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We summarize the four SPH1GS rendering modes here; they are discussed much more fully 
io Chapters 14 through 16. 

Wireframe rendering mode. WIREFRAME mode is the fastest but least realistic form of 
display. Objects are drawn as though made of wire, with only their edges showing. The 
visible (within the view volume) portions of all edges of all objects are shown in their 
entirety, with no hidden-edge removal. Primitives are drawn in temporal order-that is, in 
the order in which the traverser encounters them in the posted structure networks in the 
database; this order is affected by the display-priority determined by the view index, as 
mentioned in Section 7 .3.4. 

All edge attributes affect screen appearance in their designated way in this mode; in 
fact, when the edge flag is set to EDGtUNVISffiLE, fill areas and polyhedra are entirely 
invisible in this mode. 

S haded rendering modes. In its other three rendering modes , SPHIGS displays fill areas 
and polyhedra in a more realistic fashion by drawing fill areas and facets as filled polygons. 
The addition of shaded areas to the rendering process increases the complexity significant­
ly, because spatial ordering becomes important-portions of objects that are bidden 
(because they are obscured by portions of " closer" objects) must not be displayed. 
Methods for determining visible surfaces (also known as hidden-surface removal) are 
discussed in Chapter 15. 

For the three shaded rendering modes, SPfflGS "shades" the interior pixels of visible 
portions of the facets; the quality of the rendering varies with the mode. For FLAT shading, 
the mode used often in this chapter's figures, all facets of a polyhedron are rendered in the 
current interior color, without being influenced by any light sources in the scene. Visible 
portions of edges are shown (if the edge flag is EDGE_ VISIBLE) as they would appear in 
W!REFRAME mode. If the interior color is set to match the screen background, only the 
edges show-this use of f1.4T rendering , which produced Figs. 7.9(a) and 7.14(c), 
simulates wireframe with bidden-edge removal. 

The two highest-quality rendering modes produce images illuminated by a light 
source;'0 illumination and shading models are discussed in Chapter 16. These images are 
nonuniformly "shaded;" the colors of the pixels are based on, but are not exactly, the value 
of the interior-color attribute. In LIT ....FLAT mode, all the pixels on a particular facet have the 
same color, determined by the angle at which the light hits the facet. Because each facet is 
of a uniform color, the image has a "faceted" look, and the contrast between adjacent faces 
at their shared edge is noticeable. GOURAUD mode colors the pixels to provide a smooth 
shaded appearance that elirnJnates the faceted look. 

In FLAT mode, the edge-flag attribute should be set to EDGE... VISmLE, because, without 
visible edges, the viewer can determine only the silhouette boundary of the object. In the 
two highest-quality mod.es, however, edge visibility is usually turned off, since the shading 
helps the user to determine the shape of the object. 

10 The PHIGS + extension provides many facilities for controlling rendering, including specification of 
the placement and colors of multiple light sources, of the material properties of objects characterizing 
thei.r interaction with light, and so on: see Chapters 14 through 16. 
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324 Object Hierarchy and Simple PHIGS (SPHIGS) 

7 .9 STRUCTURE NETWORK EDITING FOR DYNAMIC EFFECTS 

As with any database, we must be able not only to create and query (in order to display) the 
SPHJGS structure database, but also to edit it in a convenient way. An application edits a 
structure via the procedures described in this section; if the application also maintains an 
application model, it must ensure that the two representations are edited in tandem. Motion 
dynamics requires modification of viewing or modeling transformations; update dynamics 
requires changes in or replacement of structures. The programmer may choose to edit a 
structure's internal element list if the changes are relatively minor; otherwise, for major 
editing, it is common to delete and then to respecify the structure in its entirety. 

In the remainder of this section, we present methods for intrastructure editing; see the 
SPHIGS reference manual for information on editing operations that affect entire structures 
(e.g., deletion, emptying), and for more detailed descriptions of the procedures presented 
here. 

7 .9.1 Accessing Elements with Indices and Labels 

The rudimentary editing facilities of both SPHlGS and PHIGS resemble those of 
old-fashioned line-oriented program editors that use Line numbers. The elements in a 
structure are indexed from I toN; whenever an element is inserted or deleted, the index 
associated with each higher-indexed element in the same structure is incremented or 
decremented. The unique current element is that element whose index is stored in the 
element-pointer state variable. When a structure is opened with the SPH_openStructure 
call, the element pointer is set to N (pointing to the last element) or to 0 for an empty 
structure. The pointer is incremented when a new element is inserted after the current 
element, and is decremented when the current element is deleted. The pointer may also be 
set explicitly by the programmer using absolute and relative positioning commands: 

void SPH..setEiemcmPoimer (inl index); 
void SPA_offsetEiemenlPointer (in I delta); I• + for forward, - for backward +I 

Because the index of an element changes when a preceding element is added or deleted in its 
parent structure, using element indices to position the element pointer is liable to error. 
Thus, SPHIGS allows an application to place "landmark" elements, called labels, within a 
structure. A label element is given an integer identifier when it is generated: 

void SPHJabel (lot id); 

The application can move the element pointer via 

void SPH..moveEiemenlPointerToLabel (int id); 

The pointer is then moved forward in search of the specified label . l f the end of the structure 
is reached before the label is found, the search terminates unsuccessfully. Thus, it is 
advisable to move the pointer to the very front of the structure (index 0) before searching for 
a label. 
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7.9 .2 lntrastructure Editing Operations 

The most common editing action is insertion of new elements into a structure. Whenever an 
element-generating procedure is called, the new element is placed immed lately after the 
current element, and the element pointer is incremented to point to the new element. 11 

Another form of insertion entails copying all the elements of a given structure into the 
open structure (immediately after the current element): 

void SPH.copyStructure (In! srructure/D); 

Elements are deleted by the following procedures: 

void SPH-deleteEiement (void ); 
void SPH..deleteEiementslnRange (lntfirsrlndex, in! secondlndex); 
void SPH.deleteEiementsBetweenLabels (int firsrl..llbel, lot secondl..llbel); 

In all cases, after the deletion is made, the element pointer is moved to the element 
immediately preceding the ones deleted , and all survivors are renumbered. The first 
procedure deletes the current element. The second procedure deletes the elements lying 
between and including the two specified elements. The third procedure is similar, but does 
not delete the two label elements. 

Note that these editing faciJities aJJ affect an entire element or a set of elements; there 
are no provisions for selective editing of data fields within an element. Thus, for example, 
when a single vertex needs to be updated the programmer must respecify the entire 
polyhedron. 

An editing example. Let us look at a modification of our simple street example. Our 
street now consists of ooJy tbe first house and the cottage, the former being fixed and the 
latter being movable. We create a label in front of the cottage, so we can subsequently edit 
the transformation in order to move the cottage. 

To move the cottage, we reopen the street structure, move t.he pointer to the label , and 
then offset to the transformation element, replace the transformation element, and close the 
structure. The screen is automatically updated after the structure is closed, to show the 
cottage in its new position. This code is shown in Fig. 7 .22(a), and its sequence of 
operations is illustrated in (b). 

7.9.3 Instance Blocks for Editing Convenience 

The previous editing example suggests that we place a label in front of each clement we wish 
to edit, but creating so many labels is clearly too laborious. There are several techniques for 
avoiding this tedium. The first is to bracket an editable group of elements with tWO labels, 
and to use the labels in deleting or replacing the entire group. Another common technique is 
to group the set of elements in a fixed format and to introduce the group with a single label. 

11 We show the use of insert "'mode" in our editing examples; however, SPHIGS also supports a 
"replace" editing mode in which new elements write over extant ones. See the reference manual for 
details. 
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SPH_openStructure (STREEL.STRUCf); 
I• When a structure is opened, the element pointer is initially at its very end. We •I 
I• must first move the pointer to the beginning, so we can search for labels. •I 
SPH..setElementPoimer (0); 
SPHJlloveElementPointerToLabcl (COTTAGE..TRANSLATIQN_LABEL); 

SPH_offsetEiemcntPointer ( I); I• Pointer now points at transform element. •I 
SPH..deleteEiement (): I• We replace here via a deletelinsert combination •I 
SPH..setLocaiTransfom1ation (newCottageTtonslotionMatrix, PRECONCATENATE) ; 

SPH..closeStructure (); 

(a) 

Fig. 7.22 Editing operations. (a) Code performing editing. (b) Snapshot sequence of 
structure during editing. The black triangle shows the element pointer's position. 
(Syntax of calls abbreviated for illustrative purposes.) 
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Fig. 7 .23 Sample instance-block format. 

To edit any member of the group, one moves the element pointer to the label , then offsets 
the pointer from that label into the group itself. Because the group's format is fixed, the 
offset is an easily determined small integer. 

A special case of this t.echnique is to design a slandard way of instantiating 
substructures by preceding the structure-execution element with a common list of 
attribute-setting elements. A typical format of such a sequence of elements, called an 
insrance block, is shown in Fig. 7 .23; first comes the label uniquely identifying the entire 
block, then an interior-color setting, then the three basic transformations, and finally the 
invocation of the symbol structure. 

We can create a set of symbolic constants to provide the offsets: 

const int !NfERIOR..COLOR.OFFSET = I: 
const int SCALE.OFFSET = 2; 
const int ROTATION.OFFSET = 3: 
const int TRANSLATION.OFFSBT = 4; 

Using the fixed format for the block guarantees that a particular attribute is modified in the 
same way for any instance. To change the rotation transformation of a particular inslance, 
we use the following code: 

SPH.openSll'Ucture (LD of stntcture to be edited): 
SPH.setElementPointer (0); 
SPH.moveEiementPointerToLabel (the desired i11stance-b/ock label); 
SPH.offsetEiementPointer (ROTATION.OFFSET); 
SPH.deleteEiement (); 
SPH.setLocaiTransforrnation (11ewMatrix, mode); 

SPH..closeStTucture (); 

Another nice feature of instance blocks is that the label introducing each block is easy to 
define: If the application keeps an internal database identifying all instances of objects , as is 
common, the label can be set to the unique number that the applica.tion itself uses to identify 
the instance internally. 

7.9 .4 Controlling Automatic Regeneration of the Screen Image 

SPHIGS constantly updates the screen image to reflect the current status of its structure 
storage database and its view table. On occasion, however, we want to inhibit this 
regeneration, either to increase efficiency or to avoid presenting the user with a continuously 
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changing image that is confusing and that shows irrelevant intermediate stages of editing. 
As we have seen, SPHIGS itself suppresses regeneration during the editing of a 

structure; no matter how many changes are made, an image is regenerated only when the 
structure is closed. This ''hatching' · of updates is done for efficiency, since any deletion or 
transformation of a primitive can cause an arbitrary amount of damage to the screen 
image-damage that requires either selective damage repair or brute-force retraversal of aU 
posted net~~rks in one or more views. It is clearly faster for SPHIGS to calculate the 
cumulative effect of a number of consecutive edits just once, before regeneration. 

A similar situation arises when several consecutive changes are made to different 
structures- for instance, when a structure and its substructures are deleted via consecutive 
calls to deleteStructure. To avoid this problem, an application can suppress automatic 
regeneration before making a series of changes, and allow it again afterward: 

void SPtLsetlmplicitRegenerationMode (ALLOWED / SUPPRESSED value); 

Even while implicit regeneration is suppressed, the application may explicitly demand a 
sereen regeneration by calling 

void SPHJcgenerateScreen (void); 

7 .10 INTERACTION 

Both SRGP's and SPHIGS's interaction modules are based on the PHIGS specification, and 
thus they have the same facilities for setting device modes and attributes, and for obtaining 
measures. The SPHIGS keyboard device is identical to that of SRGP, except that the echo 
origin is specified in NPC space with the z coordinate ignored. The SPHIGS locator 
device's measure has an additional field for the z coordinate, but is otherwise unchanged. 
SPHIGS also adds two new interaction faciUties. The first is pick correlation, augmenting 
the locator functionality to provide identification of an object picked by the user. The 
second is the choice device, described in the reference manual , which supports menus. 
Section 10.1 provides a critical review of the PHIGS interaction devices in general. 

7 .1 0 .1 Locator 

The SPHlGS locator returns the cursor position in NPC coordinates, with z NPC = 0.12 It also 
returns the index of the highest-priority view whose viewport encloses the cursor. 

typedef struct { 
point position: I• )x, y. O)NPC screen position •/ 
int viewbulex; I• Index of view whose viewport encloses lhe cursor •I 
int buttonOjMostRecentTrtmsition: 
enum { UP, DOWN} buuonChoro(MAXJ!UTION_COUNT] ; 

} locatorMeasure: 

12 In PHIGS. the loca10r reiUrns poims in the 3D world~oordinate system. Many implementations. 
however, cannot return a meaningful z value; o nly high-performance workstations that support control 
dia.ls and multiple real-time views can offer a comfortable user interface for pointing in 3D (see 
Chapter 8). 
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When two viewpons overlap and the cursor position lies in the intersection of their bounds, 
the viewport having the highest index (in the view table) is returned in the second field. 
Thus, the view index is used to establish view priority for input as well as for output. The 
view-index field is useful for a variety of reasons. Consider an application that allows the 
user to specify bounds of a viewport interactively, much as one can move or resize a 
window manager's windows. In response to a prompt to resize, the user can pick any 
location within the viewport. The application program can then use the viewlndex field to 
determine which view was picked, rather than doing a point-in-rectangle test on viewport 
boundaries. The view index is also used in applications with some output-only views; such 
applications can examine the returned view index to determine whether the correlation 
procedure even needs to be cal led. 

7.1 0.2 Pick Correlation 

Because the SPHIGS programmer thinks in terms of modeled objects rather than of the 
pixels composing their images, it is useful for the application to be able to determine the 
identity of an object whose image a user has picked. The primary use of the locator, 
therefore, is to provide an NPC point for input to the pick-correlation procedure discussed 
in this section. As we saw with SRGP, pick correlation in a flat-earth world is a 
straightforward matter of detecting hits-primitives whose images lie close enough to the 
locator position to be considered chosen by the user. If there is more than one hit, due to 
overlapping primitives near the cursor, we disambiguate by choosing the one most recently 
drawn, since that is the one that lies "on top." Thus, a 20 pick correlator examines the 
primitives in inverse temporal order, and picks the first hit. Picking objects in a 30, 
hierarchical world is a great deal more complex, for the reasons described next; fortunately, 
SPHTGS relieves an application of this task. 

Picking i.n a hierarchy. Consider the complexity introduced by hierarchy. First, what 
information should be returned by the pick-correlation utility to identify the picked object? 
A structure fD is not enough, because it does not distinguish between multiple instances of 
a structure. Only the full path-a description of the complete ancestry from root to picked 
primitive-provides unique identification. 

Second, when a particular primitive is picked, which level of the hierarchy did the user 
mean? For example, if the cursor is placed near one of our robot's thumbs, does the user 
mean to select the thumb, the arm, the upper body, or the entire robot? At times , the actual 
primitive is intended, at times the leaf structure is intended, and any other level is possibly 
intended, up to the very root! Some applications resolve this problem by providing a 
feedback mechanism allowing the user to step through the levels from primitive to root, in 
order to specify exactly which level is desired (see Exercise 7.13). 

Comparison criterion. How is proximity to an object defined when the comparison 
should really be done in 30? Since the locator device effectively yields a 20 NPC value, 
there is no basis for comparing the z coordinates of primitives to the locator position. Thus, 
SPHIGS can compare the cursor position only to the screen images of the primitives, not to 
the WC locations of the primitives. IJ a primitive is a bit, it is deemed a candidate for 
correlation. ln wireframe mode, SPHTGS picks the very first candidate encountered during 
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traversal; the reason for this strategy is that there is no obvious depth information in a 
wireframe image, so the user does not expect pick correlation to take relative depth into 
account. (A side effect of the strategy is that it optimizes pick correlation.) In shaded 
rendering modes , SPHIGS picks the candidate whose hit point (the NPC point, on the 
primitive' s normalized (30 NPC) surface, to which the user pointed directly) is closest to 
the viewpoint-the one "in front," as discussed in Section 7.12.2. 

P ick-correlation utility. To perform pick correlation , the application program calls a 
SPHlGS pick-correlation utilityl8 with an NPC point and a view index, typically returned 
by a previous interaction with the locator: 

void SPH..pickCorrelate ( 
point position, lnt viewlndex, picklnformation •picklnfo); 

The returned information identifies the primitive picked and its ancestry via a pick path, as 
described by Pascal data types in Fig. 7.24. 

When no primitive is close enough to the cursor position, the value of pickLevel 
returned is 0 and the path field is undefined. When pickLevel is greater than 0, it specifies 
the length of the path from the root to the picked primitive-that is, the primitive's depth 
within the network. In this latter case, entries [I] through [pickLevel] of the path array 
return the identification of the structure elements involved in the path leading from root to 
picked primitive. At tile deepest level (entry [pickLevel]) , the element identified is the 
primitive tllat was picked; at all other levels (entries [pickLevel-l) througll [ I]) , the 
elements are all structure executions. Eacll entry in path identifies one element with a record 
that gives the structure lD of the structure containing the element, the index of the element 

13Full PHIGS has the Pick logical input device that returns the same measure as the 
SPH__pickCorrelate procedure. 

typeder struct { 
int SlniCIUre/D; 

int elementbtdex; 
I• Enumerated type: polyline, polyhedron, execute-structure, etc. •I 
e lementTypeCode elemenrType; 
iot pic kiD; 

} pickPathltem; 

typedef pickPathltem pickPath[MAX.HIERARCHY .LEVEL): 

typeder struct { 
lnt pickLevel; 
pickPalh path; 

} picklnforrnation; 

Fig. 7 .24 Pick-path storage types. 
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in that structure, a code presenting the type of the element, and the pick ID of the element 
(discussed next). 

Figure 7.25 uses the structure networic of Fig. 7.15 for the robot's upper body, and 
shows the pick information returned by several picks within the structure's displayed image. 

How does the pick path uniquely identify each instance of a structure that is invoked 
arbitrarily many times within the hierarchy? For ex.ample, how do we distinguish a pick on 
the robot's left thumb from a pick on its right thumb? The pick paths for the two thumbs are 
identical except at the root level , as demonstrated by points a and e in Fig. 7.25. 

The pick identifier can provide pick correlation at a finer resolution than does a 
structure ID. Although the element index can be used to identify individual elements, it is 
subject to change when the structure is edited. Therefore, using the pick ID is easier, 
because the pick lD is not affected by editing of other elements. It has a default value of 0 
and is modally set within a structure. One generates a pick-10 element via 

void SPH.setPickldeuti fier {lnl id): 

The pick-10 element is ignored during display traversal. Also, a pick £D has no notion of 
inheritance: it is initially 0 when SPHIGS begins the traversal of any structure, whether it is 
a root or a subStructure. Because of these two aspects, pick IDs do not behave like 
attributes. Multiple primitives within a structure may have unique £Ds or share the same 
one; this permits arbitrarily fine resolution of pick correlation within a structure, as needed 
by the application. Although labels and pick IDs arc thus different mechanisms, the fom1er 
used for edit ing and the latter for pick correlation, they are often used in conjunction. In 
particular, when structures are organized using the instance-block technique described in 
Section 7. 9.2, a pick-ID element is also part of the block, and the pick lD itself is typically 
set to the same integer value as that of the block label. 

I ~ ·d Refer to the structure ne!WOII< shown in Ftg. 7.15. 

C:; 
(a) level• 3 

path[! ) : struct UPPER _BODY, element 7 

b" 
path[2) : struct ARM, element 3 
path[3) : struC1 THUMB, element 1 

left 
arm (b) level• 2 

path{ I ) : struC1 UPPER_BODY, element 11 

Tight pa1h(2) : StruC1 ARM, element 1 
arm 

(c) level · 1 

[lJ1 
path(!) : StruC1 UPPER_BOOY, element 1 

·C a 
(d) level = 0 

/ (e) level • 3 
e path(!) : struct UPPER_BODY, element 11 

path[2) : struct ARM, element 3 
path(3) : struC1 THUMB. element 1 

Fig. 7 .25 Example of pick correlation. 
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7 .11 ADDITIONAL OUTPUT FEATURES 

7 .11 .1 Attribute Bundles 

Standard PHIGS provides a mechanism for setting attribute values indirectly. An 
application can, during its initializ.ation sequence, store a collection of attribute values in an 
auributt bundlt. Each type of primitive has its own type of bundle, and a PHIGS package 
provides storage for many bundles, each bundle identified by an integer 10. For example, 
we could store a "favorite'' polyline attribute set in bundle I. Subsequently, while editing a 
structure, we would prepare for the specification of a polyline primitive by insening an 
element that, when executed during traversal , specifies that polyline attributes are to be 
taken from bundle I (rather than from the explicitly specified traversal attribute state). 

Attribute bundles are often used as a "shonhand" to simplify the task of specifying 
attributes. Consider an application in which a large number of unrelated primitives must 
appear with identical attributes. Because the primitives are not related, the inheritance 
mechanism does not help. Indeed, without attribute bundles, the application would have to 
specify the desired attribute set redundantly, at various places throughout the structure 
networts. 

lmplementors of PHIGS packages sometimes initialize the attribute bundles in order to 
provide wortstation-dependent preselected attribute sets that take advantage of the 
workstation's best features. The application programmer can choose to accept the bundles' 
initial values, as "suggestions" from the implementor, or to modify them with the 
bundle-editing commands. Changing definitions of bundles in the bundle table without 
changing structure networks is a simple mechanism for dynamically changing the 
appearance of objects. 

7 .11 .2 Name Sets for Highlighting and Invisibility 

SPHIGS suppons two traditional feedback techniques that applications commonly use in 
conjunction with the SPHIGS picking facility: highlighting objects and making objects 
invisible. The fonner technique is typically used to provide feedback when the user picks an 
object; the latter declutters the screen by showing only desired detail. By default, all 
primitives that are part of a posted network are visible and unhigWighted. A set of 
primitives may be given an integer name, to identify the primitives for subsequent toggling 
of their visibility or highlighting status. 

Because a group of unrelated primitives can share a name, and because a single 
primitive can have any number of names. the name feature can allow a complex object to be 
organized in several ways onhogonal to the structure hierarchy induced by structure 
invocation. For instance, an office-building model represented as a set of floor substructures 
could also be represented as a union of several systems: the plumbing network. the electrical 
wiring, and so on. Simply by giving all pipe primitives a common name (PWMBINO), we 
ensure that , even though the pipe primitives may be scanered among the actual structure 
hierarchy, we can nevertheless refer to them as a single unit. 

When we want, say, to make the plumbing subsystem invisible, we add the name 
PWMBIN<i to the global invisibility filter; the screen is immediately updated to remove 
images of pipe objects. Similarly, by setting the invisibility filter to the names of all the 
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subsystems except the electrical subsystem, we can display the electrical subsystem in 
isolation. The highHghting filter works similarly. Both filters are initially empty, and are 
affected only by explicit calls that add or remove names. 14 Note that changing a filter, like 
changing a viewing specification, triggers screen regeneration; indeed, these operations 
change the rendered view of the CSS much as queries in traditional database programs are 
used to show different "views" of data. 

The method used to bind names to primitives dynamically is very similar to the way 
attributes are assigned to primitives. SPHIGS maintains, as part of display traversal state, a 
traversal rrame set of zero or more names. A root inherits an empty name set. A child 
inherits the parent's name set when it is invoked, as it does attributes in general; thus , 
multiple instances of a building-block object can either share names or be named 
individually. The SPHIGS reference manual describes structure elements that, when 
executed during traversal, add names or remove names from this name set. 

7 .11 .3 Picture Interchange and Metafiles 

Although PHlGS and other standard graphics packages are system- and device-independent 
to promote portability, a given implementation of such packages in a particular environ­
ment is likely to be highly optimized in a nonportable way for performance reasons. The 
internal representation of the CSS, for example, may contain machine-specific information 
for structures and elements. To provide a medium of exchange among different implementa­
tions of PHIGS, the graphics standards committee has defined an archive file format. This 
portion of the standard is a machine- and environment-independent form of the contents of 
the CSS, without any viewing information. The PHIGS archive file thus is a portable 
snapshot of the structure database at a given time and permits PHIGS implementations to 
share geometric models. 

PHIGS implementations may also support the writing of a metafile, which can contain 
a snapshot of what the application is currently presenting on the display surface. When 
these metafiles conform to the ANSI and ISO Computer Graphics Metafile (CGM) standard 
[ARN088] , the pictures contained in them can be transferred to such application 
environments as desktop publishing and interactive graphics art enhancement workstations. 
A CGM file is also a machine- and device-independent form of the CSS, but, unlike archive 
files, viewing infom1ation is also used in the creation of the picture represented in the 
CGM. 

The CGM is typically created by having a PHIGS output device driver traverse the CSS 
to produce code for the CGM ·'virtual device,'' much as an ordinary device driver produces 
display code for a real display system. Other systems then can read the metafile into their 
CSS via an input device driver that converts from the prescribed metafile format to whatever 
is used by the particular implementation. Because the metafile i.s a 20 view of a 30 scene, 
any application obtaining the picture information via a CGM will have only the 20 view to 
work with: the original 30 geometry will be lost. 1f the 30 model is to be exchanged in a 
standard format , archive files must be used. 

"The PHIGS delectability filter allows the application to specify primitives thai cannot be picked. 
Moreover, PHIGS ' filter scheme is more powerful , having separate inclusion and exclusion filters. 
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Other types of metafiles might be useful for debugging and backup purposes. An audit 
trail metafile is an historical transcript file containing a list of all calls to the graphics 
package procedures (and the values sent to t.hem as parameters) in temporal order. It would, 
therefore, need to be run from start to finish, in order to recreate the CSS at the end of the 
session. Another type of transcript file records user actions: Running the application 
program with that transcript file reproduces the original sequence of PHIGS calls and thus 
the same CSS/image. No standards eJtist nor are standards planned for such transcript files, 
and neither a CGM nor a PHIGS archive file contains any historical information. 

7 .12 IMPLEMENTATION ISSUES 

Much of the internal functionality of SPHIGS involves the maintenance (editing) and use 
(traversal) of the view table and the CSS. We do not discuss maintenance here, since it is 
essentially a conventional data-structu.res problem and not graphics-specific. Rather, this 
section focuses on the mechanics of displaying structures and of doing pick correlation. 

The display traverser is invoked whenever the screen image must be updated. When 
implicit regeneration is allowed, the following operations prompt traversal: closing a 
structure, posting and unposting, changing a viewing transformation, changing rendering 
mode, and changing a filter. To generate the contents of a view, each structure posted to the 
view is traversed. 

To display a posted structure network, SPHJGS visits the component structures' 
elements using a recursive descent, depth-first traversal, and performs the appropriate 
action for each element, based on the element's type. This display process that maps a 
model to an image on screen (or hardcopy) is referred to as display traversal in the context of 
PHIGS, but more generally as renderi11g; its implementation in software and/or hardware is 
referred to as the rendering pipeline. 

Pick-correlation traversal is very similar to display traversal. The primitives encoun­
tered during traversal are compared to the locator position to find candidates. Traversal can 
be halted at the first candidate when wireframe rendering is being used; otherwise, a 
complete traversal is performed and the candidate closest to the viewpoint in z is chosen. 

7 .12.1 Rendering 

The conceptual rendering pipeline that implements display traversal is illustrated in Fig. 
7.26. rts first stage is the actual depth-first traversal of the CSS itself. (Alternatively, if an 
inm1ediate-mode graphics package is used , the application may traverse the application 
model or generate primitives and attributes procedurally.) Each primitive encountered 
during traversal is passed through the remainder of the pipeline: First, the modeling 
transformations (described in Chapter 5) are applied to map the primitive from modeling 
coordinates to world coordinates. Then, the viewing operation is applied to transform and 
clip the primitive to the canonical view volume, and then to map it to the NPC 
parallelepiped (described in Chapter 6). Since these processes are independent of the 
display device and deal with vertex geometry in floating-point coordinates, this portion of 

0370



7.12 

css 
editing 

css 

Implementation Issues 335 

Front-end 
(geometry Back-end 

processing) (rasterization) 
,~-----·~--~, ,~--~·~--~, 

r \ \ • Visible-surface 
Display Modeling Viewing determination 1-+ traversal transformation operation • Scan conversion 

J • Shading 

Image 

we NPC DC 

Fig. 7.26 The SPHIGS rendering pipeline. 

the pipeline immediately following traversal is often referred to as the geometry-processing 
subsystem. 

The back end of the pipeline takes transformed, clipped primitives and produces pixels; 
we will refer to this pixel processing as rasterization. This process is, of course, 
straightforward for wireframe mode: The NPC coordinates are easily mapped (via scaling 
and translating, with z ignored) to integer device coordinates, and then the underlying raster 
graphics package's line-drawing function is invoked to do the actual scan conversion. 
Shaded rendering, however, is quite complex, and is composed of three subprocesses: 
visible-surface determination (determining which portions of a primitive are actually visible 
from the synthetic camera's point of view), scan conversion (determining the pixels covered 
by a primitive's image), and shading (determining wbich color to assign to each covered 
pixel). The exact order in which these subprocesses are performed varies as a function of the 
rendering mode and implementation method. Detailed descriptions of the rasterization 
subprocesses are contained in Chapters 14 through 16. 

Traversal. Since all stages of the rendering pipeline but the first one are covered in other 
chapters, we need to discuss only the traversal stage here. In a simple implementation, 
SPHIGS regenerates the screen by erasing it and then retraversing all posted roots (a list of 
which is stored with each view). Optimizing regeneration in order to traverse as little of the 
CSS as possible is quite difficult, because the effect of a trivial operation is potentially 
enormous. For example, it is difficult to determine how much of the screen must be 
regenerated due to the editing of a structure: It is possible that the structure is never invoked 
and thus has no effect on the screen, but it is also possible that it is a commonly invoked 
building block appearing in most of the views. Even when the implementation can 
determine that only a single view has been affected by an operation, refreshing that view 
may damage the images of objects in overlapping viewports of higher priority. Doing 
damage repair efficiently is, in general, a complicated task requiring considerable 
bookkeeping. 

In implementations on high-performance workstations, where the image can be 
traversed and regenerated in a fraction of a second, the bookkeeping space and time 
overhead needed to regenerate the screen selectively is probably not worthwhile, and 
therefore complete regeneration is used most frequently. In either the complete or selective 
regeneration schemes, the double-buffering technique described later in this section can be 
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used to prevent annoying visual discontinuities on the screen during display traversal. 
The traversal of a structure can be done in hardware or software; here, we show a 

procedural-language implementation, the pseudocode for which is given in Fig. 7.27. The 
procedure inherits a tra1•ersal state , which it then maintains as its local state for the duration 
of its activation. The attribute values (including the name set) and three transformation 
matrices (GM, LM, and their product, CMTM) form the traversal state , and the attributes 
and the CMTM are passed down from parent activation to child activation. (The activation 
of the procedure for a root structure inherits an identity GM and an attribute record ti lied 
with defaull values). Tbe procedure visits each element in the structure and performs an 
operation based on the element's type, as indicated in Fig. 7 .f-7. 

Optimization via extent checking. The traversal strategy we have presented traverses a 
network 's contents unconditionally; during traversal , all structure invocations are executed, 
and no part of the DAG is skipped. Frequently, however, not all of a network's objects are 
visible, since modeling and viewing tranfom1ations in effect when the traversal is performed 
can cause large parts of a network to lie outside of the viewing volume. 

What information do we need to trivially reject a subordinate structure during 
traversal? Say we have come to an element " Execute structureS" and can quickly compute 
the bounds oftbis instance, S;, in NPC space. We could then ask the question, "Does s,. He 
completely outside of the NPC viewport?" If it does, we skip over the structure-execution 
element and refrain from descending into structureS. Since structureS may be the root of 

void TraverseStructureForDisplay (struct/D, auribweState, GM) 
{ 

lM = identity marrix; 
CMTM = GM; 

for (each element in structure struct/D) { 
switch (element type) { 

} 
} 

case auribute or name·set modification: 
update auribureStare; 
break; 

case lM seuing: 
replace or updltle lM; 
update CMTM by pastconcatetwting lM to GM; 
break; 

case primitive: 
pass primitive tllrougll rest of rendering pipeline; 
break; 

case execute structure: I• A recursive call *I 
TraverseStruclureForDisplay 

(lD of structure to be executed, auributeSwte, CMTM); 
break; 

default: I• ignore labels and pickiDs •I 
break: 

} I• TraverseStructureForDisplay •/ 

Fig. 7 .27 Pseudocode for display traversal. 
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an arbitrarily complex subnetwork, avoiding its traversal can reap potentially enormous 
time savings. In fact, this method allows us to trivially reject an entire network by 
comparing the root structure's NPC bounds with that of the viewport. 

To implement this optimization, we need a simple method for computing the bounds of 
an arbitrarily complex object, and an efficient way of comparing these bounds to the NPC 
viewport. The representation that fits both these criteria is the NPC extent, defined as the 
smallest bounding box that completely encloses the NPC version of the object and is aligned 
with the principal axes. If we can show that the extent of an instance does not intersect with 
the viewport, we have proved that the instance is completely invisible. The extent is ideal 
because a viewport is itself an aligned box, and because it is very cheap to calculate the 
intersection of two aligned boxes (see Exercise 7.5). Trivial rejection is not the only 
optimization gained by the use of the NPC extent. We can also trivially accept-that is , 
discover instances that lie completely within the view volume and thus do not need to be 
clipped. The extent technique for trivial-accept/trivial-reject testing of substructures was 
first used in hardware in the BUGS system [VAN074] and is described also in [CLAR76]. 

Because instances are not explicitly stored in the CSS, we must calculate an instance· s 
NPC extent from its structure's MC extent, which we store in the CSS. To perfom1 extent 
checking during traversal, we thus first transform the MC extent to NPC, to detem1ine the 
instance's NPC extent. Because a transformed extent box is not necessarily upright in NPC, 
we must determine the NPC extent of the tr.tnsfom1ed MC extent; that NPC extent is what 
we compare against the viewport. 

To calculate the extent of a structure S, we must calculate the union of the extents of its 
primitives and descendants. We can calculate the extent of a polyhedron or fill area by 
traversing its MC vertex list, transfom1ed by the local matrix , to determine minimum and 
maximum values of x, y. and z. These six numbers detennine the extent: the box with one 
corner at Cxmin• Ymin• z.un) and lhe opposite corner at (x_, y,.., z.,.J. 

There is one other issue involved in maintaining extem information. When should the 
MC extent of a structure be calculated? lt is not enough to do it whenever the structure is 
edited; a structure's MC extent is affected not only by its contents but also by the contents 
of any of its descendants. Thus, after each editing operation, an arbitrary number of 
structure extents must be recalculated. Moreover, recalculation requires traversal of an 
arbitrarily large subset of the CSS. We can optimize extent calculation by doing it not after 
each edit but during normal display traversal. This technique has the advantage of updating 
the extents of only those structures that are actually visible (part of a posted network) , and it 
ensures that no structure's extent is calculated more than once in response to an arbitrari ly 
large batch of editing operations. [SKLA90] presents tbis optimization technique in greater 
detail. 

Animation and double-buffering. Software implementations of SPHIGS are well suited 
for rapidly producing animation prototypes, but are poorly suited for presenting high­
quality real-time animations, because rendering is inherently time-consuming and the 
extent-checking optimization technique does not work well wben a great deal of editing is 
performed between "frames." Animation prototypes are usually rendered in WTREFRAME 
mode, with automatic regeneration disabled, using a cyclical algorithm: The application 
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edits the structure database to describe the next scene, explicitly requests regeneration, then 
edits to describe the next scene, and so on. H the scene is not very complicated, 
WlREFRAME mode can be fast enough to present an almost-real-time animation of a modest 
number of primitives with just software. With some hardware assistance, higher-quality 
shading modes can perform in real-time. 

One side effect of some simple implementations is that, between the • 'frames" of the 
animation, viewers see the screen being erased and can (more or less) see the objects being 
drawn as the traverser performs regeneration. An SPHlGS implementation can reduce this 
visual artifact by double buffering: using an offscreen canvas/bitmap to store the next frame 
whi le that frame i.s being drawn; then, when the regeneration is complete, the contents of 
that canvas can be copied onto the screen. When this technique is used on a system with a 
very fast copy Pixel operation, the switch between frames is not noticeable, but there are still 
discontinuities in the motion of the objects in the scene. In fact , the animation rate (i.e., the 
number of frames per second) may decrease due to the increased overhead of the copy Pixel, 
but the decrease in visual artifacts in many cases justifies the cost. Hardware double­
buffering, as described in Section 4.4.1 , is much better, since it avoids the copyPixel time. 

7 .12.2 Pick Correlation 

In pick correlation, SPHIOS traverses those networks posted to the viewport in which the 
specified NPC point lies. The traversal is nearly identical to that performed during display; 
the modeling-transformation matrices are maintained, and much of the rendering pipeline 
is performed. Moreover, the pick ID, ignored during display traversal, is maintained as part 
of the local traversal state in the recursive traversal procedure. (The attribute group does not 
need to be maintained because during hit det.ection SPHIGS does not take into account 
attributes such as line thickness.) 

Let us first examine pick correlation for wireframe rendering, where traversal is halted 
at the very first hit. Because traversal is recursive, the pick path is easily determined the 
moment the first hit is found: Each activation of the traversal procedure is responsible for 
one level of information in the pick path. Each primitive is transformed to NPC before 
being compared to the locator position for hit detection. (Hit-detection techniques are 
described later in this section.) When a bit is discovered by an activation of the procedure, it 
returns, and the recursion is unwound. Before returning, each activation stores its pick 
information i.nto one level of a global pick-information array. (See Exercise 7.9.) 

ln shaded rendering modes, the order in which primitives are encountered during 
traversal has no bearing on whether they appear in front of or in back of other primitives 
whose images map to the same part of the screen. Therefore, the SPHIOS pick-correlation 
algorithm cannot simply choose the first bit detected. Rather, it must traverse all posted 
structure networks, maintaining a list of candidate bits. When traversal is completed, the 
candidates are compared to determine the candidate whose NPC hit point is closest to the 
viewpoint-that is, the one whose z coordinate is algebraically largest. To calculate a 
candidate's z coordinate at the hit point, we can plug the x andy coordinates of the locator 
measure into the appropriate equations for each primitive: the (parametric) line equation for 
edges, and the plane equation for facets (see Exercises 7.7 and 7.8). Another approach 
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using a hardware visible-surface determination algorithm is described in Section 15.4. 
Pick-correlation traversal can, of course, be optimi;~;ed in a variety of ways, including the 
extent-checking techniques used to optimize display traversal. 

Analytical hit detection. Two fundamental methods, analytical and clipping, are used 
for hit detection. For analytical hit detection, algebraic equations are used to determine 
whether the NPC primitive lies sufficiently close to the 20 NPC locator measure. We first 
convert to 20 by ignoring the z coordinate for an orthographic projection or use the 
perspective transform of Section 6.5.4 to create an orthographic view volume. Some 
examples of analytical techniques follow: 

• 

• 

• 

• 

In WIREFRAME mode, a function PtNearLineSegment is used to compute the distance 
in NPC from the cursor position to each edge of a facet or fill area, and to each line 
segment of a polyline. This same function would be used in shaded rendering modes 
for polyline primitives. The line equation is used for the computation (see Exercise 
7. 10). 

In shaded rendering modes , a function PtlnPolygon is used to test for hits on fill areas 
and facets. One popular algorithm for determining if the NPC cursor position lies 
inside a polygon, based on the odd-parity rule described in Section 2.1.3, casts a ray 
from the locator position and determines how many times the ray intersects the 
polygon. The algorithm traverses the edge list, testing for intersections and special 
cases (e.g., intersections at vertices, edge-ray colinearity). The polygon scan­
conversion algorithm described in Section 3.7 tackles a very similar problem and can 
be adapted for use as a PtlnPolygon function (see Exercise 7.12). This algorithm 
handles the general case of concave and self-intersecting polygons. Optimi;!;e<i 
computational geometry algorithms are available if it can be guaranteed that polygons 
do not self-intersect, or that a horizontal ray intersects only two edges, or that the 
polygon is convex [PREP85]. 

Hit detection for nongeometric text is most easily performed by comparing the locator 
position to the text's rectangular screen extent. 

Packages that support primitives such as ellipses and curves and surfaces require more 
complex pick-correlation algorithms of the sort mentioned in Chapters 11 and 19. 
Furthermore, the problems are similar to those encountered in ray tracing, as described 
in Chapter 15. 

Hit detection via dipping. Some hardware clipping devices and optimized software 
clipping utilities return state infom1ation, allowing an application to determine whether any 
part of a primitive's image lies inside a 20 integer clip rectangle, without having actually to 
draw the prinlitive. An SPHIGS implementation can use this type of clipping to test for 
candidacy: The clip rectangle is set to a pick window-a small square surrounding the 
cursor position-and then traversal is performed. Each primitive (transformed to integer 
device coordinates) is given to the clipper, which returns a Boolean ''hit-detection" result 
(see Exercise 7 . II). Alternatively, if the clipper docs not return any such state information, 
we can draw each primitive into an offscreen bitmap using the pick-window clip rectangle; 
if any pixels are changed, the primitive is deemed a candidate. 
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7.13 OPTIMIZING DISPLAY OF HIERARCHICAL MODELS 

7 .13.1 Elision 

We can model a building as a parts hierarchy by saying that it consists of floors, the floors 
consist of offices, and so on; there are no primitives in the hier.trcby 's nodes until we get to 
the level of bricks, planks, and concrete slabs that consist of polyhedra. Although this 
representation might be useful for construction purposes, it is not as useful for display, 
where we sometimes wish to sec a cruder, simplified picture that eliminates confusing and 
unneeded details (and that is faster to render). The tenn ~lision refers to the decision by a 
display traverser to refrain from descending into a substructure. 

Pruning. In Section 7.12. 1, we showed how a display traverser can avoid executing a 
subordinate structure by checking its NPC extent against the viewport, to determine 
whether the substructure lies wholly outside (i.e., is fully clipped by) the view volume. This 
type of elision, a typical feature of optimized display traversers, is cal led pruning. 

Culling. In addition, a traverser can examine the size of the subordinate's NPC extent, 
aod can choose to elide the sub tructure if that substructure's extent is so small that, after 
transformation and projection, the image of the object ~uld be compressed into a few 
pixe.ls. This type of elision is called culling; on SYStems that support it, the application 
typically can specify a minimum extent size, below which a substructure is culled. 

When a substructure is pruned, it is not drawn at all; however, that is not the best 
approach for culling. The object is being cuUed not because it is invisible from the current 
point of view, but because its image is too tiny for its details to be discernible. Rather than 
not draw it at all , most implementations draw it as an abstract fonm, typically a 
parallelipiped representing its we extent, or simply a rectangle (the 20 projection of its 
NPC extent). 

Level-of-detail elision. Pruning and culling are optimization techniques, preventing 
traversal that is unnecessary (pruning) or that would produce an unusable image (culling). 
Elision can also be used to give the user control over the amount of detail presented in a 
view of the CSS. For example, a user examining our building model could specify a low 
level of detail in order to view the building as simply a set of parallelepipeds representing 
the individual floors , or could increase the level of detail so as to sec in addition the walls 
that form office boundaries. 

The MIDAS microprocessor architecture simulator (GURW81] was one of the earliest 
systems in which alternate representations of subobjects were traversed automatically by the 
display processor, depending on the size of the projection of the subobject on the screen. 
This logical-zoom facility made successively more detail appear as the user dynamically 
zoomed in on the processor block in the CPU architecture block diagram. Also, at 
increased zoom factors , one could see digits representing address, data, and control bytes 
moving from source to destination over system buses during the simulation of the 
instruction cycle. 

Elision in MIDAS was implemented using a conditional-execution facility of the BUGS 
vector-graphics system [VAND74 ): The hierarchical display list included a conditional 
substructure execution element that tested the screen extent of the substructure. A similar 
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feature described in the 1988 specification of PHlGS+ in the form of a conditional­
execution element, allowing pruning and culling to be performed explicitly by elements 
within the CSS. 

7.13.2 Structure Referral 

Certain implementations of PHIGS and PHTGS+ allow a nonstandard form of structure 
execution, called referral, that bypasses the expensive state saving and restoring of the 
ExecuteStructure mechanism. Whereas we could argue that a beuer, transparent approach 
to increasing efficiency is to optimize the implementation of the ExecuteStructure operation 
itself (so that the operation saves only as much state as required at any given time), it is 
simpler to add a ReferStructure operation and to let the programmer use it for those cases 
where an invoked child structure does not have any attribute-setting elements. 

A second use of ReferStructure is to allow a child to influence its parents' attributes. 
This is useful wben a group of objects do not have a common parent, but do need to 
"inherit" the same group of attributes, including potentially an arbitrary number of 
modeling transformations. In this case, we can create a structure A that consists of 
transformation and appearance attribute settings, and then have each of the object structures 
refer to structure A. By editing structure A later, we indirectly affect all structures referring 
to A. If only appearance attributes need to be affected, PHIGS attribute bundles provide an 
alternative, standard mechanism for changing the appearance of diverse structures. 

7.14 LIMITATIONS OF HIERARCHICAL MODELING IN PHIGS 

Although this chapter has emphasized geometric modeling hierarchy, it is important to 
realize that hierarchy is only one of many forms of data representation. In this section, "'e 
discuss the limitations of hierarchy in general and in PHIGS in particular; in the next 
section, we present some alternatives to structure hierarchy. 

7 .14.1 Limitations of Simple Hierarchy 

As mentioned in Section 1.7.2, some applications have no real structure for their data 
(e.g., data for scatter plots), or have at most a (partial) ordering in their data (e.g., a 
function represented algebraically). Many other applications are more naturally expressed 
as networks--that is , as general (directed) graphs (which may have hierarchial subnets). 
Among these are circuit and electrical-wiring diagrams, transportation and communica­
tions networks, and chemical-plant-piping diagrams. Another example of simple 
hierarchy 's insufficiency for certain types of models is Rubik 's cube. a collection of 
components in which the network and any hierarchy (say of layers , rows, and columns) is 
fundamentally altered after any transformation. 

For other types of models, a single hierarchy does not suffice. For example, the pen 
bolder on an (x,y) plotter is moved by, and therefore "belongs" to, both the horizontal and 
vertical arms.ln short, whether the application model exhibits pure hierarchy, pure network 
without hierarchy, hierarchy in a network with cross-links, or multiple hierarchies, SPHIGS 
can be used to display it , but we may not want, or be able, to use structure hierarchy in its 
full generality. 
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7 .14.2 Umitations of SPHIGS " Parameter Passing" 

The black-box nature of structures is good for modularity but, as shown in our robot 
example, can be limiting. For example, how can we build a robot with two identical arms 
and have the robot use its right arm to pick up a cylinder from a table and move away with 
that cylinder? The pick-up operation can be performed by editing the arm structure to add 
an invocation of the cylinder structure, so that as the robot or arm moves subsequently, the 
cylinder moves along with it. But if we implement the robot by having a single arm structure 
invoked twice by the upper-body structure, the result of that operation would be that both 
the lefi and right arm would be holding a cylinder! Thus, we have no choice but to build two 
separate arm structures, with unique structure IDs, each invoked only once. Let us extend 
this example. If we wish to have an army of robots with independently controlled arms, we 
must build two unique arm stn1ctures for each robot! Obviously, here is a case where 
structure hierarchy is not as useful as we first thought. 

The reason that structure hierarchy does not suppon instances of structures differing in 
the settings of transformations at various hierarchical levels is that structure hierarchy has 
neither the general parameter-passing mechanism of procedure hierarchy nor general 
flow-of-control constructs. Rather, it is essentially a data organization with rudimentary 
interactions between structures and at most limited conditional execution of structures (in 
PHIGS+ ). We have seen that a parent's transformations are inherited by all the children, 
and there is no provision for a panicular child to be affected selectively. 

By contrast, in a procedure hierarchy, a "root" procedure passes parameters that are 
either used directly by procedures the root calls, or passed down by those procedures to 
lower-level procedures. Thus, the root can pass down parameters arbitrarily deeply and 
selectively via intermediate procedures. Furthermore, with parameters, a procedure can 
control not just the data on which a lower-level procedure operates, but even the way in 
which the lower-level procedure operates. To change its operation, the lower-level 
procedure uses flow-of-control constructs to test parameters and selectively enables or 
disables code segments. Because of structure hierarchy 's lack of general parameter-passing 
and flow-of-control mechanisms, our analogy between structure hierarchy and procedure 
hie.rarchy in the introduction was a superficial one. 

By augmenting the attribute-binding model of PHTGS, we could specify attributes for 
selected object instances at arbitrary levels in a h.ierarchy. A system that has such a general 
mechanism is SCEFO [STRA88), which allows the programmer to specify an attribute that 
is to be applied when the traversal reaches a certain state, the state being represented by a 
pathname similar to the pick path returned by the PHIGS pick device. With this facility, it 
would be possible to control individually tbe colors or positions of tbe thumb instances in 
our robot, without having to create two virtually identical arm masters, by making use of 
the fact that the two thumb instances have unique pathnames. 

Another limitation in the PHlGS parameter-passing mechanism is that it handles 
transfonnations and appearance attributes for which inheritance rules are very simple. It 
would not be easy to support operations more complex than geometric transformations; a 
more general model is needed to suppon set operations on solid primitives (Chapter 12), 
and deformation operations such as bend, taper, and twist (Chapter 20). 
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7.15 ALTERNATIVE FORMS OF HIERARCHICAL MODELING 

We have just concluded that structure hierarchy is only one way-and not always the best 
way-to encode hierarchy. In this section, we discuss alternatives to structure hierarchy. 

7.15.1 Procedure Hierarchy 

In the spectrum from pure data hierarchy to pure procedure hierarchy, structure hierarchy is 
almost all the way at the data end, since it lacks general Dow of control. By contraSt, a 
template procedure (i.e., a procedure defining a template object, consisting of primitives or 
of calls to subordinate template procedures) can use parameters and arbitrary flow of 
control. Template procedures can be used in two different ways. First, they can be used with 
a retained-mode graphics package such as SPHJGS. Here, they are used as a means to the 
end of creating structure hierarchy. Second, they can be used to specify primitives and 
attributes to an immediate-mode graphics package. Here, they are not means to ends, but 
rather are ends in themselves; that is, they are the sole representation of the hierarchy used 
for display. In this case, display traversal is effected by procedure traversal-practical only 
if the CPU can provide a reasonable rate of retraversal. (In general, smooth dynamics 
requires at least 15 frames per second; 30 frames per second looks noticeably better.) The 
procedures themselves implement inheritance and maintain transformation matrices and 
attribute states, using techniques similar to those presented in our discussion of traversal 
implementation in Section 7.12. Newman's display procedures mentioned in Section 7.4 
were an early example of the use of procedure hierarchy for dynamics. 

Pick correlation is a bit tricky in dynamic procedure traversal, since it requires 
retraversing the procedure hierarchy. If the first candi.date is to be chosen (i.e. , if the 
rendering mode is wireframe), it is difficult to halt the traversal as soon as a hit is detected 
and to return from an arbitrary level of the procedure activation stack. If a non wire frame 
rendering mode is used, there must be a way of interacting with the rendering pipeline to 
obtain the candidates and their z values corresponding to the cursor position. Each 
procedure is also complicated by the fact that it must be used both for display and for 
correlation traversal. 

We can combine procedure and structure hierarchy by using template procedures to 
create structures. For example, our robot can be built using template procedures for ea::h of 
the parts; each procedure creates display commands or a SPHIGS structure, depending on 
whether we choose immediate mode or retained structure mode, respectively. The 
upper-body procedure can pass parameters to the arm and thumb procedures to initialize 
their transformations individually and to allow the arms and thumbs to operate indepen­
dently. ln retained mode, each invocation of the robot template procedure thus creates a 
unique SPHJGS network, with unique names for all the child structures. For example, two 
arm structures would be created, with their own, separate invocations of thumbs. Leaf 
nodes such as the thumb can still be shared among multiple networks, since they can be 
instanced with individual transforms by their callers. To create unique structure IDs, we can 
assign a unique interval of integer space to each root, and can number its parts within that 
interval. 
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What are the limitations of using only procedure hierarchy? First. unless the 
programming environment supports dynamic code creation, it is difficult to edit or 
construct procedures at run time. Creating new data structures is far easier. 1berefore, 
procedure hierarchy is typically used when the set of template objects is predefined and 
only the attributes need to be Vllried dynamically. Structures created by template 
procedures can. of course. be ed ited with aU the PHIGS machinery. 

Second, if the procedure hierarchy is used to create immediate-mode graphics, the 
CPU. involved in constantly retraversing the procedure hierarchy, is much less available for 
application processing. We can offload tbe CPU in a multiprocessor system by having 
another CPU dedicated to procedure traversaL Alternatively, in retained mode, structure­
network traversal can be performed by a special-purpose hardware coprocessor or a separate 
CPU. 

Third, even for minor edits, an immediate-mode procedure hierarchy must be 
retraversed in its entirety and all display primitives must be retransmitted to the graphics 
package.~. For display systems connected over networks or communication lines, this 
requirement produces heavy communication traffic. lt is far more efficient for minor edits, 
for both the CPU and the communications system, to store and manage a structure database 
in a display peripheral that can be modified incrementally and traversed rapidly. 

7 .1 5.2 Data Hierarchy 

Unlike procedure hierarchy, data hierarchy is well suited to dynamic creation. Like 
template-procedure hierarchy, it can be used in conjunction with either immediate- or 
retained-mode graphics packages. If immediate mode is used, the CPU must retraverse the 
application model and drive the pack'age sufficiently quickly to provide dynamic update 
rates. Objects are created and edited by changing tbe application model and retraversing it 
to update the screen. 1be application must do its own pick correlation, by retraversal. As 
witb an immediat.e-mode procedure hierarchy, however, if the display subsystem is on a 
communications network. retransmittal of graphics commands for any update is considera­
bly slower than is sending update commands to a structure database in tbe peripheral. 

Like the structure-hierarchy technique, the data-hierarchy approach lacks the fleKibility 
of the procedure-hierarchy method due to the absence of general flow-of-control mecha­
nisms; these must be embodied via flags in tbe data structures. Object-oriented environ­
ments with run-time code creation and binding offer an attractive, totally general 
combination of data and procedure hierarchy; there is a natural match between the notion of 
an object-subobject hierarchy and tbat of a class-instance hierarchy. As processor 
performance improves, object-oriented environments are likely to become a dominant 
paradigm in dynamic computer graphics. 

7 .15.3 Using Database Systems 

Since a general-purpose database has more power than does a special-purpose one, we 
should consider using standard database systems for computer graphics LWELL76; 
GARR80]. Unfortunately, such databases are designed to work with large volumes of data 
in secondary storage and to give response times measured on a human rime scale. They are 
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designed to process user-input queries or even batch transactions with times measured. at 
best , in milliseconds, whereas real-time graphics demands microsecond access to 
elements. Using a memory-resident database would work best if the database were 
optimized for fast traversal and had built-in graphics data types and operators. At least. it 
would have to be able to invoke procedures for retrieved items, passing parameters extracted 
from fields in the database. 

Although several systems have used relational databases for graphics, the limitations on 
the structure of the data imposed by the relational model. as well as the slowness of standard 
relational databases, have restricted these systems to research environments. As object­
oriented environments are useful for combining data and procedures, such an environment 
used in conjunction with an object-oriented database has the potential for removing the 
restrictions of relational databases. The slow performance of object-oriented databases, 
however, may make them infeasible for real-time gr<~phics in the near term. 

7.16 SUMMARY 

This chapter has given a general introduction to geometric models, emphasiting hierarchi­
cal models that represent partS assemblies. Although many types of data and objects are not 
hierarchical, most human-made objects are at least panty so. PHTGS and our adaptation, 
SPHIGS. are designed to provide efficient and natural representations of geometric objects 
stored essentially as hierarchies of polygons and polyhedra. Because these packages store 
an internal database of objects, a progran1mer can make small changes in the database with 
little e ffort , and the package automatically produces an updated view. Thus, the application 
program builds and edits the database. typically in response to user input, and the package 
is responsible for producing specified views of the database. These views use a variety of 
rendering techniques to provide qualiry-speed tradeoffs. The package also provides locator 
and choice input devices. as "'-ell as pick correlation to allow the selection of objects at any 
level in a hierarchy. Highlighting and visibility filters can be used for selective enabling and 
disabling as another form of control over the appearance of objects. 

Because the nature of structu res and the means for searching and editing them are 
restricted , such a special-purpose system is best suited to motion dynamics and light update 
dynamics, especially if the structure database can be maintained in a display terminal 
optimized to be a PHJGS peripheral. If much of the structure database must be updated 
between successive images. or if the application database can be traversed rapidly and there 
is no bottleneck between the computer and the display subsystem, it is more efficient to use 
a graphics package in immediate mode, without retaining information. 

Structure hierarchy Lies between pure data and pure procedure hierarchy. It has the 
advantage of dynamic editing that is characteristic of data hierarchy. It also allows a simple 
form of parameter passing to substructures (of geometric or appearance attributes), using 
the attribute-traversal state mechanism. Because of the lock of general llow-of-control 
constructs, ho""Cver, the parJmeter-passing mechanism is restricted , and structures cannot 
selectively set different attributes in different instances of a substructure. Instead , template 
procedures can be used to set up multiple copies of (hiemrchical) structures that are 
identical in structure but that differ in the geometric or appearance attributes of 
substructures. Alternatively, they can be used to drive an immediate-mode package. 
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SPHIGS is oriented toward geometric models made essentially from polygons and 
polyhedra, especially those that ~hibit hierarchy; in Chapters II and 12, we look at 
geometric models that have more complex primitives and combinations of primitives. 
Before turning to those more advanced modeling topics, we first consider interaction tools, 
techniques, and user interfaces. 

EXERCISES 

7.1 a. Complete the robot model of Fig. 7 . 16 by adding a base on which the upper body swi"':IS 
and create a simple animation of its movement through a room. 

b. Create an SPHIGS application producing an animation in which a one-armed robot 
approaches a table on which an object lies, picks up the object, and walks off with it (sec 
Section 7. 14 for the reason for specifying a one-armed robot). 

7.2 Enhance the robot animation to provide user interaclion. Let there be a number of objects on 
the table, and allow the user to choose (using the locator) the object that the robot should pick up. 

7.3 Redesign the two-armed robot model so as to allow the thumbs on each arm to be controlled 
individually, so that each ann can pick up objectS individually. 

7.4 Enhance a robot animation so that three views of the animation are shown simultaneously, 
including one overhead orthographic view and one ' 'robot' s eye" view that shows us what the robot 
itself '"sees" as it moves. 
7.5 Design the addition of pruning elision to the recursive display traverser of Fig. 7.27. Assume 

the MC extent of a structure is stored in the structure's record . You must transform an MC extent box 
into an NPC extent box , meeting the requirement that extent boxes be aligned with the principal axes. 

7.6 Update our recursive display traverser so that it maintains the MC extent information stored for 
each structure. Assume that. whenever a structure S is closed after heing edited, a Boolean 
"extentObsolete" field in S's record is set. Assume also that functions are available that, gilllln any 
primilillll, return the primitive's NPC extent. 

7.7 Design an algorithm for calculating analytically the hit point of a candidate line, given the line's 
NPC endpoints and the locator measure. 

7.8 Design an algorithm for calculating analytically the hit point of a candidate fill area. 

7.9 Design, using pseudocode, a recursive pick-correlation traverser that suppons only wireframe 
mode. 

7.10 Implement the function PtNearLineSegment analytically for use in pick correlation. To be a 
candidate, the line segment' s image must come within P pixel widths of the locator position. 

7.11 Implement the function PtNearLineSegment using clipping. Modify the Liang-Barsky clipping 
algorithm (of Fig. 3.45) to optimize it. because the clipped version of the segment is not 
needed-Qnly a Boolean value is to be returned. 

7.12 Implement the function Ptlnl'olygon for use in pick correlation. Treat the special cases of rays 
that pass through venices or are coincident with edges. See [PREP85) and [FORR85) for discussions 
of the subtleties of this problem. 

7.13 Design a user int.erface for picking that letS the user indicate the desired level of a hierarchy. 
Implement and test your interface with the robot model by writing an application that allows the user 
to highlight ponions of the robot' s anatomy. from individual parts to whole subsystems. 
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8 
Input Devices, 

Interaction Techniques, 
and Interaction Tasks 

This is the first of lhree chapters on designing and implementing graphical user-computer 
interfaces. High-quality user interfaces are in many w..ays the "last frontier" in providing 
computing to a wide variety of users, since hardware and software costs are now low 
enough to bring significant computing capability to our offices and homes. Just as software 
engineering has recently given structure to an activity !hat once was totally ad hoc, so too 
the new area of user-interface engineering is generating user-interface principles and design 
methodologies. 

Interest in lhe quality of user-<:omputer interfaces is new in the formal study of 
computers. The emphasis until the early 1980s w..as on optimizing two scarce hardware 
resources, computer time and memory. Program efficiency was the highest goal. With 
today's plummeting hardware costs and increasingly powerful graphics-oriented personal· 
computing environments (as discussed in Chapter I), however, we can afford to optimize 
user efficiency ralher !han computer efficiency. Thus, allhough many of lhe ideas presented 
in !his chapter require additional CPU cycles and memory space, lhe potential rewards in 
user productivity and satisfaction well out\>oeigh the modest additional cost of these 
resources. 

The quality of the user interface often determines whether users enjoy or despise a 
system, whether the designers of the system are praised or damned, whether a system 
succeeds or fails in lhe market. Indeed, in such critical applications as air-traffic control and 
nuclear-power-plant monitoring, a poor user interface can contribute to and even cause 
accidents of catastrophic proportions. 

The desktop user-interface metaphor, with its windows. icons, and pull-down menus, 
all making heavy use of raster graphics, is popular because it is easy to learn and requires 
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linle typing skill . Most users of such systems are 1101 computer programmers and have little 
sympathy for the old-style hard-to-learn keyboard-oriented command-language interfaces 
that many prog.rammers take for granted. The designer of an interactive graphics 
application must be sensitive to users' desire for easy-to-learn yet powerful interfaces. 

On the other hand, in the future, the level of computer sophistication of workers will 
increase, as more users enter the workforce already computer-literate through computer use 
at home and school. Developers of some educational and game software will continue to 
design for the computer-naive user, while developers of workplace systems will be able to 
assume an increased awareness of general computer concepts. 

In this chapter. we discuss basic elements of user interfaces: input devices, interaction 
techniques, and interaction tasks. Input devices were introduced in Chapters 2 and 4: here 
we elabomte on their use. Interaction techniques are ways to use input devices to enter 
informmion into the computer, whereas interaction tasks classify the fundamental types of 
informmion entered with the interaction techniques. Interaction techniques are lhe primitive 
building blocks from which a user interface is crafted. 

In Chapter 9, we discuss the issues involved in putting together the building blocks into 
a complete user-interface design. The emphasis is on a top-down design approach; first, 
design objectives are identified, and the design is then developed through a stepwise 
refinement process. The pros and cons of various dialogue styles-such as what ~u see is 
what ~u get (WYSIWYG), command language, and direct manipulation-are discussed, 
and window-manager issue.~ that affect tbe user interface are also described. Design 
guidelines, the dos and don'ts of interface design, are described and illustrated with various 
positive and negative examples. Many of lhe topics in Chapters 8 and 9 are discussed in 
much greater depth elsewhere; see the texts by Baecker and Buxton [BAEC87], Hutchins, 
Hollan, and Norman [HUTC86J, Mayhew [MAYH90], Norman [NORM88), Rubenstein 
and Hersh [RUBE84). and Shneiderman [SHN£87); the reference book by Salvendy 
(SALV871: and the sun'ey by Foley. Wallace, and Chan IFOLE84j. 

Many of the examples used in Chapters 8 and 9 are taken from the user interface of 
Apple Computer's Macintosh. Although the Macintosh user interface is not perfect, it is a 
huge improvement over previous commonly available interfaces. Developed in the early 
1980s. the Macintosh was built primarily on pioneering work at Xerox Corporation's Palo 
Alto Research Center (PARC) in the mid-1970s, and has been imitated and in some cases 
extended by systems such as Microsoft Windows, Pre.~ntation Manager, NeXT's NeXT 
Step, the Commodore Amiga, Digital Research's GEM, and many others. (Much of this 
book was written on the Macintosh. using Microsoft Word, and many of the figures were 
drawn on the Macintosh using Freehand.) 

Chapter 10 treats user-interface software. It is one thing to design grophic user 
interfaces that are easy to learn and fast to use; it is quite another to implement them. 
Having the right software tools is of critical importance. This chapter reviews the 
input-handling capabil ities of SRGP and SPHlGS, and then discusses more general and 
more powerful input-handling capabilities. The internal structures and implementation 
strategies of window managers, a critical element in many high-quality user interfaces, are 
described. Finally, the key concepts of user-interface management systems (UfMSs) are 
presented. UIMSs provide a means for interface designers and implementors quickly to 
develop, try out. and mndify their interface concepts, and thus decrease the cost of the 
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essential testing and refinement steps in user-interface development. 
We focus in this chapter on input devices-those pieces of hardware by which a user 

enters information into a computer system. We have already discussed many such devices in 
Chapter 4. In this chapter, we introduce additional devices, and discuss reasons for 
preferring one device over another. In Section 8.1.6, we describe input devices oriented 
specifically towdl'd 30 interaction. We continue to use the logical device categories of 
locator, keyboard, choice, valuator, and pick used by SRGP, SPHIGS, and other 
device-independent graphics subroutine packages. 

An imeraction task is the entry of a unit of infom1ation by the user. The four basic 
interaction tasks are position, texr, select, and quantify. The unit of information input in a 
position interaction task is of course a position. Similarly, the text task yields a text string; 
the select task yields an object identification; and the quantify task yields a numeric value. 
Many different imeraction techniques can be used for a given interaction task. For instance, 
a selection task can be carried out by using a mouse to select items from a menu, using a 
keyboard to enter the name of the selection, pressing a function key, or using a speech 
recognizer. Similarly, a single device can be used for different tasks: A mouse is often used 
for both positioning and selecting. 

Interaction tasks are distinct from the logical input devices discussed in earlier 
chapters. Interaction tasks are defined by what the user accomplishes, whereas logical input 
devices categorize how that task is accomplished by the application program and the 
graphics package. Interaction tasks are user-centered, whereas logical input devices are a 
programmer and graphics-package concept. 

By analogy with a natural language, single actions with input devices are similar to the 
individual letters of the alphabet from which words are formed. The sequence of 
input-device actions that makes up an interaction technique is analogous to the sequence of 
letters that makes up a word. A word is a unit of meaning; just as several interaction 
techniques can be used to carry out the same intera.ction task , so too words that are 
synonyms convey the same meaning. All the unitS of meaning entered by the user can be 
categorized as one of the four basic interaction tasks, just as words can be categorized as 
verb, noun, adjective, and so on. An interactive dialogue is made up of interaction-task 
sequences, just as a sentence is constructed from word sequences. 

8.1 INTERACTION HARDWARE 

Here, we introduce some interaction devices not covered in Section 4.6. elaborate on how 
they work, and discuss the advantages and disadvantages of various devices. The 
presentation is organized around the logical-device categorization of Section 4.6, and can 
be thought of as a more detailed continuation of that section. 

The advantages and disadvantages of various interaction devices can be discussed on 
three levels: device, task, and dialogue (i.e., sequence of several interaction tasks). The 
device LeveL centers on the hardware characteristics per se, and does not deal with aspects of 
the device's use controlled by software. At the device level, for example, we note that one 
mouse shape may be more comfortable to hold than another, and that a data tablet takes up 
more space than a joystick. 
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At the task level, we might compare interaction techniques using different devices for 
the same task. Thus, we might assert that experienced users can often enter commands 
more quickly via function keys or a keyboard than via menu selection, or that users can pick 
displayed objectS more quickly using a mouse than they can using a joystick or cursor 
control keys. 

At the dialogue level, we consider not just individual interaction tasks, but also 
sequences of such tasks. Hand movementS between devices take time: Although the 
positioning task is generally faster with a mouse than with cursor-control keys, cursor­
control keys may be faster than a mouse if the user' s hands are already on the keyboard and 
will need to be on the keyboard for the next task in sequence after the cursor is repositioned. 
Dialogue-level issues are discussed in Chapter 9. where we deal with constructing complete 
user interfaces from the building blocks introduced in this chapter. Much confusion can be 
avoided when we think about devices if we keep the...e three levels in mind. 

Important considerations at the device level, discussed in this section, are the device 
footprints (the foorprim of a piece of equipment is the work area it occupies), operator 
fatigue, and device resolution. Other important device issues-such as cost, reliability, and 
maintainability-change too quickly with technological innovation to be discussed here. 
Also omitted are the details of connecting devices to computers; by far the most common 
means is the serial asynchronous RS-232 terminal interface, generally making interfacing 
quite simple. 

8 .1 .1 Locator Devices 

It is useful to classify locator devices according to three independent characteristics: 
absolute or relative. direct or indirect, and discrete or continuous. 

Absolute devices, &uch as a data tablet or touch panel, have a frame of reference, or 
origin, and report pr>sitions with respect to that origin. Relative devices-such as mice, 
trackballs , and velocity-control joysticks-have no absolute origin and report only changes 
from their former position. A relative device can be used to specify an arbitrarily large 
change in position: A user can move a mouse along the desk top, lift it up and place it back 
at itS initial starting position, and move it again. A data tablet can be p.·ogrammed to behave 
as a relative device: The first (x, y) coordinate position read after the pen goc; from "far" to 
"near" state (i.e., close to the tablet) is subtracted from all subsequently read coordinates 
to yield only the change in x andy, which is added to the previous (x, y) position. This 
process is continued until the pen again goes to "far" state. 

Relative devices cannot be used readily for digitizing drawings, whereas absolute 
devices can be. The advantage of a relative device is that the application program can 
reposition the cursor anywhere on the screen. 

With a direct device-such as a light pen or touch screen-the user pointS direclly at 
the screen with a finger or surrogate finger; with an indirect device-such as a tablet, 
mouse, or joystick-the user moves a cursor on the screen using a device not on the screen. 
New forms of eye-hand coordination must be learned for the latter; the proliferation of 
computer games in homes and arcades, however, is creating an environment in which many 
casual computer users have already learned these skills. However, direct pointing can cause 
arm fatigue, especially among casual users. 
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A continuous device is one in which a smooth hand motion can create a smooth cursor 
motion. Tablets, joysticks, and mice are aU continuous devices, whereas cursor-control 
keys are discrete devices. Continuous devices typically allow more natural, easier, and 
faster cursor movement than do discrete devices. Most continuous devices also permit 
easier movement in arbitrary directions than do cursor control keys. 

Speed of cursor positioning with a continuous device is affected by the control-to­
display ratio, commonly called the C/D ratio [CHAP72]; it is the ratio between hand 
movement (the control) and cursor movement (the display). A large ratio is good for 
accurate positioning, but makes rapid movements tedious; a small ratio is good for speed 
but not for accuracy. Fortunately, for a relative positioning device, the ratio need not be 
constant, but can be changed adaptively as a function of control-movement speed. Rapid 
movemenL~ indicat.e the user is making a gross hand movement, so a small ratio is used; as 
the speed decreases, the C/D ratio is increased. This variation of CID rario can be set up so 
that a user can use a mouse to position a cursor accurately across a 15-inch screen without 
repositioning her wrist! For indirect discrete devices (cursor-control keys), there is a similar 
technique: the distance the cursor is moved per unit time is increased as a function of the 
time the key has been held down. 

Precise positioning is difficult with direct devices, if the ann is unsupported and 
extended toward the screen. Try writing your name on a blackboard in this pose, and 
compare the result to your nonnal signature. This problem can be mitigated if the screen is 
angled close to horizontal. Indirect devices, on the other hand, a.llow the heel of the hand to 
rest on a support , so that the fine motor control of the fingers can be used more effectively. 
Not all continuous indirect devices are equally satisfactory for drawing, however. Try 
writing your name with a joystick, a mouse, and a tablet pen stylus. Using the stylus is 
fastest, and the result is most pleasing. 

Other interesting positioning devices include the Versatron footmozLre [VERS84]. 
which remains static on the floor: The user places the ball of his foot on the device, keeping 
his heel on the floor, and controls the footmouse with left-right and forward-backward 
movements. The experimental mole is a pivoted foot rest with integrated switches 
(PEAR86, PEAR88] that, like the footmouse, leaves the hands free. The Personics 
headmouse [PERS85] uses a head-mounted set of three microphones to measure the 
distance to a sound source, translating small rotational movements of the head into cursor 
movements. Eye trackers can detennine where the eye is pointing and hence can cause a 
cursor to .move or the object pointed at to be selected [BOLT80; BOLT84; WARE87]. These 
devices are often less accurate and considerably more expensive than are the more 
traditional devices , and thus would normally be considered for only hands-free applica­
tions. The 30 positioning devices discussed in Section 8. 1.6 can also be used for 20 
positioning. 

8.1.2 Keyboard Devices 

The well-known QWERTY keyboard has been with us for many years. It is ironic that this 
keyboard was originally designed to slow down typists. so that the typewriter hammers 
would not be so likely to jam. Studies have shown that the newer Dvor~ keyboard 
[DVOR43] , which places vowels and other high-frequency characters under the home 
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positions of the fingers, is somewhat faster than is the QWERTY design [GREE871. It has 
not been widely accepted. Alphabetically organized keyboards are sometimes used When 
many of the users are nontypistS. But more and more people are being exposed to 
QWERTY keyboards, and several experimentS have shown no advantage of alphabetic over 
QWERTY keyboards [HIRS70; M1CH71]. 

The chord keyboard has five keys similar to piano keys, and is operated with one hand, 
by pressing one or more keys simultaneously to " play a chord." With five keys , 31 different 
chords can be played. Learning to use a chord keyboard (and other similar stenographer­
style keyboards) takes longer than learning the QWERTY keyboard, but skilled users can 
type quite rapidly, leaving the second hand free for other tasks. This increased training time 
means, however, that such keyboards are not suitable substitutes for general use of the 
standard alphanumeric keyboard. 

Other keyboard-oriented considerations, involving not hardware but software design, 
are arranging for a user to enter frequently used punctuation or correction characters 
without needing simultaneously to press the control or shift keys, and assigning dangerous 
actions (such as delete) to keys that are distant from other frequently used keys . 

8 .1.3 Valuator Devices 

Some valuators are bounded, like the volume control on a radio---«te dial can be turned 
only so far before a stop is reached that prevents further turning. A bounded valuator inputS 
an absolute quantity. A continuous-turn potentiometer. on the other hand, can be turned an 
unbounded number of times in e ither direction. Given an initial value , the unbounded 
potentiometer can be used to return absolute values; otherwise. the returned values are 
treated as relative values. The provision of some sort of echo enables the user to determine 
what relative or absolute value is currently being specified. The issue of C/D ratio. 
discussed in the context of positioning devices, also arises in the use of slide and rotary 
potentiometers to input values. 

8 .1.4 Choice Devices 

Function keys are a common choice device. Their placement affects their usability: keys 
mounted on the CRT bezel are harder to use than are keys mounted in the keyboard or in a 
nearby separate unit. A foot switch can be used in applications in which the user's hands are 
engaged yet a single switch closure must be frequently made. For example, used with a 
headmouse (described in Section 8 .1. 1), a foot switch could easily provide functionality 
equivalent to a single-button mouse. 

8 .1.5 Other Devices 

Here we discuss some of the less common, and in some cases experimental, 20 interaction 
devices. Voice recognizers, which are useful because they free the user's hands for other 
uses, apply a pattern-recognition approach to the waveforn1s created when we speak a word. 
The waveform is typically separated into a number of different frequency bands, and the 
variation over time of the magnitude of the waveform in each band forms the basis for the 
panem matching. However, mistakes can occur in the panern matching, so it is especially 
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important that an application using a recognizer provide convenient correction capabilities. 
Voice recognizers diffe.r in whether or not they must be trained to recognize the 

waveforms of a particular speaker, and whether they can recognize connected speech as 
opposed to single words or phrases. Speaker-independent rccognizers have very limited 
vocabularies-typically, they include only the digits and 50 to 100 words. Some 
discrete-word rccognizers can recognize vocabularies of up to a few thousand different 
words after appropriate training. But if the user has a cold, the recognizer must be 
retrained. The user of a recognizer must pause for a fraction of a second after each word to 
cue the system that a word end has occulTed; the pause is typically 100 to 200 milliseconds, 
and can be longer if the set of possible words is large. The more difficult task of recognizing 
connected speech from a limited vocabulary can also be performed by commercial 
hardware, but at a higher cost. The larger the vocabulary, however, the more artificial­
intelligence techniques are needed to use the context and meaning of a sequence of 
sentences to remove ambiguity. A few systems with vocabularies of20,000 or more words 
can recog.nize sentences such as ''Write Mrs. Wright a letter right now!" 

Voice synthesizers create waveforms that approximate, with varying degrees of realism. 
spoken words [KAPL85). The simplest synthesizers use phonemes, the basic sound units 
that form words. This approach creates an artificial-sounding, inflection-free voice. More 
sophisticated phoneme-based systems add inflections. Other systems actually play baok 
digitized speech patterns. They sound realistic, but require thousands of bytes of memory to 
store the digitized speech. 

Now that several personal computers, including the Macintosh and NeXT, have 
standard sound synthesizers that can create both voice and music. speech feedback from 
computers is becoming quite common. Speech is best used to augment rather than to 
replace visual feedback , and is most effective when used sparingly. For instance. a trJining 
application could show a student a graphic animation of some process, along with a voice 
narration describing what is being seen. See [SlMP85; SlMP87J for an ex ten ive review of 
speech recognition and generation, including additional guidelines for the effecti~-e 
application of these functions in user-computer interfaces. 

Sound generators can be used to generate musical tones and other effects, which can 
call attention to specific situations, especially if the user is unlikely 10 be looking at the 
display. For instance, "printer out of paper" or "memory nearly full'' alarms might be 
signaled by two different tones, in addition to messages on the screen. An attempt to 
reorient a line that bas been constrained to be parallel to another line might cause a warning 
beep. 

The data tablet bas been extended in several ways. Many years ago. Herot and 
Negroponte used an experimental pressure-sensitive stylus I HER076]: High pressure and a 
slow drawing speed implied that the user was drawing a line with deliberation, in which case 
the line was recorded exactly as drawn; low pressure and fast speed implied that the line was 
being drawn quickly, in which case a straight line connecting the endpoints was recorded. A 
more recent commercially available tablet IGTC0821 senses not only srylus pressure but 
orientation as well. The resulting 5 degrees of freedom reported by the tablet can be used in 
various creative ways. For example, Bleser, Sibert, and McGee implemented the GWPaint 
system to simulate various artist 's tools. such as an italic pen, that are sensith-e to pressure 
and orientation IBLES88a). Figure 8.1 shows the artistic creativity thus afforded. 
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Fig. 8.1 Numeral 2. a drawing in the spirit of Jasper Johns. by Teresa Bleser. Drawn 
with the GWPaint program using a GTCO pressure- and tilt-sensitive tablet. (Counesy 
ofT. Bleser. George Washington University.) 

Green [GREE85] applied optics principles to develop a tabletlike device that gives 
artists even more freedom than the pressure- and till-sensing tablet. The user paints on the 
tablet with brushes, hands, or anything else that is convenient. A television camera 
positioned below the tablet records the shape and motion of the brush wherever it contacts 
the tablet. and the resulting video signal is used to load the refresh buffer of a rasterdi play. 
Resolution of 500 or 1000 units is achievable, depending on the television camera used. 

An experimental touch tablet, developed by Buxton and colleagues, can sense multiple 
finger positions simuhaneously. and can also sense the area covered at each point of contact 
ILEE85al. The device is essentially a type of touch panel, but is used as a tablet on the work 
surface, not as a touch panel mounted over the screen. The device can be used in a rich 
variety of wdys [BUXT851. Different finger pressures correlate with the area covered at a 
point of contact. and are used to signal user commands: a light pressure causes a cursor to 
appear and to truck finger mO\'ement: increased pressure is used, like a bunon-push on a 
mouse or puck. to begin feedback such as drugging of an object: decreased pressure causes 
the drugging to stop. 
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Anolher way to obtain more than just position information is to suspend a touch panel 
in front of a display using a few metal support strips with strain gauges [HER078, 
M1NS84 J. Pressure applied to the touch panel translates into strain measured by the gauges. 
It is possible also to measure the direction of push and torque as well , by orienting the metal 
strips in appropriate directions. The measurements can be used to cause displayed objects to 
be rotated, scaled, and so on. 

The decreasing costs of input devices and the increasing availability of computer power 
are likely to lead to the continuing introduction of novel interaction devices. Douglas 
Engelhart invented the mouse in the 1960s, and nearly 20 years passed before it became 
popular [PERR89]. What the next mouse will be is not yet clear, but we hope that it will 
have a much shorter gestation period. 

8.1.6 3D Interaction Devices 

Some of the 20 interaction devices are readily extended to 30. Joysticks can have a shali 
that twists for a third dimension (see Fig. 4.38). Trackballs can be made to sense rotation 
about the vertical axis in addition to that about the two horizontal axes. In both eases, 
however, there is no direct relationship between hand movements with the device and the 
corresponding movement in 3-space. 

The Spaceball (see Color Plate 1. 14) is a rigid sphere containing strain gauges. The user 
pushes or pulls the sphere in any direction, providing 30 translation and orientation. In this 
case, at least the directions of movement correspond to the user's attempts at moving the 
rigid sphere, although the hand docs not actually move. 

A number of devices, on the other hand, can record 30 hand movements. The 
experimental Noll Box, developed by Michael Noll , permits movement of a knob in a 
12-inch cube ~lume, sensed by slider mechanisms linked to potentiometers. The Polhemus 
3SPACE three-dimensional position and orientation sensor uses electrOmagnetic coupling 
between th.ree transmitter antennas and three receiver antennas. The transmiuer antenna 
coils, which are at right angles to one another to form a Cartesian coordinate system, are 
pulsed in turn. The receiver has three similarly arranged receiver antennas; each time a 
transmitter coil is pulsed, a current is induced in each of the receiver coi ls. The strength of 
the current depends both on the distance between the receiver and transmitter and on the 
relative orientation of the transmiuer and receiver coi ls. The combination of the nine 
current values induced by the three successive pulses is used to calculate the 30 position 
and orientation of the receiver. Figure 8.2 sbows this device in use for one of its common 
purposes: digitizing a 30 object. 

The DataGiove records band position and orientation as V.'CII as finger movements. As 
shown in Fig. 8.3, it is a glove covered with small , lightweight sensors. Each sensor is a 
short length of fiberoptic cable, with a light-emitting diode (LED) at one end and a 
phototransistor at the other end. The surface of the cable is roughened in the area where it is 
to be sensitive to bending. When the cable is flexed , some of the LED's light is lost , so less 
light is received by the phototransistor. In addition, a Polhemus position and orientation 
sensor records hand movements. Wearing the DataGiove, a user can grasp objects, move 
and rotate them. and then release them, thus providing very natural interaction in 30 
[ZfMM87). Color Plate 1.15 illustrates this concept. 
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(a) (b) 

Fig. 8 .2 (a) A wireframe display of \he result. (b) The Polhemus 30 position sensor 
being used to digitize a 30 object. (3Space digitizer counesy of Polhemus. Inc .• 
Colchester, VT.) 

Fig. 8 .3 The VPL DataGiove. showing the fiberoptic calbes that are used to sense 
finger movements. and the Polhemus position and orientation sensor. (From J . Foley. 
Interfaces for Advanced Computing, Copyright @ 1987 by SCIENTIFIC AMERICAN, Inc. 
All rights reserved.) 
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Considerable effort has been directed toward creating what are often called artificial 
realites or virtual realities; these are completely computer-generated environments with 
realistic appearaoce, behavior, and interaction techniques [FOLE87]. In one version, the 
user wears a head-mounted stereo display to show proper left· and right-eye views, a 
Polhemus sensor on the head allows changes in head position a.od orientation to cause 
changes to the stereo display, a DataGiove permits 3D interaction, and a microphone is 
used for issuing voice commands. Color Plate 1.16 shows this combination of equipment. 

Several other technologies can be used to record 3D positions. The sonic-tablet 
technology discussed in Section 4.6.1 can be extended to 3D to create a sonic pen. In one 
approach, three orthogonal strip microphones are used. The hand-held pen sparks 20 to 40 
times per second, and the time for the sound to arrive at each of the three microphones 
determines the radius of the three cylinders on which the pen is located. The location is thus 
computed as the intersection of three cylinders. A simi.lar approach uses three or four 
standard microphones; here, the pen location is computed as the intersection of spheres 
with centers at the microphones and radii determined by the time the sound takes to arrive 
at each microphone. 

All these systems work in relatively small volurnes-8 to 27 cubic feet. Optical sensors 
can give even greater freedom of movement [BURT74; FUCH77a]. LEOs are mounted on 
the user (either at a single point, such as the fingertip, or all over the body, to measure body 
movements). Light sensors are mounted high in the corners of a small, sernidarkened room 
in which the user works, and each LED is intensified in turn. The sensors can deterntine the 
plane in which the LED lies, and the location of the LED is thus at the intersection of three 
planes. (A fourth sensor is normally used, in case one of the sensors cannot see the LEO.) 
Small reflectors on the fingertips and other points of interest can replace the LEOs; sensors 
pick up reflected light rather than the LED's emitted light. 

Krueger [KRUE83] has developed a sensor for recording hand and finger movements in 
20. A television camera records hand movements; image-processing techniques of 
contrast-enhancement and edge detection are used to find the outline of the hand and 
fingers. Different finger positions can be interpreted as commands, and the user can grasp 
and manipulate objects, as in Color Plate 1.17. This technique could be extended to 3D 
through use of multiple cameras. 

8 .1. 7 Device-Level Human Factors 

Not all interaction devices of the same type are equiva.lent from a human-factors point of 
view (see [BUXT86) for an elaboration of this theme). For instance, mice differ in 
important ways. First, the physical shapes are different , ranging from a hemisphere to an 
elongated, low-profi le rectangle. Buttons are positioned differently. Buuons on the side or 
front of a mouse may cause the mouse to move a bit when the buttons are pressed; buuons 
on the top of a mouse do not have this elfect. The mouse is moved through small distances 
by wrist and finger movements, with the fingers grasping the mouse toward its front. Ye.tthe 
part of the mouse whose position is sensed is often toward the rear, where fine control is 
least possible. In fact, a small leftward movement of the mouse under the fingertips can 
include a bit of rotation, so that the rear of the mouse, where the position sensors are, 
actually moves a bit to the right! 
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There is great variation among keyboards in design parameters, such as k~p sha~. 
distance between keys, pressure needed to press a key, travel distance for key depression, 
key bounce, auditory feedback, the feeling of contact when the key is fully depressed, and 
the placement and size of important keys such as "return" or "enter." Improper choice of 
parameters can decrease productivity and increase error rates. Making the' 'return" key too 
small invites errors, as does placing a hardware "reset" key close to other keys. These and 
other design parameters are discussed in [KLEM71; GREE87], and have been the 6Ubject 
of recent international standardization efforts. 

The tip of a short joystick shaft moves through a short distance, forcing use of a small 
C/0 ratio; if we try to compensate by using a longer joyslick shaft, the user cannot rest the 
heel of her hand on the work surface and thus does not have a steady plalforrn from which to 
make fine adjustments. Accuracy and speed therefore suffer. 

The implication of these device differences is that it is not enough for a user interface 
designer to specify a particular device class; specific device characteristics must be defined. 
Unfortunately, not every user interface designer has the luxury of selecting devices; often. 
the choice has already been made. Then the designer can only hope that the devices are well 
designed, and attempt to compensate in software for any hardware deficiencies. 

8.2 BASIC INTERACTION TASKS 

With a basic interaction task, the user of an interactive system enters a unit of information 
that is meaningful in the context of the application. How large or small is such a unit? Por 
instance, does moving a positioning device a small distance enter a unit of information? 
Yes , if the new position is put to some application purpose, sucb as repositioning an object 
or specifying the endpoint of a line. No, if the repositioning is just one of a sequence of 
repositionings as the user moves the cursor to place it on top of a menu item: here, it is the 
menu choice that is the unit of information. 

Basic interaction tasks (BITs) are indivisible; that is, if they were decomposed into 
smaller units of information, the smaller units would not in themselves be meaningful to the 
application. BITs are discussed in this section. Ln the next section, we treat composite 
interaction tasks (CITs), which are aggregates of the basic inieraction tasks described here. 
If one thinks of BITs as atoms, then CITs are molecules. 

A complete set of BITs for interactive graphics is positioning, selecting, entering text, 
and entering numeric quantities. Each BIT is described in this section, and some of the 
many interaction techniques for e:~ch are discussed. However, there are far too many 
interaction techniques for us to give an exhaustive list, and we cannot anticipate the 
development of new techniques. Where possible, the pros and cons of each technique are 
discussed; remember that a specific inter'.tction technique may be good in some situations 
and poor in others. 

8.2 .1 The Position Interaction Task 

The positioning task im'Oives specifying an (x, y) or (x, y, z) position to the application 
program. The customary interaction techniques for carrying out this task in\'Oive either 
moving a screen cursor to the desired location and then pushing a bunon, or typing the 
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desired position's coordinates on either a real or a simulated keyboard. The positioning 
device can be direct or indirect, continuous or discrete, absolute or relative. ln addition, 
cursor-ITIO'iement commands can be typed explicitly on a keyboard, as Up, Left, and so on, 
or the same commands can be spoken to a voice-recognition unit. Furthennore, techniques 
can be used together-a mouse controlling a cursor can be used for approximate 
positioning, and arrow lceys can be used to move the cursor a single screen unit at a time for 
precise postioning. 

A number of gener.!l issues transcend any one interaction technique. We first discuss 
the general issues; we introduce specific positioning techniques as illustrations. 

Coordinate systems. An important issue in positioning is the coordinate system in 
which feedback is provided. lf a locator device is moved to the right ro drag an object, in 
which direction should the object move? There are at least three possibilities: the object 
could move along the increasing x direction in the screen-coordinate system, along the 
increasing x direction in world coordinates. or along the increasing x direction in the 
object's own coordinate system. 

The first alternative, increasing screen-coordinate x direction, is the correct choice. For 
the latter two options, consider that the increasing x direction need not in general be along 
the screen coordinat.es' X axis. For instance, if the viewing tra'\Sformation includes a 180° 
rotation, then the world coordinates' x axis goes in the opposite direction to the screen 
coordinates ' x axis, so that the right-going movement of the locator would cause a left-going 
movement of the object. Try positioning with this type of feedback by turning your mouse 
l&o•t Such a system would be a gross violation of the human-factors principle of 
stimulus-response compatibility (S-R compatibility), which states that system responses to 
user actions must be in the same direction or same orientation, and that the magnitude of 
the responses should be proportional to the actions. Similar problems can occur if a data 
tablet is rotated with respect to the screen. 

Resolution. The resolution required in a positioning task may vary from one part in a few 
hundred to one part in millions. Clearly, keyboard type in of an (x, y) pair can provide 
unlimited resolution: The typed digit strings can be as long as necessary. What resolution 
can cursor-movement techniques achieve? The resolution of tablets, mice, and so on is 
typically as least as great as the 500 to 2000 resolvable units of the display device. By using 
the window-to-viewport transformation to zoom in on part of the world, it is possible to 
arrange for one unit of screen resolution to correspond to an arbitrarily small unit of 
world-coordinate resolution. 

Touch panels present other interesting resolution issues. Some panels are accurate to 
I 000 units. But the user's finger is about t-inch wide, so how can this accuracy be achieved? 
Using the first position the finger touches as the final position does not work. The user must 
be able to drag a cursor around on the screen by moving or rolling his finger while it is in 
contact with the touch panel. Because the finger obscures the exact position being indicated, 
the cursor arms can be made longer than normal, or the cursor can be offset from the actual 
point of contact. In an experiment, dragging an offset cursor was found to be more accurate, 
albeit slower, than was using the first point contacted [POTT88]. In general, the touch panel 
is not recommended for frequent high-resolution positioning taSks. 
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Grids. An important visual aid in many positioning tasks is a grid superimposed (perhaps 
at low intensity) on the work area, to help in aligning positions or objects. It can also be 
useful to force endpoints of primitives to fall on the grid, as though each grid point were 
surrounded by a gravity field. Gridding helps users to generate drawings with a neat 
Dppearance. To enforce gridding, the application program simply rounds locator coordi­
nates to the nearest grid point (in some cases. only if the point is already close to a grid 
point). Gridding is usually applied in world coordinates. Although grids often are regular 
and span the entire display. irregular grids, different grids in different areas, as well as 
rotated grids. are all useful in creating figures and illustrations [ BIER86a; FEIN82a]. 

Feedback. There are two types of positioning tasks, spatial and linguistic. In a spatial 
positioning task , the user knows where the intended position is, in spatial relation to nearby 
elements , as in drawing a Line between two rectangles or centering an object between two 

others. In a linguistic positioning task, the user knows the numeric values of the (x, y) 
coordinates of the position. In the former case, the user wants feedback showing the actual 
position on the screen; in the latter case, the coordinates of the position are needed. Lf the 
wrong form of feedback is provided, the user must mentally convert from one form to the 
other. Both forms of feedback can be provided by displaying both the cursor and its numeric 
coordinates, as in Fig 8.4. 

Direction preference. Some positioning devices impede movement in arbitrary direc­
tions; for example, certain joysticks and joyswitches give more resistance to movements off 
the principal axes than they do to those on the axes. This is useful only if the positioning 
task itself is generally constrained to horizontal and vertical movements. 

Lea.rning time. Learning the eye-hand coordination for indirect methods is essentially 
the same process as learning to steer a car. Learning time is a common concern buttums 
out to be a minor issue. Card and colleagues (CARD78] studied the mouse and joystick. 
They found that , although practice improved both error rates and speed, even the novices' 
performance was quite good. For instance, selection time with a mouse (move cursor to 
target, press button) decreased with extensive practice from 2.2 to I. 7 seconds. It is true, 
however, that some users find the indirect coordination very difficult, until they are 
explicitly taught. 

One specific type of postioning task is continuous positioning, in which a sequence of 
positions is used to define a curve. The path taken by the locator is approximated by a 
connected series of very short lines, as shown in Fig. 8.5. So that the appearance of 

T 
1.00 

'--------+1 
t--1• --1.7S---.j•l 

Fig. 8 .4 Numeric feedback regarding size of an object being constructed. The height 
and width are changed as the cursor ( + ) is moved, so the user can adjust the object to 
the desired size. 
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Depress button; 
drawing begins 
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Curve drawn 
following cursor 
motion 

Release button; 
drawing ends, 
curve frozen 

Fig. 8 .5 Continuous sketching. 

Cursor no longer 
affects curve 

smoothness is maintained, more lines may be used where the radius of curvature is smal I, or 
individual dots may be displayed on the cursor's path, or a higher-order curve can be fitted 
through the points (see Chapter II ). 

Precise continuous positioning is easier with a stylus than with a mouse, because the 
stylus can be controlled precisely with finger muscles, whereas the mouse is controlled 
primarily with wrist muscles. Digitizing of drawings is difficult with a mouse for the same 
reason; in addition, the mouse lacks both an absolute frame of reference and a cross-hair. 
On the other band, a mouse requires only a small table area and is less expensive than a 
tablet. 

8.2.2 The Select Interaction Task- Variable-Sized Set of Choices 

The selection task is that of choosing an element from a choice set. Typical choice sets are 
commands, attribute values, object classes, and object instances. For example, the 
line-style menu in a typical paint program is a set of attribute values, and the object-type 
(line, circle, rectangle , text, etc.) menu in such programs is a set of object classes. Some 
interaction techniques can be used to select from any of these four types of choice sets; 
others are less general. For example, pointing at a visual represemation of a set element can 
serve to select it, no matter what the set type. On the other hand, although function keys 
often "''Ork quite well for selecting from a command, object class, or attribute set, it is 
difficult to assign a separdte function key to each object instance in a drawing, since the size 
of the choice set is variable, often is large (larger than the number of available function 
keys), and changes quite rapid ly as the user creates and deletes objects. 

We use the terms ( relarively) fixed-sized choice set and varying-sized choice set. The first 
term characterizes command, attribute, and object-class choice sets; the second, object­
instance choice sets. The "relatively" modifier recognizes that any of these sets can change 
as new commands, attributes, or object classes (such as symbols in a drafting system) are 
defined. But the set size does not change frequently, and usually does not change much. 
Varying-sized choice sets, on the other hand, can become quite large, and can change 
frequently. 

ln this section, we d.iscuss techniques that are particularly well suited to potentially 
large varying-sized choice sets; these include naming and pointing. ln the following section, 
we discuss selection techniques particularly well suited to (relatively) fixed-sized choice 
sets. These sets tend to be small. except for the large (but relatively fixed-sized) command 
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sets found in complex applications. The techniques discussed include typing or speaking 
the name, abbreviation, or other code that represents the set element; pressing a function 
key associated with the set element (this can be seen as identical to typing a single character 
on the keyboard); pointing at a visual representation (textual or graphical) of the set element 
in a menu; cycling through the set until the desired element is displayed; and making a 
distinctive motion with a continuous positioning device. 

Selecting objects by naming. The user can type the choice's name. The idea is simple, 
but what if the user does not know the object's name, as could easily happen if hundreds of 
objects are being displayed, or if the user has no reason to know names? Nevertheless, this 
technique is useful in several situations. First, if the user is likely to know the names of 
various objects, as a fleet commander would know the names of the fleet's ships, then 
referring to them by name is reasonable, and can be faster than pointing, especially if the 
user might need to scroll through the display to bring the desired object into view. Second, 
if the display is so cluttered that picking by pointing is difficult and if zooming is not 
feasible (perhaps because the graphics hardware does not support zooming and software 
zoom is too slow), then naming may be a choice of last resort. If clutter is a problem, then a 
command to turn object names on and off would be useful. 

Typing allows us to make multiple selections through wild-card or don't-care 
characters, if the choice set elements are named in a meaningful way. Selection by naming 
is most appropriate for experienced, regular users, r.1ther than for casual, infrequent users. 

If naming by typing is necessary, a useful form of feedback is to display, immediately 
after each keystroke, the list (or partial list, if the full list is too long) of names in the 
selection set matching the sequence of characters typed so far. This can help the user to 
remember just how the name is spelled, if he has recalled the first few characters. As soon 
as an unambiguous match has been typed, the correct name can be automatically 
highlighted on the list. Alternatively, the name can be automatical ly completed as soon as 
an unambiguous match has been typed. This technique, called aurocompletio11, is 
sometimes disconcerting to new users, so caution is advisable. A separate strategy for name 
typein is spelling correction (sometimes called Do Wharf Mean, or DWIM). If the typed 
name does not match one known to the system, other names that are close to the typed 
name can be presented to the user as alternatives. Determining closeness can be as simple as 
searching for single-character errors, or can include multiple-character and missing­
character errors. 

With a voice recognizer, the user can speak, rather than type, a name, abbreviation, or 
code. Voice input is a simple way to distinguish commands from data: Commands are 
entered by voice, the data are entered by keyboard or other means. In a keyboard 
environment, this eliminates the need for special characters or modes to distinguish data 
and commands. 

Selecti ng objects by pointing. Any of the pointing techniques mentioned in the 
introduction to Section 8.2 can be used to select an object, by lirst pointing and then 
indicating (typically via a button-push) that the desired object is being pointed at. But what 
if the object has multiple leve.ls of hierarchy, as did the robot of Chapter 7? If the cursor is 
over the robot's hand, it is not clear whether the user is point ing at the hand, the arm, or the 
entire robot. Commands like Select_robot and Select_arm can be used to specify the level of 
hierarchy. On the other hand, if the level at which the user works changes infrequently, the 
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user will be able to work faster with a separate command, such as SeLselectionJevel, 
used to change the level of hierarchy. 

A different approach is needed if the number of hierarchical levels is unknown to the 
system designer and is potentially large (as in a drafting system, where symbols are made up 
of graphics primitives and other symbols). At least two user commands are required: 
Up.JJierarchy and Down.JJierarchy. When the user selects something, the system highlights 
the lowest-level object seen. If this is what he desired, the user can proceed. If not, the user 
issues the first command: Up_hierarchy. The entire first-level object of which the detected 
object is a part is highlighted. If this is not what the user wants, he travels up again and still 
more of the picture is highlighted. If he travels too far up the hierarchy, he reverses direc­
tion with the Down_bierarchy command. In addition, a Return_toJowesUevel command 
can be useful in deep hierarchies, as can a hierarchy diagram in another window, showing 
where in the hierarchy the current selection is located. The state diagram of Fig. 8.6 

Select 
object 

Any other 
command 

Press button 

Release button 
(cursor not near any object) 

Done ~------

Any other ....... ---­
command 

Down_ hierarchy 

Done •----

Any other •---­
command 

Move 

Release 
button 
(cursor 
near an 
object) 

Up_hierarchy 

Up_hierarchy 

Fig. 8.6 State diagram for an object-selection technique for an arbitrary number of 
hierarchy levels. Up and Down are commands for moving up and down the hierarchy. ln 
the state ''Leaf object selected:· the Down_hierarchy command is not available. The 
user selects an object by pointing at it w ith a cursor, and pressing and then releasing a 
button. 
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shows one approach to hierarchical selection. Allematively , a single command, say 
Move_up_hierarchy, can skip back to the originally selected leaf node after the root node is 
reached. 

Some text editors use a character-\\Urd-sentence-paragraph hierarchy. In the Xerox 
Star text editor, for instance, the user selects a character by positioning the screen cursor on 
the character and clicking the Select button on the mouse. To choose the \\Urd rather than 
the character, the user cl icks twice in rapid succession. Further moves up the hierarchy are 
accomplished by additional rapid clicks. 

8 .2.3 The Select Interaction Task- Relatively Fixed-Sized 
Choice Set 

Menu selection is one of the richest techniques for selecting from a relatively fixed-sized 
choice set. Here we discuss several key factors in menu design. 

Menu order. Menu elements can be organized in many different orders, including 
alphabetical, logically grouped by functional purpose, most frequently used first, most 
important first, largest first, or most recently created/modified first. These orders can be 
combined in various ways. A functionally grouped menu may be ordered alphabetically 
within group, and the functional groups themselves ordered by frequency of use. Figure 8. 7 
illustrates several such possible organizations. Consistency of organization from one menu 
to another is useful , so a common strategy across all menus of an application is important. 
Several researchers have found functional order to be the most helpful , and many menu 
structures reftect this result. 

S ingle-level versus hierarchical design. One of the most fundamental menu design 
decisions arises if the choice set is too large to display all at once. Such a menu can be 
subdivided into a logically structured ltierarchy or presented as a linear sequence of choices 

bold 
center 
cancel 
delete 
lont 
Insert 
Italic 
justify 
margin 
repeat 
replace 
undo 
upper 

(a) 

bold 
lont 
italic 
upper 

cancel 
repeat 
undo 

center 
justify 
margin 

delete 
insert 
replace 

(b) 

cancel 
repeat 
undo 

delete 
insert 
replace 

bold 
font 
nalic 
upper 

center 
justify 
margin 

(c) 

Fig. 8 . 7 Three menu organizations. (a) Menu using an alphabetical sequence. (b) Menu 
using functional grouping, with alphabetical within-group order as well as alphabetical­
between-group order. (c) Menu with commands common to several different applica­
tion programs placed at the top for consistency with the other application's menus; 
these commands have heavier borders. Menu items are some of those used in Card's 
menu-order experiment [CARD82]. 
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Fig. 8 .8 A menu within a scrolling window. The user controls scrolling by selecting the 
up and down arrows or by dragging the square in the scroll bar. 

to be paged or scrolled through. A scroll bar of the type used in many window managers 
allows all the relevant scrolling and paging commands to be presented in a concise way. A 
'fast keyboard-oriented alternative to pointing at the scrolling commands can also be 
provided; for instance, the arrow keys can be used to scroll the window, and the shift k.ey 
can be combined with the arrow keys to move the selection within the visible window, as 
shown in Fig. 8.8. In the limit, the si.ze of the window can be reduced to a single menu 
item, yielding a "slot-machine" menu of the type shown in Fig. 8.9. 

With a hierarchical menu, the user first selects from the choice set at the top of the 
hierarchy, which causes a second choice set to be available. The process is repeated until a 
leaf node (i.e., ao element of the choice set itseJO of the hierarchy tree is selected. As with 
hierarchical object selection, navigation mechanisms need to be provided so that the user 
can go back up the hierarchy if an incorrect subtree was selected. Visual feedback. to give 
the user some sense of place within the hierarchy is also needed. 

Menu hierarchies can be presented in several ways. Of course, successive levels of the 
hierarchy can replace one another on the display as further choices are made, but this does 
not give the user much sense of position within the hierarchy. The cascadi11g hierarchy, as 
depicted in Fig. 8.10, is more attractive. Enough of each menu must be revealed that the 
complete highlighted selection path is visible, and some means must be used to indicate 
whether a menu item is a leaf node or is the name of a lower-level menu (in the figure, the 
right-pointing arrow fills this role). Another arrangement is to show just the name of each 

Current Menu Item g 
( Accep t) (Cancer) 

Fig. 8 .9 A small menu-selection window . Only one menu item appears at a time. The 
scroll arrows are used to change the current menu item, which is selected when the 
Accept button is chosen. 
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(a) (b) (C) 

Fig. 8 .1 0 A pop-up hierarchical menu. (a) The first menu appears where the cursor is, 
in response to a button-down action. The cursor can be moved up and down to select 
the desired typeface. (b) The cursor Is then moved to the right to bring up the second 
menu. (c) The process is repeated for the third menu. 

selection made thus far in traversing down the hierarchy, plus all the selections available at 
the current level. 

A panel hierarchy is another way to depict a hierarchy, as shown in Fig. 8. 11 ; it takes 
up somewhat more room than the cascading hierarchy. lf the hierarchy is not too large, an 
explicit tree showing the entire hierarchy can also be displayed. 

When we design a hierarchical menu, the issue of depth versus breadth is always 
present. Snowberry et al. [SNOW83) found experimentally that selection time and accuracy 
improve when broader menus with fewer levels of selection are used. Similar results are 
reported by Landauer and Nachbar ILAND85) and by other researehers. However, these 

Fig. 8 .11 A hierarchical-selection menu. The leftmost column represents the top level; 
the children of the selected item in this column are shown in the next column; and so on. 
If there is no selected Item, then the columns to the right are blank. (Courtesy of NeXT. 
Inc.@ 1989 NeXT, Inc.) 
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results do not necessarily generalize to menu hierarchies that lack a natural , understandable 
structure. 

Hierarchical menu selection almost demands an accompanying keyboard or function­
key accelerator technique to speed up selection for more experienced (so-called "power') 
users. This is easy if each node of the tree has a unique name, so that the user can enter the 
name directly, and the menu system provides a backup if the user's memory fails. If the 
names are unique only within each level of the hierarchy, the power user must type the 
complete path name to the desired leaf node. 

Menu placement. Menus can be shown on the display screen or on a second, auxiliary 
screen (Fig. 8.12); they can also be printed on a tablet or on function-key labels. Onscreen 
menus can be static and permanently visible, or can appear dynamically on request 
(tear-off, appearing, pop-up, pull-down, and pull-out menus). 

A static menu printed on a tablet, as shown in Color Plate 1.18, can easily be used in 
fixed-application systems. Use of a tablet or an auxiliary screen, however, requires that the 
user look away from the application display, and hence destroys visual continuity. The 
advantages are the saving of display space, which is often at a premium, and the 
accommodation of a large set of commands in one menu. 

A pop-up menu appears on the screen when a selection is to be made, either in response 
to an explicit user action (typically pressing a mouse or tablet puck button) , or 
automatically because the next dialogue step requires a menu selection. The menu normally 
appears at the cursor location , which is usually the user's center of visual attention, thereby 

Fig . 8 .12 A dual-display workstation. The two displays can be used to show the 
overview of a drawing on one and detail on the other, or to show the drawing on one 
and menus on the other. (Courtesy of lntergraph Corporation, Huntsville, AI.) 
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maintaining visual continuity. An attractive feature in pop-up menus is to highlight initially 
the most recently made selection from the choice set if the most recently selected item is 
more likely to be selected a second time than is another item, positioning the menu so the 
cursor is on that item. Alternatively, if the menu is ordered by frequency of use, the most 
frequently used command can be highlighted initially and should also be in the middle (not 
at the top) of the menu, to minimize cursor movements in selecting other items. 

Pop-up and other appearing menus conserve precious screen space-one of the 
user-interface designer's most valuable commodities. Their use is facilitated by a fast 
RasterOp instruction , as discussed in Chapters 2 and 19. 

Pop-up menus often can be context-sensitive. In several window-manager systems, if 
the cursor is in the window banner (the top heading of the window) , commands involving 
window manipulation appear in tbe menu; if the cursor is in the window proper, commands 
concerning the application itself appear (which commands appear can depend on the type of 
object under the cursor); otherwise, commands for creating new windows appear in the 
menu. This context-sensitivity may initially be confusing to the novice, but is powerful once 
understood. 

Unlike pop-up menus, pull-down and pull-out menus are anchored in a menu bar along 
an edge of the screen. The Apple Macintosh, Microsoft Windows, and Microsoft 
Presentation Manager all use pull-down menus. Macintosh menus , shown in Fig 8.13, also 
illustrate accelerator keys and context sensitivity. Pull-out menus , an alternative to 
pull-down menus, are shown in Fig. 8.14. Both types of menus have a two-level hierarchy: 
The menu bar is the first level, and the pull-down or pull-out menu is the second. Pull-down 
and pull-out menus can be activated explicitly or implicitly. Ln explicit activation, a button 
depression, once the cursor is in the menu bar, makes the second-level menu appear; the 

Cut 
Copy 
Paste 
Ctear 

Duplicate 
Select All 

...... ........ 

eursoi . . . . . .... . . .. .. 

·············· 
• •• ' 0 . ........ . 

Release ; 
b11ttn.-

Fig. 8 .13 A Macintosh pull-down menu. The last menu item is gray rather than black, 
indicating that it is currently not available for selection (the currently selected object, an 
arc, does not have corners to be rounded). The Undo command is also gray, because 
the previously executed command cannot be undone. Abbreviations are accelerator 
keys for power users. (Copyright 1988 Claris Corporation. All rights reserved.) 
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Fig. 8 .14 A pull-out menu in which the leftmost, permanently displayed element 
shows the current selection. The newly selected menu item (reversed background) will 
become the current selection. This contrasts with most menu styles, in which the name 
of the menu is permanently displayed and the current selection is not shown after the 
adapted menu is dismissed. Menu is adapted from Jovanovi6's Process Visualization 
System [JOVA86). (Courtesy of Branka Jovanovi6.) 

cursor is moved on top of the desired selection and the button is then released. ln implicit 
activation, moving the cursor into the heading causes the menu to appear; no button press is 
needed. Either selecting an entry or moving the cursor out of the menu area dismisses the 
menu. These menus, sometimes cal led " lazy" or "drop-down" menus, may also confuse 
new users by their seemingly mysterious appearance. 

A full-screen menu can be a good or bad solution, depending on the context within 
which it is used. The disadvantage is that the application drawing will be obscured, 
removing context that might help the user to make an appropriate choice. Even this concern 
can be removed by using a raster display's look-up table to show the menu in a strong. 
bright color, over a dimmed application drawing (FEIN82aj. 

Visual representation. The basic decision on representation is whether menus use 
textual names or iconic or other graphical representations of elements of the choice set. Full 
discussion of this topic is deferred to the next chapter; however, note that iconic menus can 
be spatially organized in more flexible ways than can texiUal menus , because icons need not 
be long and thin like text strings; see Fig. 8.15. Also, inherently graphical concepts 
(particularly graphical attributes and geometrical primitives) are easily depicted. 

Current selection. If a system has the concept of "currently selected element" of a 
choice set, menu selection a.llows this element to be highl.ighted. ln some cases, an initial 
default setting is provided by the system and is used unless the user changes it. The 
currently selected element can be shown in various ways. The radio-button interaction 
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Select 

Text 
VerVHorz lire 
Diagonal line 

Rectangle 

Rectangle with rounded corners 
Ellipse 
Quarter ellipse 

Curve 
Polygon 

Fig. 8 .15 Iconic and textual menus for the same geometric primitives. The iconic menu 
takes less space than does the textual menu. (Icons © 1988 Claris Cotporation. All 
rights reserved.) 

technique, patterned after the tuning buttons on car radios, is one way (Fig. 8.16). Again, 
some pop-up menus highlight the most recently selected item and place it under the cursor, 
on the assumption that the user is more I ikely to reselect that item than she is to select any 
other entry. 

Size and shape of menu items. Pointing accuracy an~ speed are affected by the s.ize of 
each individual menu item. Larger items are faster to select , as predicted by Fitts' law 
[FITI54; CARD83]; on the other hand, smaller items take less space and permit more 
menu items to be displayed in a fixed area , but induce more errors during selection. Thus, 
there is a eonHict between using small menu items to preserve screen space versus using 
larger ones to decrease selection time and to reduce errors. 

Pop-up pie menus [CALL88], shown in Fig. 8.17, appear at the cursor. As the user 
moves the mouse from the center of the pie toward the desired selection, the target width 
becomes larger, decreasing the likelihood of error. Thus, the user has explicit eontrol over 
the speed-versus-error rradeoff. In addition, the distance to each menu item is the same. 

Pattern recognition. In selection techniques involving pattern recognition, the user 
makes sequences of movements with a continuous-positioning device , such as a tablet or 

Fig. 8.16 Radio-button technique for selecting from a set of mutually exclusive 
alternatives. (Courtesy of NeXT, Inc.© 1989 NeXT. Inc.) 
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Fig. 8 .17 A four-element pie menu. 

mouse. The pattern recognizer automatically compares the sequence with a set of defined 
patterns, each of which corresponds to an element of the selection set. Figure 8.18 shows 
one set of sketch patterns and their related commands, taken from Wallace's SELMA 
queueing analyzer [IRAN? I) . Proofreader's marks indicating delete, capitalize, mo~~e, and 
so on are attracti~~e candidates for this approach [WOLF87). 

The technique requires no typing skill and preserves tactile continuity. Furthermore, if 
lhe command invoi\'CS an object, lhe cursor position can be used for selection. The 1110\'C 

command used in many Macintosh applications is a good example: the cursor is positioned 
on top of the object to be moved and the mouse buuon is pressed, selecting the object under 

I I I I 

t4to ' I 
I I I 

Delete 

\ 
\ 

~ 
Create random 
branch 

Create random 
merge 

Connect to 
input port 

Move 

-, 
\ 

\ 

• 
Create priorfty 
branch 

'' . 
\ 
I 

I 

Create priority 
merge 

Connect to 
output port 

Fig. 8 .18 Motions, indicated as dotted lines. that are recognized as commands. From 
Wallace's SELMA queuing analyzer (IRAN71J. 
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the cursor (it is displayed in reverse video for feedback). As the user moves the mouse (still 
holding down the button), the object moves also. Releasing the mouse button detaches the 
object from the mouse. Skilled operators can work very rapidly with this technique, 
because hand movements between the work area and a command-entry device are 
eliminated. Given a data tablet and stylus, this technique can be used with at least several 
dozen patterns, but it is difficult for the user to learn a large number of different patterns. 

Rhyne has recently combined a transparent tablet and liquid-crystal display into a 
prototype of a portable, lap-top computer (RHYN87]. Patterns are entered on the 
transparent tablet , and are recognized and interpreted as commands, numbers, and letters. 
The position at which information is entered is also significanl. Figure 8.19 shows the 
device in use with a spreadsheet application. 

Function keys. Elements of the choice set can be associated with function keys. (We can 
think of single-keystroke inputs from a regular keyboard as function keys.) Unfortunately, 
there never seem to be enough keys to go around! The keys can be used in a 
hierarchical-selection fashion, and their meanings can be altered using chords, say by 
depressing the keyboard shift and control keys along with the function key itself. Learning 
exotic key combinations, such as ' 'shift-option-control-L," for some commands is not 
easy, however, and is left as an exercise for the regular user seeking the productivity gains 
that typically result. Putting a "cheat-sheet" template on the keyboard to remind users of 

Fig. 8. 19 An IBM experimental display and transparent data tablet. A spreadsheet 
application is executing. The user has just circled three numbers, and has indicated that 
their sum is to be entered in the cell containing the sigma. A new column heading has 
also been printed. The system recognizes the gestures and characters, and enters 
appropriate commands to the spreadsheet application. (Courtesy IBM T. J. Watson 
Research laboratories.) 
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these obscure combinations can speed up the learning process. It is even sometimes 
possible to define chords that make some sense, decreasing learning time. For instance, 
Microsoft Word on the Macintosh uses "shift-option->" to increase point size and the 
symmetrical "shift-option-<" to decrease point size; "shift-option-1" italicizes plain text 
and unitalicizes italicized text, whereas "shift-option-U" treats underlined text similarly. 

One way to compensate for the lack of multiple buttons on a mouse is to use the 
temporal dimension to expand the possible meanings of one button-for instance, by 
distinguishing between a single click and two clicks made in rapid succession. If the 
meaning of two clicks is logically related to that of one c.lick, this technique can be 
especially effective; otherwise, rote memory is needed to remember what one and two 
clicks mean. Examples of this technique are common: one click on a file icon selects it; two 
clicks opens the file. One click on the erase command enters erase mode; two clicks erase 
!be entire screen. This technique can also be applied to each of the buttons on a multibutton 
mouse. Chording of mouse buttons or of keyboard keys with mouse buttons can also be 
used to provide the logical (but not necessarily human-factors) equivalent of more buttons. 
To be most useful, the organizing scheme for the chording patterns must be logical and easy 
to remember. 

8 .2 .4 The Text Interaction Task 

The text-string input task entails entering a character string to which the application does 
not ascribe any special meaning. Thus, typing a command name is nor a text-entry task. In 
contrast, typing legends for a graph and typing text into a word processor are text input 
tasks. Clearly, the most common text-input technique is use of the QWEJrrY keyboard. 

Character recognition. The user prints characters with a continuous-positioning device, 
usually a tablet stylus, and the computer recognizes them. This is considerably easier than 
recognizing scanned-in characters, because the tablet records the sequence, direction, and 
sometimes speed and pressure of strokes, and a pattern-recognition algorithm can match 
these to stored templates for each character. For instance, the capital letter "A" consists of 
three strokes-typically, two downward strokes and one horizontal stroke. A recognizer can 
be trained to identify different styles of block printing: the parameters of each chara.cter are 
calculated from samples drawn by the user. Character recogniz.ers have been used with 
interactive graphics since the early 1960s [BROW64; TETT64]. A simplified adaptation of 
Teitelman's recognizer, developed by Ledeen, is described in [NEWM73]; a commercial 
system is described in [WARD85; BLES86]. 

It is difficult to block print more than one or two characters per second (try it!), so 
character recognition is not appropriate for massive input of text. We write cursive letters 
faster than we print the same characters, but there are no simple recognition algorithms for 
cursive letters: the great variability among individuals ' handwrtiting and the difficulty of 
segmenting words into individual letters are two of the problems. 

Menu selection. A series of letters, syllables, or other basic units is displayed as a menu. 
The user then inputs text by choosing letters from the menu with a selection device. This 
technique is attractive in several situations. First, if only a short character string is to be 
entered and the user's hands are already on a pointing device, then menu selection may be 
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Fig. 8.20 Data-input speeds. in keystrokes per minute. of various techniques for 
entering text and numeric information. (Adapted from [VANC72, p. 335J and (CARD83, 
p. 61J.) 

faster than moving to the keyboard and back. Second, if the character set is large, this 
approach is a reasonable alternative to the keyboard. 

Hierarchical menu selection can also be used with large character sets, such as are used 
in Chinese and Japanese. One such system uses the graphical features (strong horizontal 
line, strong ve.rticalline, etc.) of the symbols for the hierarchy. A more common strategy is 
to enter the word in phonetic spelling, whic.h string is then matched in a dictionary. For 
example, the Japanese use two alphabets, the katakana and hiragana, to type phonetically 
the thousands of kanji characters that their orthography borrows from the Chinese. 

Evaluation of text-entry techniques. For massive input of text, the only reasonable 
substitute for a skilled typist working with a keyboard is an automatic scanner. Figure 8.20 
shows experimentally determined keying rates for a variety of techniques. The hunt-and­
peck typist is slowed by the perceptual task of finding a key and the ensuing motor task of 
moving to and slriking it, but the tra.ined typist has only the motor task of striking the key, 
preceded sometimes by a slight hand or finger movement to reach it. Speech input, not 
shown on the chart, is slow but attractive for applications where the hands must be free for 
other purposes, such as handling paperwork. 

8 .2 .5 The Quantify Interaction Task 

The quantify interaction task in110lves specifying a numeric value between some minimum 
and maximum value. Typical interaction techniques are typing the value, setting a dial to 
the value, and using an up-<iown counter to select the value. Like the positioning task, this 
task may be either linguistic or spatial. When it is linguistic, the user knows the specific 
value to be entered; when it is spatial, the user seeks to increase or decrease a value by a 
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certain amount, with perhaps an approximate idea of the desired end value. In the former 
case, the interaction technique clearly must involve numeric feedback of the value being 
selected (one way to do this is to have the user type the actual value); in the laner case, it is 
more important to give a general impression of the approximate setting of the value. This is 
typically accomplished with a spatially oriented feedback technique, such as display of a 
dial or gauge on which the current (and perhaps previous) value is shown. 

One means of entering values is the potentiometer. The decision of whether to use a 
rotary or linear potentiometer should take into account whether the visual feedback of 
changing a value is rotary (e.g., a turning clock hand) or linear (e.g., a rising temperature 
gauge). The current position of one or a group of slide potentiometers is much more easily 
comprehended at a glance than are those of rotary potentiometers, even if the knobs have 
pointers; unfortunately, most graphics system manufacturers offer only rotary pOtentiome­
ters. On the other hand, rotary potentiometers are easier to adjust. Availability of both 
linear and rotary potentiometers can help users to associate meanings with each device. lt is 
important to use directions consistently: clockwise or upward movements normally increase 
a value. 

With continuous-scale manipulation, the user points at the current-value indicator on a 
displayed gauge or scale, presses the selection button, drags the indicator along the scale to 
the desired value, and then releases the selection button. A pointer is typically used to 
indicate the value selected on the scale, and a numeric echo may be given. Figure 8.21 
shows several such dials and their associated feedback. The range or precision of values 
entered in this way can be extended by using the positioning device as a relative rather than 
absolute device and by using a nonconstant C/D ratio, as discussed in Section 8.1.1. Then it 
becomes possible to increase a value by repeating a series of sLroking actions: move to the 
right, lift mouse, move to the left, put mouse down, and so on. Thornton 's number wheel 
[THOR79] is such a technique. 

If the resolution needed is higher than the continuous-scale manipulation technique can 
provide, or if screen space is at a premium, an up-down counter arrangement can be used, 
as shown in Fig. 8.22. 

0% 

go• 

180' 

270' 

a· 

f 
60% 100% 

Fig. 8 .21 Several dials that the user can use to input values by dragging the control 
pointer. Feedback is given by the pointer and, in two cases, by numeric displays . 
(Vertical sliders© Apple Computer. Inc.) 
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Fig. 8 .22 An up-down counter for specifying a value. The user positions the cursor on 
.. +.. or · ·- · · and holds down the selection burton on the pointing device; the 
corresponding digit increases or decreases until the button is released. 

8 .2 .6 30 Interaction Tasks 

1\I.Q of the four interaction tasks described previously for 2D applications become more 
complicated in 3D: position and select. In this section, we also introduce an additional 30 
interaction task: rotate (in the sense of orienting an object in 3-~'J)ace). The major reason for 
the complication is the difficulty of perceiving 3D depth relationships of a cursor or object 
relative to other displayed objects. This contrasts starkly with 2D interaction, where the user 
can readily perceive that the cursor is above, next to , or on an object. A secondary 
complication arises because the commonly available interaction devices , such as mice and 
tableiS, are only 20 devices, and we need a way to map rnovemeniS of these 2D devices into 
30 . 

Display of stereo pairs, corresponding to left- and right-eye views, is helpful for 
understanding general depth relationships, but is of limited accuracy as a precise locating 
method. Methods for presenting stereo pairs to the eye are discussed in Chapters 14 and 18, 
and in [HODG85]. Other ways to show depth relationships are discussed in Chapters 
14-16. 

The first part of this section deals with techniques for positioning and selecting, which 
are closely related. The second part concerns techniques for interactive rotation. 

Figure 8.23 shows a common way to position in 3D. The 2D cursor, under control of, 
say, a mouse, moves freely among the three views. The user can select any one of the 30 
cursor's dashed lines and can drag the line, using a button-down-drag-button-up sequence. 
If the button-down event is close to the intersection of two dashed cursor Jines, then both are 
selected and are moved with the mouse (gravity , discussed in Section 8.3.2, can make 

Depress button while 
2D cursor is on 
3D dotted cursor 

Drag 3D cursor; All 
views a~e updated 
appropnately 

Release button; 
2D cursor no longer 
controls 3D cursor 

Fig. 8 .23 30 positioning technique using three views of the same scene (a house). The 
20 cursor(+) is used to select one of the dashed 30 cursor lines. 
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Fig. 8.24 Movement of the 30 cursor is controlled by the direction in which the 20 
cursor is moved. 

picking the intersection especially easy). Although this method may appear restrictive in 
forcing the user to work in one or two dimensions at a time, it is sometimes advantageous to 
decompose the 30 manipulation task into simpler lower-dimensional tasks . Selecting as 
well as locating is facilitated with multiple views: Objects that overlap and hence are 
difficult to distinguish in one view may not overlap in another view. 

Another possibility, developed by Nielson and Olsen [NlEL86) and depicted in Fig. 
8.24, requires that all three principal axes project with nonzero length. A 30 cross-hair 
cursor, with cross-hairs pard! lei to the principal axes, is controlled by moving the mouse in 
the genera.! direction of the projections of the three principal axes. Figure 8.25 shows how 
20 locator movements are mapped into 30: there are 20 zones in which mouse movements 
affect a specific axis . Of course, 30 movement is restricted to one axis at a time. 

Both of these techniques illustrate ways to map 20 locator movements into 30 
movements. We can instead use buttons to control which of the 3D coordinates are affected 
by the locator's 2 degrees of freedom. For example, the locator might normally control x 
and y; but, with the keyboard shift key depressed, it could control x and z instead (this 
requires that the keyboard be unencoded, as discused in Chapter 4). Alternatively, three 
buttons could be used , to bind the locator selectively to an axis . Instead of mapping from a 

y 

z 

Fig. 8.25 The six regions of mouse movement, which cause the 30 cursor to move 
along the principal axes. 
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y 

1C 

Fig. 8 .26 The displayed local coordinate system of the house, which shows the three 
directions in which any translated object will move. To preserve stimulus-response 
compatibility, we can use the direction of mouse movements to determine the axes 
chosen, as in Fig. 8 .25. 

20 device into 30 , we could use a real 30 locator, such as the joysticks and trackballs 
discussed in Section 8.1.6 

Constrained 30 movement is effective in 30 locating. Gridding and gravity can 
sometimes compensate for uncertainties in depth relationships and can aid exact placement. 
AOO(her form of constraint is provided by those physical devices that make it easier to move 
along principal axes than in other directions. Some trackballs and joysticks have this 
property, which can also be simulated with the isometric strain-gauge and spaceball devices 
(Section 8.1.6). 

Context-specific constraints are often more useful, however, than are these general 
constraints. It is possible to let the user specify that movements should be parallel to or on 
lines or planes other than the principal axes and planes. For example, with a method 
developed by Nielson and Olsen [NIEL86], the local coordinate system of the selected 
object defines tbe directions of llloYement as shown in Fig. 8.26. In a more general 
technique developed by Bier (BIER86b), the user places a coordinate system, called a 
skiu~r. on the surface of an object, again defining the possible directions of movement (Fig. 
8.27). Another way to constrain movement to a particular plane is to give the user control 
over the view-plane orientation, and to limit translation to be parallel to the view plane. 

One method of 30 picking- finding the output primitive that, for an (x, y) position 

z 

1C 

Fig. 8 .27 The displayed coordinate system, placed interactively so that its (K, y) plane 
coincides with the plane of the roof, shows the three d irections in which any translated 
object will move. 
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Fig . 8 .28 Two slider dials for effecting rotation about the screen x and y axes. 

determined by a 20 locator, has the maximum z value-was discussed in Chapter 7. 
Another method, which can be used with a 30 locator when wireframe views are shown-is 
to find the ouput primitive closest to the locator's (x, y, z) position. 

As with locating and selection, the issues in 30 rotation are understanding depth 
relationships, mapping 20 interaction devices into 30, and ensuring stimulus-response 
compatibility. An easily implemented 30 rotation technique provides slider dials or gauges 
that control rotation about three axes. S-R compatibility suggests that the three axes should 
normally be in the screen-coordinate system-x to the right, y increasing upward , z out of 
(or into) the screen fBRIT78). Of course, the center of rotation either must be explicitly 
specified as a separate step, or must be implicit (typically the screen-coordinate origin, the 
origin of the object, or the center of the object). Providing rotation about the sceen'sx andy 
axes is especially simple, as suggested in Fig. 8.28. The (x, y, z) coordinate system 
associated with the sliders is rotated as the sliders are moved to show the effect of the 
rotation. A 20 trackball can be used instead of the two sliders . 

The two-axis rolation approach can be easily generalized to three axes by adding a dial 
for z-axis rotation, as in Fig. 8.29 (a dial is preferable to a slider for S-R compatibility). 

y 

.A .. 

Fig. 8 .29 Two slider dials for effecting rotation aboot the screen x and y axes. and a 
dial for rotation about the screen z axis. The coordinate system represents world 
coordinates and shows how world coordinates relate to screen coordinates. 
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y 

Fig. 8 .30 Three dials to control rotation about three axes. The placement of the dials 
on the co be provides strong stimulus-response compatibility. 

Even more S-R compatibility comes from the arrangement of dials on the faces of a cube 
shown in Fig. 8 .30, which clearly suggests the axes controlled by each dial. Again, a 30 
trackball could be used instead of the dials. 

Mouse movements can be directly mapped onto object movements, without slider or 
dial intennediaries. The user can be presented a metaphor in which the two sliders of Fig. 
8 .28 are superimposed on top of the object being rotated , so that horizontal mouse 
lllO\'ements are mapped into rotations about the screen-coordinate y axis, and Yertical 
mouse movements are mapped into rotations about the screen-coordinate x axis (Fig. 
8.31a). Diagonal motions have no effect. The slider dials are not really displayed; the user 
learns to imagine that they are present. Alternatively, the user can be told that an imaginary 
20 trackball is superimposed on top of the object being rotated, so that the vertical, 
horizontal, or diagonal motions one would make with the trackball can be made instead 
with the mouse (Fig. 8.31 b). Either of these methods provides two-axis rotation in 30. 

For three-axis rotations, three methods that closely resemble real-world concepts are 
panicolarly interesting. ln the OYerlapping-sliders method (CHEN88), the user is shown 
two linear sliders overlapping a rotary slider, as in Fig. 8 .3l(c). Motions in the linear 
sliders control rotation about the x andy axes, while a rotary motion around the intersection 
of the two lineaT sliders controls rotation about the z axis. In a technique developed by 
Evans, Tanner, and We in [EVANS I] , three successive mouse positions are compared to 
determine whether the mouse motion is linear or rotary. Linear horizontal or vertical 
movements control rotation about the x and y axes, a linear diagonal movement rotates 

(a) Two sliders (b) 20 trackball (c) Two sliders, rotary dial (d) 30 trackball 

Fig. 8 .31 Four methods of 30 rotation. In each case, the user makes movements with 
a 20 device corresponding to those that would be made if the actual devices were 
superimposed on the object. A 30 trackball can be twisted to give z-axis rotation. 
whereas a 20 trackball provides only two-axis rotation. 
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about both the x andy axes, and rotary movements control rotation about the z axis . While 
this is a relative technique and does not require that the movements be made directly ~-er 
the object being rotated or in a particular area. the user can be instructed to use these 
motions to manipulate a 3D trackball superimposed on the object (Fig. 8.3 1d). In the 
virtual-sphere method, also developed by Chen [CHEN881, the user actually manipulates 
this superimposed 3D trackball in an absolute fashion as though it were real. With a mouse 
button down, mouse movements rotate the trackball exactly as your finger ~uld move n 
real trackball . An experiment (CHEN88] comparing these latter two approaches showed no 
performance differences, but did yield a user preference for Chen's method. 

It is often necessary to combine 3D interaction tasks. Thus, rotation requires a select 
task for the object to be rotated , a position task for the center of rotation, and an orient task 
for the actual rotation. Specifying a 3D view can be thought of as a combined positioning 
(where the eye is), orientation (how the eye is oriented), and scaling (field of view, or how 
much of the projection plane is mapped into the viewport) task. We can create such u tusk 
by combining some of the techniques we have discussed, or by designing a f/y~1round 
capability in wbicb the viewer flies an imaginary airplane around a 3D ~rid. The controls 
are typically pitch, roll, and yaw, plus velocity to speed up or slow down. With the 
fly-around concept, the user needs an overview. such as a 2D plan view, indicating the 
imaginary ai rplane's ground position and heading. 

8.3 COMPOSITE INTERACTION TASKS 

Composite interaction tasks (C!Ts) are built on top of the basic interaction tasks (BITs) 
described in the previous section, and are actually combinations of BITs integrated into a 
unit. There are three major forms o f CITs: dialogue boxes, used to specify multiple units of 
information; construction, used to create objects requiring two or more positions; and 
manipulation, used to reshape existing geometric objects. 

8.3.1 Dialogue Boxes 

We often need to select multiple elements of a selection set. For instance, text attributes , 
such as italic, bold, underline, hollow, and all caps, are not mutually exclusive, and the user 
may want to select two or more at once. ln addition, there may be several sets of relevant 
attributes, such as typeface and font. Some of the menu approaches useful in selecting a 
single element of a selection set are not satisfactory for multiple selections. For example, 
pull -<lown and pop-up menus normally disappear when a selection is made, necessitating a 
second activation to make a second selection. 

This problem can be overcome with dialogue boxes, a fonn of menu that remains 
visible until explicitly dismissed by the user. In addition, dialogue boxes can permit 
selection from more than one selection set, and can also include areas for entering text and 
values. Selections made in a dialogue box can be corrected immediately. When all the 
information has been entered into the dialogue box, the box is typically dismissed explicitly 
with a command. Attributes and ot.her values specified in a dialogue box can be applied 
immediately, allowing the user to preview the effect of a font or line-style change. An 
"apply" command is sometimes included in the box to cause the new values to be used 
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Charact er Formats I OK t 
.-Style I Apply I 

i81 8al d I Cancel I 1811111/ir. 
B Underllne Position 

lllaJQ!Jl[j)(Jj @ Normal 
0~ 0 Superscript 
0 SMIII.l CliPS 0 Subscript 

Fig. 8 .32 A text-attribute dialogue box with several different attributes selected. The 
bold border of the "OK" button shows that the keyboard return key can be used as an 
alternative. The "Apply" button is used to apply new attibute values. so the user can 
observe their effects. "Cancel" is used to revert any changes to their previous values. 
Note that text attributes are described both by name and, graphically. by example. 
(Screen shots © 1983-1 989 Microsoft Corporation. Reprinted with permission from 
Microsoft Corporation.) 

without dismissing the box. More frequently, however, the dialogue box must be dismissed 
to apply the new settings. Figt.re 8.32 shows a dialogue boll with several selected items 
highlighted. 

8 .3 .2 Constructio~ Techniques 

One way to construe• a line is to have the user indicate one endpoint and then the other; 
once the second emJpoint is specified, a line is drawn between the two points. With this 
technique, however, the user has no easy way to try out different line positions before 
settling· on a final one, because the line is not actually drawn until the second endpoint is 
given. With this style of interaction, the user must in110ke a command each time an endpoint 
is to be repositioned. 

A far superior approach is rubberbanding, discussed in Chapter 2. When the user 
pushes a button (often the tipswitch on a tablet stylus, or a mouse button), the starting 
position of the line is established by the cursor (usually but not necessarily controlled by a 
continuous-positioning device). As the cursor moves , so does the endpoint of the line; when 
the button is released, the endpoint is frozen. Figure 8.33 show a rubberband line-drawing 
sequence. The user-action sequence is shown in the state diagram in Fig. 8.34. Notice that 
the state " rubberband" is active only while a button is held down. It is in this state that 
cursor movements cause the current line to change. See [BUXT85] for an informative 
discussion of the importance of matching the state transitions in an interaction technjque 
with the transitions afforded by the device used with the technique. 

An entire genre of interaction techniques is derived from rubberband line drawing. The 
rubber-recta11gle technique starts by anchoring one corner of a rectangle with a button-
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+ 

Depfes.s button: rubber· 
banding ~ins at 
cursor position 
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Une is drawn lrom 
starting position to 
new cursor posltion 

Release bullon: 
rubbert>anding ends. 
line Is frozen 

Fig. 8 .33 Rubberband line drawing. 

+ 

Cursor no longer 
controls line 

down action. after which the opposite corner is dynamically linked to the cursor until a 
button-up action occurs. The stale diagram for this technique dilfers from that for 
rubberband line drawing only in the dynamic feedback of a rectangle rather than a line. The 
rubber-circle technique creates a circle that is centered at the initial cursor position and that 
passes through the current cursor position. or that is within the square defined by opposite 
comers. The Tllbber-ellipse technique creates an axis-aligned ellipse inside the rectangle 
defined by the initial and current cursor positions. A circle results if the rectangle is 
square-easi ly done with gridding. All these techniques have in common the user-action 
sequence of button-down, move locator and see feedback. buuon-up. 

One interaction technique to create a polyline (a sequence of connected lines) is an 
extension of rubberbanding. After entering the polyline-creation command, the user clicks 
on a button to anchor each rubberbanded vertex. After all the vertices have been indicated, 
the user indicates completion, typically by a double click on a button without moving the 
locator, by a click on a second mouse button, or by entry of a new command. If the new 
command is from a menu, the last line segment of the polyline follows the cursor to the 
menu, and then disappears. Figure 8.35 depicts a typical sequence of events in creating a 
polyline; Fig. 8.36 is the accompanying state diagram. 

Button-down 
Beg.ln rubberbandlng 

Button·up 
Stop rubberbanding 

Move cursor 

Reposition end 
ottine 

Fig. 8 .34 State diagram for rubberband line drawing. 
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+ 

Click button: rubber­
banding ~ins at 
cursor position 

Another click marlls 
the next vertex on the 
polyline 

Line is drawn from 
starting position to 
new cursor position; 
button Is clicked to 
marll vertex of polyline 

To complete polyline, 
user clicks second 
mousebunon 

Polyline after additional 
cursor movements 

Cursor no longer 
controls line 

Fig. 8 .35 Rubberband polyline sketching. 

A polygon can be drawn similarly _ In some cases, the user signals to the system that the 
polygon is complete by returning the cursor to the starting vertex of the polygon. In other 
cases , the user explicitly signals completion using a function key , and the system 
automatically closes the polygon. Figure 8.37 shows one way to create polygons. 

Constraims of various types can be applied to the cursor positions io any of these 
techniques. For example, Fig. 8.38 shows a sequence of lines drawn using the same cursor 

Select Polyline command 
Display "done• button 

Select Done command 
Remove "done" button, remove 
line segment from last vertex 

Move cursor 

Reposition end 
of line 

Click button 
look vertex in place 

Fig. 8.36 State diagram for rubberband creation of a polyline. 
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Click button; rubber­
banding ~ins at 
CUI$()( positiOn 

First edge of polygon 
is drawn from starting 
position to new cursor 
position. until another 
click on button 
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/V 
Second edge drawn 
until another click on 
button 

Polygon is terminated 
when cursor is dose 
to starting j)!>silion and 
button is cicked 

Fig. 8 .37 Rubberband drawing of a polygon. 

positions as in Fig. 8.33, but with a horizontal constraint in eftec1. A vertical line, or a line 
at some other orientation, can also be drawn in this manner. Polylines made entirely of 
horizontal and vertical lines. as in printed circuit boards. VLSI chips, and some city maps, 
are readily created; right angles are introduced either in response to a user command, or 
automatically as the cursor changes direction. The idea can be generalized to any shape, 
such as a circle, ellipse, or any other curve; tbe curve is initialized at some position, then 
cursor movements control how much of the curve is displayed. 1n general, the cursor 
position is used as input to a constraint function whose output is then used to display the 
appropriate portion of the objcc1. 

Gravity is yet another form of constraint. When constructing drawings, we frequently 
want a new line to begin at the endpoint of, or on, an existing line. Matching an endpoint is 
easy if it was created using gridding, but otherwise is difficult without a potentially 
time-consuming zoom. The difficulty is a\'Oided by programming an imaginary gravity field 
around each existing line, so that the cursor is attracted to the line as soon as it enters the 
gravi ty field. Figure 8.39 shows a line with a gravity field that is larger at the endpoints, so 
that matching endpoints is especially easy. 

+ 

Depress buuon; 
rubberbanding 
begins at cursor 
position 

+ 

Line is drawn from 
starting position to 
x coordinate of new 
cursor position 

+ 

Release buUon; 
rubberbanding ends, 
line frozen 

+ 

Cursor no longer 
controls fine 

Fig. 8.38 Horizontally constrained rubberband line drawing. 
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+ + 
¥ 

Fig. 8 .39 Line surrounded by a gravity field, to aid picking points on the line: If the 
cursor falls within the field, it is snapped to the line. 

8 .3.3 Dynamic Manipulation 

It is not sullicient to create lines, rectangles, and so on. In many situations, the user must be 
able to modify previously created geometric entities. 

Dragging moves a selected symbol from one position to another under control of a 
cursor, as in Fig. 8.40. A button-down action typically starts the dragging (in some cases, 
the button-down is also used to select the symbol under the cursor to be dragged); then, a 
button-up freezes tbe symbol in place. so that funher mo\'ements of the cursor have no 
effect on it. This button-down-drag-button-up sequence i often called c/ick-and-drtrg 
interaction. 

Dynamic rotation of an object can be done in a similar wny, except that we must be able 
to identify the point or axis about which the rotation is to occur. A convenient strategy is to 
have the system show the current center of rotation and to allow the user to modify it as 
desired. Figure 8.41 shows one such scenario. Note that the same approach can be used for 
scaling, with the center of scaling, rather than that of rotation, being specified by the user. 

The cooccp1 of hnndles is useful to provide scaling of an object, without making the 
user think explicitly about where the center of scaling is . Figure 8.42 shows an object with 
eight handles, which are displayed as small squares at the comers and on the sides of the 
imaginary box surrounding the object. The user selects one of the handles and drags it to 
scale the object. If the handle is on a corner, then the corner diagonally opposite is locked in 
place. If the handle is in the middle of a side, then the opposite side is locked in place. 

Position curS()( over 
symbol to be moved, 
depress button 

Symbol is highlighted 
to 8CI<nOW1edge 
selec1lon 

Several intermediate 
corsor movements 

Release button; 
symbol locks in place 

Fig. 8.40 Dragging a symbol into a new position. 
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Highlighted objec1 has 
been selected wi1h 
cursor 

Rec1angte is now 
rotated by pointing at 
rec1angle, depressing 
button, and moving 
left-right with 
button down 

Composite Interaction Tasks 

Rotate command has 
been Invoked, causing 
center ot rotation 
icon to appear at 
default center position 
unless previously set 

Button is released; 
cursor no longer controls 
rotation; icon is gone; 
rec1angle remains selec1ed 
tor other possible 
operations 

Fig. 8 .41 Dynamic rotation. 

I l 

Center-ol·rotatlon 
icon is dragged into 
a new position 
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When this technique is integrated into a complete user interface, the handles appear only 
when the object is selected to be opemted on. Handles are also a unique visual code to 
indicate that an object is selected, since other visual codings (e.g., line thickness, dashed 
lines, or changed intensity) might also be used as part of the drawing itself. (Blinking is 
another unique visual code, but tends to be distracting and annoying.) 

CJ 
Selecting rec1angle 
with cursor causes 
handles to appear 

D 
Button actions on this 
handle move only 
right side ot rec1angle 

q 
Button actions on thls 
handle move only 
corner ot rec1angle 

Fig. 8 .42 Handles used to reshape objects. 
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Polygon has been 
selected for vertex 
modification, handle 
appears on each vertex 

Depress-move-release 
over vertex causes 
vertex to move 

Polygon no longer 
selected; handles 
have been removed 

Fig. 8.43 Handles used to reposition the vertices of a polygon. 

Draggmg, rotating, and scaling affect an entire object. What if we wish to be able to 
move individual points. such as the venices of a polygon? Vertices could be named, and the 
user could enter the name of a vertex and its new (x, y) coordinates. But the same 
point-and-drag strategy used to move an entire object is more attractive. In this case, the 
user points to a vertex, selects it, and drags it to a new position. The vertices adjacent to tbe 
one selected remain connected via rubberband lines. To facilitate selecting a vertex, we can 
establish a gravity field to snap tbe cursor onto a nearby vertex, we can make a vertex blink 
whenever the cursor is near, or we can superimpose handles over each vertex, as in F~g. 

8.43. Similarly, the user can move an edge of a polygon by selecting it and dragging, with 
the edge maintaining its original slope. For smooth curves and surfaces, handles can also be 
provided to allow the user to manipulate points that control the shape, as discussed further 
in Chapter II. 

In the next chapter. we discuss design issues involved in combining basic and 
composi te interaction techniques into an overall user-<:omputer dialogue. 

EXERCISES 

8.1 Examine a user-«>mputer interface with which )QU are familiar. List each interaction task 
used. Categorize each taSk into one of the four BITs of Section 8.2 . If an internction does not fit this 
classification scheme, try decomposing it funher. 

8.2 Implement adapcive C/D ratio cursor tracking for use with a mouse or other relative-positioning 
device. Experiment with different relationships between mouse velocity v and the C/D ratio r : r • k v 
und r - k ~. You must also find a suitable value for the constant k. 

8.3 Conduct an experiment to compare the selection speed and accuracy of any of the following 
pairs of techniques: 

a. Mouse and tablet selecting from a static. onscreen menu 
b. Toucn-pnncl and hght-pen selecting from a static. onscreen menu, 
c. Wide. shallow menu and narrow, deep menu 
d. Pull-down menus that appear as soon as the cursor is in the menu bar, and pull-down menus 

that require 8 mouse-button depressio n. 

8.4 Extend the state di~~gram of Fig. 8.6 to include a "return 10 lowest level" command that takes 
the selection back 10 the lo-..oestlevel of the hierarchy. such that whatever was selected first is selected 
again . 
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8.5 Implement an autocompletion text-entry technique to use with an arbitrary list of words. 
Eltperiment with different word sets, such as the UNIX commands and proper names. Decide how to 
handle nonexistent matches. corrections typed by the user after a match has been made, and 
prompting for the user. 

8.6 Implement cascading and panel heirarchicaJ menus for a series of commands or for file-system 
subdirectories. What issues arise as you do this? lnforrnally compare the selection speeds of each 
technique. 

8 .7 Implement pop-up menus that allow multiple sel.ections prior to dismissal, which the user 
accomplishes by moving the cursor outside the menu. Alternatively, use a button click for dismissal. 
Which dismissal method do you prefer? Explain your answer. Ask five people who use the two 
techniques which dismissal method they prefer. 

8.8 Implement a menu package on a color raster display that has a look-up table such that the menu 
is displayed in a strong, bright but partially transparent color, and all the colors underneath the menu 
are changed to a subdued gray. 

8.9 Implement any of the 30 interaction techniques discussed in this chapter. 

8.10 For each of the locating techniques discussed in Section 8.2.6, identify the line or plane into 
which 20 locator movements are mapped. 

8.11 Draw the state diagram that controls pop-up hierarchical menus. Draw the state diagram that 
controls panel hierarchical menus. 
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9 
Dialogue 

Design 

We have described the fundamental building blocks from which the interface to an 
interactive graphics system is crafted-interaction devices, techniques, and tasks . Let us 
now consider how to assemble these building blocks into a usable and pleasing form. 
User-inrerface design is still at least partly an art, not a science, and thus some of what we 
offer is an attitude toward the design of interactive systems, and some specific dos and 
don'ts that, if applied creatively, can help to focus attention on the lmm(m fac/Ors, also 
called the ergonomics, of an interactive system. 

The key goals in user-interface design are increase in speed of learning, and in speed of 
use, reduction of error rate, encouragement of rapid recall of how to use the interface, and 
increase in attractiveness to potential users and buyers. 

Speed of learning concerns how long a new user takes to achieve a given proficiency 
with a system. It is especially important for systems that are to be used infrequenlly by any 
one individual: Users are generally unwilling to spend hours learning a system that they will 
usc for just minutes a week! 

Speed of use concerns how long an experienced user requires to perform some specific 
task with a system. It is critical when a person is to use a system repeatedly for a significant 
amount of time. 

The error rare measures the number of user errors per interaction. The error rate affects 
both speed of learning and speed of use; if it is easy to make mistakes with the system, 
learning takes longer and speed of use is reduced because the user must correct any 
mistakes. However, error rate must be a separate design objective for applications in which 
even one error is unacceptable-for example, air-traffic control, nuclear-power-plant 
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control. and strategic military command and coniJOI systems. Such systems often trade off 
some speed of use for a lower error rate. 

Rapid recall of how to use the system is another distinct design objective, since a user 
may be aw.ty from a system for weeks, and then return for casual or intensive use. The 
system should "come back" quickly to the user. 

A11ractiveness of the interface is a real marketplace concern. Of course, liking a syst.em 
or a feature is not necessarily the same as being facile with it. Ln numerous experiments 
comparing two alternative designs, subjects state a strong preference for one design but 
indeed perform faster with the other. 

It is sometimes said that systems cannot be both easy to learn and fast to use. Although 
there was certainly a time when this was often true. we have learned how to satisfy multiple 
design objectives. The simplest and most common approach to combining speed of use and 
case of learning is to provide a "starter kit" of basic commands that are designed for the 
beginning user, but are only a subset of the overall command set. This starter kit is made 
available from menus, to facilitate ease of learning. All the commands, both starter and 
advanced. are available through the keyboard or function keys, to facilitate speed of use. 
Some advanced commands are sometimes put in the menus also, typically at lower levels of 
hierarchy, where they can be accessed by users who do n01 yet know their keyboard 
equivalents. 

We should recognize that speed of learning is a relative term. A system with 10 
commands is faster to learn than is one with I 00 commands, in that users will be able to 
understand what each of the 10 commands does more quickly than they can what 100 do. 
But if the application for which the interface is designed requires rich functionality. the 10 
commands may have to be used in creative and imaginative wo~ys that are difficult to learn. 
whereas the 100 commands may map quite readily onto the needs of the application. 

In the final analysis , meeting even one of these objectives is no mean task. There are 
unfortunately few absolutes in user-interface design. Appropriate choices depend on many 
different factors, including the design objectives, user characteristics, the environment of 
use , available hardware and softwJre resources, and budgets. It is especially important that 
the user-interface designer's ego be submerged, so that the user's needs, not the designer's, 
are the driving factor. There is no room for a designer with quick, off-the-cuff answers. 
Good design requires careful consideration of many issues and patience in testing 
prototypes with real users . 

9 .1 THE FORM AND CONTENT OF USER-COMPUTER DIALOGUES 

The concept of a ttSu-<omputer dialogue is central to interactive system design, and there 
are helpful analogies between user-oomputer and person-person dialogues. After all, 
people have developed effective ways of communicating, and it makes sense to learn what 
we can from these years of experience. Dialogues typically involve gestures and words: In 
fact, people may have communicated with gestures, sounds, and images (cave pictures. 
Egyptian hieroglyphics) even before ph<>netic languages ~'Cre developed. Computer 
graphics frees us from tbe limitations of purely verbal interactions with computers and 
enables us to use images as an additional communication modality. 
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Many anributes of person-person dialogues should be preserved in user-eomputer 
dialogues. People who communicate effectively share common knowledge and a common 
set of assumptions. So, too, there should be commonality between the user and the 
computer. Further, these assumptions and knowledge should be those of the user, not those 
of the computer-sophisticated user-interface designer. For instance, a biochemist studying 
the geometric structure of molecules is familiar with such concepts as atoms, bonds, 
dihedral angles, and residues, but does not know and should not have to know such 
concepts as linked lists, canV'dseS, and event queues. 

Learning to use a user interface is similar to learning to use a foreign language. Recall 
your own foreign-language study. Sentences came slowly, as you struggled with vocabulary 
and grammar. Later, as practice made the rules more familiar, you were able to concentrate 
on expanded vocabulary to communicate your thoughts more effectively. The new user of 
an interactive system must go through a similar learning process. Indeed, if new application 
concepts must be learned along with new grammar rules and vocabulary, the learning can 
be even more difficult. The designer's task , then, is to keep the user-interface rules and 
vocabulary simple, and to use concepts the user already knows or can learn easily. 

The language of the user-eomputer dialogue should be efficient and complete, and 
should have natural sequencing rules. With an efficienr language, the user can convey 
commands to the computer quickly and ooncisely. A complete language allows expression 
of any idea relevant to the domain of discourse. Sequencing ruLes, which define the order or 
syntax of the language, should have a minimum number of simple, easy-to-learn cases . 
Simple sequencing rules help to minimize training and allow the user to concentrate on the 
problem at hand; complex rules introduce discontinuities and distractions into the user's 
Lhought processes. 

A user interface may be complete but inefficient; Lhat is, expressing ideas may be 
difficult and time consuming. For example, a system for logic design needs to provide only 
a single building block, either the nor or the nand, but such a system will be laborious to 
use and thus inefficient. It is beuer to include in the system a facility for building up more 
complex commands from the few basic ones. 

E.xtensibiliry can be exploited to make a language more efficient by defining new terms 
as combinations of existing terms. Extensibility is commonly provided in operating systems 
via scripts, cataloged procedures, or command files, and in programming languages via 
macros, but is less often found in graphics systems. 

In person-pe.rson dialogue, one pe.rson asks a question or makes a statement, and the 
other responds, usually quite quickly. Even if a reply does not come immediately , the 
listener usuaUy signals attentiveness via facial expressions or gestures. These are forms of 
feedback, a key component of user-computer dialogue. In both sorts of dialogue, the 
ultimate response may be provided either in words or with some gesture or facial 
expression--that is, with a graphic image. 

Occasionally, too, the speaker makes a mistake, then says, "Oops, I didn 't mean 
that," and the listener discards the last statement. Being able to undo mistakes is also 
important in user-computer dialogues. 

In a conversation, the speaker might ask the listener for help in expressing a thought , or 
for further explanation. Or the speaker might announce a temporary digression to another 
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subject, holding the current subject in abeyance. These same capabilities should also be 
possible in user~omputer dialogues. 

With this general framework, let us define the components of the user~omputer 
interface more specifically. Two languages constitute this interface. With one, the user 
communicates with the computer; with the other, the computer communicates with the 
user. The first language is expressed via actions applied to various interaction devices, and 
perhaps also via spoken words. The second language is expressed graphically through lines , 
points, character strings, filled areas, and colors combined to form displayed images and 
messages. and perhaps aurally through tones or synthesized words. 

Languages have two major components: the meaning of the language, and the form of 
the language. The meaning of a language is its content, or its message, whereas the form 
is how that meaning is conveyed. In person-person dialogue, the meaning " I am happy" 
can be conveyed with the words "1 am happy," or with the words " Ich bin gliickJich," 
or with a smile. In user~mputer dialogue, the meaning " delete temp9" might be con­
veyed by typing the command " DELETE temp9" or by dragging an icon representing file 
t.emp9 to a trashcan icon. The form of an interface is commonly called its "look and 
feel. " 

There are two elements to meaning in interface design: the conceptual and the 
functional. There are also two elements to form: sequencing and binding to hardware 
primitives. The user-interface designer must specify each of these four elements. 

The conceptual design is the definition of the principal application concepts that must 
be mastered by the user, and is hence also called the user's model of the application. The 
conceptual design typically defines objects, properties of objects, relationships between 
objects, and operations on objects. In a simple text editor, the objects are characters, lines, 
and files, a property of a file is its name, files are sequences of lines, lines are sequences of 
characters, operations on lines are Insert, Delete, Move, and Copy, and the operations on 
files are Create, Delete . Rename, Print , and Copy. The conceptual design of a user 
interface is sometimes described by means of a metaphor or analogy to something with 
which the user is already familiar, such as a typewriter, Rolodex, drafting table and 
instruments, desktop, or filing cabinet. Although such analogies are often helpful for initial 
understanding, they can become harmful if they must be stretched unrealistically t.o explain 
the more advanced capabilities provided by the computer system [HALA82]. 

The functional design specifies the detailed functionality of the interface: what 
information is needed for each operation on an object, what errors can occur, how the 
errors are handled, and wbat the results of each operation are. Functional design is also 
called semantic design . It defines meanings, but not the sequence of actions or the devices 
with which the actions are conducted. 

The sequencing design, part of the form of an interface, defines the ordering of inputs 
and outputs . Sequencing design is also called syntactic design. For input, the sequencing 
comprises the rules by which indivisible units of meaning (input to the system via 
interaction techniques) are formed into complete sentences. Units of meaning cannot be 
further decomposed without loss of meaning. For example, the mouse movements and 
mouse button clicks needed to make a menu selection do not individually provide 
information to the application. 
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For output. the notion of sequence includes spatial and temporal factors. Therefore, 
output sequencing includes the 2 D and 3D layout of a display, as 'M:II as any temporal 
variation in the form of the display. The units of meaning in the output sequence, as in the 
input sequence, cannot be further decomposed without loss of meaning; for c:Jtample, a 
transistor symbol has meaning for a circuit designer. whereas the individual lines making up 
the symbol do not have meaning. The meanings are ofien conveyed graphlcally by symbols 
and drawings, and can also be conveyed by sequences of characters. 

The hardware binding design, also called the /exicol design, is also part of the form of 
an interface. The binding determines how input and output units of meaning are actually 
formed from hardware primitives. The input primitives are whatever input device.~ are 
available, and the output primitives are the shapes (such as lines and characters) and their 
anributes (such as color and font) provided by the graphics subroutine package. Thus, for 
input, hardware binding is the design or selection of interaction techniques, as discussed in 
Chapter 8 . For output. hardware binding design is the combining of display primitives and 
attributes to form icons and other symbols. 

To illustrate these ideas, let us consider a simple furniture-layout program. Its 
conceptual design has as objects a room and different pieces of furniture . The relation 
bet'M:en the objects is that the room contains the furniture. The operations on the furniture 
objects are Create, Delete. Move, Rotate, and Select; the operations on the room object arc 
Save and Restore. The functional design is the detuiled elaboration of the meanings of these 
relations and operalions. 

The sequence design might be to select first an object and then an operation on that 
object. The hardware-binding component of the input language might be to use a mouse to 
select commands from the menu, to select furniture objects, and to provide locations. The 
sequence of the output design defines the screen arrangement, including its partitioning into 
different areas and the exact placement of menus, prompts, and error messages. The 
hardware-binding level of the output design includes the tc:Jtt font, the line thickness and 
color, the color of filled regions, and the way in which output primitives are combined to 
create the furniture symbols. 

Section 9.2 discusses some of the fundamental forms a user interface can take; Section 
9.3 presents a sct of design guidelines that applies to all four design levels. In Section 9.4, 
'M: present issues specific to input sequencing and binding; in Section 9.5, 'M: describe 
visual design rules for output sequencing and binding. Section 9.6 outlines an overall 
methodology for user-interface design. 

9 .2 USER-INTERFACE STYLES 

Three common styles for user-computer interfaces arc wlwt you see is what you get, direct 
manipulation, and iconic. ln this section, 'M: discuss each of these related but distinct ideas. 
considering their applicability, their advantages and disadvantages, and their relation to one 
another. There is also a brief discussion of other styles of user-computer interaction: menu 
selection. command languages, natural-language dialogue, and question-answer dialogue. 
These are not emphasized, because they are not unique to graphics. (Menus are the closest. 
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but their use certainly predates graphics. Graphics does, however, pennit use of icons rather 
than of text as menu elements, and provides richer possibilites for text typefaces and fonts 
and for menu decorations.) None of these styles are mutually exclusive; successful 
interfaces often meld elements of several styles to meet design objectives not readily met by 
one style alone. 

9.2.1 What You See Is What You Get 

What you see is what you get, or WYSIWYG (pronounced wiz-ee-wig), is fundamental to 
interactive graphics. The representation with which the user interacts on the display in a 
WYSIWYG interface is essentially the same as the image ultimately created by the 
application. Most, but not all , interactive graphics applications have some WYSIWYG 
component. 

Many text editors (most assuredly a graphics application) have WYSIWYG interfaces. 
Text that is to be printed in boldface characters is displayed in boldface characters. With a 
non-WYSIWYG editor, the user sees control codes in the text. For example, 

In this sentence, we show @b(bold), @i(italic), and @ub(underlined bold) text. 

specifies the following hardcopy output 

Ln this sentence, we show bold, italic, and unde.rlined bold text. 

A non-WYSIWYG specification of a mathematical equation might be something like 

@f(@i(u)@sub(max) - @i(u)@sub(min),@i(x)@sub(max) - @i(x)@sub(min)) 

to create the desired result 

"max- Umln 

Xmax - Xmm 

ln such non-WYSIWYG systems, users must translate between their mental image of 
the desired results and the control codes. Confinnation that the control codes reproduce the 
mental image is not given until the coded input is processed. 

WYSIWYG has some drawbacks. Whenever the spatial and intensity or color 
resolution of the screen differs from that of the hardcopy device, it is difficult to create an 
exact match between the two. Chapter 13 discusses problents that arise in accurately 
reproducing color. More important, some applications cannot be implemented with a pure 
WYSIWYG interface. Consider first text processing, the most common WYSIWYG 
application. Many text processors provide heading categories to define the visual 
characteristics of chapter, section, subsection, and other headings. Thus, "heading type" 
is an object property that must be visually represented. But the heading type is not part of 
the final hardcopy, and thus, by definition , cannot be part of the display either. There are 
simple solutions, such as showing heading-type codes in the left margin of the display, but 
they are counter to the WYSIWYG philosophy. It is for this reason that WYSIWYG is 
sometimes called ' 'what you see is all you get.'' As a second example, the robot arm in Fig. 
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7.1 does not reveal the existence of hierarchical relationships between the robot' s body, 
arms, and so on, and it certainly does not show these relationships. These examples are 
intended not as indictments of WYSIWYG but rather as reminders of its limitations. 

9.2 .2 Direct Manipulation 

A direct-manipulation user imerface is one in which the objects, attributes, or relations that 
can be operated on are represented visually; operations are invoked by actions performed on 
the visual representations , typically using a mouse. That is, commands are not invoked 
explicitly by such traditional means as menu selection or keyboarding; rather, the command 
is implicit in the action on the visual representation. This representation may be text, such 
as the name of an object or property, or a more general graphic image, such as an icon. 
Later in this section, we discuss the circumstances under which textual and iconic forms of 
visual representation are appropriate. 

The Macintosh interface uses direct manipulation in part, as shown in Fig. 9. I. Disks 
and files are represented as icons. Dragging a file's icon from one disk to another copies the 
file from one disk to the other; dragging to the trashcan icon deletes the file. Tn the earlier 
Xerox Star, dragging a file to a printer icon printed the file . Shneiderman [SHNE83], who 
coined the phrase "direct manipu.lation," discusses other examples of this technique. 

Direct manipulation is sometimes presented as being the best user-interface style. It is 
certainly quite powerful and is especially easy to learn. But the Macintosh interface can be 
slow for experienced users in that they are forced to use direct manipu.lation when another 

Fig. 9 .1 The Macintosh screen. In the upper right is a disk icon; just below it is a 
directory icon, which is gray-toned to indicate that it is open. At the left is the open 
directory, with named icons representing the files within it. A f ile, represented by the 
icon out line around the cursor, is being dragged to the trashcan at the lower right. 
(Screen graphics © Apple Computer, Inc.) 
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style would generally be faster. Printing the file "Chapter 9" with direct manipulation 
requires the visual representation of the file to be found and selected, then the Print 
command is involved. Finding the file icon might involve scrolling through a large 
collection of icons . If the user knows the name of the file, typing "Print Chapter 9" is 
faster. Similarly, deleting all files of type "txt" requires finding and selecting each such file 
and dragging it to a trash can. Much faster is the UNIX-style command " rm *. txt" , which 
uses the wild card • to find all files whose names end in ".txt." 

An interface combining direct manipulation with command-language facilities can be 
faster to use than is one depending solely on d irect manipulation. Note that direct 
manipulation encourages the use of longer, more descriptive names, and this tends to offset 
some of the speed gained from using typed commands. Some applications, such as 
programming, do not lend themselves to direct manipulation [HUTC86), except for simple 
introductory flowchart-oriented learning or for those constructs that in specialized cases can 
be demonstrated by example [MAUL89; MYER86). 

Direct-manipulation interfaces typically incorporate other interface styles, usually 
commands invoked with menus or the keyboard. For instance, in most drafting programs, 
the user rotates an object with a command, not simply by pointing at it, grabbing a handle 
(as in Section 8.3.3), and rotating the handle. Indeed, it is often difficult to construct an 
interface in which all commands have direct-manipulation actions. This reinforces the point 
that a single interaction style may not be sufficient for a user interface: Mixing several styles 
is often bener than is adhering slavishly to one style. 

The form fiiJ-in user interface is another type of direct manipulation. Here a form is 
filled in by pointing at a field and then typing, or by selecting from a list (a selection set) 
one of several possible values for the field. The limited functional domain of form fill-in 
and its obvious correspondence to filling in real forms makes direct manipulation a natural 
choice. 

WYSIWYG and direct manipulation are separate and distinct concepts. For instance, 
the textual representation of a graphics image can be modified via direct manipulation, and 
the graphical image of a WYSIWYG system can be modified purely by a command­
language interface. Especially when used together, however, the two concepts are po"'erful, 
easy to learn, and reasonably fast to use, as many successful user interfaces have 
demonstrated. 

9 .2 .3 Iconic User Interfaces 

An icon is a pictorial representation of an object, an action, a property, or some other 
concept. The user-interface designer often has the choice of using icons or words to 
represent such concepts. Note that the use of icons is not related to the direct-manipulation 
issue: Text can be directly manipulated just as well as icons can, and text can represent 
concepts, sometimes better than icons can. 

Which is better, text or icons? As with most user-interface design questions, the answer 
is, " it depends." Icons have many advantages. Well-designed icons can be recognized more 
quickly than can words , and may also take less screen space. U carefully designed, icons 
can be language-independent, allowing an interface to be used in different countries . 

0433



9.2 User- Interface Styles 399 

/ / 

-
-
- 0 

Fig. 9.2 Icons used to represent common office objects. 

leon design has at least three separate goals, whose importance depends on the specific 
application at hand: 

I. Recognition-how quickly and accurately the meaning of the icon can be recognized 

2. Remembering-how well the icon's meaning can be remembered once learned 

3. Discrimination-how well one icon can be distinguished from another. 

See [BEWL83] for a report on experiments with several alternative icon designs; see 
[HEME82; MARC84] for further discussion of icon-design issues. 

Ic.ons that represent objects can be designed relatively easily; Fig. 9.2 shows a 
collection of such icons from various programs. Properties of objects can also be 
represented easily if each of thei r V'dlues can be given an appropriate visual representation. 
This certainly can be done for the properties used in interactive graphics editors , such as 
line thickness, texture, and font. Numeric values can be represented with a gauge or dial 
icon, as in Fig. 8.21. 

Actions on objects (that is, commands) can also be represented by icons. There are 
several design strategies for doing this. First, the command icon can represent the object 
used in the real world to perform the action. Thus, scissors can be used for Cut, a brush for 
Paste, and a magni fyi ng glass for Zoom. Figure 9.3 shows a collection of such command 
icons. These icons are potentially difficult to learn, since the user must first recognize what 
the icon is , then understand what the object represented does. This two-step understanding 
process is inherently less desirable than is the one-step process of merely recognizing wbat 
object an icon represents. To complicate matters further, suppose that the object might be 
used for several different actions. A brush, for example, can be used for spreading paste (to 

f"".ii::l Paint bucket for 
I..S2!..J area fill 

f"il Spray can for painting 
L.J!j w1th dot pattern 

rTl Brush for painting 
LfU solid area 

[lJ Pencil for drawing lines 

1 g 1 Eraser for deletion 

~ Pointer for selecting 
L!.J objects 

Fig. 9 .3 Command icons representing objects used to perform the corresponding 
command. (Copyright 1988 Claris Corporation. All rights reserved.) 

0434



400 Dialogue Design 

0 0 Translate 

0 0 Rotate 

0 D Uniform scale 

0 D Horizontal scale 

0 D Vertical scale 

0£7 Shear 

Fig. 9 .4 Command icons indicating geo­
metric transformations by showing a 
square before and after the commands are 
applied. 

~ Rotate 

~ Translate 

E ~ Shear 

Fig. 9.5 Several abstract command 
icons for some of the actions depicted 
in Fig. 9 .4 . Not all geometric operations 
can be represented in this way. 

paste something in place), and also for spreading paint (to color something). U both Paste 
and Paint could reasonably be commands in the same application , the brush icon could be 
ambiguous. Of course, sometimes only one interpretation wi ll make sense for a given 
application. 

Another design strategy for command icons is to show the command's before and after 
effects, as in Fig. 9.4 and Color Plates I. 19-1.21. This works well if the representations for 
the object (or objects) are compact. If the command can operate on many different types of 
objects, however, then the specific object represented in the icon can mislead the user into 
thinking that the command is less general than it really is. 

The NeXT user interface, implemented on a two-bit-per-pixel display, uses icons for a 
variety of purposes, as seen in Color Pl.ate 1.22. 

A final design approach is to find a more abstract represemation for the action. Typical 
examples are shown in Fig. 9. 5. These representations can depend on some cultural-specific 
concept, such as the octagonal stop-sign silhouette, or can be more generic, such as X for 
Oe.lete. 

~ 
(a) (b) (c) (d) (e) (f) 

(g) (h) (i) (k) (I) 

Fig. 9.6 Icons that represent Macintosh programs. What does each icon represent? In 
most cases, the icons suggest the type of information that is operated on or created. 
See Exercise 9 .14 for the answers . 
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8.5 State Diagrams 
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Fig. 9 . 7 The contents of a disk directory represented with icons and text. The icons 
help to distinguish one file from another. (Certain screen graphics © Apple Computer, 
Inc.) · 

Arbitrarily designed icons are not necessarily especially recogn izable. Figure 9.6 
shows a large number of icons used to represent Macintosh programs. We challenge you to 
guess what each program does! However, once learned, rhese icons seem to function 
reasonably well for remembering and discrimination. 

Many visual interfaces to operating systems use icons to discriminate among files used 
by different application programs. All files created by an application share the same icon. Tf 
a directory or disk contains many different types of files , then rhe discrimination allowed by 
the icon shapes is useful (see Fig. 9.7). If all rhe files are of the same type , however, rhis 
discrimination is of no use whatsoever (see Fig. 9.8). 

Icons can be poorly used. Some users dislike icons such as rhe trashcan, contending 
rhat such ideas are juvenile, "cute," and beneath their dignity. The designer may or may 
not agree with such an evaluation, but the user's opinion is usually more important than is 

~items 

~ 
[iJ 

Fig 7.GRAYITY Fig 7 .OVROT Fig 7.G'r!PAINT Fig 7.DUAl 

~ . ~ . ~ . ~ . 
Fig 7.HORIZ Fig 7.0R Fig 7.SK£TCH Fig7.1t 

Fig. 9 .8 The contents of a disk directory represented with icons and text. Since the 
files are all of the same type, the icons do not help to distinguish one file from another, 
and simply take up extra space. (Computer screen graphics © Apple Computer, Inc.) 
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the designer's. The user who dislikes a computer or program and thus develops a negative 
att itude is best taken seriously. 

9.2 .4 Other Dialogue Forms 

The dialogue styles discussed in the previous sect ion might be called " intrinsically 
graphical" in that our focus has been on graphically oriented interaction. A number of 
other dialogue forms are not intrinsically graphical but can be used in graphical 
applications. Four such forms are menus. command languages, natural-language dialogue, 
and questioiHlllSwer dialogue. We have discussed many specific design issues concerning 
menus in the previous chapter. In this section, we briefly discuss more general issues 
involving each of these dialogue forms. 

Menus are widely used in both grJphical and nongraphical applications. ln either case, 
however. the fundamental advantage of menus is that the user can work with what is called 
recognition memory, whe.rc visual images (textual or iconic menu items) are associated with 
already-familiar words and meanings. This contrasts with recall memory, where the user 
must recall from memory a command or concept in order to enter information into the 
computer. Menus reduce the memory load for users, and hence are especially attractive to 
novices. Menus, along with form fill-in. allow current selections to be indicated visually, 
further reducing the user's memory load and also allowing rapid input if the current 
selection is desired. On the other hand, menus limit the size of the selection set of 
alternatives, whereas some of the other dialogue styles do not. 

Use of a command language is the traditional way 10 interact with a computer. This 
technique can accommodate large selection sets, is easy to extend (just add another 
command), and is fairly fast for experienced users who can type. Learning time is its major 
liability, with the need for typing skills a second factor. Errors are more likely with 
command languages than with menus. because of the possibility of typing and recall errors. 

Natuml-/anguage dialogue is often proposed as the ultimate objective for interactive 
systems: If computers could understand our commands, typed or spoken in everyday 
English. then everyone would be able 10 use them. However, current voice rccognizers with 
large vocabularies must be individually trained to recognize a particular user's voice; they 
also make mistakes, and must be corrected somehow. Typing long sentences is ted ious. 
Also, because natural language does not bound the command set that an application 
program must handle, and also can be quite ambiguous, users of natural-language interfaces 
tend to make requestS that cannot be fulfilled , which leads to frustration of the user and 
poor performance of the system. 

This problem can be overcome in limited-domain (and hence limited-vocabulary) 
natural -language systems, in which users are familiar with the system's capabilities and 
hence arc unlikely to make unreasonable requests. Drawing programs and operating 
systems are examples of such systems. 

There is a fundamental flaw, however, in the argument that natural language interaction 
is the ultimate objective. lf the argument were true, we would be satisfied to interact with 
one another solely by means of telephone and/or keyboard communications. It is for this 
reason that voice input of natural language to an interactive graphics application program is 
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TABLE 9.1 COMPARISON OF SEVEN USER INTERFACE STYLES 

WYSI- Direct Menu Fom1 Command Natura.! Q/A 
WYG• manipulation selection fi 11-in language language dialogue 

learning time low low med low high low low 
speed of usc med med high high med low 
error-proneness low low low low high . high low 
extensibiHty low low med med high high high 
ryeinll skill required none none high high high•• high 

•wYSIWYG ha.• several blank fields because it is not a complete interface style, since it must be accompanied 
by some means of emering commands. 
•• Assuming keyboard input: none for voice-recognizer input. 

most likely to be used in combination with other dialogue styles, to allow overlapped use of 
the voice and hands to speed interaction. After all , this is exactly how we work in the real 
world: we point at things and talk about them. This powerful concept was compellingly 
demonstrated a decade ago in the ''Put-that-There" [BOLT80; BOLT84] program for 
manipulating objects. In this system, the user can move an object by pointing at it while 
saying "put that;" pointing elsewhere, and saying " there. " A recent study of a VI...Sl 
design program using voice input of commands combined with mouse selection of objects 
and positions found that users worked 60 percent faster than did those who had just a mouse 
and keyboard IMART89). 

Question~nswer dialogue is computer-initiated, and the user response is constrained 
to a set of expected answers. Using a keyboard for input, the user can give any answer. If the 
set of expected answers is small , the question can include the possible answers; menu 
selection might even be provided instead of typing as a means for the user to respond. ln the 
limit, question-answer dialogue becomes a sequential set of menu selections. A common 
failing of instances of this dialogue form is the inability to go back several steps to correct 
an answer. A more general problem with the sequentiality implied by this form is that of 
context: The user has only the context of the past and current questions to assist in 
interpreting the current question. With a form fill-in dialogue, by contrast, the user can see 
all the fields to be entered, and so can quickly tell , for instance, whether an apartment 
number in an address goes in the street-address field or in a separate apartment-number 
field. 

Table 9 . I compares user-interface dialogue styles. A much more extensive discussion 
of the pros and cons of many of tbese styles can be found in [SHNE86]. 

9.3 IMPORTANT DESIGN CONSIDERATIONS 

lo this section, we describe a number of design principles to help ensure good human factors 
in a design: be consistent, provide feedback, minimize error possibilities, provide error 
recovery, accommodate multiple skill level.s, and minimize memorization. Application of 
these principles is generally considered necessary , although by no means is sufficient, for a 
successful design. These and other principles are discussed more fully in [FOLE74; 
GAJN84; HANS71 ; MAYH90; RUBE84; SHNE86). 
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9 .3.1 Be Consistent 

A consistent system is one in which the conceptual model, functionality, sequencing, and 
hardware bindings are uniform and follow a few simple rules, and hence lack exceptions 
and special conditions. The basic purpose of consistency is to allow the user to generalize 
knowledge about one aspect of the system to other aspects. Consistency also helps to avoid 
the frustration induced when a system does not behave in an understandable and logical 
way. The best way to achieve this consistency is through a careful top-down design of the 
overall system. 

• 

• 

• 

Simple examples of consistency in the output portion of a user interface are 

The same codings are always employed. Colors always code information in the same 
way, just as red always means stop , and green always means go. 

System-status messages are shown at a logically (although not necessarily physically) 
fixed place. 

Menu items are always displayed in the same relative position within a menu, so that 
users can aUow " muscle memory" to help in picking the desired item. 

Examples of consistency in the input portion are 

• 

• 
• 

Keyboard characters-such as carriage return, tab, line feed , and backspace-always 
have the same function and can be used whenever text is being input. 

Global commands-such as Help, Status, and Cancel-can be invoked at any time . 

Generic commands-such as Move, Copy, and Delete-are provided and can be 
applied, with predictable results, to any type of object in the system. 

We should, however, remember Emerson's observation that "A foolish consistency is 
the hobgoblin of little minds" [EMER03]. Consistency can conHict with other design 
objectives. For instance, if dragging a file icon to the trash deletes the file, what should 
happen when a file icon is dragged to an electronic-mail outbox? Should the file be sent and 
then deleted, for consistency with dragging to the trash? Or should a copy of the file be 
sent? If a file. is dragged to a printer icon to print the file, should the fi le be printed and then 
deleted, for consistency with dragging to the trash? Surely in these latter two cases the file 
should not be deleted. The law of least astonishment, a higher design principle, suggests 
that doing what the user is likely to cons.ider normal or reasonable is more important than is 
maintaining pure consistency. 

Figure 9.9 shows how state diagrams can help to identify inconsistency. We can see 
here that help is available only from the move state, not from the other states. A mixed 
strategy is used to let users change their minds once an action sequence has been initiated. 
From the move and delete states there is a Cancel command, whereas the rotate state has an 
Undo command. The sequence of object/operation varies: for Move and Delete, the 
sequence is operation then object, whereas it is the reverse for rotation. The feedback 
strategy is also mixed: dynamic for moving, static for rotation. 

Reisner demonstrated experimentally an intuitively expected result: Given two func­
tionally equivalent user interfaces, new users make fewer errors and learn more quickly with 
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Return to neutral 

Move command 

Select and drag object 
Object repositioned 

Select object 

User accepiS rotation 
Rotation becomes permanent 

User rejects rotation 
Rotation undone 

Delete command 

Retum to neutral 

Help 

Done with help 

Enter rotation angle 
Perform rotation 

Select object 
Object deleted 

Fig. 9 .9 State diagram of a user interface with an inconsistent syntax. 

405 

one that has a simpler syntactic structure [REIS82]. Thus, another useful design objective 
to apply is simply to minimize the number of different syntactic structures. 

At the functional level, consistency requires the use of gtneric commands that apply 
across as broad a range as possible. For example, chairs and desks should be moved in the 
same way in the room-layout program discussed previously; files should be opened, deleted, 
and saved from within application programs with the same generic file-manipulation 
commands. 

9 .3 .2 Provide Feedback 

Have you ever tried conversing with a partner who neither smiles nor nods, and who 
responds only when forced to do so? It is a frustrating experience, because there is little or 
no indication that the partner understands what you are saying. Feedback is as essential in 
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con\'Crsation with a computer as it is in human con\'Crsation. The difference is that, in 
normal con\'Crsation with another person, many sources of feedback (gestures, body 
language, facial expressions, eye contact) are usually provided without conscious action by 
either panicipant. By contrast, a workstation gives little automatic feedback (just the 
''power on" light and perhaps the whir of a fan), so :til feedback must be planned and 
programmed. 

Feedback can be given at three possible levels, corresponding to the functional, 
sequencing, and hardware-binding (semantic. syntactic, and lexical) levels of user-interface 
design. The designer mUSt consciously consider each level and explicitly decide whether 
feedback should be present, and, if it should be, in what form . The lowest level of feedback 
is the hardwJre level. Each user action with an input device should cause immediate and 
obvious feedback: for instance, chamcters typed on a keyboard are echoed, and mouse 
movements are echoed by the cursor. 

Feedback at the sequencing-design level occurs as each unit (word) of the input 
language (command, position, object, etc.) is accepted by the system. A selected object or 
menu command is highlighted, so the user can know that actions have been accepted (i.e .. 
the "words'' have been understood) . Similar forms of feedback are prompting for the next 
input, lighting the function key that has just been pressed, and echoing verbal (speech) input 
with text output. 

Another form of sequencing feedback should occur when a complete sequence has 
been input and is found to be well formed. This acknowledgment of receipt of a proper 
command is generally needed only if processing the command itself will take more than I 
or 2 seconds. 

Another type of functional feedback-some indication that the computer is at least 
working on the problem-is necessary only if completion of the operation will take more 
than a few seconds. (In the absence of such feedback , users ha\'C been known to express 
their frustration physically on the workstation, or even on the application designer!) Such 
feedback can take many forms; particularly attractive is a dial or gauge to indicate the 
percentage complete . The user can quickly determine whether a coffee break is in order. In 
an experiment , Myers found a strong user preference for such indicators [MYER85.1. 

The most useful and welcome form of functionnl feedback tells the user that the 
requested operation has been completed. This is usually done with a new or modified 
display that explicitly shows the results of the operation. 

It is useful to distinguish between problem-domain and control-domain feedback. 
Probl~m-domain feedback concerns the actual objects being manipulated: their appearance, 
their position, their existence. Comrol-domai11 feedback has to do with the mechanisms for 
controlling the interactive system: status, current and default values, menus, and dialogue 
boxes. 

Problem-domain feedback is needed if users can see just pan of a large drdwing, so that 
they can know which part of the world is being displayed. Figure 9. 10 shows one way to do 
this. The approach can be even more effective with rwo displays-one for the O\'Crview, the 
other for the detail. ln e ither case, the rectangle in the overview indicates which pan of the 
dmwing is being shown in the detailed display. Panning and zooming are generally e ffected 
by dragging and resizing the overview rectangle. Figure 9 . 11 shows how increasing 
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Overview View 
area Indicator 

\ I 
This work area displays part of a larger o drawing. The 011erview area at upper 
right corresponds to the entire drawing. 
The dashed reaangutar view indicator in 
the 0\/erview area indicates which pan of 
the entire drawing is displayed here. The 
user can resize the view Indicator by 
dragging the handles on the tour comers. Menus 
and can repos"ion ll The aspect ratio 
Is maintained during resizing. 
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Fig. 9 .10 The v iew indicator is used both to give an overview and to control what is 
displayed in the work area. 

(a) Scroll bar with no status 
display to indicate which 

part of the drawing is being 
displayed, or to indicate 

the size of the window with 
respect to the overall drawing. 

(c) A page number has been 
added to the elevator, so 
there is now partial infer· 

mation to help the user infer 
the size of the window with 

respect to the overall drawing. 

(b) Scroll bar with "elevator" to 
Indicate which part of the 

drawin9 is being displayed. 
There os still no way for the 

user to know the size of the 
window with respect to the 

overall drawing. 

(d) The elevator has now been 
scaled so that the ratio of its 

height to the height of the 
scroll bar is the same as the 

ratio of the window's height to 

L: 

that of the overall drawing. 2 
The page number is now a 
form of redundant coding. 

It conveys linguistically some 
of the information that the 

elevator conveys graphica.lly. 

Fig. 9.11 Four d ifferent levels of feedback in scroll bars, ranging from none in (a) to 
redundant coding in (d). 
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·­··~-e_;·. 
Fig. 9 .12 The overview mode in MacPaint. Because the screen is very small, the 
overview alternates with the normal, more detailed view of the drawing. The user drags 
the rectangular dashed box to the desired area, and selects "OK" to see the detailed 
view of the enclosed area. (Copyright 1988 Claris Corporation. All rights reserved.) 

amounts of feedback can be built into window scroll bars. Another approach to orienting 
the viewer is used in MacPaint, as shown in Fig. 9.12. 

An important type of control-domain feedback is current settings. Current settings can 
be shown in a feedback area. lf the menus or other tools by which settings are selected can 
always be displayed, then the current setting can be indicated there, as in Fig. 9.13. The 
pull-out menus illustrated in Fig. 8.14 also show current settings. 

The positioning of feedback is important. There is a natural tendency to designate a 
fixed area of the screen for feedback and error messages. This can destroy visual continuity, 
however, since the user's eyes must move between the work area and the message area. 
Indeed. users often do not notice messages in these fixed areas. Adding audio feedback can 
eliminate this problem. 

Placing the feedback where the user is looking, which is generally at or near the cursor, 
is especially attractive. Tilbrook's Newswhole system [TlLB76) was one of the first to 
employ this idea; it uses a seated Buddha to encourage the user to be patient during 
computational delays, and a thumbs-down symbol to indicate a mistake. 

x ­-
x­- j . 

X I . I 

Fig. 9 .13 In this menu of graphic attributes, the x indicates the current setting. The 
user has constant feedback if the menu can be permanently visible. If not, a more 
compact form of permanent feedback should be used. 

0443



9.3 Important Design Considerations 409 

9.3 .3 Minimize Error Possibilities 

Don'1 se1 11te user up for a fall is :mother way to stale this objective. For example. 

• 

• 
• 

• 
• 
• 

Do not offer menu options 1ha1 will elicil an '"illegal selection. command not valid 
now'" message 

Do not let the user select Delele if there is nothing to be deleted 

Do not let the user try to change the font of the currently selected object if the object is 
not a text string 

Do not let the user Paste when the clipboard is empty 

Do not lei the user Copy when nothing is selected 10 be copied 

Do not let the user se.lect a curve-smoothing command when the currenlly selecled 
object is not a curve. 

In alllhese instances, I he system shou ld instead disable unavailable items and alert the 
user by changing the menu item's appearance-for instance, by making it gray instead of 
black. 

These are all examples of comext sensitivity. The system provides the user with only 
those oommands that are valid in the current oonlext or mode. When there is a oontext . the 
system should guide the user to work within that context and should make it difficult or 
impossible for the user to do things that are not permissible in that context. 

Another aspect of this objective is to avoid side ejfec1s, which are resultS the user has 
not been led to expect. The classic side effect is the print command that also deletes the fi le 
being printed. Side effects arise from poor design or inellective communication wilh I he 
user regarding what a command does. 

9 .3 .4 Provide Error Recovery 

We all make mistakes. Imagine not having a backspace key on your computer keyboard! 
The effect. on your productivity, as you became much more cautious in typing, would be 
devastating. There is ample experirnent.al evidence that people are more productive if I heir 
mistakes can be readi ly corrected. With good error recovety, the user is free to explore 
unlearned system faci li ties without ''fear of failure.'' This freedom encourages explor.llory 
learning. one of the major ways in which system features are learned. We discuss four types 
of error recovery: Undo. Abort. Cancel, and Correct. 

The most serious type of error is functional: the user has mistakenly in,'Oked one or a 
series of oommands and has obtained unanticipated resultS. An Undo oommand is needed 
to reverse the resultS of the command. There are two types of undo: single level and 
multilevel. The single-level undo can reverse only the most recently executed command. 
This Undo itself is a command. so I he second of t\\10 successive Undo commands undoes 
the first Undo, returning the system to ils state prior to the t\\10 Undo commands. 

In contrast. a multilevel Undo operates on the stack of previous commands. The uctual 
number of commands stacked up and thus able to be undo ne is implementation-dependent.; 
in some cases, all commands since the session began are saved. With a multilevel undo, a 
Redo command is also needed. so that, if the user backs up too far in the oommand stack, 
the most recently undone command can be redone. Nei ther Undo nor Redo is en1ered on 
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the stack. Several tricky issues concerning Redo are discussed in [VITf84J. For a s ingle 
level, Undo and Redo are mutually exclusive: One or the other, but not both, can be 
available at any given time. For multilevel, Undo and Redo can be available at the same 
time. 

Users often need help in understanding the scope of the Undo command (i.e ., how 
much work the command will undo). They also are often confused about whether Undo 
applies to windowing commands, such as scrolling, as well as to application commands. If 
the Undo command is in a menu, the menu-item text can indicate what will be undone; 
instead of ''undo," the entry could be "undo copy" or ''undo deletion." Kurlander and 
Feiner have developed a graphical way to show the history of user actions and the scope of 
Undo, shown in Color Plate 1.23 [KURL88; KURL90] . 

A form of undo is sometimes provided as an explicit-accept. explicit-reject step. After a 
command is carried out and its results are shown on the display, the user must accept or 
reject the results before doing anything else. This step adds to the number of user actions 
required to accomplish a task, but docs force the user to think twice before confirming 
acceptance of dangerous actions. However, an Undo command is usually preferable 
because an explicit action is required only to reject the results of a command; the command 
is implicitly accepted when the next command (other than the Undo command) is entered. 
Hence, v.-e call undo an implicit-<1cupt, explicit-reject strategy. 

No matter how undo is provided, its implemention requires extra programming, 
especially for commands that in~'Oive major changes to data structures . An easier, although 
less satisfactory, alternative to undo is to require the user c)(plicit.ly to confirm commands 
for which there is no undo. This is commonly used for the fi le-delete command. 

A user may realize that a functional-level mistake has been made while a command is 
still being performed. This illustrates the need for an Abort command to terminate 
prematurely a currently executing command. Like Undo, Abort mUSt restore the system to 
its C)(aCt state prior to initiation of the aborted command. In fact, Abort and Undo can be 
thought of as essentially the same command: They both reverse the most recently specified 
functional-level action. A user-interface design might make both actions available with the 
same name. 

A less dramatic type of error occurs when the user is partway through specifying 
information required to carry out some command, and says, "Oops, I don't really w.tntto 
do this!" A poorly designed interface gives the user no cnoice but to proceed with the 
command, after which an Undo or Abort (if available) is used to recover. A well-designed 
interface lets the user back out of such a situation with a Cancel command. This is 
especially common with a form fill-in dia.logue, where a Cancel command is often available 
on the form, as in Fig. 8.32. Note that Cancel can also be thought of as a specialized Undo 
command, with the system reverting to the state prior to the current command. 

In a less serious type of error, the user may want to correct one of the units of 
information needed for a command. The dialogue style in use determines how easy to make 
such corrections are. Command-language input can be corrected by multiple backspaces to 
the item in error, followed by reentry of the corrected information and all the information 
that was deleted. If the system has line-editing capabilities, then the cursor can be moved 
back to the erroneous information without the intervening information being deleted. Form 
fill-in allows simple corrections as well, whereas question-answer and menu dialogues are 
not so forgiving. The dynamic interaction techniques discussed in Chapter 8 provide a form 

0445



9.3 Important Design Considerations 411 

of error re<:overy: for instance, the posi tion of an object being dragged into place is easy to 
change. 

9.3 .5 Accommodate Multiple Skill Levels 

Many interactive graphics systems must be designed for a spectrum of users , ranging from 
the completely new and inexperienced user through the user who has worked with the 
system for thousands of hours. Methods of making a system usable at all skill levels are 
accelerators, prompts. help. extensibility, and hiding complexity. 

New users normally are most comfortable with menus, forms, and other dialogue styles 
that provide considerable prompting, because this prompting tells them what to do and 
facilitates learning. More experienced users, however, place more value on speed of use. 
which requires use of function keys and keyboard commands. Fast interaction techniques 
that replace slower ones are called accelerators. Typical accelerators, such as one-letter 
commands to supplement mouse-based menu selection, have been illustrated in previous 
sections. The Sapphire window manager [MYER84], taking this idea even further, 
provides three rather than two ways to invoke some commands: pointing at different areas of 
the window banner and clicking different mouse buttons, a standard pop-up menu, and 
keyboard commands. 

The Macintosh uses accelerators for some menu commands, as was shown in Fig. 
8. 13. Another approach is to number menu commands, so that a number can be typed from 
the keyboard, or a command can be selected with the cursor. Alternatively, the command 
name or abbreviation could be typed. 

One of the fastest accelerators is the use of multiple clicks on a mouse button. For 
instance, the Macintosh user can select a file (represented as an icon) by clicking the mouse 
button with the cursor on the icon. Opening the file , the typical next step, can be done with 
a menu selection, an accelerator key, or an immediate second button click. The two rapid 
clicks are considerably faster than is either of the other two methods. From within 
applications, another scheme is used to open files, as illustrated in Fig. 9.14. The dialogue 
box permits a file name to be selected either by pointing or by ryping. If the name is typed, 

Seleet e Document: 

I® Chapter 91 
0 Chop 9 - Human p! ® Chopter9 
0 Chop 9 - Human. I I 071C ouellabte 
0 Chop 9 color plates I.. l Open J I [Jet! I 0 Chop 9 rtg t op lion• 
0 Chap 9 TOC I Coneet l l ( Or1ue I 0 Chapter 9 uery old ,; 0 £Hertlse rar Chop 9 D Read Only 

Fig. 9 .14 Opening files from within a Macintosh program. The user enters the Open 
command, either by menu selection or with a two-key chord, causing the dialogue box 
to appear. The highlighted file can be opened with the "open" button or with the 
carriage-return key. The user can highlight a new file by selecting it with the cursor or by 
typing some or all of its name. Therefore. the user can open a file using only the 
keyboard, by entering the two-key chord. a partial file name, and the return key. 
(Computer screen graphics @ Apple Computer, Inc.) 
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aut.ocompletion perm irs the user to type only enough characters for the name to be specified 
unwnbiguously. Double clicking on a file name opens the file immediately. 

Another form of accelerator is to provide command-line input as an alternative to the 
other styles. As users gain experience, they use the command line more and more. This 
transition can be aided by displaying the command-line equivalent of commands that are 
entered in other wuys. 

Unlike feedback, which acknowledges specific user actions, the purpose of prompts is 
to suggest what to do next. The more experienced the user, the less prompting is 
appropriate, especially if prompting is obtrusive and slows down the interaction or uses 
much of the screen. Many systems provide several levels of prompting controllable by the 
user; the inexperienced can be "led by the hand," whereas the experienced can proceed 
without the prompts. 

Prompting can take many forms. The most direct is a displayed message that explains 
explicitly what to do next, such as "Specify location." A speech synthesizer can give 
explicit aural instructions to the user. Subtler forms of prompting are also available. On a 
function-key box, buttons eligible for selection can be illuminated. A prominent tracking 
cross or cursor can be displayed when a position must be input; a blinking underline cursor 
can indicate that a text string is to be input; a scale or dial can be displayed when a value is 
desired. Direct-manipulation graphical interfaces implicitly provide promprs: the icons that 
can be manipulated are the prompt. 

A help facility allows the user to obtain additional information about system conceptS, 
typical tasks, various commands and the methods used to invoke them, and interaction 
techniques. Ideally, help can be requested from any point in the interactive dialogue, always 
with the same mechanism. The return from help should leave the system in exactly the same 
state as when help was inYOked, and the help should be context-sensitive. For example, if 
help is invoked while the system is awaiting a command, a list of commands available in 
this state should be shown (with menus or function keys, this may be unnecessary). The 
Help command followed by a command name should yield more information about the 
command. If help is requested while the parameters of a command are being entered, 
details about the parameters should be provided. A second Help command should produce 
more detailed information and perhaps allow more general browsing through online 
documentation. Sukaviriya [SUKA88] developed a system to show the user an animation of 
how to accomplish a task, using the current context as the basis of the animation. Some help 
capabilities based on hypertext systems allow the user to follow complex sets of links 
among various help topics. 

An easy way to invoke help is to point at the entity on the screen about which belp is 
desired. The entity could be a menu item, a status indicator (the help should explain the 
starus and how to change it), a window banner, a scroll bar, or a previously created 
application object (the help should explain what the object is and what operations can be 
applied to it) . This approach, however, can be used only for visible objects, not for more 
abstract concepts or for tasks that must be performed with a series of commands. 

A help capability is appropriate even if promptS and menus are displayed, because it 
gives the user an opportunity to receive more detailed information than can be provided in a 
short prompt. Even experienced users forget details, particularly in a large and complex 
application. 
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Expert systems are beginning to be integrated into user imerfa.ces to provide help that 
not only is context-sensitive, but also is tailored to individual user profiles. These profiles 
are developed automatically by the system as a new user and the system interact and learn 
more about each other, just as teachers learn about their students and custom-tailor their 
suggestions. 

Malcing the user interface extensible means letting the user add additional functionality 
to the interface by defining new commands as combinations of existing commands. The key 
is to be able to save and replay sequences of user actions. A particularly appealing 
macro-definition capabi lity is one in which user actions are automatically saved in a trace 
file. To create a macro, the user edits the trace file to identify the start and end of the macro, 
replace literals with parameters, and names the macro. Several commercial applications, 
such as Ashton-Tate's Full impact, have such capabilities; Olsen has developed a 
particularly sophisticated prototype system [0LSE88). 

Hiding complexity can allow new users to learn basic commands and to start doing 
productive work without becoming bogged down with specifying options, learning 
infrequently used specialized commands, or going through complicated start-up 
procedures. On the other hand, powerful systems of necessity have many commands , often 
with many variations. The solution to this quandary is to design the entire set of commands 
so that it has a small "starter kit" of commands. Default values (current or initial settings) 
that follow the law of least astonishment can often be useful to achieve this goal. 

For example, a chart-malcing program should allow the user to request a pie chart, 
specify some data, and immediately see the chart. If the user is dissatisfied with some 
details of the chart layout , she shou.ld be able, say, to modify the radius of the pie, to change 
the color or texture of each pie slice, to add annotations, to change the text face or font used 
to display the data values, or to change the position of the data values displayed with each 
pie sHoe. But the user should not be forced to specify e.ach of these explicitly when initially 
creating the cbart. 

Another design strategy is to make complicated and advanced commands available 
only via keyboard commands or function keys. This approach keeps the menus smaller and 
makes the system simpler and less intimidating. Alternatively, two or more sets of menus 
can be provided, each with successively more commands included. 

Yet another way to hide complexity is to use control keys to modify the meaning of 
other commands. For instance, the Macintosh window manager normally activates the 
window that the user selects and drags to a new position. The more advanced user can 
reposition a window without activating it by holding down the control key (called the 
command key on tbe Macintosh, in appropriate deference to computer-na.ive users). New 
users simply are not told about this feature. 

9.3 .6 Minimize Memorization 

loterface designs sometimes force unnecessary memorization. Ln one design-drafting 
system, objects are referred to by numeric rather than by alphanumeric names. To 
appreciate what that means, we can imagine an interactive operating system in which file 
names are numeric. The remembering and learning tool of mnemonic names would be 
unavailable, forcing rote memorization or the use of auxiliary written aids. Of course, 
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explicit picking of displayed objects or icons further eliminates the need for memorization. 
It is imponant to invoke the user's recognition rather than recall memory whenever 
possible. 

In one interactive graphing system, a command such as " Plot years gross net" 
produces a trend chart of yearly gross income and net income on a single set of axes. A 
reasonable way to control the style of a line is to use a command such as "Linestyle net 
dash" (to plot the net income with a dashed line). Unhappily, the actual command is of the 
form " Linestyle 3 dash." The "3" refers to the third variable named in the most recent 
"Plot" command-in this case, net. Since the most recent Plot command is not generally 
on the screen, tbe user must remember the order of tbe parameters. 

Some help systems completely obscure the work area, forcing the user to memorize the 
context in order to interpret the help message. Then, once he understands the help 
information, the user must remember it while returning to the context in which the error 
occurred. Window managers solve this problem; help information is in one window, the 
application is in another. 

9.4 MODES AND SYNTAX 

Loosely defined, a mode is a state or collection of states in which just a subset of all possible 
user-interaction tasks can be perfonned. Examples of modes are these: 

• 

• 

• 

• 

A state in which only r-... mmands applicable to the currently selected object are 
available 

A state in wl>ich a di ' \ogue box must be completed before another operation can be 
performed 

A state for making drawings in a document-preparation system in which separate 
programs are Uf ,d to edit text, to make drawings, and to lay out the document 

A state in whir.11 available commands are determined by the current data-tablet overlay . 

Thus, modes prvvide a context within which the system and user operate. 
There are two kinds of modes: harnlful ones and useful ones. A harmful mode, as 

discussed by Tesler [TESL81] and by Smith and colleagues [SMIT82] , lasL ~or a period of 
time, is not associated with any panicular object, is not visible to the user, and serves no 
meaningful role. Harmful modes confuse users; users get stuck in them and cannot get out, 
or users forget in which mode they are and attempt to invoke commands that are not 
available, potentially creating errors. Modes that decrease user productivity are harmful. 

On the other hand, useful modes narrow the choices of what to do next, so prompts and 
help can be more specific and menus can be shorter and thus easier to traverse. A 
weii-<Jrganized mode structure can reduce the burden on the user's memory and can help to 
organize knowledge about the interface into categories based on the mode. Useful modes 
increase user productivity. 

Useful modes clearly indicate the current mode, provide feedback to show what 
commands are av-itilable, and include an easy, obvious, and fast means for exiting from the 
mode. Window managers provide highly visible modes, since each window represents a 
different mode; mode switching is effected by deactivating one window and activating 
another. 
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Users can be made .aware of short-lived modes by a suue of heightened muscle tension 
while in the mode. The ·'button-down-dynamic feedback-button-up" interaction tech­
niques discussed in Chapter 8 make the user aware of the mode through the muscle tension 
involved in holding down the mouse button [BUXT86]. 

Command-language syntax has a major influence on the mode structure of 11 user 
interface. The traditional prefix syntax of Command, parameter I, ... , parameter n locks 
the user into a mode as soon as the command is specified: Only parameters can be entered, 
possibly in a required order. Mechanisms for error correction (Section 9.3.4) are especially 
important here. because otherwise the user who erroneously selects a command must 
continue the potentially lengthy parameter-specification process. 

One of the difficulties of prefix syntax is solved by u process called factorillg or 
orthogo~~alizatioll. Commands arc provided for setting each of the parameters to a current 
V'.tlue; parameters may also have an initial (default) value. Consider, for instance, the 
following unfactored command syntax, where an initial capital letter indicates a command, 
and lowercase letters indicate parameters: 

point point tine_style line_lhiokness line_intensity 

We can factor out the attribute specifications into either three sepa.rate commands or one 
overall attribute-setting command. Hence, the user would go through the sequence 

SeLattributes 

OrJwjine 

attribute_ values 

point point 

{Only if the current anributc values 
are inappropriate} 

We can factor this sequence further by introducing the concept of a currem poilll, which is 
selected by the user before she invokes the Draw _line command: 

Seuttributcs 

SelecLpoint 
Select_point 
Orowjine 

attribute_ wlucs 

point 
point 

{Only if the current attribute v-.tlues 
are innppropriate} 

{Selcel stan point} 
{Select end point} 
{Or.IW_line ha.~ no paramet.crs­
atl have been factored out} 

Completely par.uneterless commands are not necessarily desirable. Here, for example, 
specifying points and then telling the system to connect them by a line eliminates the ability 
to do rubberband line drawing. 

What about applications in which the user tends to perform the same command several 
times in sequence, each time on different objects? This situation suggests using a 
command-mode syntax in which the command is entered once, followed by an arbitrary 
number of parameter sets for the command. For instance, the syntax to delete objects could 
be as follows: 

Delete_ object 
object 
object 
object 

any command 

{Establish Oelete_object command mode} 

{E5tablish new command mode} 
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Delete_object establishes a deletion mode so that each object selected thereafter is deleted , 
until any other command is selected. Note that command mode implies a prefix syntax. 

If we factor out the object parameter from the command whose syntax is 

Delete_object object 

we introduce the concept of a curremly selected object, or CSO. We also need a new 
command, Select_object, to create a mode in which there is a CSO; this CSO can then be 
operated on by the Delete_object command: 

Select_ object 

Delete_object 

object {Use if no object is selected, 
or if another CSO is desired} 
{No parameter--the object 
has been factored out} 

The parameter factoring has created a postfix syntax: The object is specified first by 
selection, and then the command is given. This is an especially attractive technique if the 
user is working with a pointing device , because we have a natural tendency to point at 
something before saying what to do with it; the converse order is much less natural 
[SUKA90). 

The currently selected object is a useful concept, because the user can perform a series 
of operations on one object, and then move on to another. Furthermore, the Select_object 
command usually can be made implicit: The user simply points at the object to be selected 
and clicks a button. This means that factoring does not need to create extra st.eps. 

Recall that command mode has a prefix syntax. Can its advantages be retained if a 
postfix syntax is preferred? The answer is yes, if a Repeat command, to repeat the last 
non select command, can be made available easily, say by a button-down on a multibuuon 
mouse. lf so, the user action sequence to delete several objects could be 

Select_object 
Delete_object 
Select_ object 
Repeat 
Select_object 
Repeat 

object 

object 

object 

{Establish a CSO} 
{Delete the CSO} 
{A new CSO} 
{Single button depression to delete} 
{A new CSO} 
{Single bunon depression to delete} 

Compare this to the action sequence that would be used with a true command mode: 

Delcte_object 
object 
object 
object 

As.~uming that SelecLobject requires just a point and click, the extra steps needed to use 
RepeaUast_operation with an object mode, as opposed to using a command mode, are a 
single bunon-push per deletion. 
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Another sequencing altem:uive is the arbitrary free-form syntax (noftx syntax). which 
penn its intennixing of different syntaxes. Whether the user specifies an object and then an 
action or an action and then an object. the action is carried out on the object. For example, 

Set_nuributes 
Select_object 
Sct_onributes 
Select_object 
Select_ object 
Set_attributes 

auribute wlues 
object I 
auributc wlues 
object2 
object3 
attribute wlues 

{Attributes applied to objccll} 

{Auributes applied to object2} 

{Anributes applied to object3} 

Note that this syntactic structure cannot assume a currently selected object; if it did. then 
the second SeLattributes command would immediately operate on object I , rather than on 
object2. 

Command and currently selected-object modes can be used with a free-form syntax if a 
Do_it command is added, so the user can tell the system to carry out the current command 
on the currently selected object. This command does, however, add another user action, as 
the following sequence illustrates: 

Select_ object 
Set_anributes 
Do..it 
Copy 
Sclect_object 
Do ..it 
Do _it 

object 
anribute values 

object 

{Establish a CSO} 
{Establish a current command} 
{CSO rcoeives new attributes} 
{Establish a new current command} 
{Establish a new CSO} 
{Copy CSO: copy is now the CSO} 
{CSO copied; new copy is the CSO} 

An ahcmalive to this free-fonn syntax is a mode-sensiti1~ syntax. which differentiates 
between the two sequences to make the SeLattributes command mode-sensitive: 

and 

Set_ottributes 
Select_ object 

Select_ object 
Set_anributes 

anribute values 
object 

object 
attribute values 

{No CSO at this point} 

{Establish a CSO} 

Mode-sensitivity is a special case of a more general context-sensitivity, by which the efl'ect 
of a command depends on the current context. In the first of the preceding sequences, 
where there is no CSO when SeLattributes is used , the attribute values become the global 
default values that are applied when new objects arc created. In the second sequence, where 
there is a CSO, t.he auribute values apply to the CSO and do not change the global defau lt 
values. That is, the existence or nonexistence of a CSO, which is a mode. detem1ines the 
effect of the command. This technique creates a more powerful set of commands without 
adding any explicit new commands; hO'>\'Cver, the user must have mode feedback to know 
bow the command will behave. Also. some users are confused by this approach. because it 
seems inconsistent until the rules are understood. 
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The general concept of factoring is important for several reasons. First, new users do 
not need to be concerned with factored parameters that have default values, which improves 
learning speed. Values for factored parameters do not need to be specified unless the current 
values are unacceptable, which improves speed of use. Factoring out the object from the 
command creates the concept of a CSO, a natural one for interactive graphics with its 
pointing devices. Finally, factoring reduces or eliminates the short-term modes created by 
prefix commands with multiple paro~meters. Factoring has been incorporated into a 
user-interface design tool so that the designer can request that specific parameters be 
factored; the necessary auxiliary command (SelecLobject) is introduced automatically 
(FOLE891. 

There are several variations on the CSO concept. First, when an object is created, it 
does not need to become the CSO if there is already a CSO. Similarly, when the CSO is 
deleted. some other object (the most recent CSO or an object close to the CSO) can become 
the new CSO. In addition , a current ly selected set (CSS) made of up several selected objects 
can be used. 

9.5 VISUAL DESIGN 

The visual design of a user-computer interface affects both the user's initial impression of 
the interface and the system's longer-term usefulness. Visual design comprises all the 
graphic element~ of an interface, including overall screen layout , menu and form design , use 
of color, information codings, and placement of individual units of information with 
respect to one another. Good visual design strives for clarity. consistency, and attractive 
appearance. 

9.5.1 Visual Clarity 

If the meaning of an image is readily apparent to the viewer, we have visual clarity. An 
important wJy to achieve visual clarity is to use the visual organization of information to 
reinforce and emphasize the underlying logical organization. There are just a few basic 
visual-organization rules for accomplishing this end. Their use can have a major innuence , 
as some of the examples will show. These rules , which have been used by graphic designers 
for centuries (MARC80], were codified by the Gestalt ps}dlologist Wertheimer [WERT39] 
in the 1930s. They describe how a viewer organizes individual visual stimuli into larger 
overall forms (hence the term GBtalt. literally "shape" or " form," which denotes an 
emphasis on the whole, rather than on the constituent parts). 

The visual-organization rules concern simi larity, proximity, closure, and good 
continuation. The rule of similarity states that two visual stimuli that have a common 
property are seen as belonging together. Likewise, the rule of proximity states that two 
visual stimuli that are close to each other are seen as belonging together. The rule of closure 
says that, if a set of stimuli almost encloses an area or oould be interpreted as enclosing an 
area, the viewer sees the area. The gQOd-continumion rule states that , given a juncture of 
lines, the viewer sees as continuous those lines that are smoothly connected. 
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Fig. 9.15 Gestalt rules. ln (a). the squares are undifferentiated. In (b), proximity induces 
a horizontal grouping; in (c), it induces a vertical grouping. In (d), similarity induces a 
horizontal grouping, which is further reinforced in (e) by a combination of proximity and 
similarity. In (f), closure induces a square of dots, even though two dots are missing. 

Figures 9. 15 and 9.16 give examples of these rules and also show how some of them 
can be combined to reinforce one another. Figure 9.17 shows a form before and after the 
visual organization rules have been applied. In part (a), everything is near to everything 
else, so the underlying logical groupings arc unclear. Similuriry (here, in the sense of being 
contained in a box) and proximity bind together the paucrns and the choice buuons in (b). 
Closure completes the boxes. which arc broken by the label. 

(a) 

(d) 

(b) 

D 
D 

(e) 

(c) 

D 
0 

(f) 

Fig. 9 .16 More Gestalt rules. The rwo intersecting lines in (a) could be interpreted as 
shown in either (b) or (c). Good continuation favors (b). In a more applied context, the 
two overlapping windows of (d) could be interpreted as shown in either (e) or (f). Good 
continuation favors (e). 
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Area Pattern ®Automatic 0 tnuls lble 

• • • DO EI DDI!i!llllffll!3 · 0 · ~ 
Border Pattern ® Automatic 0 lnulslble 

• • • IIl 0 El DD IIi! l!fHB l8l! • ~ • I:S3 
Border Weight I 

(a) 

Area Pattern 
® Rutomotlc 0 lnulslble 

• • • CJ 0 E1 011 1111 1111 !fH8 • 0 • ~ 
Border Pa ttern 

® Rutomollc 0 lnulslble 

• • •o o e~ DIIIIlllilllllll!!ii • ~ • I:Sl 

[E Border Weight I 
I I I I 

(b) 

Fig. 9 .17 (a) Form laid out with little attention to visual design. (b) Form created using 
visual grouping and closure to reinforce the logical relationships among the visual 
elements of the form. (Screen shots @ 1983- 1989 Microsoft Corporation. Reprinted 
with permission from Microsoft Corporation.) 

The rules are applied to improve menu organization in Fig. 9.18. 11le leftmost 
organization is visually unstructured and almost conceals its logical organization. 11le 
rightmost menu uses proximity to form groups and similarity of indentation to show the 
two-level logical structure. In Fig. 9. 19, the similarity rule has been used in two different 
ways (similar typographical style, similar level of indentation) to reinforce logical 
organization. 

ROTATE X 
ROTATEY 
ROTATEZ 
TRANSLATE X 
TRANSLATEY 
TRANSLATEZ 

ROTATE X 
ROTATEY 
ROTATEZ 

TRANSLATE X 
TRANSLATEY 
TRANSLATEZ 

ROTATE 
X 
y 
z 

TRANSLATE 
X 
y 
z 

Fig. 9.18 Three designs for the same menu, showing application of visual design 
techniques. 
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A MAJOR CATEGORY 
A LESS MAJOR CATEGORY 
AN EVEN LESS MAJOR CATEGORY 
AN EVEN LESS MAJOR CATEGORY 
THE LEAST MAJOR CATEGORY 
THE LEAST MAJOR CATEGORY 
AN EVEN LESS MAJOR CATEGORY 

(a) 

A MAJOR CATEGORY 
A LESS MAJOR CATEGORY 
An even less major category 
An even less major category 
The leas t major category 
The least major category 

An even less major category 
(b) 

A MAJOR CATEGORY 
A LESS MAJOR CATEGORY 

An even less major category 
An even less major category 

The least major category 
The least major category 

An even less major category 
(c) 

Fig. 9.19 Three designs presenting the same information. (a) The design uses no 
visual reinforcement. (b) The design uses a hierarchy of typographical styles (all caps 
boldface, all caps, caps and lowercase. smaller font caps and lowercase) to bond 
together like elements by simila rity. (c) The design adds indentation, another type of 
similarity, furthe r to bond together like elements. 

When ignored or misused, the organization rules can give false visual cues and can 
make the viewer infer the wrong logical organization. Figure 9.20 gives an example of false 
visual cues and shows how to correct them with more vertical spacing and less horizontal 
spacing. Figure 9.21 (a) shows a similar situation. 

Recall that the objective of using these principles is to achieve visual clarity by 
reinforcing logical relationships. Other objectives in placing information are to minimize the 
eye movements necessary as the user acquires the various units of information required for a 
task, and to minimize the hand movements required to move a cursor between the parts of 
the screen that must be accessed for a task. These objectives may be contr.tdktory; the 
designer's task is to find the best solution. 
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ATE BAT BET 

BITE CAT CUP 

DOG EAST EASY 

ATE BAT BET FAR FAT FITS 

BITE CAT CUP 
DOG EAST EASY GET GOT GUT 
FAR FAT FITS 
GET GOT GUT 
HAT HIGH HIT HAT HIGH HIT 

(a) (b) 

Fig. 9 .20 In (a). the list has a horizontal logical (alphabetical) organization, but a vertical 
visual organization is induced by the strong proximity relationship. In (b), the alphabeti­
cal organization is visually reinforced. 

9.5.2 Visual Codings 

In interface design , coding means creating visual distinctions among several different types 
of objects. Many different coding techniques are available: color. shape, size or length, 
1ypeface, oricnlat ion, intensity. texlure, line width. and line style are all commonly used in 
computer graphics. A fundamental issue with any coding technique is to delcrmine how 
many different categories a particular technique can encode. As more code values are 
introduced, the possibility of the viewer confusing one value with another increases. The 
use of a legend, indicating the meaning of each code value, can decrease the error rate. 

Many experiments have been conducted to determine how many code values in 
differenl coding rechniques can be used and still allow almost error-free code recognition 
(without a legend). For 95-percent error-free performance, 10 colors, 6 area sizes, 6 
lengths, 4 intensities, 24 angles. and 15 geometric shapes are the most that can be used 
(VANC72j. Of course, the code values must be appropriately spaced; see [VANC72, pp. 
70-71 j for a list of appropriate colors. 

If it is important for the viewer to distinguish among different types of information, 
then it is appropriate to use redundant coding: the use of two different codes to represent the 
same information. Pan (c) of Fig. 9.19 is redundantly coded. Figure 9.22 shows a triply 
redundant code. Color is normally used redundantly with some other code, to accommo­
date color-blind users. 

Before we can select a code, we must know how many code levels are needed. It is also 
important to understand whether the information being coded is nominative , ordinal, or 
ratio. NominaJil'l! information simply designates, or names, different types of things , such 
as different types of planes or ships. Nominative information has no notion of greater than 
or less than. Ordinal information is ordered and has a greater than and less than relation. 
But no metric is defined on ordinal information: there is no notion of varying distances 
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Align Objects: 
@Left SldOS 0 L/ A Centers 0 Rign t Sldll 
O Tops 0 TID centers ® Uolloms 

(a) 

Align Objects: 
Lett Sides 0 LIR Centers 0 Right Sldu 

0 Tops O TIB Centers ®Boll oms 

(b) 

Align Obje~ts: 
left Sides OliR Unters 0 Righl Sides 

O Top• 0 T/8 Centers ®Boll om• 

(c) 

Align Objetll: I O Tops 
0 Til Centers 
®Bolloms 

@Left Sid .. 0 LIR tenters 0 Righi Sldu 

(d) 

Fig. 9 .21 A dialogue box for aligning objects. In (a}, the visual cues group the buttons 
into three groups of two, rather than the proper two groups of three. In (b). the vertical 
spacing has been increased and the visual cues are correct. In (c), a horizontal rule 
instead of vertical spacing is used to achieve the same effect in less total space. In (d), 
the options are rearranged and arrows are used to emphasize the spatial correspon­
dence of each button set to the associated meanings. (Copyright 1988 Claris Corpora­
tion. All rights reserved.) 

between categories. Ratio information has such a metric; examples are temperature, height, 
weight, and quantity. 

For a fixed number of nominati\11:-codc values, color is distinguished considerably 
more accurately than arc shape and size, and somewhat more accurately than is intensity 
[CHRI75]. T his suggests that color should be used for coding. but recall that 6 percem to 8 

6 0 
Fig. 9 .22 A triply redundant code using line thickness. geometric shape, and interior 
fill pattern. Any one of the three codes is sufficient to distinguish between the three 
code values. 
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percent of males have at least a mild fonn of color blindness. As discussed in Chapter 13, 
this need not be a particular problem, especially if redundant coding is used. 

Codes used for displaying nominative information should be devoid of any ordering, so 
that the vie\1.-er cannot infer an importance order in the information. Different shapes (such 
as the squares, circles. diamonds, etc. used for data points when several variables are 
plotted on the same set of aJtes), line styles. typefaces, and cross-hatching patterns are 
appropriate nominative codes. HO\Ioevef, using many different typefaces creates a confusing 
image. A generally accepted guideline is that no more than t~ or three faces should be 
used in a single image. AJso, differing densities of cross-hatching patterns can create an 
apparent ordering (Fig. 9. 17). 

Codes used to display ordinal information can, but need not. v-.uy continuously, but 
must at least have an obvious ordering. Line styles and area-fill patterns with varying 
densities can be used, as can text size (many displays provide onJy a few text sizes, 
making use of this variable for ratio coding difficult) . For both ratio and ordinal infor­
mation. the apparent visual weight of the codes should increase as the values of the infor­
mation being coded increase. In Fig. 9. 19, ordinal information is being coded, and the 
typographical hierarchy has a visual weight that increases with the importance of the 
category. 

Ratio infonnation, such as size, length , or orientation. must be presented with a code 
that can vary continuously. Cleveland and McGill studied the use of several different 
continuously varying codes to display ratio infonnation, by showing experimental subjects 
graphs of the same infonnation encoded in different ways. They found the following 
rankings, where I is the most accurately recognized coding [CLEV84; CLEV85j: 

I . Position along a common scale 

2. Position on identical. nonaligned scales 

3. Length 

4. Angle between two lines, and line slope 

5. Area 

6. Volume, density , and color saturation 

7. Color hue. 

Similarly, Ware and Beatty [WARE88] found that color is effective in grouping objects, but 
is not effective a.~ a ratio code. 

If color were used both to group menu items and to code infonnation in the ~rk area 
(say. to distinguish layers on a VLSI chip or geographic features on a map), then the user 
might incorrectly conclude that the red commands in the menu could be applied to only the 
red elements in the ~rk area. Similarly. a color code might . by using some bright colors 
and some dark colors, inadvertently imply two logical groupings, one of brighter objects, 
the other of darker objects. The similarity rule discussed earlier is really at the heart of 
coding. All like information should be coded with the same code value; all unlike 
information should have some other code v-Jiue. 
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Coding of quantitative data is just a part of the more general field of displaying 
quantitative data. When data presentations-such as bar, pie , and trend charts-are being 
designed, many further considerations become important. These arc beyond the scope of 
this text, but are important enough that you should consult key references. The lavishly 
illustrated books by Bertin [BERT81; BERT83] and Thfte [TUFT83] discuss how to convey 
quantitative data effectively. Bertin systematically analyzes the visual codes, shows how 
they can be used effectively, and categorizes different presentation schemes. Tufte argues 
for minimality in decorative accoutrements to charts and graphs, and for emphasis on the 
data being conveyed. He also traces the fascinating history of data presentation since 1700. 
Schmid provides additional guidance [SCHM84]. 

Macldnlay incorporated some of Bertin 's ideas, along with Cleveland and McGill's 
results into APT, an expert system that automatically creates data presentations 
[MACK86]. Color Plate 1.24 is an example from APT. We expect to see more 
developments in this promising area. 

Closely related to coding arc means for calling the viewer's attention to a particular 
piece of information, such as an error or wc1rning message, the currently selected object, 
the current command, the failed piece of equipment, or the planes on a collision course. 
Some attention-getting techniques available are a unique color or shape, a blinking or pul­
sating or rotating cursor, and reverse video. A unique color was found to be more 
effective for attracting the viewer's attention than was a unique shape, size, or intensity 
[CHRI75]. 

Attention-getting mechanisms can be misused. A pulsating cursor (that is, a cursor 
whose size continuously varies between large and small) docs indeed attract the user's 
attention. But it also tends to hold attention. When the user is looking at something else on 
the screen, the pulsating cursor, even though seen only peripherally, is disiTacting rather 
than helpful. 

Coding of qualitative information is another important research area for user interface 
design. Work by Feiner and Seligmann (FE1N85; SELI89] explores the automated design of 
pictures that explain how to perform actions in 30 environments. Based on input about the 
information the pictures arc supposed to communicate and who will be viewing them, a 
rule-based system determines the objects to include, their properties and rendering style, 
and the virtual camera parameters that are input to a 30 graphics system that draws the 
pictures. Color Plate 1.25 is an example of a picture generated automatically for a 
maintenance and repair application. 

9 .5 .3 Visual Consistency 

Consistent application of visual-organization rules and codings, and consistent combination 
of visual elements into higher-level graphic objects and icons, constitute another important 
element of visual design. Visual consistency is , of course, part of the overall theme of 
consistency discussed in Section 9. 3. I . 

Visual elemems can be thought of as letters in a graphic alphabet, to be combined into 
"words" whose meanings should be obvious to the viewer. For instance, dialogue boxes for 
Macintosh applications arc constructed from a small graphic alphabet. Figures 8.16, 8.32, 
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® 
0 
0 

I OK I 
Cancel 

1 1i 

0 11 

1 II 

Fig. 9 .23 The graphic alphabet used in many Macintosh applications. The square 
choice boxes indicate alternatives, of w hich several may be selected at once. The round 
choice circles, called "radio buttons," indicate mutually exclusive alternatives; only one 
may be selected. The rounded-corner rectangles indicate actions that can be selected 
with the mouse. In addition, the action surrounded by the bold border can be selected 
with the return key on the keyboard. The rectangles indicate data fl81ds that can be 
edited. (~ Apple Computer, Inc.) 

9.14, 9.17, and 9.21 are examples of these dialogue boxes, and Fig. 9.23 shows their 
graphic alphabeL Similarly, Fig. 9.24 shows the use of a small graphic alphabet to build 
icons, and Fig. 9.25 shows a single-element graphic alphabet. 

Consistency must be maintained among as well as within single images; a consistent set 
of rules must be applied from one image to another. In coding, for ClUU11ple. it is 
unacceptable for the meaning of dashed lines to change from one part of an application to 
another. For placement consistency, keep the same information in the same relative position 
from one image or screen to the next, so that the user can locate information more quickly. 

9.5.4 Layout Principles 

Individual elements of a screen not only must be carefully designed, but also, to work 
together, must all be well placed in an overall contexL Three basic layout rules are balance, 

F"lle Program 

Paint 
file 

~ 

~= 
Painting 

(a) 

~ 
Text 
file 

~ . 
Paint Word·processing 

program program 
(b) 

~ - lad : !0: -"""" :o:: 
Text Chart Drawing 

(on a grid) 

~ ~ . 
Chart Drawing 

file file 

~ ~ 
Charting Drawing 
program program 

Fig. 9.24 (a) A graphics alphabet. (b) Icons formed by combining elements of the 
alphabet. 
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DO 
DO 
lite the 
screen 

Untilethe 
screen 

Fig. 9 .25 Several different icons, all created from a single shape representing a 
window. 

gridding, and proportion. Figure 9.26 shows two different designs for the same screen. 
Design (a) is balanced, nicely framing the center and drawing the eye to this area. Design 
(b) is unbalanced, and unnecessarily draws the eye to the right side of the area. Design (b) 
also has a slight irregularity in the upper right comer: the base lines of the scroll bar arrow 
and the pointer icon are not quite aligned. The eye is needlessly drawn to such meaningless 
discontinuities. 

Figure 9.27 shows the benefits of using empty space between different areas, and also 
illustrates the concept of gridding; in cases (b) and (c), the sides of the three areas are all 
aligned on a grid, so there is a neatness, an aesthetic appeal, lacking in (a) and (d). Figure 
9.28 further emphasizes the detrimental effects of not using a grid. [FEIN88] discusses an 
expert system that generates and uses design grids. 

Proportion deals with the size of rectangular areas that are laid out on a grid. Certain 
ratios of the lengths of a rectangle 's two sides are more aesthetically pleasing than are 
others, and have been used since Greco-Roman times. The ratios are those of the square, 
which is 1:1; of the square root, 1:1.414; of the golden rectangle, 1:1.618; and of the 
double square, I :2. The double square is especially useful, because two horizontal double 
squares can be placed next to a vertical double square to ma.intain a grid. These and other 
design rules are discussed in [MARCSO; MARC84; PARK88]. 

(a) (b) 

Fig. 9 .26 Two alternative screen designs. Design (a) is balanced; design (b) emphasiz­
es the right side. (Copyright 1988 Ctaris Corporation. All rights reserved.) 
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.... 
MiOih 
11110 
our 
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CUM! 

. CRN .... .. ., .. ac.-

(a) (b) 

(C) (d) 

Fig. 9.27 Four screen designs. (a) A typical initial design. (b) Border area has been 
added. (c) The border has been strengthened to separate the three areas funher. (d) The 
deleterious effect of not aligning elements on a grid is obvious. 

Fig. 9 .28 Removing the box around the menu area creates the meaningless but 
anention-getting ragged-right border. 
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9 .6 THE DESIGN METHODOLOGY 

Many ideas have been presented in Chapters 8 and 9. How can a designer integrate them 
and work with them in a structured way? Although user-interface design is still in part an art 
rather than a science, we can at least suggest an organized approach to the design process. 
In this section, we give an overview of the key elements of such a methodology. 

The first step in designing an interface is to decide what the inte.rface is meant to 
accomplish. Although at first this statement may seem trite, poor requirements definitions 
have doomed numerous user-interface design projects at an early ~-.age. Uoderstanding user 
requirements can be accomplished in part by studying how the problem under consideration 
is currently solved. Another successful approach is for the designer to learn how to perform 
the tasks in question. The objective is to understand what prospective users currently do, 
and, more important, why they do it. 

We do not mean to imply that the interface should exactly mimic current methods. The 
reason for understanding why prospective users work as they do is often to develop new and 
better tools. We should recognize, however, that it is sometimes better to mimic old ways to 
avoid massive retraining or to 3\"0id morale problems with an existing workforce. A typical 
strategy is first to mimic existing methods, and also to make new methods 3\"ailable; over 
time, users can be trained in the new or augmented capabilities. 

User characteristics must also be identified. What skills and knowledge do the users 
have? Are the users knowledgable about their work but computer-naive? Are they 
touch-typists? Will the users typically be eager to learn the system, or will they be 
reluctant? Will usage be sporadic or regular, full-time or part-time'! It is important when 
assessing the user population to remember that what you, the system designer, would want 
or like is not necessarily the same as what those for whom the system is being designed 
might want. Your users are not necessarily created in }'OUr own image. 

When the requirements have been worked out, a top-down design is next completed by 
working t.hrough the design levels discussed in Section 9.1: conceptual, functional. 
sequencing, and binding. The rationale for top-down design of user interfaces is that it is 
best to work out global design issues before dealing with detailed, low-level issues. 

The conceptual design is developed first. Ideally, several alternative conceptual designs 
are developed and ewluated on the basis of how well they wil l allow users to carry out the 
tasks identified in the requirements definition. High-frequency tasks should be especially 
straightforward. Simplicity and generality are other criteria appropriate for the designs. 

The functional design focuses on the commands and what they do. Attention must be 
paid to the information eacb command requires, to the effectS of each command, to the new 
or modified information presented to the user when the command is invoked, and to 
possible error conditions. Figure 9.29 shows the focus of functional design. Notice the 
notations about errors being "engineered out" by subsequent lower-level design decisions. 
One objective of the functional design is to minimize the number of possible errors, by 
defining the individual commands appropriately. 

The sequencing and binding designs, wbicb together define the form of the interface, 
are best developed together as a whole. rather than separa.tely. The design invoi\"CS first 
selecting an appropriate set of dialogue styles, and then applying these styles to the specific 
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Function: AdcLsymboLinstance 

Parameters: SymboLidentifier 
SymboLposition 

Description: An instance of the symbol is created and is added to the figure at the 
desired position. The instance becomes the currently selected object 
(CSO). The previous CSO, if any, is no longer selected. 

Feedback: The instance is seen on the display and is highlighted because it is 
selected. (If there was a CSO, it is no longer highlighted.) 

Errors: I . The SymboLidentifier is unknown (engineered out by use of a menu 
selection to choose symbol). 

2. The SymboLposition is outside the viewpon (engineered out by 
constraining the positioning device feedback to be within the 
viewpon). 

Fig. 9.29 A typical functional specifiCation for a command. The annotations with the 
errors are added after interaction techniques are identified as part of designing the form 
of the interface. 

functionality. Sequences of screens, sometimes called storyboards, can be used to define 
the visual and some of the temporal aspects of these designs. State diagrams, as discussed 
in Section 9 .3. 1 and in Chapter 8, are also helpful in detailing user-action sequences. 

The interface form can be defined by a style guide, a written codification of many oflhe 
elements of user-interface form. The most common motivation for developing a style guide 
is to ensure a "look and feel " consistency within and among applications. Some elements 
of the style guide can be implemented in libraries of interaction techniques (Chapter 10); 
other elements must be accommodated by the designers and programmers. Many style 
guides exist , among them guides for the Macintosh [APPL87), Open Software Founda­
tion's OSF/MOTIF [OPEN89), NASA's Transportable Application Executive [BLES88b), 
and DEC's XUI [010189]. 

The whole design process is greatly aided by interleaving design with user-interface 
prototyping. A user-interface prototype is a quickly created version of some or all of 
the final interface. often with very limited functionality. The emphasis is on speedy 
implementation and speedy modifiability. At the start, some design questions will seem to 
be unanswerable; once a prototype is available, however, the answers may become 
apparent. Prototyping is often superior to using a design document , since it gi-.oes users a 
more specific frame of reference, within which they can talk about their needs, likes, and 
dislikes. HyperCard and Smalltalk are used extensively for rapid prototyping, as are some 
of the software tools discussed in Section 10.6. 

Prototyping can begin as soon as a conceptual design is worked out, and the elements 
ofrhe functional design and dialogue style can be developed concurrently. It is imponantto 
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follow the Bauhaus dictum,formfollowsfunction, lest the user-interface style dictate the 
capabilities of the overall system. As soon as even some modest elements of the interface 
are developed, potential users should be exposed to them, to elicit suggestions for 
improvements to the interface. As modifications are made and as the prototype becomes 
more comprehensive, users should again work with tbe system. This iterative cycle has 
come to be viewed as essential to the development of high-quality user-interface software. 
Further discussion of prototyping and iterative development can be found in [ALAV84; 
HART89). 

EXERCISES 

9.1 Determine how several commands in an interactive graphics application program with which 
you are familiar could be made into direct-manipulation operations. 

9.2 Examine several interactive graphics application programs and characterize their dialogue 
style. List the ways in which the inte.rfaces do and do not follow the design guidelines discussed in this 
chapter. Identify the design le\'el for each point you list; for instance, consistent use of color is at the 
hardware-binding le\'el. 

9.3 The conceptual model for many v.~rd processors is panially based on an analogy with 
typewriters. List ways in which this analogy might create difficulties for a user who attempts to carry it 
further than is realistic. 

9.4 Analyze a user interface to determine what methods, if any, are provided for error correction. 
Categorize the methods according to the four types discussed in Sect.ioo 9.3.4. 

9.5 What is the form of the state diagram representing a completely modeless interface? 

9 .6 Design and implement a simple graphics editor with the following functionality: create, delete, 
and move lines; move endpoints of lines; change the line style (dash, dotted , solid) of existing lines; 
set the line-style mode for lines that have not yet been created. Design this system to support two or 
more of the following five syntaxes, and include a command to switch from one syntax to another: 
object mode, command mode, object mode with Repeat.JasLoperation operation, free-form syntax, 
and free-form syntax with modes and a Do_it command. 

9 .7 Conduct either informal or formal controlled experiments with each of the syntaxes 
implemented in Exercise 9.6. Test ease of learning and speed of use. Give your users five predefined 
tasks to perform. Identify tasks that will be faster to perform with one syntax than with the others. 

9.8 Study three different interactive graphics application programs. 
a. Identify the classes of modes and synta~es used in each, using the definitions in Section 9.4. 

A single application may have several types of modes or syntaxes. lf so, are there clear 
distinctions showing which to use when? 

b. Identify the factoring, if any, that has occurred. Are there additional possibilities for 
factoring? Do you think the user interface would be improved by application of the 
factoring? 

9.9 Consider the three window organizations shown in Fig. 9.30. Count the number of mouse 
movements and mouse-button depressions needed to move the lower-right comer. In each case, 
assume that the cursor startS in the center of the window and must be returned to the center of the 
wi ndow. Counting mouse movements as 1.1 seconds and button depressions as 0.2 seconds, how 
long does each window organization take? Does this result mean that one organization is better than 
the others? 
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Name Name 

- Window 

Window ~ 

-
r 1 r l 

Wllldow commands .•• 

(a) (b) 

pop-up 
menu f-

Name 
of f-

commands 

Window 

(c) 

Fig. 9.30 Three means to invoke window commands. In (a) (Macintosh style), regions 
of the window dressing are used. To resize. the user selects and drags the lower-right 
corner. In (b), the commands are in the command area at the bottom of the screen. To 
resize. the user selects a command, and then drags the lower-right corner of the 
window. In (c). a pop-up menu appears at the cursor when a mouse button is pressed. 
To resize, the user selects the command from the pop-up menu. and drags the 
lower-right corner of the w indow. 

9.10 Implement a single-le\'el Undo command for an interootive graphics application program )'011 

have written. Decide wbich of several implementation Strategies )'011 will use. and justify )'OUr choice. 
The strategies include ( I) after each command, make a complete copy of the application data 
structure, state variables, and so on; (2) save a record of what was changed in the application data 
structure; (3) save all the commands since logon, replay them to effect undo; (4) save the application 
data structure every 10 minutes, plus save all commands sinoe the last such save operation; and (5) 
save, for each user command, the one or several commands needed to undo the user command. Would 
your choice differ for a multi-level Undo command? 

9.11 Examine an interacti...e graphics application. How many commands does it have? List the 
''staner kit" of commands with which a new user can do a simple piece of work. How big is the 
starter kit with respect to the overall command set? Li.sJ the WII)'S in which defaults or other methods 
have been used to minimize the complexity of the Staner kit. In your opinion. does the system have a 
good sta11er kit? 
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9.12 Explore other ways of redesigning Fig. 9. 17{a) to reinforce the logical relationships of the 
visual elements. 

9.13 Study the dialogue-box design of an application. Which methods are used to reinforce logical 
structure with visual structure? Can you'further improve the design? 

9.14 Figure 9.6 shows 12 icons that represent Macintosh programs: (a) disk copy utility, {b) resource 
mover, {c) icon editor, (d) menu editor, (e) alert/dialog editor, (f) edit program, (g) boot configure, 
(h) switcher. (i} examine file, (j) MacWrite, (lc) MacDraw, and (l) MacPaint. Some of the icons 
indicate the associated program better than others do. 

a. Design an alternative set of icons to represent the 12 programs. 
b. Show the set of icons to 10 programmers who are not familiar with the Macintosh , and ask 

them to guess what each icon means. Tabulate the results. 
c. Tell 10 programmers who are not familiar with the Macintosh what each icon means. Give 

them 2 minutes to study the icons. Ten minutes later, show them the icons again , and ask 
them what the icons mean. Tabulate the results. 

d. Repeat parts (b) and (c) for the icons in the figure. What conclusions can )'OU draw from 
your data? 

9.15 Analyze the visual design of a graphics application. What is the visual alphabet? What visual 
codings are used? What visual hierarchies are established? Redesign some of the visual cues to 
emphasize funher the underlying logical relationships. 

9.16 List 10 specific examples of codings in computer graphics applications you have seen. Is the 
coded information nominative , ordinal , or ratio? Are the code values appropriate to the information? 
Are there any false codings? 

9.17 Examine three different window managers. What visual code indicates which window is the 
" listener" -{hat is, the window to whkh keyboard input is directed? What visual code indicates 
which processes are active, as opposed to blocked? What othe.r visual codings are used? 
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Software 

The first two chapters on user interfaces, Chapters 8 and 9, concentrated on the e)(ternal 
characteristics of user~mputer interfaces. Here, we C)(amine the software components, 
beyond the basic graphics packages already discussed, that are used in implementing 
interfaces. Figure I 0.1 shows the various levels of user-interface software, and suggests the 
roles for each. The figure shows that the application program has access to all software 
levels; programmers can e"ploit the services provided by each level, albeit with care, 
because calls made to one level may affect the behavior of another level. The operating­
system level is not discussed in this te)(t, and the basics of graphics subroutine packages 
have already been described. Some input features of device-independent graphics subrou­
tine packages a.re compared and evaluated in Section I 0.1. Window-management systems, 
discussed in Sections 10.2 to 10.4, manage the resources of screen space and interaction 
devices so that several applications or multiple views of the same application can share the 
display. Some window-management systems have an integral graphics subroutine package 
that provides device-independent abstractions, whereas others simply pass graphics calls 
through to the underlying graphics hardware or software. 

The interaction techniques discussed in Chapter 8 are useful in many applications, but 
require careful development to provide a pleasing look and feel. Interaction-technique 
toolkits, treated in Section 10.5, are built on window-management systems to give the 
application developer a common set of techniques. The final layer, the user-interface 
management system (UlMS), discussed in Section 10.6, provides additional generic 
user-interface support at the sequencing level of design (Section 9.1). UIMSs speed up 
implementation of a user interface, and facilitate making rapid changes during the 
interface-debugging process discussed in Section 9 .6. 

435 

0469



436 User Interface Software 

••• Ml 

...... 
Fig. 10.1 levels of user-interface software. The application program has access to 
the operating system, window-manager system and graphics package. toolkit. and 
user-interface management system (UIMS). The interactive design tools allow nonpro­
grammers to design windows. menus, dialogue boxes. and dialogue sequences. 

10.1 BASIC INTERACTION-HANDLING MODELS 

In this section, we elaborate on the interaction-handling capabilities of contemporary 
device-independent graphics subroutine packages, as introduced in Chapters 2 (SRGP) and 
7 (SPHIGS). The sampling and event-driven processing in these two packages is derived 
from GKS (ANSJ85b; ENDE86) and PHIGS [ANS188], which share a common interaction 
model. Window-management systems use an event mechanism similar to, but more 
powerful than, the GKS/PHlGS model discussed in this section. 

GKS and PHIGS have six cl.asses of logical input devices, and there may be more than 
one device of each class associated with a workstmion (a display and a<;Sociated interaction 
devices). Each of the logical input devices can operate in one of three modes: sample, 
request, and event. Each device has an associated measure, which is the type of information 
returned by the device. The devices and their measures are as follows: 

Device 
locator 
pick 
choice 
valuator 
string 
stroke 

Measure 
position in ~rid coordinates 
pick parh for SPH!GS, segment identification for GKS 
integer indicating the choice 
real number 
character suing (called keyboard device in SRGP and SPHlGS) 
sequence of positions in ~rid coordinates 

SRGP and SPHlGS use measures that are slightly different from these. 
In request mode, the application program requests input from a device, and the 

graphics package returns control and the measure of the device only after the user has 
performed an action with the device. The action is called the trigger. The specific trigger 
action for each logical device class is implementation-dependent, but is typically a 
button-push. For instance, a mouse button triggers locator or pick devices , and the return 
key triggers the string device. 

Request mode can be used with only one device at a time, and is intended to support 
the Limited functionality of older graphics terminals, which are typically connected to 
computers via RS-232 interfaces. Interaction techniques such as keyboard accelerators 
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cannot be used , because the application program must know in advance from which device 
to request input. In addition, as the measure is modified (by moving the mouse ro change 
the locator's measure, say), the application program generally cannot provide dynamic 
feedback, because the application program does not regain control until the trigger action 
occurs. This difficulty can be eliminated by defining the trigger action as a small change in 
the measure. 

In sample mode, a single device is sampled, and the measure of the device is 
immediately returned. We can permit the user to select one of several devices ro use, by 
polling all eligible devices, as follows: 

temtinare = FALSE; 
whlle (!terminate) { 

SamplePick (&status, &segmemName); 
I• status = OK means had succe.~ful pick; segmentName is identificat.ion •/ 
I• of picked item • I 
Process pick input 
SampleString (string); 
Process string input 
I• terminate set to TRUE as pan of processing string or pick •/ 

} 

Sampling in this way is dangerous, however. If the user makes several more inputs 
while the first is being processed, they will never be seen by the application program, since 
it stops sampling while processing the first input. Also, the sequence of user events , which 
is often essential to maintain, might be lost in sampling. Unlike request mode, however, 
sample mode is well suited for dynamic feedback from the application program, because no 
trigger action is required to return the device measure to the application program. 

Event mode avoids the problems of sample and request modes, by allowing input to be 
accepted asynchronously from several different devices at once. As discussed in Section 
2.3.6 of Chapter 2, the application program first enables all devices whose use is to be 
pennitted. Once the devices are enabled, a trigger action for any of them places an event 
report on an input queue, in order of occurrence. As seen in Fig. 10.2, the application 
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Events 
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phics 
I 
1 Application Gra 

subro 
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utine 1 program 
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~ I .. 
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/ 
~II 
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• 'tT*"cE: ~ --·2 
~ Procl•• 8VIIItp3 

Fig. 10 .2 The application program removes events from the queue and dispatches 
control to the appropriate procedure, which processes them. 

0471



438 User ll)terface Software 

program checks the queue to see what user actions have actually occurred, and processes 
the events as they are removed from the queue. 

The following code fragment reimplements the previous polling example in event 
mode: 

tenninate = FALSE; 
while ( !temrinate} { 

WaitEvent (timeout, &deviceClass, &device/d); 
switch (deviceC/ass} { 

case piclt: Process pick; 
break; 

case string: Process stri11g; 
break: 

I• Wait for user action •I 

} I• tenni11ate set to TRUE in processing of pick or string •/ 
} 
Unlike request-mode input, event-mode input is asynchronous: Once a device is 

enabled, the application program can be executing while the user is concurrently inputting 
information with the enabled input devices. This is sometimes called typeahead, or, when 
done with a mouse, mousealtead. 

The typeahead capability of the event-queue mechanism provides an opportunity to 
speed up interactions with the computer. Suppose a button-press (choice logical device) is 
used to scroll through a drawing. Each button-press scrolls, say, x inches. If the user presses 
the button more rapidly than the scroll can occur, events build up in the queue. The 
application program can look for multiple successive button events on the queue; if there are 
" such events, then a single scroll of nx inches can be performed, and will be much faster 
than " scrolls of x inches each. 

Care must be taken to manage the event queue properly. If the first of two events on the 
queue causes the program to enable a different set of logical input devices and then to call 
WaitE vent, the program now may not be expecting the second event, leading to unexpected 
results . The call FlushDeviceEvents is provided to alleviate this problem; the application 
program can empty the event queue to ensure that the queue contains nothing unexpected. 
However. flushing the queue may leave the user wondering why the second event was never 
processed. 

Another concern with event queues is a possible time delay between when an event 
occurs and when other information needed in connection with that event i.s obtained. 
Suppose we want a mouse button-<lown to display a diamond at the mouse position. If the 
buttons on the mouse can be assigned to a logical choice device and the (x, y) coordinates of 
the mouse to a logical locator (this contrasts with the SRGP locator, whose measure 
includes button status), then we can use the following approach: 

WaitEvenL (timeout, &deviceClrus, &device/d); 
if (deviceC/ass = CHOICE && deviceld == I) { 

SampleLocator (MOUSE, x. y); 
DrawDiamond (x, y): 

} 

f* Get pos ition of diamond •/ 
I• Draw diamond at (x. y) •I 
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At time 1,. the user 
makes a choice, with a 
choice device, to draw 
a diamond. The user 
then moves cursor to 
go on to another task. 

Window-Management Systems 

At time 1:!· locator is 
sampled and diamond 
Is drawn. Locator has 
moved between 11 and 12 • 
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Fig. 10.3 The effect of a time delay between an event and sampling of the cursor 
position associated with that event. 

The problem is that, between time Ia (when the WaitEvent procedure returns) and time 
t2 (when the SampleLocator procedure obtains the (x, y) coordinates), seconds may have 
elapsed. In this time, the user may have moved the locator some distance, causing the 
unexpected result shown in Fig. 10.3. Substantial delays can easily occur on a time-shared 
computer if another program takes control of the processor, and on any computer that 
supports virtual memory when page-fault interrupts occur. Thus, although we would like 
the application program to be uninterruptible during the interval from Ia to tz, we cannot 
guarantee that it wiU be so. 

In GKS and PHIGS, the risk of this time delay can be reduced and even eliminated by 
activating several logical devices with the same trigger. If we define the trigger to be a 
button-click on any of the three buttons, and associate this trigger with both the 
three-button choice device and the locator device, then both events will be placed on the 
queue (in unspecified order) at the same time. The device-dependent driver under the 
graphics package can do this faster than the application program can execute the preceding 
code segment, so the likelihood of being interrupted is Jess. If the operating system grants 
the device driver the privilege of disabling interrupts, then there will never be a time delay. 

Unfortunately, some user-interface const:ructs are difficult to provide by means of these 
logical-device concepts. For instance, it is convenient to use time intervals to distinguish 
between two commands. Thus, we can select an icon with a single mouse button-click while 
the cursor is on the icon, and then open the icon with a second click within some small A.t of 
the first click. Making these distinctions requires that the event reports have a timestamp 
giving the time at which the event occurred. This concept is not found in GKS and PHIGS, 
although a timestamp could be provided readily. 

10.2 WINDOW-MANAGEMENT SYSTEMS 

A wi11dow-manageme11t system provides many of the important features of modern 
user-computer interfaces: applications that show results in different areas of the display , the 
ability to resize the screen areas in which those applications are executing, pop-up and 
pull-down menus, and dialogue boxes. 
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The window-management system is first and foremost a resource manager in much the 
same way that an operating system is a resource manager-only the types of resources 
differ. It allocates the resource of screen area to various programs that seek to use the 
screen, and then assists in managing these screen areas so that the programs do not interfere 
with one another. This aspect of window systems is further discussed in Section 10.3. The 
window system also allocates the resource of interaction devices to programs that require 
user input, and then routes the flow of input information from the devices to the event queue 
of the appropriate progr.tm for which the input is destined. Input handling is discussed 
further in Section I 0.4. 

Our objective with these three sections is to provide an overview of key window­
management concepts: The most comprehensive treatment of the subject is [STEI89), and a 
historical development overview is given in [TEIT86], in a book of relevant papers 
[HOPG86b]. 

A window-management system has two important parts. The first is the window 
manager, with which the end user interacts to request that windows be created, resized, 
moved, opened, closed, and so on. The second is the underlying functional component, the 
window Sy.l'tem,which actually causes windows to be created, resized, moved, opened, 
closed, and so on. 

The window manager is bui lt on top of the window system: The window manager uses 
services provided by the window system. The window manager is to its underlying window 
system as a command-line interpreter is to its underlying operating-system kernel. Also 
built on top of the window system are higher-level graphics packages and application 
programs. The programs built on the window system are sometimes called clielll programs, 
which in turn use the capabilities of the window system, itself sometimes called the server 
program. In some server-dient window-management systems, such as the X Window 
System fSCHE88a] and NeWS [SUN87), the window manager itself appears to the window 
system as just another client program. In other systems, there is a closer relation­
ship between the window manager and window system than there is between a client and 
server. 

Some window systems, including the X Window System and NeWS, are designed to be 
policy1ree, meaning that multiple window managers, each with a different look and feel, 
can be built on top of the window system. The window manager, not the window system, 
determines how windows look, and how the user interacts with windows. A policy-free 
window system would support all the window styles of Fig. 9.30, as well as others. Just as 
many different application programs can be built on top of a graphics package, many 
different window managers can be built on top of a policy-free window system: The 
window manager and graphics application program both control external appearance and 
behavior. For thjs approach to be possible, the window system must be designed to carry 
out a wide range of window-manager policies (see Exercise I 0.1 0). Of course, in a specific 
environment, the window manager and application programs need to have a common 
user-interface look and feel. 

If the programming interface to the window system is cleanly defined and is 
implemented via an interprocess communication capability, then clients of the window 
system can reside on computers different from that of the window system, provided 
the computers are connected by a high-speed network. If the window manager is 
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itself just another client of the window system, then it too can reside on another computer. 
The use of interprocess communications in this way allows computation-intensive 
applications to reside on a powerful computer, while the user interacts with 
the application from a workstation. Ln this regard , the server-client model is just a 
sophisticated instance of a virtual terminal protocol; such protocols in general share this 
advantage. 

A window-management system does not need to be built on the server-client model. 
For instance, the Macintosh has no well-defined separation between the window manager 
and window system. Such separation was not necessary for the single-active-process, 
single-processor design objective of the Macintosh, and would have led to additional 
run-time overhead. 

ln window systems that provide for use of interprocess communications between the 
window manager and window system, such as the X Window System, NeWS, and Andrew 
[MORR86], the interface must be designed to minimize communications delays. Several 
strategies can help us to meet this objective. First, asynchronous rather than synchronous 
communications can be used between the client and server whenever possible, so that, when 
the client sends a message to the server, the client does not need to wait for a reply 
before resuming processing and sending another message. For example, when the client 
program calls Draw Line, a message is sent to the server, and control returns immediately to 
the client. 

We can sometimes realize a modest savings by minimizing the number of separate 
messages that must be sent between the server and client. Most network communication 
protocols have a minimum packet size, typically 16 to 32 bytes, and the time to send larger 
numbers of bytes is often proportionately less than the time needed to send the minimum 
packet. There is thus an advantage in hatching messages , as provided in some systems with 
a BeginBatchOfUpdates and EndBatchOfUpdates subroutine call; all the calls made 
between the BeginBatch and EndBatch calls are transmitted in one message. There is also 
an advantage in designing single messages that replace multiple messages, such as a single 
message that sets multiple graphics attributes. 

A third way to minimize communication is to move more functionality and generality 
into the server. The commands most clients send to their window system are fairly 
primitive: draw line, create window, copy pixmap. In the X Window System, for instance, 
many commands are needed to create a menu or dialogue bolt. A more robust and powerful 
strategy is to send commands to the server as programs written in a language that can be 
interpreted efficiently. Thus, the commands can be very general and can carry out any 
functionality the language can express. The cost of this generality is , of course, the time 
taken to eJtecute the programs interpretively, and any additional space needed for the 
interpreter-a modest price with contempora.ry computers. The benefit can be a dramatic 
decrease in communications traffic. The strategy of moving more generality and function­
ality into the workstation is not new; exactly the same issues were discussed two decades 
ago when distributed graphics systems were first being built [FOLE71; FOLE76; 
VAND74]. 

This third strategy is used in the NeWS window system, which accepts as commands 
programs written in an eJttended version of the PostScript language (ADOB85a; 
ADOB85b). PostScript combines traditional programming-language constructs (variables, 
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User 
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Server 

Hadluae 

Fig. 1 0.4 The relationship of the window system to the operating system and 
application programs. 

data structures, expressions, assignments, control flow, 1/0) with imbedded graphics 
capabilities for drawing output primitives, clipping against arbitrary regions, and transform­
ing primitives. NeWS adds extensions for processes, input, and windows. The language is 
further discussed in Section 19.9. 

For a dialogue box to be defined in NeWS, a PostScript program defining the box is 
sent to the server when a program begins execution; each time the dialogue box is to appear, 
a short message is sent to invoke the program. This strategy avoids resending the box's 
definition each time. Similarly, programs to perform time-critical operations, such as 
rubberband drawing of lines (Chapter 8) or curves (Chapter II) , can be sent to the server, 
avoiding the time delays involved in each round-trip message between the server and client 
needed to update the rubberband I ine. 

A graphics package is often integrated with the window system, typically a 20 
nonsegmented package with capabilities similar to SRGP of Chapter 2. If the underlying 
hardware has 30 or segmentation capabi.lities, then the window-system level might pass on 
graphics calls to the hardware. Figure I 0.4 shows how the window system and its graphics 
package typically relate to other system components; Fig. 10.5 shows the relationships 
among windows, clients, and input events. User-generated events involving windows­
resizing, repositioning, pushing, popping, scrolling, and so on-are routed by the window 
system to the window manager; other events are routed to the appropriate application 
program. 

0476



10.3 Output Handling In Window System s 

Output primhives and window· 
manipulation requests 

Event 
repoi!S 

Output 
primitives. etc. 

Event 
reports 

Interaction 
devices 

443 

Fig. 10.5 Another view of the relationship among windows. clients. and events. Each 
client outputs to a window; input events are routed to the appropriate client's event 
queue. 

10.3 OUTPUT HANDLING IN WINDOW SYSTEMS 

The output resource allocated by the window system to its client programs is screen space, 
which must be managed so that clients do not interfere with one another's use of the screen. 
The strategies by which this allocation is made vary considerably from one window system 
to another, but fit into three broad categories. The main difference is in how parts of a 
window that have just been exposed (when the window is made larger, uncovered, or 
scrolled) are displayed. The strategies place progressively more responsibility for making 
this decision oo the window system itself, such that the client is progressively less aware of 
the existence of the windows. The system may also have to manage a look-up table so as to 
avoid conflicts between clients. 

A minimal window system takes no responsibility for drawing newly exposed portions 
of a window; rather, it sends a "window-exposed" event to the client responsible for the 
window. Such a window system does not save the occluded portions of windows. When the 
client sends output to a window, output primitives are clipped against the window system's 
window (which corresponds to the graphics package's viewport). If a line is drawn in a 
partially visible window, only the visible part of the line is drawn. 

When the client responsible for the window receives the window-exposed event, the 
client can handle the 0\--ent by establishing a clipping window on the entire portion of the 
world that is to be displayed in the window system's window, and then processing all the 
output primitives, or by using a smaller clipping window corresponding to just the newly 
exposed portion of the window, as shown in Fig. 10.6. Alternatively, the client can save the 
pixmaps of obscured windows to avoid regenerating the window's contents when the 
window is next uncovered. The client would simply display some or all of the saved pix map 
with a PixBh from the saved pixmap to the screen pixmap. In some cases, the window 
system repaints the window backgrounds and borders to provide the illusion of quick 
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Fig. 10.6 When a window (a) is enlarged to (b), the enlarged window can be updated 
by using the bitmap that was in the original w indow (a), clipping world-coordinate 
output primitives against the clipping region (c), and drawing those within the clip 
region. Note that the clip region is nonconvex, so clipping a line may result in display of 
more than one line segment. 

response, even though the actual redraw may incur a noticable delay. 
This minimal-window-system approach makes sense in systems that support diverse 

application data models , ranging from pixmaps through structured hierarchies to more 
complex relational models. The window system itself cannot have a model that is well 
matched for all applications. Instead, the application is given total responsibility for 
providing efficient storage and redrawing capabilities. 

The Macintosh window system is an example of this minimalist design [APPL85]. 
Algorithms embedded in its Quickdraw graphics package allow clipping to arbitrary 
regions, such as those shown in Fig. 10.6. NeWS and X also support arbitrary-shaped 
windows. Some of the clipping algorithms needed to support arbitrary windows are 
discussed in Section 19.7. 

More memory-rich window systems save the obscured parts of windows, so that the 
client does not need to display newly exposed portions of a window. Other window systems 
give the client a choice of whether or not obscured window parts are to be saved. l.n any 
case, there is a question of how much of the obscured window is saved. Typically, the 
maximum possible size of the window is saved, which is usually the size of the entire 
screen. Some window systems save a pixmap larger than the display itself, although this 
approach becomes more expens.ive as the pixmap becomes larger or deeper. Decreasing 
memory prices, however, are having a dramatic effect on what is cost-effective. The client 
must be involved in redrawing if the window is scrolled away from the part ofthe world that 
has been saved as a pixmap, or if the view must be rescaled. 

A slightly different strategy is for the window manager to keep, for each window, an 
offscreen pixmap containing the entire window. Whenever part of a window is unobscured, 
the appropriate subarea of the offscreen pixmap is copied to the screen by a PixBit. This 
strategy is slow for window updating, because partially obscured windows can be written 
into by client programs. Thus, after a client program writes into a window (which is the 
offscreen pixmap), the window system must copy the visible part of the window to the 
screen. Alternatively, the window system can directly scan convert new output primitives 
into both the offscreen pixmap and the visible part of the window in the onscreen pixmap, 
by clipping each output primitive against two clip regions: one for the visible part of the 
pixmap, the other for the entire offscreen pixmap. Updates to a completely unobscu.red 
window can be done faster by updating only the visible, onscreen version of the window; 
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the window is then copied to its off screen pixmap only when it is about to be obscured. To 
avoid this whole issue, some window systems require that the window that is being written 
into be completely unobscured. This solution, unfortunately, also pTf?vents multiprocessing 
when an active process needs to write into partially obscured windows. Several special­
purpose hardware systems avoid the need to copy offscreen pixmaps to the screen pix map. 
ln these systems, the hardware knows where each offscreen pixmap is stored and which 
portion of each is to be made visible on the screen. On each refresh cycle, the video 
controller picks up the appropriate pixels fTom the offscreen pixmaps. Exposing more of a 
window is done not by copying pixmaps, but by giving new window-visibility information 
to the hardware. These hardware solutions are further discussed in Chapter 18. 

A second way to implement this type of window system, developed by Pike [PlKE83) 
and discussed further in Section 19.8, avoids storing any information twice. Each window 
is partitioned into rectangular pixmaps. lnvisible pixmaps are saved olfscreen, whereas 
visible pix maps are saved only in the on screen refresh memory. 

Yet another fundamental design strategy is to have the window system maintain a 
display list for each window, as in the VGTS system developed by Lantz and Nowicki 
[LANT84). ln essence, the window system maintains a display-list-based graphics 
package, such as SPHIGS, as part of tbe window system. Whenever a window needs to be 
redrawn, the display list is traversed and clipped. Fast scan-conversion hardware is desirable 
for this approach, so that redraw times do not become prohibitively long. Pix map-oriented 
applications, such as paint programs, do not benefit from this approach, aJthough VGTS 
does include a pixmap primitive. 

A frequent concern is the effect of a window-resize operation on the amount of 
information shown in a window: what happens to the \\.Urld-coordinate window when the 
window-manager window is resized? There are two possibilities, and the client program 
should be able to cause either to occur. The first possibility is that, when the user resizes the 
window, the \\.Urld-coordinate window changes size correspondingly. The net effect is that 
the user sees more or less of the world, according to whether the window was made larger or 
smaller, but always at the same scale, as depicted in Fig. 10. 7(c). The second possibility is 
that, when the user resizes the window, the world-coordinate window size stays fixed . 
Thus, as the window is enlarged, the same amount of the \\.Urld is seen, but at a larger scale. 
ln one approach, a uniform scaling is applied to the \\.Urld , even if the aspect ratios of the 
world window and window-system window are different; this can make some part of the 
window-system window go unused , as in Fig. 10.7(d). Alternatively, a nonuniform scaling 
can be applied, distorting tbe contents of the world window to fit the window-system 
window, as in Fig. 10.7(e). 

Several window systems use hierarchical windows-that is, windows that contain 
subwindows-as shown in Fig. 10.8. Subwindows are generally contained within their 
parents. Hierarchical windows can be used to implement dialogue boxes and forms of the 
type shown in Chapter 8. The entire dialogue box is defined as a window, and then each 
field, radio button, and check box is defined as a separate subwindow, and mouse 
button-down events are enabled for each one. When the user selects any of the subwindows, 
the event report contains the name of that subwindow. A typical restriction is that 
subwindows be contained within their parent window, so if the dialogue box is to be moved 
outside of the application window, the box cannot be implemented as a subwindow to the 
application window. 
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World 
coordinates L. ___ _. 

(a) (b) 

a 
(c) (d) (e) 

Fig. 1 0 . 7 Relationships between world-coordinate window and window-manager 
window. (a) A world-coordinate scene; (b) its view through a window. In (c), when the 
window-manager window is enlarged, more of the world is seen: the world-coordinate 
window is enlarged. In (d), enlarging the window-manager window creates an enlarged 
view of the contents of the world-coordinate window. The enlargement is done with 
uniform scaling, so that part of the window-manager window (gray tone) is unused. In 
(e), enlarging the window-manager window also creates an enlarged view of the 
contents of the world-coordinate window, but w ith nonuniform scaling so as to fill the 
entire window-manager window. 

The design of a window-hierarchy system involves many subtleties, such as determin­
ing the effect on children of resizing a parent. Also, if a client process spawns a subprocess 
that then creates windows, the subprocess's windows could be considered subwindows of 
the spawning process's window, except that the subprocess may have its own event queue to 
receive input from its windows. See [ROSE83; SCHE86] for a more extensive discussion of 
hierarchies. 

ID Dl 

B D 

D D 
D 

ID D 
lo 0 DID 

(a) (b) 

Fig. 10.8 (a) The window for a drawing program; (b) division of the window into a 
hierarchy of windows. In (b), a contained window is a child of the containing window. 
(Copyright 1988 Claris Corporation. All rights reserved.) 
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The subroutine calls with which a typical window system must deal follow: 

CreateWindow (IUime) 
SetPosilion (xmin, ymin) 
SetSize (height, width) 
SeleetWindow (name) 
Show Window 
Hide Window 

Set'fitle (char __rtring) 
GetPosition (xmin, xmax) 
GetSize (height, width) 
BringToTop 
SendToBottom 
Delete Window 

Create a new window; it becomes the current window 
Set position of current window 
Set size of current window 
Make this the current window 
Make the current window visible, on top of all others 
Make the current window invisible; expose any windows the 
current window was hiding 
Set displayed title of current window to char J tring 
Gel position of the current window 
Get size of the current window 
Put the current window on top of all other windows 
Send the current window to the bottom, behind all others 
Delete the current window 

The other output resource allocated by a window system is look-up table entries. Imagine a 
window system running on an 8-bit per pixel hardware system, with two window-system 
clients each wanting to have a look-up table. With two clients, each could be given half the 
entries (I 28), but then the number of look-up table entries per client depends on the number 
of clients. A fixed upper bound on the number of clients could be established to determine 
the number of entries per client, bUl if there are in fact fewer clients, then some of the 
look-up table entries will be wasted. A single client at a time could be given exclusive use of 
the look-up table-often the client whose window contains the cursor. This solution is 
viable, but suffers in that the overall screen appearance can change dramatically as the table 
is given first to one client, then to another, and so on. 

Another solution is to allocate not look-up table entries, but rather colors. If a client 
asks for I 00 percent blue, and some entry already contains this color, the client is given the 
same index to 11.c;e (but is not allowed to change the contents of the entry). If no entry 
contains I 00 percent blue and there are free entries, one is allocated. Otherwise, the entry 
with the color closest to that requested is allocated. The danger is that the distance between 
the requested and actual color might be quite large; not being able to change the look-up 
table is also a disadvantage. Unfonunately, there is no generally satisfactory solution. 

10.4 INPUT HANDLING IN WINDOW SYSTEMS 

The input resource being allocated and managed by the window system for that system's 
clients is the set of input devices and the events the devices generate. The window system 
must know to which client different types of events are to be routed. The process of routing 
events to the proper client is sometimes called demultiplexing, since events destined for 
different clients arrive in sequent,ial order from a single source and must then be fanned out 
to different clients. 

The types of events are those discussed in Section I 0.1, plus additional events that are 
specific to window systems. Some window systems generate window-e/1/er and window­
leave events , which allow a user interface to highlight the window containing the cursor 
without the overhead of constantly sampling the pointer device. Window systems that do 
not retain a record of what is displayed in each window generate window-damage e,vents 
whenever a window needs to be redrawn. Damage occurs if the window is enlarged, 
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uncovered. or scroUed. The window-enter and window-leave events are generated by the 
window system in direct response to user actions, whereas the window-damage event is a 
secondary event generated when a client requests that a window be changed. All these 
events are routed to the client's event queue. Some user actions, such as closing a window, 
can cause damage events to be to sent to a large number of clients. The information in the 
event report is similar to that discussed in Section 10.1, but is augmented with additional 
event types and window-specific information. 

If a window hierarchy exists, child windows can be manipulated just like the parent 
window. and can have associated events. Tbe window name associated with an event is that 
of the lowest-level window in the hierarchy that contains the cursor and for which the event 
was enabled. This means that different types of events can be associated with different 
windows. Every event placed in the event queue has as part of its record the name of the 
window with which it is associated. It is also possible to report an event in a subwindow not 
just to the subwindow, but also to all the windows that contain the subwindow. The client 
would do this by enabling the same event for aU the windows in the hierarchical path from 
the outermost containing window to the lowest-level subwindow. Thus, multiple event 
repons, each with a different window name, will be placed in the client's event queue. 

With hierarchical windows. a pop-up menu can be defined as a main window 
subdivided into as many subwindows as there are menu items. As the cursor moves out of 
the window of menu item i into the window of menu item i + 1. a leave-window event is 
placed on the event queue with the window name of menu item i, followed by an 
enter-window event with the window name of menu item i + I. The client program 
processes the first event by undoing the highlight feedback on menu item i. It processes the 
second event similarly, creating the highlight feedback on menu item i + I. If the cursor 
enters some region of the pop-up menu (such as a title area at the top) that is not overlaid by 
a subwindow. then the enter-window event includes the name of the pop-up menu window. 
Window hierarchies tend to be used in this way. but user response time can be degraded by 
the processing time needed to manage the hierarchy and its many events. A NeWS-style 
window system does not generate such a large number of events to be processed, because 
the feedback can be handled within the server. 

Hierarchical windows can be used for selection of displayed objects in much the same 
way as SPHIGS structures can be. Of course , subwindows are not as general as structures, 
but they are convenient for picking rectangularly shaped. hierarchically nested regions 
(NeWS and X suppon nonrectangular windows). Other uses for hierarchical windows 
include causing the cursor shape to change as the cursor moves from one pan of t.he screen 
to another, and aUowing pick detection on the bandies sometimes used for manipulating 
graphics objects (see Fig. 8.42). 

Two basic approaches are widely used by window systems to route events to clients: 
real-estate-based and listener routing. Many window systems actuaUy provide both 
strategies, and allow the window manager to specify which to use. Some also allow a policy 
provided by the window manager to be used in place of either of these two basic 
approaches. Real-estate-based routjng looks at which window the cursor i.s in when an 
event occurs; all C\-ents are directed to the client that created the window and include the 
name of the window as pan of the event repon. 

To do real-estate-based routing. the window system must maintain a data structure that 
stores the bounds of each window, as shown in Fig. 10.9. When an event occurs, the data 
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WindoW TyPical ~ 
arrangement 3 2 

Linked-list __. r;l_. ~__. l"';l~ 
data structure L.:J L..:....J L.:._J 

Fig. 10.9 Data structure used by the window manager to determine in which window 
the cursor is located. by searching for the first window on the list that brackets the 
cursor position. 

structure is searched for the visible window containing the cursor po'ition. lf the data 
structure is ordered, with the most recently fully reveat.:ll window always brought to the 
head, then the search can terminate with the first window that contains the cursor (x, y) 
position. For hierarchical windows, a more complex data structure and search is needed 
(see Exercise 10.2). 

Usrener event routing, also known as dick-to-t)pe routing, is done when one client tells 
the window system to route all events of a certain type to another client (the receiving client 
can be, but does not need to be, the client that makes the request). For instance, the window 
manager can have a command that allows the user to route all keyboard input to the client 
that owns a particular window. The window manager implements the command by 
directing the window system to route keyboard events to the appropriate client program. 
Keyboard events are those most commonly routed explicitly, but even a mouse button-down 
event can be redirected. 

Event distribution can cause unexpected results for users. Suppose, for instance, that 
the user accidentally double-dicks on a window's close (also called "go-away') button, 
although only a single click is needed to close the window. The window system routes the 
first click to the window manager. which closes the window. The second click is next routed 
to whatever was underneath the close button of the now-closed window, perhaps in turn 
selecting a menu command! 

Message-transmission delays in a net~rk can also wreak havoc with the user. Consider 
a drawing program executing in window A. To draw a rubberband line, the user generates a 
button-down event in window A, and then moves the cursor to wherever the line will end. 
This point might be outside of window A, if the line is to end in an area of the drawing that 
is not visible through the window. In anticipation of the cursor going out of its window. the 
drawing program sends the window system a request that all button-up events come to it, 
no matter where they occur. Now if the user does move the cursor outside window A, we 
have a race condition. Will the mouse-up event occur before or after the window system 
receives the request that all mouse-up events go to the drawing program? Lf the mouse­
up occurs before the request is received, the event will go to whatever window the cursor is 
in. causing an unexpected result. If the mouse-up occurs after the request is received. all 
is well. The only certain w.Jy to avoid these race conditions is to require the client to tell 
the server that event i has been processed before the server wi 11 send event i + I to the 
client. 
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Once eventS come to a client, they enter an event queue of the sort shown in Figure 
10.2. The client routes , or dispatches, events to various event-handling routines. The 
pseudocode for a typical dispatcher is 

while (lquit) { 
WaitE vent (timeolll, deviceClass, device/d); 
switch (deviceC/ass) { 

case CLASS I: switch (device I d) { 
case DBVICEI : ProcedureA (}: break: 
case DEVIC£2: ProcedureS (); break; 

} 
case CLASS2: switch ( deviceld} { 

etc. 

As events occur and the program moves to different states, the procedures called in response 
to a particular event may change, further complicating the program logic. 

The dispatcher model (also called the 11otijier mode{) enhances the input-handling 
system with a procedure that responds to the user actions , as shown in Fig. 10.10. The 
application program registers a procedure with the notifier and tells the notifier under what 
conditions the procedure is to be called. Procedures called by the notifier are sometimes 
called callback procedures, because they are called back by the notifier. With hierarch.ical 
windows, different callback procedures can be associated with locator events occurring in 
different parts of a dialogue box. or in different parts of a menu. These callback procedures 
may modify the event before it is reponed to the appl icatioo, in which case they are caUed 
filter procedures. 

The input subroutine calls with which a typical window system must deal include 

EnableEvents (eventList) 
WaitEvent (timeout, eventType, 
windowName, evemRecord) 
SetlnpulFocus (wi11dow , ewmtList) 

CursorShape (pixmap, x , y) 

Enable the listed set of events 

Get the next event from the event queue 
Direct all input events of the type on e~'lllllList to 
window 
pixmap defines the cursor shape; x , y give the 
position in the cursor pixmap used for reporting the 
cursor position 

Typical types of events that can be placed on the event queue follow: 

KeyPress 
Key Release 
Button Press 
Bull on Release 
Motion 
LeaveNotify 
EnterNotify 
Window Expose 
Resiz.eRequest 
Timer 

Keyboard key pressed 
Keyboard key released 
Locator (such as mouse) button pressed 
Locator button released 
Cursor has moved 
Cursor has left window 
Cursor has entered window 
Window has been partially or completely exposed 
Window resizing has been requested 
Previously specified time or rime increment has 
occurred 

Each of these event types has a timestamp (see Section 10.1 to understand why this is 
needed), the name of the window where the cursor was when the event occurred, and other 
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.. 
Events 

Window 1 Application 
manager and program 

notifler .. .. 
Fig. 10.10 The window manager's notif.er examines the event queue and calls the 
procedure previously registered to process a particular event. 

event-specific infonnation, such as the new window size for a ResizeRequcst. 
This brief overview of window-management systems has excluded important topics, 

such as ensuring that the window system is sufficiently general that any and all types of 
window-manager policies can be provided. Also important is whether tbe window system is 
a separate process from the clients, is a subroutine library linked in with tbe clients, or is a 
part of the operating system. These and other issues are more fully discussed in [LANT87; 
SCHE86; SCHE88a; STEI89). 

1 0.5 INTERACTION· TECHNIQUE TOOLKITS 

The look and feel of a user-computer inte.rface is detennined largely by the collection of 
interaction techniques provided for it . Recall that interaction techniques implement the 
hardware binding portion of a user~omputer interface design. Designing and implementing 
a good set of interaction techniques is time consuming: Interaction-technique toolkits, 
which are subroutine libraries of interaction techniques, are mechanisms for making a 
collection of techniques available for use by application programmers. This approach, 
which helps to ensure a consistent look and feel among application programs, is clearly a 
sound software-engineering practice. 

Interaction-technique toolkits can be used not only by application programs, but also 
by the window manager, which is after all just another client program. Using the same 
toolkit across the board is an important and commonly used approach to providing a look 
and feel that unifies both multiple applications and the windowing environment itself. For 
instance, the menu style used to select window operations should be the same style used 
within applications. 

As shown in Fig. 10. 1. the toolkit can be implemented on top of the window­
management system. Ln the absence of a window system, toolkits can be implemented 
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directly on top of a graphics subroutine package; however, because elements of a toolkit 
include menus, dialogue boxes, scroll bars, and the like, all of which can conveniently be 
implemented in windows, the window system substrate is normally used. Widely used 
toolkits include the Andrew window-management system's toolkit [PALA88], the Macin­
tosh toolkit [APPL85], OSF/Motif [0PEN89a) and interViews [LINT89) for use with the 
X Window System, several toolkits thai implement OPEN LOOK (SUN89) on both X 
and NeWS, Presentation Manager [MICR89], and the SunView window-management 
system's toolkit!SUN86). Color Plates 1.26 and 1.27 show the OSF/Motif interface. Color 
Plates 1.28 and 1.29 show the OPEN LOOK interface. 

In the X Window System, interaction techniques are called widgets, and we adopt this 
name for use here . A typical set of widgets includes a dialogue box, file-selection box, alert 
box, help box,list box, message box, radio-button bank, radio buttons, choice-bunon bank, 
choice buttons. toggle-bunon bank, toggle bunon, fixed menu, pop-up menu, text input, 
scroll bar. and application window. Each of these widgets is normally implemented as a 
window. In X, subwindows may also be used. For instance, a radio-button bank is a 
window containing a subwindow for each radio button. Complex dialogue boxes can have 
d<r.r.ens of subwindows. An application window may have subwindows for scroll bars , resize 
bunons, and so on, as in Fig. 10.8. 

Interaction-technique toolkits typically have notifiers of the type discussed in Section 
10 .4 to in\'Oke callback procedures when events occur in their subwindows. The procedures 
arc, in some cases, part of the toolkit- for instance, procedures to highlight the current 
menu item, to select und deselect radio bunons, and to scroll a list or file-selection box. 
They can also be provided by the application; for instance, there are procedures to carry out 
a command selected from a menu, to check the validity of each char.1ctcr as it is typed into a 
text input area. or simply to record the fact that a button has been selected. Figure 10.1 I 

leserWrtter kl eserwrtter" 

CopyProc PaperSourceProc CoverPageProc 

Fig. 1 0 .11 Callback procedures associated with widgets in a dialogue box. CopyProc 
checks to ensure that each character is numeric and that the total number entered does 
not exceed some upper bound. PaperSourceProc manages the radio-button bank for 
the paper source to ensure that one and only one button is on and to maintain the 
current selection. CoverPageProc performs a similar function for the cover-page 
radio-button bank. (Screen graphics ® Apple Computer. Inc.) 
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shows pan of a dialogue box and some of the procedures that might be associated with the 
box. 

Not.ioe that tbe previous List of widgets includes both high· and low-level items, some 
of which are composites of others. For example, a dialogue box might contain several 
radio-button banks, toggle-button banks, and text-input areas. Hence, toolkits include 
a means of composing widgets together, typically via subroutine calls. Figure I 0. 12 
shows just some of the code needed to specify the Sun View [SUN86] dialogue box of 
Fig. 10. 13. Some toolkits are built using object-oriented programming concepts: Each widget 
is an instantiation of the widget's definition, possibly with overrides of some of 
the methods and attributes associated with the definition. A composite consists of multiple 
instances. 

print_frame = 
window _create( 

frame, FRAME, 
WIN_SHOW, 
FRAME..NO_CONFIRM. 
FRAME_SHOW _LABEL. 
FRAME_LABEL. "Print ". 

0); 

print_panel = 
window _creat.e(print_frnme, 

WINY,OWS, 
WIN_COLUMNS, 

0 ); 

print_uickb_name = 
panel_create_it.em(print._panel, 

PANEL_LABEL_STRlNO, 
PANEL_ITEM_X, 
PANEL_ITEM_ Y. 

0); 

print_repon_choice_item = 
pane l_create _i tem(print_panel. 
I List of mutually exclusive options} 

PANEL_ ITEM_)(, 
PANEL_ITEM_ Y, 
PANEL_LABEL_STRINO. 
PANEL_LA YOlJf, 
PANEL_CHOICE_STRINOS, 

(Surrounding box I 
TRUE, 
TRUE. 
TRUE. 
I Header at top of window I 
{Zero means end of list} 

I Panel inside the window I 
PANBL, 
PRINT_ WIN_ROWS, 
PRINT_WIN_COLS, 

I Header at top of panel} 
PANEL_MESSAOE, 
"UICKB: Untitled", 
ATIR_COL(PRINT_NAME_COL), 
ATI'R....ROW(PRINT_NAME_ROW), 

PANEL_OIOICE. 

A TIR_COL(PRINT _REPORT_COL), 
A TrR....ROW(PRINT _REPORT _ROW), 
"Repon". 
PANEL_ VERTICAL, fOr horirontal) 

"Completeness", "Consistency". "Schema". 0. 
PANEL_NOTIFY_PROC, print_report_choice_proc, 
I Name of callback procedure I 

0); 

Fig. 10.12 Some of the Sun View code needed to specify the dialogue box of Fig. 
10.13. 
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Action 

Attribute 

o Attribute Type 
o Object 

o Par....,ter 

0 Pre-condition 

Po.st-condi tion 

Via ion 

Iii IDL I 

ICI IDL 2 
ICI Verboao 

Fig. 10.13 Dialogue box created using the Sun View w indow-manager system's 
toolkit. The code specifying this box is shown in Fig. 10.12. (Courtesy of Kevin Murray, 
The George Washington University.) 

Creating composites by programming, no matter what the mechanism, is tedious. 
Interactive editors, such as those shown in Figs. 10. 14 and 10.15, allow composites to be 
created and modified quickly, facilitating the rapid prototyping discussed in Section 9.6. 
Cardelli has developed a sophisticated interactive editor that allows spatial constr.tints 
between widgets to be specified [CARD88j. At run Lime, when the dialogue box 's size can 
be changed by the user, the constraints are used to keep the widgets neatly spaced. 

DIALOG - De ree Information 

®Undergrad 

0 Grad 

0 Non- Degree 

OK 

-----=-------1!.1,.: 

) ®full- time 

0 Part - time 

0 On Leaue Cancel 

Fig. 10.14 The SmethersBames Prototyper dialogue-box editor for the Macintosh. A 
scrolling-list box is being dragged into position. The menu to the left shows the w idgets 
that can be created; from top to bonom. they are blmons, icons, pictures, static text, 
text input, check boxes, radio bunons, scrolling lists. rectangles (for visual grooping. as 
with the radio-button banks), lines (for visual separation), pop-up menus, and scroll 
bars. (Courtesy of SmethersBames, Inc.) 
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Fig. 10.15 An interactive editor for designing windows. The size. position, border 
style, title, and presence of the " go away" box can all be controlled. The edrtor shows 
the window at its actual size; the text file describing the window is at the upper right, 
and a dialogue box for controlling the window characteristics is at the upper left. The 
w indow's size and position can be modified by direct manipulation, in which case the 
values ln the dialogue box are modified. The text file is written out as the permanent 
record of the window's design. The 1.0. and Ref# form a name by which the application 
program can refer to the window. (Screen graphics® Apple Computer. Inc.) 

The output of these editors is a representation of the composite, either as data 
structures that can be translated into code, or as code, or as compiled code. In any case. 
mechanisms are provided for linking the composite into the application program. 
Programming skills are not needed to use the editors, so the editors are available to 
user-interface designers and even to sophisticated end users. These editors are typical of the 
intemctive design tools shown in Fig. 10.1 . 

Another approach to creating menus and dialogue boxes is to use a higher-level 
programming-language description. In Mickey [OLSE89], an extended Pascal for the 
Macintosh. a dialogue box is defined by a record declamtion. The data type of each record 
item is used to determine the type of widget used in the dialogue bolt; enumemted types 
become radio-button banks, character strings become text inputS, Booleans become 
checkb<Dtes, and so on. Figure 10. 16 shows a dialogue box and the code that creates it. An 

~r,:o • strlng[40) 
textStyte • record 

font: Slt40; 
points ("Name • 'Point SlzeM) : Integer 

end 

Fig. 10.16 A dialogue box created automatically by Mickey from the extended Pascal 
record declaration. (Courtesy of Dan Olsen, Jr., Brigham Young University.) 
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procedure NewDrawing ( 
(" Menu = File Name • 'New .. .' Key = N ' ) 
DrawFIIe : OutFileDesc); {Name of dialogue box to be shown.} 

procedure Open Drawing ( 
(' Menu • File Name = 'Open .. .' Key • 0 ') 
DrawFIIe : lnFileDesc); {Name of dialogue box to be shown.} 

procedure CloseDrawing; 
(' Menu • File Name= 'Close' Key • W ') 

procedure SaveDrawing; 
{' Menu = File Name • 'Save' Key = S ' ) 

procedure SaveOrawingAs ( 
(' Menu • Fi le Name = 'Save As .. .' ') 
DrawFIIe : OutFileDesc): {Name of dialogue box to be shown.) 

Fig. 10.1 7 A menu created automatically by Mickey from the extended Pascal record 
declaration. (Courtesy of Dan Olsen, Jr .• Brigham Young University .) 

interactive dialogue-box editor can be used to change the placement of widgets. Figure 
I 0.17 shows a menu and the code from which it is generated. 

Peridot [MYER86; MYER88] takes a radically different approach to toolkits . The 
interface designer creates widgets and composit.e widgets interactively, by example. Rather 
than starting with a base set of widgets, t.be designer works with an interactive editor to 
create a certain look and feel. Examples of the desired widgets are drawn, and Peridot infers 
relationships that allow instances of the widget to adapt to a specific situation. For instance, 
a menu widget infers that its size is to be proportional to the number of items in the menu 
choice set. To specify the behavior of a widget, such as the type of feedback to be given in 
response to a user action, the designer selects the type of feedback from a Peridot menu, and 
Peridot generali les the example to al l menu items. 

10 .6 USER-INTERFACE MANAGEMENT SYSTEMS 

A user-interface management system (UIMS) assists in implementing at least the form of a 
user interface, and in some cases portions of the meaning as well. All UlMSs provide some 
means of defining admissible user-action sequences and may in addition support overall 
screen design, help and error messages, macro definition, undo, and user profi les. Some 
recent UIMSs also manage the data associated with the application. This is in contrast to 
interaction technique tool kil~. which provide far less support. 

VIMSs can increase programmer productivity (in one study, up to 50 percent of the 
code in interactive programs was user-interface code I SUTr78)), speed up the development 
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process, and facilitate iterative refinement of a user interface as experience is gained in its 
use. As suggested in Fig. 10.1 , the UIMS is interposed between the application program 
and the interaction-technique toolkit. The more powerful the UIMS, the less the need for 
the application program to interact directly with the operating system, window system, and 
toolkit. 

ln some UlMSs, user-interface elements are specified in a programming language that 
has specialized operators and data types. In others, the specification is done via interactive 
graphical editors, thus making the UIMS accessible to nonprogrammer interface designers. 

Applications developed on top of a UIMS are typically written as a set of subroutines, 
often called action routines or semantic action routines. The UIMS is responsible for cal ling 
appropriate action routines in response to user inputs. In turn, the action routines influence 
the dialogue-for instance, by modifying what the user can do next on the basis of the 
outcome of a computation. Thus, the UlMS and the application share control of the 
dialogue-this is called the slwred-control model. A UIMS in which the action rou­
tines have no influence over the dialogue is said to follow an exremal-comrol model; 
control resides solely in the UIMS. External control is not as powerful a model as is shared 
control. 

UIMSs vary greatly in the specific capabilities they provide to the user- interface 
designer, but the one essential ingredient is a dialogue-sequence specification, to control the 
order in which interaction techniques are made available to the end user. For this reason, in 
the next section, we turn our attention to dialogue sequencing; then, in Section 10.6.2, we 
discuss more advanced UlMS concepts. Further background on UJMSs can be found in 
(HART89; MYER89; OLSE84b; OLSE87]. 

1 0 .6 .1 Dialogue Sequencing 

Permissible sequences of user actions can be defined in a variety of ways: via transition 
net~rks (also called state diagrams), recursive transition net~rks, event languages, or by 
example, where the designer demonstrates the allowable action sequences to the system and 
the system "learns" what sequences are possible. Common to all these methods is the 
concept of a user-interface srare and associated user actions that can be performed from that 
state. The notion of state has been discussed in Section 9.3.1 (state diagrams) and in 
Section 9.4 (modes). Each of the specification methods encodes the user-interface state in a 
slightly different way, each of which generalizes to the use of one or more state variables. 

If a context-sensitive user interface is to be created, the system response to user actions 
must depend on the current state of the interface. System responses to user actions can 
include invocation of one or several action routines, changes in one or more of the state 
variables, and enabling, disabling, or modifying interaction techniques or menu items in 
preparation for the next user action. Help should also be dependent on the current state. 
Since the outcome of computations performed by the action routines should affect 
user-interface behavior, the action routines must be able to modify the state variables. 
Thus, state is at the heart of context-sensitivity, a concept central to contemporary user 
interfaces. 

The simplest and least powerful, but nevertheless useful, sequence specification 
method is the transition nellllork or state diagram. Transition ne~rks have a single state 
V'Miable, an integer indicating the current state. User actions cause transitions from one 
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state to another; each transition has associated with it zero or more action routines that are 
called when the transition occurs. In addition, states can have associated action routines 
executed whenever the state is entered. This shorthand is convenient for actions that are 
common to all transitions entering a state. 

111e action routines can affect the current state of the transition network in one of two 
ways. First, they can place events in the event queue, which in tum drives the interaction 
handling. This approach implicitly modifies the state , although to ensure that the state 
change is immediate, the event must be put at the front of the queue, not at the back. 
Alternatively, the action routines can modify the state more directly by simply setting the 
state variable to a new value. The first approach is cleaner from a software~ngineering 
view, whereas the second is more flexible but more error-prone. 

A number of UIMSs are based on state diagrams [JAC083; JAC085; SCHU85; 
RUBE83; WASS85). Some of these provide interactive transition-network editors, which 
makes the networks simple to specify. The first UIMS, developed by Newman and called 
The Rtoction Handler, included such an editor (NEWM68). A simple transition-network­
driven UIMS is easy to implement~ Exeteise 10.8. 

Transition networks are especially useful for finding sequencing inconsistencies, as 
discussed in Section 9.3.1, and can easily be used to determine the number of steps 
required to complete a task sequence. Thus, they also serve as means of predicting how 
good a particular design will be, even before the complete interface is implemented. 
Consider, for example, the simple case of explicit versus implicit acceptance of results. 
Figure I 0. 18 represents a one-operand command with explicit acceptance and rejection of 
the results; Fig. 10.19 shows implicit acceptance and explicit rejection. In the first case, 
three steps are always required: enter command, enter operand, accept. In the second case, 
only two steps are normally needed: enter command, enter operand. Three steps are needed 
only when an error has been made. Minimizing steps per task is one goal in interface 
design, especially for experienced users, since (not surprisingly) the speed with which 
experienced users can input commands is nearly I inearly related to the number of discrete 
steps (keystrokes, hand movements) required (CARD80). 

Transition networks, however, have drawbacks. First, tbe user-interface state is 
typically based on a number of State variables, and having to map all possible combinations 
of values of these variables onto a sing.le state is awkward and nonintuitive for the 

Enter command 

Enter 

Enter operand 
Action performed 

Enter ·rejecl" 

Action undone 

Fig. 10.18 Transition netw ork for a dialogue with explicit acceptance and rejection of 
results. 
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· Enter command 

Enter •reject'" 
Action undone 
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Fig. 10.19 Transition netw ork for a dialogue w ith implicit acceptance and explicit 
rejection of results. 

user-interface designer. For example, if commands are to behave in one way when there is a 
currently selected object (CSO) and in another way when there is no CSO, the number of 
states must be doubled to encode the "CSO exists-does not exist" condition. These types 
of context-sensitivities can expand the state space and make the transition networks difficult 
to create and understand. Figure 10.20, for example, shows a transition network for a 
simple application having the following commands: 

• 
• 
• 
• 
• 
• 
• 

Select an object (establishes a CSO) 

Deselect the CSO (so there is no CSO) 

Create an object (establishes a CSO) 

Delete the CSO (so there is no CSO) 

Copy the CSO to the clipboard (requires a CSO, makes the clipboard full) 

Paste from the clipboard (requires that the clipboard be full, c.reates a CSO) 

Clear the clipboard (requires that the clipboard be full, empties the clipboard) . 

Four states are needed to encode the two possible conditions of the clipboard and the CSO. 
Notice also that whether or not any objects exist at all also should be encoded, since objects 
must exist for the command Select_object to be available in the starting state. Four more 
states would be needed to encode whether any objects do or do not exist. 

Concurrency creates a similar state-space growth problem. Consider two user-interface 
elements-say, two concurrently active dialogue boxes-each with its own "state" 
encoding the selections currently allowable or currently made. If each dialogue-box state 
can be encoded in 10 states, their combination requires 100 states; for three dialogue boxes, 
1000 states are needed; and so on. This exponential growth in state space is unacceptable. 
Jacob [JAC086] combines transition networks with object-oriented programming concepts 
to specify complete user interfaces while limiting the state-space explosion. Objects are 
self-contained entities within the interface, and each object has its own transition network to 
specify its behavior, which is independent of that of other objects. Tbe UIMS portion of 
HUTWindows, the Helsinki University of Technology Window Manager and UIMS, uses a 
similar strategy [KOlV88]. 
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Delete Select 
object object 

Deselect Create 
CSO object 

Start 

Clear 
clipboard 

Clear 
clipboard 

Delete Select 
object object 

Fig. 10.20 A transition network with four states. Not all commands are available in all 
states. In general, action routines associated with transitions should appear on 
diagrams of this sort. with the names of the user actions (user commands in this case); 
we omit them here because the actions are obvious. 

Globally available commands similarly enlarge the transition network. lf help is to be 
globally available, each state must have an associated help state, a transition to the help 
state, and a reverse transition back to the originating state. This is also needed for the help 
to be context-sensitive. Undo must be done similarly, except that the transition from an 
undo state returns to a state different from the one from which it was entered. As the 
number of transitions relative to the number of states increases, we end up with complex 
"spaghetti" transition networks. 

Various specialized constructs have been developed to simplify transition networks. For 
instance, we can a.lleviate the help problem by using subnetworks, in a fashion analogous to 
subroutines, to hide localized repetitive detail . Transition networks that can call sub­
networks recursively are called recursive transition networks. The state variables in this case 
are the entire stack of saved states, plus the state of the currently act.ive transition network. 
Several other powerful diagramming techniques, all derived from transition networks, are 
described in [WELL89] . 
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<command> ::=<create> I <polyline> I <delete> I <move> I STOP 
<create>::= CREATE+ <type>+ <position> 
<type> ::=SQUARE I TRIANGLE 
<position> ::= NUMBER+ NUMBER 
<polyline> ::= POL YUNE + <vertex list> + END _pOLY 
<vertex_Jist> ::= <position> I <vertex_list> + <position> 
<delete>::= DELETE + OBJECI'_ID 
<move>::= MOVEA + OBJECI'_ID +<position> 

461 

Fig. 1 0 . 21 Backus- Naur form representation of the sequencing rules for a simple user 
interface. 

Backus-Naur form (BNF) can also be used to define sequencing, and is equivalent in 
representational power to recursive transition networks (both are equivalent to push-down 
automata). BNF, illustrated in Fig. 10.21 , can also be shown diagrammatically as the 
diagrams of Fig. 10.22. It is difficult to read BNF and to obtain a good overview of the 
sequencing rules, but BNF form can be processed to provide an evaluation of certain 
aspects of user-interface quality [BLES82, REIS82), or to generate command-language 
parsers [JOHN78]. Several older UlMSs were based on BNF specifications [HANA80; 
OLSE83; OLSE84a]. 

Transition networks, whether recursive or not, encode user-inteface state in a small 
number of state variables. Augmemed transition networks (ATNs), a more flexible 
derivative of transition networks , encode user-interface state by which node of the ATN is 
active and by what the values of explicit state variables are. Responses can be the calling of 
action routines, the setting of these explicit state variables , or the changing of the node of 
the ATN that is active. Of course, the state variables can also be set by action routines. 
Figure 10.23 shows an ATN in which the Boolean state variable cb, set by several of the 
transitions, is used to affect flow of control from one state to another. The variable cb is 
true if the clipboard is full. 

command 

~ SQUARE--.........____ T 
CREATE ---.....__ TRIANGLE ~ pos110n --..._ 

POLYLINE vertex..Jist END- POLY ---. 

DELETE OBJECT_lD 

MOVE OBJECT- ID --- position --~ 

STOP 

--verteuist .. { position ' ... 
position .. NUMBER ------------- NUMBER 

Fig. 10.22 A diagrammatic representation of the Backus-Naur form equivalent to that 
in Fig. 10.21. 
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Deselect Create 

(cb ~ true) & Clear 
cb :a faiM 

Copy 
cb:• true 

object object (cb • true) & Paste 

Swt 

(cb• true) & Clear 
cb :- false 

Fig. 10.23 An augmented transition network (ATN) representing the same user 
interface as that in Fig. 1 0.20. Transitions can be conditionally dependent on the value 
of explicit state variables (the Boolean cb in this case). and can also set state variables. 
In general, the application program can also set state variables. 

Just as transition networks can be made more general with subnetworks, so too ATNs 
can call lower-level ATNs. ATNs that can recursively caU other ATNs are called augmented 
recunive transition network.s [WOOD70], and researchers have used these net"'orks to 
model user interfaces [KIER85]. 

As transition networks become more complicated, with logical expressions on 
transition and subroutine calls, we are led toward more programlike specifications. After 
all, programming languages are the most powerful way yet developed of specifying 
sequencing and the multiple conditions often associated with transitions. Several event 
languages have been developed specifically for user-interface specilicat.ion [CARD85; 
FLEC87; GARR82; GREE85a; HlLL87; KAS182; SlOC89]. The u.<;er interface depicted in 
Figs. 10.20and 10.23 can be described in a typical event language, as shown in Fig. 10.24. 
Note that event languages, unlike traditional programming languages, have no explicit flow 
of control. Instead, whenever an il condition becomes true, the associated actions are 
executed. Thus, the event language is a production-rule system. 
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ir Event = SelectObject then 
begin 

cso := t rue 
perfor m action routine name 

end 
if Event = DeselectCSO and cso = true then 

begin 
cso := false 
perform action routine name 

end 
if Event = CreateObject then 

begin 
cso := t rue 
perfor m action routine name 

end 
if Event = DeleteCSO and cso = tr ue then 

begin 
cso := false 
perform action routine name 

end 
if Event = CopyCSO and cso = true then 

begin 
cb := true 
perfor m action routine name 

end 
if Event = PasteCJipboard and cb = t rue then 

begin 
cso := I rue 
perform action routine name 

end 
if Event = ClearClipboard a nd cb = true then 

begin 
cb := fal se 
perform action routine name 

end 

Fig . 10.24 A typical event la nguage. with a Pascal-like syntax. 
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Green [GREE87] surveys event languages and all the other sequence-specification 
methods we have mentioned, and shows that general event languages are more powerful 
than are transition networks , recursive transition networks, and grammars; he also provides 
algorithms for converting these forms into an event language. AJ'Ns that have general 
computat ions associated with their arcs are also equivalent to event languages. 

If eventlanguges are so powerful, why do we bother with the various types of transition 
networks? Because, for simple cases, it is easier to work with diagrammatic representa­
tions. One of the goals of UIMSs is to allow nonprogrammers who specialize in 
user-interface design to be directly involved in creating an interface. This goal is probably 
best met with transition-network-oriented tools that are easier to use, although somewhat 
less powerful. Networks provide a useful , time-proven tool for laying out a dialogue, and 
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they appear to help the designer to document and understand the design. The diagrammatic 
representations are especially compelling if user actions are performed on interaction 
objects such as menus, dialogue boxes, and other visible objects. Then diagrams of the type 
shown in Fig. 10.25 can be created interactively to define dialogue sequencing. If needed, 
conditions (such as the cb = true in Fig. 10.23) can be a~sociated with the arcs. Figure 
10.26 shows one way to establish a link on such a diagram. 

A quite different way to define syntax is by example. Here, the user-interface designer 
places the UfMS into a " learning" mode, and then steps through all acceptable sequences 
of actions (a tedious process in complex applications, unless the VIMS can infer general 
rules from the examples). The designer might start with a main menu, select an item from 
it, and then go through a directory to locate the submenu, dialogue box, or application­
specific object to be presented to the user in response to the main menu selection. The 
object appears on the screen, and the designer can indicate the position, size, or other 
attributes that the object should have when the application is actually executed. The 
designer goes on to perform some operation on the displayed object and again shows what 
object should appear next, or how the displayed object is to respond to the operation; the 
designer repealS this process until all actions on all objects have been defined. This 
technique ~rks for sequencing through items that have already been defined by the 
interface designer, but is not sufficiently general to handle arbitrary application function­
ality. User-interface software tools with some degree of by-example sequencing specifica­
tion include Menulay [BVXT83), TAE Plus fMTLL88c] and the SmethersBarnes Prototyper 
[COSS89]. Peridot, mentioned earlier, builds interaction techniques , (i.e. , hardware 
bindings) by example. 

10.6 .2 Advanced UIMS Concepts 

VIMSs have tended to focus on sequence control and visual design. Transition net~rks 
provide a good basis for sequencing, and interactive editors are just right for visual design. 

' Fii 

c 
Print 
cblogue 

Print 
help 

Fig. 10.25 Several menus and dialogue boxes linked together. The return paths from 
dialogue boxes to the main menu are not shown. 
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Select which windows to link to: 

I OK I 

Fig. 10.26 Linking together different interaction techniques using the SmethersBarnes 
Prototyper. A menu item is being linked to the dialogue box "Set up test" checked in the 
list. The icons on the right are used to select the class of responses to be linked to the 
menu selection. Reading left to right underneath the "link" icon, the possibilities are 
enable or disable check boxes. radio buttons, and buttons in dialogue boxes; open a 
window or dialogue box (the class of response selected); enable or disable a menu; 
enable or disable a menu item; open a print dialogue box; or open a file dialogue box. 
(Courtesy of SmethersBames. Inc.) 

As discussed in Chapter 9, however, a user-interface design includes conceptual, 
functional , sequencing, and hardware-binding levels. Much recent UIMS development 
has begun to address the functional and conceptual designs as well. Thus, there 
has come to be more focus on combining sequencing control with a higher-level 
model of objects and commands, and also on integrating intelligent help systems into the 
UIMS. 

Representations at a higher level than that of transition networks are clearly needed. 
Consider how difficult it would be to add to the transition network of Fig. 10.20 new states 
to record whether any objects have yet been created. lt would also be difficult to apply some 
of the dialogue modifications. such as CO, currently selected command, and factored 
attributes, discussed in Section 9.4. And the sequencing specifications provide no 
information about wbat oper.uions can be performed on what objects, and certainly give no 
glimmer of whart parameters are needed to perform an operation. 

The first step away from a sequencing orientation and toward higher levels of 
abstraction was taken by COUSIN [HAYE83; HAYE84), which automatically generates 
menus and dialogue boxes from a specification of commands, parameters, and parameter 
data types. The innovation of COUSIN is in defining all the parameters needed by a 
command as an integral unit. COUSIN has enough information that a prefix or postfix 
syntax could also be generated. Green took a similar approach, adding preconditions and 
postconditions to specify the semantics of user commands [GREE85b]. Olsen's MIKE 
system (0LSE86J declares commands and parameters, also generating a user interface in a 
fashion similar to COUSIN. In addition, MlKE supports direct manipulation of objects 
to specify positions, and can cause commands to be executed when a button-down event 
occurs in a window or subwindow. 
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All these significant advances are focused on commands. If a UrMS is to mediate 
between !he user and the application in direct-manipulation interfaces, however, it must 
have some knowledge of the objects to be manipulated. HIGGINS was the first UrMS to 
incorporate a data model [HUDS86; HUDS87; HUDS88), one that is based on objects and 
relations between objects. The UrMS and action routines share the data model, so !hat 
changes made to data objects can be immediately reflected in the display. Active values are 
used to propagate changes among interdependent objects and from objects to their visual 
representations. The George Washington University User Interface Management System 
(GWUlMS) uses active values and object-oriented programming concepts to achieve a 
similar objective [SfBE86]. GWUlMS ll also uses a data model [HURL89]. as does the 
Serpent UIMS (BASS88]. Although !he deta.ils vary, all the data models make use of 
object-oriented programming concepts and active values, and are closely related to 
developments in database-management systems in the area of semantic data models 
[HULL87]. 

The User Interface Design Environment (UIDE) project [FOLE89] has developed a 
new user-interface specification method integrating some elements of these recent 
developments to include a data model, the commands that can be applied to each type of 
object in the data model , the parameters needed by !he commands, !he parameter data 
types, the conditions under which commands are available for use (that is, command 
preconditions), and the changes that occur to state variables when a command is executed 
(that is, command postconditions) [FOLE87; FOLE88]. To illustrate the method, we start 
with the sample application developed in Section 10.6.1. We add a data mod.el, which is 
here a single class of objects with two subclasses, square and triangle. In addition, !here are 
two distinguished instances of objects, !he CSO and the clipboard object, both of which 
may or may not exist at any given time. The specification is shown in Fig. 10.27. The 
preconditions are !he conditions on state variables that must be satisfied for a command to 
be invoked, whereas the postconditions are changes in state variables. 

Not only is this specification sufficient to create automatically an operational interface 
to the application's action routines, but also it is represented such that 

• 
• 
• 

• 

• 
• 

• 

Menu items can be enabled and disabled, using preconditions 

Users can be told why a command is disabled, again using preconditions 

Users can be told what to do to enable a command, by back chaining to determine what 
commands must be invoked to satisfy the preconditions of the command in question 

Users can be given a partial explanation of what a command does, using the 
postconditions 

Some user-interface design-consistency rules can be checked 

Different interaction techniques can be assigned for use in specifying commands and 
command parameters 

Speed of use of the interface can be predicted for various tas.k sequences and for 
various interaction techniques. 

Another way to define user interfaces consisting of interconnected processing modules 
is with data-flow diagrams. For instance. the NeXT Interface Builder, shown in Fig. 10.28, 
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class object {First the data model) 
subclasses triangle, square; 
actions CreateObject, SelectObject; 
attributes position range [0 .. 10) x [0 .. 10) {Attribute name and data type) 

class triangle, square; 
s uperclass object; 
inherits actions 
inheri ts attributes 

instance C S 0 
of object 
actions OeselectCSO, DeleteCSO, CopyCSO 
inherit s attributes 

inst ance C 8 
of object 
actions ClearCiipboard, Paste 
inherits attributes 

(Initial values for state variables I 
initial Number (object) := 0; csoExists := false; cbFu/1 := false; 

(Actions on objects, with preconditions, postconditions, and parameters) 
precondition Number (object) ~ 0; 
SelectObject (object); 
postcondition csoExists := true; 

precondition csoExists := true: 
DeselectCSO (CSO); 
post condition csoExists := false; 

precondi tion ; 
CreateObject (position, object); 
postcondition Number (object):= Number (object) +I; csoExists := true; 

precondition csoExists := true; 
DeleteCSO (CSO); 
postcondition Number (object)= Number (object)- I; csoExists := false; 

precondition csoExists := true; 
CopyCSO (CSO); 
postcondition cbFu/1 := true; 

precondition cbFu/1 := true; 
Paste (CB); 
postcondition csoExists := true; 

precondition cbFu/1 := true; 
ClearCiipboard (CB); 
postcondition cbFu/1 := false ; 

Fig. 10.27 A high-level specification of a user interface incorporating a data model, 
sequencing information, and command parameters. 

467 
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Fig. 10.28 The NeXT Interface Builder, showing a connection being made. The user 
has already selected the type of message to be sent from the Stop button, and has 
drawn the connection to the cylindrical chamber to indicate the destination of the 
message. (Courtesy of NeXT, Inc. © 1989 NeXT, Inc.) 

allows objects to be interconected so that output messages from one object are input to 
another object. Type checking is used to ensure that only compatible messages are sent and 
received. 

Data-flow diagrams can also be used to specify the detailed behavior of some or all of a 
user interface, although doing so takes on considerable programming flavor and suffers the 
same problems of scale seen with llowcharts and transition networks. Work is this area is 
surveyed in [BORN86a]; a more recent project is described in [SMIT88]. A specialized 
system, for scientific data visualization, is shown in Color Plate 1.30. 

UIMSs are finding their way into regular use. Early UlMSs suffered from rigid 
interaction styles that did not allow custom-tailoring to suit users' needs and were overly 
dependent on transition networks. Commercial UIMSs are now used on a large scale, and 
are becoming as essential to developing interactive graphics application programs as are 
graphics subroutine packages, window managers, and interaction-technique toolk its. 

EXERCISES 

10.1 Study the user imerfaces to two differem window systems. Categorize each with respect to the 
design issues discussed in Section 9.3. 

10.2 Devise the search mechanism for real-estato--based event routing with overlapping main 
windows, in which each main window can contain a hierarchy of spatially nested subwindows. 
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10.3 Survey three window-management systems to determine whether they 
a. Have hierarchical windows 
b . Implement a server-diem model and, if they do, whether the implementation allows the 

server and client to be distributed in a nenwrk 
c. Provide real-estate or listener input event dispatching, or some combination thereof 
d. Integrate the graphics subroutine package with the window-management system, or pass 

graphics calls directly through to graphics hardware. 

10.4 Write an interactive dialogue box or menu editor. 

10.5 Implement the concepts demonstrated in MICKY [OLSE89] with a programming language and 
toolkit available to you. 

10.6 Examine several user interfaces with which you are familiar. Identify a set of user-interface 
state variables used in implementing each user interface. How many of these state variables are used in 
the user interface to provide context-sensitive menus, help, and so on? 

10.7 Document the dialogue of a user interface. to a paint or drawing program. Do this (a) with state 
diagrams, and (b) with the speciali:ted language introduced in Section 10.6. 1. Which method did you 
find easier? Why? Compare your opinions with those of your classmates. Which method is easier for 
answering questions such as "How do I draw a circle?" " What do I do after an error message 
appears?" 

10.8 Write a lransition-nenwrk-based UIMS. Every lransition in the state diagram should be 
represented by a state-table entry with the following information: 

• Current state number 
• Next state 
• Event which causes the transition 
• Name of procedure to call when the transition occurs. 

Events should include selection of a command from a menu, typing of a command name, mouse 
movement, mouse button-down, and mouse button-up. You should automatically display a menu 
containing all possible commands (derive th.is list from the events in the state table), enabling only 
those choices available from the current state. 

10.9 For each of the extensions to state diagrams discussed in Section 9 .3, determine whether the 
modifications create a push-down automaton (is it bounded or unbounded?) or a Turing machine. 

10.10 Carefully study a window-management system that includes a policy-free window system. 
Examine several window managers to determine whether they can be implemented with the window 
system. For instance, some window systems provide for borders around windows for scroll bars, a 
heading, and perhaps selection buttons. For the window system to be completely policy-free, you 
must be able to specify separately the width of the borders on the four sides of the window. 
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11 
Representing 

Curves and 
Surfaces 

Smooth curves and surfaces must be generated in many computer graphics applications. 
Many real-world objects are inherently smooth, and much of computer graphics involves 
modeling the real world. Computer-aided design (CAD), high-quality character fonts, data 
plots, and artists' sketches all contain smooth curves and surfaces. The path of a camera or 
object in an animation sequence (Chapter 21) is almost always smooth; similarly, a path 
through intensity or color space (Chapters 16 and 13) must often be smooth. 

The need to represent curves and surfaces arises in two cases: in modeling existing 
objects (a car, a face, a mountain) and in modeling "from scratch," where no preexisting 
physical object is being represented. In the first case, a mathematical description of the 
object may be unavailable. Of course, one can use as a model the coordinates of the 
infinitely many points of the object, but this is not feasible for a computer with li nite 
storage. More often, we merely approximate the object with pieces of planes, spheres, or 
other shapes that are easy to describe mathematically, and require that points on our model 
be close to corresponding points on the object. 

In the second case, when there is no preexisting object to model , the user creates the 
object in the modeling process; hence, the object matches its representation exactly, 
because its only embodiment is the representation. To create the object, the user may sculpt 
the object interactively, describe it mathematically, or give an approximate description to 
be "filled in" by some program. In CAD, the computer representation is used later to 
generate physical realizations of the abstractly designed object. 

This chapter introduces the general area of surface modeling. The area is quite broad, 
and only the three most common representations for 3D surfaces are presented here: 
polygon mesh surfaces, parametric surfaces, and quadric surfaces. We also discuss 
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Fig. 11 .1 A 30 object represented by polygons. 

parametric curves, both because they are interesting in their own right and because 
parametric surfaces are a simple generalization of the curves. 

Solid modeling, introduced in the next chapter, is the representation of volumes 
completely surrounded by surfaces, such as a cube, an airplane, or a building. The surface 
representations discussed in this chapter can be used in solid modeling to define each of the 
surfaces that bound the volume. 

A polygon mesh is a set of connected polygonally bounded planar surfaces. Open 
b())(es, cabinets, and building exteriors can be easily and naturally represented by polygon 
meshes. as can volumes bounded by planar surfaces. Polygon meshes can be used. although 
less easily. to represent objects with curved surfaces, as in Fig. II. I; however. the 
representation is only approximate. Figure 11.2 shows the cross-section of a curved shape 
and the polygon mesh representing it. The obvious errors in the representation can be made 
arbitrarily small by using more and more polygons to create a better piecewise linear 
approximation, but this increases space requirements and the execution time of algorithms 
processing the representation. Furthermore. if the image is enlarged, the straight edges 
again become obvious. (Forrest calls this problem "geometric aliasing" [FORR80), by 
analogy to the general notion of aliasing discussed in Chapters 3 and 14.) 

Pammetric polynomial cun~s define points on a 30 curve by using three polynomials 
in a parameter 1. one for each of x, y . and z. The coefficients of t.he polynomials are selected 
such that the curve follows the desired path. Although v.Jrious degrees of polynomials can 
be used, we present only the most common case, cubic polynomials (that have powers of the 
parJmcter up through the third). The tcm1 cubic curve will often be used for such curves. 

Parametric bivariate (two-variable) polynomial surface patches define the coordinates 
of points on a curved surface by using throe bivariate polynomials, one for each of x, y. and 
z. The boundaries of the patches are parametric polynomial curves. Many fewer bivariate 
polynomial surface patches than polygonal patches are needed to approximate a cur\'ed 

Fig. 11 .2 A cross-section of a curved object and its polygonal representation. 
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11 .1 Polygon Meshes 473 

surface to a given accuracy. The algorithms for working with bivariate polynomials, 
however, are more complex than are those for polygons. As with curves, polynomials of 
various degrees can be used, but we discuss here only the common case of polynomials that 
are cubic in both parameters. The surfaces are accordingly called bicubic surfaces. 

Quadric surfaces are those defined implicitly by an equationf(x, y, z) = 0, where/is a 
quadric polynomial in x, y, and z. Quadric surfaces are a convenient representation for the 
familiar sphere, ellipsoid, and cylinder. 

The next chapter, on solid modeling, incorporates these representations into systems to 
represent not just surfaces, but also bounded (solid) volumes. The surface representations 
described in this chapter are used, sometimes in combination with one another, to bound a 
30 volume. 

11 .1 POLYGON MESHES 

A polygon mesh is a collection of edges, vertices, and polygons connected such that each 
edge is shared by at most two polygons. An edge connects two vertices, and a polygon is a 
closed sequence of edges. An edge can be shared by two adjacent polygons, and a vertex is 
shared by at least two edges. A polygon mesh can be represented in several different ways, 
each with its advantages and disadvantages. The application programmer's task is to choose 
the most appropiate representation. Several representations can be used in a single 
application: one for external storage, another for internal use, and yet another with which 
the user interactively creates the mesh. 

Two basic criteria , space and time, can be used to evaluate different representations. 
Typical operations on a polygon mesh are finding all the edges incident to a vertex, finding 
th.e polygons sharing an edge or a vertex, finding the vertices connected by an edge, finding 
the edges of a polygon, displaying the mesh, and identifying errors in representation (e.g., a 
missing edge, vertex, or polygon). In general, the more explicitly the relations among 
polygons, vertices, and edges are represented, the faster the operations are and the more 
space the representation requires. Woo [W0085] has analyzed the time complexity of nine 
basic access operations and nine basic update operations on a polygon-mesh data structure. 

In the rest of this section, several issues concerning polygon meshes are discussed: 
representing polygon meshes, ensuring that a given representation is correct, and 
calculating the coefficients of the plane of a polygon. 

11 . 1 . 1 Representing Polygon Meshes 

In this section, we discuss three polygon-mesh representations: explicit, pointers to a vertex 
list, and pointers to an edge list. In the explicit representation, each polygon is represented 
by a list of vertex coordinates: 

P = ((x1, y1, z1), (xz, y2, Zz), ... , (x •• y •• z.,)). 

The vertices are stored in the order in which they would be encountered traveling around the 
polygon. There are edges between successive vertices in the list and between the last and 
first vertices. For a single polygon, this is space-efficient; for a polygon mesh, however, 
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much space is lost because the coordinates of shared vertices are duplicated. Even worse, 
there is no explicit representation of shared edges and vertices. For instance, to drag a 
vertex and aU its incident edges interactively, we must find aU polygons that share the 
vertex. This requires comparing the coordinate triples of one polygon with those of all other 
polygons. The most efficient way to do this would be to sort all N coordinate triples, but this 
is at best an Mog.j'V process, and even then there is the danger that the same vertex might, 
due to computational roundoff, have slightly different coordinate values in each polygon, so 
a correct match might never be made. 

With this representation, displaying the mesh either as filled polygons or as polygon 
outlines necessitates transforming each vertex and clipping each edge of each polygon. lf 
edges are being drawn, each shared edge is drawn twice; this causes problems on pen 
plotters, film recorders, and vector displays due to the overwriting. A problem may also be 
created on raster displays if the edges are drawn in opposite directions, in which case extra 
pixels may be intensified. 

Polygons defined with pointers to a vertex list, the method used by SPHJGS, have each 
vertex in the polygon mesh stored just once, in th.e vertex list V = ((x1, Y1> z1), ••• , (x., y., 
z.)). A polygon is defined by a list of indices (or pointers) into the vertex list. A polygon 
made up of vertices 3, 5, 7, and 10 in the vertex list would thus be represented asP= (3, 5, 
7, 10). 

This representation, an example of which is shown in Fig. 11.3, has several advantages 
over the explicit polygon representation. Since each vertex is stored just once, considerable 
space is saved. Furthermore, the coordinates of a vertex can be changed easily. On the other 
hand, it is still difficult to find polygons that share an edge, and shared polygon edges are 
still drawn twice when all polygon outlines are displayed. These two problems can be 
eliminated by representing edges explicitly, as in the next method. 

When defining polygons by pointers to an edge list, we again have the vertex list V, but 
represent a polygon as a list of pointers not to the vertex list, but rather to an edge list , in 
which each edge occurs just once. In tum, each edge in the edge list points to the two 
vertices in the vertex list defining the edge, and also to the one or two polygons to which the 
edge belongs. Hence, we describe a polygon asP= (E1, ••• , E.), and an edge as E = (V1, 

V2, P1, P2). When an edge belongs to only one polygon, either P1 or P2 is null. Figure 11.4 
shows an example of this representation. 

Polygon outlines are shown by displaying all edges, rather than by displaying all 
polygons; thus, redundant clipping, transformation, and scan conversion are avoided. Filled 
polygons are also displayed easily. ln some situations, such as the description of a 30 
honeycomblike sheet-metal structure, some edges are shared by three polygons. In such 

V = (V1 , ~· "s· V.) = ((x1,y1 , Z,) , ..• , (x4,y4 , z4 )) 

"s P, = (1, 2, 4) 

p2 = (4, 2, 3) 

Fig. 11 .3 Polygon mesh defined with indexes into a vertex list. 
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v. (V
1

, V
2

, v3, V4) • ((x,. y1, z,l, ... , (x4 , y4, zJ) 

E,•(V1, V2, P,.J.) 

Ez: (Vz. V3, Pz, A) 

~ = ( v3, v4, P2, J.) 

E4 • (V4, V2, P1, P2) 

E5 • (V4, V1, P1, J.) 

P, = (E,. E4, E,) 

Pz • (Ez, E,. EJ 

Fig. 11 .4 Polygon mesh defined with edge lists for each polygon (A represents null). 

cases, the edge descriptions can be extended to include an arbitrary number of polygons: 
E = (V1, V2, P1, P2, ••• , P.). 

ln none of these three representations (i.e., explicit polygons, pointers to vertices, 
pointers to an edge list), is it easy to determine which edges are incident to a vertex: All 
edges must be inspected. Of course, information can be added explicitly to permit 
determining such relationships. For instance, the winged-edge representation used by 
Baumgart [BAUM75] expands the edge description to include pointers to the t~ adjoining 
edges of each polygon, whereas the vertex description includes a pointer to an (arbitrary) 
edge incident on the vertex, and thus more polygon and vertex information is available. 
This representation is discussed in Chapter 12. 

11 .1.2 Consistency of Polygon-Mesh Representations 

Polygon meshes are often generated interactively, such as by operators digitizing drawings, 
so errors are inevitable. Thus, it is appropriate to make sure that all polygons are closed, all 
edges are used at least once but not more than some (application-defined) maximum, and 
each vertex is referenced by at least t~ edges. In some applications, we ~uld also expect 
the mesh to be completely connected (any vertex can be reached from any other vertex by 
moving along edges), to be topologically planar (the binary relation on vertices defined by 
edges can be represented by a planar graph), or to have no holes (there exists just one 
boundary-a connected sequence of edges each of which is used by one polygon). 

Of the three representations discussed, the explicit-edge scheme is the easiest to checlc 
for consiStency, because it contains the most information. For example, 10 make sure that 
all edges are part of at least one but no more than some maximum number of polygons, the 
code in Fig. 11.5 can be used. 

This procedure is by no means a complete consistency check. For example, an edge 
used twice in the same polygon goes undetected. A similar procedure can be used to make 
sure that each vertex is part of at least one polygon; we check whether at least t~ different 
edges of the same polygon refer to the vertex . Also, it should be an error for the t~ vertices 
of an edge 10 be the same, unless edges with zero length are allowed. 

The relationship of "sharing an edge" between polygons is a binary equivalence 
relation and hence partitions a mesh into equivalence classes called conMCted compont!nts. 

0508



476 Representing Curves and Surfaces 

for (each tdgt EJ in stt of tdges) 
use..count, = 0: 

for (each polygon P, in set of polygons) 
for (each edge EJ of polygon P) 

USeJ:OllntJ++: 
for (each edge EJ In set of edges) { 

If (use..countj == 0) 

} 

Error (): 
If ( ust..count J > nuuinwm) 

Error (): 

Fig. 11 .5 Code to ensure that all edges of explicit polygon represe ntation are used 
between 1 and maximum times. 

One usually expects a polygon mesh to have a single connected component. Algorithms for 
determining the connected components of a binary relation are well known [SEIXi88). 

More detailed testing is also possible; one can check, for instance, that each polygon 
referred to by an edge E1 refers in tum baclc to the edge E1• This ensures that all references 
from polygons to edges are complete. Similarly, we can check that each edge E1 referred to 
by a polygon P1 also refers baclc to polygon P;. which ensures that the references from edges 
to polygons are complete. 

11 .1.3 Plane Equations 

When worlting with polygons or polygon meshes, we frequently need to know the equation 
of the plane in which the polygon lies. In some cases, of course, the equation is known 
implicitly through the interactive construction methods used to define the polygon. If it is 
nOt known, we can use the coordinates of three vertices to find the plane. Recall the plane 
equation 

Ax + By + Cz + D = 0. ( 11.1) 

The coefficients A, B, and C define the normal to the plane, [A B C). Given points 
P1, P,, and Pa on the plane, that plane's nonnal can be computed as the vector 
cross-product P1Pr x P1Pa (or Ptf'1 x Ptf'1, etc.). If the cross-product is zero , then the 
three points are collinear and do noc define a plane. Other vertices. if any, can be used 
instead. Given a nonzero cross-product, D can be found by substituting the nonnal 
[A B C] and any one of the three points into Eq. (1 1. 1). 

If there are more than three vertices, they may be nonplanar, either for numerical 
reasons or because of the method by which the polygons were generated. Then another 
technique for finding the coefficients A, B, and C of a plane that comes close to all the 
vertices is better. It can be shown that A, B, and Care proportional to the signed areas of the 
project ions of the polygon onto the (y, z), (x, z), and (x, y) planes, •espectively. For 
example, if the polygon is parallel to the (x. y) plane, then A = B = 0, as Cltpected: The 
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projections of the polygon onto the (y, z) and (x, z) planes have zero area. This method is 
better because the areas of the projections are a function of the coordinates of all the 
vertices and so are not sensitive to the choice of a few vertices that might happen not to be 
coplanar with most or all of the other vertices, or that might happen to be collinear. For 
instance, the area (and hence coefficient) C of the polygon projected onto the (x, y) plane 
in Fig. 11.6 is just the area of the trapezoid A3, minus the areas of A1 and A2• In general, 

( 11.2) 

where the operator EB is normal addition except that n EB I .. I . The areas for A and 8 are 
given by similar formulae, except the area for B is negated (see Exercise 11.1). 

Eq. ( 11 .2) gives th.e sum of the areas of all the trapezoids formed by successive edges of 
the polygons. lf Aiet < Ai· the area makes a negative contribution to the sum. The sign of the 
sum is also useful: if the vertices have been enumerated in a clockwise direction (as 
projected onto the plane), then the sign is positive; othe.rwise, it is negative. 

Once we determine the plane equation by using all the vertices, we can estimate how 
nonplanar the polygon is by calculating the perpendicular distance from the plane to each 
vertex. This distanced for the vertex at (x, y, z) is 

d = Ax + By + Cz + D 
YA2 + sz + ct . 

(11.3) 

This distance is either positive or negative, depending on which side of the plane the 
point is located. If the vertex is on the plane, then d = 0. Of course, to determine only on 
which side of a plane a point is, only the sign of d matters, so division by the square root is 
DOl needed. 

The plane equation is not unique; any nonzero multiplicative constant k changes the 
equation, but not the plane. It is often convenient to store the plane coefficients with a 
norma.lized normal; this can be done by choosing 

( 11.4) 

which is the reciprocal of the length of the normal . Then, distances can be computed with 
Eq. ( 11.3) more easily, since the denomi.nator is I. 

y 

Fig. 11 .6 Calculating the area C of a triangle using Eq. (11.2) . 
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4 78 Representing Curves and Surfaces 

11 .2 PARAMETRIC CUBIC CURVES 

Polylines and polygons are first-degree, piecewise Linear approximations to curves and 
surfaces, respectively. Unless the curves or surfaces being approximated are also piecewise 
linear, large numbers of endpoint coordinates must be created and stored to achieve 
reasonable accuracy. Interactive manipulation of the data to approximate a shape is tedious , 
because many points have to be positioned precisely. 

In this section, a more compact and more manipulable representation of piecewise 
smooth curves is developed; in the following section, the mathematical development is 
generalized to surfaces. The general approach is to use functions that are of a higher degree 
than are the linear functions. The functions still generally only approximate the desired 
shapes, but use less storage and offer easier interactive manipulation than do linear 
functions. 

The higher-degree approximations can be based on one of three methods. First, one 
can express y and z as explicit functions of x, so that y = f(x) and z = g(x). The difficulties 
with this are that ( I) it is impossible to get multiple values of y for a single x, so curves such 
as circles and ellipses must be represented by multiple curve segments; (2) such a definition 
is not rotationally invariant (to describe a rotated version of the curve requires a great deal 
of work and may in general require breaking a curve segment into many others); and (3) 
describing curves with vertical tangents is difficult, because a slope of infinity is difficult to 
represent. 

Second, we can choose to model curves as solutions to implicit e{}Uations of the form 
f(x, y, z) = 0; this is fraught with its own perils. First, the given equation may have more 
solutions than we want. For example, in modeling a circle, we might want to use .x! +I= I , 
which is fine. But how do we model a half circle? We must add constraints such as x 2: 0, 
which cannot be contained within the implicit equation. Furthermore, if two implicitly 
defined curve segments are joined together, it may be difficult to determine whether their 
tangent directions agree at their join point. Tangent continuity is critical in many 
applications. 

These two mathematical forms do permit rapid determination of whether a point lies on 
the curve or on which side of the curve the point lies, as was done in Chapter 3. Normals to 
the curve are also easily computed. Hence, we shall briefly discuss the implicit form in 
Section 11.4. 

The parametric represemntion for curves, x = x(t), y = y(t), z = z(t) overcomes the 
problems caused by functional or implicit forms and offers a variety of other attractions that 
will become clear in the remainder of this chapter. Parametric curves replace the use of 
geometric slopes (which may be infinite) with parametric tangent vectors (which, we shall 
see, are never infinite) . Here a curve is approximated by a piecewise polynomial curve 
instead of the piecewi.se linear curve used in the preceding section. Each segment Q of the 
overall curve is given by three functions, x, y, and z, which are cubic polynomials in the 
parameter 1. 

Cubic polynomials are most often used because lower-degree polynomials give too 
little flexibility in controlling the shape of the curve, and higher-degree polynomials can 
introduce unwanted wiggles and also require more computation. No lower-degree represen­
tation allows a curve segment to interpolate (pass through) two specified endpoints with 
specified derivatives at each endpoint. Given a cubic polynomial with its four coefficients, 
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four knowns are used to solve for the unknown coefficients. The four knowns might be the 
two endpoints and the derivatives at the endpoints. Similarly, the two coefficients of a 
first-order (straight-line) polynomial are determined by the two endpoints. For a straight 
line, the derivatives at each end are determined by the line itself and cannot be controlled 
independently. With quadratic (second-degree) polynomials , and hence three coefficients, 
two endpoints and one other condition, such as a slope or additional point, can be specified. 

Also, parametric cubics are the lowest-degree curves that are nooplanar in 30. You can 
see thi.s by recognizing that a second-order polynomial 's three coefficients can be 
completely specified by three points and that three points define a plane in which the 
polynomial lies . . 

Higher-degree curves require more conditions to determine the coefficients and can 
"wiggle" back and forth in ways that are difficult to control. Despite this, higher-degree 
curves are used in applications-such as the design of cars and planes-in which 
higher-degree derivatives must be controlled to create surfaces that are aerodynamically 
efficient. ln fact, the mathematical development for parametric curves and surfaces is often 
given in terms of an arbitrary degree 11. In this chapter, we fix 11 at 3. 

The cubic polynomials that define a curve segment Q(r) = [x(r) y(t) z(r)] are of the form 

x(t) = a, t 3 + b, r2 + c,.t + d, , 

y(t) = a, t 3 + b1 t
2 + c,r + d,, 

z(t) = a,t 3 + b,r2 + c; + d., O :s r :s I. ( I 1.5) 

To deal with 6.nite segments of the curve, without loss of generality , we restrict the 
parameter 1 to the [0, I] interval. 

With T = [r r 1 I) , and defining the matrix of coefficients of the three 
polynomials as 

we can rewrite Eq. (11.5) as 

a1 a,] 
b, b, 
c, c, . 
d, d, 

Q(t) = [x(r) y(t) z(r)] = T · C. 

This provides a compact way to express the Eq. ( II .5). 

( 11.6) 

( 11.7) 

Figure II. 7 shows two joined parametric cubic curve segments and their polynomials; 
it also illustrates the ability of parametrics to represent easily multiple values of y for a 
single value of x with polynomials that are themselves single valued. (This figure of a curve, 
like all others in this section, shows 20 curves represented by [x(r) y{r)) .) 

The derivative of Q(r) is the parametric rangem vector of the curve. Applying this 
definition to Eq. (11.7) , we have 

d [d d d ] d -Q(r) = Q'(r) = - x(r) -y(t) -z(r) = - T · C = [3 t2 21 
dt dt dr dr dt 

0). c 

(11.8) 
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y(l) y(l) 

_..L_ _ ___JL_ _ _J ~.-----+--+ x(l) 

2 ..+-;------:---+x(l) 

2 

I 
\ ....... 

Fig. 11 .7 Two joined 20 parametric curve segments and their defining polynomials. 
The dashed lines between the (x, y) plot and the x(t) and y(t) plots show the correspon­
dence between the points on the (x.y) curve and the defining cubic polynomials. The x(t) 
and y(l) plots for the second segment have been t ranslated to begin at t = 1, rather than 
at t = 0, to show the continuity of the curves at their join point. 

[f two curve segments join together, the curve has G" geometric continuity. If the 
directions (but not necessarily the magnitudes) of the t'WQ segments' tangent vectors are 
equal at a join point, the curve has G1 geometric continu.ity. In computer-aided design of 
objects, G1 continuity between curve segments is often required. G1 continuity means that 
the geometric slopes of the segments are equal at the join point. For t'WQ tangent vectors TV1 

and TV2 to have the same direction, it is necessary that one be a scalar multiple of the other: 
TV1 = k · TV2, with k > 0 [BARS88]. 

lf the tangent vectors of t'WQ cubic curve segments are equal (i. e., their directions and 
magnitudes are equal) at the segments' join point, the curve has first-degree continuity in 
the parameter 1, or parametric continuiry, and is said to be C1 continuous. [f the direction 
and magnitude of d "ldt"[Q(t)] through the nth derivative are equal at the join point, the 
curve is called C" continuous. Figure 11.8 shows curves with three different degrees of 
continuity. Note that a parametric curve segment is itself everywhere continuous; the 
continuity of concern here is at the join points. 

The tangent vector Q' (1) is the velocity of a point on the curve with respect to the 
parameter 1. Similarly, the second derivative of Q(t) is the acceleration. If a camera is 
moving along a parametric cubic curve in equal time steps and records a picture after each 
step, the tangent vector gives the velocity of the camera along the curve. The camera 
velocity and acceleration at join points should be continuous, to avoid jerky movements in 
the ~ulting animation sequence. It is this continujty of acceleration across the join point in 
Fig. II . 8 that makes the C2 curve continue farther to the right than the C1 curve, before 
bending around to the endpoint. 
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y(t) Join pOint 

Fig. 11 .8 Curve segment S joined to segments C0, c,. and C2 with the 0, 1, and 2 
degrees of parametric continuity, respectively. The visual dis tinction between C, and C2 
is slight at the join, but obvious away from the join. 

In general, C1 continuity implies G1
, but the converse is generally not true. That is, G1 

continuity is generally less restrictive than is C1
, so curves can be G1 but not necessarily C1

• 

However, join points with G1 continuity will appear just as smooth as those with C1 

continuity, as seen in Fig. 11.9. 
There is a special case in which C1 continuity does nor imply G1 continuity: Wben both 

segments' tangent vectors are [0 0 OJ at the join point. In this case, the tangent vectors 
are indeed equal, but their directions can be different (Fig. 11.10). Figure 11.11 shows this 
concept in another way. Think again of a camera moving along the curve; tbe camera 
velocity slows down to zero at the join point, the camera changes direction while its velocity 
is zero, and the camera accelerates in the new direction. 

The plot of a parametric curve is distinctly different from the plot of an ordinary 
function, in which the independent variable is plotted on the x axis and tbe dependent 
variable is plotted on the y axis. In parametric curve plots , the independent variable t is 

Fig. 11 .9 Curve segments a,, ~.and a3 join at the point P2 and are identical except for 
their tangent vectors at P2• a, and ~ have equal tangent vectors, and hence are both G' 
and C' continuous at P2• a, and Q3 have tangent vectors in the same direction, but Q3 has 
twice the magnitude, so they are only G' continuous at P2 • The larger tangent vector of 
Q3 means that the curve is pulled more in the tangent-vector direction before heading 
toward P3• Vector TV2 is the tangent vector for a2, TV3 is that for a3 • 

' \ 
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y(t) 

Fig. 11 .10 The one case for which C' continuity does not imply G' continuity: the 
tangent vector (i.e., the parametric velocity along the curve) is zero at the join joint P. 
Each tick mark shows the distance moved along the curve in equal time intervals . As the 
curve approaches P, the velocity goes to zero. then increases past P. 

never plotted at all. This means that we cannot determine, just by looking at a parametric 
curve plot , the tangent vector to the curve. It is possible to determine th.e direction of the 
vector, but not its magnitude. This can be seen as follows: if -y(t), 0 :s t :s I is a parametric 
curve, its tangent vector at time 0 is y'(O). If we let Tj(t) = 1(21), 0 :s 1 :s t, then the 
parametric plots of y and 71 are identical. On the other hand, 71'(0) = 2 y'(O). Thus, t~ 
curves that have identical plots can have different tangent vectors. This is the motivation for 
the definition of geometric continuity: For two curves to join smoothly, we require only that 
their tangent-vector directions match, not that their magnitudes match. 

A curve segment Q(t) is defined by constraints on endpoints, tangent vectors, and 
continuity between curve segments. Each cubic polynomial of Eq. ( 11.5) has four 
coefficients, so four constraints wiU be needed, allowing us to formulate four equations in 
the four unknowns, then solving for the unknowns. The three major types of curves 
discussed in this section are Hermite, defined by t~ endpoints and t~ endpoint tangent 
vectors; Bezier, defined by t~ endpoints and t~ other points that control the endpoint 
tangent vectors; and severa.l kinds of splines, each defined by four control points. The 

y(l) 

x(l) 
(a) 

dy - 0 
dl ' 

y(l) 

(b) 

Fig. 11 .11 (a) View of a 20 parametric cubic curve in 30 (x, y, t) space, and (b) the 
curve in 20. At the join, the velocity of both parametrics is zero; that is, dyfdt = 0 and 
dx/dt = 0. You can see this by noting that, at the join, the curve is parallel to the taxis, so 
there is no change in either x or y. Yet at the join point, the parametrics are C' 
continuous, but are not G' continuous. 

0515



11 .2 Parametric Cubic Curves 483 

splines have C1 and ~continuity at the join points and come close to their control points, 
but generally do not interpolate the points. The types of splines are uniform 8-splines, 
nonuniform 8 -splines, and ,8-splines. 

To see how the coefficients of Eq. ( 11.5) can depend on four constraints, we recall that 
a parametric cubic curve is defined by Q(r) = T · C. We rewrite the coefficient matrix as 
C = M · a, where M is a 4 X 4 basis matrix, and a is a four-element column vector of 
geometric constraints, called the geometry vector. The geometric constraints are just the 
conditions, such as endpoints or tangent vectors, that define the curve. We use a. to refer to 
the column vector of just the x components of the geometry vector. a, and a, have similar 
definitions. Mora, or both Manda, differ for each type of curve. 

The elements of M and a are constants, so the product T · M · a is just three cubic 
polynomials in r. Expanding the product Q(r) = T · M · a gives 

Q(r) = [x(t) y(t) z(t)) = [r3 r2 r 
[ ~~] ( I 19) 

Multiplying out just x(r) = T · M · a. gives 

x(t) = (t 3m11 + t2m21 + t m31 + m41)g1, + (t3m12 + t2mzz + r maz + m~g2¥ 
+ (t3m13 + r2n~z~ + 1 m33 + m.a)ga. + (t3m14 + t2m24 + t '11:1. + m .. )g._, ( 11.10) 

Equation (II . I 0) emphasizes that the curve is a weighted sum of the elements of the 
geometry· matrix. The weights are each cubic polynomials of r, and are called blending 
functions. The blending functions 8 are given by B = T · M. Notice the similarity to a 
piecewise linear approximation, for which only two geometric constraints (the endpoints of 
the line) are needed, so each curve segment is a straight line defined by the endpoints G, 
and a2: 

x(t) = g1, (I - 1) + 8tz (t), 

y(t) = 8tr ( I - t) + 8tr (t), 

z(t) = 8t. (I - 1) + 82: (t). 

Parametric cubics are really just a generalization of straight-line approximations. 

( 11.11 ) 

To see how to calculate the basis matrix M, we turn now to specific forms of parametric 
cubic curves. 

11 .2. 1 Hermite Curves 

The Hermite form (named for the mathematician) of the cubic polynomial curve segment is 
determined by constraints on the endpoints P1 and P4 and tangent vectors at the endpoints R1 

and R,. (The indices I and 4 are used, rather than J and 2, for consistency with later 
sections, where intermediate points P2 and P3 will be used instead of tangent vectors to 
define the curve.) 

To find the Hermite basis matrix Mu. which relates the Hermite geometry vector a8 to 
the polynomial coefficients, we write four equations, one for each of the constraints, in the 
four unknown polynomial coefficients, and then solve for the unknowns. 
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484 Representing Curves and Surfaces 

Deli ning c~~., the x component of the Hermite geometry matrix , as 

(11.12) 

and rewriting x(t) from Eqs. (11.5) and (11.9) as 

x(t) = a;3 + b. t2 + c,t + d. = T · C, = T · M0 • G11. · = [1 3 t 2 t I] M0 • G0,, 

(11.13) 

the constraints on x{O) and x{l) are found by direct substitution into Eq. (11.13) as 

x(O)=P,, =[O 0 0 I]M0 ·G0 ,, 

x( I) = P4, = [I I I I) M H • Gu,· 

( 11.14) 

(11.15) 

Just as in the general case we differentiated Eq. (II. 7) to find Eq. (11.8), we now 
differentiate Eq. (11.13) to get x'(r) = [3r 2r I O]M0 • Ga.. Hence, the tangent­
vector--<:onstraint equations can be written as 

x'(O) = R1, = [0 0 I 0] Mu · G0,, 

x'(l) = R4, = [3 2 I 0] Mu · Gu,· 

(I t.l6) 

(11. 17) 

The four constraints of Eqs. (11.14), (11.15), ( 11.16), and (11.17) can be rewritten in 
matrix form as 

[
P1

] [0 0 0 I] P4 1 l l 1 
R

1 
= Gu. = 0 0 I I Ms . 0 11.· 

R4 3 2 I 0 
• 

(11.18) 

For this equation (and the corresponding expressions for y and z) to be satisfied, Mu must be 
the inverse of the 4 X 4 matrix in Eq. ( II . 18) 

[

0 0 0 1] -

1 

[ 2 -2 I I l 
M = I I I I = -3 3 -2 - 1 
"0010 o o 1 o· 

3210 10 0 0 

(11.19) 

M0 , which is of course unique, can now be used in x(r) = T · M0 • G0 , to find x(r) 
based on the geometry vector G0 ,. Similarly, y(r) = T · M0 • Gu, and z(r) = T · M0 · G0 , , 

so we can write 

Q(t) = [x{r) y(t) z(l)) = T · M 0 · G0, (11.20) 

where G0 is the column vector 
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11 .2 Parametric Cubic Curves 485 

f(t) 

1 

Fig. 11 .12 The Hermite blending functions, labeled by the elements of the geometry 
vector that they weight. 

Expanding the product T · Mu in Q(t) = T · Mu · Gu gives the Hermite blending 
functions Bu as the polynomials weighting each element of the geometry vector: 

Q(t) = T · Mu · Gu = Ba · Gu 

= (2t3 - 3t2 + I )P1 + ( -2t3 + 3t2)P4 + (13 - 2t2 + t)R1 + (13 - rf)R,. (I 1.21) 

Figure 11.12 shows the four blending functions. Notice that, at t = 0, only the function 
labeled P 1 is nonzero: only P 1 affects the clln'e att = 0. As soon as t becomes greater than 
zero, R1, P4, and R4 begin to have an influence. Figure 11.13 shows the four functions 
weighted by they components of a geometry vector, their sum y(t), and the Clln'e Q(t). 

Figure 11.14 shows a series of Hermite curves. The only difference among them is the 
length of the tangent vector R1: the directions of the tangent vectors are fixed. The longer the 
vectors, the greater their effect on the curve. Figure 11.15 is another series of Hermite 
curves, with constant tangent-vector lengths but with different directions. In an interactive 

y(t) y(t) y(l) 

1 1 

P, P, (t) 
~ ~ (t) ~ 

0 
t 

0 
x(t) 

0 1 

R
4 

R
4 

(t) y(t) ~ P, P, (I) + ~ ~ (t) + R1 ~(t) + R4 Rit) 

Fig. 11 .13 A Hermite curve showing the four elements of the geometry vector 
weighted by the blending functions (leftmost four curves). their sum y(t), and the 20 
curve itself (far right). x(t) is defined by a similar weighted sum. 

0518



486 Repreaenting Curves and Surface• 

y(t) 

Tangent vector 
direction R 1 at point 
P,: magnitude varies 
lor aach curve 

Tangent vector 
direction R• at point 
~; magnitude fixed 
for each curve 

L__ _________ ..!....__ x(l) 

Fig. 11 .14 Family of Hermite parametric cubic curves. Only R,, the tangent vector at 
P,, varies for each curve. increasing in magnitude for the higher curves. 

graphics system, the endpoints and tangent vectors of a Cut\'e are manipulated interactively 
by the user to shape the Cut\'e. Figure 11.16 shows one way of doing this. 

For two Hermite cubics to share a common endpoint with G1 (geometrical) continuity, 
as in Fig. 11 .17, the geometry vectors must have the form 

(11.22) 

y(t) 

L-----------------------------x(~ 

Fig. 11 .16 Family of Hermit.e parametric cubic curves. Only the direction of the tangent 
vector at the left starting point varies; all tangent vectors have the same magnitude. A 
smaller magnitude would eliminate the loop in the one curve. 
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11 .2 Paramet ric Cubic Curves 487 

Fig. 11 .16 Two Hermite cubic curve segments displayed with controls to facilitate 
interactive manipulation. The endpoints can be repositioned by dragging the dots, and 
the tangent vectors can be changed by dragging the arrowheads. The tangent vectors 
at the join point are constrained to be collinear (to provide C' continuity): The user is 
usually given a command to enforce C0, C'. G', or no continuity. The tangent vectors at 
the t - 1 end of each curve are drawn in the reverse of the direction used in the 
mathematical formulation of the Hermite curve, for clarity and more convenient user 
interaction. 

That is, there must be a shared endpoint (P,) and tangent vectors with at least equal 
directions. The more restrictive condition of C1 (parametric) continuity requires that k = I. 
so the tangent vector direction and magnitude must be equal. 

Hennite and other similar parametric cubic curves are simple to display: We evnluate 
Eq. ( l 1.5) at n successive values oft separated by a step size S. Figure 11.18 gives the code. 
The evaluation within the begin ... end takes II multiplies and 10 additions per 3D 
point. Use of Horner's rule for factoring polynomials, 

f(t) = ar1 + br 2 + ct + d = ((at + b)t + c )t + d, ( 11 .23) 

reduces the effort slightly to nine multiplies and 10 additions per 3D point. In Section 
11.2.9, we shall examine much more efficient ways to display these curves. 

L----------------''--+X(/) 

Fig. 11 .17 Two Hermite curves joined at P,. The tangent vectors at P, have the same 
direction but different magnitudes, yielding G' but not C' continuity. 
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typedef double CoefficientArray(4]; 
void DrawCurve ( 

{ 

CoefficientArray ex, 
CoefficienlArray cy, 
CoefficientArray cz, 
int n) 

int i: 
double 6 = 1.0 / n; 

double 1 = 0; 

MoveAbs3 ( cx(3], cy(3], cz(3]); 
for (i = 0; i < n; i++) { 

double 12, tJ, x, y , z: 

r+= 6; 
r2 = 1*1: 
1J = 12 •r; 

I • Coefficients for x(t): c. = M • G. • I 
I• Coefficients for y(t): C" = M • Gv •I 
I• Coefficients for z(t): C, = M • G. *I 
I• Number of steps •I 

I• I = 0: Sian at x(O), y(O). z(O) •I 

x = cx[O] • 13 +ex( I]* r2 + cx[2] • 1 + cx[3]; 
y = cy{O] • 13 + cy(l]• r2 + cy[2] • 1 + cy(3]: 
z = cz{O] • t3 + cz[ l] • r2 + cz[2] • 1 + cz[3]; 
DrawAbs3 (x, y , z); 

} 
} l• DrawCurve •I 

Fig. 11 .18 Program to display a cubic parametric curve. 

Because the cubic curves are linear combinations (weighted sums) of the four elements 
of the geometry vector, as seen in Eq. ( 11 . 10), we can transform the curves by transforming 
the geometry vector and then using it to genera1e the transformed curve, which is equivalent 
to saying that the curves are invariant under rotation , scaling, and translation. This strategy 
is more efficient than is generating the curve as a series of short line segments and then 
transforming each individual line. The curves are not invariant under perspective 
projection, as will be discussed in Section 11.2.5. 

11 .2 .2 Bezier Curves 

The Bezier [BEZI70; BEZI74] form of the cubic polynomial curve segment, named after 
Pierre Bezier, indirectly specifies the endpoint tangent vector by specifying two intermedi­
ate points that are not on the curve; see Fig. 11 .19. The starting and ending tangent vectors 

p2 

.. 
( '' 

( ' 
' I ' 

~~ 
,' (.. P, -~ 

' - - - - - p• . - ---

( ' 

Fig. 11 .19 Two Bezier curves and their control points. Notice that the convex hulls of 
the control points, shown as dashed lines, do not need to touch all four control points. 
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are determined by the vectors P1P2 and P{', and are related to R1 and R, by 

R1 = Q'(O) = 3(P2 - P1) , R, = Q'(l ) = 3(P, - P,). 

489 

(1 1.24) 

The Bezier curve interpolates the I'M> end control points and approximates the other two. 
See Exercise 11.12 to understand why the constant 3 is used in Eq. ( 11.24). 

The Bhier geometry vector Ga , consisting of four points, is 

(11.25) 

Then the matrix MHB that defines the relation Gu = MHB · G8 between the Hermite 
geometry vector Gu and the Bezier geometry vector G8 is just the 4 x 4 matrix in the 
following equation, which rewrites Eq. (11.24) in matrix form: 

G = [~:] = [ ~ H R -3 I 

R, 0 

0 0 0] [p'] 0 0 I P2 _ . 
3 0 0 p3 - MHB Gu. 

0 -3 3 P, 

(11.26) 

To find the Blzier basis matrix M8 , we use Eq. (11.20) for the Hermite form, substitute 
Gu = Mu8 · Ga. and define M8 = Mu · Mu8 : 

Q(r) = T · Mu · Gu = T · Mu · (MHB · Ga) = T · <Mu · Mu8) • G8 = T · M8 • G8 • 

(11.27) 

Carrying out the multiplication M8 = Mu · Mff8 gives 

M, ~ M, MQ ~ [ ~: i· T ~ l (I 1.28) 

and the product Q(t) = T · M8 • G8 is 

Q(r) = (I - t)3P1 + 3t(l - 1)2P2 + 3r(l - i)P3 + ~P,. (11.29) 

The four polynomials 8 8 = T · M8 , which are the weights in Eq. ( 11.29), are called the 
Bernstein polynomials, and are shown in Fig. 11.20. 

Figure 11.21 shows two Bezier curve segments with a common endpoint. G1 continuity 
is provided at the endpoint when P3 - P, = k(P, - PS), k > 0. That is, the three points P3, 

P, , and P6 must be distinct and collinear.ln the more restrictive case when k = I, there is C1 

continuity in addition to G1 continuity. 
If we refer to the polynomials of t>M> curve segments as x1 (for the left segment) and x' 

(for the right segment), ""e can find the conditions for CO and C1 continuity at their join 
point: 

d d 
x 1(1) = x'(O) , d/(1) = d/'(0). (11.30) 
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f(t) 

(1) 

(1) 

Fig. 11 .20 The Bernstein polynomials. which are the weighting functions for B~zier 
curves. At to 0, only 8 8 , is nonzero, so the curve interpolates P,; similarly, at t ~ 1, only 
Ba. is nonzero, and the curve interpolates P, . 

Working with the x component of Eq. (11.29), we have 

d d 
x1(1) = x'(O) = P~, dtx1(1) = 3(P4.- Pa), dtx'(O) = 3(Ps.- P4) . (11.31) 

As always, the same conditions are true ofy and z. Thus, we have CO and C' continuity when 
P4 - P3 = P6 - P4, as expected. 

Examining the four 8 8 polynomials in Eq. (11.29), we note that their sum is 
everywhere unity and that each polynomial is everywhere nonnegative for 0 s t < I. Thus, 
Q(t) is just a weighted average of the four control points. This condition means that each 
curve segment, which is just the sum of four control points weighted by the polynomials, is 
completely contained in the con-..ex hull of the four control points. The convex hull for 20 
curves is the convex polygon formed by the four control points: Think of it as the polygon 
formed by putting a rubberband around the points (Fig. 11.19). For 3D curves, the convex 
hull i.s the convex polyhedron formed by the control points: Think of it as the polyhedron 
formed by stretching a rubber sheet around the four points. 

This convex-hull property holds for all cubics defined by weighted sums of control 
points if the blending functions are nonnegative and sum to one. In general, the weighted 
average of n points falls within the convex hull of the n points; this can be seen intuitively 

· ~ 

Fig. 11 .21 Two B~zier curves joined at P,. Points P3, P,, and P5 are collinear. Curves are 
the same as those used in Fig. 11 . 17. 
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11 .2 Parametric Cubic Curves 491 

for n = 2 and n = 3, and the generalization follows . Another consequence of the fact that 
the four polynomials sum to unity is that the value of the fourth polynomial for any value of 
t can be found by subtracting the first three from unity. 

The convex-hull property is also useful for clipping curve segments: Rather than clip 
each short line piece of a curve segment to determine its visibility , ~ first apply a 
polygonal clip algorithm to clip the convex hull or its extent against the clip region. lf the 
convex hull (extent) is completely within the clip region, so is the entire curve segment. l f 
the convex hull (extent) is completely outside the clip region, so is the curve segment. Only 
if the convex hull (extent) intersects the clip region does the curve segment itself need to be 
ellamined. 

11 .2 .3 Uniform Nonrational 8 -Splines 

The term spline goes back to the long flexible strips of metal used by draftspersons to lay out 
the surfaces of airplanes, cars, and ships. " Ducks," ~ights attached to the splines, ~re 
used to pull the spline in various directions. The metal splines, unless severely stressed, had 
sec<~nd-order continuity. The mathematical equivalent of these strips, the narural cubic 
spline, is a CJ, C1

, and CZ continuous cubic polynomial that interpolates (passes through) 
the control points. This is I more degree of continuity than is inherent in the Hermite and 
Bezier forms. Thus, splines are inherently smoother than are the previous forms. 

The polynomial coefficients for natural cubic splines, ho~ver, are dependent on all11 
contrOl points; their calculation involves inverting an 11 + I by n + I matrix [BART87]. 
This has two disadvantages: moving any one contrOl point affects the entire curve, and the 
computation time needed to invert the matrix can interfere with rapid interactive reshaping 
of a curve. 

8-sp/ines, discussed in this section, consist of curve segments whose polynomial 
coefficients depend on just a few control points. This is called local control. Thus, moving a 
control point affects only a small part of a curve. In addition, the time needed to compute 
the coefficients is greatly reduced. 8-splines have the same continuity as natural splines, but 
do not interpolate their contrOl points. 

ln the following discussion ~ change our notation slightly, since ~ must discuss an 
entire curve consisting of several curve segments, rather than its individual segments. A 
curve segment need not pass through its contrOl points, and the two continuity conditions on 
a segment come from the adjacent segments. This is achieved by sharing control points 
be~en segments, so it is best to describe the process in terms of all the segments at once. 

Cubic B-splines approximate a series of m + I contrOl points P0, P 1, ••• P ... m 2: 3, 
with a curve consisting of m - 2 cubic polynomial curve segments Q1, Q4, ••• Q ... 
Although such cubic curves might be defined each on its own domain 0 :S r < I , ~ can 
adjust the parameter (making a substitution of the form r = t + k) so that the parameter 
domains for the various curve segments are sequential. Thus, we say that the parameter 
range on which Q; is defined is t; s t < t ;+t• for 3 :S i :Sm. In the particular case of m = 3, 
there is a single curve segment Q8 that is defined on the intervalr3 s 1 < 14 by four control 
points , P0 to P 8• 

For each i > 4, there is a join point or kllor between Q;_ 1 and Q; at the parameter value 
t;; the parameter value at such a point is called a knot value. The initial and final points att8 
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and 1,.+1 are also called knots , so that there is a total of m- I knots. Figure 11.22 shows a 
20 8-spline curve with its knots marked. A closed 8-spline curve is easy to create: The 
control points P0, Ph P2 are repeated at the end of the sequence-P0, Ph ... P ,., P0 , P1, 

Pz. 
The term uniform means that the knots are spaced at equal intervals of the parameter t. 

Without loss of generality, we can assume that t8 = 0 and the i.nterval ti+ 1 - t1 = I. 
Nonuniform nonrational 8 -splines, which permit unequal spacing between the knots, are 
discussed in Section 11.2.4. (In fact, the concept of knots is introduced in this section to set 
the stage for nonuniform splines.) The term nonrotionol is used to distinguish these splines 
from rational cubic polynomial curves, discussed in Section 11.2.5, where x(t), y(t), and 
z(t) are each defined as the ratio of two cubic polynomials. The ''8 '' stands for basis, since 
the splines can be represented as weighted sums of polynomial basis functions , in contrast 
to the natural splines, for which this is not true. 

Each of them - 2 curve segments of a B-spline curve is defined by four of the m + I 
control points. In particular, curve segment Q1 is defined by points P1_3, Pi-2, PH, and P1• 

Thus, the 8 -spline geometry vector Gs.; for segment Q1 is 

G - P;-z 3 < · < ( I I 32) 
[
pi-3] 

s.; - p~~~ , - 1 - m. . 

The first curve segment, Q3, is defined by the points P0 through P3 over the parameter 
range t3 = 0 to r,= I , Q, is defined by the points P1 through P, over the parameter ranger, 
= I to t5 = 2, and the last curve segment, Q.,, is defined by the points P ,._3, P ,._2, P,._1, 

and P,. over the parameter range t,. = m - 3 to r.,.1 = m- 2. In general, curve segment Q1 

begins somewhere near point P1_2 and ends somewhere near point P1_ 1• We shall see that the 
8-spline blending functions are everywhere nonnegative and sum to unity, so the curve 
segme.nt Q1 is constrained to the convex hull of its four control points. 

Just as each curve segment is defined by four control points, each control point (except 
for those at the beginning and end of the sequence P0, P10 ••• P..) influences four curve 

y(t) 

• • Knot 
• Control point Pz 

L--------------+ X(I) 

Fig. 11 .22 A B-spline with curve segments 03 through a,. This and many other figures 
in this chapter were created with a program written by Carles Castellsaqu~ . 
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11 .2 Parametric Cubic Curves 493 

segments. Moving a control point in a given direction moves the four curve segments it 
affects in the same direction; the other curve segments are tOially unaffected (see Fig. 
I I . 23). This is the local control property of B·splines and of all the other splines discussed 
in this chap1er. 

If we define T1 as the row vector [(1 - rj (1- rif (t- tJ I ], then the B-spline 
formulation for CUI'Ie segment i is 

Q,{r) = T1 • MBt. • Gs.,. r1 s 1 < r1• 1• (I 1.33) 

The entire curve is generated by applying Eq. (II . 33) for 3 s i :S m. 
The B-spline basis matrix, M8,, relates the geometrical constraints GBt. to the blending 

functions and the polynomial coefficients: 

[

-1 3 -3 I] 
I 3 -6 3 0 

MBt. = 6 -3 0 3 0 . 
I 4 I 0 

(11.34) 

This matrix is derived in [BART87]. 
The B-spline blending functions Bu. are given by the product T1 • MBt., analogously to 

the previous Btzier and Hermite formulations. Note that the blending functions for each 
cun'e segment are exactly the same, because for each segment i the values of 1 - 11 range 
from 0 at/ "" t1 to I att = t1• 1• If we replace 1 - 11 by/, and replace the interval [11, r1• 1) by 
[0, I] , we have 

Bu. = T · M8, • IBBt.-, B8, . 1 8&. , Bo.ol 

I = 6[ - r3 + 3t2 - 3t + I 3t1 - 6r' + 4 - 3r1 + 3t2 + 3t + I r1] 

= ~[(I - i'/ 3t1 - 611 + 4 -3r1 + 3r1 + 3t + I r*], 0 :S 1 < I. 

( I 1.35) 

y(l) 

p;· r· Curve 

r Curve 

• Knot 
+ Control point 

L_ _______________ x(l) 

Fig. 11 .23 A 8-spline with control point P, In several different locations. 
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Figure 11.24 shows the B-spline blending functions Bllt. Because the four functions sum to 
I and are nonnegative, the convex-hull property holds for each curve segment of a B-spline. 
See [BART87) to understand the relation between these blending functions and the 
Bernstein polynomial basis functions. 

Expanding Eq. ( 11.33), again replacing 1- t ; with 1 at the second equals sign, we have 

Q1(t - t;) = T; · Milt · Go., = T · Milt · Gilt; 

= Ba, . GB" = Ba..a . P;-a + Bilt-z . P;-t + Ba •. , . P;-1 + Bu., . P; 

_ (I - t)' 3t3 - 6t2 + 4 - 3r3 + 3r2 + 3r + I 
- 6 P;-a + 6 P;-t + 6 P;-1 

,a 
+ 6 P;, 0 s I < I. (II. 36) 

.It is easy to show that Q1 and Q,. 1 are CO, C1, and ct continuous where they join. When 
we consider the x components of the adjacent segments, which are x,{r - t;) and 
Aiu(t - r1 .. ) (y and z, as always, are analogous), it is necessary to show only that, at the 
knot 1;+1 where they join, 

Recalling the substitution of 1 for 1 - t;, Eq. ( 11.37) is equivalent to showing that 

d d 
d/'1• -•r=l = I drxi .. lt- 4., •O• 

d2 d2 
dtrxJit-t;• l = dtr x, .. l, -~;.1 ·o· (11.38) 

f~) 

Fig. 1 1 .24 The four B-spline blending functions from Eq. ( 11 .35). At t = 0 and t = 1, 
just three of the functions are nonzero. 
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We demonstrate the equivalence by working with the x component of Eq. (11.36), and its 
first and second derivatives, to yield 

(11.39) 

(11.40) 

(11.41) 

The additional continuity afforded by B-splines is attractive, but it comes at the cost of 
less control of where the curve goes. The curve can be forced to interpolate specific points 
by replicating control points; this is useful both at endpoints and at intermediate points on 
the curve. For instance, if P1 _ z = P1 _ 1, the curve is pulled closer to this point because curve 
segment Q1 is defined by just three different points, and the point P1 _ 2 = P1 _ 1 is weighted 
twice in Eq. (11.36)- once by Bs.-, and once by Bs.-, · 

If a control point is used three times- for instance, if P1_ 2 = P, _1 = P1- then Eq. 
( 11.36) becomes 

Q;(t) = B8._, • P1_ 3 + (Ba._, + Ba._1 + 8 8..) • P1• (11.42) 

Q1 is clearly a straight line. Furthermore, the point P1_ 2 is interpolated by the line at 1 = I, 
where the three weights applied to P; sum to I , but P1 _ 3 is not in general interpolated at 
1 = 0. Another way to think of this is that the convex hull for Q1 is now defined by just two 
distinct points, so Q1 has to be a line. Figure 11.25 shows the effect of multiple control 
points at the interior of a B-spline. The price of interpolating the points in part (c) is loss of 
G1 continuity, even though Eq. (11.40) shows that C1 continuity is preserved (but with a 
value of zero). This is a case where C1 continuity does not imply G1 continuity, as discussed 
in Section 11.2. 

Another technique for interpolating endpoints, phantom vertices, is discussed in 
[BARS83; BART87]. We shall see that, with nonuniform B-splines, discussed in the next 
sec-tion, endpoints and internal points can be interpolated in a more natural way than they 
can with the uniform B-splines. 

11 .2 .4 Nonuniform, Nonrational 8 -Splines 

Nonuniform, nonratiorwl B-splines differ from the uniform, nonrational B-splines discussed 
in the previous section in that the parameter interval between successive knot values need 
not be unifom1. The nonuniform knot-value sequence means that the blending functions are 
no longer the same for each interval, but rather vary from curve segment to curve segment. 

These curves have several advantages over uniform B-splines. First, continuity at 
selected join points can be reduced from CZ to C1 to CO to none. If the continuity is reduced 
to CO, then the curve interpolates a control point, but without the undesirable effect of 
uniform B-spHnes, where the curve segments on either side of the interpolated control point 
are stra.ight lines. Also , starting and ending points can be easily interpolated exactly, 
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03 Convex hull ---
04 Convex hull 

Po P2 --, 
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I 

Fig. 11 .25 The effect of multiple control points on a uniform B-spline curve. In (a), 
there are no multiple control points. The convex hulls of the two curves overlap; the join 
point between 0 3 and a. is in the region shared by both convex hulls. In (b), there is a 
double control point, so the two convex hulls share edge P,P3; the join point is therefore 
constrained to lie on this edge. In (c), there is a triple control point , and the two convex 
hulls are straight lines that share the triple point; hence, the join point is also at the triple 
point. Because the convex hulls are straight lines, the two curve segments must also be 
straight lines. There is C'l but only GO continuity at the join. 

without at the same time introducing l inear segments. As is further discussed in Section 
11 .2. 7, it is possible to add an additional knot and control point to nonuniform 8 -spl ines, 
so the resulting curve can be easily reshaped, whereas this cannot be done with uniform 
8-splines. 

The increased generdlity of nonuniform B-splines requires a sl ightly different notation 
than that used for uniform B-splines. As before, the spline is a piecewise continuous curve 
made up of cubic polynomials, approximating the control points P0 through P .,. The 
knot-mlue sequence is a nondecreasing sequence of knot values '• through 1,. .. (that is, 
there are four more knots than there are control points). Because the smallest number of 
control points is four, the smallest knot sequence has eight knot values and the curve is 
defined over the parameter interval from 11 to 14• 

The only restriction on the knot sequence is that it be nondecreasing, which allows 
successive knot values to be equal. When this occurs, the parameter value is called a 
multiple k11or and the number of identical parameter values is called the multiplicity of the 
knot (a single unique knot has multiplicity of I ). For instance, in the knot sequence (0, 0, 
0, 0, I , I , 2, 3, 4, 4, 5, 5, 5, 5). the knot value 0 has multiplicity four, value I has 
multiplicity 2; values 2 and 3 have multiplicity I ; value 4 has multiplicity 2; and value 5 has 
multiplicity 4. 
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Curve segment Q1 is defined by control points P1_ 3, P1_ 2, P1_ t> P1 and by blending 
functions 81 -:~..(t), 8 1_2.4(1) , 8 1_1.4(1), 81,.(t), as the weighted sum 

3 < i < m , 11 s 1 < 11• 1• ( 11.43) 

The curve is not defined outside the interval 13 through 1,..,. When I;= t1+1 (a multiple 
knot), curve segment Q1 is a single point. 11 is this notion of a curve segment reducing tO a 
point that provides the extra flexibility of nonunifonn B-splines. 

There is no single set of blending functions, as there was for other types of splines. The 
functions depend on the intervals between knot values and are defined recursively in tenns 
of lower-order blending functions . 81i t) is the jth-order blending function for weighting 
control point P1• Because we are working with fourth-order (that is , third-degree, or cubic) 
B-splines, the recursive definition ends with 81,4(1) and can be easily presented in its 
"unwound" fonn. The recurrence for cubic B-splines is 

8 . (t) ={I, I; < I-::: l i+J 
' ·

1 0, otherwtse, 

( 11.44) 

Figure 11.26 shows how Eq. (11.44) can be used to find the blending functions, using 
the knot vector (0, 0 , 0, 0, I, I , I , I) as an example. The figure also makes clear why eight 
knot vectors are needed to compute four blending func-tions. B3.1(1) is unity on the interval 0 
< t < I. All other 81,1(1) are zero. B2,2(t) and B3i t) are linear ramps , and are the blending 
functions for linear interpolation between two points. Similarly, B1,3(t) , Bu (l), and B3,3(/) 
are quadratics, and are the blending functions for quadratic interpolation. For this particular 
knot vector, the B1,.(t) are the Bernstein polynomials, that is, the Bezier blending functions; 
compare them to those in Fig. 11.20. Also, for this knot vector, the curve interpolates the 
control points P0 and P3 , and is in fact a Btzier curve, with the tangent vector at the 
endpoints detennined by the vectors P0 P1 and P.j>3 • 

Computing the blending functions takes time. By restricting B-spline knot sequences 
to have intervals that are either 0 or I , it is possible to store just a small number of matrices 
corresponding to Eq . (11.44) , which covers aU such possible knot configurations. This 
eliminates the need to reevaluate Eq. (11 .44) for each curve segment. 

It can be shown that the blending functions are nonnegative and sum to one, so 
nonuniform B-spline curve segments lie within the convex bulls of theirfourcontrol points. 
For knots of multiplicity greater than one, the denominators can be zero because successive 
knot values can be equal: d.ivision by zero is defined to yield zero. 
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Fig. 11 .26 The relationships defined by Eq. (11 .44) between the knot vector (0. 0 . 0. 0. 1, 1, 1, 1) and the blending 
functions B,,,(tl. B1.2(t) , B1,.(t). and B,,.(t). 
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Increasing knot multiplicity has two effects. First, each k:not value 11 will automatically 
lie within the convex hull of the points P1_ 3, P1_ 2, and P1_ 1• If 11 and t1• 1 are equal, they 
must lie in the convex hull of P1_ 3, P1_ 2, and P1_ 1, and in the convex hull of P1_ 2, P1_ 1, 

and P1• This means they must actually lie on the line segment between P1 _ 2 and P1_ 1• ln the 
same way, if t1 = 11 + 1 = 11 +2• then this k:not must lie at P1 _ 1• If 11 = t;. 1 = 11 H = 11 +a• then 
the knot must lie both at P1 _ 1 and at P1-the curve becomes broken. Second, the multiple 
k:nots will reduce parametric continuity: from Cl to C1 continuity for one extra k:not 
(multiplicity 2); from c• to co continuity for two extra knots (multiplicity 3); from co to no 
continuity for three extra k:nots (multiplicity 4). 

Figure 11 .27 provides further insight for a specific case. Part (a) shows the case when 
all knots have multiplicity I. Each curve segment is defined by four control points and four 
blending functions, and adjacent curve segments each share three control points. For 
instance, curve segment Q3 is defined by points P0, P., P2, and P3; curve segment Q4 is 
defined by points P., P2> P3 and P4; and curve segment Q5 is defined by points P2, P3, P4 , 

and P5• Part (b) shows a double knot, t4 = t5 , for which the curve segment Q4 has zero 
length. Segments Q3 and Q5 are thus adjacent but share only two control points, P2 and P3; 

the two curve segments hence have less ''in common,'' as implied by the loss of l degree of 
continuity. For the triple k:not in part (c), only control point P3 is shared in common: the 
one that the two curve segments now interpolate. Because only one control point is shared, 
we can expect only one constraint, CO continuity, to be satisfied at the join. The knot of 
multiplicity 4, shown in part (d) , causes a discontinuity, or break, in the curve. Hence, 
several disjoint splines can be represented by a single knot sequence and set of control 
points. Figure 11 .28 provides additional understanding of the relations among k:nots, curve 
segments, and control points. Table I I . I summarizes the effects of mu.ltiple control points 
and multiple k:nots . 

TABLE 11 .1 COMPARISON OF THE EFFECTS OF MULTIPLE CONTROL POINTS 
AND OF MULTIPLE KNOTS 

Multiplicity 

I 

2 

3 

4 

Multiple control points 

ct <J!• 
etc• 
Knots constrained to a smaller 
convex hull. 

ctc;G 
Curve interpolates the triple control 
point. 
Curve segments on e ither side of the 
join are linear. 

ctc;G 
Curve interpolates the quadruple 
control points. 
Curve segments on either side of the 
join are linear and interpolate the 
control points on either s ide of the 
join. 

•except for spec.ial case discussed in Section 11 .2. 

Multiple knots 

ct <;1• 

C'G' 
Knots constrained to a smaller 
convex hull of fewer control points. 

C'(;G 
Curve interpolates control point. 

Can control shape of curve segments 
on either side of the join. 

There is a discontinuity in the curve. 

Curve stops on one control point. 
resumes at next. 
Can control shape of curve segments 
on either side of the discontinuity. 
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y P, p2 

I " " " " " " " 
Po Ps p. 

• Knot 
p7 

X 
(a) 

t Control point 

y P, p2 p5 p6 

• Knot 
L----------+ X 

(b) 
t Control point 

Fig. 11 .27 The effect of multiple knots. In (a), with knot sequence (0, 1. 2. 3, 4, 5), 
there are no multiple knots; all the curve segments join with C" and G2 continuity. The 
convex hulls containing each curve segment are also shown. In (b), with knot sequence 
(0, 1. 1. 2. 3. 4). there is a double knot, so curve segment 0. degenerates to a point. 
The convex hulls containing 03 and ~meet along the edge P/'3, on which the join point 
is forced to lie. The join has C' and G2 continuity. In (c). with knot sequence (0. 1, 1, 1, 

Figure 11.29 illustrates the complexity of shapes that can be represented with this 
technique. Notice part (a) of the figure, with knot sequence (0, 0, 0, 0, I , I , I, 1): The 
curve interpolates the endpoints but not the two intermediate points, and is a Bezier curve. 
The other two curves also start and stop with triple knots. This causes the tangent vectors at 
the endpoints to be determined by the vectors Pr/'1 and P ,._ 1P ,., gjving Bezier-like control 
to the curves at the start and stop points . 

interactive creation of nonuniform splines typically involves pointing at control 
points, with multiple control points indicated simply by successive selection of the same 
point. Figure 11.30 shows a way of specifying knot values interactively. Another 
way is to point directly at the curve with a multibutton mouse: A double click on one but­
ton can indicate a double control point; a double click on another button, a double 
knot. 
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(c) 

• Control point 

y P, p2 p5 Pe 
r - -; 

/ I / 
I /. 0 

7 I 
I 
I 
I 

14 = 15 = 16= 17 ------- 4 
Po p3 ~ p7 

• Knot 
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• Control point 

2. 3), there is a triple knot, so curve segments a. and ~ degenerate to points. The 
convex hulls containing 03 and ~ meet only at P3• where the join point is forced to be 
located. The two curve segments share only control point P3, with C0 continuity. In (d), 
with knot sequence (0. 1, 1, 1, 1. 2). there is a quadruple knot, which causes a 
discontinuity in the curve because curve segments 03 and Or have no control points in 
common. 

11.2.5 Nonuniform, Rational Cubic Polynomial Curve Segments 

General rational cubic curve segments are ratios of polynomials: 

_ X(t) _ Y(t) _ Z(t) 
x(t) - W(t)' y(t) - W(t)' z(t) - W(r) ' ( 11.45) 

where X(t), Y(t), Z(t), and W (t) are all cubic polynomial curves whose control points are 
defined in homogeneous coordinates. We can also think of the curve as existing in 
homogeneous space as Q(t) = [X(t) Y(t) Z(r) W(t)]. As alw.tys, moving from 
homogeneous space to 3-space involves dividing by W(t). Any nonrational curve can be 
transformed to a rational curve by adding W(t) = I as a fourth element. In general, the 
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Curve 
i- 2 i - 1 i + 1 i + 2 i + 3 

segment 0 1 c2 
continuity 

Control 
point P1 1-5 I- 4 I - 3 I- 2 i - 1 I + 1 i + 2 i + 3 

(a) 

Curve 
I - 2 I - 1 i + 1 I + 2 I + 3 

segment 0 1 c' 
continuity 

Control 
point P1 I- 5 I- 4 I - 3 I - 2 I - 1 I + 1 I + 2 I + 3 

(b) 

Curve 
I - 2 I - 1 I + 1 I + 2 I + 3 

segment 0 1 co 
continuity 

Control 
point P1 I - 5 I - 4 1- 3 I - 2 I - 1 I + 1 I + 2 ; + 3 

(c) 

Curve 
I- 2 I - 1 I + 1 I + 2 I + 3 

segment 0 1 No 
continuity 

Control 
point P1 I- 5 ; - 4 i - 3 i- 2 i - 1 I + 1 I + 2 1 +3 

(d) 

Fig. 11 .28 The relationship among curve segments, control points, and multiple knots 
for nonuniform B-splines. lines connect curve segments to their control points; gray 
lines are used for curve segments that do not appear because their knot interval is zero 
(i.e., the knot multiplicity is greater than one), causing them to have zero length. In (a), all 
knots are single. In (b), there is a double knot, so segment i is not drawn. In (c), there is a 
triple knot, so two segments are not drawn; thus, the single point, i - 1, is held in 
common betw een adjacent segments i - 1 and i + 2. In (d), w ith a quadruple knot, 
segments i - 1 and i + 3 have no points in common, causing the curve to be 
disconnected between points i - 1 and i. 

polynomials in a rational curve can be Bezier, Hermite, or any other type. When they are 
B-splines, we have nonuniform rational B-splines , sometimes called NURBS [FORR80). 

Rational curves are useful for two reasons. The first and most important reason is that 
they are invariant under rotation , sealing, tran.slation and perspective transformations of the 
control points (nonrational curves are invariant under only rotation, scaling, and transla­
tion). This means that the perspective transformation needs to be applied to only the control 
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op 5 14=15a le =1 

Po 
5 

10= 11= 12= 13= 0 

(a) 
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Pe• • Ps 
11= 1e=2 
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Fig. 11 .29 Examples of shapes defined using nonrational 8-splines and multiple knots. 
Part (a) is just a B6zier curve segment, with knot sequence (0, 0, 0, 0, 1, 1, 1, 1 ). and 
hence just one curve segment, 0 3• Parts (b) and (c) have the same knot sequence, (0, 0 , 
0, 0 , 1, 1, 1, 2, 2. 3. 4, 5. 5. 5, 5) but different control points. Each curve has curve 
segments 0, to 0 10• Segments 0.. a,, and 0 7 are located at multiple knots and have zero 
length. 

1 2 3 4 5 

+ I 4.0 ~ ~ 1.0 I 2.0 I 2.0 I 
New Value: Step: 1.0 

Fig. 11 .30 An interaction technique developed by Cartes Castellsagu~ for specifying 
knot values. The partial knot sequence is shown, and cari be scrolled left and right w ith 
the horizontal arrows. One knot value, selected with the cursor, can be incremented up 
and down using the vertical arrows, in increments specified by value Step. The selected 
knot value can also be replaced with a new typed-in value. 
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( - 1, 0, 1) 
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! (0, -1, 0) • -COy 

•• 
(b) 

Fig. 11 .3 1 The control points for defining a circle as a rational spline in 20. 
Coordinates are (X, Y. W). The knot vector is (0, 0 , 0, 1, 1, 2, 2. 3, 3, 4 , 4), with the first 
and last control points repeated. The choice of P0 is a rbit rary. 

points, which can then be used to generate the perspective transformation of the original 
curve. The alternative to converting a nonrational curve to a rational curve prior to a 
perspective transformation is first to generate points on the curve itself and then to apply the 
perspective transformation to each point, a far less efficient process. This is analogous to the 
observation that the perspective transformation of a sphere is not the same as a sphere 
whose center and radius are the transformed center and radius of the original sphere. 

A second advantage of rational splines is that, unlike nonrationals, they can define 
precisely any of the conic sections. A conic can be only approximated with nonrationals, by 
using many control pointS close to the conic. This second property is useful in those 
applications, particularly CAD, where general curves and surfaces as well as c.onics are 
needed. Both types of entities can be defined with NURBS. 

Defining conics requires only quadratic, not cubic, polynomials. Thus, the B;,a(t) 
blending functions from the recurrence Eq. (11.44) are used in the curve of the form 

Q;(t) = P;-.J1;-u(1) + P;_ 18 ; _1.a(t) + P!J;,a(t) 

(11.46) 

T~ ways of creating a unit circle centered at the origin are shown in Fig. 11.31 . Note that, 
with quadratic B-splines, a double knot causes a control point to be interpolated, and triple 
knots fix the starting and ending pointS of the curv:: on control pointS. 

For further discussion of conics and NURBS, see [FAUX79; BOHM84; TILL83]. 

11 .2 .6 Other Spline Forms 

Very often, we have a series of positions and want a curve smoothly to interpolate (pass 
through) them. This might arise with a series of pointS read from a data tablet or mouse, or 
a series of 30 points through which a curve or camera path is to pass. The Catmuli-Rom 
family of interpolating or approximating splines [CATM74a] , also called Overlrauser 
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