with ease of use as a goal. Several such models
are described in [GSPC79; JOBL78; MEYESO; SM1T78). We discuss three, the HSV
(sometimes called HSB), HLS, and HVC models .

With each model is given a means of converting to some other specification. For RGB,
this conversion is to CIE's (X, Y, Z) space. This conversion is important, because CIE is the
worldwide standard. For all of the other models, the conversion is to RGB; hence, we can
conven from , say, HSV to RGB to the CIE standard.

13.3 .1 The RGB Color Model

The red, green, and blue (RGB) color model used in color CRT monitors and color raster
graphics employs a Canesian coordinate system. The RGB primaries are addifli.·e
primaries; that is, the individual contributions of each primary are added together to yield
the result , as suggested in Color Plate D.3. The subset of interest is the unit cube shown in
Fig. 13.28. The main diagonal of the cube, with equal amounts of each primary, represents
the gray levels: black is (0, 0, 0); white is (I, I, 1). Color Plates 11.4 and 11 .5 show several
views of the RGB color model.

Blue = (0, 0, 1)

' ' ..
B OOO J--~ ----Iack=(..) ,

,
, ,

Red • (1, 0, 0)

Cyan =(0,1, 1)

White = (1, 1, 1)

Yellow = (1. 1, 0)

Fig. 13.28 The RGB cube. Grays are on the dotted main diagonal.

0617

586 Achromatic and Colored Ught

The color gamut covered by the RGB model is defined by the chromaticities of a CRT's
phosphors. 1\vo CRTs with djfferent phosphors will cover djfferent gamuts. To convert
colors specified in the gamut of one CRT to the gamut of another CRT, we can use the
transformations M1 and M2 from the RGB color space of each monitor to the (X, Y, Z) color
space. The form of each transformation is:

[
X] [X, X, Xbl [R] Y = Y, Y1 Yb G ,
z z,z,~ B

(13.23)

where X., X
1

, and Xb are the weights applied to the monitor's RGB colors to find X, and so
on.

Defining Mas the 3 X 3 matrix of color-matching coefficients, we write Eq. (13.23) as

(13.24)

With M1 and M2 the matricies that convert from each of the two monitor's gamuts to
CIE, Mi 1M1 converts from the RGB of mon.itor I to the RGB of monjtor 2 . Thls matrix
product is all that is needed if the color in question lies in the gamuts of both monitors.
What if a color C1 is in the gamut of monitor I but is not in the gamut of monitor 2? The
corresponding color C2 = Mi 1M1C1 will be outside the unit cube and hence will not be
displayable. A simple but not very satisfactory solution is to clamp the color values-that is,
to replace values of R, G, orB that are less than 0 with 0, and values that are greater than I
with 1. More satisfactory but also more complex approaches are described in [HALL89].

The chromaticity coordinates for the RGB phosphors are usually available from CRT
manufacturers' specifications. If not, a colorimeter can also be used to measure the
chromaticity coordinates directly, or a spectroradiometer can be used to measure P(A),
which can then be converted to chromaticity coordinates using Eqs. (13. 18), (13.19), and
(13.20). Denoting the coordinates by (x,, y,) for red, (x1, ya) for green, and (xb, >;,)for blue,
and defining C, as

C, = X, + Y, + Z,, ~ 13 .25)

we can write , f~r the red primary;

X X
x, =X + y + Z,. = c', X,= x, C,,

r r r

y y
y, = x + r' + z = c'· r, = y, c,.

r r r r

z z
z, = o - x, - y,) = x + r' + 2 = c', z, = z, c,.

r r r r
(13.26)

0618

13.3 Color Models for Raster Graphics 587

With similar definitions for C1 and Cb, Eq. (13.23) can be rewritten as:

[
X] [x,C,
y = y,C,
Z (I - x, - y,)C,

The unknowns C,, C
1

, and Cb can be found in one of two ways [MEYE83). First , the
luminances Y, Y,, and Yb of maximum-brightness red, green, and blue may be known or
can be measured with a high-quality photometer (inexpensive meters can be off by factors
of 2 to 10 on the blue reading). These measured luminances can be combined with the
known y,, y1 , and Yb to yield

(13.28)

These values are then substituted into Eq. (13.27), and the conversion matrix M is thus
expressed in temlS of the known quantities (x, y,), (x,, y,), (xb, yJ, Y, r,, and Yb.

We can also remove the unknown variables from Eq. (13.27) if we know or can
measure the X.,, Y.,, and Z,. for the white color produced when R = G = B = I. For this
case, Eq. (13.27) can be rewritten as

[
x .. l [x, Y,. = y,
Z,. (I - X, - y,)

(13.29)

solved for C,, C1, and Cb (the only unknowns), and the resulting values substituted into
Eq. (13.27). Alternatively, it may be that the white color is given by x.,, y,., andY.,; io this
case, before solving Eq. (13.29), we first find

X
_ Y., z _ Y.,

w - Xw-, .,. - Z-.-·
Yw Yw

(13.30)

13.3.2 The CMY Color Model

Cyan, magenta, and yellow are the complements of red , green, and blue, respectively.
When used as filters to subtract color from white light, they are called subtractive primaries.
The subset of the Cartesian coordinate system for the CMY model is the same as that for
RGB except that white (full light) instead of black (no light) is at the origin. Colors are
specified by what is removed or subtracted from white light, rather than by what is added to
blackness.

A knowledge of CMY is imponant when dealing with hardcopy devices that deposit
colored pigments onto paper, such as electrostatic and ink-jet plotters. When a surface is
coated with cyan ink, no red light is reflected from the surface. Cyan subtracts red from the
reflected white light, which is itself the sum of red, green, and blue. Hence, in terms of the

0619

688 Achromatic and Colored Ught

additive primaries, cyan is white minus red , that is, blue plus green. Similarly, magenta
absorbs green, so it is red plus blue; yellow absorbs blue, so it is red plus green. A surface
coated with cyan and yellow absorbs red and blue, leaving only green to be reflected from
illuminating white light. A cyan, yellow, and magenta surface absorbs red , green, and blue,
and therefore is black. These relations, diagrammed in Fig. 13.29, can be seen in Color
Plate 0 .6 and are represented by the following equation:

[~] = [:] - [~] · (13.31)

The unit column vector is the RGB representation for white and the CMY representation for
black.

The conversion from RGB to CMY is then

(13.32)

These straightforward transformations can be used for converting the eight colors that can
be achieved with binary combinations of red, green, and blue into the eight colors
achievable with binary combinations of cyan, magenta, and yellow. This conversion is
relevant for use on ink-jet and xerographic color printers.

Another color model , CMYK, uses black (abbreviated as K) as a fourth color. CMYK
is used in the four-color printing process of printing presses and some hard-copy devices.

(minus red)

Fig. 13.29 Subtractive primaries (cyan, magenta. yellow) and their mixtures. For
Instance. cyan and yellow combine to green.

0620

13.3 Color Models for Rester Graphics 689

Given a CMY specification, black is used in place of equal amounts of C, M, and Y,
according to the relations:

K = min (C, M, Y);
C=C- K:
M = M - K;
Y = Y - K;

This is discussed funher in Section 13.4 and in [STON88).

13.3 .3 The YIQ Color Model

(13.34)

The YIQ model is used in U.S. commercial color television broadcasting and is therefore
closely related to color raster graphics. YIQ is a recoding of RGB for transmission
efficiency and for downward compatibility with blaclc-and-white television. The recoded
signal is transmitted using the National Television System Committee (NTSC) [PRIT77)
system.

The Y component of YIQ is not yellow but luminance, and is defined to be the same as
the CIE Y primary. Only the Y component of a color TV signal is shown on
black-and-wbite televisions: the chromaticity is encoded in I and Q. The YIQ model uses a
30 Cartesian coordinate system, with the visible subset being a conve1t polyhedron that
maps into the RGB cube.

The RGB-to-YIQ mapping is defined as follows:

[
yl [0.299
I = 0.596
Q 0.212

0.587
-0.275
-0.523

0.114] [R] -0.321 G
0.311 8

(13.33)

The quantities in the first row reflect the relative importance of green and red and the
relative unimportance of blue in brightness. The inverse of the RGB·tO· YIQ matrix is used
for the YIQ-to-RGB conversion.

Equation (13.33) assumes that the RGB color specification is based on the standard
NTSC RGB phosphor, whose CIE coordinates are

Red
X 0.67
y 0.33

Green
0.21
0.71

Blue
0.14
0.08

and for which the white point, illuminant C, is x, = 0.31 , Yw = 0.316, and Yw = 100.0.
Specifying colors with the YIQ model solves a potential problem with material being

prepared for broadcast television: Two different colors shown side by side on a color
monitor wiU appear to be different , but, when converted to YIQ and viewed on a
monochrome monitor, they may appear to be the same. This problem can be avoided by

0621

590 Achromatic and Colored Ught

specifying the two colors with different Y values in the YlQ color model space (i.e., by
adjusting only the Y value to disambiguate them).

The YlQ model exploits two useful properties of our visual system. First, the system is
more sensitive to changes in luminance than to changes in hue or saturation; that is, our
ability to discriminate spatially color information is weaker than our ability to discriminate
spatially monochrome information. This suggests that more bits of bandwidth should be
used to represent Y than are used to represent I and Q, so as to provide higher resolution in
Y. Second, objects that cover a very small part of our field of view produce a limited color
sensation, which can be specified adequately with one rather than two color dimensions.
This suggests that either I or Q can have a lower bandwidth than the other. The NTSC
encoding of YIQ into a broadcast signal uses these propert.ies to maximize the amount of
information transmitted in a fixed bandwidth: 4 MHz is assigned toY, 1.5 to I, and 0.6 to
Q. Further discussion of YlQ can be found in [SMIT78; PRIT77].

13.3 .4 The HSV Color Model

The RGB, CMY, and YlQ models are hardware-oriented. By contrast, Smith's HSV (hue,
saturation, value) model [SMJT78] (also called the HSB model , with 8 for brightness) is
user-oriented, being based on the intuitive appeal of the artist's tint , shade, and tone. The
coordinate system is cylindrical, and the subset of the space within which the model is
defined is a hexcone, or six-sided pyramid, as in Fig. 13.30. The top of the hexcone
corresponds to V = I , which contains the relatively bright colors. The colors of the V = I
plane are not all of the same perceived brightness, however. Color Plates U.7 and 0 .8 show
the color model.

Hue, or H, is measured by the angle around the vertical axis, with red at o•, green at
120", and so on (see Fig. 13.30). Complementary colors in the HSV hexcone are 180°

120·
v

Gree::"1----+---,..Y,ellow

Fig. 13.30 Single-hexcone HSV color model. The V = 1 plane c·ontains the RGB
model's R = 1, G = 1, and 8 = 1 planes in the regions shown.

0622

13.3 Color Models for Raster Graphics 591

Yellow

Red

Blue Magenta

Fig. 13.31 RGB color cube viewed along the principal diagonal. Visible edges of the
cube are solid; invisible edges are dashed.

opposile one another. The value of Sis a ratio ranging from 0 on the center line (V axis) to I
on the triangular sides of the hexcone. Saturation is measured relative to the color gamut
represented by the model, which is, of course, a subset of the entire CIE chromaticity
diagram. Therefore, saturation of I 00 percent in the model is less than I 00 percent
excitation purity.

The hexcone is one unit high in V, with lhe apex at lhe origin. The point atlhe apex is
black and has a V coordinate of 0. At this point, the values of Hand S are irrelevant. The
point S = 0, V = I is white. Intermediate values of V for S = 0 (on the center line) are the
grays. When S = 0, the value of His irrelevant (called by convention UNDEFINED). When S
is not zero, H is relevant. For example, pure red is at H = 0, S = I, V = I. Indeed, any
color with V = I, S = I is akin to an artist 's pure pigment used as the st.arting point in
mixing colors. Adding white pigment corresponds to decreasing S (without changing V).
Shades are created by keeping S = I and decreasing V. Tones are created by decreasing
both Sand V. Of course, changing H corresponds to selecting the pure pigment with which
to start. Thus, H, S, and V correspond to concepts from the artists' color system, and are
not exactly the same as the similar terms introduced in Section 13.2.

The top of the HS V hex cone corresponds to the projection seen by looking along the
principal diagonal of the RGB color cube from white toward black, as shown in Fig. 13.3 1.
The RGB cube has subcubes, as illustr.ued in Fig. 13.32. Each subcube, when viewed along

Green

Red Yellow

Fig. 13.32 RGB cube and a subcube.

0623

592 Achromat ic and Colored Ught

•·oid RGB_To..HSV (double r, double g, double b, double •h, double •.s, double • •)
I• Given: r. g, b. each in (0,1]. •I
I• Desired: h in (0,360), sand v in [0,1] except if s = 0, then h = UNDEFINED. • I
I• which is some constant defined with a value outside the interval(0.360]. •I
{

double max = Maximum (r, g, b);
double min = Minimum (r, g, b):
• • = mar: I• This is the value v. *'
I • Neltt calculate saturation, s. Saturation is 0 if red, green and blue are all 0 •I
• s =(max!= 0.0)? ((max- min)/ ma.t) : 0.0;
It (•s == 0.0)

•h = UND~'EI>:

else {
double delta = max - min;
if (r == max)

•h = (g - b) / delta;
else if (g == ma.t)

•h = 2.0 + (b - r) / delta:
else if (b == max)

•h = 4.0 + (r - g)/ delta:
•h •= 60.0;
it (•h < 0.0)

•h += 360.0:

I• Chromatic case: Saturation is not 0, • I
I• so determine hue. •I

I• Resulting color is between yellow and magenta •/

I• Resulting color is between cyan and yeUow •I

I• Resulting color is between magenta and cyan •I
I• Convert hue to degrees •I

I • Make sure hue is nonnegative •I
} I• Chromatic case •I

} I• RGB_To..HSV • I

Fig. 13.33 Algorithm for converting from RGB to HSV color space.

ns main diagonal , is like the hexagon in Fig. 13.3 1, except smaller. Each plane of constant
V in HSV space conesponds to such a view of a subcube in RGB space. The main diagonal
of RGB space becomes the V axis of HSV space. Thus, we can see intuitively the
correspondence between RGB and HSV. The algorithms of Figs . 13.33 and 13.34 define
the correspondence precisely by providing conversions from one model to the other.

13.3.5 The HLS Color Model

The HLS (hue, lightness, saturation) color model is defined in the double-hexcone subset of
a cylindrical space, as seen in Fig. 13.35. Hue is tbe angle around the vertical axis of the
double hexcone, with red at ()" (some discussions of HLS have blue at 0"; we place red at 0"
for consistency with the HSV model). The colors occur around the perimeter in the same
order as in the CIE diagram when its boundary is traversed counterclockwise: red, yellow,
green. cyan, blue, and magenta. This is also the same order as in the HSV single-hexcone
model. In fact, we can think of HLS as a deformation of HSV, in which white is pulled

0624

13.3 Color Models for Raster Graphics

void HSV .To..RGB (double •r, double •g, d ouble •b, double h, double s, double v)
I• Given: h in [0,360] or UNDEFINED. s and v in (0.1 (. •I
I• Desired: r, g. b. each in (0.1(. • I
{

If (s == 0.0) { I• The color is on the black-and-white center line. •I
I• Achromatic color: There is no hue. • I
If (h ==UNDEFINED) {

•r = v; I• This is the achromatic case. •I
• g = v;
• b = v;

} else
Error(); I • By our convention. error if s = 0 and h has a value. •I

} else {
doublef,p,q ,t;
int i:

I• Chromatic color: s != 0, so there is a hue. • I

if (h == 360.0) I• 360 degrees is equivalent to 0 degrees. •I
h = O.O:

h /= 60.0; I• h is now in [0,6). • I
i = floor (h): I• Aoor returns the largest integer <= h •I
f = h - i: I• f is the fractional pan of h. •I
p =v • (I.O- s):
q = v • (1.0 - (s • f)):
r = v • (1.0 - (s • (1.0 - /)));
switch (i) {

}

case 0: •r = v; *8 = t; •b = p; break:
case I : • r = q; • g = v; •b = p; break;
case 2: or = p; • g = v; • b = t; break;
case 3: •r = p; • g = q; • b = v; break;
case 4: or = r; •g = p: •b = v: break:
case 5: • r = v; *8 = p: •b = q: break;

} I• Chromatic case •I
} I• HSV.To..RGB •I

Fig. 13.34 Algorithm for converting from HSV to RGB color space.

593

upward to form the upper hexcone from the V = I plane. As with the single-hexcone
model , the complement of any hue is located 1800 farther around the double hexcone, and
saturation is measured radially from the vertical axis, from 0 on the axis to I on the surface.
Lightness is 0 for black (at the lower tip of the double hexcone) to I for white (at the upper
Lip). Color Plate 11 .9 shows a view of the HLS model. Again, the terms hue,lightness, and
saturation in this model are similar to, but are not exactly identical to, the same terms as
they were introduced in an earlier section. Color Plate 11. 10 shows a different view of the
space.

The procedures of Figs. 13.36 and 13.37 perform the conversions between HLS and
RGB. They are modified from those given by Metrick (GSPC79j to leave H UNDEFINED
when S = 0, and to have H = 0 for red rather than for blue.

0625

594 Achromatic and Colored Light

L

1.0 White

Cyan Red o·

Fig. 13.35 Double-hexcone HLS color model.

The HLS model , like tbe HSV model, is easy to use. The grays all haveS= 0, but the
maximally saturated hues are at S = I, L = 0.5. If potentiometers are used to specify the
color-model parameters, the fact that L must be 0.5 to get the strongest possible colors is a
disadvantage over the HSV model , in which S = 1 and V = I achieve the same effect.
However, analogously to HSV, the colors of the L = 0.5 plane are tiOI all of the same
perceived brightness. Hence two different c<>lors of equal perceived brightness will
generally have different values of L. Furthermore, neither HLS nor any of the other models
discussed thus far in this section are perceptually uniform, in the sense discussed in Section
13.2.

The recently developed Tektronix TekHVC (hue, value, chroma) color system, a
modification of the CIE LUV perceptually uniform color space discussed in Section 13.2,
does provide a color space in which measured and perceived distances between colors are
approximately equal. This is an important advantage of both the CIE LUV and TekHVC
models. Figure 13.38 shows one view of the HVC color model , and Color Plate ll. ll shows
another view. Details of tbe transformations from CIE to TekHVC have not been released.
However, we see from Eq. (13.22) that the tr.msformation from CIE XYZ to CIE LUV is
computationally straightforward, with the cube root being the most computationally intense
element. Thus, we expect that perceptually uniform color spaces will come to be more
widely used in the future.

0626

13.3 Color Models for Raster Graphics 595

void RGB-To..HLS (double r, double g, d ouble b, double •h, double •1, double •.r)
I• Given: r, g, beach in [0,1). • I
I• Desired: h in [0,360), I and s in 10.1 1. except if s = 0, then h = UNDEFINED. +I
{

douhle max = Maximum (r, g, b);
d ouble min = Minimum (r, g, b):
• I = (max + min) I 2.0:
I• Next calculate saruration • I
if (max == min) {

•s=O;
•h = UNDEFINED;

} elo;e {
double delta = max - mirr;

I• F'ttSt calculate the sawration. • I

I• This is the lighmess. *'
I • Achromatic case. because r = g = b •I

I• Chromatic case • I

•s = (•I <= 0.5) 1 (delta I (max + min)) :(delta I {2.0- (max + mill)));
I • Next calculate the hue. •I
if (r == max)

•h = (g- b) I delta;
else if (g == max)

•h = 2.0 + (b- r) I delta;
else it (b == max)

•h = 4.0 + (r- g) I delta;
• h •= 60.0;
It (h < 0.0)

•h + 360.0;

I• Resulting color is between yellow and magenta •I

I • Resulting color is between cyan and yellow •I

I• Resulting color is between magenta and cyan •I
I• Conven to degrees ,.I

I• Make degrees be nonnegative *'
} I • Chromatic case •I

} I• RGB_To..HLS •I

Fig. 13.36 Algorithm for converting from RGB to HLS color space.

13.3 .6 Interactive Specification of Color

Many application programs allow the user to specify colors of areas, lines, text , and so on.
If o nly a small set of colors is provided, menu selection from samples ofthe available colors
is appropriate. But what if the set of colors is larger than can reasonably be displayed in a
menu?

The basic choices are to use English-language names, to specify the numeric
coordinates of the color in a color space (either by typing or with slider dials), or to interact
directly with a visual representation of the color space. Naming is in general unsatisfactory
because it is ambiguous and subjective ("a light navy blue with a touch of green"), and it is
also the antithesis of graphic interaction. On tbe other hand. (BERK82) describes CNS. a
fairly well-defined color-naming scheme that uses tenns such as "greenish-yellow,"
"green-yellow." and "yellowish-green · • to distinguish three hues between green and

0627

596 Achromatic and Colored Ught

void HLS.To..RGB (double •r, double •g, double •b, double h, double I, double s)
I • Given: h in [0,360] or UNDEFINED, I and s in [0, I] . •I
I• Desired: r, g, beach in [0.1) -.1
{

double m/, m2;

nr2 =(I <= O.S)? (/ • (I+ s)) : (I + s - I• s);
nr I = 2.0 • I - m2;
If (s = 0.0) { /• Achromatic: There is no hue. • I

If (h = UNDEFINED)
•r = *8 = •b =I; I• This is lhe achromatic case. • I

else Error (); I• Error if s = 0 and h has a value •I
} else { I• Chromatic case. so there is a hue •/

•r = Value (nr/ , m2, h + 120.0);
•g = Value (m/ , m2, h);
•b = Value (ml, m2, h- 120.0);

static double Value (double nl , double n2, double hue)
{

If (hue > 360.0)
hue -= 360.0;

else If (hue < 0.0)
hue += 360.0:

If (hue < 60.0)
return nl + (n2 - nl) • hue / 60.0;

else If (hue < 180.0)
retum n2;

else If (hue < 240.0)
return nl + (n2 - nl) • (240.0 - !rue)/ 60.0;

else
return n/;

} /• Value -.1

Fig. 13.37 Algorithm for converting from HLS to RGB color space.

yellow. ln an experiment, users of CNS were able to specify colors more precisely than were
users who entered numeric coordinates in either RGB or HSV space.

Coordinate specification can be done with slider dials , as in Fig. 13.39, using any of
the color models. If the user understands how each dimension affects the color, this
technique works well . Probably the best interactive specification method is to let the user
interact directly with a rq>resentation of the color space, as shown in Fig. 13.40. The line
on the circle (represent.ing the V = I plane) can be dragged around to determine which slice
of the HSV volume is displayed in the triangle. The cursor on the triangle can be moved
around to specify saturation and value. As the line or the cursor is moved, the numeric
readouts change value. When the user types new V'.tlues directly into the numeric readouts,
the line and cursor are repositioned. The color sample box shows the currently selected

0628

13.3

Value
0.0-100.0

Color Models for Raster Graphics

Fig . 13.38 The TekHVC color model. (Courtesy of Tektronix. Inc.)

color. Color Plate 0 .12 shows a similar method used for the HSV model.

597

[SCHW871 describes color-matching experiments in which subjects used a data tablet
to specify colors in several models including RGB, YIQ, LAB [WYSZ82], and HSV. HSV
was found to be slow but accurate, whereas RGB was faster but less accurate. There is a
widespread belief that the HSV model is especially tractable, usually making it the model
of choice.

Many interactive systems that permit user specificat·ion of color show the user the
current color seuings as a series of adjacent patches of color, as in part (a) of Fig. 13.39, or
as the color of the single pixel value currently being set , as in part (b). As the user

'A o 8
@

(a)

0
Setcolor: ~

A G B

(b)

Fig. 1 3.39 Two common ways of sening colors. In (a), the user selects one of 16
colors to set; the selected color is designated with the thick border. The RGB slider dials
control the color; OK is selected to dismiss the color control panel. In (b), the number of
the color to be set is typed. and the current color is displayed in the gray-toned box. In
both cases. the user must simultaneously see the actual display in order to understand
the effects of the color change.

0629

598 Achromatic and Colored Ught

180°
t1 Hue:~

Saturation: ~
Value

I Value:~

Color Sample: 0
0

Fig. 13.40 A convenient way to specify colors in HSV spac,e . Saturation and value are
shown by the cursor in the triangular area, and hue by the line in the circular area. The
user can move the line and cursor indicators on the diagrams, causing the numeric
readouts to be updated. Alternatively, the user can type new values. causing the
indicators to change. Slider dials for H. S, and V could also be added, giving the user
accurate control over a single dimension at a time, without the need to type values.

manipulates the slider dials, the color sample changes. However, a person' s perception of
color is affected by surrounding colors and the sizes of colored areas , as shown in Color
Plate Il.l3; hence, the color as perceived in the feedback area will probably differ from the
color as perceived in the actual display. It is thus important that the user also see the actual
display while the colors are being set.

13.3. 7 Interpolating in Color Space

Color interpolation is necessary in at least three situations: for Gouraud shading (Section
16.2.4), for antialiasing (Section 3.17), and in blending two images together as for a
fade-in, fade-out sequence. The results of the interpolation depend on the color model in
which the colors are interpolated; thus, care must be taken to select an appropriate model.

U the conversion from one color model to another transforms a straight line
(representing the interpolation path) in one color model into a straight line in the other color
model, then the results of linear interpolation in both models will be the same. This is the
case for the RGB, CMY, YTQ, and CIE color models, all of which are related by simple
affine transformations. However, a straight line in the RGB model does not in general
transform into a straight line in either the HSV or HLS models. Color Plate Il.14 shows the
results of linearly interpolating between the same two colors in the HSV, HSL, RGB, and
YIQ color spaces. Consider the interpolation between red and green. In RGB, red = (1, 0,
0) and green = (0, I, 0). Their interpolation (with both weights equal to 0.5 for
convenience) is (0.5 , 0.5, 0). Applying algorithm RGB_To ... HSV (Fig. 13.33) to this result,
we have (60°, I, 0.5). Now, representing red and green in HSV, we have (0°, I, 1) and
(1200, I, 1). But interpolating with equal weights in HSV, we have (600, I , I); thus, the
value differs by 0.5 from the same interpolation in RGB.

As a second example, consider interpolating red and cyan in the RGB and HSV
models. In RGB, we start with (l , 0, 0) and (0, I , 1), respectively, and interpolate to (0.5,
0.5, 0.5), which in HSV is represented as (UNDEFINED, 0 , 0.5). In HSV, red and cyan are
(0°, I, I) and (ISO•, I, 1). Interpolating, we have (90°, I, I); a new hue at maximum value
and saturation has been introduced, whereas the "right" result of combining equal amounts

0630

13.4 Reproducing Color 599

of complementary colors is a gray value. Here, again, interpolating and then transforming
gives different results from transforming and then interpolating.

For Gouraud shading, any of the models can be used , because the two interpolants are
generaUy so close together that the interpolation paths between the colors are close together
as well. When two images are blended--as in a fade-in, fade-out sequence or for
antialiasing-the colors may be quite distant, and an additive model, such as RGB, is
appropriate. If, on the other hand, the objective is to interpolate between two colors of fixed
hue (or saturation) and to maintain the fixed hue (or saturation) for all interpolated colors,
then HSV or HLS is preferable. But note that a fixed-saturation interpolation in HSV or
HLS is not seen as having exactly fixed saturation by the viewer [WARE87].

13.4 REPRODUCING COLOR

Color images are reproduced in print in a way similar to that used for monochrome images,
but four sets of halft.one dots are printed, one for each of the subtractive primaries, and
another for black. ln a process called un.dercolor removal, black replaces equal amounts of
cyan, magenta, and yellow. This creates a darker black than is possible by mixing the three
primaries, and hastens drying by decreasing the amounts of cyan, magenta, and yellow ink
needed. The orientation of eacb of the grids of dots is different, so that interference patterns
are not created. Color Plate 11.15 shows an enlarged halftone color pattern. Our eyes
spatiaUy integrate the light reflected from adjacent dots, so that we see the color defined by
the proportions of primaries in adjacent dots. This spatial integration of different colors is
the same phenomenon we experience when viewing the triads of red, green, and blue dots
on a color monitor.

We infer, then , that color reproduction in print and on CRTs depends on the same
spatial integration used in monochrome reproduction. The monochrome dithering tech­
niques discussed in Section 13.1.2 can also be used with color to extend the number of
available colors, again at the expense of resolution. Consider a color display with 3 bits per
pixel, one each for red, green, and blue. We can use a 2 x 2 pixel pattern area to obtain 125
different colors: each pattern can display five intensities for each of red, green, and blue, by
using the halftone patterns in Fig. 13.8. This results in 5 x 5 x 5 = 125 color
combinations.

Not all color reproduction depends exclusively on spatial integration. For instance,
xerographic color copiers, ink-jet plotters, and thermal color printers actually mix
subtractive pigments on the paper's surface to obtain a small set of different colors. In
xerography, the colored pigments are first deposited in three successive steps, then are
heated and melted together. The inks sprayed by the plotter mix before drying. Spatial
integration may be used to expand the color range further.

A related quantization problem occurs when a color image with n bits per pixel is to be
displayed on a display of m < n bits per pixel with no Joss of spatial resolution. Here, color
resolution must be sacrificed. In this situation, there are two key questions: Which 2"' colors
should be displayed? What is the mapping from th.e set of 2" colors in the image to the
smaller set of 2"' colors being displayed?

The simple answers are to use a predefined set of display colors and a fixed mapping
from image colors to display colors. For instance, with m = 8, a typical assignmeot tS 3 bits

0631

600 Achromatic and Colored Light

to red and green and 2 to blue (because of the eye's lower sensitivity to blue). Thus, the 256
displayable colors are all the combinations of eight reds, eight greens, and four blues. The
specific values for the red, green, and blue colors would be spaced across the range ofO.O to
1.0 range on a ratio scale, as discussed in Section 13.1. 1. For an image with 6 bits per color
and hence 64 levels for each color, the 64 red colors are mapped into one of the eight
displayable reds, and similarly for the greens. The 64 blue colors are mapped into just four
blues.

With this solution, however, if aU the blue image colors are clustered together in color
space, they might all be displayed as the same blue, whereas the other three displayable
blues might go unused. An adaptive scheme would take this possibility into account and
would divide up the blue-value range on the basis of the distribution of values in the range.
Heckbert [HECK82] describes two approaches of this type: the popularity algorithm and
the median-cut algorithm.

The popularity algorithm creates a histogram of the image's colors, and uses the 2'"
most frequent colors in the mapping. The median-cur algorithm recursively fits a box
around the colors used in the image, splining the box along its longer dimension at the
median i.n that dimension. The recursion ends when 2~ boxes have been created; the
centroid of each box is used as the display color for all image colors in the box. The
median-<:ut algorithm is slower than is the popularity algorithm, but produces better results.
Another way of splitting the boxes is described in [WAN88].

Creating an accuroJe color reproduction is much more difficult than is approximating
colors. Two display monitors can be calibrated to create the same tristimulus values; the
multistep process is described in detail in [COWA83; MEYE83]. The steps are to measure
the chromaticity coordinates of the monitor phosphors, then to adjust the brightness and
contrast control.s of each of the monitor guns so that the same white chromaticity is
produced whenever R = G = B. and to determine the appropriate gamma correction for
each gun.

Making slides or movie film that look exactly like the image on a display is difficult,
because many variables are involved. They include the gamma correction of the display and
of the CRT used in the film recorder; the color of light emitted by the CRT in the film
recorder; the filters used in the film recorder; the type of film used; the quality and
temperature of the developing chemicals, the length of time the film is in the chemicals, and
the color of light emitted by the bulb in the slide or film projector. Fortunately, aU these
variables can be quantified and controlled, albeit with considerable difficulty.

Controlling the color match on printed materials is also difficult; the printing process,
with its cyan, magenta, yellow, and black primaries, requires careful quality contrOl to
maintain registration and ink flow. The paper texture, absorbancy, and gloss also affect the
result. Complicating matters further, the simple subtractive CMY color model discussed in
Section 13.3.2 cannot be used directly, because it does not take into account these
complications of the printing process. More detail can be found in [STON88].

Even if extreme care is taken in color reproduction, the results may not seem to match
the original. Lighting conditions and reflections from the display can cause colors with the
same measured chromaticity coordinates to appear to be different. Fortunately, the purpose
of the reproduction is usually (although not always) to ma.intai.n color relationships between
different parts of the image, rather than to make an exact copy~

0632

13 .5 Using Color in Comput er Graphics 60 1

13.5 USING COLOR IN COMPUTER GRAPHICS

We use color for aesthetics, to establish a tone or mood, for realism, as a highlight, to
identify associated areas as being associated, and for coding. With care, color can be used
effectively for these purposes. In addition, users tend to like color, even when there is no
quantitative evidence that it helps their performance. Although cost-conscious buyers may
scoff at color monitors, we believe that anything that encourages people to use computers is
imponant!

Careless use of color can make the display less useful or less attraCtive than a
corresponding monochrome presentation. In one Cltperiment. introduction of meaningless
color reduced user performance to about one-third of what it was without color [KREB79).
Color should be employed conservatively. Any decorative use of color should be subservient
to the functional use, so that the color cannot be misinterpreted as having some underlying
meaning. Thus, the use of color, like all other aspects of a user-<:<>mputer interface, must be
tested with real users to identify aod remedy problems. Of course, some individuals may
have other preferences, so it is common pr.~etiee to provide defaults chosen on the basis of
color usage rules, with some means for the user to change the defaults. A conservative
approach to color selection is to design first for a monochrome display. to ensure that color
use is purely redundant. This avoids creating problems for color-deficient users and also
means that the application can be used on a monochrome display. Additional information
on color deficiencies is given in [M EYE88]. The color choices used in the window
managers shown in Color Plates 1.26 through f.29 are qui te conseiVo~tive. Color is not used
as a unique code for button status, selected menu item, and so forth.

Many books have been written on the use of color for aesthetic purposes, including
[BIRR6 1); we state here just a few of the simpler rules that help to produce color hannony.
The mOSI fundamental rule of color aesthetics is to select colors according to some method,
typically by traversing a smooth path io a color mode.! or by restricting the colors to planes
or hexcones in a color space. This might mean using colors of constant lightness or value.
Furthermore, colors are best spaced at equal perceptual distances (this is not the same as
being at equally spaced increments of a coordinate, and can be difficult to implement).
Recall too that linear interpolation (as in Gouraud shading) between two colors produces
different results in different color spaces (see Exercise 13. 10 and Color Plate 11. 14).

A random selection of different hues and saturations is usually quite garish. Alvy Ray
Smith performed an informal experiment in which a 16 x 16 grid was filled with randomly
generated colors. Not unCltpectedly, the grid was unattractiYe. Sorting the 256 colors
according to their H , S, and V values and redisplaying them on the grid in their new order
improved the appearance of the grid remarkably.

More specific instances of these rules suggest that, if a chart contains just a few colors,
the complement of one of the colors should be used as the background. A neutral (gray)
background should be used for an image containing many different colors, since it is both
harmonious and inconspicuous. If two adjoining colors are not particularly harmonious, a
thin black border can be used to set them apart. This use of borders is also more effective for
the achromatic (blaclc/white) visual channel , since shape detection is facilitated by the black
outline. Some of these rules are encoded in ACE (A Color Expert), an expert system for
selecting user-interface colors [MEIE88). In general, it is good to minimize the number of

0633

602 Achromatic and Colored light

different colors being used (except for shading of realistic images).
Color can be used for coding, as discussed in Chapter 9 and illustrated by Color Plate

11.16. However, several cautions are in order. First, color codes can easily carry unintended
meanings. Displaying the earnings of company A as red and those of company Bas green
might well suggest that company A is in financial trouble, because of our learned
associations of colors with meanings. Bright, saturated colors stand out more strongly than
do dimmer, paler colors, and may give unintended emphasis. Two elements of a display that
have the same color may be seen as related by the same color code, even if they are not.

This problem often arises when color is used both to group menu items and to
distinguish display elements, such as different layers of a printed circuit board or VLSJ chip;
for example, green display elements tend to be associated with menu items of the same
color. This is one of the reasons that use of color in user-interface elements, such as menus,
dialogue boxes, and window borders, should be restrained. (Another reason is to leave as
many colors as possible free for the application program itself.)

A number of color usage rules are based on physiological rather than aesthet ic
considerations. For example, because the eye is more sensitive to spatial variation in
intensity than it is to variation in chromaticity, lines , text, and other fine detail should vary
from the background not just in chromaticity, but in brightness (perceived intensity) as
well-especially for colors containing blue, since re.latively few cones are sensitive to blue.
Thus, the edge between two equal-brightness colored areas that differ only in the amount of
blue will be fuzzy. On the other hand, blue-sensitive cones spread out farther on the retina
than do red- and green-sensitive ones, so our peripheral color vision is better for blue (this is
why many police-car flashers are now blue instead of red).

Blue and black differ very little in brightness, and are thus a particularly bad
combination. Similarly, yellow on white is relatively hard to distinguish, because both
colors are quite bright (see Exercise 13.11). Color plates 1.28 and 1.29 show a very effective
use of yellow to highlight black text on a white background. The yellow contrasts very well
with the black text and also stands out. In addition, the yellow highlight is not as
overpowering as a black highlight with reversed text (that is, with the highlighted text in
white on a black highlight), as is common on monochrome displays.

White text on a blue background provides a good contrast that is less harsh than white
on black. It is good to avoid reds and greens with low saturation and luminance, as these are
the colors confused by those of us who are red-green color blind, the most common form
of color-perception deficiency. Meyer and Greenberg describe effective ways to choose
colors for color-blind viewers [MEYE88].

The eye cannot distinguish the color of very small objects , as already remarked in
connection with the YIQ NTSC color model , so color coding should not be applied to small
objects. ln particular, judging the color of objects subtending less than 20 to 40 minutes of
arc is error-prone [BISH60, HAEU76]. An object 0.1 inches high, viewed from 24 inches
(a typical viewing distance) subtends this much arc , which corresponds to about 7 pixels of
height on a 1024-line display with a vertical height of 15 inches. It is clear that the color of a
single pixel is quite difficult to discern (see Exercise 13.18).

The perceived color of a colored area is affected by the color of the surrounding area, as
is very evident in Color Plate n .l3; this effect is particularly problematic if colors are used
to encode information. The effect is minimized when the surrounding areas are some shade
of gray or are relatively unsaturated colors.

0634

Exercises 603

The color of an area can actually affect its perceived size. Cleveland and McGill
discovered that a red square is perceived as larger than is a green square of equal size
[CLEV83]. This effect could well cause the viewer to attach more importance to the red
square than to the green ones.

If a user stares at a large area of highly saturated color for several seconds and then
looks elsewhere, an afterimage of the large area will appear. This effect is disconcerting,
and causes eye strain. Use of large areas of saturated colors is hence unwise. Also, large
areas of different colors can appear to be at different distances from the viewer, because the
index of refraction of light depends on wavelength. The eye changes its focus as the viewer's
gaze moves from one colored area to another, and this change in focus gives the impression
of differing depths. Red and blue, which are at opposite ends of the spectrum, have the
strongest depth-disparity effect, with red appearing closer and blue more distant. Hence,
simultaneously using blue for foreground objects and red for the background is unwise; the
converse is fine.

With all these perils and pitfalls of color usage, is it surprising that one of our
first-stated rules was to apply color conservatively?

13.6 SUMMARY

The importance of color in computer graphics will continue to increase as color monitors
and color hardcopy devices become the norm in many applications. ln this chapter, we have
introduced those color concepts most relevant to computer graphics; for more information,
see the vast literature on color, such as [BILLS I; BOYN79; GREG66; HUNT87; JUDD75;
WYSZ82]. More background on artistic and aesthetic issues in the use of color in computer
graphics can be found in [FROM84; MARC82; MElE88; MURC85]. The difficult
problems of precisely calibrating monitors and matching the colors appearing on monitors
with printed colors are discussed in [COWA83; STON88].

EXERCISES

13.1 Derive an equation for the number of intensities that can be represented by m X m pi"el
patterns, where each pixel has w bits.

13.2 Write the programs needed to gamma-correct a black-and-white display through a look-up
table. Input parameters are y , /0, m, the number of intensities desired , and K. the constant in Eq.
(13.5).

13.3 Write an algorithm to display a pixel array on a bilevel output device. The inputs to the
algorithm are an m x m array of pixel intensities, with w bits per pixel, and an 11 x n growth sequence
matrix. Assume that the output device bas resolution of m · n x m · n.

13.4 Repeai Exercise 13.3 by using ordered dither. Now the output device has resolution m x m , the
same as the input array of pixel intensities.

13.5 Write an algorithm to display a tilled polygon on a bilevel device by using an n x n filling
pattern .

13.6 When certain patterns are used to fill a polygon being displayed on an interlaced raster display ,
all of the "on" bits fall on eitherthe odd or the even scan lines, introducing a slight amount of flicker.
Revise the algorithm from Exercise 13.5 to permute rows of the n x n pattern so that alternate

0635

604 Achromatic and Colored Ught

~ -- ~--~~ () ~~~~~~ ()
(a) (b)

Fig. 13.41 Results obtained by using intensity level 1 from Fig. 13.8 in two ways:
(a) with altemation (intensified pixels are on both scan lines), and (b) without alternation
(all intensified pixels are on the same scan line).

replications of the pattern will alternate use of the odd and even scan lines. Figure 13.4 1 shows the
results obtained by using intensity level I from Fig. 13.8, with and without this alternation.

13.7 Given a spectral energy distribution, how ~uld you find the dominant wavelength, excitation
purity, and luminance of the color it represents?

13.8 Plot the locus of points of the constant luminance values 0.25, 0.50, and 0. 75, defined by Y =
0.30R + 0.59G + 0.118, on the RGB cube, the HLS double hexcone, and the HSV hexcone.

13.9 Why are the opposite ends of the spectrum in the CIE diagram connected by a straight line?

13.10 Express, in terms of R, G, and 8: the I of YTQ, the V of HSV, and the L of HSL. Note that I ,
V, and L are not the same .

. 13.11 Calculate in YIQ color space the luminances of the additive and subtractive primaries. Rank
the primaries by luminance. This ranking gives their relative intensities, both as d.isplayed on a
black-and-white television and as perceived by our eyes.

13.12 Discuss the design of a raster display that uses HSV or HLS, instead of RGB, as its color
specification.

13.13 In which color models are the rules of color harmony most easily applied?

13.14 Verify that Eq. (13.27) can be rewritten as Eq. (13.29) when R = G = 8 = I.
13.15 If the white color used to calculate C, C1, and c. in Eq. (13.29) is given by x..,, y •• and Y.
rather than by x., Y., and Z,., what are the algebraic expressions for C., C

1
, and c.?

13.16 Rewrite the HSV-to-RGB conversion algorithm to make it more efficient. Replace the
assignment statements for p, q, and 1 with: vs = v • s; vsf = vs • f. p = v - vs; q = v - vsf, 1 = p +
vsf. Also assume that R, G, and 8 are in the interval [0, 255], and see how many of the computations
can be converted to integer.

13.17 Write a program that displays, side by side, two 16 x 16 grids. Fill each grid with colors. The
lefi grid will have 256 colors randomly selected from HSV color space (created by using a
random-number generator to choose one out of IOequally spaced values for each of H, S, and V). The
right grid contains the same 256 colors, sorted on H, S, and V. Experiment with the results obtained
by varying which of H, S, and V is used as the primary sort key.

13.18 Write a program to display on a gray background small squares colored orange, red, green,
blue, cyan, magenta, and yellow. Each square is separated from the others and is of size n x n pixels,
where n is an input variable. How large must n be so that the colors of each square can be
unambiguously judged from distances of 24 and of 48 inches? What should be the relation between
the t~ values of n? What effect, if any, do different background colors have on this result?

13.19 Calculate the number of bits of look-up-table accuracy needed to store 256 different intensity
levels given dynamic intensity ranges of 50, 100, and 200.

13.20 Write a program to interpolate linearly between t~ colors in RGB, HSV, and HSL. Accept
the two colors as input. allowing them to be specified in any of these three models.

0636

14
The Quest for

Visual Realism

In previous chapters, we discussed graphics techniques involving simple 20 and 30
primitives. The pictures that we produced, such as the wireframe houses of Chapter 6,
represent objecis that in real life are significantly more complex in both structure and
appearance. In this chapter, we introduce an increasingly important application of
computer graphics: creating realistic images of 30 scenes .

What is a realistic image? ln what sense a picture, whether painted, photographed, or
computer-generated, can be said to be "realistic" is a subject of much scholarly debate
[HAGE86]. We use the term rather broadly to refer to a picture that captures many of the
effects of light intemcting with real physical objects. Thus, we treat realistic images as a
continuum and speak freely of pictures, and of the techniques used to create them, as being
"more" or "less" realistic. At one end of the continuum are examples of what is often
called photographic realism (or photorealism). These pictures attempt to synthesize the field
of light intensities that would be foc.used on tbe film plane of a camera aimed at the objects
depicted. As we approach the other end of the continuum, we find images that provide
successively fewer of the visual cues we shall discuss.

You should bear in mind that a more realistic picture is not necessarily a more desirable
or useful one. Ifthe ultimate goal of a picture is to convey information, then a picture that is
free of the complications of shadows and reflections may well be more successful than a
tour de force of photographic realism. In addition, in many applications of the techniques
outlined in the following chapters, reality is intentionally altered for aesthetic effect or to
fulfill a naive viewer's expectations. This is done for the same reasons that science-fiction
films feature the sounds of weapon blasts in outer space-an impossibility in a vacuum.
For example, in depicting Uranus in Color Plate U.20, Blinn shined an extra light on the

605

0637

606 The Quest for Visual Realism

night side of the planet and stretched the contrast to make all features visible
simultaneously- the night side of the planet would have been black otherwise. Taking
liberties with physics can result in auractive, memorable, and useful pictures!

Creating realistic pictures involves a number of stages that are treated in detail in the
following chapters. Although these stages are often thought of as forming a conceptual
pipeline, the order in which they a1e performed can vary, as we shall see, depending on the
algorithms used. First, models of the objects are generated using methods discussed in
Chapters II , 12. and 20. Next , a viewing specification (as developed in Chapter 6) and
lighting conditions are selected. Those surfaces visible to the viewer are then determined by
algorithms discussed in Chapter 15. The color assigned to each pixel in a visible surface's
projection is a function of the light reftected and transmitted by the objects and is
determined by methods treated in Chapter 16. The resulting picture can then be combined
with previously generated ones (e.g., to reuse a complex background) by using the
com positing techniques of Chapter 17. Finally, if we are producing an animated sequence,
time-varying changes in the models, light ing, and viewing specifications must be defined,
as discussed in Chapter 21. The process of creating images from models is often called
rendering. The term ras1erization is also used to refer specifically to those steps that involve
determining pixel values from input geometric primitives.

This chapter presentS realistic rendering from a variety of perspectives. First , we look
at some of the applications in which realistic images have been used. Then, we examine, in
roughly historical progression, a series of techniques that make it possible to create
successively more realistic pictures. Each technique is illustrated by a picture of a standard
scene with the new technique applied to it. Next, we examine the problems caused by
aliasing, which must be dealt with when images arc represented as discrete arrays of pixels.
Finally, we conclude with suggestions about how to approach the following chapters.

14.1 WHY REALISM?

The creation of realistic pictures is an important goal in fields such as simulation, design.
entertainment and advertising, research and education, and command and control.

Simulation systems present images that not only are realistic, but also change
dynamically. For example, a flight simulator shows the view that would be seen from the
cockpit of a moving plane. To produce the effect of motion, the system generates and
displays a new, slightly different view many times per second. Simulators such as those
shown in Color Plate 1.5 have been used to train the pilots of spacecraft, airplanes, and
boats-and, more recently, drivers of cars.

Designers of 30 objecL~ such as automobiles, airplanes, and buildings want to see how
their preliminary designs look. Creating realistic computer-generated images is often an
easier, less expensive, and more effective way to see preliminary resultS than is building
models and prototypes, and also allows more alternative designs to be considered. If the
design \\~ric itself is also computer-based, a digital description of the object may already be
availnble to usc in creating the images. Ideally, the designer can also interact with the
displayed image to modify the design. Color Plate 11.17 shows an image produced by an
automotive-design system to determine what a car will look like under a variety of lighting
conditions. Realistic graphics is often coupled with programs that analyze other aspects of

0638

14.2 Fundamental Difficulties 607

the object being designed, such as its mass propenies or its response to stress.
Computer-generated imagery is used CJttenSi\'ely in the entenainment ~rid, bolh in

traditional animated canoons and in realistic and surrealistic images for logos, advertise­
ments, and science-fiction movies (see Color Plates D. F. 1. 11, 1.12, and 11.18).
Computer-generated cartoons can mimic traditional animation, but can also transcend
manual techniques by introducing more complicated motion and richer or more realistic
imagery. Some compleJt realistic images can be produced at less cost than filming them
from physical models of the objects. Other images have been generated that "'oold ha\'e
been CJttremely difficult or impossible to stage with real models. Special-purpose hardware
and software created for use in entertainment include sophisticated paint systems and
real-time systems for generating special effects and for combining images. As technology
improves, home and arcade video games generate increasingly realistic images.

Realistic images are becoming an essential tool in research and education. A
particularly important CJtample is the use of graphics in molecular modeling, as shown in
Color Plate 11. 19. It is interesting how the concept of realism is stretched here: The realbtic
depictions are not of ''real" atoms, but rather of stylized ball-and-stick and volumetric
models that allow larger structures to be built than are feasible with physical models, and
that permit special effects, such as animated vibrating bonds and color changes representing
reactions. On a macroscopic scale, movies made at JPL show NASA space-probe missions.
depicted in Color Plate 0 .20.

Another application for realistic imagery is in command and control, in which the user
needs to be informed about and to control the complex process represented by the picture.
Unlike simulations, which attempt to mimic what a user ~uld actually see and feel in the
simulated situation, command and control applications often create symbolic displays that
emphasize certain data and suppress others to aid in decision making.

14.2 FUNDAMENTAL DIFFICULTIES

A fundamental difficulty in achieving total visual realism is the complexity of the real
world. Obscr\'1: the richness of your environment. There are many surface teJttures, subtle
color gradations, shadows, reflections, and slight irregularities in the surrounding objects.
Think of pauerns on wrinkled cloth , the texture of skin, tousled hair, scuff marks on the
floor, and chipped paint on the wall. These all combine to create a ''real" visual
CJtperiencc. The computational costs of simulating these effects can be high: Creating
pictures such as those of Color Plates A-H can take many minutes or even hours on
powerful computers.

A more easily met subgoal in the quest for realism is to provide sufficient information
to let the viewer understand the 3D spatial relationships among several objects. This
subgoal can be achieved at a significantly lower cost and is a common requirement in CAD
and in many other application areas. Although highly realistic images c.onvey 3D spatial
relationships, they usually convey much more as well. For example, Fig. 14. 1, a simple line
drawing. suffices to persuade us that one building is partially behind the other. There is no
need to show bui I ding surfaces fi lied with shingles and bricks, or shadows cast by the
buildings. In fact, in some conteJtts. such extra detail may only distract the vi~er's
attention from more important information being depicted.

0639

608 The Ouest for Visual Realism

Fig. 14.1 Line drawing of two houses.

One long-standing difficulty in depicting spatial relationships is that most display
devices are 20. Therefore, 30 objects must be projected into 20, with considerable
attendant loss of information-Which can sometimes create ambiguities in the image.
Some of the techniques introduced in this chapter can be used to add back information of
the type normally found in our visual environment, so that human depth-perception
mechanisms resolve the remaining ambiguities properly.

Consider the Necker cube illusion of Fig. 14.2(a), a 20 projection of a cube; we do not
know whether it represents the cube in part (b) or that in part (c) of this figure. Indeed, the
viewer can easily "flip-flop" between the alternatives, because Fig. 14.2(a) does not
contain enough visual information for an unambiguous interpretation.

The more the viewers know about the object being displayed, the more readily they can
form what Gregory calls an object hypothesis [GREG70). Figure 14.3 shows the SchrOder
stairway illusion-are we looking down a stairway, or looking up from underneath it? We
are likely to choose the former interpretation, probably because we see stairways under our
feet more frequently than over our heads and therefore "know" more about stairways
viewed from above. With a small stretch of the imagination, however, we can visuali ze the
alternative interpretation of the figure. Nevertheless. with a blink of the eye, a reversal
occurs for most viewers and the stairway again appears to be viewed from above. Of course,
additional context, such as a person standing on the steps, will resolve the ambiguity.

In the following sections, we list some of the steps along the path toward realistic
images. The path has actually been a set of intertwined trails, rather than a single straight
road, but we have linearized it for the sake of simplicity, providing a purely descriptive
introduction to the detailed treatment in subsequent chapters. We mention first techniques
applicable to static line drawings. These methods concentrate on ways to present the 30
spatial relationships among several objects on a 20 display. Next come techniques for

(a) (b) (c)

Fig. 14.2 The Necker cube illusion. Is the cube in (a) oriented like the cube in (b) or like
that in (c)?

0640

14.3 Rendering Techniques for Line Drawings 609

Fig. 14.3 The SchrOder stairway illusion. Is the stairway being viewed from above or
from below?

shaded images, made possible by raster graphics hardware, that concentrate on the
interaction of objects with light. These are followed by the issues of increased model
complexity and dynamics, applicable to both line and shaded pictures. Finally, we discuss
the possibilities of true 30 images, advances in display hardware , and the future place of
picture generation in the context of full , interactive environmental synthesis.

14.3 RENDERING TECHNIQUES FOR LINE DRAWINGS

In this section, we focus on a subgoal of realism: showing 30 depth relationships on a 20
surface. This goal is served by the planar geometric projections defined in Chapter 6.

14.3 . 1 Multiple Orthographic Views

The easiest projections to create are parallel orthographies, such as plan and elevation
views, in which the projection plane is perpendicular to a principal axis. Since depth
information is discarded, plan and elevations are typically shown together, as with the top,
front, and side views of a block letter "L" in Fig. 14.4. This particular drawing is not
difficult to understand; however, understanding dr'dwings of complicated manufactured
parts from a set of such views may require many hours of study. Training and experience
sharpen one's interpretive powers, of course, and familiarity with the types of objects being
represented hastens the formulation of a correct object hypothesis. Still, scenes as
complicated as that of our • 'standard scene" shown in Color Plate 0 .2 1 are often confusing
when shown in only three such projections. Although a single point may be unambiguously
located from three mutually perpendicular orthographies, multiple points and lines may
conceal one another when so projected.

I I

Fig. 14.4 Front, top, and side orthographic projections of the block letter ''L"

0641

61 0 The Quest for Visual Realism

14.3 .2 Axonometric and Oblique Projections

In axonometric and oblique projections, a point's z coordinate influences its x and y
coordinates in the projection, as exemplified by Color Plate n .22. These projections
provide constant foreshortening, and therefore lack the convergence of parallel lines and the
decreasing size of objects with increasing distance that perspective projection provides.

14.3 .3 Perspective Projections

In perspective projections, an object's size is scaled in inverse proportion to its distance
from the viewer. The perspective projection of a cube shown in Fig. 14.5 reflects this
scaling. There is still ambiguity, however; the projection could just as well be a picture
frdllle, or the parallel projection of a truncated pyramid, or the perspective projection of a
rectangular parallelepiped with two equal faces. If one's object hypothesis is a truncated
pyramid. then the smaller square represents the face closer to the viewer; if the object
hypothesis is a cube or rectangu lar parallelepiped, then the smaller square represents the
face farther from the viewer.

Our interpretation of perspective projections is often based on the assumption that a
smaller object is farther away. In Fig. 14.6, we would probably assume that the larger bouse
is nearer to the vie-..,'Cr. However, the house that appears larger (a mansion, perhaps) may
actually be more distant than the one that appears smaller (a cottage, for example), at least
as long as there are no other cues, such as trees and windows. When the viewer knows that
the projected objects have many parallel lines, perspective further helps to convey depth,
because the parallel Lines seem to converge at their vanishing points. This convergence may
actually be a stronger depth cue than the effect of decreasing size. Color Plate H.23 shows a
perspective projection of our standard scene.

14.3.4 Depth Cueing

The depth (distance) of an object can be represented by the intensity of the image: Parts of
objects that are intended to appear farther from the viewer are displayed at lower intensil)'
(see Color Plate 11.24). This effect is known as depth cueing. Depth cueing exploits the fact
that distant objects appear dimmer than closer objects, especially if seen through haze.
Such effects ean be sufficiently convincing that artists refer to the use of changes in intensity
(as well as in texture, sharpness, and color) to depict distance as aerial perspective. Thus,
depth cueing may be seen as a simplified version of the effects of atmospheric attenuation.

I'- /

/ "
Fig. 14.5 Perspective projection of a Fig. 14.6 Perspective projection of two
cube. houses.

0642

14.3 Rendering Techniques for Line Drawings 611

In vector displays , depth cueing is implemented by interpolating the intensity of the
beam along a vector as a function of its starting and ending z coordinates. Color graphics
systems usually general.ize the technique to support interpolating between the color of a
primitive and a user-specified depth-cue color, which is typically the color of the
background. To restrict the effect to a limited range of depths, PHJGS+ allows the user to
specify front and back depth-cueing planes between which depth cueing is to occur. A
separate scale factor associated with each plane indicates the proportions of the original
color and the depth-cue color to be used in front of the front plane and behind the back
plane. The color of points between the planes is linearly interpolated between these two
values. The eye's intensity resolution is lower than its spatial resolution, so depth cueing is
not useful for accurately depicting small differences in distance. It is quite effective,
however, in depicting large differences, or as an exaggerated cue in depicting small ones.

14.3 .5 Depth Clipping

Further depth information can be provided by deprh clipping. The back clipping plane is
placed so as to cut through the object~ being displayed, as shown in Color Plate U.25.
Partially clipped objects are then known by the viewer to be cut by the clipping plane. A
front clipping plane may also be used. By allowing the position of one or both planes to be
varied dynamically, the system can convey more depth information to the viewer.
Back-plane depth clipping can be thought of as a special case of depth cueing: In ordinary
depth cueing, intensity is a smooth function of z; in depth clipping, it is a step function.
Color Plate ll.25 combines both techniques. A technique related to depth clipping is
highlighting all points on the object intersected by some plane. This technique is especially
effective when the slicing plane is shown moving through the object dynamically, and has
even been used to help illustrate depth along a fourth dimension [BANC77].

14.3.6 Texture

Simple vector textures , such as cross-hatching, may be applied to an object. These textures
follow the shape of an object and delineate it more clearly. Texturing one of a set of
otherwise identical faces can clarify a potentially ambiguous projection. Texturing is
especially usefu l in perspective projections, as it adds yet more lines whose convergence
and foreshortening may provide useful depth cues.

14.3.7 Color

Color may be used symbolically to distinguish one object from another, as in Color Plate
n.26, in which each object has been assigned a different color. Color can also be used in
line drawings to provide other information. For example, the color of each vector of an
object may be determined by interpolating colors that encode the temperatures at the
vector's endpoints.

14.3 .8 Visible-Line Determination

The last line-drawing technique we mention is visible-line dererminarion or hidden-line
removal, which results in the display of only visible (i.e., unobscured) lines or parts of

0643

612 The Quest for Visual Realism

lines. Only surfaces, bounded by edges (lines) , can obscure other lines. Thus, objects that
are to block others must be modeled either as collections of surfaces or a~ solids.

Color Plate 11.27 shows the usefulness of hidden-line removal. Because hidden-line­
removed views conceal all the internal structure of opaque objects, they are not necessarily
the most effective way to show depth relations . Hidden-line-removed views convey less
depth information than do exploded and cutaway views. Showing hidden lines as dashed
lines can be a useful compromise.

14.4 RENDERING TECHNIQUES FOR SHADED IMAGES

The techniques mentioned in Section 14.3 can be used to create line dr<~wings on both
vector and raster displays. The techniques introduced in this section exploit the ability of
raster devices to display shaded areas. When pictures are rendered for raster displays,
problems are introduced by the relatively coarse grid of pixels on which smooth contours
and shading must be reproduced. The simplest ways to render shaded pictures fall prey to
the problem of aliasing, first encountered in Section 3 .17. In Section 14.10, we introduce
the theory behind aliasing, and explain bow to combat aliasing through antialiasing.
Because of the fundamental role that antialiasing plays in producing high-quality pictures,
all the pictures in this section have been created with antialiasing.

14.4 . 1 Visible-Surface Determination

By analogy to visible-line determination, visible-surface derermination or hidden-surface
removal. entails displaying only those pans of surfaces that are visible to the viewer. As we
have seen, simple line drawings can often be understood without visible-line determination.
When there are few lines , those in front may not seriously obstruct our view of those behind
them. In raster graphics, on the other hand, if surfaces are rendered as opaque areas, then
visible-surface determination is essential for the picture to make sense. Color Plate U.28
shows an example in which all faces of an object are painted the same color.

14.4 .2 Illumination and Shading

A problem with Color Plate n. 28 is that each object appears as a flat silhouette. Our next
step toward achieving realism is to shade the visible surfaces. Ultimately, each surface's
appearance should depend on the types of light sources illuminating it, its properties (color,
texture, reflectance), and its position and orientation with respect to the light sources,
viewer, and other surfuces.

In many real visual envi.ronments, a considerable amount of ambie/11 lighr impinges
from all directions. Ambient light is the easiest kind of light source to model , because in a
simple lighting model it is assumed to produce constant illumination on all surfaces,
regardless of their position or orientmion. Using ambient light by itself produces very
unrealistic images, however, since few real environments are illuminated solely by uniform
ambient light. Color Plate 11.28 is an example of a picture shaded this way.

A poim source, whose r<~ys emanate from a single point, can approximate a small
incandescent bulb. A direcrional source, whose rays all come from the same direction, can
be used to represent the distant sun by approximating it as an infinitely distant point source.

0644

14.4 Rendering Techniques for Shaded Images 613

Modeling these sources requires additional work because their effect depends on the
surface's orientation. l f the surface is normal (perpendicular) to the incident light rays, it is
brightly illuminated; the more oblique the surface is to the light rays, the less its
illumination. This variation in illumination is, of course, a powerful cue to the 30 structure
of an object. Finally, a distributed or extended source, whose surface area emits light, such
as a bank of fluorescent lights, is even more complex to model , since its light comes from
neither a single direction nor a single point. Color Plate ll.29 shows the effect of
illuminating our scene with ambient and point light sources, and shading each polygon
separately.

14.4.3 Interpolated Shading

Interpolated shading is a technique in which shading information is computed for each
polygon vertex and interpolated across the polygons to determine the shading at each pixel.
This method is especially effective when a polygonal object description is intended to
approximate a curved surface. In this case, the shading information computed at each vertex
can be based on the surface 's actual orientation at that point and is used for all of the
polygons that share that vertex. l.nterpolating among these values across a polygon
approximates the smooth changes in shade that occur across a curved, rather than planar,
surface.

Even objectS that are supposed to be polyhedral, rather than curved, can benefit from
interpolated shading, since the shading information computed for each vertex of a polygon
may differ, although typically much Jess dramatically than for a curved object. When
shading information is computed for a true polyhedral object, the value determined for a
polygon 's vertex is used only for that polygon and not for others that share the vertex. Color
Plate 11.30 shows Gouraud shading, a kind of interpolated shading discussed in Section
16.2.

14.4.4 Material Properties

Realism is further enhanced if the material properties of each object are taken into account
when itS shading is determined. Some materials are dull and disperse reflected light about
equally in all directions, like a piece of chalk; others are shiny and reflect light only in
certain directions relative to the viewer and light source, like a mirror. Color Plate 11.31
shows what our scene looks like when some objects are modeled as shiny. Color Plate 11.32
uses Phong shading, a more accurate interpolated shading method (Section 16.2).

14.4.5 Modeling Curved Surfaces

Although interpolated shading vastly improves the appearance of an image, the object
geometry is stil.l polygonal. Color Plate U .33 uses object models that include curved
surfaces. Full shading information is computed at each pixel in the image.

14.4 .6 Improved Illumination and Shading

One of the most important reasons for the "unreal" appearance of most computer graphics
images is the failure to model accurately the many ways that light interacts with objects.

0645

614 The Ouest for Visual Realism

Color Plate 11.34 uses better illumination models. Sections 16.7-13 discuss progress toward
the design of efficient, physically correct illumination models, resulting in pictures such as
Color Plates 111.19-JU.29 and the jacket of this book (Color Plate 1.9).

14.4 . 7 Texture

Object texture not only provides additional depth cues, as discussed in Section 14.3.6, but
also can mimic the surface detail of real objects. Color Plates 11 .35 and 11.36 show a variety
of wnys in which texture may be simulated, ranging from varying the surface's color (as was
done with the patterned ball), to actually deforming the surface geometry (as was done with
the striated torus and crumpled cone in Color Plate 11.36).

14.4 .8 Shadows

We can introduce further realism by reproducing shadows cast by objects on one another.
Note that this technique is the first we have met in which the appearance of an object's
visible surfaces is affected by other objects. Color Plate 11.36 shows the shadows cast by the
lamp at the rear of the scene. Shadows enhance realism and provide additional depth cues:
If object A casts a shadow on surface 8, then we know that A is bet\\<eeD 8 and a direct or
reflected light souree. A point light source casts sharp shadows, because from any point it is
either totally visible or invisible. An extended light source casts "soft" shadows. since
there is a smooth transition from those points that see all of the light source, through those
that see only part of it, to those that see none of it.

14.4 .9 Transparency and Reflection

Thus far, we have dealt with opaque surfaces only. Transparent surfuces can also be useful
in picture making. Simple models of tra.nsparency do not include the refraction (bending)
oflight through a transparent solid. Lack of refraction can be a decided advantage, however,
if transparency is being used not so much to simulate reality as to reveal an object's inner
geometry. More complex models include refraction, diffuse translucency, and the
attenuation of light with distance. Similarly, a model of light reflection may simulate the
sharp reflections of a perfect mirror reflecting another object or the diffuse renections of a
less highly polished surface. Color Plate U.37 shows the effect of reflection from the noor
and teapot; Color Plates Ill . 7 and 111. 10 show transparency.

Like modeling shadows. modeling transparency or reflection requires knowledge of
other surfaces besides the surface being shaded. Furthermore, refT1lCti"e transparency is the
first effect we ha\'C mentioned that requires objects actually to be modeled as solids rather
than just as surfaces! We must know something about the materials through which a light
ray passes and the distance it travels to model its refraction properly.

14.4 . 1 0 Improved Camera Models

All the pictures shown so far are based on a camera model with a pinhole lens and an
infinitely fast shutter. All objects are in sharp focus and represent the world at one instant in
time. It is possible to model more accumtely the way that we (and cameras) see the world.

0646

14.6 Dynamics 615

For example, by modeling the focal properties of lenses, we can produce pictures, such as
Color Plates Jl.38 and J1.39, that show depth of field: Some parts of objects are in focus,
whereas closer and farther parts are out of focus. Other techniques allow the use of special
effects, such as fish-eye lenses. The lack of depth-of-field effects is responsible in part for
the surreal appearance of many early computer-generated pictures.

Moving objects look different from stationary objects in a picture taken with a regular
still or movie camera. Because the shutter is open for a finite period of time, visible parts of
moving objects are blurred across the .fiJm plane. This effect, called motion blur, is
simulated in Color Plates UI. l6 and 1V.l4. Motion blur not only captures the effects of
motion in stills, but is of crucial importance in producing high-quality animation, as
described in Chapter 21.

14.5 IMPROVED OBJECT MODELS

Independent of the rendering technology used, the search for realism has concentrated in
part on ways of building more convincing models, both static and dynamic. Some
researchers have developed models of special kinds of objects such as gases, waves,
mountains, and trees; see, for example, Color Plates IV .11-IV. 21. Other investigators have
concentrated on automating the positioning of large numbers of objects, such as trees in a
forest , which would be too tedious to do by hand (Color Plate IV.25). These techniques are
covered in Chapter 20.

14.6 DYNAMICS

By dynamics, we mean changes that spread across a sequence of pictures, including changes
in position, size, material properties, lighting, and viewing specification-indeed, changes
in any parts of the scene or the techniques applied to it. The benefits of dynamics can be
examined independently of the progression toward more realistic static images.

Perhaps the most popular kind of dynamics is motion dynamics, rangjng from simple
transforrnations performed under user control to complex animation, as described in
Chapter 21. Motion has been an important part of computer graphics since the field's
inception. In the early days of slow raster graphics hardware, motion capability was one of
the strong competitive selling points of vector graphics systems. If a series of projections of
the same object, each from a slightly different viewpoint around the object, is displayed in
rapid succession, then the object appears to rotate. By integrating the information across
the views, the viewer creates an object hypothesis.

A perspective projection of a rotating cube, for instance, provides several types of
information. There is the series of different projections, which are themselves useful. This
is supplemented by the motion effect, in which the maximum linear velocity of points near
the center of rotation is lower than that of points distant from the center of rotation. This
difference can help LO clarify the relative distance of a point from the center of rotation.
Also, the changing sizes of different parts of the cube as they change distance under
perspective projection provide additional cues about the depth relationships. Motion

0647

616 The Quest for Visual Realism

becomes even more powerful when it is under the interactive control of the viewer. By
selectively transforming an object, viewers may be able to form an object hypothesis more
quickly.

In contrast to the use of simple transformations to clarify complex models, surprisingly
simple models look extremely convincing if they move in a realistic fashion. For example,
just a few points positioned at key parts of a human model, when moved naturally, can
provide a convincing illusion of a person in motion. The points themselves do not " look
like" a person, but they do inform the viewer that a person is present. It is also well known
that objects in motion can be rendered with less detail than is need.ed to represent static
objects, because the viewer has more difficulty picking out details when an object is
moving. Television viewers. for example, are often surprised to discover how poor and
grainy an individual television frame appears.

14.7 STEREOPSIS

All the techniques we have discussed thus far present the same image to both eyes of the
viewer. Now conduct an experiment: Look at your desk or table top first with one eye, then
with the other. The two views differ slightly because our eyes are separated from each other
by a few inches, as shown in Fig. 14.7. The binocular disparity caused by this separation
provides a powerful depth cue called slereopsis or stereo vision. Our brain fuses the two
separate images into one that is interpreted as being in 3D. The two images are called a
s1ereo pair; stereo pairs were used in the stereo viewers popular around the tum of the
century, and are used today in the common toy , the View-Master. Color Plate 11.19 shows a
stereo pair of a molecule. You can fuse the two images into one 3D image by viewing them
such that each eye sees only one image; you can do this , for example, by placing a stiff piece
of paper between the two images perpendicular to the page. Some people can see the effect
without any need for the piece of paper, and a small number of people cannot see it at al.l.

A variecy of other techn iques exists for providing different images to each eye,
including glasses with polarizing filters and holography. Some of these techniques make
possible true 3D images that occupy space, rather than being projected on a single plane.
These displays can provide an additional 3D depth cue: Closer objects actually are closer:,

Eyes
(centers of projection)

View plane

0 D
Left eye's R1ght eye's
view view

Fig. 14.7 Binocular disparity.

0648

Plate II. 1 Several views of the X+ Y + Z • 1 plane of CIE space. Leh: the plane embedded In
CIE space. Top right. 11 view perpendicular to the plane. Bottom right. the projectlon onto the
(X, \11 plene (that 1S, the Z- 0 plane), whfch is the <:hromatic1ty diagram. (Counesy of Barbara
Meier, Brown University.)

Plate 11.2 The CIE c:hromatiCity diagram, showing typical color gamuts for an offset prinung
press. a C{)lor monotor, and for slide film. The print colors represent the Graphics Ana Techni·
cal FoundationS W.O.P. standard colors measured under 11 graphic arts light w ith a color
temperature of 5000· K. The color mon1tor is a Barco CTVM 3/51 with a white point set to
6500" K and the slide film Is Kodak Ektachrome 5017 ISO 64 as characterized under CIE source
A a 2653" K black body that closely approximates a Tungsten lamp. The><. cucle, and square
indicate the white points for the print, color monnor, and Olm gamuts, respectively. (Courtesy
of M. Stone, Xerox Palo Alto Research Center. Film gamut measured by A. Paeth, Computer
Graphic:s lab, University of Waterloo: see aiSQ the first appendix of IPAET89).)

0649

Plate 11.4 The RGB color space,
voewed looking along the main
doagonal from white to black.
Only the black verteK Is invisible.
(Courtesy of David Small, Visible
Language Workshop, MIT Media
Lab, Cambridge, MA 02139.
CMIT, 1989.1

Plate 11.5 An onterior subcube of the RGB
color space. The gray vertaK is at (0.5, 0.5,
0.5) Hence the subcube is half the height,
width, end depth of the entore space shown
on Color Plate 11.4. (Courtesy of David Small.
Voslble Language Workshop, MIT Medoa
Lab, Cambridge. MA 02139. C MIT, 1989.)

Plate 11 .3 Additive colors. Red
plus green form yellow, red plus
blue form magenta, green plus
blue form cyan, red plus green
plus blue form white.

0650

YELLOW

Plata II . 7 The HSV color
apace. (Counesy of Oavid
Small, Visible Language
Workshop, MIT Media Lab,
Cambridge, MA 02139. C MIT,
1989.)

Plate 11.6 Subtractive colors
Yellow and magenta subtracted
from whne form red, yellow
and cyan subtracted from wh•te
form green, cyan and magenta
subtracted from wh1te form
blue.

Plate 11.8 A ven•cal cross·
section slice of HSV space
along the V ax1s (Counesy of
Oavid Small, Visible Language
Workshop, MIT Media Leb,
Cambridge, MA02139. C MIT,
1989.)

0651

Plata II. 10 Averttcal cross
section slice of HLS space
along the L axts. (Courtesy of
David Small, Visible Language
Wo(kshop, MIT Med•a Lab,
Cambridge, MA 02139. C MIT,
1989.1

Plata 11 .9 The HLS color
space (Courtesy of David
Small, Visible Language
Workshop, MIT Media Lab,
Cambridge, MA 02139. C MIT,
1989.)

Plata 11.1 1 The HVC color space.
(Courtesy ofTel<tronix, Inc. I

0652

\#lrl I (Olot

D
,.,.. ,

~ ,...,. ~,q II

.,.,,,~n

... m.,·
ltf'rn Ul)l

••• • 101'90

•
Plate 11.12 An interaction technique
used on the Macintosh to specify colors
in HSV space. Hue and saturation are
shown in the circular area. and value by
the slider dtal. The user can move the
mark tn the ctrcular area and change the
slider dial. or can typo tn new HSV or
RGB values. The square color area
(upper left) shows the current color and
the new color. In this picture. taken from
a color monitor driven by a 4-btt-per
pit<el bit map, many of the colors are
created by dithering (see Sectton 13.4).
(Counesy of Apple Computer, Inc., C
1984.)

Plate 11.13 The same yellow sur­
rounded by different background colors
appears to be different shades of yellow.

T

Plate 11.14 An mterac·
live program that allows
the user to specify and
Interpolate colors in four
different color spaces:
RGB, VIQ, HSV, and HLS.
The staning and endmg
colors for a linear mter­
polatJon are spectfied by
pointing at the various
projections or the color
spaces. The tnterpola
t•on ts shown below each
color space, and together
for comparison in the
lower left. (Councsy or
Paul Charlton, The
George Washtngton
University.)

0653

Ple1e II 18 A pseudo­
color 1 n tge ehowmg the
topogrephv of Venus.
The color ecale on the
left 11\doc:atesaltotudes
from-2 kmto + 2 km
above or below en
ever ago red ius for Venus
of 6052 km Dale were
calculated by the Lunar
and Planetary lnstotute
from radar altimetry
observahonsbyNASA's
Pooneer Venus Orboter
spacecraft The 1mage
was created woth the
Nat•onal Space Se•ence
Data Center Graphics
Syatem. ICounosv of
Lloyd Tre•msh, NASA
Goddord Space Flight
Center.!

Plete 11 .15 An enlarged
halftone color poc:turt.
lndovodual dots of evan,
megenta, yellow. and black
comboneto create a broad
gamut or colors.

Plett 11.17 Chevrolet Cemaro
ht by love hghts woth Warn's
hghung controls.ICounesyof
David R Warn, General Motora
Reaearch Laboratones.l

0654

Pl•t• 11 .18 '87-'88 NBC
Nerwork P8Ckage. By
James Dil(on (ammator) and
Glenn Entas (producer),
Pacific Data Images,
Sunnyvale, CA, for Marks
Communicauons.

Plete 11.19 Stereo paar of Polio virus capsid, imaged by placing a sphere of 0.5 nm radaus et
each alpha carbon posltaon. One pentamer is removed to reveal the interior Coordinate•
courtesy of J Hogle (Courtesy of David Goodsell and Arthur J Olson. Copyright C 1989,
Research Institute of ScnppsCIInac.)

Plate 11.20 Simulated flyby
of Uranus with rings end orbit
(Courtesy of Jim Blinn, Comp·
uter Graphacs Lab. Jet Prop­
ulsaon Lab, California Institute
ofTechnology.l

0655

+

Plete 11 .21 Shutterbug. L•v•ng room scene
w•th movie camera. Orthographic prOJeC·
tions (Sections 6. 1.2 and 14 3 1). (a) Plan
view. (bl Front view. (cl Side view. Polygo·
nal models generated from spline patches.
Note the • patch creeks" (Section 1 1.3.5)
v1s1ble along the entire right front s1de of
the teapot, and how they cause shading dis·
contmuitles 10 the polygon-mesh Interpo­
lated-shading models used In Color Plates
11.30- 11.32. (Copynght C 1990, Pixar.
Rendered by Thomas Williams and
H.B. Siegel using Pixar' s PhotoRealistic
RenderMan"" software.!

(a)

(C)

Plate 11.22 Shutterbug. Axonometric projection (Sections
61.2 and 14.3.2). (Copynght C 1990, Pixar. Rendered by
Thomas Williams and H.B Siegel using Pixar's PhotoRealistic
RenderMan"' software.)

0656

Plata 11.2 3 Shutterbug Perspec:tove prOJIICtton (Sectoons6.1.1 and 14.3 3). (Copyroght 0 1990,
Pixar Rendered by Thomas Wtlham• and H B Siegel using Poxar'1 PhotoReali5ttc:
RendorMan"" software.)

Plata 11.24 Shutterbug. Depth cueong (Sec:toons 14.3.4 and 16 13). (Copyright 0 1990. PIMar.
Rendered by Thomas Wilhams and H B Soagel using Pixar's PhotoRealisltc RenderM an"'
software I

0657

Platall.25 Shutterbug Depth clipping (Section 1,.3.5). !Copyright C 1990, Pixar. Rendered
by Thomas Williams and H.B Siegel using Pixar's PhotoRealistic RenderMan"' software.)

Plata 11.28 Shutterbug Colored vectors (Sectoon 14 3.7). (Copyright C 1990. POJcer. Rendered
by Thomes Williams end H.B. Siegel using Pixar's PhotoRealistic RendorMan"' software.)

0658

Pletell.27 Shunerbug Visoble lonedetermonallon (Secuon 14.3 81. lCopyrightC 1990, Pucar.
Rendered by Thomas Withams end H B. So agel usong Ptxar'a PhotoReahsllc RenderMan'"
software.)

Pl•t• 11.28 Shunerbug Visible aurfece determinatoon wtth embient ollummatoon only
tSecttona 14 4.1 and 16.1.11. tCopynght C 1990, PllCar. Rendered by Thomas Wilhamsand
H.B S1aget uaong Poxar's PhotoReehatoc RenderMan"'softwar•l

0659

Pletell.29 Shutterbug. lndovodually shaded pOlygons woth doffun reflectoon ISectoons H.c 2
and 16.2.3) ICopyroght C 1990, Po >Cor. Rendered by Thomas Willoams and H B. Soegel using
Po >Car's PhotoRealistic RenderMan'M soflware.)

Plete 11.30 Shutterbug. Gouraud shaded pOlygons woth diffuse reflection (Sections 14.4.3
and 16 2 Cl. ICopynghtC 1990, Poxar. Rendered by Thomat Wollloms ond H. B. Siegel usong
Pi>Car't PhotoRealistoc RenderMan"' soflware. l

0660

Plate 11 .31 Shutterbug. Gouraud shaded polygons with specular reflection (Sections 14.4.4
and 16.2.5). (CopyrightC 1990, Pbcar. Rendered by Thomas Williams and H.B. Siegel using
Pixar' s PhotoRealistic RondorM an"' software.)

Platall.32 Shurterbug Phong shaded polygons with specular reflection (Sections 14.4.4 and
16.2.51. (Copyright 0 1990, Pixar. Rendered by Thomas Williams and H.B. S1egel using Pixar's
PhotoRealistic RenderMan m software.)

0661

Plata 11.33 Shutterbug. Curved surfaces with specular reflection (Section 14.4.5) !Copyright
C 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic
RenderMan'"software.l

Plata 11.34 Shutterbug. Improved llluminatoon model and multiple fights (Sections 14.4.6 and
16. 1). tCopyroghtC 1990, Pixar. Rendered by Thomas Williamsand H.B. Siegel using Pixar's
PhotoRealistic RenderMan '"software.)

0662

Plate 11.35 Shutterbug. Tel<ture mapping !Sections 14.4.7, 16.3.2, 17 .4.2, and 17.4.3).
(Copyright g 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's
PhotoRealistic RenderManno software.)

Plate 11.36 Shurterbug. Displacement mappmg !Sections 14.4.7 and 16.3.41and shadows
!Sections 14.4.8 and 16.4). !Copyright 01990, Pixar. Rendered by Thomas Williamsand
H.B. Siegel using Pucar's PhotoRealistiC RenderM an 1" software.)

0663

Plate 11.37 Shutterbug. Reflection mappmg (Sections 14.4.9 and 16.6). (Copyright C 1990,
Phcar Rendered by Thomas Williams and H~B. S1egol using Pixar's PhotoRealistic
RenderMan'"'software .)

(a)

Plate 11.38 Depth of field, implemented
by postprocessing !Sections 14.4.1 0 and
16. 10). (a) Focused at cube (550 mm),
f/1 1 aperture. (b) Focused atsphere
(290 mml, 1/1 1 aperture. (Courtesy of
Michael Potmesil and lndranil
Chakravarty, APt.)

Plata 11.39 Depth of field, implemented
by distributed ray tracing (Sections
14.4.10 and 16. 12.4). (By Robert Cook.
Thomas Porter. and Loren Carpenter.
Copyright C Pixar 1984.AII nghts
reserved.)

0664

14.10 Aliasing and Antialiasing 61 7

just as in real life, so the viewer's eyes focus differently on different objects, depending on
each object's proximity. Methods for producing and viewing stereo images are examined in
more detail in Section 18.11.5; the mathematics of stereo projection is described in
Exercise 6. 27.

14.8 IMPROVED DISPLAYS

In addition to improvements in the softwMe used to design and render objects, improve­
ments in the displays themselves have heightened the illusion of reality. The history of
computer graphics is in part that of a steady improvement in the visual quality achieved by
display devices. Still , a modem monitor's color gamut and its dynamic intensity range are
both a small subset of what we can see. We have a long way to go before the image on our
display can equal the crispness and contrast of a well-printed professional photograph!
Limited display resolution makes it impossible to reproduce extremely fine detail. Artifacts
such as a visible phosphor pattern, glare from the screen, geometric distortion , and the
stroboscopic effect of frame-rate fticker are ever-present reminders that we are viewing a
display. The display's relatively small size, compared with our field of vision, also helps to
remind us that the display is a window on a world, rather than a world itself.

14.9 INTERACTING WITH OUR OTHER SENSES

Perhaps the final step towMd realism is the integration of realistic imagery with information
presented to our other senses. Computer graphics has a long history of programs that rely
on a variety of input devices to allow user interaction. Flight simulators are a current
example of the coupling of graphics with realistic engine sounds and motion, all offered in a
mocked-up cockpit to create an entire environment. The head-worn simulator of Color Plate
1.16 monitors head motion, making possible another important 30 depth cue called
head-motion parallax: when the user moves her head from side to side, perhaps to try to see
more of a partially hidden object, the view changes as it would in real life. Other active
work on head-mounted displays centers on the exploration of virtual worlds, such as the
insides of molecules or of buildings that have not yet been constructed [CHUN89].

Many current arcade games feature a car or plane that the player rides, moving in time
to a simulation that includes synthesized or digitized images, sound, and force feedback, as
shown in Color Plate I. 7. This use of additional output and input modalities points the way
to systems of the future that will provide complete immersion of all the senses, including
hearing. touch, taste, and smell.

14.10 ALIASING AND ANTIALIASING

In Section 3.17, we introduced the problem of aliasing and discussed some basic
techniques for gener.lting antialiased 20 primitives. Here we examine aliasing in more
detail so that we can understand when and why it occurs , laying the groundwork for
incorpordting antialiasing into the visible-surface and shading algorithms covered in the
following chapters. Additional material may be found in [CROW77b; CROWS!]; an
excellent set of examples is included in [BLIN89a; BUN89b).

0665

618 The Quest for Visual Realism

a

(a) (b)

(c) (d)

Fig. 14.8 Image. (a) Graphical primitives. (b) M andrill. (c) Intensity plot of scan line a in
(a). (d) Intensity plot of scan line a In (b). (Part dis courtesy of George Wolberg, Columbia
University.)

To understand aliasing, we have to introduce some basic concepts from the field of
signal processing. We start with the concept of a signal. which is a function that conveys
information. Signals are often thought of as functions of time, but can equally well be
functions of other variables. Since we can think of images as intensity variations over space,
we will refer to signals in the spatial domain (as functions of spatial coordinates), rather
than in the temporal domain (as functions of time). Although images are 20 functions of
two independent spatial variables (x andy), for convenience our examples will often use the
I 0 case of a single spatial variable x. This case can be thought of as an infinitesimally thin
slice through the image, representing intensity along a single horizontal line. Figure 14.8(a)
and (b) show 20 signals, and parts (c) and (d) of the figure show plots of the intensity along
the horizontal line a.

Signals can be classified by whether or not they have values at all points in the spatial
domain. A cominuous signa/1 is defined at a continuum of positions in space; a discrete
signal is defined at a set of discrete points in space. Before scan conversion, the projection
of our 30 objects onto the view plane may be treated as a continuous 20 signal whose value

1Noc to be confused with the definition of continuity in calculus.

a

0666

14.10 Aliasing and Antialiasing 619

at each infinitesimal point in the plane indicates the intensity at that point. ln contrast, the
array of pixel values in the graphics system's frame buffer is a discrete 20 signal whose
value is defined only at the positions in the array. Our rendering algorithms must determine
the intensities of the finite number of pixels in the array so that they best represent the
continuous 20 signal defined by the projection. The precise meaning of "best represent'' is
not at all obvious, however. We shall discuss this problem further.

A continuous signal may contain arbitrarily fine detail in the form of very rapid
(high-frequency) variations in itS value as its continuous parameter is changed. Since a
discrete signal can change value only at discrete pointS, it clearly has a maximum rate of
variation. Therefore, it should be clear that converting a continuous signal to a finite array
of values may result in a loss of information. Our goal is to ensure that as little information
as possible is lost, so that the resulting pixel array can be used to display a picture that looks
as much as possible like the original signal would look if we were able to dhplay it directly .
The process of selecting a finite set of values from a signal is known as sampling, and the
selected values are called samples. Once we have selected these samples, we must then
display them using a process, known as reconstruclion, that attempts to recreate the original
continuous signal from the samples. The array of pixels in the frame buffer is reconstructed
by the graphics system's display hardware, which convertS these discrete intensity values to
continuous, analog voltages that are applied to the CRT's electron gun (see Chapter 4). An
idealized version of this pipeline is shown in Fig. 14.9. Signal-processing theory
[GONZ87] establishes the minimum frequency at which samples must be selected from a
given signal to reconstruct an exact copy of the signal, and specifies how to perform the
reconstruction process. As we show later, however, this minimum sampling frequency will
be infinite for many kinds of signals in which we are interested, so perfect reconstruction
will often be impossible. Furthermore, as described in Section 14. 10.5, the reconstruction
method typically used by the display hardware differs from the approach prescribed by
theory. Therefore, even properly sampled signals will not be reconstructed perfectly.

14.10.1 Point Sampling

The most straightfonvard way to select each pixel's value is known as point sampling. ln
point sampling, we select one point for each pixel, evaluate the original signal at this point,
and assign its value to the pixel. The pointS that we select are typically arranged in a regular
grid, as shown in Fig. 14.10. Unlike the scan-conversion algorithms of Chapter 3,
projected vertices are not constrained to lie on integer grid pointS. Because the signal's
values at a finite set of points are sampled, however, important features of the signal may be
missed. For example, objects A and C in Fig. 14.10 are represented by the samples,
whereas objects 8 and D are not. To make matters worse, if the viewing specification
changes slightly or if the objectS move, objects may pop in or out of visibility. What if we
sample at a higher rate? The more samples we collect from the signal, the more we know
about it. For example, we can see easily that, by increasing sufficiently the number of
samples taken horizontally and vertically in Fig. 14. 10, we can make sure that no object is
missed in that particular picture. This is a necessary , but 1101 a sufficient condition for
adequate sampling. Nevertheless, sampling at a higher rate, we can generate images with
more pixels representing each portion of the picture. We can also generate an image with

0667

620 The Quest for Visual Realism

Original
signal

Sampled
signal

Reconstructed
signal

~ Sampling

~ Reconstruction

Fig. 14.9 The original signal is sampled, and the samples are used to reconstruct the
signal. (Sampled 20 image is an approximation, since point samples have no area.)
(Courtesy of George Walberg, Columbia University.)

fewer pixels, by combining several adjacent samples (e.g., by averaging) to determine the
value of each pixel of the smaller image. This means that all the features that would be
present in the larger image at least contribute to the smaller one.

The approach of taking more than one sample for each pixel and combining them is
known as supersampling. It actually corresponds to reconstructing the signal and
resampl ing the reconstructed signal. For reasons described later, sampling the reconstruct­
ed signal is often better than sampling the original signal. This technique is popular in
computer graphics precisely because it is so easy and often achieves good results, despite
the obvious increase in computation. But, how many samples are enough? How do we
know that there are no features that our samples are missing? Merely testing whether every
object's projection is sampled is not sufficient. The projection may have a complex shape or
variations in shading intensity that the samples do not retlect. We would like some way to
guarantee that the samples we take are spaced close enough to reconstruct the original

0668

14.10 Aliasing and Ant.ialiasing 621

• •
c 0

·t> • • •

• • • •
Fig. 14.10 Point-sampling problems. Samples are shown as black dots (e). Objects A
and Care sampled, but corresponding objects 8 and D are not.

signal. As we shall see, sampling theory tells us that, on the basis of a particular signal 's
properties, we can compute a minimum sampling rate that will be adequate. Unfortunately,
the rate turns out to be infinite for certain kinds of signals, including the signal shown in
Fig. 14.10! We shall explain the reason for this in more detail later; for now, we can see that
taking a finite number of samples cannot guarantee to capture the exact x coordinate at
which the intensity jumps from one value to another in the figure. Furthermore, even if we
find a finite sampling rate at which all of the current objects are sampled, we can always
imagine adding just one more object positioned between samples that will be missed
entirely.

14.10.2 Area Sampling

The problem of objects "falling between" samples and being missed suggests another
approach: integrating the sign.al over a square centered about each grid point, dividing by
the square's area, and using this average intensity as thatofthepixel. This technique, called
unweighted area sampling, was introduced in Chapter 3. The array of DODoverlapping
squares is typicaUy thought of as representing the pixels. Each object's projection, no
matter how small , contributes to those pixels that contain it, in strict proportion to the
amount of each pixel's area it covers, and without regard to the location of that area in the
pixel, as shown by the equal weighting function of fig. 14.11(a). No objects are missed, as
may happen with point sampling. The definition of the definite integral requires evaluating
a function at many points of an interval, and then taking the limit as the number of points
increases. Thus, integrating amounts to a kind of infinite sampling process.

Unweighted area sampling has drawbacks caused by this eve11handedoess with which
objects are treated. Consider a smaU black object wholly cootai11ed inside of one of the
pixels and surrounded by a white background, as ill Fig. 14.1 .1 (b). This small object may
move freely inside the pixel , and for each position the value computed for the pixel (shown
as the pixel's shade) remains the same. As soon as the object crosses over into an adjoining
pixel , however, the values of the original pixel and the adjoining pixel are both affec.ted.

0669

622 The Quest for Visual Realism

(a) (b)

Fig. 14.11 Unweighted area sampling. (a) All points in the pixel are weighted equally.
(b) Changes in computed intensities as an object moves between pixels.

Thus, the object causes the image to change only when it crosses pixel boundaries. As the
object moves farther from the center of one pixel and closer to the center of another,
however, we would like this change to be represented in the image. In other words, we
would like the object's contribution to the pixel's intensity to be weighted by its distance
from the pixel's center: the farther away it is , the less it should contribute.

In Chapter 3, we noted that weighted area sampling allows us to assign different weights
to different parts of the pixel , and we suggested that the weighting functions of adjacent
pixels should overlap. To see why the overlap is needed, we consider a weighting function
consisting of an upright pyramid erected over a single pixel , as shown in Fig. 14.12(a).
Under this weighting, as desired, an object contributes less to a pixel as it moves away from
the pixel 's center. But a drdwback of unweighted area sampling still remains: An object
contributes to only the single pixel that contains it. Consider a subpixel-sized black object
moving over a white background from the center of one pixel to the center of an adjacent
pixel , as shown in Fig. 14.12(b). As the object moves away from the center of the first pixel,
its contribution to the first pixel decreases as it nears its edge. It begins to contribute to the
pixel it enters only after it has crossed its border, and reaches its maximum contribution
when it reaches the center of the new pixel. Thus, even though the black object has constant
intensity, the first pixel increases in intensity before the second pixel decreases in intensity.

(a) (b)

Fig. 14.12 Weighted a rea sampling. (a) Points in the pixel are weighted differently.
(b) Changes in computed intensities as an object moves between pixels.

0670

14.10 Aliasing and Antialiasing 623

(a) (b)

Fig. 14.13 Weighted area sampling with overlap. (a) Typical weighting function.
(b) Changes in computed intensities as an object moves between pixels.

The net effect is that the display changes in intensity depending on the object' s position, a
change that gives rise to flickering as the object moves across the screen. It is clear that, to
correct this problem, we must allow our weighting functions to overlap, so that a point on
an object can simultaneously influence more than one pixel, as shown in Fig. 14.13. This
figure also uses a radially symmetric weighting function. Here, it is appropriate to tum to
sampling theory to discover the underlying reasons for increasing the weighting function' s
s.ize, and to find out exactly what we need to do to sample and reconstruct a signal.

14.10.3 Sampling Theory

Sampling theory provides an elegant mathematical framework to describe the relationship
between a continuous signal and its samples. So far, we have considered signals in the
spatial domain; that is, we have represented each of them as a plot of amplitude against
spatial position. A signal may also be considered in the frequency domain; that is , we may
represent it as a sum of sine waves , possibly offset from each other (the offset is called phase
shift), and having different frequencies and amplitudes. Each sine wave represents a
component of the signal's frequency spectrum. We sum these components in the spatial
domain by summing their values at each point in space.

Periodic s.ignals, such as those shown in Fig. 14. 14, can each be represented as the sum
of phase-shifted sine waves whose frequencies are integral multiples (harmonics) of the
~.ignal'sfundamental frequency. But what of nonperiodic signals such as images? Since an
image is of finite size, we can define its signal to have a value of zero outside the area of the
image. Such a signal, which is nonzero over a finite domain, and, more generally, any
signal fix) that tapers off sufficiently fast (faster than 1/x for large values of x) can also be
represented as a sum of phase-shifted sine waves. Its frequency spectrum, however, will not
consist of integer multiples of some fundamental frequency, but may contain any frequency
at all. The original signal cannot be represented as a sum of countably many sine waves, but
instead must be represented by an integral over a continuum of frequencies. It is often the
case, however, that an image (perhaps padded with surrounding zeros) is treated as one
cycle of a periodic signal. This was done in Fig. 14.14(b), which shows the first ten
components of Pig. 14.8(d). Each signal in the spatial domain has one representation in the
frequency domain, and vice versa. As we shall see later, using two representations for a

0671

624 The Quest for Visual Realism

sin{x)

sin{3x)
3

sin{Sx)
5

sin{7x)
7

sin{9x)
9

: +

: +

+

+ :

0 2n 4n 6Jt 811 1 On 0 2n 4n 6Jt 8Jt 1 On

+

~~~ ~ /\ , /\ ~ 
l ~ ~ ~ ~ . . . 

. + ~ 

V\ :I\ . 1\ ;I\ 
IV ~ V V V \. . . 

. . 
v './\/\.A./\/'\ : 

0 .5Jt 1t 1.5Jt 211 0 .Sn n 1.5Jt 211 

{a) 

: + 
VI '\./'V"VVVV: : 

: + : hfVl . . . . ~ 

= . 

+ : 
. . 

VIII~ = . . . . . . . . . 

: + : 
. . 

IX~ = 

+ ~ 
. . 

X VVWVVWVV:_ = 

0 .5Jt Jt 1.5Jt 2Jt 

{b) 

' 

' 

. . . 
' 
' . 
' ' . . 

0 .5Jt It 1 .5Jt 2Jt 

Fig. 14.14 A signal in the spatial domain is the sum of phase-shifted sines. 
Each component is shown with its effect on the signal shown at its right. {a) Approx­
imation of a square wave. (b) Approximation of Fig. 14 .8{d). {Courtesy of George 
Wolberg, Columbia University.) 

0672



14.10 Aliasing and Antialiasing 625 

signal is advantageous, because some useful operations that are difficult to carry out in one 
domain are relatively easy to do in the other. 

Determining which sine waves must be used to represent a particular signal is the 
central topic of Fourier analysis [GONZ87]. Starting from an original signal ,j{x), we can 
generate a different function , the Fourier tra11s[orm of J, called F(u), whose argument u 
represents frequency. The value F(11), for each frequency 11 , tells how much (i.e., the 
amplitude) of the frequency 11 appears in the original signal j{x). The function F(11) is 
therefore also called the representation off(or of the signal) in the frequency domain;j{x) 
itself is called the representation of the signal in the spatial domain. The Fourier transform 
of a continuous, integrable signal j{x) from the spatial domain to the frequency domain is 
defined by ... 

F(11) = J j{x)[cos 27TIIX - isin 2'7TIIX]dr, - ( 14.1) 

where i = v::l and 11 represents the frequency of a sine and cosine pair. (Note that this 
applies only to functions that taper off sufficiently fas1.) Recall that the cosine is just the 
sine, phase shifted by ?T/2. Together they can be used to determine the amplitude and phase 
shift of their frequency's component. For each 11, the value of F(11) is therefore a complex 
number. This is a c-lever way of encoding the phase shift and amplitude of the frequency 11 

component of the signal: The value F(u) may be written as R(11) + i/(11), where R(u) and 
l(u) are the real and imaginary parts , respectively. The amplitude (or magnitude) of F(u) is 
defined by 

(14.2) 

and the phase shift (also known as the phase angle) is given by 

¢{11) = tan-{~~~]. (14.3) 

In tum, an integrable signal F(11) may be transformed from the frequency domain to the 
spatial domain by the inverse Fourier transform ... 

f(x) = J F(u)[cos 2'7Tltx + isin 21rux]d11. 
_., 

(14.4) 

The Fourier transform of a signal is often plotted as magnitude against frequency, 
ignoring phase angle. Figure 14.15 shows representations of several signals in both 
domains. In the spatial domain, we label the abscissa with numbered pixel centers; in the 
frequency domain, we label the abscissa with cycles per pixel (or more precisely, cycles per 
interval between pixel centers). In each case, the spike at 11 = 0 represents the DC (direct 
current) component of the spectrum. Substituting cos 0 = I and sin 0 = 0 in Eq. ( I4. 1) 
reveals that this corresponds to integratingj{x). If .5 were subtracted from each value of 
j{x) in Fig. 14. IS (a) or (b), the magnitude of the signal 's DC component would be 0. 

Most of the figures in this chapter that show signals and their Fourier transforms were 
actually computed using discrete versions of Eqs. ( 14.1) and (14.4) that operate on signals 
represented by N regularly spaced samples. The discrete Fourier transform is 

F(u) = 
0 

I f(x)[cos (27TUX/N) - isin (21TllXiN)], 0 < 11 < N- I, (14.5) 
s s sN - 1 

0673



626 The Quest for Visual Realism 

/(x) 

1 ~------~--------~~ 

.75 

.5 

. 25 

OL-----------~--~----~ 

.75 

.5 

.25 

0 2 3 4 5 6 7 8 

0~----~------------~ 
0 128 256 384 512 

1 

.75 

.5 

.25 0 0 64 128 192 256 

JF(u) J 
4 r---.. ~ .. -.. -.-. ~----~~ .• -.... - .. ~, .. -.. -. 

3 

2 ......... , ..... .............. .; .. .... .. . 

0~==============~ -.5 -.25 0 .25 .5 
(a) 

256 

192 

128 

64 ...... ......... . 

0~~~~~~~~~ 
- .5 -.25 0 .25 .5 

(b) 

32 :· .. ... . ". 

24 

16 

8 .. .. ....... 

0 ""' 
.... 

- .5 -.25 0 .25 .5 
(c) 

Fig. 14 .15 Signals in the spatial and frequency domains. (a) Sine. (b) Square Wave. 
(c) Mandrill. The DC value in the frequency domain is truncated to make the other 
values legible and should be 129. (Courtesy of George Wolberg, Columbia Univeristy .) 

and the inverse discrete Fourier transform is 

fix) = Nl I F(u)[oos (27Tux/N) + isin (2mwN)), 0 s x s N - I. ( 14.6) 
o .s.s A' - t 

By choosing a sufficiently high sampHog rate, a good approximation to the behavior of the 
continuous Fourier transform is obtained for most signals. (The discrete Fourier transform 
may also be computed more efficiently than Eqs. ( 14.5) and (14.6) would imply, by using a 
clever reformulation known as the fast Fourier transform [BR1G74].) The discrete Fourier 
transform always yields a finite spectrum. Note that, if a signal is symmetric about the 
origin, then /(u) = 0. This is true because the contribution of each sine term on one side of 
the origin is canceled by its equal and opposite contribution on the other side. In th.is case, 

0674



14.10 Aliasing and Antialiasing 627 

foUowing [BLIN89a], we will plot the signed function R(u), instead of the magnitude 
IF(uJI. 

Sampling theory tells us that a signal can be properly reconstructed from its samples if 
the original signal is sampled at a frequency that is greater than twice Ji., the highest­
frequency component in its spectrum. This lower bound on the sampling rate is known 
as the Nyquist. rate. Although we do not give the formal proof of the adequacy of 
sampling above the Nyquist rate, we can provide an informal justification. Consider 
one cycle of a signal whose highest-frequency component is at frequency fi.. This 
component is a sine wave withfi. maxima andfi. minima, as shown in Fig. 14.16. Therefore, 
at least 2fi. samples are required to capture the overall shape of the signal's highest­
frequency component. Note that exactly 2/~ samples is, in fact, a special case that succeeds 
only if the samples are iaken precisely at the maxima and minima (Fig. 14.16a). If they are 
taken anywhere else, then the amplitude will not be represented correctly (Fig. 14. l6b) and 
may even be determined to be zero if the samples are taken at the zero crossings (Fig. 
14.16c). [f we sample below the Nyquist rate, the samples we obtain may be identical 
to what would have been obtained from sampling a lower-frequency signal, as demonstrated 
in Fig. 14.17. This phenomenon of high frequencies masquerading as low frequencies in 
the reconstructed signal is known as aliasing: The high-frequency components appear as 
though they were actually lower-frequency components. Another example of aliasing is 
demonstrated in Fig. 14.18. Figure 14.18(a) shows an image and a plot of its intensity 
across a horizontal line, representing a set of intensity fluctuations that increase in spatial 
frequency fTom left to right. The image in Fig. 14.18(b) was created by selecting every 8th 
pixel from each line of Fig. 14.18(a} and replicating it eight times. It shows aliasing as the 
bands increase in spatial frequency. 

11\ 11\ 11\ 
\ll \ll \ll 

(a) 

\7 \7 \7 
(b) 

(c) 

Fig. 14.16 Sampling at the Nyquist rate (a) at peaks, (b) between peaks, (c) at zero 
crossings. (Courtesy of George Wolberg, Columbia University.) 

0675



628 The Quest for Visual Realism 

Fig. 14.17 Sampling below the Nyquist rate. (Courtesy of George Wolberg. Colum· 
bia University.) 

A signal's shape is determined by its frequency spectrum. The sharper and more 
angular a waveform is, the richer it is in high-frequency components; signals with 
discontinuities have an infinite frequency spectrum. Figure 14. 10 reveals the sharp edges of 
the objects' projections that our algorithms attempt to represent. This signal has an infinite 
frequency spectrum, s ince the image intensity changes discontinuously at object bound­
aries. Therefore, the signal canno1 be represented properly with a finite number of samples. 
Computer graphics images thus exhibit t\\.Q major kinds of aliasing. First, " jaggies" along 
edges are caused by discontinuities at the projected edges of objects: a point sample either 
does or does not lie in an object 's projection. Even the presence of a single such edge in an 
environment's projection means that the projection has an infinite frequency spectrum. The 
frequency spectrum tapers off quite rapidly, however, like those of Fig. 14. 15(b) and (c). 
Second, textures and objects seen in perspective may cause arbitrarily many discontinuities 
and fluctuations in the environment ' s projection, making it possible for objects whose 
projections are too small and too close together to be alternately missed and sampled, as in 
the right hand side of Fig. 14.18(b). The high frequency components representing the 
frequency at which these projections cross a scan line may have high amplitude (e.g. , 
alternating black and white checkerboard squares). This often affects picture quality more 
seriously than jaggies do. 

14.1 0.4 Filtering 

There is a partial solution to the problems discussed in the previous section. If we could 
create a new signal by removing the offending high frequencies from the original signal , 

I I I I , 
' 

I 
I; I 

' r. 
l •, 

lJ 
(B) (b) 

Fig. 14.18 Aliasing. (a) Image and intensity plot of a scan line. (b) Sampled image and 
intensity plot of a scan fine. (Courtesy of George Wolberg, Columbia University.) 

0676



14.10 Aliasing and Antialiasing 629 

then the new signal could be reconstructed properly from a finite number of samples. The 
more high frequencies we remove, the lower the sampling frequency needed, but the less the 
signal resembles the original. This process is known as bandwidth limiting or band limiting 
the signal. lt is also known as low-pass filtering, since filtering a signal changes its 
frequency spectrum; in this case, high frequencies are filtered out and only low frequencies 
are allowed to pass. Low-pass filtering causes blurring in the spatial domain, since fine 
visual detail is captured in the high frequencies that are attenuated by low-pass filtering, as 
shown in Fig. 14.19. We shall revise the pipeline of Fig. 14.9to include an optional filter, 
as shown in Fig. 14.20. 

A perfect low-pass filter completely suppresses all frequency components above some 
specified cut-off point, and lets those below the cut-off point pass untouched. We can easily 
do this filtering in the frequency domain by multiplying the signal 's spectrum by a pulse 
fimction, as shown in Fig. 14.21. We can multiply two signals by taking their product at 
each point along the paired signals. The pulse function 

S(u) ={ I, when -k :s u :s k, 114_7) 
0, elsewhere. 

cuts off all components of frequency higher than k. Therefore, if we we.re to low-pass filter 
the signal so as to remove al.l variation, we would be left with only its DC value. 

So far, it would seem that a recipe for low-pass filtering a signal in the spatial domain 
would involve transforming the signal into the frequency domain, multiplying it by an 
appropriate pulse function , and then transforming the product back into the spatial domain. 
Some important relationships between signals in the two domains, however, make this 
procedure unnecessary. lt can be shown that multiplying two Fourier transforms in the 
frequency domain corresponds exactly to performing an operation called convolution on 
their inverse Fourier transforms in the spatial domain. The convolution of two signals ./{x) 

Fig. 14.19 Figure 14 .8(b) after low-pass filtering. (Courtesy of George Wolberg. 
Columbia University.) 

0677



630 The Quest for Visual Realism 

Original 
signal 

Low-pass 
filtered 
signal 

Sampled 
signal 

Reoonstructed 
signal 

~ Low-pass filtering 

~ Sampling 

~ Reconstruction 

Fig. 14.20 The sampling pipeline with filtering. (Courtesy of George Wolberg. 
Columbia University.) 

and g(x), written asj{x) • g(x), is a new signal h(x) defined as follows. The value of lz(x) at 
each point is the integral of the product ofj{x) with the filter function g(x) flipped about itS 
vertical axis and shifted such that itS origin is at that point. This corresponds to taking a 
weighted average of the neighborhood around each point of the signal j{x}-v.eighted by a 
flipped copy of filter g(x) positioned at the point-and using it for the value of h(x) at the 

0678



14.10 Aliasing and Antialiasing 631 

point. The size of the neighborhood is determined by the size of the domain over which the 
filter is nonzero. This is known as the filter's support, and a filter that is nonzero over a 
finite domain is said to have finite support . We use -r as a dummy variable of integration 
when defining the convolution. Thus, 

11 +s 

h(x) = ft.x) • g(x) = J ft. -r)g(x - -r)d-r. 
-~ 

(14.8) 

Conversely, convolving two Fourier transforms in the frequency domain corresponds 
exactly to multiplying their inverse Fourier transforms in the spatial domain. The filter 
function is often called the convolution kernel or filter kernel . 

..... L 
0 

(a) 

.. --------., 

0 

(b) 

I I 

J' t 

:--1.------: 
e,te~~ 4:+1;, 

0 

(C) 

0 

(d) 

Fig. 14.21 Low-pass filtering in the frequency domain. (a) Original spectrum. 
(b) Low-pass filter. (c) Spectrum with filter. (d) Filtered spectrum. (Courtesy of George 
Wolberg, Columbia University.) 

0679



632 The Quest for Visual Realism 

Convolution can be illustrated graphicaUy. We will convolve the functionfi:x) = I , 0 :s 
x < I , with the filter kernel g(x) = c, 0 < x < I , shown in Figs. 14.22(a) and (b). By using 
functions of,., we can vary x to move the filter relative to the signal being filtered. To create 
the function g(x - 7), we first llip g( 7) about the origin to yield g( -7), and then offset it by 
x to form g(x- 7), as depicted in Figs. 14.22.(c) and (d). The integral, with respect to 7, of 
the product/(7)g(x- 7), wbich is the area of the shaded portions of the figures, is 0 for 
-co< X< 0, XC for 0 <X :S I (Fig. 14.22e), (2- x)cfor I :S x :S 2 (Fig. 14.22f), and 0 
for 2 < x < co. The convolution f(x) • g(x) is illustrated in Fig. l4.22(g). Note how 
convolution with this kernel smooths the discontinuities of f(x) while it widens the area over 
which f(x) is nonzero. 

Multiplying by a pulse function in the frequency domain has the same effect as 
convolving with the signal that corresponds to the pulse in the spatial domain. This signal is 
known as the sine function, which is defined as sin(?Tx)/?Tx. Figure 14.23 shows the sine 
function and an example of the result of convolving it with another signal. Convolving with 
a sine function therefore low-pass filters the signal. How do we choose the height and width 
of the sine used in Fig. 14.23(c)? As shown in Fig. 14.24, there is arelationship(that we do 
not prove) between the height and width of the perfect low-pass filter in the spatial and 
frequency domains. In Fig. 14.24(a), if W i.s the cutoff frequency and A is the amplitude, 
then it must be the case that AI2W = I for all frequencies up to the cutoff frequency to be 
pas.'led unauenuated. Therefore, A = 2W. Both the amplitude and width of the sine in Fig. 
14.24(a) vary with W. When W =.5 cycles per pixel (the highest frequency that can be 
represented when sampling once per pixel), A = I and the sine bas zero crossings at pixel 
centers. As the cutoff frequency W is made lower or higher, the sine becomes shorter and 
broader, or taller and narrower, respectively. This makes sense because we would like the 
integral of a filter in the spatial domain to be I , a necessary restriction if the filter is to 

maintain the gray level (DC value) of the image, neither brightening nor dimming it. (We 

f(-r) g(-r) g(-r) 

1 c c 

-r T 
1 -1 

(a) (b) (c) 

g(x-T) f(T)g(x-r) f(-r)g(X-T) f(xrg(x) 

1 1 
c cl I c 

'f t T X 
-1 X -1 X1 -1 (x- 1) 1x 1 2 

(d) (e) (f) (g) 

Fig. 14.22 Graphical convolution. (a) Function!(.-) .. 1, 0 :s .- s 1. (b) Filter kernel g(T) .. 
c, 0 :s .- :s 1. (c) g( -1"). (d) g(x- .-).(e) L+: flT)g(x -T)d.- .. xc, 0 :s x :s 1. (f) I::fl"T)g(x - T)d.­
= (2 - x)c, 1 :s x :s 2. (g) /(x) • g(x). 

0680



14.10 Aliasing and Antialiasing 633 

(a) 

mvvvvv=~ 

(b) 

(c) 

(d) 

Fig. 14.23 Low-pass filtering in the spatial domain. (a) Original signal. (b) Sine filter. 
(c) Signal with filter, with value of filtered signal shown as a black dot (e) at filter's origin. 
(d) Filtered signal. (Courtesy of George Wolberg, Columbia University.) 

can see that this is true by considering the convolution of a fi Iter with a signal that has the 
same value c at each point.) 

The sine function has the untortunate property that it is nonzero on points arbitrarily 
far from the origin (i.e., it has infinite support since it is infinitely wide). If we truncate the 
sine function, by multiplying it by a pulse function , we can restrict the support, as shown in 
Fig. 14.24{b). This is a special case ofa windowed sine function that has been restricted to a 
finite window. We might reason that we are throwing away only those parts of the filter 
where the value is very small anyhow, so it should not influence the result too much. 
Unfortunately, the truncated version of the fi Iter has a Fourier transform that suffers from 
ringing (also called the Gibbs phenomenon): A truncated sine in the spatial domain no 

0681



834 The Quest for Visual Reeli• m 

longer corTeSponds to a pure pulse function in the frequency domain, but instead 
corresponds to a pulse function with ripples near the cutoff frequency, as shown in Fig. 
14.24{b). This causes some frequency components to pass that should be suppressed, and 
both attenuates and amplifies others around the cutoff point; the domain over which this 
effect occurs decreases in size as a greater portion of the sine signal is used, but the 
amplirude of the ringing does not decrease as long as the sine is truncated. The 
approximat.ion to a square wave i.n Fig. l4. 14{a) exhibits ringing in the spatial domain, 
which appears as little intensity "ripples" at discontinuities. A truncated sine is obtained 
by multiplying the sine by a pulse function. An alternative is to use a windowed sine 
function that has been multiplied by a shape that, unlike the pulse, is not discontinuous, 
which allows the sine to fall off smoothly. Blinn [BLIN89b] describes the derivation of one 
such filter. 

One final problem is that the sine, along with wind<>'Mld filters derived from it, has 
parts that dip below zero, known as negative lobes. When a signal is convolved with a filter 
that has negative lobes, the resulting signal may itself dip below zero. If the signal represents 
intensity values, these values COrTeSpond to unrealizable negative intensities, and must 
therefore ultimately be clamped to zero. 

Although windowed sine functions are useful, they are relatively expensive because the 
window must be fairly wide; thus, a variety of other functions is often used instead. Filters 

f(x) F(u) 

1 .. .. ....... 1 ............ 
.75 . .8 . .. .. " .. " . 
. 5 .6 ··-·· ........... 

.25 .4 ... 
0 . 2 

- .25 0 

-4 -3 -2 -1 0 1 2 3 4 -4 -3 - 2 -1 0 1 2 3 4 

' ' - w w -sv 2W 
(a) 

1 
1 -.75 .75 • • . ,. A . .. ' . 5 .5 

.25 .25 
0 0 ,. 

-.25 - .25 ·~ .. ·~· · •·-: ·····:-·····:-· .. ··· 
-4 -3 - 2 -1 0 1 2 3 4 -4 -3 - 2 - 1 0 2 3 4 

(b) 

Fig. 14.24 (a) Sine in spatial domain corresponds to pulse in frequency domain. 
(b) Truncated sine in spatial domain corresponds to ringing pulse in frequency domain. 
(Courtesy of George Wolberg, Columbia University.) 

0682



14.10 

, 
.8 

.6 

.4 

.. 2 

f(x) 

: ......... .:. ' 

. . ' . .:. 

................. 

...... ····· . 
OL===~==~·~~====~ 

, 
. 75 

.5 

. 25 

4 ~ 4 _, 0 , 2 3 4 

........... ;. .. 

'1"" .. 
. ! ". c 

OL=====~~~====~ 
4 ~ - 2 _, 0 , 2 3 4 

, '" 

. 75 

. 5 

.25 

. . . . . •;•• ··············· ... ··· ... . . . . . . . . . . . . . . ····· ........ . . . 
'.'' ~·.' 

: 

OL===~~~~==~ 
4 ~ -2 -1 0 2 3 4 

Aliasing and Antialiasing 835 

1 

.75 

.5 

.25 

0 

-.25 

(a) 

4 

.75 .. , .. 

.5 . 

.25 " 

~ - 2 -1 

F(u) 

0 1 2 3 4 

. ...... ~ . 

0 L===::::::::::::~~:::::::::==:..J 
4 ~ - 2 -1 0 2 3 4 

(b) 

....... ..... 

.75 " .. . . .. " 

.5 . •:0• I• ' 
.25 

0 

4 - 3 - 2 - 1 0 2 3 4 

(c) 

Fig. 14.25 Filters in spatial and frequency domains. (a) Pulse-sine. (b) Triangle­
sinc2. (c) Gaussian-Gaussian. (Courtesy of George Wolberg, Columbia University.) 

with finite support are known as finite impulse-response (FIR) filters, in contrast to the 
untruncated sine filter, which is an infinite impulse-response (IIR) filter. Figure 14.25 
shows several popular filters in both spatial and frequency domains. 

We have now reduced the sampling problem to one of convolving the signal with a 
suitable filter and then sampling the filtered signal. Notice, however, that if our only use of 
the fi ltered signal is to sample it , then the work done fi ltering the signal anywhere but at the 
sample points is wasted. If we know in advance exactly where the samples will be taken, we 
need only to evaluate the convolution integral (Eq. 14.8) at each sample point to determine 
the sample's value. This is precisely how we perform the weighting operation in using area 

0683



636 The Quest for Visual Realism 

sampling to determine the intensity of each pbtel. The weighting distribution constructed 
over each pixel's center is a filter. The pulse function with which we convolve the signal in 
performing unweighted area sampling is often called a bo:cjilter, because of its appearance. 
Just as the pulse function in the frequency domain corresponds to the sine function in the 
spatial domain, the pulse function in the spatial domain (the box filter's 10 equivalent) 
corresponds to the sine function in the frequency domain (Fig. 14.25a). This correspon­
dence underscores how badly a box filter or pulse filter approximates a perfect low-pass 
filter. Multiplying with a sine in the frequency domain not only fails to cut off sharply, but 
passes infinitely high frequencies. Furthermore, the pulse filter attenuates frequencies that 
are within the desired range, since its Fourier transform-the sine function-begins to 
trail ofT before the ideal low-pass filter. Therefore, it also blurs the image e~tcessively. 

14.10.5 Reconstruction 

At this point, let us assume that we have sampled the signalftx) at a frequency f. to obtain 
the sampled signal, which we callftx). Sampling theory shows that the frequency spectrum 
offtx) looks like that offtx), replicated at multiples off.. To see that this relationship holds, 
we note that sampling a signal corresponds to multiplying it in the spatial domain by a comb 
function , so named because of its appearance, as shown in Fig. 14.26(a). The comb 

f(K) 

'· .125 ... 
... 

.... 

0 

0 128 256 384 512 - .5 
(a) 

I F(U) I 

30 ···- . 7.5 ...... 
22.5 

5 
15 

7.5 2.5 

0 0 ., ...... 
-.5 - .25 0 .25 .5 - .5 

(C) 

... · ... 
.. 

- .25 

:· 

.... 

,~, 

- .25 

I F(u) l 

..... .. 

0 
(b) 

IFsMI 
-

.. .. 

0 
(d) 

.. 

. ............. .. 

.. ... I '"' 
..... I···· 

.25 .5 

...... ..~ 

J 
' 

. 

.25 .5 

Fig. 14.26 (a) Comb function and (b) itsFouriertransform. Convolving thecomb'sFourier 
transform with (c) a signal's Fourier transform in the frequency domain yields (d) the 
replicated spectrum of the sampled signal. (Courtesy of George Wolberg. Columbia 
University.) 

0684



14.10 Aliasing and Antialiasing 637 

function has a value of 0 everywhere, except at regular intervals, corresponding to the 
sample points, where its value is I . The (discrete) Fourier transform of a comb turns out to 
be just another comb with teeth at multiples of f. (Fig. 14.26b). The height of the teeth in 
the comb's Fourier transform is/, in cycles/pixel. Since multiplication in the spatial domain 
corresponds to convolution in the frequency domain , we obta.in the Fourier transforrn of the 
sampled signal by convolving the Fourier transforms of the comb function and the original 
signal (Fig. 14.26c). By inspection, the result is the replicated spectrum (Fig. 14.26d). Try 
performing graphical convolution with the comb to verify this , but note that F(u), not JF(u)J 
must actually be used. A sufficiently high/, yields spectra that are replicated far apart from 
each other. In the limiting case, as f. approaches infinity, a single spectrum results. 

Recall that reconstruction is recreation of the original signal from its samples. The 
result of sampling a signal (Fig. 14.27a) at a finite sampling frequency is a signal with an 
infinite frequency spectrum (Fig. 14.27b). If once again we deal with the signal in the 
frequency domain, the familiar operation of multiplying a signal by a pulse function can be 
used to eliminate these replicated spectra (Fig. 14.27c), leaving only a single copy of the 
original spectrum (Fig. 14.27d). Thus, we can reconstruct the signal from its samples by 
multiplying the Fourier transform of the samples by a pulse function in the frequency 
domain or by convolving the samples with a sine with A = I in the spatial domain. 

To make the Fourier transforms of signals and fillers easier to see in Figs. 14.27-29, we 
have taken several liberties: 

• The DC value of the Fourier transform in part (a) of each figure has been truncated. 
This corresponds to a signal in the spatial domain with the same shape as shown, but 
with a negative DC offset. (Such a signal cannot be displayed as an image without 
further processing, because it contains negative intensity values.) 

• Filters in the frequency domain have not been drawn with the correct magnitude. Their 
heights should be I in Fig. 14.27 and 2 in Figs. 14.28-29 to restore the single copy of 
the spectrum to its original magnitude. 

Figure 14.27(e) and (f) show the result of reconstructing the samples with a triangle 
filter (also known as a Bartlett fi lter). Convolving with this filter is equivalent to linearly 
interpolating the samples. 

If the sampling frequency is too low, the replicated copies of the frequency spectra 
overlap, as in Fig. 14.28. ln this case, the reconstruction process will faiJ to remove those 
parts of the replicated spectra that overlapped the original signal's spectrum. High­
frequency components from the replicated spectra are mixed in with low-frequency 
components from the original spectrum, and therefore are treated like low frequencies 
during the reconstruction process. Note how an inadequate sampling rate causes aliasing by 
making a higher frequency appear identical to a lower one before and after reconstruction. 
There are two ways to resolve this problem. We may choose to sample at a high enough 
frequency, an approach that is sufficient only if the signal does not have an infinite 
spectrum. Alternatively , we may filter the signal before sampling to remove all components 
abovef./2, as shown in Fig. 14.29. 

0685



1 

.75 

.5 
.25 

f(x) 

OL_ __________________ _ 

0 16 32 48 64 

.75 

.5 
.25 

0~~~~~~~~~~~ 

1 
.75 
.5 

.25 
0 

1 

.75 

.5 
.25 

0 16 

0 16 

32 48 64 

32 48 64 

OL_ __________________ _ 

1 

.75 

.5 
.25 

0 16 32 48 64 

0~========~========~ 

1 

.75 

.5 
.25 

0 16 32 48 64 

OL--------------------
0 16 32 48 64 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

I F(u) l 

8 

l~l=--
8 

6 
4 

2 

-2 -1 

0 "" . ..1 
-2 -1 

0 1 2 

0 2 

8 

ll l.ll ll.J 
-2 -1 0 2 

-2 -1 0 1 2 

8 

ll ... lihl...J 
-2 -1 0 1 2 

8 

l~l =-
-2 -1 0 1 2 

Fig. 14.27 Sampling and reconstruction: Adequate sampling rate. (a) Original signal. 
(b) Sampled signal. (c) Sampled signal ready to be reconstructed with sine. (d) Signal 
reconstructed with sine. (e) Sampled signal ready to be reconstructed with triangle. 
(f) Signal reconstructed with triangle. (Courtesy of George Walberg, Columbia 
University.) 

638 

0686



1 

.75 

.5 
.25 

l(x) 

0~--------------------

1 

.75 

0 16 

.~~ 1111 11111 

.75 

.5 
.25 

0 

0 

16 

16 

32 48 64 

Ill 111111111 
32 48 64 

32 48 64 

OL-__________________ _ 

0 16 32 48 64 

1 

:11111111111 11111 ~ II III 1111111111 

1 

.75 

.5 
.25 

0 16 32 48 64 

OL_ __________________ __ 

0 16 32 48 64 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

4 

3 
2 

·2 ·1 

I F(u) I 

0 2 

1 

OL-~~~~~~~~~-
·2 ·1 0 1 2 

·2 ·1 0 1 2 

·2 ·1 0 1 2 

4 

3 
2 
1 

0~~~~~~~~ 
·2 ·1 0 1 2 

8 

l~l=-
·2 ·1 0 2 

Fig. 14.28 Sampling and reconstruction: Inadequate sampling rate. (a) Original signal. 
(b) Sampled signal. (c) Sampled signal ready to be reconstructed with sine. (d) Signal 
reconstructed with sine. (e) Sampled signal ready to be reconstructed with triangle. 
(f) Signal reconstructed with triangle. (Courtesy of George Walberg, Columbia Uni· 
varsity.) 

639 

0687



640 The Quest for Visual Realism 

1 

.75 

.5 
.25 

oL---------------------

1 
.75 

.5 
.25 

0 16 32 48 64 

OL---------------------

1 

.75 

0 16 

.;~ llllllld 

.75 

.5 

.25 

0 

0 

16 

16 

32 48 64 

Ill 111111111 
32 48 64 

32 48 64 

OL---------------------
0 16 32 48 64 

(a) 

(b) 

(c) 

(d) 

(e) 

4 

3 

2 
1 

·2 · 1 

I F{u)l 

0 1 2 

0 ...... ..,. ,.., ,.., ....,. ....,. ....,. """ 

·2 ·1 0 2 

·2 · 1 0 1 2 

8 

l~l =-
-2 ·1 0 2 

Fig. 14.29 Filtering, sampling. and reconstruction: Sampling rate is adequate after 
filtering. (a) Original signal. (b) Low -pass filtered signal. (c) Sampled signal. (d) Sampled 
signal ready to be reconstructed w ith sine. (e) Signal reconstructed w ith sine. (Courte­
sy of George Wolberg, Columbia University.) 

0688



14.10 Aliasing and Antialiasing 641 

What happens if reconstruction is done by convolving with some signal other than a 
sine? Samples in the frame buffer are translated into a continuous video signal, by a process 
known as sample and hold: for the signal to be reconstructed , the value of each successive 
sample is simply held for the duration of a pixel. This process corresponds to convolving the 
samples with a ! -pixel-wide box filter, as shown in Fig. 14.30, and gives rise to our 
common conception of a pixel as one of a set of square boxes tiling the display. The 
resulting signal has sharp transitions between pixels , corresponding to high-frequency 
components that are not represented by the samples. This effect is often known as rasrering. 
Although the video hardw.tre nominally samples and holds each pixel's intensity, the 
circuitry that generates the analog voltages applied to the CIIT and the CIIT itself are 
generally not fast enough to produce discontinuous jumps in intensity between pixels. The 
Gaussian distribution of the CIIT spot also reduces this problem. Thus, the sampled signal 
is reconstructed by the equivalent of convolution with a box filter, followed by convolution 
with a Gaussian. Rastering is especially easy to see, however, when pixel-replicating zoom 
is used in raster CIIT displays , increasing the amount of screen space allocated to an 
individual pixel. Rastering is also more evident in printer, digital film recorder, and LCD 

Sampled 
signal 

Signal 
reconstructed 

n 
II 
II 
II 

II 

1111 111 

II 

II 
II 

• 
I I II I I 

Sample-and hold 

by video board'--------- ------ -------

Dl.splayed 
signal 

• Gaussian CRT spot 

· ~ 
''t' l 

• ' .... 

Fig. 14.30 Reconstruction by sample and hold and Gaussian CRT spot. (Courtesy of 
George Wolberg, Columbia University.) 

0689



642 The Quest for Visual Realism 

Fig. 14.31 A signal sampled at slightly over the Nyquist rate. (Courtesy of George 
Wolberg, Columbia University.) 

technologies, in which pixel-to-pixel transitions are much sharper and produce relatively 
hard-edged square pixels of constant intensity. 

We noted earlier that a signal must be sampled at a frequency greater than 2/A to make 
perfect reconstruction possible. If the filter used to reconstruct the samples is not an 
untruneated sine, as is always the case when displaying an image, then the sampling 
frequency must be even higher! Consider, for example, a sampling frequency slightly 
greater than 2/i. . The resulting samples trace out the original signal modulated by 
(multiplied by) a low-frequency sine wave, as shown in Fig. 14.3 1. The low-frequency 
amplitude modulation remains, compounded by rastering, if the signal is reconstructed 
with a 1-pixel-wide box filter. Lf convolution is performed with an untruncated sine, 
however, the original signal is recovered. The inevitable use of nonideal filters before and 
after sampling therefore mandates higher sampling rates. Mitchell and Netravali [MITC88] 
discuss some of the problems involved in doing a good job of reconstruction. 

14.10.6 Antialiasing in Practice 

We have seen that image synthesis involves sampling and reconstruction, noting that there is 
little that we can do (in software) about the reconstruction approach employed in hardware. 
Rendering algorithms that perform antialiasing use either point sampling or an analytic 
approach, such as area sampling. Ln either case, a single va.lue must ultimately be 
determined for each pixel. Catmull's algorithm, discussed in Section 15.7.3, is an example 
of an analytic (and expensive) approach using unweighted area sampling. It corresponds to 
filtering at object precision before calculating the value of each pixel's sample. Filtering 
before sampling is often called prefilrering. When supersampling is used, the samples are 
combined according to a filter weighting in a discrete version of the continuous convolution 
and sampling that we discussed earlier. The filter is represented by an array of values. As 
shown in Fig. 14.32, the filter array is positioned over the array of supersampled values and 
the sum of the products of values in corresponding positions determines a single sample 
taken at the center of the filter. The filter array is then moved to the pos.ition at which the 
next sample will be taken, with the number of samples corresponding to the pixel resolution 
of the filtered image being created. This approach is often called postfiltering, since filtering 
is performed after point sampling. It actually corresponds to reconstructing the signal from 
its samples only at selected points in space. These reconstructed values arc then used as new 
samples. Supersarnpling thus performs a discrete approximation to weighted area sampling. 

0690



14.10 Aliasing and Antialiasing 643 

Fig. 14.32 Digital filtering. Filter is used to combine samples to create a new sample. 

Although it is computationally attractive to use a 1-pixel-wide box filter that averages 
all subpixel samples, better filters can produce better results, as demonstrated in Fig. 14.33. 
Note that, no matter what fil ter is used to postfilter the samples, damage caused by an 
inadequate initial sampling rate will not be repaired. A rule of thumb is that supersampling 
four times in each of x andy often will be satisfactory [WHIT85]. This works because the 
high frequencies in most graphics images are caused by discontinuities at edges, which have 
a Fourier transform that tapers off rapidJy (like the Fourier transform of a pulse-the sine). 
Ln contrast, images with textures and distant objects viewed in perspective have a Fourier 
transform that is richer in high frequencies and that may be arbitrarily difficult to filter. 

Although it is easy to increase the sampling rate, this approach is Limited in its 
usefulness by corresponding increases in both processing time and storage. A number of 
variations on point sampling have been implemented to address these issues without 
sacrificing the conceptuaJJy simple mechanism of point sampling itself. In adaptive 

0691



644 The Quest for Visual Realism 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

(a) 

1 2 3 4 3 2 1 
2 4 6 8 6 4 2 
3 6 9 12 9 6 3 
4 8 12 16 12 8 4 

3 6 9 12 9 6 3 
2 4 6 6 6 4 2 
1 2 3 4 3 2 1 

(c) 

Fig. 14 .33 (Cont'd.) 

supersampling, an exantple of which is discussed in Section 15.10.4, lbe Santpling rate is 
varied across lbe image, with additional samples taken when lbe system determines that 
lbey are needed. Stochastic supersampling, discussed in Section 16.12.4, places Santples at 
stochastically determined positions, ralber than in a regular grid. This approach produces 

0692



14.10 

(b) 

(d) 

Aliasing and Antialiasing 

1 1 1 1 1 1 1 
1 1 I 1 1 
I 1 I 1 1 

1 1 1 1 1 1 1 
1 I 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 

1 4 8 10 8 4 1 
4 1225292512 4 
8 25 49 5S 49 25 8 
10 29 58 67 5S 29 10 
8 25 49 5S 49 25 8 
4 1225292512 4 
1 4 8 10 8 4 1 

645 

Fig. 14.33 Filtered images with intensity plot of middle scan line and filter 
kernel . (a) Original image. (b) Box filter. (c) Bartlett filter. (d) Gaussian filter. Images are 
512 x 512, and filters are 7 x 7. Middle scan line is at bottom of a checkerboard row. 
Because 20 filter covers light and dark squares above and below scan line, amplitude of 
filtered checkerboard signal along middle scan line is greatly diminished. (Courtesy of 
George Wolberg, Columbia Univer:>ity.) 

aliasing in the fonn of noise, which our visual system finds less irritating than the clearly 
defined frequency components of regular aliasing. 'These t~ approaches can be combined, 
allowing the detennination of where to place new samples to be based on the statistical 
properties of those that have already been obtained. 

0693



646 The Quest for Visual Realism 

When the original source signal is itself a sampled image, postfiltering followed by 
resampling may be used to create a new image that has been scaled, rotated, or distorted in 
a variety of ways. These image transformations are discussed in Chapter 17. 

14.11 SUMMARY 

Jn this chapter, we provided a high-level introduction to the techniques used to produce 
realistic images. We then examined the causes of and cures for aliasing. ln the following 
chapters, we discuss in detail how these techniques can be implemented. There are five key 
questions that }QU should bear in mind when }QU read about the algorithms presented in 
later c)lapters: 

I. Is the algoritlun general or special purpose? Some techniques work best only in specific 
circumstances; others are designed to be more general. For example, some algorithms 
assume that all objects are convex polyhedra and derive part of their speed and relative 
simplicity from this assumption. 

2. Can amia/iasing be incorporated? Some algorithms may not accommodate antialiasing 
as easily as others do. 

3. What is the algorithm's space-time performQIIce? How is the algorithm affected by 
factors such as the size or complexity of the database, or the resolution at which the 
picture is rendered? 

4. How conviiiCing are the effects generated? For example, is refraction modeled 
correctly, does it look right only in certain special cases, or is it not modeled at all? 
Can additional effects, such as shadows or specular reflection, be added? How 
convincing will they be? Sacrificing the accuracy with which an effect is rendered may 
make possible significant improvements in a program's space or time requirements. 

5. Is the algorithm appropriate, given the purpose for which the picture is created? The 
philosophy behind many of the pictures in the following chapters can be summed up by 
the credo, " If it looks good, do it! " This directive can be interpreted two ways. A 
simple or fast algorithm may be used if it produces attractive effects , even if no 
justification can be found in the laws of physics. On the other hand, a shockingly 
expensive algorithm may be used if it is the only known way to render certain effects. 

EXERCISES 

14.1 Suppose you had a graphics system that could draw any of the color plates referenced in this 
chapter in real time. Consider several application areas with which you are (or would like to be) 
familiar. For each area, list those effects that would be most useful, and those that would be least 
useful. 

14.2 Show that you cannot infer the direction of rotation from orthographic projections of a 
monochrome, rotating, wireframe cube. Explain how additional techniques can help to make the 
direction of rotation clear without changing the projection. 

14.3 Consider the pulse function /(x) = I for -I :s x :s I , and /(x) = 0 elsewhere. Show that the 
Fourier transform of f(x) is a multiple of the sine function. Hint: The Fourier transform of f(x) can be 

0694



14.10 Aliaalng and Antlaliaalng 847 

computed as 
•• 

F(u) = / f (.x)[cos 2mu - isin 2mu)d.r, 
-I 

because the regions wherej{.r) = 0 contribute nothing to the integral, andj{.r) = I in the remaining 
region. (Apply the inverse Fourier transform to )'DIIf answer. You should get the original function .) 

14.4 PnM: that reoons~ting a signal with a triangle filter of width 2 corresponds to linearly 
interpolating itJ samples. What happens if the filter is wider? 
14.5 Write a program that allows }00 to convolve an image with a filter kernel. Use different filter 
kernels to create images of the same size from original imll!les with 2, 4, and 8 times the number of 
pixels in .r or y as the new images. You can obtain original images by saving the frame buffer generated 
by the graphics packages that you have been using. Do }OOr filtered images look better than original 
images of the same resolution? Does }OOr experience corroborate the rule of thumb mentioned in 
Section 14. 10.6? 

0695



15 
Visible-Surface 

Determination 

Given a set of 3D objects and a viewing specification, we wish 10 determine which lines or 
surfaces of the objects are visible, either from the cemer of projection (for perspective 
projections) or along the direction of projection (for parallel projections), so that we can 
display only the visible lines or surfaces. This process is known as visible-line or 
visible-surface determination. or hidden-line or hiddtn-surfact elimination. In visible-line 
determination, lines are assumed to be the edges of opaque surfaces that may obscure the 
edges of other surfaces farther from the viewer. Therefore, we shall refer to the general 
process as visible-swface determination. 

Although the statement of this fundamental idea is simple, its implementation requires 
significant processing power, and consequently involves large amounts of computer time on 
conventional machines. These requirements have encouraged the development of numerous 
carefully structured visible-surface algorithms, many of which are described in this chapter. 
In addition, many special-purpose architectures have been designed to address the problem, 
some of which are discussed in Chapter 18. The need for this auention can be seen from an 
analysis of two fundamental approaches to the problem. In both cases, we can think of each 
object as c-Omprising one or more polygons (or more complex surfaces). 

The first approach determines which of n objects is visible at eacb pixel in the image. 
The pseudocode for this approach looks like this: 

ror (each pixel in the image) { 

} 

detumine the object clo.rtst to tilt! viewer that is pierced by 
the projector thro11glr the pixel: 

draw the pixel in the appropriate color, 

649 

0696



650 Visible-surface Determination 

A straightforward, brute-force way of doing lhis for I pixel requires examining all11 objects 
to determine which is closest to lhe viewer along the projector passing through the pixel. For 
p pixels, the effort is proportional to 11p, where p is over I million for a high-resolution 
display. 

The second approach is to compare objects directly with each other, eliminating entire 
objects or portions of them that are not visible. Expressed in pseudocode, this becomes 

for (t!ach objt!cl in Ihe world) { 

} 

dtrermint r/wst! parts ofrht objtcr wlwst view is wwbsrrucrtd 
by other pans of ir or any or her object; 

draw rhose pans in I hi! appropriale color. 

We can do this naively by comparing each of then objects to icself and to the other objects, 
and discarding invisible portions. The computational effort here is proportional to til. 
Although this second approach might seem superior for n < p, its individual steps are 
typically more complex and time consuming, as we shall see, so it is often slower and more 
difficult to implement. 

We shall refer to these prototypical approaches as image-precision and object-precision 
algorithms, respectively. Image-precision algorithms are typically performed at the 
resolution of the display device, and determine the visibility at each pixel. Object-precision 
algorithms are performed at the precision with which each object is defined, and determine 
the visibility of each object.1 Since object-precision calculations are done without regard to 
a particular display resolution, they must be followed by a step in which the objects are 
actually displa)'ed at the desired resolution. Only this final display step needs to be repeated 
if the size of the finished image is changed; for example, to cover a different number of 
pixels on a raster display. This is because the geometry of each visible object's projection is 
represented at the full object database resolution. In contrast, consider enlarging an image 
created by an image-precision algorithm. Since visible-surface calculations were performed 
at the original lower resolution, they must be done again if we wish to reveal further detail. 
Recalling our discussion of sampling in Chapter 14, we can think of object-precision 
algorithms as operating on the original continuous object data, and image-precision 
algorithms as operating on sampled data; thus, image-precision algorithms fall prey to 
aliasing in computing visibility, whereas object-precision algorithms do not. 

Object-precision algorithms were first developed for vector graphics systems. On these 
devices, hidden-line removal was most naturally accomplished by turning the initial list of 

"The terms image space and objecr space. popularized by Sutherland, Sproull, and Schumacker 
[SUTH74aJ, are often used to draw the same distinction. Unfortunately, these terms hove also been 
used quite differently in computer graphics. For example, image-space has been used to refer to 
objects after perspective transformation (CATM75] or after projection onto the view plane (011..078] , 
but st iII at their original precision. 1b avoid confusion, we have opted for our slightly modified terms. 
We refer explicitly to an object's perspective transformation or projection, when appropriate, and 
reset'\'e the terms image pr-«ision and objecr precision to indicate the precision with which 
computations are performed. For example, intersecting two objects' projections on the view plane is 
an object-precision operation if the precision of the original object definitions is maintained. 

0697



15.1 Functions of Two Variables 651 

lines into one in which lines totally hidden by other surfaces were removed, and partially 
bidden lines were clipped to one or more visible line segments. All processing was 
performed at the precision of the original list and resulted in a list in the same format. In 
contrast, image-precision algorithms were first written for raster devices to take advantage 
of the relatively small number of pixels for which the visibility calculations had to be 
performed. This was an understandable partitioning. Vector displays had a large address 
space (4096 by 4096 even in early systems) and severe limits on the number of lines and 
objects that could be displayed. Raster displays, on the other hand, had a limited address 
space (256 by 256 in early systems) and the ability to display a potentially unbounded 
number of objects. Later algorithms often combine both object- and image-precision 
calculations, with object-precision calculations chosen for accuracy, and image• precision 
ones chosen for speed. 

In this chapter, we first introduce a subset of the visible-surface problem, displaying 
single-valued functions of two variables. Next, we discuss a variety of ways to increase the 
efficiency of general visible-surface algorithms. Then, we present the major approaches to 
determining visible surfaces. 

15.1 FUNCTIONS OF TWO VARIABLES 

One of the most common uses of computer graphics has been to plot single-valued 
continuous functions o f two variables, such as y = f(x. z). These functions define surfaces 
like that shown in Fig. 15.l (a). They present an interesting special case of the 
hidden-surface problem, for which especially fast solutions are possible. 

A function of x and z may be approximated by an m by n array Y of values. Each array 
element may be thought of as representing a height at one point in a regular grid of samples. 
We assume that each column of the array corresponds to a singlex coordinate, and that each 
row of the array corresponds to a single z coordinate. In other words, the rectangular array 
is aligned with the x and z axes. The indices of an array element and the element's value 
together specify the coordinates of a 30 point. A wireframe drawing of the surface may be 
constructed as a piecewise linear approximation by drawing one set of polylines through the 
points defined by each row of the array Y (polylines of constant z) and an orthogonal set of 
polylines through the points defined by each column (polylines of constant x). A 

(a) (b) 

Fig. 15.1 A single-valued function of two variables: (a) without and (b) with hidden 
lines removed. (By Michael Hatzitheodorou, Columbia University.) 

0698



652 Visible-surface Determination 

hidden-line algorithm must suppress all pans of the lines that would be obscured from the 
viewpoint by other parts of the surface, as shown in Fig. 15.1{b). 

To see how we might accomplish this, we first consider the problem of plotting only 
polylines of constant z, assuming that the closest polyline to the viewpoint is an edge of the 
surface. An efficient class of solutions to this problem is based on the recognition that each 
polyline of constant z lies in a separate, parallel plane of constant z [WILL72; WR1G73; 
BUTL 79]. Since none of these planes (and hence none of the polylines) can intersect any of 
the others, each polyline cannot be obscured by any polyline of constant z farther from the 
viewpoint. llletefore, "''e will draw polylines of constant z in order of increasing distance 
from the viewpoint. This establishes a front·to-back order. Drawing each polyline of 
constant z correctly requires only that we not draw those parts of the polyline that are 
obscured by parts of the surface already drawn. 

Consider the "silhouette boundary" of the polylines drawn thus fat on the view plune, 
shown as thick lines in Fig. 15.2. When a new polyline is druwn, it should be visible only 
where its projection rises above the top or dips below the bottom of the old silhouette. Since 
each new polyline has a constant z that is farther than that of any of the preceding polylines, 
it cannot pierce any pan of the surface already drawn. Therefore, to determine what parts 
are to be drawn, we need only to compare the current polyline's projected y values with 
those of the corresponding pan of the surface's silhouette computed thus far. When only 
enough infonnation is encoded to represent a min.imum and mrutimum silhoueue y for each 
x, the algorithm is known as an horizon line algorithm. 

One way to represent this silhouette, implemented by Wright [WRIG73], uses two I D 
arrays, YMIN and YMAX, to hold the minimum and maximum projected y values for a finite 
set of projected x values. These arc image-precision data structures because they have a 
finite number of entries. YMIN and YMAX are initialized with y values that are, 
respecti~-ely, above and below all the projected y values of the surfac~. When a new polyline 
is drawn, the projected y values of each pair of adjacent vertices are compared with the 
values at the corresponding locations in the silhouette atrays. As shown in Fig. 15.3, a 
vertex whose value is above that in the corresponding position in YMAX (A, 8 , G) or below 
that in YMIN (E. F) is visible; otherwise, it is invisible (C, D). lfboth vertices are invisible, 
then the line segment is wholly invisible (CD) and the silhouette arrays remain unchanged. 

Fig. 15.2 Silhouette of lines drawn. (By Michael Hatzitheodorou. Columbia University.) 

0699



15.1 Functions of Two Variables 653 

If both vertices are visible wirh regard to rhe same silhouene array (AB. EF), then rhe line 
segment is wholly visible and should be drawn in its entirety, and that silhouene array 
should be updated. The x coordinates of two adjacent ~-ertices in a polyline of constant z 
usually map to nonadjacent locations in rhe silhouene arrays. ln this situation, values of y to 
insert in the intervening si lhouene array locations can be obtained by linearly interpolating 
between the projected y values of rhe two adjacent elements of Y. 

Finally, we must consider the case of a partially visible line, in which borh vertices are 
not visible with regard to the same silhouette array. Although this typically means that one 
of the vertices is visible and rhe other is invisible (BC. DE), it may be the case rhat both 
vertices are visible, one above YMAX and the other below YMIN (FG). Interpolated y values 
can be compared with those at the intervening locations in the silhouette arrays to determine 
rhe point(s) of intersection. The line should not be visible at !hose places where an 
interpolated y value falls inside the silhouette. Only the visible parts of the line segment 
outside the silhouette should be drawn, and the silhouene array should be updated, as 
shown in Fig. 15.3. When the two adjacent silhouette elements are found between which 
the line changes visibilil)', the line can be intersected wirh the line defined by the x and y 
values of !hose elements to determine an endpoint for a line-drawing algorirhm. 

Unfortunately, the image-precision YMIN and YMAX si lhouette arrays make this 
algorithm prone to aliasing problems. If the line-drawing primitive used has higher 
resolution than do the silhouette arrays, aliasing can manifest itself as hidden segments that 
are drawn or as visible segments !hat are not. For example, Fig. 15.4 shows three polylines 
being drawn in front-to-backorder. The two polylines of pans (a) and (b) form a gap when 

y 

4() 
A G 

j"--.., 8 / 
._ 

""""' 
I"" ...... 

N 
....... r-.... '\ ~ ~ ~ I~ v, 

'\~ 

30 

20 ,, 
10 

i,..oo"' r~ - E .... 
F ....... 

0 X 

New YMAX 36 34 32 26 24 29 34 33 32 34 36 33 36 
New YMIN 10 12 14 15 16 15 14 13 8 7 6 13 14 
Une's Y 36 34 32 26 20 22 24 16 8 7 6 21 36 
otd YMAX 30 28 26 25 24 29 34 33 32 34 36 33 30 
otd YMIN 10 12 14 15 16 15 14 13 12 12 12 13 14 

Fig. 15.3 The y values for positions on the line between the endpoints must be 
interpolated and compared with those in the silhouette arrays. Endpoint values are 
shown in boldface type. 

0700



654 Visible-surface Determination 

y y 

j· " 1 · ~ • 0 X 
' X 

Line's Y 30 30 10 10 Line's Y 10 10 30 30 Line's Y 25 25 25 
YMAX - - - - YMAX 30 30 10 10 YMAX 30 30 30 

(a) (b) (c) 

Fig. 15.4 Aliasing problem arising from the use of image-precision silhouette 
arrays . 

:X 
25 
30 

they cross. The second line can be correctly hidden by the first by interpolating the valu.:s in 
YMAX to determine the intersection of the two lines. After the second line has been drawn, 
however, both values in YMAX are the same, so the third line, drawn in part (c), incorrectly 
remains hidden when it passes over their intersection. Using higher-resolution silhouette 
arrays can reduce such problems at the expense of increased processing time. 

An alternative to image-precision YMIN and YMAX arrays is to use object-precision 
data structures [WILL72]. The YMIN and YMAX arrays can be replaced by two 
object-precision polylines representing the silhouette boundaries. As each segment of a 
polyline of consta.nt z is inspected , only those parts projecting above the YMAX polyline or 
below the YMIN polyline are drawn. The projected lines representing these visible parts are 
linked into the silhouette polyline begiruling at the point at which they inte!1iect it, replacing 
the subsequent parts of the silhouette polyline until the next intersection. The accuracy 
gained by this approach must be weighed against the extra run-time overhead incurred by 
searching and maintaining the silhouette polylines and the added difficulties of coding a 
more complex algorithm. 

Suppose we wish to draw polylines of constant x, instead of polylines of constant z, to 
produce the view shown in Fig. 15.5. In this case, the polyline of constant xclosest to the 
observer does not form an edge of the surface. It is the seventh (the most nearly vertical) 
polyline from the left. To render the surface correctly, we must render polylines to the right 

Fig. 15.5 Surface drawn using polylines of constant x. instead of polylines of constant 
z. (By Michael Hatzitheodorou, Columbia University.) 

0701



15.1 Functions of Two Variables 655 

Fig. 15.6 Surface of Fig. 15.5 with lines of constant x and z. (By Michael Hatzitheodo­
rou, Columbia University.) 

of the closest one from left to right , and those to the left of the closest one from right to left. 
In both cases, polylines.are rendered in front-to-bac.k order relative to the observer. 

The image-precision algorithm can be easily extended to plot lines of constant x as well 
as of constant z, as shown in Fig. 15.6. Although it is tempting to assume that 
superimposing the correctly plotted polylines of constant x and polylines of constant z 
would work, this does not allow lines from each set to hide those in the other, as shown in 
Fig. 15.7. Wright [WRlG73] points out that the correct solution can be obtained by 
interleaving the processing of the two sets of polylines. The set of those polylines that are 
most nearly parallel to the view plane (e.g., those of constant z) is processed in the same 
order as before. After each polyline of constant z is processed, the segments of each 
polyline of constant x between the just-processed polyline of z and the next polyline of z are 
drawn. The line segments of x must be drawn using the same copy of the silhouette data 
structure as was used for drawing the polylines of constant z. l.n addition, they too must be 
processed in front-to-hack order. Figure 15.8(a) shows lines of constant x as processed in 
the correct order, from left to right in this case. The lines of constant x in Fig. 15.8(b) have 
been processed in the opposite, incorrect order, from right to left. The incorrect drawing 
order cause.s problems. because each successive line is shadowed in the YMAX array by the 
I ines drawn previously. 

Although the algorithms described in this section are both useful and efficient, they fail 
for any viewing specification for which the silhouette of the object is not a function of x 
when projected on the view plane. An example of such a viewing specification is shown in 
Fig. 15.9, which was rendered with an algorithm developed by Anderson [ANDE82] that 
uses more complex data structures to handle arbitrary viewing specifications. 

(a) (b) (c) (d) 

Fig. 15.7 (a) Lines of constant z . (b) Lines of constant x. (c) Superposition of part s (a) 
and (b). (d) The correct solution. (Based on [WRIG73).) 

0702



656 Visible-surface Determination 

Fig. 15 .8 Polylines of constant x, like those of constant z. must be processed in the 
correct order. (a) Correctly processed lines. (b) Incorrectly processed lines. (By Michael 
Hatzitheodorou, Columbia University.) 

15.2 TECHNIQUES FOR EFFICIENT VISIBLE-SURFACE 
ALGORITHMS 

As we have just seen, a restricted version of the visible-line problem for functions of two 
variables can be solved efficiently by using clever data structures. What can be done for the 
general problem of visible-surface determination? The simple formulations of prototypical 
image-precision and object-precision algorithms gjven at the beginning of this chapter 
require a number of potentially costly operations. These include determining for a projector 
and an object, or for two objects' projections, whether or not they intersect and where they 
intersect. Then, for each set of intersections, it is necessary to compute the object that is 
closest to the viewer and therefore visible. To minimize the time that it takes to create a 
piciUre. we must organize visible-surface algorithms so that c.ost ly operations are performed 

Fig. 15 .9 A projection not handled by the algorithm discussed here. (Courtesy of 
David P. Anderson. University of California, Berkeley.) 

0703



15.2 Techniques for Efficient Visible-surface Algorithms 657 

as efficiently and as infrequently as possible. The following sections describe some general 
ways to do this. 

15.2.1 Coherence 

Sutherland, Sproull , and Schumacker [SUTH74a] point out how visible-surface algorithms 
can take advantage of coherence-the degree to which partS of an environment or its 
projection exhibit local similarities. Environments typically contain objects whose proper· 
ties vary smoothly from one part to another. ln fact, it is the less frequent discontinuities in 
properties (such as depth , color, and texture) and the effects that they produce in pictures, 
that let us distinguish between objects. We exploit coherence when we reuse calculations 
made for one part of the environment or picture for other nearby parts, either without 
changes or with incremental changes that are more efficient to make than recalculating the 
information from scratch. Many different kinds of coherence have been identified 
[SUTH74al. which we list here and refer to later: 

• 

• 

• 

• 

• 

• 

• 

• 

Object coherence. If one object is entirely separate from another, comparisons may 
need to be done only between the two objects, and not between their component faces 
or edges. For example, if all parts of object A are farther from the viewer than are all 
parts of object 8, none of A's faces need be compared with B's faces to determine 
whether they obscure 8 ' s faces. 

Face coherence. Surface properties typically vary smoothly across a face, allowing 
computations for one part of a face to be modified incrementally to apply to adjacent 
parts . In some models, faces can be guaranteed not to inte.rpenetrate. 

Edge coherence. An edge may change visibility only where it crosses behind a visible 
edge or penetrates a visible face. 

Implied edge coherence. If one planar face penetrates another, their line of intersection 
(the implied edge) can be determined from two points of intersection. 

Scan-line coherence. The set of visible object spans det.ermined for one scan line of an 
image typically differs little from the set on the previous line. 

Area coherence. A group of adjacent pixels is often covered by the same visible face. A 
special case of area coherence is span coherence. which refers to a face's visibility over 
a span of adjacent pixels on a scan li ne. 

Depth coherence. Adjacent parts of the same surface are typically close in depth, 
whereas different surfaces at the same screen location are typically separated farther in 
depth. Once the depth at one point of the surface is calculated, the depth of points on 
the rest of the surface can often be determined by a simple difference equa.tion. 

Frame coherence. Pictures of the same environment at two successive points in time are 
likely to be quite similar, despite small changes in objects and viewpoint. Calculations 
made for one picture can be reused for the next in a sequence. 

15.2.2 The Perspective Transformation 

Visible-surface determination clearly must be done in a 3D space prior to the projection 
into 2D that destroys the depth information needed for depth comparisons. Regardless of 

0704



658 Visible-surface Determination 

the kind of projection chosen, the basic depth comparison at a point can be typically 
reduced to the following question: Given points P1 = (x1, y1• z1) and P2 = (x2• y2 , z2), does 
either point obscure the other? This question is the same: Are P1 and P2 on the same 
projector (see Fig. 15 .I 0)? If the answer is yes, z1 and z2 are compared to determine which 
point is closer to the viewer. If the answer is no, then neither point can obscure the other. 

Depth comparisons are typically done after the normalizing transformation (Chapter 6) 
bas been applied, so that projectors are parallel to the z axis in parallel projections or 
emanate from the origin in perspective projections. For a parallel projection, the points are 
on the same projector if x1 = .\1! and y1 = y2• For a perspective projection, we must 
unfortunately perform four divisions to determine whether x1 / z1 = x21 z2 and y1 / z1 = y21 z2, 

in wltich case the points are on the same projector, as shown in Fig. 15.10. Moreover, if P1 

is later compared against some P3• two more divisions are required. 
Unnecessary divisions can be avoided by first transforming a 30 object into the 30 

screen-coordinate system, so that the parallel projection of the transformed object is the 
same as the perspective projection of the untransformed object. Then the test for one point 
obscuring another is the same as for parallel projections. This perspective transformation 
distorts the objects and moves the center of projection to infinity on the positive z axis, 
making the projectors parallel (see Fig. 6.56). Figure 15.11 shows the effect of this 
transformation on the perspective view volume; Fig. 15. 12 shows how a cube is distorted by 
the transformation. 

Tbe essence of such a transformation is that it preserves relative depth, straight lines, 
and planes, and atlbe same time performs the perspective foreshortening. As discussed in 
Chapter 6, the division that accomplishes the foreshortening is done just once per point, 
rather than each time two points are compared. The matrix from Eq. (6.48) 

M = 

I 0 
0 

0 0 

0 0 

Center of 
projection 

0 
0 
1 

+ 1mln 

-I 

0 
0 

- zmill ,Z,;0 'F- I (15.1) 

+ z.,;. 

0 

Fig. 15.10 If two points P, and P2 are on the same projector, then the closer one 
obscures the other; otherwise, it does not (e.g., P, does not obscure P~). 

0705



15.2 Techniques for Efficient Visible·surface Algorithms 659 

y y 

(-1, 1.-1) ( - 1, 1,-1) 

IC 

(a) (b) 

Fig. 15.11 The normalized perspective view volume (a) before and (b) after perspec­
tive transformation. 

transforms the normalized perspective view volume into the rectangular parallelepiped 
bounded by 

- I S x S I , -I s z < 0. (15.2) 

Clipping can be done against the normalized truncated-pyramid view volume before M 
is applied, but then the clipped results must be multiplied by M. A more attractive 
alternative is to incorporate M into the pe.rspective normalizing transformation N"', from 
Chapter 6, so that just a single matrix multiplication is needed, and then to clip in 
homogeneous coordinates prior to the division. lf we call the results of that multiplication 
(X, Y, Z. W), then, for W > 0, the clipping limits become 

- w sxsw. - ws Y s w. - w szso. (15.3) 

These limits are derived from Eq. (15.2) by replacingx. y, and z by XIW, YIW, and ZIW, 
respectively,to reflect the fact thatx, y, and z in Eq. (15.2) result from division by W. After 
clipping, we divide by W to obtain (Xp. Yp• zp).(See Section 6.5.4. for what to do when 

y y 

X 

(a) (b) 

Fig. 15.12 A cube (a) before and (b) after perspective transformation. 

0706



660 Visible-surface Determination 

W <0.) Note that M assumes the view volume is in the negative z half-space. For notational 
convenience, however, our examples will often use decreasing positive z values, rather than 
decreasing negative z values, to indicate increasing distance from the viewer. In contrast, 
many graphics systems transform their right-handed world into a left-handed viewing 
coordinate system, in which increasing positive z values correspond to increasing distance 
from the viewer. 

We can now proceed with visible-surface determination unfettered by the complica­
tions suggested by Fig. 15.10. Of course, when a parallel projection is specified, the 
perspective transformation M is unnecessary, because the normalizing transformation N,_ 
for parallel projections makes the projectors parallel to the z axis. 

15.2.3 Extents and Bounding Volumes 

Screen extents, introduced in Chapter 3 as a way to avoid unnecessary clipping, are also 
commonly used to avoid unnecessary comparisons betY.een objects or their projections. 
Figure i5.13 shows two objects (30 polygons, in this case), their projections, and the 
upright rectangular screen extents surrounding the projections. The objects are assumed to 
have been transformed by the perspective transformation matrix M of Section 15.2.2. 
Therefore, for polygons, orthographic projection onto the (x. y) plane is done trivially by 
ignoring each vertex's z coordinate. In Fig. 15. 13, the extents do not overlap, so the 
projections do not need to be tested for overlap with one anot.her. If the extents overlap, one 
of two cases occurs, as shown in Fig. 15.14: either the projections also overlap, as in part 
(a), or they do not, as in part (b). In both cases, more comparisons must be performed to 
determine whether the projections overlap. In part (b), the comparisons will establish that 
the two projections really do not intersect; in a sense, the overlap of the extents was a false 
alarm. Extent testing thus provides a service similar to that of trivial reject testing in 
clipping. 

Rectangular-extent testing is also known as bounding-box testing. Extents can be used 
as in Chapter 7 to surround the objects themselves rather than their projections: in this case, 
the extents become solids and are also known as bounding volumes. Alternatively, extents 
can be used to bound a single dimension, in order to determine, say, whether or not two 
objects overlap in z. Figure 15.15 shows the use of extents in such a case; here, an extent is 
the infinite volume bounded by the minimum and maximum z values for each object. There 

y 

z 

Fig. 15.13 Two objects, their projections onto the (x. y) plane. and the extents 
surrounding the projections. 

0707



15.2 Techniques for Efficient Visible-surface Algorithms 661 

(a) (b) 

Fig. 15.14 Extents bounding object projections. (a) Extents and projections overlap. 
(b) Extents overlap, but projections do not. 

is no overlap in z if 

Zmo2 < Zminl or (15.4) 

Comparing against minimum and maximum bounds in one or more dimensions is also 
known as minmax testing. When comparing minmax extent~ . the most complicated part of 
the job is finding the extent itself. For polygons (or for other objects that are wholly 
contained within the convex hull of a set of defining points), an extent may be computed by 
iterating through the list of point coordinates and recording the largest and smallest values 
for each coordinate. 

Extents and bounding volumes are used not only to compare two objects or their 
projections with each other, but also to determine whether or not a projector intersects an 
object. This involves computing the intersection of a point with a 20 projection or a vector 
with a 30 object, as described in Section 15.10. 

Although we have discussed only minmax extents so far, other bounding volumes are 
possible. What is the best bounding volume to use? Not surprisingly , the answer depends on 
both the expense of performing tests on the bounding volume itself and on how well the 
volume protects the enclosed object from tests that do not yield an intersection. Weghorst, 
Hooper, and Greenberg [WEGH84) treat bounding-volume selection as a matter of 
minimizing the total _cost function T of the intersection test for an object. This may be 
expressed as - -

T = bB + oO, (15.5) 

z 

Fig. 15.15 Using 1 D extents to determine whether objects overlap. 

0708



662 Visible-surface Determination 

where b is the number of times the bounding volume is tested for intersection, B is the cost 
of performing an intersection test on the bounding volume, o is the number of times the 
object is tested for intersection (the number of times the bounding volume is actually 
intersected), and 0 is the cost of performing an intersection test on the object. 

Since the object intersection test is performed only when the bound.ing volume is 
actually intersected, o <b. Although 0 and bare constant for a particular object and set of 
tests to be performed, Band o vary as a function of the bounding volume's shape and size. 
A " tighter" bounding volume, which minimizes o, is typically associated with a greater B. 
A bounding volume's effectiveness may also depend on an object's orientation or the kind 
of objects with which that object will be intersected. Compare the two bounding volumes 
for the wagon wheel shown in Fig. 15. 16. If the object is to be intersected with projectors 
perpendicular to the (x. y) plane, then the tighter bounding volume is the sphere. If 

y 

L. 

-----"Jo-•-.... ..._ 
,.f' / I \ ''\.._ ee - " -- • -- •-..,, 

/I I I \ \\ 
II I f \ \\ 

~·--·---·---·--·~ t I l 1 \ 

-+ 
\ · -- ~ ---!---~--+ .,' j" \\ \ l i ,, \ \ • I I 

-- - ~"' 
'~, \ I f' Z .... ..~ 

- - 44 --- -~' 

Fig. 15.16 Bounding volume selection. (Courtesy of Hank Weghorst, Gary Hooper, 
Donald P. Greenberg, Program of Computer Graphics, Cornell University, 1g84.) 

0709



15.2 Techniques for Efficient Visible-surface Algorithms 663 

projec10rs are perpendicular to the (x. z) or (y, z) planes, then the rectangular extent is the 
tighter bounding volume. Therefore, multiple bounding volumes may be associated with an 
object and an appropriate one selected depending on the circumstances. 

15.2.4 Back-Face Culling 

If an object is approximated by a solid polyhedron, then its polygonal faces completely 
enclose its volume. Assume that all the polygons have been defined such that their surface 
normals point out of their polyhedron. If none of the polyhedron's interior is exposed by 
the front clipping plane, then those polygons whose surface normals point away from the 
observer lie on a part of the polyhedron whose visibility is completely blocked by other 
closer polygons, as shown in Fig. 15.17. Such invisible back-facing polygons can be 
eliminated from further processing, a technique known as back-face culling. By analogy, 
those polygons that are not back-facing are often called front-faciJJg. 

In eye coordinates, a back-facing polygon may be identified by the nonnegative dot 
product that its surface normal forms with the vector from the center of projection to any 
point on the polygon. (Strictly speaking, the dot product is positive for a back-facing 
polygon; a zero dot product indicates a polygon being viewed on edge.) Assuming that the 
perspective transformation has been performed or that an orthographic projection onto the 
(x, y) plane is desired, then the direction of projection is (0, 0, - I). In this case, the 
dot-product test reduces to selecting a polygon as back-facing only if its surface normal has 
a negative z coordinate. If the environment consists of a single convex polyhedron, 
back-face culling is the only visible-surface calculation that needs to be performed. 
Otherwise, there may be front-facing polygons, such as C and E in Fig. 15. 17, that are 
partially or totally obscured. 

If the polyhedra have missing or clipped front faces, or if the polygons are not part of 
polyhedra at all , then back -facing polygons may still be given special treatment. If culling is 
not desired, the simplest approach is to treat a back-facing polygon as though it were 
from-facing, Hipping its normal in the opposite d irection. In PHIGS+, the user can specify 
a completely separate set of properties for ea.ch side of a surface. 

z 

Fig. 15.17 Back-face culling. Back-facing polygons (A.B,D,F) shown in gray are 
eliminated, whereas front-facing polygons (C,E,G,H) are retained. 

0710



664 Visible-surface Determination 

Extrapolaling from Section 7.12.2's parity-check algorithm for determining whelher a 
point is contained in a polygon, no1e that a projector passing through a polyhedron 
intersects the same number of back-facing polygons as of front-facing ones. Thus, a point in 
a polyhedron's projection lies in the projections of as many back-facing polygons as 
front-facing ones. Back-face culling therefore halve.~ the number of polygons to be 
considered for each pixel in an image-precision visible-surface algorithm. On average, 
approximately one-half of a polyhedron's polygons are back-facing. Thus, back-face 
culling also typically hal'i'CS the number of polygons to be considered by the remainder of an 
object-preci ion visible-surface algorithm. (Note,llowever, that 1his is true only on average. 
For example, a pyramid's base may be that object's only back· or fron1-facing polygon.) 

As described so far, back-face culling is an object-precision 1echnique thai requires 
time linear in the number of polygons. Sublinear performance can be oblained by 
preprocessing the objects 10 be displayed. For example, consider a cube centered aboul the 
origin of i1s own object coordinate sys1em, with its faces perpendicular to the coordinate 
system's axes. From any viewpoinl outside the cube, at most three of its faces are visible. 
Furthermore, each octant of 1he cube's coordinate system is associated with a specific set of 
three pot.emially visible faces. Therefore, the position of the viewpoinl relative to the cube's 
coordinate sys1em can be used to select one of the eight sets of three potentially visible 
faces. For objects with a relatively small number of faces, a table may be made up in 
advance 10 allow visible-surface determination without processing all the object's faces for 
each change of viewpoint. 

A table of visible faces indexed by viewpoint equivalence class may be quite large, 
however, for an object with many faces. Tanimoto [TAN1771 suggests as an alternative a 
graph-theoretic approach thai takes advantage of fr.une coherence. A graph is constructed 
with a node for each face of a convex polyhedron, and a graph edge connecting each pair of 
nodes whose faces share a polygon edge. The list of edges separating visible faces from 
invisible ones is then computed for an initial viewpoint. This list contains all edges on the 
object's silhoueue. Tanimoto shows that, as the viewpoinl changes between frames. only 
the visibilities of faces lying be1wecn the old and new si lhouettes need to be recomputed. 

15.2 .5 Spatial Partitioning 

Spatial partitioni11g (also known as spatial subdivision) allows us to break down a large 
problem inlo a number of smaller ones. The basic approach is to assign objects or their 
projections 10 spatially coherent groups as a preprocessing step. For CJtample, we can divide 
the projection plane with a coarse, regular 20 rectangular grid and determine in which grid 
spaces each object's projection lies. Projections need to be companed for overlap with only 
those other projections that fall within their grid boxes. This technique is used by 
[ENCA72; MAHN73; FRAN80; HED082]. Spatial partitioning can be used to impose a 
regular 30 grid on the objects in the environment. The process of determining which 
objects intersecl with a projector can 1hen be sped up by firs1 de1ennining which partitions 
the projector intersects, and then tesling only the objects lying within those partitions 
(Section 15.10). 

If the objects being depicted are unequally distributed in space, i1 may be more efficien1 
to use adapti1-e partitioning, in which the size of each partition varies. One approach 10 
adaptive partilioning is to subdivide space recursively until some lennination criterion is 

0711



16.3 Algorithms for Visible-line Determination 665 

Floor 1 Floor 2 Floor 3 Floor 4 

~ 
Room 1 Room 2 Room 3 

Fig. 15.18 Hierarchy can be used to restrict the number of object comparisons 
needed. Only if a projector intersects the building and floor 1 does it need to be tested 
for intersection with rooms 1 through 3. 

fulfilled for each partition. For example, subdivision may stop when there are fewer than 
some maximum number of objects in a partition [TAMM82]. The quadtree, octree, and 
SSP-tree data structures of Section I 2.6 are particularly attractive for this purpose. 

15.2.6 Hierarchy 

As we saw in Chapter 7, hierarchies can be useful for relating the structure and motion of 
different objects. A nested hierarchical model, in which each child is considered part of its 
parent, can also be used to restrict the number of object comparisons needed by a 
visible-surface algorithm [CLAR76; RUBI80; WEGH84]. An object on one level of the 
hierarchy can serve as an extent for its children if they are entirely contained within it, as 
shown in Fig. 15.18. In this case, if two objects in the hierarchy fail to intersect , the 
lower" level objects of one do not need to be tested for intersection with those of the other. 
Similarly, only if a projector is found to penetrate an object in the hierarchy must it be 
tested against the object's children. This use of hierarchy is an important instance of object 
coherence. A way to automate the construction of hierarchies is discussed in Section 
15.10.2. 

15.3 ALGORITHMS FOR VISIBLE-LINE DETERMINATION 

Now that we have discussed a number of general techniques, we introduce some visible-line 
and visible-surface algorithms to see how these techniques are used. We begin with 
visible-line algorithms. The algorithms presented here all operate in object precision and 
produce as output a list of visible line segments suitable for vector display. The 
visible-surface algorithms discussed later can also be used for visible-line determination by 
rendering each surface as a background-colored interior surrounded by a border of the 
desired line color; most visible-surface algorithms produce an image-precision array of 
pixels, however, rather than an object-precision list of edges. 

15.3.1 Roberts's Algorithm 

The earliest visible-line algorithm was developed by Roberts [ROBE63]. It requires that 
each edge be part of the face of a convex polyhedron. First, back-face culling is used to 
remove all edges shared by a pair of a polyhedron's back-facing polygons. Next, each 
remaining edge is compared with each polyhedron that might obscure it. Many polyhedra 

0712



888 Visible-surface Determination 

can be trivially eliminated from the comparison through extent testing: the extents of their 
projections may fail to overlap in x or y, or one object's extent may be farther back in z than 
is the other. Those polyhedra that are tested are compared in sequence with the edge. 
Because the polyhedra are convex, there is at most one contiguous group of points on any 
line that is blocked from the observer by any polyhedron. Thus, each polyhedron either 
obscures the edge totally or causes one or two pieces to remain. Any remaining pieces of the 
edge are compared with the next polyhedron. 

Roberts's visibility test is performed with a parametric version of the projector from 
the eye to a point on the edge being tested. He uses a linear-programming approach to solve 
for those values of the line equation that cause the projector to pass through a polyhedron, 
resulting in t.he invisibility of the endpoint. The projector passes through a polyhedron if it 
contains some point that is inside all the polyhedron's front faces. Rogers (ROGE85] 
provides a detailed explanation of Roberts's algorithm and discusses ways in which that 
algorithm can be further improved. 

1 5.3 .2 Appel's Algorithm 

Several more general visible-line algorithms [APPE67; GALI69; LOUTIO] require only 
that lines be the edges of polygons, not polyhedra. These algorithms also consider only 
lines that bound front-facing polygons, and taice advantage of edge-coherence in a fashion 
typified by Appel's algorithm. Appel [APPE67] defines the quantitative invisibility of a 
point on a line as the number of front-facing polygons that obscure that point. When a line 
passes behind a front-facing polygon, its quantitative invisibility is incremented by I; when 
it passes out from behind that polygon, its quantitative invisibility is decremented by I. A 
line is visible only when its quantitative invisibility is 0. Line AB in Fig. 15. 19 is annotated 
with the quantitative invisibility of each of its segments. If interpenetrating polygons are not 
allowed, a line's quantitative invisibility changes only when it passes behind what Appel 

Fig. 1 5.19 Quantitative invisibility of a line. Dashed lines are hidden. Intersections of 
AS's projection with projections of contour lines are shown as large dots (e), and each 
segment of AB is marl<ed with its quantitative invisibility. 

0713



15.3 Algorithms for Visible-line Determination 667 

calls a contour li11e. A contour line is either an edge shared by a front-facing and a 
back-facing polygon, or the unsbared edge of a front-facing polygon that is not part of a 
closed polyhedron. An edge shared by two front-facing polygons causes no change in 
visibility and therefore is not a contour line. In Fig. 15.19, edges AB, CD, DF, and KLare 
contour lines, whereas edges CE, EF, and JK are not. 

A contour line passes in front of the edge under consideration if it pierces the triangle 
formed by the eyepoint and the edge's two endpoints. Whether it does so can be determined 
by a point-in-polygon containment test, such as that discussed in Section 7.12.2. The 
projection of such a contour line on the edge can be found by clipping the edge against the 
plane determined by the eyepoint and the contour line. Appel 's algorithm requires that all 
polygon edges be drawn in a consistent direction about the polygon, so that the sign of the 
change in quantitative invisibility is determined by the sign of the cross-product of the edge 
with the contOur line. 

The algorithm first computes the quantitative invisibility of a "seed" vertex of an 
object by detennining the number of front-facing polygons that hide it. This can be done 
by a brute.-force computation of all front-facing polygons whose intersection with the pro­
jector to the seed vertex is closer than is the seed vertex itself. The algorithm then takes ad­
vantage of edge coherence by propagating this value along the edges emanating from 
the point, incrementing or decrementing the value at each point at which an edge passes 
behind a contour line. Only sections of edges whose quantitative invisibility is zero are 
drawn. When each line's other endpoint is reached, the quantitative invisibility asso­
ciated with that endpoint becomes the initial quantitative invisibility of all lines emanat­
ing in turn from it. 

At vertices through wb.ich a contour line passes, there is a complication that requires us 
to make a correction when propagating the quantitative invisibility. One or more lines 
emanating from the vertex may be hidden by one or more front-facing polygons sharing the 
vertex. For example, in Fig. 15.19, edge JK has a quantitative invisibility of 0 , wb.ile edge 
KL has a quantitative invisibility of I because it is hidden by the object's top face. This 
change in quantitative invisibility at a vertex can be taken into account by testing the edge 
against the front-facing polygons that share the vertex. 

For an algorithm such as Appel's to handle intersecting polygons, it is necessary to 
compute the intersections of edges with front-facing polygons and to use each such 
intersection to increment or decrement the quantitative invisibility. Since visible-line 
algorithms typically compare whole edges with other edges or objects, they can benefit 
greatly from spatial-partitioning approaches. Each edge then needs to be compared with 
only the other edges or objects in the grid boxes containing its projection. 

15.3.3 Haloed Unes 

Any visible-line algorithm can be easily adapted to show hidden lines as dotted, as dashed, 
of lower intensity, or with some other rendering style supported by the display device. The 
program then outputs the hidden line segments in the line style selected, instead of 
suppressing them. In contrast, Appel , Rohlf, and Stein [APPE79] describe an algorithm for 
rendering haloed lines, as shown in Fig. 15.20. Each line is surrounded on both sides by a 
halo that obscures those parts of lines passing beb.ind it. This algorithm, unlike those 

0714



668 Visible-surface Determination 

(a) (b) (c) 

Fig. 15.20 Three heads rendered (a) without hidden lines eliminated, (b) with hidden 
lines haloed, and (c) with hidden lines eliminated. (Courtesy of Arthur Appel, IBM T .J . 
Watson Research Center.) 

discussed previously, does not require each line to be part of an opaque polygonal face. 
Lines that pass behind others are obscured only around their intersection on the view plane. 
The algorithm intersects each line with those passing in front of it, keeps track of those 
sections that are obscured by halos, and draws the vis.ible sections of each line after the 
intersections have been calculated. If the halos are wider than the spacing between lines, 
then an effect similar to conventional hidden-line elimination is achieved, except that a 
line's halo extends outside a polygon of which it may be an edge. 

In the rest of this chapter, we discuss the rich variety of algorithms developed for 
visible-surface determination. We concentrate here on computing which parts of an object's 
surfaces are visible , leaving the determination of surface color to Chapter 16. In describing 
each algorithm, we emphasize its application to polygons, but point out when it can be 
generalized to handle other objects. 

15.4 THE z-BUFFER ALGORITHM 

The z-buffer or depth-buffer image-precision algorithm, developed by Catmull [CATM74b ] , 
is one of the simplest visible-surface algorithms to implement in either software or 
hardware. ll requires that we have available not only a frame buffer F in which color values 
are stored, but also a z-buffer Z, with the same number of entries, in which a z-value is 
stored for each pixeL The z-buJfer is initialized to zero, representing the z-value at the back 
clipping plane, and the frame buffer is initialized to the background color. The largest v-.tlue 
that can be stored in the z-buffer represents the z of the front clipping plane. Polygons are 
scan-converted into the frame buffer in arbitrary order. During the scan-conversion process, 
if the polygon point being scan-converted at (x, y) is no farther from the viewer than is the 
point whose color and depth are currently in the buffers, then the new point's color and 
depth replace the old values. The pseudocode for the z-buffer algorithm is shown in Fig. 
15.21. The WritePixel and ReadPixel procedures introduced inChapter3 are supplemented 
here by WriteZ and ReadZ procedures that write and read the z-buffer. 

0715



16.4 The z-Buffer Algorithm 

void zBuffer( void) 
{ 

int x, y; 

for (y = 0; y < YMAX; y++) { /• Clear frame buffer and z-buffer • I 

} 

for (x = O; x < XMAX; x++) { 

} 

WritePixel (x, y, BACKGROUND. VALUE) ; 
WriteZ (x, y, 0); 

for (each polygon) { I• Draw polygons +I 

} 

for (each pixel in polygon's projection) { 

} 

double pz =polygon 's z-value at pixel coords (x, y); 
if (pz >= ReadZ (x, y)) { I• New point is not farther •I 

WriteZ (x, y, pz); 
WritePixel (x, y, polygon s color at pixel coords (x, y)) ; 

} 

} I• zBuffer •I 

Fig. 15.21 Pseudocode for the z-buffer algorithm. 

669 

No presorting is necessary and no object-object comparisons are required. The entire 
process is no more than a search over each set of pairs {Z,{x ,y), F;(x, y)} for fixed x and y, to 
find the largest Z;. The z-buffer and the frame buffer record the information associated with 
the largest z encountered thus far for each (x, y). Thus, polygons appear on the screen in the 
order in which they are processed. Each polygon may be scan-converted one scan line at a 
time into the buffers, as described in Section 3.6. Figure 15.22 shows the addition of two 
polygons to an image. Each pixel's shade is shown by its color; its z is shown as a number. 

Remembering our discussion of depth coherence, we can simplify the calculation of z 
for each point on a scan line by exploiting the fact that a polygon is planar. Normally, to 
calculate z. we would solve the plane equation Ax + By + Cz + D = 0 for the variable z: 

- D - Ax- By 
z= c 

Now, if at (x, y) Eq. (15.6) evaluates to z1, then at (x + IU, y) the value of z is 

A 
z, - c<~U). 

(15.6) 

( 15. 7) 

Only one subtraction is needed to calculate z(x + l ,y) given z{x, y), since the quotient AJC 
is constant and ax = I. A similar incremental calculation can be performed to determine 
the first value of z on the next scan line, decrementing by BIC for each Ay. Alternatively, if 

0716




