
7.8 Screen Updating and Rendering Modes 323

We summarize the four SPH1GS rendering modes here; they are discussed much more fully
io Chapters 14 through 16.

Wireframe rendering mode. WIREFRAME mode is the fastest but least realistic form of
display. Objects are drawn as though made of wire, with only their edges showing. The
visible (within the view volume) portions of all edges of all objects are shown in their
entirety, with no hidden-edge removal. Primitives are drawn in temporal order-that is, in
the order in which the traverser encounters them in the posted structure networks in the
database; this order is affected by the display-priority determined by the view index, as
mentioned in Section 7 .3.4.

All edge attributes affect screen appearance in their designated way in this mode; in
fact, when the edge flag is set to EDGtUNVISffiLE, fill areas and polyhedra are entirely
invisible in this mode.

S haded rendering modes. In its other three rendering modes , SPHIGS displays fill areas
and polyhedra in a more realistic fashion by drawing fill areas and facets as filled polygons.
The addition of shaded areas to the rendering process increases the complexity significant­
ly, because spatial ordering becomes important-portions of objects that are bidden
(because they are obscured by portions of " closer" objects) must not be displayed.
Methods for determining visible surfaces (also known as hidden-surface removal) are
discussed in Chapter 15.

For the three shaded rendering modes, SPfflGS "shades" the interior pixels of visible
portions of the facets; the quality of the rendering varies with the mode. For FLAT shading,
the mode used often in this chapter's figures, all facets of a polyhedron are rendered in the
current interior color, without being influenced by any light sources in the scene. Visible
portions of edges are shown (if the edge flag is EDGE_ VISIBLE) as they would appear in
W!REFRAME mode. If the interior color is set to match the screen background, only the
edges show-this use of f1.4T rendering , which produced Figs. 7.9(a) and 7.14(c),
simulates wireframe with bidden-edge removal.

The two highest-quality rendering modes produce images illuminated by a light
source;'0 illumination and shading models are discussed in Chapter 16. These images are
nonuniformly "shaded;" the colors of the pixels are based on, but are not exactly, the value
of the interior-color attribute. In LITFLAT mode, all the pixels on a particular facet have the
same color, determined by the angle at which the light hits the facet. Because each facet is
of a uniform color, the image has a "faceted" look, and the contrast between adjacent faces
at their shared edge is noticeable. GOURAUD mode colors the pixels to provide a smooth
shaded appearance that elirnJnates the faceted look.

In FLAT mode, the edge-flag attribute should be set to EDGE... VISmLE, because, without
visible edges, the viewer can determine only the silhouette boundary of the object. In the
two highest-quality mod.es, however, edge visibility is usually turned off, since the shading
helps the user to determine the shape of the object.

10 The PHIGS + extension provides many facilities for controlling rendering, including specification of
the placement and colors of multiple light sources, of the material properties of objects characterizing
thei.r interaction with light, and so on: see Chapters 14 through 16.

0359

cmccleskey
Typewritten Text
Volkswagen 1010 - Part 3 of 7

324 Object Hierarchy and Simple PHIGS (SPHIGS)

7 .9 STRUCTURE NETWORK EDITING FOR DYNAMIC EFFECTS

As with any database, we must be able not only to create and query (in order to display) the
SPHJGS structure database, but also to edit it in a convenient way. An application edits a
structure via the procedures described in this section; if the application also maintains an
application model, it must ensure that the two representations are edited in tandem. Motion
dynamics requires modification of viewing or modeling transformations; update dynamics
requires changes in or replacement of structures. The programmer may choose to edit a
structure's internal element list if the changes are relatively minor; otherwise, for major
editing, it is common to delete and then to respecify the structure in its entirety.

In the remainder of this section, we present methods for intrastructure editing; see the
SPHIGS reference manual for information on editing operations that affect entire structures
(e.g., deletion, emptying), and for more detailed descriptions of the procedures presented
here.

7 .9.1 Accessing Elements with Indices and Labels

The rudimentary editing facilities of both SPHlGS and PHIGS resemble those of
old-fashioned line-oriented program editors that use Line numbers. The elements in a
structure are indexed from I toN; whenever an element is inserted or deleted, the index
associated with each higher-indexed element in the same structure is incremented or
decremented. The unique current element is that element whose index is stored in the
element-pointer state variable. When a structure is opened with the SPH_openStructure
call, the element pointer is set to N (pointing to the last element) or to 0 for an empty
structure. The pointer is incremented when a new element is inserted after the current
element, and is decremented when the current element is deleted. The pointer may also be
set explicitly by the programmer using absolute and relative positioning commands:

void SPH..setEiemcmPoimer (inl index);
void SPA_offsetEiemenlPointer (in I delta); I• + for forward, - for backward +I

Because the index of an element changes when a preceding element is added or deleted in its
parent structure, using element indices to position the element pointer is liable to error.
Thus, SPHIGS allows an application to place "landmark" elements, called labels, within a
structure. A label element is given an integer identifier when it is generated:

void SPHJabel (lot id);

The application can move the element pointer via

void SPH..moveEiemenlPointerToLabel (int id);

The pointer is then moved forward in search of the specified label . l f the end of the structure
is reached before the label is found, the search terminates unsuccessfully. Thus, it is
advisable to move the pointer to the very front of the structure (index 0) before searching for
a label.

0360

7.9 Structure Network Editing for Dynamic Effects 325

7.9 .2 lntrastructure Editing Operations

The most common editing action is insertion of new elements into a structure. Whenever an
element-generating procedure is called, the new element is placed immed lately after the
current element, and the element pointer is incremented to point to the new element. 11

Another form of insertion entails copying all the elements of a given structure into the
open structure (immediately after the current element):

void SPH.copyStructure (In! srructure/D);

Elements are deleted by the following procedures:

void SPH-deleteEiement (void);
void SPH..deleteEiementslnRange (lntfirsrlndex, in! secondlndex);
void SPH.deleteEiementsBetweenLabels (int firsrl..llbel, lot secondl..llbel);

In all cases, after the deletion is made, the element pointer is moved to the element
immediately preceding the ones deleted , and all survivors are renumbered. The first
procedure deletes the current element. The second procedure deletes the elements lying
between and including the two specified elements. The third procedure is similar, but does
not delete the two label elements.

Note that these editing faciJities aJJ affect an entire element or a set of elements; there
are no provisions for selective editing of data fields within an element. Thus, for example,
when a single vertex needs to be updated the programmer must respecify the entire
polyhedron.

An editing example. Let us look at a modification of our simple street example. Our
street now consists of ooJy tbe first house and the cottage, the former being fixed and the
latter being movable. We create a label in front of the cottage, so we can subsequently edit
the transformation in order to move the cottage.

To move the cottage, we reopen the street structure, move t.he pointer to the label , and
then offset to the transformation element, replace the transformation element, and close the
structure. The screen is automatically updated after the structure is closed, to show the
cottage in its new position. This code is shown in Fig. 7 .22(a), and its sequence of
operations is illustrated in (b).

7.9.3 Instance Blocks for Editing Convenience

The previous editing example suggests that we place a label in front of each clement we wish
to edit, but creating so many labels is clearly too laborious. There are several techniques for
avoiding this tedium. The first is to bracket an editable group of elements with tWO labels,
and to use the labels in deleting or replacing the entire group. Another common technique is
to group the set of elements in a fixed format and to introduce the group with a single label.

11 We show the use of insert "'mode" in our editing examples; however, SPHIGS also supports a
"replace" editing mode in which new elements write over extant ones. See the reference manual for
details.

0361

326 Object Hierarchy and Simple PHIGS (SPHIGS)

SPH_openStructure (STREEL.STRUCf);
I• When a structure is opened, the element pointer is initially at its very end. We •I
I• must first move the pointer to the beginning, so we can search for labels. •I
SPH..setElementPoimer (0);
SPHJlloveElementPointerToLabcl (COTTAGE..TRANSLATIQN_LABEL);

SPH_offsetEiemcntPointer (I); I• Pointer now points at transform element. •I
SPH..deleteEiement (): I• We replace here via a deletelinsert combination •I
SPH..setLocaiTransfom1ation (newCottageTtonslotionMatrix, PRECONCATENATE) ;

SPH..closeStructure ();

(a)

Fig. 7.22 Editing operations. (a) Code performing editing. (b) Snapshot sequence of
structure during editing. The black triangle shows the element pointer's position.
(Syntax of calls abbreviated for illustrative purposes.)

0362

7.9 Structure Network Editing for Dynamic Effects 327

Fig. 7 .23 Sample instance-block format.

To edit any member of the group, one moves the element pointer to the label , then offsets
the pointer from that label into the group itself. Because the group's format is fixed, the
offset is an easily determined small integer.

A special case of this t.echnique is to design a slandard way of instantiating
substructures by preceding the structure-execution element with a common list of
attribute-setting elements. A typical format of such a sequence of elements, called an
insrance block, is shown in Fig. 7 .23; first comes the label uniquely identifying the entire
block, then an interior-color setting, then the three basic transformations, and finally the
invocation of the symbol structure.

We can create a set of symbolic constants to provide the offsets:

const int !NfERIOR..COLOR.OFFSET = I:
const int SCALE.OFFSET = 2;
const int ROTATION.OFFSET = 3:
const int TRANSLATION.OFFSBT = 4;

Using the fixed format for the block guarantees that a particular attribute is modified in the
same way for any instance. To change the rotation transformation of a particular inslance,
we use the following code:

SPH.openSll'Ucture (LD of stntcture to be edited):
SPH.setElementPointer (0);
SPH.moveEiementPointerToLabel (the desired i11stance-b/ock label);
SPH.offsetEiementPointer (ROTATION.OFFSET);
SPH.deleteEiement ();
SPH.setLocaiTransforrnation (11ewMatrix, mode);

SPH..closeStTucture ();

Another nice feature of instance blocks is that the label introducing each block is easy to
define: If the application keeps an internal database identifying all instances of objects , as is
common, the label can be set to the unique number that the applica.tion itself uses to identify
the instance internally.

7.9 .4 Controlling Automatic Regeneration of the Screen Image

SPHIGS constantly updates the screen image to reflect the current status of its structure
storage database and its view table. On occasion, however, we want to inhibit this
regeneration, either to increase efficiency or to avoid presenting the user with a continuously

0363

328 Object Hierarchy and Simple PHIGS (SPHIGS)

changing image that is confusing and that shows irrelevant intermediate stages of editing.
As we have seen, SPHIGS itself suppresses regeneration during the editing of a

structure; no matter how many changes are made, an image is regenerated only when the
structure is closed. This ''hatching' · of updates is done for efficiency, since any deletion or
transformation of a primitive can cause an arbitrary amount of damage to the screen
image-damage that requires either selective damage repair or brute-force retraversal of aU
posted net~~rks in one or more views. It is clearly faster for SPHIGS to calculate the
cumulative effect of a number of consecutive edits just once, before regeneration.

A similar situation arises when several consecutive changes are made to different
structures- for instance, when a structure and its substructures are deleted via consecutive
calls to deleteStructure. To avoid this problem, an application can suppress automatic
regeneration before making a series of changes, and allow it again afterward:

void SPtLsetlmplicitRegenerationMode (ALLOWED / SUPPRESSED value);

Even while implicit regeneration is suppressed, the application may explicitly demand a
sereen regeneration by calling

void SPHJcgenerateScreen (void);

7 .10 INTERACTION

Both SRGP's and SPHIGS's interaction modules are based on the PHIGS specification, and
thus they have the same facilities for setting device modes and attributes, and for obtaining
measures. The SPHIGS keyboard device is identical to that of SRGP, except that the echo
origin is specified in NPC space with the z coordinate ignored. The SPHIGS locator
device's measure has an additional field for the z coordinate, but is otherwise unchanged.
SPHIGS also adds two new interaction faciUties. The first is pick correlation, augmenting
the locator functionality to provide identification of an object picked by the user. The
second is the choice device, described in the reference manual , which supports menus.
Section 10.1 provides a critical review of the PHIGS interaction devices in general.

7 .1 0 .1 Locator

The SPHlGS locator returns the cursor position in NPC coordinates, with z NPC = 0.12 It also
returns the index of the highest-priority view whose viewport encloses the cursor.

typedef struct {
point position: I•)x, y. O)NPC screen position •/
int viewbulex; I• Index of view whose viewport encloses lhe cursor •I
int buttonOjMostRecentTrtmsition:
enum { UP, DOWN} buuonChoro(MAXJ!UTION_COUNT] ;

} locatorMeasure:

12 In PHIGS. the loca10r reiUrns poims in the 3D world~oordinate system. Many implementations.
however, cannot return a meaningful z value; o nly high-performance workstations that support control
dia.ls and multiple real-time views can offer a comfortable user interface for pointing in 3D (see
Chapter 8).

0364

7.10 Interaction 329

When two viewpons overlap and the cursor position lies in the intersection of their bounds,
the viewport having the highest index (in the view table) is returned in the second field.
Thus, the view index is used to establish view priority for input as well as for output. The
view-index field is useful for a variety of reasons. Consider an application that allows the
user to specify bounds of a viewport interactively, much as one can move or resize a
window manager's windows. In response to a prompt to resize, the user can pick any
location within the viewport. The application program can then use the viewlndex field to
determine which view was picked, rather than doing a point-in-rectangle test on viewport
boundaries. The view index is also used in applications with some output-only views; such
applications can examine the returned view index to determine whether the correlation
procedure even needs to be cal led.

7.1 0.2 Pick Correlation

Because the SPHIGS programmer thinks in terms of modeled objects rather than of the
pixels composing their images, it is useful for the application to be able to determine the
identity of an object whose image a user has picked. The primary use of the locator,
therefore, is to provide an NPC point for input to the pick-correlation procedure discussed
in this section. As we saw with SRGP, pick correlation in a flat-earth world is a
straightforward matter of detecting hits-primitives whose images lie close enough to the
locator position to be considered chosen by the user. If there is more than one hit, due to
overlapping primitives near the cursor, we disambiguate by choosing the one most recently
drawn, since that is the one that lies "on top." Thus, a 20 pick correlator examines the
primitives in inverse temporal order, and picks the first hit. Picking objects in a 30,
hierarchical world is a great deal more complex, for the reasons described next; fortunately,
SPHTGS relieves an application of this task.

Picking i.n a hierarchy. Consider the complexity introduced by hierarchy. First, what
information should be returned by the pick-correlation utility to identify the picked object?
A structure fD is not enough, because it does not distinguish between multiple instances of
a structure. Only the full path-a description of the complete ancestry from root to picked
primitive-provides unique identification.

Second, when a particular primitive is picked, which level of the hierarchy did the user
mean? For example, if the cursor is placed near one of our robot's thumbs, does the user
mean to select the thumb, the arm, the upper body, or the entire robot? At times , the actual
primitive is intended, at times the leaf structure is intended, and any other level is possibly
intended, up to the very root! Some applications resolve this problem by providing a
feedback mechanism allowing the user to step through the levels from primitive to root, in
order to specify exactly which level is desired (see Exercise 7.13).

Comparison criterion. How is proximity to an object defined when the comparison
should really be done in 30? Since the locator device effectively yields a 20 NPC value,
there is no basis for comparing the z coordinates of primitives to the locator position. Thus,
SPHIGS can compare the cursor position only to the screen images of the primitives, not to
the WC locations of the primitives. IJ a primitive is a bit, it is deemed a candidate for
correlation. ln wireframe mode, SPHTGS picks the very first candidate encountered during

0365

330 Object Hierarchy and Simple PHIGS (SPHIGS)

traversal; the reason for this strategy is that there is no obvious depth information in a
wireframe image, so the user does not expect pick correlation to take relative depth into
account. (A side effect of the strategy is that it optimizes pick correlation.) In shaded
rendering modes , SPHIGS picks the candidate whose hit point (the NPC point, on the
primitive' s normalized (30 NPC) surface, to which the user pointed directly) is closest to
the viewpoint-the one "in front," as discussed in Section 7.12.2.

P ick-correlation utility. To perform pick correlation , the application program calls a
SPHlGS pick-correlation utilityl8 with an NPC point and a view index, typically returned
by a previous interaction with the locator:

void SPH..pickCorrelate (
point position, lnt viewlndex, picklnformation •picklnfo);

The returned information identifies the primitive picked and its ancestry via a pick path, as
described by Pascal data types in Fig. 7.24.

When no primitive is close enough to the cursor position, the value of pickLevel
returned is 0 and the path field is undefined. When pickLevel is greater than 0, it specifies
the length of the path from the root to the picked primitive-that is, the primitive's depth
within the network. In this latter case, entries [I] through [pickLevel] of the path array
return the identification of the structure elements involved in the path leading from root to
picked primitive. At tile deepest level (entry [pickLevel]) , the element identified is the
primitive tllat was picked; at all other levels (entries [pickLevel-l) througll [I]) , the
elements are all structure executions. Eacll entry in path identifies one element with a record
that gives the structure lD of the structure containing the element, the index of the element

13Full PHIGS has the Pick logical input device that returns the same measure as the
SPH__pickCorrelate procedure.

typeder struct {
int SlniCIUre/D;

int elementbtdex;
I• Enumerated type: polyline, polyhedron, execute-structure, etc. •I
e lementTypeCode elemenrType;
iot pic kiD;

} pickPathltem;

typedef pickPathltem pickPath[MAX.HIERARCHY .LEVEL):

typeder struct {
lnt pickLevel;
pickPalh path;

} picklnforrnation;

Fig. 7 .24 Pick-path storage types.

0366

7.10 Interaction 331

in that structure, a code presenting the type of the element, and the pick ID of the element
(discussed next).

Figure 7.25 uses the structure networic of Fig. 7.15 for the robot's upper body, and
shows the pick information returned by several picks within the structure's displayed image.

How does the pick path uniquely identify each instance of a structure that is invoked
arbitrarily many times within the hierarchy? For ex.ample, how do we distinguish a pick on
the robot's left thumb from a pick on its right thumb? The pick paths for the two thumbs are
identical except at the root level , as demonstrated by points a and e in Fig. 7.25.

The pick identifier can provide pick correlation at a finer resolution than does a
structure ID. Although the element index can be used to identify individual elements, it is
subject to change when the structure is edited. Therefore, using the pick ID is easier,
because the pick lD is not affected by editing of other elements. It has a default value of 0
and is modally set within a structure. One generates a pick-10 element via

void SPH.setPickldeuti fier {lnl id):

The pick-10 element is ignored during display traversal. Also, a pick £D has no notion of
inheritance: it is initially 0 when SPHIGS begins the traversal of any structure, whether it is
a root or a subStructure. Because of these two aspects, pick IDs do not behave like
attributes. Multiple primitives within a structure may have unique £Ds or share the same
one; this permits arbitrarily fine resolution of pick correlation within a structure, as needed
by the application. Although labels and pick IDs arc thus different mechanisms, the fom1er
used for edit ing and the latter for pick correlation, they are often used in conjunction. In
particular, when structures are organized using the instance-block technique described in
Section 7. 9.2, a pick-ID element is also part of the block, and the pick lD itself is typically
set to the same integer value as that of the block label.

I ~ ·d Refer to the structure ne!WOII< shown in Ftg. 7.15.

C:;
(a) level• 3

path[!) : struct UPPER _BODY, element 7

b"
path[2) : struct ARM, element 3
path[3) : struC1 THUMB, element 1

left
arm (b) level• 2

path{ I) : struC1 UPPER_BODY, element 11

Tight pa1h(2) : StruC1 ARM, element 1
arm

(c) level · 1

[lJ1
path(!) : StruC1 UPPER_BOOY, element 1

·C a
(d) level = 0

/ (e) level • 3
e path(!) : struct UPPER_BODY, element 11

path[2) : struct ARM, element 3
path(3) : struC1 THUMB. element 1

Fig. 7 .25 Example of pick correlation.

0367

332 Object Hierarchy and Simple PHIGS (SPHIGS)

7 .11 ADDITIONAL OUTPUT FEATURES

7 .11 .1 Attribute Bundles

Standard PHIGS provides a mechanism for setting attribute values indirectly. An
application can, during its initializ.ation sequence, store a collection of attribute values in an
auributt bundlt. Each type of primitive has its own type of bundle, and a PHIGS package
provides storage for many bundles, each bundle identified by an integer 10. For example,
we could store a "favorite'' polyline attribute set in bundle I. Subsequently, while editing a
structure, we would prepare for the specification of a polyline primitive by insening an
element that, when executed during traversal , specifies that polyline attributes are to be
taken from bundle I (rather than from the explicitly specified traversal attribute state).

Attribute bundles are often used as a "shonhand" to simplify the task of specifying
attributes. Consider an application in which a large number of unrelated primitives must
appear with identical attributes. Because the primitives are not related, the inheritance
mechanism does not help. Indeed, without attribute bundles, the application would have to
specify the desired attribute set redundantly, at various places throughout the structure
networts.

lmplementors of PHIGS packages sometimes initialize the attribute bundles in order to
provide wortstation-dependent preselected attribute sets that take advantage of the
workstation's best features. The application programmer can choose to accept the bundles'
initial values, as "suggestions" from the implementor, or to modify them with the
bundle-editing commands. Changing definitions of bundles in the bundle table without
changing structure networks is a simple mechanism for dynamically changing the
appearance of objects.

7 .11 .2 Name Sets for Highlighting and Invisibility

SPHIGS suppons two traditional feedback techniques that applications commonly use in
conjunction with the SPHIGS picking facility: highlighting objects and making objects
invisible. The fonner technique is typically used to provide feedback when the user picks an
object; the latter declutters the screen by showing only desired detail. By default, all
primitives that are part of a posted network are visible and unhigWighted. A set of
primitives may be given an integer name, to identify the primitives for subsequent toggling
of their visibility or highlighting status.

Because a group of unrelated primitives can share a name, and because a single
primitive can have any number of names. the name feature can allow a complex object to be
organized in several ways onhogonal to the structure hierarchy induced by structure
invocation. For instance, an office-building model represented as a set of floor substructures
could also be represented as a union of several systems: the plumbing network. the electrical
wiring, and so on. Simply by giving all pipe primitives a common name (PWMBINO), we
ensure that , even though the pipe primitives may be scanered among the actual structure
hierarchy, we can nevertheless refer to them as a single unit.

When we want, say, to make the plumbing subsystem invisible, we add the name
PWMBIN<i to the global invisibility filter; the screen is immediately updated to remove
images of pipe objects. Similarly, by setting the invisibility filter to the names of all the

0368

7 .11 Additional Output Features 333

subsystems except the electrical subsystem, we can display the electrical subsystem in
isolation. The highHghting filter works similarly. Both filters are initially empty, and are
affected only by explicit calls that add or remove names. 14 Note that changing a filter, like
changing a viewing specification, triggers screen regeneration; indeed, these operations
change the rendered view of the CSS much as queries in traditional database programs are
used to show different "views" of data.

The method used to bind names to primitives dynamically is very similar to the way
attributes are assigned to primitives. SPHIGS maintains, as part of display traversal state, a
traversal rrame set of zero or more names. A root inherits an empty name set. A child
inherits the parent's name set when it is invoked, as it does attributes in general; thus ,
multiple instances of a building-block object can either share names or be named
individually. The SPHIGS reference manual describes structure elements that, when
executed during traversal, add names or remove names from this name set.

7 .11 .3 Picture Interchange and Metafiles

Although PHlGS and other standard graphics packages are system- and device-independent
to promote portability, a given implementation of such packages in a particular environ­
ment is likely to be highly optimized in a nonportable way for performance reasons. The
internal representation of the CSS, for example, may contain machine-specific information
for structures and elements. To provide a medium of exchange among different implementa­
tions of PHIGS, the graphics standards committee has defined an archive file format. This
portion of the standard is a machine- and environment-independent form of the contents of
the CSS, without any viewing information. The PHIGS archive file thus is a portable
snapshot of the structure database at a given time and permits PHIGS implementations to
share geometric models.

PHIGS implementations may also support the writing of a metafile, which can contain
a snapshot of what the application is currently presenting on the display surface. When
these metafiles conform to the ANSI and ISO Computer Graphics Metafile (CGM) standard
[ARN088] , the pictures contained in them can be transferred to such application
environments as desktop publishing and interactive graphics art enhancement workstations.
A CGM file is also a machine- and device-independent form of the CSS, but, unlike archive
files, viewing infom1ation is also used in the creation of the picture represented in the
CGM.

The CGM is typically created by having a PHIGS output device driver traverse the CSS
to produce code for the CGM ·'virtual device,'' much as an ordinary device driver produces
display code for a real display system. Other systems then can read the metafile into their
CSS via an input device driver that converts from the prescribed metafile format to whatever
is used by the particular implementation. Because the metafile i.s a 20 view of a 30 scene,
any application obtaining the picture information via a CGM will have only the 20 view to
work with: the original 30 geometry will be lost. 1f the 30 model is to be exchanged in a
standard format , archive files must be used.

"The PHIGS delectability filter allows the application to specify primitives thai cannot be picked.
Moreover, PHIGS ' filter scheme is more powerful , having separate inclusion and exclusion filters.

0369

334 Object Hierarchy and Simple PHIGS (SPHIGS)

Other types of metafiles might be useful for debugging and backup purposes. An audit
trail metafile is an historical transcript file containing a list of all calls to the graphics
package procedures (and the values sent to t.hem as parameters) in temporal order. It would,
therefore, need to be run from start to finish, in order to recreate the CSS at the end of the
session. Another type of transcript file records user actions: Running the application
program with that transcript file reproduces the original sequence of PHIGS calls and thus
the same CSS/image. No standards eJtist nor are standards planned for such transcript files,
and neither a CGM nor a PHIGS archive file contains any historical information.

7 .12 IMPLEMENTATION ISSUES

Much of the internal functionality of SPHIGS involves the maintenance (editing) and use
(traversal) of the view table and the CSS. We do not discuss maintenance here, since it is
essentially a conventional data-structu.res problem and not graphics-specific. Rather, this
section focuses on the mechanics of displaying structures and of doing pick correlation.

The display traverser is invoked whenever the screen image must be updated. When
implicit regeneration is allowed, the following operations prompt traversal: closing a
structure, posting and unposting, changing a viewing transformation, changing rendering
mode, and changing a filter. To generate the contents of a view, each structure posted to the
view is traversed.

To display a posted structure network, SPHJGS visits the component structures'
elements using a recursive descent, depth-first traversal, and performs the appropriate
action for each element, based on the element's type. This display process that maps a
model to an image on screen (or hardcopy) is referred to as display traversal in the context of
PHIGS, but more generally as renderi11g; its implementation in software and/or hardware is
referred to as the rendering pipeline.

Pick-correlation traversal is very similar to display traversal. The primitives encoun­
tered during traversal are compared to the locator position to find candidates. Traversal can
be halted at the first candidate when wireframe rendering is being used; otherwise, a
complete traversal is performed and the candidate closest to the viewpoint in z is chosen.

7 .12.1 Rendering

The conceptual rendering pipeline that implements display traversal is illustrated in Fig.
7.26. rts first stage is the actual depth-first traversal of the CSS itself. (Alternatively, if an
inm1ediate-mode graphics package is used , the application may traverse the application
model or generate primitives and attributes procedurally.) Each primitive encountered
during traversal is passed through the remainder of the pipeline: First, the modeling
transformations (described in Chapter 5) are applied to map the primitive from modeling
coordinates to world coordinates. Then, the viewing operation is applied to transform and
clip the primitive to the canonical view volume, and then to map it to the NPC
parallelepiped (described in Chapter 6). Since these processes are independent of the
display device and deal with vertex geometry in floating-point coordinates, this portion of

0370

7.12

css
editing

css

Implementation Issues 335

Front-end
(geometry Back-end

processing) (rasterization)
,~-----·~--~, ,~--~·~--~,

r \ \ • Visible-surface
Display Modeling Viewing determination 1-+ traversal transformation operation • Scan conversion

J • Shading

Image

we NPC DC

Fig. 7.26 The SPHIGS rendering pipeline.

the pipeline immediately following traversal is often referred to as the geometry-processing
subsystem.

The back end of the pipeline takes transformed, clipped primitives and produces pixels;
we will refer to this pixel processing as rasterization. This process is, of course,
straightforward for wireframe mode: The NPC coordinates are easily mapped (via scaling
and translating, with z ignored) to integer device coordinates, and then the underlying raster
graphics package's line-drawing function is invoked to do the actual scan conversion.
Shaded rendering, however, is quite complex, and is composed of three subprocesses:
visible-surface determination (determining which portions of a primitive are actually visible
from the synthetic camera's point of view), scan conversion (determining the pixels covered
by a primitive's image), and shading (determining wbich color to assign to each covered
pixel). The exact order in which these subprocesses are performed varies as a function of the
rendering mode and implementation method. Detailed descriptions of the rasterization
subprocesses are contained in Chapters 14 through 16.

Traversal. Since all stages of the rendering pipeline but the first one are covered in other
chapters, we need to discuss only the traversal stage here. In a simple implementation,
SPHIGS regenerates the screen by erasing it and then retraversing all posted roots (a list of
which is stored with each view). Optimizing regeneration in order to traverse as little of the
CSS as possible is quite difficult, because the effect of a trivial operation is potentially
enormous. For example, it is difficult to determine how much of the screen must be
regenerated due to the editing of a structure: It is possible that the structure is never invoked
and thus has no effect on the screen, but it is also possible that it is a commonly invoked
building block appearing in most of the views. Even when the implementation can
determine that only a single view has been affected by an operation, refreshing that view
may damage the images of objects in overlapping viewports of higher priority. Doing
damage repair efficiently is, in general, a complicated task requiring considerable
bookkeeping.

In implementations on high-performance workstations, where the image can be
traversed and regenerated in a fraction of a second, the bookkeeping space and time
overhead needed to regenerate the screen selectively is probably not worthwhile, and
therefore complete regeneration is used most frequently. In either the complete or selective
regeneration schemes, the double-buffering technique described later in this section can be

0371

336 Object Hierarchy and Simple PHIGS (SPHIGS)

used to prevent annoying visual discontinuities on the screen during display traversal.
The traversal of a structure can be done in hardware or software; here, we show a

procedural-language implementation, the pseudocode for which is given in Fig. 7.27. The
procedure inherits a tra1•ersal state , which it then maintains as its local state for the duration
of its activation. The attribute values (including the name set) and three transformation
matrices (GM, LM, and their product, CMTM) form the traversal state , and the attributes
and the CMTM are passed down from parent activation to child activation. (The activation
of the procedure for a root structure inherits an identity GM and an attribute record ti lied
with defaull values). Tbe procedure visits each element in the structure and performs an
operation based on the element's type, as indicated in Fig. 7 .f-7.

Optimization via extent checking. The traversal strategy we have presented traverses a
network 's contents unconditionally; during traversal , all structure invocations are executed,
and no part of the DAG is skipped. Frequently, however, not all of a network's objects are
visible, since modeling and viewing tranfom1ations in effect when the traversal is performed
can cause large parts of a network to lie outside of the viewing volume.

What information do we need to trivially reject a subordinate structure during
traversal? Say we have come to an element " Execute structureS" and can quickly compute
the bounds oftbis instance, S;, in NPC space. We could then ask the question, "Does s,. He
completely outside of the NPC viewport?" If it does, we skip over the structure-execution
element and refrain from descending into structureS. Since structureS may be the root of

void TraverseStructureForDisplay (struct/D, auribweState, GM)
{

lM = identity marrix;
CMTM = GM;

for (each element in structure struct/D) {
switch (element type) {

}
}

case auribute or name·set modification:
update auribureStare;
break;

case lM seuing:
replace or updltle lM;
update CMTM by pastconcatetwting lM to GM;
break;

case primitive:
pass primitive tllrougll rest of rendering pipeline;
break;

case execute structure: I• A recursive call *I
TraverseStruclureForDisplay

(lD of structure to be executed, auributeSwte, CMTM);
break;

default: I• ignore labels and pickiDs •I
break:

} I• TraverseStructureForDisplay •/

Fig. 7 .27 Pseudocode for display traversal.

0372

7.12 Implementation Issues 337

an arbitrarily complex subnetwork, avoiding its traversal can reap potentially enormous
time savings. In fact, this method allows us to trivially reject an entire network by
comparing the root structure's NPC bounds with that of the viewport.

To implement this optimization, we need a simple method for computing the bounds of
an arbitrarily complex object, and an efficient way of comparing these bounds to the NPC
viewport. The representation that fits both these criteria is the NPC extent, defined as the
smallest bounding box that completely encloses the NPC version of the object and is aligned
with the principal axes. If we can show that the extent of an instance does not intersect with
the viewport, we have proved that the instance is completely invisible. The extent is ideal
because a viewport is itself an aligned box, and because it is very cheap to calculate the
intersection of two aligned boxes (see Exercise 7.5). Trivial rejection is not the only
optimization gained by the use of the NPC extent. We can also trivially accept-that is ,
discover instances that lie completely within the view volume and thus do not need to be
clipped. The extent technique for trivial-accept/trivial-reject testing of substructures was
first used in hardware in the BUGS system [VAN074] and is described also in [CLAR76].

Because instances are not explicitly stored in the CSS, we must calculate an instance· s
NPC extent from its structure's MC extent, which we store in the CSS. To perfom1 extent
checking during traversal, we thus first transform the MC extent to NPC, to detem1ine the
instance's NPC extent. Because a transformed extent box is not necessarily upright in NPC,
we must determine the NPC extent of the tr.tnsfom1ed MC extent; that NPC extent is what
we compare against the viewport.

To calculate the extent of a structure S, we must calculate the union of the extents of its
primitives and descendants. We can calculate the extent of a polyhedron or fill area by
traversing its MC vertex list, transfom1ed by the local matrix , to determine minimum and
maximum values of x, y. and z. These six numbers detennine the extent: the box with one
corner at Cxmin• Ymin• z.un) and lhe opposite corner at (x_, y,.., z.,.J.

There is one other issue involved in maintaining extem information. When should the
MC extent of a structure be calculated? lt is not enough to do it whenever the structure is
edited; a structure's MC extent is affected not only by its contents but also by the contents
of any of its descendants. Thus, after each editing operation, an arbitrary number of
structure extents must be recalculated. Moreover, recalculation requires traversal of an
arbitrarily large subset of the CSS. We can optimize extent calculation by doing it not after
each edit but during normal display traversal. This technique has the advantage of updating
the extents of only those structures that are actually visible (part of a posted network) , and it
ensures that no structure's extent is calculated more than once in response to an arbitrari ly
large batch of editing operations. [SKLA90] presents tbis optimization technique in greater
detail.

Animation and double-buffering. Software implementations of SPHIGS are well suited
for rapidly producing animation prototypes, but are poorly suited for presenting high­
quality real-time animations, because rendering is inherently time-consuming and the
extent-checking optimization technique does not work well wben a great deal of editing is
performed between "frames." Animation prototypes are usually rendered in WTREFRAME
mode, with automatic regeneration disabled, using a cyclical algorithm: The application

0373

338 Object Hierarchy and Simple PHIGS (SPHIGS)

edits the structure database to describe the next scene, explicitly requests regeneration, then
edits to describe the next scene, and so on. H the scene is not very complicated,
WlREFRAME mode can be fast enough to present an almost-real-time animation of a modest
number of primitives with just software. With some hardware assistance, higher-quality
shading modes can perform in real-time.

One side effect of some simple implementations is that, between the • 'frames" of the
animation, viewers see the screen being erased and can (more or less) see the objects being
drawn as the traverser performs regeneration. An SPHlGS implementation can reduce this
visual artifact by double buffering: using an offscreen canvas/bitmap to store the next frame
whi le that frame i.s being drawn; then, when the regeneration is complete, the contents of
that canvas can be copied onto the screen. When this technique is used on a system with a
very fast copy Pixel operation, the switch between frames is not noticeable, but there are still
discontinuities in the motion of the objects in the scene. In fact , the animation rate (i.e., the
number of frames per second) may decrease due to the increased overhead of the copy Pixel,
but the decrease in visual artifacts in many cases justifies the cost. Hardware double­
buffering, as described in Section 4.4.1 , is much better, since it avoids the copyPixel time.

7 .12.2 Pick Correlation

In pick correlation, SPHIOS traverses those networks posted to the viewport in which the
specified NPC point lies. The traversal is nearly identical to that performed during display;
the modeling-transformation matrices are maintained, and much of the rendering pipeline
is performed. Moreover, the pick ID, ignored during display traversal, is maintained as part
of the local traversal state in the recursive traversal procedure. (The attribute group does not
need to be maintained because during hit det.ection SPHIGS does not take into account
attributes such as line thickness.)

Let us first examine pick correlation for wireframe rendering, where traversal is halted
at the very first hit. Because traversal is recursive, the pick path is easily determined the
moment the first hit is found: Each activation of the traversal procedure is responsible for
one level of information in the pick path. Each primitive is transformed to NPC before
being compared to the locator position for hit detection. (Hit-detection techniques are
described later in this section.) When a bit is discovered by an activation of the procedure, it
returns, and the recursion is unwound. Before returning, each activation stores its pick
information i.nto one level of a global pick-information array. (See Exercise 7.9.)

ln shaded rendering modes, the order in which primitives are encountered during
traversal has no bearing on whether they appear in front of or in back of other primitives
whose images map to the same part of the screen. Therefore, the SPHIOS pick-correlation
algorithm cannot simply choose the first bit detected. Rather, it must traverse all posted
structure networks, maintaining a list of candidate bits. When traversal is completed, the
candidates are compared to determine the candidate whose NPC hit point is closest to the
viewpoint-that is, the one whose z coordinate is algebraically largest. To calculate a
candidate's z coordinate at the hit point, we can plug the x andy coordinates of the locator
measure into the appropriate equations for each primitive: the (parametric) line equation for
edges, and the plane equation for facets (see Exercises 7.7 and 7.8). Another approach

0374

7.12 Implementation Issues 339

using a hardware visible-surface determination algorithm is described in Section 15.4.
Pick-correlation traversal can, of course, be optimi;~;ed in a variety of ways, including the
extent-checking techniques used to optimize display traversal.

Analytical hit detection. Two fundamental methods, analytical and clipping, are used
for hit detection. For analytical hit detection, algebraic equations are used to determine
whether the NPC primitive lies sufficiently close to the 20 NPC locator measure. We first
convert to 20 by ignoring the z coordinate for an orthographic projection or use the
perspective transform of Section 6.5.4 to create an orthographic view volume. Some
examples of analytical techniques follow:

•

•

•

•

In WIREFRAME mode, a function PtNearLineSegment is used to compute the distance
in NPC from the cursor position to each edge of a facet or fill area, and to each line
segment of a polyline. This same function would be used in shaded rendering modes
for polyline primitives. The line equation is used for the computation (see Exercise
7. 10).

In shaded rendering modes , a function PtlnPolygon is used to test for hits on fill areas
and facets. One popular algorithm for determining if the NPC cursor position lies
inside a polygon, based on the odd-parity rule described in Section 2.1.3, casts a ray
from the locator position and determines how many times the ray intersects the
polygon. The algorithm traverses the edge list, testing for intersections and special
cases (e.g., intersections at vertices, edge-ray colinearity). The polygon scan­
conversion algorithm described in Section 3.7 tackles a very similar problem and can
be adapted for use as a PtlnPolygon function (see Exercise 7.12). This algorithm
handles the general case of concave and self-intersecting polygons. Optimi;!;e<i
computational geometry algorithms are available if it can be guaranteed that polygons
do not self-intersect, or that a horizontal ray intersects only two edges, or that the
polygon is convex [PREP85].

Hit detection for nongeometric text is most easily performed by comparing the locator
position to the text's rectangular screen extent.

Packages that support primitives such as ellipses and curves and surfaces require more
complex pick-correlation algorithms of the sort mentioned in Chapters 11 and 19.
Furthermore, the problems are similar to those encountered in ray tracing, as described
in Chapter 15.

Hit detection via dipping. Some hardware clipping devices and optimized software
clipping utilities return state infom1ation, allowing an application to determine whether any
part of a primitive's image lies inside a 20 integer clip rectangle, without having actually to
draw the prinlitive. An SPHIGS implementation can use this type of clipping to test for
candidacy: The clip rectangle is set to a pick window-a small square surrounding the
cursor position-and then traversal is performed. Each primitive (transformed to integer
device coordinates) is given to the clipper, which returns a Boolean ''hit-detection" result
(see Exercise 7 . II). Alternatively, if the clipper docs not return any such state information,
we can draw each primitive into an offscreen bitmap using the pick-window clip rectangle;
if any pixels are changed, the primitive is deemed a candidate.

0375

34 0 Object Hierarchy and Simple PHIGS (SPHIGS)

7.13 OPTIMIZING DISPLAY OF HIERARCHICAL MODELS

7 .13.1 Elision

We can model a building as a parts hierarchy by saying that it consists of floors, the floors
consist of offices, and so on; there are no primitives in the hier.trcby 's nodes until we get to
the level of bricks, planks, and concrete slabs that consist of polyhedra. Although this
representation might be useful for construction purposes, it is not as useful for display,
where we sometimes wish to sec a cruder, simplified picture that eliminates confusing and
unneeded details (and that is faster to render). The tenn ~lision refers to the decision by a
display traverser to refrain from descending into a substructure.

Pruning. In Section 7.12. 1, we showed how a display traverser can avoid executing a
subordinate structure by checking its NPC extent against the viewport, to determine
whether the substructure lies wholly outside (i.e., is fully clipped by) the view volume. This
type of elision, a typical feature of optimized display traversers, is cal led pruning.

Culling. In addition, a traverser can examine the size of the subordinate's NPC extent,
aod can choose to elide the sub tructure if that substructure's extent is so small that, after
transformation and projection, the image of the object ~uld be compressed into a few
pixe.ls. This type of elision is called culling; on SYStems that support it, the application
typically can specify a minimum extent size, below which a substructure is culled.

When a substructure is pruned, it is not drawn at all; however, that is not the best
approach for culling. The object is being cuUed not because it is invisible from the current
point of view, but because its image is too tiny for its details to be discernible. Rather than
not draw it at all , most implementations draw it as an abstract fonm, typically a
parallelipiped representing its we extent, or simply a rectangle (the 20 projection of its
NPC extent).

Level-of-detail elision. Pruning and culling are optimization techniques, preventing
traversal that is unnecessary (pruning) or that would produce an unusable image (culling).
Elision can also be used to give the user control over the amount of detail presented in a
view of the CSS. For example, a user examining our building model could specify a low
level of detail in order to view the building as simply a set of parallelepipeds representing
the individual floors , or could increase the level of detail so as to sec in addition the walls
that form office boundaries.

The MIDAS microprocessor architecture simulator (GURW81] was one of the earliest
systems in which alternate representations of subobjects were traversed automatically by the
display processor, depending on the size of the projection of the subobject on the screen.
This logical-zoom facility made successively more detail appear as the user dynamically
zoomed in on the processor block in the CPU architecture block diagram. Also, at
increased zoom factors , one could see digits representing address, data, and control bytes
moving from source to destination over system buses during the simulation of the
instruction cycle.

Elision in MIDAS was implemented using a conditional-execution facility of the BUGS
vector-graphics system [VAND74): The hierarchical display list included a conditional
substructure execution element that tested the screen extent of the substructure. A similar

0376

7.14 limitations of Hierarchical Modeling in PHIGS 341

feature described in the 1988 specification of PHlGS+ in the form of a conditional­
execution element, allowing pruning and culling to be performed explicitly by elements
within the CSS.

7.13.2 Structure Referral

Certain implementations of PHIGS and PHTGS+ allow a nonstandard form of structure
execution, called referral, that bypasses the expensive state saving and restoring of the
ExecuteStructure mechanism. Whereas we could argue that a beuer, transparent approach
to increasing efficiency is to optimize the implementation of the ExecuteStructure operation
itself (so that the operation saves only as much state as required at any given time), it is
simpler to add a ReferStructure operation and to let the programmer use it for those cases
where an invoked child structure does not have any attribute-setting elements.

A second use of ReferStructure is to allow a child to influence its parents' attributes.
This is useful wben a group of objects do not have a common parent, but do need to
"inherit" the same group of attributes, including potentially an arbitrary number of
modeling transformations. In this case, we can create a structure A that consists of
transformation and appearance attribute settings, and then have each of the object structures
refer to structure A. By editing structure A later, we indirectly affect all structures referring
to A. If only appearance attributes need to be affected, PHIGS attribute bundles provide an
alternative, standard mechanism for changing the appearance of diverse structures.

7.14 LIMITATIONS OF HIERARCHICAL MODELING IN PHIGS

Although this chapter has emphasized geometric modeling hierarchy, it is important to
realize that hierarchy is only one of many forms of data representation. In this section, "'e
discuss the limitations of hierarchy in general and in PHIGS in particular; in the next
section, we present some alternatives to structure hierarchy.

7 .14.1 Limitations of Simple Hierarchy

As mentioned in Section 1.7.2, some applications have no real structure for their data
(e.g., data for scatter plots), or have at most a (partial) ordering in their data (e.g., a
function represented algebraically). Many other applications are more naturally expressed
as networks--that is , as general (directed) graphs (which may have hierarchial subnets).
Among these are circuit and electrical-wiring diagrams, transportation and communica­
tions networks, and chemical-plant-piping diagrams. Another example of simple
hierarchy 's insufficiency for certain types of models is Rubik 's cube. a collection of
components in which the network and any hierarchy (say of layers , rows, and columns) is
fundamentally altered after any transformation.

For other types of models, a single hierarchy does not suffice. For example, the pen
bolder on an (x,y) plotter is moved by, and therefore "belongs" to, both the horizontal and
vertical arms.ln short, whether the application model exhibits pure hierarchy, pure network
without hierarchy, hierarchy in a network with cross-links, or multiple hierarchies, SPHIGS
can be used to display it , but we may not want, or be able, to use structure hierarchy in its
full generality.

0377

342 Object Hierarchy and Simple PHIGS (SPHIGS)

7 .14.2 Umitations of SPHIGS " Parameter Passing"

The black-box nature of structures is good for modularity but, as shown in our robot
example, can be limiting. For example, how can we build a robot with two identical arms
and have the robot use its right arm to pick up a cylinder from a table and move away with
that cylinder? The pick-up operation can be performed by editing the arm structure to add
an invocation of the cylinder structure, so that as the robot or arm moves subsequently, the
cylinder moves along with it. But if we implement the robot by having a single arm structure
invoked twice by the upper-body structure, the result of that operation would be that both
the lefi and right arm would be holding a cylinder! Thus, we have no choice but to build two
separate arm structures, with unique structure IDs, each invoked only once. Let us extend
this example. If we wish to have an army of robots with independently controlled arms, we
must build two unique arm stn1ctures for each robot! Obviously, here is a case where
structure hierarchy is not as useful as we first thought.

The reason that structure hierarchy does not suppon instances of structures differing in
the settings of transformations at various hierarchical levels is that structure hierarchy has
neither the general parameter-passing mechanism of procedure hierarchy nor general
flow-of-control constructs. Rather, it is essentially a data organization with rudimentary
interactions between structures and at most limited conditional execution of structures (in
PHIGS+). We have seen that a parent's transformations are inherited by all the children,
and there is no provision for a panicular child to be affected selectively.

By contrast, in a procedure hierarchy, a "root" procedure passes parameters that are
either used directly by procedures the root calls, or passed down by those procedures to
lower-level procedures. Thus, the root can pass down parameters arbitrarily deeply and
selectively via intermediate procedures. Furthermore, with parameters, a procedure can
control not just the data on which a lower-level procedure operates, but even the way in
which the lower-level procedure operates. To change its operation, the lower-level
procedure uses flow-of-control constructs to test parameters and selectively enables or
disables code segments. Because of structure hierarchy 's lack of general parameter-passing
and flow-of-control mechanisms, our analogy between structure hierarchy and procedure
hie.rarchy in the introduction was a superficial one.

By augmenting the attribute-binding model of PHTGS, we could specify attributes for
selected object instances at arbitrary levels in a h.ierarchy. A system that has such a general
mechanism is SCEFO [STRA88), which allows the programmer to specify an attribute that
is to be applied when the traversal reaches a certain state, the state being represented by a
pathname similar to the pick path returned by the PHIGS pick device. With this facility, it
would be possible to control individually tbe colors or positions of tbe thumb instances in
our robot, without having to create two virtually identical arm masters, by making use of
the fact that the two thumb instances have unique pathnames.

Another limitation in the PHlGS parameter-passing mechanism is that it handles
transfonnations and appearance attributes for which inheritance rules are very simple. It
would not be easy to support operations more complex than geometric transformations; a
more general model is needed to suppon set operations on solid primitives (Chapter 12),
and deformation operations such as bend, taper, and twist (Chapter 20).

0378

Alternative Forms of Hierarchical Modeling 34 3

7.15 ALTERNATIVE FORMS OF HIERARCHICAL MODELING

We have just concluded that structure hierarchy is only one way-and not always the best
way-to encode hierarchy. In this section, we discuss alternatives to structure hierarchy.

7.15.1 Procedure Hierarchy

In the spectrum from pure data hierarchy to pure procedure hierarchy, structure hierarchy is
almost all the way at the data end, since it lacks general Dow of control. By contraSt, a
template procedure (i.e., a procedure defining a template object, consisting of primitives or
of calls to subordinate template procedures) can use parameters and arbitrary flow of
control. Template procedures can be used in two different ways. First, they can be used with
a retained-mode graphics package such as SPHJGS. Here, they are used as a means to the
end of creating structure hierarchy. Second, they can be used to specify primitives and
attributes to an immediate-mode graphics package. Here, they are not means to ends, but
rather are ends in themselves; that is, they are the sole representation of the hierarchy used
for display. In this case, display traversal is effected by procedure traversal-practical only
if the CPU can provide a reasonable rate of retraversal. (In general, smooth dynamics
requires at least 15 frames per second; 30 frames per second looks noticeably better.) The
procedures themselves implement inheritance and maintain transformation matrices and
attribute states, using techniques similar to those presented in our discussion of traversal
implementation in Section 7.12. Newman's display procedures mentioned in Section 7.4
were an early example of the use of procedure hierarchy for dynamics.

Pick correlation is a bit tricky in dynamic procedure traversal, since it requires
retraversing the procedure hierarchy. If the first candi.date is to be chosen (i.e. , if the
rendering mode is wireframe), it is difficult to halt the traversal as soon as a hit is detected
and to return from an arbitrary level of the procedure activation stack. If a non wire frame
rendering mode is used, there must be a way of interacting with the rendering pipeline to
obtain the candidates and their z values corresponding to the cursor position. Each
procedure is also complicated by the fact that it must be used both for display and for
correlation traversal.

We can combine procedure and structure hierarchy by using template procedures to
create structures. For example, our robot can be built using template procedures for ea::h of
the parts; each procedure creates display commands or a SPHIGS structure, depending on
whether we choose immediate mode or retained structure mode, respectively. The
upper-body procedure can pass parameters to the arm and thumb procedures to initialize
their transformations individually and to allow the arms and thumbs to operate indepen­
dently. ln retained mode, each invocation of the robot template procedure thus creates a
unique SPHJGS network, with unique names for all the child structures. For example, two
arm structures would be created, with their own, separate invocations of thumbs. Leaf
nodes such as the thumb can still be shared among multiple networks, since they can be
instanced with individual transforms by their callers. To create unique structure IDs, we can
assign a unique interval of integer space to each root, and can number its parts within that
interval.

0379

344 Object Hierarchy and Simple PHIGS (SPHIGS)

What are the limitations of using only procedure hierarchy? First. unless the
programming environment supports dynamic code creation, it is difficult to edit or
construct procedures at run time. Creating new data structures is far easier. 1berefore,
procedure hierarchy is typically used when the set of template objects is predefined and
only the attributes need to be Vllried dynamically. Structures created by template
procedures can. of course. be ed ited with aU the PHIGS machinery.

Second, if the procedure hierarchy is used to create immediate-mode graphics, the
CPU. involved in constantly retraversing the procedure hierarchy, is much less available for
application processing. We can offload tbe CPU in a multiprocessor system by having
another CPU dedicated to procedure traversaL Alternatively, in retained mode, structure­
network traversal can be performed by a special-purpose hardware coprocessor or a separate
CPU.

Third, even for minor edits, an immediate-mode procedure hierarchy must be
retraversed in its entirety and all display primitives must be retransmitted to the graphics
package.~. For display systems connected over networks or communication lines, this
requirement produces heavy communication traffic. lt is far more efficient for minor edits,
for both the CPU and the communications system, to store and manage a structure database
in a display peripheral that can be modified incrementally and traversed rapidly.

7 .1 5.2 Data Hierarchy

Unlike procedure hierarchy, data hierarchy is well suited to dynamic creation. Like
template-procedure hierarchy, it can be used in conjunction with either immediate- or
retained-mode graphics packages. If immediate mode is used, the CPU must retraverse the
application model and drive the pack'age sufficiently quickly to provide dynamic update
rates. Objects are created and edited by changing tbe application model and retraversing it
to update the screen. 1be application must do its own pick correlation, by retraversal. As
witb an immediat.e-mode procedure hierarchy, however, if the display subsystem is on a
communications network. retransmittal of graphics commands for any update is considera­
bly slower than is sending update commands to a structure database in tbe peripheral.

Like the structure-hierarchy technique, the data-hierarchy approach lacks the fleKibility
of the procedure-hierarchy method due to the absence of general flow-of-control mecha­
nisms; these must be embodied via flags in tbe data structures. Object-oriented environ­
ments with run-time code creation and binding offer an attractive, totally general
combination of data and procedure hierarchy; there is a natural match between the notion of
an object-subobject hierarchy and tbat of a class-instance hierarchy. As processor
performance improves, object-oriented environments are likely to become a dominant
paradigm in dynamic computer graphics.

7 .15.3 Using Database Systems

Since a general-purpose database has more power than does a special-purpose one, we
should consider using standard database systems for computer graphics LWELL76;
GARR80]. Unfortunately, such databases are designed to work with large volumes of data
in secondary storage and to give response times measured on a human rime scale. They are

0380

7.16 Summary 345

designed to process user-input queries or even batch transactions with times measured. at
best , in milliseconds, whereas real-time graphics demands microsecond access to
elements. Using a memory-resident database would work best if the database were
optimized for fast traversal and had built-in graphics data types and operators. At least. it
would have to be able to invoke procedures for retrieved items, passing parameters extracted
from fields in the database.

Although several systems have used relational databases for graphics, the limitations on
the structure of the data imposed by the relational model. as well as the slowness of standard
relational databases, have restricted these systems to research environments. As object­
oriented environments are useful for combining data and procedures, such an environment
used in conjunction with an object-oriented database has the potential for removing the
restrictions of relational databases. The slow performance of object-oriented databases,
however, may make them infeasible for real-time gr<~phics in the near term.

7.16 SUMMARY

This chapter has given a general introduction to geometric models, emphasiting hierarchi­
cal models that represent partS assemblies. Although many types of data and objects are not
hierarchical, most human-made objects are at least panty so. PHTGS and our adaptation,
SPHIGS. are designed to provide efficient and natural representations of geometric objects
stored essentially as hierarchies of polygons and polyhedra. Because these packages store
an internal database of objects, a progran1mer can make small changes in the database with
little e ffort , and the package automatically produces an updated view. Thus, the application
program builds and edits the database. typically in response to user input, and the package
is responsible for producing specified views of the database. These views use a variety of
rendering techniques to provide qualiry-speed tradeoffs. The package also provides locator
and choice input devices. as "'-ell as pick correlation to allow the selection of objects at any
level in a hierarchy. Highlighting and visibility filters can be used for selective enabling and
disabling as another form of control over the appearance of objects.

Because the nature of structu res and the means for searching and editing them are
restricted , such a special-purpose system is best suited to motion dynamics and light update
dynamics, especially if the structure database can be maintained in a display terminal
optimized to be a PHJGS peripheral. If much of the structure database must be updated
between successive images. or if the application database can be traversed rapidly and there
is no bottleneck between the computer and the display subsystem, it is more efficient to use
a graphics package in immediate mode, without retaining information.

Structure hierarchy Lies between pure data and pure procedure hierarchy. It has the
advantage of dynamic editing that is characteristic of data hierarchy. It also allows a simple
form of parameter passing to substructures (of geometric or appearance attributes), using
the attribute-traversal state mechanism. Because of the lock of general llow-of-control
constructs, ho""Cver, the parJmeter-passing mechanism is restricted , and structures cannot
selectively set different attributes in different instances of a substructure. Instead , template
procedures can be used to set up multiple copies of (hiemrchical) structures that are
identical in structure but that differ in the geometric or appearance attributes of
substructures. Alternatively, they can be used to drive an immediate-mode package.

0381

346 Object Hierarchy and Simple PHIGS (SPHIGS)

SPHIGS is oriented toward geometric models made essentially from polygons and
polyhedra, especially those that ~hibit hierarchy; in Chapters II and 12, we look at
geometric models that have more complex primitives and combinations of primitives.
Before turning to those more advanced modeling topics, we first consider interaction tools,
techniques, and user interfaces.

EXERCISES

7.1 a. Complete the robot model of Fig. 7 . 16 by adding a base on which the upper body swi"':IS
and create a simple animation of its movement through a room.

b. Create an SPHIGS application producing an animation in which a one-armed robot
approaches a table on which an object lies, picks up the object, and walks off with it (sec
Section 7. 14 for the reason for specifying a one-armed robot).

7.2 Enhance the robot animation to provide user interaclion. Let there be a number of objects on
the table, and allow the user to choose (using the locator) the object that the robot should pick up.

7.3 Redesign the two-armed robot model so as to allow the thumbs on each arm to be controlled
individually, so that each ann can pick up objectS individually.

7.4 Enhance a robot animation so that three views of the animation are shown simultaneously,
including one overhead orthographic view and one ' 'robot' s eye" view that shows us what the robot
itself '"sees" as it moves.
7.5 Design the addition of pruning elision to the recursive display traverser of Fig. 7.27. Assume

the MC extent of a structure is stored in the structure's record . You must transform an MC extent box
into an NPC extent box , meeting the requirement that extent boxes be aligned with the principal axes.

7.6 Update our recursive display traverser so that it maintains the MC extent information stored for
each structure. Assume that. whenever a structure S is closed after heing edited, a Boolean
"extentObsolete" field in S's record is set. Assume also that functions are available that, gilllln any
primilillll, return the primitive's NPC extent.

7.7 Design an algorithm for calculating analytically the hit point of a candidate line, given the line's
NPC endpoints and the locator measure.

7.8 Design an algorithm for calculating analytically the hit point of a candidate fill area.

7.9 Design, using pseudocode, a recursive pick-correlation traverser that suppons only wireframe
mode.

7.10 Implement the function PtNearLineSegment analytically for use in pick correlation. To be a
candidate, the line segment' s image must come within P pixel widths of the locator position.

7.11 Implement the function PtNearLineSegment using clipping. Modify the Liang-Barsky clipping
algorithm (of Fig. 3.45) to optimize it. because the clipped version of the segment is not
needed-Qnly a Boolean value is to be returned.

7.12 Implement the function Ptlnl'olygon for use in pick correlation. Treat the special cases of rays
that pass through venices or are coincident with edges. See [PREP85) and [FORR85) for discussions
of the subtleties of this problem.

7.13 Design a user int.erface for picking that letS the user indicate the desired level of a hierarchy.
Implement and test your interface with the robot model by writing an application that allows the user
to highlight ponions of the robot' s anatomy. from individual parts to whole subsystems.

0382

8
Input Devices,

Interaction Techniques,
and Interaction Tasks

This is the first of lhree chapters on designing and implementing graphical user-computer
interfaces. High-quality user interfaces are in many w..ays the "last frontier" in providing
computing to a wide variety of users, since hardware and software costs are now low
enough to bring significant computing capability to our offices and homes. Just as software
engineering has recently given structure to an activity !hat once was totally ad hoc, so too
the new area of user-interface engineering is generating user-interface principles and design
methodologies.

Interest in lhe quality of user-<:omputer interfaces is new in the formal study of
computers. The emphasis until the early 1980s w..as on optimizing two scarce hardware
resources, computer time and memory. Program efficiency was the highest goal. With
today's plummeting hardware costs and increasingly powerful graphics-oriented personal·
computing environments (as discussed in Chapter I), however, we can afford to optimize
user efficiency ralher !han computer efficiency. Thus, allhough many of lhe ideas presented
in !his chapter require additional CPU cycles and memory space, lhe potential rewards in
user productivity and satisfaction well out\>oeigh the modest additional cost of these
resources.

The quality of the user interface often determines whether users enjoy or despise a
system, whether the designers of the system are praised or damned, whether a system
succeeds or fails in lhe market. Indeed, in such critical applications as air-traffic control and
nuclear-power-plant monitoring, a poor user interface can contribute to and even cause
accidents of catastrophic proportions.

The desktop user-interface metaphor, with its windows. icons, and pull-down menus,
all making heavy use of raster graphics, is popular because it is easy to learn and requires

347

0383

348 Input Devices. Techniques, and Interaction Tasks

linle typing skill . Most users of such systems are 1101 computer programmers and have little
sympathy for the old-style hard-to-learn keyboard-oriented command-language interfaces
that many prog.rammers take for granted. The designer of an interactive graphics
application must be sensitive to users' desire for easy-to-learn yet powerful interfaces.

On the other hand, in the future, the level of computer sophistication of workers will
increase, as more users enter the workforce already computer-literate through computer use
at home and school. Developers of some educational and game software will continue to
design for the computer-naive user, while developers of workplace systems will be able to
assume an increased awareness of general computer concepts.

In this chapter. we discuss basic elements of user interfaces: input devices, interaction
techniques, and interaction tasks. Input devices were introduced in Chapters 2 and 4: here
we elabomte on their use. Interaction techniques are ways to use input devices to enter
informmion into the computer, whereas interaction tasks classify the fundamental types of
informmion entered with the interaction techniques. Interaction techniques are lhe primitive
building blocks from which a user interface is crafted.

In Chapter 9, we discuss the issues involved in putting together the building blocks into
a complete user-interface design. The emphasis is on a top-down design approach; first,
design objectives are identified, and the design is then developed through a stepwise
refinement process. The pros and cons of various dialogue styles-such as what ~u see is
what ~u get (WYSIWYG), command language, and direct manipulation-are discussed,
and window-manager issue.~ that affect tbe user interface are also described. Design
guidelines, the dos and don'ts of interface design, are described and illustrated with various
positive and negative examples. Many of lhe topics in Chapters 8 and 9 are discussed in
much greater depth elsewhere; see the texts by Baecker and Buxton [BAEC87], Hutchins,
Hollan, and Norman [HUTC86J, Mayhew [MAYH90], Norman [NORM88), Rubenstein
and Hersh [RUBE84). and Shneiderman [SHN£87); the reference book by Salvendy
(SALV871: and the sun'ey by Foley. Wallace, and Chan IFOLE84j.

Many of the examples used in Chapters 8 and 9 are taken from the user interface of
Apple Computer's Macintosh. Although the Macintosh user interface is not perfect, it is a
huge improvement over previous commonly available interfaces. Developed in the early
1980s. the Macintosh was built primarily on pioneering work at Xerox Corporation's Palo
Alto Research Center (PARC) in the mid-1970s, and has been imitated and in some cases
extended by systems such as Microsoft Windows, Pre.~ntation Manager, NeXT's NeXT
Step, the Commodore Amiga, Digital Research's GEM, and many others. (Much of this
book was written on the Macintosh. using Microsoft Word, and many of the figures were
drawn on the Macintosh using Freehand.)

Chapter 10 treats user-interface software. It is one thing to design grophic user
interfaces that are easy to learn and fast to use; it is quite another to implement them.
Having the right software tools is of critical importance. This chapter reviews the
input-handling capabil ities of SRGP and SPHlGS, and then discusses more general and
more powerful input-handling capabilities. The internal structures and implementation
strategies of window managers, a critical element in many high-quality user interfaces, are
described. Finally, the key concepts of user-interface management systems (UfMSs) are
presented. UIMSs provide a means for interface designers and implementors quickly to
develop, try out. and mndify their interface concepts, and thus decrease the cost of the

0384

8.1 Interaction Hardware 34 9

essential testing and refinement steps in user-interface development.
We focus in this chapter on input devices-those pieces of hardware by which a user

enters information into a computer system. We have already discussed many such devices in
Chapter 4. In this chapter, we introduce additional devices, and discuss reasons for
preferring one device over another. In Section 8.1.6, we describe input devices oriented
specifically towdl'd 30 interaction. We continue to use the logical device categories of
locator, keyboard, choice, valuator, and pick used by SRGP, SPHIGS, and other
device-independent graphics subroutine packages.

An imeraction task is the entry of a unit of infom1ation by the user. The four basic
interaction tasks are position, texr, select, and quantify. The unit of information input in a
position interaction task is of course a position. Similarly, the text task yields a text string;
the select task yields an object identification; and the quantify task yields a numeric value.
Many different imeraction techniques can be used for a given interaction task. For instance,
a selection task can be carried out by using a mouse to select items from a menu, using a
keyboard to enter the name of the selection, pressing a function key, or using a speech
recognizer. Similarly, a single device can be used for different tasks: A mouse is often used
for both positioning and selecting.

Interaction tasks are distinct from the logical input devices discussed in earlier
chapters. Interaction tasks are defined by what the user accomplishes, whereas logical input
devices categorize how that task is accomplished by the application program and the
graphics package. Interaction tasks are user-centered, whereas logical input devices are a
programmer and graphics-package concept.

By analogy with a natural language, single actions with input devices are similar to the
individual letters of the alphabet from which words are formed. The sequence of
input-device actions that makes up an interaction technique is analogous to the sequence of
letters that makes up a word. A word is a unit of meaning; just as several interaction
techniques can be used to carry out the same intera.ction task , so too words that are
synonyms convey the same meaning. All the unitS of meaning entered by the user can be
categorized as one of the four basic interaction tasks, just as words can be categorized as
verb, noun, adjective, and so on. An interactive dialogue is made up of interaction-task
sequences, just as a sentence is constructed from word sequences.

8.1 INTERACTION HARDWARE

Here, we introduce some interaction devices not covered in Section 4.6. elaborate on how
they work, and discuss the advantages and disadvantages of various devices. The
presentation is organized around the logical-device categorization of Section 4.6, and can
be thought of as a more detailed continuation of that section.

The advantages and disadvantages of various interaction devices can be discussed on
three levels: device, task, and dialogue (i.e., sequence of several interaction tasks). The
device LeveL centers on the hardware characteristics per se, and does not deal with aspects of
the device's use controlled by software. At the device level, for example, we note that one
mouse shape may be more comfortable to hold than another, and that a data tablet takes up
more space than a joystick.

0385

350 Input Devices, Techniques, and Interaction Tasks

At the task level, we might compare interaction techniques using different devices for
the same task. Thus, we might assert that experienced users can often enter commands
more quickly via function keys or a keyboard than via menu selection, or that users can pick
displayed objectS more quickly using a mouse than they can using a joystick or cursor
control keys.

At the dialogue level, we consider not just individual interaction tasks, but also
sequences of such tasks. Hand movementS between devices take time: Although the
positioning task is generally faster with a mouse than with cursor-control keys, cursor­
control keys may be faster than a mouse if the user' s hands are already on the keyboard and
will need to be on the keyboard for the next task in sequence after the cursor is repositioned.
Dialogue-level issues are discussed in Chapter 9. where we deal with constructing complete
user interfaces from the building blocks introduced in this chapter. Much confusion can be
avoided when we think about devices if we keep the...e three levels in mind.

Important considerations at the device level, discussed in this section, are the device
footprints (the foorprim of a piece of equipment is the work area it occupies), operator
fatigue, and device resolution. Other important device issues-such as cost, reliability, and
maintainability-change too quickly with technological innovation to be discussed here.
Also omitted are the details of connecting devices to computers; by far the most common
means is the serial asynchronous RS-232 terminal interface, generally making interfacing
quite simple.

8 .1 .1 Locator Devices

It is useful to classify locator devices according to three independent characteristics:
absolute or relative. direct or indirect, and discrete or continuous.

Absolute devices, &uch as a data tablet or touch panel, have a frame of reference, or
origin, and report pr>sitions with respect to that origin. Relative devices-such as mice,
trackballs , and velocity-control joysticks-have no absolute origin and report only changes
from their former position. A relative device can be used to specify an arbitrarily large
change in position: A user can move a mouse along the desk top, lift it up and place it back
at itS initial starting position, and move it again. A data tablet can be p.·ogrammed to behave
as a relative device: The first (x, y) coordinate position read after the pen goc; from "far" to
"near" state (i.e., close to the tablet) is subtracted from all subsequently read coordinates
to yield only the change in x andy, which is added to the previous (x, y) position. This
process is continued until the pen again goes to "far" state.

Relative devices cannot be used readily for digitizing drawings, whereas absolute
devices can be. The advantage of a relative device is that the application program can
reposition the cursor anywhere on the screen.

With a direct device-such as a light pen or touch screen-the user pointS direclly at
the screen with a finger or surrogate finger; with an indirect device-such as a tablet,
mouse, or joystick-the user moves a cursor on the screen using a device not on the screen.
New forms of eye-hand coordination must be learned for the latter; the proliferation of
computer games in homes and arcades, however, is creating an environment in which many
casual computer users have already learned these skills. However, direct pointing can cause
arm fatigue, especially among casual users.

0386

8.1 Interaction Hardware 351

A continuous device is one in which a smooth hand motion can create a smooth cursor
motion. Tablets, joysticks, and mice are aU continuous devices, whereas cursor-control
keys are discrete devices. Continuous devices typically allow more natural, easier, and
faster cursor movement than do discrete devices. Most continuous devices also permit
easier movement in arbitrary directions than do cursor control keys.

Speed of cursor positioning with a continuous device is affected by the control-to­
display ratio, commonly called the C/D ratio [CHAP72]; it is the ratio between hand
movement (the control) and cursor movement (the display). A large ratio is good for
accurate positioning, but makes rapid movements tedious; a small ratio is good for speed
but not for accuracy. Fortunately, for a relative positioning device, the ratio need not be
constant, but can be changed adaptively as a function of control-movement speed. Rapid
movemenL~ indicat.e the user is making a gross hand movement, so a small ratio is used; as
the speed decreases, the C/D ratio is increased. This variation of CID rario can be set up so
that a user can use a mouse to position a cursor accurately across a 15-inch screen without
repositioning her wrist! For indirect discrete devices (cursor-control keys), there is a similar
technique: the distance the cursor is moved per unit time is increased as a function of the
time the key has been held down.

Precise positioning is difficult with direct devices, if the ann is unsupported and
extended toward the screen. Try writing your name on a blackboard in this pose, and
compare the result to your nonnal signature. This problem can be mitigated if the screen is
angled close to horizontal. Indirect devices, on the other hand, a.llow the heel of the hand to
rest on a support , so that the fine motor control of the fingers can be used more effectively.
Not all continuous indirect devices are equally satisfactory for drawing, however. Try
writing your name with a joystick, a mouse, and a tablet pen stylus. Using the stylus is
fastest, and the result is most pleasing.

Other interesting positioning devices include the Versatron footmozLre [VERS84].
which remains static on the floor: The user places the ball of his foot on the device, keeping
his heel on the floor, and controls the footmouse with left-right and forward-backward
movements. The experimental mole is a pivoted foot rest with integrated switches
(PEAR86, PEAR88] that, like the footmouse, leaves the hands free. The Personics
headmouse [PERS85] uses a head-mounted set of three microphones to measure the
distance to a sound source, translating small rotational movements of the head into cursor
movements. Eye trackers can detennine where the eye is pointing and hence can cause a
cursor to .move or the object pointed at to be selected [BOLT80; BOLT84; WARE87]. These
devices are often less accurate and considerably more expensive than are the more
traditional devices , and thus would normally be considered for only hands-free applica­
tions. The 30 positioning devices discussed in Section 8. 1.6 can also be used for 20
positioning.

8.1.2 Keyboard Devices

The well-known QWERTY keyboard has been with us for many years. It is ironic that this
keyboard was originally designed to slow down typists. so that the typewriter hammers
would not be so likely to jam. Studies have shown that the newer Dvor~ keyboard
[DVOR43] , which places vowels and other high-frequency characters under the home

0387

352 Input Devices, Techniques, and Interaction Tasks

positions of the fingers, is somewhat faster than is the QWERTY design [GREE871. It has
not been widely accepted. Alphabetically organized keyboards are sometimes used When
many of the users are nontypistS. But more and more people are being exposed to
QWERTY keyboards, and several experimentS have shown no advantage of alphabetic over
QWERTY keyboards [HIRS70; M1CH71].

The chord keyboard has five keys similar to piano keys, and is operated with one hand,
by pressing one or more keys simultaneously to " play a chord." With five keys , 31 different
chords can be played. Learning to use a chord keyboard (and other similar stenographer­
style keyboards) takes longer than learning the QWERTY keyboard, but skilled users can
type quite rapidly, leaving the second hand free for other tasks. This increased training time
means, however, that such keyboards are not suitable substitutes for general use of the
standard alphanumeric keyboard.

Other keyboard-oriented considerations, involving not hardware but software design,
are arranging for a user to enter frequently used punctuation or correction characters
without needing simultaneously to press the control or shift keys, and assigning dangerous
actions (such as delete) to keys that are distant from other frequently used keys .

8 .1.3 Valuator Devices

Some valuators are bounded, like the volume control on a radio---«te dial can be turned
only so far before a stop is reached that prevents further turning. A bounded valuator inputS
an absolute quantity. A continuous-turn potentiometer. on the other hand, can be turned an
unbounded number of times in e ither direction. Given an initial value , the unbounded
potentiometer can be used to return absolute values; otherwise. the returned values are
treated as relative values. The provision of some sort of echo enables the user to determine
what relative or absolute value is currently being specified. The issue of C/D ratio.
discussed in the context of positioning devices, also arises in the use of slide and rotary
potentiometers to input values.

8 .1.4 Choice Devices

Function keys are a common choice device. Their placement affects their usability: keys
mounted on the CRT bezel are harder to use than are keys mounted in the keyboard or in a
nearby separate unit. A foot switch can be used in applications in which the user's hands are
engaged yet a single switch closure must be frequently made. For example, used with a
headmouse (described in Section 8 .1. 1), a foot switch could easily provide functionality
equivalent to a single-button mouse.

8 .1.5 Other Devices

Here we discuss some of the less common, and in some cases experimental, 20 interaction
devices. Voice recognizers, which are useful because they free the user's hands for other
uses, apply a pattern-recognition approach to the waveforn1s created when we speak a word.
The waveform is typically separated into a number of different frequency bands, and the
variation over time of the magnitude of the waveform in each band forms the basis for the
panem matching. However, mistakes can occur in the panern matching, so it is especially

0388

8.1 Interact ion Hardware 353

important that an application using a recognizer provide convenient correction capabilities.
Voice recognizers diffe.r in whether or not they must be trained to recognize the

waveforms of a particular speaker, and whether they can recognize connected speech as
opposed to single words or phrases. Speaker-independent rccognizers have very limited
vocabularies-typically, they include only the digits and 50 to 100 words. Some
discrete-word rccognizers can recognize vocabularies of up to a few thousand different
words after appropriate training. But if the user has a cold, the recognizer must be
retrained. The user of a recognizer must pause for a fraction of a second after each word to
cue the system that a word end has occulTed; the pause is typically 100 to 200 milliseconds,
and can be longer if the set of possible words is large. The more difficult task of recognizing
connected speech from a limited vocabulary can also be performed by commercial
hardware, but at a higher cost. The larger the vocabulary, however, the more artificial­
intelligence techniques are needed to use the context and meaning of a sequence of
sentences to remove ambiguity. A few systems with vocabularies of20,000 or more words
can recog.nize sentences such as ''Write Mrs. Wright a letter right now!"

Voice synthesizers create waveforms that approximate, with varying degrees of realism.
spoken words [KAPL85). The simplest synthesizers use phonemes, the basic sound units
that form words. This approach creates an artificial-sounding, inflection-free voice. More
sophisticated phoneme-based systems add inflections. Other systems actually play baok
digitized speech patterns. They sound realistic, but require thousands of bytes of memory to
store the digitized speech.

Now that several personal computers, including the Macintosh and NeXT, have
standard sound synthesizers that can create both voice and music. speech feedback from
computers is becoming quite common. Speech is best used to augment rather than to
replace visual feedback , and is most effective when used sparingly. For instance. a trJining
application could show a student a graphic animation of some process, along with a voice
narration describing what is being seen. See [SlMP85; SlMP87J for an ex ten ive review of
speech recognition and generation, including additional guidelines for the effecti~-e
application of these functions in user-computer interfaces.

Sound generators can be used to generate musical tones and other effects, which can
call attention to specific situations, especially if the user is unlikely 10 be looking at the
display. For instance, "printer out of paper" or "memory nearly full'' alarms might be
signaled by two different tones, in addition to messages on the screen. An attempt to
reorient a line that bas been constrained to be parallel to another line might cause a warning
beep.

The data tablet bas been extended in several ways. Many years ago. Herot and
Negroponte used an experimental pressure-sensitive stylus I HER076]: High pressure and a
slow drawing speed implied that the user was drawing a line with deliberation, in which case
the line was recorded exactly as drawn; low pressure and fast speed implied that the line was
being drawn quickly, in which case a straight line connecting the endpoints was recorded. A
more recent commercially available tablet IGTC0821 senses not only srylus pressure but
orientation as well. The resulting 5 degrees of freedom reported by the tablet can be used in
various creative ways. For example, Bleser, Sibert, and McGee implemented the GWPaint
system to simulate various artist 's tools. such as an italic pen, that are sensith-e to pressure
and orientation IBLES88a). Figure 8.1 shows the artistic creativity thus afforded.

0389

354 Input Devices. Techniques. and Interaction Tasks

---........ ~ • ... 0 • ,

........ ~· . · ~ · ~;.. ..
........_,;~ '"'~""· '•
.... ~ '\. , :,.. '\ •• • 0 •

\

Fig. 8.1 Numeral 2. a drawing in the spirit of Jasper Johns. by Teresa Bleser. Drawn
with the GWPaint program using a GTCO pressure- and tilt-sensitive tablet. (Counesy
ofT. Bleser. George Washington University.)

Green [GREE85] applied optics principles to develop a tabletlike device that gives
artists even more freedom than the pressure- and till-sensing tablet. The user paints on the
tablet with brushes, hands, or anything else that is convenient. A television camera
positioned below the tablet records the shape and motion of the brush wherever it contacts
the tablet. and the resulting video signal is used to load the refresh buffer of a rasterdi play.
Resolution of 500 or 1000 units is achievable, depending on the television camera used.

An experimental touch tablet, developed by Buxton and colleagues, can sense multiple
finger positions simuhaneously. and can also sense the area covered at each point of contact
ILEE85al. The device is essentially a type of touch panel, but is used as a tablet on the work
surface, not as a touch panel mounted over the screen. The device can be used in a rich
variety of wdys [BUXT851. Different finger pressures correlate with the area covered at a
point of contact. and are used to signal user commands: a light pressure causes a cursor to
appear and to truck finger mO\'ement: increased pressure is used, like a bunon-push on a
mouse or puck. to begin feedback such as drugging of an object: decreased pressure causes
the drugging to stop.

0390

8.1 Interaction Hardware 355

Anolher way to obtain more than just position information is to suspend a touch panel
in front of a display using a few metal support strips with strain gauges [HER078,
M1NS84 J. Pressure applied to the touch panel translates into strain measured by the gauges.
It is possible also to measure the direction of push and torque as well , by orienting the metal
strips in appropriate directions. The measurements can be used to cause displayed objects to
be rotated, scaled, and so on.

The decreasing costs of input devices and the increasing availability of computer power
are likely to lead to the continuing introduction of novel interaction devices. Douglas
Engelhart invented the mouse in the 1960s, and nearly 20 years passed before it became
popular [PERR89]. What the next mouse will be is not yet clear, but we hope that it will
have a much shorter gestation period.

8.1.6 3D Interaction Devices

Some of the 20 interaction devices are readily extended to 30. Joysticks can have a shali
that twists for a third dimension (see Fig. 4.38). Trackballs can be made to sense rotation
about the vertical axis in addition to that about the two horizontal axes. In both eases,
however, there is no direct relationship between hand movements with the device and the
corresponding movement in 3-space.

The Spaceball (see Color Plate 1. 14) is a rigid sphere containing strain gauges. The user
pushes or pulls the sphere in any direction, providing 30 translation and orientation. In this
case, at least the directions of movement correspond to the user's attempts at moving the
rigid sphere, although the hand docs not actually move.

A number of devices, on the other hand, can record 30 hand movements. The
experimental Noll Box, developed by Michael Noll , permits movement of a knob in a
12-inch cube ~lume, sensed by slider mechanisms linked to potentiometers. The Polhemus
3SPACE three-dimensional position and orientation sensor uses electrOmagnetic coupling
between th.ree transmitter antennas and three receiver antennas. The transmiuer antenna
coils, which are at right angles to one another to form a Cartesian coordinate system, are
pulsed in turn. The receiver has three similarly arranged receiver antennas; each time a
transmitter coil is pulsed, a current is induced in each of the receiver coi ls. The strength of
the current depends both on the distance between the receiver and transmitter and on the
relative orientation of the transmiuer and receiver coi ls. The combination of the nine
current values induced by the three successive pulses is used to calculate the 30 position
and orientation of the receiver. Figure 8.2 sbows this device in use for one of its common
purposes: digitizing a 30 object.

The DataGiove records band position and orientation as V.'CII as finger movements. As
shown in Fig. 8.3, it is a glove covered with small , lightweight sensors. Each sensor is a
short length of fiberoptic cable, with a light-emitting diode (LED) at one end and a
phototransistor at the other end. The surface of the cable is roughened in the area where it is
to be sensitive to bending. When the cable is flexed , some of the LED's light is lost , so less
light is received by the phototransistor. In addition, a Polhemus position and orientation
sensor records hand movements. Wearing the DataGiove, a user can grasp objects, move
and rotate them. and then release them, thus providing very natural interaction in 30
[ZfMM87). Color Plate 1.15 illustrates this concept.

0391

356 Input Devices, Techniques, and Interaction Tasks

(a) (b)

Fig. 8 .2 (a) A wireframe display of \he result. (b) The Polhemus 30 position sensor
being used to digitize a 30 object. (3Space digitizer counesy of Polhemus. Inc .•
Colchester, VT.)

Fig. 8 .3 The VPL DataGiove. showing the fiberoptic calbes that are used to sense
finger movements. and the Polhemus position and orientation sensor. (From J . Foley.
Interfaces for Advanced Computing, Copyright @ 1987 by SCIENTIFIC AMERICAN, Inc.
All rights reserved.)

0392

8.1 Interaction Hardware 357

Considerable effort has been directed toward creating what are often called artificial
realites or virtual realities; these are completely computer-generated environments with
realistic appearaoce, behavior, and interaction techniques [FOLE87]. In one version, the
user wears a head-mounted stereo display to show proper left· and right-eye views, a
Polhemus sensor on the head allows changes in head position a.od orientation to cause
changes to the stereo display, a DataGiove permits 3D interaction, and a microphone is
used for issuing voice commands. Color Plate 1.16 shows this combination of equipment.

Several other technologies can be used to record 3D positions. The sonic-tablet
technology discussed in Section 4.6.1 can be extended to 3D to create a sonic pen. In one
approach, three orthogonal strip microphones are used. The hand-held pen sparks 20 to 40
times per second, and the time for the sound to arrive at each of the three microphones
determines the radius of the three cylinders on which the pen is located. The location is thus
computed as the intersection of three cylinders. A simi.lar approach uses three or four
standard microphones; here, the pen location is computed as the intersection of spheres
with centers at the microphones and radii determined by the time the sound takes to arrive
at each microphone.

All these systems work in relatively small volurnes-8 to 27 cubic feet. Optical sensors
can give even greater freedom of movement [BURT74; FUCH77a]. LEOs are mounted on
the user (either at a single point, such as the fingertip, or all over the body, to measure body
movements). Light sensors are mounted high in the corners of a small, sernidarkened room
in which the user works, and each LED is intensified in turn. The sensors can deterntine the
plane in which the LED lies, and the location of the LED is thus at the intersection of three
planes. (A fourth sensor is normally used, in case one of the sensors cannot see the LEO.)
Small reflectors on the fingertips and other points of interest can replace the LEOs; sensors
pick up reflected light rather than the LED's emitted light.

Krueger [KRUE83] has developed a sensor for recording hand and finger movements in
20. A television camera records hand movements; image-processing techniques of
contrast-enhancement and edge detection are used to find the outline of the hand and
fingers. Different finger positions can be interpreted as commands, and the user can grasp
and manipulate objects, as in Color Plate 1.17. This technique could be extended to 3D
through use of multiple cameras.

8 .1. 7 Device-Level Human Factors

Not all interaction devices of the same type are equiva.lent from a human-factors point of
view (see [BUXT86) for an elaboration of this theme). For instance, mice differ in
important ways. First, the physical shapes are different , ranging from a hemisphere to an
elongated, low-profi le rectangle. Buttons are positioned differently. Buuons on the side or
front of a mouse may cause the mouse to move a bit when the buttons are pressed; buuons
on the top of a mouse do not have this elfect. The mouse is moved through small distances
by wrist and finger movements, with the fingers grasping the mouse toward its front. Ye.tthe
part of the mouse whose position is sensed is often toward the rear, where fine control is
least possible. In fact, a small leftward movement of the mouse under the fingertips can
include a bit of rotation, so that the rear of the mouse, where the position sensors are,
actually moves a bit to the right!

0393

358 Input Devices. Techniques. and Interact ion Tasks

There is great variation among keyboards in design parameters, such as k~p sha~.
distance between keys, pressure needed to press a key, travel distance for key depression,
key bounce, auditory feedback, the feeling of contact when the key is fully depressed, and
the placement and size of important keys such as "return" or "enter." Improper choice of
parameters can decrease productivity and increase error rates. Making the' 'return" key too
small invites errors, as does placing a hardware "reset" key close to other keys. These and
other design parameters are discussed in [KLEM71; GREE87], and have been the 6Ubject
of recent international standardization efforts.

The tip of a short joystick shaft moves through a short distance, forcing use of a small
C/0 ratio; if we try to compensate by using a longer joyslick shaft, the user cannot rest the
heel of her hand on the work surface and thus does not have a steady plalforrn from which to
make fine adjustments. Accuracy and speed therefore suffer.

The implication of these device differences is that it is not enough for a user interface
designer to specify a particular device class; specific device characteristics must be defined.
Unfortunately, not every user interface designer has the luxury of selecting devices; often.
the choice has already been made. Then the designer can only hope that the devices are well
designed, and attempt to compensate in software for any hardware deficiencies.

8.2 BASIC INTERACTION TASKS

With a basic interaction task, the user of an interactive system enters a unit of information
that is meaningful in the context of the application. How large or small is such a unit? Por
instance, does moving a positioning device a small distance enter a unit of information?
Yes , if the new position is put to some application purpose, sucb as repositioning an object
or specifying the endpoint of a line. No, if the repositioning is just one of a sequence of
repositionings as the user moves the cursor to place it on top of a menu item: here, it is the
menu choice that is the unit of information.

Basic interaction tasks (BITs) are indivisible; that is, if they were decomposed into
smaller units of information, the smaller units would not in themselves be meaningful to the
application. BITs are discussed in this section. Ln the next section, we treat composite
interaction tasks (CITs), which are aggregates of the basic inieraction tasks described here.
If one thinks of BITs as atoms, then CITs are molecules.

A complete set of BITs for interactive graphics is positioning, selecting, entering text,
and entering numeric quantities. Each BIT is described in this section, and some of the
many interaction techniques for e:~ch are discussed. However, there are far too many
interaction techniques for us to give an exhaustive list, and we cannot anticipate the
development of new techniques. Where possible, the pros and cons of each technique are
discussed; remember that a specific inter'.tction technique may be good in some situations
and poor in others.

8.2 .1 The Position Interaction Task

The positioning task im'Oives specifying an (x, y) or (x, y, z) position to the application
program. The customary interaction techniques for carrying out this task in\'Oive either
moving a screen cursor to the desired location and then pushing a bunon, or typing the

0394

8.2 Basic Interaction Tasks 369

desired position's coordinates on either a real or a simulated keyboard. The positioning
device can be direct or indirect, continuous or discrete, absolute or relative. ln addition,
cursor-ITIO'iement commands can be typed explicitly on a keyboard, as Up, Left, and so on,
or the same commands can be spoken to a voice-recognition unit. Furthennore, techniques
can be used together-a mouse controlling a cursor can be used for approximate
positioning, and arrow lceys can be used to move the cursor a single screen unit at a time for
precise postioning.

A number of gener.!l issues transcend any one interaction technique. We first discuss
the general issues; we introduce specific positioning techniques as illustrations.

Coordinate systems. An important issue in positioning is the coordinate system in
which feedback is provided. lf a locator device is moved to the right ro drag an object, in
which direction should the object move? There are at least three possibilities: the object
could move along the increasing x direction in the screen-coordinate system, along the
increasing x direction in world coordinates. or along the increasing x direction in the
object's own coordinate system.

The first alternative, increasing screen-coordinate x direction, is the correct choice. For
the latter two options, consider that the increasing x direction need not in general be along
the screen coordinat.es' X axis. For instance, if the viewing tra'\Sformation includes a 180°
rotation, then the world coordinates' x axis goes in the opposite direction to the screen
coordinates ' x axis, so that the right-going movement of the locator would cause a left-going
movement of the object. Try positioning with this type of feedback by turning your mouse
l&o•t Such a system would be a gross violation of the human-factors principle of
stimulus-response compatibility (S-R compatibility), which states that system responses to
user actions must be in the same direction or same orientation, and that the magnitude of
the responses should be proportional to the actions. Similar problems can occur if a data
tablet is rotated with respect to the screen.

Resolution. The resolution required in a positioning task may vary from one part in a few
hundred to one part in millions. Clearly, keyboard type in of an (x, y) pair can provide
unlimited resolution: The typed digit strings can be as long as necessary. What resolution
can cursor-movement techniques achieve? The resolution of tablets, mice, and so on is
typically as least as great as the 500 to 2000 resolvable units of the display device. By using
the window-to-viewport transformation to zoom in on part of the world, it is possible to
arrange for one unit of screen resolution to correspond to an arbitrarily small unit of
world-coordinate resolution.

Touch panels present other interesting resolution issues. Some panels are accurate to
I 000 units. But the user's finger is about t-inch wide, so how can this accuracy be achieved?
Using the first position the finger touches as the final position does not work. The user must
be able to drag a cursor around on the screen by moving or rolling his finger while it is in
contact with the touch panel. Because the finger obscures the exact position being indicated,
the cursor arms can be made longer than normal, or the cursor can be offset from the actual
point of contact. In an experiment, dragging an offset cursor was found to be more accurate,
albeit slower, than was using the first point contacted [POTT88]. In general, the touch panel
is not recommended for frequent high-resolution positioning taSks.

0395

360 Input Devices, Techniques. and Interaction Tasks

Grids. An important visual aid in many positioning tasks is a grid superimposed (perhaps
at low intensity) on the work area, to help in aligning positions or objects. It can also be
useful to force endpoints of primitives to fall on the grid, as though each grid point were
surrounded by a gravity field. Gridding helps users to generate drawings with a neat
Dppearance. To enforce gridding, the application program simply rounds locator coordi­
nates to the nearest grid point (in some cases. only if the point is already close to a grid
point). Gridding is usually applied in world coordinates. Although grids often are regular
and span the entire display. irregular grids, different grids in different areas, as well as
rotated grids. are all useful in creating figures and illustrations [BIER86a; FEIN82a].

Feedback. There are two types of positioning tasks, spatial and linguistic. In a spatial
positioning task , the user knows where the intended position is, in spatial relation to nearby
elements , as in drawing a Line between two rectangles or centering an object between two

others. In a linguistic positioning task, the user knows the numeric values of the (x, y)
coordinates of the position. In the former case, the user wants feedback showing the actual
position on the screen; in the latter case, the coordinates of the position are needed. Lf the
wrong form of feedback is provided, the user must mentally convert from one form to the
other. Both forms of feedback can be provided by displaying both the cursor and its numeric
coordinates, as in Fig 8.4.

Direction preference. Some positioning devices impede movement in arbitrary direc­
tions; for example, certain joysticks and joyswitches give more resistance to movements off
the principal axes than they do to those on the axes. This is useful only if the positioning
task itself is generally constrained to horizontal and vertical movements.

Lea.rning time. Learning the eye-hand coordination for indirect methods is essentially
the same process as learning to steer a car. Learning time is a common concern buttums
out to be a minor issue. Card and colleagues (CARD78] studied the mouse and joystick.
They found that , although practice improved both error rates and speed, even the novices'
performance was quite good. For instance, selection time with a mouse (move cursor to
target, press button) decreased with extensive practice from 2.2 to I. 7 seconds. It is true,
however, that some users find the indirect coordination very difficult, until they are
explicitly taught.

One specific type of postioning task is continuous positioning, in which a sequence of
positions is used to define a curve. The path taken by the locator is approximated by a
connected series of very short lines, as shown in Fig. 8.5. So that the appearance of

T
1.00

'--------+1
t--1• --1.7S---.j•l

Fig. 8 .4 Numeric feedback regarding size of an object being constructed. The height
and width are changed as the cursor (+) is moved, so the user can adjust the object to
the desired size.

0396

8.2

+

Depress button;
drawing begins
at cursor position

Basic Interaction Tasks 361

Curve drawn
following cursor
motion

Release button;
drawing ends,
curve frozen

Fig. 8 .5 Continuous sketching.

Cursor no longer
affects curve

smoothness is maintained, more lines may be used where the radius of curvature is smal I, or
individual dots may be displayed on the cursor's path, or a higher-order curve can be fitted
through the points (see Chapter II).

Precise continuous positioning is easier with a stylus than with a mouse, because the
stylus can be controlled precisely with finger muscles, whereas the mouse is controlled
primarily with wrist muscles. Digitizing of drawings is difficult with a mouse for the same
reason; in addition, the mouse lacks both an absolute frame of reference and a cross-hair.
On the other band, a mouse requires only a small table area and is less expensive than a
tablet.

8.2.2 The Select Interaction Task- Variable-Sized Set of Choices

The selection task is that of choosing an element from a choice set. Typical choice sets are
commands, attribute values, object classes, and object instances. For example, the
line-style menu in a typical paint program is a set of attribute values, and the object-type
(line, circle, rectangle , text, etc.) menu in such programs is a set of object classes. Some
interaction techniques can be used to select from any of these four types of choice sets;
others are less general. For example, pointing at a visual represemation of a set element can
serve to select it, no matter what the set type. On the other hand, although function keys
often "''Ork quite well for selecting from a command, object class, or attribute set, it is
difficult to assign a separdte function key to each object instance in a drawing, since the size
of the choice set is variable, often is large (larger than the number of available function
keys), and changes quite rapid ly as the user creates and deletes objects.

We use the terms (relarively) fixed-sized choice set and varying-sized choice set. The first
term characterizes command, attribute, and object-class choice sets; the second, object­
instance choice sets. The "relatively" modifier recognizes that any of these sets can change
as new commands, attributes, or object classes (such as symbols in a drafting system) are
defined. But the set size does not change frequently, and usually does not change much.
Varying-sized choice sets, on the other hand, can become quite large, and can change
frequently.

ln this section, we d.iscuss techniques that are particularly well suited to potentially
large varying-sized choice sets; these include naming and pointing. ln the following section,
we discuss selection techniques particularly well suited to (relatively) fixed-sized choice
sets. These sets tend to be small. except for the large (but relatively fixed-sized) command

0397

362 Input Devices. Techniques, and Interaction Tasks

sets found in complex applications. The techniques discussed include typing or speaking
the name, abbreviation, or other code that represents the set element; pressing a function
key associated with the set element (this can be seen as identical to typing a single character
on the keyboard); pointing at a visual representation (textual or graphical) of the set element
in a menu; cycling through the set until the desired element is displayed; and making a
distinctive motion with a continuous positioning device.

Selecting objects by naming. The user can type the choice's name. The idea is simple,
but what if the user does not know the object's name, as could easily happen if hundreds of
objects are being displayed, or if the user has no reason to know names? Nevertheless, this
technique is useful in several situations. First, if the user is likely to know the names of
various objects, as a fleet commander would know the names of the fleet's ships, then
referring to them by name is reasonable, and can be faster than pointing, especially if the
user might need to scroll through the display to bring the desired object into view. Second,
if the display is so cluttered that picking by pointing is difficult and if zooming is not
feasible (perhaps because the graphics hardware does not support zooming and software
zoom is too slow), then naming may be a choice of last resort. If clutter is a problem, then a
command to turn object names on and off would be useful.

Typing allows us to make multiple selections through wild-card or don't-care
characters, if the choice set elements are named in a meaningful way. Selection by naming
is most appropriate for experienced, regular users, r.1ther than for casual, infrequent users.

If naming by typing is necessary, a useful form of feedback is to display, immediately
after each keystroke, the list (or partial list, if the full list is too long) of names in the
selection set matching the sequence of characters typed so far. This can help the user to
remember just how the name is spelled, if he has recalled the first few characters. As soon
as an unambiguous match has been typed, the correct name can be automatically
highlighted on the list. Alternatively, the name can be automatical ly completed as soon as
an unambiguous match has been typed. This technique, called aurocompletio11, is
sometimes disconcerting to new users, so caution is advisable. A separate strategy for name
typein is spelling correction (sometimes called Do Wharf Mean, or DWIM). If the typed
name does not match one known to the system, other names that are close to the typed
name can be presented to the user as alternatives. Determining closeness can be as simple as
searching for single-character errors, or can include multiple-character and missing­
character errors.

With a voice recognizer, the user can speak, rather than type, a name, abbreviation, or
code. Voice input is a simple way to distinguish commands from data: Commands are
entered by voice, the data are entered by keyboard or other means. In a keyboard
environment, this eliminates the need for special characters or modes to distinguish data
and commands.

Selecti ng objects by pointing. Any of the pointing techniques mentioned in the
introduction to Section 8.2 can be used to select an object, by lirst pointing and then
indicating (typically via a button-push) that the desired object is being pointed at. But what
if the object has multiple leve.ls of hierarchy, as did the robot of Chapter 7? If the cursor is
over the robot's hand, it is not clear whether the user is point ing at the hand, the arm, or the
entire robot. Commands like Select_robot and Select_arm can be used to specify the level of
hierarchy. On the other hand, if the level at which the user works changes infrequently, the

0398

8.2 Basic Interaction Tasks 363

user will be able to work faster with a separate command, such as SeLselectionJevel,
used to change the level of hierarchy.

A different approach is needed if the number of hierarchical levels is unknown to the
system designer and is potentially large (as in a drafting system, where symbols are made up
of graphics primitives and other symbols). At least two user commands are required:
Up.JJierarchy and Down.JJierarchy. When the user selects something, the system highlights
the lowest-level object seen. If this is what he desired, the user can proceed. If not, the user
issues the first command: Up_hierarchy. The entire first-level object of which the detected
object is a part is highlighted. If this is not what the user wants, he travels up again and still
more of the picture is highlighted. If he travels too far up the hierarchy, he reverses direc­
tion with the Down_bierarchy command. In addition, a Return_toJowesUevel command
can be useful in deep hierarchies, as can a hierarchy diagram in another window, showing
where in the hierarchy the current selection is located. The state diagram of Fig. 8.6

Select
object

Any other
command

Press button

Release button
(cursor not near any object)

Done ~------

Any other ---­
command

Down_ hierarchy

Done •----

Any other •---­
command

Move

Release
button
(cursor
near an
object)

Up_hierarchy

Up_hierarchy

Fig. 8.6 State diagram for an object-selection technique for an arbitrary number of
hierarchy levels. Up and Down are commands for moving up and down the hierarchy. ln
the state ''Leaf object selected:· the Down_hierarchy command is not available. The
user selects an object by pointing at it w ith a cursor, and pressing and then releasing a
button.

0399

364 Input Devices. Techniques. and Interaction Tasks

shows one approach to hierarchical selection. Allematively , a single command, say
Move_up_hierarchy, can skip back to the originally selected leaf node after the root node is
reached.

Some text editors use a character-\\Urd-sentence-paragraph hierarchy. In the Xerox
Star text editor, for instance, the user selects a character by positioning the screen cursor on
the character and clicking the Select button on the mouse. To choose the \\Urd rather than
the character, the user cl icks twice in rapid succession. Further moves up the hierarchy are
accomplished by additional rapid clicks.

8 .2.3 The Select Interaction Task- Relatively Fixed-Sized
Choice Set

Menu selection is one of the richest techniques for selecting from a relatively fixed-sized
choice set. Here we discuss several key factors in menu design.

Menu order. Menu elements can be organized in many different orders, including
alphabetical, logically grouped by functional purpose, most frequently used first, most
important first, largest first, or most recently created/modified first. These orders can be
combined in various ways. A functionally grouped menu may be ordered alphabetically
within group, and the functional groups themselves ordered by frequency of use. Figure 8. 7
illustrates several such possible organizations. Consistency of organization from one menu
to another is useful , so a common strategy across all menus of an application is important.
Several researchers have found functional order to be the most helpful , and many menu
structures reftect this result.

S ingle-level versus hierarchical design. One of the most fundamental menu design
decisions arises if the choice set is too large to display all at once. Such a menu can be
subdivided into a logically structured ltierarchy or presented as a linear sequence of choices

bold
center
cancel
delete
lont
Insert
Italic
justify
margin
repeat
replace
undo
upper

(a)

bold
lont
italic
upper

cancel
repeat
undo

center
justify
margin

delete
insert
replace

(b)

cancel
repeat
undo

delete
insert
replace

bold
font
nalic
upper

center
justify
margin

(c)

Fig. 8 . 7 Three menu organizations. (a) Menu using an alphabetical sequence. (b) Menu
using functional grouping, with alphabetical within-group order as well as alphabetical­
between-group order. (c) Menu with commands common to several different applica­
tion programs placed at the top for consistency with the other application's menus;
these commands have heavier borders. Menu items are some of those used in Card's
menu-order experiment [CARD82].

0400

8.2

shift - i
to move
selection up
using keyboard

shift - J.
to move selection
down using
keyboard

font
get
Insert

morg1n
print
put
repeot

Basic Interaction Task.s

T to scroll window
up using keyboard

J. to scroll window
down using keyboard

365

Fig. 8 .8 A menu within a scrolling window. The user controls scrolling by selecting the
up and down arrows or by dragging the square in the scroll bar.

to be paged or scrolled through. A scroll bar of the type used in many window managers
allows all the relevant scrolling and paging commands to be presented in a concise way. A
'fast keyboard-oriented alternative to pointing at the scrolling commands can also be
provided; for instance, the arrow keys can be used to scroll the window, and the shift k.ey
can be combined with the arrow keys to move the selection within the visible window, as
shown in Fig. 8.8. In the limit, the si.ze of the window can be reduced to a single menu
item, yielding a "slot-machine" menu of the type shown in Fig. 8.9.

With a hierarchical menu, the user first selects from the choice set at the top of the
hierarchy, which causes a second choice set to be available. The process is repeated until a
leaf node (i.e., ao element of the choice set itseJO of the hierarchy tree is selected. As with
hierarchical object selection, navigation mechanisms need to be provided so that the user
can go back up the hierarchy if an incorrect subtree was selected. Visual feedback. to give
the user some sense of place within the hierarchy is also needed.

Menu hierarchies can be presented in several ways. Of course, successive levels of the
hierarchy can replace one another on the display as further choices are made, but this does
not give the user much sense of position within the hierarchy. The cascadi11g hierarchy, as
depicted in Fig. 8.10, is more attractive. Enough of each menu must be revealed that the
complete highlighted selection path is visible, and some means must be used to indicate
whether a menu item is a leaf node or is the name of a lower-level menu (in the figure, the
right-pointing arrow fills this role). Another arrangement is to show just the name of each

Current Menu Item g
(Accep t) (Cancer)

Fig. 8 .9 A small menu-selection window . Only one menu item appears at a time. The
scroll arrows are used to change the current menu item, which is selected when the
Accept button is chosen.

0401

366 Input Devices. Techniques. and Interaction Tasks

(a) (b) (C)

Fig. 8 .1 0 A pop-up hierarchical menu. (a) The first menu appears where the cursor is,
in response to a button-down action. The cursor can be moved up and down to select
the desired typeface. (b) The cursor Is then moved to the right to bring up the second
menu. (c) The process is repeated for the third menu.

selection made thus far in traversing down the hierarchy, plus all the selections available at
the current level.

A panel hierarchy is another way to depict a hierarchy, as shown in Fig. 8. 11 ; it takes
up somewhat more room than the cascading hierarchy. lf the hierarchy is not too large, an
explicit tree showing the entire hierarchy can also be displayed.

When we design a hierarchical menu, the issue of depth versus breadth is always
present. Snowberry et al. [SNOW83) found experimentally that selection time and accuracy
improve when broader menus with fewer levels of selection are used. Similar results are
reported by Landauer and Nachbar ILAND85) and by other researehers. However, these

Fig. 8 .11 A hierarchical-selection menu. The leftmost column represents the top level;
the children of the selected item in this column are shown in the next column; and so on.
If there is no selected Item, then the columns to the right are blank. (Courtesy of NeXT.
Inc.@ 1989 NeXT, Inc.)

0402

8 .2 Basic Interaction Tasks 367

results do not necessarily generalize to menu hierarchies that lack a natural , understandable
structure.

Hierarchical menu selection almost demands an accompanying keyboard or function­
key accelerator technique to speed up selection for more experienced (so-called "power')
users. This is easy if each node of the tree has a unique name, so that the user can enter the
name directly, and the menu system provides a backup if the user's memory fails. If the
names are unique only within each level of the hierarchy, the power user must type the
complete path name to the desired leaf node.

Menu placement. Menus can be shown on the display screen or on a second, auxiliary
screen (Fig. 8.12); they can also be printed on a tablet or on function-key labels. Onscreen
menus can be static and permanently visible, or can appear dynamically on request
(tear-off, appearing, pop-up, pull-down, and pull-out menus).

A static menu printed on a tablet, as shown in Color Plate 1.18, can easily be used in
fixed-application systems. Use of a tablet or an auxiliary screen, however, requires that the
user look away from the application display, and hence destroys visual continuity. The
advantages are the saving of display space, which is often at a premium, and the
accommodation of a large set of commands in one menu.

A pop-up menu appears on the screen when a selection is to be made, either in response
to an explicit user action (typically pressing a mouse or tablet puck button) , or
automatically because the next dialogue step requires a menu selection. The menu normally
appears at the cursor location , which is usually the user's center of visual attention, thereby

Fig . 8 .12 A dual-display workstation. The two displays can be used to show the
overview of a drawing on one and detail on the other, or to show the drawing on one
and menus on the other. (Courtesy of lntergraph Corporation, Huntsville, AI.)

0403

368 Input Devices, Techniques, and Interaction Tasks

maintaining visual continuity. An attractive feature in pop-up menus is to highlight initially
the most recently made selection from the choice set if the most recently selected item is
more likely to be selected a second time than is another item, positioning the menu so the
cursor is on that item. Alternatively, if the menu is ordered by frequency of use, the most
frequently used command can be highlighted initially and should also be in the middle (not
at the top) of the menu, to minimize cursor movements in selecting other items.

Pop-up and other appearing menus conserve precious screen space-one of the
user-interface designer's most valuable commodities. Their use is facilitated by a fast
RasterOp instruction , as discussed in Chapters 2 and 19.

Pop-up menus often can be context-sensitive. In several window-manager systems, if
the cursor is in the window banner (the top heading of the window) , commands involving
window manipulation appear in tbe menu; if the cursor is in the window proper, commands
concerning the application itself appear (which commands appear can depend on the type of
object under the cursor); otherwise, commands for creating new windows appear in the
menu. This context-sensitivity may initially be confusing to the novice, but is powerful once
understood.

Unlike pop-up menus, pull-down and pull-out menus are anchored in a menu bar along
an edge of the screen. The Apple Macintosh, Microsoft Windows, and Microsoft
Presentation Manager all use pull-down menus. Macintosh menus , shown in Fig 8.13, also
illustrate accelerator keys and context sensitivity. Pull-out menus , an alternative to
pull-down menus, are shown in Fig. 8.14. Both types of menus have a two-level hierarchy:
The menu bar is the first level, and the pull-down or pull-out menu is the second. Pull-down
and pull-out menus can be activated explicitly or implicitly. Ln explicit activation, a button
depression, once the cursor is in the menu bar, makes the second-level menu appear; the

Cut
Copy
Paste
Ctear

Duplicate
Select All

......

eursoi

··············
• •• ' 0

Release ;
b11ttn.-

Fig. 8 .13 A Macintosh pull-down menu. The last menu item is gray rather than black,
indicating that it is currently not available for selection (the currently selected object, an
arc, does not have corners to be rounded). The Undo command is also gray, because
the previously executed command cannot be undone. Abbreviations are accelerator
keys for power users. (Copyright 1988 Claris Corporation. All rights reserved.)

0404

8.2 Basic Interaction Tasks 369

Fig. 8 .14 A pull-out menu in which the leftmost, permanently displayed element
shows the current selection. The newly selected menu item (reversed background) will
become the current selection. This contrasts with most menu styles, in which the name
of the menu is permanently displayed and the current selection is not shown after the
adapted menu is dismissed. Menu is adapted from Jovanovi6's Process Visualization
System [JOVA86). (Courtesy of Branka Jovanovi6.)

cursor is moved on top of the desired selection and the button is then released. ln implicit
activation, moving the cursor into the heading causes the menu to appear; no button press is
needed. Either selecting an entry or moving the cursor out of the menu area dismisses the
menu. These menus, sometimes cal led " lazy" or "drop-down" menus, may also confuse
new users by their seemingly mysterious appearance.

A full-screen menu can be a good or bad solution, depending on the context within
which it is used. The disadvantage is that the application drawing will be obscured,
removing context that might help the user to make an appropriate choice. Even this concern
can be removed by using a raster display's look-up table to show the menu in a strong.
bright color, over a dimmed application drawing (FEIN82aj.

Visual representation. The basic decision on representation is whether menus use
textual names or iconic or other graphical representations of elements of the choice set. Full
discussion of this topic is deferred to the next chapter; however, note that iconic menus can
be spatially organized in more flexible ways than can texiUal menus , because icons need not
be long and thin like text strings; see Fig. 8.15. Also, inherently graphical concepts
(particularly graphical attributes and geometrical primitives) are easily depicted.

Current selection. If a system has the concept of "currently selected element" of a
choice set, menu selection a.llows this element to be highl.ighted. ln some cases, an initial
default setting is provided by the system and is used unless the user changes it. The
currently selected element can be shown in various ways. The radio-button interaction

0405

370 Input Devices, Techniques, and Interaction Tasks

Select

Text
VerVHorz lire
Diagonal line

Rectangle

Rectangle with rounded corners
Ellipse
Quarter ellipse

Curve
Polygon

Fig. 8 .15 Iconic and textual menus for the same geometric primitives. The iconic menu
takes less space than does the textual menu. (Icons © 1988 Claris Cotporation. All
rights reserved.)

technique, patterned after the tuning buttons on car radios, is one way (Fig. 8.16). Again,
some pop-up menus highlight the most recently selected item and place it under the cursor,
on the assumption that the user is more I ikely to reselect that item than she is to select any
other entry.

Size and shape of menu items. Pointing accuracy an~ speed are affected by the s.ize of
each individual menu item. Larger items are faster to select , as predicted by Fitts' law
[FITI54; CARD83]; on the other hand, smaller items take less space and permit more
menu items to be displayed in a fixed area , but induce more errors during selection. Thus,
there is a eonHict between using small menu items to preserve screen space versus using
larger ones to decrease selection time and to reduce errors.

Pop-up pie menus [CALL88], shown in Fig. 8.17, appear at the cursor. As the user
moves the mouse from the center of the pie toward the desired selection, the target width
becomes larger, decreasing the likelihood of error. Thus, the user has explicit eontrol over
the speed-versus-error rradeoff. In addition, the distance to each menu item is the same.

Pattern recognition. In selection techniques involving pattern recognition, the user
makes sequences of movements with a continuous-positioning device , such as a tablet or

Fig. 8.16 Radio-button technique for selecting from a set of mutually exclusive
alternatives. (Courtesy of NeXT, Inc.© 1989 NeXT. Inc.)

0406

8.2 Basic Interaction Tasks 371

Fig. 8 .17 A four-element pie menu.

mouse. The pattern recognizer automatically compares the sequence with a set of defined
patterns, each of which corresponds to an element of the selection set. Figure 8.18 shows
one set of sketch patterns and their related commands, taken from Wallace's SELMA
queueing analyzer [IRAN? I) . Proofreader's marks indicating delete, capitalize, mo~~e, and
so on are attracti~~e candidates for this approach [WOLF87).

The technique requires no typing skill and preserves tactile continuity. Furthermore, if
lhe command invoi\'CS an object, lhe cursor position can be used for selection. The 1110\'C

command used in many Macintosh applications is a good example: the cursor is positioned
on top of the object to be moved and the mouse buuon is pressed, selecting the object under

I I I I

t4to ' I
I I I

Delete

\
\

~
Create random
branch

Create random
merge

Connect to
input port

Move

-,
\

\

•
Create priorfty
branch

'' .
\
I

I

Create priority
merge

Connect to
output port

Fig. 8 .18 Motions, indicated as dotted lines. that are recognized as commands. From
Wallace's SELMA queuing analyzer (IRAN71J.

0407

372 Input Devices, Techniques, and Interaction Tasks

the cursor (it is displayed in reverse video for feedback). As the user moves the mouse (still
holding down the button), the object moves also. Releasing the mouse button detaches the
object from the mouse. Skilled operators can work very rapidly with this technique,
because hand movements between the work area and a command-entry device are
eliminated. Given a data tablet and stylus, this technique can be used with at least several
dozen patterns, but it is difficult for the user to learn a large number of different patterns.

Rhyne has recently combined a transparent tablet and liquid-crystal display into a
prototype of a portable, lap-top computer (RHYN87]. Patterns are entered on the
transparent tablet , and are recognized and interpreted as commands, numbers, and letters.
The position at which information is entered is also significanl. Figure 8.19 shows the
device in use with a spreadsheet application.

Function keys. Elements of the choice set can be associated with function keys. (We can
think of single-keystroke inputs from a regular keyboard as function keys.) Unfortunately,
there never seem to be enough keys to go around! The keys can be used in a
hierarchical-selection fashion, and their meanings can be altered using chords, say by
depressing the keyboard shift and control keys along with the function key itself. Learning
exotic key combinations, such as ' 'shift-option-control-L," for some commands is not
easy, however, and is left as an exercise for the regular user seeking the productivity gains
that typically result. Putting a "cheat-sheet" template on the keyboard to remind users of

Fig. 8. 19 An IBM experimental display and transparent data tablet. A spreadsheet
application is executing. The user has just circled three numbers, and has indicated that
their sum is to be entered in the cell containing the sigma. A new column heading has
also been printed. The system recognizes the gestures and characters, and enters
appropriate commands to the spreadsheet application. (Courtesy IBM T. J. Watson
Research laboratories.)

0408

8.2 Basic Interact ion Tasks 373

these obscure combinations can speed up the learning process. It is even sometimes
possible to define chords that make some sense, decreasing learning time. For instance,
Microsoft Word on the Macintosh uses "shift-option->" to increase point size and the
symmetrical "shift-option-<" to decrease point size; "shift-option-1" italicizes plain text
and unitalicizes italicized text, whereas "shift-option-U" treats underlined text similarly.

One way to compensate for the lack of multiple buttons on a mouse is to use the
temporal dimension to expand the possible meanings of one button-for instance, by
distinguishing between a single click and two clicks made in rapid succession. If the
meaning of two clicks is logically related to that of one c.lick, this technique can be
especially effective; otherwise, rote memory is needed to remember what one and two
clicks mean. Examples of this technique are common: one click on a file icon selects it; two
clicks opens the file. One click on the erase command enters erase mode; two clicks erase
!be entire screen. This technique can also be applied to each of the buttons on a multibutton
mouse. Chording of mouse buttons or of keyboard keys with mouse buttons can also be
used to provide the logical (but not necessarily human-factors) equivalent of more buttons.
To be most useful, the organizing scheme for the chording patterns must be logical and easy
to remember.

8 .2 .4 The Text Interaction Task

The text-string input task entails entering a character string to which the application does
not ascribe any special meaning. Thus, typing a command name is nor a text-entry task. In
contrast, typing legends for a graph and typing text into a word processor are text input
tasks. Clearly, the most common text-input technique is use of the QWEJrrY keyboard.

Character recognition. The user prints characters with a continuous-positioning device,
usually a tablet stylus, and the computer recognizes them. This is considerably easier than
recognizing scanned-in characters, because the tablet records the sequence, direction, and
sometimes speed and pressure of strokes, and a pattern-recognition algorithm can match
these to stored templates for each character. For instance, the capital letter "A" consists of
three strokes-typically, two downward strokes and one horizontal stroke. A recognizer can
be trained to identify different styles of block printing: the parameters of each chara.cter are
calculated from samples drawn by the user. Character recogniz.ers have been used with
interactive graphics since the early 1960s [BROW64; TETT64]. A simplified adaptation of
Teitelman's recognizer, developed by Ledeen, is described in [NEWM73]; a commercial
system is described in [WARD85; BLES86].

It is difficult to block print more than one or two characters per second (try it!), so
character recognition is not appropriate for massive input of text. We write cursive letters
faster than we print the same characters, but there are no simple recognition algorithms for
cursive letters: the great variability among individuals ' handwrtiting and the difficulty of
segmenting words into individual letters are two of the problems.

Menu selection. A series of letters, syllables, or other basic units is displayed as a menu.
The user then inputs text by choosing letters from the menu with a selection device. This
technique is attractive in several situations. First, if only a short character string is to be
entered and the user's hands are already on a pointing device, then menu selection may be

0409

374 Input Devices. Techniques, and Interaction Tasks

1000
900
800
700
600
500
400

300

200

100
90
80
70

60

50

-- Very best typists

J=-- Typing text

=:::J- TYPing random words

-- Stenotypist

:::::1- TYPing random letters

-- Handwriting text

--- Handprintlng text

-- Hunt-and-peck typing

Fig. 8.20 Data-input speeds. in keystrokes per minute. of various techniques for
entering text and numeric information. (Adapted from [VANC72, p. 335J and (CARD83,
p. 61J.)

faster than moving to the keyboard and back. Second, if the character set is large, this
approach is a reasonable alternative to the keyboard.

Hierarchical menu selection can also be used with large character sets, such as are used
in Chinese and Japanese. One such system uses the graphical features (strong horizontal
line, strong ve.rticalline, etc.) of the symbols for the hierarchy. A more common strategy is
to enter the word in phonetic spelling, whic.h string is then matched in a dictionary. For
example, the Japanese use two alphabets, the katakana and hiragana, to type phonetically
the thousands of kanji characters that their orthography borrows from the Chinese.

Evaluation of text-entry techniques. For massive input of text, the only reasonable
substitute for a skilled typist working with a keyboard is an automatic scanner. Figure 8.20
shows experimentally determined keying rates for a variety of techniques. The hunt-and­
peck typist is slowed by the perceptual task of finding a key and the ensuing motor task of
moving to and slriking it, but the tra.ined typist has only the motor task of striking the key,
preceded sometimes by a slight hand or finger movement to reach it. Speech input, not
shown on the chart, is slow but attractive for applications where the hands must be free for
other purposes, such as handling paperwork.

8 .2 .5 The Quantify Interaction Task

The quantify interaction task in110lves specifying a numeric value between some minimum
and maximum value. Typical interaction techniques are typing the value, setting a dial to
the value, and using an up-<iown counter to select the value. Like the positioning task, this
task may be either linguistic or spatial. When it is linguistic, the user knows the specific
value to be entered; when it is spatial, the user seeks to increase or decrease a value by a

0410

8.2 Basic Interaction Tasks 375

certain amount, with perhaps an approximate idea of the desired end value. In the former
case, the interaction technique clearly must involve numeric feedback of the value being
selected (one way to do this is to have the user type the actual value); in the laner case, it is
more important to give a general impression of the approximate setting of the value. This is
typically accomplished with a spatially oriented feedback technique, such as display of a
dial or gauge on which the current (and perhaps previous) value is shown.

One means of entering values is the potentiometer. The decision of whether to use a
rotary or linear potentiometer should take into account whether the visual feedback of
changing a value is rotary (e.g., a turning clock hand) or linear (e.g., a rising temperature
gauge). The current position of one or a group of slide potentiometers is much more easily
comprehended at a glance than are those of rotary potentiometers, even if the knobs have
pointers; unfortunately, most graphics system manufacturers offer only rotary pOtentiome­
ters. On the other hand, rotary potentiometers are easier to adjust. Availability of both
linear and rotary potentiometers can help users to associate meanings with each device. lt is
important to use directions consistently: clockwise or upward movements normally increase
a value.

With continuous-scale manipulation, the user points at the current-value indicator on a
displayed gauge or scale, presses the selection button, drags the indicator along the scale to
the desired value, and then releases the selection button. A pointer is typically used to
indicate the value selected on the scale, and a numeric echo may be given. Figure 8.21
shows several such dials and their associated feedback. The range or precision of values
entered in this way can be extended by using the positioning device as a relative rather than
absolute device and by using a nonconstant C/D ratio, as discussed in Section 8.1.1. Then it
becomes possible to increase a value by repeating a series of sLroking actions: move to the
right, lift mouse, move to the left, put mouse down, and so on. Thornton 's number wheel
[THOR79] is such a technique.

If the resolution needed is higher than the continuous-scale manipulation technique can
provide, or if screen space is at a premium, an up-down counter arrangement can be used,
as shown in Fig. 8.22.

0%

go•

180'

270'

a·

f
60% 100%

Fig. 8 .21 Several dials that the user can use to input values by dragging the control
pointer. Feedback is given by the pointer and, in two cases, by numeric displays .
(Vertical sliders© Apple Computer. Inc.)

0411

376 Input Devices, Techniques, and Interaction Tasks

Number of copies
+ + +

C?:HIIOJ
I Cancel I (OK

Fig. 8 .22 An up-down counter for specifying a value. The user positions the cursor on
.. +.. or · ·- · · and holds down the selection burton on the pointing device; the
corresponding digit increases or decreases until the button is released.

8 .2 .6 30 Interaction Tasks

1\I.Q of the four interaction tasks described previously for 2D applications become more
complicated in 3D: position and select. In this section, we also introduce an additional 30
interaction task: rotate (in the sense of orienting an object in 3-~'J)ace). The major reason for
the complication is the difficulty of perceiving 3D depth relationships of a cursor or object
relative to other displayed objects. This contrasts starkly with 2D interaction, where the user
can readily perceive that the cursor is above, next to , or on an object. A secondary
complication arises because the commonly available interaction devices , such as mice and
tableiS, are only 20 devices, and we need a way to map rnovemeniS of these 2D devices into
30 .

Display of stereo pairs, corresponding to left- and right-eye views, is helpful for
understanding general depth relationships, but is of limited accuracy as a precise locating
method. Methods for presenting stereo pairs to the eye are discussed in Chapters 14 and 18,
and in [HODG85]. Other ways to show depth relationships are discussed in Chapters
14-16.

The first part of this section deals with techniques for positioning and selecting, which
are closely related. The second part concerns techniques for interactive rotation.

Figure 8.23 shows a common way to position in 3D. The 2D cursor, under control of,
say, a mouse, moves freely among the three views. The user can select any one of the 30
cursor's dashed lines and can drag the line, using a button-down-drag-button-up sequence.
If the button-down event is close to the intersection of two dashed cursor Jines, then both are
selected and are moved with the mouse (gravity , discussed in Section 8.3.2, can make

Depress button while
2D cursor is on
3D dotted cursor

Drag 3D cursor; All
views a~e updated
appropnately

Release button;
2D cursor no longer
controls 3D cursor

Fig. 8 .23 30 positioning technique using three views of the same scene (a house). The
20 cursor(+) is used to select one of the dashed 30 cursor lines.

0412

8 .2

o+
Moving 20 cursor(+)
In direction of
receding z axis moves
30 cursor in z

Basic Interaction Tasks

Moving 20 cursor
horizontally moves
30 cursor on x

377

Fig. 8.24 Movement of the 30 cursor is controlled by the direction in which the 20
cursor is moved.

picking the intersection especially easy). Although this method may appear restrictive in
forcing the user to work in one or two dimensions at a time, it is sometimes advantageous to
decompose the 30 manipulation task into simpler lower-dimensional tasks . Selecting as
well as locating is facilitated with multiple views: Objects that overlap and hence are
difficult to distinguish in one view may not overlap in another view.

Another possibility, developed by Nielson and Olsen [NlEL86) and depicted in Fig.
8.24, requires that all three principal axes project with nonzero length. A 30 cross-hair
cursor, with cross-hairs pard! lei to the principal axes, is controlled by moving the mouse in
the genera.! direction of the projections of the three principal axes. Figure 8.25 shows how
20 locator movements are mapped into 30: there are 20 zones in which mouse movements
affect a specific axis . Of course, 30 movement is restricted to one axis at a time.

Both of these techniques illustrate ways to map 20 locator movements into 30
movements. We can instead use buttons to control which of the 3D coordinates are affected
by the locator's 2 degrees of freedom. For example, the locator might normally control x
and y; but, with the keyboard shift key depressed, it could control x and z instead (this
requires that the keyboard be unencoded, as discused in Chapter 4). Alternatively, three
buttons could be used , to bind the locator selectively to an axis . Instead of mapping from a

y

z

Fig. 8.25 The six regions of mouse movement, which cause the 30 cursor to move
along the principal axes.

0413

378 Input Devices, Techniques, and Interaction Tasks

y

1C

Fig. 8 .26 The displayed local coordinate system of the house, which shows the three
directions in which any translated object will move. To preserve stimulus-response
compatibility, we can use the direction of mouse movements to determine the axes
chosen, as in Fig. 8 .25.

20 device into 30 , we could use a real 30 locator, such as the joysticks and trackballs
discussed in Section 8.1.6

Constrained 30 movement is effective in 30 locating. Gridding and gravity can
sometimes compensate for uncertainties in depth relationships and can aid exact placement.
AOO(her form of constraint is provided by those physical devices that make it easier to move
along principal axes than in other directions. Some trackballs and joysticks have this
property, which can also be simulated with the isometric strain-gauge and spaceball devices
(Section 8.1.6).

Context-specific constraints are often more useful, however, than are these general
constraints. It is possible to let the user specify that movements should be parallel to or on
lines or planes other than the principal axes and planes. For example, with a method
developed by Nielson and Olsen [NIEL86], the local coordinate system of the selected
object defines tbe directions of llloYement as shown in Fig. 8.26. In a more general
technique developed by Bier (BIER86b), the user places a coordinate system, called a
skiu~r. on the surface of an object, again defining the possible directions of movement (Fig.
8.27). Another way to constrain movement to a particular plane is to give the user control
over the view-plane orientation, and to limit translation to be parallel to the view plane.

One method of 30 picking- finding the output primitive that, for an (x, y) position

z

1C

Fig. 8 .27 The displayed coordinate system, placed interactively so that its (K, y) plane
coincides with the plane of the roof, shows the three d irections in which any translated
object will move.

0414

8 .2 Basic Interaction Tas ks 379

y

101 w 1¢1
y

.A. X

Fig . 8 .28 Two slider dials for effecting rotation about the screen x and y axes.

determined by a 20 locator, has the maximum z value-was discussed in Chapter 7.
Another method, which can be used with a 30 locator when wireframe views are shown-is
to find the ouput primitive closest to the locator's (x, y, z) position.

As with locating and selection, the issues in 30 rotation are understanding depth
relationships, mapping 20 interaction devices into 30, and ensuring stimulus-response
compatibility. An easily implemented 30 rotation technique provides slider dials or gauges
that control rotation about three axes. S-R compatibility suggests that the three axes should
normally be in the screen-coordinate system-x to the right, y increasing upward , z out of
(or into) the screen fBRIT78). Of course, the center of rotation either must be explicitly
specified as a separate step, or must be implicit (typically the screen-coordinate origin, the
origin of the object, or the center of the object). Providing rotation about the sceen'sx andy
axes is especially simple, as suggested in Fig. 8.28. The (x, y, z) coordinate system
associated with the sliders is rotated as the sliders are moved to show the effect of the
rotation. A 20 trackball can be used instead of the two sliders .

The two-axis rolation approach can be easily generalized to three axes by adding a dial
for z-axis rotation, as in Fig. 8.29 (a dial is preferable to a slider for S-R compatibility).

y

.A ..

Fig. 8 .29 Two slider dials for effecting rotation aboot the screen x and y axes. and a
dial for rotation about the screen z axis. The coordinate system represents world
coordinates and shows how world coordinates relate to screen coordinates.

0415

380 Input Devices. Techniques. end Interaction Teaks

y

Fig. 8 .30 Three dials to control rotation about three axes. The placement of the dials
on the co be provides strong stimulus-response compatibility.

Even more S-R compatibility comes from the arrangement of dials on the faces of a cube
shown in Fig. 8 .30, which clearly suggests the axes controlled by each dial. Again, a 30
trackball could be used instead of the dials.

Mouse movements can be directly mapped onto object movements, without slider or
dial intennediaries. The user can be presented a metaphor in which the two sliders of Fig.
8 .28 are superimposed on top of the object being rotated , so that horizontal mouse
lllO\'ements are mapped into rotations about the screen-coordinate y axis, and Yertical
mouse movements are mapped into rotations about the screen-coordinate x axis (Fig.
8.31a). Diagonal motions have no effect. The slider dials are not really displayed; the user
learns to imagine that they are present. Alternatively, the user can be told that an imaginary
20 trackball is superimposed on top of the object being rotated, so that the vertical,
horizontal, or diagonal motions one would make with the trackball can be made instead
with the mouse (Fig. 8.31 b). Either of these methods provides two-axis rotation in 30.

For three-axis rotations, three methods that closely resemble real-world concepts are
panicolarly interesting. ln the OYerlapping-sliders method (CHEN88), the user is shown
two linear sliders overlapping a rotary slider, as in Fig. 8 .3l(c). Motions in the linear
sliders control rotation about the x andy axes, while a rotary motion around the intersection
of the two lineaT sliders controls rotation about the z axis. In a technique developed by
Evans, Tanner, and We in [EVANS I] , three successive mouse positions are compared to
determine whether the mouse motion is linear or rotary. Linear horizontal or vertical
movements control rotation about the x and y axes, a linear diagonal movement rotates

(a) Two sliders (b) 20 trackball (c) Two sliders, rotary dial (d) 30 trackball

Fig. 8 .31 Four methods of 30 rotation. In each case, the user makes movements with
a 20 device corresponding to those that would be made if the actual devices were
superimposed on the object. A 30 trackball can be twisted to give z-axis rotation.
whereas a 20 trackball provides only two-axis rotation.

0416

8.3 Composite Interaction Tasks 381

about both the x andy axes, and rotary movements control rotation about the z axis . While
this is a relative technique and does not require that the movements be made directly ~-er
the object being rotated or in a particular area. the user can be instructed to use these
motions to manipulate a 3D trackball superimposed on the object (Fig. 8.3 1d). In the
virtual-sphere method, also developed by Chen [CHEN881, the user actually manipulates
this superimposed 3D trackball in an absolute fashion as though it were real. With a mouse
button down, mouse movements rotate the trackball exactly as your finger ~uld move n
real trackball . An experiment (CHEN88] comparing these latter two approaches showed no
performance differences, but did yield a user preference for Chen's method.

It is often necessary to combine 3D interaction tasks. Thus, rotation requires a select
task for the object to be rotated , a position task for the center of rotation, and an orient task
for the actual rotation. Specifying a 3D view can be thought of as a combined positioning
(where the eye is), orientation (how the eye is oriented), and scaling (field of view, or how
much of the projection plane is mapped into the viewport) task. We can create such u tusk
by combining some of the techniques we have discussed, or by designing a f/y~1round
capability in wbicb the viewer flies an imaginary airplane around a 3D ~rid. The controls
are typically pitch, roll, and yaw, plus velocity to speed up or slow down. With the
fly-around concept, the user needs an overview. such as a 2D plan view, indicating the
imaginary ai rplane's ground position and heading.

8.3 COMPOSITE INTERACTION TASKS

Composite interaction tasks (C!Ts) are built on top of the basic interaction tasks (BITs)
described in the previous section, and are actually combinations of BITs integrated into a
unit. There are three major forms o f CITs: dialogue boxes, used to specify multiple units of
information; construction, used to create objects requiring two or more positions; and
manipulation, used to reshape existing geometric objects.

8.3.1 Dialogue Boxes

We often need to select multiple elements of a selection set. For instance, text attributes ,
such as italic, bold, underline, hollow, and all caps, are not mutually exclusive, and the user
may want to select two or more at once. ln addition, there may be several sets of relevant
attributes, such as typeface and font. Some of the menu approaches useful in selecting a
single element of a selection set are not satisfactory for multiple selections. For example,
pull -<lown and pop-up menus normally disappear when a selection is made, necessitating a
second activation to make a second selection.

This problem can be overcome with dialogue boxes, a fonn of menu that remains
visible until explicitly dismissed by the user. In addition, dialogue boxes can permit
selection from more than one selection set, and can also include areas for entering text and
values. Selections made in a dialogue box can be corrected immediately. When all the
information has been entered into the dialogue box, the box is typically dismissed explicitly
with a command. Attributes and ot.her values specified in a dialogue box can be applied
immediately, allowing the user to preview the effect of a font or line-style change. An
"apply" command is sometimes included in the box to cause the new values to be used

0417

382 Input Devices, Techniques, and Interaction Tasks

Charact er Formats I OK t
.-Style I Apply I

i81 8al d I Cancel I 1811111/ir.
B Underllne Position

lllaJQ!Jl[j)(Jj @ Normal
0~ 0 Superscript
0 SMIII.l CliPS 0 Subscript

Fig. 8 .32 A text-attribute dialogue box with several different attributes selected. The
bold border of the "OK" button shows that the keyboard return key can be used as an
alternative. The "Apply" button is used to apply new attibute values. so the user can
observe their effects. "Cancel" is used to revert any changes to their previous values.
Note that text attributes are described both by name and, graphically. by example.
(Screen shots © 1983-1 989 Microsoft Corporation. Reprinted with permission from
Microsoft Corporation.)

without dismissing the box. More frequently, however, the dialogue box must be dismissed
to apply the new settings. Figt.re 8.32 shows a dialogue boll with several selected items
highlighted.

8 .3 .2 Constructio~ Techniques

One way to construe• a line is to have the user indicate one endpoint and then the other;
once the second emJpoint is specified, a line is drawn between the two points. With this
technique, however, the user has no easy way to try out different line positions before
settling· on a final one, because the line is not actually drawn until the second endpoint is
given. With this style of interaction, the user must in110ke a command each time an endpoint
is to be repositioned.

A far superior approach is rubberbanding, discussed in Chapter 2. When the user
pushes a button (often the tipswitch on a tablet stylus, or a mouse button), the starting
position of the line is established by the cursor (usually but not necessarily controlled by a
continuous-positioning device). As the cursor moves , so does the endpoint of the line; when
the button is released, the endpoint is frozen. Figure 8.33 show a rubberband line-drawing
sequence. The user-action sequence is shown in the state diagram in Fig. 8.34. Notice that
the state " rubberband" is active only while a button is held down. It is in this state that
cursor movements cause the current line to change. See [BUXT85] for an informative
discussion of the importance of matching the state transitions in an interaction technjque
with the transitions afforded by the device used with the technique.

An entire genre of interaction techniques is derived from rubberband line drawing. The
rubber-recta11gle technique starts by anchoring one corner of a rectangle with a button-

0418

8.3

+

Depfes.s button: rubber·
banding ~ins at
cursor position

Composite Interaction Tasks 383

Une is drawn lrom
starting position to
new cursor posltion

Release bullon:
rubbert>anding ends.
line Is frozen

Fig. 8 .33 Rubberband line drawing.

+

Cursor no longer
controls line

down action. after which the opposite corner is dynamically linked to the cursor until a
button-up action occurs. The stale diagram for this technique dilfers from that for
rubberband line drawing only in the dynamic feedback of a rectangle rather than a line. The
rubber-circle technique creates a circle that is centered at the initial cursor position and that
passes through the current cursor position. or that is within the square defined by opposite
comers. The Tllbber-ellipse technique creates an axis-aligned ellipse inside the rectangle
defined by the initial and current cursor positions. A circle results if the rectangle is
square-easi ly done with gridding. All these techniques have in common the user-action
sequence of button-down, move locator and see feedback. buuon-up.

One interaction technique to create a polyline (a sequence of connected lines) is an
extension of rubberbanding. After entering the polyline-creation command, the user clicks
on a button to anchor each rubberbanded vertex. After all the vertices have been indicated,
the user indicates completion, typically by a double click on a button without moving the
locator, by a click on a second mouse button, or by entry of a new command. If the new
command is from a menu, the last line segment of the polyline follows the cursor to the
menu, and then disappears. Figure 8.35 depicts a typical sequence of events in creating a
polyline; Fig. 8.36 is the accompanying state diagram.

Button-down
Beg.ln rubberbandlng

Button·up
Stop rubberbanding

Move cursor

Reposition end
ottine

Fig. 8 .34 State diagram for rubberband line drawing.

0419

384 Input Devices, Techniques, and Interaction Tasks

+

Click button: rubber­
banding ~ins at
cursor position

Another click marlls
the next vertex on the
polyline

Line is drawn from
starting position to
new cursor position;
button Is clicked to
marll vertex of polyline

To complete polyline,
user clicks second
mousebunon

Polyline after additional
cursor movements

Cursor no longer
controls line

Fig. 8 .35 Rubberband polyline sketching.

A polygon can be drawn similarly _ In some cases, the user signals to the system that the
polygon is complete by returning the cursor to the starting vertex of the polygon. In other
cases , the user explicitly signals completion using a function key , and the system
automatically closes the polygon. Figure 8.37 shows one way to create polygons.

Constraims of various types can be applied to the cursor positions io any of these
techniques. For example, Fig. 8.38 shows a sequence of lines drawn using the same cursor

Select Polyline command
Display "done• button

Select Done command
Remove "done" button, remove
line segment from last vertex

Move cursor

Reposition end
of line

Click button
look vertex in place

Fig. 8.36 State diagram for rubberband creation of a polyline.

0420

8.3

+

Click button; rubber­
banding ~ins at
CUI$()(positiOn

First edge of polygon
is drawn from starting
position to new cursor
position. until another
click on button

Composite Interaction Tasks 385

/V
Second edge drawn
until another click on
button

Polygon is terminated
when cursor is dose
to starting j)!>silion and
button is cicked

Fig. 8 .37 Rubberband drawing of a polygon.

positions as in Fig. 8.33, but with a horizontal constraint in eftec1. A vertical line, or a line
at some other orientation, can also be drawn in this manner. Polylines made entirely of
horizontal and vertical lines. as in printed circuit boards. VLSI chips, and some city maps,
are readily created; right angles are introduced either in response to a user command, or
automatically as the cursor changes direction. The idea can be generalized to any shape,
such as a circle, ellipse, or any other curve; tbe curve is initialized at some position, then
cursor movements control how much of the curve is displayed. 1n general, the cursor
position is used as input to a constraint function whose output is then used to display the
appropriate portion of the objcc1.

Gravity is yet another form of constraint. When constructing drawings, we frequently
want a new line to begin at the endpoint of, or on, an existing line. Matching an endpoint is
easy if it was created using gridding, but otherwise is difficult without a potentially
time-consuming zoom. The difficulty is a\'Oided by programming an imaginary gravity field
around each existing line, so that the cursor is attracted to the line as soon as it enters the
gravi ty field. Figure 8.39 shows a line with a gravity field that is larger at the endpoints, so
that matching endpoints is especially easy.

+

Depress buuon;
rubberbanding
begins at cursor
position

+

Line is drawn from
starting position to
x coordinate of new
cursor position

+

Release buUon;
rubberbanding ends,
line frozen

+

Cursor no longer
controls fine

Fig. 8.38 Horizontally constrained rubberband line drawing.

0421

386 Input Devices, Techniques, and Interaction Tasks

+ +
¥

Fig. 8 .39 Line surrounded by a gravity field, to aid picking points on the line: If the
cursor falls within the field, it is snapped to the line.

8 .3.3 Dynamic Manipulation

It is not sullicient to create lines, rectangles, and so on. In many situations, the user must be
able to modify previously created geometric entities.

Dragging moves a selected symbol from one position to another under control of a
cursor, as in Fig. 8.40. A button-down action typically starts the dragging (in some cases,
the button-down is also used to select the symbol under the cursor to be dragged); then, a
button-up freezes tbe symbol in place. so that funher mo\'ements of the cursor have no
effect on it. This button-down-drag-button-up sequence i often called c/ick-and-drtrg
interaction.

Dynamic rotation of an object can be done in a similar wny, except that we must be able
to identify the point or axis about which the rotation is to occur. A convenient strategy is to
have the system show the current center of rotation and to allow the user to modify it as
desired. Figure 8.41 shows one such scenario. Note that the same approach can be used for
scaling, with the center of scaling, rather than that of rotation, being specified by the user.

The cooccp1 of hnndles is useful to provide scaling of an object, without making the
user think explicitly about where the center of scaling is . Figure 8.42 shows an object with
eight handles, which are displayed as small squares at the comers and on the sides of the
imaginary box surrounding the object. The user selects one of the handles and drags it to
scale the object. If the handle is on a corner, then the corner diagonally opposite is locked in
place. If the handle is in the middle of a side, then the opposite side is locked in place.

Position curS()(over
symbol to be moved,
depress button

Symbol is highlighted
to 8CI<nOW1edge
selec1lon

Several intermediate
corsor movements

Release button;
symbol locks in place

Fig. 8.40 Dragging a symbol into a new position.

0422

8.3

Highlighted objec1 has
been selected wi1h
cursor

Rec1angte is now
rotated by pointing at
rec1angle, depressing
button, and moving
left-right with
button down

Composite Interaction Tasks

Rotate command has
been Invoked, causing
center ot rotation
icon to appear at
default center position
unless previously set

Button is released;
cursor no longer controls
rotation; icon is gone;
rec1angle remains selec1ed
tor other possible
operations

Fig. 8 .41 Dynamic rotation.

I l

Center-ol·rotatlon
icon is dragged into
a new position

387

When this technique is integrated into a complete user interface, the handles appear only
when the object is selected to be opemted on. Handles are also a unique visual code to
indicate that an object is selected, since other visual codings (e.g., line thickness, dashed
lines, or changed intensity) might also be used as part of the drawing itself. (Blinking is
another unique visual code, but tends to be distracting and annoying.)

CJ
Selecting rec1angle
with cursor causes
handles to appear

D
Button actions on this
handle move only
right side ot rec1angle

q
Button actions on thls
handle move only
corner ot rec1angle

Fig. 8 .42 Handles used to reshape objects.

0423

388 Input Devices, Techniques. and Interaction Tasks

Polygon has been
selected for vertex
modification, handle
appears on each vertex

Depress-move-release
over vertex causes
vertex to move

Polygon no longer
selected; handles
have been removed

Fig. 8.43 Handles used to reposition the vertices of a polygon.

Draggmg, rotating, and scaling affect an entire object. What if we wish to be able to
move individual points. such as the venices of a polygon? Vertices could be named, and the
user could enter the name of a vertex and its new (x, y) coordinates. But the same
point-and-drag strategy used to move an entire object is more attractive. In this case, the
user points to a vertex, selects it, and drags it to a new position. The vertices adjacent to tbe
one selected remain connected via rubberband lines. To facilitate selecting a vertex, we can
establish a gravity field to snap tbe cursor onto a nearby vertex, we can make a vertex blink
whenever the cursor is near, or we can superimpose handles over each vertex, as in F~g.

8.43. Similarly, the user can move an edge of a polygon by selecting it and dragging, with
the edge maintaining its original slope. For smooth curves and surfaces, handles can also be
provided to allow the user to manipulate points that control the shape, as discussed further
in Chapter II.

In the next chapter. we discuss design issues involved in combining basic and
composi te interaction techniques into an overall user-<:omputer dialogue.

EXERCISES

8.1 Examine a user-«>mputer interface with which)QU are familiar. List each interaction task
used. Categorize each taSk into one of the four BITs of Section 8.2 . If an internction does not fit this
classification scheme, try decomposing it funher.

8.2 Implement adapcive C/D ratio cursor tracking for use with a mouse or other relative-positioning
device. Experiment with different relationships between mouse velocity v and the C/D ratio r : r • k v
und r - k ~. You must also find a suitable value for the constant k.

8.3 Conduct an experiment to compare the selection speed and accuracy of any of the following
pairs of techniques:

a. Mouse and tablet selecting from a static. onscreen menu
b. Toucn-pnncl and hght-pen selecting from a static. onscreen menu,
c. Wide. shallow menu and narrow, deep menu
d. Pull-down menus that appear as soon as the cursor is in the menu bar, and pull-down menus

that require 8 mouse-button depressio n.

8.4 Extend the state di~~gram of Fig. 8.6 to include a "return 10 lowest level" command that takes
the selection back 10 the lo-..oestlevel of the hierarchy. such that whatever was selected first is selected
again .

0424

Exercises 389

8.5 Implement an autocompletion text-entry technique to use with an arbitrary list of words.
Eltperiment with different word sets, such as the UNIX commands and proper names. Decide how to
handle nonexistent matches. corrections typed by the user after a match has been made, and
prompting for the user.

8.6 Implement cascading and panel heirarchicaJ menus for a series of commands or for file-system
subdirectories. What issues arise as you do this? lnforrnally compare the selection speeds of each
technique.

8 .7 Implement pop-up menus that allow multiple sel.ections prior to dismissal, which the user
accomplishes by moving the cursor outside the menu. Alternatively, use a button click for dismissal.
Which dismissal method do you prefer? Explain your answer. Ask five people who use the two
techniques which dismissal method they prefer.

8.8 Implement a menu package on a color raster display that has a look-up table such that the menu
is displayed in a strong, bright but partially transparent color, and all the colors underneath the menu
are changed to a subdued gray.

8.9 Implement any of the 30 interaction techniques discussed in this chapter.

8.10 For each of the locating techniques discussed in Section 8.2.6, identify the line or plane into
which 20 locator movements are mapped.

8.11 Draw the state diagram that controls pop-up hierarchical menus. Draw the state diagram that
controls panel hierarchical menus.

0425

9
Dialogue

Design

We have described the fundamental building blocks from which the interface to an
interactive graphics system is crafted-interaction devices, techniques, and tasks . Let us
now consider how to assemble these building blocks into a usable and pleasing form.
User-inrerface design is still at least partly an art, not a science, and thus some of what we
offer is an attitude toward the design of interactive systems, and some specific dos and
don'ts that, if applied creatively, can help to focus attention on the lmm(m fac/Ors, also
called the ergonomics, of an interactive system.

The key goals in user-interface design are increase in speed of learning, and in speed of
use, reduction of error rate, encouragement of rapid recall of how to use the interface, and
increase in attractiveness to potential users and buyers.

Speed of learning concerns how long a new user takes to achieve a given proficiency
with a system. It is especially important for systems that are to be used infrequenlly by any
one individual: Users are generally unwilling to spend hours learning a system that they will
usc for just minutes a week!

Speed of use concerns how long an experienced user requires to perform some specific
task with a system. It is critical when a person is to use a system repeatedly for a significant
amount of time.

The error rare measures the number of user errors per interaction. The error rate affects
both speed of learning and speed of use; if it is easy to make mistakes with the system,
learning takes longer and speed of use is reduced because the user must correct any
mistakes. However, error rate must be a separate design objective for applications in which
even one error is unacceptable-for example, air-traffic control, nuclear-power-plant

391

0426

392 Dialogue Design

control. and strategic military command and coniJOI systems. Such systems often trade off
some speed of use for a lower error rate.

Rapid recall of how to use the system is another distinct design objective, since a user
may be aw.ty from a system for weeks, and then return for casual or intensive use. The
system should "come back" quickly to the user.

A11ractiveness of the interface is a real marketplace concern. Of course, liking a syst.em
or a feature is not necessarily the same as being facile with it. Ln numerous experiments
comparing two alternative designs, subjects state a strong preference for one design but
indeed perform faster with the other.

It is sometimes said that systems cannot be both easy to learn and fast to use. Although
there was certainly a time when this was often true. we have learned how to satisfy multiple
design objectives. The simplest and most common approach to combining speed of use and
case of learning is to provide a "starter kit" of basic commands that are designed for the
beginning user, but are only a subset of the overall command set. This starter kit is made
available from menus, to facilitate ease of learning. All the commands, both starter and
advanced. are available through the keyboard or function keys, to facilitate speed of use.
Some advanced commands are sometimes put in the menus also, typically at lower levels of
hierarchy, where they can be accessed by users who do n01 yet know their keyboard
equivalents.

We should recognize that speed of learning is a relative term. A system with 10
commands is faster to learn than is one with I 00 commands, in that users will be able to
understand what each of the 10 commands does more quickly than they can what 100 do.
But if the application for which the interface is designed requires rich functionality. the 10
commands may have to be used in creative and imaginative wo~ys that are difficult to learn.
whereas the 100 commands may map quite readily onto the needs of the application.

In the final analysis , meeting even one of these objectives is no mean task. There are
unfortunately few absolutes in user-interface design. Appropriate choices depend on many
different factors, including the design objectives, user characteristics, the environment of
use , available hardware and softwJre resources, and budgets. It is especially important that
the user-interface designer's ego be submerged, so that the user's needs, not the designer's,
are the driving factor. There is no room for a designer with quick, off-the-cuff answers.
Good design requires careful consideration of many issues and patience in testing
prototypes with real users .

9 .1 THE FORM AND CONTENT OF USER-COMPUTER DIALOGUES

The concept of a ttSu-<omputer dialogue is central to interactive system design, and there
are helpful analogies between user-oomputer and person-person dialogues. After all,
people have developed effective ways of communicating, and it makes sense to learn what
we can from these years of experience. Dialogues typically involve gestures and words: In
fact, people may have communicated with gestures, sounds, and images (cave pictures.
Egyptian hieroglyphics) even before ph<>netic languages ~'Cre developed. Computer
graphics frees us from tbe limitations of purely verbal interactions with computers and
enables us to use images as an additional communication modality.

0427

9.1 The Form and Content of User-Computer Dialogues 393

Many anributes of person-person dialogues should be preserved in user-eomputer
dialogues. People who communicate effectively share common knowledge and a common
set of assumptions. So, too, there should be commonality between the user and the
computer. Further, these assumptions and knowledge should be those of the user, not those
of the computer-sophisticated user-interface designer. For instance, a biochemist studying
the geometric structure of molecules is familiar with such concepts as atoms, bonds,
dihedral angles, and residues, but does not know and should not have to know such
concepts as linked lists, canV'dseS, and event queues.

Learning to use a user interface is similar to learning to use a foreign language. Recall
your own foreign-language study. Sentences came slowly, as you struggled with vocabulary
and grammar. Later, as practice made the rules more familiar, you were able to concentrate
on expanded vocabulary to communicate your thoughts more effectively. The new user of
an interactive system must go through a similar learning process. Indeed, if new application
concepts must be learned along with new grammar rules and vocabulary, the learning can
be even more difficult. The designer's task , then, is to keep the user-interface rules and
vocabulary simple, and to use concepts the user already knows or can learn easily.

The language of the user-eomputer dialogue should be efficient and complete, and
should have natural sequencing rules. With an efficienr language, the user can convey
commands to the computer quickly and ooncisely. A complete language allows expression
of any idea relevant to the domain of discourse. Sequencing ruLes, which define the order or
syntax of the language, should have a minimum number of simple, easy-to-learn cases .
Simple sequencing rules help to minimize training and allow the user to concentrate on the
problem at hand; complex rules introduce discontinuities and distractions into the user's
Lhought processes.

A user interface may be complete but inefficient; Lhat is, expressing ideas may be
difficult and time consuming. For example, a system for logic design needs to provide only
a single building block, either the nor or the nand, but such a system will be laborious to
use and thus inefficient. It is beuer to include in the system a facility for building up more
complex commands from the few basic ones.

E.xtensibiliry can be exploited to make a language more efficient by defining new terms
as combinations of existing terms. Extensibility is commonly provided in operating systems
via scripts, cataloged procedures, or command files, and in programming languages via
macros, but is less often found in graphics systems.

In person-pe.rson dialogue, one pe.rson asks a question or makes a statement, and the
other responds, usually quite quickly. Even if a reply does not come immediately , the
listener usuaUy signals attentiveness via facial expressions or gestures. These are forms of
feedback, a key component of user-computer dialogue. In both sorts of dialogue, the
ultimate response may be provided either in words or with some gesture or facial
expression--that is, with a graphic image.

Occasionally, too, the speaker makes a mistake, then says, "Oops, I didn 't mean
that," and the listener discards the last statement. Being able to undo mistakes is also
important in user-computer dialogues.

In a conversation, the speaker might ask the listener for help in expressing a thought , or
for further explanation. Or the speaker might announce a temporary digression to another

0428

394 Dialogue Design

subject, holding the current subject in abeyance. These same capabilities should also be
possible in user~omputer dialogues.

With this general framework, let us define the components of the user~omputer
interface more specifically. Two languages constitute this interface. With one, the user
communicates with the computer; with the other, the computer communicates with the
user. The first language is expressed via actions applied to various interaction devices, and
perhaps also via spoken words. The second language is expressed graphically through lines ,
points, character strings, filled areas, and colors combined to form displayed images and
messages. and perhaps aurally through tones or synthesized words.

Languages have two major components: the meaning of the language, and the form of
the language. The meaning of a language is its content, or its message, whereas the form
is how that meaning is conveyed. In person-person dialogue, the meaning " I am happy"
can be conveyed with the words "1 am happy," or with the words " Ich bin gliickJich,"
or with a smile. In user~mputer dialogue, the meaning " delete temp9" might be con­
veyed by typing the command " DELETE temp9" or by dragging an icon representing file
t.emp9 to a trashcan icon. The form of an interface is commonly called its "look and
feel. "

There are two elements to meaning in interface design: the conceptual and the
functional. There are also two elements to form: sequencing and binding to hardware
primitives. The user-interface designer must specify each of these four elements.

The conceptual design is the definition of the principal application concepts that must
be mastered by the user, and is hence also called the user's model of the application. The
conceptual design typically defines objects, properties of objects, relationships between
objects, and operations on objects. In a simple text editor, the objects are characters, lines,
and files, a property of a file is its name, files are sequences of lines, lines are sequences of
characters, operations on lines are Insert, Delete, Move, and Copy, and the operations on
files are Create, Delete . Rename, Print , and Copy. The conceptual design of a user
interface is sometimes described by means of a metaphor or analogy to something with
which the user is already familiar, such as a typewriter, Rolodex, drafting table and
instruments, desktop, or filing cabinet. Although such analogies are often helpful for initial
understanding, they can become harmful if they must be stretched unrealistically t.o explain
the more advanced capabilities provided by the computer system [HALA82].

The functional design specifies the detailed functionality of the interface: what
information is needed for each operation on an object, what errors can occur, how the
errors are handled, and wbat the results of each operation are. Functional design is also
called semantic design . It defines meanings, but not the sequence of actions or the devices
with which the actions are conducted.

The sequencing design, part of the form of an interface, defines the ordering of inputs
and outputs . Sequencing design is also called syntactic design. For input, the sequencing
comprises the rules by which indivisible units of meaning (input to the system via
interaction techniques) are formed into complete sentences. Units of meaning cannot be
further decomposed without loss of meaning. For example, the mouse movements and
mouse button clicks needed to make a menu selection do not individually provide
information to the application.

0429

9.2 User-Interface Styles 395

For output. the notion of sequence includes spatial and temporal factors. Therefore,
output sequencing includes the 2 D and 3D layout of a display, as 'M:II as any temporal
variation in the form of the display. The units of meaning in the output sequence, as in the
input sequence, cannot be further decomposed without loss of meaning; for c:Jtample, a
transistor symbol has meaning for a circuit designer. whereas the individual lines making up
the symbol do not have meaning. The meanings are ofien conveyed graphlcally by symbols
and drawings, and can also be conveyed by sequences of characters.

The hardware binding design, also called the /exicol design, is also part of the form of
an interface. The binding determines how input and output units of meaning are actually
formed from hardware primitives. The input primitives are whatever input device.~ are
available, and the output primitives are the shapes (such as lines and characters) and their
anributes (such as color and font) provided by the graphics subroutine package. Thus, for
input, hardware binding is the design or selection of interaction techniques, as discussed in
Chapter 8 . For output. hardware binding design is the combining of display primitives and
attributes to form icons and other symbols.

To illustrate these ideas, let us consider a simple furniture-layout program. Its
conceptual design has as objects a room and different pieces of furniture . The relation
bet'M:en the objects is that the room contains the furniture. The operations on the furniture
objects are Create, Delete. Move, Rotate, and Select; the operations on the room object arc
Save and Restore. The functional design is the detuiled elaboration of the meanings of these
relations and operalions.

The sequence design might be to select first an object and then an operation on that
object. The hardware-binding component of the input language might be to use a mouse to
select commands from the menu, to select furniture objects, and to provide locations. The
sequence of the output design defines the screen arrangement, including its partitioning into
different areas and the exact placement of menus, prompts, and error messages. The
hardware-binding level of the output design includes the tc:Jtt font, the line thickness and
color, the color of filled regions, and the way in which output primitives are combined to
create the furniture symbols.

Section 9.2 discusses some of the fundamental forms a user interface can take; Section
9.3 presents a sct of design guidelines that applies to all four design levels. In Section 9.4,
'M: present issues specific to input sequencing and binding; in Section 9.5, 'M: describe
visual design rules for output sequencing and binding. Section 9.6 outlines an overall
methodology for user-interface design.

9 .2 USER-INTERFACE STYLES

Three common styles for user-computer interfaces arc wlwt you see is what you get, direct
manipulation, and iconic. ln this section, 'M: discuss each of these related but distinct ideas.
considering their applicability, their advantages and disadvantages, and their relation to one
another. There is also a brief discussion of other styles of user-computer interaction: menu
selection. command languages, natural-language dialogue, and question-answer dialogue.
These are not emphasized, because they are not unique to graphics. (Menus are the closest.

0430

396 Dialogue Design

but their use certainly predates graphics. Graphics does, however, pennit use of icons rather
than of text as menu elements, and provides richer possibilites for text typefaces and fonts
and for menu decorations.) None of these styles are mutually exclusive; successful
interfaces often meld elements of several styles to meet design objectives not readily met by
one style alone.

9.2.1 What You See Is What You Get

What you see is what you get, or WYSIWYG (pronounced wiz-ee-wig), is fundamental to
interactive graphics. The representation with which the user interacts on the display in a
WYSIWYG interface is essentially the same as the image ultimately created by the
application. Most, but not all , interactive graphics applications have some WYSIWYG
component.

Many text editors (most assuredly a graphics application) have WYSIWYG interfaces.
Text that is to be printed in boldface characters is displayed in boldface characters. With a
non-WYSIWYG editor, the user sees control codes in the text. For example,

In this sentence, we show @b(bold), @i(italic), and @ub(underlined bold) text.

specifies the following hardcopy output

Ln this sentence, we show bold, italic, and unde.rlined bold text.

A non-WYSIWYG specification of a mathematical equation might be something like

@f(@i(u)@sub(max) - @i(u)@sub(min),@i(x)@sub(max) - @i(x)@sub(min))

to create the desired result

"max- Umln

Xmax - Xmm

ln such non-WYSIWYG systems, users must translate between their mental image of
the desired results and the control codes. Confinnation that the control codes reproduce the
mental image is not given until the coded input is processed.

WYSIWYG has some drawbacks. Whenever the spatial and intensity or color
resolution of the screen differs from that of the hardcopy device, it is difficult to create an
exact match between the two. Chapter 13 discusses problents that arise in accurately
reproducing color. More important, some applications cannot be implemented with a pure
WYSIWYG interface. Consider first text processing, the most common WYSIWYG
application. Many text processors provide heading categories to define the visual
characteristics of chapter, section, subsection, and other headings. Thus, "heading type"
is an object property that must be visually represented. But the heading type is not part of
the final hardcopy, and thus, by definition , cannot be part of the display either. There are
simple solutions, such as showing heading-type codes in the left margin of the display, but
they are counter to the WYSIWYG philosophy. It is for this reason that WYSIWYG is
sometimes called ' 'what you see is all you get.'' As a second example, the robot arm in Fig.

0431

9.2 User- Interface Styles 397

7.1 does not reveal the existence of hierarchical relationships between the robot' s body,
arms, and so on, and it certainly does not show these relationships. These examples are
intended not as indictments of WYSIWYG but rather as reminders of its limitations.

9.2 .2 Direct Manipulation

A direct-manipulation user imerface is one in which the objects, attributes, or relations that
can be operated on are represented visually; operations are invoked by actions performed on
the visual representations , typically using a mouse. That is, commands are not invoked
explicitly by such traditional means as menu selection or keyboarding; rather, the command
is implicit in the action on the visual representation. This representation may be text, such
as the name of an object or property, or a more general graphic image, such as an icon.
Later in this section, we discuss the circumstances under which textual and iconic forms of
visual representation are appropriate.

The Macintosh interface uses direct manipulation in part, as shown in Fig. 9. I. Disks
and files are represented as icons. Dragging a file's icon from one disk to another copies the
file from one disk to the other; dragging to the trashcan icon deletes the file. Tn the earlier
Xerox Star, dragging a file to a printer icon printed the file . Shneiderman [SHNE83], who
coined the phrase "direct manipu.lation," discusses other examples of this technique.

Direct manipulation is sometimes presented as being the best user-interface style. It is
certainly quite powerful and is especially easy to learn. But the Macintosh interface can be
slow for experienced users in that they are forced to use direct manipu.lation when another

Fig. 9 .1 The Macintosh screen. In the upper right is a disk icon; just below it is a
directory icon, which is gray-toned to indicate that it is open. At the left is the open
directory, with named icons representing the files within it. A f ile, represented by the
icon out line around the cursor, is being dragged to the trashcan at the lower right.
(Screen graphics © Apple Computer, Inc.)

0432

398 Dialogue Design

style would generally be faster. Printing the file "Chapter 9" with direct manipulation
requires the visual representation of the file to be found and selected, then the Print
command is involved. Finding the file icon might involve scrolling through a large
collection of icons . If the user knows the name of the file, typing "Print Chapter 9" is
faster. Similarly, deleting all files of type "txt" requires finding and selecting each such file
and dragging it to a trash can. Much faster is the UNIX-style command " rm *. txt" , which
uses the wild card • to find all files whose names end in ".txt."

An interface combining direct manipulation with command-language facilities can be
faster to use than is one depending solely on d irect manipulation. Note that direct
manipulation encourages the use of longer, more descriptive names, and this tends to offset
some of the speed gained from using typed commands. Some applications, such as
programming, do not lend themselves to direct manipulation [HUTC86), except for simple
introductory flowchart-oriented learning or for those constructs that in specialized cases can
be demonstrated by example [MAUL89; MYER86).

Direct-manipulation interfaces typically incorporate other interface styles, usually
commands invoked with menus or the keyboard. For instance, in most drafting programs,
the user rotates an object with a command, not simply by pointing at it, grabbing a handle
(as in Section 8.3.3), and rotating the handle. Indeed, it is often difficult to construct an
interface in which all commands have direct-manipulation actions. This reinforces the point
that a single interaction style may not be sufficient for a user interface: Mixing several styles
is often bener than is adhering slavishly to one style.

The form fiiJ-in user interface is another type of direct manipulation. Here a form is
filled in by pointing at a field and then typing, or by selecting from a list (a selection set)
one of several possible values for the field. The limited functional domain of form fill-in
and its obvious correspondence to filling in real forms makes direct manipulation a natural
choice.

WYSIWYG and direct manipulation are separate and distinct concepts. For instance,
the textual representation of a graphics image can be modified via direct manipulation, and
the graphical image of a WYSIWYG system can be modified purely by a command­
language interface. Especially when used together, however, the two concepts are po"'erful,
easy to learn, and reasonably fast to use, as many successful user interfaces have
demonstrated.

9 .2 .3 Iconic User Interfaces

An icon is a pictorial representation of an object, an action, a property, or some other
concept. The user-interface designer often has the choice of using icons or words to
represent such concepts. Note that the use of icons is not related to the direct-manipulation
issue: Text can be directly manipulated just as well as icons can, and text can represent
concepts, sometimes better than icons can.

Which is better, text or icons? As with most user-interface design questions, the answer
is, " it depends." Icons have many advantages. Well-designed icons can be recognized more
quickly than can words , and may also take less screen space. U carefully designed, icons
can be language-independent, allowing an interface to be used in different countries .

0433

9.2 User- Interface Styles 399

/ /

-
-
- 0

Fig. 9.2 Icons used to represent common office objects.

leon design has at least three separate goals, whose importance depends on the specific
application at hand:

I. Recognition-how quickly and accurately the meaning of the icon can be recognized

2. Remembering-how well the icon's meaning can be remembered once learned

3. Discrimination-how well one icon can be distinguished from another.

See [BEWL83] for a report on experiments with several alternative icon designs; see
[HEME82; MARC84] for further discussion of icon-design issues.

Ic.ons that represent objects can be designed relatively easily; Fig. 9.2 shows a
collection of such icons from various programs. Properties of objects can also be
represented easily if each of thei r V'dlues can be given an appropriate visual representation.
This certainly can be done for the properties used in interactive graphics editors , such as
line thickness, texture, and font. Numeric values can be represented with a gauge or dial
icon, as in Fig. 8.21.

Actions on objects (that is, commands) can also be represented by icons. There are
several design strategies for doing this. First, the command icon can represent the object
used in the real world to perform the action. Thus, scissors can be used for Cut, a brush for
Paste, and a magni fyi ng glass for Zoom. Figure 9.3 shows a collection of such command
icons. These icons are potentially difficult to learn, since the user must first recognize what
the icon is , then understand what the object represented does. This two-step understanding
process is inherently less desirable than is the one-step process of merely recognizing wbat
object an icon represents. To complicate matters further, suppose that the object might be
used for several different actions. A brush, for example, can be used for spreading paste (to

f"".ii::l Paint bucket for
I..S2!..J area fill

f"il Spray can for painting
L.J!j w1th dot pattern

rTl Brush for painting
LfU solid area

[lJ Pencil for drawing lines

1 g 1 Eraser for deletion

~ Pointer for selecting
L!.J objects

Fig. 9 .3 Command icons representing objects used to perform the corresponding
command. (Copyright 1988 Claris Corporation. All rights reserved.)

0434

400 Dialogue Design

0 0 Translate

0 0 Rotate

0 D Uniform scale

0 D Horizontal scale

0 D Vertical scale

0£7 Shear

Fig. 9 .4 Command icons indicating geo­
metric transformations by showing a
square before and after the commands are
applied.

~ Rotate

~ Translate

E ~ Shear

Fig. 9.5 Several abstract command
icons for some of the actions depicted
in Fig. 9 .4 . Not all geometric operations
can be represented in this way.

paste something in place), and also for spreading paint (to color something). U both Paste
and Paint could reasonably be commands in the same application , the brush icon could be
ambiguous. Of course, sometimes only one interpretation wi ll make sense for a given
application.

Another design strategy for command icons is to show the command's before and after
effects, as in Fig. 9.4 and Color Plates I. 19-1.21. This works well if the representations for
the object (or objects) are compact. If the command can operate on many different types of
objects, however, then the specific object represented in the icon can mislead the user into
thinking that the command is less general than it really is.

The NeXT user interface, implemented on a two-bit-per-pixel display, uses icons for a
variety of purposes, as seen in Color Pl.ate 1.22.

A final design approach is to find a more abstract represemation for the action. Typical
examples are shown in Fig. 9. 5. These representations can depend on some cultural-specific
concept, such as the octagonal stop-sign silhouette, or can be more generic, such as X for
Oe.lete.

~
(a) (b) (c) (d) (e) (f)

(g) (h) (i) (k) (I)

Fig. 9.6 Icons that represent Macintosh programs. What does each icon represent? In
most cases, the icons suggest the type of information that is operated on or created.
See Exercise 9 .14 for the answers .

0435

9 .2

~
Fig S.X Comm~nd icons/objocts

~
lQ]

Fi9 8.CS219

User-Interface Styles

~
lQ]

Figs 8.5 ATN/FSM

8.5 State Diagrams

401

Fig. 9 . 7 The contents of a disk directory represented with icons and text. The icons
help to distinguish one file from another. (Certain screen graphics © Apple Computer,
Inc.) ·

Arbitrarily designed icons are not necessarily especially recogn izable. Figure 9.6
shows a large number of icons used to represent Macintosh programs. We challenge you to
guess what each program does! However, once learned, rhese icons seem to function
reasonably well for remembering and discrimination.

Many visual interfaces to operating systems use icons to discriminate among files used
by different application programs. All files created by an application share the same icon. Tf
a directory or disk contains many different types of files , then rhe discrimination allowed by
the icon shapes is useful (see Fig. 9.7). If all rhe files are of the same type , however, rhis
discrimination is of no use whatsoever (see Fig. 9.8).

Icons can be poorly used. Some users dislike icons such as rhe trashcan, contending
rhat such ideas are juvenile, "cute," and beneath their dignity. The designer may or may
not agree with such an evaluation, but the user's opinion is usually more important than is

~items

~
[iJ

Fig 7.GRAYITY Fig 7 .OVROT Fig 7.G'r!PAINT Fig 7.DUAl

~ . ~ . ~ . ~ .
Fig 7.HORIZ Fig 7.0R Fig 7.SK£TCH Fig7.1t

Fig. 9 .8 The contents of a disk directory represented with icons and text. Since the
files are all of the same type, the icons do not help to distinguish one file from another,
and simply take up extra space. (Computer screen graphics © Apple Computer, Inc.)

0436

402 Dialogue Design

the designer's. The user who dislikes a computer or program and thus develops a negative
att itude is best taken seriously.

9.2 .4 Other Dialogue Forms

The dialogue styles discussed in the previous sect ion might be called " intrinsically
graphical" in that our focus has been on graphically oriented interaction. A number of
other dialogue forms are not intrinsically graphical but can be used in graphical
applications. Four such forms are menus. command languages, natural-language dialogue,
and questioiHlllSwer dialogue. We have discussed many specific design issues concerning
menus in the previous chapter. In this section, we briefly discuss more general issues
involving each of these dialogue forms.

Menus are widely used in both grJphical and nongraphical applications. ln either case,
however. the fundamental advantage of menus is that the user can work with what is called
recognition memory, whe.rc visual images (textual or iconic menu items) are associated with
already-familiar words and meanings. This contrasts with recall memory, where the user
must recall from memory a command or concept in order to enter information into the
computer. Menus reduce the memory load for users, and hence are especially attractive to
novices. Menus, along with form fill-in. allow current selections to be indicated visually,
further reducing the user's memory load and also allowing rapid input if the current
selection is desired. On the other hand, menus limit the size of the selection set of
alternatives, whereas some of the other dialogue styles do not.

Use of a command language is the traditional way 10 interact with a computer. This
technique can accommodate large selection sets, is easy to extend (just add another
command), and is fairly fast for experienced users who can type. Learning time is its major
liability, with the need for typing skills a second factor. Errors are more likely with
command languages than with menus. because of the possibility of typing and recall errors.

Natuml-/anguage dialogue is often proposed as the ultimate objective for interactive
systems: If computers could understand our commands, typed or spoken in everyday
English. then everyone would be able 10 use them. However, current voice rccognizers with
large vocabularies must be individually trained to recognize a particular user's voice; they
also make mistakes, and must be corrected somehow. Typing long sentences is ted ious.
Also, because natural language does not bound the command set that an application
program must handle, and also can be quite ambiguous, users of natural-language interfaces
tend to make requestS that cannot be fulfilled , which leads to frustration of the user and
poor performance of the system.

This problem can be overcome in limited-domain (and hence limited-vocabulary)
natural -language systems, in which users are familiar with the system's capabilities and
hence arc unlikely to make unreasonable requests. Drawing programs and operating
systems are examples of such systems.

There is a fundamental flaw, however, in the argument that natural language interaction
is the ultimate objective. lf the argument were true, we would be satisfied to interact with
one another solely by means of telephone and/or keyboard communications. It is for this
reason that voice input of natural language to an interactive graphics application program is

0437

9.3 Important Design Considerations 403

TABLE 9.1 COMPARISON OF SEVEN USER INTERFACE STYLES

WYSI- Direct Menu Fom1 Command Natura.! Q/A
WYG• manipulation selection fi 11-in language language dialogue

learning time low low med low high low low
speed of usc med med high high med low
error-proneness low low low low high . high low
extensibiHty low low med med high high high
ryeinll skill required none none high high high•• high

•wYSIWYG ha.• several blank fields because it is not a complete interface style, since it must be accompanied
by some means of emering commands.
•• Assuming keyboard input: none for voice-recognizer input.

most likely to be used in combination with other dialogue styles, to allow overlapped use of
the voice and hands to speed interaction. After all , this is exactly how we work in the real
world: we point at things and talk about them. This powerful concept was compellingly
demonstrated a decade ago in the ''Put-that-There" [BOLT80; BOLT84] program for
manipulating objects. In this system, the user can move an object by pointing at it while
saying "put that;" pointing elsewhere, and saying " there. " A recent study of a VI...Sl
design program using voice input of commands combined with mouse selection of objects
and positions found that users worked 60 percent faster than did those who had just a mouse
and keyboard IMART89).

Question~nswer dialogue is computer-initiated, and the user response is constrained
to a set of expected answers. Using a keyboard for input, the user can give any answer. If the
set of expected answers is small , the question can include the possible answers; menu
selection might even be provided instead of typing as a means for the user to respond. ln the
limit, question-answer dialogue becomes a sequential set of menu selections. A common
failing of instances of this dialogue form is the inability to go back several steps to correct
an answer. A more general problem with the sequentiality implied by this form is that of
context: The user has only the context of the past and current questions to assist in
interpreting the current question. With a form fill-in dialogue, by contrast, the user can see
all the fields to be entered, and so can quickly tell , for instance, whether an apartment
number in an address goes in the street-address field or in a separate apartment-number
field.

Table 9 . I compares user-interface dialogue styles. A much more extensive discussion
of the pros and cons of many of tbese styles can be found in [SHNE86].

9.3 IMPORTANT DESIGN CONSIDERATIONS

lo this section, we describe a number of design principles to help ensure good human factors
in a design: be consistent, provide feedback, minimize error possibilities, provide error
recovery, accommodate multiple skill level.s, and minimize memorization. Application of
these principles is generally considered necessary , although by no means is sufficient, for a
successful design. These and other principles are discussed more fully in [FOLE74;
GAJN84; HANS71 ; MAYH90; RUBE84; SHNE86).

0438

404 Dialogue Design

9 .3.1 Be Consistent

A consistent system is one in which the conceptual model, functionality, sequencing, and
hardware bindings are uniform and follow a few simple rules, and hence lack exceptions
and special conditions. The basic purpose of consistency is to allow the user to generalize
knowledge about one aspect of the system to other aspects. Consistency also helps to avoid
the frustration induced when a system does not behave in an understandable and logical
way. The best way to achieve this consistency is through a careful top-down design of the
overall system.

•

•

•

Simple examples of consistency in the output portion of a user interface are

The same codings are always employed. Colors always code information in the same
way, just as red always means stop , and green always means go.

System-status messages are shown at a logically (although not necessarily physically)
fixed place.

Menu items are always displayed in the same relative position within a menu, so that
users can aUow " muscle memory" to help in picking the desired item.

Examples of consistency in the input portion are

•

•
•

Keyboard characters-such as carriage return, tab, line feed , and backspace-always
have the same function and can be used whenever text is being input.

Global commands-such as Help, Status, and Cancel-can be invoked at any time .

Generic commands-such as Move, Copy, and Delete-are provided and can be
applied, with predictable results, to any type of object in the system.

We should, however, remember Emerson's observation that "A foolish consistency is
the hobgoblin of little minds" [EMER03]. Consistency can conHict with other design
objectives. For instance, if dragging a file icon to the trash deletes the file, what should
happen when a file icon is dragged to an electronic-mail outbox? Should the file be sent and
then deleted, for consistency with dragging to the trash? Or should a copy of the file be
sent? If a file. is dragged to a printer icon to print the file, should the fi le be printed and then
deleted, for consistency with dragging to the trash? Surely in these latter two cases the file
should not be deleted. The law of least astonishment, a higher design principle, suggests
that doing what the user is likely to cons.ider normal or reasonable is more important than is
maintaining pure consistency.

Figure 9.9 shows how state diagrams can help to identify inconsistency. We can see
here that help is available only from the move state, not from the other states. A mixed
strategy is used to let users change their minds once an action sequence has been initiated.
From the move and delete states there is a Cancel command, whereas the rotate state has an
Undo command. The sequence of object/operation varies: for Move and Delete, the
sequence is operation then object, whereas it is the reverse for rotation. The feedback
strategy is also mixed: dynamic for moving, static for rotation.

Reisner demonstrated experimentally an intuitively expected result: Given two func­
tionally equivalent user interfaces, new users make fewer errors and learn more quickly with

0439

9 .3 Important Design Considerations

Return to neutral

Move command

Select and drag object
Object repositioned

Select object

User accepiS rotation
Rotation becomes permanent

User rejects rotation
Rotation undone

Delete command

Retum to neutral

Help

Done with help

Enter rotation angle
Perform rotation

Select object
Object deleted

Fig. 9 .9 State diagram of a user interface with an inconsistent syntax.

405

one that has a simpler syntactic structure [REIS82]. Thus, another useful design objective
to apply is simply to minimize the number of different syntactic structures.

At the functional level, consistency requires the use of gtneric commands that apply
across as broad a range as possible. For example, chairs and desks should be moved in the
same way in the room-layout program discussed previously; files should be opened, deleted,
and saved from within application programs with the same generic file-manipulation
commands.

9 .3 .2 Provide Feedback

Have you ever tried conversing with a partner who neither smiles nor nods, and who
responds only when forced to do so? It is a frustrating experience, because there is little or
no indication that the partner understands what you are saying. Feedback is as essential in

0440

406 Dialogue Design

con\'Crsation with a computer as it is in human con\'Crsation. The difference is that, in
normal con\'Crsation with another person, many sources of feedback (gestures, body
language, facial expressions, eye contact) are usually provided without conscious action by
either panicipant. By contrast, a workstation gives little automatic feedback (just the
''power on" light and perhaps the whir of a fan), so :til feedback must be planned and
programmed.

Feedback can be given at three possible levels, corresponding to the functional,
sequencing, and hardware-binding (semantic. syntactic, and lexical) levels of user-interface
design. The designer mUSt consciously consider each level and explicitly decide whether
feedback should be present, and, if it should be, in what form . The lowest level of feedback
is the hardwJre level. Each user action with an input device should cause immediate and
obvious feedback: for instance, chamcters typed on a keyboard are echoed, and mouse
movements are echoed by the cursor.

Feedback at the sequencing-design level occurs as each unit (word) of the input
language (command, position, object, etc.) is accepted by the system. A selected object or
menu command is highlighted, so the user can know that actions have been accepted (i.e ..
the "words'' have been understood) . Similar forms of feedback are prompting for the next
input, lighting the function key that has just been pressed, and echoing verbal (speech) input
with text output.

Another form of sequencing feedback should occur when a complete sequence has
been input and is found to be well formed. This acknowledgment of receipt of a proper
command is generally needed only if processing the command itself will take more than I
or 2 seconds.

Another type of functional feedback-some indication that the computer is at least
working on the problem-is necessary only if completion of the operation will take more
than a few seconds. (In the absence of such feedback , users ha\'C been known to express
their frustration physically on the workstation, or even on the application designer!) Such
feedback can take many forms; particularly attractive is a dial or gauge to indicate the
percentage complete . The user can quickly determine whether a coffee break is in order. In
an experiment , Myers found a strong user preference for such indicators [MYER85.1.

The most useful and welcome form of functionnl feedback tells the user that the
requested operation has been completed. This is usually done with a new or modified
display that explicitly shows the results of the operation.

It is useful to distinguish between problem-domain and control-domain feedback.
Probl~m-domain feedback concerns the actual objects being manipulated: their appearance,
their position, their existence. Comrol-domai11 feedback has to do with the mechanisms for
controlling the interactive system: status, current and default values, menus, and dialogue
boxes.

Problem-domain feedback is needed if users can see just pan of a large drdwing, so that
they can know which part of the world is being displayed. Figure 9. 10 shows one way to do
this. The approach can be even more effective with rwo displays-one for the O\'Crview, the
other for the detail. ln e ither case, the rectangle in the overview indicates which pan of the
dmwing is being shown in the detailed display. Panning and zooming are generally e ffected
by dragging and resizing the overview rectangle. Figure 9 . 11 shows how increasing

0441

9 .3 Important Design Considerations

Overview View
area Indicator

\ I
This work area displays part of a larger o drawing. The 011erview area at upper
right corresponds to the entire drawing.
The dashed reaangutar view indicator in
the 0\/erview area indicates which pan of
the entire drawing is displayed here. The
user can resize the view Indicator by
dragging the handles on the tour comers. Menus
and can repos"ion ll The aspect ratio
Is maintained during resizing.

407

Fig. 9 .10 The v iew indicator is used both to give an overview and to control what is
displayed in the work area.

(a) Scroll bar with no status
display to indicate which

part of the drawing is being
displayed, or to indicate

the size of the window with
respect to the overall drawing.

(c) A page number has been
added to the elevator, so
there is now partial infer·

mation to help the user infer
the size of the window with

respect to the overall drawing.

(b) Scroll bar with "elevator" to
Indicate which part of the

drawin9 is being displayed.
There os still no way for the

user to know the size of the
window with respect to the

overall drawing.

(d) The elevator has now been
scaled so that the ratio of its

height to the height of the
scroll bar is the same as the

ratio of the window's height to

L:

that of the overall drawing. 2
The page number is now a
form of redundant coding.

It conveys linguistically some
of the information that the

elevator conveys graphica.lly.

Fig. 9.11 Four d ifferent levels of feedback in scroll bars, ranging from none in (a) to
redundant coding in (d).

0442

408 Dialogue Des ign

·­··~-e_;·.
Fig. 9 .12 The overview mode in MacPaint. Because the screen is very small, the
overview alternates with the normal, more detailed view of the drawing. The user drags
the rectangular dashed box to the desired area, and selects "OK" to see the detailed
view of the enclosed area. (Copyright 1988 Claris Corporation. All rights reserved.)

amounts of feedback can be built into window scroll bars. Another approach to orienting
the viewer is used in MacPaint, as shown in Fig. 9.12.

An important type of control-domain feedback is current settings. Current settings can
be shown in a feedback area. lf the menus or other tools by which settings are selected can
always be displayed, then the current setting can be indicated there, as in Fig. 9.13. The
pull-out menus illustrated in Fig. 8.14 also show current settings.

The positioning of feedback is important. There is a natural tendency to designate a
fixed area of the screen for feedback and error messages. This can destroy visual continuity,
however, since the user's eyes must move between the work area and the message area.
Indeed. users often do not notice messages in these fixed areas. Adding audio feedback can
eliminate this problem.

Placing the feedback where the user is looking, which is generally at or near the cursor,
is especially attractive. Tilbrook's Newswhole system [TlLB76) was one of the first to
employ this idea; it uses a seated Buddha to encourage the user to be patient during
computational delays, and a thumbs-down symbol to indicate a mistake.

x ­-
x­- j .

X I . I

Fig. 9 .13 In this menu of graphic attributes, the x indicates the current setting. The
user has constant feedback if the menu can be permanently visible. If not, a more
compact form of permanent feedback should be used.

0443

9.3 Important Design Considerations 409

9.3 .3 Minimize Error Possibilities

Don'1 se1 11te user up for a fall is :mother way to stale this objective. For example.

•

•
•

•
•
•

Do not offer menu options 1ha1 will elicil an '"illegal selection. command not valid
now'" message

Do not let the user select Delele if there is nothing to be deleted

Do not let the user try to change the font of the currently selected object if the object is
not a text string

Do not let the user Paste when the clipboard is empty

Do not lei the user Copy when nothing is selected 10 be copied

Do not let the user se.lect a curve-smoothing command when the currenlly selecled
object is not a curve.

In alllhese instances, I he system shou ld instead disable unavailable items and alert the
user by changing the menu item's appearance-for instance, by making it gray instead of
black.

These are all examples of comext sensitivity. The system provides the user with only
those oommands that are valid in the current oonlext or mode. When there is a oontext . the
system should guide the user to work within that context and should make it difficult or
impossible for the user to do things that are not permissible in that context.

Another aspect of this objective is to avoid side ejfec1s, which are resultS the user has
not been led to expect. The classic side effect is the print command that also deletes the fi le
being printed. Side effects arise from poor design or inellective communication wilh I he
user regarding what a command does.

9 .3 .4 Provide Error Recovery

We all make mistakes. Imagine not having a backspace key on your computer keyboard!
The effect. on your productivity, as you became much more cautious in typing, would be
devastating. There is ample experirnent.al evidence that people are more productive if I heir
mistakes can be readi ly corrected. With good error recovety, the user is free to explore
unlearned system faci li ties without ''fear of failure.'' This freedom encourages explor.llory
learning. one of the major ways in which system features are learned. We discuss four types
of error recovery: Undo. Abort. Cancel, and Correct.

The most serious type of error is functional: the user has mistakenly in,'Oked one or a
series of oommands and has obtained unanticipated resultS. An Undo oommand is needed
to reverse the resultS of the command. There are two types of undo: single level and
multilevel. The single-level undo can reverse only the most recently executed command.
This Undo itself is a command. so I he second of t\\10 successive Undo commands undoes
the first Undo, returning the system to ils state prior to the t\\10 Undo commands.

In contrast. a multilevel Undo operates on the stack of previous commands. The uctual
number of commands stacked up and thus able to be undo ne is implementation-dependent.;
in some cases, all commands since the session began are saved. With a multilevel undo, a
Redo command is also needed. so that, if the user backs up too far in the oommand stack,
the most recently undone command can be redone. Nei ther Undo nor Redo is en1ered on

0444

41 0 Dialogue Design

the stack. Several tricky issues concerning Redo are discussed in [VITf84J. For a s ingle
level, Undo and Redo are mutually exclusive: One or the other, but not both, can be
available at any given time. For multilevel, Undo and Redo can be available at the same
time.

Users often need help in understanding the scope of the Undo command (i.e ., how
much work the command will undo). They also are often confused about whether Undo
applies to windowing commands, such as scrolling, as well as to application commands. If
the Undo command is in a menu, the menu-item text can indicate what will be undone;
instead of ''undo," the entry could be "undo copy" or ''undo deletion." Kurlander and
Feiner have developed a graphical way to show the history of user actions and the scope of
Undo, shown in Color Plate 1.23 [KURL88; KURL90] .

A form of undo is sometimes provided as an explicit-accept. explicit-reject step. After a
command is carried out and its results are shown on the display, the user must accept or
reject the results before doing anything else. This step adds to the number of user actions
required to accomplish a task, but docs force the user to think twice before confirming
acceptance of dangerous actions. However, an Undo command is usually preferable
because an explicit action is required only to reject the results of a command; the command
is implicitly accepted when the next command (other than the Undo command) is entered.
Hence, v.-e call undo an implicit-<1cupt, explicit-reject strategy.

No matter how undo is provided, its implemention requires extra programming,
especially for commands that in~'Oive major changes to data structures . An easier, although
less satisfactory, alternative to undo is to require the user c)(plicit.ly to confirm commands
for which there is no undo. This is commonly used for the fi le-delete command.

A user may realize that a functional-level mistake has been made while a command is
still being performed. This illustrates the need for an Abort command to terminate
prematurely a currently executing command. Like Undo, Abort mUSt restore the system to
its C)(aCt state prior to initiation of the aborted command. In fact, Abort and Undo can be
thought of as essentially the same command: They both reverse the most recently specified
functional-level action. A user-interface design might make both actions available with the
same name.

A less dramatic type of error occurs when the user is partway through specifying
information required to carry out some command, and says, "Oops, I don't really w.tntto
do this!" A poorly designed interface gives the user no cnoice but to proceed with the
command, after which an Undo or Abort (if available) is used to recover. A well-designed
interface lets the user back out of such a situation with a Cancel command. This is
especially common with a form fill-in dia.logue, where a Cancel command is often available
on the form, as in Fig. 8.32. Note that Cancel can also be thought of as a specialized Undo
command, with the system reverting to the state prior to the current command.

In a less serious type of error, the user may want to correct one of the units of
information needed for a command. The dialogue style in use determines how easy to make
such corrections are. Command-language input can be corrected by multiple backspaces to
the item in error, followed by reentry of the corrected information and all the information
that was deleted. If the system has line-editing capabilities, then the cursor can be moved
back to the erroneous information without the intervening information being deleted. Form
fill-in allows simple corrections as well, whereas question-answer and menu dialogues are
not so forgiving. The dynamic interaction techniques discussed in Chapter 8 provide a form

0445

9.3 Important Design Considerations 411

of error re<:overy: for instance, the posi tion of an object being dragged into place is easy to
change.

9.3 .5 Accommodate Multiple Skill Levels

Many interactive graphics systems must be designed for a spectrum of users , ranging from
the completely new and inexperienced user through the user who has worked with the
system for thousands of hours. Methods of making a system usable at all skill levels are
accelerators, prompts. help. extensibility, and hiding complexity.

New users normally are most comfortable with menus, forms, and other dialogue styles
that provide considerable prompting, because this prompting tells them what to do and
facilitates learning. More experienced users, however, place more value on speed of use.
which requires use of function keys and keyboard commands. Fast interaction techniques
that replace slower ones are called accelerators. Typical accelerators, such as one-letter
commands to supplement mouse-based menu selection, have been illustrated in previous
sections. The Sapphire window manager [MYER84], taking this idea even further,
provides three rather than two ways to invoke some commands: pointing at different areas of
the window banner and clicking different mouse buttons, a standard pop-up menu, and
keyboard commands.

The Macintosh uses accelerators for some menu commands, as was shown in Fig.
8. 13. Another approach is to number menu commands, so that a number can be typed from
the keyboard, or a command can be selected with the cursor. Alternatively, the command
name or abbreviation could be typed.

One of the fastest accelerators is the use of multiple clicks on a mouse button. For
instance, the Macintosh user can select a file (represented as an icon) by clicking the mouse
button with the cursor on the icon. Opening the file , the typical next step, can be done with
a menu selection, an accelerator key, or an immediate second button click. The two rapid
clicks are considerably faster than is either of the other two methods. From within
applications, another scheme is used to open files, as illustrated in Fig. 9.14. The dialogue
box permits a file name to be selected either by pointing or by ryping. If the name is typed,

Seleet e Document:

I® Chapter 91
0 Chop 9 - Human p! ® Chopter9
0 Chop 9 - Human. I I 071C ouellabte
0 Chop 9 color plates I.. l Open J I [Jet! I 0 Chop 9 rtg t op lion•
0 Chap 9 TOC I Coneet l l (Or1ue I 0 Chapter 9 uery old ,; 0 £Hertlse rar Chop 9 D Read Only

Fig. 9 .14 Opening files from within a Macintosh program. The user enters the Open
command, either by menu selection or with a two-key chord, causing the dialogue box
to appear. The highlighted file can be opened with the "open" button or with the
carriage-return key. The user can highlight a new file by selecting it with the cursor or by
typing some or all of its name. Therefore. the user can open a file using only the
keyboard, by entering the two-key chord. a partial file name, and the return key.
(Computer screen graphics @ Apple Computer, Inc.)

0446

41 2 Dialogue Design

aut.ocompletion perm irs the user to type only enough characters for the name to be specified
unwnbiguously. Double clicking on a file name opens the file immediately.

Another form of accelerator is to provide command-line input as an alternative to the
other styles. As users gain experience, they use the command line more and more. This
transition can be aided by displaying the command-line equivalent of commands that are
entered in other wuys.

Unlike feedback, which acknowledges specific user actions, the purpose of prompts is
to suggest what to do next. The more experienced the user, the less prompting is
appropriate, especially if prompting is obtrusive and slows down the interaction or uses
much of the screen. Many systems provide several levels of prompting controllable by the
user; the inexperienced can be "led by the hand," whereas the experienced can proceed
without the prompts.

Prompting can take many forms. The most direct is a displayed message that explains
explicitly what to do next, such as "Specify location." A speech synthesizer can give
explicit aural instructions to the user. Subtler forms of prompting are also available. On a
function-key box, buttons eligible for selection can be illuminated. A prominent tracking
cross or cursor can be displayed when a position must be input; a blinking underline cursor
can indicate that a text string is to be input; a scale or dial can be displayed when a value is
desired. Direct-manipulation graphical interfaces implicitly provide promprs: the icons that
can be manipulated are the prompt.

A help facility allows the user to obtain additional information about system conceptS,
typical tasks, various commands and the methods used to invoke them, and interaction
techniques. Ideally, help can be requested from any point in the interactive dialogue, always
with the same mechanism. The return from help should leave the system in exactly the same
state as when help was inYOked, and the help should be context-sensitive. For example, if
help is invoked while the system is awaiting a command, a list of commands available in
this state should be shown (with menus or function keys, this may be unnecessary). The
Help command followed by a command name should yield more information about the
command. If help is requested while the parameters of a command are being entered,
details about the parameters should be provided. A second Help command should produce
more detailed information and perhaps allow more general browsing through online
documentation. Sukaviriya [SUKA88] developed a system to show the user an animation of
how to accomplish a task, using the current context as the basis of the animation. Some help
capabilities based on hypertext systems allow the user to follow complex sets of links
among various help topics.

An easy way to invoke help is to point at the entity on the screen about which belp is
desired. The entity could be a menu item, a status indicator (the help should explain the
starus and how to change it), a window banner, a scroll bar, or a previously created
application object (the help should explain what the object is and what operations can be
applied to it) . This approach, however, can be used only for visible objects, not for more
abstract concepts or for tasks that must be performed with a series of commands.

A help capability is appropriate even if promptS and menus are displayed, because it
gives the user an opportunity to receive more detailed information than can be provided in a
short prompt. Even experienced users forget details, particularly in a large and complex
application.

0447

9 .3 Important Design Considerations 41 3

Expert systems are beginning to be integrated into user imerfa.ces to provide help that
not only is context-sensitive, but also is tailored to individual user profiles. These profiles
are developed automatically by the system as a new user and the system interact and learn
more about each other, just as teachers learn about their students and custom-tailor their
suggestions.

Malcing the user interface extensible means letting the user add additional functionality
to the interface by defining new commands as combinations of existing commands. The key
is to be able to save and replay sequences of user actions. A particularly appealing
macro-definition capabi lity is one in which user actions are automatically saved in a trace
file. To create a macro, the user edits the trace file to identify the start and end of the macro,
replace literals with parameters, and names the macro. Several commercial applications,
such as Ashton-Tate's Full impact, have such capabilities; Olsen has developed a
particularly sophisticated prototype system [0LSE88).

Hiding complexity can allow new users to learn basic commands and to start doing
productive work without becoming bogged down with specifying options, learning
infrequently used specialized commands, or going through complicated start-up
procedures. On the other hand, powerful systems of necessity have many commands , often
with many variations. The solution to this quandary is to design the entire set of commands
so that it has a small "starter kit" of commands. Default values (current or initial settings)
that follow the law of least astonishment can often be useful to achieve this goal.

For example, a chart-malcing program should allow the user to request a pie chart,
specify some data, and immediately see the chart. If the user is dissatisfied with some
details of the chart layout , she shou.ld be able, say, to modify the radius of the pie, to change
the color or texture of each pie slice, to add annotations, to change the text face or font used
to display the data values, or to change the position of the data values displayed with each
pie sHoe. But the user should not be forced to specify e.ach of these explicitly when initially
creating the cbart.

Another design strategy is to make complicated and advanced commands available
only via keyboard commands or function keys. This approach keeps the menus smaller and
makes the system simpler and less intimidating. Alternatively, two or more sets of menus
can be provided, each with successively more commands included.

Yet another way to hide complexity is to use control keys to modify the meaning of
other commands. For instance, the Macintosh window manager normally activates the
window that the user selects and drags to a new position. The more advanced user can
reposition a window without activating it by holding down the control key (called the
command key on tbe Macintosh, in appropriate deference to computer-na.ive users). New
users simply are not told about this feature.

9.3 .6 Minimize Memorization

loterface designs sometimes force unnecessary memorization. Ln one design-drafting
system, objects are referred to by numeric rather than by alphanumeric names. To
appreciate what that means, we can imagine an interactive operating system in which file
names are numeric. The remembering and learning tool of mnemonic names would be
unavailable, forcing rote memorization or the use of auxiliary written aids. Of course,

0448

414 Dialogue Design

explicit picking of displayed objects or icons further eliminates the need for memorization.
It is imponant to invoke the user's recognition rather than recall memory whenever
possible.

In one interactive graphing system, a command such as " Plot years gross net"
produces a trend chart of yearly gross income and net income on a single set of axes. A
reasonable way to control the style of a line is to use a command such as "Linestyle net
dash" (to plot the net income with a dashed line). Unhappily, the actual command is of the
form " Linestyle 3 dash." The "3" refers to the third variable named in the most recent
"Plot" command-in this case, net. Since the most recent Plot command is not generally
on the screen, tbe user must remember the order of tbe parameters.

Some help systems completely obscure the work area, forcing the user to memorize the
context in order to interpret the help message. Then, once he understands the help
information, the user must remember it while returning to the context in which the error
occurred. Window managers solve this problem; help information is in one window, the
application is in another.

9.4 MODES AND SYNTAX

Loosely defined, a mode is a state or collection of states in which just a subset of all possible
user-interaction tasks can be perfonned. Examples of modes are these:

•

•

•

•

A state in which only r-... mmands applicable to the currently selected object are
available

A state in wl>ich a di ' \ogue box must be completed before another operation can be
performed

A state for making drawings in a document-preparation system in which separate
programs are Uf ,d to edit text, to make drawings, and to lay out the document

A state in whir.11 available commands are determined by the current data-tablet overlay .

Thus, modes prvvide a context within which the system and user operate.
There are two kinds of modes: harnlful ones and useful ones. A harmful mode, as

discussed by Tesler [TESL81] and by Smith and colleagues [SMIT82] , lasL ~or a period of
time, is not associated with any panicular object, is not visible to the user, and serves no
meaningful role. Harmful modes confuse users; users get stuck in them and cannot get out,
or users forget in which mode they are and attempt to invoke commands that are not
available, potentially creating errors. Modes that decrease user productivity are harmful.

On the other hand, useful modes narrow the choices of what to do next, so prompts and
help can be more specific and menus can be shorter and thus easier to traverse. A
weii-<Jrganized mode structure can reduce the burden on the user's memory and can help to
organize knowledge about the interface into categories based on the mode. Useful modes
increase user productivity.

Useful modes clearly indicate the current mode, provide feedback to show what
commands are av-itilable, and include an easy, obvious, and fast means for exiting from the
mode. Window managers provide highly visible modes, since each window represents a
different mode; mode switching is effected by deactivating one window and activating
another.

0449

9.4 Modes and Syntax 41 5

Users can be made .aware of short-lived modes by a suue of heightened muscle tension
while in the mode. The ·'button-down-dynamic feedback-button-up" interaction tech­
niques discussed in Chapter 8 make the user aware of the mode through the muscle tension
involved in holding down the mouse button [BUXT86].

Command-language syntax has a major influence on the mode structure of 11 user
interface. The traditional prefix syntax of Command, parameter I, ... , parameter n locks
the user into a mode as soon as the command is specified: Only parameters can be entered,
possibly in a required order. Mechanisms for error correction (Section 9.3.4) are especially
important here. because otherwise the user who erroneously selects a command must
continue the potentially lengthy parameter-specification process.

One of the difficulties of prefix syntax is solved by u process called factorillg or
orthogo~~alizatioll. Commands arc provided for setting each of the parameters to a current
V'.tlue; parameters may also have an initial (default) value. Consider, for instance, the
following unfactored command syntax, where an initial capital letter indicates a command,
and lowercase letters indicate parameters:

point point tine_style line_lhiokness line_intensity

We can factor out the attribute specifications into either three sepa.rate commands or one
overall attribute-setting command. Hence, the user would go through the sequence

SeLattributes

OrJwjine

attribute_ values

point point

{Only if the current anributc values
are inappropriate}

We can factor this sequence further by introducing the concept of a currem poilll, which is
selected by the user before she invokes the Draw _line command:

Seuttributcs

SelecLpoint
Select_point
Orowjine

attribute_ wlucs

point
point

{Only if the current attribute v-.tlues
are innppropriate}

{Selcel stan point}
{Select end point}
{Or.IW_line ha.~ no paramet.crs­
atl have been factored out}

Completely par.uneterless commands are not necessarily desirable. Here, for example,
specifying points and then telling the system to connect them by a line eliminates the ability
to do rubberband line drawing.

What about applications in which the user tends to perform the same command several
times in sequence, each time on different objects? This situation suggests using a
command-mode syntax in which the command is entered once, followed by an arbitrary
number of parameter sets for the command. For instance, the syntax to delete objects could
be as follows:

Delete_ object
object
object
object

any command

{Establish Oelete_object command mode}

{E5tablish new command mode}

0450

416 Dialogue Design

Delete_object establishes a deletion mode so that each object selected thereafter is deleted ,
until any other command is selected. Note that command mode implies a prefix syntax.

If we factor out the object parameter from the command whose syntax is

Delete_object object

we introduce the concept of a curremly selected object, or CSO. We also need a new
command, Select_object, to create a mode in which there is a CSO; this CSO can then be
operated on by the Delete_object command:

Select_ object

Delete_object

object {Use if no object is selected,
or if another CSO is desired}
{No parameter--the object
has been factored out}

The parameter factoring has created a postfix syntax: The object is specified first by
selection, and then the command is given. This is an especially attractive technique if the
user is working with a pointing device , because we have a natural tendency to point at
something before saying what to do with it; the converse order is much less natural
[SUKA90).

The currently selected object is a useful concept, because the user can perform a series
of operations on one object, and then move on to another. Furthermore, the Select_object
command usually can be made implicit: The user simply points at the object to be selected
and clicks a button. This means that factoring does not need to create extra st.eps.

Recall that command mode has a prefix syntax. Can its advantages be retained if a
postfix syntax is preferred? The answer is yes, if a Repeat command, to repeat the last
non select command, can be made available easily, say by a button-down on a multibuuon
mouse. lf so, the user action sequence to delete several objects could be

Select_object
Delete_object
Select_ object
Repeat
Select_object
Repeat

object

object

object

{Establish a CSO}
{Delete the CSO}
{A new CSO}
{Single button depression to delete}
{A new CSO}
{Single bunon depression to delete}

Compare this to the action sequence that would be used with a true command mode:

Delcte_object
object
object
object

As.~uming that SelecLobject requires just a point and click, the extra steps needed to use
RepeaUast_operation with an object mode, as opposed to using a command mode, are a
single bunon-push per deletion.

0451

9.4 Modes and Syntax 41 7

Another sequencing altem:uive is the arbitrary free-form syntax (noftx syntax). which
penn its intennixing of different syntaxes. Whether the user specifies an object and then an
action or an action and then an object. the action is carried out on the object. For example,

Set_nuributes
Select_object
Sct_onributes
Select_object
Select_ object
Set_attributes

auribute wlues
object I
auributc wlues
object2
object3
attribute wlues

{Attributes applied to objccll}

{Auributes applied to object2}

{Anributes applied to object3}

Note that this syntactic structure cannot assume a currently selected object; if it did. then
the second SeLattributes command would immediately operate on object I , rather than on
object2.

Command and currently selected-object modes can be used with a free-form syntax if a
Do_it command is added, so the user can tell the system to carry out the current command
on the currently selected object. This command does, however, add another user action, as
the following sequence illustrates:

Select_ object
Set_anributes
Do..it
Copy
Sclect_object
Do ..it
Do _it

object
anribute values

object

{Establish a CSO}
{Establish a current command}
{CSO rcoeives new attributes}
{Establish a new current command}
{Establish a new CSO}
{Copy CSO: copy is now the CSO}
{CSO copied; new copy is the CSO}

An ahcmalive to this free-fonn syntax is a mode-sensiti1~ syntax. which differentiates
between the two sequences to make the SeLattributes command mode-sensitive:

and

Set_ottributes
Select_ object

Select_ object
Set_anributes

anribute values
object

object
attribute values

{No CSO at this point}

{Establish a CSO}

Mode-sensitivity is a special case of a more general context-sensitivity, by which the efl'ect
of a command depends on the current context. In the first of the preceding sequences,
where there is no CSO when SeLattributes is used , the attribute values become the global
default values that are applied when new objects arc created. In the second sequence, where
there is a CSO, t.he auribute values apply to the CSO and do not change the global defau lt
values. That is, the existence or nonexistence of a CSO, which is a mode. detem1ines the
effect of the command. This technique creates a more powerful set of commands without
adding any explicit new commands; hO'>\'Cver, the user must have mode feedback to know
bow the command will behave. Also. some users are confused by this approach. because it
seems inconsistent until the rules are understood.

0452

4 18 Dialogue Design

The general concept of factoring is important for several reasons. First, new users do
not need to be concerned with factored parameters that have default values, which improves
learning speed. Values for factored parameters do not need to be specified unless the current
values are unacceptable, which improves speed of use. Factoring out the object from the
command creates the concept of a CSO, a natural one for interactive graphics with its
pointing devices. Finally, factoring reduces or eliminates the short-term modes created by
prefix commands with multiple paro~meters. Factoring has been incorporated into a
user-interface design tool so that the designer can request that specific parameters be
factored; the necessary auxiliary command (SelecLobject) is introduced automatically
(FOLE891.

There are several variations on the CSO concept. First, when an object is created, it
does not need to become the CSO if there is already a CSO. Similarly, when the CSO is
deleted. some other object (the most recent CSO or an object close to the CSO) can become
the new CSO. In addition , a current ly selected set (CSS) made of up several selected objects
can be used.

9.5 VISUAL DESIGN

The visual design of a user-computer interface affects both the user's initial impression of
the interface and the system's longer-term usefulness. Visual design comprises all the
graphic element~ of an interface, including overall screen layout , menu and form design , use
of color, information codings, and placement of individual units of information with
respect to one another. Good visual design strives for clarity. consistency, and attractive
appearance.

9.5.1 Visual Clarity

If the meaning of an image is readily apparent to the viewer, we have visual clarity. An
important wJy to achieve visual clarity is to use the visual organization of information to
reinforce and emphasize the underlying logical organization. There are just a few basic
visual-organization rules for accomplishing this end. Their use can have a major innuence ,
as some of the examples will show. These rules , which have been used by graphic designers
for centuries (MARC80], were codified by the Gestalt ps}dlologist Wertheimer [WERT39]
in the 1930s. They describe how a viewer organizes individual visual stimuli into larger
overall forms (hence the term GBtalt. literally "shape" or " form," which denotes an
emphasis on the whole, rather than on the constituent parts).

The visual-organization rules concern simi larity, proximity, closure, and good
continuation. The rule of similarity states that two visual stimuli that have a common
property are seen as belonging together. Likewise, the rule of proximity states that two
visual stimuli that are close to each other are seen as belonging together. The rule of closure
says that, if a set of stimuli almost encloses an area or oould be interpreted as enclosing an
area, the viewer sees the area. The gQOd-continumion rule states that , given a juncture of
lines, the viewer sees as continuous those lines that are smoothly connected.

0453

9 .5

••••• ••••• ••••• ••••• •••••
(a)

•••••
E!E!E!E!El

•••••
E!E!E!E!El

•••••
(d)

•••••
• ••••
• ••••
• ••••
• ••••

(b)

•••••
E!E!E!E!El

•••••
E!E!E!E!El

• ••••
(e)

Visual Design

•
(c)

• ••• • • • • • •••••
(f)

419

Fig. 9.15 Gestalt rules. ln (a). the squares are undifferentiated. In (b), proximity induces
a horizontal grouping; in (c), it induces a vertical grouping. In (d), similarity induces a
horizontal grouping, which is further reinforced in (e) by a combination of proximity and
similarity. In (f), closure induces a square of dots, even though two dots are missing.

Figures 9. 15 and 9.16 give examples of these rules and also show how some of them
can be combined to reinforce one another. Figure 9.17 shows a form before and after the
visual organization rules have been applied. In part (a), everything is near to everything
else, so the underlying logical groupings arc unclear. Similuriry (here, in the sense of being
contained in a box) and proximity bind together the paucrns and the choice buuons in (b).
Closure completes the boxes. which arc broken by the label.

(a)

(d)

(b)

D
D

(e)

(c)

D
0

(f)

Fig. 9 .16 More Gestalt rules. The rwo intersecting lines in (a) could be interpreted as
shown in either (b) or (c). Good continuation favors (b). In a more applied context, the
two overlapping windows of (d) could be interpreted as shown in either (e) or (f). Good
continuation favors (e).

0454

4 20 Dialogue Design

Area Pattern ®Automatic 0 tnuls lble

• • • DO EI DDI!i!llllffll!3 · 0 · ~
Border Pattern ® Automatic 0 lnulslble

• • • IIl 0 El DD IIi! l!fHB l8l! • ~ • I:S3
Border Weight I

(a)

Area Pattern
® Rutomotlc 0 lnulslble

• • • CJ 0 E1 011 1111 1111 !fH8 • 0 • ~
Border Pa ttern

® Rutomollc 0 lnulslble

• • •o o e~ DIIIIlllilllllll!!ii • ~ • I:Sl

[E Border Weight I
I I I I

(b)

Fig. 9 .17 (a) Form laid out with little attention to visual design. (b) Form created using
visual grouping and closure to reinforce the logical relationships among the visual
elements of the form. (Screen shots @ 1983- 1989 Microsoft Corporation. Reprinted
with permission from Microsoft Corporation.)

The rules are applied to improve menu organization in Fig. 9.18. 11le leftmost
organization is visually unstructured and almost conceals its logical organization. 11le
rightmost menu uses proximity to form groups and similarity of indentation to show the
two-level logical structure. In Fig. 9. 19, the similarity rule has been used in two different
ways (similar typographical style, similar level of indentation) to reinforce logical
organization.

ROTATE X
ROTATEY
ROTATEZ
TRANSLATE X
TRANSLATEY
TRANSLATEZ

ROTATE X
ROTATEY
ROTATEZ

TRANSLATE X
TRANSLATEY
TRANSLATEZ

ROTATE
X
y
z

TRANSLATE
X
y
z

Fig. 9.18 Three designs for the same menu, showing application of visual design
techniques.

0455

9 .5 Visual Design 421

A MAJOR CATEGORY
A LESS MAJOR CATEGORY
AN EVEN LESS MAJOR CATEGORY
AN EVEN LESS MAJOR CATEGORY
THE LEAST MAJOR CATEGORY
THE LEAST MAJOR CATEGORY
AN EVEN LESS MAJOR CATEGORY

(a)

A MAJOR CATEGORY
A LESS MAJOR CATEGORY
An even less major category
An even less major category
The leas t major category
The least major category

An even less major category
(b)

A MAJOR CATEGORY
A LESS MAJOR CATEGORY

An even less major category
An even less major category

The least major category
The least major category

An even less major category
(c)

Fig. 9.19 Three designs presenting the same information. (a) The design uses no
visual reinforcement. (b) The design uses a hierarchy of typographical styles (all caps
boldface, all caps, caps and lowercase. smaller font caps and lowercase) to bond
together like elements by simila rity. (c) The design adds indentation, another type of
similarity, furthe r to bond together like elements.

When ignored or misused, the organization rules can give false visual cues and can
make the viewer infer the wrong logical organization. Figure 9.20 gives an example of false
visual cues and shows how to correct them with more vertical spacing and less horizontal
spacing. Figure 9.21 (a) shows a similar situation.

Recall that the objective of using these principles is to achieve visual clarity by
reinforcing logical relationships. Other objectives in placing information are to minimize the
eye movements necessary as the user acquires the various units of information required for a
task, and to minimize the hand movements required to move a cursor between the parts of
the screen that must be accessed for a task. These objectives may be contr.tdktory; the
designer's task is to find the best solution.

0456

422 Dialogue Design

ATE BAT BET

BITE CAT CUP

DOG EAST EASY

ATE BAT BET FAR FAT FITS

BITE CAT CUP
DOG EAST EASY GET GOT GUT
FAR FAT FITS
GET GOT GUT
HAT HIGH HIT HAT HIGH HIT

(a) (b)

Fig. 9 .20 In (a). the list has a horizontal logical (alphabetical) organization, but a vertical
visual organization is induced by the strong proximity relationship. In (b), the alphabeti­
cal organization is visually reinforced.

9.5.2 Visual Codings

In interface design , coding means creating visual distinctions among several different types
of objects. Many different coding techniques are available: color. shape, size or length,
1ypeface, oricnlat ion, intensity. texlure, line width. and line style are all commonly used in
computer graphics. A fundamental issue with any coding technique is to delcrmine how
many different categories a particular technique can encode. As more code values are
introduced, the possibility of the viewer confusing one value with another increases. The
use of a legend, indicating the meaning of each code value, can decrease the error rate.

Many experiments have been conducted to determine how many code values in
differenl coding rechniques can be used and still allow almost error-free code recognition
(without a legend). For 95-percent error-free performance, 10 colors, 6 area sizes, 6
lengths, 4 intensities, 24 angles. and 15 geometric shapes are the most that can be used
(VANC72j. Of course, the code values must be appropriately spaced; see [VANC72, pp.
70-71 j for a list of appropriate colors.

If it is important for the viewer to distinguish among different types of information,
then it is appropriate to use redundant coding: the use of two different codes to represent the
same information. Pan (c) of Fig. 9.19 is redundantly coded. Figure 9.22 shows a triply
redundant code. Color is normally used redundantly with some other code, to accommo­
date color-blind users.

Before we can select a code, we must know how many code levels are needed. It is also
important to understand whether the information being coded is nominative , ordinal, or
ratio. NominaJil'l! information simply designates, or names, different types of things , such
as different types of planes or ships. Nominative information has no notion of greater than
or less than. Ordinal information is ordered and has a greater than and less than relation.
But no metric is defined on ordinal information: there is no notion of varying distances

0457

9.6 Visual Design 423

Align Objects:
@Left SldOS 0 L/ A Centers 0 Rign t Sldll
O Tops 0 TID centers ® Uolloms

(a)

Align Objects:
Lett Sides 0 LIR Centers 0 Right Sldu

0 Tops O TIB Centers ®Boll oms

(b)

Align Obje~ts:
left Sides OliR Unters 0 Righl Sides

O Top• 0 T/8 Centers ®Boll om•

(c)

Align Objetll: I O Tops
0 Til Centers
®Bolloms

@Left Sid .. 0 LIR tenters 0 Righi Sldu

(d)

Fig. 9 .21 A dialogue box for aligning objects. In (a}, the visual cues group the buttons
into three groups of two, rather than the proper two groups of three. In (b). the vertical
spacing has been increased and the visual cues are correct. In (c), a horizontal rule
instead of vertical spacing is used to achieve the same effect in less total space. In (d),
the options are rearranged and arrows are used to emphasize the spatial correspon­
dence of each button set to the associated meanings. (Copyright 1988 Claris Corpora­
tion. All rights reserved.)

between categories. Ratio information has such a metric; examples are temperature, height,
weight, and quantity.

For a fixed number of nominati\11:-codc values, color is distinguished considerably
more accurately than arc shape and size, and somewhat more accurately than is intensity
[CHRI75]. T his suggests that color should be used for coding. but recall that 6 percem to 8

6 0
Fig. 9 .22 A triply redundant code using line thickness. geometric shape, and interior
fill pattern. Any one of the three codes is sufficient to distinguish between the three
code values.

0458

424 Dialogue Design

percent of males have at least a mild fonn of color blindness. As discussed in Chapter 13,
this need not be a particular problem, especially if redundant coding is used.

Codes used for displaying nominative information should be devoid of any ordering, so
that the vie\1.-er cannot infer an importance order in the information. Different shapes (such
as the squares, circles. diamonds, etc. used for data points when several variables are
plotted on the same set of aJtes), line styles. typefaces, and cross-hatching patterns are
appropriate nominative codes. HO\Ioevef, using many different typefaces creates a confusing
image. A generally accepted guideline is that no more than t~ or three faces should be
used in a single image. AJso, differing densities of cross-hatching patterns can create an
apparent ordering (Fig. 9. 17).

Codes used to display ordinal information can, but need not. v-.uy continuously, but
must at least have an obvious ordering. Line styles and area-fill patterns with varying
densities can be used, as can text size (many displays provide onJy a few text sizes,
making use of this variable for ratio coding difficult) . For both ratio and ordinal infor­
mation. the apparent visual weight of the codes should increase as the values of the infor­
mation being coded increase. In Fig. 9. 19, ordinal information is being coded, and the
typographical hierarchy has a visual weight that increases with the importance of the
category.

Ratio infonnation, such as size, length , or orientation. must be presented with a code
that can vary continuously. Cleveland and McGill studied the use of several different
continuously varying codes to display ratio infonnation, by showing experimental subjects
graphs of the same infonnation encoded in different ways. They found the following
rankings, where I is the most accurately recognized coding [CLEV84; CLEV85j:

I . Position along a common scale

2. Position on identical. nonaligned scales

3. Length

4. Angle between two lines, and line slope

5. Area

6. Volume, density , and color saturation

7. Color hue.

Similarly, Ware and Beatty [WARE88] found that color is effective in grouping objects, but
is not effective a.~ a ratio code.

If color were used both to group menu items and to code infonnation in the ~rk area
(say. to distinguish layers on a VLSI chip or geographic features on a map), then the user
might incorrectly conclude that the red commands in the menu could be applied to only the
red elements in the ~rk area. Similarly. a color code might . by using some bright colors
and some dark colors, inadvertently imply two logical groupings, one of brighter objects,
the other of darker objects. The similarity rule discussed earlier is really at the heart of
coding. All like information should be coded with the same code value; all unlike
information should have some other code v-Jiue.

0459

9.5 Visual Design 425

Coding of quantitative data is just a part of the more general field of displaying
quantitative data. When data presentations-such as bar, pie , and trend charts-are being
designed, many further considerations become important. These arc beyond the scope of
this text, but are important enough that you should consult key references. The lavishly
illustrated books by Bertin [BERT81; BERT83] and Thfte [TUFT83] discuss how to convey
quantitative data effectively. Bertin systematically analyzes the visual codes, shows how
they can be used effectively, and categorizes different presentation schemes. Tufte argues
for minimality in decorative accoutrements to charts and graphs, and for emphasis on the
data being conveyed. He also traces the fascinating history of data presentation since 1700.
Schmid provides additional guidance [SCHM84].

Macldnlay incorporated some of Bertin 's ideas, along with Cleveland and McGill's
results into APT, an expert system that automatically creates data presentations
[MACK86]. Color Plate 1.24 is an example from APT. We expect to see more
developments in this promising area.

Closely related to coding arc means for calling the viewer's attention to a particular
piece of information, such as an error or wc1rning message, the currently selected object,
the current command, the failed piece of equipment, or the planes on a collision course.
Some attention-getting techniques available are a unique color or shape, a blinking or pul­
sating or rotating cursor, and reverse video. A unique color was found to be more
effective for attracting the viewer's attention than was a unique shape, size, or intensity
[CHRI75].

Attention-getting mechanisms can be misused. A pulsating cursor (that is, a cursor
whose size continuously varies between large and small) docs indeed attract the user's
attention. But it also tends to hold attention. When the user is looking at something else on
the screen, the pulsating cursor, even though seen only peripherally, is disiTacting rather
than helpful.

Coding of qualitative information is another important research area for user interface
design. Work by Feiner and Seligmann (FE1N85; SELI89] explores the automated design of
pictures that explain how to perform actions in 30 environments. Based on input about the
information the pictures arc supposed to communicate and who will be viewing them, a
rule-based system determines the objects to include, their properties and rendering style,
and the virtual camera parameters that are input to a 30 graphics system that draws the
pictures. Color Plate 1.25 is an example of a picture generated automatically for a
maintenance and repair application.

9 .5 .3 Visual Consistency

Consistent application of visual-organization rules and codings, and consistent combination
of visual elements into higher-level graphic objects and icons, constitute another important
element of visual design. Visual consistency is , of course, part of the overall theme of
consistency discussed in Section 9. 3. I .

Visual elemems can be thought of as letters in a graphic alphabet, to be combined into
"words" whose meanings should be obvious to the viewer. For instance, dialogue boxes for
Macintosh applications arc constructed from a small graphic alphabet. Figures 8.16, 8.32,

0460

426 Dialogue Design

®
0
0

I OK I
Cancel

1 1i

0 11

1 II

Fig. 9 .23 The graphic alphabet used in many Macintosh applications. The square
choice boxes indicate alternatives, of w hich several may be selected at once. The round
choice circles, called "radio buttons," indicate mutually exclusive alternatives; only one
may be selected. The rounded-corner rectangles indicate actions that can be selected
with the mouse. In addition, the action surrounded by the bold border can be selected
with the return key on the keyboard. The rectangles indicate data fl81ds that can be
edited. (~ Apple Computer, Inc.)

9.14, 9.17, and 9.21 are examples of these dialogue boxes, and Fig. 9.23 shows their
graphic alphabeL Similarly, Fig. 9.24 shows the use of a small graphic alphabet to build
icons, and Fig. 9.25 shows a single-element graphic alphabet.

Consistency must be maintained among as well as within single images; a consistent set
of rules must be applied from one image to another. In coding, for ClUU11ple. it is
unacceptable for the meaning of dashed lines to change from one part of an application to
another. For placement consistency, keep the same information in the same relative position
from one image or screen to the next, so that the user can locate information more quickly.

9.5.4 Layout Principles

Individual elements of a screen not only must be carefully designed, but also, to work
together, must all be well placed in an overall contexL Three basic layout rules are balance,

F"lle Program

Paint
file

~

~=
Painting

(a)

~
Text
file

~ .
Paint Word·processing

program program
(b)

~ - lad : !0: -"""" :o::
Text Chart Drawing

(on a grid)

~ ~ .
Chart Drawing

file file

~ ~
Charting Drawing
program program

Fig. 9.24 (a) A graphics alphabet. (b) Icons formed by combining elements of the
alphabet.

0461

9 .5

Move Resize Bring
to top

Send to
bottom

Visual Design 427

DO
DO
lite the
screen

Untilethe
screen

Fig. 9 .25 Several different icons, all created from a single shape representing a
window.

gridding, and proportion. Figure 9.26 shows two different designs for the same screen.
Design (a) is balanced, nicely framing the center and drawing the eye to this area. Design
(b) is unbalanced, and unnecessarily draws the eye to the right side of the area. Design (b)
also has a slight irregularity in the upper right comer: the base lines of the scroll bar arrow
and the pointer icon are not quite aligned. The eye is needlessly drawn to such meaningless
discontinuities.

Figure 9.27 shows the benefits of using empty space between different areas, and also
illustrates the concept of gridding; in cases (b) and (c), the sides of the three areas are all
aligned on a grid, so there is a neatness, an aesthetic appeal, lacking in (a) and (d). Figure
9.28 further emphasizes the detrimental effects of not using a grid. [FEIN88] discusses an
expert system that generates and uses design grids.

Proportion deals with the size of rectangular areas that are laid out on a grid. Certain
ratios of the lengths of a rectangle 's two sides are more aesthetically pleasing than are
others, and have been used since Greco-Roman times. The ratios are those of the square,
which is 1:1; of the square root, 1:1.414; of the golden rectangle, 1:1.618; and of the
double square, I :2. The double square is especially useful, because two horizontal double
squares can be placed next to a vertical double square to ma.intain a grid. These and other
design rules are discussed in [MARCSO; MARC84; PARK88].

(a) (b)

Fig. 9 .26 Two alternative screen designs. Design (a) is balanced; design (b) emphasiz­
es the right side. (Copyright 1988 Ctaris Corporation. All rights reserved.)

0462

428 Dialogue Design

....
MiOih
11110
our

= .,
CUM!

. CRN, .. ac.-

(a) (b)

(C) (d)

Fig. 9.27 Four screen designs. (a) A typical initial design. (b) Border area has been
added. (c) The border has been strengthened to separate the three areas funher. (d) The
deleterious effect of not aligning elements on a grid is obvious.

Fig. 9 .28 Removing the box around the menu area creates the meaningless but
anention-getting ragged-right border.

0463

9 .6 The Design M ethodology 429

9 .6 THE DESIGN METHODOLOGY

Many ideas have been presented in Chapters 8 and 9. How can a designer integrate them
and work with them in a structured way? Although user-interface design is still in part an art
rather than a science, we can at least suggest an organized approach to the design process.
In this section, we give an overview of the key elements of such a methodology.

The first step in designing an interface is to decide what the inte.rface is meant to
accomplish. Although at first this statement may seem trite, poor requirements definitions
have doomed numerous user-interface design projects at an early ~-.age. Uoderstanding user
requirements can be accomplished in part by studying how the problem under consideration
is currently solved. Another successful approach is for the designer to learn how to perform
the tasks in question. The objective is to understand what prospective users currently do,
and, more important, why they do it.

We do not mean to imply that the interface should exactly mimic current methods. The
reason for understanding why prospective users work as they do is often to develop new and
better tools. We should recognize, however, that it is sometimes better to mimic old ways to
avoid massive retraining or to 3\"0id morale problems with an existing workforce. A typical
strategy is first to mimic existing methods, and also to make new methods 3\"ailable; over
time, users can be trained in the new or augmented capabilities.

User characteristics must also be identified. What skills and knowledge do the users
have? Are the users knowledgable about their work but computer-naive? Are they
touch-typists? Will the users typically be eager to learn the system, or will they be
reluctant? Will usage be sporadic or regular, full-time or part-time'! It is important when
assessing the user population to remember that what you, the system designer, would want
or like is not necessarily the same as what those for whom the system is being designed
might want. Your users are not necessarily created in }'OUr own image.

When the requirements have been worked out, a top-down design is next completed by
working t.hrough the design levels discussed in Section 9.1: conceptual, functional.
sequencing, and binding. The rationale for top-down design of user interfaces is that it is
best to work out global design issues before dealing with detailed, low-level issues.

The conceptual design is developed first. Ideally, several alternative conceptual designs
are developed and ewluated on the basis of how well they wil l allow users to carry out the
tasks identified in the requirements definition. High-frequency tasks should be especially
straightforward. Simplicity and generality are other criteria appropriate for the designs.

The functional design focuses on the commands and what they do. Attention must be
paid to the information eacb command requires, to the effectS of each command, to the new
or modified information presented to the user when the command is invoked, and to
possible error conditions. Figure 9.29 shows the focus of functional design. Notice the
notations about errors being "engineered out" by subsequent lower-level design decisions.
One objective of the functional design is to minimize the number of possible errors, by
defining the individual commands appropriately.

The sequencing and binding designs, wbicb together define the form of the interface,
are best developed together as a whole. rather than separa.tely. The design invoi\"CS first
selecting an appropriate set of dialogue styles, and then applying these styles to the specific

0464

430 Dialogue Design

Function: AdcLsymboLinstance

Parameters: SymboLidentifier
SymboLposition

Description: An instance of the symbol is created and is added to the figure at the
desired position. The instance becomes the currently selected object
(CSO). The previous CSO, if any, is no longer selected.

Feedback: The instance is seen on the display and is highlighted because it is
selected. (If there was a CSO, it is no longer highlighted.)

Errors: I . The SymboLidentifier is unknown (engineered out by use of a menu
selection to choose symbol).

2. The SymboLposition is outside the viewpon (engineered out by
constraining the positioning device feedback to be within the
viewpon).

Fig. 9.29 A typical functional specifiCation for a command. The annotations with the
errors are added after interaction techniques are identified as part of designing the form
of the interface.

functionality. Sequences of screens, sometimes called storyboards, can be used to define
the visual and some of the temporal aspects of these designs. State diagrams, as discussed
in Section 9 .3. 1 and in Chapter 8, are also helpful in detailing user-action sequences.

The interface form can be defined by a style guide, a written codification of many oflhe
elements of user-interface form. The most common motivation for developing a style guide
is to ensure a "look and feel " consistency within and among applications. Some elements
of the style guide can be implemented in libraries of interaction techniques (Chapter 10);
other elements must be accommodated by the designers and programmers. Many style
guides exist , among them guides for the Macintosh [APPL87), Open Software Founda­
tion's OSF/MOTIF [OPEN89), NASA's Transportable Application Executive [BLES88b),
and DEC's XUI [010189].

The whole design process is greatly aided by interleaving design with user-interface
prototyping. A user-interface prototype is a quickly created version of some or all of
the final interface. often with very limited functionality. The emphasis is on speedy
implementation and speedy modifiability. At the start, some design questions will seem to
be unanswerable; once a prototype is available, however, the answers may become
apparent. Prototyping is often superior to using a design document , since it gi-.oes users a
more specific frame of reference, within which they can talk about their needs, likes, and
dislikes. HyperCard and Smalltalk are used extensively for rapid prototyping, as are some
of the software tools discussed in Section 10.6.

Prototyping can begin as soon as a conceptual design is worked out, and the elements
ofrhe functional design and dialogue style can be developed concurrently. It is imponantto

0465

Exercises 431

follow the Bauhaus dictum,formfollowsfunction, lest the user-interface style dictate the
capabilities of the overall system. As soon as even some modest elements of the interface
are developed, potential users should be exposed to them, to elicit suggestions for
improvements to the interface. As modifications are made and as the prototype becomes
more comprehensive, users should again work with tbe system. This iterative cycle has
come to be viewed as essential to the development of high-quality user-interface software.
Further discussion of prototyping and iterative development can be found in [ALAV84;
HART89).

EXERCISES

9.1 Determine how several commands in an interactive graphics application program with which
you are familiar could be made into direct-manipulation operations.

9.2 Examine several interactive graphics application programs and characterize their dialogue
style. List the ways in which the inte.rfaces do and do not follow the design guidelines discussed in this
chapter. Identify the design le\'el for each point you list; for instance, consistent use of color is at the
hardware-binding le\'el.

9.3 The conceptual model for many v.~rd processors is panially based on an analogy with
typewriters. List ways in which this analogy might create difficulties for a user who attempts to carry it
further than is realistic.

9.4 Analyze a user interface to determine what methods, if any, are provided for error correction.
Categorize the methods according to the four types discussed in Sect.ioo 9.3.4.

9.5 What is the form of the state diagram representing a completely modeless interface?

9 .6 Design and implement a simple graphics editor with the following functionality: create, delete,
and move lines; move endpoints of lines; change the line style (dash, dotted , solid) of existing lines;
set the line-style mode for lines that have not yet been created. Design this system to support two or
more of the following five syntaxes, and include a command to switch from one syntax to another:
object mode, command mode, object mode with Repeat.JasLoperation operation, free-form syntax,
and free-form syntax with modes and a Do_it command.

9 .7 Conduct either informal or formal controlled experiments with each of the syntaxes
implemented in Exercise 9.6. Test ease of learning and speed of use. Give your users five predefined
tasks to perform. Identify tasks that will be faster to perform with one syntax than with the others.

9.8 Study three different interactive graphics application programs.
a. Identify the classes of modes and synta~es used in each, using the definitions in Section 9.4.

A single application may have several types of modes or syntaxes. lf so, are there clear
distinctions showing which to use when?

b. Identify the factoring, if any, that has occurred. Are there additional possibilities for
factoring? Do you think the user interface would be improved by application of the
factoring?

9.9 Consider the three window organizations shown in Fig. 9.30. Count the number of mouse
movements and mouse-button depressions needed to move the lower-right comer. In each case,
assume that the cursor startS in the center of the window and must be returned to the center of the
wi ndow. Counting mouse movements as 1.1 seconds and button depressions as 0.2 seconds, how
long does each window organization take? Does this result mean that one organization is better than
the others?

0466

432 Dialogue Design

Name Name

- Window

Window ~

-
r 1 r l

Wllldow commands .••

(a) (b)

pop-up
menu f-

Name
of f-

commands

Window

(c)

Fig. 9.30 Three means to invoke window commands. In (a) (Macintosh style), regions
of the window dressing are used. To resize. the user selects and drags the lower-right
corner. In (b), the commands are in the command area at the bottom of the screen. To
resize. the user selects a command, and then drags the lower-right corner of the
window. In (c). a pop-up menu appears at the cursor when a mouse button is pressed.
To resize, the user selects the command from the pop-up menu. and drags the
lower-right corner of the w indow.

9.10 Implement a single-le\'el Undo command for an interootive graphics application program)'011

have written. Decide wbich of several implementation Strategies)'011 will use. and justify)'OUr choice.
The strategies include (I) after each command, make a complete copy of the application data
structure, state variables, and so on; (2) save a record of what was changed in the application data
structure; (3) save all the commands since logon, replay them to effect undo; (4) save the application
data structure every 10 minutes, plus save all commands sinoe the last such save operation; and (5)
save, for each user command, the one or several commands needed to undo the user command. Would
your choice differ for a multi-level Undo command?

9.11 Examine an interacti...e graphics application. How many commands does it have? List the
''staner kit" of commands with which a new user can do a simple piece of work. How big is the
starter kit with respect to the overall command set? Li.sJ the WII)'S in which defaults or other methods
have been used to minimize the complexity of the Staner kit. In your opinion. does the system have a
good sta11er kit?

0467

Exercises 433

9.12 Explore other ways of redesigning Fig. 9. 17{a) to reinforce the logical relationships of the
visual elements.

9.13 Study the dialogue-box design of an application. Which methods are used to reinforce logical
structure with visual structure? Can you'further improve the design?

9.14 Figure 9.6 shows 12 icons that represent Macintosh programs: (a) disk copy utility, {b) resource
mover, {c) icon editor, (d) menu editor, (e) alert/dialog editor, (f) edit program, (g) boot configure,
(h) switcher. (i} examine file, (j) MacWrite, (lc) MacDraw, and (l) MacPaint. Some of the icons
indicate the associated program better than others do.

a. Design an alternative set of icons to represent the 12 programs.
b. Show the set of icons to 10 programmers who are not familiar with the Macintosh , and ask

them to guess what each icon means. Tabulate the results.
c. Tell 10 programmers who are not familiar with the Macintosh what each icon means. Give

them 2 minutes to study the icons. Ten minutes later, show them the icons again , and ask
them what the icons mean. Tabulate the results.

d. Repeat parts (b) and (c) for the icons in the figure. What conclusions can)'OU draw from
your data?

9.15 Analyze the visual design of a graphics application. What is the visual alphabet? What visual
codings are used? What visual hierarchies are established? Redesign some of the visual cues to
emphasize funher the underlying logical relationships.

9.16 List 10 specific examples of codings in computer graphics applications you have seen. Is the
coded information nominative , ordinal , or ratio? Are the code values appropriate to the information?
Are there any false codings?

9.17 Examine three different window managers. What visual code indicates which window is the
" listener" -{hat is, the window to whkh keyboard input is directed? What visual code indicates
which processes are active, as opposed to blocked? What othe.r visual codings are used?

0468

10
User

Interface
Software

The first two chapters on user interfaces, Chapters 8 and 9, concentrated on the e)(ternal
characteristics of user~mputer interfaces. Here, we C)(amine the software components,
beyond the basic graphics packages already discussed, that are used in implementing
interfaces. Figure I 0.1 shows the various levels of user-interface software, and suggests the
roles for each. The figure shows that the application program has access to all software
levels; programmers can e"ploit the services provided by each level, albeit with care,
because calls made to one level may affect the behavior of another level. The operating­
system level is not discussed in this te)(t, and the basics of graphics subroutine packages
have already been described. Some input features of device-independent graphics subrou­
tine packages a.re compared and evaluated in Section I 0.1. Window-management systems,
discussed in Sections 10.2 to 10.4, manage the resources of screen space and interaction
devices so that several applications or multiple views of the same application can share the
display. Some window-management systems have an integral graphics subroutine package
that provides device-independent abstractions, whereas others simply pass graphics calls
through to the underlying graphics hardware or software.

The interaction techniques discussed in Chapter 8 are useful in many applications, but
require careful development to provide a pleasing look and feel. Interaction-technique
toolkits, treated in Section 10.5, are built on window-management systems to give the
application developer a common set of techniques. The final layer, the user-interface
management system (UlMS), discussed in Section 10.6, provides additional generic
user-interface support at the sequencing level of design (Section 9.1). UIMSs speed up
implementation of a user interface, and facilitate making rapid changes during the
interface-debugging process discussed in Section 9 .6.

435

0469

436 User Interface Software

••• Ml

......
Fig. 10.1 levels of user-interface software. The application program has access to
the operating system, window-manager system and graphics package. toolkit. and
user-interface management system (UIMS). The interactive design tools allow nonpro­
grammers to design windows. menus, dialogue boxes. and dialogue sequences.

10.1 BASIC INTERACTION-HANDLING MODELS

In this section, we elaborate on the interaction-handling capabilities of contemporary
device-independent graphics subroutine packages, as introduced in Chapters 2 (SRGP) and
7 (SPHIGS). The sampling and event-driven processing in these two packages is derived
from GKS (ANSJ85b; ENDE86) and PHIGS [ANS188], which share a common interaction
model. Window-management systems use an event mechanism similar to, but more
powerful than, the GKS/PHlGS model discussed in this section.

GKS and PHIGS have six cl.asses of logical input devices, and there may be more than
one device of each class associated with a workstmion (a display and a<;Sociated interaction
devices). Each of the logical input devices can operate in one of three modes: sample,
request, and event. Each device has an associated measure, which is the type of information
returned by the device. The devices and their measures are as follows:

Device
locator
pick
choice
valuator
string
stroke

Measure
position in ~rid coordinates
pick parh for SPH!GS, segment identification for GKS
integer indicating the choice
real number
character suing (called keyboard device in SRGP and SPHlGS)
sequence of positions in ~rid coordinates

SRGP and SPHlGS use measures that are slightly different from these.
In request mode, the application program requests input from a device, and the

graphics package returns control and the measure of the device only after the user has
performed an action with the device. The action is called the trigger. The specific trigger
action for each logical device class is implementation-dependent, but is typically a
button-push. For instance, a mouse button triggers locator or pick devices , and the return
key triggers the string device.

Request mode can be used with only one device at a time, and is intended to support
the Limited functionality of older graphics terminals, which are typically connected to
computers via RS-232 interfaces. Interaction techniques such as keyboard accelerators

0470

10 .1 Basic Interact ion-Handling Models 437

cannot be used , because the application program must know in advance from which device
to request input. In addition, as the measure is modified (by moving the mouse ro change
the locator's measure, say), the application program generally cannot provide dynamic
feedback, because the application program does not regain control until the trigger action
occurs. This difficulty can be eliminated by defining the trigger action as a small change in
the measure.

In sample mode, a single device is sampled, and the measure of the device is
immediately returned. We can permit the user to select one of several devices ro use, by
polling all eligible devices, as follows:

temtinare = FALSE;
whlle (!terminate) {

SamplePick (&status, &segmemName);
I• status = OK means had succe.~ful pick; segmentName is identificat.ion •/
I• of picked item • I
Process pick input
SampleString (string);
Process string input
I• terminate set to TRUE as pan of processing string or pick •/

}

Sampling in this way is dangerous, however. If the user makes several more inputs
while the first is being processed, they will never be seen by the application program, since
it stops sampling while processing the first input. Also, the sequence of user events , which
is often essential to maintain, might be lost in sampling. Unlike request mode, however,
sample mode is well suited for dynamic feedback from the application program, because no
trigger action is required to return the device measure to the application program.

Event mode avoids the problems of sample and request modes, by allowing input to be
accepted asynchronously from several different devices at once. As discussed in Section
2.3.6 of Chapter 2, the application program first enables all devices whose use is to be
pennitted. Once the devices are enabled, a trigger action for any of them places an event
report on an input queue, in order of occurrence. As seen in Fig. 10.2, the application

I
I

I
I
I

I

I

Events
I

phics
I
1 Application Gra

subro
pac

utine 1 program
kage I

~ I ..
I

/
~II

8VIIItp1

• 'tT*"cE: ~ --·2
~ Procl•• 8VIIItp3

Fig. 10 .2 The application program removes events from the queue and dispatches
control to the appropriate procedure, which processes them.

0471

438 User ll)terface Software

program checks the queue to see what user actions have actually occurred, and processes
the events as they are removed from the queue.

The following code fragment reimplements the previous polling example in event
mode:

tenninate = FALSE;
while (!temrinate} {

WaitEvent (timeout, &deviceClass, &device/d);
switch (deviceC/ass} {

case piclt: Process pick;
break;

case string: Process stri11g;
break:

I• Wait for user action •I

} I• tenni11ate set to TRUE in processing of pick or string •/
}
Unlike request-mode input, event-mode input is asynchronous: Once a device is

enabled, the application program can be executing while the user is concurrently inputting
information with the enabled input devices. This is sometimes called typeahead, or, when
done with a mouse, mousealtead.

The typeahead capability of the event-queue mechanism provides an opportunity to
speed up interactions with the computer. Suppose a button-press (choice logical device) is
used to scroll through a drawing. Each button-press scrolls, say, x inches. If the user presses
the button more rapidly than the scroll can occur, events build up in the queue. The
application program can look for multiple successive button events on the queue; if there are
" such events, then a single scroll of nx inches can be performed, and will be much faster
than " scrolls of x inches each.

Care must be taken to manage the event queue properly. If the first of two events on the
queue causes the program to enable a different set of logical input devices and then to call
WaitE vent, the program now may not be expecting the second event, leading to unexpected
results . The call FlushDeviceEvents is provided to alleviate this problem; the application
program can empty the event queue to ensure that the queue contains nothing unexpected.
However. flushing the queue may leave the user wondering why the second event was never
processed.

Another concern with event queues is a possible time delay between when an event
occurs and when other information needed in connection with that event i.s obtained.
Suppose we want a mouse button-<lown to display a diamond at the mouse position. If the
buttons on the mouse can be assigned to a logical choice device and the (x, y) coordinates of
the mouse to a logical locator (this contrasts with the SRGP locator, whose measure
includes button status), then we can use the following approach:

WaitEvenL (timeout, &deviceClrus, &device/d);
if (deviceC/ass = CHOICE && deviceld == I) {

SampleLocator (MOUSE, x. y);
DrawDiamond (x, y):

}

f* Get pos ition of diamond •/
I• Draw diamond at (x. y) •I

0472

10.2

At time 1,. the user
makes a choice, with a
choice device, to draw
a diamond. The user
then moves cursor to
go on to another task.

Window-Management Systems

At time 1:!· locator is
sampled and diamond
Is drawn. Locator has
moved between 11 and 12 •

439

Fig. 10.3 The effect of a time delay between an event and sampling of the cursor
position associated with that event.

The problem is that, between time Ia (when the WaitEvent procedure returns) and time
t2 (when the SampleLocator procedure obtains the (x, y) coordinates), seconds may have
elapsed. In this time, the user may have moved the locator some distance, causing the
unexpected result shown in Fig. 10.3. Substantial delays can easily occur on a time-shared
computer if another program takes control of the processor, and on any computer that
supports virtual memory when page-fault interrupts occur. Thus, although we would like
the application program to be uninterruptible during the interval from Ia to tz, we cannot
guarantee that it wiU be so.

In GKS and PHIGS, the risk of this time delay can be reduced and even eliminated by
activating several logical devices with the same trigger. If we define the trigger to be a
button-click on any of the three buttons, and associate this trigger with both the
three-button choice device and the locator device, then both events will be placed on the
queue (in unspecified order) at the same time. The device-dependent driver under the
graphics package can do this faster than the application program can execute the preceding
code segment, so the likelihood of being interrupted is Jess. If the operating system grants
the device driver the privilege of disabling interrupts, then there will never be a time delay.

Unfortunately, some user-interface const:ructs are difficult to provide by means of these
logical-device concepts. For instance, it is convenient to use time intervals to distinguish
between two commands. Thus, we can select an icon with a single mouse button-click while
the cursor is on the icon, and then open the icon with a second click within some small A.t of
the first click. Making these distinctions requires that the event reports have a timestamp
giving the time at which the event occurred. This concept is not found in GKS and PHIGS,
although a timestamp could be provided readily.

10.2 WINDOW-MANAGEMENT SYSTEMS

A wi11dow-manageme11t system provides many of the important features of modern
user-computer interfaces: applications that show results in different areas of the display , the
ability to resize the screen areas in which those applications are executing, pop-up and
pull-down menus, and dialogue boxes.

0473

440 User Interface Software

The window-management system is first and foremost a resource manager in much the
same way that an operating system is a resource manager-only the types of resources
differ. It allocates the resource of screen area to various programs that seek to use the
screen, and then assists in managing these screen areas so that the programs do not interfere
with one another. This aspect of window systems is further discussed in Section 10.3. The
window system also allocates the resource of interaction devices to programs that require
user input, and then routes the flow of input information from the devices to the event queue
of the appropriate progr.tm for which the input is destined. Input handling is discussed
further in Section I 0.4.

Our objective with these three sections is to provide an overview of key window­
management concepts: The most comprehensive treatment of the subject is [STEI89), and a
historical development overview is given in [TEIT86], in a book of relevant papers
[HOPG86b].

A window-management system has two important parts. The first is the window
manager, with which the end user interacts to request that windows be created, resized,
moved, opened, closed, and so on. The second is the underlying functional component, the
window Sy.l'tem,which actually causes windows to be created, resized, moved, opened,
closed, and so on.

The window manager is bui lt on top of the window system: The window manager uses
services provided by the window system. The window manager is to its underlying window
system as a command-line interpreter is to its underlying operating-system kernel. Also
built on top of the window system are higher-level graphics packages and application
programs. The programs built on the window system are sometimes called clielll programs,
which in turn use the capabilities of the window system, itself sometimes called the server
program. In some server-dient window-management systems, such as the X Window
System fSCHE88a] and NeWS [SUN87), the window manager itself appears to the window
system as just another client program. In other systems, there is a closer relation­
ship between the window manager and window system than there is between a client and
server.

Some window systems, including the X Window System and NeWS, are designed to be
policy1ree, meaning that multiple window managers, each with a different look and feel,
can be built on top of the window system. The window manager, not the window system,
determines how windows look, and how the user interacts with windows. A policy-free
window system would support all the window styles of Fig. 9.30, as well as others. Just as
many different application programs can be built on top of a graphics package, many
different window managers can be built on top of a policy-free window system: The
window manager and graphics application program both control external appearance and
behavior. For thjs approach to be possible, the window system must be designed to carry
out a wide range of window-manager policies (see Exercise I 0.1 0). Of course, in a specific
environment, the window manager and application programs need to have a common
user-interface look and feel.

If the programming interface to the window system is cleanly defined and is
implemented via an interprocess communication capability, then clients of the window
system can reside on computers different from that of the window system, provided
the computers are connected by a high-speed network. If the window manager is

0474

10.2 Window-Management Systems 441

itself just another client of the window system, then it too can reside on another computer.
The use of interprocess communications in this way allows computation-intensive
applications to reside on a powerful computer, while the user interacts with
the application from a workstation. Ln this regard , the server-client model is just a
sophisticated instance of a virtual terminal protocol; such protocols in general share this
advantage.

A window-management system does not need to be built on the server-client model.
For instance, the Macintosh has no well-defined separation between the window manager
and window system. Such separation was not necessary for the single-active-process,
single-processor design objective of the Macintosh, and would have led to additional
run-time overhead.

ln window systems that provide for use of interprocess communications between the
window manager and window system, such as the X Window System, NeWS, and Andrew
[MORR86], the interface must be designed to minimize communications delays. Several
strategies can help us to meet this objective. First, asynchronous rather than synchronous
communications can be used between the client and server whenever possible, so that, when
the client sends a message to the server, the client does not need to wait for a reply
before resuming processing and sending another message. For example, when the client
program calls Draw Line, a message is sent to the server, and control returns immediately to
the client.

We can sometimes realize a modest savings by minimizing the number of separate
messages that must be sent between the server and client. Most network communication
protocols have a minimum packet size, typically 16 to 32 bytes, and the time to send larger
numbers of bytes is often proportionately less than the time needed to send the minimum
packet. There is thus an advantage in hatching messages , as provided in some systems with
a BeginBatchOfUpdates and EndBatchOfUpdates subroutine call; all the calls made
between the BeginBatch and EndBatch calls are transmitted in one message. There is also
an advantage in designing single messages that replace multiple messages, such as a single
message that sets multiple graphics attributes.

A third way to minimize communication is to move more functionality and generality
into the server. The commands most clients send to their window system are fairly
primitive: draw line, create window, copy pixmap. In the X Window System, for instance,
many commands are needed to create a menu or dialogue bolt. A more robust and powerful
strategy is to send commands to the server as programs written in a language that can be
interpreted efficiently. Thus, the commands can be very general and can carry out any
functionality the language can express. The cost of this generality is , of course, the time
taken to eJtecute the programs interpretively, and any additional space needed for the
interpreter-a modest price with contempora.ry computers. The benefit can be a dramatic
decrease in communications traffic. The strategy of moving more generality and function­
ality into the workstation is not new; exactly the same issues were discussed two decades
ago when distributed graphics systems were first being built [FOLE71; FOLE76;
VAND74].

This third strategy is used in the NeWS window system, which accepts as commands
programs written in an eJttended version of the PostScript language (ADOB85a;
ADOB85b). PostScript combines traditional programming-language constructs (variables,

0475

442 User Interface Software

User

Clients

Server

Hadluae

Fig. 1 0.4 The relationship of the window system to the operating system and
application programs.

data structures, expressions, assignments, control flow, 1/0) with imbedded graphics
capabilities for drawing output primitives, clipping against arbitrary regions, and transform­
ing primitives. NeWS adds extensions for processes, input, and windows. The language is
further discussed in Section 19.9.

For a dialogue box to be defined in NeWS, a PostScript program defining the box is
sent to the server when a program begins execution; each time the dialogue box is to appear,
a short message is sent to invoke the program. This strategy avoids resending the box's
definition each time. Similarly, programs to perform time-critical operations, such as
rubberband drawing of lines (Chapter 8) or curves (Chapter II) , can be sent to the server,
avoiding the time delays involved in each round-trip message between the server and client
needed to update the rubberband I ine.

A graphics package is often integrated with the window system, typically a 20
nonsegmented package with capabilities similar to SRGP of Chapter 2. If the underlying
hardware has 30 or segmentation capabi.lities, then the window-system level might pass on
graphics calls to the hardware. Figure I 0.4 shows how the window system and its graphics
package typically relate to other system components; Fig. 10.5 shows the relationships
among windows, clients, and input events. User-generated events involving windows­
resizing, repositioning, pushing, popping, scrolling, and so on-are routed by the window
system to the window manager; other events are routed to the appropriate application
program.

0476

10.3 Output Handling In Window System s

Output primhives and window·
manipulation requests

Event
repoi!S

Output
primitives. etc.

Event
reports

Interaction
devices

443

Fig. 10.5 Another view of the relationship among windows. clients. and events. Each
client outputs to a window; input events are routed to the appropriate client's event
queue.

10.3 OUTPUT HANDLING IN WINDOW SYSTEMS

The output resource allocated by the window system to its client programs is screen space,
which must be managed so that clients do not interfere with one another's use of the screen.
The strategies by which this allocation is made vary considerably from one window system
to another, but fit into three broad categories. The main difference is in how parts of a
window that have just been exposed (when the window is made larger, uncovered, or
scrolled) are displayed. The strategies place progressively more responsibility for making
this decision oo the window system itself, such that the client is progressively less aware of
the existence of the windows. The system may also have to manage a look-up table so as to
avoid conflicts between clients.

A minimal window system takes no responsibility for drawing newly exposed portions
of a window; rather, it sends a "window-exposed" event to the client responsible for the
window. Such a window system does not save the occluded portions of windows. When the
client sends output to a window, output primitives are clipped against the window system's
window (which corresponds to the graphics package's viewport). If a line is drawn in a
partially visible window, only the visible part of the line is drawn.

When the client responsible for the window receives the window-exposed event, the
client can handle the 0\--ent by establishing a clipping window on the entire portion of the
world that is to be displayed in the window system's window, and then processing all the
output primitives, or by using a smaller clipping window corresponding to just the newly
exposed portion of the window, as shown in Fig. 10.6. Alternatively, the client can save the
pixmaps of obscured windows to avoid regenerating the window's contents when the
window is next uncovered. The client would simply display some or all of the saved pix map
with a PixBh from the saved pixmap to the screen pixmap. In some cases, the window
system repaints the window backgrounds and borders to provide the illusion of quick

0477

444 User Interface Software

D
(a)

Original window

I

-----~

(b)
Enlarged window

(original window dotted)

I
(C)

Clipping region

Fig. 10.6 When a window (a) is enlarged to (b), the enlarged window can be updated
by using the bitmap that was in the original w indow (a), clipping world-coordinate
output primitives against the clipping region (c), and drawing those within the clip
region. Note that the clip region is nonconvex, so clipping a line may result in display of
more than one line segment.

response, even though the actual redraw may incur a noticable delay.
This minimal-window-system approach makes sense in systems that support diverse

application data models , ranging from pixmaps through structured hierarchies to more
complex relational models. The window system itself cannot have a model that is well
matched for all applications. Instead, the application is given total responsibility for
providing efficient storage and redrawing capabilities.

The Macintosh window system is an example of this minimalist design [APPL85].
Algorithms embedded in its Quickdraw graphics package allow clipping to arbitrary
regions, such as those shown in Fig. 10.6. NeWS and X also support arbitrary-shaped
windows. Some of the clipping algorithms needed to support arbitrary windows are
discussed in Section 19.7.

More memory-rich window systems save the obscured parts of windows, so that the
client does not need to display newly exposed portions of a window. Other window systems
give the client a choice of whether or not obscured window parts are to be saved. l.n any
case, there is a question of how much of the obscured window is saved. Typically, the
maximum possible size of the window is saved, which is usually the size of the entire
screen. Some window systems save a pixmap larger than the display itself, although this
approach becomes more expens.ive as the pixmap becomes larger or deeper. Decreasing
memory prices, however, are having a dramatic effect on what is cost-effective. The client
must be involved in redrawing if the window is scrolled away from the part ofthe world that
has been saved as a pixmap, or if the view must be rescaled.

A slightly different strategy is for the window manager to keep, for each window, an
offscreen pixmap containing the entire window. Whenever part of a window is unobscured,
the appropriate subarea of the offscreen pixmap is copied to the screen by a PixBit. This
strategy is slow for window updating, because partially obscured windows can be written
into by client programs. Thus, after a client program writes into a window (which is the
offscreen pixmap), the window system must copy the visible part of the window to the
screen. Alternatively, the window system can directly scan convert new output primitives
into both the offscreen pixmap and the visible part of the window in the onscreen pixmap,
by clipping each output primitive against two clip regions: one for the visible part of the
pixmap, the other for the entire offscreen pixmap. Updates to a completely unobscu.red
window can be done faster by updating only the visible, onscreen version of the window;

0478

10.3 Output Handling in Window Systems 445

the window is then copied to its off screen pixmap only when it is about to be obscured. To
avoid this whole issue, some window systems require that the window that is being written
into be completely unobscured. This solution, unfortunately, also pTf?vents multiprocessing
when an active process needs to write into partially obscured windows. Several special­
purpose hardware systems avoid the need to copy offscreen pixmaps to the screen pix map.
ln these systems, the hardware knows where each offscreen pixmap is stored and which
portion of each is to be made visible on the screen. On each refresh cycle, the video
controller picks up the appropriate pixels fTom the offscreen pixmaps. Exposing more of a
window is done not by copying pixmaps, but by giving new window-visibility information
to the hardware. These hardware solutions are further discussed in Chapter 18.

A second way to implement this type of window system, developed by Pike [PlKE83)
and discussed further in Section 19.8, avoids storing any information twice. Each window
is partitioned into rectangular pixmaps. lnvisible pixmaps are saved olfscreen, whereas
visible pix maps are saved only in the on screen refresh memory.

Yet another fundamental design strategy is to have the window system maintain a
display list for each window, as in the VGTS system developed by Lantz and Nowicki
[LANT84). ln essence, the window system maintains a display-list-based graphics
package, such as SPHIGS, as part of tbe window system. Whenever a window needs to be
redrawn, the display list is traversed and clipped. Fast scan-conversion hardware is desirable
for this approach, so that redraw times do not become prohibitively long. Pix map-oriented
applications, such as paint programs, do not benefit from this approach, aJthough VGTS
does include a pixmap primitive.

A frequent concern is the effect of a window-resize operation on the amount of
information shown in a window: what happens to the \\.Urld-coordinate window when the
window-manager window is resized? There are two possibilities, and the client program
should be able to cause either to occur. The first possibility is that, when the user resizes the
window, the \\.Urld-coordinate window changes size correspondingly. The net effect is that
the user sees more or less of the world, according to whether the window was made larger or
smaller, but always at the same scale, as depicted in Fig. 10. 7(c). The second possibility is
that, when the user resizes the window, the world-coordinate window size stays fixed .
Thus, as the window is enlarged, the same amount of the \\.Urld is seen, but at a larger scale.
ln one approach, a uniform scaling is applied to the \\.Urld , even if the aspect ratios of the
world window and window-system window are different; this can make some part of the
window-system window go unused , as in Fig. 10.7(d). Alternatively, a nonuniform scaling
can be applied, distorting tbe contents of the world window to fit the window-system
window, as in Fig. 10.7(e).

Several window systems use hierarchical windows-that is, windows that contain
subwindows-as shown in Fig. 10.8. Subwindows are generally contained within their
parents. Hierarchical windows can be used to implement dialogue boxes and forms of the
type shown in Chapter 8. The entire dialogue box is defined as a window, and then each
field, radio button, and check box is defined as a separate subwindow, and mouse
button-down events are enabled for each one. When the user selects any of the subwindows,
the event report contains the name of that subwindow. A typical restriction is that
subwindows be contained within their parent window, so if the dialogue box is to be moved
outside of the application window, the box cannot be implemented as a subwindow to the
application window.

0479

446 User Interface Software

World
coordinates L. ___ _.

(a) (b)

a
(c) (d) (e)

Fig. 1 0 . 7 Relationships between world-coordinate window and window-manager
window. (a) A world-coordinate scene; (b) its view through a window. In (c), when the
window-manager window is enlarged, more of the world is seen: the world-coordinate
window is enlarged. In (d), enlarging the window-manager window creates an enlarged
view of the contents of the world-coordinate window. The enlargement is done with
uniform scaling, so that part of the window-manager window (gray tone) is unused. In
(e), enlarging the window-manager window also creates an enlarged view of the
contents of the world-coordinate window, but w ith nonuniform scaling so as to fill the
entire window-manager window.

The design of a window-hierarchy system involves many subtleties, such as determin­
ing the effect on children of resizing a parent. Also, if a client process spawns a subprocess
that then creates windows, the subprocess's windows could be considered subwindows of
the spawning process's window, except that the subprocess may have its own event queue to
receive input from its windows. See [ROSE83; SCHE86] for a more extensive discussion of
hierarchies.

ID Dl

B D

D D
D

ID D
lo 0 DID

(a) (b)

Fig. 10.8 (a) The window for a drawing program; (b) division of the window into a
hierarchy of windows. In (b), a contained window is a child of the containing window.
(Copyright 1988 Claris Corporation. All rights reserved.)

0480

10.4 Input Handling in Window Systems 447

The subroutine calls with which a typical window system must deal follow:

CreateWindow (IUime)
SetPosilion (xmin, ymin)
SetSize (height, width)
SeleetWindow (name)
Show Window
Hide Window

Set'fitle (char __rtring)
GetPosition (xmin, xmax)
GetSize (height, width)
BringToTop
SendToBottom
Delete Window

Create a new window; it becomes the current window
Set position of current window
Set size of current window
Make this the current window
Make the current window visible, on top of all others
Make the current window invisible; expose any windows the
current window was hiding
Set displayed title of current window to char J tring
Gel position of the current window
Get size of the current window
Put the current window on top of all other windows
Send the current window to the bottom, behind all others
Delete the current window

The other output resource allocated by a window system is look-up table entries. Imagine a
window system running on an 8-bit per pixel hardware system, with two window-system
clients each wanting to have a look-up table. With two clients, each could be given half the
entries (I 28), but then the number of look-up table entries per client depends on the number
of clients. A fixed upper bound on the number of clients could be established to determine
the number of entries per client, bUl if there are in fact fewer clients, then some of the
look-up table entries will be wasted. A single client at a time could be given exclusive use of
the look-up table-often the client whose window contains the cursor. This solution is
viable, but suffers in that the overall screen appearance can change dramatically as the table
is given first to one client, then to another, and so on.

Another solution is to allocate not look-up table entries, but rather colors. If a client
asks for I 00 percent blue, and some entry already contains this color, the client is given the
same index to 11.c;e (but is not allowed to change the contents of the entry). If no entry
contains I 00 percent blue and there are free entries, one is allocated. Otherwise, the entry
with the color closest to that requested is allocated. The danger is that the distance between
the requested and actual color might be quite large; not being able to change the look-up
table is also a disadvantage. Unfonunately, there is no generally satisfactory solution.

10.4 INPUT HANDLING IN WINDOW SYSTEMS

The input resource being allocated and managed by the window system for that system's
clients is the set of input devices and the events the devices generate. The window system
must know to which client different types of events are to be routed. The process of routing
events to the proper client is sometimes called demultiplexing, since events destined for
different clients arrive in sequent,ial order from a single source and must then be fanned out
to different clients.

The types of events are those discussed in Section I 0.1, plus additional events that are
specific to window systems. Some window systems generate window-e/1/er and window­
leave events , which allow a user interface to highlight the window containing the cursor
without the overhead of constantly sampling the pointer device. Window systems that do
not retain a record of what is displayed in each window generate window-damage e,vents
whenever a window needs to be redrawn. Damage occurs if the window is enlarged,

0481

448 User Interface Software

uncovered. or scroUed. The window-enter and window-leave events are generated by the
window system in direct response to user actions, whereas the window-damage event is a
secondary event generated when a client requests that a window be changed. All these
events are routed to the client's event queue. Some user actions, such as closing a window,
can cause damage events to be to sent to a large number of clients. The information in the
event report is similar to that discussed in Section 10.1, but is augmented with additional
event types and window-specific information.

If a window hierarchy exists, child windows can be manipulated just like the parent
window. and can have associated events. Tbe window name associated with an event is that
of the lowest-level window in the hierarchy that contains the cursor and for which the event
was enabled. This means that different types of events can be associated with different
windows. Every event placed in the event queue has as part of its record the name of the
window with which it is associated. It is also possible to report an event in a subwindow not
just to the subwindow, but also to all the windows that contain the subwindow. The client
would do this by enabling the same event for aU the windows in the hierarchical path from
the outermost containing window to the lowest-level subwindow. Thus, multiple event
repons, each with a different window name, will be placed in the client's event queue.

With hierarchical windows. a pop-up menu can be defined as a main window
subdivided into as many subwindows as there are menu items. As the cursor moves out of
the window of menu item i into the window of menu item i + 1. a leave-window event is
placed on the event queue with the window name of menu item i, followed by an
enter-window event with the window name of menu item i + I. The client program
processes the first event by undoing the highlight feedback on menu item i. It processes the
second event similarly, creating the highlight feedback on menu item i + I. If the cursor
enters some region of the pop-up menu (such as a title area at the top) that is not overlaid by
a subwindow. then the enter-window event includes the name of the pop-up menu window.
Window hierarchies tend to be used in this way. but user response time can be degraded by
the processing time needed to manage the hierarchy and its many events. A NeWS-style
window system does not generate such a large number of events to be processed, because
the feedback can be handled within the server.

Hierarchical windows can be used for selection of displayed objects in much the same
way as SPHIGS structures can be. Of course , subwindows are not as general as structures,
but they are convenient for picking rectangularly shaped. hierarchically nested regions
(NeWS and X suppon nonrectangular windows). Other uses for hierarchical windows
include causing the cursor shape to change as the cursor moves from one pan of t.he screen
to another, and aUowing pick detection on the bandies sometimes used for manipulating
graphics objects (see Fig. 8.42).

Two basic approaches are widely used by window systems to route events to clients:
real-estate-based and listener routing. Many window systems actuaUy provide both
strategies, and allow the window manager to specify which to use. Some also allow a policy
provided by the window manager to be used in place of either of these two basic
approaches. Real-estate-based routjng looks at which window the cursor i.s in when an
event occurs; all C\-ents are directed to the client that created the window and include the
name of the window as pan of the event repon.

To do real-estate-based routing. the window system must maintain a data structure that
stores the bounds of each window, as shown in Fig. 10.9. When an event occurs, the data

0482

10.4 Input Handling in Window Systems 449

WindoW TyPical ~
arrangement 3 2

Linked-list __. r;l_. ~__. l"';l~
data structure L.:J L..:....J L.:._J

Fig. 10.9 Data structure used by the window manager to determine in which window
the cursor is located. by searching for the first window on the list that brackets the
cursor position.

structure is searched for the visible window containing the cursor po'ition. lf the data
structure is ordered, with the most recently fully reveat.:ll window always brought to the
head, then the search can terminate with the first window that contains the cursor (x, y)
position. For hierarchical windows, a more complex data structure and search is needed
(see Exercise 10.2).

Usrener event routing, also known as dick-to-t)pe routing, is done when one client tells
the window system to route all events of a certain type to another client (the receiving client
can be, but does not need to be, the client that makes the request). For instance, the window
manager can have a command that allows the user to route all keyboard input to the client
that owns a particular window. The window manager implements the command by
directing the window system to route keyboard events to the appropriate client program.
Keyboard events are those most commonly routed explicitly, but even a mouse button-down
event can be redirected.

Event distribution can cause unexpected results for users. Suppose, for instance, that
the user accidentally double-dicks on a window's close (also called "go-away') button,
although only a single click is needed to close the window. The window system routes the
first click to the window manager. which closes the window. The second click is next routed
to whatever was underneath the close button of the now-closed window, perhaps in turn
selecting a menu command!

Message-transmission delays in a net~rk can also wreak havoc with the user. Consider
a drawing program executing in window A. To draw a rubberband line, the user generates a
button-down event in window A, and then moves the cursor to wherever the line will end.
This point might be outside of window A, if the line is to end in an area of the drawing that
is not visible through the window. In anticipation of the cursor going out of its window. the
drawing program sends the window system a request that all button-up events come to it,
no matter where they occur. Now if the user does move the cursor outside window A, we
have a race condition. Will the mouse-up event occur before or after the window system
receives the request that all mouse-up events go to the drawing program? Lf the mouse­
up occurs before the request is received, the event will go to whatever window the cursor is
in. causing an unexpected result. If the mouse-up occurs after the request is received. all
is well. The only certain w.Jy to avoid these race conditions is to require the client to tell
the server that event i has been processed before the server wi 11 send event i + I to the
client.

0483

450 User Interface Software

Once eventS come to a client, they enter an event queue of the sort shown in Figure
10.2. The client routes , or dispatches, events to various event-handling routines. The
pseudocode for a typical dispatcher is

while (lquit) {
WaitE vent (timeolll, deviceClass, device/d);
switch (deviceC/ass) {

case CLASS I: switch (device I d) {
case DBVICEI : ProcedureA (}: break:
case DEVIC£2: ProcedureS (); break;

}
case CLASS2: switch (deviceld} {

etc.

As events occur and the program moves to different states, the procedures called in response
to a particular event may change, further complicating the program logic.

The dispatcher model (also called the 11otijier mode{) enhances the input-handling
system with a procedure that responds to the user actions , as shown in Fig. 10.10. The
application program registers a procedure with the notifier and tells the notifier under what
conditions the procedure is to be called. Procedures called by the notifier are sometimes
called callback procedures, because they are called back by the notifier. With hierarch.ical
windows, different callback procedures can be associated with locator events occurring in
different parts of a dialogue box. or in different parts of a menu. These callback procedures
may modify the event before it is reponed to the appl icatioo, in which case they are caUed
filter procedures.

The input subroutine calls with which a typical window system must deal include

EnableEvents (eventList)
WaitEvent (timeout, eventType,
windowName, evemRecord)
SetlnpulFocus (wi11dow , ewmtList)

CursorShape (pixmap, x , y)

Enable the listed set of events

Get the next event from the event queue
Direct all input events of the type on e~'lllllList to
window
pixmap defines the cursor shape; x , y give the
position in the cursor pixmap used for reporting the
cursor position

Typical types of events that can be placed on the event queue follow:

KeyPress
Key Release
Button Press
Bull on Release
Motion
LeaveNotify
EnterNotify
Window Expose
Resiz.eRequest
Timer

Keyboard key pressed
Keyboard key released
Locator (such as mouse) button pressed
Locator button released
Cursor has moved
Cursor has left window
Cursor has entered window
Window has been partially or completely exposed
Window resizing has been requested
Previously specified time or rime increment has
occurred

Each of these event types has a timestamp (see Section 10.1 to understand why this is
needed), the name of the window where the cursor was when the event occurred, and other

0484

10.5 Interaction-Technique Toolkits 451

..
Events

Window 1 Application
manager and program

notifler
Fig. 10.10 The window manager's notif.er examines the event queue and calls the
procedure previously registered to process a particular event.

event-specific infonnation, such as the new window size for a ResizeRequcst.
This brief overview of window-management systems has excluded important topics,

such as ensuring that the window system is sufficiently general that any and all types of
window-manager policies can be provided. Also important is whether tbe window system is
a separate process from the clients, is a subroutine library linked in with tbe clients, or is a
part of the operating system. These and other issues are more fully discussed in [LANT87;
SCHE86; SCHE88a; STEI89).

1 0.5 INTERACTION· TECHNIQUE TOOLKITS

The look and feel of a user-computer inte.rface is detennined largely by the collection of
interaction techniques provided for it . Recall that interaction techniques implement the
hardware binding portion of a user~omputer interface design. Designing and implementing
a good set of interaction techniques is time consuming: Interaction-technique toolkits,
which are subroutine libraries of interaction techniques, are mechanisms for making a
collection of techniques available for use by application programmers. This approach,
which helps to ensure a consistent look and feel among application programs, is clearly a
sound software-engineering practice.

Interaction-technique toolkits can be used not only by application programs, but also
by the window manager, which is after all just another client program. Using the same
toolkit across the board is an important and commonly used approach to providing a look
and feel that unifies both multiple applications and the windowing environment itself. For
instance, the menu style used to select window operations should be the same style used
within applications.

As shown in Fig. 10. 1. the toolkit can be implemented on top of the window­
management system. Ln the absence of a window system, toolkits can be implemented

0485

4 52 User Interface Software

directly on top of a graphics subroutine package; however, because elements of a toolkit
include menus, dialogue boxes, scroll bars, and the like, all of which can conveniently be
implemented in windows, the window system substrate is normally used. Widely used
toolkits include the Andrew window-management system's toolkit [PALA88], the Macin­
tosh toolkit [APPL85], OSF/Motif [0PEN89a) and interViews [LINT89) for use with the
X Window System, several toolkits thai implement OPEN LOOK (SUN89) on both X
and NeWS, Presentation Manager [MICR89], and the SunView window-management
system's toolkit!SUN86). Color Plates 1.26 and 1.27 show the OSF/Motif interface. Color
Plates 1.28 and 1.29 show the OPEN LOOK interface.

In the X Window System, interaction techniques are called widgets, and we adopt this
name for use here . A typical set of widgets includes a dialogue box, file-selection box, alert
box, help box,list box, message box, radio-button bank, radio buttons, choice-bunon bank,
choice buttons. toggle-bunon bank, toggle bunon, fixed menu, pop-up menu, text input,
scroll bar. and application window. Each of these widgets is normally implemented as a
window. In X, subwindows may also be used. For instance, a radio-button bank is a
window containing a subwindow for each radio button. Complex dialogue boxes can have
d<r.r.ens of subwindows. An application window may have subwindows for scroll bars , resize
bunons, and so on, as in Fig. 10.8.

Interaction-technique toolkits typically have notifiers of the type discussed in Section
10 .4 to in\'Oke callback procedures when events occur in their subwindows. The procedures
arc, in some cases, part of the toolkit- for instance, procedures to highlight the current
menu item, to select und deselect radio bunons, and to scroll a list or file-selection box.
They can also be provided by the application; for instance, there are procedures to carry out
a command selected from a menu, to check the validity of each char.1ctcr as it is typed into a
text input area. or simply to record the fact that a button has been selected. Figure 10.1 I

leserWrtter kl eserwrtter"

CopyProc PaperSourceProc CoverPageProc

Fig. 1 0 .11 Callback procedures associated with widgets in a dialogue box. CopyProc
checks to ensure that each character is numeric and that the total number entered does
not exceed some upper bound. PaperSourceProc manages the radio-button bank for
the paper source to ensure that one and only one button is on and to maintain the
current selection. CoverPageProc performs a similar function for the cover-page
radio-button bank. (Screen graphics ® Apple Computer. Inc.)

0486

10.5 Interaction· Technique Toolkits 4 53

shows pan of a dialogue box and some of the procedures that might be associated with the
box.

Not.ioe that tbe previous List of widgets includes both high· and low-level items, some
of which are composites of others. For example, a dialogue box might contain several
radio-button banks, toggle-button banks, and text-input areas. Hence, toolkits include
a means of composing widgets together, typically via subroutine calls. Figure I 0. 12
shows just some of the code needed to specify the Sun View [SUN86] dialogue box of
Fig. 10. 13. Some toolkits are built using object-oriented programming concepts: Each widget
is an instantiation of the widget's definition, possibly with overrides of some of
the methods and attributes associated with the definition. A composite consists of multiple
instances.

print_frame =
window _create(

frame, FRAME,
WIN_SHOW,
FRAME..NO_CONFIRM.
FRAME_SHOW _LABEL.
FRAME_LABEL. "Print ".

0);

print_panel =
window _creat.e(print_frnme,

WINY,OWS,
WIN_COLUMNS,

0);

print_uickb_name =
panel_create_it.em(print._panel,

PANEL_LABEL_STRlNO,
PANEL_ITEM_X,
PANEL_ITEM_ Y.

0);

print_repon_choice_item =
pane l_create _i tem(print_panel.
I List of mutually exclusive options}

PANEL_ ITEM_)(,
PANEL_ITEM_ Y,
PANEL_LABEL_STRINO.
PANEL_LA YOlJf,
PANEL_CHOICE_STRINOS,

(Surrounding box I
TRUE,
TRUE.
TRUE.
I Header at top of window I
{Zero means end of list}

I Panel inside the window I
PANBL,
PRINT_ WIN_ROWS,
PRINT_WIN_COLS,

I Header at top of panel}
PANEL_MESSAOE,
"UICKB: Untitled",
ATIR_COL(PRINT_NAME_COL),
ATI'R....ROW(PRINT_NAME_ROW),

PANEL_OIOICE.

A TIR_COL(PRINT _REPORT_COL),
A TrR....ROW(PRINT _REPORT _ROW),
"Repon".
PANEL_ VERTICAL, fOr horirontal)

"Completeness", "Consistency". "Schema". 0.
PANEL_NOTIFY_PROC, print_report_choice_proc,
I Name of callback procedure I

0);

Fig. 10.12 Some of the Sun View code needed to specify the dialogue box of Fig.
10.13.

0487

454 User Interface Software

Action

Attribute

o Attribute Type
o Object

o Par....,ter

0 Pre-condition

Po.st-condi tion

Via ion

Iii IDL I

ICI IDL 2
ICI Verboao

Fig. 10.13 Dialogue box created using the Sun View w indow-manager system's
toolkit. The code specifying this box is shown in Fig. 10.12. (Courtesy of Kevin Murray,
The George Washington University.)

Creating composites by programming, no matter what the mechanism, is tedious.
Interactive editors, such as those shown in Figs. 10. 14 and 10.15, allow composites to be
created and modified quickly, facilitating the rapid prototyping discussed in Section 9.6.
Cardelli has developed a sophisticated interactive editor that allows spatial constr.tints
between widgets to be specified [CARD88j. At run Lime, when the dialogue box 's size can
be changed by the user, the constraints are used to keep the widgets neatly spaced.

DIALOG - De ree Information

®Undergrad

0 Grad

0 Non- Degree

OK

-----=-------1!.1,.:

) ®full- time

0 Part - time

0 On Leaue Cancel

Fig. 10.14 The SmethersBames Prototyper dialogue-box editor for the Macintosh. A
scrolling-list box is being dragged into position. The menu to the left shows the w idgets
that can be created; from top to bonom. they are blmons, icons, pictures, static text,
text input, check boxes, radio bunons, scrolling lists. rectangles (for visual grooping. as
with the radio-button banks), lines (for visual separation), pop-up menus, and scroll
bars. (Courtesy of SmethersBames, Inc.)

0488

10.5 Interact ion-Technique Toolkits

typo DlOO
,128
194 '0 ,. 278
Vtalblt 4 GoAwey o
128

4 55

Fig. 10.15 An interactive editor for designing windows. The size. position, border
style, title, and presence of the " go away" box can all be controlled. The edrtor shows
the window at its actual size; the text file describing the window is at the upper right,
and a dialogue box for controlling the window characteristics is at the upper left. The
w indow's size and position can be modified by direct manipulation, in which case the
values ln the dialogue box are modified. The text file is written out as the permanent
record of the window's design. The 1.0. and Ref# form a name by which the application
program can refer to the window. (Screen graphics® Apple Computer. Inc.)

The output of these editors is a representation of the composite, either as data
structures that can be translated into code, or as code, or as compiled code. In any case.
mechanisms are provided for linking the composite into the application program.
Programming skills are not needed to use the editors, so the editors are available to
user-interface designers and even to sophisticated end users. These editors are typical of the
intemctive design tools shown in Fig. 10.1 .

Another approach to creating menus and dialogue boxes is to use a higher-level
programming-language description. In Mickey [OLSE89], an extended Pascal for the
Macintosh. a dialogue box is defined by a record declamtion. The data type of each record
item is used to determine the type of widget used in the dialogue bolt; enumemted types
become radio-button banks, character strings become text inputS, Booleans become
checkb<Dtes, and so on. Figure 10. 16 shows a dialogue box and the code that creates it. An

~r,:o • strlng[40)
textStyte • record

font: Slt40;
points ("Name • 'Point SlzeM) : Integer

end

Fig. 10.16 A dialogue box created automatically by Mickey from the extended Pascal
record declaration. (Courtesy of Dan Olsen, Jr., Brigham Young University.)

0489

456 User Interface Software

procedure NewDrawing (
(" Menu = File Name • 'New .. .' Key = N ')
DrawFIIe : OutFileDesc); {Name of dialogue box to be shown.}

procedure Open Drawing (
(' Menu • File Name = 'Open .. .' Key • 0 ')
DrawFIIe : lnFileDesc); {Name of dialogue box to be shown.}

procedure CloseDrawing;
(' Menu • File Name= 'Close' Key • W ')

procedure SaveDrawing;
{' Menu = File Name • 'Save' Key = S ')

procedure SaveOrawingAs (
(' Menu • Fi le Name = 'Save As .. .' ')
DrawFIIe : OutFileDesc): {Name of dialogue box to be shown.)

Fig. 10.1 7 A menu created automatically by Mickey from the extended Pascal record
declaration. (Courtesy of Dan Olsen, Jr .• Brigham Young University .)

interactive dialogue-box editor can be used to change the placement of widgets. Figure
I 0.17 shows a menu and the code from which it is generated.

Peridot [MYER86; MYER88] takes a radically different approach to toolkits . The
interface designer creates widgets and composit.e widgets interactively, by example. Rather
than starting with a base set of widgets, t.be designer works with an interactive editor to
create a certain look and feel. Examples of the desired widgets are drawn, and Peridot infers
relationships that allow instances of the widget to adapt to a specific situation. For instance,
a menu widget infers that its size is to be proportional to the number of items in the menu
choice set. To specify the behavior of a widget, such as the type of feedback to be given in
response to a user action, the designer selects the type of feedback from a Peridot menu, and
Peridot generali les the example to al l menu items.

10 .6 USER-INTERFACE MANAGEMENT SYSTEMS

A user-interface management system (UIMS) assists in implementing at least the form of a
user interface, and in some cases portions of the meaning as well. All UlMSs provide some
means of defining admissible user-action sequences and may in addition support overall
screen design, help and error messages, macro definition, undo, and user profi les. Some
recent UIMSs also manage the data associated with the application. This is in contrast to
interaction technique tool kil~. which provide far less support.

VIMSs can increase programmer productivity (in one study, up to 50 percent of the
code in interactive programs was user-interface code I SUTr78)), speed up the development

0490

10.6 User-Interface Management Systems 4 57

process, and facilitate iterative refinement of a user interface as experience is gained in its
use. As suggested in Fig. 10.1 , the UIMS is interposed between the application program
and the interaction-technique toolkit. The more powerful the UIMS, the less the need for
the application program to interact directly with the operating system, window system, and
toolkit.

ln some UlMSs, user-interface elements are specified in a programming language that
has specialized operators and data types. In others, the specification is done via interactive
graphical editors, thus making the UIMS accessible to nonprogrammer interface designers.

Applications developed on top of a UIMS are typically written as a set of subroutines,
often called action routines or semantic action routines. The UIMS is responsible for cal ling
appropriate action routines in response to user inputs. In turn, the action routines influence
the dialogue-for instance, by modifying what the user can do next on the basis of the
outcome of a computation. Thus, the UlMS and the application share control of the
dialogue-this is called the slwred-control model. A UIMS in which the action rou­
tines have no influence over the dialogue is said to follow an exremal-comrol model;
control resides solely in the UIMS. External control is not as powerful a model as is shared
control.

UIMSs vary greatly in the specific capabilities they provide to the user- interface
designer, but the one essential ingredient is a dialogue-sequence specification, to control the
order in which interaction techniques are made available to the end user. For this reason, in
the next section, we turn our attention to dialogue sequencing; then, in Section 10.6.2, we
discuss more advanced UlMS concepts. Further background on UJMSs can be found in
(HART89; MYER89; OLSE84b; OLSE87].

1 0 .6 .1 Dialogue Sequencing

Permissible sequences of user actions can be defined in a variety of ways: via transition
net~rks (also called state diagrams), recursive transition net~rks, event languages, or by
example, where the designer demonstrates the allowable action sequences to the system and
the system "learns" what sequences are possible. Common to all these methods is the
concept of a user-interface srare and associated user actions that can be performed from that
state. The notion of state has been discussed in Section 9.3.1 (state diagrams) and in
Section 9.4 (modes). Each of the specification methods encodes the user-interface state in a
slightly different way, each of which generalizes to the use of one or more state variables.

If a context-sensitive user interface is to be created, the system response to user actions
must depend on the current state of the interface. System responses to user actions can
include invocation of one or several action routines, changes in one or more of the state
variables, and enabling, disabling, or modifying interaction techniques or menu items in
preparation for the next user action. Help should also be dependent on the current state.
Since the outcome of computations performed by the action routines should affect
user-interface behavior, the action routines must be able to modify the state variables.
Thus, state is at the heart of context-sensitivity, a concept central to contemporary user
interfaces.

The simplest and least powerful, but nevertheless useful, sequence specification
method is the transition nellllork or state diagram. Transition ne~rks have a single state
V'Miable, an integer indicating the current state. User actions cause transitions from one

0491

458 Uaer Interface Software

state to another; each transition has associated with it zero or more action routines that are
called when the transition occurs. In addition, states can have associated action routines
executed whenever the state is entered. This shorthand is convenient for actions that are
common to all transitions entering a state.

111e action routines can affect the current state of the transition network in one of two
ways. First, they can place events in the event queue, which in tum drives the interaction
handling. This approach implicitly modifies the state , although to ensure that the state
change is immediate, the event must be put at the front of the queue, not at the back.
Alternatively, the action routines can modify the state more directly by simply setting the
state variable to a new value. The first approach is cleaner from a software~ngineering
view, whereas the second is more flexible but more error-prone.

A number of UIMSs are based on state diagrams [JAC083; JAC085; SCHU85;
RUBE83; WASS85). Some of these provide interactive transition-network editors, which
makes the networks simple to specify. The first UIMS, developed by Newman and called
The Rtoction Handler, included such an editor (NEWM68). A simple transition-network­
driven UIMS is easy to implement~ Exeteise 10.8.

Transition networks are especially useful for finding sequencing inconsistencies, as
discussed in Section 9.3.1, and can easily be used to determine the number of steps
required to complete a task sequence. Thus, they also serve as means of predicting how
good a particular design will be, even before the complete interface is implemented.
Consider, for example, the simple case of explicit versus implicit acceptance of results.
Figure I 0. 18 represents a one-operand command with explicit acceptance and rejection of
the results; Fig. 10.19 shows implicit acceptance and explicit rejection. In the first case,
three steps are always required: enter command, enter operand, accept. In the second case,
only two steps are normally needed: enter command, enter operand. Three steps are needed
only when an error has been made. Minimizing steps per task is one goal in interface
design, especially for experienced users, since (not surprisingly) the speed with which
experienced users can input commands is nearly I inearly related to the number of discrete
steps (keystrokes, hand movements) required (CARD80).

Transition networks, however, have drawbacks. First, tbe user-interface state is
typically based on a number of State variables, and having to map all possible combinations
of values of these variables onto a sing.le state is awkward and nonintuitive for the

Enter command

Enter

Enter operand
Action performed

Enter ·rejecl"

Action undone

Fig. 10.18 Transition netw ork for a dialogue with explicit acceptance and rejection of
results.

0492

10.6 User-Interface Management Systems

· Enter command

Enter •reject'"
Action undone

459

Fig. 10.19 Transition netw ork for a dialogue w ith implicit acceptance and explicit
rejection of results.

user-interface designer. For example, if commands are to behave in one way when there is a
currently selected object (CSO) and in another way when there is no CSO, the number of
states must be doubled to encode the "CSO exists-does not exist" condition. These types
of context-sensitivities can expand the state space and make the transition networks difficult
to create and understand. Figure 10.20, for example, shows a transition network for a
simple application having the following commands:

•
•
•
•
•
•
•

Select an object (establishes a CSO)

Deselect the CSO (so there is no CSO)

Create an object (establishes a CSO)

Delete the CSO (so there is no CSO)

Copy the CSO to the clipboard (requires a CSO, makes the clipboard full)

Paste from the clipboard (requires that the clipboard be full, c.reates a CSO)

Clear the clipboard (requires that the clipboard be full, empties the clipboard) .

Four states are needed to encode the two possible conditions of the clipboard and the CSO.
Notice also that whether or not any objects exist at all also should be encoded, since objects
must exist for the command Select_object to be available in the starting state. Four more
states would be needed to encode whether any objects do or do not exist.

Concurrency creates a similar state-space growth problem. Consider two user-interface
elements-say, two concurrently active dialogue boxes-each with its own "state"
encoding the selections currently allowable or currently made. If each dialogue-box state
can be encoded in 10 states, their combination requires 100 states; for three dialogue boxes,
1000 states are needed; and so on. This exponential growth in state space is unacceptable.
Jacob [JAC086] combines transition networks with object-oriented programming concepts
to specify complete user interfaces while limiting the state-space explosion. Objects are
self-contained entities within the interface, and each object has its own transition network to
specify its behavior, which is independent of that of other objects. Tbe UIMS portion of
HUTWindows, the Helsinki University of Technology Window Manager and UIMS, uses a
similar strategy [KOlV88].

0493

460 User Interface Software

Delete Select
object object

Deselect Create
CSO object

Start

Clear
clipboard

Clear
clipboard

Delete Select
object object

Fig. 10.20 A transition network with four states. Not all commands are available in all
states. In general, action routines associated with transitions should appear on
diagrams of this sort. with the names of the user actions (user commands in this case);
we omit them here because the actions are obvious.

Globally available commands similarly enlarge the transition network. lf help is to be
globally available, each state must have an associated help state, a transition to the help
state, and a reverse transition back to the originating state. This is also needed for the help
to be context-sensitive. Undo must be done similarly, except that the transition from an
undo state returns to a state different from the one from which it was entered. As the
number of transitions relative to the number of states increases, we end up with complex
"spaghetti" transition networks.

Various specialized constructs have been developed to simplify transition networks. For
instance, we can a.lleviate the help problem by using subnetworks, in a fashion analogous to
subroutines, to hide localized repetitive detail . Transition networks that can call sub­
networks recursively are called recursive transition networks. The state variables in this case
are the entire stack of saved states, plus the state of the currently act.ive transition network.
Several other powerful diagramming techniques, all derived from transition networks, are
described in [WELL89] .

0494

10.6 User-Interface Management Systems

<command> ::=<create> I <polyline> I <delete> I <move> I STOP
<create>::= CREATE+ <type>+ <position>
<type> ::=SQUARE I TRIANGLE
<position> ::= NUMBER+ NUMBER
<polyline> ::= POL YUNE + <vertex list> + END _pOLY
<vertex_Jist> ::= <position> I <vertex_list> + <position>
<delete>::= DELETE + OBJECI'_ID
<move>::= MOVEA + OBJECI'_ID +<position>

461

Fig. 1 0 . 21 Backus- Naur form representation of the sequencing rules for a simple user
interface.

Backus-Naur form (BNF) can also be used to define sequencing, and is equivalent in
representational power to recursive transition networks (both are equivalent to push-down
automata). BNF, illustrated in Fig. 10.21 , can also be shown diagrammatically as the
diagrams of Fig. 10.22. It is difficult to read BNF and to obtain a good overview of the
sequencing rules, but BNF form can be processed to provide an evaluation of certain
aspects of user-interface quality [BLES82, REIS82), or to generate command-language
parsers [JOHN78]. Several older UlMSs were based on BNF specifications [HANA80;
OLSE83; OLSE84a].

Transition networks, whether recursive or not, encode user-inteface state in a small
number of state variables. Augmemed transition networks (ATNs), a more flexible
derivative of transition networks , encode user-interface state by which node of the ATN is
active and by what the values of explicit state variables are. Responses can be the calling of
action routines, the setting of these explicit state variables , or the changing of the node of
the ATN that is active. Of course, the state variables can also be set by action routines.
Figure 10.23 shows an ATN in which the Boolean state variable cb, set by several of the
transitions, is used to affect flow of control from one state to another. The variable cb is
true if the clipboard is full.

command

~ SQUARE--.........____ T
CREATE ---.....__ TRIANGLE ~ pos110n --..._

POLYLINE vertex..Jist END- POLY ---.

DELETE OBJECT_lD

MOVE OBJECT- ID --- position --~

STOP

--verteuist .. { position ' ...
position .. NUMBER ------------- NUMBER

Fig. 10.22 A diagrammatic representation of the Backus-Naur form equivalent to that
in Fig. 10.21.

0495

482 User Interface Software

Deselect Create

(cb ~ true) & Clear
cb :a faiM

Copy
cb:• true

object object (cb • true) & Paste

Swt

(cb• true) & Clear
cb :- false

Fig. 10.23 An augmented transition network (ATN) representing the same user
interface as that in Fig. 1 0.20. Transitions can be conditionally dependent on the value
of explicit state variables (the Boolean cb in this case). and can also set state variables.
In general, the application program can also set state variables.

Just as transition networks can be made more general with subnetworks, so too ATNs
can call lower-level ATNs. ATNs that can recursively caU other ATNs are called augmented
recunive transition network.s [WOOD70], and researchers have used these net"'orks to
model user interfaces [KIER85].

As transition networks become more complicated, with logical expressions on
transition and subroutine calls, we are led toward more programlike specifications. After
all, programming languages are the most powerful way yet developed of specifying
sequencing and the multiple conditions often associated with transitions. Several event
languages have been developed specifically for user-interface specilicat.ion [CARD85;
FLEC87; GARR82; GREE85a; HlLL87; KAS182; SlOC89]. The u.<;er interface depicted in
Figs. 10.20and 10.23 can be described in a typical event language, as shown in Fig. 10.24.
Note that event languages, unlike traditional programming languages, have no explicit flow
of control. Instead, whenever an il condition becomes true, the associated actions are
executed. Thus, the event language is a production-rule system.

0496

10 .6 User- Interface M anagem ent Systems

ir Event = SelectObject then
begin

cso := t rue
perfor m action routine name

end
if Event = DeselectCSO and cso = true then

begin
cso := false
perform action routine name

end
if Event = CreateObject then

begin
cso := t rue
perfor m action routine name

end
if Event = DeleteCSO and cso = tr ue then

begin
cso := false
perform action routine name

end
if Event = CopyCSO and cso = true then

begin
cb := true
perfor m action routine name

end
if Event = PasteCJipboard and cb = t rue then

begin
cso := I rue
perform action routine name

end
if Event = ClearClipboard a nd cb = true then

begin
cb := fal se
perform action routine name

end

Fig . 10.24 A typical event la nguage. with a Pascal-like syntax.

463

Green [GREE87] surveys event languages and all the other sequence-specification
methods we have mentioned, and shows that general event languages are more powerful
than are transition networks , recursive transition networks, and grammars; he also provides
algorithms for converting these forms into an event language. AJ'Ns that have general
computat ions associated with their arcs are also equivalent to event languages.

If eventlanguges are so powerful, why do we bother with the various types of transition
networks? Because, for simple cases, it is easier to work with diagrammatic representa­
tions. One of the goals of UIMSs is to allow nonprogrammers who specialize in
user-interface design to be directly involved in creating an interface. This goal is probably
best met with transition-network-oriented tools that are easier to use, although somewhat
less powerful. Networks provide a useful , time-proven tool for laying out a dialogue, and

0497

464 User Interface Software

they appear to help the designer to document and understand the design. The diagrammatic
representations are especially compelling if user actions are performed on interaction
objects such as menus, dialogue boxes, and other visible objects. Then diagrams of the type
shown in Fig. 10.25 can be created interactively to define dialogue sequencing. If needed,
conditions (such as the cb = true in Fig. 10.23) can be a~sociated with the arcs. Figure
10.26 shows one way to establish a link on such a diagram.

A quite different way to define syntax is by example. Here, the user-interface designer
places the UfMS into a " learning" mode, and then steps through all acceptable sequences
of actions (a tedious process in complex applications, unless the VIMS can infer general
rules from the examples). The designer might start with a main menu, select an item from
it, and then go through a directory to locate the submenu, dialogue box, or application­
specific object to be presented to the user in response to the main menu selection. The
object appears on the screen, and the designer can indicate the position, size, or other
attributes that the object should have when the application is actually executed. The
designer goes on to perform some operation on the displayed object and again shows what
object should appear next, or how the displayed object is to respond to the operation; the
designer repealS this process until all actions on all objects have been defined. This
technique ~rks for sequencing through items that have already been defined by the
interface designer, but is not sufficiently general to handle arbitrary application function­
ality. User-interface software tools with some degree of by-example sequencing specifica­
tion include Menulay [BVXT83), TAE Plus fMTLL88c] and the SmethersBarnes Prototyper
[COSS89]. Peridot, mentioned earlier, builds interaction techniques , (i.e. , hardware
bindings) by example.

10.6 .2 Advanced UIMS Concepts

VIMSs have tended to focus on sequence control and visual design. Transition net~rks
provide a good basis for sequencing, and interactive editors are just right for visual design.

' Fii

c
Print
cblogue

Print
help

Fig. 10.25 Several menus and dialogue boxes linked together. The return paths from
dialogue boxes to the main menu are not shown.

0498

10.6 User-Interface Management Systems 466

Select which windows to link to:

I OK I

Fig. 10.26 Linking together different interaction techniques using the SmethersBarnes
Prototyper. A menu item is being linked to the dialogue box "Set up test" checked in the
list. The icons on the right are used to select the class of responses to be linked to the
menu selection. Reading left to right underneath the "link" icon, the possibilities are
enable or disable check boxes. radio buttons, and buttons in dialogue boxes; open a
window or dialogue box (the class of response selected); enable or disable a menu;
enable or disable a menu item; open a print dialogue box; or open a file dialogue box.
(Courtesy of SmethersBames. Inc.)

As discussed in Chapter 9, however, a user-interface design includes conceptual,
functional , sequencing, and hardware-binding levels. Much recent UIMS development
has begun to address the functional and conceptual designs as well. Thus, there
has come to be more focus on combining sequencing control with a higher-level
model of objects and commands, and also on integrating intelligent help systems into the
UIMS.

Representations at a higher level than that of transition networks are clearly needed.
Consider how difficult it would be to add to the transition network of Fig. 10.20 new states
to record whether any objects have yet been created. lt would also be difficult to apply some
of the dialogue modifications. such as CO, currently selected command, and factored
attributes, discussed in Section 9.4. And the sequencing specifications provide no
information about wbat oper.uions can be performed on what objects, and certainly give no
glimmer of whart parameters are needed to perform an operation.

The first step away from a sequencing orientation and toward higher levels of
abstraction was taken by COUSIN [HAYE83; HAYE84), which automatically generates
menus and dialogue boxes from a specification of commands, parameters, and parameter
data types. The innovation of COUSIN is in defining all the parameters needed by a
command as an integral unit. COUSIN has enough information that a prefix or postfix
syntax could also be generated. Green took a similar approach, adding preconditions and
postconditions to specify the semantics of user commands [GREE85b]. Olsen's MIKE
system (0LSE86J declares commands and parameters, also generating a user interface in a
fashion similar to COUSIN. In addition, MlKE supports direct manipulation of objects
to specify positions, and can cause commands to be executed when a button-down event
occurs in a window or subwindow.

0499

466 User Interface Software

All these significant advances are focused on commands. If a UrMS is to mediate
between !he user and the application in direct-manipulation interfaces, however, it must
have some knowledge of the objects to be manipulated. HIGGINS was the first UrMS to
incorporate a data model [HUDS86; HUDS87; HUDS88), one that is based on objects and
relations between objects. The UrMS and action routines share the data model, so !hat
changes made to data objects can be immediately reflected in the display. Active values are
used to propagate changes among interdependent objects and from objects to their visual
representations. The George Washington University User Interface Management System
(GWUlMS) uses active values and object-oriented programming concepts to achieve a
similar objective [SfBE86]. GWUlMS ll also uses a data model [HURL89]. as does the
Serpent UIMS (BASS88]. Although !he deta.ils vary, all the data models make use of
object-oriented programming concepts and active values, and are closely related to
developments in database-management systems in the area of semantic data models
[HULL87].

The User Interface Design Environment (UIDE) project [FOLE89] has developed a
new user-interface specification method integrating some elements of these recent
developments to include a data model, the commands that can be applied to each type of
object in the data model , the parameters needed by !he commands, !he parameter data
types, the conditions under which commands are available for use (that is, command
preconditions), and the changes that occur to state variables when a command is executed
(that is, command postconditions) [FOLE87; FOLE88]. To illustrate the method, we start
with the sample application developed in Section 10.6.1. We add a data mod.el, which is
here a single class of objects with two subclasses, square and triangle. In addition, !here are
two distinguished instances of objects, !he CSO and the clipboard object, both of which
may or may not exist at any given time. The specification is shown in Fig. 10.27. The
preconditions are !he conditions on state variables that must be satisfied for a command to
be invoked, whereas the postconditions are changes in state variables.

Not only is this specification sufficient to create automatically an operational interface
to the application's action routines, but also it is represented such that

•
•
•

•

•
•

•

Menu items can be enabled and disabled, using preconditions

Users can be told why a command is disabled, again using preconditions

Users can be told what to do to enable a command, by back chaining to determine what
commands must be invoked to satisfy the preconditions of the command in question

Users can be given a partial explanation of what a command does, using the
postconditions

Some user-interface design-consistency rules can be checked

Different interaction techniques can be assigned for use in specifying commands and
command parameters

Speed of use of the interface can be predicted for various tas.k sequences and for
various interaction techniques.

Another way to define user interfaces consisting of interconnected processing modules
is with data-flow diagrams. For instance. the NeXT Interface Builder, shown in Fig. 10.28,

0500

class object {First the data model)
subclasses triangle, square;
actions CreateObject, SelectObject;
attributes position range [0 .. 10) x [0 .. 10) {Attribute name and data type)

class triangle, square;
s uperclass object;
inherits actions
inheri ts attributes

instance C S 0
of object
actions OeselectCSO, DeleteCSO, CopyCSO
inherit s attributes

inst ance C 8
of object
actions ClearCiipboard, Paste
inherits attributes

(Initial values for state variables I
initial Number (object) := 0; csoExists := false; cbFu/1 := false;

(Actions on objects, with preconditions, postconditions, and parameters)
precondition Number (object) ~ 0;
SelectObject (object);
postcondition csoExists := true;

precondition csoExists := true:
DeselectCSO (CSO);
post condition csoExists := false;

precondi tion ;
CreateObject (position, object);
postcondition Number (object):= Number (object) +I; csoExists := true;

precondition csoExists := true;
DeleteCSO (CSO);
postcondition Number (object)= Number (object)- I; csoExists := false;

precondition csoExists := true;
CopyCSO (CSO);
postcondition cbFu/1 := true;

precondition cbFu/1 := true;
Paste (CB);
postcondition csoExists := true;

precondition cbFu/1 := true;
ClearCiipboard (CB);
postcondition cbFu/1 := false ;

Fig. 10.27 A high-level specification of a user interface incorporating a data model,
sequencing information, and command parameters.

467

0501

468 User Interface Software

Fig. 10.28 The NeXT Interface Builder, showing a connection being made. The user
has already selected the type of message to be sent from the Stop button, and has
drawn the connection to the cylindrical chamber to indicate the destination of the
message. (Courtesy of NeXT, Inc. © 1989 NeXT, Inc.)

allows objects to be interconected so that output messages from one object are input to
another object. Type checking is used to ensure that only compatible messages are sent and
received.

Data-flow diagrams can also be used to specify the detailed behavior of some or all of a
user interface, although doing so takes on considerable programming flavor and suffers the
same problems of scale seen with llowcharts and transition networks. Work is this area is
surveyed in [BORN86a]; a more recent project is described in [SMIT88]. A specialized
system, for scientific data visualization, is shown in Color Plate 1.30.

UIMSs are finding their way into regular use. Early UlMSs suffered from rigid
interaction styles that did not allow custom-tailoring to suit users' needs and were overly
dependent on transition networks. Commercial UIMSs are now used on a large scale, and
are becoming as essential to developing interactive graphics application programs as are
graphics subroutine packages, window managers, and interaction-technique toolk its.

EXERCISES

10.1 Study the user imerfaces to two differem window systems. Categorize each with respect to the
design issues discussed in Section 9.3.

10.2 Devise the search mechanism for real-estato--based event routing with overlapping main
windows, in which each main window can contain a hierarchy of spatially nested subwindows.

0502

Exercises 469

10.3 Survey three window-management systems to determine whether they
a. Have hierarchical windows
b . Implement a server-diem model and, if they do, whether the implementation allows the

server and client to be distributed in a nenwrk
c. Provide real-estate or listener input event dispatching, or some combination thereof
d. Integrate the graphics subroutine package with the window-management system, or pass

graphics calls directly through to graphics hardware.

10.4 Write an interactive dialogue box or menu editor.

10.5 Implement the concepts demonstrated in MICKY [OLSE89] with a programming language and
toolkit available to you.

10.6 Examine several user interfaces with which you are familiar. Identify a set of user-interface
state variables used in implementing each user interface. How many of these state variables are used in
the user interface to provide context-sensitive menus, help, and so on?

10.7 Document the dialogue of a user interface. to a paint or drawing program. Do this (a) with state
diagrams, and (b) with the speciali:ted language introduced in Section 10.6. 1. Which method did you
find easier? Why? Compare your opinions with those of your classmates. Which method is easier for
answering questions such as "How do I draw a circle?" " What do I do after an error message
appears?"

10.8 Write a lransition-nenwrk-based UIMS. Every lransition in the state diagram should be
represented by a state-table entry with the following information:

• Current state number
• Next state
• Event which causes the transition
• Name of procedure to call when the transition occurs.

Events should include selection of a command from a menu, typing of a command name, mouse
movement, mouse button-down, and mouse button-up. You should automatically display a menu
containing all possible commands (derive th.is list from the events in the state table), enabling only
those choices available from the current state.

10.9 For each of the extensions to state diagrams discussed in Section 9 .3, determine whether the
modifications create a push-down automaton (is it bounded or unbounded?) or a Turing machine.

10.10 Carefully study a window-management system that includes a policy-free window system.
Examine several window managers to determine whether they can be implemented with the window
system. For instance, some window systems provide for borders around windows for scroll bars, a
heading, and perhaps selection buttons. For the window system to be completely policy-free, you
must be able to specify separately the width of the borders on the four sides of the window.

0503

11
Representing

Curves and
Surfaces

Smooth curves and surfaces must be generated in many computer graphics applications.
Many real-world objects are inherently smooth, and much of computer graphics involves
modeling the real world. Computer-aided design (CAD), high-quality character fonts, data
plots, and artists' sketches all contain smooth curves and surfaces. The path of a camera or
object in an animation sequence (Chapter 21) is almost always smooth; similarly, a path
through intensity or color space (Chapters 16 and 13) must often be smooth.

The need to represent curves and surfaces arises in two cases: in modeling existing
objects (a car, a face, a mountain) and in modeling "from scratch," where no preexisting
physical object is being represented. In the first case, a mathematical description of the
object may be unavailable. Of course, one can use as a model the coordinates of the
infinitely many points of the object, but this is not feasible for a computer with li nite
storage. More often, we merely approximate the object with pieces of planes, spheres, or
other shapes that are easy to describe mathematically, and require that points on our model
be close to corresponding points on the object.

In the second case, when there is no preexisting object to model , the user creates the
object in the modeling process; hence, the object matches its representation exactly,
because its only embodiment is the representation. To create the object, the user may sculpt
the object interactively, describe it mathematically, or give an approximate description to
be "filled in" by some program. In CAD, the computer representation is used later to
generate physical realizations of the abstractly designed object.

This chapter introduces the general area of surface modeling. The area is quite broad,
and only the three most common representations for 3D surfaces are presented here:
polygon mesh surfaces, parametric surfaces, and quadric surfaces. We also discuss

471

0504

472 Representing Curves and Surfaces

Fig. 11 .1 A 30 object represented by polygons.

parametric curves, both because they are interesting in their own right and because
parametric surfaces are a simple generalization of the curves.

Solid modeling, introduced in the next chapter, is the representation of volumes
completely surrounded by surfaces, such as a cube, an airplane, or a building. The surface
representations discussed in this chapter can be used in solid modeling to define each of the
surfaces that bound the volume.

A polygon mesh is a set of connected polygonally bounded planar surfaces. Open
b())(es, cabinets, and building exteriors can be easily and naturally represented by polygon
meshes. as can volumes bounded by planar surfaces. Polygon meshes can be used. although
less easily. to represent objects with curved surfaces, as in Fig. II. I; however. the
representation is only approximate. Figure 11.2 shows the cross-section of a curved shape
and the polygon mesh representing it. The obvious errors in the representation can be made
arbitrarily small by using more and more polygons to create a better piecewise linear
approximation, but this increases space requirements and the execution time of algorithms
processing the representation. Furthermore. if the image is enlarged, the straight edges
again become obvious. (Forrest calls this problem "geometric aliasing" [FORR80), by
analogy to the general notion of aliasing discussed in Chapters 3 and 14.)

Pammetric polynomial cun~s define points on a 30 curve by using three polynomials
in a parameter 1. one for each of x, y . and z. The coefficients of t.he polynomials are selected
such that the curve follows the desired path. Although v.Jrious degrees of polynomials can
be used, we present only the most common case, cubic polynomials (that have powers of the
parJmcter up through the third). The tcm1 cubic curve will often be used for such curves.

Parametric bivariate (two-variable) polynomial surface patches define the coordinates
of points on a curved surface by using throe bivariate polynomials, one for each of x, y. and
z. The boundaries of the patches are parametric polynomial curves. Many fewer bivariate
polynomial surface patches than polygonal patches are needed to approximate a cur\'ed

Fig. 11 .2 A cross-section of a curved object and its polygonal representation.

0505

11 .1 Polygon Meshes 473

surface to a given accuracy. The algorithms for working with bivariate polynomials,
however, are more complex than are those for polygons. As with curves, polynomials of
various degrees can be used, but we discuss here only the common case of polynomials that
are cubic in both parameters. The surfaces are accordingly called bicubic surfaces.

Quadric surfaces are those defined implicitly by an equationf(x, y, z) = 0, where/is a
quadric polynomial in x, y, and z. Quadric surfaces are a convenient representation for the
familiar sphere, ellipsoid, and cylinder.

The next chapter, on solid modeling, incorporates these representations into systems to
represent not just surfaces, but also bounded (solid) volumes. The surface representations
described in this chapter are used, sometimes in combination with one another, to bound a
30 volume.

11 .1 POLYGON MESHES

A polygon mesh is a collection of edges, vertices, and polygons connected such that each
edge is shared by at most two polygons. An edge connects two vertices, and a polygon is a
closed sequence of edges. An edge can be shared by two adjacent polygons, and a vertex is
shared by at least two edges. A polygon mesh can be represented in several different ways,
each with its advantages and disadvantages. The application programmer's task is to choose
the most appropiate representation. Several representations can be used in a single
application: one for external storage, another for internal use, and yet another with which
the user interactively creates the mesh.

Two basic criteria , space and time, can be used to evaluate different representations.
Typical operations on a polygon mesh are finding all the edges incident to a vertex, finding
th.e polygons sharing an edge or a vertex, finding the vertices connected by an edge, finding
the edges of a polygon, displaying the mesh, and identifying errors in representation (e.g., a
missing edge, vertex, or polygon). In general, the more explicitly the relations among
polygons, vertices, and edges are represented, the faster the operations are and the more
space the representation requires. Woo [W0085] has analyzed the time complexity of nine
basic access operations and nine basic update operations on a polygon-mesh data structure.

In the rest of this section, several issues concerning polygon meshes are discussed:
representing polygon meshes, ensuring that a given representation is correct, and
calculating the coefficients of the plane of a polygon.

11 . 1 . 1 Representing Polygon Meshes

In this section, we discuss three polygon-mesh representations: explicit, pointers to a vertex
list, and pointers to an edge list. In the explicit representation, each polygon is represented
by a list of vertex coordinates:

P = ((x1, y1, z1), (xz, y2, Zz), ... , (x •• y •• z.,)).

The vertices are stored in the order in which they would be encountered traveling around the
polygon. There are edges between successive vertices in the list and between the last and
first vertices. For a single polygon, this is space-efficient; for a polygon mesh, however,

0506

474 Representing Curves and Surfaces

much space is lost because the coordinates of shared vertices are duplicated. Even worse,
there is no explicit representation of shared edges and vertices. For instance, to drag a
vertex and aU its incident edges interactively, we must find aU polygons that share the
vertex. This requires comparing the coordinate triples of one polygon with those of all other
polygons. The most efficient way to do this would be to sort all N coordinate triples, but this
is at best an Mog.j'V process, and even then there is the danger that the same vertex might,
due to computational roundoff, have slightly different coordinate values in each polygon, so
a correct match might never be made.

With this representation, displaying the mesh either as filled polygons or as polygon
outlines necessitates transforming each vertex and clipping each edge of each polygon. lf
edges are being drawn, each shared edge is drawn twice; this causes problems on pen
plotters, film recorders, and vector displays due to the overwriting. A problem may also be
created on raster displays if the edges are drawn in opposite directions, in which case extra
pixels may be intensified.

Polygons defined with pointers to a vertex list, the method used by SPHJGS, have each
vertex in the polygon mesh stored just once, in th.e vertex list V = ((x1, Y1> z1), ••• , (x., y.,
z.)). A polygon is defined by a list of indices (or pointers) into the vertex list. A polygon
made up of vertices 3, 5, 7, and 10 in the vertex list would thus be represented asP= (3, 5,
7, 10).

This representation, an example of which is shown in Fig. 11.3, has several advantages
over the explicit polygon representation. Since each vertex is stored just once, considerable
space is saved. Furthermore, the coordinates of a vertex can be changed easily. On the other
hand, it is still difficult to find polygons that share an edge, and shared polygon edges are
still drawn twice when all polygon outlines are displayed. These two problems can be
eliminated by representing edges explicitly, as in the next method.

When defining polygons by pointers to an edge list, we again have the vertex list V, but
represent a polygon as a list of pointers not to the vertex list, but rather to an edge list , in
which each edge occurs just once. In tum, each edge in the edge list points to the two
vertices in the vertex list defining the edge, and also to the one or two polygons to which the
edge belongs. Hence, we describe a polygon asP= (E1, ••• , E.), and an edge as E = (V1,

V2, P1, P2). When an edge belongs to only one polygon, either P1 or P2 is null. Figure 11.4
shows an example of this representation.

Polygon outlines are shown by displaying all edges, rather than by displaying all
polygons; thus, redundant clipping, transformation, and scan conversion are avoided. Filled
polygons are also displayed easily. ln some situations, such as the description of a 30
honeycomblike sheet-metal structure, some edges are shared by three polygons. In such

V = (V1 , ~· "s· V.) = ((x1,y1 , Z,) , ..• , (x4,y4 , z4))

"s P, = (1, 2, 4)

p2 = (4, 2, 3)

Fig. 11 .3 Polygon mesh defined with indexes into a vertex list.

0507

11 .1

v, v,

v.

Polygon Meshes 476

v. (V
1

, V
2

, v3, V4) • ((x,. y1, z,l, ... , (x4 , y4, zJ)

E,•(V1, V2, P,.J.)

Ez: (Vz. V3, Pz, A)

~ = (v3, v4, P2, J.)

E4 • (V4, V2, P1, P2)

E5 • (V4, V1, P1, J.)

P, = (E,. E4, E,)

Pz • (Ez, E,. EJ

Fig. 11 .4 Polygon mesh defined with edge lists for each polygon (A represents null).

cases, the edge descriptions can be extended to include an arbitrary number of polygons:
E = (V1, V2, P1, P2, ••• , P.).

ln none of these three representations (i.e., explicit polygons, pointers to vertices,
pointers to an edge list), is it easy to determine which edges are incident to a vertex: All
edges must be inspected. Of course, information can be added explicitly to permit
determining such relationships. For instance, the winged-edge representation used by
Baumgart [BAUM75] expands the edge description to include pointers to the t~ adjoining
edges of each polygon, whereas the vertex description includes a pointer to an (arbitrary)
edge incident on the vertex, and thus more polygon and vertex information is available.
This representation is discussed in Chapter 12.

11 .1.2 Consistency of Polygon-Mesh Representations

Polygon meshes are often generated interactively, such as by operators digitizing drawings,
so errors are inevitable. Thus, it is appropriate to make sure that all polygons are closed, all
edges are used at least once but not more than some (application-defined) maximum, and
each vertex is referenced by at least t~ edges. In some applications, we ~uld also expect
the mesh to be completely connected (any vertex can be reached from any other vertex by
moving along edges), to be topologically planar (the binary relation on vertices defined by
edges can be represented by a planar graph), or to have no holes (there exists just one
boundary-a connected sequence of edges each of which is used by one polygon).

Of the three representations discussed, the explicit-edge scheme is the easiest to checlc
for consiStency, because it contains the most information. For example, 10 make sure that
all edges are part of at least one but no more than some maximum number of polygons, the
code in Fig. 11.5 can be used.

This procedure is by no means a complete consistency check. For example, an edge
used twice in the same polygon goes undetected. A similar procedure can be used to make
sure that each vertex is part of at least one polygon; we check whether at least t~ different
edges of the same polygon refer to the vertex . Also, it should be an error for the t~ vertices
of an edge 10 be the same, unless edges with zero length are allowed.

The relationship of "sharing an edge" between polygons is a binary equivalence
relation and hence partitions a mesh into equivalence classes called conMCted compont!nts.

0508

476 Representing Curves and Surfaces

for (each tdgt EJ in stt of tdges)
use..count, = 0:

for (each polygon P, in set of polygons)
for (each edge EJ of polygon P)

USeJ:OllntJ++:
for (each edge EJ In set of edges) {

If (use..countj == 0)

}

Error ():
If (ust..count J > nuuinwm)

Error ():

Fig. 11 .5 Code to ensure that all edges of explicit polygon represe ntation are used
between 1 and maximum times.

One usually expects a polygon mesh to have a single connected component. Algorithms for
determining the connected components of a binary relation are well known [SEIXi88).

More detailed testing is also possible; one can check, for instance, that each polygon
referred to by an edge E1 refers in tum baclc to the edge E1• This ensures that all references
from polygons to edges are complete. Similarly, we can check that each edge E1 referred to
by a polygon P1 also refers baclc to polygon P;. which ensures that the references from edges
to polygons are complete.

11 .1.3 Plane Equations

When worlting with polygons or polygon meshes, we frequently need to know the equation
of the plane in which the polygon lies. In some cases, of course, the equation is known
implicitly through the interactive construction methods used to define the polygon. If it is
nOt known, we can use the coordinates of three vertices to find the plane. Recall the plane
equation

Ax + By + Cz + D = 0. (11.1)

The coefficients A, B, and C define the normal to the plane, [A B C). Given points
P1, P,, and Pa on the plane, that plane's nonnal can be computed as the vector
cross-product P1Pr x P1Pa (or Ptf'1 x Ptf'1, etc.). If the cross-product is zero , then the
three points are collinear and do noc define a plane. Other vertices. if any, can be used
instead. Given a nonzero cross-product, D can be found by substituting the nonnal
[A B C] and any one of the three points into Eq. (1 1. 1).

If there are more than three vertices, they may be nonplanar, either for numerical
reasons or because of the method by which the polygons were generated. Then another
technique for finding the coefficients A, B, and C of a plane that comes close to all the
vertices is better. It can be shown that A, B, and Care proportional to the signed areas of the
project ions of the polygon onto the (y, z), (x, z), and (x, y) planes, •espectively. For
example, if the polygon is parallel to the (x. y) plane, then A = B = 0, as Cltpected: The

0509

11 .1 Polygon Meshes 477

projections of the polygon onto the (y, z) and (x, z) planes have zero area. This method is
better because the areas of the projections are a function of the coordinates of all the
vertices and so are not sensitive to the choice of a few vertices that might happen not to be
coplanar with most or all of the other vertices, or that might happen to be collinear. For
instance, the area (and hence coefficient) C of the polygon projected onto the (x, y) plane
in Fig. 11.6 is just the area of the trapezoid A3, minus the areas of A1 and A2• In general,

(11.2)

where the operator EB is normal addition except that n EB I .. I . The areas for A and 8 are
given by similar formulae, except the area for B is negated (see Exercise 11.1).

Eq. (11 .2) gives th.e sum of the areas of all the trapezoids formed by successive edges of
the polygons. lf Aiet < Ai· the area makes a negative contribution to the sum. The sign of the
sum is also useful: if the vertices have been enumerated in a clockwise direction (as
projected onto the plane), then the sign is positive; othe.rwise, it is negative.

Once we determine the plane equation by using all the vertices, we can estimate how
nonplanar the polygon is by calculating the perpendicular distance from the plane to each
vertex. This distanced for the vertex at (x, y, z) is

d = Ax + By + Cz + D
YA2 + sz + ct .

(11.3)

This distance is either positive or negative, depending on which side of the plane the
point is located. If the vertex is on the plane, then d = 0. Of course, to determine only on
which side of a plane a point is, only the sign of d matters, so division by the square root is
DOl needed.

The plane equation is not unique; any nonzero multiplicative constant k changes the
equation, but not the plane. It is often convenient to store the plane coefficients with a
norma.lized normal; this can be done by choosing

(11.4)

which is the reciprocal of the length of the normal . Then, distances can be computed with
Eq. (11.3) more easily, since the denomi.nator is I.

y

Fig. 11 .6 Calculating the area C of a triangle using Eq. (11.2) .

0510

4 78 Representing Curves and Surfaces

11 .2 PARAMETRIC CUBIC CURVES

Polylines and polygons are first-degree, piecewise Linear approximations to curves and
surfaces, respectively. Unless the curves or surfaces being approximated are also piecewise
linear, large numbers of endpoint coordinates must be created and stored to achieve
reasonable accuracy. Interactive manipulation of the data to approximate a shape is tedious ,
because many points have to be positioned precisely.

In this section, a more compact and more manipulable representation of piecewise
smooth curves is developed; in the following section, the mathematical development is
generalized to surfaces. The general approach is to use functions that are of a higher degree
than are the linear functions. The functions still generally only approximate the desired
shapes, but use less storage and offer easier interactive manipulation than do linear
functions.

The higher-degree approximations can be based on one of three methods. First, one
can express y and z as explicit functions of x, so that y = f(x) and z = g(x). The difficulties
with this are that (I) it is impossible to get multiple values of y for a single x, so curves such
as circles and ellipses must be represented by multiple curve segments; (2) such a definition
is not rotationally invariant (to describe a rotated version of the curve requires a great deal
of work and may in general require breaking a curve segment into many others); and (3)
describing curves with vertical tangents is difficult, because a slope of infinity is difficult to
represent.

Second, we can choose to model curves as solutions to implicit e{}Uations of the form
f(x, y, z) = 0; this is fraught with its own perils. First, the given equation may have more
solutions than we want. For example, in modeling a circle, we might want to use .x! +I= I ,
which is fine. But how do we model a half circle? We must add constraints such as x 2: 0,
which cannot be contained within the implicit equation. Furthermore, if two implicitly
defined curve segments are joined together, it may be difficult to determine whether their
tangent directions agree at their join point. Tangent continuity is critical in many
applications.

These two mathematical forms do permit rapid determination of whether a point lies on
the curve or on which side of the curve the point lies, as was done in Chapter 3. Normals to
the curve are also easily computed. Hence, we shall briefly discuss the implicit form in
Section 11.4.

The parametric represemntion for curves, x = x(t), y = y(t), z = z(t) overcomes the
problems caused by functional or implicit forms and offers a variety of other attractions that
will become clear in the remainder of this chapter. Parametric curves replace the use of
geometric slopes (which may be infinite) with parametric tangent vectors (which, we shall
see, are never infinite) . Here a curve is approximated by a piecewise polynomial curve
instead of the piecewi.se linear curve used in the preceding section. Each segment Q of the
overall curve is given by three functions, x, y, and z, which are cubic polynomials in the
parameter 1.

Cubic polynomials are most often used because lower-degree polynomials give too
little flexibility in controlling the shape of the curve, and higher-degree polynomials can
introduce unwanted wiggles and also require more computation. No lower-degree represen­
tation allows a curve segment to interpolate (pass through) two specified endpoints with
specified derivatives at each endpoint. Given a cubic polynomial with its four coefficients,

0511

11 .2 Parametric Cubic Curves 4 79

four knowns are used to solve for the unknown coefficients. The four knowns might be the
two endpoints and the derivatives at the endpoints. Similarly, the two coefficients of a
first-order (straight-line) polynomial are determined by the two endpoints. For a straight
line, the derivatives at each end are determined by the line itself and cannot be controlled
independently. With quadratic (second-degree) polynomials , and hence three coefficients,
two endpoints and one other condition, such as a slope or additional point, can be specified.

Also, parametric cubics are the lowest-degree curves that are nooplanar in 30. You can
see thi.s by recognizing that a second-order polynomial 's three coefficients can be
completely specified by three points and that three points define a plane in which the
polynomial lies . .

Higher-degree curves require more conditions to determine the coefficients and can
"wiggle" back and forth in ways that are difficult to control. Despite this, higher-degree
curves are used in applications-such as the design of cars and planes-in which
higher-degree derivatives must be controlled to create surfaces that are aerodynamically
efficient. ln fact, the mathematical development for parametric curves and surfaces is often
given in terms of an arbitrary degree 11. In this chapter, we fix 11 at 3.

The cubic polynomials that define a curve segment Q(r) = [x(r) y(t) z(r)] are of the form

x(t) = a, t 3 + b, r2 + c,.t + d, ,

y(t) = a, t 3 + b1 t
2 + c,r + d,,

z(t) = a,t 3 + b,r2 + c; + d., O :s r :s I. (I 1.5)

To deal with 6.nite segments of the curve, without loss of generality , we restrict the
parameter 1 to the [0, I] interval.

With T = [r r 1 I) , and defining the matrix of coefficients of the three
polynomials as

we can rewrite Eq. (11.5) as

a1 a,]
b, b,
c, c, .
d, d,

Q(t) = [x(r) y(t) z(r)] = T · C.

This provides a compact way to express the Eq. (II .5).

(11.6)

(11.7)

Figure II. 7 shows two joined parametric cubic curve segments and their polynomials;
it also illustrates the ability of parametrics to represent easily multiple values of y for a
single value of x with polynomials that are themselves single valued. (This figure of a curve,
like all others in this section, shows 20 curves represented by [x(r) y{r)) .)

The derivative of Q(r) is the parametric rangem vector of the curve. Applying this
definition to Eq. (11.7) , we have

d [d d d] d -Q(r) = Q'(r) = - x(r) -y(t) -z(r) = - T · C = [3 t2 21
dt dt dr dr dt

0). c

(11.8)

0512

480 Representing Curves and Surfaces

.-,
'

y(l) y(l)

..L _ ___JL_ _ _J ~.-----+--+ x(l)

2 ..+-;------:---+x(l)

2

I
\

Fig. 11 .7 Two joined 20 parametric curve segments and their defining polynomials.
The dashed lines between the (x, y) plot and the x(t) and y(t) plots show the correspon­
dence between the points on the (x.y) curve and the defining cubic polynomials. The x(t)
and y(l) plots for the second segment have been t ranslated to begin at t = 1, rather than
at t = 0, to show the continuity of the curves at their join point.

[f two curve segments join together, the curve has G" geometric continuity. If the
directions (but not necessarily the magnitudes) of the t'WQ segments' tangent vectors are
equal at a join point, the curve has G1 geometric continu.ity. In computer-aided design of
objects, G1 continuity between curve segments is often required. G1 continuity means that
the geometric slopes of the segments are equal at the join point. For t'WQ tangent vectors TV1

and TV2 to have the same direction, it is necessary that one be a scalar multiple of the other:
TV1 = k · TV2, with k > 0 [BARS88].

lf the tangent vectors of t'WQ cubic curve segments are equal (i. e., their directions and
magnitudes are equal) at the segments' join point, the curve has first-degree continuity in
the parameter 1, or parametric continuiry, and is said to be C1 continuous. [f the direction
and magnitude of d "ldt"[Q(t)] through the nth derivative are equal at the join point, the
curve is called C" continuous. Figure 11.8 shows curves with three different degrees of
continuity. Note that a parametric curve segment is itself everywhere continuous; the
continuity of concern here is at the join points.

The tangent vector Q' (1) is the velocity of a point on the curve with respect to the
parameter 1. Similarly, the second derivative of Q(t) is the acceleration. If a camera is
moving along a parametric cubic curve in equal time steps and records a picture after each
step, the tangent vector gives the velocity of the camera along the curve. The camera
velocity and acceleration at join points should be continuous, to avoid jerky movements in
the ~ulting animation sequence. It is this continujty of acceleration across the join point in
Fig. II . 8 that makes the C2 curve continue farther to the right than the C1 curve, before
bending around to the endpoint.

0513

11 .2 Parametric Cubic Curves 481

y(t) Join pOint

Fig. 11 .8 Curve segment S joined to segments C0, c,. and C2 with the 0, 1, and 2
degrees of parametric continuity, respectively. The visual dis tinction between C, and C2
is slight at the join, but obvious away from the join.

In general, C1 continuity implies G1
, but the converse is generally not true. That is, G1

continuity is generally less restrictive than is C1
, so curves can be G1 but not necessarily C1

•

However, join points with G1 continuity will appear just as smooth as those with C1

continuity, as seen in Fig. 11.9.
There is a special case in which C1 continuity does nor imply G1 continuity: Wben both

segments' tangent vectors are [0 0 OJ at the join point. In this case, the tangent vectors
are indeed equal, but their directions can be different (Fig. 11.10). Figure 11.11 shows this
concept in another way. Think again of a camera moving along the curve; tbe camera
velocity slows down to zero at the join point, the camera changes direction while its velocity
is zero, and the camera accelerates in the new direction.

The plot of a parametric curve is distinctly different from the plot of an ordinary
function, in which the independent variable is plotted on the x axis and tbe dependent
variable is plotted on the y axis. In parametric curve plots , the independent variable t is

Fig. 11 .9 Curve segments a,, ~.and a3 join at the point P2 and are identical except for
their tangent vectors at P2• a, and ~ have equal tangent vectors, and hence are both G'
and C' continuous at P2• a, and Q3 have tangent vectors in the same direction, but Q3 has
twice the magnitude, so they are only G' continuous at P2 • The larger tangent vector of
Q3 means that the curve is pulled more in the tangent-vector direction before heading
toward P3• Vector TV2 is the tangent vector for a2, TV3 is that for a3 •

' \

0514

482 Representing Curves and Surfaces

y(t)

Fig. 11 .10 The one case for which C' continuity does not imply G' continuity: the
tangent vector (i.e., the parametric velocity along the curve) is zero at the join joint P.
Each tick mark shows the distance moved along the curve in equal time intervals . As the
curve approaches P, the velocity goes to zero. then increases past P.

never plotted at all. This means that we cannot determine, just by looking at a parametric
curve plot , the tangent vector to the curve. It is possible to determine th.e direction of the
vector, but not its magnitude. This can be seen as follows: if -y(t), 0 :s t :s I is a parametric
curve, its tangent vector at time 0 is y'(O). If we let Tj(t) = 1(21), 0 :s 1 :s t, then the
parametric plots of y and 71 are identical. On the other hand, 71'(0) = 2 y'(O). Thus, t~
curves that have identical plots can have different tangent vectors. This is the motivation for
the definition of geometric continuity: For two curves to join smoothly, we require only that
their tangent-vector directions match, not that their magnitudes match.

A curve segment Q(t) is defined by constraints on endpoints, tangent vectors, and
continuity between curve segments. Each cubic polynomial of Eq. (11.5) has four
coefficients, so four constraints wiU be needed, allowing us to formulate four equations in
the four unknowns, then solving for the unknowns. The three major types of curves
discussed in this section are Hermite, defined by t~ endpoints and t~ endpoint tangent
vectors; Bezier, defined by t~ endpoints and t~ other points that control the endpoint
tangent vectors; and severa.l kinds of splines, each defined by four control points. The

y(l)

x(l)
(a)

dy - 0
dl '

y(l)

(b)

Fig. 11 .11 (a) View of a 20 parametric cubic curve in 30 (x, y, t) space, and (b) the
curve in 20. At the join, the velocity of both parametrics is zero; that is, dyfdt = 0 and
dx/dt = 0. You can see this by noting that, at the join, the curve is parallel to the taxis, so
there is no change in either x or y. Yet at the join point, the parametrics are C'
continuous, but are not G' continuous.

0515

11 .2 Parametric Cubic Curves 483

splines have C1 and ~continuity at the join points and come close to their control points,
but generally do not interpolate the points. The types of splines are uniform 8-splines,
nonuniform 8 -splines, and ,8-splines.

To see how the coefficients of Eq. (11.5) can depend on four constraints, we recall that
a parametric cubic curve is defined by Q(r) = T · C. We rewrite the coefficient matrix as
C = M · a, where M is a 4 X 4 basis matrix, and a is a four-element column vector of
geometric constraints, called the geometry vector. The geometric constraints are just the
conditions, such as endpoints or tangent vectors, that define the curve. We use a. to refer to
the column vector of just the x components of the geometry vector. a, and a, have similar
definitions. Mora, or both Manda, differ for each type of curve.

The elements of M and a are constants, so the product T · M · a is just three cubic
polynomials in r. Expanding the product Q(r) = T · M · a gives

Q(r) = [x(t) y(t) z(t)) = [r3 r2 r
[~~] (I 19)

Multiplying out just x(r) = T · M · a. gives

x(t) = (t 3m11 + t2m21 + t m31 + m41)g1, + (t3m12 + t2mzz + r maz + m~g2¥
+ (t3m13 + r2n~z~ + 1 m33 + m.a)ga. + (t3m14 + t2m24 + t '11:1. + m ..)g._, (11.10)

Equation (II . I 0) emphasizes that the curve is a weighted sum of the elements of the
geometry· matrix. The weights are each cubic polynomials of r, and are called blending
functions. The blending functions 8 are given by B = T · M. Notice the similarity to a
piecewise linear approximation, for which only two geometric constraints (the endpoints of
the line) are needed, so each curve segment is a straight line defined by the endpoints G,
and a2:

x(t) = g1, (I - 1) + 8tz (t),

y(t) = 8tr (I - t) + 8tr (t),

z(t) = 8t. (I - 1) + 82: (t).

Parametric cubics are really just a generalization of straight-line approximations.

(11.11)

To see how to calculate the basis matrix M, we turn now to specific forms of parametric
cubic curves.

11 .2. 1 Hermite Curves

The Hermite form (named for the mathematician) of the cubic polynomial curve segment is
determined by constraints on the endpoints P1 and P4 and tangent vectors at the endpoints R1

and R,. (The indices I and 4 are used, rather than J and 2, for consistency with later
sections, where intermediate points P2 and P3 will be used instead of tangent vectors to
define the curve.)

To find the Hermite basis matrix Mu. which relates the Hermite geometry vector a8 to
the polynomial coefficients, we write four equations, one for each of the constraints, in the
four unknown polynomial coefficients, and then solve for the unknowns.

0516

484 Representing Curves and Surfaces

Deli ning c~~., the x component of the Hermite geometry matrix , as

(11.12)

and rewriting x(t) from Eqs. (11.5) and (11.9) as

x(t) = a;3 + b. t2 + c,t + d. = T · C, = T · M0 • G11. · = [1 3 t 2 t I] M0 • G0,,

(11.13)

the constraints on x{O) and x{l) are found by direct substitution into Eq. (11.13) as

x(O)=P,, =[O 0 0 I]M0 ·G0 ,,

x(I) = P4, = [I I I I) M H • Gu,·

(11.14)

(11.15)

Just as in the general case we differentiated Eq. (II. 7) to find Eq. (11.8), we now
differentiate Eq. (11.13) to get x'(r) = [3r 2r I O]M0 • Ga.. Hence, the tangent­
vector--<:onstraint equations can be written as

x'(O) = R1, = [0 0 I 0] Mu · G0,,

x'(l) = R4, = [3 2 I 0] Mu · Gu,·

(I t.l6)

(11. 17)

The four constraints of Eqs. (11.14), (11.15), (11.16), and (11.17) can be rewritten in
matrix form as

[
P1

] [0 0 0 I] P4 1 l l 1
R

1
= Gu. = 0 0 I I Ms . 0 11.·

R4 3 2 I 0
•

(11.18)

For this equation (and the corresponding expressions for y and z) to be satisfied, Mu must be
the inverse of the 4 X 4 matrix in Eq. (II . 18)

[

0 0 0 1] -

1

[2 -2 I I l
M = I I I I = -3 3 -2 - 1
"0010 o o 1 o·

3210 10 0 0

(11.19)

M0 , which is of course unique, can now be used in x(r) = T · M0 • G0 , to find x(r)
based on the geometry vector G0 ,. Similarly, y(r) = T · M0 • Gu, and z(r) = T · M0 · G0 , ,

so we can write

Q(t) = [x{r) y(t) z(l)) = T · M 0 · G0, (11.20)

where G0 is the column vector

0517

11 .2 Parametric Cubic Curves 485

f(t)

1

Fig. 11 .12 The Hermite blending functions, labeled by the elements of the geometry
vector that they weight.

Expanding the product T · Mu in Q(t) = T · Mu · Gu gives the Hermite blending
functions Bu as the polynomials weighting each element of the geometry vector:

Q(t) = T · Mu · Gu = Ba · Gu

= (2t3 - 3t2 + I)P1 + (-2t3 + 3t2)P4 + (13 - 2t2 + t)R1 + (13 - rf)R,. (I 1.21)

Figure 11.12 shows the four blending functions. Notice that, at t = 0, only the function
labeled P 1 is nonzero: only P 1 affects the clln'e att = 0. As soon as t becomes greater than
zero, R1, P4, and R4 begin to have an influence. Figure 11.13 shows the four functions
weighted by they components of a geometry vector, their sum y(t), and the Clln'e Q(t).

Figure 11.14 shows a series of Hermite curves. The only difference among them is the
length of the tangent vector R1: the directions of the tangent vectors are fixed. The longer the
vectors, the greater their effect on the curve. Figure 11.15 is another series of Hermite
curves, with constant tangent-vector lengths but with different directions. In an interactive

y(t) y(t) y(l)

1 1

P, P, (t)
~ ~ (t) ~

0
t

0
x(t)

0 1

R
4

R
4

(t) y(t) ~ P, P, (I) + ~ ~ (t) + R1 ~(t) + R4 Rit)

Fig. 11 .13 A Hermite curve showing the four elements of the geometry vector
weighted by the blending functions (leftmost four curves). their sum y(t), and the 20
curve itself (far right). x(t) is defined by a similar weighted sum.

0518

486 Repreaenting Curves and Surface•

y(t)

Tangent vector
direction R 1 at point
P,: magnitude varies
lor aach curve

Tangent vector
direction R• at point
~; magnitude fixed
for each curve

L__ _________ ..!....__ x(l)

Fig. 11 .14 Family of Hermite parametric cubic curves. Only R,, the tangent vector at
P,, varies for each curve. increasing in magnitude for the higher curves.

graphics system, the endpoints and tangent vectors of a Cut\'e are manipulated interactively
by the user to shape the Cut\'e. Figure 11.16 shows one way of doing this.

For two Hermite cubics to share a common endpoint with G1 (geometrical) continuity,
as in Fig. 11 .17, the geometry vectors must have the form

(11.22)

y(t)

L-----------------------------x(~

Fig. 11 .16 Family of Hermit.e parametric cubic curves. Only the direction of the tangent
vector at the left starting point varies; all tangent vectors have the same magnitude. A
smaller magnitude would eliminate the loop in the one curve.

0519

11 .2 Paramet ric Cubic Curves 487

Fig. 11 .16 Two Hermite cubic curve segments displayed with controls to facilitate
interactive manipulation. The endpoints can be repositioned by dragging the dots, and
the tangent vectors can be changed by dragging the arrowheads. The tangent vectors
at the join point are constrained to be collinear (to provide C' continuity): The user is
usually given a command to enforce C0, C'. G', or no continuity. The tangent vectors at
the t - 1 end of each curve are drawn in the reverse of the direction used in the
mathematical formulation of the Hermite curve, for clarity and more convenient user
interaction.

That is, there must be a shared endpoint (P,) and tangent vectors with at least equal
directions. The more restrictive condition of C1 (parametric) continuity requires that k = I.
so the tangent vector direction and magnitude must be equal.

Hennite and other similar parametric cubic curves are simple to display: We evnluate
Eq. (l 1.5) at n successive values oft separated by a step size S. Figure 11.18 gives the code.
The evaluation within the begin ... end takes II multiplies and 10 additions per 3D
point. Use of Horner's rule for factoring polynomials,

f(t) = ar1 + br 2 + ct + d = ((at + b)t + c)t + d, (11 .23)

reduces the effort slightly to nine multiplies and 10 additions per 3D point. In Section
11.2.9, we shall examine much more efficient ways to display these curves.

L----------------''--+X(/)

Fig. 11 .17 Two Hermite curves joined at P,. The tangent vectors at P, have the same
direction but different magnitudes, yielding G' but not C' continuity.

0520

488 Representing Curves and Surfaces

typedef double CoefficientArray(4];
void DrawCurve (

{

CoefficientArray ex,
CoefficienlArray cy,
CoefficientArray cz,
int n)

int i:
double 6 = 1.0 / n;

double 1 = 0;

MoveAbs3 (cx(3], cy(3], cz(3]);
for (i = 0; i < n; i++) {

double 12, tJ, x, y , z:

r+= 6;
r2 = 1*1:
1J = 12 •r;

I • Coefficients for x(t): c. = M • G. • I
I• Coefficients for y(t): C" = M • Gv •I
I• Coefficients for z(t): C, = M • G. *I
I• Number of steps •I

I• I = 0: Sian at x(O), y(O). z(O) •I

x = cx[O] • 13 +ex(I]* r2 + cx[2] • 1 + cx[3];
y = cy{O] • 13 + cy(l]• r2 + cy[2] • 1 + cy(3]:
z = cz{O] • t3 + cz[l] • r2 + cz[2] • 1 + cz[3];
DrawAbs3 (x, y , z);

}
} l• DrawCurve •I

Fig. 11 .18 Program to display a cubic parametric curve.

Because the cubic curves are linear combinations (weighted sums) of the four elements
of the geometry vector, as seen in Eq. (11 . 10), we can transform the curves by transforming
the geometry vector and then using it to genera1e the transformed curve, which is equivalent
to saying that the curves are invariant under rotation , scaling, and translation. This strategy
is more efficient than is generating the curve as a series of short line segments and then
transforming each individual line. The curves are not invariant under perspective
projection, as will be discussed in Section 11.2.5.

11 .2 .2 Bezier Curves

The Bezier [BEZI70; BEZI74] form of the cubic polynomial curve segment, named after
Pierre Bezier, indirectly specifies the endpoint tangent vector by specifying two intermedi­
ate points that are not on the curve; see Fig. 11 .19. The starting and ending tangent vectors

p2

..
(''

('
' I '

~~
,' (.. P, -~

' - - - - - p• . - ---

('

Fig. 11 .19 Two Bezier curves and their control points. Notice that the convex hulls of
the control points, shown as dashed lines, do not need to touch all four control points.

0521

11 .2 Parametric Cubic Curves

are determined by the vectors P1P2 and P{', and are related to R1 and R, by

R1 = Q'(O) = 3(P2 - P1) , R, = Q'(l) = 3(P, - P,).

489

(1 1.24)

The Bezier curve interpolates the I'M> end control points and approximates the other two.
See Exercise 11.12 to understand why the constant 3 is used in Eq. (11.24).

The Bhier geometry vector Ga , consisting of four points, is

(11.25)

Then the matrix MHB that defines the relation Gu = MHB · G8 between the Hermite
geometry vector Gu and the Bezier geometry vector G8 is just the 4 x 4 matrix in the
following equation, which rewrites Eq. (11.24) in matrix form:

G = [~:] = [~ H R -3 I

R, 0

0 0 0] [p'] 0 0 I P2 _ .
3 0 0 p3 - MHB Gu.

0 -3 3 P,

(11.26)

To find the Blzier basis matrix M8 , we use Eq. (11.20) for the Hermite form, substitute
Gu = Mu8 · Ga. and define M8 = Mu · Mu8 :

Q(r) = T · Mu · Gu = T · Mu · (MHB · Ga) = T · <Mu · Mu8) • G8 = T · M8 • G8 •

(11.27)

Carrying out the multiplication M8 = Mu · Mff8 gives

M, ~ M, MQ ~ [~: i· T ~ l (I 1.28)

and the product Q(t) = T · M8 • G8 is

Q(r) = (I - t)3P1 + 3t(l - 1)2P2 + 3r(l - i)P3 + ~P,. (11.29)

The four polynomials 8 8 = T · M8 , which are the weights in Eq. (11.29), are called the
Bernstein polynomials, and are shown in Fig. 11.20.

Figure 11.21 shows two Bezier curve segments with a common endpoint. G1 continuity
is provided at the endpoint when P3 - P, = k(P, - PS), k > 0. That is, the three points P3,

P, , and P6 must be distinct and collinear.ln the more restrictive case when k = I, there is C1

continuity in addition to G1 continuity.
If we refer to the polynomials of t>M> curve segments as x1 (for the left segment) and x'

(for the right segment), ""e can find the conditions for CO and C1 continuity at their join
point:

d d
x 1(1) = x'(O) , d/(1) = d/'(0). (11.30)

0522

490 Representing Curves and Surfaces

f(t)

(1)

(1)

Fig. 11 .20 The Bernstein polynomials. which are the weighting functions for B~zier
curves. At to 0, only 8 8 , is nonzero, so the curve interpolates P,; similarly, at t ~ 1, only
Ba. is nonzero, and the curve interpolates P, .

Working with the x component of Eq. (11.29), we have

d d
x1(1) = x'(O) = P~, dtx1(1) = 3(P4.- Pa), dtx'(O) = 3(Ps.- P4) . (11.31)

As always, the same conditions are true ofy and z. Thus, we have CO and C' continuity when
P4 - P3 = P6 - P4, as expected.

Examining the four 8 8 polynomials in Eq. (11.29), we note that their sum is
everywhere unity and that each polynomial is everywhere nonnegative for 0 s t < I. Thus,
Q(t) is just a weighted average of the four control points. This condition means that each
curve segment, which is just the sum of four control points weighted by the polynomials, is
completely contained in the con-..ex hull of the four control points. The convex hull for 20
curves is the convex polygon formed by the four control points: Think of it as the polygon
formed by putting a rubberband around the points (Fig. 11.19). For 3D curves, the convex
hull i.s the convex polyhedron formed by the control points: Think of it as the polyhedron
formed by stretching a rubber sheet around the four points.

This convex-hull property holds for all cubics defined by weighted sums of control
points if the blending functions are nonnegative and sum to one. In general, the weighted
average of n points falls within the convex hull of the n points; this can be seen intuitively

· ~

Fig. 11 .21 Two B~zier curves joined at P,. Points P3, P,, and P5 are collinear. Curves are
the same as those used in Fig. 11 . 17.

0523

11 .2 Parametric Cubic Curves 491

for n = 2 and n = 3, and the generalization follows . Another consequence of the fact that
the four polynomials sum to unity is that the value of the fourth polynomial for any value of
t can be found by subtracting the first three from unity.

The convex-hull property is also useful for clipping curve segments: Rather than clip
each short line piece of a curve segment to determine its visibility , ~ first apply a
polygonal clip algorithm to clip the convex hull or its extent against the clip region. lf the
convex hull (extent) is completely within the clip region, so is the entire curve segment. l f
the convex hull (extent) is completely outside the clip region, so is the curve segment. Only
if the convex hull (extent) intersects the clip region does the curve segment itself need to be
ellamined.

11 .2 .3 Uniform Nonrational 8 -Splines

The term spline goes back to the long flexible strips of metal used by draftspersons to lay out
the surfaces of airplanes, cars, and ships. " Ducks," ~ights attached to the splines, ~re
used to pull the spline in various directions. The metal splines, unless severely stressed, had
sec<~nd-order continuity. The mathematical equivalent of these strips, the narural cubic
spline, is a CJ, C1

, and CZ continuous cubic polynomial that interpolates (passes through)
the control points. This is I more degree of continuity than is inherent in the Hermite and
Bezier forms. Thus, splines are inherently smoother than are the previous forms.

The polynomial coefficients for natural cubic splines, ho~ver, are dependent on all11
contrOl points; their calculation involves inverting an 11 + I by n + I matrix [BART87].
This has two disadvantages: moving any one contrOl point affects the entire curve, and the
computation time needed to invert the matrix can interfere with rapid interactive reshaping
of a curve.

8-sp/ines, discussed in this section, consist of curve segments whose polynomial
coefficients depend on just a few control points. This is called local control. Thus, moving a
control point affects only a small part of a curve. In addition, the time needed to compute
the coefficients is greatly reduced. 8-splines have the same continuity as natural splines, but
do not interpolate their contrOl points.

ln the following discussion ~ change our notation slightly, since ~ must discuss an
entire curve consisting of several curve segments, rather than its individual segments. A
curve segment need not pass through its contrOl points, and the two continuity conditions on
a segment come from the adjacent segments. This is achieved by sharing control points
be~en segments, so it is best to describe the process in terms of all the segments at once.

Cubic B-splines approximate a series of m + I contrOl points P0, P 1, ••• P ... m 2: 3,
with a curve consisting of m - 2 cubic polynomial curve segments Q1, Q4, ••• Q ...
Although such cubic curves might be defined each on its own domain 0 :S r < I , ~ can
adjust the parameter (making a substitution of the form r = t + k) so that the parameter
domains for the various curve segments are sequential. Thus, we say that the parameter
range on which Q; is defined is t; s t < t ;+t• for 3 :S i :Sm. In the particular case of m = 3,
there is a single curve segment Q8 that is defined on the intervalr3 s 1 < 14 by four control
points , P0 to P 8•

For each i > 4, there is a join point or kllor between Q;_ 1 and Q; at the parameter value
t;; the parameter value at such a point is called a knot value. The initial and final points att8

0524

492 Representing Curves and Surfaces

and 1,.+1 are also called knots , so that there is a total of m- I knots. Figure 11.22 shows a
20 8-spline curve with its knots marked. A closed 8-spline curve is easy to create: The
control points P0, Ph P2 are repeated at the end of the sequence-P0, Ph ... P ,., P0 , P1,

Pz.
The term uniform means that the knots are spaced at equal intervals of the parameter t.

Without loss of generality, we can assume that t8 = 0 and the i.nterval ti+ 1 - t1 = I.
Nonuniform nonrational 8 -splines, which permit unequal spacing between the knots, are
discussed in Section 11.2.4. (In fact, the concept of knots is introduced in this section to set
the stage for nonuniform splines.) The term nonrotionol is used to distinguish these splines
from rational cubic polynomial curves, discussed in Section 11.2.5, where x(t), y(t), and
z(t) are each defined as the ratio of two cubic polynomials. The ''8 '' stands for basis, since
the splines can be represented as weighted sums of polynomial basis functions , in contrast
to the natural splines, for which this is not true.

Each of them - 2 curve segments of a B-spline curve is defined by four of the m + I
control points. In particular, curve segment Q1 is defined by points P1_3, Pi-2, PH, and P1•

Thus, the 8 -spline geometry vector Gs.; for segment Q1 is

G - P;-z 3 < · < (I I 32)
[
pi-3]

s.; - p~~~ , - 1 - m. .

The first curve segment, Q3, is defined by the points P0 through P3 over the parameter
range t3 = 0 to r,= I , Q, is defined by the points P1 through P, over the parameter ranger,
= I to t5 = 2, and the last curve segment, Q.,, is defined by the points P ,._3, P ,._2, P,._1,

and P,. over the parameter range t,. = m - 3 to r.,.1 = m- 2. In general, curve segment Q1

begins somewhere near point P1_2 and ends somewhere near point P1_ 1• We shall see that the
8-spline blending functions are everywhere nonnegative and sum to unity, so the curve
segme.nt Q1 is constrained to the convex hull of its four control points.

Just as each curve segment is defined by four control points, each control point (except
for those at the beginning and end of the sequence P0, P10 ••• P..) influences four curve

y(t)

• • Knot
• Control point Pz

L--------------+ X(I)

Fig. 11 .22 A B-spline with curve segments 03 through a,. This and many other figures
in this chapter were created with a program written by Carles Castellsaqu~ .

0525

11 .2 Parametric Cubic Curves 493

segments. Moving a control point in a given direction moves the four curve segments it
affects in the same direction; the other curve segments are tOially unaffected (see Fig.
I I . 23). This is the local control property of B·splines and of all the other splines discussed
in this chap1er.

If we define T1 as the row vector [(1 - rj (1- rif (t- tJ I], then the B-spline
formulation for CUI'Ie segment i is

Q,{r) = T1 • MBt. • Gs.,. r1 s 1 < r1• 1• (I 1.33)

The entire curve is generated by applying Eq. (II . 33) for 3 s i :S m.
The B-spline basis matrix, M8,, relates the geometrical constraints GBt. to the blending

functions and the polynomial coefficients:

[

-1 3 -3 I]
I 3 -6 3 0

MBt. = 6 -3 0 3 0 .
I 4 I 0

(11.34)

This matrix is derived in [BART87].
The B-spline blending functions Bu. are given by the product T1 • MBt., analogously to

the previous Btzier and Hermite formulations. Note that the blending functions for each
cun'e segment are exactly the same, because for each segment i the values of 1 - 11 range
from 0 at/ "" t1 to I att = t1• 1• If we replace 1 - 11 by/, and replace the interval [11, r1• 1) by
[0, I] , we have

Bu. = T · M8, • IBBt.-, B8, . 1 8&. , Bo.ol

I = 6[- r3 + 3t2 - 3t + I 3t1 - 6r' + 4 - 3r1 + 3t2 + 3t + I r1]

= ~[(I - i'/ 3t1 - 611 + 4 -3r1 + 3r1 + 3t + I r*], 0 :S 1 < I.

(I 1.35)

y(l)

p;· r· Curve

r Curve

• Knot
+ Control point

L_ _______________ x(l)

Fig. 11 .23 A 8-spline with control point P, In several different locations.

0526

494 Representing Curves and Surfaces

Figure 11.24 shows the B-spline blending functions Bllt. Because the four functions sum to
I and are nonnegative, the convex-hull property holds for each curve segment of a B-spline.
See [BART87) to understand the relation between these blending functions and the
Bernstein polynomial basis functions.

Expanding Eq. (11.33), again replacing 1- t ; with 1 at the second equals sign, we have

Q1(t - t;) = T; · Milt · Go., = T · Milt · Gilt;

= Ba, . GB" = Ba..a . P;-a + Bilt-z . P;-t + Ba •. , . P;-1 + Bu., . P;

_ (I - t)' 3t3 - 6t2 + 4 - 3r3 + 3r2 + 3r + I
- 6 P;-a + 6 P;-t + 6 P;-1

,a
+ 6 P;, 0 s I < I. (II. 36)

.It is easy to show that Q1 and Q,. 1 are CO, C1, and ct continuous where they join. When
we consider the x components of the adjacent segments, which are x,{r - t;) and
Aiu(t - r1 ..) (y and z, as always, are analogous), it is necessary to show only that, at the
knot 1;+1 where they join,

Recalling the substitution of 1 for 1 - t;, Eq. (11.37) is equivalent to showing that

d d
d/'1• -•r=l = I drxi .. lt- 4., •O•

d2 d2
dtrxJit-t;• l = dtr x, .. l, -~;.1 ·o· (11.38)

f~)

Fig. 1 1 .24 The four B-spline blending functions from Eq. (11 .35). At t = 0 and t = 1,
just three of the functions are nonzero.

0527

11 .2 Parametric Cubic Curves 495

We demonstrate the equivalence by working with the x component of Eq. (11.36), and its
first and second derivatives, to yield

(11.39)

(11.40)

(11.41)

The additional continuity afforded by B-splines is attractive, but it comes at the cost of
less control of where the curve goes. The curve can be forced to interpolate specific points
by replicating control points; this is useful both at endpoints and at intermediate points on
the curve. For instance, if P1 _ z = P1 _ 1, the curve is pulled closer to this point because curve
segment Q1 is defined by just three different points, and the point P1 _ 2 = P1 _ 1 is weighted
twice in Eq. (11.36)- once by Bs.-, and once by Bs.-, ·

If a control point is used three times- for instance, if P1_ 2 = P, _1 = P1- then Eq.
(11.36) becomes

Q;(t) = B8._, • P1_ 3 + (Ba._, + Ba._1 + 8 8..) • P1• (11.42)

Q1 is clearly a straight line. Furthermore, the point P1_ 2 is interpolated by the line at 1 = I,
where the three weights applied to P; sum to I , but P1 _ 3 is not in general interpolated at
1 = 0. Another way to think of this is that the convex hull for Q1 is now defined by just two
distinct points, so Q1 has to be a line. Figure 11.25 shows the effect of multiple control
points at the interior of a B-spline. The price of interpolating the points in part (c) is loss of
G1 continuity, even though Eq. (11.40) shows that C1 continuity is preserved (but with a
value of zero). This is a case where C1 continuity does not imply G1 continuity, as discussed
in Section 11.2.

Another technique for interpolating endpoints, phantom vertices, is discussed in
[BARS83; BART87]. We shall see that, with nonuniform B-splines, discussed in the next
sec-tion, endpoints and internal points can be interpolated in a more natural way than they
can with the uniform B-splines.

11 .2 .4 Nonuniform, Nonrational 8 -Splines

Nonuniform, nonratiorwl B-splines differ from the uniform, nonrational B-splines discussed
in the previous section in that the parameter interval between successive knot values need
not be unifom1. The nonuniform knot-value sequence means that the blending functions are
no longer the same for each interval, but rather vary from curve segment to curve segment.

These curves have several advantages over uniform B-splines. First, continuity at
selected join points can be reduced from CZ to C1 to CO to none. If the continuity is reduced
to CO, then the curve interpolates a control point, but without the undesirable effect of
uniform B-spHnes, where the curve segments on either side of the interpolated control point
are stra.ight lines. Also , starting and ending points can be easily interpolated exactly,

0528

496 Representing Curves and Surfaces

03 Convex hull ---
04 Convex hull

Po P2 --,
I
I
I
I

o, I
I
I
I
I

I
I
I
I
I
I
I
I
I

- --- ~

(b)

I
I

I
I

I
I

P.

' I
I

Fig. 11 .25 The effect of multiple control points on a uniform B-spline curve. In (a),
there are no multiple control points. The convex hulls of the two curves overlap; the join
point between 0 3 and a. is in the region shared by both convex hulls. In (b), there is a
double control point, so the two convex hulls share edge P,P3; the join point is therefore
constrained to lie on this edge. In (c), there is a triple control point , and the two convex
hulls are straight lines that share the triple point; hence, the join point is also at the triple
point. Because the convex hulls are straight lines, the two curve segments must also be
straight lines. There is C'l but only GO continuity at the join.

without at the same time introducing l inear segments. As is further discussed in Section
11 .2. 7, it is possible to add an additional knot and control point to nonuniform 8 -spl ines,
so the resulting curve can be easily reshaped, whereas this cannot be done with uniform
8-splines.

The increased generdlity of nonuniform B-splines requires a sl ightly different notation
than that used for uniform B-splines. As before, the spline is a piecewise continuous curve
made up of cubic polynomials, approximating the control points P0 through P .,. The
knot-mlue sequence is a nondecreasing sequence of knot values '• through 1,. .. (that is,
there are four more knots than there are control points). Because the smallest number of
control points is four, the smallest knot sequence has eight knot values and the curve is
defined over the parameter interval from 11 to 14•

The only restriction on the knot sequence is that it be nondecreasing, which allows
successive knot values to be equal. When this occurs, the parameter value is called a
multiple k11or and the number of identical parameter values is called the multiplicity of the
knot (a single unique knot has multiplicity of I). For instance, in the knot sequence (0, 0,
0, 0, I , I , 2, 3, 4, 4, 5, 5, 5, 5). the knot value 0 has multiplicity four, value I has
multiplicity 2; values 2 and 3 have multiplicity I ; value 4 has multiplicity 2; and value 5 has
multiplicity 4.

0529

11 .2 Parametric Cubic Curves 497

Curve segment Q1 is defined by control points P1_ 3, P1_ 2, P1_ t> P1 and by blending
functions 81 -:~..(t), 8 1_2.4(1) , 8 1_1.4(1), 81,.(t), as the weighted sum

3 < i < m , 11 s 1 < 11• 1• (11.43)

The curve is not defined outside the interval 13 through 1,..,. When I;= t1+1 (a multiple
knot), curve segment Q1 is a single point. 11 is this notion of a curve segment reducing tO a
point that provides the extra flexibility of nonunifonn B-splines.

There is no single set of blending functions, as there was for other types of splines. The
functions depend on the intervals between knot values and are defined recursively in tenns
of lower-order blending functions . 81i t) is the jth-order blending function for weighting
control point P1• Because we are working with fourth-order (that is , third-degree, or cubic)
B-splines, the recursive definition ends with 81,4(1) and can be easily presented in its
"unwound" fonn. The recurrence for cubic B-splines is

8 . (t) ={I, I; < I-::: l i+J
' ·

1 0, otherwtse,

(11.44)

Figure 11.26 shows how Eq. (11.44) can be used to find the blending functions, using
the knot vector (0, 0 , 0, 0, I, I , I , I) as an example. The figure also makes clear why eight
knot vectors are needed to compute four blending func-tions. B3.1(1) is unity on the interval 0
< t < I. All other 81,1(1) are zero. B2,2(t) and B3i t) are linear ramps , and are the blending
functions for linear interpolation between two points. Similarly, B1,3(t) , Bu (l), and B3,3(/)
are quadratics, and are the blending functions for quadratic interpolation. For this particular
knot vector, the B1,.(t) are the Bernstein polynomials, that is, the Bezier blending functions;
compare them to those in Fig. 11.20. Also, for this knot vector, the curve interpolates the
control points P0 and P3 , and is in fact a Btzier curve, with the tangent vector at the
endpoints detennined by the vectors P0 P1 and P.j>3 •

Computing the blending functions takes time. By restricting B-spline knot sequences
to have intervals that are either 0 or I , it is possible to store just a small number of matrices
corresponding to Eq . (11.44) , which covers aU such possible knot configurations. This
eliminates the need to reevaluate Eq. (11 .44) for each curve segment.

It can be shown that the blending functions are nonnegative and sum to one, so
nonuniform B-spline curve segments lie within the convex bulls of theirfourcontrol points.
For knots of multiplicity greater than one, the denominators can be zero because successive
knot values can be equal: d.ivision by zero is defined to yield zero.

0530

I, t,;
0

a, ,(1)

>
a .. (l)

Bo .• <IJ . o S.o<

1

1

a , ,(l)

~- o > ~------""" "-' .o !i
•

a,, ,(IJ • o S..
3
(t1 = o -----

"'" .. . ,., ' •. , . ' ' ~ ' ' .
' "''. ' ' ' :;

' ' .. ,. !
1,; 1 1 I Ld 0 1 I ~
>

... ,. ' ' ~ .. ,., ' . ,. ' ' ,. ' ' .,,.,. :

'-•""' ' ' ------- . . 'LL
>

~ au (IJ= O 1 8

'-•" " ' ""' •0 "".
0 1 I

0,= 1

Fig. 11 .26 The relationships defined by Eq. (11 .44) between the knot vector (0. 0 . 0. 0. 1, 1, 1, 1) and the blending
functions B,,,(tl. B1.2(t) , B1,.(t). and B,,.(t).

0531

11 .2 Parametric Cubic Curves 499

Increasing knot multiplicity has two effects. First, each k:not value 11 will automatically
lie within the convex hull of the points P1_ 3, P1_ 2, and P1_ 1• If 11 and t1• 1 are equal, they
must lie in the convex hull of P1_ 3, P1_ 2, and P1_ 1, and in the convex hull of P1_ 2, P1_ 1,

and P1• This means they must actually lie on the line segment between P1 _ 2 and P1_ 1• ln the
same way, if t1 = 11 + 1 = 11 +2• then this k:not must lie at P1 _ 1• If 11 = t;. 1 = 11 H = 11 +a• then
the knot must lie both at P1 _ 1 and at P1-the curve becomes broken. Second, the multiple
k:nots will reduce parametric continuity: from Cl to C1 continuity for one extra k:not
(multiplicity 2); from c• to co continuity for two extra knots (multiplicity 3); from co to no
continuity for three extra k:nots (multiplicity 4).

Figure 11 .27 provides further insight for a specific case. Part (a) shows the case when
all knots have multiplicity I. Each curve segment is defined by four control points and four
blending functions, and adjacent curve segments each share three control points. For
instance, curve segment Q3 is defined by points P0, P., P2, and P3; curve segment Q4 is
defined by points P., P2> P3 and P4; and curve segment Q5 is defined by points P2, P3, P4 ,

and P5• Part (b) shows a double knot, t4 = t5 , for which the curve segment Q4 has zero
length. Segments Q3 and Q5 are thus adjacent but share only two control points, P2 and P3;

the two curve segments hence have less ''in common,'' as implied by the loss of l degree of
continuity. For the triple k:not in part (c), only control point P3 is shared in common: the
one that the two curve segments now interpolate. Because only one control point is shared,
we can expect only one constraint, CO continuity, to be satisfied at the join. The knot of
multiplicity 4, shown in part (d) , causes a discontinuity, or break, in the curve. Hence,
several disjoint splines can be represented by a single knot sequence and set of control
points. Figure 11 .28 provides additional understanding of the relations among k:nots, curve
segments, and control points. Table I I . I summarizes the effects of mu.ltiple control points
and multiple k:nots .

TABLE 11 .1 COMPARISON OF THE EFFECTS OF MULTIPLE CONTROL POINTS
AND OF MULTIPLE KNOTS

Multiplicity

I

2

3

4

Multiple control points

ct <J!•
etc•
Knots constrained to a smaller
convex hull.

ctc;G
Curve interpolates the triple control
point.
Curve segments on e ither side of the
join are linear.

ctc;G
Curve interpolates the quadruple
control points.
Curve segments on either side of the
join are linear and interpolate the
control points on either s ide of the
join.

•except for spec.ial case discussed in Section 11 .2.

Multiple knots

ct <;1•

C'G'
Knots constrained to a smaller
convex hull of fewer control points.

C'(;G
Curve interpolates control point.

Can control shape of curve segments
on either side of the join.

There is a discontinuity in the curve.

Curve stops on one control point.
resumes at next.
Can control shape of curve segments
on either side of the discontinuity.

0532

500 Representing Curves and Surfaces

y P, p2

I " " " " " " "
Po Ps p.

• Knot
p7

X
(a)

t Control point

y P, p2 p5 p6

• Knot
L----------+ X

(b)
t Control point

Fig. 11 .27 The effect of multiple knots. In (a), with knot sequence (0, 1. 2. 3, 4, 5),
there are no multiple knots; all the curve segments join with C" and G2 continuity. The
convex hulls containing each curve segment are also shown. In (b), with knot sequence
(0, 1. 1. 2. 3. 4). there is a double knot, so curve segment 0. degenerates to a point.
The convex hulls containing 03 and ~meet along the edge P/'3, on which the join point
is forced to lie. The join has C' and G2 continuity. In (c). with knot sequence (0. 1, 1, 1,

Figure 11.29 illustrates the complexity of shapes that can be represented with this
technique. Notice part (a) of the figure, with knot sequence (0, 0, 0, 0, I , I , I, 1): The
curve interpolates the endpoints but not the two intermediate points, and is a Bezier curve.
The other two curves also start and stop with triple knots. This causes the tangent vectors at
the endpoints to be determined by the vectors Pr/'1 and P ,._ 1P ,., gjving Bezier-like control
to the curves at the start and stop points .

interactive creation of nonuniform splines typically involves pointing at control
points, with multiple control points indicated simply by successive selection of the same
point. Figure 11.30 shows a way of specifying knot values interactively. Another
way is to point directly at the curve with a multibutton mouse: A double click on one but­
ton can indicate a double control point; a double click on another button, a double
knot.

0533

11 .2 Parametric Cubic Curves 501

y ~ p2 p5 Pe

13
I
I
I
I
I

~.~~5~16 I I

------- 4
Po p3 P,

• Knot
p7

)(
(c)

• Control point

y P, p2 p5 Pe
r - -;

/ I /
I /. 0

7 I
I
I
I

14 = 15 = 16= 17 ------- 4
Po p3 ~ p7

• Knot
)(

(d)
• Control point

2. 3), there is a triple knot, so curve segments a. and ~ degenerate to points. The
convex hulls containing 03 and ~ meet only at P3• where the join point is forced to be
located. The two curve segments share only control point P3, with C0 continuity. In (d),
with knot sequence (0. 1, 1, 1, 1. 2). there is a quadruple knot, which causes a
discontinuity in the curve because curve segments 03 and Or have no control points in
common.

11.2.5 Nonuniform, Rational Cubic Polynomial Curve Segments

General rational cubic curve segments are ratios of polynomials:

_ X(t) _ Y(t) _ Z(t)
x(t) - W(t)' y(t) - W(t)' z(t) - W(r) ' (11.45)

where X(t), Y(t), Z(t), and W (t) are all cubic polynomial curves whose control points are
defined in homogeneous coordinates. We can also think of the curve as existing in
homogeneous space as Q(t) = [X(t) Y(t) Z(r) W(t)]. As alw.tys, moving from
homogeneous space to 3-space involves dividing by W(t). Any nonrational curve can be
transformed to a rational curve by adding W(t) = I as a fourth element. In general, the

0534

502 Representing Curves and Surfaces

Curve
i- 2 i - 1 i + 1 i + 2 i + 3

segment 0 1 c2
continuity

Control
point P1 1-5 I- 4 I - 3 I- 2 i - 1 I + 1 i + 2 i + 3

(a)

Curve
I - 2 I - 1 i + 1 I + 2 I + 3

segment 0 1 c'
continuity

Control
point P1 I- 5 I- 4 I - 3 I - 2 I - 1 I + 1 I + 2 I + 3

(b)

Curve
I - 2 I - 1 I + 1 I + 2 I + 3

segment 0 1 co
continuity

Control
point P1 I - 5 I - 4 1- 3 I - 2 I - 1 I + 1 I + 2 ; + 3

(c)

Curve
I- 2 I - 1 I + 1 I + 2 I + 3

segment 0 1 No
continuity

Control
point P1 I- 5 ; - 4 i - 3 i- 2 i - 1 I + 1 I + 2 1 +3

(d)

Fig. 11 .28 The relationship among curve segments, control points, and multiple knots
for nonuniform B-splines. lines connect curve segments to their control points; gray
lines are used for curve segments that do not appear because their knot interval is zero
(i.e., the knot multiplicity is greater than one), causing them to have zero length. In (a), all
knots are single. In (b), there is a double knot, so segment i is not drawn. In (c), there is a
triple knot, so two segments are not drawn; thus, the single point, i - 1, is held in
common betw een adjacent segments i - 1 and i + 2. In (d), w ith a quadruple knot,
segments i - 1 and i + 3 have no points in common, causing the curve to be
disconnected between points i - 1 and i.

polynomials in a rational curve can be Bezier, Hermite, or any other type. When they are
B-splines, we have nonuniform rational B-splines , sometimes called NURBS [FORR80).

Rational curves are useful for two reasons. The first and most important reason is that
they are invariant under rotation , sealing, tran.slation and perspective transformations of the
control points (nonrational curves are invariant under only rotation, scaling, and transla­
tion). This means that the perspective transformation needs to be applied to only the control

0535

11 .2 Parametric Cubic Curves 503

op 5 14=15a le =1

Po
5

10= 11= 12= 13= 0

(a)

(b)

Pe• • Ps
11= 1e=2

(c)

Fig. 11 .29 Examples of shapes defined using nonrational 8-splines and multiple knots.
Part (a) is just a B6zier curve segment, with knot sequence (0, 0, 0, 0, 1, 1, 1, 1). and
hence just one curve segment, 0 3• Parts (b) and (c) have the same knot sequence, (0, 0 ,
0, 0 , 1, 1, 1, 2, 2. 3. 4, 5. 5. 5, 5) but different control points. Each curve has curve
segments 0, to 0 10• Segments 0.. a,, and 0 7 are located at multiple knots and have zero
length.

1 2 3 4 5

+ I 4.0 ~ ~ 1.0 I 2.0 I 2.0 I
New Value: Step: 1.0

Fig. 11 .30 An interaction technique developed by Cartes Castellsagu~ for specifying
knot values. The partial knot sequence is shown, and cari be scrolled left and right w ith
the horizontal arrows. One knot value, selected with the cursor, can be incremented up
and down using the vertical arrows, in increments specified by value Step. The selected
knot value can also be replaced with a new typed-in value.

0536

504 Representing Curves and Surfaces

(- 1, 0, 1)

(- -/M, - ~12, ..J2/2)
(0, - 1, 1)

(a)

(~12, ..J2/2, -IM)

(1, 0, 1)

(~2.-~2. -IM)

(-1, o. 1) (1, o. 1)

! (0, -1, 0) • -COy

••
(b)

Fig. 11 .3 1 The control points for defining a circle as a rational spline in 20.
Coordinates are (X, Y. W). The knot vector is (0, 0 , 0, 1, 1, 2, 2. 3, 3, 4 , 4), with the first
and last control points repeated. The choice of P0 is a rbit rary.

points, which can then be used to generate the perspective transformation of the original
curve. The alternative to converting a nonrational curve to a rational curve prior to a
perspective transformation is first to generate points on the curve itself and then to apply the
perspective transformation to each point, a far less efficient process. This is analogous to the
observation that the perspective transformation of a sphere is not the same as a sphere
whose center and radius are the transformed center and radius of the original sphere.

A second advantage of rational splines is that, unlike nonrationals, they can define
precisely any of the conic sections. A conic can be only approximated with nonrationals, by
using many control pointS close to the conic. This second property is useful in those
applications, particularly CAD, where general curves and surfaces as well as c.onics are
needed. Both types of entities can be defined with NURBS.

Defining conics requires only quadratic, not cubic, polynomials. Thus, the B;,a(t)
blending functions from the recurrence Eq. (11.44) are used in the curve of the form

Q;(t) = P;-.J1;-u(1) + P;_ 18 ; _1.a(t) + P!J;,a(t)

(11.46)

T~ ways of creating a unit circle centered at the origin are shown in Fig. 11.31 . Note that,
with quadratic B-splines, a double knot causes a control point to be interpolated, and triple
knots fix the starting and ending pointS of the curv:: on control pointS.

For further discussion of conics and NURBS, see [FAUX79; BOHM84; TILL83].

11 .2 .6 Other Spline Forms

Very often, we have a series of positions and want a curve smoothly to interpolate (pass
through) them. This might arise with a series of pointS read from a data tablet or mouse, or
a series of 30 points through which a curve or camera path is to pass. The Catmuli-Rom
family of interpolating or approximating splines [CATM74a] , also called Overlrauser

0537

