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The scan converter detennines which clusters ofpixei data are to be processed by which pipeline

(Col. 11, lines 41-59; Col. 13, lines 54-63). Therefore, the scan converter is coupled to the back

end circuitry (20), operative to determine the portion of the pixel data to be processed by the

back end circuitry.

It would have been obvious to one of ordinary skill in this art at the time of invention by

applicant to modify the device of Alcorn so that each of the at least two graphics pipelines

fitrther includes a scan converter as suggested by Furtner. Scan converting is the most popular

method of drawing polygons because it uses only integer maths, takes up very little memory, and

is simple to understand. The advantages of scan converters are well-known in the art and can be

found in many publications, such as Elias’ website. Furtner suggests that it is advantageous to

have a parallel scan converter for two graphics pipelines because the scan conversion can be

performed in parallel (Col. 17, lines 7-22), which increases the speed of processing.

37. With regard to Claim 1 1, Alcorn describes that the first of the at least two graphics

pipelines (Col. 6, lines 33-35, 40-43) further includes circuitry (64, 72, Figure 3), coupled to the

front end circuitry (60) and the back end circuitry (76), operative to provide positioircoordinates

ofthe pixels within the first set of tiles (Col. 10, lines 1-8; texel data outputfrom the parameter

interpotator circuit 64 is provided to the titer 72, which determines the address ofthefour

texel.s...checi’rs to determine whether each is wtthin the boundary ofthe teitture... texe! data

includes the interpolated S, Tcoordinates as wet! as the map number, Col. 11, lines 8-31) to be

processed by the back end circuitry (S, T coordinatesfor each display screenpixel are provided

from the parameter-in-terpolators, through the titer, to texel interpalator 76, Col. 12, lines 13-
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20), the circuitry including a pixel identification line for receiving tile identification data

indicating which of the set of tiles is to be processed by the back end circuitry (texe! data

includes the interpolated S, T coordinates as wet! as the map number, Col. ll, lines 15-17).

However, Alcorn does not teach a scan converter. However, Furtner describes a parallel ,

scan converter (16, Figure 23) that has a plurality of outputs for supplying data to a plurality of

pixel pipelines (20, Co]. 2, lines 3-16). Therefore, the first of the at least two graphics pipelines

fiirther includes a scan converter. The scan converter receives, at its input, data which to write

onto the graphic primitive to be processed (Col. 1, lines 58-62), and this data inherently comes

from a front end circuitry. The output of the scan converter is connected to the pipelines (20,

Col. 1, lines 62-66). Therefore, the scan converter is coupled to the front end circuitry and the

back end circuitry (20). The scan converter determines which clusters of pixel data are to be

processed by which pipeline (Col. 11, lines 41-59; Col. 13, lines 54-63). The scan converter has

knowledge with regard to mapping the screen areas onto the memory address area (tiling) (Col:

6, lines 60-65). Therefore,'the scan converter is inherently operative to provide memory

addresses or position coordinates oithe pixels within the first set of tiles to be processed by the

back end circuitry, the scan converter inherently including a pixel identification line for receiving

tile identification data indicating which ofthe set of tiles is to be processed by the back end

circuitry. This would be obvious for the same reasons given in the rejection for Claim 5.

38. With regard to Claim 13, Claim 13 is_simila.r in scope to Claim 11, and therefore is

rejected under the same rationale.
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39. With regard to Claim 15, Claim 15 is similar in scope to Claim 11, and therefore is ‘

rejected under the same rationale.

40. With regard to Claim 16, Claim 16 is similar in scope to Claim 1 1, and therefore is

rejected under the same rationale.

41. With regard to Claim 24, Alcorn describes a graphics processing circuit (Col. 3, lines 53-

63), comprising front end circuitry (3 2A, 32B, 32C, Figure 2) operative to generate pixel data in

response to primitive data for a primitive to be rendered (distributes 3-D primitive data evenly

_ among the 3-D geometvy accelerator chips, Col. 6, lines 43-47; each 3-D geometry accelerator

chip prdcessesprimitive data, Col. 6, lines 56-62; rendering hardware interpoiaies the primitive

data to compute the display screen pixels that are turned on to represent each primitive, Col. 1,

lines 31-33); first end circuitry (12), coupled to the front end circuitry (Col. 7, lines 5-10),

operative to receive and process a portion of the pixel data (Col. 12, lines 13-20) in response to

position coordinates (Col. 12, lines 13-20); circuitry (64, 72), coupled between the front end

circuitry and the first back end circuitry (76), operative to determine which set of tiles (tiler, Col.

1 1, lines 8-31) of a repeating tile pattern (Col. 11, lines 35-50) are to be processed by the first

back end circuitry (Col. 11, lines 8-3 1). Alcorn discloses that the repeating tile pattern includes a

horizontally and vertically repeating pattern of square regions (Col. 15, lines 44-57), as shown in

Figure 6. Aicorn describes providing the position coordinates to the first back end circuitry in

response to the pixel data (Col. 12, lines 13-20). Aloorn describes a memory controller (5 0,
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Figure 2), coupled to the at least two graphics pipelines, operative to transmit and receive the

processed pixel data (Col. 6, lines 33-3 5, 40-43; Col. 8, lines 27-40).

However, Alcorn does not teach two back end circuitries and two scan converters.

However, Furtner describes a first scan converter (16, Figure 23). The flrst scan converter

receives, at its input, data which to write onto the graphic primitive to be processed (Col. 1, lines

58-62), and this data inherently comes from a fi'ont end circuitry. The output of the scan

converter is connected to the pipelines (20, Col. 1, lines 62-66). Therefore, the first scan

converter is coupled to the front end circuitry and the first back end circuitry (20). The scan

converter determines which clusters ofpixel data are to be processed by which pipeline (Col. 1 1,

lines 41-59; Col. 13, lines 54-63). Therefore, the first scan converter is operative to determine '

which set of tiles are to be processed by the first back end circuitry. The scan converter has

knowledge with regard to mapping the screen areas onto the memory address area (tiling) (Col.

6, lines 60-65). Therefore, the first scan converter is inherently operative to provide the memory

, address area or position coordinates to the first back end circuitry in response to the pixel data.

Furtner describes multiple pipelines, and each pipeline processes a cluster ofpixel data (Col. 11,

lines -'41-59; Col. 13, lines 54-63). The scan converter is 21 parallel scan converter, and provides

data to the multiple pipelines in parallel (Col. 2, lines 3-16), so the scan converter is considered

to be similar to twolscan converters, and the second scan converter performs in a similar manner

as the first scan converter for the second back end circuitry. This would be obvious for the same

reasons given in the rejection for Claim 5.
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Allowable Subject Matter

42. Claim 19 is objected to as being dependent upon a rejected base claim, but would be

allowable if rewritten in independent form including all of the limitations of the base claim and

any intervening claims.

The following is a statement ofreasons for the indication of allowable subject matter:

43. The prior art singly or in combination do not teach or suggest that each separate chip

creates a bounding box around the polygon and wherein each corner of the bounding box is

checked against a super tile that belongs to each separate chip and wherein if the bounding box
does not overlap any ofthe super tiles associated with a separate chip, then the processing circuit

rejects the whole polygon and processes a next one, as recited in Claim 19.

44. The closest prior art (Kent) teaches calculating the bounding box of the primitive and

testing this against the VisRect. If the bounding box ofthe primitive is contained in the other

Pl0’s superltile the primitive is discarded at this stage [OI29]. The method used is to calculate

the distance from each subpixel sample point in the point’s bounding box to the point’s center

and compare this to the point’s radius. Subpixel sample points with a distance greater than the

radius do not contribute to a pixel’s coverage. The cost of this is kept low by only allowing

small radius points hence the distance calculation is a small multiply and by taking a cycle per

subpixel sample per pixel within the bounding box [0144]. However, Kent does not teach that

each separate chip creates a bounding box around the polygon and wherein each corner of the

bounding box is checked against a super tile that belongs to each separate chip and wherein if the



0107

Applicationlcontrol Number: 10!459,797 ' Page 18

Art Unit: 2671

bounding box does not overlap any ofthe super tiles associated with a separate chip, then the

processing circuit rejects the whole polygon and processes a next one.

Prior Art ofRecord

The prior art made of record and not relied upon is considered pertinent to applicant's

disclosure.

1. US 20030164 830Al teaches a ‘graphics pipeline [0006] that calculates the bounding box

of the primitive in a super tile [0I29].7

2. Elias, Hugo. “Polygon Scan Converting.”

httpzf/freespace.vi[gin.netfhugo.e1ias/grep’hics/x pol1sc,htrn.

— Conclusion

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Joni Hsu whose telephone number is 5‘71~2'72-7785. The

examiner can normally be reached on M-F Sam-Spm_.

If attempts to reach the examiner by telephone are unsuccessfirl, the examiner’s

supervisor, Ulka Chauhan can be reached on 571-272-7782. The fax phonenurnber for the

organization where this application or proceeding is assigned is 571-273-3300.
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Information regarding the status of an application may be obtained from the Patent

Application Information Retrieval (PAIR) system. Status information for published applications

may be obtained from either Private PAIR or Public PAIR. Status information for unpublished

applications is available through Private PAIR only. For more information about the4PAIR

system, see http:/fpair-direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (BBC) at 866-217-9197 (toll-fi'ee).
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Polygon Scan Converting

There are many ways to draw polygons. All have their uses. Some are fast, others very slow. The most

popular method, used in practically every game, rendering engine, and graphics package which handles
polygons, is known as scan converting.

This method uses only integer maths, takes up very little memory, and is simple to understand. The

algorithm can be adapted to handle flat or gourad shaded, textured and hump mapped polygons.

It is an approximate method. You will never be able to draw a totally perfect polygon with smooth edges

on a normal screen, because of the fact that the picture is divided up into pixels. It is possible to make
the edges look better, but the edges will nevertheless look jaggy.

.. On a pixelated screen, a small

polygon like this will end up .

' with nasty edges when viewed

' close up.

. The method works by taking the

-- polygon a line at a time, --
processing all the edges, then

" filling in the surface. lfyou

haven't already, take a look at

the page about drawing lines. You will find this very helpful.

A single scan conversion is the processof converting a polygon edge into data which can be used by the
polygon filling routine. The process is essentially a single case of the line drawing algorithm. A polygon

edge is calculated as if it were a line, but the line is not drawn to the screen. Instead the information is _
saved in a buffer for use later.

Rather than having a different routine to handle nearly horizontal or nearly vertical lines, all edges are
handled as nearly vertical.

So the line algorithm travels down an edge, calculating the X-coordinate of the pixel which lies closest
to the line for each Y~coordinate. '

Having calculated the x-coordinates for every edge of the polygon, the next step is to loop through the-
Y-coordinates spanned by the top and bottom ofthe polygon, and draw lines between pairs of X-
coordinates.

1.
Scan convert first edge.

2.
Scan convert second edge. .-

httpzl/freespacevirgin.netfhugo.eliasfgraphicsfx_polysc.htm W26/05
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in;
Scan convert third edge.

Scan convert fourth edge H H

edges have been scan-

converted, you need to begin

__ __ filling. Start at the top of the

... polygon, and draw a horizontal

-- strip between the left and right

-; edges. Work your way down,

" drawing horizontal strips across

the polygon until it is filled.

‘ One filled polygon.

Now that you know the basic idea behind it, there are many things to consider.

how do you store the in values?

For convex polygons, there is a very quick and easy way to handle this. Create two arrays of integers,

big enough to store an x value for each scanline of the screen. Call them Lefi and Right. -

For example, for a 320x200 screen: '

Left(O to 199) : integer

Rightlfl to 199) : integer

Now if you always list the points of the polygon in anti-clockwise order. Then you can easily determine

which lines make up the left and the right edges of the polygon. Lines who's first point is above the
second make up the left edges. Lines who's first point is below the second make up the right edges.

Lines who's points lie at the same y coordinate can be ignored. Store the X values in either the Left or

Right arrays accordingly. Then, when you come to fill the polygon, the x coordinates are already there in

the right order.

which points to Fill?

Ifyou use a simple line drawing algorithm to calculate the x-coordinates, you will find that many ofthe

pixels drawn will actually lie slightly outside the boundaries of the polygon. This means that where

polygons share the same edge, some pixels will be drawn twice. Now, this may or may not be a bad

thing. It depends on how perfectly you need your polygons to be drawn. In many cases, if the polygons
- are flat shaded, people will never notice the fact. However, you may have transparent polygons, in

which case you will get funny looking pixels at the boundaries between polygons, Where the surface

appears to be double thickness. It can be fatal however. Ifthe edge of a texture mapped polygon lies

very close to it's vanishing point at an oblique angle, a pixel outside the polygon may just lie past the

horizon. In many perspective correct texture mapping routines, this could cause a divide by zero error.

http :1’/freespace.vii-ginnetlhugo.eliaslgraphics/x_polysc.htm 7l26f05
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These should be avoided at all cost.

In these_cases, it is essential to write a scan-converter which guarantees that all pixels lie within the

polygon's bounds:-ies._This is, of course, easier said than done. What about pixels that lie exactly on a
polygon boundary? ' "

I now present what I believe to be a perfect scan-converting routine. It allows you to specify the verti ces

of the polygon to non-integer coordinates on the screen. This makes the polygon move a lot more

fluidly. It also draws pixels which lie inside the edges of the polygon.

Perfect scan converting

OK, so this routine is going to use non-integer maths. That does not mean you will need slow floating
point code. This can all be done with resonably fast fixed point maths, which can be handled extremely
fast in assembler. Even faster, dare I say it, than the integer codel gave for drawing lines. Ifyou don't

know about fixed point maths, then you'll have to either find out for yourself, wait till I write a

document on it, or just use floating point code for now.

Perfectly scanned polygons move much more smoothly than those calculated with integer maths, and so
are more pleasing to the eye. Take a look at Quake, then Tomb Raider or Syndicate Wars. You will see

that the cheap polygons in Tomb Raider move in a rather jittery way, making the scenery look like it's

held together with selotape. Quake's smoothly rendered polygons on the other hand give the architecture
a more solid feel.

There is a demo available showing the difference between integer and Fixed Point polygons. It requires

DQ5[4giW to run.

So, lets take a really close look at the edges of a polygon:

OK, this may get complicated, and

involve a little maths, but the
results are excelent.

Take a close look at the line that is

to be scan converted, the yellow

one. The two points that it is being

drawn between (white dots (x1,y1)

& (x2,y2)) do not lie exactly at the

center of any pixel, (green dots).

However, when the polygon

comes to be rendered, it must be
drawn using horizontal strips that

are drawn between integer
coordinates.

The way to handle this is calculate
~ the X intersection of the line with

http://freespacevirgin.net/hugo.elias/graphics/x__polysc.htm - 7/26/OS
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horizontal scanlines. Then, save

the X coordinate of the nearest pixel inside the polygon.

Firstly some variables we'll need.

Nonintegers: gradient
ex, ey

x1, yl, x2, y2
Ax, Ay, Bx, By

Integers: height

the function inti) returns the integer part of a number. i.e. int(5.7) = 5

OK, so lets break down the steps:

1. Calculate the gradient of the line:

dx = x2 - x1 .

dy — y2 - yl
gradient = dx/dy

2. Calculate ey:

ey = int(y1+1) — yl

3. Calculate ex:

ex = gradient*ey

4. Calculate coordinates of A:

Ax ‘x1 + ex
Ay Lnt(y1+1)

5. Calculate y coordinate‘ of B:

By = int(y2)

You will notice that there is a divide in the calculation. Risk of a. divide by zero. If dy is equal to zero,

then you can simply ignore the entire line.

Right, now you have calculated all those things, the line can be scan convened. This scan converting
process is actually faster than the one used for integer polygons (if you're using fixed point maths,

otherwise it's slower). There are no [F's and IUMP's involved. The loop can be unrolled nicely to

process at increadibie speed.

So the inner loop looks something like this:

= Ax

loop y from Ay to By.
Yfiufferlyl = x

http:I/freespacevirginnetfhugo.elias/g1'aphicsfx_polysc.htm
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x=x+gradient
end of loop

Again, you will have to handle Left hand lines and Right hand lines differently. The case given here is
for a Left hand line. I will leave it up to you to work out how to handle the other side.

Scan converting in Assembler

Here is an example of a scan converter I wrote in Assembler. It works on 32-bit Fixed Point numbers
only.

It takes as arguments; The initial at value (X), The gradient (DeltaX), the number of scan lines to

calculate (length), and a pointer to the first element in the Y Buffer.

EEK
EBX
ECX
EDI

x

Deltax

length
pointer to YBuffer[Y]

top:

[edi], eax 3 YBuffer[y|.= x
add eax, ebx : x x + Deltax

add edi, 4 : y y + 1
dec ecx

jnz top: ;end of loop

This can be unrolled and can celculate polygon edges very fast indeed. This version has been unrolled
four times -

EA3 'x
EBX Deltax

ECX length
EDI pointer to YBuffer[Y]

shr ecx ' halve the number of loops
jnc Nosingle if there are an even number of lines to do

then don't do this odd one

mov [edi], eax ' YBuffer[y] = x
cmp ecx, D are there any more left?
je NoMore ' if not, then exit
add eax, ebx ' x x + 1

add edi. 4 y y + 1
Nosingle: ‘

shr ecx

jnc Nosingle
halve the number of loops again
if the number of lines is a multiple or 4
then don't do these add two

YBuffer[y] = x
3 = x + Deltax

YBuffer[y+1] = x
x = X + Deltax

mov [edi], eax
add eax, ebx

mov [edi+4], eax
add eax, ebx

-u.a.‘IIIn-.w.in.
cmp ecx, D ' are there any more left?
je Nomore ' if not, then exit
add edi, 8 ' y = y + 2

Nonouble:

top:

http://freespacevirginnetlhugo.eliasfgraphics/x_po]ysc.ht1n
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mov [edi], eax : YBuffer[y] = X
add eax, ebx : x = X + Deltax

[edi+4], eax ; YBuffer[y+1] = x
add eax, ebx ; 3 = x + Deltax

[edi+8], eax ' ; YBuffer[y+2] = 1:
add eax, ebx ; K = x + Deltax

mov {edi+l2], eax ; YBuffer[y+3] = x
add eax, ebx : x x + Deltax

add. edi, 16 r’ Y Y -l- £1

clec ecx :

jnz top . ;.end of loop

So, after all the edges of the polygon have been scan converted, you have an array of pairs of X

coordinates where the edges cross horizontal scanlines. Assuming you are going to fill the area with a

solid colour, you should loop down the height of the polygon, drawing horizontal strips from one side to
the other. Remember that you only want to draw pixels that lie inside the polygon. So draw from the

first pixel to the right of the left edge, to the first pixel to the left of the right edge. geddit?

Take a look at the polygon

again, this time filled. The

centres of the filled pixels all

' lie within the polygon. The X
coordinates stored in the

Y'Buffer would be:

You will notice that on the last

line, 6, X1 is larger then X2.

This is because the polygon

crosses the line, but pokes
between pixels. This strip does

not get drawn.

I hope I have convinced you -

to only ever write perfect scan converters from now on. There shouldn't really be any excuse for using

tacky integer polys any more. Computers are quite fast enough to cope with the tiny extra computing
overhead involved, and you as a programmer, I have no doubt, are more then capable of writing the
code. '

http://freespacevirginnetfhugo.eliasfgraphicslx_polysc.htm
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REMARKS

Applicants respectfully traverse and request reconsideration.

Applicants with to thank the Examiner for the notice that claim 19 would be allowable if

rewritten in independent form.

Claims 1-4, 6-8, 9, 10, 12, 14, 17, 18. 20-23, 25 and 26 stand rejected under 35 U.S.C.

§102(b) as being anticipated by U.S. Patent No. 5,745,118 (Alcom). The independent claims

have been amended to include inherent language indicating that the tiles described in the

specification and claimed correspond to screen locations and may have corresponding frame

buffer memory locations as well. Alcom is directed to different structure and operations from

that claimed and instead is directed to texture space source data. Alcom describes a 3D bypass

structure for the download of textures and describes a system that receives primitive information

from a host processor and passes it through a distributor 30 which then distributes 3D primitive

data evenly among the 3D geometry accelerator chips. In this way, for example, three groups of

primitives are operated upon simultaneously. The multiple 3D geometry accelerator chips

determine object red, green and blue values and texture values for the screen space coordinates

and they also perform view clipping operations. The output from these multiple 3D geometry

accelerator chips are then passed to a concentrator chip 36 which combines the 3D primitive

output data received from the 3D geometry accelerator chips and reorders the primitives to the

original order that they had prior to being distributed by the distributor chip 30. (See for

example, column 6, line 42 through column 7, line 10). As such, distribution of primitive data is

done merely in a round robin type approach wherein each graphics accelerator chip receives an

even distribution of primitives. The texture mapping board 12 then receives the primitives in the

same order that the distributor receives them in and then processes them in that order.
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In contrast, Applicants’ claims are directed to a different operation - render space

destination data. There is no teaching or suggestion in Alcom of at least two graphics pipelines

that process data in a corresponding set of tiles of a repeating tile pattern corresponding to screen

locations, wherein the repeating tile pattern includes a horizontally and vertically repeating

pattern of square regions.

It appears that the Alcorn reference actually teaches a type of round robin or sequential

load balancing for texture source data in a front end. In contrast, Applicants describe, for

example, a multi-pipeline system that performs pixel operations on pixels within a determined

set of tiles by a corresponding one of a plurality of graphics pipelines based on a set of tiles of a

repeating tile pattern corresponding to screen locations. In one embodiment, a scan converter

determines, for example, whether pixels within portions of an object, such as a triangle, intersect

with tiles that backend circuitry is responsible for processing. No tile based load distribution

appears to be taught or suggested in the cited reference. Accordingly, the claims are believed to

be in condition for allowance.

For example, the office action cites Alcom, column 6, lines 40-43 as allegedly teaching a

plurality of graphics pipelines. This portion refers to the multiple accelerator chips 32a-32c, for

example. The office action then cites to column 11, lines 8-31 as teaching the processing of

corresponding sets of tiles. However, this cited portion actually refers to the texture mapping

board which is not part of the graphics accelerator chips. In fact, the graphics pipelines (i.e. the

graphics accelerator chips) merely process data in a round robin fashion and do not process data

based on tiles of a repeating tile pattern. Accordingly, the independent claims are in condition

for allowance.

The office action also cites to Alcom at column 15, lines 44-57. However again, this

portion refers to the texture mapping board 12 which again processes data in the order in which

10
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the distributor 30 received them. The portion referred to in the office action actually refers to the

storage of texels in a MIP map so that the tiler 72 in the texture mapping board can access texels

in the texel cache access 82. There is no teaching or suggestion that any texture tiles correspond

to screen locations nor a plurality of pipelines that process data in a corresponding set of tiles of

a repeating tile pattern corresponding to screen locations wherein the pattern includes a

horizontally and vertically repeating pattern of the square regions. Accordingly, claims 1, 20, 24

and 25 are in condition for allowance.

The dependent claims add additional novel and non-obvious subject matter. For

example, claim 3 requires that the square regions are 2-dimensional partition of memory in a

frame buffer. However, the cited portion of Alcom actually indicates that the texture map which

actually comes from the texture cache 48 and not the frame buffer VRAMs, is combined in the

frame buffer board to generate the final RGB values for each display screen pixel.

Also for example, with respect to claim 14, again the office action cites the 3D geometry

accelerator chips of Alcorn as the claimed graphics pipelines. However, these 3D geometry

accelerators do not process pixel data in the set of tiles in a repeating tile pattern as alleged in the

office action. As noted above, the texture mapping board obtains texels for texture mapping and

this board is not part of the front end board 10. Accordingly, the claim is in condition for

allowance.

Claims 5, ll, 13, 15, 16 and 24 stand rejected under 35 U.S.C. §lO3(a) as being

unpatentable over Alcom in view of US. Patent No. 6,778,177 (Furtner). Applicants

respectfully reassert the relevant remarks made above and as such, these claims are also in

condition for allowance.

In addition, the Furtner reference is directed to a method for rasterizing a graphics

component. Claim 5 requires that each of the graphics pipeline each include a scan converter.

1 1
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However, the cited portion of Furtner merely describes a parallel scan converter not a scan

converter for each of the pixel pipelines. Accordingly, the claim is in condition for allowance.

As to claim 11, this claim requires, among other things, a scan converter for one of the graphics

pipelines that provides position coordinates of pixels within the first set of tiles to be processed

by the back end circuitry and that the scan converter includes a pixel identification line for

receiving tile identification data indicating which of the set of tiles is to be processed by the back

end circuitry. The office action cites column 10, lines 1-8 of Alcorn. However, the cited portion

merely describes that there are texture map coordinates that are generated that correspond to the

pixel. The cited portion actually refers to the back end circuit of Alcorn, namely the texture

mapping card or board 12 (see FIG. 3). As such, the claim is in condition for allowance.

Applicants respectfully submit that the claims are in condition for allowance and

respectfully request that a timely Notice of Allowance be issued in this case. The Examiner is

invited to Contact the below-listed attorney. if the Examiner believes that a telephone conference

will advance the prosecution of this application.

Respectfully submitted.

4,425 er _ sy: 
Christoph .Reckamp

Registration No. 34,414

Vedder, Price, Kaufman & Kammholz, P.C.

222 N. LaSaIIe Street

Chicago, Illinois 60601

PHONE: (312) 609-7599

FAX: (312) 609-5005
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Amendments to the Claims:

Re-write the claims as set forth below. This listing of claims will replace all prior versions and

listings, of claims in the application:

Listin of Claims:

I. (currently amended) A graphics processing circuit, comprising:

at least two graphics pipelines operative to process data in a corresponding set of tiles of

a repeating tile pattem corresponding to screen location , a respective one of the at least two

graphics pipelines operative to process data in a dedicated tile,

wherein the repeating tile pattern includes a horizontally and vertically repeating pattern

of square regions.

2. (original) The graphics processing circuit of claim 1, wherein the square regions

comprise a two dimensional partitioning of memory.

3. (original) The graphics processing circuit of claim 2, wherein the memory is a frame

buffer.

4. (original) The graphics processing circuit of claim 1, wherein each of the at least two

graphics pipelines further includes front end circuitry operative to receive vertex data and

generate pixel data corresponding to a primitive to be rendered, and back end circuitry, coupled

to the front end circuitry, operative to receive and process a portion of the pixel data.

Cl-I[CAGOI#l435290.l
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5. (original) The graphics processing circuit of claim 4, wherein each of the at least two

graphics pipelines further includes a scan converter, coupled to the back end circuitry, operative

to determine the portion of the pixel data to be processed by the back end circuitry.

6. (original) The graphics processing circuit of claim 1, wherein each tile of the set of

tiles further comprises a 16x16 pixel array.

7. (original) The graphics processing circuit of claim 4, wherein the at least two graphics

pipelines separately receive the pixel data from the front end circuitry.

8. (original) The graphics processing circuit of claim 4, wherein the at least two graphics

pipelines are on multiple chips.

9. (previously presented) The graphics processing circuit of claim 1, further including a

memory controller coupled to the at least two graphics pipelines, operative to transfer pixel data

between each of a first pipeline and a second pipeline and a memory.

10. (original) The graphics processing circuit of claim 4, wherein a first of the at least

two graphics pipelines processes the pixel data only in a first set of tiles in the repeating tile
/

pattern.

11. (original) The graphics processing circuit of claim 10, wherein the first of the at

least two graphics pipelines further includes a scan converter, coupled to the front end circuitry

and the back end circuitry, operative to provide position coordinates of the pixels within the first

3
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set of tiles to be processed by the back end circuitry, the scan converter including a pixel

identification line for receiving tile identification data indicating which of the set of tiles is to be

processed by the back end circuitry.

12. (previously presented) The graphics processing circuit of claim 1, wherein a second

of the at least two graphics pipelines processes the data only in a second set of tiles in the

repeating tile pattern.

13. (previously presented) The graphics processing circuit of claim 12, wherein the

second of the at least two graphics pipelines further includes a scan converter, coupled to front

end circuitry and back end circuitry, operative to provide position coordinates of the pixels

within the second set of tiles to be processed by the back end circuitry, the scan converter

including a pixel identification line for receiving tile identification data indicating which of the

set of tiles is to be processed by the back end circuitry.

14. (original) The graphics processing circuit of claim 1 including a third graphics

pipeline and a fourth graphics pipeline, wherein the third graphics pipeline includes front end

circuitry operative to receive vertex data and generate pixel data corresponding to a primitive to

be rendered, and back end circuitry, coupled to the front end circuitry, operative to receive and

process the pixel data in a third set of tiles in the repeating tile pattern, and wherein the fourth

graphics pipeline includes front end circuitry operative to receive vertex data and generate pixel

data corresponding to a primitive to be rendered, and back end circuitry, coupled to the front end

circuitry, operative to receive and process the pixel data in a fourth set of tiles in the repeating

tile pattern.
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15. (original) The graphics processing circuit of claim 14, wherein the third graphics

pipeline further includes a scan converter, coupled to the front end circuitry and the back end

circuitry, operative to provide position coordinates of the pixels within the third set of tiles to be

processed by the back end circuitry, the scan converter including a pixel identification line for

receiving tile identification data indicating which of the sets of tiles is to be processed by the

back end circuitry.

16. (original) The graphics processing circuit of claim 14, wherein the fourth graphics

pipeline further includes a scan converter, coupled to the front end circuitry and the back end

circuitry, operative to provide position coordinates of the pixels within the fourth set of tiles to

be processed by the back end circuitry, the scan converter including a pixel identification line for

receiving tile identification data indicating which of the sets of tiles is to be processed by the

back end circuitry.

17. (original) The graphics processing circuit of claim 14, wherein the third and fourth

graphics pipelines are on separate chips.

18. (original) The graphics processing circuit of claim 14, further including a bridge

operative to transmit vertex data to each of the first, second, third and fourth graphics pipelines.

19. (original) The graphics processing circuit of claim 17 wherein the data includes a

polygon and wherein each separate chip creates a bounding box around the polygon and wherein

each comer of the bounding box is checked against a super tile that belongs to each separate chip

5
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and wherein if the bounding box does not overlap any of the super tiles associated with a

separate chip, then the processing circuit rejects the whole polygon and processes a next one.

20. (currently amended) A graphics processing method, comprising:

receiving vertex data for a primitive to be rendered;

generating pixel data in response to the vertex data;

determining the pixels within a set of tiles of a repeating tile pattern corresponding to

screen locations to be processed by a corresponding one of at least two graphics pipelines in

response to the pixel data. the repeating tile pattern including a horizontally and vertically

repeating pattern of square regions; and

performing pixel operations on the pixels within the determined set of tiles by the

corresponding one of the at least two graphics pipelines.

21. (original) The graphics processing method of claim 20, wherein determining the

pixels within a set of tiles of the repeating tile pattern to be processed further comprises

determining the set of tiles that the corresponding graphics pipeline is responsible for.

22. (original) The graphics processing method of claim 20, wherein determining the

pixels within a set of tiles of the repeating tile pattern to be processed further comprises

providing position coordinates of the pixels within the determined set of tiles to be processed to

the corresponding one of the at least two graphics pipelines.

23. (original) The graphics processing method of claim 20, further comprising

transmitting the processed pixels to memory.
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24. (currently amended) A graphics processing circuit, comprising:

front end circuitry operative to generate pixel data in response to primitive data for a

primitive to be rendered;

first back end circuitry, coupled to the front end circuitry, operative to process a first

portion of the pixel data in response to position coordinates;

a first scan converter, coupled between the front end circuitry and the first back end

circuitry, operative to determine which set of tiles of a repeating tile pattern are to be processed

by the first back end circuitry, the repeating tile pattern including a horizontally and vertically

repeating pattern of square regions, and operative to provide the position coordinates to the first

back end circuitry in response to the pixel data;

second back end circuitry, coupled to the front end circuitry, operative to process a

second portion of the pixel data in response to position coordinates;

a second scan converter, coupled between the front end circuitry and the second back end

circuitry, operative to determine which set of tiles of the repeating tile pattern are to be processed

by the second back end circuitry, and operative to provide the position coordinates to the second

back end circuitry in response to the pixel data; and

a memory controller, coupled to the first and second back end circuitry[[.]] operative to

[[receive]] transmit and receive the processed pixel data.

25. (currently amended) A graphics processing circuit, comprising:

at least two graphics pipelines operative to process data in a corresponding set of tiles o_f

a repeating tile pattern corresponding to screen locations, a respective one of the at least two
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graphics pipelines operative to process data in a dedicated tile, wherein the repeating tile pattern

includes a horizontally and vertically repeating pattern of regions.

26. (previously presented) The graphics processing circuit of claim 25 wherein the

horizontally and vertically repeating pattern of regions include NXM number of pixels.
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Application No. Applicanflsj

101459.797  EA'l'HER ET AL.

Office Action Summary Examlne, M Um,

- The MAILING DATE of this communication appears on the cover sheet with the correspondence address -
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY lS SET TO EXPIRE § MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER. FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions ottime may be available under the provisions (:13? CFR ‘l.13B{a}. In no event. however, may a reply be timely tiled -

after SIX (6) MONTHS from the mailing date of this oornmunioatien.
- If No period for reply is specified above. the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended pefiod for reply will. by statute. cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Oflioe later than three months alter the mailing date of this communication. even it timely filed. may reduce any
earned patent term adjustment. See 3? CFR 1.ro-urn).

Status

1}|:I Responsive to communication(s) filed on _.

2a)E This action is FINAL. 2b)I:I This action is non~final.

3)l:I Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parfe Quayle, 1935 CD. 11. 453 0.G. 213.

Disposition of claims

4)E Claim(s) it isfare pending in the application.

4a) Of the above claim(s) _______ isiare withdrawn from consideration.

5)l] C|aim(s) __ istare allowed.

6)E C|aim(s) 1-18 and 20-25 Islare rejected.

‘DE CIaim(s) 1_9 isfere objected to.

8)|:| claim(s)_are subject to restriction andlor election requirement.

Application Papers

9}|Z The specification is objected to by the Examiner. , _

10)I:I The drawlng(s) filed on :__is1are: a)l:i accepted or b)l:I objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 3? CFR ‘l.B5(a).

Replacement drawing sheetls) including the correction is required if the drawingjsj is objected to. See 3'! CFR 1.121(d).

11)l:| The oath or declaration is objected to by the Examiner. Note the attached Office Action orionn PTO-152.

Priority under 35 U.S.C. § 119

12)I:I Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a}-(d)_ or (f).

a)|:| All b)|:| Some * c)E] None of:

1.E] Certified copies of the priority documents have been received.

2.I:I Certified copies of the priority documents have been received in Application No. __.

3.I:I Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 1T.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachrnentts)

1) D Notice of References Cited (PTO-B92) 4) E] Interview Summary (PTO-413)
2) CI Notice or Dranspersan-s Patent Drawing Review (Pro-943) Paper N°lslfMai| Date. -
3) D Information Disclosure Staternent(e) {PTO-1449 or PTOISBIDB) 5) El N050? 07 W°"'"a' FEW!‘ I'\PI>ll°31i|lfl (PTO-152)

Paper No(s)l‘Mai| Date . 6) C] Other: .
us. Patentano Trarlemarlt Office

PTOL-325 (Rev. 7-05) Oflice Action Summary Part of Paper No.IMaiI Date 1506
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DETAILED ACTION

Response to Amendment

1. In light of Applicant's amendment to Claim 24, the objection to Claim 24 has been

withdrawn.

2. Applicant's arguments with respect to claims 1-18 and 20-26 have been considered but

are moot in view ofthe new ground(s) of rejection.

3. Applicant’s arguments, see page 9, filed January 5, 2006, with respect to the rejection(s)

of claim(s) 1-4, 6-10, 12, 14, 17, 13, 20-23, 25, and 26 under 35 U.S.C. 102(b) and claims 5, 11,

13, 15, 16, and 24 have been fiilly considered and are persuasive. Therefore, the rejection has

been withdrawn. However, upon further consideration, a new ground(s) ofrejection is made in

view of Furtner (US006'?781'77B1).

4. Applicant argues that Alcorn (US005745118A) is directed to texture space source data

and not to tiles corresponding to screen locations (page 9).

In reply, the Examiner agrees. However, new grounds ofrejection are made in View of

Furtner.

S. Applicant's arguments filed Ianuaiy 5, 2006, with respect to Claim 5 have been fillly

considered but they are not persuasive.
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6. With regard to Claim 5, Applicant argues that Furtner describes a parallel scan converter

not a scan converter for each of the pixel pipelines (pages 11-12).

In reply, the Examiner disagrees. Furtner does teach a scan converter for each of the

pixel pipelines (Col. 6, lines 47-51).

Specification

7. The disclosure is objected to because of the following informalities: Paragraph [0001]

states that this application is a related application to a co-pending application, but does not

provide the serial number for this co-pending application.

Appropriate correction is required.

Claim Rejections - 35 USC § 102

3. The following is a quotation ofthe appropriate paragraphs of 35 U.S.C. 102 that form the

basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(e) the invention was_described in (1) an application for patent, published under section
l22(b), by another filed in the United States before the invention by the applicant for

patent or (2) a patent granted on an application for patent by another filed in the United

States before the invention by the applicant for patent, except that an international

application filed under the treaty defined in section 35l(a) shall have the effects for

purposes of this subsection of an application filed in the United States only if the

international application designated the United States and was published under Article

21(2) of such treaty in the English language.
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9. Claims 1-17 and 20-26 are rejected under 35 U.S.C. 102(e) as being anticipated by

Furtner (US0067'78177B1).

10. With regard to Claim 1, Furtner describes a graphics processing circuit, comprising at

least two graphics pipelines (20, Figure 23; Col. 2, lines 11-14) operative to process data in a

corresponding set of tiles of a repeating tile pattern corresponding to screen locations, a

respective one of the at least two graphics pipelines operative to process data in a dedicated tile,

wherein the repeating tile pattern includes a horizontally and vertically repeating pattern of

square regions (Figure 21b, Col. 1, lines 40-49).

11. With regard to Claim 2, Furtner describes that the square regions comprise a'two '

dimensional partitioning ofmemory (10, Figure 21b; Col. 1, lines 40-49).

12. With regard to Claim 3, Furtner describes that "the memory is a frame buffer (10, Figure

21b; Col. 1, lines 40-49).

13. With regard to Claim 4, Furtner describes that each ofthe at least two graphics pipelines

ftuther includes front end circuitry (102, Figure 1) operative to receive vertex data and generate

pixel data corresponding to a primitive to be rendered (Col. 8, lines 3844) , and back end

circuitry (108), coupled to the front end circuitry, operative to receive and process a portion of

the pixel data (Col. 8, lines 51-60).



0142

Applicationfcontrol Number: 10I459,797 Page 5

Art Unit: 2671

14. With regard to Claim 5, Further describes that each ofthe at least two graphics pipelines

fiirther includes a scan converter (16, Figure 23) (C01. 2, lines 3-16; Col. 6, lines 47-5 1). The

scan converter determines which clusters of pixel data are to be processed by which pipeline

(Col. 11, lines 41-59; Col. 13, lines 54-63). Therefore, the scan converter is coupled to the back

end circuitry (20), operative to determine the portion of the pixel data to be processed by the

back end circuitry.

15. With regard to Claim 6, Furtner describes that each tile of the set of tiles further 4

comprises a 16x16 pixel array (Col. 11, lines 45-48, 64-65).

16. With regard to Claim 7, Further describes that the at least two graphics pipelines (108,

Figure 1) separately receive the pixel data from the front end circuitry (102) .(Col..'8_, lines 51-57).

17. With regard to Claim 8, Furtner describes that the at least two graphics pipelines "are on

multiple chips (Col. 6, lines 47-51).

18. With regard to Claim 9, Furtner describes a memory controller (22, Figure 23) coupled to

the at least two graphics pipelines (20), operative to transfer pixel data between each of a first

pipeline and a second pipeline and a memory (24) (C01. 2, lines 20-34).
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19. With regard to Claim 10, Further describes that a first of the at least two graphics pipeline

processes the pixel data only in a first set of ti.les in the repeating tile pattern (Figure 21b, Col. 1,

lines 41-49).

20. With regard to Claim 11, Further describes that the first of the at least two graphics

pipelines further includes a scan converter (16; Col. 2, lines 3-16). The scan converter receives,

at its input, data which to write onto the graphic primitive to be processed (Col. 1, lines 58-62),

and this data inherently comes from a front end circuitry. The output of the scan converter is

connected to the pipelines (20, C01. 1, lines 62-66). Therefore, the scan converter is coupled to

the front end circuitry and the back end circuitry (20). The scan converter determines which

clusters of pixel data are to be processed by which pipeline (Col. 1 1, lines 41-59; Col.' 13, lines

54-63). The scan converter has knowledge with regard to mapping the screen areas (into the

memory address area (tiling) (Col. 6, lines 60-65). Therefore, the scan converter is inherently

operative to provide memory addresses or position coordinates of the pixels within the first set of

tiles to be processed by the back end circuitry, the scan converter inherently including a pixel

identification line for receiving tile identification data indicating which of the set of tiles is to be

processed by the back end circuitry.

21. With regard to Claim 12, Furtner describes that a second of the at least two graphics

pipelines processes the data only in a second set of tiles in the repeating tile pattern (Figure 2113,

Col. 1, lines 41-49).
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22. With regardto Claim 13, Claim 13 is similar in scope to Claim 11, and therefore is

rejected under the same rationale.

23. With regard to Claim 14, Claim 14 is similar to Claims 4 and 10, except that Claim 14 is

for a third and fourth graphics pipeline. Furtner describes four graphics pipelines (Col. 1, lines

37-49). Therefore, Claim 14 is rejected under the same rationale as Claims 4 and 10.

24. With regard to Claim 15, Claim 15 is similar in scope to Claim 11, and therefore is

rejected under the same rationale.

25. With regard to Claim 16, Claim 16 is similar in scope to Claim 11, and therefore is

rejected under the same rationale.

26. With regard to Claim 17, Claim 17 is similar in scope to Claim 8, and therefore is

rejected under the same rationale.

27. With regard to Claim 20, Furtner describes a graphics processing method, comprising

receiving vertex data for a primitive to be rendered; generating pixel data in response to the

vertex data (Col. 8, lines 38-44); determining the pixels within a set of tiles ofa repeating tile

pattern corresponding to screen locations (Figure 21b, Col. 1, lines 41-49) to be processed by a

corresponding one of at least two graphics pipelines in response to the pixel data (Col. 11;’ lines

41-59', Col. 13, lines 54-63), the repeating tile pattern including a horizontally and vertically
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repeating pattern of square regions; and performing pixel operations on the pixels within the

determined set of tiles by the corresponding one of the at least two graphics pipelines (Figure

21b, Col. 1, lines 41-49).

28. With regard to Claim 21, Further describes determining the pixels within a set of tiles of

the repeating tile pattern to be processed further comprises determining the set of tiles that the

corresponding graphics pipeline is responsible for (Col. 11, lines 41-49; Col. 13, lines 54-63).

29. With regard to Claim 22, Furtner describes that the scan converter determines which _

clusters ofpixel data are to be processed by which pipeline (Col. 11, lines 41-59; Col. 13, lines

54-63). The scan converter has knowledge with regard to mapping the screen areas‘ onto the

memory address area (tiling) (Col. 6, lines 60-65). Furtner discloses that determining the pixels

withinla set oftiles of the repeating tile pattern to be processed (Col. 1, lines 41-49) inherently

further comprises providing position coordinates of the pixels within the determined set of tiles

to be processed to the corresponding one ofthe at least two graphics pipelines.

30. With regard to Claim 23, Former describes transmitting the processed pixels to memory

(24, Figure 23; C01. 2, lines 20-34).

31. With regard to Claim 24, Further describes a graphics processing circuit, ‘comprising’

front end circuitry (102, Figure 1) operative to generate pixel data in response to primitive data

for a primitive to be rendered (Col. 8, lines 38-44); first back end circuitry (lO8a), coupled to the
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front end circuitry (Col. 8, lines 51-57), operative to process a first portion ofthe pixel data in

response to position coordinates; a first scan converter (16, Figure 23). The first scan converter

receives, at its input, data which to write onto the graphic primitive to be processed (Col. 1, lines

58-62), and this data inherently comes fi'om a fi'ont end circuitry. The output of the scan

converter is connected to the pipelines (20, Col. 1, lines 62-66). Therefore, the firsthscan

converter is coupled to the fi'ont end circuitry and the first back end circuitry (20). The scan

converter determines which clusters of pixel data are to be processed by which pipeline (Col. 1 1,

lines 41-59; Col. 13, lines 54-63). Therefore, the first scan converter is operative to determine

which set of tiles ofa repeating tile pattern (Figure 21b, Col. 1, lines 41-49) are to be processed

by the first back end circuitry. The scan converter has knowledge with regard to mapping the

screen areas onto the memory address area (tiling) (Col. 6, lines 60-65). Therefore, the first scan

converter is inherently operative to provide the memory address area or position coordinates to

the first back end circuitry in response to the pixel data. Furtner describes multiple pipelines,

and each pipeline processes a cluster of pixel data (Col. 11, lines 41-59; Col.‘ l3,‘1ines 54-63).

The scan converter is a parallel scan converter, and provides data to the multiple pipelines in

parallel (Col. 2, lines 3-16), so the scan converter is considered to be similar to two scan '

converters, and the second scan converter performs in a similar manner as the first scan converter

for the second back end circuitry. Furtner also describes that each pipeline has ‘a'' scan converter

(Col. 6, lines 47-51). Furtner describes a memory controller (24, Figure 23), coupled to the first

and second back end circuitry (20) operative to transmit and receive the processed pixel data

(Col. 2, lines 30-34).
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32. With regard to Claim 26, Further describes that the horizontally and vertically repeating

pattern of regions (Figure 2 lb, Col. 1, lines 41-49) include NXNI number ofpixels (Col. 1], lines

45-55).

33. Thus, it reasonably appears that Further describes or discloses every element of Claims .1-

17 and 20-26 and therefore anticipates the claims subject.

Claim Rejections - 35 USC § 103

34. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or '

described as set forth in section 102 of this title, if the differences between the subject

matter sought to be patented and the prior art are such that the subject matter as a whole

would have been obvious at the time the invention was made to a person having ordinary

skill in the art to which said subject matter pertains. Patentability shall not be negatived

by the manner in which the invention was made.

- 35. The factual inquiries set forth in Graham v. John Deere Co., 383 U.S. 1, 148 USPQ 459

(1966), that are applied for establishing a background for determining obviousness under 35

U.S.C. 103(a) are summarized as follows:

Detemtining the scope and contents of the prior art.

Ascertaining the differences between the prior art and the claimant issue.

Resolving the level of ordinary skill in the pertinent art. "

Considering objective evidence present in the application indicating obviousness
or nonobviousness.

l

36. Claim 13 is rejected under 35 U.S.C. 103(a) as being unpatentable over Further

(USO06778177B1) in view of Alcorn (US0057451 ISA).
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Further is relied upon for the teachings as discussed above relative to Claim 14.

However, Furtner does not teach a bridge operative to transmit vertex data to each of the

first, second, third and fourth graphics pipelines. However, Alcorn describes a bridge (30,

Figure 2) operative to transmit vertex data to each ofthe first, second, third and fourth graphics

pipelines (Col. 6, lines 32-3 5, 40-47; Col. 7, lines 28-33; Col. 5, line 65-Col. 6, line 3).

It would have been obvious to one ofordinary skill in the art at the time of invention by

applicant to modifir the device ofFurtner to include a bridge operative to transmit vertex data to

each of the first, second, third and fourth graphics pipelines as suggested by Alcorn because

Alcorn suggests the advantage ofbeing able to evenly distribute the vertex data among the

graphics pipelines. In this manner, the system bandwidth is increased because the groups of

vertex data are operated upon simultaneously (Col. 6, lines 43-49).

Allowable Subject Matter

37. Claim 19 is objected to as being dependent upon a rejected base claim, but would be

allowable if rewritten in independent form including all of the limitations of the base claim and

any intervening claims.

The following is a statement ofreasons for the indication of allowable subject matter:

38. The prior art singly or in combination do not teach or suggest that each separate chip

creates a bounding box around the polygon and wherein each corner of the bounding box is

checked against a super tile that belongs to each separate chip and wherein if the bounding box
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does not overlap any of the super tiles associated with a separate chip, then the processing circuit

rejects the whole polygon and processes a next one, as recited in Claim 19.

39. The closest prior art (Kent) teaches calculating the bounding box of the primitive and

testing this against the VisRect. If the bounding box of the primitive is contained _in the other

P10’s super tile the primitive is discarded at this stage [0129]. The method used is to calculate

the distance from each subpixel sample point in the point’s bounding box to thepoint’s center

and compare this to the point‘s radius. Subpixel sample points with a distance greater than the

radius do not contribute to a pixel’s coverage. The cost of this is kept low by only allowing

small radius points hence the distance calculation is a small multiply and by taking a cycle per

subpixel sample per pixel within the bounding box [0144]. However, Kent does not teach that

each separate chip creates a bounding box around the polygon and wherein each corner of the

bounding box is checked against a super tile that belongs to each separate chip and wherein if the

bounding box does not overlap any of the super tiles associated with a separate chip, then the

processing circuit rejects the whole polygon and processes a next one.

Prior Art ofRecord

The prior art made of record and not relied upon is considered pertinent to‘ applicant's

disclosure.

US 20030l64830Al teaches a graphics pipeline [0006] that calculates the bounding box
'.-c

of the primitive in a super tile [0129].
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Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in this

Ofiice action. Accordingly, THIS ACTION IS MADE FINAL. See MPEP § 706.07(a)_

Applicant is reminded ofthe extension of time policy as set forth in 37 CPR 1. l36(a).

A shortened statutory period for reply to this final action is set to expire THREE

MONTHS from the mailing date of this action. In the event a first reply is filed within 'l'WO

MONTHS ofthe mailing date of this final action and the advisory action is not mailed until after

the end of the THREE-MONTH shortened statutory period, then the shortened statutory period

will expire on the date the advisory action is mailed, and any extension fee pursuant to 37

CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event,

however, will the statutory period for reply expire later than SIX MONTHS from the date of this

final action.

Any inquiry concerning this communication or earlier communications fi'om the

examiner should be directed to Joni Hsu whose telephone number is 571-272-7785. The

examiner can normally be reached on M-F Sam-5pm.

If attempts to reach the examiner by telephone are unsuccessfiil, the exan1iner’s‘

supervisor, Ulka Chauhan can be reached on 571-272-7782. The fax phone number for the "

organization where this application or proceeding is assigned is 571-273 -8300. l ‘
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Information regarding the status of an application may be obtained from the Patent

Application Information Retrieval (PAIR) system. Status information for published applications

may be obtained from either Private PAIR or Public PAIR. Status information for unpublished

applications is available through Private PAIR only. For more information about the PAIR

system, see http:/fpair-direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

W
ULKA CHAl_J_HA[\|

SUPEFWISORY PATENT EXAMINER
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Abstract

In computer graphics, rendering is the process by which an abstract description of a scene is
converted to an image. When the scene is complex. or when high—quality images or high frame
rates are required. the rendering process becomes computationally demanding. To provide the
necessary levels of perforrnance. parallel computing techniques must be brought to bear. Today,
parallel hardware is routinely used in graphics workstations, and numerous software-based
rendering systems have been developed for general-putpose parallel architectures. This article
provides an overview of the parallel tendering field, encompassing both hardware and software
systems. The focus is on the underlying concepts and the issues which arise in the design of
parallel renclerers. We examine the different types of parallelism and how they can be applied in
rendering applications. Concepts front parallel computing, such as data decomposition and load
balancing. are considered in relation to the rendering problem. Our survey explores a number of
practical considerations as well. including the choice of architectural platform, communication and
memory requirements. and the problem of image assembly and display. We illustrate the
discussion with numerous examples from the parallel rendering literature, representing most of the
principal rendering methods currently used in computer graphics.

Key-Maxis; Parallel rendering: Computer graphics; Survey

1. Introduction

In computer graphics, rendering is the process by which an abstract description of a
scene is convened to an image. Fig. 1 illustrates the basic problem. For purposes of this
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Ftg. l. The generic rendering problem. A three-diinensioual scene is projected onto an image plane. taking into
account the viewing parameters and light sources.

discussion. a scene is a collection of geometricallydefined objects in three-dimensional
object space. with associated lighting and viewing parameters. The rendering operation
illuminates the objects and projects them into two-dimensional image space. where

color intensities of individual pixels are computed to yield a final image 7.
For complex scenes or highquality images. the rendering process is computationally

intensive, requiring millions or billions of floating-point and integer operations for each
image. The need for interactive or real-time response in many applications places
additional demands on processing power. The only practical way to obtain the needed
computational power is to exploit multiple processing units to speed up the rendering
task, a concept which has become known as parallel rendering.

Parallel rendering has been applied to virtually every image generation technique
used in computer graphics, including surface and polygon rendering. terrain rendering,
volume rendering, ray-tracing, and radiosity. Although the requirements and approaches
vary for each of these cases, there are a number of concepts which are important in
understanding how parallelism applies to the generic rendering problem.

We begin our examination of parallel rendering in Section 2 by considering the types
of parallelism which are available in computer graphics applications. Section 3 then
introduces a number of concepts which are central to an understanding of parallel
rendering algorithms. Building on this base. Section 4 considers design and implementa-
tion issues for parailel renderers, with an emphasis on architectural considerations and
application requirements. Sections 2-4 are illustrated throughout with examples from
the parallel rendering literature. Section 5 completes our survey with an exarnination of
several parallel rendering applications.

2 For a comprehensive reference to the discipline of computer graphics. see [131
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2. Parallelism in the rendering process

Several different types of parallelism can be applied in the rendering process. These
include frmcn'onal parallelism, data parallelism, and temporal parallelism. These basic
types can also be combined into hybrid systems which exploit multiple forms of
parallelism. Each of these options is discussed below.

2. l. Functional parallelism

One way to obtain parallelism is to split the rendering process into several distinct
functions which can be applied in series to individual data items. If a processing unit is
assigned to each function (or group of functions) and a data path is provided from one
unit to the next. a rendering pipeline is formed (Fig. 2). As a processing unit completes
work on one data item, it forwards it to the next unit, and receives a new item from its

upstream neighbor. Once the pipeline is filled. the degree of parallelism achieved is
proportional to the number of functional units.

The functional approach works especially well for polygon and surface rendering

applications, where 3D geometric primitives are fed into the beginning of the pipe, and
final pixel values are produced at the end. ‘This approach has been mapped very
successfully into the special—pttrpose rendering hardware usedin a variety of corrtrnercial
computer graphics workstations produced during the l930‘s and 1990's. The archetypal
example is Clark's Geometry System [lO,l 1}. which replicated a custom VLSI geometry
processor in a I2-stage pipeline to perform transforrnation and clipping operations in
two and three dimensions.

Despite its success. the functional approach has two significant limitations. First. the
overall speed of the pipeline is limited by its slowest stage, so functional units must he
designed carefully to avoid bottlenecks. More importantly. the available parallelism is
limited to the number of stages in the pipeline. To achieve higher levels of performance,
an alternate strategy is needed.

2.2. Data parallelism

Instead of performing a sequence of rendering functions on a single data stream, it
may be preferable to split the data into multiple streams and operate on several items

simultaneously by replicating a number of identical rendering units (Fig. 3).
Because the data-parallel approach can take advantage of larger numbers of proces-

sors, it has been adopted in one form or another by most of the software renderers which

have been developed for general-purpose ‘massively parallel’ systems. Data parallelism
also lends itself to scalable implementations, allowing the number of processing
elements to be varied depending on factors such as scene complexity, image resolution,
or desired perfonnance levels.

Two principal classes of data parallelism can be identified in the rendering process.
Object parallelism refers to operations which are performed independently on the
geometric primitives which comprise objects in a scene. These operations constitute the
first few stages of the rendering pipeline (Fig. 2), including modeling and viewing
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Fig. 2. A typical polygon '°D'5="i"s PiPB|i1te. The number of function units and theit order varies depending on
details of the implementation.

transfonnalions, lighting computations, and clipping. Image parallelism occurs in the
later stages of the rendering pipeline. and includes the operations used to compute
individual pixel values. Pixel computations vary depending on the rendering method in
use. but may include illumination, interpolation, composition. and visibility determina-
tion. Collectively we call the object-level stages of the pipeline the rransfonnarian
phase; the image-level stages are grouped together to form the rasrerizaflori phase.

To avoid bottlenecks, most data-parallel rendering systems must exploit both object
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Fig. 3. A data-parallel rendering system. Multiple data items are processed simultaneously and the results are
merged to create the fetal image.

and image parallelism. Obtaining the proper balance between these two phases of the
computation is difficult, since the workloads involved at each level are highly dependent
on factors such as the scene complexity. average screen area of transformed geometric

primitives, pixel sampling factor. and image resolution.

2.3. Temporal parallelim

In animation applications. where hundreds or thousands of high-quality images must
be produced for subsequent playback, the time to render individual frames may not be as
important as the overall time required to render all of them. In this case, parallelism may
be obtained by decomposing the problem in the time domain. The fundamental unit of
work is a complete image, and each processor is assigned a number of frames to render.
along with the data needed to produce those frames.

Fig. 4. A hybrid tendering architecture. Functional parallelism and data parallelism are both exploited to
achieve higher perfontrlance.
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2.4. Hybrid approaches

It is certainly possible to incorporate multiple forms of parallelism in a single system.
For example. the functional- and data—parallel approaches may be combined by replicat-
ing all or part of the rendering pipeline (Fig. 4). This strategy was adopted for Silicon
Graphics’ RealityEngine [1]. which combines multiple transformation and rasterization
units in a highly pipelined architecture to achieve rendering rates on the order of one
million polygons per second. In similar fashion, temporal parallelism may be Combined
with the other strategies to produce systems with the potential for extremely high
aggregate performance.

3. Algorithmic concepts

Some problems can be paralleliaed trivially, requiring little or no interprocessor
communication. and with no significant computational overheads art:-ibutalile to the
parallel algorithm. Such applications are said to be embarrassingly parallel, and
efficient operation can be expected on a variety of platforms, ranging from networks of
personal computers or graphics workstations up to massively parallel supercomputers.
Rendering algorithms which exploit temporal parallelism typically fall into this category.

Rendering methods based on ray-casting (such as ray-tracing and direct volume

rendering) also have embarrassingly parallel implementations in certain circumstances.
Because pixel values are computed by shooting rays from each pixel into the scene.
image-parallel task decompositions are very natural for these problems. If every
processor has fast access to the entire object database, then each ray can be processed
independently with no interprocessor communication required. This approach is practical
for shared-memory architectures, and also performs well on distributed-memory systems
when sufficient memory is available to replicate the object database on every processor.

In other cases the design of effective parallel rendering algorithms can be a
challenging task. Most parallel algorithms introduce overheads which are not present in
their sequential counterparts. These overheads may result from some or all of the
following:

— communication among tasks or processors
— delays due to uneven workloads
— additional or redundant computations
— increased storage requirements for replicated or autciliary data structures

To understand how these overheads arise in parallel rendering algorithms, we need to
examine several key concepts. Some of these concepts (task and data decomposition.
load balancing) are common to most parallel algorithms, while others (coherence,
objec1—space to image-space mapping) are specific to the rendering problem.

3 . I. Coherence

In computer graphics. coherence refers to the tendency for features which are nearby
in space or time to have similar properties [64]. Many fundamental algorithms in the
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span coherence :-—-c-

Fig. 5. Spatial coherence in image space. Pixel values tend to be similar from one scanline to the next. and
from pixel to pixel within spam. Sequential tendering algorithms exploit this property to reduce computation
costs during scan conversion.

field rely on coherence in one form or another to reduce computational requirements.
Coherence is important to parallel rendering in two ways. First, parallel algorithms
which fail to preserve coherence will incur computational overheads which may not be

present in equivalent sequential algorithms. Secondly. parallel algorithms may be able to
exploit coherence to reduce communication costs or improve load balance.

Several types of coherence are important in parallel rendering. Frame coherence is
the tendency of objects, and hence resulting pixel values, to move or change shape or

color slowly from one image to the next in a related sequence of frames. This property
can be used to advantage in load balancing (for predicting workloads} and in image

display (by reducing the number of pixels to be transmitted).
Scartline coherence refers to the silrtilarity of pixel values from one scartline to the

next in the vertical direction. The corresponding property in the horizontal direction is
called span coherence. which refers to the similarity of nearby pixel values within a

scanline (Fig. 5). Sequential rasterization algorithms rely on these two forms of spatial
coherence for efficient interpolation of pixel values between the vcrtices of geometric
primitives. when an image is partitioned to exploit image parallelism. coherence may be
lost at partition boundaries. resulting in computational overheads. The probability that a

primitive will intersect a boundary depends on the size, shape, and number of image
partitions {$0,691, and "hence is an important consideration in the design of parallel
polygon renderers I21].

A related notion in ray—casting renderers is data or my coherence. This is the
tendency for rays cast through nearby pixels to intersect the same objects in a scene. Ray

coherence has been exploited in conjunction with data-caching schemes to reduce
communication loads in parallel volume rendering and ray-tracing algorithms [2,48].

3.2. Object-space to image-space mapping

The key to high performance on many parallel architectures is successful exploitation
of data locality to minimize remote memory references. In parallel rendering algorithms,
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we also want to partition the image and object data among the available processors to
achieve scalable performance and to accommodate increases in scene complexity and
image resolution. Unfortunately, these two goals are in conflict.

To understand the problem, we observe that, geometrically. rendering is a mapping
from three-dimensional object space to two-dimensional image space (Fig. I). This
mapping is not fixed. but instead depends on the modeling transformations and viewing
parameters in use when a scene is rendered. If both the object and image data structures
are partitioned among the processors, then at some point in the rendering pipeline data
must be communicated among the processors. Because of the complexity and dynamic
nature of the mapping function. the communication pattern is essentially arbitrary, with
each processor sending data to, and receiving data from, a large number of other
processors.

Managing this communication is one of the central issues for parallel renderers.
particularly on distributed-memory architectures. To better understand this problem,

Molnar et al. [50] developed a taxonomy of parallel rendering algorithms based on the
point in the rendering pipeline at which the object-space to image-space mapping occurs.
They classify algorithms as either sort-first, sort-middle, or sorr-last, depending on
whether the communication step occurs at the beginning, middle, or end of the rendering

pipeline. Their analysis of the computation and communication costs of each approach
concludes that none of them is inherently superior in all circumstances. Additional

analysis of the three strategies can be found in [15], and a detailed study of the
rarely-used sort-first method is presented in [51]. Examples of sort-middle renderers

include [20,21]. while the son-last strategy is used in [i4.Io.28.40].

3.3. Task and data decomposition

Data-parallel rendering algorithms may be distinguished based on the way in which
they decompose the problem into individual workloads or tasks. There are two main
strategies. In an object-parallel approach, tasks are formed by partitioning either the
geometric description of the scene or the associated object space. Rendering operations
are men applied in parallel to subsets of the geometric data, producing pixel values
which must be combined to form a final image. in contrast, image-parallel’ algorithms

reverse this mapping. Tasks are formed by partitioning the image space. and each task
renders those geometric primitives which contribute to the pixels which it has been
assigned.

The choice of image-parallel versus object-parallel algorithms is not clear—cut.
Objectparallel algorithms tend to distribute object computations evenly among proces-
sors, but since geometric primitives usually very in size. rastcrization loads may be
uneven. Furthennore, the integration step needed to combine pixel values into a finished
image can place heavy bandwidth demands on memory busses or communication
networks.

Image-parallel algorithms avoid the integration step, but have another problem:
portions of a single geometric primitive may map to several different regions in the
image space. ‘This requires that primitives. or portions of them. be communicated to
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multiple processors, and the corresponding loss of spatial coherence results in additional
or redundant computations which are not present in equivalent sequential algontltms.

To achieve a better balance among the various overheads. some algorithms adopt a

hybrid approach, incorporating features of both object- and image-parallel methods
[20.21,53,62]. These techniques partition both the object and image spaces, breaking the
rendering pipeline in the middle and communicating intermediate results from object
rendering tasks to image rendering tasks. '

3.4. Land balancing

In any parallel computing system, effective processor utilization depends on distribut-
ing the workload evenly across the system. In parallel rendering. there are many factors
which make this goal difficult to achieve. Consider a data-parallel polygon tenderer 3
which attempts to balance workloads by distributing geometric primitives evenly among
all of the processors. First. polygons may have varying numbers of vertices, resulting in

differing operation counts for illumination and transformation operations. If hack-faoe
cutting is enabled. different processors may discard different numbers of polygons, and
the subsequent clipping step may introduce further variations. The sizes of the trans-
formed screen primitives will also vary, resulting in differing operation counts in the
rasterization routines. Depending on the method being used, hidden surface elimination
will also produce variations in the number of polygons to be rasterized or the number of
pixels to be stored in the frame buffer.

While this list may seem intimidating, we observe that if the number of input

primitives is large (as it usually is) and the primitives are randomly assigned to
processors, the workload variations described above will tend to even out. Unfortu-
nately, a much more serious source of load imbalance arises due to another factor: in

real scenes. the distribution of primitives in image space is not uniform, but tends to
cluster in areas of detail. Thus processors responsible for rasterizing dense regions of the

image will have significantly more work to do than other processors which may end up
with nothing more than background pixels. To make matters worse. the mapping from
object space to image space is view dependent, which means the distribution of
primitives in the image is subject to change from one frame to the next, especially in
interactive applications.

Strategies for dealing with this image-space load imbalance may be classified as
either static or dynamic. Static load balancing techniques rely on a Fixed data partition-
ing to distribute local variations across large numbers of processors. Fig. 6 shows
several image partitioning strategies with different load balancing characteristics. Large
blocks of contiguous pixels (Fig. 6a) usually result in poor load balancing, while
fine-grained partitioning schemes (Fig. 6c, :9 distribute the load better. However.

fine-grained schemes are subject to computational overheads due to loss of spatial
coherence. as discussed in Section 3.1. Analytical and experimental results [68,69]

3 Although the causes are different. similar imbalances arise in other rendering methods as well.
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M

Fig. 6. Image partitioning strategies. Shading imlicates the assignment of image regions to four processors. (I)
Blocks of contiguous seanlines: (la) square regions: (c) interleaved scanlines; (:1) pixel interleaving in two
dimensions: (e) adaptive panitionirlg (loosely based on ITOD.

indicate that square regions (Fig. 6b) minimize the loss of coherence since they have the
smallest perimeter-to-area ratio of any rectangular subdivision scheme.

Dynamic load—balancing schemes try to improve on static techniques by providing
more flexibility in assigning workloads to processors. There are two principal strategies.
The demand-driven approach decomposes the problem into independent tasks which are
assigned to processors one-at—a-time or in small groups. When a processor completes
one task. it receives another, and the process continues until all of the tasks are
complete. If tasks exhibit large variations in run time. the most expensive ones must be
started early so that they will have time to finish while other processors are still busy
with shorter tasks. The alternative is to use large numbers of fine-grained tasks in order
to minimize potential variations. but this approach suffers increased overheads due to
loss of coherence and more frequent task assignment operations.

The alternate adaptive strategy tries to minimize pre-processing overheads by
deferring task partitioning decisions until one or more processors becomes idle. at which
time the remaining workloads of busy processors are split and reassigned to idle

processors. The result is that data partitioning is not predetennined, but instead adapts to
the computational load (Fig. 6e). A good example is Whitman's irnage-parallel polygon
tenderer for the BBN TC2000 [70]. Whitman's renderer initially partitions the image
space into a relatively small number of coarse-grained tasks. which are then assigned to
processors using the demand driven model. When a processor becomes idle and no more
tasks are available from the initial pool. it searches for the processor with the largest
remaining workload and ‘steals’ half of its work. The principal overheads in the
adaptive approach arise in maintaining and retrieving non—local status inforrnatiort.
partitioning tasks, and migrating data.

While dynamic schemes offer the potential for more precise load balancing than static
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schemes, they are successful only when the improvements in processor utilization
exceed the overhead costs. For this reason, dynamic schemes are easiest to implement

on architectures which provide low-latency access to shared memory. In message-pass-

ing systems, the high cost of remote memory references makes dynamic task assign-
ment, data migration, and maintenance of global status information more expensive,
especially for fine-grained tasks.

4. Design and implementation issues

As the above discussion suggests, the design space for parallel rendering algorithms
is large and replete with trade-offs. How these trade-offs are resolved depends on a
variety of factors. including application requirements and characteristics of the target

architecture. In the following sections. we examine some of the issues which must be
considered.

4.1. Hardware versus software systems

Perhaps the most fundamental distinction between parallel rendering designs is that of
hardware-based versus software-based systems. Hardware systems, ranging from spe-
cialized graphics computers to graphics workstations and add-on graphics accelerator
boards. all employ dedicated circuitry to speed up the rendering task. The hardware
approach has been very successful, although commercial systems to date have been
designed primarily for polygon rendering. Furthermore, the specialization which con-
tributes to the high performance and cost-effectiveness of dedicated hardware also tends
to limit its flexibility. Specialized lighting models. high-resolution imaging, and sophisti-

cated rendering methods such as ray-tracing and radiosity must be implemented largely
in software. with a corresponding degradation in performance.

One way to boost the performance of software—based tenderers is to implement them
on general-purpose parallel platfonns, such as scalable parallel supercomputers or
networks of workstations. On these systems, the processors are rtot specifically opti-
mized for graphical operations. and communication networks often have bandwidth
limitations and software overheads which are not found in hardware-based rendering
systems. The challenge is to develop algorithms which can cope successfully with these
overheads in order to realize the performance potential of the underlying hardware.
Some recent examples indicate that this challenge can be met. Polygon renderets

developed for Intei’s Touchstone Delta and Paragon systems [21,40]. Thinking Ma-
chines‘ CM-200 and CM-5 [Z355]. and Cray’s "BB [161 achieved performance levels
which equalled or exceeded those of contemporary high-end graphics workstations.

Software-based renderers are of interest on massively parallel architectures for
mother reason: massive data. The datasets produced by large-scale scientific applica-
tions can easily be hundreds of megabytes in size. and time-dependent simulations may
produce this much data for hundreds or thousands of lime-steps. Visualization tech-
niques are imperative in exploring and understanding datasets of this size, but the sheer
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volume of data may make the use of detached graphics systems impractical or
impossible. The alternative is to exploit the parallelism of the supercomputer to perform
the visualization and rendering computations in place, eliminating the need to move the
data. This has motivated recent work on software-based rendering systems which can be

embedded in parallel applications to produce live visual output at"l'un time [l6,l 7].
Networks of workstations and personal computers provide another type of platform

which can be used by software-based parallel renderers. These systems are inexpensive
and ubiquitous, and their processing power and memory capacities are increasing

dramatically. However, they tend to be connected by low-bandwidth networks, and
stiffer from high communication latencies due to operating system overheads and costly

network protocols. For these reasons, they are best used in modest numbers for large
granularity computations where high frame rates are not an overriding consideration.
They are also well-suited for embarrassingly parallel applications which replicate the
object database or exploit temporal parallelism to render entire frames locally. Examples
of network-based systems include volume rendcrers [26,46]. radiosity modelers

[59.60.7’2I. and Pixar‘s photorealistic NetRenderMan system [57].

4.2. Shared us. distributed merrtory

While traditional shared-memory systems offer the potential for low-overhead paral-
lel rendering. their performance scalability is limited by contention on the busses or
switch networks which connect processors to memory. Adding processors does not
increase the memory bandwidth, so at some point the paths to memory become saturated
and perfonnance stalls. For this reason, most parallel architectures with large numbers of
processing elements employ a distributed-memory model, in which each processor is
tightly coupled to a local memory. The combined processor/-memory elements are then
interconnected by a relatively scalable network or switch. The advantage is that
processing power and aggregate local memory bandwidth scale linearly with the number
of hardware units in the system. 'I'he disadvantage is that access to off-processor data
may take several orders of magnitude longer to complete than local accesses.

A number of recent systems combine elements of both architectures, using physically
distributed memories which are mapped into a global shared address space [l3,36,41].
The shared address space permits the use of concise shared-memory programming
paradigms, and is amenable to hardware support for remote memory references. The
result is that communication overheads can be significantly lower than those found in
traditional message-passing systems, allowing algorithms with fine-grained communica-

tion requirements to scale to larger numbers of processors. _
From an algorithmic standpoint, shared-memory systems provide relatively efficient

access to a global address space. which in turn reduces the need to pre—partit.ion major
data structures, simplifies processor coordination, and maximizes the range of practical
algorithms. To avoid resource contention, good shared-memory algorithms must decom-

pose the problem into tasks which eliminate memory hot spots and keep critical sections
and synchronization operations to a minimum. Since most sharedonemory systems are
augmented with processor caches and/or local memories. algorithms intended for these
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platforms still must strive for a high degree of locality in their memory reference
pattems.

Dist1'ibuted—memory systems offer improved architectural scalability, but generally

incur higher costs for remote memory references. For this class of machines, managing
communication is a primary consideration. Parallel renderers must pay special attention
to this issue due to the large volume of intermediate data which must be re-mapped from

object space to image space. In the absence of specialized hardware support. global
operations and synchronization may be particularly expensive, and the higher cost of
data migration may favor static assignment of tasks and data.

4.3. SIMD us. MIMD

Because MIMD architectures allow processors to respond to local differences in
workload, they would seem to be a good match for the highly variable operation counts

and data access patterns which characterize die rendering process (see Section 3.4).
Furthermore, the MIMD environment lends itself to dernancl-driven and adaptive load

balancing schemes, where processors work independently on relatively coarse—grained
tasks. Numerous MIMZD renderers have been implemented. on a variety of‘ hardware
platforms. encompassing all of the major rendering methods.

Despite the apparent mismatch between the variability of the rendering process and
the tight synchronization of SIMD architectures. a number of parallel nenderers have
demonstrated good performance on SIMD systems [29,33,-45,55}. There are several
reasons for this. First of all. the flexibility of MIMD systems imposes a burden on
applications and operating systems. which must be able to cope with the arrival of data

from remote sources at unpredictable intervals and in arbitrary order. This often results
in complex communication and buffering protocols, particularly on distributed-memory

message-passing systems. The loclt-step operation of SIMD systems virtually eliminates
these software overheads, resulting in communication costs which are much closer to the
actual hardware speeds.

Secondly, it is often possible to structure algorithms as several distinct phases, each
of which operates on a uniform data type. The rendering pipeline maps naturally onto
this structure, and the regularity of the data structures within each phase leads to uniform
operations, providing a good fit with the SIMD programming paradigm.

Finally. SIMD architectures usually contain thousands of simple processing elements.
Because of their sheer numbers. good performance can often be achieved even though
processors may not be fully utilized.

4.4. Communication

For renderers which exploit both image and object parallelism, a high volume of

interprocessor communication is inherent in the process {see Section 3.2). Managing this
communication is a central issue in renderer design, and the choice of algorithm can
have a significant impact on the timing, volume. and patterns of communication
[l5,20.32.50.53]. ‘There are three main factors which need to be considered: latency,
bandwidth, and contention. Latency is the time required to set up a communication
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operation, irrespective of the amount of data to be transmitted. Bandwidth is simply the
amount of data which can be communicated over a channel per unit time. If a tenderer
tries to inject more data into a network than the network can absorb. delays will result
and performance will suffer. Contention occurs when multiple processors are trying to

route data through the‘san1e segment of the network simultaneously and there is
insufficient bandwidth to support the aggregate demand.

Hardware latencies for sending, receiving, and routing messages are in the sub-micro-

second range on many systems. However, software layers can boost these times
considerably — measured send and receive latencies on message-passing systems often
exceed the hardware times by a few orders of magnitude. Bandwidths exhibit similar
variations, ranging from hundreds of kilobytes/second on workstation networks up to

several gigabytes/second in dedicated graphics hardware. While latencies and band-
widths can usually be determined with reasonable precision. contention delays are more
difficult to characterize, since they depend on dynamic traffic patterns which tend to be
scene- and view-dependent.

A number of algorithmic techniques have been developed for coping with communi-
cation overheads in parallel renderers. A simple way to reduce latency is to accumulate
short messages into large buffers before sending them. thereby amortizing the cost over
many data items. Unfortunately, this technique does not scale well for the common case
of object- to image-space sorting, since the communication pattern is generally many-
to-many [20,21]. This implies that the number of messages generated per processor is
0( p). where p is the number of processors in the system. Assuming a fixed scene and
image resolution and a p-way partitioning of the object and image data, the number of
data items per processor is proportional to 1/p, and the number of data items per
message decreases as 1 /p2. Hence overheads due to latency increase linearly with the
number of processors and amortization of these overheads becomes increasingly ineffec-
live.

One solution is to reduce the algorithmic complexity of the communication by using
a multi-step delivery scheme [21,40]. With this approach, the processors are divided into
approximately i/_ groups. each containing roughly ‘/3 processors. Data items intended
for any of the processors within a remote group are accumulated in a buffer and

transmitted together as a single large message to a forwarding processor within the
destination group. The forwarding processor copies the incoming data items into a
second set of buffers on the basis of their final destinations, merging them with
contributions from each of the other groups. The sorted buffers are then routed to their
final destinations within the local group.

While helpful in reducing latency. large message buffers can contribute to contention
delays when network bandwidth is insufficient [201 The problem arises when a large
volume of data is injected into the network within a short period of time. If the traffic
fails to clear rapidly enough, processors must wait for data to arrive, and perfonnance
suffers. The problem is most pronounced when workloads are evenly balanced. since
processors tend to be communicating at about the same time. By using a series of
intennecliate-sized messages and asynchronous communication protocols. the load on the
network can be spread out over time. and data transfer can be overlapped with useful
computation.
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4.5. Memory constraints

Memory consumption is another issue which must be considered when designing
parallel renderers. Rendering is a memory-intensive application, especially with complex
scenes and high-resolution images. As a baseline, a full-screen (I280 X 1024), full-color
(24 bits/pixel), z-buffered image requires on the order of 10 MB of memory for the
image data structures alone. The addition of features such as transparency and antialias-
ing can push memory demands into the hundreds of megabytes, a regime in which
parallel systems or high-end graphics workstations are mandatory.

The structure of a parallel renderer can have a major impact on memory require-
ments. either facilitating memory-intensive techniques by partitioning data structures
across processors. or inhibiting scalability by requiring replicated or auxiliary data
structures. Sort-middle polygon rendering is one example of an approach which exhibits

good data scalability, since object and image data structures can be partitioned uniformly

among the processing elements. The cost of image memory in these systems is
essentially fixed. By contrast. some sort-last algorithms require the entire image nternory
to be replicated on every processor, increasing the cost in direct proportion to the
number of processing elements in the system.

The issue of memory consumption involves many tradeoffs. and system designers
must balance application requirements. performance goals, and system cost. For exam-
ple. replicating object data in an image-parallel tenderer can reduce or eliminate
overheads for interprocessor communication. a strategy which may work well for
rendering moderately complex scenes in low-bandwidth. high-latency environments,
such as workstation networks. On the other hand, rendering algorithtrls which are
embedded in memory-intensive applications must be careful to limit their own resource
requirements to avoid undue interference with the application [17]. In this case, data
scalability may be a more important consideration than absolute performance.

Some renderers operate in distinct phases. requiring each phase to complete before
the next phase begins. This implies that intermediate results produced by each phase
must be stored. rather than being passed along for immediate consumption. The amount
of intermediate storage needed for each phase depends on the particular data items being

produced. but in general is a function of the scene complexity. For complex scenes the
memory overheads may be substantial. but they do exhibit data scalability. assuming the
object data is partitioned initially.

4.6. Image display

High-performance rendering systems produce prodigious quantities of output in the
form of an image stream. For full-screen, full-color animation (I280 X 1024 resolution,

24 bits/pixel, 30 frames/5), a display bandwidth of 120 MB/5 is required. Since most
parallel renderers either partition or replicate the image space, the challenge is to
combine pixel values from multiple sources at high frame rates. Failure to do so will
create a bottleneck at the display stage of the rendering pipeline, limiting the amount of
parallelism which can be effectively utilized.

The display problem is best addressed at the architectural level. and hardware
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rendering systems have adopted several different techniques. One approach is to

integrate the frame buffer memory directly with the pixel-generation processors [l 24.58].
Highly parallel, multi-ported busses or other specialized hardware mechanisms are then
used to interface the distributed frame buffer to the video generation subsystem.

Alternatively. the rasterization engines and frame buffer may be distinct entities. with

pixel data being communicated from one to the other via a high—speed communication
channel. One example is the Pixel-Planes 5 system [25]. which uses a 640 MB/s token
ring network to interconnect system components, including the pixel renderers and

frame buffer. The Pixe-lFlow system [49] pushes transfer rates at step further, using a
pipelined image composition network with an effective interstage bandwidth in excess
of 4 GB/s. The frame buffer resides at the tenninus of the pipeline, acting as a sink for
the final composited pixel values.

With gcneral—purpose parallel computers. sustaining high frame rates is problematic,
since these systems often lack specialized features for image integration and display.
There are two principal issues, assembling finished images from distributed components.
and moving them out of the system and onto a display device. The bandwidth of the

inter-processor communication network is an important consideration for the image
assembly phase. since high frame rates cannot be sustained unless image components

can be retrieved rapidly from individual processor memories.
Several current systems, including the Intel Paragon and Cray T3D, provide internal

networks with transfer rates in excess of 100 MB/s. which is more than adequate for
interactive graphics. The challenge on these systems is to orchestrate the image retrieval

and assembly process so that the desired frame rates can be achieved [l8,l9]. In the
absence of multi-ported frame buffers. the image stream must be serialized, perhaps with
some ordering imposed. and forwarded to an external device interface.

Assuming that the intemal image assembly rate is satisfactory, the next bottleneck is
the 1/0 interface to the display. The typical configuration on current systems uses a
HIP?! interface [30] attached to an external frame buffer device. While many of the

existing implementations fail to sustain the 100 MB/s transfer rate of the HII-‘P1
specification. the technology is improving. and either I-IIPPI or emerging technologies

such as ATM E66} are likely to provide sufficient external bandwidth in the near future.
To avoid the bottlenecks associated with serial I/O interfaces. some general—purpose

architectures incorporate mulli-ported frame buffers which attach either directly or
indirectly to the system's internal communication network [-1.67]. Pixels or image
segments must then be routed to the appropriate frame buffer ports and the inputs must
be synchronized to ensure coherent displays.

5. Examples of parallel rendering systems

Virtually all current graphics systems incorporate parallelism in one form or another.
We have illustrated the preceding discussion with a number of examples. In this section,
we round out our survey by examining additional representative systems. running the

gamut from specialized graphics computers to software~based terrain and radiosity
renderers. Our coverage is by no means complete — many more examples can be found
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in the literature. Readers are encouraged to explore the references at the end of this
article for additional citations.

5.}. Polygon rendering

One of the earliest graphics architectures to exploit large-scale data parallelism was
Fuchs and Poulton‘s classic Pixel-Planes system {24]. Pixel-Planes parallelized the
rasterization and z-buffering stages of the polygon rendering pipeline by augmenting

each pixel with a simple bit-serial processor which was capable of computing color and
depth values from the plane equations which described each polygon. The pixel array
operated in SIMD fashion, taking as input a serial stream of transformed screen-space
polygons generated by a conventional front-end processor.

While Pixel-Planes provided massive image parallelism, it suffered front poor

processor utilization, since only those processors which fell within the bounds of a
polygon were active at any given time. The Pixel-Planes 5 architecture [25] rectifies
these deficiencies. Instead of a single large array of image processors. it incorporates
several smaller ones which can be dynamically reassigned to screen regions in demand-
driven fashion. Pixel-Planes S is a classic example of a sort-middle architecture, with

global communication occurring at the break between the transformation and rasteriza-
tion phases. By contrast, the newer PixelFlow design [49] implements a sort-last
architecture, in which each processing node incorporates a full graphics pipeline. Object

parallelism is achieved by distributing primitives across the nodes. while pixel paral-
lelism is provided by a Pixel-Planes-style SIMD rasterizer on each node. A 256-bit-wide
pipelined interconnect supports the bandwidth-intensive image composition step.

Among commercially-available polygon renderers, Silicon Graphics’ RealityEttgine

series [I] has enjoyed the most success. and is the tenderer of choice in a host of
demanding applications. including virtual reality. real-time simulation. and scientific
visualization. The recently-introduced Infinitelleality system continues this tradition.

boosting polygon rendering rates by a factor of five over the second-generation
RealityEngine2.

5.2. Volume rendering

Graphics architectures have also been developed specifically for volume rendering
and ray-tracing applications. In volume rendering, one of the keys to performance is
providing high-bandwidth. conflict-free access to the volume data. This has prompted
the development of specialized volume memory structures which allow simultaneous
access to multiple data values. Kaufman and Bakala.sh‘s Cube system [35] introduced an
innovative 3D voxel buffer which facilitates parallel access to cubes of volumetric data.
A linear array of simple SIMD comparators simultaneously evaluates a complete shaft
or ‘beam’ of voxels oriented along any of the three principal axes (x, y, or z). The
output of the comparator network is a single voxel chosen on the basis of transparency,
color, or depth values. By iterating through the other two dimensions, the complete
volume can be scanned at interactive rates. The most recent version of the Cube

architecture, Cube-4 [56]. uses a more flexible memory organization to support a general



0173

836 TZW. Crockett] Parallel Ccnipnm-:_g 23 (I99?) 819- 843

ray—casr.ing model with arbitrary viewing angles. perspective projections, and trilinear
interpolation of ray samples.

Knittel and Stralller [37] adopt a somewhat different approach with a VLSI-based
volume rendering architecture intended for desktop implementation. Memory is orga-
nized into eight banks in order to provide parallel access to the sets of neighboring
voxels which are needed for trilinear interpolation and gradient computations at sample
points along rays. The basic design consists of a volume memory plus four specialized
VLSI function units arranged in a pipeline. One function unit performs ray-casting and

computes sample points along each ray. generating addresses into the volume memory.
A second unit accepts the eight data values in the neighborhood of each sample and
performs trilinear interpolation and gradient computations. A third unit computes color
intensities for each sample point using a Phong illumination model. while the fourth unit
composites the samples along each ray to produce a final pixel value. To obtain higher
performance. the entire pipeline can be replicated. with subvolurnes of the data being
stored in each volume memory.

Recent developments in algorithms and computer architectures have combined to
produce substantial performance increases for software-based volume renderers as well.
One of the best examples is Lacroute's image-parallel renderer for shared-memory

systems [39], which is capable of interactive frame rates on large datasets (2563 and
above) using commercially-available symmetric multiprocessors. Lacroute employs an
optimized shear-warp rendering algorithm [38] which exploits both image-space and
object-space coherence and incorporates demand-driven dynamic load balancing.

While the majority of volume rendering algorithms are designed for use with simple
rectilinear grids, many scientific and engineering applications rely on more complex
discretizations, including curvilinear, unstructured. and multi-block grids. This has
prompted the development of several specialized volume renderers. For non—rectilinear
and rnulti-block grids, Challinger developed an image-parallel shared-memory algorithm

and tested it on the BBN TC-2000 [7]. While the rendering phase showed good
speedups, a sorting step is needed to assign cell faces to image tiles, and this. along with
load imbalances. tended to limit performance. More recently, Ma developed a dis-
tributed-memory volume tenderer for unstructured grids [47], and implemented it on the
Intel Paragon. He also noted performance limitations due to load imbalances. Together.
these results suggest that additional work is needed to develop scalable volume
rendering strategies for complex grids.

5.3. Roy-tracing

Due to its computational expense. its ability to produce realistic images. and its lack
of support in commercial graphics architectures. ray-tracing was an early and
frequently-addressed topic in parallel rendering. The SIGHT architecture [52] is one
example of a system which was designed specifically to support parallel ray-tracing. The
image space is partitioned across processors, with each processor responsible for tracing
those rays which emanate from its local pixels. Interprocessor communication is largely
avoided by replicating the object database in each pro-cessor’s memory. An additional
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level of parallelism is achieved through the use of multiple floating—point arithmetic
units in each processing element to speed up the ray intersection calculations.

on general-purpose parallel systems. the majority of the execution time in ray tracing
is spent on calculating the intersections of rays with objects in the scene. When the
object data can be shared or replicated over the processors, a task distribution based on
an image space subdivision will generally be very efficient. When the data size is larger
and has to be distributed over the processors, either static or demand-driven task

assignment can be used, both of which introduce additional communication and schedul-
ing overheads.

In the static approach the ray tasks are allocated to the processors that contain the
relevant data, and rays are communicated from one processor to another as needed. In
the demand-driven approach the ray tasks are delegated to processors on request, which
then have to fetch the needed object data, introducing extra communication. The amount

of communication can be reduced by caching object data, in effect exploiting coherence
in the scene. The static approach can handle arbitrarily large models but balancing
workloads among processors is very diflicttlt, since the cost of calculating ray/object
intersections and evaluating secondary rays varies depending on the type and distribu-
tion of objects within the scene. The demand-driven approach has turned out to be rather
efficient even with limited cache sizes [227]. With larger caches even complex models
can be rendered successfully [63].

A hybrid load-balancing scheme for distributed-memory MIMD architectures was

developed independently by Salmon and Goldsmith [62] and Caspary and Scherson [6].
With this approach the object data is organized using a hierarchical spatial subdivision, a
well-known technique employed by sequential ray-tracers to reduce the search space for
intersection testing. The upper part of the hierarchy is replicated on every processor,

while die lower parts (which comprise the bulk of the object data) are distributed among
the processors. This results in two distinct types of tasks: one which performs intersec-
tion calculations in the upper hierarchy (ray traversal), and another which performs the
same calculations for the local data (ray-object intersection). Because the upper-level
hierarchy is available everywhere, any processor in the system can perform the initial
intersection tests on any ray, effectively decoupling the image-space and object-space
partitiortings.

A similar hybrid strategy has been adopted for use in stochastic ray tracing with
explicit sampling of the diffuse refiectance [31,61]. In this method data coherence is
almost completely lost, severely impacting the performance of caching schemes. How-
ever. for this application a different task distribution is needed: non-coherent ray tasks
are assigned statically to provide a basic load that is adjusted by demand-driven tasks

that execute the coherent ray tasks (mainly the primary rays and the shadow rays).

5.4. Radioslry rerzderers

Radios-ity methods produce exceptionally realistic illumination of enclosed spaces by
computing the transfer of light energy among all of the surfaces in the environment.
Strictly speaking, radiosity is an illumination technique, rather than a complete rendering
method. However. radiosity methods are among the most computationally—intensive
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procedures in computer graphics, making them an obvious candidate for parallel
processing. Because the quality of a radiosity solution depends in part on the resolution
used to compute energy transfers, the polygons which describe objects are typically
subdivided into small patches. In radiosity methods, the primary expense arises in
generating the geometric form factors which are used to compute energy transfers
among patches. Hence, parallel implementations have focused on speeding up this
portion of the computation.

Although radiosity solutions can be computed directly by solving the system of
equations which describes the energy transfers between surfaces. all of the form factors
must be generated first, resulting in lengthy solution times which preclude interactive
use. For this reason, an alternate iterative approach known as progressive refinement
[12] has become popular. In this technique, the patch with the highest energy level at
each iteration is selected as the shooting patch, and energy is transferred from it to other
patches in the environment. This process repeats until the maximum level of untransrnit-
ted energy drops below some specified threshold. In this way, an initial approximation
of the global illumination can be computed relatively quickly, with subsequent refine-

ments resulting in incremental improvements to the image quality.
Many of the parallel radiosity methods described in the literature attempt to speed up

the progressive refinement process by computing energy transfers from several shooting
patches in parallel (i.e.. several iterations are performed simultaneously)
[5.8.22.S4.59,60]. Because the time to complete an iteration can vary considerably
depending on the geometric relationships between patches, load imbalance can seriously
degrade overall performance. Several implementations compensate for this using a
demand-driven strategy in which multiple worker processes independently compute
form factors for different shooting patches [$459.60]. With this strategy, the complete
patch database is usually replicated on every processor, and a separate master process
picks shooting patches and completes the energy transfers using vectors of form factors
generated by the workers. This approach has several drawbacks. including a lack of data
scalability for complex scenes and the tendency for the master process to become a
bottleneck as the number of workers increases.

The alternative is to distribute the patch database and radiosity computations across

all of the processors. This strategy necessitates global communication in order to
compute fonn factors and complete the energy transfers from shooting patches. Capin et
al. [5] used a simple ring network, circulating patch data and local results front processor
to processor in pipelined fashion to obtain global solutions. Because performance is
limited at each step of the computation by the slowest processor, load imbalances can
have a profound effect on overall performance. By ensuring that patches belonging to
the same object are scattered across processors, variations in workload due to spatial
locality are minimized. and a rough static load balance is maintained. Additional
examples of radiosity renderers which use distributed databases can be found in [8,22].

The strategy of processing multiple shooting patches in parallel perturbs the order of
execution found in the sequential version of the progressive refinement algorithm. and
this can lead to slower convergence, partially offsetting the benefits of parallel execu-
tion. The effect is minimal when only a few shooting patches are active [3]. but becomes
more pronounced as the number of processors increases [5]. In order to exploit massive



0176

r.w. cmten/r-miter Conlpufistg 23 U997} 319-343 ass

parallelism, a different approach is needed. Varshney and Pi-ins developed a SIMD
radiosity tenderer for a Masi-‘at MP-1 with 4096 processing elements [65]. As in (;aptn’s
algorithm. patches are distributed uniformly among the processors. At each iteration, is
global reduction operation is used to find the shooting patch with the highest energy.
thus maintaining the‘E'onvergenoe properties of the sequential algorithm. All of the other
patches in the environment are then scan-converted onto the shooting patch. and form
factors are obtained by accumulating the resulting pixel values. Energy transfers are

performed in parallel using the results of the form factor computations. While this
algorithm is able to exploit the massive parallelism of its target archilectllfet load
imbalances in the scan conversion phase are found to be significant, and further static or

dynamic load balancing measures appear to be in order.

5.5. Terrain rendering

In terrain rendering. the problem is to generate a plausible representation of a real or
imaginary landscape as viewed from some point on or above the surface. Typically the
viewpoint will change over time, often under interactive control, and in sonte applica-
tions additional objects such as vegetation, buildings, or vehicles must be included in the
scene. Terrain rendering techniques have been widely applied in areas such as flight
simulation, scientific data analysis and exploration. and the creation of virtual land-
scapes for entertainment or artistic purposes. The need for high-quality images, high
frame rates, rapid response to changes in viewpoint, and the ability to navigate through
large datasets has stimulated the development of parallel terrain rendering techniques.

Although a variety of methods can be used to render terrain, most of the parallel
techniques described in the literature begin with an aerial or satellite image of an actual
planetary surface. This image is registered with a separate elevation dataset of the same
region, typically represented by a two-dimensional grid with an associated height field.
The problem. then. is to assign an elevation value to pixels in the input image and
project them onto a display with hidden surfaces eliminated. This technique is known as
forward projection. in contrast to ray-casting methods which begin at the eye point and
project rays through display pixels into the scene. With the forward projection approach,
care must be taken to account for the mismatch between input and output image
projections, filling in gaps in the output image and compositing input pixels which map
to the same location in screen space.

Kaba at al. [33,34] developed data-parallel terrain rendering techniques for the
Princeton Engine. a programmable SIMD system originally designed for real—time

processing of digital video [9]. ‘Their methods utilize an object-parallel task decomposi-
tion. distributing the input image and elevation datasets among the processors by
assigning complete columns of pixels to processors. Before projecting the data onto the
display, it must be rotated and scaled to account for the viewing direction and altitude.
‘This is accomplished efficiently by decomposing the necessary transformations into a
sequence of shear. shear/scale, and transpose operations. Hidden surfaces are elimi-
nated by scanning the tI'ansforI'necl data from front-to-back, one horizontal scanline at a

time. The pixels in each scanline are processed in parallel. With each pass, a horizon
line is Updated; only those pixels which lie above the current horizon line will be visible.
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The system is capable of rendering terrain fly-overs at 30 frames/s using 512x 512
resolution and 8-bit color, or 15 frames/s with 24-bit color.

At the Jet Propulsion Laboratory. Li and Curkendall have developed techniques for

rendering planetary surfaces using a variety of large—scale distributed-memory architec-
tures, including Intel‘s iPSC/860. Delta, and Paragon systems. and Cray’s T3D. Like

Kaba, they use surface images registered with elevation data, and project object-space
pixels into screen space. While their initial methods I42] partitioned the input data by
horizontal slices and assigned them to processors in interleaved fashion. more recent
implementations use rectangular tiles with either interleaved [44] or random [43]

assignment. The random strategy provides a measure of stochastic load balancing,
reducing sensitivity to hot spots in the data which may occur when the view zooms in on
small terrain regions.

While the two previous examples both exploited data parallelism, other approaches
are certainly possible. Wright and Helen [71] describe a pipelined terrain rendering
algorithm which has been implemented in hardware. As in the other examples, a forward
projection technique is used to map from object to image space, but the surface data and
objects in the scene are represented as specialized volume elements (voxels). The
architecture consists of two concatenated pipelines, one for voxel processing and one for

pixel processing. The voxel pipeline scans through the database, generating columns of
voxels which are illuminated. transformed into viewing coordinates. and rasterized into
pixels. The pixel pipeline projects pixels from polar viewing coordinates into screen
space, performs haze, lranslucency. and z-buffering calculations, and normalizes pixel
intensities. A variety of techniques are applied at different levels in the pipeline to
reduce temporal and spatial aliasing. The hardware implementation is capable of
rendering 10 frames/s at 384 X 334 resolution. a speedup of more than three orders of
magnitude over a software-based sequential implementation.

6. Summary

Demanding applications such as real—time simulation. animation, virtual reality.
photo-realistic imaging. and scientific visualization all benefit from the use of paral-
lelism to increase rendering performance. Indeed, these applications have been primary
motivators in the development of parallel rendering methods. We have examined many
of the general principles and algorithmic approaches which apply to computer graphics
rendering on parallel architectures, and surveyed representative implementations in both
hardware and software.

As our discussion illustrates. the algorithm or architecture designer is faced with a
wide range of implementation strategies and a complex series of tradeoffs. A successful
parallel renderer must take into account application requirements, architectural parame-
ters. and algorithmic characteristics. As the rapidly growing performance of rendering
systems indicates, there have been numerous successes. but these are balanced by other
attempts which have fallen short. Many challenges remain, particularly in the areas of
scalability. load balancing. communication. and image assembly. Finding solutions to
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these problems will motivate further explorations in parallel rendering as computer
architectures advance into the teraflops regime.
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Infinite-Fleality: A Fleal-Time Graphics System

John 5. Montrym. Daniel Ft. Baum. David L. Dignam, and Christopher J. Migdal
' Silicon Graphics Computer Systems

ABSTRACT
The lnfinitekealityl“ graphics system is the First general-purpose
worttstation system specifically designed to deliver 60H; steady
frame rate high-quality rendering of complex scenes. This paper
describes the lnfinitelleality system architecture and presents novel
features designed to handle eittrernely large texture databases.
maintain control over frame rendering time, and allow user custom-
ization for diverse video output requirements. Rendering perfor-
rnanoe expressed using traditional workstation metrics exceeds
seven million lighted. textured. antialiased triangles per second, and
710 million textured arttialiased pixels filled per second.

CR Categories and Subject Descriptors: 1.3.} [Computer
Graphics]: Hardware Architecture; I.3.3 [Computer Graph-
ics]: Pictureflrnagc Generation

1 INTRODUCTION

This paper describes the Silicon Graphics lnfinitekeality architec-
ture which is the highest performance graphics workstation ever
commercially produced. The predecessor to the lrtflnitekeality sys-
tem. the Rea|ityEngine"“. [A|tel93] was the First example of what
we tentt a third-generation graphics system. As a third-generation
system. the target capability of the RealityEngirle was to render
lighted. smooth shaded. depth buffered. texture mapped. atttialiased
triangles. The level of realism achieved by Rcalitylingine graphics
was well-matched to the application requirements of visual simula-
tion (both flight and ground based simulation), location based enter-
tainment [Patrs96'I. defense imaging, and virtual reality. However,
application success depends on two areas: the ability to provide
convincing levels of realism and to deliver real-tirnc performance of
constant scene update rates of 69!-lz or more. High frame rates
reduce interaction latency and minimize symptoms of motion sick-
ness in visual simulation and virtual reality applications. It frame
ralcs are not constant. the visual integrity of the simulation is oom-
promised.

lnfinitelteality is also an example of a third-generation graphics
system in that its target rendering quality is similar to that of Reali-
ryEngine. However. where Rcalityfingine delivered performance in
the range of 15-30 Hz. for most applications. the fundamental
design goal of the Infiniteliteality graphics system is to deliver real-
time performance to it broad range of applications. Furthermore. the
goal is to deliver this performance for more economically than com-
petitive solutions.

Author contacts: lmontryrrt I clrb I dignam lrnigdal l@sgi.com

Most of the features and capabilities of the Infiniteliteality architec-
ture are designed to support this reaI—tirne performance goal. Mini-
mizing the time required to change graphics modes and state is as
important as increasing raw uansformation and pixel fill rate. Many
of the targeted applications require access to very large textures
andlor a great number of distinct textures. Permanently storing such
large amounts oftexture data within the graphics system itself is not
economically viable. Thus methoch must be developed for applica-
tions to access a “virtual texture memory" without significantly
impacting overall performance. Finally. the system must provide
capabilities for the application to monitor actual geometry and fill
rate. perfon-ntrntze on it. frame by frame basis and make adjustments
if necessary I.o maintain a constant 60!-lz Frame update rate.

Aside from the primary goal of real-time application perforrnance.
two other areas significantly shaped the system architecture. First,
this was Silicon Graphics’ first high-end graphics system to be
designed from the beginning to provide native support for
0pcnGL““. To support the inherent flexibility of the Openfil. archi-
tecture. we could not take the traditional approach for the real-time
market of providing it black-bot: solution such as a Flight simulator
[Scl-iaB3].

The lnfinitelicatlity system is fundamentally a sorbmiddle architec-
ture [Moln94]. Although interesting high-perfonnance graphics
arcltitectures have been implemented using it sort-last approach
|Moln92|IEvan92'], sort-Inst is not well-suited in supporting
OpcnGL frameb1.Ifl'er operations such as blending. Furthermore.
sparse sort-last architectures make it difficult to rasteriee primitives
into the frarnebuffer in the order received from the application as
required by OpenGL.

The second nrea that shaped the graphics architecture was the need
for the lnfiniteReality system to integrate well with two generations
of host platforms For the first year of production. t.he InfiniteReal-
ity system shipped with the Onyx host platform. Currently. the lnfi.
nitelleality system integrates into the Onyx! platform Not only
was the host to graphics interface changed between the two sys-
tems. but the U0 performance was also significantly irnproved.
Much effort went into designing a graphics system that would ade-
quately support both host platforms.

The remainder of the paper is organized as follows. The next sec-
tion gives an architectural overview of the system. Where appropri-
ate. we contrast our approach to that of the Re:tlityEngine system.
Section 3 elaborates on novel functionality that enables real-time
perforniance and enhanced video capabilities. Section 4 discusses
the performance of the system. Finally, concluding remarks are
made in Section 5.

2 ARCHITECTURE

It was a goal to be able to easily upgrade Onyx Realitylingine sys-
tems to lnfiniteRe£tlil.y graphics. Accordingly, the physical parti.
tioning of the lnfinitekeality boardset is similar to that of
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Realityfinginet there are three distinct board types: the Geometry,
Raster Memory. and Display Generator hoards (Figure 1).

The Geometry hoard comprises a host computer interface, com-
mand interpretation and geometry distribution logic. and four
Geomeu-y Engine processors in a MIMD an-angernent. Each Ras-
ter Memory board comprises a single fragrrtent generator with a
single copy of texture memory. 80 image engines. and enough
frarrtebuffer memory to allocate 5| 2 bits per pixel to a I280: I024
framebuffer. The display generator btnrd contains hardware to
drive up to eight display output channels, each with its own video
timing generator, video resize hardware. gamma correction, and
digital-to-analog conversion hardware.

Systems can be contigured with one. two or four raster memory
boards. resulting in one, two. or four fragment generators and 80,
160. or 320 image engines.

Figure I: Board~level bloclt diagram of the n't=utirt1uI't't
configuration with 4 Geometry Engines. 4 Raster Memory boards,

and a Display Generator board with 8 output channels.

2.1 Host Interface

There were significant system constraints that influenced the archi-
tectural design of lltfinitefieality. Specifically, the graphics system
had to be capable of working on two generations of host platforms.
The 0ny:t2 differs significantly from the shared memory multipro-
cessor Onyx in that it is a distributed shared memory multiproces-
sot system with cache-coherent non—unifot'rn memory access. The
most significant difference in the graphics system design is that the
Onyx! provides twice the host-to-graphics bandwidth (4DDMBfsec
vs. 2DlJMBfsec} as does Onyx. Out challenge was to design a sys~
tern that would be matched to the host-to-graphics data rate of the
onyxz, but still provide similar performance with the limited IEO
capabilities ofOnyx.

We addressed this problem with the design oi the display list sub-
system. In the RealityErtgine system. display list processing had
been handled by the host. Compiled display list objects were
stored in host memory. and one of the host processors traversed the
display list and transferred the data to the graphics pipeline using
programmed IEO (P10).

With the lnlinitelteality system. display list processing is handled
in two ways. First. compiled display list objects are stored in host
memory in such a way that teal’ display objects can be "pulled"
into the graphics subsystem using DMA transfers set up by the
Host Interface Processor (Figure I). Because DMA transfers are
faster and more efficient titan PIO. this technique significantly
reduces the Computational load on the host processor so it can be
better utilized for application computations. However. on the origi-
nal Onyx system. DMA transfers alone were not fast enough to
feed the graphics pipe at the rate at which it could consume data.
The solution was to incorporate local display list processing into
the design.

Attached to the Host Interface Processor is 16MB of synchronous
dynamic RAM (SDRAM). Approximately ISMB of this memory
is available to each: leaf display list objects. Locally stored disply
lists are traversed and processed by an embedded RISC core.
Based on it priority specified using an OpenCiL extension and the
size of the display list object. the OpenGL display list manager
determines whether or not a display list object should be cached
locally on the Geometry board. Locally cached display lists are
read at the maximum rate that can be consumed by the remainder
of the lnfinitelleality pipeline. As a result. the local display list
provides a mechanism to mitigate the host to graphics I10 bottle-
neck of the original Onyx. Note that if the total size of leaf display
list objects exceeds the resident ISMB limit. then some number of
objects will be pulled from host memory at the reduced rate.

2.2 Geometry Distribution

The Geometry Distributor (Figure I) passes incoming data and
commands from the Host interface Processor to individual Geome-

try Engines [or Further processing. The hittdvvttre supports both
round-robin and least-busy distribution schemes. Since gemneu-it:
processing tequirernents can vary from one vertex to another. a
least-busy d-istribution scheme has a slight performance advantage
over round-robin. With each command. an identifier is included
which the Geometry-Raster FIFO (Figure 1) uses to recreate the
original order of incoming primitives.

2.3 Geometry Engines

When we began the design of the lnfinitekeality system, it became
apparent that no commercial ofi‘-the-shelf floating point processors
were being developed which would ofi'er suitable priI:e}perfot'-
rttance. As a result. we chose to implement the Geomeu-y Engine
Processor as: a semicustom application specific integrated circuit
(ASIC).

The heart of the Geometry Engine is a single instruction rttulliple
datapath (SIMD) arrangement of three floating point cores. each of
which comprises an ALU and a multiplier plus rt 32 word register
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file with two read and two write ports (Figure 2). A 2560 word on-
chip memory holds elements of Openfil. state and provides scratch
storage for intennediatr: calculations. A portion of the working
ttterttory is used as a queue for incoming vertex data. Early simula-
tions of microcode fragments confirmed that high bandwidth to
and from this memory would be required to get high utilization of
the floating point hardware. Accordingly. each of the three cores
can pet-for-rn two reads and one write per instruction to working
nternory. Note that working memory allows data to be shared eas-
ily among cores. A dedicated float-to-fix converter follows each
core. through which one floating point result may be written per
instruction.

Figure 2: Geometry Engine

We used a very simple scheduler to evaluate the perlorrnance
effect of dcsign trade-offs on critical microcode fragments. One of
the trade—ol"l's considered was the number of pipeline stages in the
floating point arithmetic blocks. As we increased the depth of the
pipeline from one to four stages. the machine’: clock speed and
throughput increased. For more than four stages. even though the
clock speed improved. total performance did not because our code
fragntenls did not have enottgh unrelated operations to fill the
added computation slots.

Quite often machine performance is expressed in tenns of vertex
rates for triangles in long Strips whereas application perfonnance
is much more likely to be determined by how well a system han-
dles very short strips, with frequent mode changes. The problem of
acceleratirlg mode changes and other non-benchmark operations
has enonnous impact on the microcode architecture. which in turn
influences aspects of the instruction set architecture.

To accelerate mode change processing. we divide the work associ-
ated with individual 0pertGL modes into distinct code modules.
For example. one module can be written to calculate lighting when
one infinite light source is enabled. another may be tuned for one
local point light source. and still another could handle a single
spotlight. A general module exists to handle all cases which do not
have a corresponding tuned module. Similarly. different microcode
modules would be written to support other DpenGL modes such as
texture coordinate generation or bocltf.-ice elimination. A table con-

sisting of pointers to the currently active modules is maintained in
GE working memory. Each venex is processed by executing the
active motlulcs in the table-specified sequence. When a mode
change occurs. the appropriate table entry is changed. Vertex pro-
cessing lirrtt: degrades slowly and predictably as additional opera-
tions arc turned on. unlike microcode architectures which

implement hyper-optimized fast paths for selected bundles of
mode settings. and a slow general path for all other combinations.

Since microcode modules tend to be relatively short. it is desirable
to avoid the overhead of basic-block preamble and postarntile
code. All fields necessary to launch and retire at given operation.
including tnernory and register file read and write controls. are
specified in the launching microinstruction.

2.4 Geornetryqtlaster FIFO

The output streams from the four Geometry Engines are merged
into a single stream by the Goorrtetty-Raster FIFO. A FIFO large
enough to hold 65536 vertexes is irnplemented in SDRAM. The
merged geometry engine output is written, through the SDRAM
FIFO. to the Vertex Bus. The Geometry-Raster FIFO contains a
256-word shadow RAM which keeps a copy of the latest values of
the Fragment Generator and Image Engine control registers. By
eliminating the need for the Geometry Engines to retain shadowed
raster state in their local RAMs. the shadow RAM permits raster
mode changes to be processed by only one of the Geometry
Engines. This improves mode change performance and simplifies
context switching.

2.5 Vertex Bus

One of ot.tr most ttnponant goals was to increase transform-limited
triangle rates by an order of magnitude over RealityEnginc. Given
our desire to retain a sort-middle architecture. we were forced to
increase the efficiency of the geometry-raster crossbar by a factor
of ten. Whereas the RealityEngine system used a Triangle Bar to
move triangle parameter slope information from its Geometry
Engines to its Fragment Generators, the lnlinitekeality system
employs a ‘re:-tot Bus to transfer only screen space vertex inl'onna-
tion. Vertex Bus data is broadcast to all Fragment Generators. The
Vortex Bus protocol supports the OpenGL triangle strip and trian-
gle fan constructs. so the Vcrtcit Bus load oot-responds closely to
the load on the host-to-graphics bus. The Geometry Engine trian-
gle strip workload is reduced by around 50 percent by not calcu-
lating triangle setup infom-ration. However. hardware to assemble
screen space primitives and compute parameter slopes is now
incorporated into the Fragment Generators.

2.6 Fragment Generators
in order to provide increased user-accessible physical texture
memory capacity at an acceptable cost, it was our goal to have
only one copy of texture memory per Raster Memory board. A
practical otinsequence of this is that there is also only one frag-
ment generator per raster board. Figure 3 shows the fragment gen-erator structure.

Connected vertex streams are received and assembled into triangle
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primitives. 'l'he Scan Convener (SC) and Texel Address Calculator
(TA) AS|Cs perform scan conversion, color and depth interpola~
tion. perspective correct texture coordinate interpolation and level-
of-detail computation. Up to four fragments. corresponding to 2.1:?
pixel regions are produced every cloclt. Scan conversion is per-
formed by directly evaluating the parameter plane equations at

IIIllllllIIIIIIIIllllll

Figure 3: Fragment Generator

each pixel [Fuch8S] rather than by using an interpolating DDA as
was done in the Rca|ityEngitte systetn. Corttpated to a DDA. direct
evaluation requires less setup time per triangle at the expense of
more computation per pixel. Since application trends are towards
smaller triangles. direct pararneter evaluation is a more eflicient
solution.

Each texture memory controller (TM) ASIC performs the texel
lockup in its four attached SDRAMs, given texel addresses (tom
the TA. 111-: TM: combine redundant texel requests from neighbor-
ing fragments to reduce SDRAM access. The Tlvls forward the
resulting texel values to the appropriate TF ASIC for texture filter-
ing. texture environment combination with interpolated color, and
fog application. Since there is only one copy of the texture mem-
ory distributed across all the texture SDRAII-vls, there must exist a
path from all 32 texture SDRAMs to all Image Engines. The This
and TF5 implement a two-rank omega network ll-lwan84] to per-
form the required 32-to-80 sort.

2.? Image Engines
Fragments output by a single Fragment Generator are distributed
equally among the 30 Image Engines owned by that generator:
Each Image Engine controls a single 256K x 32 SDRAM that
comprises its portion of the frarnebuller. Framebullcr memory per
Image Engine is twice that of Realityfingirte. so a single raster
board system Supports eight sample antialiasing at 1280 x 1024 or
four sample antialiasing at [920 it I200 resolution.

2.8 Framebuffer Tiling

Three factors contributed to development of the frarnebuffer tiling
sclterne: the desire for load balancing of both drawing and video
requests; the various restrictions on chip and board level packag-
ing; and the requirement to keep on-chip FlF0s small.

In systems with rnore than one fragment generator, diflerent frag-
ment genenttors are each responsible for two-pixel wide vertical
strips in framebuffer memory. If horizontal strips had been used
instead, the resulting load imbalance due to display requests would
have required excessively large FIFO: at the fragment genemtor
inputs. The strip width is as rtarrow as possible to minimize the
load imbalance due to drawing among fragment generators.

The Fragrnenl Generator scan-conversion completes all pixels in a
two pixel wide vertical strip before proceeding to the next strip for
every primitive. To keep the Image Engines from limiting fill rate
on large area primitives. all Image Engines must be responsible for
part of every venical strip owned by their Ftagrncnt Generator.
Conversely. for best display request load balancing. all Image
Engines must occur equally on every horizontal line. For a maxi-
mum system, the Image Engine framehufier tiling repeat patient is
a rectangle 320 pixels wide by 80 pixels tall (320 is the number of
image Engines in the system and 80 is the number of image
Engines on one Raster Memory board).

2.9 Display Hardware

Each of the 80 Image Engines on the Raster Memory boards drives
one or two bit serial signals to the Display Generator board. Two
wires are driven if there is only one Raster Memory board. and one
wire is driven if there are two or more. Unlike Realityfittgine. both
the number of pixels sent per block and the aggregate video band
width of I200 Mhytesfsec are independent of the number of Raster
Memory boards. Four .ltSlCs on the display board (Figure 4) de-
serialize and de-interleave the I60 bit sueams into RGBAID.
RG3 I2. L16, Stereo Field Sequential (FS). or color indexes. The
cursor is also injected at this point. A total of 32.168 color index
map entries are available.

Color component width is maintained at I2 bits through the
gamma table outputs. A connector site exists with a full I2 bit per
component bus. which is used to connect video option boards.
Option boards support the Digital Video Standard CCIR 60! and a
digital pixel output for hardware-in-the-loop applications.

The base display system consists of two channels, expandable to
eight. Eaclt display channel is autonomous. with independent
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video timing and image resizing capabilities. The final channel
output drives eight-bit digital-lofitnalog converters which can run
up to a 220Mhz pixel clock rate. Either ROB or L.el'u"Right Stereo
Field Sequential is available lrom each channel.

lbfiastaruatrtcr)-Borne‘ Hurnfiassuuanteryaas-.t-d

Figure 4: Display System

Video synchronization capabilities were expanded to support inde-
pendent timing per channel (Figure 5}. Swap events are con-
strained to happen during a common interval. Three different
methods are used to synchronize video timing to external video
sources. l"'romeiockt'.-tg is the ability to rate lock. using line rate
dividers. two different video outputs whose tine rates are related by
small integer ratios. Line rate division is limited by the program-
mabiiiry of the phase-locked-loop gain and feedback parameters
and the jitter spectrum of the input genlock source. The start of a
video fr.-tmc is detected by programmable sync pattern recognition
hardware. Disparate source and displayed video formats which
exceed the range of framelocl: are vertically locked by simply per-
forming an asynchronoosfmme reset of the display video timing
hardware. In this instance. the pixel clock is created by multiplying
an oscillator clock. Identical formats may be gertloc-lied‘. With
frartte lock or genlock. the frame reset from the pattern recognition
hardware will be synchronous. and therefore cause no disturbance
of the video signal being sent to the monitor.

Vfidoo Synchronization

Certain situations require the synchronization of drawing between
separate graphics systems. This is required in visual simulation
installations where multiple displays are each driven by their own
graphics system. If one graphics system takes longer than a frame
time to draw a scene. the other graphics systems I'l‘I.t.tsl be kept in
lock step with the slowest one. Infinitekeality uses an external
swap ready wire connecting all the graphics systems together in a
wired AND configuration.

The video outputs of all the graphics systems are first Ioclted.
together. Each pipe monitors the swap ready wire to determine if
all the other pipes have finished drawing. A local buffer swap is
only allowed to happen if all the graphics systems are ready to
swap. In orcler to cope with slight pipe to pipe variations in video
timing, .1 write exclusion window exists around the swap ready
register to guarantee all pipes make the same decision.

Finally an NTSC or PAL output is available with any or the eight
channels as the source. Resizing hardware allows for the scaling of
any source resolution or windowed subset. to NTSC or PAL reso-
lution.

3 FEATURES

3.1 Virtual Texture

The size of texture databases is rapidly increasing. Texture data
that cover the entire world at one meter resolution will be cortu'ner-

cially available in I998. This corresponds to a texture size of
411000.000 it 20.000.000 texels. Advanced simulation users need
to be able to navigate around such large data in real-time. To meet
this need. the lnfinitekeality system provides hardware and soft-
ware support for very large virtual textures. that is. textures which
are too large to reside in physics] texture memory.

Previous efforts to support texture databases larger than available
texture memory required that the scene database modeler partition
the original texture into a number of smaller tiles such that a subset
of them fit into physical texture memory. The disadvantage of this
approach is that the terrain polygons need to be subdivided so that
no polygon maps to rrtone than one texture tile. The lnfinitefieality
system. by contrast. allows the application to treat the original
large texture as a single texture.

We introduce a representation called a dip-map which signifi-
cantly reduces the storage requirements for very large textures. To
illustrate the usefulness of the clip-map representation. we observe
that the amount of texture data that can be viewed at one time is

limited by the resolution of the display monitor. For example,
using H'ili|'l1!fl.I' mip-map textures on a 102-1ttl024 monitor. the
highest resolution necessary occurs just before a tnmsition to the
next coarser level of detail. In this case the mtutirnum amount of
resident texture required for any map level is no more than 2043 it
2043 for the finer map. and l024xl024 for the coarser map,
regardless of the size of the original map level. This is the worst
case which occurs when the texture is viewed front directly above.
In most applications the database is viewed obliquely and in per-
spective. This greatly reduces the mattimunt size of a particular
level-of-detail that must be in texture memory in order to render a
frame.
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Recall that a mip-map represents a source image with a pyramidal
set of two-ditttensional images, each of which covers the full area
of the source image at successively coarser resolution [Wit|82l]. A
clip-map can be thought of as a subset of the mip-map ol the entire
texture. It has two parts: a clip-map pyramid which is exactly the
same as the coarser levels of the original mip-map, and a clip-map
stack which holds a subset of the data in the original rrtip-rttap for
the finest levels of detail. The clip-map stack levels all have the
same size in texture memory. but each successively coarser level
covers four times the source image area of the immediately finer
level. Figure 6 illustrates the relationships between levels in a clip-
rnap when viewed from above a textured database. The clip-map
stock levels are centered on a common point. Each slack level rep-
resents larger and larger areas as the resolution of the data they
contain beoorttes coarser and coarser. Figure 7 illustrates at clip-
rrtap fora 32K at 32K source image using a 2K x 2K clip-map tile
site. Note that the clip-map representation requires about 1.364 the
storage of the equivalent 32l< X 32K mip-map.

Ftgune 6: Clip-Map Levels

Because the clip-rrtap staclt does not contain the entire texture the
position of the clip-map stack needs to be updated to track the
viewer's position. or more optimally the center of the viewer’s
gaze. As the viewer's position or gaze moves. the contents of the
clip-map stack should be updated to reflect this rnovetrtent. New
texture data is loaded into the texture rrtemory to replace the tex-
ture data that is no longer required. The rate of update of texture
data is highest for the finest clip-map stack level and becomes less
for coarser stack levels of the cliprnap. In the lnlinitekeality sys-
tem. it is not necessary to replace all data in a t:lip—map level when
only a few texels actually need to be updated. The hardware loads
new texture data over the old and automatically performs the cor-
rect addressing calculations using offset registers. Additionally, the
Fragment Generators contain registers that define the clip-rrtap
center as it moves through the tcttture.

If the stack tile size is chosen correctly and the clip-trtap stack is
updated properly as the viewpoint moves through the scene, the
lnfinitekeality system will produce images identical to thost: that
would have been produced if the entire source mip-rnap had been
resident in texture memory.

It cannot always be guaranteed that the texture data requested dur-

ing triangle rendering will be available at the requested level of
detail. This may occur if the size of the clip-rrtap tile has been cho-
sen to be too small, or the update of the stack center Failed to lteep
pace with the motion ol‘ the viewer. The Inftnilelleality texture sub-
system detects when texture is requested at a higher resolution than
is available in texture rnerrtory. It substitutes the best available data
which is data at the correct spatial position, but at :1 coarser level-
of-detail than requested. As a result, the rendered scene will have
regions where the texture will be coarser than if the entire rttip-map
were resident in texture memory. However, it will otlterwise be
rendered correctly. This substitution mechanism limits the required
clip-map tilc size and reduces the required texture update rate.

|nlt':geus'l'ni inToltttrl ltlstttoty
{Will}

Ill
2:1
It]
III
tI:1|
£131
IIIH

lflltlfl
$5156
SIIIII1

Ofllllfll
nfllllli
ntlttflllfl
mtlslfll
anlllflll
flllaflll

iiiiii

“"'||||lllll|
tculdlr no to-cu: must

trmlntoelorltlarttaltutattttttla-titan: t.Ia1.|'.l5.‘l'IG

Figure 1‘: 32l(.x32K texture represented as a 2Kx2I{ clip-map.
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The Fragment Generator is lirttited to addressing at 32K at 32K clip-
map. The atldressability of clip-maps can be extended to arbitrary
texture size; through software. The software layer needs only to
keep trttclt of and implement 8. trurtsfonnation from an arbitrarily
large texture space into the texture space addressable by the hard-
ware.

3.2 Texture Loading and Paging
We l'ninimiz:e the performance impact of large amounts of texture
paging in the design of lnfinitellcaiity system. The graphics sub-
system interprets texture images directly as specified by the
OpenGL programmer so no host processor translation is required.
The front encl of the Geometry Subsystem includes pixel unpack-
ing and format conversion hardware: DMA hardware directly
irnplemettts stride nd padding address arithmetic as required by
0penGL. The Fragment Generators accept raster-order texture
images at Vertex Bus-limited rates. To eliminate the need for the
host computer to make and retain copies of loaded textures for
context switching. the hardware supports texture image reads backto the host.

The Geometry-Raster FIFO maintains a separate path through
which data bound for texture tnemory is routed. When the Frog-
ment Generators are busy with fill-limited primitives. pending teat-
lure data is transferred over the Vertex Bus and routed to write
queues in the TM ASlCs. When a moderate amount of texture data
is queued for a particular texture DRAM. the TM suspends draw
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access and writes the queue contents to that DRAM. Because total
bandwidth to and from texture memory is an order of Ittngnitudc
greater than that of the Vertex litts, this action only slightly
impacts fill rate. For lill-limited scenes. however, this approach uti-
lizes Vertex Bus cycles which would othenrrise go unused. Syn-
chronization ban-ier primitives ensure that no texture is referenced
until it has been fully loaded. and conversely. that no texture load-
ing occurs until the data to be overwritten is no longer needed.

3.3 Scene Load Management

3.3.1 Pipeline Performance Statistics

Regardless of the performance levels of a graphics system, there
may be times when there are insullcient hardware resources to
maintain a real-time frame update rate. These cases occur when the
pipeline becomes eilhct geometry or fill rate limited. Rather than
extending frame time, it is preferable for the application to detect
such a situation and adjust the load on the pipeline appropriately.

The lnfinitckeality system provides a mechanism for performing
feedback-based load management -with application-accessible
monitoring ittstrumentation. Specifically. counters are maintained
in the Geometry-Raster FIFO that monitor stall conditions on the
Vertex Bus as well as wait conditions upstream in the geometry
path. If the counters indicate that then-. is geometry pending in the
Geometry-Raster FIFO, but writes to the Vortex Bus are stalled,
then the system is fill rate limited. On the other hand, if the Flt-'-0 is
empty. then the system is either host or geometry processing lim-
ited. By extracting these rneasurcrncnts. the application can take
appropriate action whenever a geometry or fill rate bottleneck
would have otherwise caused a drop in frame rate.

A common approach to a geometry limited pipeline is for the
application to temporarily reduce the complexity of objects being
drawn starting with those objects that are most distant from the
viewer [Funl<92l][_Rohl94]. This allows the application to reduce
the polygon count being sent to the pipeline without severely
impacting the visual fidelity of the scene. However, since distant
objects do not tend to cover many pixels. this approach is not well-
suited to the case where the pipeline is fill limited. To control till
limited situations. the lnfinitekeality uses it novel technique
termed rlwtatnic video retizlng.

3.3.2 Dynamic Video Resizing
Every frame. fill roquircments are evaluated. and ti scene is ren-
dered to the lramebuffer at a potentially reduced resolution such
that drawing completes in less than one frame time. Prior to dis-
play on the monitor. the image is scaled up to the nominal resolu-
tion ol the display format. Based on the current fill rate
requirements of the scene. framebufler resolution is continuously
adjusted so that rendering can be completed within one frame time.
A more detailed explanation follows.

Pipeline statistics are gathered each l'rarrte and used to dctcmtine if
the cunent frame is close to being fill limited. These statistics are
then used to estimate the amount by which the drawing time
should he reduced or increased on the subsequent frame. Drawing
time is altered by changing the resolution at which the image is

rendered in the framebulfcr. Resolution is reduced if it is estimated

that the new image cannot be drawn in less than a lrarrte tirne. Res-
olution can be increased it‘ it was reduced in prior scenes. and the
current drawing time is less than one frame. The new frame may
now be drawn at a different resolution from the previous one. Res-
olution can be changed in X or Y or both. Magnifying the image
baclt up to the nominal display resolution is done digitally, just
prior to display. The video resizing hardware is programmed for
the tnatching magnification ratios. and the video request hardware
is progratnmcd to tequest the appropriate region of the frame-
buffer. '

Finally, to ensure the magnification ratio is rnatched with the reso-
lution of the frame currently being displayed. loading of the mag-
nification and video request parztrrteters is delayed until the next
swap butler event for that video channel. This ensures that even if
scene rendering exceeds one frtlme time. the resizing parameters
are not updated until drawing is finished.

Each channel is assigned a unique display ID, and the swap event
is detected for each of these lD‘s. This swap forces the loading of
the new resize parameters for the corresponding video channel,
and allows channels with different swap rates to resize.

Note that the effectiveness of this technique is independent of
scene content and does not require modifications to the scan: data
base.

3.4 Video Configurability
One of the goals for the lnfinitelleality system was to enable our
customers to both create their own video timing formats and to
assign formats to each video channel.

This required that the underlying video tinting hardwa.re had to be
more flexible than in the RealityEngine. Capabilities were
expanded in the video timing and request hatdwmes ability to
handle color field sequential. interlace. and large numbers of fields.
The biggest change needed was an expanded capability to detect
unique vertical sync sigrlaturcs when genlocltirtg to an cttletnal
video signal. Since our customers could define vertical sync signa-
ture: whose structure could not be anticipated. the standard
approach of simply hard-wiring the detection of known sync pat-
tcms would have been inadequate. Therefore. each video channel
contains programmable pattern recognition hardware. which ana-
lyzes incoming external sync and generates resets to the vidco1im-
ing hardware as required.

In previous graphics systems, rnulti-channel stlpport was designed
as an afterthought to the basic single channel display system. This
produced an implementation that was lacking in flexibility and was
not as well integrated as it could have been. In the Rualityfingine
system. suppon for multiple channels was achieved by pushing
video data to an external display board. The software that created
multi-channel combinations was required to emulate the system
hardware in order to precisely calculate how to order the video
data. Ordering had to be maintained so each channel's local FIFO
would not overflow or undcrflow. This approach was not very
robust and made it impossible for our customers to define their
own fonnat combinations.
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in the lnfinitekeality system, every video channel was designed to
be fully autonomous in that each has its own programmable pixel
clock and video timing. Each video channel contains a FIFO, sized
to account for latencies in requesting frame bulfer mernory. Video
data is requested based on each channel's FIFO levels. A round
robin arbiter is sulficient to guarantee adequate response time for
multiple video requests.

Fomtat oombinalions are limited to video fomiats with the same
swap rate. Thus. the eon-tbination of l2BoitlU24@60l-le +
640x48D@ldDl-la field sequential + l024x'!6B@l20l-lz stereo +
NTSC is allowed but combining l92Dx1DBD@'l2Hz and 5OHz
PAL is not.

In order to achieve our design goal of moving more control of
video into the hands of our customers. two software programs
were developed. The first program is the Video Format Compiler
or \tI'c. This program generates a file containing the microcode
used to configure the video timing hardware. The source files for
thc compiler use a language whose syntax is oonsislettt with stan-
dard video temtinology. Sounce files can be generated automati-
tally using templates. Generating simple block sync forrrtals can
be accomplished without any specific video knowledge other than
knowing the width. height and frame rate of the desired video dis-
play fortrtztt. More complex video formats can be written by modi-
fying an existing source file or hy stoning from scratch. 'l11e Video
Forrnztl Compiler generates an object file which can be loaded into
the display subsystem at any time. Both the video timing hardware
and the sync pattern recognition hardware are specified by the vfc
for each unique video timing format.

The second program is the Infinitekeality combiner or it-eornbine.
its primary uses are to define combinations of existing video for-
mats. vcrify that they operate within system limitations. and to
specify various video parameters. Both a GUI and a command line
version of this software are provided. Once a combination of video
fotrnztls has been defined. it can be saved out to a tile which can be
loaded at a later time. The following is a partial list of ireombine
capabilities:

0 Attach a video format to a specific video chanrtel
0 Verify that the format combination can exist within

system limits
Define the rectangular area in framebuffcr memory to be
displayed by each channel
Define how data is requested for interlace font-tats
Set video parameters (gain. sync on RGB. setup etc.)
Define genloclt parameters tinternallexternal. geniock
source format. horizontal phase. vertical pltasel
Control the NTSCIPAL encoder (source channel. input
window size. filter sire)
Control pixel depth and size

4 PERFORMANCE

The lnfiniteflealtty system incorporates 12 unique ASIC designs
implemented using a combination of 0.5 and 0.35 micron. three-
layer metal semiconductor fabrication technology.

Benchmark performance numbers for several key operations are
summarized in Tables I, 2, and 3. In general. geometry processing
rates are seven to eight times that of the RealityEngine system and
pixel fill rates are increased by over at factor of three, Note that the
depth buttered fill rate assumes that every 2 value passes the 2
comparison and must be replaced which is the worst case. In prac-
tice. not every pixel will require replacement so the actual depth
bttifered fill rates will fall between the stated depth buffeted and
non depth buffered rate.

Although the benchmark numbers are impressive. our design goals
focused on achieving real-time application perfon-nance rather
than the highest possible benchmark numbers. Predicting applica-
tion pcrformance is a complex subject for which there are no stan-
dartl accepted metrics. Some of the reasons that applications do not
achieve peak benchmark rates include the frequent execution of
mode changes (e.g. assigning a different texture. changing a sur-
face material. etc), the use of short triangle meshes. and host pro-
cessing limitations. We include execution times for commonly
performed mode changes (Table 4) as well as perfortnance dta for
shoner triangle meshes (Table 5). Practical experience with a vari-
ety of ttpplictitions has shown that the lnfinil.eRea|iIy system is suc-
cessful in achieving our real-time performance goals.

We were pleasantly surprised by the utility of video resizing as a
fill rate conservation tool. Preliminary sirrntlations indicated that
we could expect to dynanticnlly reclttce framebuffer resolution up
to ten percent in each dimension without substantially degrading
image quality. In practice. we find that we can frequently reduce
iramebufier resolution up to 25% in each dimension which results
in close to a 50% reduction in fill rate requirerrtents.

unllt. untextured tstrips 11.3 Mtrisfsot:
unlit. textured tstrlps 9.5 Mtrts/sec

Table l: Non Fill-Lin-tited Geometry Rates

nomdepth bt.tl'l'ered.textured.antialiased Bflflhrlpix/sot:
depth buffered. textu - , antialiased Ill] Mplx/sec

Table 2: Non Geornetry-Limitecl Fill Rates (4 Raster Memory
boards}

RGBA8 83.1 Mpix sec( 32 Mb/sec)
Table 3: Peal: Pixel Download Rate

glPushMatrix/glPoplVlatrix
Table 4: Mode Change Rates

gltulaterial

Length 2 triangle strips
Table 5: Geometry Rates for Short Triangle Strips
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Table 5: Geornelry Rates for Short Triangle Strips

 
 

The above numbers are for unlit, urttextured triangle strips. Other
types of triangle strips scale similarly.

The performance of the [tlfil'IileRe:Iliry system maltes practical the
use of multipass rendering techniques to enhance image realism.
Multipass rendering can be used to implement effects such as
rcflectiorls. Phong shading. shadows. and spotlights [Seg92]. Fig-
ure 8 shows a frame from a multipass rendering demonstration
running at 60Hz on the lnfirtitekeality system. This application
uses up to live passes per frame and renders approximately 40,000
triangles each frame.

5 CONCLUSION

The Infinitekeality system achieves real-time rendering through a
combination of raw graphics performance and capabilities
designed to enable applications to achieve guaranteed frame rates.
The flexible video architecture of the InfinileReality system is ll
general solution to the image generation needs of multichannel
visual simulation applications. A true OpcnCiL implementation.
the Infinitekcality brings unprecedented performance to traditional
graphics-intensive applications. This underlying performance.
together with new rendering functionality lilte virtual Ieitturing,
paves the way for entirely new classes of applications.
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figure 8: An example of a high quality image generated at 60 Hz using multipass rendering techniques
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wiroGL: A Scalable Graphics System for Clusters
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Abstract

We describe WireGL. a system for scalable interactive rendering on
a cluster of workstations. WircGL provides the familiar 0-penGL
AP! to each node in a cluster, virtttalizing multiple graphics accel-
erators into a sort-lirst parallel tenderer-with a parallel interface. We
also describe techniques for reassembling an output image from a
set of tiles distxibttted over a cluster. Using flexible display man-
agement. W'u-eGl..catt drive a variety of output devices. from stan-
dalone displays to tiled display walls. By combining the power of
vinual glaphics. the familiarity and ordered semantics of OpenGL,
and the scalability or clusters, we are able to create time-varying
visualizations that sustain rendering performance over ?0.00D.0D0
triangles per second at interactive refresh rates using 16 compute
nodes and I6 rendering nodes.

CR Categories: l.3.2 [Computer Graphics]: Graphics Systems-
Distributedlnetworlr graphics; 1.3.4 [Computer Graphics]: Graph-
ics Utilities—Sofiware support, Vinnal device interfaces; C.2.2
[Cornptuer-Oornrmnication Networks]: Network Protocols-—
Applications; C.2.-It [Gornputer-Communication Networltsl: Dis-
tributed Systems--Clientlserver. Distributed Applications

Keywords: Scalable Rendering. Cluster Rendering. Parallel Ren-
dering. Tiled Displays, Remote Graphics. Virtual Graphics

1 Introduction

Despite recent advances in accelerator technology. many real-time
graphics applications still cannot run at acceptable rates. As pro-
cessingsnd memory capabilitiescontinuetoincrease. sodotlte
sizes of data being visualized. Today we can construct laser range
scans comprised ofbillions of polygons [id] and solutions to fluid
dynamics problems with several hundred million data points per
frame over thousands of frames [8. 21]. Because ofmemory con-
straints and lac!-rot‘ graphics power: visualizations of this magnitude
are diflicull or impossible to perform on even the most powerful
workstations. Therefore. the need for a scalable graphics system is
clear.

The necessary components for scalable graphics on clusters of
l‘-'C’s have matured sufficiently to allow exploration of clusters as a
reasonable alternative to multiprocessor servers for high-end visu-
alization. in addition to graphics accelerators and processor power.
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memory and U0 controllers have reached a level of sophistication
that permits high-speed memory. network. disk. and graphics 110
to all occur simultaneously. and high-speed general purpose net-
worlts are new fast enough to handle the demanding task ofrcutirlg
streams of graphics pritnt‘tives.

Tbtaheadvamageofthese opportunities. wehavedesignedand
implemented WireGL, a softwwe system that unifies the render-
ing power of a collection of graphics accelerators in cluster nodes.
treating each separate frarnebuffer as partofzt single tiled display. A
high-level bloclr diagram of Wt-eGI..'s major cormonents is shown
in figure l. llm-eGL provides a virtualiaed interface to the graphics
hardware through the OpenGL AP]. Opencl. provides imntediate-
mode semantics. so we support visualizations of time-varying data
that would he inconvenient to express with a retained-mode inter-
face or in a scene graph.

In addition. WireGL provides a parallel interface to the virtual-
ized graphics system. so each node in a parallel application can is-
sue graphics commands directly. This helps applications overcome
one of the most common pet'fOtl'tl‘lattee—lill1.ltiIlg factors in modern
graphics systems: the interface bottleneck. WireGL extends the
0penGl.. API to allow the simultaneous streams of graphics corn-
rnands to obey ordering constraints imposed by the prograrruner.

Another recent development is the introduction otthe Digital
Visual interface {D\-'1) standard for digital scan-out of the frame-
bufier [5]. WireGL allows a flexible assignment of tiles tographics
accelerators. recombining these tiles using DVI-based tile reassem-
bly hardware called Lightning-2 [27]. In the absence of image
composition hartlwarc. WireGL. can also perform the final image
reassembly in soltwate. using the general purpose cluster intercon-
ncct. Because oftltis flexible assignment oftiles to accelerators.
WireGL can deliver the combined rendering power of a cluster to
any display. be it a multi—projector wall-sized display or a single
monitor. By decoupling the number of graphics accelerators from
the number of displays and allowing a flexible partitioning of the
Output image among the image reassembly gives ap-
plications control over their graphics load balancing needs.

2 Design issues and Related work

Designing in parallel graphics system involves a number on:-adeofia
andchoices. In this section. weprescntsorneofrltemostcrucial
issues facing parallel graphics system designers.

2.1 Commodity Porto and Worlt Granularlty

Parallel graphics architectures can usually be classified accord-
ing to the point in the graphics pipeline at which data are redis-
tributed [lti]. This redistribution. or “sot-ting" step is the transition
from object parallelism in image parallelism. and the location of
this son has significant implications for the architectures commu-
nication needs. when building a new hardware architecture. the
design of the oonurtunication infrastructure is flexible. and can be
engineeredtomeet tlterequinements ofthesysrern.

The SGI lnlinitekeality is a sort-middle architecture which uses
bras-based broadcast communication to distribute primitives 118].
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Figure I: Wirectl. is comprised of application nodes, rendering nodes. and a display. In this example. each application node is per
fanning isosurface exuaction in parallel and rendering its data using the OpenEll.. AP}. Each application node is responsible for the
comspondingly colored portions of the object. In the configuration shown. the display is divided into 16 tiles. each of which is man-
agedbytltecorrespontlingly shadedrentlering node. Thesetilesare reassentbletltoasingle tnnoitoranertltey areseannetloutofthe
graphics accelerators.

To overcome the dilliculties encountered in load-balancing image-
parallel data. it uses a line interleaving of tiles. which works well
because of the available high-bartdwidth broadcast bus. Pixel-
Planes 5 is a sort-middle architecture with large tiles. which uses
a ring network to distribute primitives from a retained-mode scene
description [1].

Becarsesuchsystetrtsdonotusecotnntodity huildingblocks.
they must be repeatedly redesigned or rebuilt in order to continue
to scale as faster semiconductor technology is developed W‘treGL
chooses instead no unify multiple unmodified commodity graphics
accelerators housed in cluster nodes This decision has the advan-
tage that we can upgrade the graphics cards or the network stany
time without redesigning the system.

However, the choice of cluster network will greatly affect the
overall and scalability of the resulting system. On
PC clusters today. high-speed networks tend to be in the I00-200
megabytepersecondrange.Thesenenvorksareanorderofmagtti-
lude slower than that of a high-end SMP like the SGI Origin 3000.
and yet another order of magnitude slower than custom on-chip net-
works. Although PC cluster networks are not as efficient as more
custom solutions. we can still use them to provide scalable graph-
ics performance. As high-speed cot-runodity networks improve in
bandwidth and robustness. WireGL will be able to provide better
scalability in larger clusters. as well as higher peak performance.

Using commodity parts restricts our choices about communica-
tionandumrkgramlaritybecauseweeannotntodify theindividual
graphics accelerators. As shown in figure 2. there are only two
points in the graphics pipeline where we can introduce couununi-
cation: immediately after the application stage. and imrnfiately
before the final display stage. Communication after the application
stage provides a redistribution of prirrtitivee to remote graphics ac-
celerators based on those pt-irnitives’ screen-space extent. which is
a traditional sort-fit-st graphics architecture. By introducing com-
munication at the very end of the graphics pipeline. the final image
can be recombined from multiple framebuffets. Although WtreGL
uses this stage to perform tile reassembly. conununication at the
end of the pipeline can also be used for image composition-basedtenderer:

Forrernote use of unmodified graphics components. GLR I13]
and SGI's "lftzset-var‘ product [26] trsnstnit it stream of corn-
pressed images from the frarnebuffer of a graphics supercomputer
to a low-ens! desktop. Image compression and streaming technol-
ogy is an attractive approach to rendering at a distance. although it
is not the best approach when the eventual display is local to the

rendering hardware.
Although WiteGL is a sort-tirst tenderer. sort-last architectures

also use a final intagereootttbittation step reproduce a single image
from a fragmented framebuffer. PixelFlow uses image-composition
to drive a single display front a parallel host [17]. The Hewlett-
Pacltard visualizefitarchitecture uses a custotn networlt to
its the results ofmultiple graphics accelerators [4]. Sony's GSCube
combines the outputs of multiple Plsystatiotfi graphics systems us-
ing acustont network. and supports both sort-firstanrl image com-
position modes ofoperation. The GSCubc is a particularly interest-
ing architecture because it leverages consumer technology to pro-
duce a scalable rendering technology.

To perlonn image nessembly ortclusters. Compaq Research has
developetl a system called Sepia for performing image composi-
tion using Serverblet-ll networking technology [9]. Blanks et al.
describe the Metehuffer. a system for perfotnting sort-last paral-
lel rendering on acluster using DVI to scan out color and depth [1].
The lvletabufifer is similar to Lightning-2 [27]. the DVI-based image
reassembly network that we use to drive displays with our cluster.
Unlike Sepia. Lightning-2 and the Metabuffer do not require pixel
data to be transferredtothe image composition ltelworlt over the in-
ternal system bus. where bandwidth is often a critical resource for
parallel visualization applications.

2.2 Flexible Application support

Many applications visualize the results of a simulation as those re-
sults are calculated. In this case. the simulation usually generates
data more slowly than the graphics system can accept it. Such
an application is referred to as cotnptae-liuuted. There are many
oontpute-liroited visualization applications that scale by generating
geometry in parallel and eomntunicating that geometry over a net-
wotlt to a single display server. This geometry communication is
almost always done with custom networking code. using a custom
wire protocol.

other applications, however. matte intensive use of the graphics
hardware. and a single client may effectively occupy many servers.
Such an application is called graphics-ltirtitsd. For example. vol-
ume tendering with 3D textures requires high fill rates while using
few primitives. In dtis case, a single client may submit commands
to multiple servers and keep them all busy because the rendering
time ot‘ each individual prltttitive is so large.

Matty applications are limited by the rate at which they can issue
geometry to the graphics system. Such an application is inler:fuce-
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Figure 2: Comrnunication in Wu-cGL. Each graphics pipeline
is a standalone graphics accelerator. so we cannot introduce
corrununication between its stages. Notice that the number of
application nodes. graphics pipelines. and final displays can
all be changed independently according to tlte application’s
needs.

limited. For example. visualizations of large geometric data sets
that have been computed off-line will tend to be interface limited.
Interface limitation is the usual argurnerll for using display lists,
compiled vertex arrays. or otlterretained-mode interfaces. Another
way to alleviate the interface bottleneck is to allow multiple proces-
sons to issue graphics commands in parallel.

Finally, some applications are not limited by perfonnartce. but
they cannot effectively visualise their data one to a lack of display
resolution. Such an application is called resolution-limited. This
is typical of many scientific applications where it is important to
vietvalllhedataata icleveltogetartoverviewota
datasct. and also to examine microscopic details to fully understand
the data. Such an application requires the combined resolution of
multiple graphics accelerators and a high-resolution tilul display.
One example of this typeofclisplay is IBM's Bertha. a384D x 2560
LCD display driven by four DVI inputs.

wireGLdoesrtotplaocany restrictions on thenumher ofclients
or servers For compute-limited applications it is desirable to have
more clients than servers, for graphics-limited applications it is het-
terto have more servers than clients. and for interface-limited appli-
cations it ismost effective to have an approattrnately equal rurntber
of clients and sewers. Wirecil. also works well in a heterogeneous
euvironlnent where the sewers and the clients may be running dif-
ferent operating systems on difiereru hardware.

2.3 Progrolttntlrtg Intorlaoe

Graphics APl's can provide a low-level resource abstraction such
as0penGL,orahigh-levelabstra.ctiohsuchasasoenegraphli-
brary. Scene graphs and other high-level interfaces are atuaotive
because global inforrnatiort can he used to automatically paralleliae
rendering or perform fat culling. IRIS Performer provides piiifallel
traversal of it retained-mode scene graph. and can also take advan-

qf multiple graphics pipelines irta single SMP [22]. Samartta et
al. ddscrlhe a novel screen subdivision algorithm for load-balanced
rcnderingofasoenegraphdtathasbeenreplicatedacrossthenooes
of a cluster [23, 24]. _

However. not all visualization tools can oorlvertietttly use a scene
graph. because their data may be uasu-uctured and time-varying.
Another significant drawback of scene graphs is the laclt of B
startdardind scene graph API. Any scene graph library that uses

0penGL for rendering can run on top of WircGL In addition. it‘ the
scene graph has bounding-box ittfortnation about printitivve groups.
that infonrtation can be provided to WireGL through the DpenGL
hinting mechanism to speed up geometry sorting.

WircGLprovides the OpenGL. AP} to each node in a cluster. The
decisionto use OpenGL for-specifying graphics data has several ad-
vantages over using a custom AP]. First. we can run an
application on a single node in our cluster without recompiling it.
If that application is graphics-limited. WireGl.. can provide an 1m-
mediate speedup. Also, if we have access to a rose display wall.
we can easily interact with resolution-limited datasets that can take
advantage of the larger display area. Portions of WIMGL were first
described by Htuuphreys et al. [10]. In that paper. we
ourtechniques forsot-ting OpenGLsueatnstotileservcrstnctdcr
to transparently support large displays. SGI also provides library
called “Multipipc” that intercepts 0pcnGL oornrnartds and allows
unmodified applieatiom to render across multiple graphics nonlet-
ators. providing increased output resolution [25].

Many applications. however. are not graphics-liutited and.m_ust
be paralieliaed to achieve speedup. Using Wirefil... many emllllfi
serial OpenGl.. applications can be paralleliaed with minor changes
to the inner drawing routines In particular. Ipplieatiotls that render
large geomeuic datasets using the depth buffer to resolve visibility
can simply partition their dataset across the nodes of the cluster. and
haveacit node render itsportiort ashefore. Because such an appli-
cation ltas almost no ordering requirtunetns. achieving paralleltam
is straightforward.

For applications tvitlt more complex ordering requirements.
Wirefil. irnplemerus extensions to that weI_'¢ 51'“ P79"
posed by lgchy. Stoll and I-Iahrahart [12]. Their sintuIauons_showed
that scalable applications could easily be written using their _ettten-
sionsresultsthatwereliuthervet-ifiedbythe Fomeglnltate st1'.rtula-
lions [6]. These extensions add traditional 5 ‘ ‘on tmm_i-
tives(hat'rietsattdserrtaphores)tothegraphicslibrIfY- Wirefil-rs
the first itopltunerttatiou of this AP] in ahardwate-accelerated (that
is. not simulated) architecume.

Although 'DpenGL is an immediate-mode API. sortie DpenGL
features like display lists and texture objects allow datatc be stored
by the graphics system artdreused. Wirefil. supports this 8tfil'5|13
thosedataotttbe server. sothat users whowanttot€i7l|°3l°_*33l3
across the nodes of the clustercan do so. In addition. texture Objects
can optionally be shared between multiple clients. which means that
rheycanbespecifiedonceatthestanottheapplicationartddonot
need to be duplicated per—client. It would also be easy to allow
similar sharing of display lists between clients. although we have
not irnplemented this feature.

3 Wire-GL

A WireGL based rendering systemconsiats ofonecrntoreclients
submitting 0pet1Gl.. commands sirnultancously to one or more
graphics servers. called pioerenvers. The pipeservers in “SW39
as a SDI‘!-first parallel graphics pipeline £191. and together they ren-
der a single output image. Bach ptpeserver has its own _
accelerator and a high-speed network connecting it to all clients.
The output image is divided into tiles. which are paI'l1l.it_m¢d We!’
the servers. each server potentially managing multiple sites.
assetnbly of the final output display front the tiles is described In
section 4. ll. high-level view of the system is shown in figure I. In
that figure. each rendering node is a pipcaerver. Wirccil. virwalizes
this architecture. providing asiogle conceptual graphics pipeline tothe clients.



0194

3.1 client Implementation

This section provides an overview of WireGl.'s sort-first client im-
plemenration. Into-ested readers should refer to l-hanptaeys et
al. [10] for a more complete description of our sort-iirst system.
the protocol efficiency. artd display size scalability results. 1'he
state tracldng system is described in detail in Buck. Httrnplueys,
and I-lanrahan [3].

The WireGl.. client library is intpletrtented as a replacement for
the systenfs Opeit'GL library on Windows. l..inurt. or IRIX. As the
application makes calls tothe OpenGLAPI. WireGLclassifies each
call into one of three categories: geotrtetty. state. or special. Spe-
cial cotrtmands. such as swapauffers. glflnieh. artd glclear.
require individual ueatrnent. and will not be described here.

Geometrycomntandsarethoeethatlegallyappearbettveena
g1Beg1I:tfg1&'td pair. as well as conurtands that can generate frag-
ments on their own. such as glm-:auPi.xe1e. These cornrnands are
paclted immediately imo a global “geonteuy btrlfet". This bullet
containsaoopyofthearguntentstotltefunction.aswellasanop-
code. Each opoode is encoded in a single byte. and opcodes and
dataatepaelted intoseparateportionsofthebtfierwhichgrowin
opposite directions. ‘this representation allows thetniffa-toretain
each arguntent's memory alignment. Irtininrizzes the space overhead
oftheopoodes. utdlreepsopcodesartddatacontigttous inmeniory
sothattheyoanbesentwidtasingleeallto thenetworlting library
some corrunands thatoan appear legally between a gluegtrttglend
pair do not generate fragments. such as gltlormalztf. These corn-
martds are still packed irrtrnediately into the buffer. but their state ef-
fects are also recorded. Our geornen-y packing code has been care-
fully engineered. and achieves a rttattitnum packing perl'orn-lance of
over 20 million vertices per second (the exact computer configura-
tionused topetfotmtheseercperiments isdescribed insection 5)-

As each vertex is specified. wireCiL maintains an object~space
bounding box. Each incremental update to the bounding box re-
quires only six conditional moves. which can be irnplernented ef-
ficiently using a SIMD instruction set such as the Pentium lll's.
When geometry is sent to the servers. this bounding box is trans-
formedintcser-eenspace.andthesetofoverlapped screen tilesis
computed. 'l'lrissetisusedtocomputetheserveratbatnecdtore-
ceive the geometry butter. Because geometry sorting is done on
groups of primitives. the overhead of bounding box transformation
and extent intersection is amortized over many verticee

State commands are those that directly affect the graphics state.
such as g1ttotar:et.g1n1end1='une. or g1'rexIaage2u.'l'he effects
ofstateoorrunands are Ieoordedintoagraphicsoonteittdata struc-
ture. Each element of state has 1! bits associated with it indicating
whether that state element is out of sync with each of I‘! servers.
Whenastatecon1rnandisertecuted.thebitsarealI setto I. indi-

cating that each server tttight need a new copy of that element. The
OpenGL state is represented as a hierarchy. roughly mirroring the
layout described in the OpenGL specification [20]. For example.
GL.LIGHTo’s diffuse color is a memberof ct..I.1ctm's state. which
is an element of the lighting state. Each non-leaf node in the hier-
archy alsohasavectorofnsynchronieatiortbitswhich rellectthe
logical OR of all its children. We have shown that this representa-
tion allows for very efiicient computation of the difference between
two contexts [3}.

Either of two cirourrtstances can trigger the transmission of the
geometry buffer. First. if the buffer fills up. it must be flushed to
make room for subsequent cotrunonds. second. if a state cont-
mand is called while the geometry buffer is not empty. the georneu-y
bufferrnttstbe flushed beforethestatecotnmand isreoorded. since
0penGL has strict ordering semantics. However. we cannot send
the geometry buffer to the overlapped servers irnrnediately. because
uteyrnightnothsvetliecorrect0penGLstate. wernustprependa
packed representation of the application's state before ttanstrtitting
any geometry. To do this. the client library keeps a copy of each
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server's graphics state. Using our efficient contextdifferencing op-
et'ation.tlteoornrnands neededtohringtlteserveruptodatewiut
the application are placed in that server's outgoing network butter.
Theglcbalgeotnurybufl'ercanutenbeoopiedafterthestatedif-
ferenoes. By updating state lazily and buclteting geometry. we keep
network u-attic to a rrtinirrenn.

This behavior ha an important‘ implication for the gnurttlarity of
work in WireGI... Sorting individual primitives in soltware would be
too expensive. but grouping too many pritrtitiyes may result in ex-
oessiveoverlap and inefficierttnetvvorltusage. Assuming tlratastate
call is rnarle before a network buffer fills. WireGl..'s work granular-
ity is that ofgroups ofprirnitive blocks. or multiple g1Begirtl'g1Brtd
pairs. The optimal granularity artwork will be a balance between
screen-space coherency and the expense of bounding-box transfor-
mation.

It would be impractical to trartsforrrt each pritrtititte separately.
but it is not always beneficial to coalesce the rnattinturn number of
primitive blocks. as this may result in partial network broadcasts if
thegeornetry isttotspatiallyooI1et'eotandtequiresalar'gescreen-
space bounding box. Wis-eGL currently has no automatic mecha-
nism for determining the best time to bucket geometry. Applica-
tioristhatareawareonlteirbticketingneedscanoptiottelly forcea
sort after a specified munber ofprlmitive blocks.

When rttnning a parallel application, each client node behaves
in the rrtanner described above. performing a sort-lirst distribution
Ofgeometry artdstatetoallpipeservers. ‘l'hismea.rtst.l1atea_clt
pipeserver must be prepared to handle multiple asynchronous _In-oorning streams of work. each with its own associated graphics
context. 0penCrL guarantees that commands from at serial content
will appcartoertectrteitt the ordertheyare issued Wlrenntu|ti-
ple OpenL'iL contexts render to a single image. this restriction must
betelaxedbeeausetbegraplticscornrnandsarebeingissued inpar-
allel. To provide ordering control for parallel rendering. WireGL
addsbarriersandsemaphorestotlteOpenGLAPi,aspropoeedby
lgehy et ed [12].

The key advantage of these synchronization primitives is that
they do not block the application Instead. the primitives are
encoded into the graphics stream. and their implied ordering is
obeyed by the graphics system when a context switch occurs.
A graphics content may enter a barrier at any time by calling
glaarri-erlirree inane] . semaphores can be acquired and released
with 91$‘-etnapl'tcreP innate} and glseniaphorevlnamel. respec-
tively. Note that these ordering commands must be broadcast. as
thesatne ordering resuictlons ntttstbeobservedbyallurvera. and
we wish to avoid a central oracle matting global scheduling deci-
sions.

when running a parallel application. WireGL does not change
thesernartticscfattycornntartdaeventhosewithglobalelfecta.
For example. suapeutiere rmrlts the end of the frame and causes
abufferswaptobeexectttedbyall servers. Therefore. itisirnpor-
rant that only one client execute suapauttere per frame. Also. a
parallel application with no inn-a-frame ordering dependencies will
still needtwobarriersperfrarne. Tbensurethattiteirarnebufter
clear happens before any drawing. a barrier must follow the call
to glclear. Sit-nilarly. all nodes must have completely suhrnitted
their data for the current frame before swapping bufiers. so another
barrier mttst the call to suapnuffere. Pseutlocode for this
minimal usage is shown in figure 3. More cot-nplex usage examples
can be found in lgehy's original paper [12].

3.2 Plpeaerver ltnplentantatlon

A pipescrver maintains aquetre of pending corrtrrtands foreaclt con-
neoaedclient. Whennewconunandsarriveoverthenetwortr, they
are placed on the end of their client‘: queue. 11-tese queues are
stored in aoit-cola: “run queue" of contexts. A pipeserver continues
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Diaplayll {
if lIny__thread_id =: 0] H I am the master

glclearl );
glsarrierfixecl g1oba1_barri.er lr
Drau‘Frall‘le ll .'
g1Barr:ierExec( glol-.ta1_barrier l;
if lIny_thread_i.d es 0] H I am the master

qlsuapflttfEars ll .'

Figure 3: A minimal parallel display routine. Allitouglt the
geometry itself has no intta-frame ordering dependencies. the
imposition of frame semantics requires baniers following the
frantelmfier clear and preceding the buffer swap to ensure thatthe entire frame is visible.

executing a client's contrnands until it runs out of work or the con-
text "blocks" on a barrister semaphore operation. Blocked contexts
are placed on wait queues associated with the semaphore or barrier
they are waiting on. ‘The pipeserver’s queue structures are shown in
figure 4.

Because each client has an associated graphits context. a con-
text switch must be performed each time a client's stream blocks.
Although all modern graphics accelerators can switch contexts fast
enough to support several concurrent windows. hardware context
switching is still slow enough to discourage fine-grained sharing of
the graphics hardware. when ptograrnrnaticslly forced to switch
contexts. the fastest modern accelerators achieve a rate of approx-
imately l?.,00O times per second [3], which is slow enough that
it would limit the amount of inlra-frame parallelism achievable in
WireGI..

To overcome this limitation. each pipeserver uses the same state
tracking library as the client to maintain the state or each client in
software. Just as an extremely efficient context differencing opera-
tion is the key to lazy state update between the client and lhl: server.
it is also effective for performing context switching on the server.
Since nodes in a parallel application are collaborating to produce a
single image. they will typically have similar graphics states. and
performing context switching with our hierarchical repncscnlation
has a cost proportional tothe contexts‘ disparity. We have measured
this hierarchical approach as being able to switch contexts almost
200.000 times per second for contexts that differ in cument color
and transformation matrix. and over 5 million times per second for
identical contents [3].

In practice, when a context blocks. the servers ofwn have a
choice of many potentially runnable contexts. Because a parallel
application will almost always enter a barrier immediately before
the end of the frame. it is unlikely that one contest will become
starved. Therefore. in choosing a scheduling algorithm. the main
conocmsaretlle expetiseoftltecontextswitchilselfas well asllle
amount of useful work that can be done before the next context

switch. in practice, we have found that a simple round-robin sched-
uler works well. for two reasons. First. clients participating in the
visualization of a large dataaet are likely to have similar contexts.
making the expense of context switching low and uniform. Also.
since we cannot know when it su-earn is going to block. wecan only
estimate the time to the next context switch by using the amount of
work quoted for a particular context. Moreover. any large disparity
in the amount of work queued for a particular context is most lihely
the result of an application-level load imbalance. This load on-
balance, not contest switching overhead. will certainly be the main
performance limitation ofthe application. in general. because ofthe
low cost otcontext switching. and because we need to complete eat-
ecution of all contents before the end of the frame. the pipeset-ver's

scheduling algorithm is not a significant factor in an application’-s
performance.

Sinceeach pipesei-vermayntartagemcrcthanonetile. ilmay
bcneccssarytorenderablockofgconlelrynnre thanonce. The
arrangement of tiles in the local frsmebufrer is described in section
4.1. The client library inserts the bounding box for each block of
geometry between the geometry itself and its preceding state oom-
rnands. Each server compares this bounding box against the extents
of the tiles manged by that server. For each intersection found, a
translate and scale matrix is prepended to the current trensl'orrna-
lion matrix. positioning the resulting geometry with respect to the
intersected tile’s portion of the final output. Because of the seman-
tics of 0penGl.. rastcrization. this technique can lead to seaming
artifacts for anti-aliased or wide lines and points. Unforlunalelil.
not all Openfil. implementations adhere to the same rules regard-
ing clipping of wide lines and points that are larger than one pixel.
so this problem is difiicult to address in general.

Calls to glvieupore and glscieuor are then issued to restrict
the clawing to the tile's extent in the server's local framcbuffer. and
finally the geometry opcodes are decoded and executed. Because
the geometry block also includes vertex attribute state. the graphics
state may have changed by the end otthe geometry block. However.
theclient will insencontrnunds torestore the vertex attribute state
at the beginning of the geometry buffer. Therefore. lithe geometry
overlaps more tlutnone tile, the vertex attribute state will always be
properly restored before the geometry is re-executed.

3.3 Network

we use a connection-based network abstraction to suppofl multi-
ple network types such as TCPIIP and Myrinel. Our abstraction
provides a creditJoased flow control rnechanisrn to prevent servers
from exhausting their memory resources when they cannot keep up
with the clients. Flow control is particularly important when a con»
text is blocked. since additional cormnands may come in from the
client at any time even though the server cannot drain a blocked
contexrs oornrnand queue.

Each serverlclient pair is joined by a connection. By making
buffer allocation the responsibility of the network layer, we allow a
zero-copy send. For example. the client packs OpenGL commands
directly into network bufi'cr$. and the Myrinet network layer sends
them over the network using DMA. In order for this to work. these
bufiers must be pinned (locked and unpageable]. which is done by
the implementation of our network abstraction for Myrinel. Receiv-
ing dataon ournetworl: operates inasimilar manner: the network
layer allocates (possibly pinned) buffets. allowing a zero-copy re-
ceive.

The connection is completely syntlnelr-ic. which means that the
serverscanreuundalasuchas the resultsofg1ll.ead.Pi.xe1n lotlle
clients. More importantly. Wirecll. suppons the gllrintah call so
that applications can determine when the commands they have is-
sued have been fully executed. This is available so that applica-
tions that need to syrlcluonize their output with some external input
source can make sure the graphics system’: internal ltufiering is
not causing their output to lag behind the input. The user can op-
tionally enable an implicit glliinlah-lilte synchronization on each
Suapsuff era call. which ensures that no client will ever get more
than one ft-arne ahead of the servers.

4 Display Management

To form a seamless output image. tiles must be extracted from the
framebufiers ofthe pipeservers and reassembled to drive a display
device. We provide two ways to perform this reassembly. For
highest performance, the images may be reassembled after being
scanned out of the graphics accelerator. If this is not possible. the
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Figure 4: Inside a pipeserver. Runnable contents will be serviced in a round-robin fashion. Graphics contrrtands being issued by a
contexfs application can be appended to the end of a work queue at any time. urttil the client consumes its allotted server-side buffer
space. Blocks :9»? show sequential tirnesteps as the pipeserver decodes cotttrnarlcl blocks: the execulitlg contest is shown with
a heavy outline. in timestep A. the pipeserver encounters the semas operation in context 0. which blocks the cot.-nest and removes it
from the run queue. In tirncstep C, context I’: Semavoornrnand will unblock context 0 and place it back on the run queue.

tiles can be extracted from the fratnebttffer over the host bus inter-
faceanddistributedoveragerleral purpose netwot‘lr.ol’tenthesarne
one used for distributing geometry commands.

Ofcourse. the most so-aightfor-ward way to reassemble the image
after scan-out is to allow each pipeserver to drive a single locally-
attached display. These displays can then be aborted to forms large
logical output space. This arrangement constrains each pipeserver
to manage exactly one tile that is precisely the size of its local
framebttfler. This limits WireGl..'s ability to provide an application
with flexible load balancing support. on makes the floral display
simple to constmct.

4.1 Display Flaasaernbty tn Hardware

For our experintents with hardware display assembly. are use the
Lightning-2 system [27[. Each Lightning-2 board accepts 4 DVI
inputs from graphics accelerators and enuts up to 8 DVI outputs
to displays. Multiple Lightning-2 boards can be connected in a
column via a “pixel bits” to provide more total inputs. Multiple
columns can alsobe chained by repeating the DVI inputs. provid-
ing more Dvl outputs. An arbitrary number of accelerators and dis-
plays may be connected in such a two—dimensional mesh. and pixel
data ll-omany accelerator may be redirectedto any locationonany
output display. Routing information is drawn into the framebtrffer
by the application in the form of two-pixel—wide (48 bit) "strip
headers”. Each header specifies the destination of a onevpixel-high.
arbitrarily wide strip of pixels following the packet header in the
frame butter. Lightning-2 can drive a variable nurnbu of displays.
including a single monitor.

Each input to Lightning-2 usually conu-ibutes to multiple output
displays. so Lightning-2 must observe a full output rt-artte from each
input before it may swap. introducing exactly one frame of latency.
However. almost no currently available graphics accelerators have
external syncbrorrization capabilities. For this reason. Lightning-2
provides a per-host back-channel using the host's serial pm. when
Lightning—2 has accepted an entire frame from all inputs. it then

notifies all input hosts simultaneously that it isready fortbe next
Frame. WireGL waits for this notification before executing a client's
swapauffers corntnand. Because the ft'atrtelJul’fea' scan-out hap-
pens in parallel with the next frat'ne’s rendering. lightning-2 will
usuallybe readytoaoceptthenew fratnebeforetheltostisdone
rendering it. unless the application runs at a fastertalcthan the
eventual I1'Ionilor's refresh rate. In this case. the application will be
limited to thedisplay's refresh rate. which is often a desirable prop-
erty. Lightning-2 can also look groups or outputs to swap together.
Having synchrortized outputs allows Ligittning-2 to drive tiled dis-
play devices such as IBM's Bertha or a rnulti-projector display wall
without hearing artifacts. This in turn enables stereo rendering on
tiled displays.

Each pipeserver reserves space for its assigned tiles in its local
frarnehuffer in a left-to-right. top-to—bottom ptlllanl. leaving two-
piatel-wide gaps between tiles. as shown in figure 5. A fixed pattern
ofsttip headers isdrawnintothegapstoroutethetilestotheircon
rec: destination in the display space. Because Lightning-2 routes
portions of a single horizontal scanline. non-uniform decomposi-
tionscf thescreensuch asoctreesor KD-treescan easilybeacconr
plished using WireGL and Lightning-2. In general. each application
will have different tiling needs which should be determined experi-
mentally. lnthe future. we would like to be able toadjust the screen
tiling on the fly to meet the application’: needs automatically.

4.2 Display fleessernbly In software

Without special hardware to support image reassembly. the final
rendered image mttstberead outofeach localframelzorrfierat-id re-
distributed over a network. This network can be the same one used
todistribute graphics commands. urit oouidbe a separate dedicated
network for image reassembly.

To provide this functionality. wireGL has a mode called the "vi-
sualization server”. In this mode. all pipesewers read the color
contents of their managed tiles at the end of each frame. Those
images are tlten sent over the clusters interconnect to a separate
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Figure 5: Allocating multiple tiles toa single accelerator with
Lightning-2. In the zoomed-in region. the two-pixel wide strip
headers are clearly visible.

cornpositing server for reassembly, with the same protocol used
by the clients to send geometry to the pipeoervers. In effect. each
pipeserver becomes a client in a parallel image-drawing applica-
tion. The compositing server is simply another WireGL pipeserver
accepting g1D:ravPixe1s corturtands and parallel AP1 syndtroni2.a-
tion directives.

The primary drawback of this pure software approach is its po-
tential impact on performance. Pixel data must be read out of the lo-
cal framebttffcr. transferred over the internal network of the cluster.
and written back to a frarttebuffer fardisplay. Even with the limited
bandwidth available on modern cluster networks, image drawing
bandwidth will tend to be the limiting factor for applications that
can update at high framerates. as networks and graphics cards im-
prove and can carry more pixel data along with the geometry data.
this technique may become more attractive. but it cannot currently
sustain high frame rates. as we will show in section 5.3.

5 Performance and Scalability

The cluster used for all our experiments. called "Chrornium”. con-
sists of 32 SP750 workstations. Each node has two

800 MHz Intel Pentium Ill Xeon processors. 256 megabytes of
RDRANI, and an NVIDIA. Quadro2 Pro graphics adapter. The
SP‘-'50 uses the Intel 8410 citipset to control its ND and memory
channels. including a 64-bit. 66 MHz PCI bus. an AGP4x slot, and
dual-channel RDRAM. Each SP750 is running Redl-lat Liltuit 1.0
with NVlDlA's 0.9-1'69 Openfil. d.rive1's.

Each node has a Myricom high-speed network adapter [2] con-
nected to its PCI bus. Each network ard has 2MB oflocal mem-
ory and a 66 MHz LANai 7 RISC processor. The cluster is fully
connected using two cascaded I6-port Myrieorn switches. Using
the 1.4prc37 version of the Myricom Linux drivers. we are able to
achieve a bandwidth of till Mfifsec when communicating between
two different hosts.

When rendering locally, each node can draw 21.4 million unlit
points per second using an immediate mode interface (i.e.. with-
out display lists or vertex arrays). WireCil.‘s maximum packing
rate (the speed at which wireGL can construct network buffers)
is 21.8 million vertioes per second. when using WiteGL to ten-

12
Clients=Servers

Figure 6: Speedup for March. Nurba. and Hundy using up
to 16 pipeservers. with its clients and 16 servers. Hundy
achieves 33% elliciency. Nutbs achieves 81% efficiency. and
March achieves 64% efficiency.

tier remotely from one client to one server. we achieve a maximum
rate of ‘L5 million points per second. Since eadt point occupies
I3 bytes (three floats plus an opcode bl“). this represents a net-
work bandwidth of 93 Mfllscc. which is close to the 101 MB!sec
we have measured when repeatedly resending the same packet alter
creation.

For our eitperirnents with parallel applications. we partition the
cluster into 16 computation nodes and 16 visualization nodes This
is done because our network does not perform well when senders
and receivers are running on the same host. as shown in section 5.4.

5.1 Applications

We have analyzed wireGl.‘s peifonnanee and scalability with three
applications:

0 March is a parallel implementation of the marching cubes vol-
ume rendering algorithm [IS]. A 200 x 200 x 200 volume is
divided into subvolumes of size 4 x4 x at which are processed
in parallel by a number of ‘tsosurface extraction and rendering
processes. March draws independent triangles (three vertices
pet‘ triangle) with per-venex normal information. March ex-
tracts and renders 385,492 lit uiangles per frame at a rate of
374,000 trislsec on a single node. Our graphics accelerators
can render 2.9 million lit, independent triangles with vertex
normals per second.

Norris is a parallel patch evaluator that uses multiple proces-
sors to subdivide curved surfaces and tessellate them for sub-
mission to the graphics ltardware. For our tests. Nutoo tease!-
tates andrenders 413.100 lit. stripped triangles perfrarne with
vertex normals. at a rate of 467.000 Itisfsecon a single node.

I-lundy is a parallel application that renders a set of unorga-
nized triangle strips. Each strip is assigned a color. but no
lighting is used. I-lundy is representative of many scientific vi-
sualization applications where the data are computed off-line
and the visualization can be decomposed almost arbitrarily.
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application. the number of clients and servers is varied. I-lttndy uses a tile size
of 100 x I00, and achieves a peak rendering performance of7l million trislsec at a rate of 17.? fps. Nttrbs uses a tile size of 100 x 100.
and achieves at peak rendering perforrnanoe of 6.1 million trislsec at a rate of 14.9 fps. lttarchusesatilesizeof20tlx2tl0.andacllieves
a pealtrentlcring performance of-t million lrislsec at a rate of 10.6 fps. For each run. the display is a single 1600 x I200 monitor. As
the number of clients surpaaes the number of servers. the per-romance of the application once again becomes limited by the interface.

Each processor is responsible for its own portion of the scene
database. Each frame of l-lundy renders 4 rrtillion triangles.
atarateof'l.4S million uisfsec. On a sings node. Hundy is
completely limited by the interface to the graphics system: it
cannot sublrlil itsdata fastenough tokeep the graphics system
busy.

Scaling March. Nurba. and I-iuntly using a single system is a chal-
lenging problem Although other useful applications could be writ-
ten that pose less of acltallenge for Wit-eGL. the applications we
have chosen stress our implementation. Each application has very
different load balancing behavior. requires immediate mofi seman-
tics. and generates a large amountof rietworlt Iraffic per frame. The
speedup for these applications using 16 pipeservers is shown in fig-
ure 6.

5.2 Parallel Interface

To scale any interface-limited application. it is necessary to allow
parallel submission of graphics primitives. To demonstrate this, we
have run our applications in a number of differertt configurations,
shown in figure 7. In these graphs. the tile size is chosen empiri-
cally. and Ligltlrtirlg-2 reconstructs a final I600 x 1200 output im-
age.‘ Each curve represents a different number of pipeservers. from
I to lot As the number of clients grows greater than the number
of servers. the performance flattens out. demonstrating that such a
configuration is once again limited by the interface.

Some of I-lundy’s performance nneastlretrlents show a super-
linear speedup; this is because Hmtiy generates a large amount of
network lraffic per second. This Iraflic is spread uniformly over
all the servers, and when the number of servers is greater than the
number of clients. each path in the network is less fully utilized.
Essentially. this shows that l-lundy's performance is very sensitive
to the behavior ofour network under high load.

WireGL‘s approach provides scalable rertderirtg to applications
with a variety of graphics performance needs. To measttre scalabil-
ity with a compute-limited application. we have artificially limited
l-lundy's geometry issue rate. The number of submitting clients is
then varied while only using one pipeserver. The results of this
experiment are shown in figure 8. For each test. the application
scales excellently until it reaches the inter-face limit of the single
pipeserver or the size of the cluster.

'O.Il'renIly. Lightning-2 supports input resolutions up to 1180 -x 1024. so
for onepipesei-ver we bypass Lightning-2 and drive the display directly

—--—- rate=20Ult
--—»-—- rau:=t .6M

«-—-— rale=S0lt
—-0-~ rate=S00lt

. .r ,4 ’
hr --—-- .—-7~...—_..—..--————--c-_,.-e—..-..

Clients

Figure: 8: Scaling a cornpuleltrrtited application with a sin-
gle pipeserver. For each curve. I-lumpy‘; issue rate has been
restricted. We achieve excellent scalability up to either the
pipeserver interface limit. or the full 32 nodes of our cluster.

The results shown in ligura 1 and 8 demonstrate WireGL's
flexibility. Interface-limited applications can be scaled by adding
servers and clients. while compute-litrtited applications can be
scaled by adding clients only.

5.3 Hardware va. sottware Image Fleasaombly

The overhead of performing software image reassembly can
quickly dominate the performance of an application as the output
image size grows. Each node in our cluster has a pixel read per-
forrntutce of 28 million pittelslsec. and a pixel write performance
of64 milliort piaelsfsec. lfwe can transmit I00 Mflfsec ofimage
data into a display node. this implies a nnximum perfomtarnte of
33 million pixelstsec for the visualization server. In practice. we
achieve approximately half this rate in all-to-one conununication.
yielding a maximum frame rate of approximately 8 H2. at a resolu-
tion of 1600 x 1200.

To measure the overhead of the visualization server versus

Lightning-2. we wrote a simple serial application that calls
Swapfiuffers repeatedly. The performance of this application rep-
resents an upper bound on the achievable frameratc of any applica-
tion. A serial application is a fair test because. as described in sec-
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Figure 9: Maximum framerate achievable using Lightning-
2 or die visualization server. As the image size increases. _.
the expense of reading and writing blocks of pixels to the
lrantebuffer quickly limits the visualization server to non-
interaetive fr-amerates.

ticn 3.1. only one node in at parallel application calls strapauffere
for each frame. ln each experiment. 12 pipesenrers are used The
results are shown in figure 9. The "displays=tl" curves are represen-
tative of a tiled display wall or a rnulti-input display such as IBM's
Bertha.

This graph demonsu-ates that hardware supported image te-
asscrnbly is necessary to maintain high ftantentes for most output
image sizes. Lightning-2 is able to maintain a constant refresh rate
of90 Hzfor any image size ranging ftorrt32Dx240to 3200x2.IlO0.
The visualization server provides a maximum refresh rate of 8 Hz
fora I600 x 1200 image. which is approximately 4-6 Mntsecof net-
work usffie This is consistent with the rneasurcd bandwidth clout

network ttrlder high fan-in congestion.

5.4 Local Balance

when evaluating a scalable grtqahics application. there are two
different kinds of load balancing to consider. First. there is
application-level load balance. or the amottnt of computation per-
formed by each client node. This type of load balancing cannot
be addressed by WireGL: it is the responsibility of the application
writer to disu-ibute work evenly among the application nodes in the
cluster.

To evaluate application-level load balance. we meastucd the
speedup of our applications in a full 32-node configuration without
a network {i.e.. discarding packets). in this configuration, March
achieved 85% efficiency. Nutbs 93% efficiency. and Hundy 96% ef-
ficiency. Fmtrt these results. we conclude that each application has
a good distribution of wort: across client nodes.

The other type of load balancing is graphics work. For most
applications. the interface to a single rendering server quickly be-
comes abottleneck. and itis rtecessanl todisu-ibutetherertdering
work across multiple servers. However. the rendering work re-

quired to generate an output image is typically not un_ifct-rnly dis-
tributed to screen space. Thus. the tiltng of the output image intro-
duces a potential load irnbalance, which may in mm create a load
imbalance on the network as well.

Because the triangles in our test applications are uniformly
small. the server-side load balance can be reasonably measured
by the total number of bytes sent to each server. For each appli-
cation. the total incornittg trafiic when using one pipeserver is a
lowerboundorttltetutal antcurttofneurrotltu-afficforany number
of pipeservers. since adding sewers will result in some redundant
communication. The overlap factor is the ratio of total traffic re-
ceived by all servers to this lower bound, and the load imbalance
is the ratio of the rrttutimum traffic received by any server to the

average traflic. In figure 10, the height of each curve shows the
overlap facIor.1'heerrorbars inclicatedteovcrlap ifeacb server
received the tnartirntun or ntirtirmrn traflic received by any server.
The load imbalance is tltereforc the ratio oftlte maximum shown to

tl'teobservcdovcrlapfactot'fortl1atnurnber'ofscrve-rs.
As expected. Ilteeltoioeoftilesizeaffects tlteloadltalance and

the overlap factor. For smaller tiles. there is less variance in the to-
tal rltlmbet ofbytesreceived, resulting irtahetterloedbalaltce. but
theoverall ateragerlatatransrnittedhasincrused duetooverlap.
Astl-te tilesgetlarger.tlteoverlapissrnaller.bttttougerer1utbats
indicate a poorer load balance. A1 atile size of I00): I00. Nurbe
has a load imbalance of L53 on l6 servers. while at 32 serversthe
load imbalance increases to 2.13. The load imbalance will continue
to increase as the ttumbercfservers increases. Currently, Mums is
sufficieotly compute-limited that its load imbalance is not exposed
in the speedup curve shown in figure 6. However, as cluster size in-
creases. the increasing load imbalance will evenntally limit Nurus‘
scalability. Nonetheless. WucGL provides excellent scalability up
to 16 pipesenrers. which makes it a useful solution for many appli-
cations on many current cluster configurations.

Toverify ourassumption that theserverloadbalanceeanberea-
sonably measured by simply counting network trafiic. weranall our
measurements in a mode where the pipcscrvers discarded incoming
uaffic rather than decoding it. The performance rnesrurernetus in
this mode were almost identical to the measurentents when graph-
ics oonunands were socially etteeurecl. This dernonstrates that the
performance of interface-limited applications will largely be deter-
mined by the scalability of the network under heavy all-to-all cont-
munieation, and not by the execution of the graphics commands.
As networlttt improve. this effect willbe reduced

To fully understand our scalability results. weltave measured the
achievable send and receive bandwidths of our network when per-
forming all-to-all cotnmunication. We performed this test in a par-
titioned conliguration. in which sources and sinks run on different
cluster nodes. and an unpartitioned configuration where sources and
sinks run on the same cluster nodes This test was perforated with
a WinrGL-independent program in which each source node sends
lined-size network packets to all sink nodes in a round-robin pat-
tcrn. The results are shown in figure I]. The partitioned dataset.
shown with green crosses. achieves much higher overall perfor-
mance. and has muclt less transtnit bartdwidtlt variance. For ex-
arnpie. in an unpartitioned I8-way test. the transntit bandwidth
ranges from 26.02 to 60.75 to M31506. while a partitioned run us-
ing 9 clients and 9 servers had baltclwidllts from 93.92 to
96.96 MBl'sec. It is interesting to note that arty individual node will
observe averystableuansrrtitbandwidthovertltelifetimeofits
run. That is. the node achieving 26 Mfllsee will always achieve 26
Mfilsec, although varying the number of node: will change which
nodes perform poorly.

6 Discussion and Future Work

The real power of WircGL derives from its flexibility. Because
W‘rreGl. is based on commodity parts. it is easy and inexpensive to
build a parallel rendering system with a cluster. Although there can
be alradeoffbetween using commodity partsandparalleleflieiency.
the ability to reconfigure the system to meet an application's load
balancing and resource needs is a large advantage for contrnodity-
hased parallel rendering solutions like \lvireGLonsrnall t.orrtedit.un-
sized clusters.

Because the techniques used to provide scalability are indepen-
dent of specific graphics adapters and networking tcchttology. any
component in otu system may be upgraded at any time to obtain
better perfunnattce. In particular. we believe that WireGL's perfor-
rnauce on a 16 to 32 node cluster will improve dratttatically with
the inu-cductiun or‘ new server-—area networking technology such as
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Figure 10: Overlap
overlap factor. while the size of the error bars is

—-—- tile=50xS0
--—-- tile=I OD: 100

factor and load imbalance with various tile sizes on a l60Dx 1200 display. The height ofeach curve indicates the
proportional to the load imbalance. increasing the tile size decreases the total amount

ofnetworltlrafliabtttatllreexpenseofloadhalanoe. Notethatwitha-l»O0><400tilesize.only12totallilesareneededtocoverllte
display. sono more than I2 set-verscanoonuibute tothelinal image.

lnnnifland. To achieve peak performance today. it is necessary to
perform urtage reassembly after scan-our. Our Lightning-2 imple-
mentation isa large custom pieceofltardware, but a smaller version
oouldbebuiltveryeheaplyandwouldenabletlteoonsrructionofa
small. seIf—conrained cluster that could act as a standalone graphics
subsystem for a larger cluster.

c.1 Scalability Llmlts

We have demonstrated that \Wt'eGL‘s son-first approach to parallel
rendering on clusters provides excellent scalability for a variety of
applications with a configuration of up to 16-pipeservers and 16-
clients. Our ertperimcnts indicate that the system would scale well
in a 32-server. 324-client setup if the cluster were bigger. or iflhe
network had better support for all-to-all communication. However.
there is a limit to the amount of screen-space parallelism available
at any given output size. This limit will prevent asort-first
from scaling to nruch bigger configurations. such as clusters of 128
nodes or more. For clusters that large, the tile size becomes small
enough that it is very diflicult to provide a good load balance for
any non-trivial application without introducing a prohibitively high
overlap factor. One possible solution to this problem would be to
provide dynamic scneen tiling. either automatically (using frame-
coherent heuristics) or with application support. we believe alter-
nate architectures stroll as sort-last image composition would scale
better on large’ clusters, but this will likely come at the cost of or-dered semantics.

6.2 Texture Management

Wit-eGl.'s client implementation treats texture data as state ele-
ments. and lazily updates it to servers as needed. In the worst case.
this will result in each l.r:rrl.urc being replicated on every server node
in the system This replication is a direct consequence of our de-
sire to use commodity graphics accelerators in our cluster: it is not
possible to introduce a stage of communication to remotely access
texture memory.

WireGL's naive approach to parallel texture nt can be
a Iintiratiorr for some applications. More work needs to be done in
this area. and we are beginning to investigate new texture Irranagew
rnent strategies. One approach being considered will leverage our
recent work in parallel texture caching [ll].
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Figure ll: Transrnit and receive bandwidth for Myrinet with
all-lo-nlll cornmunicaliort. For each cluster sine. the observed

send and receive bandwidth is plotted for all nodes. The top
dataset represents a partitioned ll-IO-R run. where sources and
sinltsarenorrunonthesanterrcdes. Thebouomdaraset is

an unpartitioned run of all it nodes. Partitioning the cluster
results in much higher bandwidth in general. as well as less
transmit bandwidth variance.

6.3 Latency

There are two main sources of latency in WireGL: the display rev
assembly slagemtd thebtrfferingofcorruriantlsorttheclient. when
using Lightning-2. display reassembly will add exactly one fr-arne
of latency. While single-frarne latency is usually acceptable for in-
teractive applications, it can be a problem for certain virtual reality
applications. The overhead of using sonwm image reassembly
will usually be much higher (on the order of 50400 rnillisecorrds).
although it will vary with the image size.

The latency due to command buliering will depend on the sire of
the network bulfers. WireGL‘s default bullet size is l28l€B. which
we can fill with geometry in half a rrrilliseoond. given our packing
rate or 20 MT:-is.lsec (recall that a triangle occupies 13 bytes in our
prouoool). Additional latency can occur due to network transmis-
sion, alrltough the latency of most high-speed cluster interconnects
is less than 20 its. Finally. since the pipeserver cannot process the
bufier until it has been completely received. we incur slightly over
one millisecond of additional latency for a 128KB bufier on a net-
work with 100 Mblsec ofhmtdwidth.


