
4.2 Display Technologies 1 57

atoms, making them jump to higher quantum-energy levels. ln returning to their previous
quantum levels, these excited electrons give up their extra energy in the form of light , at
frequencies (i.e., colors) predicted by quantum theory. Any given phosphor has several
different quantum levels to which electrons can be excited, each corresponding to a color
associated with the return to an unexcited state. Further, electrons on some levels are less
stable and return to the unexcited state more rapidly than others. A phosphor' s fluorescence
is the light emitted as these very unstable electrons lose their excess energy while the
phosphor is being struck by electrons. Phosphorescence is the light given off by the return of
the relatively more stable excited electrons to their unexcited state once the electron beam
excitation is removed. With typical phosphors, most of the light emitted is phosphores­
cence, since the excitation and hence the fluorescence usually last just a fraction of a
microsecond. A phosphor's persistence is defined as the time from the removal of excitation
to the moment when phosphorescence has decayed to I 0 percent of the initial light output.
The range of persistence of diffe.rent phosphors can reach many seconds, but for most
phosphors used in graphics equipment it is usually I 0 to 60 microseconds. This light output
decays exponentially with time. Characteristics of phosphors are detailed in [SHER79].

The refresh rate of a CRT is the number of times per second the image is redrawn; it is
typically 60 per second for raster displays. As the refresh rate decreases , flicker develops
because the eye can no longer integrate the individual light impulses coming from a pixel.
The refresh rate above which a picture stops flickering and fuses into a steady image is
called the critical fusion frequency, or CFF. The process of fusion is familiarto all of us; it
occurs whenever we watch television or motion pictures. A flicker-free picture appears
constant or steady to the viewer, even though, in fact, any given point is "off" much longer
than it is "on."

One detemunant of the CFF is the phosphor's persistence: The longer the persistence,
the lower the CFF. The relation between fusion frequency and peri>'istence is nonlinear:
Doubling persistence does not halve the CFF. As persistence increases into the several­
second range, the fusion frequency becomes quite small. At the other extreme, even a
phosphor with absolutely no persistence at all can be used, since all the eye really requires is
to see some light for a short period of time, repeated at a frequency above the CFF.

Persistence is not the only factor affecting CFF. CFF also increases with image
intensity and with ambient room lighting, and varies with different wavelengths of emitted
light. Finally, it depends on the observer. Fusion is, after all, a physiological phenomenon,
and differences among viewers of up to 20Hz in CFF have been reported [ROG083]. Cited
fusion frequencies are thus usua!Jy averages for a large number of observers. Elinlinating
flicker for 99 percent of viewe.rs of very high-intensity images (especially prev-~lent with
black-on-white raster displays) requires refresh rates of 80 to 90 Hz.

The horizontal scan role is the number of scan lines per second that the circuitry driving
a CRT is able to display. The rate is approximately the product of the refresh rate and the
number of scan lines. For a given scan rate, an increase in the refresh rate means a decrease
in the number of scan lines.

Tbe resolution of a monochromatic CRT is defined just as is resolution for hardcopy
devices. Resolution is usually measured with a shrinking raster: A known number of equally
spaced parallel lines that alternate between black and white are displayed, and the interline
spacing is uniformly decreased until the lines just begin to merge together into a uniform

0180

cmccleskey
Typewritten Text
Volkswagen 1010 - Part 2 of 7

1 58 Graphics Hardware

field of gray. This merging happens at about the point where the interline spacing is equal to
the diameter at which the spot intensity is 60 percent of the intensity at the center of the
spot. The resolution is the distance between the two outermost lines, divided by the number
of lines in the raster. There is a clear dependence between spot size and achievable
resolution: The larger the spot size. the lower the achievable resolution.

In the shrinking-raster process, the interline spacing is decreased not by modifying the
contents of a raster bitmap, but by changing the ga.in (amount of amplification) of the
vertical or horizontal deflection amplifiers, depending on whether the vertical or horizontal
resolution is being measured. These amplifiers control how large an area on the screen is
CO\'ered by the bitmap image. Thus, CRT resolution is (properly) not a function of the
bitmap resolution, but may be either higher or lower than that of the bitmap.

Resolution is not a constant. As the number of electrons in the beam increases,
resolution tends to decrease, because a bright line is wider than a dim line. Th.is effect is a
result of bloom, the tendency of a phosphor's excitation to spread somewhat beyond the area
being bombarded, and also occurs because the spot size of an intense electron beam is
bigger than that of a weak beam. Vertical resolution on a raster monitor is determined
primarily by spo1 size; if the vertical resolution is n Lines per inch, the spo1 size needs to be
about lin inches. Horizontal resolution (in which the line-pairs are vertical) is determined
by bolh spot size and the speed with which the electron beam can be turned on and off as it
moves horizontally across the screen. This rate is related to the bandwidth of the display, as
discussed in the next paragraph. Research on defining the resolution of a display precisely
and on our ability to perceive image.~ is ongoing. The modulatiotr transfer functiotr, used
extensively in this research, relates a device's input signal to its output signal [SNY08Sl

The bandwidth of a monitor has to do with the speed with which the electron gun can be
turned on or off. To achieve a horizontal resolution of " pixels per scan line, it must be
possible to tum the elec:ron gun on at least n/2 times and off another n/2 times in one scan
line, in order to create alternating on and off lines. Consider a raster scan of 1000 lines by
1000 pixels, displayed at a 60-Hz refresh rate. One pixel is drawn in about II nanoseconds
[WHJT84), so the period of an on-off cycle is about 22 nanoseconds, which corresponds to
a frequency of 45 MHz. This frequency is the minimum bandwidth needed to achieve 1000
lines (500 line-pairs) of resolution, but is not the actual bandwidth bec:wse we have ignored
the effect of spot size. The nonzero spot size must be compensated fo: with a higher
bandwidth which causes the beam to turn on and off more quickly, giving the pixels sharper
edges than they would have otherwise. It is not unusual for the actual bandwidth of a I 000
by 1000 monitor to be 100 MHz. The actual relationships among resolution, bandwidth,
and spo1 size are complex, and only rec:lelltly has progress been made in quantifying them
[JNFA85].

Color television sets and color raster displays use some form of shildow-mask CRT.
Here, the inside of the tube's viewing surface is covered with c.losely spaced groups of red,
green, and blue phosphor dots. The dot groups are so small that light emanating from the
individual dots is perceived by the viewer as a mixture of the three colors. Thus, a wide
range of colors can be produced by each group, depending on how strongly each individual
phosphor dot is excited. A shadow mosk, which is a thin metal plate perforated with many
small holes and mounted close to the viewing surface, is carefully aligned so that each of

0181

4 .2 Display Technologies 159

the three electron beams (one each for red, green, and blue) can hit only one type of
phosphor dot. Tile dots thus can be excited selectively.

Figure 4.14 shows one of the most common types of shadow-mask CRT, a delra-delta
CRT. The phosphor dots are arranged in a triangular triad pattern, as are the three electron
guns. The guns are deOected together, and are aimed (converged) at the sarne point on the
viewing surface. The shadow mask bas one smaU bole for each triad. The holes are
precisely aligned with respect to both the triads and the electron guns, so that each dot in the
triad is el(posed to electrons from only one gun. High-precision deltlH!elta CRTs are
particularly difficult to keep in alignment. An ahernative arrangement, the precision in-line
delta CRT shown in Fig. 4 . 15, is easier to converge and is gaining in popularity for
high-precision (I 000-scan-lines) monitors. 1n this case, the three beams simultaneously
expose three in-line phosphor dots. However, the in-line arrangement does slightly reduce
image sharpness at the edges of the tube. Still in the research laboratory but likely to
become commercially viable is the flat-panel color CKI, in which tile electron beams move
parallel to the viewing surface, and are then turned 90• to strike the surface.

The need for the shadow mask and triads imposes a limit on the resolution of color
CRTs not present with monochrome CRTs. Tn very high-resolution tubes , the triads are
placed on a.bout 0.21-miUimeter centers; those in home television tubes are on about
0.60-millimeter centers (this distance is also called the pitch of the tube). Because a finely
focused beam cannot be guaranteed to hit exactly in the center of a shadow-mask hole, the
beam diameter (the diameter at which the intensity is 50 percent of the maximum) must be
about t times the pitch. Thus, on a mask with a pitch of 0.25-millimeter (0.01 inches),

Phosphors
on glass
faceplate

~
Red

""'-..Metal
mask

Fig. 4 .14 Delta-delta shadow-mask CRT. The three guns and phosphor dots are
arranged in a triangular (delta) pattern. The shadow mask allows electrons from each
gun to hit only the corresponding phosphor dots.

0182

160 Graphics Hardware

Phosphors
on glass
faceplate

i

Elec:tron

"-Metal
mask

Fig. 4 .1 5 A precision in-line CRT: the three electron guns are in a line.

the beam is about 0.018 inches across, and the resolution can be no more than about
o.fu- = 55 lines per inch. On a 0.25-millimeter pitch, 19-inch (diagonal measure) monitor.
which is about 15.5 inches wide by 11 .6 inches high [CONR85], the resolution achievable
is thus only 15.5 x 55 = 850 by 11.6 x 55 = 638. This value compares with a typical
addressability of 1280 by 1024, or 1024 by 800. As illustrated in Fig. 4 .2, a resolution
somewhat less than the addressability is useful.

The pitch of the shadow mask is clearly an important limit on the resolut.ion of
shadow-mas.k CRTs. As pitch decreases, resolution can increase (assuming bandwidth and
dot size are appropriate). The smaller the pitch is, however, the more difficult the tube is to
manufacture. A small-pitch shadow mask is more fragile, making it more difficult to
mount . II is also more likely to warp from heating by the electron beam. The
flat·tension·mask tube has a flat faceplate, with the mask stretched tightly to maintain its
position; a pitch of0.15 millimeter is achievable with this technology.

The shadow mask also limits CRT brightness. Typically, only 20 percent of the
electronS in the beam hit the phosphors-the rest hit the mask. Thus. fewer electrons make
light than in a monochrome CRT. The number of electrons in the beam (the beam cu"mt)
can be increased, but a higher current makes focusing more difficult and also generates
more heat on the shadow mask, further e~tacerbating mask warping. Because the flat tension
mask is more resistant to heating distortions, it allows a higher beam current and hence a
brighter image.

Most high-quality shadow-mask CRTs have diagonals of 15 to 21 inches, with slightly
curved faceplates thai create op1ical dislortions for the viewer. Several types of fla1-faee
CRTs are becoming available, including a 29-inciH:Iiagonal tube with a pilch of 0.31
millimeter. Of course, the price is high, bul it will come down as demand develops.

0183

4.2 Display Technologies 161

The direct-view storage tube (DVST) is similar to the standard CRT, except that it does
not need to be refreshed because the image is stored as a distribution of charges on the
inside surface of the screen. Because no refresh is needed, the DVST can display complex
images without the high scan rate and bandwidth required by a conventional CRT. The
major disadvantage of the DVST is that modifying any par1 of an image requires redrawing
the entire modified image to establish a new charge distribution in the DVST. This redraw
can be unacceptably slow (many seconds for a complex image).

The ubiquitous Tektronix 4010 display terminal, based on the DVST, was the first
low-cost, widely available interactive graphics terminal. It was the Model T of computer
graphics, and was so pervasive that its instruction set became a defacto standard. Even
today, many display systems include a Tektronix-compatibility feature, so that buyers can
continue to run their (often large) libraries of older software developed for the 4010. Now,
however, DYSTs have been superseded by raster displays and have essentially disappeared
from the graphics scene.

A liquid-crystal display (LCD) is made up of si)(layers, as shown in Fig. 4.16. The
front layer is a vertical polarizer plate. Next is a layer with thin grid wires electrodeposited
on the surface adjoining the crystals. Next is a thin (about 0.0005-inch) liquid-crystal layer,
then a layer with horizontal grid wires on the surface next to the crystals, then a horizontal
polarizer, and finally a reflector.

The liquid-crystal material is made up of long crystalline molecules. The individual
molecules normally are arranged in a spiral fashion such that the direction of polarization of
polarized light passing through is rotated 90". Light entering through the front layer is
polarized vertically. As the light passes through the liquid crystal, the polarization is rotated
90" to horizontal , so the light now passes through the rear horizontal polarizer, is reflected,
and returns through the two polarizers and crystal.

When the crystals are in an electric field , they all line up in the the same direction , and
thus have no polarizing effect. Hence, crystals in the electric field do not change the
polarization of the transmitted light, so the light remains vertically polarized and does not
pass through the rear polarizer: The light is absorbed, so the viewer sees a dark spot on the
display .

Reflective Horizontal
layer polarizer

Horizontal
grid wires

liquid·
orystal
layer

Vertical
grid

wires

Vertical
polarizer

Viewing
direction

Fig. 4.1 6 The layers of a liquid-crystal display (LCD), all of which are sandwiched
together to form a thin panel.

0184

162 Graphics Hardware

A dark Spot at point (x1, y1) is created via matrix addrt!ssing. The point is selected by
applying u negative voltage -V to the horizontal grid wire x1 and a positive voltage + V to the
vertical grid wire y1: Neither -V nor+ Vis large enough to cause the crystals to line up, but
their difference is large enough to do so. Now the crystals at (x1, y1) no longer rotate the
direction of polarization of the transmitted light, so it remains vertically polarized and does
not pass through the rear polarizer: The light is absorbed, so the viewer sees a dark spot on
the display.

To display dots at (x1, y1) and (x,. yJ, we cann01 simply apply the positive voltage to x1

and x, and the negative voltage to y1 and y1: that would cause dots to appear at (x~o y1),

(x1• yJ, (x,, y1) , and (x,, yJ, because all these points will be affected by the voltage. Rather,
the points must be selected in succession, one after the other, and this selection process must
be repeated, to refresh the activation of each point. Of course. if y1 = y2, then both points
on the row can be selected at the same time.

The display is refreshed one row at a time, in raster-scan fashion. Those points in a row
that are .. on" (i.e., dark in the case of a black-on-white LCD display) are selected only
about l iN of the time, where N is the number of rows. Fonunate.ly, ooce the crystals are
lined up. they stay that way for several hundred milliseconds, even when the voltage is
withdrawn (the crystals' equivalent of phosphors' persistence). But even so, the crystal is
not switched on all the time.

Acth-e matrix panels are LCD panels that have a transistor at each (x, y) grid point. The
ll1lnsistors are used to cause the crystals to change their state quickly , and also to control the
degree to which the state has been changed. These two properties allow LCDs to be used in
miniature television sets with continuous-tone images. The crystals can also be dyed to
provide color. Most important, the transistor can serve as a memory for the state of a cell
and can hold the cell in that State until it is cbanged. That is, the memory provided by the
ll1lnsistor enables a ceU to remain on all the time and hence to be brighter than it would be if
it had to be refreshed periodically. Color LCD panels with resolutions up to 800 by 1000 on
a 14-inch diagonal panel have been built .

AdvantagesofLCDs are low cost,low weight, small size, and low power consumption.
In the past, the major disadvantage was that LCDs were passive, reflecting only incidem
light and creating no light of their own (although this could be corrected with back.lighting):
Any glare washed out the image. In recent years, use of active panels has removed this
concern.

Nonactive LCD technology has been adapted to color displays, and is sold commercial­
ly as the Tektronix liquid-crystal shutter (LCS). The LCS. placed in front of a standard
black-and-white CRT, consistS of three la)-ers. The back layt.'f, closest to the CRT, is a
venical polarizer. to polarize light emitted from the CRT. The layer also has a thin coating
of a transparent conducting material. The next layer is the liquid crystal, and the third
(front) layer is a color polarizer that transmits vertically polarized light as red and
horizontally polarized light as green. This front layer also has a thin coating of the
transparent conductor. If the crystals are in their normal state, they rotate the polarization
plane by 90", so the light is horizontally polarized as it approaches the color polarizer of the
third layer, and is seen as green. If the appropriate \'Oitage is applied to the conductive
coatings on the front and back layers. then the crystals line up and do not affect the venical
polarization. so the light is seen as red.

0185

4 .2 Display Technologies 163

The crystals are switched back and forth between their t\\0 states at a rate of 60 Hz. At
the same time and in synchrony, images to be seen as red and green are alternated on the
monochrome display. Mixtures of red and green are created by intensifying the same spot
during the red and green phases, potentially with different intensities.

The LCS is an alternative to the shadow-mask CRT, but has limited color resolution. It
is possible, however, that this technology can be extended to \\Ork with three colors. If it
can be, the shadow mask will no longer be a limiting factor in achieving higher-resolution
full-color displays . Spot size and bandwidth will be the major determinants, as with
monoch.rome CRTs. Eliminating the shadow mask also will increase ruggedness. Because
LCD displays are small and light , they can be used in head-mounted displays such as that
discussed in Section 8.1.6.

The plasma panel is an array of tiny neon bulbs. Each bulb can be put into an ''on"
(intensified) state or an "off" state, and remains in the state until explicitly changed to the
other. This memory property means that plasma panels need not be refreshed. Plasma
panels typically have 50 to 125 cells per inch, with a I 0- to 15-inch diagonal , but 40- by
40-inch panels with 50 cells per inch are sold commercially, and even larger and denser
panels can be custom-made.

The neon bulbs are not discrete units, but rather are part of a single integrated panel
made of three layers of glass , as seen in Fig. 4. 17. The inside surface of the front layer has
thin vertical strips of an electrical conductor; the center layer has a number of boles (the
bulbs), and the inside surface of the rear layer has thin horizontal strips of an electrical
conductor. Matrix addressing is used to turn bulbs on and off. To turn on a bulb, the system
adjusts the voltages on the corresponding lines such that their difference is large enough to
pull electrons from the neon molecules, thus firing the bulb and making it glow. Once the
glow starts, a lower voltage is applied to sustain it. To tum off a bulb, the system
momentarily decreases the voltages on the appropriate lines to less than the sustaining

of
•0:

·===--::;:::: 1 VIeWing
2 .0!900
3 ;:oo direction

4 ••• 6 7
5 0 5
6 4

7 23

Horizontal Glass t Vertical
grid

wires
plate
with

grid
wires

(y address) cens (x address)

Fig. 4 .17 The layers of a plasma display. all of which are sandwiched together to form
a thin panel.

0186

164 Graphics Hardware

voltage. Bulbs can be turned on or off in about 15 microseconds. Ln some panel designs, the
individuul cells are replaced with an open cavity, because the neon glow is contained in a
localized area. In this case, the front and back glass layers are separated by spacers. Some
plasma panels can also display multiple gray levels.

The plasma panel has the advantages of being Oat, transparent, and rugged, and of not
needing a bitmap refresh buffer. It can be used with a rear-projection system to milt
photographic slides as static background for computer-generat.ed dynamic graphics, but has
found most use in military applications. where small size and ruggedness are important.
However, its cost, although continually decreasing. is still relatively high for its limited
resolution. Color has been demonstrated in the laboratory, but is not commercially
available.

Electrolllminescent (EL) displays consist of the same gridlike structure as used in LCD
and plasma displays. Between the front and back panels is a thin (typically 500-nanometcrs)
layer of an electroluminescent material, such as zinc sulfide doped with manganese, that
emits light when in a high electric field (about 10' volts per centimeter). A point on the
panel is illuminated via the matrix-addressing scheme, several hundred \'OilS being placed
across the horizontal and vertical selection Lines. Color electroluminescent displays are also
available.

These displays are bright and can be switched on and off quickly, and transistors at each
pixel can be used to store the image. Typical panel sizes are 6 by 8 inches up to 12 by 16
inches. with 70 addressable dots per inch. These displays' m;Uor disadvantage is that their
power consumption is higher than that of the LCD panel. However, their brightness has led
to their usc in some portable computers.

Electrophoretic displays use positively charged colored panicles suspended in a solution
of a contrasting color, sealed between twO parallel, closely spaced plates that have
matrix-addressing selection lines. A negative voltage on the front selection line and a
positive voltage on the rear selection line pulls the colored panicles toward the front plate,
where they are seen instead of the colored liquid. Reversing the voltages pulls the panicles
towa.rd the rear plate, so the colored liquid is seen. The display has a memory: The particles
stay where they have been placed until moved explicitly.

Most large-screen displays use some fonn of projection CRT. in which the light rrom a
small (several-inch-diameter) but very bright monchrome CRT is magnified and projected
from a curved mirror. Color systems use three projectors with red , green, and blue filters.
A shadow-mask CRT does not create enough light to be projected onto a large
(2-meter-diagonal) screen.

The GE light-•'tll•<e proj«tion S}'Stl'm is used for very large screens, where the light
output from the projection CRT II.'Ould not be sufficient. A light vulve is just what its name
implies: A mechanism for controlling how much light passes through a valve. The light
source can have much higher intensity than a CRT. In the most common approach, an
electron gun trJCes an image on a thin oil film on a piece or glass. The electron charge
causes the film to vary in thickness: A negatively charged area of the film is "stretched
out,' ' as the electrons repel one another, causing the film to become thinner. Light from the
high-intensity source is directed at the glass, and is rerraeted in different directions because
of the variation in the thickness of the oil film. Optics involving Schlieren bars and lenses
project light that is refracted in certain directions on the screen. while other light is not

0187

4.3 Raster-scan Display Systems 165

TABLE 4 .3 COMPARISON OF DISPLAY TECHNOLOGIES

Electro- Liquid Plasma
CRT luminescent crystal eanel

power consumption fair fair-good excellent fair
screen size excellent good fair excellent
depth poor excellent excellent good
weight poor excellent excellen.t excellent
ruggedness fair-good good-excellent excellent excellent
brightness excellent excellent fair-good excellent
addressability good-excellent good fair-good good
contrast g~xcellent good fair good
intensity levels per dot excellent fair fair fair
viewing angle excellent good poor good~cellent
color capabiliry excellent good good fair
relative cost ranse low medium-high low high

projected. Color is possible with these systems, through use of either three projectors or a
more sophisticated set of optics with a single projector. More details are given in
[SHER79]. Other similar light-valve systems use LCDs to modulate the light beam.

Table 4.3 summarizes the characteristics of the four major display technologies. The
pace of technological innovation is such, however, that some of the relationships may
change over the next few years. Also, note that the liquid-crystal comparisons are for
passive addressing; with active matrix addressing; gray levels and colors are achievable.
More detailed information on these display technologies is given in [APT85; .BALD85;
CONR85; PERR85; SHER79; and TANN85].

4.3 RASTER-SCAN DISPLAY SYSTEMS

The basic concepts of raster graphics systems were presented in Chapter I , and Chapter 2
provided further insight into the types of operations possible with a raster display. ln this
section, we discuss tbe various elements of a raster display, stressing two fundamental ways
in which various raster systems differ one from another.

First, most raster displays have some specialized hardware to assist in scan converting
output primitives into the pix map, and to perform the raster operations of moving, copying,
and modifying pixels or blocks of pixels. We call this hardware a graphics display
processor. The fundamental difference among display systems is how much the display
processor does versus how much must be done by the graphics subroutine package
exec,uting on the general-purpose CPU that drives the raster display. Note that the graphics
display processor is also sometimes called a graphics controller (emphasizing its similarity
to the control units for other peripheral devices) or a display coprocessor. The second key
differeotiator in raster systems is the relationship between the pixmap and the address space
of the general-purpose computer's memory, whether the pbtmap is part of the general­
purpose computer's memory or is separate.

ln Section 4.3.1, we introduce a simple raster display consisting of a CPU containing
the pixmap as part of its memory, and a video controller driving a CRT. There is no display
processor, so the CPU does both the application and graphics work. In Section 4.3.2. a

0188

166 Graphics Hardware

graphics processor with a separate pixmap is introduced, and a wide range of graphics­
processor functionalities is discussed in Section 4.3.3. Section 4.3.4 discusses ways in
which the pixmap can be integrated back into the CPU's address space, given the existence
of a graphics processor.

4 .3.1 Simple Raster Display System

The simplest and most common raster display system organjzation is shown in Fig. 4.18.
The relation between memory and the CPU is exactly the same as in a nongraphics
computer system. However, a portion of the memory also serves as the pixmap. The video
controller displays the image defined in the frame buffer, accessing the memory through a
separate access port as often as the raster-scan rate dictates. In many systems, a fixed
portion of memory is permanently allocated to the frame buffer, whereas some systems
have several interchangeable memory areas (sometimes called pages in the personal­
computer world). Yet other systems can designate (via a register) any part of memory for the
frame buffer. In this case, the system may be organized as shown in Fig. 4.19, or the entire
system memory may be dual-ported.

The application program and graphics subroutine package share the system memory
and are executed by the CPU. The graphics package includes scan-conversion procedures,
so that when the application progrdm calls, say, SRGP_IineCoord (xl , yl , x2, y2), the
graphics package can set the appropriate pixels in the frame buffer (details on scan­
conversion procedures were given in Chapter 3). Because the frame buffer is in the address
space of the CPU, the graphics package can easily access it to set pixels and to implement
the Pix Bit instructions described in Chapter 2.

The video controller cyc.les through the frdme buffer, one scan line at a time, typically
60 times per second. Memory reference addresses are generated in synchrony with the
raster scan, and the contents of the memory are used to control the CRT beam's intensity or

CPU Peripheral
devices

/\

< I DUI >
~

8 System Frame Video
memory buffer controller

Fig. 4. 18 A common raster display system architecture. A dedicated portion of the
system memory is dual-ported. so that it can be accessed directly by the video
controller, without the system bus being tied up.

0189

4.3 Raster-scan Display Systems 167

CPU Peripheral
devices

A

(......

System Video Monitor
memory controller

Fig. 4 .19 A s imple raster display system architecture. Because the frame buffer may
be stored anyw here in system memory, the video controller accesses the memory via
the system bus.

color. The video controller is organized as shown in Fig. 4.20. The raster-scan generator
produces deflection signals that generate the raster scan; it also controls the X and Y address
registers, which in turn define the memory location to be accessed next.

Assume that the frame buffer is addressed in x from 0 to x,.. and in y from 0 to y.,.,.;
then, ai the start of a refresh cycle, the X address register is set to zero and the Y register is
set to Ymu (the top scan line). As the first scan line is generated, the X address is
incremented up through x...,.. Each pixel value is fetched and is used to control the intensity
of the CRT beam. After the first scan line, the X address is reset to zero and the Y address is
decremented by one. The process continues until the last scan line (y = 0) is generated .

....

M

• ~
m

0

r ,

'1'._

....- X llddl II

u.. ~
llddt u

~
r--

I.- Yaddlcu

Data Pial -. 'illlue(l)

~ Set or increment

L-
RM.I'«<It ~ ,....

~ Set or decrement

Horizontal
and vertical
deflection
signals

Intensity
or color

Fig. 4 .20 logical organization of the video controller.

0190

168 Graphics Hardware

In this simplistic situation, one memory access is made to the frame buffer for each
pixel to be displayed. For a medium-resolution display of 640 pixels by 480 lines refreshed
60 times per second, a simple WdY to estimate the time available for displaying a single 1. -bit
pixel is to calculate 1/(480 x 640 x 60) = 54 nanoseconds. This calculation ignores the
fact that pixels are not being displayed during horizontal and vertical retrace (see Exercise
4.10). But typical RAM memory chips have cycle times around 200 nanoseconds: They
cannot support one access each 54 nanoseconds! Thus, the video controller must fetch
multiple pixel values in one memory cycle. In the case at hand, the controller might fetch 16
bits in one memory cycle, thereby taking care of 16 pixels x 54 ns/pixel = 864
nanoseconds of refresh time. The 16 bits are loaded into a regist.er on the video controller,
then are sbified out to control the CRT beam intensity, one each 54 nanoseconds. In the 864
nanoseconds this takes, there is time for about four memory cycles: one for the video
controller and three for the CPU. This sharing may force the CPU to wait for memory
accesses, potentially reducing the speed of the CPU by 25 percent. Of course, cache
memory on the CPU chip can be used to ameliorate this problem.

It may not be possible to fetch 16 pixels in one memory cycle. Consider the situation
when the pixmap is implemented with five 64-KB-memory chips, with each chip able to
deliver I bit per cycle (this is called a 64-KB by I chip organization), for a total of 5 bits in
the 200-nanoseoonds cycle time. This is an average of 40 nanoseconds per bit (i.e., per
pixel), which is not much faster than the 54 nanoseconds/pixel scan rate and leaves hardly
any time for acce.c;ses to the memory by the CPU (except during the approximately
?-microsecond inter-scan-line retrace time and 1250-microsecond interframe vertical
retrace time). With five 32-KB by 2 chips, however, 10 pixels are delivered in 200
nanoseconds, leaving slightly over half the time available for the CPU. With a 1600 by 1200
display, the pixel time is 11(1600 X 1200 X 60) = 8.7 nanoseconds. With a 200-
nanoseconds memory cycle time, 200/8.7 = 23 pixels must be fetched each cycle. A 1600
x 1200 display needs 1.92MB of memory, which can be provided by eight 256-KB chips.
Again, 256-KB by I chips can provide only 8 piltels per cycle: on the other hand, 32-KB by
8 chips C'.ln deliver 64 piltels, freeing two-thirds of the memory cycles for the CPU.

Access to memory by the CPU and video controller is clearly a problem: Table 4.4
shows that problem' s magnitude. The solution is RAM architectures that accommodate the
needs of raster displays. Chapter 18 discusses these architectures.

We have thus far assumed monochrome, 1-bit-per-pixel bitmaps. This assumption is
fine for some applications, but is grossly unsatisfactory for others. Additional control over
the intensity of each pixel is obtained by storing multiple bits for each pixel: 2 bits yield four
intensities, and so on. The bits can be used to control not only intensity, but also color.
How many bits per pixel are needed for a stored image to be perceived as having continuous
shades of gray? Five or 6 bits are often enough, but 8 or more bits can be necessary. Thus,
for color displays, a somewhat simplified argument suggests that three times as many bits
are needed: 8 bits for each of the three additive primary colors red, blue, and green (see
Chapter 13).

Systems with 24 bits per pixel are still relatively expensive, however, despite the
decreasing cost of solid-state RAM. Furthermore, many color applications do not require
221 different colors in a single picture (which typically has only 218 to 21!1) pixels). On the
other hand, there is often need for both a smal l number of colors in a given picture or

0191

4 .3 Raster-scan Display Systems 169

TABLE 4 .4 PERCENTAGE OF TIME AN IMAGE IS BEING TRACED
DURING WHICH THE PROCESSOR CAN ACCESS THE MEMORY
CONTAINING THE BITMAP*

ns between
Visible area Number Pixels accesses by

eixels X li.oes Chip size of chips per access video controller

512 X 512 256K X I I I 64
512 X 512 128K X 2 I 2 127
512 X 512 64K X 4 I 4 254
512 X 512 32K X 8 I 8 507
512 X 512 16K X 16 I 16 1017

1024 X 1024 256K X I 4 4 64
1024 X 1024 128K X 2 4 8 127
1024 X 1024 64K X 4 4 16 254
1024 X 1024 32K X 8 4 32 407
1024 X 1024 16K X 16 4 64 1017
1024 X 1024 IM X I J I 16
1024 X 1024 64K X 16 I 16 254
1024 X 1024 32K X 32 I 32 509

Percent of time
for processor

accesses

0
0

20
60
80
0
0

20
60
80

0
21
61

'A 200.nnnosccond memory cycle time and 60-Ht display rate are assumed throughout. The pixel time f'or a
512 X 512 display is assumed to be 64 nanoseconds; thot for 1024 X 1024, 16 nanoseconds. These times are
liberal, since they do not include the hori:r..ontal aod vertical rttrnce times; the pixel times are actually about 45
and 11.5 nanoseconds, respectively.

application and the ability to change colors from picture to picture or from application to
application. Also, in many image-analysis and image-enhancement applications, it is
desirable to change the visual appearance of an image without changing the underlying data
defining the image, in order, say, to display all pixels with values below some threshold as
black, to expand a.n intensity range, or to create a pseudocolor display of a monochromatic
image.

For these various reasons, the video controller of raster displays often includes a video
look-up table (also called a look-up table or L.UT). The look-up table has as many entries as
there are pixel values. A pixel 's value is used not to control the beam directly, but rather as
an index into the look-up table. The table entry's value is used to control the intensity or
color of the CRT. A pixel value of 67 would thus cause the contents of table entry 67 to be
accessed and used to control the CRT beam. This look-up operation is done for each pixel
on each display cycle, so the table must be accessible quickly, and the CPU must be able to
load the look-up table on progran1 command.

ln Fig. 4.21, the look-up table is interposed between the frame buffer and the CRT
display. The frame buffer has 8 bits per pixel , and the look-up table therefore has 256
ent.ries .

The simple raster display system organizations of Figs. 4.18 and 4.19·are used in many
inexpensive personal computers. Such a system is inexpensive to build, but has a number of
disadvantages. First , scan conversion in software is slow. For instance, the (x, y) address of
each pixel on a line must be calculated, then must be translated into a memory address
consisting of a byte and bit-within-byte pair. Although each of the individual steps is
simple, each is repeated many times. Software-based scan conversion slows down the

0192

170 Graphics Hardware

/ / Red Yma<

tl-
Green-

t 255J
=b Blu';-+ Pixel

y D displayed
__.. L 100!l_1010j01101j at x', y'

Pixel in
67 100110100001

bitmap v O' 1.: R G 8

0
at x: y'

0 X-+ Xmax

Frame buffer Look-up table Monitor

Fig. 4 .21 Organization of a video look-up table. A pixel with value 67 (binary
01000011) is displayed on the screen with the red electron gun att\of maximum, green
at ~g. and blue at13"· This look-up table is shown with 12 bits per entry. Up to 24 bits are
common.

overall pace of user interaction with the application, potentially creating user dissatisfac­
tion.

The second disadvantage of this architecture is that as the addressability or the refresh
rate of the display increases, the number of memory accesses made by the video controller
also increa.o;es, thus decreasing the number of memory cycles available to the CPU. The
CPU is thus slowed down, especially with the architecture in Fig. 4.19. With the
dual-porting of part of the system memory shown in Fig. 4 .18, the slowdown occurs only
when the CPU is accessing the frame buffer, usually for scan conversion or raster
operations. These two disadvantages must be weighed against the ease with which the CPU
can access the frame buffer and against the architectural simplicity of the system.

4 .3.2 Raster Display System with Peripheral Display Processor

The raster display system with a peripheral display processor is a common architectu.re (see
Fig. 4.22) that avoids the disadvantages of the simple raster display by introducing a
separate graphics processor to perform graphics functions such as scan conversion and
raster operations, and a separate frame buffer for image refresh. We now have two

processors: the general-purpose CPU and the special-purpose display processor. We also
have three memory areas: the system memory, the display-processor memory, and the
frame buffer. The system memory holds data plus those programs that execute on the CPU:
the application program, graphics package, and operating system. Similarly, the display­
processor memory holds data plus the programs that perform scan conversion and raster
operations. The frame buffer contains the displayable image created by the scan-conversion
and raster operations.

ln simple cases, the display processor can consist of specialized logic to perform the
mapping from 2D (x, y) coordinates to a linear memory address. In this case, the
scan-conversion and raster operations are still performed by the CPU, so the display­
processor memory is not needed; only the frame buffer is present. Most peripheral display
processors also perform scan conversion. ln this section, we present a prototype system. Its

0193

4 .3

CPU

Display
processor

Display
processor
memory

Frame
buffer

Raster-scan Display Systems

Peripheral
devices

System
memory

Video
1--+1 controller 1--+(

Fig. 4 .22 Raster system architecture w ith a peripheral display processor.

171

features are a (sometimes simplified) composite of many typical commercially available
systems, such as the plug-in graphics cards used with ffiM 's PC, XT, AT, PS, and
compatible computers.

The frame buffer is 1024 by 1024 by 8 bits per pixel, and tbere is a 256-entry look-up
table of 12 bits, 4 each for red, green, and blue. The origin is at lower left, but only the first
768 rows of the pix map (y in the range of 0 to 767) are displayed. The display has six status
registers, which are set by various instructions and affect the execution of otber instructions.
These are the CP (made up of the X and Y position registers), FILL, lNDEX, WMODE,
MASK, and PAITERN registers. Their operation is explained next.

The instructions for the simple raster display are as follows:

Move (x, y) The X and Y registers that define the current position (CP) are set to x andy.
Because tbe pixmap is 1024 by 1024, x andy must be between 0 and 1023.

MoveR (dx, dy) The values dx and dy are added to tbe X andY registers, thus defining a
new CP. The dx and dy values must be between -1024 and + 1023, and are
represented in 2's-complemenl notation. The addition may cause overflow and hence a
wraparound of the X and Y register values.

Line (x, y) A line is drawn from CP to (x, y), and this position becomes lhe new CP.

LineR (dx, dy) A line is drawn from CP to CP + (dx, dy), and this position becomes the
new CP.

Point (x, y) The pixel at (x, y) is set, and this position becomes the new CP.

PointR (dx, dy) The pixel at CP + (dx, dy) is set, and lhis position becomes the new CP.

0194

172 Graphics Hardware

Rect (_(, y) A rectangle is drawn between the CP and (x, y). The CP is unaffected.

RectR (dx, dy) A rectangle is drawn between the CP and CP + (d.x, dy). The parameter d.x
can be thought of as the rectangle width, and dy as the height. The CP is unaffected.

Text (n , address) Then characters at memory location addnss are displayed, starting at
the CP. Characters are defined on a 7- by 9-pixel grid, with 2 extra pixels of vertical
and horizontal spacing to separate characters and lines. The CP is updated to the
lower-left comer of the area in which character n + I "M>uld be displayed.

Circle (radius) A circle is drawn centered at the CP. The CP is unaffected.

Arc (radius . startAngle, endAngle) An arc of a circle centered at the CP is drawn. Angles
are in tenths of a degree, measured positively counterclockwise from the x axis. The
CP is unaffected.

CircleSector (radius, starrAngle, endAngle) A .. pie slice·· is drawn consisting of a closed
area with lines going from the CP to the endpoints of the arc. The CP is unaffected.

Polygon (11 , address) At address is stored a vertex list (x1, y1, Xt, Yz· .x,, y3 , • •• , x., y.). A
polygon is drawn starting at (x~o y1), through all the vertexes up to (x •• y,.), and then
back to (x1, y1). The CP is unaffected.

AreaFill (flag) The flag is used to set the FILL ftag in the raster display. When the flag is
set to ON (by a nonzero value of flag), all the areas created by the commands Rect,
RectR, Circle. CircleSectOr, Polygon are filled in as they are created, using the pauem
defined with the P..mcrn command.

PixeiVulue (index) The pixel value index is loaded into the iNDEX register. Its value is
loaded into the pixmap when any of the output primitives in the preceding list are
scan-converted.

Pauem (row/, row2 • ... , row/6) The 16 2-byte arguments define the pattern used to fill
areas created by Rect, RectR. Circle, CircleSector, and Polygon. The pattern is a 16 by
16 array of bits, stored in the PATTERN register. When a filled area is being created
and the FILL register is ON, then, if a bit in the PATTERN register is a I, the pixel
value in the INDEX register is loaded into the piltmap; otherwise, the pixmap is
unaffected. A solid fill is created if all the bits of the PATTERN register are ON.

WBiockR (d.x, dy. address) The 8-bit pixel values stored starting at address in main
memory are wrinen into the rectangular region of the pix map from CP to CP + (d.x,
dy). Writing begins at the upper-left corner of the region and proceeds row by row, top
to bouom.

RBiockR (d.x, dy, address) A rectangular region of the pixmap, from CP to CP + (d.x,
dy), is read into the main memory area beginning at address. Reading begins at the
upper-left comer of the region and proceeds row by row, top to bottom.

RasterOp (d.x, dy, xdest , >viest) A rectangular region of the frame buffer, from CP to CP +
(d.x, dy), is combined with the region of the same size with lower-left comer at (xdest,
ydest), overwriting that region. The combination is controlled by the WMODE register.

WMode (mode) The value of mode is loaded intO the WMODE register. This register
controls how pixels in the frame buffer are combined with any pixel value being wriuen
into the frame buffer. There are four mode values: replace, xor, and, and or. The

0195

4.3 Raster-scan Display Systems 173

modes behave as described in Chapter 2. Note that, for simplicity, the preceding
command descriptions have been written as though replace were the only write-mode
value. In xor mode, new values written into the frame buffer are combined with the
current value using a bit-by-bit exclusive-or operation.

Mask (mask) The 8-bit mask value is loaded into the MASK register. This register
controls which bits of the frame buffer are modified during writing to the frame buffer:
I allows modification of the corresponding bit ; 0 inhibits modification.

LuT (indtx, red, grttll, blut) Entry illdt'x in the look-up table is loaded with the given
color specification. The low-order 4 bits of each color component are loaded into the

table.

Table 4.5 summarizes these commands. Notice that the MASK and WMODE registers
affect all commands that write into the frame bulfer.

The commands and immediate data are transferred to the display processor via a
first-in. first-out (FIFO) buffer (i.e., a queue) in a dedicated portion of the CPU address
space. The graphics package places commands into the queue , and the display accesses the
instructions and executes them. Pointers to the start and end of the buffer are also in specific
memory locations , accessible to both the CPU and display. The pointer to the start of the
buffer is modified by the display processor each time a byte is removed; the pointer to the
end of the buffer is modified by the CPU each time a byte is added. Appropriate testing is
done to ensure that an empty buffer is not read and that a full buffer is not written. Direct
memory access is used to fetch the addressed data for the instructions.

A queue is more attract ive for command passing than is a single inst.ruction register or
location accessed by the display . First , the variable length of the instructions favors the
queue concept. Second, the CPU can get ahead of the display, and queue up a number of
display commands. When the CPU has finished issuing di~-play commands , it can proceed
to do other work while the display empties out the queue.

Programming examples. Programming the display is similar to using the SRGP package
of Chapter 2, so only a few examples wil l be given here. A "Z" means that a hexadecimal
value is being specified; an" A ·• means that the address of the following parenthetical list is
used .

A white line on a completely black background is created as follows:

LuT 5.0.0.0 Look-up-table enuy 5 is black
LuT 6. Z'F'. Z'F'. Z'F' Look-up-table entry 6 is white
WMode replace
ArcaFill true Tum on the FILL flag
Putt ern 32Z'FF' 32 bytes of all Is. for solid pauem
Mask Z'FF' Enable writing to nil planes
PixciVulue 5 Scan convcn using pixel value of 5
Move 0.0
Rect 1023, 767 Visible pan of frame buffer now black
Pixel Value 6 Scan conven using pixel value of 6
Move 100. 100
LineR 500.400 Draw the line

0196

TABLE 4 .5 SUMMARY OF THE RASTER DISPLAY COMMANDS•

Command
mnemonic

M<M
MoYeR
Line
UneR
!\lint
1\lintR
Reel
RectR
Text
Circle
Arc
Circle.Sect0r
Polygon
Areafill
PiJ<.el Value
Pattern
WBiock.R
RB/ockR
RasterOp
Mask
WMode
LoT

Arguments
and length$

.r(2).)'(2)
dr(2), d)'(2)
.r(2).)'(2)
dr(2). dy(2)
.r(2) .)'(2)
dr(2), dy(2)
.r(2),)'(2)
dr(2). dy(2)
n(l). addrw{4)
radius(2)

HowCP is
atremd

CP := (x, y)
CP := CP + (d:c, dy)
CP := (x, y)
CP := CP + (d:c , dy)
CP := (x, y)
CP := CP + (d:c , dy)

CP : = ncu char pos' n

radius(2), nartA~tgle(2). endArtgle(2) -
radius(2), srortA~tgle(2), endArtgle(2) -
n(l). addms(4)
flag(I)
index(I)
oddnss(4)
dt(2), d)'(2), oddress(4)
dx(2), d)'(2), addrm(4)
dx(2). d)'(2), xdest(2), dest(2)
mask(I)
nwde(l)
inde.r(l) , rt!d(l), green(I), b/ue(1)

Registers that
aff cct t"Oilllll8lld

CP
CP. INDEX, WMODE. MASK
CP, INDEX. WMODE. MASK
CP, INDEX. WMODE. MASK
CP, INOEX , WMODE. MASK
CP, INDEX, WMODE. MASK. FILL, PArrERN
CP, INDEX, WMODE. MASK. FILL. PArrERN
CP, INDEX, WMODE. MASK
CP, INDEX, WMODE. MASK, FILL, PArrERN
CP, INDEX, WMODE, MASK
CP, INDEX, WMODE, MASK, FILL. PArrERN
CP, INDEX, WMODE, MASK, FILL. PArrERN

CP, INDEX, WMODE. MASK
CP, INDEX, WMODE. MASK
CP, INDEX, WMODE. MASK

•The number In pan:nthcsc$ aflcr each argument is the Iauer's Je11gth in bytes. Also indicated arc the cffct1 of the command on the CP, and which
registers affect how the command operates.

...

..... •
(;)
;
"a
::r
<;" ..
:t • a.
! •

0197

4 .3 Raster-scan Display Systems 175

A red circle overlapping a blue triangle, all on a black background, are created with:

LuT
LuT
LuT
WMode
AreaFill
Pauem
Mask
Pixel Value
Move
Rect
Pixel Value
Polygon
Pixel Value
MOlle
Circle

5. o. o. 0
7, Z'F', 0, 0
8. 0, 0, Z'F'
replace
Z'PF'
32Z'FF'
Z'PF'
5
0,0

Look-uJHable entry 5 is black
Look-uJH3ble entry 7 is red
Look-up-table entry 8 is blue

On
32 bytes of all Is, for solid pattern
Enable writing to all planes
Get ready for black rectangle

1023, 767 Visible part of frame buffer now black
8 Next do blue triangle as a three-vertex polygon
3, A(200, 200, 800, 200, 500, 700)
7 Put red circle on top of triangle
511 , 383 Put CP at center of display
100 Radius- 100 circle at CP

4.3.3 Additional Display-Processor Functionality

Our simple display processor performs only some of the graphics-related operations that
might be implemented. The temptation faced by the system designer is to offload the main
CPU more and more by adding functionality to the display processor, such as by using a
local memory to store lists of display instructions, by doing clipping and the window-to­
viewport transformation , and perhaps by providing pick-correlation logic and automatic
feedback when a segment is picked. Ultimately, the display processor becomes another
general-purpose CPU doing general interactive graphics work, and the designer is again
tempted to provide special-function hardware to offioad the display processor.

This wheel of reincarnation was identified by Myer and Sutherland in 1968
[MYER68). These authors' point was that there is a tradeoff between special-purpose and
general-purpose functionality. Special-purpose hardware usually does tbe job faster than
does a general-purpose processor. On the other hand, special-purpose hardware is more
expensive and cannot be used for other purposes. This tradeoff is an enduring theme in
graphics system design.

If clipping (Chapter 3) is added to the display processor, then output primitives can be
speci lied to the processor in coordinates other than device coordinates. This specification
can be done in floating-point coordinates, although some display processors operate on only
integers (this is changing rapidly as inexpensive floating-point chips become available). If
only integers are used , the coordinates used by the application program must be integer, or
the graphics package must map floating-point coordinates into integer coordinates. For this
mapping to be possible, the application program must give the graphics package a rectangle
guaranteed to enclose the coordinates of all output primitives specified to the package. The
rectangle must then be mapped into the maximum integer range, so that everything within
the rectangle is in the integer coordinate range.

Lf the subroutine package is 30, then the display processor can perform the far more
complex 30 geometric transformations and clipping described in Chapters 5 and 6. Also, if
the package includes 30 surface primitives, such as polygonal areas, the display processor

0198

176 Graphics Hardware

can also perform the visible surface-determination and rendering steps discussed in
Chapters 15 and 16. Chapter 18 discusses some of the fundamental approaches to
organizing general- and special-purpose VLSl chips tO perform these steps quickly. Many
commercially aV'dilable displays provide these features.

Another function that is often added to the display processor is local segment storage,
also called display list storage. Display instructions, grouped into named segments and
having unclipped integer coordinates, are stored in the display-processor memory,
permitting the display processor to operate more autonomously from the CPU.

What exactly can a display processor do with these stored segments? It can transform
and redraw them, as in zooming or scrolling. Local dragging of segments into new positions
can be provided. Local picking can be implemented by having the display processor
compare the cursor position to all the graphics primitives (more efficient ways of doing this
are discussed in Chapter 7). Regeneration, required to fiJI in the holes created when a
segment is erased, can also be done from segment storage. Segments can be created,
deleted, edited, and made visible or invisible.

Segments can also be copied or referenced, both reducing the amount of information
that must be sent from the CPU to the display processor and economizing on storage in the
display processor itself. For instance, the display instructions to create a VLSI chip pad
configurat ion to be used many times in a drawing can be sent to the display processor just
once and can be stored as a segment. Each occurrence of the pad is then sent as a display
instruction referencing the segment. It is possible to build up a complex hierarchical data
structure using this capabi lity, and many commercial display processors with local segment
memory can copy or reference other segments. When the segments are displayed, a
reference to another segment must be preceded by saving the display processor's current
state, just as a subroutine call is preceded by saving the CPU's current state. References
can be nested, giving rise to a structured displny file or hierarchical display list, as in PHlGS
[ANSI88j, which is discussed further in Chapter 7. In the OKS graphics package
[ENDE87; HOPG86] , which uses a linear, unnestcd display list , an existing segment can be
copied into a segment that is being created.

The segment data structures need not be in the display-processor memory (Fig. 4.22):
They can be built directly by the graphics package in system memory and accessed by the
display processor. This option, of course, requires that the display processor be able to read
from system memory, which implies that the display processor must be directly on the
system bus- RS-232 and Ethernet-speed connections are not viable.

U all the information being displayed i.s represented in a segment data structure, then
the display processor can also implement window-manager operations such as move, open,
close, resize, scroll, push, and pop. When a window is panned, the segments are
retraversed with a new viewing transformation in effect. At some point, the wh.eel of
reincarnation will again come into play, but we must also keep in mind the startlingly low
cost of special-purpose VLST chips: By the time this book becomes outdated, window
manager chips are likely to cost only a few dollars each. Indeed, the pace of technological
innovation is such that the graphics functionality found in display processors will continue
its dramatic increase in scope and decrease in cost.

Although this raster display system architecture with its graphics display and separate
frame buffer has many advantages over the simple raster display system of Section 4.3. 1, it

0199

4.3 Raster-scan Display Systems 177

also has some disadvantages. If the display processor is accessed by the CPU as a peripheral
on a direct-memory-access port or on an RS-232 interface, then there is considerable
operaling-system overhead each time an instruction is passed to it (this is not an issue for a
display processor whose instruction register is memory-mapped into the CPU's address
space, since then it is easy for the graphics package to set up the registers directly).

There is also a marked partitioning of the memories, as was shown in Fig. 4.22.
Building the display list in the display-list memory is slow because of !he need to issue a
display-processor instruction to add or delete elements. The display list may have to be
duplicated in the main proce.~sor's memory, because it cannot always be read back. An
environment in which the display list is built directly in main memory by the graphics
subroutine package can rhus be more flexible, faster. and easier to program.

The raster-<>peration command is a particular difficulty. Conceptually, it should have
four potential source-<lestination pairs: system memory to system memory, system
memory to frame buffer, frame buffer to b)'Stem memory, and frame buffer to frame buffer
(here, the frame buffer and display processor memory of Fig. 4.22 are considered identical,
sinc-e they are in the same address space). In display-processor systems, however, the
different source-destination pairs are handled in different ways, and the system-memory-to­
system-memory case may not exist. This lack of symmetry compticates the programmer's
task and reduces flexibility. For example, if the offscreen portion of the pixmap becomes
filled with menus, fonts, and so on, then it is difficult to use main memory as an overflow
area. Furthennore, because the use of pixmaps is so pervasive, failure to support raster
operations on pixmaps stored in main memory is not really viable.

Another problem is that the output of scan-conversion algorithms must go to the frame
buffer. This requirement precludes double-buffering: scan converting a new image into
system memory, !hen copying it into the pix map to replace the image currently stored there.
In addition, certain window-manager strategies and animation techniques require partially
or completely obscured windows to be kept current in olfscreen canvases, again requiring
scan conversion into system memory (Chapters I 0 and 19).

The display processor defined earlier in this section, like many real display processors,
moves raster images between the system memory and f.rame buffer via 1/0 transfers on the
system bus. Unfortunately, this movement can be too slow for real-time operations, such as
animation, dragging, and popping up windows and menus: The time taken in the operating
system to initiate the transfers and the transfer rate on the bus get in the way. This problem
can be partially relieved by increasing the display processor's memory to hold more
offscreen pixmaps, but then that memory is not avai lable for other purposes-and there is
almost never enough memory anyway!

4 .3 .4 Raster Display System with Integrated Display Processor

We can ameliorate many of the shortcomings of the peripheral display processor discussed
in the previous section by making the frame buffer part of the system memory, thus creating
the single-address-space (SAS) display system architecture shown in Fig. 4.23. Here the
display processor, !he CPU, and the video controller are all on the system bus and can thus
all access system memory. The origin and, in some cases, the size of the frame buffer are
held io registers, making double-buffering a simple matter of reloading the register. The

0200

178 Graphics Hardware

CPU Display Peripheral processor devices
A

(I bUB)

System Video Monitor memory controller

Fig. 4 .23 A single-address-space (SAS) raster display system architecture w ith an
integral display processor. The display processor may have a private memory for
algorithms and working storage.

results of scan conversion can go either into tbe frame buffer for immediate display, or
elsewhere in system memory for later display. Similarly, the source and destina.tion for
raster operations performed by the display processor can be anywhere in system memory
(now the only memory of interest to us). This arrangement is also attractive because the
CPU can directly manipulate pixels in the frame buffer simply by reading or writing the
appropriate bits.

SAS architecture has, however, a number of shortcomings. Contention for access to the
system memory is the most serious. We can solve this problem at least partially by
dedicating a special portion of system memory to be the frame buffer and by providing a
second access port to the frame buffer fTom the video controller, as shown in Fig. 4.24.
Another solution is to use a CPU chip containing instruction- or data-cache memories, thus
reducing the CPU's dependence on frequent and rapid access to the system memory. Of
course, these and other solutions can be integrated in various ingenious ways, as discussed
in more detail in Chapter 18. In the limit, the hardware PixBit may work on only the frame
buffer. What the application programmer sees as a single PixBit instruction may be treated
as several ditfere01 cases, with software simulation if the source and destination are not
supported by the hardware. Some processors are actually fast enough to do this, especially
if they have an instruction-cache memory in which the tight inner loop of the software
simulation can remain.

As suggested earlier, nontraditional memory-chip organizations for frame buffers also
can help to avoid the memory-contention problem. One approach is to tum on all the pixels
on a scan line in one access time, thus reducing the number of memory cycles needed to
scan convert into memory, especially for filled areas. The video RAM (VRAM)
organization, developed by Texas lnstruments, can read out all the pixels on a scan line in
one cycle, thus reducing the number of memory cycles needed to refresh the display. Again,
Chapter 18 gives more detail on these issues.

0201

4 .4 The Video Controller 179

CPU Display Peripheral
processor devices

A

(.)

rB System Frame f--. Video
memory butter controller

Fig. 4 .24 A more common single-address-space raster display system architecture
with an integral display processor (compare to Fig. 4.23). The display processor may
have a private memory for algorithms and working storage. A dedicated portion of the
system memory is dual-ported so that it can be accessed directly by the video
controller, without the system bus being tied up.

Another design complication arises if the CPU has a virtual address space, as do the
commonly used Motorola 680x0 and I.ntel 80x86 families , and various reduced-instruction­
set-computer (RISC) processors. In this case memory addresses generated by the display
processor must go through the same dynamic address translation as other memory
addresses. ln addition, many CPU architec-tures distinguish between a kernel operating
system virtual address space and an application program virtual address space. It is often
desirable for the frame buffer (canvas 0 in SRGP terminology) to be in the kernel space, so
that the operating system's display device driver can access it directly. However, the
canvases allocated by the application program must be in the application space. Therefore
display instructions which access the frame buffer must distinguish between the kernel and
application address spaces. If the kernel is to be accessed, then the display instruction must
be invoked by a time-consuming operating system service call rather than by a simple
subroutine call.

Despite these potential complications, more and more raster display systems do in fact
have a single-address-space architecture, typically of the type in Fig. 4.24. The flexibility
of allowing both the CPU and display processor to access any part of memory in a uniform
and homogeneous way is very compelling, and does simplify programming.

4 .4 THE VIDEO CONTROLLER

The most important task for the video controller is the constant refresh of the display. There
are t'M> fundamental types of refresh: interlaced and noninJerlaced. The former is used in
broadcast television and in raster displays designed to drive regular televisions. The refresh
cycle is broken into t'M> fields, each lastinglArsecond; thus , a full refresh lasts~ second. All

0202

180 Graphics Hardware

odd-numbered scan lines are displayed in the first field, and all even-numbered ones are
displayed in the second. The purpose of the interlaced scan is to place some new
information in all areas of the screen at a 60-Hz rate, since a 30-Hz refresh rate tends to
cause Dicker. The net effect of interlacing is to produce a picture whose effective refresh rate
is closer to 60 than to 30Hz. This technique works as long as adjacent scan lines do in fact
display similar information; an image consisting of horizontal lines on alternating scan lines
would Hicker badly. Most video controllers refresh at 60 or more Hz and use a
noninterlaced scan.

The output from the video controller has one of three forms: RG B, monochrome, or
NTSC. For RGB (red, green, blue). separate cables carry the red. green, and blue signals to
control the three electron guns of a shadow-mask CRT, and another cable carries the
synchronization to signal the start of vertical and horizontal retrace. There are standards for
the voltages, wave shapes, and synchroniution timings of RGB signals. For 480-scan-line
monochrome signals, RS-170 is the standard; for color, RS-170A; for higher-resolution
monochrome signals, RS-343. Frequently, the synchronization timings are included on the
same cable as the green signal, in which case the signals are called composile video.
Monochrome signals use the same standards but have only intensity and synchronization
cables, or merely a single cable carrying composite intensity and synchronization.

NTSC (National Television System Committee) video is the signal format used in
North American commercial television. Color, intensity, and synchronization information
is combined into a signal with a bandwidth of about 5 MHz, broadcast as 525 scan lines, in
two fields of 262.5 lines each. Just 480 lines are visible; the rest occur during the vertical
retrace periods at the end of each field. A monochrome television set uses the intensity and
synchronization information; a color television set also uses the color information to control
the three color guns. The bandwidth limit allows many different television channels to
broadcast over the frequency range allocated to television. Unfortunately, this bandwidth
limits picture quality to an effective resolution of about 350 by 350. Nevertheless, NTSC is
the standard for videotape-recording equipment. Matters may improve, however. with
increasing interest in 1000-line high-definition television (HDTV) for videotaping and
satellite broadcasting. European and Soviet television broadcast and videotape standards
are two 625-scan-line, 50-Hz standards, SECAM and PAL.

Some video controllers superimpose a programmable cursor, stored in a 16 by 16 or 32
by 32 pixmap, on top of the frame buffer. This avoids the need to PixBit the cursor shape
into the frame buffer each refresh cycle, slightly reducing CPU overhead. Similarly, some
video controllers superimpose multiple small, fixed-size pix maps (called sprites) on top of
the frame buffer. This feature is used often in video games.

4 .4 .1 Animation w ith the lookup Table

Raster images can be animated in several ways. To show a rotating object, we can scan
conven into the pixmap successive views of the object from slightly different locations, one
after the other. This scan conversion must be done at least 10 (preferably 15 to 20) times per
second to give a reasonably smooth effect, and hence a new image must be created in no
more than 100 milliseconds. However, if scan-converting the object takes much of this 100
milliseconds-say 75 milliseconds-then the complete object can be displayed for only 25

0203

4.4 The Video Controller 181

milliseconds before it must be erased and redrawn-a diSU'aCting effect. Double-buffering
is used to avoid this problem. The frame buffer is divided into tv.'O images, each with half of
the bits per pixel of the overall frame buffer. lf we call the t¥.'0 halves of the pixmap image()
and imag~ I , we can describe the animation as follows:

Load look-up tab/~ to display all pixl'i value as background calor.
Scan convert object IIIIo imageO;
Load look-up table to display only imageO;
do {

Scan convert abject into image I ;
Load look-up table to display only imnge l :
Rotate abject data srructun description;
Scan convert object into imagd>:
Load look-up tabl~ to display only imagd>;
Rotate abject data structur~ description;

} while (nor terminatd);

Of course, if rotating and scan converting the object takes more than 100 milliseconds, the
animation is quite jerky, but the transition from one image to the next appears to be
instantaneous, as loading the look-up table typically takes less than I millisecond.

Another form of look-up-table animation displays a short, repetitive sequence of
images [SHOU79]. Suppose we· want to display a bouncing ball. Figure 4.25 shows how the
frame buffer is loaded; the numbers indicate the pillel values placed in each region of the
frame buffer. Figure 4.26 shows how to load the look-up table at each step to display all but
one of the balls at background color 0. By cycling the contents of the look-up table, we ean
achieve motion effects. Not only can balls be bounced, but the effect of moving lights on
~ie marquees ean be simulated, as can the motion of fluids through pipes and the I'Oiation
of wheels. This is discussed funher in Section 21.1.4.

fof more complicated cyclk animation, such as rocating a complell wire-frame object,
it may be impossible to keep the separate images from overlapping in the frame buffer. In
that case, some of the displayed images will have "holes" in them. A few such holes are not
especially distracting, especially if realism is nOt essential. As more holes appear, however,
the animation loses its effectiveness and double-buffering becomes more attractive.

0

7
1

Fig. 4 .25 Contents of the flame buffer for a bouncing-ball animation.

0204

182 Graphics .Hardware

Colors loaded in table at each step in animation

Entry
number 2 3 4 5 6 7 8 9 10 II

0 white wh.ite white white white white white white white white white
I black black black black black black black black black black black
2 red red
3 red red
4 red red
5 red red
6 red red
7 red

Fig. 4.26 Look-up table to bounce a red ball on a black surface against a white
background. Unspecified entries are all white.

4 .4 .2 Bitmap Transformations and Windowing

With some video controllers, the pixmap is decoupled from the view surfuce; that is, the
direct, fixed correspondence between positions in the frame buffer and positions on the
display is removed. An image transformation then defines the correspondence. The image
transformation transforms from the frame buffer to the view surface. The tranSformation
can, in general, include a translation, scaling, rotation, and an additional clipping
operation.

Figure 4 .27 shows the type of transformation found on some raster displays. Part of the
frame buffer, defined by a rectangular clip region, is enlarged to fill the entire view surface.
The ratio between the size of the window and the view surface must be an integer (3, in the
figure). Pixels in the frame buffer outside the window are not used, and none of the pixel
values are modified; the transformations are applied by the video controller at the refresh
rate.

The image transformation can be changed many times per second so as to give the
real-time-dynamics effect of scrolling over or zooming into an image. Also, a sequence of
arbitrary images can be shown rapidly by loading each image into a different area of the
frame buffer. The image transformation is changed periodically to display a full-screen view
first of one area, then of the next, and so on.

The scaling needed to enlarge an image is trivially accomplished by repeating pixel
values from within the window as the image is displayed. For a scale factor of2, each pixel

Clip region
on frame
buffer

Frame buffer View surface

Blown-up
corner ol
triangle

Fig. 4 .27 Portion of the frame buffer enlarged on the view surface.

0205

4.4

I •• •• • Before scaling, as defined
In frame buffer

The Video Controller

••
•• a

After scaling, as displayed

Fig. 4 .28 Effect of scaling up a pixmap by a factor of 2.

183

value is used four times, twice on each of two successive scan lines. Figure 4.28 shows the
effect of scaling up a letter and adjoining line by a factor of 2. Unless the image's storage
has higher resolution than does its display, scaling up does not reveal more detail: the image
is enlarged but has a more jagged appearance. Thus, this animation effect sacrifices spatial
resolution but maintains a full range of colors, whereas the double-buffering described in
the previous section maintains spatial resolution but decreases the number of colors
available in any one image.

In a more general application of image transformations, the scaled image covers only
the part of the view surface defined by a viewport, as in Fig. 4.29. Now we must define to
the system what is to appear on the view surface outside of the viewport. One possibility is
to display some constant color or intensity; another, shown in the figure, is to display the
frame buffer. itself. The hardware implementation for the latter option is simple. Registers
containing the viewport boundary coordinates are compared to the X, Y registers defining
the raster scan's current position. If the beam is in the viewport, pixels are fetched from
within the window area of the frame buffer and are replicated as required. Otherwise, pixels
are fetched from the position in the frame buffer with the same (.r, y) coordinates as the
beam.

Frame buffer Clip region
on frame buffer

Enlarged
viewport

Monitor

Fig. 4.29 A portion of the frame buffer, specified by the clip region on the frame
buffer, scaled up by a factor of 2 and overlaid on the unsealed f rame buffer.

0206

184 Graphics Hardw are

= ' r .:::::. ~-1 ___, .. ~~~
VIdeo
signal
source

Fig. 4 .30 A video controller mixing images from frame buffer and video-signal
source.

There are VLSI chips that implement many of these image display functions. These
various transformations are special eases of general window-manager operations that might
be desired. Window-manager chips are available for use in the video controller [SHIR86).
Each window has a separate pix map in the system memory, and a data structure in the
memory defines window sizes and origins. As a scan line is displayed, the chip knows
which window is visible and hence knows from which pixmap to fetch pixels. These and
other more adv-.mced hardware issues are discussed in Chapter 18.

4 .4 .3 Video Mixing

Another useful video-<:ontroller function is video mixing. 1Wo images, one defined in the
frame buffer and the other defined by a video signal coming from a television camera,
recorder, or other source, can be merged to form a composite image. Examples of this
merging are seen regularly on television news. sports, and weather shows. Figure 4.30
shows the generic system organization.

There are twO types of mixing. In one, a graphics image is set into a video image. The
chart or graph displayed over the shoulder of a newscaster is typical of this style. The mixing
is accomplished with hardware that treats a designated pixel value in the frame buffer as a
flag to indicate that the video signal should be shown instead of the signal from the frame
buffer. Normally, the designated pixel value corresponds to the background color of the
frame-buffer image. although interesting effects can be achieved by using some other pixel
value instead.

The second type of mixing places the video image on top of the frame-buffer image, as
when a weather reporter stands in front of a full-screen weather map. The reporter is
actually standing in front of a backdrop, whose color (typically blue) is used to control the
mixing: Whenever the incoming video is blue , the frame buffer is shown; otherwise, the
video image is shown. This technique works well as long as the reporter is not wearing a
blue tie or shirt!

4 .5 RANDOM-SCAN DISPLAY PROCESSOR

Figure 4.3 1 shows a typical random (vector) display system. It is generically similar to the
display-processor-based raster system architecture discussed in Section 4.3.2. There is of
course no pixrnap for refreshing the display, and the display processor has no local memory

0207

4.5 Random-scan Display Processor 185

CPU Peripheral
devices

/'

< IIIU8)

Display System
processor memory

8
Fig. 4 .31 Architecture of a random display system.

for scan-conversion algorithms, since that functionality is typically implemented using
programmed logic arrays or microcode.

The random-scan graphics-display processor is often called a display processing tmir
(DPU), or a graphics controller. The DPU has an instruction set and instruction address
register, and goes through the classic instruction fetch, decode, execute cycle found in any
computer. Because there is no pixmap, the display processor must execute its program 30 to
60 times per second in order to provide a flicker-free display. The program executed by the
DPU is in main memory, which is shared by the general CPU and the DPU.

The application program and graphics subroutine package also reside in main memory
and execute on the general CPU. The graphics package creates a display program of DPU
instructions and tells the DPU where to start the program. The DPU then asynchronously
executes the display program until it is told to stop by the graphics package. A JUMP
instruction at the end of the display program transfers control back to its start, so that the
display continues to be refreshed without CPU intervention.

Figure 4.32 shows a set of instructions and mnemonics for a simple random-scan DPU.
The processor has X and Y registers and an instruction counter . The instructions are
defined for a 16-bit word length. The RIA (relative/absolute) modifier on the LD
instructions indicates whether the foUowing coordinate is to be treated as an 11 -bit relative
coordinate or a !O-bit absolute coordinate. In the former case, the II bits are added to
either the X or the Y register; in the latter, the I 0 bits replace the register contents. (Eleven
bits are needed for relative moves for a 2' s-complement representation of values in the range
-1024 to + 1023.)

The same Rl A interpretation is used for the JUMP instruction, except the instruction
counter is modified, thereby effecting a change in the flow of control. The SM, SP, and SL
instructions afford compact representation of contour lines, scatter plots, and the like.

0208

186 Graphics Hardware

Mnemonic Meaning

LO {XN} (RIA} M Load & move

LO {XN} (R/A} P Load & point

LD {XIY} (RIA) L Load & line

LD {XIY} {RIA) Load

SM Short move

SP Short point

SL Short line

CHAR Characters

JUMP {R/A) U Jump

Key to notation

XN: 0 ~Load X, 1 ~Load Y

Instruction format

1
15
1 I I I I I I I I I I I I I I o I

I 0 0 0 /(~xorYorAXortJ.Y ---j
I 0 0 1 /(~xorYorAXortJ.Y ---j
I 0 1 0 /(~xorYorAXortJ.Y -.j
I 0 1 1 /(~xorYorAXortJ.Y ---j
11 0 0 - I AX !J.Y I
11 0 1 -1 AX !J.Y I
11 1 0 - I AX flY I

1 1

1 1 1

etc.
to terminate code

Char 1

Char 3

1 i{ L I --------­

Absolute or relative address

RiA: 0 ~ 11 bits of AX or !J.Y, 1 ~ 10 bits of X or Y
{}:Choose one of, for use In mnemonic code
L: Frame lock bit, 1 ~ delay jump until next clock tick
1: Interrupt bit. 1 ~ Interrupt CPU

Fig. 4 .32 Instruction set for the random-scan display system.

Figure 4.33 is a simple DPU program, written in assembler style, that uses many of
these instructions. Notice how the square and diamond are drawn: The first move
instruction is absolute, but the rest are relative, so as to facilitate dragging the objects
around the screen. If relative instructions were not used, then dragging would require
modifying the coordinates of all the instructions used to display the object. The final
instruction jumps back to the start of the DPU program. Because the frame Lock bit is set,
as indicated by the L modifier, execution of the jump is delayed until the next tick of a
30-Hz clock in order to allow the DPU to refresh at 30 Hz but to prevent more frequent
refreshing of small programs, which could bum the phosphor.

Notice that, with this instruction set, only one load command (mnemonic LD) is
needed to draw or move either horizontally or vertically, because the other coordinate is
held constant; oblique movements , however, require two load commands. The two loads
can be in either x-then-y or y-then-x order, with the second of the two always specifying a

0209

4.5 Random-scan Display ProcesSOI' 187

SOU ARE: LDXA 100 Get ready lor square
LOY AM 100 Move to (100. 100)
LDXRL 800 Line to (900. 1 00)
LDYRL 700 Line to (900, 800)
LDXRL - 800 Line to (1 00. 800)
LDYRL - 700 Line to (1 00, 1 00), the starting point

POINT: LDXA 300 lor square
LDYAP 450 Point at (300, 450)

DIAMOND: LDXA 100
L.DYAM 450 Move to (100, 450)
LOXR 400
LDYRL - 350 LJne to (500, 1 00)
LOXR 400
LDYRL 350 Line to (900, 450)
LOYR 350
LOXRL - 400 Line to (500. 800)
LDXR - 400
LOYRL -350 Line to (1 00, 450), the stanlng point

TEXT: LOXA 200 lor diamond
LOY AM 900 Move to (200, 900) lor text
CHAR 'DEMONSTRATION I' 1 is termonate oode
JUMPRL SOUARE Regenerate pocture. lrame lock

Fig. 4 .33 Program for the random-scan display processor.

tn<m, dmw-point, or draw-line operation. For the character command (mnemonic CHAR),
a character string follows , ended by a nondisplayable termination code.

There are two main differences between these DPU instructions and the instruction set
for a general-purpose computer. With the exception of the JUMP command, all the
instructions here are rather special-purpose. A register can be lo:lded and added to, but the
result cannot be stored; the register controls only the position of the CRT beam. The second
difference, again excluding JUMP, is that all data are immediate; that is, they are part of the
instruction. LDXA IOO means " load the data value 100 into the X register," not "load the
contents of address 100 into the X register," as i.n a computer instruction. This restriction is
remOVIld in some of the more advanced OPUs described in Chapter 18.

There are only a few differences between the instruction sets for typical random and
raster display processors. The random processor lacks area-filling, bit-manipulation, and
look-up table commands. But because of the instruction counter, the random processor
does have transfer of control commands. Random displays can work lit higher resolutions
than can raster displays and can draw smooth tines lacking the jagged edges found on raster
displays. The fastest random displays can draw about 100,000 short vectors in a refresh
C)l:le, allowing real-time animation of extremely complex shapes.

0210

188 Graphics Hardware

4 .6 INPUT DEVICES FOR OPERATOR INTERACTION

ln this section, we describe the workings of the most common input devices. We present a
brief and high-level discussion of how the types of devices available work. In Chapter 8, we
discuss the advantages and disadvantages of the various devices, and also describe some
more advanced devices.

Our presentation is organized around the concept of logical devices, introduced in
Chapter 2 as part of SRGP and discussed further in Chapters 7 and 8. There are five basic
logical devices: the locator, to indicate a position or orientation; the pick, to select a
displayed entity; the valuator. to input a single real number; the keyboard, to input a
character string; and the choice, to select from a set of possible actions or choices. The
logical-device concept defines equivalence classes of devices on the basis of the type of
information the devices provide to the application program.

4 .6.1 Locator Devices

Tablet. A tablet (or data tablet) is a ftat surface, ranging in size from about 6 by 6 inches
up to 48 by 72 inches or more, which can detect the position of a movable stylus or puck
held in the user's hand. Figure 4.34 shows a small tablet with both a stylus and puck
(hereafter, we generally refer only to a stylus, although the discussion is relevant to either).
Most tablets use an electrical sensing mechanism to determine the position of the stylus. In
one such arrangement. a grid of wires on t- tot-inch centers is embedded in the tablet
surface. Electromagnetic signals generated by electrical pulses applied in sequence to the
wires in the grid induce an electrical signal in a wire coil in the stylus. The strength of the

Fig. 4 .34 A data tablet with both a stylus and a puck. The stylus has a pressure­
sensitive switch in the tip, which closes when the stylus is pressed. The puck has
several pushbuttons for command entry, and a cross-hair cursor for accuracy in
digitizing drawings that are placed on the tablet. (Courtesy of Summagraphics Corpora­
tion.)

0211

4.6 Input Devices for Operator Interaction 189

signal induced by each pulse is used to determine the position of the stylus. The signal
strength is also used to determine roughly how far the stylus or cursor is from the tablet
("far," "near," (i.e., within about t inch of the tablet), or ··touching"). When the an­
swer is " near" or "touching," a cursor is usually shown on the display to provide visual
feedback to the user. A signal is sent to the computer when the stylus tip is pressed against
the tablet. or when any button on the puck (pucks have up to 16 buttons) is pre.'>Sed.

The tablet's (x, y) position, button status, and nearness state (if the nearness state is
"far," then no (x, y) position is available) is normally obtained 30 to 60 times per second.
Some tablets can generate an interrupt when any of the following events occur:

•

•

•

•

•

r units of time have passed (thus, the tablet serves as a clock to trigger the updating of
the cursor position).

The puck or stylus has moved more than some distance d. This distance-interval
sampling is useful in digitizing drawings in order to avoid record ing an excessive
number of points.

The nearness state has changed (some tablets do not report a change from " near" to
''far").

The tip switch or a puck button has been pressed or released. It is important to have
available both buuon-down and bullon-up events from the tablet and other such
devices. For instance, a button-down event might cause a displayed object to start
growing larger, and the button-up event then might stop the size change.

The cursor enters a specified rectangular area of the tablet surface .

Relevant parameters of tablets and other locator devices are their resolution (number of
distinguishable points per inch), linearity, repeatability, and size or range. These
parameters are particularly crucial for digitizing maps and drawings; they are of less
concern when the device is used only to position a screen cursor. because the user has the
feedback of the screen cursor position to guide his hand movements, and because the
resolution of a typical display is much less than that of even inexpensive tablets.

Other tablet technologies use sound (sonic) coupling and resistive coupling. The sonic
tablet uses sound waves to couple the stylus to microphones positioned on the periphery of
the digitizing area. Sound bursts are created by an electrical spark at the tip of the stylus.
The delay between when the spark occurs and when its sound arrives at each microphone is
proport.ional to the distance from the stylus to each microphone (see Fig. 4.35). The sonic
tablet is advantageous for digitizing drawings bound in thick books. where a normal tablet
stylus does not get close enough to the tablet to record an accurate position. Also, it does
not require a dedicated working area, as the other tablets do. Sonic coupling is also usefu l
in 30 positioning devices, as discussed in Chapter 8.

One type of resistive rabler uses a banery-powered stylus that emits high-frequency
radio signals. The tablet, which is just a piece of glass, is coated with a thin layer of
conducting material in which an electrical potential is induced by the radio signals. The
strength of the signals at the edges of the tablet is inversely proportional to the distance to
the stylus and can thus be used to calculate the stylus position. Another simi lar tablet uses a
resistive polymer mesh stretched across the faceplate of a CRT [SUNF86]. The stylus

0212

190 Graphics Hardware

Microphone

Fig. 4 .35 A 20 sound tablet. Sound waves emitted from the stylus are received by the
two microphones at the rear of the tablet.

applies an electrical potential to the mesh, and the stylus's position is determined from the
voltage drop across the mesh.

Most tablet styluses have to be connected to the tablet controller by a wire. The stylus
of the resistive tablet can be banery-powered, as shown in Fig. 4.36. Such a stylus is
attractive because there is no cord to get in the way. On the other hand, walking away with it
in your pocket is easy to do!

Several types of tabler~ are transparent, and thus can be back-lit for digitizing X-ray
films and photographic negatives , and can also be mounted directly over a CRT. The
resistive tablet is especi;,aly well suited for this, as it can be curved to the shape of the CRT.

Fig. 4 .36 The Penmouse tablet with its cordless three-button, battery-powered stylus
and puck. (Courtesy of Kurta Corporation.)

0213

4.6 Input Devices for Operator Interaction 191

Mouse. A mouse is a small hand-held device whose relative motion across a surface can
be measured. Mice differ in the number of buttons and in bow relative motion is detected.
Other important differences between various types of mice are discussed in Section 8.1. 7.
The motion of the roller in the base of a mechanical mouse is converted to digital values that
are used to determine the direction and magnitude of movement. The optical mouse is used
on a special pad having a grid of alternating light and dark lines. A light-emitting diode
(LED) on the bottom of the mouse directs a beam of light down onto the pad, from which it
is reftected and sensed by detectors on the bottom of the mouse. As the mouse is moved,
the reflected light beam is broken each time a dark line is crossed. The number of pulses so
generated, which is equal to the number of lines crossed, are used to report mouse
movements to the computer.

Because mice are relative devices. they can be picked up, moved, and then put down
again without any change in reponed position. (A series of such movements is often called
"stroking" the mouse.) The relative nature of the mouse means that the computer must
maintain a "current mouse position," which is incremented or decremented by mouse
movements.

Trackball. The trackball, one of which is shown in Fig. 4.37, is often described as an
upside-down mechanical mouse. The motion of the trackball , which rotates freely within its
housing, is sensed by potentiometers or shaft encoders. The user typically rotates the
trackball by drawing the palm of her hand across the baJI. Various switches are usually
mounted within finger reach of the trackball itself and are used in ways analogous to the use
of mouse and tablet-puck buttons.

Joystick. The joystick (Fig. 4.38) can be moved left or right, forward or backward; again,
potentiometers sense the movements. Springs are often used to return the joystick to its
home center position. Some joysticks, including the one pictured, have a third degree of
freedom: the stick can be twisted clockwise and counterclockwise. The isometric joystick,

Fig. 4 .37 Trackball with several nearby switches. (Courtesy of Measurement Sys­
tems, Inc.)

0214

192 Graphics Hardware

Fig. 4.38 A joystick with a third degree of freedom. The joystick can be twisted
clockwise and counterclockwise. (Courtesy of Measurement Systems, Inc.)

shown in Fig. 4.39, is rigid: strain gauges on the shaft measure slight deflections caused by
force applied to the shaft.

It is difficult to use a joystick to control the absolute position of a screen cursor directly,
because n slight movement of the (usually) short shaft is amplified five or ten times in the
movement of the cursor. This makes the screen cursor's movements quite jerky and does
not allow quick and accurate fine pos.itioning. Thus, the joystick is often used to control the
velocity of the cursor movement rather than the absolute cursor pos.ition. This means that
the current position of the screen cursor is changed at rates determined by the joystick.

The joyswitch, a variant of the joystick, is found in some home and arcade computer
games. The slick can be moved in any of eight directions: up, down, left, right, and the four

Fig. 4 .39 An isometric joystick. (Courtesy of Measurement Systems, Inc.)

0215

4.6 Input Devices for Operator Interaction 193

diagonal directions. Small switches sense in wbich of tile eight directions the stick is being
pushed.

Touch panel. Mice, trackballs , and joysticks all take up "M>rk-surface area. The touch
panel allows the user to point at the screen directly with a finger to move tile cursor around
on the screen. Several different technologies are used for touch panels. Low-resolution
panels (from 10 to 50 resolvable positions in each direction) use a series of infrared LEOs
and light sensors (photodiodes or phototransistors) to form a grid of invisible light beams
over tile display area. Touching the screen breaks one or I'M> vertical and horizontal I ight
beams, thereby indicating tile finger's position. fft"M> parallel beams are broken, the finger
is presumed to be centered between them; if one is broken, tile finger is presumed to be on
the beam.

A capacitively coupled touch panel can provide about I 00 resolvable positions in each
direction. When tile user touches tile conductively coated glass panel , electronic circuits
detect the touch position from the impedance change across the conductive coating
[INTE85].

One high-resolution panel (about 500 resolvable positions in each clirection) uses
sonar-style ranging. Bursts of high-frequency sound waves traveling alternately horizontally
and vertically are introduced at the edge of a glass plate. The touch of a finger on tbe glass
causes part of tile wave to be reflected back. to its source. The distance to tile finger can be
calculated from the interval between emission of the wave burst and its arrival ba.ck at the
source. Another high-resolution panel uses t"M> slightly separated layers of transparent
material , one coated with a thin layer of conducting material and the other with resistive
material. Fingertip pressure forces the layers to touch, and the voltage drop across tile
resistive substrate is measured and is used to ca.lculate the coordinates of the touched
position. Low-resolution variations of this method use bars of conducting material or thin
wires embedded in the transparent material. Touch-panel technologies have been used to
make small positioning pads for keyboards.

The most significant touch-panel parameters are resolution, the amount of pressure
required for activation (not an issue for the light-beam panel), and transparency (again, not
an issue for the light-beam panel). An important issue witll some of tile technologies is
parallax: If the panel istinch away from the display, then users touch the position on the
panel that is aligned witlltheir eyes and the desired point on the display, not at the position
on the panel directly perpendicular to the desired point on the display.

Users are accustomed to some type of tactile feedback, but touch panels of cou.rse offer
none. It is thus especially important that otller forms of immediate feedback be provided,
such as an audible tone or highlighting of the designated target or position.

Light pen. Light pens were developed early in the history of interactive computer
graphics. The pen is misnamed; it detects light pulses, rather than emitting light as its name
implies. The event caused when the light pen sees a light pulse on a raster display can be
used to save the video controller's X andY registers and interrupt the computer. By reacling
the saved values, tile graphics package can determine the coordinates of tile pixel seen by
the light pen. The light pen cannot report the coorclinates of a point tllat is completely black,
so special techniques are needed to use the I ight pen to indicate an arbitrary position: one is
to display , for a single frame time, a dark blue field in place of the regular image.

The light pen, when used witll a vector display , acts as a pick rather than a positioning

0216

194 Graphics Hardware

device. When the light pen senses light , the DPU is stopped and the CPU is interrupted.
The CPU then reads the DPU's instruction address register, the contents of which can be
used to determine which output primitive was being drawn when the inte.rrupt occurred. As
with the raster display, a special technique, called light-pen tracking, is needed to indicate
positions within a single vector with the light pen [FOLE82].

The light pen is an aging technology with limited use. Unless properly adjusted, light
pens sometimes detect false targets, such as fluorescent lights or other nearby graphics
primitives (e.g., adjacent characters), and fail to detect intended targets. When used over
several hours, a light pen can be tiring for inexperienced users, because it must be picked
up, pointed, and set down for each use.

4.6.2 Keyboard Devices

The alphanumeric keyboard is the prototypical text input device. Several different
technologies are used to detect a key depression, including mechanical contact closure,
change in capacitance, and magnetic coupling. The important fun.ctional characteristic of a
keyboard device is that it creates a code (ASCll, EBCDIC. etc.) uniquely corresponding to
a pressed key. It is sometimes desirable to allow chording (pressing several keys at once) on
an alphanumeric keyboard, to give experienced users rapid access to many different
commands . This is in general not possible with the standard coded keyboard, which returns
an ASCD code per keystroke and returns nothing if two keys are pressed simultaneously
(unless the additional keys were shift, control , or other special keys). In contrast, an
unencoded keyboard returns the identity of all keys that are pressed simultaneously, thereby
allowing chording.

4.6.3 Valuator Devices

Most valuator devices that provide scalar values are based on potentiometers, like the
volume and tone contrOls of a stereo set. Valuators are usually rotary potentiometers (dials),
typically mounted in a group of eight or ten , as in Fig. 4 .40. Simple rotary potentiometers

·--·~

Fig. 4 .40 A bank of eight rotary potentiometers. The readouts on the light-emitting
diodes (LED) above each dial can be used to label each dial. or to give the current
setting. (Courtesy of Evans and Sutherland Computer Corporation.)

0217

4.7 Image Scanners 195

Fig. 4.41 Function keys with light-emitting diode (LED) labels, integrated with a
keyboard unit. (Counesy of Evans and Sutherland Computer Corporation.)

can be rotated through about 3300; this may not be enough to provide both adequate range
and resolution. Continuous-turn potentiometers can be rotated freely in either direction,
and hence are unbounded in range. Linear potentiometers, which arc of necessity bounded
devices, are used infrequently in graphics systems.

4.6.4 Choice Devices

FUnction keys arc the most common choice device. They are sometimes built as a separate
unit , but more often are integrated with a keyboard. Other choice devices are the b11110ns

found on many tablet pucks and on the mouse. Choice devices are generally used to enter
commands or menu options a graphics program. Dedicated-purpose systems can use
function keys with permanent key-cap labels. So that labels can be changeable or "soft,"
function keys can include a small LCD or LED display next to each butt.on or in the key caps
themselves, as shown in Fig. 4.41 . Yet another alternative is to place buttons on the bezel of
the display, so that button labels can be shown on the display itself, right next to the physical
button.

4. 7 IMAGE SCANNERS

Although data tabletS can be used to digitize existing line drawings manually , this is a slow
and tedious process, unsuitable for more than a few simple drawings-and it does not ~
at all for half-tone images. Image scanners provide an efficient solution. A television
camera used in conjunction with a digital frame grabber is an inexpensive wo~y to obtain
moderate-resolution (1000 by 1000, with multiple intensity levels) raster images of
black-and-white or color photographs. Slow-scan charge-coupled-device (CCD) television
cameras can create a 2000 by 2000 image in about 30 seconds. An even lower-cost
approach uses a scan head, consisting of a grid of light-sensing cell , mounted on the print
head of a printer, it scans images at a resolution of about 80 unitS per inch. These
rc.wlutions are not acceptable for high-quality publication ~rk, however. ln such cases, a
photo scanner is used. The photograph is mounted on a rotating drum. A finely collimated
light beam is directed at the photo, and the amount of Light reflected is measured by a
photocell. For a negative, transmitted light is measured by a photocell inside the drum.

0218

196 Graphics Hardware

Reflected
light

Laser
beam

Deflection
system

Ught dell CIOi

Fig. 4 .4 2 A photo scanner. The light source is deflected along the drum axis, and the
amount of reflected light is measured.

which is transparent. As the drum rotates. the light source slowly moves from one end to the
other. thus doing a raster scan of the entire photograph (Fig. 4.42). For colored
photographs, multiple passes are made. using filters in front of the photocell to separate out
various colors. The highest-resolution scanners use laser light sources. and have resolutions
greater then 2000 units per inch.

Another class of scanner uses a long thin strip of CCDs, called a CCD array. A drawing
is digitized by passing it under the ceo an'ay, incrementing the drawing's movement by
whatever resolution is required . Thus , a single pass, taking I or 2 minutes, is sufficient to
digitize a large drawing. Resolution of the CCO array is 200 to I 000 units per inch, which is
less than that of the photo scanner. Such a scanner is shown in Fig. 4 .43.

Line drawings can easily be scanned using any of the approaches we have described.
The difficult part is distilling some meaning from the collection of pixels that results.
V1"ctorizi11g is the process of extracting lines, characters. and other geometric primitives

Fig. 4 .43 A liquid-crystal display (LCD) scanner. The lens and linear LCD array in the
scanning head (top) move left to right to scan a photo or object . (Photographs provided
by Truvel Corporation.)

0219

Exercises 197

from a raster image. This task requires appropriate algorithms, not scanning hardware. and
is essentially an image-processing problem involving several steps. First , thresholding and
edge enhancement are used to clean up the raster image--to eliminate smudges and smears
and to fill in gaps. Feature-extraction algorithms are then used to combine adjacent "on ..
pillCls into geometric primitives such as straight lines. At a second IC\'Cl of complexity,
pallem-recognition algorithms are used to combine the simple primitives into arcs. lcucrs,
symbols, and so on. User interaction may be necessary to resolve ambiguities caused by
breaks in lines, dark smudges, and multiple lines intersecting near one another.

A more difficult problem is organi1.ing a collection of geometric primitives into
meaningful data structures. A disorganized collection of lines is not particularly useful as
input to a CAD or topographic (mapping) application program. The higher-level geometric
constructs represented in the drawings need tO be recognized. Thus, the lines defining the
outline of a county should be organized into a polygon primitive, and the small .. + ..
representing the center of an arc should be grouped with the arc itself. There are partial
solutions to these problems. Commercial systems depend on user intervention when the
going gets tough, although algorithms are improving continually.

EXERCISES

4.1 For an electrostatic plotter with 18-inch-wide paper, a resolution of 200 units to the inch in each
direction, and a paper speed of 3 inches per second. how many bits per second must be: provided to
allow the paper to move at full speed?
4.2 If long-persistence phosphors decrease the fusion frequency. why not use them routinely?

4.3 Write a program to display test patternS on a raster display. Three different pauems should be
provided: (I) horizontal lines I pixel wide, separated by 0, I. 2, or 3 pixels; (2) vertical lines I pixel
wide. separated by 0, I, 2. or 3 pixels; and (3) a grid of 1-pixel dOts on a grid spaced at S-pixel
intervals. Each pauem should be displayable in white. red , green, or blue. as \\ell as alternating color
bars. How does what ~u observe when the patterns are displayed relate to the discussion of raster
resolution?

4.4 Prepare a report on technologies for large-screen displays.
4.5 How long would it take to load a 512 by Sl2 by I bitmap. assuming that the pixels are packed 8
to a byte and that bytes can be t.ransferred and unpacked at the rate of 100.000 bytes per second? How
long would it take to load a 1024 by 1280 by I bitmap?

4.6 Design the logic of a hardware unit to convert from 20 raster addresses to byte plus bit­
within·byte addresses. The inputs to the unit are as follows: (I) (x. y). a raster address: (2) /:me, the
address of the memory byte that has raster address (0. 0) in bit 0; and {3) x.,.. the maximum raster x
address (0 is the minimum). The outputS from the unit are as follows: (l) bytt, the address of the byte
that cont11ins (x, y) in ooe of its bits; and (2) bit. the bit within bytt which contains (x. y). What
simpliflcations are possible if x_ + I is a power of 2?
4. 7 Program a raster copy operation that goes from a bitmap into a virtual-memory area that is
scattered across several pages. The hardware raster copy on ~ur display worlcs only in physical
address space, so you must set up a scatter-write situation. with multiple moves invoked. one for each
logical page contained in the destination.
4.8 Design an efficient instruction-set encoding for the simple raster display instruction set of Section
4.3.2. By "efficient" is meant "minimizing the number of bits used per inSlruCiion ...

0220

198 Graphics Hardware

4.9 Using the instruction set for the simple raster displuy of Section 4.3.2, write program segments
to do the following.
a. Double-buffer a moving object. You need 1101 actually write the code that moves Cllld draws

the object: juSt indicate itS placement in the 0\'Cr.lll code sequence.
b. Draw a pie chan, given os input a list of data values. Use different colors for each slice of the

pie, choosing colors you believe will look good together.
c. Animate the left·to-right movement of circles arranged in a hori~ontal row. Each circle is five

unitS in radius and the circles are placed on IS-unit centers. Usc the animation technique
discussed in Section 4.4 . 1. At each step in the animation, ~ fourth circle should be
visible.

d. Write n program that uses RasterOp to drag a 2S by 2S icon around on the screen, using an
offscreen area of the bitmap to store both the icon and the pan of the bitmap currently
obscured by the icon.

4.10 In a raster scan of n lines with m pixels per line displayed at r cycles per second, there is a
certain amount of time during whicb no image is being traced: the horizontal reu1ICC time '•·
which occurs once per scan line. and the venical retrooe time 1,. which occurs once per f1'11J'ne.
a. Derive equations for the percentage of time that no image is being traced, remembering that

different equations are needed for the interlaced and noninterlaced cases, because the two
fields per frame of an interlaced scan each require a venical retrace time.

b. Evaluate the equation for the following v-dlues. taken from [WHIT84l:

Visible area Refresh rate, Venical retrace Horirontal retrace
eixcls X lines Hz Interlace time, microseconds time. microseconds

640 X 485 30 yes 1271 II
1280 X 1024 30 yes 1250 7
640 X 4&5 60 no 1250 7

1280 X 1024 60 no 600 4

c. What is the meaning of the percentages you have calculated?
4. 11 Develop a design strategy for a video controller that can display a 960 by x image on a 480 by
x/2 display. where x is the horizontal resolution. (This is the type of device needed to drive a video
reconler from a high-resolution display system.)

4.12 A raster display has 4 bits per pixel Cllld a look-up table with 12 bits per entry (4 bits each for
red, green, and blue). Think of the four planes of the pixmap as being panitioned to hold two images:
image I in the two high-order planes, image 0 in the two low-order planes. The color assignmentS for
each of the 2-bit pixel values in each image are 00 = red. OJ = green. 10 • blue, and II • white.

a. Show how to load the look-up table so that just image I is displayed.
b. Show how to load the look-up table so that just image 0 is displa)oed.

Note that these are the look-up tabl~ needed for the two phases of double--buffering, as discussed in
Section 4.4. 1.

4.13 Given a 16-cntry by 12-bit-per-entry look-up table with two 2-bit images, show how it should
be loaded 10 produce the lap-dissolve given by the expression iftlllgel • 1 + iftlllge0 • (I - 1) for values
of 1 • 0.0, 0.25, and 0.5. The look-up table color assignmentS are the same as in Exercise 4. 12. (See
Chapter 17.)

4.14 In Section 4.4. 1. two animation methods are discussed. What are the advantages and
diSlldvantages of each?

0221

Exercises 199

4.15 Redesign the simple DPU insUUC1ion set or Fig. 4.32 for a 16-bit word , assuming that all
opcodes are equal in length.
4.16 Consider means for picking (as with a light pen) a line on a raster display when all that can be
detected is a single pixel.

0222

Plata I. 1 Radiation therapy
planntng simulatiOn. Volume
rendenng ia used to d1splay the
interaction of radiat10n beams
end a child's head. (Image by
R. Drebin, Silicon Graphics.
Copyright C 1988 Pixer
CT scans provided by
F ZoMeveld, NV Philips.)

Plata 1.2 Local map automaucally generated by the IGO hypermedia system, showing the
currently visited node in the center, possible source nodes In the left column and possible des·
unation nodes in the right column (Counesy of S. Feiner, S Nagy, and A. van Dam. Brown
University Computer Graphics Group.)

Plea•• toueh the page or chapter that you would like to •••

0223

Plate 1.3 One stage 1n the process of smoothly turnmg a sphere
Inside out. The sphere is sliced to show interior structure.
(Copynght C 1989 John Hughes, Brown UniverSity
ComputerGrephocsGroup.)

Plete 1.4 Animated sequences of stereographic projections of the sphere and hypersphere as
they are rotated in 3· and 4-space, respectively. For funher information, see (KOCA871. (Image
by D. Laidlaw and H. Kocak .l

0224

Plete 1.8 A video game in
which the player must pack 30
shapes together in a small
space. The deep perspect•ve
and w~reframe drawing of the
p1oce aid •n th•s task. !Courtesy
of Larry Lea, California
Dreams.)

Plete 1.5 Ia) The cockpit of an FS
flight s•muletor; the pilot's v1ew IS
projected onto a dome surround·
ing the cockpit lbl The vi ow from
the cockpit of a flight s1mulator.
The f1ghter jet1S modeled
geometncally, whereas the terra•n
is photo· textured (Counesy of
R Economy, General Electric
Company.)

0225

Plete 1. 7 Hllrd DriVrn' arcade video game (Counesy of Atari Games Corporation, copyright
C 1988Atari Games Corporation.)

Plete 1.8 Home tmprovcment destgn center from lnnovis. ICounesy of lnnov•s Interactive
Technolog•es, Tacoma, WA.I

0226

Plate 1.9 ·outc:h lntenor;
after Vermeer. by
J Wallace. M. Cohen. and
0 Greenberg. Cornell Un1·
vera1ty . ICopynghtC 1987
Cornell Umversrty. Program
of Compumr GraphiCS.)

Plate I . 10 Severe tomadiC
storm, by R. Wilhelmson,
L. W1c:ker. and C. Shaw,
NCSA. Univers1ty of lllinot&
(Apphcauon Visuah7auon
System by Stardent Com·
putor.)

...

0227

Plate 1. 12 The Abyss-Pseudopod sequence. !Copyright C 1989
Twentieth Century Fox. All nghts reserved. Courtesy of
lndu5tnall•ght & Mag•c, Computer GraphiCS 01vlaion.)

Plate 1. 11 !al Chevrolet
Astro Van, product launch
matenal. !Copyright 0 1985
D1Q1tal Productions. I
lbl Castle interior !Copy
right 0 1985 Dig1tal
Product•one. Both •mages
courtesy of G. Demos.)

0228

Plate 1.13 Command ship from
The Last Stsrf/ghter. The texture­
mapped ship has 450.000
polygons. (Copynght C 1984
D1gital Productions. Courtesy of
G.Demos.)

Plate 1.14 A spacoball six-degree
of freedom positioning device.
(Courtesy of Spatial Systems, Inc.)

0229

Pl•t• 1.16 A OateGiove (right) end computer image of the glove. The DataGiove measures
finger movements and hand orientation and posotoon, The computer image of the hand traclcs
the changes. (Courtesy of Jaron Lanier, VPLI

Plete 1.1 e A user wearing a head-mounted stereo dosptav. DataGioves, and microphone lor
issuing commands. These devices are used to create a virtual realitV for the user, bv changing
the stereo dosplav presentation as the head is moved, wtth the DataGiovas used to manipulate
computer-generated objects. ICourtesv or Michael McGreevv and Scott Fisher, NASA Ames
Research Center, Moffett Field. CA. I

0230

•
Plata I. 17 Krueger's
Videotouch system, in
which a user's hand
movements are used to
manipulate an object.
The hands' outlines are
displayed along with the
objects to provide natural
feedback. (Courtesy of
Myron Krueger,Artificial
Reality Corp.)

Plate 1.18 Tablot·based
menus. Color Is used to
group related menu items.
(Counesy of Kurta Corpora­
tion l

0231

Plate 1.20 A menu of
operations on tellt. From left
to right, top to bon om, tho
m"anings are: select font. aet
height. set wodth (ustng before
11nd after representation), slant
(using before and a her repre­
sentauonl. setlener spacing.
set line spacing. !Courtesy
of Peter Tierney, C 1988
Cybermauon.lnc.)

Plate 1.19 A menu usmg a
hand to show operatoons
Tho second and third rows use
before and after represents
tions of the obtect operated
upon to ondooate the meanong.
From left to right. top to
bon om, the commands are·
Ftle, Delete, Shear, Rotete,
Move, and Copy. !Courtesy
of Peter Tierney, C 1988
Cybermatlon,lnc.)

Plate 1.21 A menu of
operations on geometric
ObJeCts, all showing before and
after representatJons From left
to right. top to bonom, the
meanings are move point,
change radtus of an arc (or
change a line to an arc), add
vertex (one segment becomes
two), remove vertex (two line
segments become one), frllet
corner, and chamfer corner.
!Courtesy of Peter Tierney,
0 1988 Cybermation. lnc.l

0232

moJ·t· cule- \~mat 1 .ky\.i(3)1\"

IF mclkuk h !Ill mt>laultt. d1m of L
m<>los ma«J
678)

1: 111< •m•l"'-t parude of a oub,.unc< that
rtiJilu oil the p<op<:rt~<:• olllk .. ~
and~ comp&.t~ed crone or mon: I lOin$

1: • hny bll: MRnctr

Plate 1.22 The NeXT user interface. (Counesy of NeXT, Inc C 1989 NeXT, Inc.)

Plate 1.23 Edneble
graphical history'"
Chtmera. (a) Edttor wondow
shows picture created by
Chimera's user (b) Htstory
wmdow shows sequence of
before-after panel patrs
created byChtmera
(Courtesy of David Kurlander
and Steven Feoner,
Columbta Universtty.)

Ia}

tb}

~fltf' .. CM:w 0 I Coo; • --. • .
i A •

" _,

"

• i ' ~

~··~ 3 1 < • a ' I K I I>_"'!_

; ~ •

-

... . ; ; ·

ll~ ~

'

,
J.

-

._,

0233

~

-~-F .. • • •
Plate 1.24 A atacked bar chart cre11ted automaucolly by A Presontsllon
TooiiAPTI on response to a request to plot the number of graduatong
students pur quarter from 1972 to 1985 APT gonerotod this presentation as
berng more erfectrve than many others n considered (Courtesy of Jock
Moc:krnlay.)

P .. te 1.25 Prcture of a radio generated by IBIS to satisfy Input communicative goals to show
locatron of funcuon drat and rts change of state IBIS determonet the ObJects to rnclude,
renderrng style, vrewrng and lightrng ~s. and prcture composuron !Courtesy of Ooree
Qyncan Sehgmann and Steven Ferner, Columbia Unrverahy I

0234

Pfete 1.20 The OSF1M011f user lnterfiiCe. In thos omega, dofferenl shed• of blue ere uNd to
do$tmgu• vo uaf efement5. tCounesy of Open Software Foundeuon.l

Pleu 1.27 The OSF/Mouf user onterface. The color slider bars ere used to define colors for
use In windows Notice the use of shading on the edges of bunons, menus, and 10 fonh, to
creato a 30 off eat. lCounesy of Open Software Foundatoon.l

0235

• •
• •
• • • ••;~ • ~ • ot •

til •u•a.:t.r
U:u lt to tbt

·~·'l ttwa
, ... n. t..h• con•

• lct~t

• • uau • tlt
l.f'·-Nrd' "\ur cr a aMt l

• • __/__
L£0NARDO

DA VH..:C:I
AAin--ir

Pl.,• 1.2.8 The OPEN LOOK user tnrerface. Yellow 11 und to highlight selected text. Subdued
shades are u~ed lor the bac1<ground and W1ndow bordors. (Courtesy of Sun Microsvstoms.l

....
Mn . , ...

hd c.

c ••• 19

... ' (Nl

I 0 I! .. •a u ...
m -
..,. I,..

,. ..

...

...-••••taU.,. fee •"•••i ••••t•
You, .,.

0236

Plete 1.30 The Application Visuahzatoon System IAVS! ontorfaco The data flow diagram
(moddle center) Is constructed intorllctively by the user from the menu or processong elements
(top center I In thos example, inputs from the the control doals (to the right) control the dosplay
of XVZ. !Courtesy or Sterdent. Inc.)

Plete 1.31 ObJects modeled woth
NURBS, utong the Alpha 1 mode long
system, (Courteay of Universoty of Utah.)

0237

PAIITONE
...- »c

Plata 1.32 Three vtews of a
30nonmanofold represent•·
toon woth blue faus, yellow
edges. and whote verttces In
model shown, two sohd
cubea share a common face.
roghtmost cube has two
dang long faces connected tot
cubic wireframe, and left moat
cube has interior snd exteroor
fonne-olement·method mesh
worefremes. (Courtesy of
1<. Wttler, 0 Mclachlan,
H. Thorvaldsd6n~t; creatod
uaing COre. C 1989 Ardent
ComputerCorporatoon.l

Plata 1.33 A portion of a PANTONE' Color Specofier 747X~ page. Color names (obscured on
thia reproduclion) are shown along woth the color samples. The color names are keyed to
miXtures ofatandard onks that woll reproduce the color. ICounesy of Pantone,lnc. PANTONE•
Ia Pantone, lnc.'a check-standard trademark for color reproduction end color reproductoon
materoels. Process color reproduchon may not match PANTONE• odenhfied sohd color
"andards ~cler to current PANTONE• Color Publocattons for the accurate color.)

Plata 1.34 The colors of the
spectrum, from voolet on the
left to red on the right. The
heoght of the curve osthe
spectral power dostnbutoon
of illuminant C. (Courtesy
of Barbart Meoer, Brown
Untvertlty.)

0238

5
Geometrical

Transformations

This chapter introduces the basic 20 and 30 geometrical transformations used in computer
gr•phics. The translation, scaling, and rotation transformations discussed here are essential
to many graphics applications and will be referred to extensively in succeeding chapters.

The transformations are used directly by application programs and within many
graphics subroutine packages. A city-planning application program would use translation ro
place symbols for buildings and trees at appropriate positions, rotation to orient the
~')'mbols, and scaling to size the symbols. In general, many applications use the geometric
transformations ro change the position, orientation, and size of objects (also called symbols
or t~mplates) in a drawing. In Chapter 6, 30 rotation, translation, and scaling will be used
as part of the process of creating 20 renditions of 30 objects. In Chapter 7, we see how a
contemporary graphics package uses transformations as part of irs implementation and also
makes them available ro application programs.

5.1 20 TRANSFORMATIONS

We can translate points in the (x, y) plane 10 new positions by adding translation amounts to
the coordinates of the points. For each point P(x, y) to be mo...OO by d. units parallel to thex
axis and by d

1
units parallel to they axis to the new point P'(x'. y'). we can write

x' = x + d,, y' = y + d, . (5. 1)

If we define the column vectors

P = [~] , P' = [;] , T = [~:] , (5.2)

201

0239

202 Geometrical Transfonnations

y y

Cl
(4, 5) (7, 5)

Ll..L.J...J..J...L.L..L..L..J...L.J...J..J__. x
Before translation After translation

Fig. 5.1 Translation of a house.

then (5. 1) can be expressed more concisely as

P' = p + T. (5.3)

We co~tld translate an object by applying Eq. (5.1) to every point of the object. Because
each line in an object is made 11p of an infinite number of points, however, this process
~uld take an infinitely long time. Fortunately, we can translate aU the points on a line by
translating only the line's endpoints and by drawing a new line between the translated
endpoints; this is also true of scaling (stretching) and rotation. Figure 5.1 shows the effect
of translating the outline of a house by (3, - 4).

Points can be scaled (stretched) by s. along the x axis and by s, along they axis into new
points by the multiplications

.x! = S• • X, y' = s,. y. (5.4)

In matrix form, this is

(5.5)

where S is the matrix in Eq. (5.5).
In Fig. 5.2, the house is scaled by tin x and t in y. Notice that the scal ing is aboutthe

origin: The house is smaller and is closer to the origin. If the scale factors were greater than
I . ihe house ~uld be both larger and further from the origin. Techniques for scaling about
some point other than the origin are discussed in Section 5.2. The proportions of the house
have also changed: a differential scaling, in which s. 'I sw, has been used. With a uniform
scaling , in which s, = s, , the proportions are unaffected.

y y

Cl
(4, 5) (7, 5)

(2, :)

/ . (.!., .!.)
~ 2.

Before scaling After scaling

Fig. 5.2 Scaling of a house. The scaling is nonuniform, and the house changes
position.

0240

5.1 20 Transformations 203

y y

(4.9, 7.8)

(2.1, 4 .9)

LL.L...L.J..J...J..J..J..LL.I.-• x LL.L...L.J..J...J..J..J..LL.I.-• JC
Before rotation After rotation

Fig. 5.3 Rotation of a house. The house also changes position.

Points can be rotated through an angle e about the origin. A rotation is defined
mathematically by

x' = x · cose - y · sine, y' = x · sine + y · cose.

In matrix form , we have

[x'] [cose -sine] . [x] or P' = R . P
y' = sin8 cos8 y '

(5.6)

(5.7)

where R is the rotation matrix in Eq. (5. 7). Figure 5.3 shows the rotation of the house by
45°. As with scaling, rotation is about the origin; rotation about an arbitrary point is
discussed in Section 5.2.

Positive angles are measured counterclockwise from x toward y. For negative (clock­
wise) angles , the identities cos(-8) = cos8and sin(-8) =-sine can be used to mod.ify
Eqs . (5.6) and (5.7).

Equation (5.6) is easily derived from Fig. 5.4, in which a rotation by etransforms P(x,
y) into P'(x', y'). Because the rotation is about the origin, lhe distances from'the origin to P
and to P', labeled r in the figure, are equal. By simple trigonometry, we find that

and

x = r · cos4>, y = r · sin4>

x' = r · cos(e + 4>) = r · cos4> · cos8 - r · sin4> · sin8,
y' = r · sin(8 + 4>) = r · cos4> · sin8 + r · sin4> · cose.

Substituting Eq. (5.8) into Eq. (5.9) yields Eq. (5.6).

y

P(x, y)

rcos (9 + 9) rcos 9
Fig. 5 .4 Derivation of the rotation equation.

(5.8)

(5.9)

0241

204 Geometrical Transformations

5.2 HOMOGENEOUS COORDINATES AND MATRIX
REPRESENTATION OF 2D TRANSFORMATIONS

The matrix representations for translation, scaling, and rotation are, respectively,

P' = T + P,
P' = S · P,
P' = R· P.

(5.3)
(5.5)
(5.7)

Unfortunately, translation is treated differently (as an addition) from scaling and rotation
(as multiplications). We would llke to be able to treat all three transformations in a
consistent way, so that they can be combined easily.

lf points are expressed in homogeneous coordinates, all three transformations can be
treated as multiplications. Homogeneous coordi.nates were first developed in geometry
[MAXW46; MAXWSI] and have been applied subsequently in graphics [ROBE65;
BLIN77b; BUN78a]. Numerous graphics subroutine packages and display processors work
with homogeneous coordinates and transformations.

In homogeneous coordinates, we add a third coordinate to a point. Instead of being
represented by a pair of numbers (x, y), each point is represented by a triple (x, y, W). At the
same time, we say that two sets of homogeneous coordinates (x, y, W) and (x', y', W')
represent the same point if and only if one is a multiple of the other. Thus, (2, 3 , 6) and (4 ,
6, 12) are the same points represented by different coordinate triples. That is, each point has
many different homogeneous coordinate representations. Also, at least one of the
homogeneous coordinates must be nonzero: (0, 0, 0) is not allowed. lf theW coordinate is
nonzero, we can divide through by it: (x, y, W) represents the same point as (x/W, y/W, 1).
When W is nonzero, we normally do this division, and the numbers x/W andy/ Ware ca.lled
the Cartesian coordinates of the homogeneous point. The points with W = 0 are called
points at infinity, and will not appear very often in our discussions .

Triples of coordinates typically represent points in 3-space, but here we are using them
to represent points in 2-space. The connection is this: If we take all the triples representing
the same point-that is, all triples of the form (rx, ry, rW) , with r cl O-we get a line in
3-space. Thus, each homogeneous poim represents a line in 3-space. If we homogenize the
point (divide by W), we get a point of the form (x, y, 1). Thus, the homogenized points
form the plane defined by the equation W = I in (x, y, W)-space. Figure 5.5 shows this

w p

W ; 1 plane
y

Fig. 5.5 The XYW homogeneous coordinate space, with the W = 1 plane and point
P(X, Y, W) projected onto the W = 1 plane.

0242

Coordinates and M atrix Representation of 20 Transformations 205

relationship. Points at infiniry are not represented on this plane.
Because points are now three-element column vectors, transformation matrices, which

multiply a point vector to produce another point vector, must be 3 x 3. In the 3 x 3 matrix
form for homogeneous coordinates, the translation equations Eq. (5.1) are

[~] = [~ ! ~:]· [~] · (5. 10)

We caution the reader that some graphics textbooks, including [FOLE82], use a convention
of premultiplying matrices by row vectors, rather than postmultiplying by column vectors.
Matrices must be transposed to go from one convention to the other, just as the row and
column vectors are transposed:

Equation (5 .10) can be expressed differently as

P' = T(d., d,) · P, (5 . 11)

(5. 12)

What happens if a point P is translated by T(d.,, d,,) toP' and then translated by T(d,,
~) to /"'? The result we expect intuitively is a net translation T(d., + d,, d., + d.,J. To
confirm this intuition, "'oe start with the givens:

P' = T(d.,, d,.) · P,
P" = T (d,.,, d.,J · P'.

Now, substituting Eq. (5.13) into Eq. (5.14), we obtain

(5. 13)
(5.14)

P" = T(d..,, d,) · (T(d,,. d,,) · P) = (T(d.,, d,.) · T(d,,. d.,)) · P. (5. 15)

The matrix product T(d.,, d,.) · T(d.,, d1,) is

[
I 0 d,l [I 0 d,,l [I
Old ·OJA =0 , '"71
001001 0

0 d., + d.,]
I d,.+ dFI.
0 I

(5. 16)

The net translation is indeed T(d., + d.,, d,, + dFI). The matrix product is variously
referred to as the compounding, catenation, concatenation, or composition ofT(d.,. d,,) and
T(d,, d,.). Here, we shall normally use the term composition.

Similarly, the scaling equations Eq. (5.4) are represented in matrix form as

(5.17)

0243

208 Geometrical Transformations

Defining

[
s, 0 0]

S(s., s1) = 0 s, 0 ,
0 0 I

(5. 18)

we have

P' = S(s., s,) • P . (5. 19)

Just as successive translations are additive, we expect that successive scalings should be
multiplicative. Given

P' = S(s,,. s1,) • P,

P" = S(s.,, s,J · P' ,

then, substituting Eq. (5.20) into Eq. (5.21), we get

P" = S(s.,, s,) · (S(sn, s,,) • P) = (S(s..,, s,) · S(s,,. s,,)) · P.

11le matrix product S(s.,, s,J • S(s.,, s,,) is

[
s.., 0 0] [s., 0 0] [s" · s., 0 0]
0 s, 0 . 0 s,, 0 = 0 s,, . s, 0 .
001001 0 0 I

Thus, the scalings are indeed multiplicative.
Finally, the rotation equat.ions Eq. (5.6) can be represented as

[x'l [cos8 -sin8 0] [x]
y; = si~8 ~8 ~ · ~ .

[
cos8 -sin8

R(8) = sin8 cos8
0 0 ~l·

we have

P' = R(8) • P.

Showing that two successive rotations are additive is left as Exercise 5.2.

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

ln the upper-left 2 x 2 submalrix of Eq. (5.25), consider each of the two rows as
vectors. 11le vectors can be shown to have three properties:

I. Each is a unit vector

2. Each is perpendicular to the other (their dot product is zero)

3. 11le first and second vectors will be rotated by R(8) to lie on the positive x and y axes,
respectively (in the presence of conditions I and 2, this is equivalent to the submatrix having
a detmninant of 1).

0244

5.2 Coordinates and Matrix Representation of 20 Transformations 207

The first two properties are also true of the columns of the 2 x 2 submatrix. The two
directions are those into which vectors along the positive x andy axes are rotated. These
properties suggest two useful ways to go about deriving a rotation matrix when we know the
effect desired from the rotation. A matrix having these properties is called special
orthogonal.

A transformation matrix of the form

[~~: r~ t•] r22 r, ,
0 1

(5.27)

where the upper2 X 2 submatrix is orthogonal , preserves angles and lengths. That is, a unit
square remains a unit square, and becomes neither a rhombus with unit sides, nor a square
with nonunit sides. Such transformations are also caUed rigid·body transformations,
because the body or object being transformed is not distorted in any way. An arbitrary
sequence of rotation and translation matrices creates a matrix of this form.

What can be said about the product of an arbitrary sequence of rotation, translation,
and scale matrices? They are called affine transformations, and have the property of
preserving parallelism of lines, but not lengths and angles. Pigure 5.6 shows the results of
applying a -45° rotation and then a nonuniform scaling to the unit cube. It is clear that
neither angles nor lengths have been preserved by this sequence, but parallel lines have
remained parallel. Further rotation, scale, and translation operations will not cause the
parallel lines to cease being parallel. R(8). S(s •• s,), a.nd T(d., d,) are also affine.

Another type of primitive transformation, shear transformations, are also affine.
Two-dimensional shear transformations are of two kinds: a shear along the x axis and a
shear along they axis. Figure 5.7 shows the effect of shearing the unit cube along each axis.
The operation is represented by the matrix

[
I a OJ SH, = 0 I 0 .
0 0 I

(5.28)

The term a in the shear matrix is the proportionality constant. Notice that the product
SH. [x y J]T is [x + ay y J]T, clearly demonstrating the proportional change in x as a
function of y.

D
Unit cube 45'

~

Scale in x,
not in y

Fig. 5 .6 A unit cube is rotated by -45• and is nonuniformly scaled. The result is an affine
transformation of the unit cube, in w hich parallelism of"lines is maintained, but neither
angles nor lengths are maintained.

0245

208 Geometrical Transformations

The unit cube sheared ln
the 1t direction

The unit cube sheared
In the y direction

Fig. 5. 7 The primitive-shear operations applied to the unit cube. In each case, the
lengths of the oblique lines are now greater than 1.

Similarly, the matrix

SH, = [i ! ~] (5 .29)

shears along the>' axis.

5.3 COMPOSITION OF 20 TRANSFORMATIONS

The idea of composition was introduced in the preceding section. Here,~ use composition
to combine the fundamental R, S, and T matrices to produce desired general resul!s. The
basic purpose of composing transformations is to gain efficiency by applying a single
composed transformation to a point, rather than applying a series of transformations, one
after the other.

Consider the I'O{ation of an object about some arbitrary point P1• Because~ know how
to I'O{ate only about the origin, ~ convert our original (difficult) problem into three
separate (easy) problems. Thus, to rotate about P" ~ need a sequence of three
fundamental transformations:

I . Translate such that P1 is at the origin

2. Rotate

3. Translate such that the point at the origin returns to P1•

This sequence is illustrated in Fig. 5.8, in which our house is rotated about P1(x1, y1) .

'The first translation is by (-x1, - y1), whereas the later translation is by the inverse (x1, y1).

'The resul! is rather different from that of applying just the rotation .
The net transformation is

[

I 0
T(x1, y1) • R(O) · T(-x1, - y1) = 0 I

0 0

x1
] [cosO -sinO 0] [I

y1 • sinO cosO 0 · 0
I 0 0 I 0

-sinO
cosO

0
(5.30)

0246

6.3

y

L-----• X
Original house

y

After translation
of P1 to origin

Composition of 20 Transformations 209

y

After rotation

y

P,

L-----• x
After translation
to original P,

Fig . 5 .8 Rotation of a house about the point P, by an angle fl.

A similar approach is used to scale an object about an arbitrary point P1• First, translate
such that P1 goes to the origin, then scale, then translate back to P1• In this case, the net
transformation is

T(x1, y1) • S(s,, s,) · T(-x1, -y1) = [~ 0 x1
] [s• 0 OJ [I l y ·OsO·O I J

0 I 0 0 I 0

0 - x1]
I -y,
0 I

[

s. 0
= 0 s • 0 0

x1(1 - s.)l
y,(l ; s,) . (5.31)

Suppose we wish to scale, rotate, and position the house shown in Fig. 5.9 with P1 as
the center for the rotation and scaling. The sequence is to translate P1 to the origin, to
perform the scaling and rotation, and then to translate from the origin to the new position P,
where the house is to be placed. A data structure that records this transformation might
contain the scale factor(s) , rotation angle , and translation amounts , and the order in which
the transformations were applied, or it might simply record the composite transformation
matrix:

T(.x:. Yt> · R(l!) · S(s, , s,) · T(- x1, - y1). (5 .32)

If M1 and M2 each represent a fundamental translation, scaling, or rotation, when is M 1

· M2 = M2 • M 1? That is, when do M1 and Mt commute? In general, of course, matrix
multiplication is nor commutative. However, it is easy to show that , in the following special
eases, commutativity holds:

Original
house

Translate P1
to origin

Scale Rotate Translate to
final position P2

Fig. 6 .9 Rotation of a house about the point P,, and placement such that what was at
P, is at P2•

0247

210 Geometrical Transformations

M1
Translate
Scale
Rotate

M2
Translate
Scale
Rotate

Scale (with s, = st) Rotate

In these cases, m~ need not be concerned about the order of matrix manipulation.

5.4 THE WINDOW-TO-VIEWPORT TRANSFORMATION

Some graphics packages allow the programmer to specify output primitive coordinates in a
floating-point world-coordinate system, using whatever units are meaningful to the
application program: angstroms, microns. meters , miles, Light-years, and so on. The term
world is used because the application program is representing a world that is being
interactively created or displayed to the user.

Given that output primitives are specified in world coordinates, the graphics subroutine
package must be told how to map world coordinates onto screen coordinates (m~ use the
specific term screen coordinates to relate this discussion specifically to SRGP, but that
hardcopy output devices might be used , in which case the term device coordinates would be
more appropriate) . We could do this mapping by having the application programmer
provide the graphics package with a transformation matrix to effect the mapping. Another
way is to have the application programmer specify a rectangular region in world
coordinates, called the world-coordinate window, and a corresponding rectangular region in
screen coordinates, called the viewport, into which the world-coordinate window is to be
mapped. The transformation that maps the window into the viewport is applied to all of the
output primitives in world coordinates, thus mapping them into screen coordinates. Figure
5. 10 shows this concept. As seen in this figure , if the window and viewport do not have the
same height-to-width ratio, a nonuniform scaling occurs. lf the application program
changes the window or viewport, then new output primitives drawn onto the screen will be
affected by the change. Existing output primitives are not affected by such a change.

The modifier world-coordinate is used with window to emphasize that we are not
discussing a window-manager window, which is a different and more recent concept, and

[ill
Window

World coordinates

CJ
Viewport

Screen coordinates

Maximum range
f screen

coordinates
0

Fig. 5.10 The window in world coordinates and the viewport in screen coordinates
determine the mapping that is applied to all the output primitives in world coordinates.

0248

5.4 The W indow -to-Viewport Transformation

Maximum range
f--------- of screen

[J5J
coordinates

Viewport 2

211

Window

[ill
Viewport 1

World coordinates Screen coordinates

Fig. 5.11 The effect of drawing output primitives with two viewports. Output
primitives specifying the house were first drawn with viewport 1, the viewport was
changed to viewport 2, and then the application program again called the graphics
package to draw the output primitives.

which unfortunately has the same name. Whenever there is no ambiguity as to which type
of window is meant , we will drop the modifier.

If SRGP were to provide world-coordinate output primitives, the viewport would be on
the current canvas, which defaults to canvas 0, the screen. The application program would
be able to change the window or the viewport at any time, in which case subsequently
specified output primitives would be subjected to a new transformation. If the change
included a different viewport, then the new output primitves would be located on the canvas
in positions different from those of the old ones, as shown in Fig. 5.11.

A window manager might map SRGP's canvas 0 into less than a full-screen window, in
which case not all of the canvas or even of the viewport would necessarily be visible. In
Chapter 10, we further discuss the relationships among world-coordinate windows,
viewportS, and window-manager windows.

Given a window and viewport, what is the transformation matrix that maps the window
from world coordinates into the viewport in screen coordinates? This matrix can be
developed as a three-step transformation composition, as suggested in Fig. 5.12. The

y

(X mu • Y max l

0
(X mlrP Y min) L._ _____ x

Window in
world coordinates

y v

'----1L-- -x u
Window translated Window scaled to
to origin size of viewport

v

Maximum
range
of screen
coordinates

L-----....L• u

Translated by (u min,
v m;n) to final position

Fig. 5.12 The steps in transforming a world-coordinate window into a viewport.

0249

212 Geometrical Transformations

y

Window

~------------+X
World coordinates

v
Maximum range
of screen
coordinates

'--------'-• u
Screen coofCfrnates

Fig. 6.13 Output primitives in world coordinates are clipped against the window.
Those that remain are displayed in the viewport.

window, specified by its lower-left and upper-right comers, is first translated to the origin of
world coordinates. Next, the size of the window is scaled to be equal to the size of the
viewport. Finally, a translation is used to position the viewport. The overall matrix M..., is:

(
u -u . v -v~ M = v (u . v) • S - - - · 1i(-r . - y .) "" .._, • X.. X..' Y.. y .._, -

=

1'-x- II ...

X,... X.,;,

0

0

0
vtlW - vmm
y,... Ym111

0

0 [I 0 -x...,l
0 ' 0 I -ymin

0 0 I

0
u -u - x...· - ... + u...
x .. X..

-v . . v.,.. - v,. + V •
, y...,.- y,.

Multiplying P = M,. [x y I]T gives the expected result:

(5.33)

P • (x-~-' ·- """+u - (y-y '·,... -+v [
u - u v -v .

......, x_ - x.. ... _, y_. - Y• IIIIo
1]. (5.34)

Many graphics packages combine the window-viewport transfonnation with clipping
of output primitives against the window. The concept of clipping was introduced in Chapter
3; Fig. 5.13 illustrates clipping in the context of windows and viewports.

5.5 EFFICIENCY

The most general composition of R. S, and T operations produces a matrix of the fonn

M = [~i ~; ::]. (5.35)

0250

6.6 Matrix Representation of 30 Transformations 213

The upper 2 x 2 submatrix is a composite rotation and scale matrix, whereas t. and ly

are composite translations. Calculating M ·Pas a vector multiplied by a 3 x 3 matrix takes
nine multiplies and six adds. The fixed structure of the last row of Eq. (5.35), however,
simplifies the actual operations to

x' = x . 'u + y . 't2 + t.
y' = X ' '21 + Y ' '22 + ly,

(5.36)

reducing the process to four multiplies and four adds-a significanr speedup, especially
since the operation can be applied to hundreds or even thousands of points per picture.
Thus, although 3 x 3 matrices are convenient and useful for composing 20 transforma­
tions , we can use the final matrix most efficiently in a program by exploiting irs special
struclure. Some hardware matrix multipliers have parallel adders and multipliers , thereby
diminishing or removing this concern.

Another area where efficiency is important is creating successive views of an object,
such as a molecule or airplane, rotated a few degrees between each successive view. If each
view can be created and displayed quickly enough (30 to 100 milliseconds each), then the
object will appear to be rotating dynamically. To achieve this speed, we must transform
each individual point and line of the object as quickly as possible. The rotation equations
(Eq. (5.6)) require four multiplies and rwo adds. We can decrease the operation count by
recognizing that, because (J is small (just a few degrees), cos(} is very close to I. ln this
approximation, Eq. (5.6) becomes

x' = x - y sin(}, y' = x sinfJ + y, (5.37)

which requires just two multiplies and two adds. The savings of two multiplies can be
significant on computers lacking hardware multipliers.

Equation (5 .37), however, is only an approximation to the correct values of x' andy': a
small error is built in. Each time the formulae are applied to the new values of x andy, the
error gers a bit larger. lf we repeat the formulae indefinitely, the error will overwhelm the
correct values, and the rotating image will begin to look like a collection of randomly drawn
lines.

A better approximation is to use .x' instead of x in the second equation:

x' = x - y sin(},
y' = x' sin(} + y = (x - y sinfJ)sin(J + y = x sinfJ + y(I - sin2(J) (5.38)

This is a better approximation than is Eq. (5.37) because the determinant of the
corresponding 2 x 2 matrix is l , which means that the areas transformed by Eq. (5.38) are
unchanged. Note that cumulative errors can also arise when using the correct rotation
equations repeatedly (see Exercise 5.19).

5.6 MATRIX REPRESENTATION OF 30 TRANSFORMATIONS

Just as 20 transformations can be represented by 3 x 3 matrices using homogeneous
coordinates, so 30 transformations can be represented by 4 X 4 matrices, providing we use
homogeneous coordinate representations of poin!S in 3-space as well. Thus, instead of
representing a point as (x, y, z), we represent it as (x, y, z, W), where two of these

0251

214 Geometrical Transformations

quadruples represent the same point if one is a nonzero multiple of the other; the quadruple
(0, 0, 0, 0) is not allowed. As in 20, a standard representation of a point (x, y, z, W) with W
-F 0 is given by (x!W, y/W, z/W, 1). Transfonning the point to this fonn is called
homogenizing, as before. Also, points whose W coordinate is zero are called points at
infinity. There is a geometrical interpretation as well. Each point in 3-space is being
represented by a line through the origin in 4-space, and the homogenized representations of
these points fonn a 30 subspace of 4-space which is defined by the single equation W = I .

The 30 coordinate system used in this text is right-handed, as shown in Fig. 5.14. By
convention, positive rotations in a right-banded syst.em are such that, when looking from a
positive axis toward the origin, a 90" countercloclcwise rotation will transform ooe positive
axis into the other. This table follows from this convention:

If axis of rotation is
X

y

Direction of positive rotation is

y to z
Z tO X

x toy

These positive directions are also depicted in Fig. 5. 14. The reader is warned that not all
graphics texts follow this convention.

We use a right-banded system here because it is the standard mathematical convention,
even though it is convenient in 30 graphics to think of a left-handed system superimposed
on the face of a display (see Fig. 5.15), since a left-handed system gives the natural
interpretation that larger z values are further from the viewer. Notice that , in a left-handed
system, positive rotations are clockwise when looking from a positive axis toward the origin.
This definition of positive rotations allows the same rotation matrices given in this section to
be used for either right- or left-hand coordinate systems. Conversion from right to left and
left to right is discussed in Section 5.8.

Translation in 30 is a simple extension from that in 20:

T(d., d,, d,) = [g ! ~ ;,].
0 0 0 I

(5.39)

That is, T(d., d,, dJ · [x y z I]T = [x + l4 y + d, z + d, W.

y

lt

z
(out of page)

Fig. 5.14 The right-handed coordinate system.

0252

5.6 Matrix Representation of 30 Transformations 215

y z

X

Fig. 5.1 5 The left-handed coordinate system. with a superimposed display screen.

Scaling is s.imilarly extended:

s, ... ••· ·J- [! i ; n (5.40)

Checking, we see that S(s., s,, sJ · [x y z 1]1 = [s, · x s, · y s, · z I]T.
The 20 rotation of Eq. (5.26) is just a 30 rotation about the z axis, which is

[

cos9 -sin9 0 0]
R (a. = sin9 cosO 0 0

• VJ 0 0 I 0 .
0 0 0 I

(5.41)

This is easily verified: A 90" rotation of [I 0 0 1]1 , which is the unit vector along the x axis,
should produce the unit vector [0 I 0 I)T along the y axis. Evaluating the product

(5.42)

gives the predicted result of [0 I 0 I)1 .

The x-axis rotation matrix is

RJ~ - [! 0 0

~l cosO - sinO
sinO cosO

0 0

(5.43)

The y-axis rotation matrix is

[=' 0 sinO

n R = 0 I 0
,(8) -~n9 0 cosO

0 0

(5.44)

0253

216 Geometrical Transformations

The columns (and the rows) of the upper-left 3 X 3 submatrix of R,((J), R, ((J), and R1(8) are
mutuaHy perpendicular unit vectors and the submatrix has a determinant of I, which means
the three matrices are special orthogonal , as discussed in Section 5.2. Also, the upper-left3
x 3 submatrix formed by an arbitrary sequence of rotations is special orthogonal. Recall
that o.rthogonal transformations preserve distances and angles.

All these transformation matrices have inverses. The inverse for T is obtained by
negating d., d,, and d,; for S, by replacing s,, s,, and s, by their reciprocals; that for each of
the three rotation matrices is obtained by negating the angle of rotation.

The inverse of any orthogonal matrix 8 is just B's transpose: s-' = BT. ln fact, taking
the transpose does not need to involve even exchanging elements in the array that stores the
matrix- it is necessary only to exchange row and column indexes when accessing the array.
Notice that this method of finding an inverse is consistent with the result of negating 8 to
find the inverse of R., R, , and R, .

Any number of rotation, scaling, and translation matrices can be multiplied together.
The result always has the form

[

rll r12 r13 1,]
M = '21 '12 ' zs t, .

,,, '~ ' aa r.
0 0 0 I

(5.45)

As in the 20 case, the 3 x 3. upper-left submatrix R gives the aggregate rotation and
scaling, whereas T gives the subsequent aggregate translation. Some computational
efficiency is achieved by performing the transformation explicitly as

[~:] = R · [~] + T,
(5.46)

where Rand Tare submatrices from Eq. (5.45).
Corresponding to the two-dimensional shear matrices in Section 5.2 are three 30 shear

matrices. The (x, y) shear is

[
I 0 sh, 0]

_Oish,O
SH.j.sh., sh•) - O O I O .

0 0 0 I

(5.47)

Applying SH..., to the point [x y z l)T. we have [x + sh, · z y + sh, · z z I]'T.
Shears along the x and y axes have a similar form.

So far, we have focused on transforming individual points . We transform lines, these
being defined by two points, by transforming the endpoints. Planes, if they are defined by
three points, may be handled the same way, but usually they are defined by a plane
equation, and the coefficients of this plane equation must be transformed differently. We
may also need to transform the plane normal. Let a plane be represented as the column
vector of plane-equation coefficients N = [A B C D]T. Then a plane is defined by aU
points P such that N • P = 0, where • is the vector dot product and P = [x y z I]r.
This dot product gives rise to the familiar plane equation Ax+ By+ C z + D = 0, which

0254

5.7 Composition of 30 Transformations 217

can also be expressed as the product of the row vector of plane-equation coefficients times
the column vector P: JVf • P = 0. Now suppose we transform all points P on the plane by
some matrix M. To maintain JVf · P = 0 for the transformed points, we would like to
transform N by some (to be determined) matrix Q, giving rise to the equation (Q · N)T · M ·
P = 0. This expression can in tum be rewritten as JVf · QT · M · P = 0, using the identity (Q
. N)T = wr. QT. The equation will hold if QT. M is a multiple of the identity matrix.lfthe
multiplier is I, this leads to QT = M-1, or Q = (M-1)f. This means that the column vector
N' of coefficients for a plane transformed by M is given by

N' = (M- ')'f · N.

The matrix (M-')'f need not in general exist, because the determinant of M might be
zero. This would happen if M includes a projection (we might want to investigate the effect
of a perspective projection on a plane). It is possible to use, instead of (M- 1)r, the matrix of
cofactors of Mused in finding the inverse of Musing Cramer's rule. See the Appendix for
more details.

If just the normal of the plane is to be transformed (for example, to perform the shading
calculations discussed in Chapter 16) and if M consists of only the composition of
translation, rotation, and uniform scaling matrices, then the mathematics is even simpler.
TheN' of Eq. (5.48) can be simplified to (A' 8 ' C' O]T. (With a zero W component, a
homogeneous point represents a point at infinity, which can be thought of as a direction.)

5.7 COMPOSITION OF 3D TRANSFORMATIONS

In this section, we discuss bow to compose 30 transformation matrices, using an example
that will be useful in Section 6.4. The objective is to transform the directed line segments
P1P2 and P1P3 in Fig. 5.16 from their starting position in part (a) to their ending position in
part (b). Thus, point P1 is to be translated to the origin, P1P2 is to lie on the positive z axis .
and P1P3 is to lie in the positive y axis half of the (y, z) plane. The lengths of the lines are to
be unaffected by the transformation.

Two ways to achieve the desired transformation are presented. The first approach is to
compose the primitive transformations T , R., Rw• and R, . This approach, although
somewhat tedious , is easy to illustrate, and understanding it will help us to build an
understanding of transformations. The second approach, using the properties of orthogonal
matrices described in the previous section, is explained more briefly but is more abstract.

y y

P,

)(IC

z

(a) Init ial position (b) Final position

Fig. 5.16 Transforming P,, P2, and P3 from their initial (a) to their final (b) position.

0255

218 Geometrical Transformations

To work with the primitive transformations, we again break a difficult problem into
simpler subproblems. In this case, the desired transformation can be done in four steps:

I. Translate P1 to the origin

2. Rotate about the y axis such that P1Pt lies in the (y, z) plane

3. Rotate about the x axis such that P1Pt lies on the z axis

4. Rotate about the z axis such that P1P3 lies in the (y, z) plane.

Step 1: Translate P1 to tbe origin. The translation is

0 I 0
T(-x,, -yl, -z,) = 0 0 I

[

1 0 0

0 0 0

Applying T to P1, P2, and P3 gives

P', = T (-•,. -y,, -•,) · P, • m

(5.49)

(5.50)

(5.51)

(5.52)

S tep 2: Rotate about tbe y axis. Figure 5.17 shows P1P2 after step I , along with the
projection of P1P2 onto the (x, z) plane. The angle of rotation is -(90 - 0) = 0- 90. Then

.! z - z
cos(O- 90) = sinO= _-. = 2 1,

D1 D1
r! r . - X

sin(O- 90) = -cosO= __ -< = "" 1,
D1 D1

where

D 1 = V(zi}2 + (xt)2 = V(z2 - z,jZ + (Xz - x1)
2

•

When these values are substituted into Eq. (5.44), we get

P; = R,(O- 90) · P; = [0 y2 - y1 D1 IJT.

(5.53)

(5.54)

(5.55)

As expected, the x component of P; is zero, and the z component is the length D1•

0256

6.7 Composition of 30 Transformations 219

y

I

.fto
.... ' 1 t X

.... -' " -· (x'2· 0, z'2)
z

Fig. 5.17 Rotation about the y axis: The projection of P;P;. which has length D,, is
rotated into the z axis. The angle 8 shows the positive direction of rotation about the y
axis: The actual angle used is - (90 - 11) .

Step 3: Rotate about the x axis. Figure 5.18 shows P1P2 after step 2. The angle of
rotation is 4> .• for which

z" y"
cos</> = tJ

2
• sin</> = tJ

2
• (5.56)

where 0 2 = 1Pi'P21. the length of the line P;P;. But the length of line Pi'P2 is the same as
the length of line P1P2, because rotation and translation transformations preserve length , so

Dz = 1Pi'P21 = IP,Pzl = Y(xz - X 1)
2 + (y2 - y,'f + (z2 - z1)

2
• (5.57)

The result of the rotation in step 3 is

Pi" = R.(</>) • P2 = R.(4>) · Rw(IJ - 90) · P2

= R.(4>) · R,(IJ- 90) · T · P2 = [0 0 IP1P21 I]'f. (5.58)

That is, P1P2 now coincides with the positive z axis.

Step 4: Route about the taxis. Figure 5.19 shows P1P2 and P1P3 after step 3, with P;'
on the z axis and P;" at the position

P;' = [x;" Ya" zi" J]T = R.(</>) · RiiJ- 90) · T(- x1, - y1, - z1) · P3• (5.59)

y

X

Fig. 5.18 Rotation about the x axis: PW2 is rotated into the z axis by the positive angle
¢>. 0 2 is the length of the line segment. The line segment P';f>;. Is not shown, because it is
not used to determine the angles of rotation. Both lines are rotated by R,(¢1).

0257

220 Geometrical Transformations

z

y

Y'3" -,.1
; tl

_, a I I

I
t03 I

I I

X

Fig. 5.19 Rotation about the z axis: The projection of P;P; , whose length is D,. is
rotated by the positive angle a into they axis, bringing the line itself into the (y, z) plane.
D, is the length of the projection.

The rotation is through the positive angle a , with

cosa = >'i1D1, sina = X:1D1• 01 =- V xf' + y,"". (5.60)

Step 4 achieves the resull shown in Fig. 5.16{b).
The composite matrix

R,(a) • R,(cp) • R1(8- 90) · T(-x1, -y1, -z1) = R · T (5.61)

is the required transformation, with R = R,(a) · R.(cp) • R1(8 - 90). We leave it to the
reader to apply this transformation to P 1, P2, and P1 to verify that P 1 is tranSformed to the
origin, P1 is transformed to the positive z axis, and P1 is transformed 10 the positive y half of
the (y, z) plane.

The second way 10 obtain the matrix R is to use the properties of orthogonal matrices
discussed in Section 5.2. Recall thai the unit row vectors of R rotate into the principal axes.
Replacing the second subscripts of Eq. (5.45) with x, y, and z for notational convenience

(5.62)

Because R, is the unit vector along P 1P1 that will rotate into the positive z axis.

- T- P,P,
R, [r., rt. r:r.l - IP,Pl (5.63)

In addition , the R, unit vector is perpendicular to the plane of P 1, P2, and P3 and will rotate
into the positive x axis, so that R, must be the normalized cross-product of two vectors in
the plane:

(5.64)

Finally,

(5.65)

0258

5.7 Composition of 30 Transformations 221

X

z

Fig. 5 .20 The unit vectors R,. R ,. and R,, which are transformed into the principal
axes.

wiU rotate into the positive y axis. The composite matrix is given by

(5.66)

where Rand Tare as in Eq. (5.61). Figure 5.20 shows the individual vectors R,, R, , and R,.
Let's consider another example. Figure 5.21 shows an airplane defined in the x,, y,, z,

coordinate system and centered at the origin. We want to transform the airplane so that it
heads in the direction given by the vector DOF (direction of llight), is centered at P, and is
not banked, as shown in Fig. 5.22. The transformation to do this consists of a rotation to
head the airplane in the proper direction, followed by a translation from the origin toP. To
find the rotation matrix, we just determine in what direction each of the x,, y,, and z, axes is
heading in Fig. 5.22, make sure the directions are normalized, and use them as column
vectors in a rotation matrix.

The z, axis must be transformed to the DOF direction, and the x, axis must be
transformed into a horizontal vector perpendicular to DOF- that is, in the direction of y x
DOF, the cross-product of y and DOF. They, direction is given by z, x x, = DOF x (y x

Fig. 5.21 An airplane in the (K,, y,, z,J coordinate system.

0259

222 Geometrical Transformations

y

}-------------------~ X

z

Fig. 5.22 The airplane of Figure 5.21 positioned at point P, and headed in direction
DOF.

DO F), the cross-product of z, and x,; hence, the three columns of the rotation matrix are the
normalized vectors 1Y x DOFj, IDOF x (y x DOF)i, and iDOFj:

R ·= [IY X DOFj IDOF X (y X DOF)i iDOFj ~] · (5.67)

0 0 0 I

The situation if DOF is in tbe direction of the y axis is degenerate, because there is an
infinite set of possible vectors for the horizontal vector. This degeneracy is reflected in the
algebra, because the cross-products y x DOF and DOF x (y x DOF) are zero. In this
special case, R is not a rotation matrix .

5 .8 TRANSFORMATIONS AS A CHANGE IN COORDINATE SYSTEM

We have been discussing transforming a set of points belonging to an object into another set
of points, when both sets are in the same coordinate system. With this approach, the
coordinate system stays unalt.ered and the object is transformed with respect to the origin of
the coordinate system. An alternative but equivalent way of thinking about a transformation
is as a change of coordinate systems. This view is useful when multiple objects, each
defined in its own local coordinate system, are combined, and we wish to express
these objects' coordinates in a single, global coordinate system. This will be the case in
Chapter 7.

Let us define M;+-J as the transformation that converts the representation of a point in
coordinate system j into its representation in coordinate system i.

We define pm as the representation of a point in coordinate system i, p<il as the
representation of the point in system j, and ~~ as the representation of the point in
coordinate system k; then ,

(5.68)

0260

6.8 Transformations as a Change in Coordinate System 223

Substituting, we obtain

p<il = M;-; · p<Jl = M;-; · MH · ~) = M;_. · ~l. (5.69)

so

(5.70)

Figure 5.23 shows four different coordinate systems. We see by inspection that the
transformation from coordinate system 2 to I is M1_ 1 = T(4, 2) (finding this transformation
by inspection is not always simple see the Appendix). Similarly, Mz-z = T(2, 3) · S(0.5,
0.5) and M- = T(6.7, 1.8) · R(-45"). Then MH = M1-t · M2-4 = T(4, 2) · T(2, 3) ·
S(0.5, 0.5). The figure also shows a point that is f<J.l = (10, 8), p<'EI = (6, 6) , f100 = (8, 6),
and fX4l .. (4, 2) in coordinate systems I through 4, respectively. It is easy to verify that
p..o = M1-; • pill for I :s i. j :s 4.

We also notice that M...., = MH - t. Thus, M2_ 1 = M1-« - t = T(-4, -2). Because
M - M · M M - t - M - t · M -t - M · M ,_, - t-« z-z• t-4 - 2-4 t-z - $-1 z-t·

ln Section 5.6, we discussed left- and right-banded coordinate systems. The matrix
that convertS from points represented in one to points represented in the other is its own
inverse. and is

0 0] 0 0
-1 0 .
0 I

(5. 71)

The approach used in previous sections-<lefining all objects in the world-coordinate
system, then transforming them to the desired place-implies the somewhat unrealistic
notion that all objects are initially defined on top of one another in the same world­
coordinate system. lt is more natural to think of each object as being defined in it.s own
coordinate system and then being scaled, rotated, and translated by redefinition of its
coordinates in the new world-coordinate system. In this second point of view, one thinks
naturally of separate pieces of paper. each with an object on it, being shrunk or stretched.
rotated or placed on the world-coordinate plane. One can also, of course, imagine that the

3~L.U.J..U..U.U..U.U..U.W--

1 ~~~~~~~-L~~--

Fig. 5 .23 The point P and coordinate systems 1, 2, 3, and 4.

0261

224 Geometrical Transfonnations

L--+--- - /lr;t)

L-_ _._ _ _ _.111

Fig. 5 .24 The house and two coordinate systems. Coordinates of points on the house
can be represented in either coordinate system.

plane is being shrunk or stretched, tilted, or slid relative to each piece of paper.
Mathematically, all these views are identical.

Consider the simple case of translating the set of points that define the bouse shown in
Fig. 5.8 to the origin. This transformat.ion is T(-x1• -y1) . Labeling !he~ coordinate
systems as in Fig. 5.24 , we see that the transformation that maps coordinate system I into
2-that is, Mt_1-is T(x1• y1), which is just T(-x1, -y1)-1• Indeed, the general rule is that
the transformation that transforms a set of points in a single coordinate system is just the
inverse of the corresponding transformation to change the coordinate system in which a
point is represented. This relation can be seen in Fig. 5.25, which is derived directly from
Fig. 5.9. The transformation for the points represented in a single coordinate system is just

T(Xf, y,) · R(8) · S(s., s,) · T(-x1, -y1).

In Fig . 5.25, !he coordinate-system transformation is just

Mt.-1 = M~ M4-4 Ma-r Mr-1

so that

= (T{Xf. y,) · R(8) • S(s., s,) · T(-x1, -y1W1

= T(x1, y1) • S(s.- 1• s;1) • R(-(f) · T(-x2, -yz),

(5.32)

(5 .72)

pi!>)= Mt.-1pl.l1 = T(x1• y1) • S(s,-1, s,- 1) • R(-8) · T(-Xf, -y,) · p (ll . (5.73)

(a)

Fig. 5 .25 The original house (a) in its coordinate system and the transformed house (b)
in its coordinate system with respect to the original coordinate system.

0262

5.8 Transformations as a Change in Coordinate System 225

An important question related to changing coordinate systems is changing transforma­
tions. Suppose Q<i> is a transformation in coordinate systemj. It might, for example, be one
of the composite transformations derived in previous sections. Suppose we wanted to find
the transformation (1il in coordinate system i that could be applied to points p<il in system i
and produce eltactly the same results as though Q<i> were applied to the corresponding
points p<i> in system j. This equality is represented by Qli) · p<il = M,-; · Qli> · p<i>.
Substituting p<n = M;-1 · p<i>, this ellpression becomes Qlil · M;...; · p<i> = M;-; · Q!J> · p<i>.
Simplifying, we have {1° = M;--i · Q<i> · M 8 .

The change-of -coordinate-system point of view is useful when additional information
for subobjects is specified in the tatters' own local coordinate systems. For example, if the
front wheel of the tricycle in Fig. 5.26 is made to rotate about its z,.,b coordinate, all wheels
must be rotated appropriately, and we need to know how the tricycle as a whole moves in
the world-coordinate system. This problem is complex because several successive changes
of coordinate systems occur. First, the tricycle and front-wheel coordinate systems have
initial positions in the world-coordinate system. As the bike moves forward, the front wheel
rotates about the z axis of the wheel-coordinate system, and simultaneously the wheel- and
tricycle-coordinate systems move relative to the world-coordinate system. The wheel- and
tricycle-coordinate systems are related to the world-coordinate system by time-varying
translations in x and z plus a rotation about y. The tricycle- and wheel-coordinate systems
are related to each other by a time-varying rotation about y as the handlebars are turned.
(The tricycle-coordinate system is fixed to the frame, not to the handlebars.)

To make the problem a bit easier, we assume that the wheel and tricycle alles are
parallel to the world-coordinate alles and that the wheel moves in a straight line parallel to
the world-cooroinate x axis. As the wheel rotates by an angle a , a point P on the wheel
rotates through the distance ar, wherer is the radius of the wheel. Since the wheel is on the
ground, the tricycle moves forward ar units . Therefore, the rim point P on the wheel moves
and rotates with respect to the initial wheel-coordinate system with a net effect of translation
by ar and rotation by a. Its new coordinates P' in the original wheel-coordinate system are
thus

World-coordinate
system

z wo

P'lwhl = T(ar, 0, 0) · R.(a) · f'-whl,

Tricycle-coordinate
system

xwn
Wheel-coordinate
system

Fig. 5.26 A stylized tricycle with three coordinate systems.

(5.74)

0263

226 Geometrical Transformations

and its coordinates in the new (translated) wheel-coordinate system are given by just the
rotation

p•<wh') = R.(a) . p.vrbl. (5.75)

To find the points P.•~l and r <wol in the world-coordinate system, we transform from the
wheel to the world-coordinate system:

p.wol = M . P."hl = M . M . p. .. bl wo-wh wo-tr t.r-wb • (5.76)

M......v and M.,._b are translations given by the initial positions of the tricycle and wheel.
p '<wol is computed with Eqs. (5 .74) and (5.76):

P'<woJ = M_...rn · P'<whl = M_b · T(ar, 0, 0) · R,(a) · P.whl. (5.77)

Alternatively, we recognize that M...,_h has been changed to M_...rn· by the translation
of the wheel-coordinate system, and get the same result as Eq. (5. 77), but in a different
way:

p•Cwol = M • p•Cwll? = (M . M) . (R (a) . pwb)
~b' wo-wb wb-wh' t · (5.78)

In general, then, we derive the new M_. and MU"...m' from their previous values by
applying the appropriate transformations from the equatioos of motion of tbe tricycle parts.
We then apply these updated trmsfonnalions to updated points in local coordinate systems
and derive the equivalent points in world-coordinate systems. We leave to the reader the
problem of turning the tricycle' s front wheel to change direction and of computing rotation
angles for the rear wheels, using the wheels' radius and the tricycle's trajectory.

EXERCISES

5.1 Prove that we can transfonn a line by transforming its endpoims and then constructing a new
line between the transformed endpoints.

5.2 Prove that two successive 2D rotations are additive: R(81) • R(QJ = R(81 + OJ.
5.3 Prove that 20 rotation and scaling commute if s, = s, or if 8 = 111r for integral 11, and that

otherwise they do not.

5.4 Find an expression relating the accumulated error in Eq. (5.37) to 8 and the number of
incremental rotations performed. Do the same for Eq. (5 .38).

5.5 Write a progrdiTI for your favorite computer to perform 20 incremental rotation. How much
time is needed per endpoint? Compare this value to the time needed per endpoint for absolute 2D
rotation.

5.6 A drawing consisting of N endpoints is to be rotated dynamically about a single axis.
Multiplication on your computer takes timet,.; addition takes time '• · Write expressions for the time
needed to rotate theN points by using Eqs. (5.37), (5.38). and (5.7). Ignore control steps. Now
evaluate the expressions with N as a variable, using the actual instruction times for your computer.

5.7 Apply the transformations developed in Section 5.7 to the points P11 P2, and P1 to verify that
these points transform as intended.

5.8 Rework Section 5.7, assuming that!J'1P21 = I, IP1Psl = 1 and that direction cosines of P1P2 and
P1P1 are given (direction cosines of a line are the cosines of the angles between the line and the x, y,
and z axes). For a li.ne from the origin to (x, y, z), the direction cosines are (xld, yld, zld), where dis
the length of the line.

0264

Exercises 227

5.9 Another reason that homogeneous coordinates are attractive is that 30 points at infinity in
Cartesian coordinates can be represented explicitly in homogeneous coordinates. How can this be
done?

5.10 Show that Eqs. (5.61) and (5.66) are equivalent.

5.11 Given a unit cube with one comer at (0, 0, 0) and the opposite comer at (I, l , l), derive the
transformations necessary to rotate the cube by 8 degrees about tbe main diagonal (from (0. 0. 0) to
(I. l, I)) in tbe counterclockwise direction when looking along !be diagonal toward the origin.

5.12 Suppose that the base of the window is rotated at an angle 8 from the ;r axis, as in the Core
System [GSPC79]. What is the window-to-viewpon mapping? Verify your answer by applying the
transformation to each comer of tbe window. to see that these comers are transformed to !be
appropriate corners of the viewpon.

5.13 Consider a Line from the origin of a right-handed coordinate system to the point P(;c, y. z). Find
!be transformation matrices needed to rotate !be line into the positive z axis in three different ways,
and show by algebraic manipulation that, in each case, the P does go to the z axis. For each method,
calculate the sines and cosines of the angles of rotation.

a. Rotate about the ;r axis into the (;r, y) plane, then rotate about the y axis into the z axis.
b. Rotate about they axis i.nto the (y, z) plane, then rotate about the ;r ax.is into the z axis.
c. Rotate about the z axis into the (;r, z) plane, then rotate about they axis into the z axis.

5.14 An object is to be scaled by a factorS in the direction whose di.rection cosines are (a , fJ, y).
Deri\'e tbe transformation matrix.

5.15 Find the 4 x 4 transformation matrix that rotates by an angle 8 about an arbitrary direction
given by the direction vector U = (u., u,. u,). Do this by composing the transformation matrix that
rotates U into the z axis (call this M) with a rotation by R,(U), then composing this result with M- 1•

The result should be

[

u! + cos8(1 - u!) u,u,(l - cosf!) - u,sin8 u,u,.(l - cosf!) + u;oin8 0]
u,.u,(I - cosf!) + u,sin8 u: + cos8(I - u,"l u,u,(I - cosf!) - u,sin8 0 (

5 79)
u,.u,(l - cosf!) - u,sin8 y,{l - cosf!) + u,sin8 ~ + cos8(1 - ~) 0 · ·

0 0 0 I

Verify that, if U is a principal axis, the matrix reduces toR., R,, orR,. See [FAUX79] for a derivation
based on vector operations. Note that negating both U and 81eave !be result unchanged. Explain why
this is true.
5.16 Prove !be properties of R(Q) described at the end of Section 5.2.

5.17 Extend the incremental rotation discussed i.n Section 5.4 to 30, forming a composite operation
for rotation about an arbitrary axis.

5.18 Suppose the lowest rate at which an object can be rotated without being annoyingly slow is 360°
over 30 seconds. Suppose also that, to be smooth, the rotation must be in steps of at most 4°. Use the
results from Exercise 5.6 to determine how many points can be rotated using absolute rotation, and
using incremental rotation.

5.19 Suppose that you are creating an interface to rotate an object by applying many incremental
rotations, using "Spin X," "Spin Y" and "Spin Z" buttons. Each time one of these buttons is
pressed. the current rotation matrix is replaced by its product with a matrix that rotates slightly around
the specified axis. Although this idea is mathematically correct, in practice cumulative Ooatiog-point
roundoff errors will result that will cause points to be transformed incorrectly. Show that by applying
the Gram..SChmidt process to tbe columns of the matrix (see Section A.3.6) you can conven the new
matrix back to an onhonormal matrix . Also explain why. ifit is already onhonormal, applying this
process will not change it.

0265

6
Viewing

in 3D

The 30 viewing process is inherently more complex than is the 20 viewing process. In 20 ,
we simply specify a window on the 20 world and a viewport on the 20 view surface.
Conceptually, objects in the world are clipped against the window and are then transformed
into the viewport for display. The extra complexity of 30 viewing is caused in part by the
added dimension and in part by the fact that display devices are only 20.

The solution to the mismatch between 30 objects and 20 displays is accomplished by
introducing proj~ctions, which transform 30 objects onto a 20 projection plane. Much of
this chapter is devoted to projections: what they arc, their mathematics, and how they arc
used in a current gr.1phics subroutine package, PHIGS [ANSI88]. Their usc is also
discussed further in Chapter 7.

In 30 viewing, we speci fy a view volume in the world , a projection onto a projection
plane, and a viewport on the view surface. Conceptually, objects in the 30 world are
clipped against the 30 view volume and are then projected. The contents of the projection
of the view volume onto the projection plane, cal led the window, are then transformed
(mapped) into the viewport for display. Figure 6. I shows this conceptual model of the 30
viewing process, which is the model presented to the users of numerous 30 graphics
subroutine packages. Just as with 20 viewing, a variety of strategies can be used to
implement the viewing process. The strategies need not be identical to the conceptual
model , so long as the results are those defined by the model. A typical implementation
strategy for wire-frame line drawings is described in Section 6.5. For graphics systems that
perform visible-surface determination and shading, a somewhat different pipeline, dis­
cussed in Chapter 16, is used.

229

0266

230 V iewing in 30

30 WOI1ckoordinate
0V1pUt primitives

Clopped
wottd

coordinates

I Clip against
view

volume

Project onto

~

20 de\IIQe
COOI'dinates

Transform
Into viewport
In 20 device
coordlnales
tor display

Fig . 6.1 Conceptual model of the 30 viewing prooes.s.

6.1 PROJECTIONS

In general, projections transform points in a coordinate system of dimension n into points in
a coordinate system of dimension less than". In fact, computer graphics has long been used
for studying n-dimensional objects by projecting them into 20 for viewing fNOLL67].
Here, we shall limit ourselves to the projection from 30 to 20. The projection of a 30
object is defined by srraight projection rays (called projectors) emanating from a cemer of
projectio11. passing through each point of the object, and intersecting a projection plone to
form the projection. Figure 6.2 shows t~ different projections of tbe same line.
Fortunately, the projection of a line is itself a line, so only line endpoints need actually to
be projected.

The class of projections we deal with here is known as planar geometric projections
because the projection is onto a plane rather than some curved surface and uses straight
rather than curved projectors. Many cartographic projections are either nonplanar or
nongeometric. Similarly, the Omnimax film format requires a nongeometric projection
[MAX82j.

Planar geometric projections, hereafter referred to simply as projections, can be
divided into t~ basic classes: perspecti~'e and parallel. The distinction is in the relation of
the center of projection to the projection plane. lf the distance from the one to the other is
finite, then the projection is perspective: if the distance is infinite, the projection is parallel.

Center ol
project•on

(a)

A

8

Projection
plane Center of

projection
at infinity

(b)

A

Fig. 6 .2 (a) Une AB and its perspective projection A'B' . (b) Une AB and it s parallel
projection A 'B'. Projectors AA' and 88' are parallel.

0267

6.1 Projections 231

Figure 6.2 illustrates these two cases. The parallel projection is so named because, with the
center of projection infinitely distant, the projectors are parallel. When defining a
perspective projection, we explicitly specify its center of projection; for a parallel
projection, we give its direction of projection. The center of projection, being a point, has
homogeneous coordinates of the form (..r. y, z, 1). Since the direct.ion of projection is a
\-ector (i.e ., a difference between points), it can be computed by subtracting two points d =
(..r,y,z. I)- (..r' , y' , z' ,l) = (a , b,c, O). Thus , direcrionsandpointsatinfinitycorrespond
in a natural way. A perspective projection whose center is a point at infinity becomes a
parallel projection.

The visual effect of a perspective projection is similar to that of photographic systems
and of the human visual system, and is known as perspectiw fortshonening: The size of the
perspective projection of an object varies inversely with the distance of that object from the
center of projection. Thus, although the perspective projection of objects tend to look
realistic, it is not particularly useful for recording the exact shape and measurements of the
objects; distances cannot be taken from the projection, angles are preserved only on those
faces of the object parallel to the projection plane, and parallel lines do not in general
project as parallel lines.

The parallel projection is a less realistic view because perspective foreshortening is
lacking, although there can be different constant foreshortenings along each axis. The
projection can be used for exact measurements and parallel lines do remain parallel. As
with the perspective projection, angles are preserved only on faces of the object parallel to
the projection plane.

The different types of perspective and parallel projections are discussed and illustrated
at length in the comprehensive paper by Carlbom and Paciorek [CARL78]. In the following
two subsections , we summarize tbe basic definitions and characteristics of the more
commonly used projections; we then move on in Section 6 .2 to understand how the
projections are actually specified to PHIGS.

6.1 .1 Perspec1ive Projections

The perspective projections of any set of parallel lines that are not parallel to the projection
plane converge to a vanishing point. In 30 , the parallel lines meet only at infinity, so the
vanishing point can be thought of as the projection of a point at infinity. There is of course
an infinity of vanishing points , one for each of the infinity of directions in which a line can
be oriented.

If the set of lines is parallel to one of the three principal axes, the vanishing point is
called an axis vanishing point. There are at most three such points , corresponding to the
number of principal axes cut by tbe projection plane. For example, if the projection plane
cuts only the z axis (and is therefore normal to it), only the z axis has a principal vanishing
point , because lines parallel to either they or x axes are also parallel to the projection plane
and have no vanishing point .

Perspective projections are categorized by their number of principal vanishing points
and therefore by the number of axes the projection plane cuts. Figure 6 .3 shows two
different one-point perspective projections of a cube. It is clear that they are one-point

0268

2 32 Viewing in 30

z-axis vanishing point

z
z

Fig. 6.3 One-point perspective projections of a cube onto a plane cutting the z axis,
showing vanishing point of lines perpendicular to projection plane.

projections because lines parallel to the x andy axes do not converge; only lines parallei to
the z axis do so. Figure 6.4 shows the construction of a one-point perspective with some of
the projectors and with the projection plane culling only the z axis.

Figure 6.5 shows the construction of a two-point perspective. Notice that lines paralleJ
to they axis do not converge in the projection. 1\Yo-point perspective is commonly used in
architectural, engineering, industrial design, and in advertising drawings. Three-point
perspectives are used less frequently, since they udd little rculism beyond that afforded by
the two-point perspective.

6.1 .2 Parallel Projections

P...trallel projections are c-..ttegorized into two types , depending on the relation between the
direction of projection and the normal to the projection plane. In orthographic parallel

Center of
projection

Projection
plane
normal

X

Fig. 6 .4 Construction of one-point perspective projection of cube onto plane cutting
the z axis. Projection-plane normal is parallel to z axis. (Adapted from [CARL78).
Association for Computing Machinery, Inc.; used by permission.)

0269

6.1 Projections 233

y

Projection plane

Center of projection

Fig. 6.5 Two-point perspective projection of a cube. The projection plane cuts the x
and z axes.

projections, these directions are the same (or the reverse of each other), so the direction of
projection is normal to the projection plane. For the oblique parallel projection, they are not.

The most common types of orthographic projections are the fro/11-e/ewJtion, top­
elevation (also called plan·elevaiion), and side-elevation projections. ln all these , the
projection plane is perpendicular to a principal axis, which is therefore the direction of
projection. Figure 6.6 shows the construction of these three projections; they are often used
in engineering drawings to depict machine parts, assemblies, and buildings, because
distances and angles can be measured from them. Since each depicts only one face of an
object , however, the 30 nature of the projected object can be difficult to deduce, even if
several projections of the same object are studied simultaneously.

Axonomerric orthographic projections use projection planes that are not normal to a
principal axis and therefore show several faces of an object at once. They resemble the
perspective projection in this way, but differ in that the foreshortening is uniform rather
than being related to the distance from the center of projection. Parallelism of lines is
preserved but angles are not, while distances can be measured along each principal axis (in
general, with different scale factors).

The isometric projection is a commonly used axonometric projection. The project ion­
plane normal (and therefore the direction of projection) makes equal angles with each
principal axis. lf the projection-plane normal is (d., dw• d,), then we require that ld.l = ldwl

0270

234 Viewing in 3 0

Projection
plane
(top view)

J,...,d.--1-,,..

Projectors lor
front view

Projection
plane
(front view)

Projection
plane
(side view)

Fig. 6 .6 Construction of three orthographic projections.

= ld,l or ±d.= ±d
1

= ±d,. There are just eight directions (one in each octant) that satisfy
this condition. Figure 6. 7 shows the construction of an isometric projection along one such
direction, (I, -I , -I).

The isometric projection has the useful property that all three principal axes are equally
foreshortened, allowing measurements along the axes to be made to the same scale (hence
the name: iso for equal, metric for measure). ln addition, the principal axes project so as to
make equal angles one with another, as shown in Fig. 6.8.

Oblique projections, the second class of parallel projections, differ from orthographic
projections in that the projection-plane normal and the direction of projection differ.

y
......_

Projection
plane
normal

-X 120' 120'

\.
z

Fig. 6. 7 Construction of an isometric
projection of a unit cube. (Adapted from
(CARL78]. Association for Computing
Machinery, Inc.; used by permission.)

z 120' X

Fig. 6.8 Isometric projection of unit vec­
tors. with direction of projection (1, 1, 1).

0271

6.1

Projection
plane

Projection· plane
normal

Projections 235

X

Fig. 6 .9 Construction of oblique projection. (Adapted from (CARL78], Association for
Computing Machinery, Inc.; used by permission.)

Oblique projections combine properties of the front, top, and side orthographic projections
with those of the axonometric projection: the projection plane is nonnal to a principal axis,
so the projection of the face of the object parallel to this plane allows measurement of
angles and distances. Other faces of the object project also, allowing distances along
principal axes, but not angles, to be measured. Oblique projections are widely, although
not exclusively, used in this text because of these properties and because they are easy to
draw. Figure 6.9 shows the construction of an oblique projection. Notice that the
projection-plane nonnal and the direction of projection are not the same.

Two frequently used oblique projections are the cavalier and the cabinet. For the
cavalier projection, the direction of projection makes a 45° angle with the projection plane.
As a result, the projection of a line perpendicular to the projection plane has the same
length as the line itself; that is, there is no foreshortening. Figure 6.10 shows several
cavalier projections of the unit cube onto the (x, y) plane; the receding lines are the
projections of the cube edges that are perpendicular to the (x, y) plane, and they fonn an
angle a to the horizontal. This angle is typically 30° or 45°.

y y

)(

z z
(a) (b)

fig. 6 .10 Cavalier projection of the unit cube onto the z = 0 plane. All edges project at
unit length. In (a), the direction of projection is (Y'i/2. V'ij2, -1); in (b), it is (VJ/2,
1/2. - 1).

0272

236 Viewing in 30

y y

X

z z

(a) (b)

Fig. 6 . 11 Cabinet projection of the unit cube onto the z .. 0 plane. Ed~s parallel to the
x andy axes project at unit length. In (a), the direction of projection is (V2/4, V2/4, - 1);
in (b), it is {V'3f4, 1/ 4. - 1).

Cabinet projections, such as those in Fig. 6 . 11, have a direction of projection that
makes an angle of arctan(2) = 63.4° with the projection plane, so lines perpendicular to the
projection plane project at one-half their actual length . Cabinet projections are a bit more
realistic than cavalier ones are, since the foreshortening by one•half is more in keeping with
our other visual experiences.

Figure 6.12 helps to explain the angles made by projectors with the projection plane for
cabinet and cavalier projections. The (x, y) plane is the projection plane and the point P' is
the projection of (0, 0, I) onto the projection plane. The angle a and length I are the same
as are used in Figs. 6. 10 and 6.11, and we can control them by varying the direction of
projection (I is the length at which the z-axis unit vector projects onto the (x, y) plane; a is
the angle the projection makes with the x axis). Designating the direction of projection as
(dx, dy, -I), we see from Fig. 6 . 12 that dx = I cosa and dy = I sina. Given a desired I and
a, the direction of projection is (/ cosa, I sina, -I).

Figure 6.13 shows the logical relationships among the various types of projections. The
common thread uniting them all is that they involve a projection plane and either a center of
projection for the perspective projection, or a direction of projection for the parallel
projection. We can unify the parallel and perspective cases further by thinking of the center
of projection as defined by the direction to the center of projection from some reference

y

X

Fig. 6 .12 Oblique parallel projection of P • (0, 0 , 1) onto P • (I cos a , I sin {J, 0). The
direction of project ion is P - P = (I cos a, I sin {J, -1).

0273

6.2

Top
(plan)

Specifying an Arbitrary 30 View

Planar geometric
projll(;tions

~
Parallel Perspll(;tive

~
Orthographic Oblique

el:~~~~nSide Axono~metrlc Cavalier

elevation Other

Isometric

Three-point

Other

237

Fig. 6.13 The subclasses of planar geometric projections. Plan view is another term
for a top view. Front and side are often used without the term elevation.

point, plus the distance to the reference point. When this distance increases to infinity, the
projection becomes a parallel projection. Hence, we can also say that the common thread
uniting these projections is that they involve a projection plane, a direction to the center of
projection, and a distance to the center of projection.

ln the ne)(t section, we consider bow to integrate these various types of projections into
the 30 viewing process.

6.2 SPECIFYING AN ARBITRARY 30 VIEW

As suggested by Fig. 6.1, 30 viewing involves not just a projection but also a view volume
against which the 30 world is clipped. The projection and view volume together provide all
the information needed to clip and project into 20 space. Then, the 20 lrdnsformation into
physical device coordinates is straightforward. We now build on the planar-geometric­
projection concepts introduced in the preceding section to show how tO specify a view
volume. The viewing approach and terminology presented here is that used in PH!GS.

The projection plane, henceforth called the view plane to be consistent with the
graphics literature, is defined by a point on the plane called the view reference point (VRP)
and a normal to the plane called the view-plane normal (VPN). 1 The view plane may be
anywhere with respect to the world objects to be projected: it may be in front of, cut
through, or be behind the objects.

Given the view plane, a window on the view plane is needed. The window's role is
similar to that of a 20 window: its contents are mapped into the viewport, and any part of

1 PHI OS has an additional variable, the view-plane distance (VPD): the view plane can be a distance
VPD from the VRP. VPD is positive in the direction of VPN. See Exercise 6.22.

0274

238 Viewing in 30

v

Fig. 6.14 The view plane is defined by VPN and VRP; the v axis is defined by the
projection of VUP along VPN onto the view plane. The u axis forms the right-handed
viewing reference-coordinate system with VPN and v.

the 30 world that projects onto the view plane outside of the window is not displayed. We
shall see that the window also plays an important role in defining the view volume.

To define a window on the view plane, we need some means of specifying minimum
and maximum window coordinates along two orthogonal axes. These axes are part of the
30 viewing-reference coordinate (VRC) system. The origin of the VRC system is the VRP.
One axis of the VRC is VPN; this axis is called then axis. A second axis of the VRC is
found from the view up vector (VUP), which determines the v-axis direction on the view
plane. The v axis is defined such that the projection of VUP parallel to VPN onto the view
plane is coincident with the v axis. The u-axis direction is de.fined such that u, v, and n form
a right-handed coordinate system, as in Fig. 6.14. The VRP and the two direction vectors
VPN and VUP are specified in the right-handed world-coordinate system. (Some graphics
packages use they axis as VUP, but this is too restrictive and fails if VPN is parallel to they
axis, in which case VUP would be undefined.)

With the VRC system defined, the window's minimum and maximum u and v values
can be defined , as in Fig. 6. 15. This figure illustrates that the window need not be
symmetrical about the view reference point, and explicitly shows the center of the window,
cw.

The center of projection and direction of projection (DOP) are defined by a projection
reference point (PRP) plus an indicator of the projection type. If the projection type is
perspective, then PRP is the center of projection. If the projection type is parallel , then the
DOP is from the PRP to CW. The CW is in general not the VRP, which need not even be
within the window bounds.

The PRP is specified in the VRC system, not in the world-coordinate syst.em; thus , the
position of the PRP relative to the VRP does not change as VUP or VRP are moved. The

n

View
plane

u

Fig. 6.15 The view reference-coordinate system (VRC) is a right-handed system made
up oftheu, v, andnaxes. The naxis is always the VPN. CW is the center of the w indow.

0275

6.2

Center of
projection
(PAP)

Specifying an Arbitrary 30 View 239

Fig. 6.1 6 The semi-infinite pyramid view volume for perspective projection. CW is the
center of the window .

advantage of this is that the programmer can specify the direction of projection required, for
example, by a cavalier projection, and then change VPN and VUP (hence changing VRC),
without having to recalculate the PRP needed to maintain the desired projection. On the
other hand, moving the PRP about to get different views of an object may be more difficult.

The view volume bounds that portion of the world that is to be clipped out and
projected onto the view plane. For a perspective projection, the view volume is the
semi-infinite pyramid with apex at the PRP and edges passing through the comers of the
window. Figure 6.16 shows a perspective-projection view volume. Positions behind the
center of projection are not included in the view volume and thus are not projected. In
reality, of course, our eyes see an irregularly shaped cone!ike view volume. However, a
pyramidal view volume is mathematically more tractable, and is consistent with the concept
of a rectangular viewport.

For parallel projections, the view volume is an infinite parallelepiped with sides
parallel to the direction of projection, which is the direction from the PRP to the center of
the window. Figures 6.17 and 6.18 show parallel-projection view volumes and their

Fig. 6.17 Infinite parallelepiped view volume of parallel orthographic projection. The
VPN and direction of projection (DOP) are parallel. DOP is the vector from PRP to CW,
and is parallel to the VPN.

0276

240 Viewing in 30

n

Fig . 6 .18 Infinite parallelepiped view volume of oblique orthographic projection. The
direction of projection (DOP) is not parallel to the VPN.

relation to the view plane, window, and PRP. For orthographic parallel projeclions, but not
for oblique parallel projections, the sides of the view volume are normal to the view plane.

At times, we migh1 wanl the view volume 10 be finile, in order to limit the number of
outpul primilives projected onto the view plane. Figures 6.19, 6.20, and 6.21 show how lhe
view volume is made finite wilh a from clipping plane and back clipping plane. These
planes, somelimes called the hither and yon planes, are parallel to 1he view plane; their
normal is the VPN. The planes are specified by the signed quantities/rom distance (F) and
back distance (B) relative lo the view reference point and along the VPN, wilh positive
distances in the direction of the VPN. For the view volume to be positive, the fronl dislance
musl be algebraically greater than the back distance.

Limiting the view volume in this way can be useful in order to eliminate extraneous
objects and 10 allow the user to concentrate on a particular portion of the world. Dynamic
modification of either the front or rear distances can give the viewer a good sense of the
spatial relationships between different parts of I he objecl as these parts appear and disappear
from view (see Chapter 14). For perspective projections, there is an additional motivation.
An objecl very dislant from the center of project.ion projects onto lhe view surface as a

Front
clipping
plane

Fig. 6 .19 Truncated view volume for an orthographic parallel projection. DOP is the
direction of projection.

0277

6.2

Front
clipping
plane

VPN

Specifying an Arbitrary 30 View 241

---- DOP

~--F--~~--8--~

Fig. 6.20 Truncated view volume for oblique parallel projection showing VPN oblique
to direction of projection (DOP); VPN is also normal to the front and back clipping
planes.

"blob" of no distinguishable fonn. In displaying such an object on a plotter, the pen can
wear through the paper, on a vector display, the CRT phosphor can be burned by the
electron beam; and on a film recorder, the high concentration of light causes a fuzzy white
area to appear. Also, an object very near the center of projection may extend across the
window like so many disconnected pick-up sticks, with no discernible structure. Specifying
the view volume appropriately can eliminate such problems.

How are the contents of the view volume mapped onto the display surface? First ,
consider the unit cube extending from 0 to I in each of the three dimensions of normalized
projection coordinmes (NPC). The view volume is transformed into the rectangular solid of
NPC, which extends from x.,., to x.,.. along the x axis, from Ymm toy,.. along they axis, and
from zmin to z.,.,. along the z axis. The front clipping plane becomes the z.,., plane and the
back clipping plane becomes the zm1n plane. Similarly, the 'lmi• side of the view volume
becomes the x.,., plane and the u,.,. side becomes the x plane. Finally, tpe vmln side of the
view volume becomes the Ymm plane and the v .. ., side becomes the Ymu plane. This
rectangular solid portion of NPC, called a 3D viewpon, is within the unit cube.

VPN

Front
clipping
plane

~-- F--~~-8--~

Fig. 6.21 Truncated view volume for perspective projection.

0278

242 Viewing in 30

The z = I face of this unit cube, in turn , is mapped into the largest square that can be
inscribed on the display. To create a wire-frame display of the contents of the 30 viewport
(which are the contents of the view volume), the z-component of each output primitive is
simply discarded, and the output primitive is displayed. We will see in Chapter 15 that
hidden surface removal simply uses the z-component to determine which output primitives
are closest to the viewer and hence are visible.

PHJGS uses two 4 x 4 matrices, the view orientation matrix and the view mapping
matrix , to represent the complete set of viewing specifications. The VRP, VPN, and VUP
are combined to form the view orientation 11Ultrix, which transforms positions represented
in world coordinates into positions represented in VRC. This is the transformation that
takes the u, v, and n axes into the x, y, and z axes, respectively.

The view volume specifications, given by PRP, llmm, 11111,,., v011., v,..., F, and 8, along
with the 30 viewport specification , given by xl11la, x y...,, y , z011n, z.,.., are combined to
form the view 11U1pping matrix, which transforms points in VRC to points in normalized
projection coordinates. The subroutine calls that form the view orientation matrix and view
mapping matrix are discussed in Section 7.3.4.

In the next section, we see how to obtain various views using the concepts introduced in
this section. In Section 6.4 the basic mathematics of planar geometric projections is
introduced, whereas in Section 6.5 the mathematics and algorithms needed for the entire
viewing operation are developed.

6.3 EXAMPLES OF 30 VIEWING

In this section, we consider how the basic viewing concepts introduced in the previous
section can be applied to create a variety of projections, such as those shown in Figs. 6.22
and 6.23. Because the house shown in these figures is used throughout this section, it will
be helpful to remember its dimensions and position, which are indicated in Fig. 6.24. For
each view discussed, we give a table showing the VRP. VPN, VUP, PRP, window, and

Fig. 6.22 Two-point perspective projec­
tion of a house.

Fig. 6 .23 Isometric projection of a
house.

0279

6.3

(0, 10, 54)

z

Examples of 30 Viewing

y

(16, 10, 30)
(16, 0, 30)

(16, o. 54)

243

Fig. 6.24 The house extends from 30 to 54 in z. from 0 to 16 in x. and from 0 to 16
in y.

projection type (perspective or parallel). The 30 viewport default, which is the unit cube in
NPC, is assumed throughout this section. The notation (WC) or (VRC) is added to the table
as a reminder of the coordinate system in which the viewing parameter is given. The fonn of
the table is illustrated here for the default viewing specification used by PHlGS. The
defaults are shown in Fig. 6.25(a). The view volume corresponding to these defaults is

y, v y, v

)(, u

z, n z, n
(a) (b)

y, v

K, U

z, n

(C)

Fig. 6 .25 (a) The default viewing specification: VRP is at the origin, VUP is the y axis,
and VPN is the z axis. This makes the VRC system of u, v, and n coincide w ith the x, y, z
world-coordinate system. The window extends from 0 to 1 along u and v, and PRP is at
(0.5, 0.5, 1.0). (b) Default parallel projection view volume. (c) View volume if default
projection were perspective .

.. .

0280

244 VIewing in 30

shown in Fig. 6.25(b). If the rype of projection is perspective rather than parallel, then the
view \'Oiume is the pyramid shown in Fig. 6.25(c).

Viewing parameter
VRP(WC)
VPN(WC)
VUP(WC)
PRP(VRC)
window (VRC)
projection lype

Value
(0. o. 0)
(0. 0, I)
(0,1.0)
(O.S, O.S, 1.0)
(0. I. 0, I)
parallel

Comments
origin
z axis
y axis

Readers wanting to review how all these parameters interrelate are encouraged to
construct a house, the world coordinate system, and the VRC system with Tinker Toys, as
pictured in Fig. 6.26. The idea is to position the VRC system in world coordinates as in the
viewing example and to imagine projectors from points on the house intersecting the view
plane. In our experience, this is a useful way to understand (and teach) 30 viewing
concepts.

(a)

(b)

Fig. 6 .26 Stick models useful for understanding 30 viewing. (a) House and world­
coordinate syst.em. (b) House and VRC system.

0281

6.3 Examples of 30 Viewing 245

6.3 . 1 Perspective Projections

To obtain the front one-point perspective view of the house shown in Fig. 6.27 (this and all
similar figures were made with the SPHlGS program, discussed in Chapter 7), we position
the center of projection (which can be thought of as the position of the viewer) at x = 8, y =
6, and z = 84. The x value is selected to be at the horizontal center of the house and the y
value to correspond to the approximate eye level of a viewer standing on the (x, z) plane; the
z value is arbitrary. In this case, z is removed 30 units from the front of the house (z = 54
plane). The window has been made quite large, to guarantee that the house fits within the
view .,lume. All other viewing parameters have their default values, so the overall set of
viewing parameters is as follows:

VRP(WC)
VPN(WC}
VUP(WC)
PRP(VRC)
window(VRC)
projection type

(0, 0, 0)
(0, 0, I)
(0,1,0)
(8, 6, 84)
(-50, 50, -50, 50)
perspective

Although the image in Fig. 6.27 is indeed a perspective projection of the house, it is
very small and is not centered on the view surface. We would prefer a more centered
projection of the house that more nearly spans the entire view surface, as in Fig. 6.28. We
can produce this effect more easily if the view plane and the front plane of the house
coincide. Now, because the front of the house extends from 0 to 16 in both x and y, a
window extending from -I to 17 in x and y produces reasonable resu.lts.

We place the view plane on the front face of the house by placing the VRP anywhere in
the z = 54 plane; (0, 0, 54), the lower-left front comer of the house, is fine. For the center
of projection to be the same as in Fig. 6.27, the PRP, which is in the VRC system, needs to
be at (8, 6, 30). Figure 6.29 shows this new arrangement of the VRC, VRP, and PRP,

Fig. 6 .27 One-point perspective projec- Fig. 6 .28 Centered perspective projec-
tion of the house. tion of a house.

0282

246 Viewing in 3D

~""1+"'-cw

/PN"~=~u
Window on
view plane

z 8 PRP ~ (8, 6, SO}

y

Fig. 6 .29 The viewing situation for Fig. 6 .28.

which corresponds to the following set of viewing parameters:

VRP(WC)
VPN(WC)
VUP(WC)
PRP(VRC)
window(VRC)
projection type

(0, 0, 54)
(0, 0, I)
(0, 1,0)
(8, 6, 30)
(-I. 17, -1 , 17)
perspective

This same result can be obtained in many other ways. For instance, with the VRP at (8,
6, 54), as in Fig. 6.30, the center of projection, given by the PRP, becomes (0, 0, 30). The
window must also be changed, because its definition is based on the VRC system, the origin
of which is tbe VRP. The appropriate window extends from -9 to 9 in u and from -7 to I I
in v. With respect to the house, this is the same window as that used in the previous

z

v

Window on
view plane

y

Fig. 6 .30 An alternative viewing situation for Fig. 6 .28.

0283

8.3 Examples of 30 Viewing 24 7

example, but it is now specified in a different VRC system. Because the view-up direction is
they axis, the u axis and x axis are paraUel , as are the v and y axes. In summary, the
following viewing parameters, shown in Fig. 6.30, also produce Fig. 6.28:

VRP(WC)
VPN(WC)
VUP(WC)
PRP(VRC)
window(VRC)
projection type

(8, 6 , 54)
(0, 0, I)
(0, I, 0)
(0, o. 30)
(-9, 9, -7, II)
perspective

Next, let us try to obtain the two-point perspect.ive projection shown in Fig. 6.22. The
center of projection is analogous to the position of a camera that takes snapshots of
world-coordinate objects. With this analogy in mind, the center of projection in Fig. 6.22
seems to be somewhat above and to the right of the house, as viewed from the positive
z axis. The exact center of projection is (36, 25, 74). Now, if the comer of the house at
(16, 0, 54) is chosen as the VRP, then this center of projection is at (20, 25, 20) relative to
it. With the view plane coincident with the front of the house (the z = 54 plane), a window
ranging from -20 to 20 in u and from -5 to 35 in v is certainly large enough to contain the
projection. Hence , we can specify the view of Fig. 6.31 with the viewing parameters:

VRP(WC)
VPN(WC)
VUP(WC)
PRP(VRC)
window(VRC)
projection type

(16, 0, 54)
(0, 0, I)
(0, 1,0)
(20, 25. 20)
(-20, 20, -5, 35)
perspective

This view is similar to, but clearly is not the same as, that in Fig. 6.22. For one thing,
Fig. 6.22 is a two-point perspective projection, whereas Fig. 6.31 is a one-point
perspective. It is apparent that simply moving the center of projection is not sufficient to
produce Fig. 6.22. In fact, we need to reorient the view plane such that it cuts both the x and

Fig. 6 .31 Perspective projection of a house from (36, 25, .;r4) with VPN parallel to the
z axis.

0284

248 Viewing in 30

View plane y

X

z

Fig. 6.32 The view plane and VRC system corresponding to Fig. 6.22.

z axes, by setting VPN to (I, 0 , 1). Thus, !he viewing parameters for Fig. 6.22 are as
follows:

VRP(WC) (16, 0. 54)
VPN(WC) (I, 0, I)
VUP(WC) (0, 1,0)
PRP(VRC) (0, 25, 20Yl)
window(VRC) (-20, 20, - 5, 35)
projection type perspective

Figure 6.32 shows the view plane established with this VPN. The 20V2 n componenl
of the PRP is used so that the center of projeclion is a distance 20V2 away from !he VRP in
the (x, y) plane, as shown in Fig. 6.33.

There are two ways to choose a window that completely surrounds the projection, as
does the window in Fig. 6.22. One can estimate the size of the projection of the house onto
the view plane using a sketch, such as Fig. 6.33, to calculate !he intersections of projectors

;,,-----+•)(
Z=30"1--..---..

z = 54 """-1....__,~ Intersection of projection

z

'-..../...----T rays with view plane

10 units

Projection reference point
(36, 25, 74)

Fig. 6 .33 Top (plan) view of a house for determining an appropriate window size.

0285

6.3 Examples of 30 Viewing 249

Fig. 6.34 Projection of house produced by rotating VUP.

with the view plane. A better alternative, however, is to allow the window bounds to be
variables in a program that are determined interactively via a valuator or locator device.

Figure 6.34 is obtained from the same projection as is Fig. 6.22, but the window has a
different orientation. In all previous examples, the v axis of the VRC system was parallel to
they axis of the v.Qrld-coordinate system; thus, the window (tv.Q of whose sides are parallel
to the v axis) was nicely aligned with the vertical sides of the house. Figure 6.34 has exactly
the same viewing parameters as does Fig. 6.22, except that VUP has been rotated away
from they axis by about 10°.

Another way to specify viewing parameters for perspective projections is suggested in
Fig. 6.35. This figure is modeled after the way a photographer might think about
positioning a camera. Six parameters are needed: the center of projection, which is the
camera position; the center of attention, which is a point at which the camera is aimed (the
VPN is the vector from the center of attention to the center of projection); VUP, the up
vector; D, the distance from the center of projection to the projection plane; W, the width of
the window on the projection plane, and H, the height of the window on the projection
plane. The center of attention need not be on the view plane. ln this model , the VPN is

View
plane

Up vector

Center of
attention VPN

Fig. 6.35 Another way to specify a view, with a camera position (the center of
projection), center of attention, up vector, d istance from the center of projection to the
projection plane, and the height and width of the window on the projection plane. VPN
is parallel to the direction from the center of attention to the camera position.

0286

250 Viewing in 30

always pointed directly at the center of projection, and the view volume is symmetrical
about its center line. The positions are all given in world coordinates-dlere is no concept
of viewing coordinates. Exercise 6.24 asks ~u to conven from these six viewing
parameters into the viewing model given here.

6.3 .3 Parallel Projections

We create a front parallel projection of the house (Fig. 6 .36) by making the direction of
projection parallel to the z axis. Recall that the direction of projection is determined by
the PRP and by the center of the window. With the default VRC system and a window of
(- I, 17, - I , 17), the centerofthewindow is (8, 8, 0). A PRP of (8 , 8, 100) provides a
direction of projection parallel to the z axis. Figure 6 .37 shows the viewing situation that
creates Fig. 6 .36. The viewing parameters are as follows :

VRP(WC)
VPN(WC)
VUP(WC)
PRP(VRC)
window(VRC)
projection type

(0, 0, 0)
(0, 0, I)
(0, I , 0)
(8, 8, 100)
(- 1, 17, - I. 17)
parallel

To create the side view (Fig. 6 .38), we require the viewing situation of Fig. 6.39, with
the ()', z) plane (or any plane parallel to it) as the view plane. This situation corresponds to
the following viewing parameters:

VRP(WC)
VPN(WC)
VUP(WC)
PRP(VRC)
window(VRC)
projection type

(0, o. 54)
(1, 0. 0)
(0, I, 0)
(12, 8. 16)
c-t , 2s. - s. 2 1)
parallel

x axis
y axis

Fig. 6 .36 Front parallel project ion of the house.

0287

8 .3 Examples of 30 Viewing 261

z

y, ~< Window on
.f----.vtew plane

VUP

e PAP c(8, 8, 100)

Fig. 8 .37 Viewing situation that creates Fig. 6.36. a front view of the house. The PRP
could be any point with x ; 8 and y = 8.

The center of the window is at (12, 8, 0) in VRC; hence. the PRP has these same u and v
coordinates.

We create a top view of the house by using the (x, z) plane as the view plane and VPN
as the y axis . The default view-up direction of + y must be changed; we use the negative
x axis. With VRP again specified as a comer of the house, we have the viewing situation
in Fig. 6.40, defined by the following viewing parameters:

VRP(WC)
VPN(WC)
VUP(WC)
PRP(VRC)
window(VRC)
projection type

(16, 0, 54)
(0, l ' 0)
(-1,0,0)
(12, 8, 30)
(-I. 25. -5, 21)
parallel

y axis
negative x axis

z

Window on
view plene

y

PAP •(12, 8, 16)

Fig. 8 .38 Parallel projection from the Fig . 6 .39 The viewing situation for Fig.
side of the house. 6.38.

0288

252 Viewing in 30

z

y

Window on
view plane

Fig. 6.40 The viewing situation for a top view of the house.

Figure 6.23 is an isometric (parallel orthographic) projection in the direction (-I, - I ,
-I), one of the eight possible directions for an isometric (see Section 6.1.2). The following
viewing parameters create such an isometric projection:

VRP(WC)
VPN(WC)
VUP(WC)
PRP(VRC)
window(VRC)
projection type

(8, 8, 42)
(I , I , I)
(0, I , 0)
(0, 0, 10)
(-20, 20. -20, 20)
parallel

A cavalier projection with angle a (see Fig. 6.10) is specified with

VRP(WC)
VPN(WC)
VUP(WC)
PRP(VRC)
window(VRC)
projection type

(8. 8, 54)
(0, 0, I)
(0, I. 0)
(cos~. siM, I)
(- 15, 15, - 15, 15)
parallel

middle front of house
z axis
y axis

The window is symmetrical about VRP, which implies that VRP, the origin of the
VRC system, is the window's center. Placing PRP as specified means that the direction of
projection, which is the vector from PRP to the window center, is (0, 0, 0) - PRP =
- PRP, or its negmive PRP. From Section 6. 1.2, we know that the cavalier projection's
direction of projection is that given in the preceding table: - PRP = - (cosa, sina, 1).
Now notice what happens if a cavalier projection onto a plane of constant x instead of
constant z is desired: only VRP, VPN, and VUP need to be changed to establish a new VRC
system. The PRP, window, and projection type can remain fixed .

0289

6.4 The Mathematics of Planar Geometric Projections 253

Fig. 6.41 Perspective projection of the house with back clipping plane at z = 31 .

6.3.4 Finite View Volumes

In alllhe examples so far, the view volume has been assumed to be infinite. The front and
back clipping planes, described Section 6.2, help to determine a finite view volume. These
planes, both of which are parallel to the view plane, are at distances F and 8 respectively
from the view reference point, measured from VRP along VPN. To avoid a negative view
volume, we must ensure that F is algebraically greater than B.

A front perspective view of lhe house wilh lhe rear wall clipped away (Fig. 6.41) results
from the following viewing specification, in which F and 8 have been added. lf a distance is
given, chen clipping against the corresponding plane is assumed; otherwise, it is not. The
viewing specification is as follows:

VRP(WC)
VPN(WC)
VUP(WC)
PRP(VRC)
window(VRC)
projection type
F(VRC)
B(VRC)

(0, 0, 54) lower-left front of house
(0, 0, I) z axis
(0, I, 0) y axis
(8, 6, 30)
(- 1, 17, - I, 17)
perspective
+ I one unit in front of house, at z = 54 + I = 55
-23 one unit from back of house, at z = 54 - 23 = 31

The viewing situation for this case is the same as that in Fig. 6.29, except for the addition of
the clipping planes.

If the front and back clipping planes are moved dynamically , the 3D structure of the
object being viewed can often be discerned more readily than it can with a static view.

6.4 THE MATHEMATICS OF PLANAR GEOMETRIC PROJECTIONS

In this section , we introduce the basic mathematics of planar geometric projections . For
simplicity, we start by assuming that, in the perspective projection, the projection plane is
normal to lhe z axis at z = d, and that, in lhe parallel projection, the projection plane is the
z = 0 plane. Each of lhe projections can be defined by a 4 x 4 matrix. This is convenient,

0290

254 Viewing in 30

because the projection matrix can be composed wilh transformation matrices, allowing two
operations (transform. then project) to be represented as a single matrix. In the next
section, we discuss arbitrary projection planes.

In this section. we derive 4 x 4 matrices for several projections, beginning with a
projection plane at a distance d from the origin and a point P to be projected onto it . To
calculate P, = (~. y,. z,.>, the paspective projection of (x , y, z) onto the projection plane at
z ~ d, "''e use the similar triangles in Fig. 6.42 to write the ratios

:5! = ~.
d z'

Muhiplying each side by d yields

d • X X

~ = -z- = z!d'

~=~
d z

d·y y
Y, - -z- - z!d'

(6. 1)

(6.2)

The distance d is just a scale factor applied to x, and y,. The division by z causes the
perspective projection of more distant objects to be smaller than that of closer objects. All
values of z are alhwable except z = 0. Points can be behind the center of projection on the
negative z axis or between the center of projection and the projection plane.

The transformation of Eq. (6.2) can be expressed as a 4 x 4 matrix:

View
along
y axis

M~ = [~ i l:d ~l (6.3)

y

X

P(x. y. z)

Fig. '5.4 2 Perspective projection.

0291

6.4 The Mathematics of Planar Geometric Projections 255

Multiplying the point P = [.r y z I J'~" by the matrix Mpor yields the general
homogeneous point rx y z W]'~":

(6.4)

or

(6.5)

Now, dividing by W (which is z/cf) and dropping the fourth coordinate to come back to 30 ,
we have

(X !. 2) - (r~ y z,) .. (.r Y d) · W ' W ' W - .. ,, '' zld ' zld' ' (6 .6)

these equations are the correct results of Eq. (6. 1), plus the transformed z coordinate of d,
which is the position of the projection plane along the z axis.

An alternative formulation for the per.;pective projection places the projection plane at z
= 0 and the center of projection at z = -d, as in Fig. 6.43. Similarity of the triangles now
gives

Multiplying by d, we get

::5! = _ .r_
d z + d'

d . .r .r
.r, = z + d = (zld) + I ·

Projection
plane

d

~=-y­
d z + d '

d. y- y
Y, = z + d - (zld) + I '

P~, y, z)

d

~~====~----~--- z
P~, y, z)

y

Fig. 6 .43 Alternative perspect ive project ion.

(6.7)

(6.8)

0292

258 Viewing in 30

The matrix is

[

I 0

M' = 0 I
.,.. 0 0

0 0 ~ ~~l · 1/d

(6.9)

This fonnulation allows d, the distance to the center of projection, to tend to infinity.
The orthographic projection onto a projection plane at z = 0 is straightforward. The

direction of projection is the same as the projection-plane nonnai--dle z axis, in this case.
Thus. point P projects as

x, = X, Yp = y, z, = 0. (6.10)

This projection is expressed by the matrix

0 0 0] I 0 0
0 0 0 .

0 0 I

(6 . 11)

Notice that as din Eq. (6.9) tends to infinity, Eq. (6.9) becomes Eq. (6.11).
Mpor applies only in the special case in which the center of projection is at the origin ;

M..., applies only when the direction of projection is parallel to the z axis. A more robust
fonnulation , based on a concept developed in [WEIN87], not only removes these
restrictions but also integrates parallel and ~live projections into a single fonnulation.
In Fig. 6.44, the projection of the general point P = (x, y, z) onto the projection plane is P,
= (x,. y,. z,). The projection plane is perpendicular to the z axis at a distance z, from the
origin, and the center of projection (COP) is a distance Q from the point (0, 0, z,). The
direction from (0, 0, z,) to COP is given by the nonnalized direction vector (d,, d,, d,). P, is

,.. or y

COP

p • (Jc, y, z)

(0, 0, Zp)

Fig. 8.44 The intersection of the line from COP toP • (It, y, z) with the projection plane
at z • z, is the projection of the point P. The COP is distance a from the point (0. 0 , z,J. in
direction (d,. d,. dJ.

0293

8.4 The Mathematics of Planar Geometric Projections 257

on the line between COP and P, which can be specified parametrically as

COP + t(P - COP), O:sr :s l. (6.12)

Rewriting Eq. (6.12) as separate equations for the arbitrary point P' = (x', y', z') on
the line, with COP = (0 , 0, z,) + Q(d., d,, d,) , yields

x' = Q d. + (x - Q d.)r,

y' = Q d, + (y - Q ~)t,

z' = (z, + Q d,) + (z - (z, + Q d,))t.

(6 .13)

(6 .14)

(6.15)

We find the projection P, of the point P, at the intersection of the line between COP
and P with the projection plane, by substituting z' = z, into Eq. (6.15) and solving for r:

1
= z, - (z, + Q d,)

z (z, + Q d,) ·
(6. 16)

Substituting this value of 1 into Eq. (6.13) and Eq. (6 .14) to find x' = x, and y' = y, yields

x -i!:.+z d,
_ d, Pd,

x, - t

zV ({ + I
(6 .17)

d d
_ y - z:;t, + zP-:;,

y, - z. -z ·
Q d, + I

(6.18)

Multiplying the identity z, = z, on the right-hand side by a fraction whose numerator and
denominator are both

(6 .19)

maintains the identity and gives z, the same denominator as x, and yP:

z, d z + 1 - z..!L.. + z; + z,Q d,
z = z Q • - {l d, Q d,

P Pz& (/ + I ZQ d,z + I
(6.20)

Now Eqs. (6.17), (6. 18), and (6.20) can be rewritten as a 4 x 4 matrix M,_nJ arranged so
that the last row of M pftfftl multiplied by [x y z I JT produces their common

0294

268 Viewing in 30

denominator-, which is the homogeneous coordinate IV and is hence the divisor of X, Y, and
Z:

0 _d. d.
d, z,d

•
0 -~ ~

d, z,d
M~ = • (6.21) _ _!!._ zt

0 0
Qd, ~ +z,

0 0
I _!!._+

-Qd, Q d,

M,.-.~ specializes to all three of the previously derived projection matrixes MP"', M ;,... and
M.,., given the following V'dlues:

z,
0
d
0

Q

d
d

ld. d, d,l
(0 0 - 1]
(0 0 - 1]
(0 0 - 1]

When Q ;i oo, M,.._.! defines a one-point perspective projection. The vanishing point
of a perspective projection is calculated by multiplying the point at infinity on the z axis,
represented in homogeneous coordinates as [0 0 I OJ'r, by M,_...roJ· Taking this product
and dividing by IV gives

X = Q d,, J = Q tf,, Z = z1 •

Given a desired vanishing point (x , y) and a known distance Q to the center of projection,
these equations uniquely define (d, d1 dJ, because V d: + ~ + d,r = I.

Similarly, it is easy to show that , for cavalier and cabinet projections onto the (x, y)
plane, with a the angle shown in Figs. 6.10 and 6. 11 ,

Cavalier

Cabinet

z,
0

0

Q
00

00

(d. d,
(cosa sina

[~a sina
2

In this section, we have seen how to formulate M,.., M;,_, and M"", all of which are
special cases of the more general M_... ln all these cases, however, the projection plane is
perpendicular to the z axis. In the next section, we remove this restriction and consider the
clipping implied by finite view volumes.

6.5 IMPLEMENTING PLANAR GEOMETRIC PROJECTIONS

Given a view volume and a projection, let us consider how the viewing operation of clipping
and projecting is acrually applied. As suggested by the conceptual model for viewing (Fig.
6. 1), we could clip lines against the view volume by calculating their intersections' with each

•

0295

6.5 Implementing Planar Geometric Projections 259

of the six planes that define the view volume. Lines remaining after clipping would be
projected onto the view plane, by solution of simultaneous equations for the intersection of
the projectors with the view plane. The coordinates would then be transformed from 30
world coordi.nates to 20 device coordinates. However, the large number of calculations
required for this process, repeated for many lines, involves considerable computing.
Happily, there is a more efficient procedure, based on the divide-and-conquer strategy of
breaking down a difficult problem into a series of simpler ones.

Certain view volumes are easier to clip against than is the general one (clipping
algorithms are discussed in Section 6.5.3). For instance, it is simple to calculate the
intersections of a line with each of the planes of a parallel-projection view volume defined
by the six planes

X = - I . X = I , y = -I . y = I, z = 0, z = -I. (6.22)

This is also true of the perspective-projection view volume defined by the planes

x = z, x = -z, y = z, y = -z, z = -zmln, z = -1. (6.23)

These canonical view volumes are shown in Fig. 6.45.
Our strategy is to find the normalizing transformations Npor and N"", that transform an

arbitrary parallel· or perspective-projection view volume into the parallel and perspective
canonical view volumes, respectively. Then clipping is performed, followed by projection
into 20, via the matrices in Section 6.4. This strategy risks investing effort in transforming
points that are subsequently discarded by the clip operation, but at least the clipping is easy
to do.

Figure 6.46 shows the sequence of processes involved here. We can reduce it to a
transform-dip-transform sequence by composing steps 3 and 4 into a single transformation
matrix. With perspective projections, a division is also needed to map from homogeneous
coordinates back to 30 coordinates. This division is done following the second transforma­
tion of the combined sequence. An alternative strategy, clipping in homogeneous
coordinates, is discussed in Section 6.5.4.

x or y

1+--., Back
Front ~ plane
plane-....,

--~----~----+ -Z
- 1

- 1 _,_ _ ___.

(a) Parallel

x or y

1

Front
plane

-1

Back
plana

(b) Perspective

Fig. 6 .45 The two canonical view volumes, for the (a) parallel and (b) perspective
projections. Note that - z is to the right.

0296

260

30W0<1d·
coordinate

prl~es

Viewing in 30

c::::..· I-..
vlew*-

1 _ __. •

-
PrajededJ

~· .

Fig. 6 .46 Implementation of 30 viewing.

20 device
coordinates

Tt•lllolll
flm·A p Jl
tn20dMII
QaDidll I I

Readers fami liar with PHIOS will notice that the canonical view volumes of Eqs.
(6.22) and (6. 23) are different than the default view volumes of PHJOS: the unit cube from 0
to I in .x, y. and z for parallel projection, and the pyramid with apex at (0.5, 0.5, 1.0) and
sides passing through the unit square from 0 to I in .x and y on the z = 0 plane for
perspective projection. The canonical view volumes are defined to simplify the clipping
equations and to provide the consistency bet\\\!en parallel and perspective projections
discussed in Section 6.5.4. On the other hand, the PHlGS default view volumes are defined
to make 20 viewing be a special case of 3D viewing. Exercise 6.26 concerns the PHlOS
defaults.

In the next two sections, we derive the normalizing transformations for perspective and
parallel projections, which are used as tbe first step in the transform-dip-transform
sequence.

6.5.1 Parallel Projection

In this section. we derive the normalizing transformation N,., for parallel projections in
order to transform world-coordinate positions such that the view volume is transformed into
the canonical view volume defined by Eq. (6.22). The transformed coordinates are clipped
against this canonical view volume, and the clipped results are projected onto the z = 0
plane, then arc transformed into the viewport for display.

Transformation N,., is derived for the most general case, the oblique (rather than
orthographic) parallel projection. N,., thus includes a shear transformation that causes the
direction of projection in viewing coordinates to be parallel to z, even though in (u. v, n)
coordinates it is 1101 parallel to VPN. By including this shear. we ean do the projection onto
the z = 0 plane simply by sening z = 0. If the parallel projection is orthographic. the shear
component of the normalization transformation becomes the identity.

The series of transformations that make up Npu is as follows:

I. Translate the VRP to the origin

2. Rotate VRC such that the" axis (VPN) becomes the z axis. the u axis becomes the .x
axis . and the "axis becomes the y axis

3. Shear such that the direction of projection becomes parallel to the z axis

4 . Translate and scale into the parallel-projection canonical view volume of Eq. (6.22).

0297

8.5 Implementing Planar Geometric Projections 261

In PHIGS, steps I and 2 define the view-<Jrientation matrix. and steps 3 and 4 define the
view-mapping matrix.

Figure 6.47 shows this sequence of transformations as applied to a parallel-projection
view volume and to an outline of a house; Fig. 6.48 shows the parallel projection that
results.

Step I is just the translation T(- VRP). For step 2, we use the properties of
onhonormal matrices discussed in Section 5.5 and illustrated in the derivation of Eqs.
(5.66) and (5.67). The rf1N vectors of the rotation matrix to perform step 2 are the unit
vectors that are rocated by R into the x, y, and z axes . VPN is rotated into the z axis. so

VPN
R, = IIVPNII' (6.24).

The u axis , which is perpendicular to VUP and to VPN and is hence the cross-product
of the unit vector along VUP and R, (which is in the same direction as VPN), is r01ated into
the x axis, so

_ VUPXR.
R, - IIVUP X R,W (6.25)

Similarly, the v axis, which is perpendicular to R, and R,, is rotated into the y axis, so

R, = R, X R, . (6.26)

Hence, the rocation in step 2 is given by the matrix

(6.27)

where r1, is the first element of R,, and so on.
The third step is to shear the view volume along the z axis such that all of its planes are

normal to one of the coordinate system axes. We do this step by determining the shear to be
applied to the direction of projection (DOP) to make DOP coincident with the z axis. Recall
that DOP is the vector from PRP to the center of the window (CW). and that PRP is
specified in the VRC system. The first two transformation steps have brought VRC into
correspondence with the world-coordinate system, so the PRP is now itself in world
coordinates. Hence, DOP is CW - PRP. Given

[

dop,l
DOP = dop, , CW =

dop,
0

u,... + llmJn

2
V.u + v,.

2
0

[

prp. l
PRP = prp. ,

' prp.
I

(6.28)

0298

262 Viewing In 30

..------11
y

n

n (a)

n

z (b)

u

n

z (C)

0299

6.5

n

z

z

Implementing Planar Geometric Projections

'--- x
u

(d)

(e)

X I

I
..L._

263

Fig. 6.47 Results at various stages in the parallel-projection viewing pipeline. A top
and off-axis parallel projection are shown in each case. (a) The original viewing situation.
(b) The VRP has been translated to the origin. (c) The (u, v, n) coordinate system has
been rotated to be aligned with the (x, y, z) system. (d) The view volume has been
sheared such that the direction of projection (DOP) is parallel to the z axis. (e) The view
volume has been translated and scaled into the canonical parallel-projection view
volume. The viewing parameters are VRP = (0.325, 0 .8, 4 . 15), VPN = (.227, .267,
1.0), VUP = (.293, 1.0 , .227), PRP = (0.6 , 0 .0 , - 1.0), Window = (-1 .425, 1.0, - 1.0,
1.0), F = 0.0, 8 = - 1. 75. (Figures made with program written by Mr. l. lu, The George
Washington University.)

0300

264 Viewing in 3 0

Fig. 6.48 Final parallel projection of the clipped house.

then

DOP = CW- PRP

= [U!!!!! +2 Ua v..,. + v.., 0]T In 1) T
2

1 - IYrp. prp. prp. - (6.29)

Figure 6.49 shows the DOP so specified and the desired transformed DOP'.
The shear can be accomplished with the (x, y) shear matrix from Section 5.6 Eq.

(5 .47). With coeiJicients shxPIT and shyPIT, the matrix is

- - [~ ~ :z;: ~] SH,., - SH .,(shx,.,. slzy,.,) - O O l O _ (6 .30)

0 0 0 1

As described in Section 5.6, SH., leaves z unaffected, while adding to x andy the terms z ·
sh:crw and z · shy,_. We want to find shx,., and shy,_ such that

DOP' = [0 0 dop, O]T = SH,_ • DOP. (6.31)

~ OOP y

+- VPN t

(a) (b)

Fig. 6.49 lllustrat.ion of shearing using side view of view volume as example. The
parallelogram in (8) is sheared into the rectangle in (b); VPN is unchanged because it is
parallel to the z axis.

0301

6.5 Implementing Pla nar Geometric Projections 265

Performing the muhiplication of Eq. (6.3 1) followed by algebraic manipulation shows that
the equality occurs if

dop dop
sl~- = - -• shy = -::;:!:1.

-·por dop, ' "" dop,
(6.32)

Notice that, for an onhographic projection. dop, = dop
1
= 0, so sl~ = shy,_ = 0, and

the shear matrix reduces to the identity.
Figure 6.50 shows the view volume after these three transformation steps have been

applied . The bounds of the volume are

Um1n .S X < Uma.;c, B s z sF; (6.33)

here F and B are the distances from VRP along the VPN to the front and back clipping
planes , respectively.

The founh and last step in the process is transforming the sheared view volume into the
canonical view volume. We accomplish this step by translating the front center of the view
~lume ofEq. (6.33) to the origin, then scaling to the 2 x 2 x I size of the final canonical
view volume of Eq. (6.22). The transformations are

T = .j _ u.,.. + u..., _ v ... + v..., -F)
'"' '\ 2 • 2 • . (6.34)

(
2 2 I)

Spu = S ' 'F B . U,.. llmln V"""' - V mln
(6.35)

IfF and 8 have not been specified (because front- and back-plane clipping are of!), then any
values that satisfy 8 s F may be used. Values of 0 and I are satisfactory.

In summary, we have:

N = S · T · SH · R · T(-VRP) '"' por •
(6.36)

N,.,. transforms an arbitrary parallel-projection view volume into the parallel-projection
canonical view volume, and hence pem1its output primitives to be clipped against the
parallel-projection canonical view volume.

y

Fig . 6 .50 View volume after transformation steps 1 to 3 .

0302

266 Viewing in 30

(a)

y

z

U X z

n

z (c)

Fig. 6.51 Results at various stages in the perspective-projection viewing pipeline. A
top and off-axis parallel projection are shown in each case. (a) The original viewing
situation. (b) The VRP has been translated to the origin. (c) The (u, v, n) coordinate
system has been rotated to be aligned with the (x, y, z) system. (d) The center of
projection (COP) has been translated to the origin. (e) The view volume has been
sheared, so the direction of projection (DOP) is parallel to the z axis. (f) The view volume

0303

6.6 Implementing Planar Geometric Projections 267

u l.
n j'

z (d)

z

z (e)

r-----+ X

n

z (f)

has been scaled into the canonical perspective-projection view volume. The viewing
parameters are VAP = (1 .0, 1.275, 2 .6), VPN = (1.0, 0 .253, 1.0), VUP = (0.414, 1.0,
0 .253), PAP = (1 .6, 0 .0, 1.075), Window= (- 1.325, 2.25, - 0.575, 0 .575), F = 0, 8
= -1 .2. (Figures made with program written by Mr. L. Lu, The George Washington
University.)

0304

268 Viewing in 30

6 .5.2 Perspective Projection

We now develop the normalizing tranSformation N,.. for perspective projections. N,..
transforms world-coordinate positions such that the view volume becomes the perspccti\'1:·
projection canonical view volume, the lruncated pyramid with apex at the origin defined by
Eq. (6.23). After N,.. is applied, clipping is done against this canonical volume and the
results are projected onto the view plane using M,.. (derived in Section 6.4).

The series of trans formations making up N,., is as follows:

I . Translate VRP to the origin

2. Rotate VRC such that the n axis (VPN) becomes the z axis, the u axis becomes the x
axis , and the v axis becomes the y axis

3. Translate such that the center of projection (COP), gi\'en by the PRP, is at the origin

4 . Shear such that the center line of the view volume becomes the z axis

5. Scale such that the view volume becomes the canonical perspective view volume, the
lruncated right pyramid defined by the six planes of Eq. (6.23).

Figure 6.51 shows this sequence of tranSformations being applied to a perspective­
projection view volume and to a house. Figure 6.52 shows the resulting perspecti\'1:
projection.

Steps I and 2 are the same as those for the parallel projection: R · T(- VRP). Step 3 is a
translation of the center of projection (COP) to the origin , as required for the canonical
perspective view volume. COP is specified relative to VRP in VRC by the PRP = (prp ••
prp., prp.). Viewing-reference coordinates have been transformed into world coordinates
by steps I and 2, so the specification for COP in VRC is now also in world coordinates.
Hence. the translation for step 3 is just T(- PRP).

To compute the shear for step 4 , we examine Fig. 6.53, which shows a side view of the
view volume arter tra.nsformation steps I to 3. Notice that the center line of the view
volume, which goes through the origin and the center of the window, is not the same as the
-z axis. The purpose of the shear is to tranSform the center line into the - z axis. The
center line of the view \'Oiume goes from PRP (which is now at the origin) to CW. the center

Fig . 6 .52 Final perspective projection of the clipped house.

0305

6.5

y

Implementing Planar Geometric Projections

Center of
window

VPN,.__.
VRP

View volume
~ center line

z = vrp~

Fig. 6 .63 Cross-section of view volume after transformation steps 1 to 3 .

269

of the window. It is hence the same as the direction of projection for the parallel projection,
that is, CW - PRP. Therefore the shear matrix is SH"", the same as that for the parallel
projection! Another way to think of this is that the translation by - PRP in step 3, which
took the center of projection to the origin, also translated CW by - PRP, so, after step 3,
the center line of the view volume goes through the origin and CW - PRP.

After the shear is applied, the window (and hence the view volume) is centered on the z
axis. The bounds of the window on the projection plane are

u.,.. - U..W, _ _ Umax - U..W.
2 =X= 2 ' (6.37)

Vmax - Vmi.n < Y < Vmu - Vmm
2 - - 2 .

The VRP, which before step 3 was at the origin, has now been translated by step 3 and
sheared by step 4. Defining VRP' as VRP after the transformations of steps 3 and 4.

VRP' = SHpar · T(-PRP) · [0 0 0 I]T. (6.38)

The z component of VRP', designated as vrp,', is equal to - prp., because the (x, y) shear
SH"" does not affect z coordinates.

The final step is a scaling along all three axes to create the canonical view volume
defined by Eq. (6.23), and shown in Fig. 6.54. Thus, scaling is best thought of as being
done in t~ substeps. ln the first substep, we scale differentially in x and y, to give the
sloped planes bounding the view-volume unit slope. We accomplish this substep by scaling
the window so its half-height and half-width are both -vrp,'. The appropriatex andy scale
factors are -2 · vrp,' l(u - Um.J and -2 · vrp,' /(v...,.. - vn~~.). respectively. In the second
substep, we scale uniformly along all three axes (to maintain the unit slopes) such that the
back clipping plane at z = vrp,' + 8 becomes the z = - I plane. The scale factor for this
substep is -1/(vrp,' + 8). The scale factor has a negative sign so that the scale factor will
be positive, since vrp,' + 8 is itself negative.

Bringing these t~ substeps together, we get the perspective scale transformation:

2 vrp,' 2 vrp,' -I) (6 39)
un~~n)(vrp, + B)' (v""" - vmiJ(vrp, + B)' vrp,' + B · ·

0306

270 Viewing in 3D

y y

Front
clipping
plane:
z = zmln

-r-----.~----~~--~-------- -z
vrp~+ F Z= vrp~

VPN ­
VRP

vrp',+ B

-1

- 1

Back
clipping
plane:
z--1

View
plane at
zProl

(a) Before scaling (b) After scaling

Fig. 6.54 Cross-section of view volume before and after final scaling steps. In this
example, F and 8 have opposite signs, so the front and back planes are on opposite
sides of VRP.

Applying the scale to z changes the positions of the projection plane and clipping planes to
the new positions:

vrp' z - - I
proJ- vrp,' + 8 '

z _ _ vrp,' + F
mlr> - vrp,' + 8 '

z....,. = - vrp,' + 8 = -1 . (6.40)
vrp,' + 8

In summary, the normalizing viewing transformation that takes the perspective-projection
view volume into the perspective-projection canonical view volume is

N = S · SH · T(-PRP) · R · To(-VRP) per per par • (6.41)

Similarly, recall the normalizing viewing transformation that takes the parallel-projection
view volume into the parallel-projection canonical view volume:

N = S · T · SH · R · T(- VRP)
poT ""' poT ""' •

(6.36)

These transformations occur in homogeneous space. Under what conditions can we
now come back to 30 to clip? So long as we know that W > 0 . This condition is easy to
understand. A negative W implies that, when we divide by W, the signs of Z and z will be
opposite. Points with negative Z will have positive z and might be displayed even though
they should have been clipped.

When can we be sure that we will have W > 0? Rotations, translations, scales, and
shears (as defined in Chapter 5) applied to points, lines, and planes will keep W > 0; in
fact, they will keep W = I. Hence, neither Npe nor N"" affects the homogeneous coordinate
of transformed points, so division by W will not normally be necessary to map back into

0307

6.5 Implementing Planar Geometric Projections 27 1

30, and clipping against the appropriate canonical view volume can be performed. After
clipping against the perspective-projection canonical view volume, the perspective­
projection matrix M""', which involves d.ivision, must be applied.

It is possible to get W < 0 if output primitives include curves and surfaces that are
represented as functions in homogeneous coordinates and are displayed as connected
straight-line segments. If, for instance, the sign of the function for W changes from one
point on the curve to the next while the sign of X does not change, then XIW will have
different signs at the t\VO points on the curve. The rational B-splines discussed in Chapter II
are an example of such behavior. Negative W can also result from using some transforma­
tions other than those discussed in Chapter 5, such as with "falce" shadows [BLIN88].

ln the next section, several algorithms for clipping in 30 are discussed. Then, in
Section 6.5.4, we discuss how to clip when we cannot ensure that W > 0.

6.5.3 Clipping Against a Canonical View Volume in 30

The canonical view volumes are the unit cube for parallel projections and the truncated right
regular pyramid for perspective projections. Both the Cohen-Sutherland and Cyrus-Beck
clipping algorithms discussed in Chapter 3 readily extend to 30.

The extension of the 20 Cohen-Sutherland algorithm for the canonical parallel view
volume uses an outcode of 6 bits; a bit is true (I) when the appropriate condition is satisfied:

bit 1-point is above view 110lume
bit 2-point is below view 110lume
bit 3-point is right of view 110lume
bit 4--point is left of view 110lume
bit 5-point is behind view 110lume
bit 6-point is in front of view volume

y>l
y <-I
x>l
X< -I
z <-I
z>O

As in 20, a line is trivially accepted if both endpoints have a code of all zeros, and is
trivially rejected if the bit-by-bit logical and of the codes is not all zeros. Otherwise, the
process of line subdivision begins. Up to six intersections may have to be calculated, one for
each s.ide of the view volume.

The intersection calculations use the parametric representation of a line from P0(x0, y0,

z0) to P1(x1, y1, z1):

x = x0 + 1(x1 - Xo),

Y = Yo + l(yt - yo),

z = z0 + t(z1 - z0) 0 < 1 < I.

(6.42)

(6.43)

(6.44)

As 1 varies from 0 to I, the three equations give the coordinates of all points on the line,
from P0 to P1•

To calculate the intersection of a line with the y = I plane of the view volume, we
replace the variable y of Eq. (6.43) with I and solve for rto find 1 =(I - y0)!(y1 - y0). If tis
outside the 0 to I interval, the intersection is on the infinite line through points P0 and P1 but
is oot oo the portion of the line between P0 and P1 and hence is not of interest. If 1 is in

0308

272 Viewing in 30

[0, I] , then its value is substituted into the equations for x and z to find the intersection's
coordinates:

- + (I - Yo)(xt - xo) - + (I - Yo)(zt - zo) x-xo , z-z0 .
Yt Yo Yt Yo

(6.45)

The algorithm uses out codes to malce the 1 in [0, I] test unnecessary.
The outcode bits for clipping against the canonical perspective view volume are as

follows:

bit 1-point is abo.e view volume
bit 2-point is below view volume
bit 3-point is right of view volume
bit 4-point is left of view volume
bit 5--point is behind view volume
bit 6---point is in front of view volume

y> -z
y<z
x> - z
x<z
z <- I
Z > Zmto

Calculating the intersections of lines with the sloping planes is simple. On the y = z
plane, for which Eq. (6.43) must be equal to Eq. (6.44), Yo+ t(y1 - y0) = z0 + t(z1 - z0).

Then,

z - y
I= o o .

<Yt - Yo) - (zl - zo)
(6.46)

Substit.uting r into Eqs. (6.42) and (6.43) for x andy gives

x = + (xl - Xo)(zo - yo) y = y + <Yt - Yo)(zo - yo)
Xo <Yt - Yo) - (zt - zo)' 0 <Yt - Yo) - (zl - zo) ·

(6.47)

We know that z = y. The reason for choosing this canonical view volume is now clear: Tbe
unit slopes of the planes make the intersection computations simpler than would arbitrary
slopes.

The Cyrus-Beck clipping algorithm was formulated for clipping a line against a general
convex 30 polyhedron, and specialized to the 30 viewing pyramid [CYRU78]. Liang and
Barsky later independently developed a more efficient and more specialized version for
upright 20 and 30 clip regions [LlAN84]. In 20, at most four values of 1 are computed,
one for each of the four window edges; in 30, at most six values. The values are kept or
discarded on the basis of exactly the same criteria as those for 20 until exactly two values of
t remain (the values will be in the interval [0, I]) . For any value of /that is neither 0 nor I,
Eqs. (6.42), (6.43), and (6.44) are used to compute the values of x, y, and z. In the case of
the parallel-projection canonical view volume, we do the extension to 30 by working with
the code given in Section 3.12.4. In the case of the perspective-projection canonical view
volume, new values of N1, P61, P0 - PE!i, and t need to be found for the six planes; they are
given in Table 6. J. The actual code developed by Liang and Barsky but modified to be
consistent with our variable names and tO use outward rather than inward normals is given
in Fig. 6.55. The correspondence between the numerator and denominator of the fractions
in the last column of Table 6.1 and the terms in the code can be seen by inspection. The sign
of -N1 • D, which is the denominator of 1, is used by procedure CLIPt in Fig. 6.55 to
determine whether the intersection is potentially entering or potentiaUy leaving. Hence, in

0309

TABLE 6.1 KEY VARIABLES AND EQUATIONS FOR CYRUS-BECK 30 CUPPING AGAINST THE CANONICAL
PERSPECTIVE PROJECTION VIEW VOLUME•

Outward
Clip nonnal Point on

1
= N, • (P0 - P6 ,)

edge N, edge, Pli, P0 - Pli, -N1 • D

right: x = -z (I. 0. I) (x.y. -x) (xt - X, Yt - y, Z. + x)
(xt - x) + (z. + x) - x.+z.

-(dx + dz) -dx- dz

left: x = z (- I , 0. I) (x. y, X) (xt - x. Yt - y, z. - x)
-<x. - x) + (z0 - x) .. -x. + Zt

dx -dz dx- dz

bottom: y = z (0. - 1, I) (.t. y. y) (xt - X, Yt - y, Zt - y)
-(y. - y) + (ze - y) = -y. + Zt

dy- dz dy- dz

top: y • -z (0, I , I) (.t. y. -y) (xt - X, Yt - y, ,. + y)
(>·. - y) + (Zt + y) - Yo+ Zt

-dy- dz -dy- dz

front: z = z"" (0, 0, I) (x, y, z,.) (.Ji - X, Yt - y, zt - z,..)
(z0 - z....> - Zt- z...,

-dz - dz

back: z = - I (0, 0. - I) (x, y, - I) (.Ji - X, Yo - y, z0 + I)
-(zo+ I) - -z0 - I

dz dz
*The variable D. which is P1 - P0 , is represented as (dx, dy, dz). The exact coordinates of the point P~;, on each edge are
irrelevant to the computation, so they have been denoted by variables x, y, and z. For a point on the right edge , z • -x, as
indicated in the firs t row, third entry.

!"
Ul

3
~

i'
3 • :I
:::!.
:I
Cl .,
iii
:I
I» ..
C)

~
!
:::!.
n .,
.9. a
g' ..
N
w

0310

274 Viewing in 30

void Clip3D (double •xO, double •yO, double •zO, double •xi, double •yi, dou ble •zl ,
double •unin , boolean Mccepr)

{
double rmin = 0.0, rmax = 1.0;
double dx = •xi - •xO, dz = • zi - • zO;
•accept = FALSE: f* Assume initially that none of the line is visible..;
If (CLIPt (-dx- dz, •xO + • zO, &rmin, &rmax)) I• Right side •I

If (CLIP! (dx- ck, -•xO + •zO, &rmin, &rmax)) { I• Left side •I

}

I• Lf gettbis far, part of line is in -z $ x $ z •I
double dy = •yl - •yO;
If (CLIPt (dy- dz, - •><J + •zO, &rmin , &rmax)) I • Bouom •I

If (CLIPt (- dy - dz, •yO + • zO, &rmin, &tmax)} I • Top •I
I• If get this far, part of line is in -z $ x $ z. -z $ y::; z •I
If (CLlPt (- ck, • zO- •unin, &rmin, &rmax)) I • Front •/

If (CLtPt (ck, - • zO- I , &tmin, &rmax)) { I • Back • I
I• Lf get here, part of line is visible in -z $ x $ z. •I
I• -z $ y $ z, - I $ z $ zmin •I
•accept = TRUE; I• Part of line is visible •I
I• If endpoint I (I = I) is not in the region, compute intersection •I
If (rmax < 1.0) { I• Eqs. 6.37 to 6.39 •I

}

•xi= • x0 + rmax * dx;
•yi= •yO + tmax • dy:
• zi = •zO + rmax • dz;

I• If endpoint 0 (r = 0) is not in the region, compute intersection •I
lf (lmin > 0.0) { I• Eqs. 6.37 to 6.39 •I

•xO += rmin • dx;

•><J += tmin * dy;
• zO += rmin • dz:

}
} I• Calculating intersection *'

} I • Clip3D •I

Fig. 6.55 The Uang- Barsky 20 clipping algorithm, extended to the 30 canonical
perspective-projection view volume. The code is from (LIAN84). The function CLIPt is in
Chapter 3, Fig. 3 .45.

the algebraic simplifications done in the table, the sign of the denominator of 1 is always
maintained.

The Sutberland-Hodgman polygon-clipping algoritbro can be readily adapted to 30.
We use six clipping planes rather than four, by mak.ing six calls to SJi...CLIP (Chapter 3)
instead of four.

Once the clipping is done, the surviving output primitives are projected onto the
projection plane with either M.,. or Mrw, and are transformed for d.isplay into the
physical-device-coordinate viewport.

0311

8.6 Implementing Planar Geometric Projections 276

6.5.4 Clipping in Homogeneous Coordinates

There are two reasons to clip in homogeneous coordinates. The first has to do with
efficiency: It is possible to transform the perspective-projection canonical view volume into
rhe parallel-projection canonical view volume, so a single clip procedure, optimized for the
parallel-projection canonical view volume, can always be used. However, the clipping must
be done in homogeneous coordinares to ensure correct results. A single clip procedure is
rypically provided in hardware implementations of the viewing operarion (Chap~er 18). The
second reason is that points that can occur as a result of unusual homogeneous
transformarions and from use of rarional parametric splines (Chap!er II) can have negarive
Wand can be clipped properly in homogeneous coordinates but not in 30.

With regard to clipping, it can be shown that the transformation from the perspective­
projection canonical view volume to the parallel-projection canonical view volume is

I 0 0 0
0 I 0 0

M= I -z .. z_ rF -I. (6.48)
0 0

+z ... I+ z..,
0 0 -I 0

Recall from Eq. (6.40) that Zm~n- -(vrp; + F)/(vrp; + 8), and from Eq. (6.38) that VRP'
= SHP"' • T(- PRP) · [0 0 0 qT. Figure 6.56 shows the resuiLs of applying M to the
perspective-projection canonical view volume.

The matrix M is integrated with the perspective-projection normalizing transformation
N· ,...

N' = M · N = M · S · SH · T{-PRP) · R · T{-VRP) per per por • (6.49)

By using N',. instead of N,.. for perspective projections, and by continuing to use N.,.. for
parallel projections, we can clip against the parallel-projection canonical view volume
rather than againsl the perspective-projection canonical view volume.

y

A

(a)

0
(1 , - 1)

VIew
plane

(- 1, - 1)

c

Center or
projec1lon
at oo
~

y
A'

8'
(b)

D'
(1 • -1)

Veew
plane

- z

(-1, - 1)

C'

Fig 6.66 Side views of normalized perspective view volume before (a) and after (b)
application of matrix M .

0312

276 Viewing in 30

The 3D parallel-projection view volume is defined by -l s x s l, - I s y s I, - I s
z < 0. We find the corresponding inequalities in homogeneous coordinates by replacing x
by XIW, y by YJW, and z by ZIW, whkb results in

- I s X/W s I , -1 s YIW < I , -1 < ZIW < 0. (6.50)

The corresponding plane equations are

(6.51)

To understand how to use these I imits and planes, we must consider separately the cases
of W > 0 and W < 0. In the first case, we can multiply the inequalities of Eq. (6.50) by W
without changing the sense of the inequalities. In the second case, the multiplication
changes the sense. This result can be expressed as

w > o: - w s x s w, - w s y s w, -w s z so,

w < o: -w c:: x > w, -w > Y > w, - w > z a: o.
(6 .52)

(6.53)

In the case at hand-that of clipping ordinary lines and points-only the region given by
Eq. (6.52) needs to be used, because prior to application of M. all visible points have W > 0
(normally W = I).

As we shall see in Chapter II , however, it is sometimes desirable to represent points
directly in homogeneous coordinates with arbitrary W coordinates. Hence, we might have a
W < 0, meaning thai clipping must be done against the regions given by Eqs. (6.52) and
(6.53) . Figure 6.57 shows these as region A and region 8 , and also shows why both regions
must be used.

w

Projection of P1
and P2 onto W • 1 plane

"""----w - 1

~--------~ xorY

Fig. 6.57 The points P, and P2 both map into the same point on theW= 1 plane, as do
all other points on the line through the origin and the two points. Clipping in
homogeneous coordinates against just region A will incorrectly reject P2.

0313

6.5 Implementing Planar Geometric Projections 277

The point P1 = [I 3 2 4]T in region A transforms into the 30 point (t, f, f), which
is in the canonical view volume -I s x s I , -I s y s I, - I s z s 0. The point P2 =
- P1 = [- I -3 -2 - 4 jT, which is not in region A but is in region 8 , transforms into
the same 30 point as P 1; namely, ~.f,f). If clipping were only to region A, then P2 would
be discarded incorrectly. This possibility arises because the homogeneous coordinate points
P1 and P2 differ by a constant multiplier (- 1), and we know that such homogeneous points
correspond to the same 30 point (on the W = I plane of homogeneous space).

There are two solutions to this problem of points in region B. One is to clip aU points
twice, once against each region . But doing two clips is expensive. A better solution is to
negate points, such as P2, with negative W, and then to clip them. Similarly, we can clip
properly a line whose endpoints are both in region 8 of Fig. 6.57 by multiplying both
endpoints by - I , to place the points in region A.

Another problem arises with lines such as P/'2, shown in Fig. 6.58, whose endpoints
have opposite values of W. The projection of the line onto theW= I plane is two segments,
one of which goes to + oo, the other to - oo. The solution now is to clip twice, once against
each region, with the possibility that each clip will return a vi.sible line segment. A simple
way to do this is to clip the line against region A, to negate both endpoints of the line, and to
clip again against region A. This approach preserves one of the original purposes of clipping
in homogeneous coordinates: using a single clip region. Interested readers are referred to
[BLIN78a] for further discussion.

W e -X

Invisible
segment
of Tine

-00 ---------

w

W=X

w m 1 plane

Fig. 6.58 The line P1P2 projects onto two line segments, one from P;' to +co, the other
from P,' to -co (shown as solid thick lines where they are in the clip region, and as
dashed thick lines w here they are outside the clip region). The line must be clipped
twice, once against each region.

0314

2 78 Viewing in 30

Given Eq. (6.51), the Cohen-Sutherland or Cyrus-Beck algorithm can be used for the
actual clipping. ((LIAN84) gives code for the Cyrus-Beck approach; see also Exercise
6.25.) The only difference is that the clipping is in 40, as opposed to 30.

6 .5.5 Mapping into a Viewport

Output primitives are clipped in the normalized projection coordinate system, which is also
called the 30 screen coordinate system. We will assume for this discussion that the
canonical parallel projection view volume has been used for clipping (the perspective
projection M transforms the perspective projection view volume into the parallel projection
view volume if this assumption is incorrect). Hence the coordinates of all output primitives
that remain are in the view volume -I s x s I, - I s y s I, - I s z s 0.

The PHIGS programmer specifies a 3D viewport into which t.he contents of this view
volume are mapped. The 30 viewport is contained in the unit cube 0 < x s I, 0 s y s I ,
0 s z :s I . The z = I front face of the unit cube is mapped into the largest square that can
be inscribed on the display screen. We assume that the lower left comer of the square is at
(0, 0). For example, on a display device with a horizontal resolution of 1024 and a vertical
resolution of 800, the square is the region 0 s x s 799, 0 s y s 799. Points in the unit
cube are displayed by discarding their z coordinate. Hence the point (0.5, 0. 75, 0.46) would
be displayed at the device coordinates (400, 599). In the case of visible-surface determina­
tion (Chapter 15), the z coordinate of each output primitive is used to determine which
primitives are visible and which are obscured by other primitives with larger z.

Given a 30 viewport within the unit cube with coordinates x x. and so forth,
the mapping from the canonical parallel projection view volume into the 30 viewport can
be thought of as a three-step process. In the first step, the canonical parallel projection view
volume is translated so its comer, (-I, -I, -I), becomes the origin. This is effected by
the translation T(I, I, I). Next, the translated view volume is scaled into the size of the 30
viewport, with the scale

S(x..- - x..- y - >'·.- z..- - z. -)
2 ' 2 ' I .

Finally, the properly scaled view volume is translated to the lower-left comer of the
viewport by the translation T(x. Y ZuW· Hence the composite canonical view
volume to 30 viewport transformation is

(
x -r y -y . z -z) M = T(r y . z) • S,., ·"'(I I I)

VV3DV ,..,,_., 2 • 2 t I I I ' '

(6.54)
Note that this is similar to, but not the same as, the window to viewport transformation
Mwv developed in Section 5.4.

6.5.6 Implementation Summary

There are twO generally used implementations of tbe overall viewing transformation. The
first, depicted in Fig. 6.46anddiscussed in Sections 6.5.1 through6.5.3, is appropriate when

0315

6.6 Coordinate Systems 279

output primitives are defined in 3D and the transformations applied to the output primitives
never create a negative W. Its steps are as follows:

I . Extend 3D coordinates to homogeneous coordinates

2. Apply normalizing transformation N~W or Nrwr

3. Divide by W to map back to 3D (in some cases, it is known that W = I, so the division
is not needed)

4. Clip in 30 against the parallel-projection or perspective-projection canonical view
volume, whichever is appropriate

5. Extend 3D coordinates to homogeneous coordinates

6. Perform parallel projection using Mart, Eq. (6.11), or perform perspective projection,
using M,.., Eq. (6.3) with d = -I (because the canonical view volume l.ies along the
-z axis)

1. Translate and scale into device coordinates using Eq. (6.54)

8. Divide by W to map from homogeneous to 2D coordinates; the division effects the
perspective projection.

Steps 6 and 7 are performed by a single matrix multiplication, and correspond to stages 3
and 4 in Fig. 6.46.

The second way to implement the viewing operation is required whenever output
primitives are defined in homogeneous coordinates and might have W < 0, when the
transformations applied to the output primitives might create a negative W, or when a s.ingle
clip algorithm is implemented. As discussed in Section 6.5.4, its steps are as follows:

I . Extend 30 coordinates to homogeneous coordinates

2. Apply normalizing transformation N~"" or Nper' (which includes M, Eq. (6.48))

3. If W > 0, clip in homogeneous coordinates against the volume defined by Eq. 6.52;
else, clip in homogeneous coordinates against the two view volumes defined by Eqs.
(6.52) and (6.53)

4. Translate and scale into device coordinates using Eq. (6.54)

5. Divide by W to map from homogeneous coordinates to 2D coordinates; the division
effects the perspective projection.

6.6 COORDINATE SYSTEMS

Several different coordinate systems have been used in Chapters 5 and 6. ln this section, we
summarize all the systems, and also discuss their relationships to one another. Synonyms
used in various references and graphics subroutine packages are also given. Figure 6.59
shows the progression of coord.inate systems, using the terms generally used in this text; in
any particular graphics subroutine package, only some of the coordinate systems· are
actually used. We have chosen names for the various coordinate systems to reflect common
usage; some of the names th.erefore are not logically consistent with one another. Note that
the term space is sometimes used as a synonym for system.

0316

280 Viewing in 30

30 modeling
(object)

coordinates

r--

30 world
coordinates

.....-
Vl.w

~ .. orleilblllw
lllldrix

View
reference

coordinates

'

Vl.w

"::"

Nonmalized
projection

coordinates

~

~
-20 -

20 device
coordinates

CCICIIdlnals

Perspective projection:

Parallel projection:

R ·Jl-VRP)

R·Jl- VRP)

M ·SP'>, ·SHpar · Jl-PRP)

Spa, · T par · SH.,.,

Fig. 6.59 Coordinate systems and how they relate to one another. The matrices
underneath each stage effect the transformation applied at that stage for the perspec­
tive and parallel projections.

Starting with the coordinate system that is furthest removed from the actual display
device, on the left of Fig. 6.59, individual objects are defined in an object-coordinate
system. PHIGS calls this the modeling-coordinate system; the term local coordinaJe system
is also commonly used. As we shall discuss further in Chapter 7. there is often a hierarchy
of modeling coordinate systems.

Objects are transformed into the world-coordinate system, the system in which a scene
or complete object is represented in the computer, by the modeling transformaJion. This
system is sometimes called the problem-coordinate system or application-coordinate
system.

The view-reference coordinate system is used by PH IGS as a coordinate system to
define a view volume. It is also ca.lled the (u, v, n) system, or the (u, v, VPN) system. The
Core system [GSPC79] used a similar, but unnamed, left-handed system. The left-handed
system is used so that , with the eye or camera at the origin looking toward +z, increasing
values of z are farther away from the eye, xis to the right, andy is up.

Other packages, such as Pixar's RenderMan (PIXA88]. place constraints on the
view-reference coordinate system, requiring that the origin be at the center of projection
and that the view plane normal be tbe z axis. We call tbis the eye-coordinate system;
Renderman and some other systems use the term camera-coordinate system. Referring back
to Section 6.5, the first three steps of the perspective-projection normalizing transformation
convert from the world-coordinate system into the eye-coordinate system. The eye­
coordinate system is sometimes left-handed.

From eye coordinates, we next go to the nonnalized-projection coordinate system, or
3D screen coordinates, the coordinate system of the parallel-projection canonical view
volume (and of the perspective-projection canonical view volume after the perspective
transformation). The Core system calls this system 3D normalized device coordinates.
Sometimes. the system is called 3D logical device coordinates. The term normalized
gene.rally means that all the coordinate values are in either the interval [0, I] or [-1, 1],
whereas the term logical generally means that coordinat.e values are in some other

0317

Exercises 281

prespecified range, such as ro. 10231, which is typically defined to correspond to some
wide.ly available device's coordinate system. In some cases. this system i.s not normalized.

Projecting from 30 into 20 creates what we call the 20 device coordinate system, also
called the normalized device-coordinate system, the image-coordinate system by [SUTH74},
or the screen-coordinate system by RenderMan. Other terms used include screen coordi·
nates, device coordinates, 20 device coordinates, physical device coordinates (in contrast to
the logical device coordinates mentioned previously). RenderMan calls the physical form of
the space raster coordinates.

Unfortunately. there is no single standard usage for many of these terms. For example.
the tenn screen-coordinate S)'Stem is used by different authors tO refer to the last three
systems discussed, covering both 20 and 30 coordinates, and both logical and physical
coordinates.

EXERCISES

6.1 Write a program that accqxs a viewing specification, calculates either N,. or N,... and displays
the house:.

6.2 Program 30 clipping algorithms for parallel and pcrspecti-e projections.

6.3 Show that. for a paraJiel projection with F • -oo and 8 • +oo, the result of clipping in 3D and
then projecting to 20 is the same as the result of projecting to 20 nnd then c lipping in 20.

6.4 Show that, if nJl objects are in front of the center of projection and ifF = -oo and 8 • +oo,
then the result of cUpping in 3 0 against the perspective-projection canonical view volume followed by
pcrspecti-e projection is the same as first doing a pe.specti-e projection into 20 and then clipping in
20.

6 .5 Verify that s,.. (Section 6.5.2) transforms the view "'llume of Fig. 6 .S4(a) into that of Fag.
6.S4(b).

6 .6 Write the code for 30 clipping against the unit cube . Generalize the code to clip against any
rectangular solid with faces normal to the principal axes. Is the generalized code more or less efficient
than that for the unit-<:ube case1

6.7 Write the code for 3D clipping ugainst the perspective-projection canonicnJ view volume. Now
generalize to the view volume defined by

This is the general form of the view volume after steps I to 4 of the pcrspecti-e normalizing
transformation. Which case is more efficient?

6.8 Write the code for 3D clipping against a general six-faced polyht.'<lral view volume whose faces
are defined by

A,r + B,y + C;Z + D, = 0, I s i s 6.

Compare the computational effort needed with that required for each of the following:
a . Clipping against either of the canonicnJ view "'llumes
b. Applying N,_ and then clipping against the unit cube.

0318

282 Viewing in 30

.
6.9 Consider a line in 3D going from the world-<:OOrdinate points P1 (6. 10, 3) to Pt(-3, -5, 2)

and a semi· infinite viewing pyramid in the region -z :s x :s z, -z :s y :s z, which is bounded by the
planes z = +x, z = -x, z = +y, z = -y. The projection plane is at z = I.

a . Clip the line in 30 (using parametric line equations), then project it onto the projection
plane. What aie the clipped endpoints on the plane?

b. Project the line onto the plane, then clip the lines using 20 computations. What are the
clipped endpoints on the plane?

(Hint: If your answers 10 (a) and (b) are not identical, try again!)

6.10 Show what happens when an object " behind" the center of projecotion is projected by M .. , and
then clipped. Your answer should demonstrate why, in general, one cannot project and then clip.

6.11 Consider the 20 viewing operation. with a rotated window. Devise a normalized transforma­
tion to transform the window into the unit square. The window is specified by u.,.,, v.,;., "-· v in
the VRC coordinate system. as in Fig. 6.60. Show that this transformation is the same as that for the
general 3D N..,, when the projection plane is the (x, y) plane and VUP has an x component of -sin8
and a y component of cos8 (i.e.. the parallel projection of VUP onto the view plane is the v
axis).

6.12 The matrix M,.. in Section 6.4 defines a one-point perspective projection. What is the form of
the 4 X 4 matrix that defines a two-point perspective? What is the form of the matrix that defines a

~

three-point perspective? (Hint: Try multiplying M,.. by various rotation matrices .)

6.13 What is the effect of applying M,_. to points whose z t-oordinate is less than zero?

6.14 Devise a clipping algorithm for a cone-shaped (having a circular cross-section) view volume.
The cone's apex is at the origin. its axis is the positive z axis, and it has a 90• interior angle. Consider
using a spherical coordinate system.

6.15 Design and implement a set of utility subroutines to generate a 4 x 4 transformation matrix
from an arbitrary sequence of R, S, and T primitive transformations.

6.16 Draw a decision tree to be used when determining the type of a projection used in creating an
image. Apply this decision tree to the figures in this chapter that are projections from 30.

6.17 Evaluate the speed tradcoffs of performing 3D clipping by using the Cohen-Sutherland
algorithm versus using the 3D Cyrus-Beck algorithm. First, write an assembly-language version of
the progran1 . Count operations executed for each fundamentally different case treated by the
algorithms, and weight the cases equally. (For example. in the Cohen-Sutherland algorithm, trivial
accept, trivial reject, and calculating I, 2 , 3, or4 interesections are the fundamentally different cases.)
Ignore the time taken by subroutine calls (assume that in-line code is used). Differentiate instructions
by the number of cycles they require.

Fig. 6 .60 A rotated window.

0319

x or y

1 -+---...., Front

Back
plane

plane

._ __ __.L___ .. z

1
(a) Parallel

x or y

1

Back
plane

Exercises 283

(b) Perspective

Fig. 6 .61 The default view volumes used by PHIGS. The view volumes are slightly
different from those used in this chapter, as given in Fig. 6.45.

6.18 ln Exercise 6.17, we made the asswnplion that all cases were equally likely. Is this a good
assumption? Explain your answer. Apply either of the algorithms to a variety of rea.! objects, using
various view volwnes, to get a sense of how the mix of cases varies in a realistic setting.

6.19 The canonical view volume for the parallel projection was taken to be the 2 x 2 x I rectangular
parallelepiped. Suppose the unit cybe in the positive octant, with one comer at the origin, is used
instead.

a. Find the normalization N,...' for this view volume.
b. Find the corresponding homogeneous-<:oordinate view volume.

6.20 Give the viewing parameters for top, front, and side views of the house with the VRP in the
middle of the window. Must the PRP be different for each of the views? Why or why not?

6.21 Verify that Eq. (6.48) docs indeed transform the canonical perspective view volume of Fig.
6.56(a) into the canonical parallel view volume of Fig. 6.56(b).

6.22 In PHIGS, the viewing specification allows the view plane tO be at a distance YPD from the
VRP. Redevelop the canonical viewing transformations N""' and N"' tO include YPD. Set YPD ; 0 to
make sure that your results specialize to those in the text.

6.23 Reformulate the derivations of N,_. and Nrw to incorporate the matrix M••-·

6.24 Show how to convert from the six viewing parameters of Fig. 6.35 into the viewing parameters
discussed in this chapter. Write and test a utility subroutine to effect the conversion.

6.25 For the homogeneous clip planes X ; - w, X= W, Y; - W, Y; W, Z; 0, Z = -W,
complete a table like Table 6.1 for using the Cyrus-Beck clipping approach for the W > 0 region
given by w > o. -w s X s w. -w s Y s w, - w s z s 0.

6.26 PHlGS uses the default view volumes shown in Fig. 6.61. These are sl ightly different from the
canonical view volumes used in this chapter, as shown in Fig. 6.45. Modify the N.., and N,..,
transformations to map into the PHIGS default.

6.27 Stereo pairs are two views of the same seene made from slightly different projection reference
point:S, but with the same view reference point. Let d be the stereo separation; that is, the distance
between the two reference points. If we think of the reference points as our eyes, then dis the distance
between our eyes. Let P be the point midway between our eyes. Given P. d. VRP. YPN, and VUP.
derive expressions for the two projection reference point:S.

0320

7
Object Hierarchy

and Simple
PRIGS (SPRIGS)

Andries va.n Da.m
a.nd Da.vid Skla.r

A graphics package is an intermediary between an application program and the graphics
hardware. The output primitives and interaction devices that a graphics package supports
can range from rudimentary to extremely rich. ln Chapter 2, we described the fairly simple
and low-level SRGP package, and we noted some of its limitations. [n this chapter, we
describe a package based on a considerably richer but more complex standard graphics
package, PHIGS (Programmer's Hierarchical Interactive Graphics System1

). A standard
graphics paciUJge such as PHIGS or GKS (Graphical Kernel System) implements a
specification designated as standard by an official national or international standards body;
GKS and PHIGS have been so designated by ANSI (American National Standards Institute)
and ISO (International Standards Organization). The maio purpose of such standards is to
promote portability of application programs and of programmers. Nonofficial standards are
also developed, promoted, and licensed by individual companies or by consortia of
companies and universities; Adobe's PostScript and MIT's X Window System are two of
the current industry standards.

The package described here is called SPHIGS (for Simple PH!GS; pronounced
"ess-figs") because it is essentially a subset of PHIGS. It preserves most of PHlGS's
capabilities and power, but simplifies or modifies various features to suit straighlforward
applications. SPHIGS also includes several enhancements adapted from PHlGS+ e~ten­
sions. Our aim in designing SPHIGS has been to introduce concepts in the simplest possible

1The tenn " PHIGS" in this chapter also includes a set of extens ions to PHlGS, called PHIGS+ , that
supports advanced geometric primitives such as polyhedra, curves , and surfaces, as well as rendering
techniques that use lighting, shading, and depth~ueing , discussed in Chapters 14-16.

285

0321

286 Object Hierarchy and Simple PHIGS (SPHIGS)

way, not to provide a package that is strictly upward-compatible with PHIGS. However, an
SPHlGS application can easily be adapted to run with PHIGS. Footnotes present some of
the important differences between SPHIGS and PHIGS; in general, an SPHIGS feature is
also present in PHIGS unless otherwise noted.

There are three major differences between SPHIGS and integer raster packages, such as
SRGP or the Xlib package of the X Window System. First, to suit engineering and scientific
applications , SPHIGS uses a 3D, floating-point coordinate system, and implements the 3D
viewing pipeline discussed in Chapter 6 .

The second, farther-reaching difference is that SPHIGS maintains a database of
structures. A structure is a logical grouping of primitives, attributes, and other information.
The programmer can modify structures in the database with a few editing commands;
SPHIGS ensures that the screen' s image is an accurate representation of the contents of the
stored database. Structures contain not only specifications of primitives and attributes, but
also invocations of subordinate structures. They thus exhibit some of the properties of
procedures in programming languages. In particular, just as procedure hierarchy is induced
by procedures invoking subprocedures, structure hierarchy is induced by structures
invoking substructures. Such hierarchical composition is especially powerful when one can
control the geometry (position, orientation, size) and appearance (color, style, thkkness,
etc.) of any invocation of a substructure.

The third difference i.s that SPHIGS operates in an abstract, 3D world-coordinate
system, not in 2D screen space, and therefore does not support direct pixel manipulation.
Because of these differences, SPHIGS and SRGP address different sets of needs and
applications; as we pointed out in Chapter 2 , each has its place--no single graphics package
meets all needs.

Because of its ability to support structure hierarchy, SPHIGS is well suited to
applications based on models with component- subcomponent hierarchy; indeed, the
SPHIGS structure hierarchy can be viewed as a special-purpose modeling hierarchy. We
therefore look at modeling in general in Section 7 .I , before discussing the specifics of
geometric modeling with SPHIGS. Sections 7.2lhrough 7.9 show how to create, display,
and edit the SPHJGS structure database. Section 7 . I 0 discusses interaction, particularly
pick correlation. The remainder of the chapter presents PHIGS fi!atures not found in
SPHIGS, discusses implementation issues, and closes with evaluations of SPHIGS and of
alternative methods for encoding hierarchy.

7.1 GEOMETRIC MODELING

7 .1.1 What Is a Model?

You have encountered many examples of models in courses in the physical and social
sciences. For example, you are probably familiar with the Bohr model of the atom, in which
spheres representing electrons orbit a spherical nucleus containing neutron and proton
spheres. Other examples are the exponential unconstrained growth model in biology, and
macro- or microeconometric models that purport to describe some aspect of an economy.
A model is a representation of some (not necessarily all) features of a concrete or abstra.ct
entity. The purpose of a model of an entity is to allow people to visualize and understand

0322

7.1 Geometric Modeling 287

the structure or behavior of the entity, and to provide a convenient vehicle for
"experimentation" with and prediction of the effects of inputs or changes to the model.
Quantitative models common in physical and social sciences and engineering are usually
expressed as systems of equations, and the modeler will experiment by varying the values of
independent variables, coefficients, and exponents. Often, models simplify the actual
structure or behavior of the modeled entity to make the model easier to visualize or, for
those models represented by systems of equations, to make the model computationally
tractable.

We restrict ourselves in this book to the discussion of computer-based models--in
particular, to those that lend themselves to graphic interpretation. Graphics can be used to
create and edit the model, to obtain values for its parameters, and to visualize its behavior
and structure. The model and the graphical means for creating and visualizing it are
distinct; models such as population models need not have any inherent graphical aspects.
Among common types of models for which computer graphics is used are these:

•

•

•

Organizational models are hierarchies representing institutional bureaucracies and
taxonomies, such as library classification schemes and biological taxonomies. These
models have various directed-graph representations, such as the organization chart.

Qoomitative models are equations describing econometric, financial, sociological,
demographic , climatic, chemical, physical, and mathematical systems. These are often
depicted by graphs or statistical plots.

Geomelfic models are collections of components with well-defined geometry and,
often, interconnections between components, induding engineering and architectural
structures, molecules and other chemical structures, geographic structures, and
vehicles. These models are usually depicted by block diagrams or by pseudorealistic
"synthetic photographs."

Computer-assisted modeling allows pharmaceutical drug designers to model the
chemical behavior of new compounds that may be effective against particular diseases ,
aeronautical engineers to predict wing deformation during supersonic flight, pilots to learn
to fly, nuclear-reactor experts to predict the effects of various plant malfunctions and to
develop the appropriate remedies, and automobile designers to test the integrity of the
passenger compartment during crashes. ln these and many other instances, it is far easier,
cheaper, and safer to experiment with a model than with a real entity. ln fact, in many
situations, such as training of space-shuttle pilots and studies of nuclear-reactor safety,
modeling and simulation are the only feasible method for learning about the system. For
these reasons, comput.er modeli ng is replacing more traditional techniques, such as
wind-tunnel tests. Engineers and scientists now can perform many of their experiments with
digital wind tunnels, microscopes, telescopes, and so on. Such numerically based
simulation and animation of models is rapidly becoming a new paradigm in science, taking
its place beside the traditional branches of theory and physical experimentation. Needless to
say, the modeling and simulation are only as good as the model and its inputs-the caution
"garbage in, garbage out" pertains especially to modeling.

Models need not necessarily contain intrinsically geometric data; abstractions such as
organizational models are not spatially oriented. Nonetheless, most such models can be

0323

288 Object Hierarchy and Simple PHIGS (SPHIGS)

represented geometrically; for example. an organizational model may be represented by an
organization chart, or the results of a clinical drug evaluation may be represented by a
histogram. Even when a model represents an intrinsically geometric object, no fixed
graphical representation in the model or view of that model is dictated. For example, we
can choose whether to represent a robot as a collection of polyhedra or of curved surfaces,
and we can specify how the robot is to be " photographed"- from which viewpoint, with
which type of geometric projection, and with what degree of realism. Also. we may choose
to show either the structure or the behavior of a model pictorially; for instance, we may
want to see both a VLSI circuit's physical layout on the chip and its electrical and logical
behaviors as functions of inputs and time.

7 .1 . 2 Geometric Models

Geometric or graphical models describe components with inherent geometrical properties
and thus lend themselves naturally to graphical representation. Among the ingredients a
geometric model may represent are the following:

•

•

•

Spatial layout and shape of components (i.e., the geometry of the entity), and other
attributes affecting the appearance of components, such as color

Connectivity of components (i.e. , the structure or topology of the entity); note that
connectivity information may be specified abstractly (say, in an adjacency matrix for
networks or in a tree structure for a hierarchy) , or may have its own intrinsic geometry
(the dimensions of channels in an integrated circuit)

Application-specific data values and properties associated with components, such as
electrical characteristics or descriptive text.

Associated with the model may be processing algorithms, such as I inear-circuit
analysis for discrete circuit models , finite-element analysis for mechanical structures, and
energy minimization for molecular models.

There is a tradeoff between what is stored explicitly in the model and what must be
computed prior to analysis or display-a classical space-time tradeoff. For example, a
model of a computer network could store the connecting lines explicitly or could recompute
them from a connectivity matrix with a simple graph-layout algorithm each time a new view
is requested. Enough information must be kept with the model to allow analysis and
display, but the exact format and the choices of encoding techniques depend on the
application and on space-time tradeoffs.

7 .1.3 Hierarchy in Geometric Models

Geometric models often have a hierarchical structure induced by a bottom-up construction
prcxfess: Components are used as building blocks to create higher-level entities, which in
tum serve as building blocks for yet higher-level entities, and so on. Like large
programming systems, hierarchies are seldom constructed stric!IY bottom-up or top-down;
what matters is the final hierarchy, not the exact construction process. Object hierarchies
are common because few entities are monolithic (indivisible); once we decompose an entity
into a collection of parts, we have created at least a two-level hierarchy. In the uncommon

0324

7.1 Geometric Modeling 289

Fig. 7 .1 Perspective view of simplified android robot.

case that each object is included only once in a higher-level object, the hierarchy can be
symbolized as a tree, with objects as nodes and inclusion relations between objects as
edges. In the more common case of objects included multiple times, the hierarchy is
symbolized by a directed acyclic graph (DAG). As a simple example of object hierarchy,
Fig. 7. 1 shows a perspective view of a rudimentary " android" robot; Fig. 7 .2(a) shows the
robot's structure as a DAG. Note that we can duplicate the multiply included objects to
convert the DAG to a tree (Fig. 7.2b). By convention, the arrows are left off as redundant
because the ordering relationship between nodes is indicated by the nodes' relative positions
in the tree-if node A is above node B, then A includes B .

The robot is composed of an upper body swiveling on a base. The upper body is
composed of a head that rotates relative to a trunk; the trunk also bas attached to it two
identical arms that may rotate independently through a horizontal axis "at the shoulder."
The arm is composed of a fixed part, "the hand," and a thumb that slides parallel to the
hand to form a primitive gripper. Thus, the thumb object is invoked once in the arm, and
the arm object is invoked twice in the upper body. We discuss the creation of this robot
throughout this chapter; its shape is also presented in three orthographic projections in
windows 2-4 of the screen shown in Fig. 7.7(b).

robot robot

~ ~
base upperBody base upperBodv

~~ I I
arm arm arm

~ I I
thumb thumb thumb

(a) (b)

fig . 7.2 Hierarchy of robot components. (a) Directed acyclic graph (DAG). (b) Tree.

0325

290 Object Hierarchy and Simple PHIGS (SPHIGS)

Although an object in a hierarchy is composed of geometric printitives as well as
inclusions of lower-level subobjects, the OAG and the tree representing the robot's
hierarchy show only references to subobjects. This is analogous to the procedure-hierarchy
diagram commonly used to show the calling structure of a program in a high-level pro­
cedural language. It is important to note that it is up to the designer to decide exactly how a
composite object is hierarchically constructed. For example, the robot could have been
modeled as a I'M>-level hierarchy, with a root object consisting of a base, a head and a trunk
as geometric primitives (parallelepipeds, say), and two references to an "atomic" arm
object composed of geometric primitives only.

Many systems, such as computer networks or chemical plants. can be represented by
network diagrams, in which objects are not only included multiple times, but are also
interconnected arbitrarily. Such networks are also modeled as graphs, possibly even
containing cycles, but they can still el\hibit properties of object-inclusion hierarchy when
subnetworks occur multiple times.

To simplify the task of building complex objects (and their models), we commonly use
application-specific atomic components as the basic building blocks. ln 20 , these
components are often drawn by using plastic or computer-drawn templates of standard
symbolic shapes (also called symbols or stencils). ln drawing programs, these shapes, in
rum, are composed of geometric primitives, such as lines, rectangles, polygons, ellipse
arcs, and so on. ln 30, shapes such as cylinders , parallelepipeds, spheres , pyramids, and
surfaces of revolution are used as basic building blocks. These 30 shapes may be defined in
terms of lower-level geometric primitives, such as 30 polygons; in this case, smoothly
curved surfaces must be approximated by polygonal ones, with attendant loss of resolution.
Alternatively, in advanced modeling systems that deal directly with free-form surfaces or
volumes, shapes such as parametric polynomial surfaces, and solids such as cylinders,
spheres, and cones, are themselves geometric primitives and are defined analytically,
without loss of resolution---see Chapters I I and 12. We use the term object in this chapter
for those 20 or 30 components that are defined in their own modeling coordinate systems
in terms of geometric primitives and lower-level objects, and that usually have not only
geometrical data but also associated application data. An object is thus a (composite) shape
and all its data.

•

•

•

A hierarchy, then, is created for a variety of purposes:

To construct complex objects in a modular fashion, typicaUy by repetitive invocations
of building blocks that vary in geometric and appearance attributes

To increase storage ec<lnomy, since it suffices to store only references to objects that
are used repeatedly , rather than the complete object definition each time

To allow easy update propagation, because a change in the definition of one
building-block object is automatically propagated to all higher-level objects that use
that object (since they now refer to an updated version); the analogy between object
and procedure hierarchy is useful here, in that a change to the body of a procedure is
also reflected in all invocations of that procedure.

The application can use a variety of techniques to encode hierarchical models. For
example, a network or relational database can be used to siore infonnation on objects and

0326

7.1 Geometric Modeling 29 1

on relationships between objects. Alternatively, a more efficient, customized linked-list
structure can be maintained by the application program, with records for objects and
pointers for relationships. Jn some models, connections between objects are objects in their
own right; they must also be represented with data records in the model. Yet another
alternative is to use an object-oriented database [ZDON90]. Object-oriented programming
environments such as SmaJJTalk [GOLD83], MacApp [SCHM86] and ET++ [WE£N88]
are increasingly being used to store model ing information for the geometric objects in
graphics application programs.

Interconnections. In most net~rks, objects are placed in specified locations (either
interactively by the ·user or automatically by the application program) and then are
interconnected. Interconnections may be abstract and thus of arbitrary shape (e.g., in
hierarchy or net~rk diagrams, such as organization charts or project-scheduling charts), or
they may have significant geometry of their own (e.g., a VLS! chip). If connections are
abstract, we can use various standard conventions for laying out hierarchical or ne~rk
diagrams, and we can employ attributes such as line style, line width, or color to denote
various types of relationships (e.g. , "dotted-line responsibility" in an organization chart).
Connections whose shape matters, such as the channels connecting transistors and other
components of a VLSI circuit , are essentially objects in their own right. Both abstract and
nonabstract connections are often constrained to have horizontal or vertical orientations
(sometimes called the Manhanan layout scheme) to simplify visualization and physical
construction.

Parameter passing i.n object hierarchy. Objects invoked as building blocks must be
positioned in exactly the right place in their parent objects, and, in order to fit, often must
be resized and reoriented as well. Homogeneous coordinate matrices were used to
transform primitives in Chapter 5 and to normalize the view volume in Chapter 6, and it
should come as no surprise that, in a hierarchical model, one frequent ly applies scaling,
rotation, and translation matrices to subobjects. Sutherland first used this capability for
grc1phical modeling in Sketchpad [SUTH63], coining the terms master for the definition of
an object and instance for a geometrically transformed invocation. As discussed in Section
4.3.3, graphics systems using hierarchical display lists (also called structured display files)
implement master-instance hierarchy in hardware, using subroutine jumps and high-speed
floating-point arithmetic units for transformations. Because we want to distinguish
geometric transformations used in normalizing the view volume from those used in
building object hierarchy, we often speak of the latter as modeling transformations.
Mathematically, of course. there is no difference between modeling and normalizing
transformations.

Once again, in analogy with procedure hierarchy, we sometimes speak of a parent
object "calling" a child object in a hierarchy, and passing it "geometric pammeters"
corresponding to its scale, orientation, and position in the parent 's coordinate system. As
we see shortly. graphics packages that support object hierarchy, such as SPHIGS, can store,
compose, and apply transformation matrices to vertices of primitives, as well as to vertices
of instantiated child objects. Furthermore, attributes affecting appearance can also be
passed to instantiated objects. In Section 7 .5.3, however, we shall see that the SPHJGS
parameter-passing mechanism is not as general as is that of a procedural language.

0327

292 Object Hie rarchy a nd Simple PHIGS (SPHIGS)

7.1 .4 Relationship between Model, Application Program, and
Graphics System

So far, we have looked at models in general, and geometric models with hierarchy and
modeling transformations in particular. Before looking at SPHIGS, let us briefly review the
conceptual model of graphics first shown in Fig. I .5 and elaborated in Fig. 3.2, to show the
interrelationship between the model, the application program, and the graphics system. In
the diagram in Fig. 7 .3, application programs are divided into five subsystems, labeled (a)
through (e):

a. Build, modify. and maintain the model by adding, de.leting, and replacing information
in it

b. Trnverse (scan) tbe model to extract information for display

c. Traverse the model to extract information used in the analysis of the model's
behavior/performance

d. Display both information (e.g .. rendering of a geometric model, output of an analysis)
and user·interface "tools" (e.g .. menus, dialog boxes)

e. Perform miscellaneous application w ks not directly involving the model or display
(e .g .. housekeeping).

The term subsystem does not imply major modules of code--a few calls or a short
procedure may be sufficient to implement a given subsystem. Furthermore, a subsystem
may be distributed throughout the application program, rather than being gathered in a
separate program module. Thus. Fig. 7.3 simply shows logical components, not necessarily
program structure components; moreover, while it does differentiate the procedures that

(e)
Application
code

Application program

(C)
Traversal ..4
lor 1
analysis

Miscellaneous code Readers and writers
not dealing with of model
model directly

Sharad
front end

Graphics 1-------..j
system

Fig. 7 .3 The application model and its readers and writers.

0328

7.2 Characteristics of Retained-Mode Graphics Packages 293

build, modify, analyze, or display the model, it is not always clear whether to call a
particular module part of the model or part of the model-maintenance code. lt could be
argued, for example, that a circuit -analysis module is really part of the model's definition
because it describes how the circuit behaves. For a programmer using a traditional
procedural language such as Pascal or C, Fig. 7.3 ~rks best if one thinks of the model as
primarily containing data. People familiar with object-oriented programming languages
will find the mixture of data and procedures a natural one.

ln many application programs, especially industrial ones, an "80nO" rule holds: the
major portion of the program (80 percent) deals with modeling of entities, and only a minor
portion (20 percent) deals with making pictures of them. In other words, in many
applications such as CAD, pictorial representation of models is a means .to an end, the end
being analysis, physical construction, numerically controlled machining, or some other
rype of postprocessing. Naturally, there are also many applications for which ''the picture
is the thing" -for example, painting, drafting, film and video production, and animation
of scenes for flight simulators. Of these, all but painting also require a model from which
the images are rendered. In short, most graphics involves significant modeling (and
simulation) and there is considerable support for the saying, " graphics is modeling":
Chapters 11, 12, and 20 are devoted to that important subject.

7.2 CHARACTERISTICS OF RETAINED-MODE GRAPHICS
PACKAGES

ln discussing the roles of the application program, the application model, and the graphics
package, we glossed over exactly what capabilities the graphics package has and what
happens when the model is modified. As noted in Chapter 2, SRGP operates in immediate
mode and keeps no record of the primitives and attributes passed to it. Thus, deletions of
and changes to application objects necessitate the removal of information on the screen and
therefore either selective modification or complete regeneration of the screen; either of these
requires the appUcation to respecify primitives from its mod.el. PHIGS, on the other hand,
operates in retained mode: It keeps a record of all primitives and other related information
to allow subsequent editing and automatic updating of the display, thereby offtoading the
application program.

7 .2 . 1 Central Structure Storage and its Advantages

PHIGS stores information in a special-purpose database called the central structure storage
(CSS). A structrue in PHIGS is a sequence of elements- primitives, appearance attributes,
tranSformation matrices, and •invocations of subordinate structures-whose purpose is to
define a coherent geometric object. Thus, PHIGS effectively stores a special-purpose
modeling hierarchy, comple-te with modeling transformations and other attributes passed as
"parameters" to subordinate structures. Notice the similatities between the CSS modeling
hierarchy and a hardware hierarchical display list that stores a master- instance hierarchy. In
effect, PHIGS may be viewed as the specification of a device-independent hierarchical
display-list package; a given implementation is, of course, optimized for a particular display
device, but the application programmer need not be concerned with that. Whereas many

0329

294 Object Hierarchy and Simple PHIGS (SPHIGS)

PHIGS implementations are purely software, there is increasing use of hardware to
implement part or all of the package.

As does a display list, the CSS duplicates geometric information stored in the
application's more general-purpose modeUdatabase tQ facilitate rapid display traversal­
that is , the traversal used to compute a new view of the model. The primary advantage of the
CSS, therefore, is rapid automatic screen regeneration whenever the application updates the
CSS. This feature alone may be worth the duplication of geometric data in the application
database and the CSS, especially when the PHJGS implementation uses a separate
processor as a " traversal engine" to offload display traversal from the CPU running the
application (see Chapter 18). Sma.ll edits, such as changing a transformation matrix, are
also done efficiently in PHIGS.

A second advantage of the CSS is automatic pick correlation: The package determines
the identity and place within the hierarchy of the primitive picked by the user (see Sections
7 .10.2 and 7.12.2). The pick-correlation facijjty exemplifies a common technique of
moving frequently needed functionajjty into the underlying graphics package.

A third advantage of the CSS is that its editing facilities, in combination with the
features of hierarchical modeling, make it easy to create various dynamic effects-for
eltample, motion dynamics-in which time-varying transformations are used to scale,
rotate , and position subobjects within parent objects. For example, we can model our
simple robot so that each joint is represented by a rotation applied to a substructure (e.g.,
the arm is a rotated subordinate of the upper body) , and dynamically rotate the arm by
editing a single rotation matrilt.

7 .2.2 Limitations of Retained-Mode Packages

Although the CSS (as a special-purpose entity bui lt primarily for display and fast
incremental updating) facilitates certain common modeling operations, it is neither
necessary nor sufficient for aU modeling purposes. It is not necessary because an application
can do its own screen regene.ration when the model is changed, can do its own pick
correlation (albeit with considerable work), and can implement its own object hierarchy via
procedures defining objects and accepting transformations and other parameters. The CSS
is generally not sufficient because, in most applications, a separately built and updated
application data structure is still necessary to record all appropriate data for each
application object. Thus, there is duplication of all geometric data, and the two
representat ions must be synchronized properly. For aU these reasons, some graphics
packages support Ooating-point coordinates and generalized 20 and 3D viewing facilities
without any type of structure storage. The rationale for such immediate-mode packages is
that maintaining the CSS is often not worth the overhead, since the application typically
maintains an application model sufficient for regenerating the screen image.

For applications in which there is significant structural change between successive
images, using a retained-mode package does not pay. For eltample, in a "digital-wind­
tunnel" analysis of an airplane wing, where the surface is represented by a mesh of
triangles, most of the vertices shift slightly in position as the wing is subjected to
aerodynamic forces. Editing a structure database for such a case makes no sense, since most
of the data are replaced for each new image. lndeed, editing the PHJGS structure database
is not advised unless the number of clements to be edited is small relative to the size of the

0330

7.3 Defining and Displaying Structures 295

networks being displayed. The editing tools provided by PHTGS are rudimentary; for
example, it is easy to change a modeling transformation, but to change a verte:>t of a polygon
requires deleting the polygon and respecifying the changed version. Typically, implementa­
tions are likely to be optimized for display traversal, since that is the most common
operation, rather than for massive editing. Furthermore, the application model must be
updated in any case, and it is easier and faster to update just one database than to update two
of them.

Because of these limitations, some implementations of PHIGS offer an immediate­
mode output facility, although for technical reasons that facility is not part of the official
PHIGS specification.

7.3 DEFINING AND DISPLAYING STRUCTURES

The previous section has discussed general properties of PHIGS and SPHIGS. With this
section, we begin describing the SPHIGS package in detail; unless otherwise noted, the
discussion is generally also applicable to PHIGS. The manipulations permitted on SPHIGS
structures include the following:

•
•
•

•
•

Opening (to initiate editing) and closing (to conclude editing)

Deleting

Inserting struClure elements (the three primary types of structure elements are
primitives, attributes, including those that specify modeling transformations, and
elements that invoke substructures) . An element is a data record that is created and
inserted into the currently open structure whenever an element-generator procedure is
called and that stores that procedure's parameters.

Deleting structure elements

Posting for display (by analogy to posting a snapshot on a bulletin board), subject to a
viewing operation that specifies how to map the fto3ting-point coordinates to the
screen's coordinate system.

7 .3.1 Opening and Closing Structures

To create a structure-for e:>tample, the collection of primitives and attributes forming the
arm component of the robot in Fig. 7 .2-we bracket calls to the element-generator
procedures with calls to

void SPH.openStructure (lot structure/D);
void SPH.closeStruciure (void);

These procedures do for structures essentially what the standard open- and close-file
commands do for disk files. Unlike disk files, however, only one structure may be open at
any time, and all elements specified while it is open are stored in it. Once closed, structures
may be reopened for editing (see Section 7.9).

We note two additional properties of structures. First, primitives and attributes can be
specified only as elementS of a structure (much as all statementS in a C program must
be specified in some procedure or function). There are no rules about how many elements
may be stored in a structure; a structure can be empty, or can contain an arbitrarily large

0331

296 Object Hierarchy and Simple PHIGS (SPHIGS)

number of elements, limited only by memory space. Of course, the elements forming a
structure should be, in general, a logically cohesive set defining a single object.

Second, structure IDs ;ve integers. Since they are normally used only by the
application program, not by the interactive user, they do not need to have the more general
fom1 of character strings, although the application programmer is free to define symbolic
constants for structure lOs. Integer IDs also allow a convenient mapping between objects in
the application data structure and the objects' corresponding structure IDs.

7 .3.2 Specifying Output Primitives and Their Attributes

The procedures that generate output-primitive elements look like their SRGP counterparts ,
but there are important differences. First , points are specified with three double-precision
coordinates (x, y, and z) . Moreover, these procedures place elements in the currently open
structure in the CSS rather than directly altering the screen image-displaying structures is
a separate operation described in Section 7.3.3. ln this chapter, the term primitive is used as
shorthand for three related entities: an element-generation procedure, such as SPH_poly­
Line; the structure element generated by t.hat procedure (for example, the polyLine
element); and the displayed image created when a primitive element is executed during
display traversal of central structure storage. SPHIGS executes a primitive element by
transforming the primitive's coordinates by modeling transformations and a viewing
operation, including clipping it to the view volume, and then rasrerizing it (i.e ., converting
it to pixels) . Attributes are more specialized than in SRGP, in that each type of primitive
has its own attributes. Thus, attributes such as color and line style are in effect ''typed,'' so
that the programmer can, for example, reset the current color for lines while preserving the
current colors for polyhedra and text.

Primitives. SPHlGS has fewer output primitives than SRGP does, because the 30
"solid" equivalents of some of SRGP's primitives (e.g. , an ellipsoid) are computationally
expensive to implement, especially with respect to transformations, clipping, and scan
conversion.

Most of the SPHTGS primitives are identical to their SRGP counterparts in their
specification methods (except that the points are 30):

void SPH..polylin.e (int verrexCount, point •vertices):
void SPH..polyMarker (int verrexCoum, point •verrices);
void SPH..fiiiArea (int verrexCoum, point •vertices); I• Like SRGP_potygon • I
void SPH_text (point origi11, char •srr): I• Not fully 30 ; see Section 7.7.2 •I

Note that SPHIGS does not verify that fill areas (or facets , described next) are planar, and
the results are undefined if they are not.

Now, consider the definition of a simple house, shown in F.ig. 7 .4. We can describe this
house to SPHIGS by specifying each face (also called a facet) as a fill area, at the cost of
unnecessary duplication in the specification and storage (in CSS) of each shared vertex.
This duplication also slows down display generation, since the viewing-operation calcula­
tion would be performed on a single vertex more than once. It is far more efficient in storage

0332

7.3 Defining and Displaying Structures 297

f 9

' z

Fig. 7.4 A simple house defined as a set of vertices and facets.

and processing time to specify the facets using indirect references to the shared vertices. We
thus think of a polyhedron as a collection of facets, each facet being a list of vertex indices
and each index being a "pointer" into a list of vertices. We can describe a polyhedron's
specification using the following notation:

Polyhedron = {Vertc:U.ist. FacctLiSt}
VcnexList- {VI, V2, V3, V4, VS, V6, V7, V8, V9 , VIO}
VI • ~ .. y, zJ, V2 = (x,, >'I· ze) ...
FaoctList ={front= {I, 2, 3, 4, 5}, right= {2, 7, 8, 3} bottom={ . . . }}

SPHJGS offers this efficient form of specification with its polyhedron primitive. In SPHIGS
terminology, a polyhedron is a collection of facets that may or may noi enclose a volume. In
a closed polyhedron such as our house, vertices are typically shared by at least three facets,
so the efficiency of the indirect method of specificat.ion is especially high. The appearance
of a polyhedron is affected by the same auributes that apply to fill areas.

The list of facets is presented to the polyhedron element generator in the form of a
single array of integers (SPH1GS type "vertexlndex•") storing a concatenated set of facet
descriptions. Each facet description is a sequence of (V+ I) integers, where Vis the number
of vertices in the facet. The first V integers are indices into the vertex list; the last integer is
(-I) and acts as a sentinel ending the facet specification. Thus, we would specify the facets
of the house (via th.e fourth parameter of the procedure, described next) by sending the
array: I, 2. 3, 4, 5, -I, 2, 7, 8, 3, -I,

•·old SPH_polyhedron (lnt ••ertexCount, int facetCollnt , point •vtrrius, venexlndex •facets):

Note that the SPHIGS rendering algorithms require that a facet's two sides be distinguisha­
ble (external versus internal). Thus, the vertices must be specified in counterclockwise
(right-hand rule) order, as one examines the external side of the facet. z

t SPHJGS requires that one side of each facet be deemed "external," ew:n if the polyhedron's faceiS
do 1101 form a closed object. Funhermore, the "internal" side of a polyhedron facet is new:r
visible.

0333

298 Object Hierarchy and Simple PHIGS (SPHIGS)

As a simple example, the following C code creates a structure consisting of a single
polyhedron modeling the house of Fig. 7.4:

SPH.openStructure (HOUSE.STRUCf) ;
SPH.polyhedron (10, 7, houseVenexList, houseFacetDescription);

SPH.closeStructure():

ln essence, SPHIGS supports polygonal geometry only. More advanced 30 modeling
primitives are covered later - polynomialiY' defined smooth curves and surfaces in Chapter
II , and solid primitives in Chapter 12.

Attributes. The procedures listed in Fig. 7.5 generate attribute elements. During display
traversal, the execution of an attribute element changes the attribute 's value in a modal
fashion: The new value stays in effect until it is changed explicitly. Attributes are bound to
primitives during display traversal, as discussed in the next section and in Section 7. 7.

The attributes of fill areas are different from those in SRGP. Both fill-area and
polyhedron primitives have interiors and edges whose attributes are specified separately.
The interior has only the color attribute, whereas the edge has style, width, and color
attributes. Moreov.er, the visibility of edges can be turned off via the edge-flag attribute,
which is useful for various rendering modes, as discussed in Section 7.8.

Line/edge width and marker size are specified in a nongeometric manner: They are not
defined using world-coordinate-system units and therefore are not subject to geometric
transformations. Thus, modeling transformations and the viewing operation may change a
line's apparent length, but not its width. Similarly, the length of dashes in a noncontinuous
line style is independent of the transformations applied to the line. However, unlike in
SRGP, pixels are not used as the units of measurement , because their sizes are
device-dependent. Rather, a nominal width/size has been preset for each device, so that a

polyline:
void SPH.setLineStyle (CONTINUOUS I DASHED I DOTTED I DOL. DASHED tineStyle);
void SPH.selLineWidthScaleFactor (double scaleFactor);
void SPH.setLineColor (lnt colorlndex);

fil l area and polyhedron:
void SPH.setlnteriorColor (lot colorlndex);
void SPH.setEdgeFiag (EDGE.. VISIBLE I EDGE..INV!SffiLE flag) ;
void SPH.setEdgeStyle (CONTINUOUS I DASHED I DOTTED I DOT. DASHED lineStyle);
void SPH.setEdgeWidthScaleFactor (double scaleFactor);
void SPH-setEdgeColor (int colorl!rdex);

polyMarker:
void SPH.setMarkerStyie (MARKER..CIRCLE I MARKER.SQUARE/ ... markerStyle);
void SPH-setMarkerSizeScaleFactor (double scaleFactor);
void SPH.setMarkerColor (lot colorltrdex);

text:
void SPH-setTextFom (intjomlndex);
void SPH.setTextColor {int colorlndex);

Fig. 7 .6 Procedures generating attribute elements.

0334

7.3 Defining and Displaying Structures 299

unit of widlhlsize will h~oe roughly the same appearance on any output device; the SPHlGS
application specifies a (noninteger) multiple of that nominal widlhlsize.

SPHIGS does not support patterns, for three reasons. First, SPHIGS reserves patterns
to simulate color shading on bilevel systems. Second, smooth shading of patterned areas on
a color system is much too computationally intensive for most display systems. Third, the
type of geometric pattern called "hatching" io PHIGS is also too time-consuming, even for
display systems with real-time transformation hardware.

7 .3.3 Posting Structures for Display Traversal

SPHIGS records a newly created structure in the CSS, but does not display it until the appli­
cation posts the structure subject to a particular viewing specification.s SPHIGS then
performs a display traversal of the structure's elements in the CSS, executing each element
in order from the first to the last. Executing a primitive element contributes to the screen
image (if a portion of the primitive is in view). Executing an attribute element (both
geometric transformations and appeardnce attributes) changes the collection of attributes
stored in a state vector (the auribttte-tra~>ersal stale) that is applied to subsequent primitives
as they are encountered, in modal fashion. Thus, attributes are applied to primitives in
display-traversal order.

The following procedure adds a structure to the list of posted strucrures maintained
internally by SPHIGS:

void SPH. postRoot {In! struc/UrtiD, int viewbulex);

The term root indicates that, in posting a structure S that invokes substructures, we are
actually posting the hierarchical DAG, called the structure network, whose root isS. Even if
a posted structure does not invoke substructures , it is called a root; all posted structures are
roots.

The viewlndex parameter chooses an entry in the table of views (discussed in the next
section); this entry specifies how the coordinates of the structure's primitives are to be
mapped to the screen's integer coordinate space.

We can erase an object's image from the screen by deleting structttres (or elements)
from the CSS (see Section 7.9) or by using the less drastic SPH_unpostRoot procedure that
removes the root from the list of posted roots, without deleting it from the CSS:

void SPH_unpostRoot (int stnlcturt!ID, tnt >iewlndex):

7 .3 .4 Viewing

The synthetic camera. It is helpful to think of a 30 graphics package as a synthetic
camera that takes "snapshots" of a 3D world inhabited by geometrically defined objects.
Creating a structure is equivalent to positioning an object in a photography studio; posting a
structure is analogous to activ-.uing un instant camera previously set up to point at the scene,
and then having the snapshot of the scene posted on a bulletin board. As we see shonly,

'This w:ry of specifying struCture display is the most significant difference between PHIGS and
SPHJGS. In PHlGS's more general mechanism, the view speciflauion is a structure element: this
allows the view 10 be changed during display traYerSal and to be edited like any other dement. Many
cum:nt PHIGS implementations also support the simpler SPHIGS-style posting mechanism.

0335

300 Object Hierarchy end Simple PHIGS (SPHIGS)

each time anything changes in the scene, our synthetic camera automatically produces a
new, updated image that is posted in place of the old one. To create animation, we show
multiple static images in rapid succession, as a movie camera does.

Continuing the metaphor, let us consider how the synthetic picture is produced. First,
the camera operator must position and orient the camera; then, he must decide how much of
the scene should appear: For example, is the image to be a closeup of a portion of an object
of interest, or a long-distance view of the entire scene? Subsequently, the photographer
must decide how large a print to make for posting on the bulletin board: Is it to be a
wallet-sized print or n poster? Finally, the place on the bulletin board where the photograph
is to be posted must be determined. In SPHIGS, these criteria are represented in a view that
includes a specification of a viewing operation; this operation's vi~port specifics the size
of the photograph and its position on the bulletin board. Not all objects in the structure
database need be photographed with the same "camera setting." Indeed, multiple views
may be specified for the bulletin board, as we shall see shortly.

The viewport. As discussed in the previous chapter, the viewport specifics a parallelepi­
ped in the NPC system to which the contents oftbe view volume defined in VRC is mapped.
Since the NPC system is mapped to the physical device 's integer-coordinate system in a
fixed manner, the viewport also specifies where the image is to appear on the screen. The
30 NPC system is mapped to the 20 screen coordinate system in this manner: The NPC
unit cube having one comer at (0, 0, 0) and the opposing corner at (I, I, I) is mapped to the
largest square that can be inscribed on the screen, with the z coordinate simply ignored. For
example, on a display device having a resolution of 1024 horizontally and 800 vertically, a
point (0 .5, 0.75, z)NPC is mapped to (5 12, 599)oc. For portability, an application should
not use NPC space lying outside the unit cube; often, however, the benefits of taking full
advantage of a nonsquare screen shape are worth the portability cost.

The view table. SPHJGS maintains a table of views that has an implementation­
dependent number of entries. Each view consists of a specification of the view volume and
viewport, called the vi~ represenJation, and a list (initially empty) oftbe roots posted to it.
Entry 0 in the table defines a defaulJ vi~ having the \'Oiume described in Fig. 6.25 (b), wrth
the front and back planes at z = 0 and z = -co, respectively. The viewport for this default
view is the NPC unit cube.

The view representations for all entries in the table (except view 0) may be edited by the
application via

void SPIUe!ViewRcprescnlation (
lot viewlndex, matrixAx4 ~'0Ma11u, matriJL4x4 vmMatri.x,
double NPCvitwpon.minX, double NPCviewpon.maxX,
double NPCviewpon.minY, double NPCviewpon.mcuY,
double NPCviewpon.minZ, double NPCviewport.maxZ);

The two 4 X 4 homogeneous-coordinate matrices are the view-orientation and view­
mapping matrices described in Chapter 6. They are produced by the procedures shown in
Fig. 7.6.

0336

7.3 Defining and Displaying Structures

I • To set up UVN viewing reference coordinate system •I
matrixAx4 SPH..evaluateViewOrieotationMatrix (

point viewR~fPoint,
vector .3D viewP/an~Normal, vector .3D viewUpVector,
matriJtAx4 voMatrix);

I• To set up view volume and to describe how it is to be mapped to NPC space •I
matrixAx4 SPH..evaluateViewMappingMatrix (

301

I • First, we specify the view-volume in VRC •I
double umin, double wnax, double vmfn, double vma.t,
PARALLEL / PERSPECTIVE projectionType,

I• View-plane boundaries •I

point projectlonReferencePoint;
double fro111PianeDistance, dou ble backPianeDistanc~,

I• Then, we specify the NPC viewpon. •I
double NPCvp..minX, double NPCvp..maxX,
double NPCvp..minY, double NPCvpJ11LJJCY,
double NPCvp..minZ, double NPCvp.1114XZ,
matrixAx4 vmMatrix);

I• In VRC •I
I• Clipping planes +I

Fig. 7.6 Utilities for calculating viewing-transformation matrices.

Multiple vie ws. The view index specified during posting refers to a specific NPC
viewport describing where on the screen (bulletin board) the image of the structure
(photograph) is to appear. Just as one can tack several photographic prints on a board, an
application can divide the screen into a number of viewports.

The use of multiple views is powerful in many ways. We can display several different
structures simultaneously in individual areas of the screen by posting them with different
views. ln Fig. 7. 7(a), we present a schematic representation of the view table, showing only
the pointers to the listS of structure networks posted to each view. We can see that there is
one view showing a street scene; also, there are three separate views of a robol . The robol

View
table .---- ------1 I

street I I
0 Ill ~ ~ C8
2

3

4

house

I <D 1 I
---------- I ~
-----------~-----------~

upperBody
I I

• arm •
• I

thumb
(a)

Fig. 7 .7 Multiple views sharing screen space. (a) Schematic diagram of view table.
Each view entry points to a list of the roots posted to that view. (b) Resulting image.
Dashed viewport extents and circled numbers show the viewports and their associated
view indices.

0337

302 Object Hierarchy and Simple PHIGS ISPHIGS)

structure was posted three times, each time with a different view index. Figure 7.7(b) shows
the resulting screen image. The multiple views of the robot vary not only in their viewport
specifications, but also in their view-volume specifications.

The preceding scenario implies that each view has at most one posted structure; in fact,
however, any number of roots can be posted to a single view. Thus, we can display different
root structu.res in a single unified picture by posting them together to a view. In this case,
our metaphorical camera would take a single composite snapshot of a scene that contains
many different objects.

Another property of viewports is that , unlike real snapshots and window-manager
windows, they are transparent.• In practice, many applications rile the viewports to avoid
overlapping; however, we can also use overlapping to advantage. For example, we can
"compose" two distinct images created by different viewing transformations or showing
objects defined in different units of measurement; thus, in building a close-up diagram of an
engine part, we could inset a small picture showing the entire engine (for context)
overlapping the large close-up picture. (To avoid confusion, we would do this by selecting
an area of the closeup that is just background.)

To regenerate the screen, SPHJGS displays the posted nerworks by traversing the roots
posted to ea~:h view in the view table , in increasing order of view index, starting with view
0; thus, the images of objects posted to view N have display priority over the images of
objects posted to a view with an index less than N, and therefore potentially overlap them.
This ordering is significant, of course, only when viewports actually overlap. s

Note that an application can manufacture many independent we spaces and can use
any units of measurement desired. In Fig. 7. 7, for example, the street structure is defined in
a we space in which each increment on an axis represents 10 yards, whereas the robot is
defined in a wholly independent WC space measured in centimeters. Although each root
structure is modeled in its own we space, there is only one NPC space per display device,
shared by all posted structures, since that space is an abstraction of the display device.

7.3 .5 Graphics Applications Sharing a Screen via Window
Management

When the first standard graphics packages were being designed in the early 1970s, only a
single graphics application ran at a given time, and it used the entire screen. The design of
PHIGS began in the late I 970s, when this mode of operation was still dominant and before
window managers were generally available. Thus, the unit cube of the NPC space was
traditionally mapped to the screen in its entirety.

Modem graphics workstations with multitasking operating systems allow mul!iple
graphics applications to run simultaneously, sharing the workstation's resources, the
screen, and the set of input devices , under control of a window manager. In this
environment, each application is assigned to its own window, which acts as a "virtual

• Some versions of .PH1GS offer opaque viewports as an alternative to tiling; the term shielding is
typically used to refer to this nonstandard feature.
' This trivial view-priority ~-ystem is less sophisticated than that of PH1GS. which allows explicit view
priorities to be assigned by the appl.ication. ' •

0338

7.3 Defining and Displaying Structures 303

screen.'' The user can resize and move these windows by calling on the functionality of the
window manager. The primary advantage is that each application can act as though it
controls an entire screen; it does not need to know that its screen is only a portion of the
actual display device's screen. An SPHIGS application therefore need not be modified for a
window-manager environment; the package and the window manager cooperate to map
NPC space to an assigned window rather than to the entire screen.6 Figure 7.8 shows two
SPHIGS applications and a terminal-emulator program running concurrently on a graphics
workstation. Because SPHIGS maps the NPC space to the largest square that fits within the
window-manager window, some portion of any nonsquare window is unavailable to the
SPHIGS application, as illustrated by the SPHIGS window showing the table and chair
scene.

' It is sometimes desirable to d.isplay only a portion of NPC space in a window-manager window.
PHIGS supports the specification of an NPC workstation window, which is used to dip the image
produced by display traversal ; the clipped portion is then mapped to a worksrarion viewporr of the
same aspect ratio, specified in physical device coordinates. This workstation transformation can also
be used to map a rectangular portion of NPC space to the physical display, allowing use of a
nonsquare screen region .

1t.1t lwl 14 OI:U totklt ltc ,,.,_,.tor
r,..,. J.U.Ioo-•.e<N IIJ H.C.-.•""' U,l/91(•4,0)

1 .. IIA!Itltt ftln, :t l.ol 8'J OI:W:R Ulf
""'· ~· lui h '-':~I'!IJ fill ...

~------- ----~

' ' . '

~ ~ @
~----------- .. J

---------------.
'

•
' ' •
' ' ' ' ' ' ' ' ·-------------
r--------------
0

' ' ' I

•
' •
' ' ' ' ' •

Fig. 7.8 Two SPHIGS applications running in window-manager windows.

0339

304 Object Hierarchy and Simple PHIGS (SPHIGS)

7.4 MODELING TRANSFORMATIONS

Section 7.3.2 contained a Pascal code fragment that created a simple structure modeling a
house. For simplicity 's sake, we placed one of the house's comers at the origin, aligned the
house's sides with the principal axes, and gave it dimensions that were whole units. We
shall say that an object defined at the origin and (largely) aligned with the principal axes is
standardized; not only is it easier to define (detennine the vertex coordinate.~ of) a
standardized object than it is to define one arbitrarily positioned in space, but also it is
easier to manipulate the geometry of a standardized object in order to resize, reorient, or
reposition it.

Let us say we want our bouse to appear at a different location, not near the origin. We
could certainly recompute the house's vertices ourselves, and create the house structure
using the same Pascal code shown in Section 7 .3.2 (changing only the vertex coordinates).
Instead, however, let us examine the powerful technique of transfonning a standardized
building-block object in order to change its dimensions or placement.

As we saw in Chapter 5, we can transform a primitive such as a polygon by multi·
plying each vertex, represented as a column vector (x, y, z, J]T, by a 4 x 4 homo­
geneous-coordinate transfonnation matrix. The following utility functions create such
matrices:

matrix.4x4 SPH..scale (dou ble sea/eX, double scaleY, double scaleZ, matrix.4x4 result):
matrix.4x4 SPILrotateX (d ouble angle, matrix.4x4 result):
matrix.4x4 SPH.rotateY (dou ble angle, matrix.4x4 result);
matrix.4x4 SPILrotateZ (double angle, matrix.4x4 result);
matrix.4x4 SPH..translate (doub le de/taX, double delraY, d ouble de/tal, matrix.4x4 result);

A different scale factor may be specified for each of the axes, so an object can be
" stretched'" or " shrunk" nonuniJormly. For rotation, the angle parameter, expressed in
degrees, represents counterclockwise motion about the designated principal axis, from the
point of view of someone looking along the axis from +oo toward the origin.

The matrices can be used to create a transfonnation element to be placed in a structure.
The following procedure is the element generator:

void SPH_setLoca!Transformation (
matrix.4x4 matrix, REPLACE I PRECONCATENATE I POSTCONCATENATE mode);

The use of the prefix "local" here refers to how SPHIGS displays a structure. As SPHlGS
traverses a structure, it stores a local matrix as a piece of state information applicable to
only the structure being traversed. The local matrix is by default initia.lized to the identity
matrix. Whenever a setLocalTransfom1ation element is encountered , the local matrix is
modified in some way: lt either is replaced or is changed by a multiplication operation, as
specified by the mode parameter. Whenever a primitive is encountered during traversal,
each of its vertices is transformed by the local matrix and then is subjected to the viewing
transformation for display. (As we shall see later, hierarchy complicates this rule.)

The following code creates a structure containing our house at an arbitrary location,

0340

7.4 Modeling Transformations 306

and posts that structure for display using the default view. The house maintains its original
standardized size and orientation.

SPH.openStructure (HOUSE.STRUCf);
SPH..setLocalTransfonnation (SP!i.translate (...), REPLACE);
SP!i.polyhedron (...); '* Vertices here are standardized as before •I

SPJi.closeStructure ();
SPH. postRoot {HOUSE.STRUCf, 0);

Simple transformations like this one are uncommon. We typically wish not only to translate
the object, but also to affect its size and orientation. When multiple transformations of
primitives are desired, the application "builds" the local matrix by successively concate­
nating (i.e., composing) individual transformation matrices in the exact order in which they
are to be applied. ln general , standardized build ing-block objects are scaled, then rotated,
and finally translated to their desired location; as we saw in Chapter 5, this order avoids
unwanted translations or shearing.

The following code creates and posts a house structure that is moved away from the
origin and is rotated to a position where we see its side i.nstead of its front:

SPH.openStructure (MOVED..HOUSE.sTRUCf);
SPH..se!LocaJTransfonnarion (SPH..rotareY (. ..), REPLACE);
SPH..setLocalTransfomlation (SPH..uanslate (...), PRECONCATENAT£):
SPH_polyhedron (...); I• Vertices here are standardized as before *'

SPH..closeStructure ();
SPH.postRoot {MOVED..HOUSE.STRUCT, 0);

The use of the PRECONCATENATE mode for the translation matrix ensures that premultiplica­
tion is used to compose the translation matrix with the rotation matrix , and thus that the
translation's effect "follows" the rotation's. Premultiplication is thus a far more common
mode than is postmultiplication, since it corresponds to the order of the individual
transformation elements. Since SPHlGS performs scaling and rotation relative to the
principal axes, the programmer must generate the matrices needed to map an arbitrary axis
to one of the principal axes. as discussed in Chapter 5.

The composition of the transformation elements is performed by SPHlGS at traversal
time; thus, each time the display is regenerated, the composition must be performed. An
alternative method for specifying a contiguous sequence of transformations increases the
efficiency of the display-traversal process: Instead of making a structure element for each
one, we compose them ourselves at specification time and generate a single transformation
element. The foUowing function does matrix multiplication at specification time:

mnirix.4x4 SPH..composeMatrix (matrix.4x4 matl , matrix.4x4 marl, matrix.4x4 result);

The two setLocaiTransformation elements in the preceding code can thus be replaced by

SPH_..cLLocalTransronnation (
SPH.composeMatrix (SPH_translate (...), SPii.rotateY (. ..),result), REPLACE):

0341

306 Object Hierarchy and Simple PHIGS (SPHIGS)

The disadvantage of this method is that it is no longer possible to make a dynamic change to
the size, orientation, or position of a primitive by selectively "editing" the desired member
of the sequence of setLocaiTransformation elements; rather, the entire composite must be
recomputed and respecified. The rule of thumb for efficiency is thus to use composition at
specification time unless the individual transformations are to be updated selectively, in
which case they should be specified individually.

Let us create the street structure that contains three copies of our simple house, as first
seen in Fig. 7.7. A perspective view of the "house" on the left, the "mansion" on the
right, and the " cottage" in the middle is shown in Fig. 7.9(a). We have added dashed lines
parallel to the x axis and tick marks for the x axis to indicate the relative positions of the
houses, and have used a display mode of SPHIGS that shows the wireframe edges of
polyhedra with bidden edges removed (see Section 7.8). The leftmost house in the figure is
an untransformed instance of our standardized bouse, and the other two copies differ in
size, orientation, and position.

The brute-force way to create this street structure is to specify the standardized house
polyhedron three times, preceded by the desired transformation elements, as shown in the
schematic representation of the structure of Fig. 7 .9(b). We show a block of consecutive
transformation elements as a single unit; the first element uses REPLACE mode and all others
use PRECONCATENATION mode, with the multiplication symbol (·) separating them to
indicate composition. The code generating the structure is shown in Fig. 7 .I 0.

We can eliminate the redundant specifications of the standardized house polyhedron by
defining a Pascal procedure to perform the call generating the bouse polyhedron, as shown
in the pseudocode of Fig. 7 .II . Because th.e house is defined by a single polyhedron call,
the efficiency of this technique is not obvious in this example; however, if our bouse were

y
t

1\

: ~]1_ -:"0 : ; : : ~ =~->1-----r---, ,.-------+ - + X

I

8
/1 I I I I I I I

1 0 1 2 3 4 5 6 7
~

z
(a)

l
....

STREET

~ ·· •

;...___ • ,____ •

~~~~ 
"manniDn" .... .,___ • 
...... u. 

P!ll'/llldi'OII ..... 
(b) 

Fig. 7.9 Modeling a street with three houses. (a) Perspective view. (b) Structure. 

0342



7.4 Modeling Transformations 307 

SPH.openStructure (STREELSTRUCf): 
SPH..polyhedron ( . . . ) ; I• Define first bouse. in its standardized form •I 

I• Mansion is house scaled by 2 in x, 3 in y. I in z. rotated 90° about y, •I 
I• then translated; note that its left side is subsequently from-facing *' 
I• and lies in the (x. y) plane. •I 
SPH.setLocalTransformation (SPH.seale (2.0, 3.0, 1.0, result), REPLACE); 
SPH-~etLocalTransformatioo (SPH..rotateY (90.0, result), PRECONCATENATE); 
SPH.setLocalTransformation (SPH..translate (8.0, 0.0, 0.0, result), PRECONCATENATE); 
SPH.polyhedron ( .. . ); 

I• Cottage is house uniformly scaled by 0.75, unrotated, set back in z and over in x •I 
SPH..setLocaiTransformation (SPH.seale (0.75, 0.75, 0.75, result), REPLACE); 
SPH..setLocaiTransformation (SPH.translate (3.5, 0.0, - 2.5, result), PRECONCATENATE); 
SPH.polyhedron ( . . . ); 

SPH.closeStructure (); 
SPH.postRoot (STREET..STRUCf, 0); 

Fig. 7 .10 Code used to generate Fig. 7 .9 . 

. more complex and required a series of attribute and primitive specifications, this method 

. clearly would require less C code. Moreover, the technique provides another benefit of 
modularization: We can change the house' s shape or style by editing the House procedure 
without having to edit the code that creates the street. 

We call a procedure such as House that generates a sequence of elements defining a 
standardized building block, and that is made to be used repetitively with arbitrary 
geometrical transformations, a template procedure. The template procedure is a conve­
nience for the programmer and also represents good programming practice. Note, however, 
that although the House procedure adds a level of procedure hierarchy to the C program, no 
structure hierarchy is created'-the model of the street is still " flat.'' Indeed, the structure 
network produced by the code of Fig. 7 .II is indistinguishable from that produced by the 
code of Fig. 7.10. There is no "savings" in terms of the number of elements produced for 
the structure. 

void House (void) 
{ 

SPH.polyhedroo ( .. . ); 
} 

I* Mainline •I 
SPH.openStructure (STREELSTRUCf); 

House () ; I • First House •I 
set local trans[omwrion matrix; 
House (); I• Mansion •I 
set local transformation matrix; 
House (); I• Cottage •I 

SPH..closeStructure (); 
SPH.postRoot (STREEL.STRUCf, 0); 

Fig. 7.11 Use of a template procedure to model the street. 

0343



308 Object Hierarchy and Simple PHIGS (SPHIGS) 

One change we could make to our template procedure is to have it accept a 
transformation matrix as a parameter, which it would then use to specify a 
setLocaiTransformation element.7 Although in some cases passing transformation parame­
ters would be convenient, this method lacks the generality inherent in our original method 
of being able to specify an arbitrary number of transformations before calling the template. 

7 .5 HIERARCHICAL STRUCTURE NETWORKS 

7 .5.1 Two-Level Hierarchy 

So far, we have dealt with three types of structure elements: output primitives, appearance 
attributes, and transformations. Next, we show how the power of SPHIGS derives in large 
part from structure hierarchy, implemented via an element that "calls" a substructure when 
executed during traversal. Structure hierarchy should not be confused with the template­
procedure hierarchy of the previous section. Template-procedure hierarchy is resolved at 
specification time, when the CSS is being edited, and produces in-line elements, not 
substructure invocations. By contrast, structure hierarchy induced by invocation of 
substructures is resolved when the CSS is traversed for display-the execution of an 
invocation element acts as a subroutine call. ln Section 7.15, we take another look at the 
relative advantages and disadvantages of template-procedure hierarchy and structure 
hierarchy. 

The structure-execution element that invokes a substructure is created by 

void SPH.executeSuucture (lot structure/D); 

Let us replace the template procedure of the previous section by a procedure that builds a 
house structure in the CSS (see Fig. 7.12). This procedure is called exactly once by the 
mainline procedure, and the HOUSE..STRUCT is never posted; rather, its display results from 
its being invoked as a subobject of the street structure. Note that the only differences in the 
STREET_STRUCT specification are the addition of the call to the procedure that builds the 
house structure and the replacement of each template procedure call by the generation of an 
execute-structure element. Although the displayed image is the same as that of Fig. 7 .9(a), 
the structure network is different, as shown in Fig. 7.13, in which the execute-structure 
element is depicted as an arrow. 

Posting STREET_STRUCT tells SPHTGS to update the screen by traversing the 
STREET_STRUCT structure network; the traversal is in the form of a depth-first tree walk, just 
as a procedure/subroutine hierarchy is executed. In the preceding example, the traverser 
initializes the street structure's local matrix to the identity matrix, and then performs the 
first invocation of the bouse substructure, applying the srreet structure's local matrix to 
each of the house's vertices as though the house polyhedron were a primitive element in the 
street structure itself. When it returns from the first invocation, it sets the local matrix to a 
desired composite transformation, and then performs the second invocation, applying the 

' Newman defines display procedures as template p.rocedures that take scaling, rotation, and 
tranSlation parameters [NEWM71]. 

0344



7.5 Hierarchical Structure Networks 

void BuildStandardiz.edHouse (void) 
{ 

SPH..openSitUCture (HOUSE.STRUCT): 
SPH_polyltedron ( •.. ) : 

SPH..closeSitUCtUre (); 
} 

I• Mainline •I 
BuildStandardiz.edHouse (); 
SPH.openStruciure (STRE81:.STRUCT); 

SPH.executeStructure (HOUSB.STRUCT): 
set loco/transformation matrix; 
SPH..executeStructure (HOUSE.STRUCT); 
set local transformation matrix; 
SPH.executeStructure (HOUSE..STRUCT); 

SPH.eloseSitUCture (); 
SPH..postRooc (STREEL.STRUCT, 0): 

I• First house •I 

I• Mansion •I 

I • Cottage • I 

Fig. 7 . 12 Use of a subordinate structure to model the street. 

309 

new composite matrix to the vertices of the bouse to create the second instantiation of the 
house. When it returns , the local matrix is again changed; the new composite is applied to 
the house's vertices to produce the third house instance. 

We think of a structure as an independent object, with its primitives defined in its own 
floating-point modeling-coordinate system (MCS); this way of thinking facilitates the 
building of low-level standardized building blocks. As we noted in Section 5.8, a 
transformation maps the vertices in one coordinate system into another; here, SPHIGS uses 
the local matrix of structure S to tranSform the primitives of substructures into S's own 
MCS. 

Fig. 7 .13 Structure network showing invocation of subordinate structure. 

0345



310 Object Hierarchy and Simple PHIGS (SPHIGS) 

7.5.2 Simple Three-Level Hierarchy 

As a simple example of three-level hierarchy, we extend the house in our street example. 
The new house is composed of the original standardized house (renamed 
SIMPLE...HOUSB_STRUCT) and a chimney suitably scaled and translated to lie in the right place 
on top of the house. We could revise the house structure by adding the chimney's facets 
directly to the original polyhedron, or by adding a second polyhedron to the structure, but 
we choose here to induce three-level hierarchy by decomposing the house into two 
subobjects . An advantage of this rnodularization is that we can define the chimney in a 
standardized manner (at the origin, of unit size) in its own MCS (as shown in Fig. 7 . 14a), 

[J __ 
I , 

I , 

(a) (b) 

I '\ 

~L~ "' I 
I 

I 

(c) 

Fig. 7.14 Three-level hierarchy for street. (a) Standardized chimney. (b) Structure 
network. (c) Resulting image. 

0346



7.5 Hierarchical Structure Networks 311 

and then use scaling and translation to place it on the roof in the house's MCS. If we had to 
define the chimney to fit exactly on the roof and to map into the house's MCS without 
scaling, we would have to do messy calculations to compute the vertices explicitly. With 
modularity, however, we simply define the standardized chimney such that its bottom facet 
has the same slope as the roof itself; with that condition met, uniform scaling and arbitrary 
translation can be applied. 

The revised house structure is built via 

SPH..openStructure (HOUSE.STRUCT); 
SPH..executeStructure (SIMPL.E.HOUSE.STRUCT); 
set local matrix to scale J translate standardized chimney onto roof of simple house; 
SPH..executeStructure {CHIMNEY .STRUCT) ; 

SPH.closeStructure () ; 

What happens when this two-level bouse object is instantiated by the street structure with a 
transformation to yield the three-level hierarchy shown in Fig. 7.14(b)? Since SPHIGS 
transforms a parent by transforming the latter's component elements and substructures, we 
are assured that the two component primitives (the simple bouse and the chimney) are 
transformed together as a single unified object (Fig. 7. 14c). The key point is that the 
street-structure specification did not need to be changed at all. Thus, the designer of the 
street structure does not need to be concerned with the internal details of how the house is 
constructed or subsequently edited-it is a black box. 

7.5.3 Bottom-Up Construction of the Robot 

Let us now look at a more interesting example, our simple robot, which combines the key 
ideas of modeling using structure hierarchy and of repeated editing of transformations to 
achieve motion dynamics. A complex object or system hierarchy is usually conceptualized 
and informally described top-down. For example, a computer-science department building 
is composed of floors, which are composed of offices and laboratories, which are composed 
of furniture and equipment, and so on. Recall that our simple android robot is composed of 
an upper body and a pedestal base; the upper body is composed of a trunk, a head, and two 
identical arms, each of which is composed of a fixed hand and a "sliding" (translating) 
thumb as gripper. 

Even though we design top-down, we often implement bottom-up, defining building 
blocks for use in the definitions of higher-level building blocks, and so on, to create the 
hierarchy of building blocks. Thus, in constructing the robot, we define the thumb building 
block for the robot's arm, then the arm itself, and then join t~'O instances of the arm 
building block onto the upper body, and so on, as shown in the symbolic parts hierarchy of 
Fig. 7.2 and in the more detailed structure network diagram of the upper body in Fig. 7.15. 

Let us look at the bottom-up construction process in more detail to see what geometry 
and transformations are involved. It makes sense to design the arm and thumb in the same 
units of measurement, so that they fit together easily. We define the thumb structure in a 
standardized position in its own MCS in which it "hangs" along they axis (Fig.7.16a). 
The arm structure is defined with the same unit of measurement as that used for the thumb; 

0347



312 Object Hierarchy and. S imple PHIGS (SPHIGS) 

.. .......... 

Fig . 7 . 15 Structure hierarchy for robot's upper body. 

it consists of the ann+hand polyhedron (standardized, hanging down along they axis, as 
shown in Fig. 7 . 16b) and a translated invocation of the thumb structure. The translation 
element preceding the in\'ocation of the thumb is responsible for moving the thumb from its 
standardized position at the origin to its proper place on the wrist of the ann (c). 

The arm-invoking-thumb netwOrk is a t"-o-level hierarchy similar to the street-house 
example. By editing the translation element in the arm structure, we can "slide" the thumb 
along the wrist of the ann (Fig. 7.16d).s 

Next , we build the upper body. Since we want to be able to rotate the head, we first 
specify the trunk polyhedron, then a rotation , and next the head polyhedron (Fig. 7.16e). 
Our next step is to have the upper-body structure invoke the ann structure twice. What 
transformations should precede these invocations? rr our sole concern is positioning (i.e., 
translating) each ann correctly in the upper-body MCS, we may produce a picture like Fig. 
7 .16((), where the arm and upper body were clearly designed at different scales. This is 
easy to fix: We can add a scale transformation preceding the translation (Fig. 7 .16g). 
However, a scale and a translation is not enough if we want arms that can swing on the axis 

1 The obser<ant reader may have wondered how the thumb actually slides in this model , since it is noc 
really otUIChed in any way to the ann hand. In fact, none of the componentS of our robol model is 
atUIChed to another via objectS representing joints. Modeling of jointS and the constr.lints that 
determine their modes of operation are beyond the scope of this book. 

0348



7.5 

(a) 

(d) 

, 

I 

.I 
I 

, (g) 

Hierarchical Structure Networks 

I 

I 
I I 

r- r-

tv tvl 
(b) (c) 

n n 

~ tn 
(e) (f) 

313 

Fig. 7 .16 Constructing the robofs upper body. (a) Thumb. (b) Fixed arm plus 
hand. (c) Completed arm. (d) Completed arm with translated thumb. (e) Trunk and 
head. (f) Upper body with outsized arms. (g) Corrected arms. (h) Left arm rotated. 

0349



314 Object Hierarchy and Simple PHIGS (SPHIGS) 

connecting the tm shoulders (for movement much like that of the arm of a marching 
soldier); for this, we place a rotation element in the structure, preceding the translation. We 
have completed our definition of the upper-body structure; assembling the full robot is 
Exercise 7 . 1. Pig. 7.16(h) shows the upper body as it looks when the left arm's rotation 
element is nonzero. 

Because each arm invocation is preceded by an independent sequence of transforma­
tions , the motion of each arm can be controlled independently. One arm can be hanging 
down while the other arm swings, as in Fig. 7.16(h). Indeed, the difference in the 
transformations is what distinguishes the left and right arms. Notice, however, that the 
movable thumb is not only on the same side of, but also is the same distance from, the fixed 
hand on both left and right arms, because it is part of the arm's internal definition. (In fact, 
if the application simply changes the translation element in the arm structure, all the thumbs 
on all the robot instances suddenly move!) Thus we must rotate one of the arms 180° about 
they axis in order to make the arms symmetric. A structure invoking the am1 can control 
the arm's size, orientation, and position only as a whole, and cannot alter the arm's internal 
construction in any way. As we said earlier, a substructure is essentially a black box; the 
invoker needs to know what geometry is defined by the substructure, but it does not need to 
know how the substructure was created, and indeed cannot affect any of the substructure's 
internals. ln Section 7 .14.2, we discuss why it is impossible to control the tm thumbs 
independently with a single arm structure invoked twice, and we show how to solve this 
problem by creating multiple arm structures that are identical in form but have potentially 
differing internal transformations. 

ln summary, in specifying any structure, we deal with only what primitives and 
lower-level substructures arc included in it, what modeling transformations should be used 
to position its component partS, and what attributes should be used to affect their 
appearance. We need not, and cannot, deal with the internals of lower-level structures. 
Furthermore, we design components without concern for how they will be used by invoking 
structures, since transformations can be used to obtain desired size, orientation, and 
position. In practice, it is helpful to standardize a component in its local MCS, so that it is 
easy to scale and rotate about principal axes. 

Two additional points must be mentioned. First, a programmer does not need to design 
purely top-down and to implement purely bottom-up; by analogy to the programming 
technique of using "stubs and drivers," dummy substructures can be used in the structure 
hierarchy. A dummy can be an empty structure; in fact, SPHIGS allows a structure tO 
execute a substructure that has not (yet) been created, in which case SPHIGS automatically 
creates the referenced substructure and initializes it to be empty. In some cases, it is 
desirable for the dummy to be a simple object (say, a parallelepiped) of approximately the 
same size as t.he more complex version that is specified later. This technique pemuts 
top-down debugging of complex structure hierarchies before all components are defined 
fully. Second, we have not yet compared structure hierarchy to template-procedure 
hierarchy. For now, we say that structure hierarchy mrks well if we need to instantiate 
multiple copies of a building block and to control (to a limited extent) the appearance and 
placement of each copy but not its internal definition. We discuss the tradeoff's between 
template procedure and structure hierarchy more fully in Section 7.15. 

0350



7.6 M atrix Composition in Display Traversal 3 1 5 

7.5.4 Interactive Modeling Programs 

Interactive 3D construction and modeling programs facilitate the construction of object 
hierarchies through the bollom-up assembly process just described. Most such programs 
offer a paleue of icons representing the program's fundamental set of building blocks. If the 
drawing program is application-specific, so are the building blocks; otherwise, they are 
such common atoms as polylines, polygons, cubes, parallelepipeds, cylinders, and 
spheres. The user can select an icon in order to instantiate tbe associated building block, 
and can then specify transformations to be applied to the building-block instance. Such 
specification is typically done via input devices, such as the mouse or control dials, that let 
the user experiment with the instance's size, orientation, and position until it "looks 
right." Since it is difficult to judge spatial relationships in 2D projections of 3D scenes. 
more sophisticated interaction techniques use 3D grids, often with "gravity fields" 
surrounding intersection points, numerical scales, sliders of various types. numerical 
feedback on the position of vertices, and so on (see Section 8.2.6). Some construction 
programs allow the user to combine instances of fundamental graphical building blocks to 
create a bigher-level building block, which is then added to the building-block palene, to be 
used in building even higher-level objects. 

7.6 MATRIX COMPOSITION IN DISPLAY TRAVERSAL 

So far, we have discussed how a progr.tmmer constructs a model, using top-down design 
and (more or less) bouom-up implementation. Regardless of how the model was 
constructed, SPHIGS di.splays the model by performing a top-down, depth-first search of 
the DAG rooted at the posted structure. During traversal, SPHIGS processes all the 
geometry specified by multiple levels of transformation and invocation. To see what is 
involved, we observe that. during top-down traversal, when a root structure A invokes 
structure B. which in tum invokes structure C, this is is tantamount tO saying that B was 
constructed bouorn-up by transformation of primitives defined in C's MCS to 8's MCS, 
and that A was then similarly constructed by transformation of 8's primitives (including any 
defined via invocation of C) to A's MCS. The net effect was that C's primitives were 
transformed rwice, first from MCSc to MCS8 and then from MCS8 to MCSA' 

Using the notation developed in Section 5.8, let M8~ denote t.be value of the local 
matrix for structure 8 that, at the time of invocation of C, maps vertices in MCSc to their 
properly tr.tnsfonned positions in MCS8 . Thus, to map a vertex from MCSc to MCS8 , we 
write y1Rl = M8-c · y<C! (where ytlf) indicates the vector representing a vertex whose 
coordinates are expressed in coordinate-system H), and similarly, VW = MA-s • V(fJ). 
Thus, to mimic the bottom-up construction process, the traverser must successively apply 
the transformations that map the vertices from C to 8 and then from 8 to A: 

(7.1) 

By matrix associativity, y<A> = (MA-B · M8-c) • y<C>. Therefore, the traverser simply 
composes the two local matrices and applies the resulting matrix to each of C's vertices. 

0351



316 Object Hierarchy and Simple PHIGS ISPHIGS) 

Using tree nolation, let the root be m level I and the succcssi~.e children be at levels 2, 
3, 4, .... Then, by induction, for any structure at level} U > 4), we can transform a ~.enex 
v<J1 in that structure 's MCS into the vertex V(l) in the root coordinate system via 

(7.2) 

Since SPHIGS allows primitives to be tmnsformed within the local MCS with the local 
matrix, a vertex V(JI is obtained by applying the local matrix to the coordinate values of the 
primith-e: 

(7.3) 

We use MUI to denote the local matrix while the structure is being tmversed to show 
that the matrix is being used to transform primitives into the structure's own level·} MCS. If 
the structure subsequently invokes a subordinate, the matrix's use changes; it is then used to 
transform the invoked structure at level j + I into the level·} MCS, and we denote it with 
M.HJ+U· This docs not imply that the matrix's value changes-only its use docs. 

Combining Eqs. (7.2) and (7.3) using associativity, we get 

ytl) = (M 0 M 0 M . 0 M (Jh 0 .,, ..... , l-4 1_, . • • ··-v-a,_, ., v~- (7.4) 

Thus, to transform a primitive at level j in the hiemrehy to the MCS of the root (which is the 
world-coordinate space), all we need to do is to apply the composi tion of the current values 
of the local matrix for each structure from the root down to the structure in which the 
primitive is defined. This composite of local matrices- the term in parentheses in Eq. 
(7 .4)-is called the composite modeling tratrsformation matrix (CMTM). When the slate of 
a tmversal is such that a level-} structure's elements are being executed, the CMTM is the 
composition of j matrices. Only the last of those matrices (MII'l) may be changed by the 
structure. because a structure may modify only its local matrix.• Thus, while the structure 
is active, the first j - I matrices in the CMTM list are constant. The composite of these j -
I matrices is the global matrix (GM)-lhe term in parentheses in Eq. (7 .2)-for the level-j 
structure being executed. It is convenient for SPHJGS to maintain the GM during the 
traversal of a structure; when a setLocaiTransformation element modifies the local mat.rix 
(LM), SPHIGS can easily compute the new CMTM by postconcateoating the new local 
matrix to the GM. 

We can now summarize the tra~.ersal algorithm, to be elabomted in Section 7.12.1. 
SPHIGS does a depth-first traversal, saving tbe CMTM , GM, and LM just before any 
structure invocation; it tben initializes the substructure's GM and CMTM to the inherited 
CMTM. and its LM to the identity matrix. The CMTM is applied to vertices and is updated 
by changes to the LM. Finally, when the traverser returns, it restores the CMTM, GM, and 
LM of the parent structure and continues. Because of the saving and restoring of the 
matrices, parents affect their chi ldren but not vice versa. 

•we ~nt the global matrix as a derived enrity that cannot be modified by a struelure. In true 
PHIGS. o structure can modify the GM active during its execution, but this (10\\'er is still '"localized'" 
in the sense thai it in no way alfecu the local matrices of its ancestors. 

0352



7.6 Matrix Composition in Display Traversal 317 

Let us watch as SPHIOS traverses the three-level upper-body-ann-thumb hierarchy of 
Fig. 7.15. We have posted the UPPERJlODY strucmre as a root. Figure 7. 17(a) shows a 
sequence of snapshots of the traversal state; a snapshot has been created for each point 
marked with a number in the structure network diagram of Fig. 7.17(b). 

The traversal state is maintained via a stack, shown in Fig. 7. I 7(a) growing downward , 
with the currently active structure in a solid rectangle and its ancestors in dashed ones. The 
values of the three state matrices for the currently active structure are shown to the right of 
the stack diagram. Arcs show the scope of a transformation: The OM arc illustrates that a 
structure's ancestors contribute to the OM, and the CMTM arc shows that the CMTM is the 
product of the OM and LM. Recall that in each group of transformations, the first is in 
REPLACE mode and the rest are PRECONCATENATEd. Thus the first "rotate" in the structure 
applies only to the head since it will be REPLACEd by the first ''scale" that applies to the left 
arm. 

At point I in Fig. 7.17(b), the traverser is about to execute the first element in the root. 
Because a root bas no ancestors, its OM is identity; the LM is also identity, as is the case 
whenever a structure's execution begins. At point 2, the LM is set to the composite of the 
(Scale, Rotate, Translate) transformation triplet. Therefore, the CMTM is updated to the 
product of the identity OM and the SRT composite, and is then ready for use in 
transforming the ann subobject to the upper body MCS to become the left arm via 
(SRT)~,. Next, at point 3, the traverser is about to execute the first element of the arm 
structure. The OM for the arm execution is, as one would expect for a level-2 instantiation, 
its parent's LM at the point of invocation. 

At point 4, the ann LM is set to position the thumb within the arm (T.,..,.....), and the 
CMTM is updated to the product of the OM and LM. This level-2 CMTM becomes the OM 
for the level-3 instantiation of the thumb (point 5). Since the LM of the thumb is identity, 
the CMTM of the thumb has the desired effect of transforming thumb coordinates first to 
arm coordinates, then to upper-body coordinates. At point 6, the traverser has returned 
from the thumb and arm invocations, back to the upper body. The matrices for the 
upper-body structure are as they were before the invocation, since its subordinates cannot 
change its local matrix. At point 7, the LM of the upper body is replaced with a new 
composite for the right arm. When we have descended into the thumb structure for the right 
arm (point 8), the CMTM is almost identical to that at point 5; the only difference is the 
level-2 matrix that moves the arm into position on the upper body. 

To animate a composite object such as the robot, we need only to think about how each 
child structure is to be affected in its parent, and to define the appropriate transformation 
elements for each component that can be edited dynamically later. Thus, to make the robot 
spin about its axis, raise its arm, and open its hand, we change the rotation matrix in the 
robot structure to affect the upper body, the rotation matrix in the upper-body structure to 
affect the arm, and the translation matrix in the arm structure to affect the thumb. The 
transformations are done independently at each level of the hierarchy, but the net effect is 
cumulative. The difficult part of specifying an animation is working backward from a 
desired result, such as "the robot moves to the no.rthwest comer of the room and picks up a 
block from the table, " to derive the sequence of transformations yielding that result. 
Chapter 21 briefly discusses the issues involved in such " inverse kinematics" problems. 

0353



318 Object Hierarchy and Simple PHIGS (SPHIGS) 

(1) 

GM • Identity ) . . I UpperBody I LM • Identity CMTM • identity 

(2) GM • Identity ) CMTM (SAD I UpperBody I LM • (SADub ... Ia • ub ... Ia 

(3) 
~ U-pperBOdY i ) GM • (SADub ..... ) CMTM • (SAT) I Arm . LM • Identity ub ..... 

(4) ~UpperBOdY i ) GM • (SRDub ... la) CMTM • (SAT) • T I A LM T ub f- Ia """ ..... rm • erm ~lh 

(5) 
------1) 1 UpperBody 

- - - - - I GM • SAT • T r Arm 1 ( )ub ,.. la ., ... "') CMTM (SAD · T I • ub~la atm-lh 
Thumb J LM • identity 

(6) 
GM • identity ) 

I'"U-:-ppe--:rBody::--7"...,, LM • (SADub ... .. CMTM.. (SAT)ub ..... 

(7) GM • identity ) CMTM • (SADub ... ,. 
Jr-:U-:-p-pe-::rB:-od-:-y'J LM • (SADub ... ra 

(8) 

{a) 

Fig. 7.17 Traversal of a three-level hierarchy. (a) Snapshots of traversal-state stack. 
(b) Annotated structure network. 

7 .7 APPEARANCE-ATTRIBUTE HANDUNG IN HIERARCHY 

7. 7 .1 Inheritance Rules 

The attribute-traversal state is set by attribute elements during traversal, and, as in SRGP, is 
applied modally to all primitives encountered. We saw how parents affect their children via 
geometric transfonnations. What rules pertain to appearance attributes? In our street 
example, the houses all have the default color. To give an object a particular color (e.g., to 
make a house brown), we can specify that color as an initial e.lcmeot in the object structure 
itself, but that makes the object's color intrinsic and not changeable during traversal. We 

0354



7.7 Appearance-Attribute Handling in Hierarchy 319 

Fig. 7 .17 (Cont'd.) 

(~ , 
''= I ... 
I 

"' ' -• . ...... 
• 

~I \ t'llll 
·~ ,r 2 , 

• MY 
6 

~·"~·• J,;' 
3 

•• • -tt~ln- · 
r·~ ·" fU~~.t ., 

I! I ,, ' 

.: 7 4 -... ..... ,....,. r1a111 ~ THIMI 

I palrhldlan 
(b) 

5, 8 

\Wtlld prefer to " pass the color as a parameter," so that the child can inherit it the way a 
child inherits the CMTM as its GM. 

Indeed, in SPHIGS, each substructure inherits the traversal state as the latter exists 
at the time of the invocation of the substructure, and can then modify that state at will 
without alfecting its ancestors . In other words, attributes and transformations are bound 
dynamically at traversal time, rather than statically at specification time. This dynamic 
binding is one of the major features of SPHIGS, making it easy to customize instances of a 
substructure. 

What substructures do with the inherited state depends on the type of data involved. We 
saw that, for geometric transformations, the substructure inherits the GM but cannot 
override its inheritance, since it can affect only its own local matrix. Attributes are simpler 
in that the substructure inherits the parent's attributes as the initial values of its local 
attribute state, but can change its local state subsequently. There is no need to distinguish 
between global and local attributes, since there is no notion of composing attributes. Note 
that this mechanism bas the same problem we discovered with transformation inheritance.­
just as our robot's two arm instances cannot have differing thumb transformations, its two 
arm instances cannot have the same color for the fixed part but differing colors for the 
thumb. 

0355



320 Object Hierarchy and Simple PHIGS (SPHIGS) 

In the structure network of Fig. 7 . 18(a), the street structure sets the colors for the house 
substructure. The resulting image is shown in Fig. 7.18(b), and the code generating the 
network is shown in Fig. 7 . 19. 

An auribute can be reset within a substructure to o'lerride the inherited value. The 
following code fragment specifies a revised bouse structure whose chimney is always red. 

SPK.openStructure {HOUSE.STRUCT): 
SPH..exccutcStructure {SIMPLE.HOUSE..STRUCT); 
SPH-SetlntcriorColor {COLOR..REO); 
s~1 up lransformarion; 
SPH..exccuteStrucrure (CHIMNEY ..STRUCT); 

SPH..closeStruciUre (); 

Let us use this new house structure in conjunction with the street structure generated by the 
code in Fig. 7.19. Figure 7.20 shows the structure network and the resulting image. The 
traverser startS at STREET_STRUCT; the interior· and edge-color anributes have their default 
values. The edge color is set to white, a value it retains throughout display traversal of this 
network. The lirst setlnteri01Color causes yellow to be inherited by the first instance of 
HOUSE..STRUCT. which in tum passes yellow to StMPLE....HOUSE...STRUCT, whose polyhedron is 
shown in that color. When t.he traverser returns from SIMPLE_HOUSE...STRUCT to 

(a) 

STREET 

let ... calor "WhhW 

.. Int. oalar ·; I . 

11UM ..... 
...... 
.,.,. 

(b) 

HOUlE .. 
1111 DUll 

SMILE 
HOUlE 

pctjtlfOII 

Fig. 7 .18 Use of attribute inheritance to model street w ith colored houses. (a) 
Structure network. (b) Resulting image. (Interior colors are simulated by patterns.) 

0356



7.7 Appearance-Attribute Handling in Hierarchy 

SPH_openSrructure (STREET- STRUCT); 
SPH..setEdgeColor (COLOR... WHITE); 

SPH..setlnteriorColor (COLOR_ YELLOW); 
set up transformation; 
SPH.executeSrructure (HOUSE..sTRUCT}; 

SPH..setlnteriorColor (COLOR...NAVY); 
set up transfomwtion; 
SPH.executeStructure (HOUSE..STRUCT); 

set up transfonnarion; 
SPH.executeStructure (HOUSE..STRUCT); 

SPH.closeStructure (); 

Fig. 7.19 Code used to generate Fig. 7 .18. 

321 

HOUSE_STRUCT, the interior-color attribute is immediately changed to red by the next 
element. The invocation ofCHlMNEY_STRUCT therefore results in a red chimney with wh.it.e 
edges. None of these operations affect the attribute group for STREET_STRUCT, of course; 
when the traverser returns from HOUSB_STRUCT, STRBET_STRUCT's interior-color attribute is 
restored to yellow. The interior-color attribute is then changed to navy to prepare for 
drawing two navy houses. 

(a) 

STREET 

1181 edge color "White' 

11811nt. color "yeelow' 

1181 LM 

execute 

set Int. color "navy" 

1181 LM 

execute 

sel lM 

(b) 

HOUSE 

execute 

eel Int. color "red' 

1181 LM 

SIMPLE 
HOUSE 

CHIMNEY 

Fig. 7 .20 Subordinate structure overriding an inherited attribute. (a) Structure 
network. (b) Resulting view. 

0357



322 Object Hierarchy and Simple PHIGS (SPHIGS) 

(a) (b) 

Fig. 7.21 The nongeometric nature of text in SPHIGS. (a) Before transformation. 
(b) After transformation. 

7.7 .2 SPHIGS Attributes and Text Unaffected By Transformations 

In true PHIGS implementations, text can be subjected to transformations like any other 
primitive. Thus, the text characters on the sides of a truck, displayed in perspective, are 
rotated and shown with appropriate perspective foreshortening, as though the letters ~re 
made out of individual polylines or fill areas. Similarly, dashes in dashed lines should be 
subject to geometric transformations and perspective foreshortening. Ho~ver, just as 
attributes in SPHIGS are nongeometric for performance reasons, so is text. As in SRGP, 
the font of the text determines the text's screen size, and a text string cannot even be 
rotated-the image of a text string is always upright in the plane of the screen, and is never 
compressed or expanded. Thus, rotation and scaling affect text's origin, but not its size and 
orientation (Fig. 7.21). SPHIGS primitive text is thus useful primarily for labeling. 

7 .8 SCREEN UPDATING AND RENDERING MODES 

SPHIGS constantly updates the screen image to mat.ch the current status of the CSS and 
view table . The following actions all can make an arbitrary amount of the screen image 
obsolete: 

• 
• 
• 
• 

An entry in the view table is changed 

A structure is closed (after having been opened and edited) 

A structure is deleted 

A structure is posted or unposted . 

Whenever SPHIGS is called to perform one of these actions. it must regenerate the 
screen image to display the current state of all posted networks. How SPHIGS chooses to 
generate the image is a function of the rendering mode the application has selected. These 
modes present a choice bet~en quality and speed of regeneration: The higher the quality, 
the longer it takes to render the image. The rendering mode is set by 

procedure SPH_setRenderiogMode (mode : WIREFRAME I PLAT I LIT __FLAT I GOURAUD); 

0358




