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Claim Rejections - 35 USC § 103

33, The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
' ' W
obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or
described as set forth in section 102 of this title, if the differences between the subject
matter sought to be patented and the prior art are such that the subject matter as a whole
would have been obvious at the time the invention was made to a person having ordinary
skill in the art to which said subject matter pertains. Patentability shall not be negatived
by the manner in which the invention was made.

34, The factual inquiries set forth in Graham v. John Deere Co., 383 U.S. 1, 148 USPQ 459
(1966), that are applied for establishing a background for determining obviousness under 35
US.C. 103(a) are summarized as follows:

Determining the scope and contents of the prior art.

Ascertaining the differences between the prior art and the claims at issue.
Resolving the level of ordinary skill in the pertinent art. .

Considering objective evidence present in the application indicating obviousness
or nonobviousness.

BN =

35.  Claims 5, 11, 13, 15, 16 and 24 are rejected under 35 U.S.C. 103(a) as being unpatentable

over Alcorn (US005745118A) in view of Furtner (US006778177B1).

36.  With regard to Claim 5, Alcorn is relied upon for the teachings as discussed above
relative to Claim 4.

However, Alcorn does teach that each of the at least two graphics pipelines further
includes a scan converter. However, Furtner describes a parallel scan converter (16, Figure 23)
that has a plurélity of outputs for supplying data to a plurality of pixel pipelines (20, Col. 2, lines

3-16). Therefore, each of the at least two graphics pipelines further includes a scan converter.
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The scan converter determines which clusters of pixel data are to be processed by which pipeline
(Col. 11, lines 41-59; Col. 13, lines 54-63). Therefore, the scan converter is coupled to the back
end circuitry (20), operative to determine the portion of the pixel data to be processed by the
back end circuitry.

It would have been obvious to one of ordinary skill in this art at the time of invention by
applicant to modify the device of Alcorn so that each of the at least two graphics pipelines
further includes a scan converter as suggested by Furtner. Scan converting is the most popular
method of drawing polygons because it uses only integer maths, takes up very little memory, and
is simple to understand. The advantages of scan converters are well-known in the art and can be
found in many publications, such as Elias’ website. Furtner suggests that it is advantageous to
have a parallel scan converter for two graphics pipelines because the scan conversion can Ec

performed in parallel (Col. 17, lines 7-22), which increases the speed of processing.

37.  Withregard to Claim 11, Alcorn describes that the f"n’st of the at least two graphics
pipelines (Col. 6, lines 33-35, 40-43) further includes circuitry (64, 72, Figure 3), coupled to the
front end circuitry (60) and the back end circuitry (76), operative to provide position coordinates
of the pixels within the ﬁrét set of tiles (Col. 10, lines 1-8; texe! data output from the parameter
interpolator circuit 64 is provided to the tiler 72, which determines the address of the four
texels...checks to determine whether each is within the boundary of the te;.’.ture..‘ texel data
includes the interpolated S, T coordinates as well as the map number, Col. 11, lines 8-31) to be
processed by the back end circuitry (S, T coordinates for each display screen pixel are provided

Jfrom the parameter inlerpolators, through the tiler, to texel interpolator 76, Col. 12, lines 13-
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20), the circuitry including a pixel identification line for receiving tile identification data
indicating which of the set of tiles is to be processed by the back end circuitry (texel data
includes the. interpol&ted S, T coordinates as well as the map number, Col. 11, lines 15-17).

However, Alcorn does not teach a scan converter. However, Furtner describes a parallel
scan converter (16, Figure 23) that has a plurality of outputs for supplying data to a plurality of
pixel pipelines (20, Col. 2, lines 3-16). Therefore, the first of the at least two graphics pipelines
further includes a scan converter. The scan converter receives, at its input, data which to write
onto the graphic primitive to be processed (Col. 1, lines 58-62), and this data inherently comes
from a front end circuitry. The output of the scan converter is connected to the pipelines (20,
Col. 1, lines 62-66). Therefore, the scan converter is coupled to the front end circuitry and the
back end circuitry (20). The scan converter determines which clustérs of pixel data are to be
processed by which pipeline (Col. 11, lines 41-59; Col. 13, lines 54-63). The scan converter has
knowledge with regarld to mapping the screen areas onto the memory address area (tiling) (Col.
6, lines 66-65). Therefore, the scan converter is inherently operative to provide memory
addresses or position coordinates of the pixels within the first set of tiles to be processed by the
back end circuitry, the scan converter inherently including a pixel identification line for receiving
tile identification data indicating which of the set of tiles is to be processed by the back end

circuitry. This would be obvious for the same reasons given in the rejection for Claim 5.

38.  With regard to Claim 13, Claim 13 is similar in scope to Claim 11, and therefore is

rejected under the same rationale.
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39.  Withregard to Claim 15, Claim 15 is similar in scope to Claim 11, and therefore is |

rejected under the same rationale.

40.  Withregard to Claim 16, Claim 16 is similar in scope to Claim 11, and therefore is

rejected under the same rationale.

41.  With regard to Claim 24, Alcorn describes a graphics processing circuit (Col. 3, lines 58-
63), comprising front end circuitry (32A, 32B, 32C, Figure 2) operative to generate pixel data in
response to primitive data for a primitive to be rendered (disfributes 3-D primitive data evenly

| among the 3-D geomreﬂy accelerator chips, Col. 6, lines 43-47; each 3-D geometry accelerator
chip processes primitive data, Col. 6, lines 56-62; rendering hardware interpolates the primitive
data to compute the display screen pixels that are turned on to represent each primitive, Col. 1,
lines 31-33); first back end circuitry (12), coupled to the front end circuitry (Col. 7, lines 5-10),
operative to receive and process a portion of the pixel data (Col. 12, lines 13-20) in response to
position coordinates (Col. 12, lines 13-20); circuitry (64, 72), éouplled between the front end
circuitry and the first back end circuitry (76), operative to determine which set of tiles (tiler, Col.
11, lines 8-31) of a repeating tile pattern (Col. 11, lines 35-50) are to be processed by the first
back end circuitry (Col. 11, lines 8-31). Alcorn discloses that the repeating tile pattern includes a
horizontally and vertically repeﬁting pattern of square regions (Col. 15, lines 44-57), as shown in
Figure 6. Alcorn describes providing the position coordinatés to the first back end circuitry in

response to the pixel data (Col. 12, lines 13-20). Alcorn describes a memory controller (50,
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Figure 2), coupled to the at least two graphics pipelines, operative to transmit and receive the
processed pixel data (Col. 6, lines 33-35, 40-43; Col. 8, lines 27-40).

However, Alcorn does not teach two back end circuitries and two scan converters.
However, Furtner describes a first scan converter (16, Figure 23). The first scan converter
receives, at its input, data which to write onto the graphic primitive to be processed (Col. 1, lines
58-62), and this data inherently comes from a front end circuitry. The output of the scan
converter is connected to the pipelines (20, Col. 1, lines 62-66). Therefore, the first scan
converter is coupled to the front end circuitry and the first back end circuitry (20). The scan
converter determines which clusters of pixel data are to be processed by which pipeline (Col. 11,
lines 41-59; Col. 13, lines 54-63). Therefore, thé first scan converter is operative to determine '
which set of tiles are to be processed by the first back end circuitry. The scan converter has
knowledge with regard to mapping the screen areas onto the memory address area (tiling) (Col.
6, lines 60-65). Therefore, the first scan converter is inherently operative to provide the memory

_address area or position coordinates to thé first back end circuitry in response to the pixel data.
Furtner describes multiple pipelineé, and each pipeline processes a cluster of pixel data (Col. 11,
lines 41-59‘, Col. 13, lines 54-63). Thé scan converter is a parallel scan converter, and provides
data to the multiple piﬁelines in parallel (Col. 2, lines 3-16), so the scan converter is considered
to be similar to two scan converters, and the second scan converter performs in a similar manner
as the first scan converter for the second back end circuitry. This would be obvious for the same

reasons given in the rejection for Claim 5.
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Allowable Subject Matter
42.  Claim 19 is objected to as being dependent upon a rejected base claim, but would be
allowable if rewritten in independent form including all of the limitations of the base claim and

any intervening claims.

The following is a statement of reasons for the indication of allowable sﬁbj ect matter:
43.  The prior art singly or in combination do not te‘;ich or suggest that each separﬁte chip
creates a bounding box around the polygon and wherein each corner of the bounding box is
checked against a super tile fhat belongs to each separate chip and wherein if the bounding box
does not overlap any of the super tiles associated with a separate chip, then the processing circuit

rejects the whole polygon and processes a next one, as recited in Claim 19.

44.  The closest prior art (Kent) teachés calculating the bounding box of the primitive and
testing this against the VisRect. If the bounding box of the primitive is contained in the other
P10’s superltile the primitive is discarded at this stage [0129]. The method used is to calculate
the distance from each subpixel sample point in the point’s bounding box to the point’s center
and compare this to the point’s radius. Subpixel sample points with a distance greater than the
radius do nét contribute to a pixel’s coverage. The cost of this is kept low by only allowing
small radius points hence the distance calculation is a small multiply and by taking a cycle per
subpixel sample per pixel within the bounding box [0144]. However, Kent does not teach that
each separate chip creates a bounding box around the polygon and wherein each corner of the

bounding box is checked against a super tile that belongs to each separate chip and wherein if the

0106



Application/Control Number: 10/459,797 ' Page 18
Art Unit: 2671

bounding box does not overlap any of the super tiles associated with a separate chip, then the

processing circuit rejects the whole polygon and processes a next one.

Prior Art of Record
The prior art made of record and not relied upon is considered pertinent to applicant's
disclosure.
1. US 20030164830A1 teaches a graphics pipeline [0006] that calculates the bounding box

of the primitive in a super tile [0129].

2. Elias, Hugo. “Polygon Scan Converting.”

http://free’space.virgin.netfhugo,elias!grap'hics/x polysc.htm.

-Conclusion
Any inquiry concerning this commuﬁication or earlier communications from the
examiner should be directed to Joni Hsu whose telephone number is 571-272-7785. The
examiner can normally be reached on M-F 8am-5pm.
If attempts to reach the examiner by telephone are unsuccessful, the examiner’s
supervisor, Ulka Chauhan can be reached on 571-272-7782. Tl:w fax phone number for the

organization where this application or proceeding is assigned is 571-273-8300.
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Information regarding the status of an application may be obtained from the Patent
Application Information Retrieval (PAIR) system. Status information for published applications
may be obtained from either Private PAIR or Public PAIR. Status information for unpublished
applications is available throﬁgh Private PAIR only. For more information about the PAIR
system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).
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Polygon Scan Converting

There are many ways to draw polygons. All have their uses. Some are fast, others very slow. The most
popular method, used in practically every game, rendering engine, and graphics package which handles
polygons, is known as scan converting.

This method uses only integer maths, takes up very little memory, and is simple to understand. The
algorithm can be adapted to handle flat or gourad shaded, textured and bump mapped polygons.

It is an approximate method. You will never be able to draw a totally perfect polygon with smooth edges
on a normal screen, because of the fact that the picture is divided up into pixels. It is possible to make
the edges look better, but the edges will nevertheless look jaggy.

On a pixelated screen, a small
polygon like this will end up .
with nasty edges when viewed
close up.

The method works by taking the §
polygon a line at a time, :
processing all the edges, then
filling in the surface. If you
haven't already, take a lock at
the page about drawing lines. You will find this very helpful.

A single scan conversion is the process of converting a polygon edge into data which can be used by the
polygon filling routine. The process is essentially a single case of the line drawing algorithm. A polygon
edge is calculated as if it were a line, but the line is not drawn to the screen. Instead the information 1s
saved in a buffer for use later.

Rather than having a different routine to handle nearly horizontal or nearly vertical lines, all edges are
handled as nearly vertical.

So the line al gorithm travels down an edge, calculating the X-coordinate of the pixel which lies closest
to the line for each Y-coordinate. '

Having calculated the x-coordinates for every edge of the polygon, the next step is to loop through the
Y-coordinates spanned by the top and bottom of the polygon, and draw lines between pairs of X-
coordinates.

} Scan convert first edge.

B

L

Scan convert second edge. §

2

http://freespace. virgin net/hugo.elias/graphics/x_polysc.htm 7/26/05
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. Polygon Scan Converﬁng Page 2 of 6

edges have been scan-

converted, you need to begin

filling. Start at the top of the

polygon, and draw a horizontal

strip between the left and right

edges. Work your way down,

M drawing horizontal strips across
the polygon until it is filled.

" One filled polygon.

Now that you know the basic idea behind it, there are many things to consider.
how do you store the x values?

For convex polygons, there is a very quick and easy way to handle this. Create two arrays of integers,
big enough to store an x value for each scanline of the screen. Call them Left and Right.
For example, for a 320x200 screen: '

Left (0 to 199) : integer
Right (0 to 199) : integer

Now if you always list the points of the polygon in anti-clockwise order. Then you can easily determine
which lines make up the left and the right edges of the polygon. Lines who's first point is above the
second make up the left edges. Lines who's first point is below the second make up the right edges.
Lines who's points lie at the same y coordinate can be ignored. Store the X values in either the Left or
Right arrays accordingly. Then, when you come to fill the polygon, the x coordinates are already there in
the right order.

which points to fill?

If you use a simple line drawing algorithm to calculate the x-coordinates, you will find that many of the
pixels drawn will actually lie slightly outside the boundaries of the polygon. This means that where
polygons share the same edge, some pixels will be drawn twice. Now, this may or may not be a bad
thing. It depends on how perfectly you need your polygons to be drawn. In many cases, if the polygons
are flat shaded, people will never notice the fact. However, you may have transparent polygons, in
which case you will get funny looking pixels at the boundaries between polygons, where the surface
appears to be double thickness. It can be fatal however. If the edge of a texture mapped polygon lies
very close to it's vanishing point at an oblique angle, a pixel outside the polygon may just lie past the
horizon. In many perspective correct texture mapping routines, this could cause a divide by zero error.

http://freespace.virgin.net/hugo.elias/graphics/x_polysc.htm 7/26/05

0111



..Polygon Scan Converting Page 3 of 6

These should be avoided at all cost.

In these cases, it is essential to write a scan-converter which guarantees that all pixels lie within the
polygon's boundaries. This is, of course, easier said than done. What about pixels that lie exactly on a
polygon boundary?

I now present what I believe to be a perfect scan-converting routine. It allows you to specify the vertices
of the polygon to non-integer coordinates on the screen. This makes the polygon move a lot more
fluidly. It also draws pixels which lie inside the edges of the polygon.

Perfect scan converting

OK, so this routine is going to use non-intéger maths. That does not mean you will need slow floating
point code. This can all be done with resonably fast fixed point maths, which can be handled extremely
fast in assembler. Even faster, dare I say it, than the integer code I gave for drawing lines. If you don't
know about fixed point maths, then you'll have to either find out for yourself, wait till I write a
document on it, or just use floating point code for now.

Perfectly scanned polygons move much more smoothly than those calculated with integer maths, and so
are more pleasing to the eye. Take a look at Quake, then Tomb Raider or Syndicate Wars. You will see
that the cheap polygons in Tomb Raider move in a rather jittery way, making the scenery look like it's
held together with selotape. Quake's smoothly rendered polygons on the other hand give the architecture
a more solid feel.

There is a demo available showing the difference between integer and Fixed Point polygons. It requires

DOS/4AGW to run.

So, lets take a really close look at the edges of a polygon:

OK, this may get complicated, and
involve a little maths, but the
results are excelent.

Take a close look at the line that is
to be scan converted, the yellow
one. The two points that it is being
drawn between (white dots (x1,y1)
& (x2,y2)) do not lie exactly at the
center of any pixel, (green dots).

= However, when the polygon
comes to be rendered, it must be
drawn using horizontal strips that
are drawn between integer

I8 coordinates.

The way to handle this is calculate
the X intersection of the line with

http://freespace.virgin.net/hugo.elias/graphics/x_polysc.htm : 7/26/05
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: horizontal scanlines. Then save
the X coordinate of the nearest pixel inside the polygon.

Firstly some variables we'll need.
NonIntegers: gradient

ex, ey

x1l, yl, r2, y2

Ax, Ay, Bx, By
Integers: height

the function int{) returns the integer part of a number. i.e. int(5.7) = 5
OK, so lets break down the steps:

1. Calculate the gradient of the line:
dx = x2 - xl

dy = y2 - yl
gradient = dx/dy

2. Calculate ey:

ey = int(yl+l) - y1l
3. Calculate ex:

eX = gradient*ey

4, Calculate coordinates of A:

Ax
Ay

%l + ex
int (yl+1)

5. Calculate y coordinate of B:

By = int(y2)

You will notice that there is a divide in the calculation. Risk of a divide by zero. If dy is equal to zero,
then you can simply ignore the entire line.

Right, now you have calculated all those things, the line can be scan converted. This scan converting
process is actually faster than the one used for integer polygons (if you're using fixed point maths,
otherwise it's slower). There are no IF's and JUMP's involved. The loop can be unrolled nicely to
process at increadible speed.

So the inner loop looks something like this:
X = Ax

loop y from Ay to By
YBuffer(y) = x

http://freespace.virgin.net/hugo.elias/graphics/x_polysc.htm ' 7/26/05
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-Polygon Scan Converting

x=x+gradient

end of loop

Page 5 of 6

Again, you will have to handle Left hand lines and Right hand lines differently. The case given here is
for a Left hand line. I will leave it up to you to work out how to handle the other side.

Scan converting in Assembler

Here is an example of a scan converter I wrote in Assembler. It works on 32-bit Fixed Point numbers

only.

It takes as arguments, The initial x value (x), The gradient (DeltaX), the number of scan lines to
calculate (length), and a pointer to the first element in the Y Buffer.

ERX = x

EBX = DeltaX

EcX = length

EDI =

top:
mov
add
add
dec
inz

pointer to YBuffer[Y]

[edi], eax

eax, ebx
edi, 4
ecx

top:

YBuffer(y] = x
X = X + DeltaX
y=y + 1

;jend of loop

This can be unrolled and can calculate polygon edges very fast indeed. This version has been unrolled

four times

EAX
EBX
ECX
EDI

X
DeltaX
length

shr
jnc

mov
cmp
je
add
add

NoSingle:
shr
jnc

mov
add
mov
add

crmp

je

add
NoDouble:
top:

http://freespace.virgin.net/hugo.elias/graphics/x_polysc.htm

pointer to YBuffer[Y]

ecx
NoSingle

fedi], eax
ecx, 0
NoMore
eax, ebx
edi, 4

ecx
Nosingle

[edi], eax
eax, ebx
[edi+d4]), eax
eax, ebx

ecx, 0
NoMore
edi, 8

T

.

halve the number of loops

if there are an even number cof lines to do
then don't do this odd one

YBuffer(y] = x

are there any more left?

if not, then exit

X=X+ 1

y=y+1

halve the number of loops again

if the number of lines is a multiple of 4
then don't do these odd two

YBuffer(y) = x

® = X + DeltaX

YBuffer[y+l]) = x

X = X + DeltaX

are there any more left?

1f not, then exit
y=y +2

7/126/05
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mov [edi], eax ; YBuffer[y] = x
add eax, ebx ; ® = ® + DeltaX
mov [edi+d], eax ; YBuffer([y+1l] = x
add eax, ebx ; X = X + DeltaX
mov [edi+8], eax ; YBuffer[y+2] = x
add eax, ebx ; X = X + DeltaX
mov [edi+l2]), eax ; YBuffer([y+3]) = x
add eax, ebx ; X = X + DeltaX
add edi, 16 ;i y=y + 4

dec ecx ;

jnz top . ; -end of loop

So, after all the edges of the polygon have been scan converted, you have an array of pairs of X
coordinates where the edges cross horizontal scanlines. Assuming you are going to fill the area with a
solid colour, you should loop down the height of the polygon, drawing horizontal strips from one side to
the other. Remember that you only want to draw pixels that lie inside the polygon. So draw from the
first pixel to the right of the left edge, to the first pixel to the left of the right edge. geddit?

X

Take a look at the polygon 0 1 2 3 4 3 3
again, this time filled. The : : : : : :
centres of the filled pixels all
" lie within the polygon. The X {0
coordinates stored in the
YBuffer would be:

—————————

You will notice that on the last
line, 6, X1 is larger then X2.
This is because the polygon 5
crosses the line, but pokes
between pixels. This strip does
not get drawn. ‘

I hope I have convinced you vy i i : i :
to only ever write perfect scan converters from now on. There shouldnt really be any excuse for using
tacky integer polys any more. Computers are quite fast enough to cope with the tiny extra computing
overhead involved, and you as a programmer, I have no doubt, are more then capable of writing the
code. '

http://freespace.virgin.net/hugo.elias/graphics/x_polysc.htm 7/26/05

0115



This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations.of the ongmal
documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

J BLACK BORDERS
U IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
J FADED TEXT OR DRAWING
(J BLURRED OR ILLEGIBLE TEXT OR DRAWING
Qs ED/SLANTED IMAGES
comk OR BLACK AND WHITE PHOTOGRAPHS
() GRAY SCALE DOCUMENTS
0J LINES OR MARKS ON ORIGINAL DOCUMENT
u] REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

(J OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image
problems checked, please do not report these problems to
the IFW Image Problem Mailbox.

0116



O\P§

PTOISBI22 (12-04)

%

JAN 0 2008 Approved for use through 07/31/2006. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARMENT OF COMMERCE
% rthe paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless if displays a valid OMB control number.
Ne ,
ITION FOR EXTENSION OF TIME UNDER 37 CFR 1.136(a) Docket Number (Optional)
FY 2005 00100.02.0053
(Fees pursuant to the Consolidated Appropriations Act, 2005 (H.R. 4818).)
Application Number 10/459,797 Filed June 12, 2003
For DIVIDING WORK AMONG MULTIPLE GRAPHICS PIPELINES USING A SUPER-TILING TECHNIQUE
Art Unit 2676 l Examiner Joni Hsu
This is a request under the provisions of 37 CFR 1.136(a) to extend the period for filing a reply in the above identified
application. :
The requested extension and fee are as follows (check time period desired and enter the appropriate fee below):
Fee Small Entity Fee
|___] One month (37 CFR 1.17(a)(1)) $120 $60 $
Two months (37 CFR 1.17(a)(2)) $450 $225 § 450.00
[[] Three months (37 CFR 1.17(a)(3)) $1020 $510 $
[[] Four months (37 CFR 1.17(a)(4)) $1590 $795 $
[] Five months (37 CFR 1.17(a)(5)) $2160 $1080 $

D Applicant claims small entity status. See 37 CFR 1.27.

[] A checkin the amount of the fee is enclosed.

[ ] Payment by credit card. Form PTO-2038 is attached.

D The Director has already been authorized to charge fees in this application to a Deposit Account.

IE The Director is hereby authorized to charge any fees which may be required, or credit any overpayment, to
Deposit Account Number  22-0259 . | have enclosed a duplicate copy of this sheet.

WARNING: Information on this form may become public. Credit card information should not be included on this form.
Provide credit card information and authorization on PTO-2038.

| 01/06/2006 SHASSEN1 00000034 220253 10459797
| am the D applicant/inventor. ! 01 FC:1252 450.00 DA

D assignee of record of the entire interest. See 37 CFR 3.71.
Statement under 37 CFR 3.73(b) is enclosed (Form PTO/SB/96).

attorney or agent of record. Registration Number 34,414

|:| attorney or agent under 37 CFR 1.34.
Registration number if acting under 37 CFR 1'34

ﬁ/z; ; . January 3, 2006

Aignature ' Date
Christopher J. Reckamp ' 312-609-7599
Typed or printed name Telephone Number

NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required. Submit multiple forms if more than one
signature is required, see below.

Total of 1 forms are submitted.

This collection of information is required by 37 CFR 1.136(a). The information is required to obtain or retain a benefit by the public which is to file (and by the
USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take & minutes to
complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any
comments on the amount of time you require to complete this form andfor suggestions for reducing this burden, should be sent to the Chief Information Officer,
U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED
FORMS TO THIS ADDRESS. SEND TO: Commissloner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and selsct option 2.
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REMARKS

Applicants respectfully traverse and request reconsideration.

Applicants with to thank the Examiner for the notice that claim 19 would be allowable if
rewritten in independent form.

Claims 1-4, 6-8, 9, 10, 12, 14, 17, 18, 20-23, 25 and 26 stand rejected under 35 U.S.C.
§102(b) as being anticipated by U.S. Patent No. 5,745,118 (Alcorn). The independent claims
have been amended to include inherent language indicating that the tiles described in the
specification and claimed correspond to screen locations and may have corresponding frame
buffer memory locations as well. Alcom is directed to different structure and operations from
that claimed and instead is directed to texture space source data. Alcomn describes a 3D bypass
structure for the download of textures and describes a system that receives primitive information
from a host processor and passes it through a distributor 30 which then distributes 3D primitive
data evenly among the 3D geometry accelerator chips. In this way, for example, three groups of
primitives are operated upon simultaneously. The multiple 3D geometry accelerator chips
determine object red, green and blue values and texture values for the screen space coordinates
and they also perform view clipping operations. The output from these multiple 3D geometry
accelerator chips are then passed to a concentrator chip 36 which combines the 3D primitive
output data received from the 3D geometry accelerator chips and reorders the primitives to the
original order that they had prior to being distributed by the distributor chip 30. (See for
example, column 6, line 42 through column 7, line 10). As such, distribution of primitive data is
done merely in a round robin type approach wherein each graphics accelerator chip receives an
even distribution of primitives. The texture mapping board 12 then receives the primitives in the

same order that the distributor receives them in and then processes them in that order.
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In contrast, Applicants’ claims are directed to a different operation — render space
destination data. There is no teaching or suggestion in Alcom of at least two graphics pipelines
that process data in a corresponding set of tiles of a repeating tile pattern corresponding to screen
locations, wherein the repeating tile pattern includes a horizontally and vertically repeating
pattern of square regions.

It appears that the Alcorn reference actually teaches a type of round robin or sequential
load balancing for texture source data in a front end. In contrast, Applicants describe, for
example, a multi-pipeline system that performs pixel operations on pixels within a determined
set of tiles by a corresponding one of a plurality of graphics pipelines based on a set of tiles of a
repeating tile pattern corresponding to screen locations. In one embodiment, a scan converter
determines, for example, whether pixels within portions of an object, such as a triangle, intersect
with tiles that backend circuitry is responsible for processing. No tile based load distribution
appears to be taught or suggested in the cited reference. Accordingly, the claims are believed to
be in condition for allowance.

For example, the office action cites Alcom, column 6, lines 40-43 as allegedly teaching a
plurality of graphics pipelines. This portion refers to the multiple accelerator chips 32a-32c, for
example. The office action then cites to column 11, lines 8-31 as teaching the processing of
corresponding sets of tiles. However, this cited portion actually refers to the texture mapping
board which is not part of the graphics accelerator chips. In fact, the graphics pipelines (i.e. the
graphics accelerator chips) merely process data in a round robin fashion and do not process data
based on tiles of a repeating tile pattern. Accordingly, the independent claims are in condition
for allowance.

The office action also cites to Alcorn at column 15, lines 44-57. However again, this

portion refers to the texture mapping board 12 which again processes data in the order in which
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the distributor 30 received them. Tﬁc portion referred to in the office action actually refers to the
storage of texels in a MIP map so that the tiler 72 in the texture mapping board can access texels
in the texel cache access 82. There is no teaching or suggestion that any texture tiles correspond
to screen locations nor a plurality of pipelines that process data in a corresponding set of tiles of
a repeating tile pattern corresponding to screen locations wherein the pattern includes a
horizontally and vertically repeating pattern of the square regions. Accordingly, claims 1, 20, 24
and 25 are in condition for allowance.

The dependent claims add additional novel and non-obvious subject matter. For
example, claim 3 requires that the square regions are 2-dimensional partition of memory in a
frame buffer. However, the cited portion of Alcorn actually indicates that the texture map which
actually comes from the texture cache 48 and not the frame buffer VRAMs, is combined in the
frame buffer board to generate the final RGB values for each display screen pixel.

Also for example, with respect to claim 14, again the office action cites the 3D geometry
accelerator chips of Alcorn as the claimed graphics pipelines. However, these 3D geometry
accelerators do not process pixel data in the set of tiles in a repeating tile pattern as alleged in the
office action. As noted above, the texture mapping board obtains texels for texture mapping and
this board is not part of the front end board 10. Accordingly, the claim is in condition for
allowance.

Claims 5, 11, 13, 15, 16 and 24 stand rejected under 35 U.S.C. §103(a) as being
unpatentable over Alcorn in view of U.S. Patent No. 6,778,177 (Furtner). Applicants
respectfully reassert the relevant remarks made above and as such, these claims are also in
condition for allowance.

In addition, the Furtner reference is directed to a method for rasterizing a graphics

component. Claim 5 requires that each of the graphics pipeline each include a scan converter.
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However, the cited portion of Furtner merely describes a parallel scan converter not a scan
converter for each of the pixel pipelines. Accordingly, the claim is in condition for allowance.
As to claim 11, this claim requires, among other things, a scan converter for one of the graphics
pipelines that provides position coordinates of pixels within the first set of tiles to be processed
by the back end circuitry and that the scan converter includes a pixel identification line for
receiving tile identification data indicating which of the set of tiles is to be processed by the back
end circuitry. The office action cites column 10, lines 1-8 of Alcorn. However, the cited portion
merely describes that there are texture map coordinates that are generated that correspond to the
pixel. The cited portion actually refers to the back end circuit of Alcorn, namely the texture
mapping card or board 12 (see FIG. 3). As such, the claim is in condition for allowance.

Applicants respectfully submit that the claims. are in condition for allowance and
respectfully request that a timely Notice of Allowance be issued in this case. The Examiner is
invited to contact the below-listed attumej if the Examiner believes that a telephone conference
will advance the prosecution of this application.

Respectfully submitted,

Date: _//-3:/”6- By: %W
Christopheﬁ . Reckamp

Registration No. 34,414

Vedder, Price, Kaufman & Kammbholz, P.C.
222 N. LaSalle Street

Chicago, Illinois 60601

PHONE: (312) 609-7599

FAX: (312) 609-5005

12
CHICAGO/#1435290.1

0121



Amendments to the Claims:

Re-write the claims as set forth below. This listing of claims will replace all prior versions and
listings, of claims in the application:

Listing of Claims:

1. (currently amended) A graphics processing circuit, comprising:
at least two graphics pipelines operative to process data in a corresponding set of tiles of

a repeating tile pattern_corresponding to screen locations, a respective one of the at least two

graphics pipelines operative to process data in a dedicated tile,
wherein the repeating tile pattern includes a horizontally and vertically repeating pattern

of square regions.

2. (original) The graphics processing circuit of claim 1, wherein the square regions

comprise a two dimensional partitioning of memory.

3. (original) The graphics processing circuit of claim 2, wherein the memory is a frame

buffer.

4. (original) The graphics processing circuit of claim 1, wherein each of the at least two
graphics pipelines further includes front end circuitry operative to receive vertex data and
generate pixel data corresponding to a primitive to be rendered, and back end circuitry, coupled

to the front end circuitry, operative to receive and process a portion of the pixel data.
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d.

5. (original) The graphics processiﬁg circuit of claim 4, wherein each of the at least two
graphics pipelines further includes a scan converter, coupled to the back end circuitry, operative

to determine the portion of the pixel data to be processed by the back end circuitry.

6. (original) The graphics processing circuit of claim 1, wherein each tile of the set of

tiles further comprises a 16x16 pixel array.

7. (original) The graphics processing circuit of claim 4, wherein the at least two graphics

pipelines separately receive the pixel data from the front end circuitry.

8. (original) The graphics processing circuit of claim 4, wherein the at least two graphics

pipelines are on multiple chips.

9. (previously presented) The graphics processing circuit of claim 1, further including a
memory controller coupled to the at least two graphics pipelines, operative to transfer pixel data

between each of a first pipeline and a second pipeline and a memory.

10. (original) The graphics processing circuit of claim 4, wherein a first of the at least
two graphics pipelines processes the pixel data only in a first set of tiles in the repeating tile

-

pattern.

11. (original) The graphics processing circuit of claim 10, wherein the first of the at
least two graphics pipelines further includes a scan converter, coupled to the front end circuitry

and the back end circuitry, operative to provide position coordinates of the pixels within the first

3
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set of tiles to be processed by the back end circuitry, the scan converter including a pixel

identification line for receiving tile identification data indicating which of the set of tiles is to be

processed by the back end circuitry.

12. (previously presented) The graphics processing circuit of claim 1, wherein a second
of the at least two graphics pipelines processes the data only in a second set of tiles in the

repeating tile pattern.

13. (previously presented) The graphics processing circuit of claim 12, wherein the
sccond of the at least two graphics pipelines further includes a scan converter, coupled to front
end circuitry and back end circuitry, operative to pr;{Jvide position coordinates of the pixels
within the second set of tiles to be processed by the back end circuitry, the scan converter
including a pixel identification line for receiving tile identification data indicating which of the

set of tiles is to be processed by the back end circuitry.

14. (original) The graphics processing circuit of claim 1 including a third graphics
pipeline and a fourth graphics pipeline, wherein the third graphics pipeline includes front end
circuitry operative to receive vertex data and generate pixel data corresponding to a primitive to
be rendered, and back end circuitry, coupled to the front end circuitry, operative to receive and
process the pixel data in a third set of tiles in the repeating tile pattern, and wherein the fourth
graphics pipeline includes front end circuitry operative to receive vertex data and generate pixel
data corresponding to a primitive to be rendered, and back end circuitry, coupled to the front end
circuitry, operative to receive and process the pixel data in a fourth set of tiles in the repeating

tile pattern.
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15. (original) The graphics processing circuit of claim 14, wherein the third graphics
pipeline further includes a scan converter, coupled to the front end circuitry and the back end
circuitry, operative to provide position coordinates of the pixels within the third set of tiles to be
processed by the back end circuitry, the scan converter including a pixel identification line for
receiving tile identification data indicating which of the sets of tiles is to be processed by the

back end circuitry.

16. (original) The graphics processing circuit of claim 14, wherein the fourth graphics
pipeline further includes a scan converter, coupled to the front end circuitry and the back end
circuitry, operative to provide position coordinates of the pixels within theJ fourth set of tiles to
be processed by the back end circuitry, the scan converter including a pixel identification line for
receiving tile identification data indicating which of the sets of tiles is to be processed by the

back end circuitry.

17. (original) The graphics processing circuit of claim 14, wherein the third and fourth

graphics pipelines are on separate chips.

18. (original) The graphics processing circuit of claim 14, further including a bridge

operative to transmit vertex data to each of the first, second, third and fourth graphics pipelines.

19. (original) The graphics processing circuit of claim 17 wherein the data includes a
polygon and wherein each separate chip creates a bounding box around the polygon and wherein

each corner of the bounding box is checked against a super tile that belongs to each separate chip

5
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and wherein if the bounding box does not overlap any of the super tiles associated with a

separate chip, then the processing circuit rejects the whole polygon and processes a next one.

20. (currently amended) A graphics processing method, comprising:
receiving vertex data for a primitive to be rendered;

generating pixel data in response to the vertex data;

determining the pixels within a set of tiles of a repeating tile pattern corresponding to

screen locations to be processed by a corresponding one of at least two graphics pipelines in

response to the pixel data, the repeating tile pattern including a horizontally and vertically
repeating pattern of square regions; and
performing pixel operations on the pixels within the determined set of tiles by the

corresponding one of the at least two graphics pipelines.

21. (original) The graphics processing method of claim 20, wherein determining the
pixels within a set of tiles of the repeating tile pattern to be processed further comprises

determining the set of tiles that the corresponding graphics pipeline is responsible for.

22. (original) The graphics processing method of claim 20, wherein determining the
pixels within a set of tiles of the repeating tile pattern to be processed further comprises
providing position coordinates of the pixels within the determined set of tiles to be processed to

the corresponding one of the at least two graphics pipelines.

23. (original) The graphics processing method of claim 20, further comprising

transmitting the processed pixels to memory.
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24. (currently amended) A graphics processing circuit, comprising:

front end circuitry operative to generate pixel data in response to primitive data for a
primitive to be rendered,;

first back end circuitry, coupled to the front end circuitry, operative to process a first
portion of the pixel data in response to position coordinates;

a first scan converter, coupled between the front end circuitry and the first back end
circuitry, operative to determine which set of tiles of a repeating tile pattern are to be processed
by the first back end circuitry, the repeating tile pattern including a horizontally and vertically
repeating pattern of square regions, and operative to provide the position coordinates to the first
back end circuitry in response to the pixel data;

second back end circuitry, coupled to the front end circuitry, operative to process a
second portion of the pixel data in response to position coordinates;

a second scan converter, coupled between the front end circuitry and the second back end
circuitry, operative to determine which set of tiles of the repeating tile pattern are to be processed
by the second back end circuitry, and operative to provide the position coordinates to the second
back end circuitry in response to the pixel data; and

a memory controller, coupled to the first and second back end circuitry[[.]] operative to

[[receive]] transmit and receive the processed pixel data.

25. (currently amended) A graphics processing circuit, comprising:
at least two graphics pipelines operative to process data in a corresponding set of tiles of

a repeating tile pattern_corresponding to screen locations, a respective one of the at least two
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graphics pipelines operative to process data in a dedicated tile, wherein the repeating tile pattern

includes a horizontally and vertically repeating pattern of regions.

26. (previously presented) The graphics processing circuit of claim 25 wherein the

horizontally and vertically repeating pattern of regions include NxM number of pixels.
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-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed -

after SIX (6) MONTHS from the mailing date of this communication,
- I NO period for reply is specified above, the maximum statulory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application 1o become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months afier the mailing date of this communication, even if timely filed, may reduce any

earned patent term adjusiment. See 37 CFR 1.704(b).

Status

1] Responsive to communication(s) fledon
2a)lJ This action is FINAL. 2b)[(] This action is non-final.
3)[J Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parfe Quayle, 1935 C.D. 11, 453 0.G. 213.

Disposition of Claims

YY) Claim(s) 1-26 is/are pending in the application.
43) Of the above claim(s) is/are withdrawn from consideration.
5)[] Claim(s) is/are allowed.
6)X] Claim(s) 1-18 and 20-26 is/are rejected.
7)BJ Claim(s) 19 is/are objected to.
8)[J Claim(s) are subject to restriction and/or election requirement.

Application Papers

9)[< The specification is objected to by the Examiner.
10)[] The drawing(s) filed on isfare: a)[] accepted or b)[] objected to by the Exammer
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
11)[]] The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)[J Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)[JAl b)[] Some * ¢)[_] None of:
1.0 Certified copies of the priority documents have been received.
2.[] cCertified copies of the priority documents have been received in Application No. ______
3.[JJ Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)
1) ]:} Notice of References Cited (PTO-892) 4) L__] Interview Summary (PTO-413)
2) [ Notice of Draftsperson’s Patent Drawing Review (PT0-948) Paper No(s)/Mall Date. ____
3) [J information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) 5) [ Notice of Informal Patent Application (PTO-152)
Paper No(s)/Mail Date 6) [ other:
U.S. Patent and Trademark Office

PTOL-326 (Rev. 7-05) Office Action Summary Part of Paper No./Mail Date 1506
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Application/Control Number: 10/459,797 Page 2
Art Unit: 2671

DETAILED ACTION

Response to Amendment

1. In light of Applicant’s amendment to Claim 24, the objection to Claim 24 has been
withdrawn,
2. Applicant's arguments with respect to claims 1-18 and 20-26 have been considered but

are moot in view of the new ground(s) of rejection.

3. Applicant’s arguments, see page 9, filed January 5, 2006, with respect to the rejection(s)
of claim(s) 1-4, 6-10, 12, 14, 17, 18, 20-23, 25, and 26 under 35 U.S.C. 102(b) and claims 5, 11,
13, 15, 16, and 24 have been fully considered and are persuasive. Therefore, the rejection has

been withdrawn. However, upon further consideration, a new ground(s) of rejection is made in

view of Furtner (US006778177B1).

4. Applicant argues that Alcorn (US005745118A) is directed to texture space source data
and not to tiles corresponding to screen locations (page 9).
In reply, the Examiner agrees. However, new grounds of rejection are made in view of

Furtner.

5. Applicant's arguments filed January 5, 2006, with respect to Claim 5 have been fully

considered but they are not persuasive.
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6. With regard to Claim 5, Applicant argues that Furtner describes a parallel scan converter
not a scan converter for each of the pixel pipelines (pages 11-12).
In reply, the Examiner disagrees. Furtner does teach a scan converter for each of the

pixel pipelines (Col. 6, lines 47-51).

Specification
7. The disclosure is objected to because of the following informalities: Paragraph [0001]
states that this application is a related application to a co-pending application, but does not
provide the serial number for this co-pending application.

Appropriate correction is required.

Claim Rejections - 35 USC § 102
8. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the
basis for the rejections under this section made in this Office action:
A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section
122(b), by another filed in the United States before the invention by the applicant for
patent or (2) a patent granted on an application for patent by another filed in the United
States before the invention by the applicant for patent, except that an international
application filed under the treaty defined in section 351(a) shall have the effects for
purposes of this subsection of an application filed in the United States only if the
international application designated the United States and was published under Article
21(2) of such treaty in the English language.
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9. Claims 1-17 and 20-26 are rejected under 35 U.S.C. 102(e) as being anticipated by

Furtner (US006778177B1).

10.  With regard to Claim 1, Furtner describes a graphics processing circuit, comprising at
least two graphics pipelines (20, Figure 23; Col. 2, lines 11-14) operative to process datain a
corresponding set of tiles of a repeating tile pattern corresponding to screen locations, a
respective one of the at least two graphics pipelines operative to process data in a dedicated tile,
wherein the repeating tile pattern includes a horizontally and vertically repeating pattern of

square regions (Figure 21b, Col. 1, lines 40-49).

11.  Withregard to Claim 2, Furtner describes that the square regions comprise a two

dimensional partitioning of memory (10, Figure 21b; Col. 1, lines 40-49).

12.  With regard to Claim 3, Furtner describes that the memory is a frame buffer (10, Figure

21b; Col. 1, lines 40-49).

13.  With regard to Claim 4, Furtner describes that each of the at least two graphicé pipelines
further includes front end circuitry (102, Figure 1) operative to receive vertex data and generate
pixel data corresponding to a primitive to be rendered (Col. 8, lines 38-44) , and back end
circuitry (108), coupled to the front end circuitry, operative to receive and process a portion of

the pixel data (Col. 8, lines 51-60).
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14.  With regard to Claim S, Furtner describes that each of the at least two graphics pipelines
further includes a scan converter (16, Figure 23) (Col. 2, lines 3-16; Col. 6, lines 47-51). The
scan converter deterrﬁines which clusters of pixel data are to be processed by which pipeline
(Col. 11, lines 41-59; Col. 13, lines 54-63). Therefore, the scan converter is coupled to the back
end circuitry (20), operative to determine the portion of the pixel data to be processed by the

back end circuitry.

15. With regard to Claim 6, Furtner describes that each tile of the set of tiles further

comprises a 16x16 pixel array (Col. 11, lines 45-48, 64-65).

16.  With regard to Claim 7, Furtner describes that the at least two graphics pipelines (108,

Figure 1) separately receive the pixel data from the front end circuitry (102) (Cdl.‘s., lines 51-57).

17.  With regard to Claim 8, Furtner describes that the at least two graphics pipelines are on

multiple chips (Col. 6, lines 47-51).

18.  With regard to Claim 9, Furtner describes a memory controller (22, Figure 23) coupled to
the at least two graphics pipelines (20), operative to transfer pixel data between each of a first

pipeline and a second pipeline and a memory (24) (Col. 2, lines 20-34).
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19.  With regard to Claim 10, Furtner describes that a first of the at least two graphics pipeline
processes the pixel data only in a first set of tiles in the repeating tile pattern (Figure 21b, Col. 1,

lines 41-49).

20.  With regard to Claim 11, Furtner describes that the first of the at least two graphics
pipelines- further includes a scan converter (16; Col. 2, lines 3-16). The scan converter receives,
at its input, data which to write onto the graphic primitive to be processed (Col. 1, lines 58-62),
and this data inherently comes from a front end circuitry. The output of the scan converter is
connected to the pipelines (20, Col. 1, lines 62-66). Therefore, the scan converter is coupled to
the front end circuitry and the back end circuitry (20). The scan converter determines which
clusters of pixel data are to be processed by which pipeline (Col. 11, lines 41-59; Col. 13, lines
54-63). The scan converter has knowledge with regard to mapping the screen areas c;nto the
memory address area (tiling) (Col. 6, lines 60-65). Therefore, the scan converter is inherently
operative to provide memory addresses or position coordinates of the pixels within the first set of
tiles to be processed by the back end circuitry, the scan converter inherently including a pixel
identification line for receiving tile identification data indicating which of the sét of tiles is to be

processed by the back end circuitry.
21.  With regard to Claim 12, Furtner describes that a second of the at least two graphics

pipelines processes the data only in a second set of tiles in the repeating tile pattern (Figure 21b,

Col. 1, lines 41-49).
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22.  With regard to Claim 13, Claim 13 is similar in scope to Claim 11, and therefore is

rejected under the same rationale.

23.  With regard to Claim 14, Claim 14 is similar to Claims 4 and 10, except that Claim 14 is
for a third and fourth graphics pipeline. Furtner describes four graphics pipelines (Col. 1, lines

37-49). Therefore, Claim 14 is rejected under the same rationale as Claims 4 and 10.

24.  With regard to Claim 15, Claim 15 is similar in scope to Claim 11, and therefore is

rejected under the same rationale.

25.  With regard to Claim 16, Claim 16 is similar in scope to Claim 11, and therefore is

rejected under the same rationale.

26.  With regard to Claim 17, Claim 17 is similar in scope to Claim 8, and therefore is

rejected under the same rationale.

27.  Withregard to Claim 20, Furtner describes a graphics processing method, comprising
receiving vertex data for a primitive to be rendered; generating pixel data in responsé to the
vertex data (Col. 8, lines 38-44); determining the pixels within a set of tiles of a repeating tile
pattern corresponding to screen locations (Figure 21b, Col. 1, lines 41-49) to be processed by a
corresponding one of at least two graphics pipelines in response to the pixel data (Col. 11; lines

41-59; Col. 13, lines 54-63), the repeating tile pattern including a horizontally and vertically
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repeating pattern of square regions; and performing pixel operations on the pixels within the
determined set of tiles by the corresponding one of the at least two graphics pipelines (Figure

21b, Col. 1, lines 41-49).

28.  With regard to Claim 21, Furtner describes determining the pixels within a set of tiles of
the repeating tile pattern to be processed further comprises determining the set of tiles that the

corresponding graphics pipeline is responsible for (Col. 11, lines 41-49; Col. 13, lines 54-63).

29.  With regard to Claim 22, Furtner describes that the scan converter determines which.
clusters of pixel data are to be processed by which pipeline (Col. 11, lines 41-59; Col. 13, lines
54-63). The scan converter has knowledge with regard to mapping the screen areas onto the
memory address area (tiling) (Col. 6, lines 60-65). Furtner discloses that determining the pixels
within a set of tiles of the repeating tile pattern to be processed (Col. 1, lines 41-49) inherently
further comprises providing position coordinates of the pixels within the determined set of tiles

to be processed to the corresponding one of the at least two graphics pipelines.

30.  With regard to Claim 23, Furtner describes transmitting the processed pixels to memory

(24, Figure 23; Col. 2, lines 20-34).
31.  With regard to Claim 24, Furtner describes a graphics processing circuit, comprising’

front end circuitry (102, Figure 1) operative to generate pixel data in response to primitive data

for a primitive to be rendered (Col. 8, lines 38-44); first back end circuitry (108a), coupled to the
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front end circuitry (Col. 8, lines 51-57), operative to process a first portion of the pixel data in
response to position coordinates; a first scan converter (16, Figure 23). The first scan converter
receives, at its input, data which to write onto the graphic primitive to be processed (Col. 1, lines
58-62), and this data inherently comes from a front end circuitry. The output of the scan
converter is connected to the pipelines (20, Col. 1, lines 62-66). Therefore, the first -scan
converter is coupled to the front end circuitry and the first back end circuitry (20). The scan
converter determines which clusters of pixel data are to be processed by which pipelit:le (Col. 11,
lines 41-59; Col. 13, lines 54-63). Therefore, the first scan converter is operative to determine
which set of tiles of a repeating tile pattern (Figure 21b, Col. 1, lines 41-49) are to be processed
by the first back end circuitry. The scan converter has knowledge with regard to mapping the
screen areas onto the memory address area (tiling) (Col. 6, lines 60-65). Therefore, the first scan
converter is inherently operative to provide the memory address area or position coordinates to
the first back end circuitry in response to the pixel data. Furtner describes multiple b‘ipelmc s,
and each pipeline processes a cluster of pixel data (Col. 11, lines 41-59; Col. 13, lines 54-63).
The scan converter is a parallel scan converter, and provides data to the multiple pipelines in
parallel (Col. 2, lines 3-16), so the scan converter is considered to be similar to two scan’
converters, and the second scan converter performs in a similar manner as the first scan cc;nverter
for the second back end circuitry. Furtner also describes that each pipeline has a scan converter
(Col. 6, lines 47-51). Furtner describes a memory controller (24, Figure 23), coupled to the first
and second back end circuitry (20) operative to transmit and receive the processed pixel data

(Col. 2, lines 30-34).
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32.  Withregard to Claim 26, Furtner describes that the horizontally and vertically repeating
pattern of regions (Figure 21b, Col. 1, lines 41-49) include NxM number of pixels (Col. 11, lines

45-55).

33.  Thus, it reasonably appears that Furtner describes or discloses every element of Claims 1-

17 and 20-26 and therefore anticipates the claims subject.

Claim Rejections - 35 USC § 103
34,  The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or
described as set forth in section 102 of this title, if the differences between the subject
matter sought to be patented and the prior art are such that the subject matter as a whole
would have been obvious at the time the invention was made to a person having ordinary
skill in the art to which said subject matter pertains. Patentability shall not be negatived
by the manner in which the invention was made.

-35.  The factual inquiries set forth in Graham v. John Deere Co., 383 U.S. 1, 148 USPQ 459
(1966), that are applied for establishing a background for determining obviousness under 35
U.S.C. 103(a) are summarized as follows:

Determining the scope and contents of the prior art.

Ascertaining the differences between the prior art and the claims at issue.

Resolving the level of ordinary skill in the pertinent art. N

Considering objective evidence present in the application indicating obviousness
or nonobviousness.

AN

36.  Claim 18 is rejected under 35 U.S.C. 103(a) as being unpatentable over Furtner

(US006778177B1) in view of Alcorn (US005745118A).
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Furtner is relied upon for the teachings as discussed above relative to Claim 14.

However, Furtner does not teach a bridge operative to transmit vertex data to each of the
first, second, third and fourth graphics pipelines. However, Alcorn describes a bridgé (30,
Figure 2) operative to transmit vertex data to each of the first, second, third and fourth graphics
pipelines (Col. 6, lines 32-35, 40-47; Col. 7, lines 28-33; Col. 5, line 65-Col. 6, line 3).

It would have been obvious to one of ordinary skill in the art at the time of invention by
applicant to modify the device of Furtner to include a bridge operative to transmit vertex data to
each of the first, second, third and fourth graphics pipelines as suggested by Alcorn because
Alcorn suggests the advantage of being able to evenly distribute the vertex data among the
graphics pipelines. In this manner, the system bandwidth is increased because the groups of

vertex data are operated upon simultaneously (Col. 6, lines 43-49).

Allowable Subject Matter -
37. Claim 19 is objected to as being dependent upon a rejected base claim, but would be
allowable if rewritten in independent form including all of the limitations of the base ¢laim and

any intervening claims.

The following is a statement of reasons for the indication of allowable subject matter:
38.  The prior art singly or in combination do not teach or suggest that each separate chip
creates a bounding box around the polygon and wherein each corner of the bounding box is

checked against a super tile that belongs to each separate chip and wherein if the bounding box
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does not overlap any of the super tiles associated with a separate chip, then the processing circuit

rejects the whole polygon and processes a next one, as recited in Claim 19.

39.  The closest prior art (Kent) teaches calculating the bounding box of the primitive and
testing this against the VisRect. If the bounding box of the primitive is contained in the other
P10’s super tile the primitive is discarded at this stage [0129]. The method used is to calculate
the distance from each subpixel sample point in the point’s bounding box to the point’s center
and compare this to the point’s radius. Subpixel sample points with a distance greater than the
radius do not contribute to a pixel’s coverage. The cost of this is kept low by only allowing
small radius points hence the distance calculation is a small multiply and by taking a cycle per
subpixel sample per pixel within the bounding box [0144]. However, Kent does not teach that
each separate chip creates a bounding box around the polygon and wherein each corner of the
bounding box is checked against a super tile that belongs to each separate chip and wherein if the
bounding box does not overlap any of the super tiles associated with a separate chip, then the

processing circuit rejects the whole polygon and processes a next one.

Prior Art of Record
The prior art made of record and not relied upon is considered pertinent to applicant's
disclosure.
US 20030164830A1 teaches a graphics pipeline [0006] that calculates the bounding box

of the primitive in a super tile [0129].
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Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in this
Office action. Accordingly, THIS ACTION IS MADE FINAL. See MPEP § 706.07(a).
Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE
MONTHS from the mailing date of this action. Inthe event a first reply is filed within TWO
MONTHS of the mailing date of this final action and the advisory action is not mailelt-i until after
the end of the THREE-MONTH shortened statutory period, then the shortened statutory period
will expire on the date the advisory action is mailed, and any extension fee pursuant to 37
CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no'event,
however, will the statutory period for reply expire later than SIX MONTHS from the date of this

final action.

Any inquiry concerning this communication or earlier communications from the
examiner should be directed to Joni Hsu whose telephone number is 571-272-7785. The
examiner can normally be reached on M-F 8am-5pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s
supervisor, Ulka Chauhan can be reached on 571-272-7782. The fax phone number for the ~

organization where this application or proceeding is assigned is 571-273-8300.
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Information regarding the status of an application may be obtained from the Patent
Application Information Retrieval (PAIR) system. Status information for published applications
may be obtained from either Private PAIR or Public PAIR. Status information for unpublished
applications is available through Private PAIR only. For more information about the PAIR
system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

W Lhawdroa

ULKA CHAUHAN
SUPERVISORY PATENT EXAMINER
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Abstract

In computer graphics, rendering is the process by which an abstract description of a scene is
converted to an image. When the scene is complex, or when high-quality images or high frame
rates are required, the rendering process becomes computationally demanding. To provide the
necessary levels of performance, paraliel computing techniques must be brought to bear. Today,
parallel hardware is routinely used in graphics workstations, and numerous software-based
rendering systems have been developed for general-purpose parallel architectures. This article
provides an overview of the parallel rendering field, encompassing both hardware and software
systems. The focus is on the underlying concepts and the issues which arise in the design of
parallel renderers. We examine the different types of parallelism and how they can be applied in
rendering applications. Concepts from parallel computing, such as data decomposition and load
balancing, are considered in relation to the rendering problem. Our survey explores a number of
practical considerations as well, including the choice of architectural platform, communication and
memory requirements, and the problem of image assembly and display. We illustrate the
discussion with numerous examples from the parallel rendering literature, representing most of the
principal rendering methods currently used in computer graphics.

Keywords: Parallel rendering; Computer graphics, Survey

1. Introduction

In computer graphics, rendering is the process by which an abstract description of a
scene is converted to an image. Fig. 1 illustrates the basic problem. For purposes of this
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Light Sources
Scene Description

(3D Object Space)
Projection Plane
4 (2l Image Space)
% A
.-
«®
A”
Viewing Position

Fig. 1. The generic rendering problem. A three-dimensional scene is projected onto an image plane, taking into
account the viewing parameters and light sources.

discussion, a scene is a collection of geometrically-defined objects in three-dimensional
object space, with associated lighting and viewing parameters. The rendering operation
illuminates the cbjects and projects them into two-dimensional image space, where
color intensities of individual pixels are computed to yield a final image 2.

For complex scenes or high-quality images, the rendering process is computationally
intensive, requiring millions or billions of floating-point and integer operations for each
image. The need for interactive or real-time response in many applications places
additional demands on processing power. The only practical way to obtain the needed
computational power is to exploit multiple processing units to speed up the rendering
task, a concept which has become known as parallel rendering.

Parallel rendering has been applied to virtually every image generation technique
used in computer graphics, including surface and polygon rendering, terrain rendering,
volume rendering, ray-tracing, and radiosity. Although the requirements and approaches
vary for each of these cases, there are a number of concepts which are important in
understanding how parallelism applies to the generic renclering problem.

We begin our examination of parallel rendering in Section 2 by considering the types
of parallelism which are available in computer graphics applications. Section 3 then
introduces a number of concepts which are central to an understanding of parallel
rendering algorithms. Building on this base, Section 4 considers design and implementa-
tion issues for parallel renderers, with an emphasis on architectural considerations and
application requirements. Sections 2—4 are illustrated throughout with examples from
the parallel rendering literature. Section 5 completes our survey with an examination of
several paralle! rendering applications.

? For a comprehensive reference to the discipline of computer graphics. see [23).
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2. Parallelism in the rendering process

Several different types of parallelism can be applied in the rendering process. These
include funcrional parallelism, data parallelism, and temporal parallelism. These basic
types can also be combined into hybrid systems which exploit multiple forms of
parallelism. Each of these options is discussed below.

2.1. Functional parallelism

One way to obtain parallelism is to split the rendering process into several distinct
functions which can be applied in series to individual data items. If a processing unit is
assigned to each function (or group of functions) and a data path is provided from one
unit to the next, a rendering pipeline is formed (Fig. 2). As a processing unit completes
work on one data item, it forwards it to the next unit, and receives a new item from its
upstream neighbor. Once the pipeline is filled, the degree of parallelism achieved is
proportional to the number of functional units.

The functional approach works especially well for polygon and surface rendering
applications, where 3D geometric primitives are fed into the beginning of the pipe, and
final pixel values are produced at the end. This approach has been mapped very
successfully into the special-purpose rendering hardware used'in a variety of commercial
computer graphics workstations produced during the 1980°s and 1990's. The archetypal
example is Clark’s Geometry System [10,11], which replicated a custom VLSI geometry
processor in a 12-stage pipeline to perform transformation and clipping operations in
two and three dimensions.

Despite its success, the functional approach has two significant limitations. First, the
overall speed of the pipeline is limited by its slowest stage, so functional units must be
designed carefully to avoid bottlenecks. More importantly, the available parallelism is
limited to the number of stages in the pipeline. To achieve higher levels of performance,
an alternate strategy is needed.

2.2. Data parallelism

Instead of performing a sequence of rendering functions on a single data stream, it
may be preferable to split the data into multiple streams and operate on several items
simultaneously by replicating a number of identical rendering units (Fig, 3).

Because the data-paraliel approach can take advantage of larger numbers of proces-
sors, it has been adopted in one form or another by most of the software renderers which
have been developed for general-purpose ‘massively parallel’ systems. Data parallelism
also lends itself to scalable implementations, allowing the number of processing
elements to be varied depending on factors such as scen¢ complexity, image resolution,
or desired performance levels,

Two principal classes of data parallelism can be identified in the rendering process.
Object parallelism refers to operations which are performed independently on the
geometric primitives which comprise objects in a scene. These operations constitute the
first few stages of the rendering pipeline (Fig. 2), including modeling and viewing
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Transformation Phase

Viewing
Transformations

Z-butier
Compare & Store

Rasterization Phase

Display

Fig. 2. A typical polygon rendering pipeline. The number of function units and their order varies depending on
details of the implementation.

transformations, lighting computations, and clipping. Image parallelism occurs in the
later stages of the rendering pipeline, and includes the operations used to compute
individual pixel values. Pixel computations vary depending on the rendering method in
use, but may include illumination, interpolation, composition, and visibility determina-
tion. Collectively we call the object-level stages of the pipeline the transformation
phase, the image-level stages are grouped together to form the rasterization phase.

To avoid bottlenecks, most data-paralle] rendering systems must exploit both object
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Fig. 3. A data-parallel rendering system. Multiple data items are processed simultaneously and the results are
merged to create the final image.

and image parallelism. Obtaining the proper balance between these two phases of the
computation is difficult, since the workloads involved at each level are highly dependent
on factors such as the scene complexity, average screen area of transformed geometric
primitives, pixel sampling factor, and image resolution.

2.3. Temporal parallelism

In animation applications, where hundreds or thousands of high-quality images must
be produced for subsequent playback, the time to render individual frames may not be as
important as the overall time required to render all of them. In this case, parallelism may
be obtained by decomposing the problem in the time domain. The fundamental unit of
work is a complete image, and each processor is assigned a number of frames to render,
along with the data needed to produce those frames.

Fig. 4. A hybrid rendering architecture. Functional parallelism and data parallelism are both exploiled to
achieve higher performance.
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2.4. Hybrid approaches

It is certainly possible to incorporate multiple forms of parallelism in a single system.
For example, the functional- and data-parallel approaches may be combined by replicat-
ing all or part of the rendering pipeline (Fig. 4). This strategy was adopted for Silicon
Graphics’ RealityEngine {1], which combines multiple transformation and rasterization
units in a highly pipelined architecture to achieve rendering rates on the order of one
million polygons per second. In similar fashion, temporal parallelism may be combined
with the other strategies to produce systems with the potential for extremely high
aggregate performance.

3. Algorithmic concepts

Some problems can be parallelized trivially, requiring little or no interprocessor
communication, and with no significant computational overheads attributable to the
parallel algorithm. Such applications are said to be embarrassingly parallel, and
efficient operation can be expected on a variety of platforms, ranging from networks of
personal computers or graphics workstations up to massively parallel supercomputers.
Rendering algorithms which exploit temporal parallelism typically fall into this category.

Rendering methods based on ray-casting (such as ray-tracing and direct volume
rendering) also have embarrassingly parallel implementations in certain circumstances.
Because pixel values are computed by shooting rays from each pixel into the scene,
image-parallel task decompositions are very natural for these problems. If every
processor has fast access to the entire object database, then each ray can be processed
independently with no interprocessor communication required. This approach is practical
for shared-memory architectures, and also performs well on distributed-memory systems
when sufficient memory is available to replicate the object database on every processor.

In other cases the design of effective parallel rendering algorithms can be a
challenging task. Most parallel algorithms introduce overheads which are not present in
their sequential counterparts. These overheads may result from some or all of the
following:

— communication among tasks or processors

- delays due to uneven workloads

— additional or redundant computations

— increased storage requirements for replicated or auxiliary data structures
To understand how these overheads arise in parallel rendering algorithms, we need to
examine several key concepts. Some of these concepts (task and data decomposition,
load balancing) are common to most parallel algorithms, while others (coherence,
object-space lo image-space mapping) are specific to the rendering problem.

3.1. Coherence

In computer graphics, cohkerence refers to the tendency for features which are nearby
in space or time to have similar properties [64]. Many fundamental algorithms in the
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scanline
coherence

span coherence —————

Fig. 5. Spatial coherence in image space. Pixel values tend to be similar from one scanline to the next, and
from pixel to pixel within spans. Sequential rendering algorithms exploit this property to reduce computation
costs during scan conversion.

field rely on coherence in one form or another to reduce computational requirements.
Coherence is important to parallel rendering in two ways. First, parallel algorithms
which fail to preserve coherence will incur computational overheads which may not be
present in equivalent sequential algorithms. Secondly, parallel algorithms may be able to
exploit coherence to reduce communication costs or improve load balance.

Several types of coherence are important in parallel rendering. Frame coherence is
the tendency of objects, and hence resulting pixel values, to move or change shape or
color slowly from one image to the next in a related sequence of frames. This property
can be used to advantage in load balancing (for predicting workloads) and in image
display (by reducing the number of pixels to be transmitied).

Scanline coherence refers to the similarity of pixel values from one scanline to the
next in the vertical direction. The corresponding property in the horizontal direction is
called span coherence, which refers to the similarity of nearby pixel values within a
scanline (Fig. 5). Sequential rasterization algorithms rely on these two forms of sparial
coherence for efficient interpolation of pixel values between the vertices of geometric
primitives. When an image is partitioned to exploit image parallelism, coherence may be
lost at partition boundaries, resulting in computational overheads. The probability that a
primitive will intersect a boundary depends on the size, shape, and number of image
partitions [50,69], and hence is an important consideration in the design of parallel
polygon renderers {21].

A related notion in ray-casting renderers is data or ray coherence. This is the
tendency for rays cast through nearby pixels to intersect the same objects in a scene. Ray
coherence has been exploited in conjunction with data-caching schemes to reduce
communication loads in parallel volume rendering and ray-tracing algorithms [2,48).

3.2. Object-space to image-space mapping

The key to high performance on many parallel architectures is successful exploitation
of data locality to minimize remote memory references. In parallel rendering algorithms,
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we also want to partition the image and object data among the available processors to
achieve scalable performance and to accommodate increases in scene complexity and
image resolution. Unfortunately, these two goals are in conflict.

To understand the problem, we observe that, geometrically, rendering is a mapping
from three-dimensional object space to two-dimensional image space (Fig. 1). This
mapping is not fixed, but instead depends on the modeling transformations and viewing
parameters in use when a scene is rendered. If both the object and image data structures
are partitioned among the processors, then at some point in the rendering pipeline data
must be communicated among the processors. Because of the complexity and dynamic
nature of the mapping function, the communication pattemn is essentially arbitrary, with
each processor sending data to, and receiving data from, a large number of other
processors.

Managing this communication is one of the central issues for parallel renderers,
particularly on distributed-memory architectures. To better understand this problem,
Molnar et al. {50] developed a taxonomy of parallel rendering algorithms based on the
point in the rendering pipeline at which the object-space to image-space mapping occurs.
They classify algorithms as either sort-first, sort-middie, or sort-last, depending on
whether the communication step occurs at the beginning, riddle, or end of the rendering
pipeline. Their analysis of the computation and communication costs of each approach
concludes that none of them is inherently superior in all circumstances. Additional
analysis of the three strategies can be found in [15], and a detailed study of the
rarely-used sort-first method is presented in [51] Examples of sort-middle renderers
include [20,21], while the sort-last strategy is used in [14,16,28,40).

3.3. Task and data decomposition

Data-parallel rendering algorithms may be distinguished based on the way in which
they decompose the problem into individual workloads or tasks. There are two main
strategies. In an object-parallel approach, tasks are formed by partitioning either the
geometric description of the scene or the associated object space. Rendering operations
are then applied in parallel to subsets of the geometric data, producing pixel values
which must be combined to form a final image. In contrast, image-parallel algorithms
reverse this mapping. Tasks are formed by partitioning the image space, and each task
renders those geometric primitives which contribute to the pixels which it has been
assigned.

The choice of image-parallel versus object-parallel algorithms is not clear-cut.
Object-parallel algorithms tend to distribute object computations evenly among proces-
sors, but since geometric primitives usually vary in size, rasterization loads may be
uneven. Furthermore, the integration step needed to combine pixel values into a finished
image can place heavy bandwidth demands on memory busses or communication
networks.

Image-parallel algorithms avoid the integration step, but have another problem:
portions of a single geometric primitive may map to several different regions in the
image space. This requires that primitives, or portions of them, be communicated to
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multiple processors, and the corresponding Joss of spatial coherence results in additional
or redundant computations which are not present in equivalent sequential algorithms.

To achieve a better balance among the various overheads, some algorithms adopt a
hybrid approach, incorporating features of both object- and image-parallel methods
[20.21,53,62). These techniques pafition both the object and image spaces, breaking the
rendering pipeline in the middle and communicating intermediate results from object
rendering tasks to image rendering tasks.

3.4. Load balancing

In any parallel computing system, effective processor utilization depends on distribut-
ing the workload evenly across the system. In parallel rendering, there are many factors
which make this goal difficult to achieve. Consider a data-parallel polygon renderer 3
which attempis to balance workloads by distributing geometric primitives evenly among
all of the processors. First, polygons may have varying numbers of vertices, resulting in
differing operation counts for illumination and transformation operations. If back-face
culling is enabled, different processors may discard different numbers of polygons, and
the subsequent clipping step may introduce further variations. The sizes of the trans-
formed screen primitives will also vary, resulting in differing operation counts in the
rasterization routines. Depending on the method being used, hidden surface elimination
will also produce variations in the number of polygons to be rasterized or the number of
pixels to be stored in the frame buffer.

While this list may seem intimidating, we observe that if the number of input
primitives is large (as it usually is) and the primitives are randomly assigned to
processors, the workload variations described above will tend to even out. Unfortu-
nately, a much more serious source of load imbalance arises due to another factor: in
real scenes, the distribution of primitives in image space is not uniform, but tends to
cluster in areas of detail. Thus processors responsible for rasterizing dense regions of the
image will have significantly more work to do than other processors which may end up
with nothing more than background pixels. To make matters worse, the mapping from
object space to image space is view dependent, which means the distribution of
primitives in the image is subject to change from one frame to the next, especially in
interactive applications.

Strategies for dealing with this image-space load imbalance may be classified as
either sratic or dynamic. Static load balancing techniques rely on a fixed data partition-
ing to distribute local variations across large numbers of processors. Fig. 6 shows
several image partitioning strategies with different load balancing characteristics. Large
blocks of contiguous pixels (Fig. 6a) usually result in poor load balancing, while
fine-grained partitioning schemes (Fig. 6¢, d) distribute the load better. However,
fine-grained schemes are subject to computational overheads due to loss of spatial
coherence, as discussed in Section 3.1. Analytical and experimental results [68,69]

T . . .
Although the causes are different, similar imbalances arise in other rendering methods as well.
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{d (e}

Fig. 6. Image partitioning strategies. Shading indicates the assignment of image regions to four processors. (a)
Blocks of contiguous scanlines; (b) square regions: (c) interieaved scanlines, (d) pixel interleaving in two
dimensions; (¢) adaptive partitioning (loosely based on [70]).

indicate that square regions (Fig. 6b) minimize the loss of coherence since they have the
smallest perimeter-to-area ratio of any rectangular subdivision scheme.

Dynamic load-balancing schemes try to improve on static techniques by providing
more flexibility in assigning workloads to processors. There are two principal strategies.
The demand-driven approach decomposes the problem into independent tasks which are
assigned (o processors one-at-a-time or in small groups. When a processor completes
one task, it receives another, and the process continues until all of the tasks are
complete. If tasks exhibit large variations in run time, the most expensive ones must be
started early so that they will have time to finish while other processors are still busy
with shorter tasks. The alternative is to use large numbers of fine-grained tasks in order
to minimize potential variations, but this approach suffers increased overheads due to
loss of coherence and more frequent task assignment operations.

The alternate adaptive strategy tries to minimize pre-processing overheads by
deferring task partitioning decisions until one or more processors becomes idle, at which
time the remaining workloads of busy processors are split and reassigned to idle
processors. The result is that data partitioning is not predetermined, but instead adapts to
the computational load (Fig. 6e). A good example is Whitman's image-parallel polygon
renderer for the BBN TC2000 [70]. Whitman's renderer initially partitions the image
space into a relatively small number of coarse-grained tasks, which are then assigned to
processors using the demand driven model. When a processor becomes idle and no more
tasks are available from the initial pool, it searches for the processor with the largest
remaining workload and ‘steals’ half of its work. The principal overheads in the
adaptive approach arise in maintaining and rerricving non-local status information,
partitioning tasks, and migrating data.

While dynamic schemes offer the potential for more precise load balancing than static
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schemes, they are successful only when the improvements in processor utilization
exceed the overhead costs. For this reason, dynamic schemes are easiest to implement
on architectures which provide low-latency access to shared memory. In message-pass-
ing systems, the high cost of remote memory references makes dynamic task assign-
ment, data migration, and maintenance of global status information more expensive,
especially for fine-grained tasks.

4. Design and implementation issues

As the above discussion suggests, the design space for parallel rendering algorithms
is large and replete with trade-offs. How these trade-offs are resolved depends on a
variety of factors, including application requirements and characteristics of the target
architecture. In the following sections, we examine some of the issues which must be
considered.

4.1. Hardware versus software systems

Perhaps the most fundamental distinction between parallel rendering designs is that of
hardware-based versus software-based systems. Hardware systems, ranging from spe-
cialized graphics computers to graphics workstations and add-on graphics accelerator
boards, all employ dedicated circuitry to speed up the rendering task. The hardware
approach has been very successful, although commercial systems to date have been
designed primarily for polygon rendering. Furthermore, the specialization which con-
tributes to the high performance and cost-effectiveness of dedicated hardware also tends
to limit its flexibility. Specialized lighting models, high-resolution imaging, and sophisti-
cated rendering methods such as ray-tracing and radiosity must be implemented largely
in software, with a corresponding degradation in performance.

One way to boost the performance of software-based renderers is to implement them
on general-purpose parallel platforms, such as scalable parallel supercomputers or
networks of workstations. On these systems, the processors are not specifically opti-
mized for graphical operations, and communication networks often have bandwidth
himitations and software overheads which are not found in hardware-based rendering
systems. The challenge is to develop algorithms which can cope successfully with these
overheads in order to realize the performance potential of the underlying hardware.
Some recent examples indicate that this challenge can be met. Polygon renderers
developed for Intel’s Touchstone Delta and Paragon systems [21,40], Thinking Ma-
chines’ CM-200 and CM-5 [28,55), and Cray’s T3D [16] achieved performance levels
which equalled or exceeded those of contemporary high-end graphics workstations.

Software-based renderers are of interest on massively parallel architectures for
another reason: massive data. The datasets produced by large-scale scientific applica-
tions can easily be hundreds of megabytes in size, and time-dependent simulations may
produce this much data for hundreds or thousands of time-steps. Visualization tech-
niques are imperative in exploring and understanding datasets of this size, but the sheer
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volume of data may make the use of detached graphics systems impractical or
impossible. The alternative is to exploit the parallelism of the supercomputer to perform
the visualization and rendering computations in place, eliminating the need to move the
data. This has motivated recent work on software-based rendering systems which can be
embedded in parallel applications to produce live visual output attun time [16,17].

Networks of workstations and personal computers provide another type of platform
which can be used by software-based parallel renderers. These systems are inexpensive
and ubiquitous, and their processing power and memory capacities are increasing
dramatically. However, they tend to be connected by low-bandwidth networks, and
suffer from high communication latencies due to operating system overheads and costly
network protocols. For these reasons, they are best used in modest numbers for large
granularity computations where high frame rates are not an overriding consideration.
They are also well-suited for embarrassingly parallel applications which replicate the
object database or exploit temporal parallelism to render entire frames locally. Examples
of network-based systems include volume renderers [26,46), radiosity renderers
[59,60,72], and Pixar's photorealistic NetRenderMan system (57].

4.2, Shared vs. distributed memory

While traditional shared-memory systems offer the potential for low-overhead paral-
lel rendering, their performance scalability is limited by contention on the busses or
switch networks which connect processors to memory. Adding processors does not
increase the memory bandwidth, so at some point the paths to memory become saturated
and performance stalls. For this reason, most parallel architectures with large numbers of
processing elements employ a distributed-memory model, in which each processor is
tightly coupled to a local memory. The combined processor /memory elements are then
interconnected by a relatively scalable network or switch. The advantage is that
processing power and aggregate local memory bandwidth scale linearly with the number
of hardware units in the system. The disadvantage is that access to off-processor data
may take several orders of magnitude longer to complete than local accesses.

A number of recent systems combine elements of both architectures, using physically
distributed memories which are mapped into a global shared address space [13,36,41).
The shared address space permits the use of concise shared-memory programming
paradigms, and is amenable to hardware support for remote memory references. The
result is that communication overheads can be significantly lower than those found in
traditional message-passing systems, allowing algorithms with fine-grained communica-
tion requirements to scale to larger numbers of processors. _

From an algorithmic standpoint, shared-memory systems provide relatively efficient
access to a global address space, which in turn reduces the need to pre-partition major
data structures, simplifies processor coordination, and maximizes the range of practical
algorithms. To avoid resource contention, good shared-memory algorithms must decom-
pose the problem into tasks which eliminate memory hot spots and keep critical sections
and synchronization operations to a minimum. Since most shasred-memory systems are
augmented with processor caches and /or local memories. algorithms intended for these
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platforms still must strive for a high degree of locality in their memory reference
patterns.

Distributed-memory systems offer improved architectural scalability, but generally
incur higher costs for remote memory references. For this class of machines, managing
communication is a primary consideration. Paralle]l renderers must pay special attention
to this issue due to the large volume of intermediate data which must be re-mapped from
object space to image space. In the absence of specialized hardware support, global
operations and synchronization may be particularly expensive, and the higher cost of
data migration may favor static assignment of tasks and data.

4.3. SIMD vs. MIMD

Because MIMD architectures allow processors to respond to local differences in
workload, they would seem to be a good match for the highly variable operation counts
and data access pattemns which characterize the rendering process (see Section 3.4).
Furthermore, the MIMD environment lends itself to demand-driven and adaptive load
balancing schemes, where processors work independently on relatively coarse-grained
tasks. Numerous MIMD renderers have been implemerited, on a variety of hardware
platforms, encompassing all of the major rendering methods.

Despite the apparent mismatch between the variability of the rendering process and
the tight synchronization of SIMD architectures, a number of parallel renderers have
demonstrated good performance on SIMD systems [29,33,45,55). There are several
reasons for this. First of all, the flexibility of MIMD systems imposes a burden on
applications and operating systems, which must be able to cope with the arrival of data
from remote sources at unpredictable intervals and in arbitrary order. This often results
in complex communication and buffering protocols, particularly on distributed-memory
message-passing systems. The lock-step operation of SIMD systems virtually eliminates
these software overheads, resulting in communication costs which are much closer to the
actual hardware speeds.

Secondly, it is often possible to structure algorithms as several distinct phases, each
of which operates on a uniform data type. The rendering pipeline maps naturally onto
this structure, and the regularity of the data structures within each phase leads to uniform
operations, providing a good fit with the SIMD programming paradigm.

Finally, SIMD architectures usually contain thousands of simple processing elements.
Because of their sheer numbers, good performance can often be achieved even though
processors may not be fully utilized.

4.4. Communication

For renderers which exploit both image and object parallelism, a high volume of
interprocessor communication is inherent in the process (see Section 3.2). Managing this
communication is a central issue in renderer design, and the choice of algorithm can
have a significant impact on the timing, volume, and patterns of communication
{15,20,32,50,53]. There are three main factors which need to be considered: latency,
bandwidth, and contention. Latency is the time requirsd to set up a communication
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operation, irrespective of the amount of data to be transmitted. Bandwidth is simply the
amount of data which can be communicated over a channel per unit time, If a renderer
tries to inject more data into a network than the network can absorb, delays will result
and performance will suffer. Contention occurs when multiple processors are trying to
route data through the Same segment of the network simultaneously and there is
insufficient bandwidth to support the aggregate demand.

Hardware latencies for sending, receiving, and routing messages are in the sub-micro-
second range on many systems. However, software layers can boost these times
considerably — measured send and receive latencies on message-passing systems often
exceed the hardware times by a few orders of magnitude. Bandwidths exhibit similar
variations, ranging from hundreds of kilobytes /second on workstation networks up to
several gigabytes/second in dedicated graphics hardware. While latencies and band-
widths can usually be determined with reasonable precision, contention delays are more
difficult to characterize, since they depend on dynamic traffic patterns which tend to be
scene- and view-dependent,

A number of algorithmic techniques have been developed for coping with communi-
cation overheads in parallel renderers. A simple way to reduce latency is to accumulate
short messages into large buffers before sending them, thereby amortizing the cost over
many data items. Unfortunately, this technique does not scale well for the common case
of object- to image-space sorting, since the communication pattern is generally many-
to-many [20,21]. This implies that the number of messages generated per processor is
O( p), where p is the number of processors in the system. Assuming a fixed scene and
image resolution and a p-way partitioning of the object and image data, the number of
data items per processor is proportional to 1/p, and the number of data items per
message decreases as 1/p”. Hence overheads due to latency increase linearly with the
number of processors and amortization of these overheads becomes increasingly ineffec-
tive.

One solution is to reduce the algorithmic complexity of the communication by using
a multi-step delivery scheme [21,40). With this approach, the processors are divided into
approximately /p groups, each containing roughly yp processors. Data items intended
for any of the processors within a remote group are accumulated in a buffer and
transmitted together as a single large message to a forwarding processor within the
destination group. The forwarding processor copies the incoming data items into a
second set of buffers on the basis of their final destinations, merging them with
contributions from each of the other groups. The sorted buffers are then routed to their
final destinations within the local group.

While helpful in reducing latency, large message buffers can contribute to contention
delays when network bandwidth is insufficient {20]. The problem arises when a large
volume of data is injected into the network within a short period of time. If the traffic
fails to clear rapidly enough, processors must wait for data to arrive, and performance
suffers. The problem is most pronounced when workloads are evenly balanced, since
processors tend to be communicating at about the same time. By using a series of
intermediate-sized messages and asynchronous communication protocols, the load on the
network can be spread out over time, and data transfer can be overlapped with useful
computation.
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4.5. Memory constrainis

Memory consumption is another issue which must be considered when designing
parallel renderers. Rendering is a memory-intensive application, especially with complex
scenes and high-resolution images. As a baseline, a full-screen (1280 X 1024), full-color
(24 bits /pixel), z-buffered image requires on the order of 10 MB of memory for the
image data structures alone. The addition of features such as transparency and antialias-
ing can push memory demands into the hundreds of megabytes, a regime in which
parallei systems or high-end graphics workstations are mandatory.

The structure of a parallel renderer can have a majer impact on memory require-
ments, either facilitating memory-intensive techniques by partitioning data structures
across processors, or inhibiting scalability by requiring replicated or auxiliary data
structures. Sort-middle polygon rendering is one example of an approach which exhibits
good data scalability, since object and image data structures can be partitioned uniformly
among the processing elements. The cost of image memory in these systems is
essentially fixed. By contrast, some sort-last algorithms require the entire image memory
to be replicated on every processor, increasing the cost in direct proportion to the
number of processing elements in the system.

The issue of memory consumption involves many tradeoffs, and system designers
must balance application requirements, performance goals, and system cost. For exam-
ple, replicating object data in an image-parallel renderer can reduce or eliminate
overheads for interprocessor communication, a strategy which may work well for
rendering moderately complex scenes in low-bandwidth, high-latency environments,
such as workstation networks. On the other hand, rendering algorithms which are
embedded in memory-intensive applications must be careful to limit their own resource
requirements to avoid undue interference with the application [17]. In this case, data
scalability may be a more important consideration than absolute performance.

Some renderers operate in distinct phases, requiring each phase to complete before
the next phase begins. This implies that intermediate results produced by each phase
must be stored. rather than being passed along for immediate consumption. The amount
of intermediate storage needed for each phase depends on the particular data items being
produced, but in general is a function of the scene complexity. For complex scenes the
memeory overheads may be substantial, but they do exhibit data scalability, assuming the
object data is partitioned initially.

4.6. Image display

High-performance rendering systems produce prodigious quantities of output in the
form of an image stream. For full-screen, full-color animation (1280 X 1024 resolution,
24 bits /pixel, 30 frames/s), a display bandwidth of 120 MB /s is required. Since most
parallel renderers either partition or replicate the image space, the challenge is to
combine pixel values from multiple sources at high frame rates. Failure to do so will
create a bottleneck at the display stage of the rendering pipeline, limiting the amount of
parallelism which can be effectively utilized.

The display problem is best addressed at the architectural level, and hardware
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rendering systems have adopted several different techniques. One approach is to
integrate the frame buffer memory directly with the pixel-generation processors [1,24,58].
Highly parallel, multi-ported busses or other specialized hardware mechanisms are then
used to interface the distributed frame buffer to the video generation subsystem.

Alternatively, the rasterization engines and frame buffer may be distinct entities, with
pixel data being communicated from one to the other via a high-speed communication
channel. One example is the Pixel-Planes 5 system [25], which uses a 640 MB /s token
ring network to interconnect system components, including the pixel renderers and
frame buffer. The PixelFlow system [49] pushes transfer rates a step further, using a
pipelined image composition network with an effective interstage bandwidth in excess
of 4 GB/s. The frame buffer resides at the terminus of the pipeline, acting as a sink for
the final composited pixel values.

With general-purpose parallel computers, sustaining high frame rates is problematic,
since these systems often lack specialized features for image integration and display.
There are two principal issues, assembling finished images from distributed components,
and moving them out of the system and onto a display device. The bandwidth of the
interprocessor communication network is an important consideration for the image
assembly phase, since high frame rates cannot be sustained unless image components
can be retrieved rapidly from individual processor memaries.

Several current systems, including the Intel Paragon and Cray T3D, provide internal
networks with transfer rates in excess of 100 MB /s, which is more than adequate for
interactive graphics. The challenge on these systems is to orchestrate the image retrieval
and assembly process so that the desired frame rates can be achieved [18,19]. In the
absence of multi-ported frame buffers, the image stream must be serialized, perhaps with
some ordering imposed, and forwarded to an external device interface.

Assuming that the internal image assembly rate is satisfactory, the next bottleneck is
the 1/0 interface to the display. The typical configuration on current systems uses a
HIPPI interface [30] attached to an external frame buffer device. While many of the
existing implementations fail to sustain the 100 MB/s transfer rate of the HIPPI
specification, the technology is improving, and either HIPPI or emerging technologies
such as ATM [66] are likely to provide sufficient external bandwidth in the near future.

To avoid the bottlenecks associated with serial I/0 interfaces, some general-purpose
architectures incorporate mulli-ported frame buffers which attach either directly or
indirectly to the system’s internal communication network [4,67]. Pixels or image
segments must then be routed to the appropriate frame buffer ports and the inputs must
be synchronized to ensure coherent displays.

5. Examples of parallel rendering systems

Virtually all current graphics systems incorporate parallelism in one form or another.
We have illustrated the preceding discussion with a number of examples. In this section,
we round out our survey by examining additional representative systems. running the
gamut from specialized graphics computers to software-based terrain and radiosity
renderers. Qur coverage is by no means complete — many more examples can be found
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in the literature. Readers are encouraged to explore the references at the end of this
article for additional citations.

5.1. Polygon rendering

One of the earliest graphics architectures to exploit large-scale data parallelism was
Fuchs and Poulton’s classic Pixel-Planes system [24]. Pixel-Planes paraliclized the
rasterization and z-buffering stages of the polygon rendering pipeline by augmenting
each pixel with a simple bit-serial processor which was capable of computing color and
depth values from the plane equations which described each polygon. The pixel array
operated in SIMD fashion, taking as input a serial stream of transformed screen-space
polygons generated by a conventional front-end processor.

While Pixel-Planes provided massive image parallelism, it suffered from poor
processor utilization, since only those processors which fell within the bounds of a
polygon were active at any given time. The Pixel-Planes 5 architecture [25] rectifies
these deficiencies. Instead of a single large array of image processors, it incorporates
several smaller ones which can be dynamically reassigned to screen regions in demand-
driven fashion. Pixel-Planes 5 is a classic example of a sort-middle architecture, with
global communication occurring at the break between the transformation and rasteriza-
tion phases. By contrast, the newer PixelFlow design [49] implements a sort-last
architecture, in which each processing node incorporates a full graphics pipeline. Object
parallelism is achieved by distributing primitives across the nodes, while pixel paral-
letism is provided by a Pixel-Planes-style SIMD rasterizer on each node. A 256-bit-wide
pipelined interconnect supports the bandwidth-intensive image composition step.

Among commercially-available polygon renderers, Silicon Graphics’ RealityEngine
series [1] has enjoyed the most success, and is the renderer of choice in a host of
demanding applications, including virtual reality, real-time simulation, and scientific
visualization. The recently-introduced InfiniteReality system continues this tradition,
boosting polygon rendering rates by a factor of five over the second-generation
RealityEngine2.

5.2. Volume rendering

Graphics architectures have also been developed specifically for volume rendering
and ray-tracing applications. In volume rendering, one of the keys to performance is
providing high-bandwidth, conflict-free access to the volume data. This has prompted
the development of specialized volume memory structures which allow simultaneous
access to multiple data values. Kaufman and Bakalash’s Cube system [35] introduced an
innovative 3D voxel buffer which facilitates parallel access to cubes of volumetric data.
A linear array of simple SIMD comparators simultaneously evaluates a complete shaft
or ‘beam’ of voxels oriented along any of the three principal axes (x, y, or z). The
output of the comparator network is a single voxel chosen on the basis of transparency,
color, or depth values. By iterating through the other two dimensions, the complete
volume can be scanned at interactive rates. The mos! recent version of the Cube
architecture, Cube-4 [56], uses a more flexible memory organization to support a general
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ray-casting model with arbitrary viewing angles, perspective projections, and trilinear
interpolation of ray samples.

Knittel and StraBer [37] adopt a somewhat different approach with a VLSI-based
volume rendering architecture intended for desktop implementation. Memory is orga-
nized into eight banks in order to provide paralle]l access to the sets of neighboring
voxels which are needed for trilinear interpolation and gradient computations at sample
points along rays. The basic design consists of a volume memory plus four specialized
VLSI function units arranged in a pipeline. One functior unit performs ray-casting and
computes sample points along each ray, generating addresses into the volume memory.
A second unit accepts the eight data values in the neighborhood of each sample and
performs trilinear interpolation and gradient computations. A third unit computes color
intensities for each sample point using a Phong illumination model, while the fourth unit
composites the samples along each ray to produce a final pixel value. To obtain higher
performance, the entire pipeline can be replicated, with subvolumes of the data being
stored in each volume memory.

Recent developments in algorithms and computer architectures have combined to
produce substantial performance increases for software-based volume renderers as well.
One of the best examples is Lacroute’s image-paralle! renderer for shared-memory
systems [39], which is capable of interactive frame rates on large datasets (256° and
above) using commercially-available symmetric multiprocessors. Lacroute employs an
optimized shear-warp rendering algorithm [38] which exploits both image-space and
object-space coherence and incorporates demand-driven dynamic load balancing.

While the majority of volume rendering algorithms are designed for use with simple
rectilinear grids, many scientific and engineering applications rely on more complex
discretizations, including curvilinear, unstructured, and multi-block grids. This has
prompted the development of several specialized volume renderers. For non-rectilinear
and multi-block grids, Challinger developed an image-parallel shared-memory algorithm
and tested it on the BBN TC-2000 [7]. While the rendering phase showed good
speedups, a sorting step is needed to assign cell faces to image tiles, and this, along with
load imbalances, tended to limit performance. More recently, Ma developed a dis-
tributed-memory volume renderer for unstructured grids [47], and implemented it on the
Intel Paragon. He also noted performance limitations due to load imbalances. Together,
these results suggest that additional work is needed to develop scalable volume
rendering strategies for complex grids.

5.3. Ray-tracing

Due to its computational expense, its ability to produce realistic images, and its lack
of support in commercial graphics architectures, ray-tracing was an early and
frequently-addressed topic in parallel rendering. The SIGHT architecture [52] is one
example of a system which was designed specifically to support parallel ray-tracing. The
image space is partitioned across processors, with each processor responsible for tracing
those rays which emanate from its local pixels. Interprocessor communication is largely
avoided by replicating the object database in each processor’s memory. An additional
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level of parallelism is achieved through the use of multiple floating-point arithmetic
units in each processing element o speed up the ray intersection calculations.

On general-purpose parallel systems, the majority of the execution time in ray tracing
is spent on calculating the intersections of rays with objects in the scene. When the
object data can be shared or replicated over the processors, a task distribution based on
an image space subdivision will generally be very efficient. When the data size is larger
and has to be distributed over the processors, either static or demand-driven task
assignment can be used, both of which introduce additional communication and schedul-
ing overheads.

In the static approach the ray tasks are allocated to the processors that contain the
relevant data, and rays are communicated from one processor to another as needed. In
the demand-driven approach the ray tasks are delegated to processors on request, which
then have to fetch the needed object data, introducing extra communication. The amount
of communication can be reduced by caching object data, in effect exploiting coherence
in the scene. The static approach can handle arbitrarily large models but balancing
workloads among processors is very difficult, since the cost of calculating ray /object
intersections and evaluating secondary rays varies depending on the type and distribu-
tion of objects within the scene. The demand-driven approach has turned out to be rather
efficient even with limited cache sizes [2,27]. With larger caches even complex models
can be rendered successfully [63].

A hybrid load-balancing scheme for distributed-memory MIMD architectures was
developed independently by Salmon and Goldsmith [62] and Caspary and Scherson [6].
With this approach the object data is organized using a hierarchical spatial subdivision, a
well-known technique employed by sequential ray-tracers to reduce the search space for
intersection testing. The upper part of the hierarchy is replicated on every processor,
while the lower parts (which comprise the bulk of the object data) are distributed among
the processors. This results in two distinct types of tasks: one which performs intersec-
tion calculations in the upper hierarchy (ray traversal), and another which performs the
same calculations for the local data (ray-object intersection). Because the upper-level
hierarchy is available everywhere, any processor in the system can perform the initial
intersection tests on any ray, effectively decoupling the image-space and object-space
partitionings.

A similar hybrid strategy has been adopted for use in stochastic ray tracing with
explicit sampling of the diffuse reflectance [31,61). In this method data coherence is
almost completely lost, severely impacting the performance of caching schemes. How-
ever, for this application a different task distribution is needed: non-coherent ray tasks
are assigned statically to provide a basic load that is adjusted by demand-driven tasks
that execute the coherent ray tasks (mainly the primary rays and the shadow rays).

5.4. Radiosity renderers
Radiosity methods produce exceptionally realistic illumination of enclosed spaces by
computing the transfer of light energy among all of the surfaces in the environment.

Strictly speaking, radiosity is an illumination technique, rather than a complete rendering
method. However, radiosity methods are among the most computationally-intensive
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procedures in computer graphics, making them an obvious candidate for parallel
processing. Because the quality of a radiosity solution depends in part on the resolution
used to compute energy transfers, the polygons which describe objects are typically
subdivided into small patches. In radiosity methods, the primary expense arises in
generating the geometric form factors which are used to compute energy transfers
among patches. Hence, parallel implementations have focused on speeding up this
portion of the computation.

Although radiosity solutions can be computed directly by solving the system of
equations which describes the energy transfers between surfaces, all of the form factors
must be generated first, resulting in lengthy solution times which preclude interactive
use. For this reason, an alternate iterative approach known as progressive refinement
[12] has become popular. In this technique, the patch with the highest energy level at
each iteration is selected as the shooting patch, and energy is transferred from it to other
patches in the environment. This process repeats until the maximum level of untransmit-
ted energy drops below some specified threshold. In this way, an initial approximation
of the global illumination can be computed relatively quickly, with subsequent refine-
ments resulting in incremental improvements to the image quality.

Many of the paralle! radiosity methods described in the literature attempt to speed up
the progressive refinement process by computing energy transfers from several shooting
patches in parallel (i.e., several iterations are performed simultaneously)
[5.8.22,54,59,60]. Because the time to completc an iteration can vary considerably
depending on the geometric relationships between patches, load imbalance can seriously
degrade overall performance. Several implementations compensate for this using a
demand-driven strategy in which multiple worker processes independently compute
form factors for different shooting patches [54,59,60]. With this strategy, the complete
patch database is usually replicated on every processor, and a separate master process
picks shooting patches and completes the energy transfers using vectors of form factors
generated by the workers. This approach has several drawbacks, including a lack of data
scalability for complex scenes and the tendency for the master process to become a
bottleneck as the number of workers increases.

The alternative is to distribute the patch database and radiosity computations across
all of the processors. This strategy necessitates global communication in order to
compute form factors and complete the energy transfers from shooting patches. Capin et
al. {5] used a simple ring network, circulating patch data and local results from processor
to processor in pipeiined fashion to obtain global solutions. Because performance is
limited at each step of the computation by the siowest processor, load imbalances can
have a profound effect on overall performance. By ensuring that patches belonging to
the same object are scattered across processors, variations in workload due to spatial
locality are minimized, and a rough static load balance is maintained. Additional
examples of radiosity renderers which use distributed databases can be found in [8,22].

The strategy of processing multiple shooting patches in paralle] perturbs the order of
execution found in the sequential version of the progressive refinement algorithm, and
this can lead to slower convergence, partially offsetting the benefits of parallel execu-
tion. The effect is minimal when only a few shooting patches are active [3], but becomes
more pronounced as the number of processors increases [5]. In order to exploit massive
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parallelism, a different approach is needed. Varshney and Prins developed a SIMD
radiosity renderer for a MasPar MP-1 with 4096 processing elements [65]. As in Capin’s
algorithm, patches are distributed uniformly among the processors. At each iteration, a
global reduction operation is used to find the shooting patch with the highest energy,
thus maintaining the Tonvergence properties of the sequential algorithm. All of the other
patches in the environment are then scan-converted onto the shooting patch, and form
factors are obtained by accumulating the resulting pixel values. Energy transfers are
performed in parallel using the results of the form factor computations. While this
algorithm is able to exploit the massive parallelism of its target architecture, load
imbalances in the scan conversion phase are found to be significant, and further static or
dynamic load balancing measures appear to be in order.

5.5. Terrain rendering

In terrain rendering, the problem is to generate a plausible representation of a real or
imaginary landscape as viewed from some point on or above the surface. Typically the
viewpoint will change over time, often under interactive control, and in some applica-
tions additional objects such as vegetation, buildings, or vehicles must be included in the
scene. Terrain rendering techniques have been widely applied in areas such as flight
simulation, scientific data analysis and exploration, and the creation of virtual land-
scapes for entertainment or artistic purposes. The need for high-quality images, high
frame rates, rapid response to changes in viewpoint, and the ability to navigate through
large datasets has stimulated the development of parallel terrain rendering techniques.

Although a variety of methods can be used to render terrain, most of the parallel
techniques described in the literature begin with an aerial or satellite image of an actual
planetary surface. This image is registered with a separate elevation dataset of the same
region, typically represented by a two-dimensional grid with an associated height field.
The problem, then, is to assign an elevation value to pixels in the input image and
project them onto a display with hidden surfaces eliminated. This technique is known as
forward projection, in contrast to ray-casting methods which begin at the eye point and
project rays through display pixels into the scene. With the forward projection approach,
care must be taken to account for the mismaich between input and output image
projections, filling in gaps in the output image and compositing input pixels which map
to the same location in screen space.

Kaba et al. [33,34] developed data-parallel terrain rendering techniques for the
Princeton Engine, a programmable SIMD system originally designed for real-time
processing of digital video [9). Their methods utilize an object-parallel task decomposi-
tion, distributing the input image and elevation datasets among the processors by
assigning complete columns of pixels to processors. Before projecting the data onto the
display, it must be rotated and scaled to account for the viewing direction and altitude.
This is accomplished efficiently by decomposing the necessary transformations into a
sequence of shear, shear/scale, and transpose operations. Hidden surfaces are elimi-
nated by scanning the transformed data from front-to-back, one horizontal scanline at a
time. The pixels in each scanline are processed in parallel. With each pass, a horizon
line is updated; only those pixels which lie above the current horizon line will be visible.
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The system is capable of rendering terrain fly-overs at 30 frames/s using 512 X 512
resolution and 8-bit color, or 15 frames/s with 24-bit color.

At the Jet Propulsion Laboratory, Li and Curkendall have developed techniques for
rendering planetary surfaces using a variety of large-scale distributed-memory architec-
tures, including Intel’s iPSC,/860, Delta, and Paragon systems, and Cray's T3D. Like
Kaba, they use surface images registered with elevation data, and project object-space
pixels into screen space. While their initial methods [42] partitioned the input data by
horizontal slices and assigned them to processors in interleaved fashion, more recent
implementations use rectangular tiles with either interleaved [44] or random [43]
assignment. The random strategy provides a measure of stochastic load balancing,
reducing sensitivity to hot spots in the data which may occur when the view zooms in on
~small terrain regions.

While the two previous examples both exploited data parallelism, other approaches
are certainly possible. Wright and Hsieh [71] describe a pipelined terrain rendering
algorithm which has been implemented in hardware. As in the other examples, a forward
prajection technique is used to map from object to image space, but the surface data and
objects in the scene are represented as specialized volume elements (voxels). The
architecture consists of two concatenated pipelines, one for voxel processing and one for
pixel processing. The voxel pipeline scans through the database, generating columns of
voxels which are illuminated, transformed into viewing coordinates, and rasterized into
pixels. The pixel pipeline projects pixels from polar viewing coordinates into screen
space, performs haze, translucency, and z-buffering calculations, and normalizes pixel
intensities. A variety of techniques are applied at different levels in the pipeline to
reduce temporal and spatial aliasing. The hardware implementation is capable of
rendering 10 frames/s at 384 X 384 resolution, a speedup of more than three orders of
magnitude over a software-based sequential implementat:on.

6. Summary

Demanding applications such as real-time simulation, animation, virtual reality,
photo-realistic imaging, and scientific visualization all benefit from the use of paral-
lelism to increase rendering performance. Indeed, these applications have been primary
motivators in the development of parailel rendering methods. We have examined many
of the general principles and algorithmic approaches which apply to computer graphics
rendering on parallel architectures, and surveyed representative implementations in both
hardware and software.

As our discussion illustrates, the algorithm or architecture designer is faced with a
wide range of implementation strategies and a complex series of tradeoffs. A successful
parallel renderer must take into account application requirements, architectural parame-
ters, and algorithmic characteristics. As the rapidly growing performance of rendering
systems indicates, there have been numerous successes, but these are balanced by other
attempts which have fallen short. Many challenges remain, particularly in the areas of
scalability, load balancing, communication, and image assembly. Finding solutions to
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these problems will motivate further explorations in paralle]l rendering as computer
architectures advance into the teraflops regime.
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InfiniteReality: A Real-Time Graphics System

John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher J. Migdal
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ABSTRACT

The InfiniteReality™ graphics system is the first gencral-purpose
workstation system specifically designed 1o deliver 60Hz steady
frame rate high-quality rendering of complex scenes. This paper
describes the InfiniteReality system architecture and presents novel
featres designed to handle extremely large texture databases,
maintain control over frame rendering time, and allow user custom-
ization for diverse video output requirements. Rendering perfor-
mance expressed using traditional workstation metrics exceeds
seven miliion lighted, textured, antialiased triangles per second, and
710 million textured antialiased pixels filled per second.

CR Categories and Subject Descriptors: 1.3.1 [Computer
Graphics]: Hardware Architecture; 1.3.3 [Computer Graph-
ics]: Picture/lmage Generation

1 INTRODUCTION

This paper describes the Silicon Graphics InfiniteReality architec-
wure which is the highest performance graphics workstation ever
commercially produced. The predecessor to the InfiniteReality sys-
tem, the RealityEngine™, [Akel93) was the first example of what
we term a third-generation graphics system, As a third-generation
system, the target capability of the RealityEngine was to render
lighted, smooth shaded, depth buffered. texture mapped, antialiased
triangles. The level of realism achieved by RealityEngine graphics
was well-maiched to the application requirements of visual simula-
tion (both flight and ground based simulation), location based enter-
tainment [Paus96], defense imaging, and virtual reality. However,
application success depends on two areas: the ability to provide
convincing levels of realism and to deliver real-time performance of
constant scene update rates of 60Hz or more. High frame rates
reduce interaction latency and minimize symptoms of motion sick-
ness in visual simulation and virtual reality applications. If frame
rates are not constant, the visual integrity of the simulation is com-
promised.

InfiniteReality is also an example of a third-generation graphics
system in that its target rendering quality is similar 1o that of Reali-
tyEngine. However, where RealityEngine delivered performance in
the range of 15-30 Hz for most applications, the fundamental
design goal of the InfiniteReality graphics system is to deliver real-
time performance to a broad range of applications. Furthermore, the
goal is to deliver this performance far more economically than com-
petitive solutions.

Author contacts: {montrym | drb | dignam | migdal | @sgi.com

Most of the features and capabilities of the InfiniteReality architec-
ture are designed 1o support this real-time performance goal. Mini-
mizing the time required to change graphics modes and state is as
important as increasing raw transformation and pixel fill rate. Many
of the targeted applications require access Lo very large textures
and/or a great number of distinct textures. Permanently storing such
large amounts of texture data within the graphics system itself is not
economically viable. Thus methods must be developed for applica-
tions 10 access 2 “virtual texture memory” without significantly
impacting overall performance. Finally, the system must provide
capabilities for the application to monitor actual geometry and fill
rate performance on a frame by frame basis and make adjustments
if necessary 1o maintain a constant 60Hz frame update rate.

Aside from the primary goal of real-time application performance,
two other areas significantly shaped the system architecture. First,
this was Silicon Graphics® first high-end graphics system to be
designed from the beginning to provide native support for
OpenGL™ . Vo support the inherent flexibility of the OpenGL. archi-
tecture, we could not take the traditional approach for the real-time
market of providing a black-box solution such as a Right simulator
[Scha83].

The InfiniteReality system is fundamentally a sort-middle architec-
wre [Moln94]. Although interesting high-performance graphics
architectures have been implemented using a sort-last approach
[Moln92][Evan92], sort-last is not well-suited to supporting
OpenGL framebuffer operations such as blending. Furthermore,
sparse sort-last architectures make it difficult to rasterize primitives
into the framebuffer in the order received from the application as
required by OpenGL.

The second area that shaped the graphics architecture was the need
for the InfiniteReality system to integrate well with two generations
of host platforms. For the first year of production, the InfiniteReal-
ity sysiem shipped with the Onyx host platform. Currently, the Infi-
niteReality system integrates into the Onyx2 platform. Not only
was the hos: to graphics interface changed between the 1wo sys-
tems, but the /O performance was also significantly improved.
Much effort went into designing a graphics system that would ade-
quately support both host platforms.

The remaincer of the paper is organized as follows. The next sec-
tion gives an architectural overview of the system. Where appropri-
ate, we contrast our approach to that of the RealityEngine sysiem.
Section 3 elaborates on novel functionality that enables real-time
performance and enhanced video capabilities. Section 4 discusses
the performance of the system. Finally, concluding remarks are
made in Section 5.

2 ARCHITECTURE

It was a goal 1o be able 1w easily upgrade Onyx RealityEngine sys-
tems to InfiniteRenlity graphics. Accordingly, the physical parti-
- tioning of the InfiniteReality boardset is similar o that of
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RealityEngine; there are three distinct board types: the Geometry,
Raster Memory, and Display Generator boards (Figure 1).

The Geometry board comprises a host computer interface, com-
mand interpretation and geometry distribution logic, and four
Geomeury Engine processors in a MIMD arrangement. Each Ras-
ter Memory board comprises a single fragment generator with a
single copy of texture memory, B0 image engines, and enough
framebuffer memory to allocate 512 bits per pixel to a 1280x1024
framebuffer. The display generator board contains hardware to
drive up to eight display output channels, each with its own video
timing generator, video resize hardware, gamma correction, and
digital-t0-analog conversion hardware.

Systems can be configured with one, two or four raster memory
boards, resulting in one, two, or four fragment generators and 80,

160, or 320 image engines.
Host System Bus
i

Vertax Bus.
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Figure |: Board-level block diagram of the maximum
configuration with 4 Geometry Engines, 4 Raster Memory boards,
and a Display Generator board with 8 output channels.
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2.1 Host Interface

There were significant system constraints that influenced the archi-
tectural design of InfiniteReality. Specifically, the graphics system
had to be capable of working on two generations of host platforms.
The Onyx2 differs significantly from the shared memory multipro-
cessor Onyx in that it is a distributed shared memory multiproces-
sor system with cache-coherent non-uniform memory access. The
maost significant difference in the graphics system design is that the
Onyx2 provides twice the host-to-graphics bandwidth (400MB/sec
vs. 200MB/sec) as does Onyx. Our challenge was to design a sys-
tem that would be matched to the host-to-graphics data rate of the
Onyx2, but still provide similar performance with the limited /O
capabilitics of Onyx.

We addressed this problem with the design of the display list sub-
system. In the RealityEngine system, display list processing had
been handied by the host. Compiled display list objects were
stored in host memory, and one of the host processors traversed the
display list and transferred the data to the graphics pipeline using
programmed 1/O (P10).

With the InfiniteReality system, display fist processing is handled
in two ways. First, compiled display list objects are stored in host
memory in such a way that lcal display objects can be “pulled”
into the graphics subsystem using DMA transfers set up by the
Host Imerface Processor (Figure |). Because DMA transfers are
faster and more efficient than PIO, this technique significantly
reduces the computational load on the host processor so it can be
better utilized for application computations. However, on the origi-
nal Onyx system, DMA transfers alone were not fast enough to
feed the graphics pipe at the rate at which it could consume data.
The solution was to incorporate local display list processing into
the design.

Attached to the Host Interface Processor is |6MB of synchronous
dynamic RAM (SDRAM). Approximately 15MB of this memory
is available to cache leaf display list objects. Locally stored display
lists are traversed and processed by an embedded RISC core,
Based on a priority specified using an OpenGL extension and the
size of the display list object, the OpenGL display list manager
determines whether or not a display list object should be cached
locally on the Geometry board. Locally cached display lists are
read at the rnaximum rate that can be consumed by the remainder
of the InfiniteReality pipeline. As a result, the local display list
provides a mechanism to mitigate the host to graphics I/0 bottle-
neck of the original Onyx. Note that if the total size of leaf display
list objects exceeds the resident 15MB limit, then some number of
objects will be pulled from host memory at the reduced rate.

2.2 Geometry Distribution

The Geomelry Distributor (Figure 1) passes incoming data and
cornmands from the Host Interface Processor to individual Geome-
try Engines for further processing. The hardware supports both
round-robin and least-busy distribution schemes. Since geometric
processing requirements can vary from one vertex to another, a
least-busy distribution scheme has a slight performance advantage
over round-robin. With each command, an identifier is included
which the Cieometry-Raster FIFO (Figure 1) uses 1o recreate the
original order of incoming primitives.

2.3 Geometry Engines

When we began the design of the InfiniteReality system, it became
apparent that no commercial off-the-shelf floating point processors
were being developed which would offer suitable price/perfor-
mance. As a result, we chose to implement the Geomeury Engine
Precessor as a semicustom application specific integrated circuit

(ASIC).
The hean of the Geometry Engine is a single instruction muitiple

datapath (SIMDy) arrangement of three foating point cores, each of
which comprises an ALU and a multiplier plus a 32 word register
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file with iwo read and two write ports (Figure 2). A 2560 word on-
chip memory holds clements of OpenGL state and provides scratch
storage for intermediate calculations. A portion of the working
memory is used as a queue for incoming vertex data. Early simula-
tions of microcode fragments confirmed that high bandwidth to
and from this memory would be required to get high utilization of
the floating point hardware. Accordingly, each of the three cores
can perform two reads and onc write per instruction to working
memory. Note that working memory allows data to be shared eas-
ily among cores. A dedicated float-to-fix converter follows each
core, through which one floating point result may be written per
instruction.

From Geometry Engine Digtributor

2560 x 32 Working Memory

To Geometry Engine Oulput FIFOs

Figure 2: Geometry Engine

We used a very simple scheduler to evaluate the performance
cffect of design trade-offs on critical microcode fragments. One of
the trade-offs considered was the number of pipeline stages in the
floating point arithmetic blocks. As we increased the depth of the
pipeline from one to four stages, the machine’s clock speed and
throughput increased. For more than four stages, even though the
clock speed improved, 1otal performance did not because our code
fragments did not have enough unrelated operations to fill the
added computation slots.

Quite often machine performance is expressed in terms of vertex
rates for triangles in long strips whereas application performance
is much mere likely to be determined by how well a system han-
dles very short strips, with frequent mode changes. The problem of
accelerating mode changes and other non-benchmark operations
has enormous impact on the microcode architecture, which in turn
influences aspects of the instruction set architecture.

To accelerate mode change processing, we divide the work associ-
ated with individual OpenGL modes into distinct code modules.
For example, one module can be written to calculate lighting when
one infinite light source is enabled, another may be tuned for one
local point hght source. and still another could handle a single
spotlight. A general module exists to handle all cases which do not
have a corresponding wned module. Similarly, different microcode
modules would be written to support other OpenGL modes such as
Lexture coordinate generation or backface elimination. A table con-

sisting of pointers 1o the currently active modules is maintained in
GE working memory. Each vertex is processed by executing the
active modules in the table-specified sequence. When a mode
change occurs, the appropriate table entry is changed. Vertex pro-
cessing time degrades slowly and predictably as additional opera-
tions are iumed on, unlike microcode architectures which
implement hyper-optimized fast paths for selected bundles of
mode settings, and a slow general path for all other combinations.

Since microcode modules tend 1o be relatively short, it is desirable
to avoid the overhead of basic-block preamble and postamble
code. All fields necessary to launch and retire a given operation,
including memory and register file read and write controls, are
specified ir: the launching microinstruction.

2.4 Geometry-Raster FIFO

The output streams from the four Geometry Engines are merged
into a single stream by the Geometry-Raster FIFO. A FIFO large
enough to hold 65536 vertexes is implemented in SDRAM. The
merged geometry engine oulput is written, through the SDRAM
FIFOQ, to the Vertex Bus. The Geometry-Raster FIFO contains a
256-word shadow RAM which keeps a copy of the latest values of
the Fragment Generator and Image Engine control registers. By
eliminating the need for the Geometry Engines to retain shadowed
raster state in their local RAMs, the shadow RAM permits raster
mode changes to be processed by only one of the Geometry
Engines. This improves mode change performance and simplifies
context switching.

2.5 Vertex Bus

One of our most important goals was lo increase transform-limited
triangle rates by an order of magnitude over RealityEnginc. Given
our desire to retain a sort-middle archilecture, we were forced 10
increase the efficiency of the geometry-raster crossbar by a factor
of ten. Whereas the RealityEngine system used a Triangle Bus to
move triangle parameter slope information from its Geometry
Engines to its Fragment Generators, the InfiniteReality system
employs a Vertex Bus to transfer only screen space vertex informa-
tion. Vertex Bus data is broadcast to all Fragment Generators. The
Vertex Bus protocol supports the OpenGL triangle strip and trian-
gle fan constructs, so the Veriex Bus load corresponds closely to
the load on the host-to-graphics bus. The Geometry Engine trian-
gle strip workload is reduced by around 60 percent by not calcu-
lating triangle setup information. However, hardware to assemble
screen space primitives and compute parameter slopes is now
incorporated into the Fragment Generators.

2.6 Fragment Generators

In order to provide increased user-accessible physical texture
memory capacity at an acceptable cost, it was our goal to have
orly one copy of texture memory per Raster Memory board. A
practical consequence of this is that there is also only one frag-
ment generator per raster board. Figure 3 shows the fragment gen-
crator structure. ’

Connected vertex streams are received and assembled into triangle
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primitives. The Scan Converter (SC) and Texel Address Calculator
(TA) ASICs perform scan conversion, color and depth interpola-
tion, perspective correct texture coordinate interpolation and level-
of-detail computation. Up to four fragments, corresponding to 2x2
pixel regions are produced every clock. Scan conversion is per-
formed by directly evalvating the parameter plane equations at
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Figure 3: Fragment Generator

each pixel [Fuch85] rather than by using an interpolating DDA as
was done in the RealityEngine system. Compared to a DDA, direct
evaluation requires less setup time per triangle at the expense of
more computation per pixel. Since application trends are towards
smaller triangles. direct parameter evaluation is 2 more efficient
solution.

Each texture memory controller (TM) ASIC performs the texel
lockup in its four attached SDRAMSs, given texel addresses from
the TA. The TMs combine redundant texel requests from neighbor-
ing fragments to reduce SDRAM access. The TMs forward the
resulting texel values to the appropriate TF ASIC for texture filter-
ing, lexture environmenl combination with interpolated color, and
fog application. Since there is only one copy of the texture mem-
ory distributed across all the texture SDRAMSs, there must exist a
path from all 32 texture SDRAMs to all Image Engines. The TMs
and TFs implement a two-rank omega network [Hwan84] 10 per-
form the required 32-to-80 sort.

2.7 Image Engines

Fragments oulput by a single Fragment Generator are distributed
equally among the 80 Image Engines owned by that generator.
Each Image Engine controls a single 256K x 32 SDRAM that
comprises its portion of the framebuffer. Framebuffer memory per
Image Engine is twice that of RealityEngine, so a single raster
board systern supports eight sample antialiasing at 1280 x 1024 or
four sample antialiasing at 1920 x 1200 resolution.

2.8 Framebuffer Tiling

Three factors contributed to development of the framebuffer tiling
scheme: the desire for load balancing of both drawing and video
requests; the various restrictions on chip and board level packag-
ing; and the requirement to keep on-chip FIFOs small,

In systems with more than one fragment generator, different frag-
ment generators are each responsible for two-pixel wide vertical
strips in framebuffer memory. If horizontal strips had been used
instead, the resulting load imbalance due to display requests would
have required excessively large FIFOs at the fragmemt generator
inputs. The strip width is as narrow as possible to minimize the
load imbalance due to drawing among fragment generators.

The Fragment Generator scan-conversion completes all pixels in a
two pixel wide vertical strip before proceeding to the next strip for
every primitive. To keep the Image Engines from limiting fill rate
on lasge area primitives, all Image Engines must be responsible for
part of every vertical strip owned by their Fragment Generator.
Conversely. for best display request load balancing, all Image
Engines must occur equally on every horizontal line. For a maxi-
mum systern, the Image Engine framebuffer tiling repeat pattern is
a rectangle 320 pixels wide by 80 pixels tall (320 is the number of
tmage Engines in the system and 80 is the number of Image
Engines on one Raster Memory board).

2.9 Display Hardware

Each of the 80 Image Engines on the Raster Memory boards drives
one or two bit serial signals to the Display Generator board, Two
wires are driven if there is only one Raster Memory board, and one
wire is driven if there are two or more. Unlike RealityEngine, both
the number of pixels sent per block and the aggregate video band
width of 1200 Mbyies/sec are independent of the number of Raster
Memory boards. Four ASICs on the display board (Figure 4) de-
serialize and de-interleave the 160 bit streams into RGBAIQ,
RGB12, L16, Stereo Field Sequential (FS), or color indexes. The
cursor is also injected at this point. A total of 32,768 color index
map entries are available.

Color component width is maintained at 12 bits through the
gamma table oulputs. A connector site exists with a full 12 bit per
component bus, which is used to connect video option boards.
Option boards support the Digital Video Standard CCIR 601 and a
digital pixel output for hardware-in-the-loop applications.

The base display system consists of two channels, expandable to
eight. Each display channel is autonomous, with independent
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video timing and image resizing capabilities. The final channel
output drives eight-bit digital-to-analog converters which can run
up to a 220Mhz pixel clock rate. Either RGB or Left/Right Stereo
Field Sequential is available from each channel.

To Raster Memaory Board From Raster Memory Board

160
Vidao
Reques!
Video I;l:al azs
eques! sari;
Emiber t De-interieaved

Channels 2-8

Figure d4: Display System

Video synchronization capabilities were expanded o support inde-
pendent timing per channel (Figure 5). Swap events are con-
strained to happen during a common interval., Three different
methods are used to synchronize video timing to external video
sources. Framelocking is the ability to rate lock, using line rate
dividers, two different video outputs whose line rates are related by
small integer ratios. Line rate division is limited by the program-
mability of the phase-locked-loop gain and feedback parameters
and the jitter spectrum of the input genlock source. The start of a
video frame is detected by programmable sync pattern recognition
hardware. Disparate source and displayed video formats which
exceed the range of framelock are vertically locked by simply per-
forming an asynchronous frame reset of the display video timing
hardwarc. In this instance. the pixel clock is created by multiplying
an oscillator clock. Identical formats may be genlocked. With
frame lock or genlock, the frame reset from the pattern recognition
hardware will be synchronous, and therefore cause no disturbance
of the video signal being sent to the monitor.

Genaralor

X B channels

Frame Reset /
Genlock, Framelock.

Figure 5: Video Synchronization

Centain situations require the synchronization of drawing between
separate graphics systems. This is required in visual simulation
installations where multiple displays are each driven by their own
graphics system. If one graphics system takes longer than a frame
time to draw a scene, the other graphics systems must be kept in
lock step with the slowest one. InfiniteReality uses an external
swap ready wire connecting all the graphics systems together in a
wired AND configuration.

The video outputs of all the graphics systems are first locked:
together. Each pipe monitors the swap ready wire to determine if
all the other pipes have finished drawing. A local buffer swap is
only allowed to happen if all the graphics systems are ready 10
swap. In order to cope with slight pipe to pipe variations in video
timing, a write exclusion window exists around the swap ready
register to guarantee all pipes make the same decision.

Finally an NTSC or PAL output is available with any of the eight
channels as the source. Resizing hardware allows for the scaling of
any source resolution or windowed subset, to NTSC or PAL reso-
lution.

3 FEATURES
3.1 Virtual Texture

The size of texture databases is rapidly increasing. Texture data
that cover the entire world at one meter resolution will be commer-
cially available in 1998. This corresponds t0 a texiure size of
40.000,000 x 20,000,000 texels. Advanced simulation users need
to be able to navigate around such large data in real-time. To meet
this need, the InfiniteReality system provides hardware and soft-
ware support for very large virtual textures, that is, textures which
are too large 1o reside in physical texre memory.

Previous efforts 10 support texwre databases larger than available
texture memory required that the scene database modeler partition
the original texture into a number of smaller tiles such that a subset
of them fit into physical texture memery. The disadvantage of this
approach is that the terrain polygons need to be subdivided so that
no polygon maps to more than one texture tile. The InfiniteReality
system, by contrast, allows the application to treat the original
large texture: as a single exture,

We introduce a representation called a c¢lip-map which signifi-
cantly reduces the storage requirements for very large textures. To
illustrate the usefulness of the clip-map representation, we observe
that the amount of texture data that can be viewed at one time is
limited by the resolution of the display monitor. For example,
using trilincar mip-map textures on a 1024x1024 monitor, the
highest resolution necessary occurs just before a transition to the
next coarser level of detail. In this case the maximum amount of
resident tex:ure required for any map level is no more than 2048 x
2048 for the finer map, and 1024x1024 for the coarser map,
regardless of the size of the original map level. This is the worst
case which occurs when the texture is viewed from directly above.
In most applications the database is viewed obliquely and in per-
spective, This greatly reduces the maximum size of a particular
level-of-detail that must be in texture memory in order to render a
frame.
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Recall that a mip-map represents a source image with a pyramidal
set of two-dimensional images, each of which covers the lull arca
of the source image at successively coarser resolution [Will83). A
clip-map can be thought of as a subset of the mip-map of the entire
texture. It has two parts: a clip-map pyramid which is exactly the
same as the coarser levels of the original mip-map, and 2 clip-map
stack which holds a subset of the data in the original mip-map for
the finest levels of detail. The clip-map stack levels all have the
same Size in texture memory, but each successively coarser level
covers four times the source image arca of the immediately finer
level. Figure 6 illustrates the relationships between levels in a clip-
map when viewed from above a textured database. The clip-map
stack levels are centered on a common point. Each stack level rep-
resents larger and larger arcas as the resolution of the data they
contain becomes coarser and coarser. Figure 7 illustrates a clip-
map for a 32K x 32K source image using a 2K x 2K clip-map tile
size. Note that the clip-map representation requires about 1/64 the
storage of the equivalent 32K x 32K mip-map.

Clip-Map
Center Map Levels
3
i
-~ S

- |
/S = ]gv

Figure 6: Clip-Map Levels

Because the clip-map stack does not contain the entire texture the
position of the clip-map stack needs to be updated 1o track the
viewer’s position, or more optimally the center of the viewer's
gaze. As the viewer’s position or gaze moves, the contents of the
clip-map stack should be updated to reflect this movement. New
texture data is loaded into the texture memory to replace the tex-
ture data that is no longer required. The rate of update of texture
data is highest for the finest clip-map stack level and becomes less
for coarser stack levels of the clip-map. In the InfiniteReality sys-
tem, it is not necessary to replace all data in a clip-map level when
only a few texels actually need w0 be updated. The hardware loads
new texture data over the old and amomatically performs the cor-
rect addressing calculations using offset registers. Additionally, the
Fragment Generators contain registers that define the clip-map
center as it moves through the texture.

If the stack tile size is chosen correctly and the clip-map stack is
updated properly as the viewpoint moves through the scene, the
InfiniteReality system will produce images identical 10 those that
would have been produced if the entire source mip-map had been
resident in texture memory.

[t cannot always be guaranteed that the texwure data requested dur-

ing triangle rendering will be available at the requested level of
detail. This may occur if the size of the clip-map tile has been cho-
sen o be too small, or the update of the siack center failed 10 keep
pace with the motion of the viewer. The InfiniteReality texture sub-
system detects when texture is requested at a higher resolution than
is available in texture memory. [t substiltes the best available data
which is data at the correct spatial position, but at a coarser level-
of-detail than requested. As a resull, the rendered scene will have
regions where the texture will be coarser than if the entire mip-map
were Tesident in texture memory. However, it will otherwise be
rendered correctly. This substitution mechanism limits the required
clip-map tile size and reduces the required texture update rate.

Map Level
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Pertion of Source Imege
Covered by Map Level

Map Levels
{not to scale)
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Figure 7: 32Kx32K texture represented as a 2Kx2K clip-map.
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The Fragment Generator is limited to addressing a 32K x 32K clip-
map. The addressability of clip-maps can be extended to arbitrary
texture sizes through software, The software layer needs only to
keep track of and implement a transformation from an arbitrarily
large texture space into the texture space addressable by the hard-
ware.

3.2 Texture Loading and Paging

We minimize the performance impact of large amounts of texture
paging in the design of InfiniteRcality system. The graphics sub-
system interprets lexture images directly as specified by the
OpenGL programmer so no host processor translation is required.
The front end of the Geometry Subsystem includes pixel unpack-
ing and format conversion hardware; DMA hardware directly
implements stride and padding address arithmetic as required by
OpenGL. The Fragment Generators accepl raster-order texture
images at Vertex Bus-limited rates. To eliminate the need for the
host computer 1o make and retain copies of loaded textures for
context switching, the hardware supports texture image reads back
to the host.

The Geometry-Raster FIFO maintains a separate path through
which data bound for texture memory is routed. When the Frag-
ment Generators are busy with fill-limited primitives, pending tex-
ture data i1s transferred over the Vertex Bus and routed to write
queues in the TM ASICs. When a moderate amount of texture data
15 queued for a particular texture DRAM, the TM suspends draw
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access and writes the queue contents to that DRAM. Because total
bandwidth 1o and from texture memory is an order of magnitude
greater than that of the Veriex Bus, this action only slightly
impacts fill rate. For fill-limited scenes, however, this approach uti-
lizes Vertex Bus cycles which would otherwise go unused. Syn-
chronization barrier primitives ensure that no textre is referenced
until it has been fully loaded, and conversely, that no texture load-
ing occurs until the data to be overwritten is no longer needed.

3.3 Scene Load Management
3.3.1 Pipeline Performance Statistics

Regardless of the performance levels of a graphics system, there
may be times when there are insufficient hardware resources to
maintain a real-time frame update rate. These cases occur when the
pipeline becomes either geometry or fill rate limited. Rather than
extending frame time, it is preferable for the application to detect
such a situation and adjust the load on the pipeline appropriately.

The I[nfiniteReality system provides a mechanism for performing
feedback-based load management with application-accessible
monitoring instrumentation. Specifically, counters are maintained
in the Geometry-Raster FIFO that monitor stall conditions on the
Vertex Bus as well as wait conditions upstream in the geometry
path. If the counters indicate that there is geometry pending in the
Geometry-Raster FIFO, but writes to the Vertex Bus are stalled,
then the system is fill rate limited. On the other hand, if the FIFO is
empty, then the system is either host or geometry processing lim-
ited. By extracting these measurements, the application can take
appropriate action whenever a geometry or fill rate bottleneck
would have otherwise caused a drop in frame rate.

A common approach to a geometry limited pipeline is for the
application to temporarily reduce the complexity of objects being
drawn starting with those objects that are most distant from the
viewer [Funk93)[Rohl94]. This allows the application to reduce
the polygon count being sent to the pipeline without severely
impacting the visual fidelity of the scene, However, since distant
objects do not tend 1o cover many pixels, this approach is not well-
suited to the case where the pipeline is fill limited. To control fill
limited situations, the InfiniteReality uses a novel technique
termed dynamic video resizing.

3.3.2 Dynamic Video Resizing

Every frame, fill requirements are evaluated, and a scene is ren-
dered 1o the framebuffer at a potentially reduced resolution such
that drawing completes in less than one frame time. Prior to dis-
play on the monitor, the image is scaled up to the nominal resolu-
tion of the display format. Based on the current fill rate
requirements of the scene, framebuffer resolution is continuously
adjusted so that rendering can be completed within one frame time.
A more detailed explanation follows.

Pipeline statistics are gathered each frame and used to determine if
the current frame is close to being fill limited. These statistics are
then used to estimate the amount by which the drawing time
should be reduced or increased on the subsequent frame. Drawing
time is altered by changing the resolution at which the image is

rendered in the framebuffer. Resolution is reduced if it is estimated
that the new image cannot be drawn in less than a (rame time. Res-
olution can be increased if it was reduced in prior scenes. and the
current drawing time is less than one frame. The new frame may
now be drawn at a different resolution from the previous one. Res-
olution can be changed in X or Y or both. Magnifying the image
back up to the nominal display resolution is done digitally, just
prior to display. The video resizing hardware is programmed for
the matching magnification ratios, and the video request hardware
is programmed to request the appropriate region of the frame-
buffer. '

Finally, to ensure the magnification ratio is matched with the reso-
lution of the frame currently being displayed, loading of the mag-
nification and video request parameters is delayed until the next
swap buffer event for that video channel. This ensures that even if
scene rendering exceeds one frame time, the resizing paramelers
are not updated until drawing is finished.

Each channel is assigned a unique display 1D, and the swap event
is detected for each of these 1D's. This swap forces the loading of
the new resize parameters for the corresponding video channel,
and allows channels with different swap rates 10 resize.

Note that the effectiveness of this technique is independent of
scene content and does not require modifications to the scene data
base.

3.4 Video Configurability

One of the goals for the InfiniteReality system was to enable our
customers to both create their own video timing formats and to
assign formats to each video channel.

This required that the underlying video timing hardware had to be
more flexible than in the RealityEngine. Capabilities were
expanded in the video timing and request hardware’s ability to
handle colar field sequential, interlace, and large numbers of fields.
The biggest change needed was an expanded capability to detect
umique vertical sync signatures when genlocking to an extemnal
video signal. Since our customers could define vertical sync signa-
tures whose structure could not be anticipated, the standard
approach of simply hard-wiring the detection of known sync pat-
terns would have been inadequate. Therefore, each video channel
contains programmable pattern recognition hardware, which ana-
lyzes incoming external sync and generaies resets to the video tim-
ing hardware as required.

In previous graphics systems, multi-channe! support was designed
as an afterthought to the basic single channel display system. This
produced an implementation that was lacking in flexibility and was
not as well integrated as it could have been. In the RealityEngine
system, support for multiple channels was achieved by pushing
video data 1o an external display board. The software that created
multi-channel combinations was required 10 emulaie the system
hardware in order to precisely calculate how 10 order the video
data. Ordering had to be maintained so each channel’s local FIFO
would not overflow or underflow. This approach was not very
robust and made it impossible for our customers to define their
own formal combinations.
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In the InfiniteReality system, every video channel was designed to
be fully autonomous in that each has its own programmable pixel
clock and video timing. Each video channel contains a FIFO, sized
1o account for latencies in requesting frame buffer memory. Video
dala is requested based on cach channel’s FIFO levels. A round
robin arbiter is sufficient to guarantee adequate response time for
multiple video requests.

Format combinations are limited to video formats with the same
swap rate. Thus, the combination of 1280x1024@60Hz +
640x480@ 180Hz field sequential + 1024x768@ 120Hz stereo +
NTSC is allowed but combining 1920x1080@72Hz and 50Hz
PAL is not.

In order to achieve our design goal of moving more control of
video into the hands of our customers, two sofiware programs
were developed. The first program is the Video Format Compiler
or vfe. This program generates a file containing the microcode
used to configure the video timing hardware. The source files for
the compiler use a language whose syntax is consistent with stan-
dard video terminology. Source files can be generated automati-
cally using templates. Generating simple block sync formats can
be accomplished without any specific video knowledge other than
knowing the width, height and frame rate of the desired video dis-
play format. More complex video formals can be written by modi-
fying an existing source file or by starting from scratch. The Video
Formai Compiler generates an object file which can be loaded into
the display subsystem at any time. Both the video timing hardware
and the sync pattern recognition hardware are specified by the vfc
for cach unique video timing format.

The second program is the InfiniteReality combiner or ircombine.
Its primary uses are to define combinations of existing video for-
maits, verify that they operate within system limitations, and to
specify various video parameters, Both a GUI and a2 command line
version of this software are provided. Once a combination of video
formats has been defined. it can be saved out to a file which can be

Benchmark performance numbers for several key operations are
summarized in Tables 1, 2, and 3. In general, geometry processing
rates are seven 10 eight times that of the RealityEngine system and
pixel fill rates are increased by over a factor of three. Note that the
depth buffered fill rate assumes that every Z value passes the Z
comparison and must be replaced which is the worst case. In prac-
tice. not every pixel will require replacement so the actual depth
buffered fill rates will fall between the stated depth buffered and
non depth buffered rate.

Although the benchmark numbers are impressive, our design goals
focused on achieving real-time application performance rather
than the highest possible benchmark numbers. Predicting applica-
tion performance is a complex subject for which there are no stan-
dard accepted metrics. Some of the reasons that applications do not
achieve peak benchmark rates include the frequent execution of
mode changes (e.g. assigning a different texture, changing a sur-
face material, etc.), the use of short triangle meshes, and host pro-
cessing limilations. We include exccution times for commonly
performed mode changes (Table 4) as well as performance data for
shorter triangle meshes (Table 5). Practical experience with a vari-
ety of applications has shown that the InfiniteReality system is suc-
cessful in achieving our real-time performance goals.

We were pleasantly surprised by the wtility of video resizing as a
fill raie conservation tool. Preliminary simulations indicated that
we could expect to dynamically reduce framebuffer resolution up
10 ten percent in each dimension without substantially degrading
image quality. In practice, we find that we can frequently reduce
framebuffer resolution up to 25% in each dimension which results
in close to a 50% reduction in fill rate requirements.

11.3 Mtris/sec
9.5 Mtris/sec
7.1 Mtris/sec

unlit, untextured tstrips
unlit, textured tstrips
lit, textured tstrips

Table I: Non Fill-Limited Geometry Rates

loaded at a later time. The following is a partial list of ir bi
capabilities:

o Autach a video format to a specific video channel

o Verify that the format combination can exist within
system limits

o  Define the rectangular area in framebuffer memory to be
displayed by each channel

o Define how data is requested for interlace formats

o Set video parameters (gain, sync on RGB, setup eic.)

o  Define genlock parameters (internal/external, genlock
source format, horizontal phase, vertical phase)

o Control the NTSC/PAL encoder (source channel, input
window size, filter size)

o  Control pixel depth and size

4 PERFORMANCE

The InfiniteReality system incorporates 12 umique ASIC designs
implemented using a combination of 0.5 and 0.35 micron, three-
layer metal semiconductor fabrication technology.

830 Mpix/sec
710 Mpix/sec

nan-depth buffered, textured, antialiased
depth buffered, textured, antialiased

Table 2: Non Geometry-Limited Fill Rates (4 Raster Memory

boards)
|—RGBA8 | 83.1 Mpix/sec (332 Mb/sec) l
Table 3: Peak Pixel Download Rate
glMaterial 240.941 /sec
glColorMaterial 337.814/sec
glBindTexture 244,537 /sec
giMultMatrixf 1.110.779/sec
glPushMatrix/glPopMatrix 1,489,454/ sec

Table 4: Mode Change Rates

Length 2 triangle strips | 4.7 Mtris/sec J

Table 5: Geometry Rates for Shon Triangle Strips
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Length 4 triangle strips 7.7 Mitris/sec

Length 6 triangle strips 8.6 Mitris/sec

Length 8 triangle strips 9.0 Mitris/sec

11.3 Mtris/sec

Length 10 triangle strips

Table 5: Geometry Rates for Short Triangle Strips

The above numbers are for unlit, untextured triangle strips. Other
types of riangle strips scale similarty.

The performance of the InfiniteReality system makes practical the
use of multipass rendering techniques to enhance image realism.
Multipass rendering can be used to implement effects such as
rcflections, Phong shading, shadows, and spotlights [Sega92]. Fig-
ure 8 shows a frame from a multipass rendering demonstration
running at 60Hz on the InfiniteReality system. This application
uses up to five passes per frame and renders approximately 40,000
triangles each frame.

5 CONCLUSION

The InfiniteReality system achieves real-time rendering through a
combination of raw graphics performance and capabilities
designed to enable applications to achieve guaranteed frame rates.
The flexible video archilecture of the InfiniteReality system is a
general solution 10 the image generation needs of multichannel
visual simulation applications. A true OpenGL implementation,
the InfiniteReality brings unprecedented performance to traditional
graphics-intensive applications. This underlying performance,
together with new rendering functionality like virtwal texturing,
paves the way lor entirely new classes of applications.
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Abstract

We describe WireGL, a system for scalable interactive rendering on
a cluster of workstations. WireGL provides the familiar OpenGL
API to each node in a cluster, virtualizing multiple graphics accel-
erators into a sort-first parallel renderer with a parallel interface. We
also describe techniques for reassembling an output image from a
set of tiles distributed over a cluster. Using flexible display man-
agement, WireGL can drive a variety of output devices, from stan-
dalone displays to tiled display walls. By combining the power of
virtual graphics, the familiarity and ordered semantics of OpenGL,
and the scalability of clusters, we are able 10 create lime-varying
visualizations that sustain rendering performance over 70,000,000
triangles per second at interactive refresh rates using 16 compute
nodes and 16 rendering nodes.

CR Categories: 1.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics; 1.3.4 [Computer Graphics]: Graph-
ics Utilities—Software support, Virtual device interfaces; C.2.2
[Computer-Communication Networks]: Network Protocols—
Applications; C.2.4 [Computer-Communication Networks}: Dis-
tributed Systems—Client/Server, Distributed Applications

Keywords: Scalable Rendering, Cluster Rendering, Parallel Ren-
dering, Tiled Displays, Remote Graphics, Virtual Graphics

1 Introduction

Despite recent advances in accelerator technology, many real-time
graphics applications still cannot run at acceptable rates. As pro-
cessing and memory capabilities continue to increase, so do the
sizes of data being visualized, Today we can construct laser range
scans comprised of billions of polygons (14] and solutions to fluid
dynamics problems with several hundred million data points per
frame over thousands of frames [8, 21]. Because of memory con-
straints and lack of graphics power, visualizations of this magnitude
are difficult or impossible to perform on even the most powerful
workstations. Therefore, the need for a scalable graphics system is
clear.

The necessary components for scalable graphics on clusters of
PC’s have matured sufficiently to allow exploration of clusters as a
reasonable alternative to multiprocessor servers for high-end visu-
alization, In addition to graphics accelerators and processor power,
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memory and J/O controllers have reached a level of sophistication
that permits high-speed memory, network, disk, and graphics /O
to all occur simultaneously, and high-speed general purpose net-
works are now fast enough to handle the demanding task of routing
streams of graphics primitives.

To take advantage of these opportunities, we have designed and
implemented WireGL., a software system that unifies the render-
ing power of a collection of graphics accelerators in cluster nodes,
reating each separate framebuffer as part of a single tiled display. A
high-level block diagram of WireGL's major components is shown
in figure 1. WireGL provides a virtualized interface to the graphics
hardware through the OpenGL. AP, OpenGL provides immediate-
mode semantics, so we support visualizations of time-varying data
that would be inconvenient to express with a retained-mode inter-
face or in a scene graph.

In addition, WireGL provides a paralle] interface to the virtual-
ized graphics system, so each node in 2 parallel application can is-
sue graphics commands directly. This helps applications overcome
one of the most common performance-limiting factors in modern
graphics systems: the interface bottleneck. WireGL extends the
OpenGL API 10 allow the simultaneous streams of graphics com-
mands 10 obey ordering constraints imposed by the programmer.

Another recent development is the introduction of the Digital
Visual Interface (DV1) siandard for digital scan-out of the frame-
buffer [5]. WireGL allows a flexible assignment of tiles to graphics
accelerators, recombining these tiles using DVI-based tile reassem-
bly hardware called Lightning-2 [27]. In the absence of image
composition hardware, WireGL can also perform the final image
reassembly in software, using the general purpose cluster intercon-
nect. Because of this flexible assignment of tiles to accelerators,
WireGL can deliver the combined rendering power of a cluster to
any display, be it a multi-projector wall-sized display or 2 single
monitor. By decoupling the number of graphics accelerators from
the number of displays and allowing a flexible partitioning of the
output image among the accelerators, image reassembly gives ap-
plications contro} over their graphics load balancing needs.

2 Design Issues and Related Work

Designing a parallel graphics sysiem involves a number of tradeofis
and choices. In this section, we present some of the most crucial
issues facing parallel graphics system designers.

2.1 Commodity Parts and Work Granularity

Parallel graphics architectures can usually be classified accord-
ing to the point in the graphics pipeline at which data are redis-
tributed [16]. This redistribution, or “sorting” step is the transition
from object parallelism to image parallelism, and the location of
this sort has significant implications for the architecture’s commu-
nication needs. When building a new hardware architecture, the
design of the communication infrastructure is flexible, and can be
engineered to meet the requirements of the system.

The SGI InfiniteReality is a sort-middle architecture which uses
bus-based broadcast communication to distribute primitives [18].
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Figure 1: WireGL is comprised of application nodes, rendering nodes, and a display. In this example, each application node is per-
forming isosurface extraction in parallel and rendering its data using the OpenGL APL Each application node is responsible for the
comrespondingly colored portions of the object. In the configuration shown, the display is divided into 16 tiles, each of which is man-
aged by the correspondingly shaded rendering node. These tiles are reassemblecl to a single monitor after they are scanned out of the

graphics accelerators.

To overcome the difficulties encountered in load-balancing image-
paraliel data, it uses a finc interleaving of tiles, which works well
because of the available high-bandwidth broadcast bus, Pixel-
Planes 5 is a sort-middle architecture with large tiles, which uses
a ring network to distribute primitives from a retained-mode scene
description (7).

Because such systems do not use commodity building blocks,
they must be repeatedly redesigned or rebuilt in order to continue
to scale as faster semiconductor technology is developed. WireGL
chooses instead 1o unify multiple unmodified commodity graphics
accelerators housed in cluster nodes. This decision has the advan-
tage that we can upgrade the graphics cards or the network at any
time without redesigning the system.

However, the choice of cluster network will greatly affect the
overall performance and scalability of the resulting system. On
PC clusters today, high-speed networks tend to be in the 100-200
megabyte per second range. These networks are an order of magni-
tude slower than that of a high-end SMP like the SGI Origin 3000,
and yet another order of magnitude slower than custom on-chip net-
works. Although PC cluster networks are not as efficient as more
custom solutions, we can still use them to provide scalable graph-
ics performance. As high-speed commodity networks improve in
bandwidth and robustness. WireGL will be able to provide better
scalability in larger clusters, as wel! as higher peak performance,

Using commodity parts restricts our choices about communica-
tion and work granularity because we cannot modify the individual
graphics accelerators. As shown in figure 2, there are only two
points in the graphics pipeline where we can introduce communi-
cation: immediately after the application stage, and immediately
before the final display stage. Communication after the application
stage provides a redistribution of primitives to remote graphics ac-
celerators based on those primitives’ screen-space extent, which is
a traditional sort-first graphics architecture. By introducing com-
munication at the very end of the graphics pipeline, the final image
can be recombined from multiple framebuffers. Although WireGL
uses this stage to perform tile reassembly, communication at the
end of the pipeline can also be used for image composition-based
renderers.

For remote use of unmodified graphics components, GLR [13]
and SGI's “Vizserver” product [26] transmit a stream of com-
pressed images from the framebuffer of a graphics supercomputer
to a low-end desktop. Image compression and streaming technol-
ogy is an attractive approach to rendering at a distance, although it
is not the best approach when the eventual display is local to the

rendering hardware.

Although WireGL is a sort-first renderer, sort-last architectures
also use a final image recombination step to produce a single image
from a fragmented framebuffer. PixelFlow uses image-composition
to drive a single display from a parallel host [17). The Hewleu-
Packard visualize fx architecture uses a custom network to compos-
ite the results of multiple graphics accelerators [4]. Sony's GSCube
combines the outputs of multiple Playstation2 graphics systems us-
ing a custom network, and supports both sort-first and image com-
position modes of operation. The GSCube is a particularly interest-
ing architecture because it leverages consumer technology to pro-
duce a scalable rendering technology.

To perform image reassembly on clusters, Compaq Research has
developed a system called Sepia for performing image composi-
tion using ServerNet-11 networking technology [9]. Blanke et al.
describe the Metabuffer, a system for performing sort-last paral-
lel rendering on a cluster using DVI to scan out color and depth {1].
The Metabuffer is similar to Lightning-2 [27], the DVI-based image
reassembly network that we use to drive displays with our cluster.
Unlike Sepia, Lightning-2 and the Metabuffer do not require pixel
data to be transferred to the image composition network over the in-
ternal system bus, where bandwidth is often a critical resource for
parallel visualization applications.

2.2 Flexible Application Support

Many applications visualize the results of a simulation as those re-
sults are calculated. In this case, the simulation usually generates
datz more slowly than the graphics system can accept it. Such
an appln‘almn is refmed t0 as compute-limited. There are many
o nited visvalization applications that scale by generating
geomelry in parallel and communicating that geometry over a net-
work to a single display server. This geometry communication is
almost always done with custom networking code, using a custom
wire protocol.

Other applications, however, make intensive use of the graphics
hardware, and a single client may effectively occupy many servers.
Such an application is called graphics-limited. For example, vol-
ume rendering with 3D textures requires high fill rates while using
few primitives. In this case, a single client may submit commands
to multiple servers and keep them all busy because the rendering
time of each individual primitive is so large.

Many applications are limited by the rate at which they can issue
geometry to the graphics system. Such an application is interface-
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Figure 2: Communication in WireGL. Each graphics pipeline
is a standalone graphics accelerator, so we cannot introduce
communication between its stages. Notice that the number of
application nodes, graphics pipelines, and final displays can
all be changed independently according to the application’s
needs,
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limired. For example, visualizations of large geometric data sets
that have been compuied off-line will tend to be interface limited.
Interface limitation is the usual argument for using display lists,
compiled vertex arrays, or other retained-mode interfaces. Another
way to alleviate the interface bottleneck is to allow multiple proces-
sors to issue graphics commands in parallel.

Finally, some applications are not limited by performance, but
they cannot effectively visualize their data due to a lack of display
resolution. Such an application is called resolution-limited. This
is typical of many scientific applications where it is important to
view all the data at a macroscopic level to get an overview of a
dataset, and also to examine microscopic details to fully understand
the data. Such an application requires the combined resclution of
multiple graphics accelerators and a high-resolution tiled display.
One example of this type of display is IBM's Bertha, a 3840 x 2560
LCD display driven by four DVI inputs.

WireGL does not place any restrictions on the number of clients
or servers. For compute-limited applications it is desirable to have
more clients than servers, for graphics-limited applications it is bet-
ter to have more servers than clients, and for interface-limited appli-
cations it is most effective to have an approximately equal number
of cliems and servers. WireGL also works well in a heterogeneous
environment where the servers and the clients may be running dif-
ferent operating systems on different hardware.

2.3 Programming Interface

Graphics API's can provide a low-level resource abstraction such
as OpenGL, or a high-level abstraction such as a scenc graph li-
brary. Scene graphs and other high-level interfaces are attractive
because global information can be used to automatically parallelize
sendering or perform fast culling. IRIS Pesformer provides paYailel
wraversal of a retained-mode scene graph, and can also take advan-
tage of multiple graphics pipelines in a single SMP [22]. Samanta et
al. déscribe a novel screen subdivision algorithm for load-balanced
rendering of a scene graph that has been replicated across the nodes
of a cluster (23, 24].

However, not all visualization tools can conveniently use a scene
graph, because their data may be unstructured and time-varying.
Another significant drawback of scene graphs is the lack of a
standardized scene graph API. Any scene graph library that uses

OpenGL for rendering can run on top of WireGL. In addition, if the
scene graph has bounding-box information about primitive groups,
that information can be provided to WireGL through the OpenGL
hinting mecharism to speed up geometry sorting.

WireGL provides the OpenGL API to each node in a cluster. The
decision to use OpenGL for specifying graphics data has several ad-
vantages over using a custom API. First, we can run an unmodified
application on a single node in our cluster without recompiling it.
If that application is graphics-limited, WireGL can provide an im-
mediate speedup. Also, if we have access to a large display wall,
we can easily interact with resolution-limited datasets that can 1ake
advantage of the larger display area. Portions of WireGL were first
described by Humphreys et al. [10]. In that paper, we dé?scfibed
our techniques for sorting OpenGL streams to tile servers in order
to transparently support large displays. SGI also provides b library
called “Multipipe” that intercepts OpenGL commands and allows
unmodified applications to render across multiple graphics acceler-
ators, providing increased output resolution [25).

Many applications, however, are not graphics-limited and must
be parallelized to achieve speedup. Using WireGL, many existing
serial OpenGL. applications can be parallelized with minor changes
to the inner drawing routines. In particular, applications that render
large geometric datasets using the depth buffer to resolve visibility
can simply partition their dataset across the nodes of the cluster, and
have each node render its portion as before. Because such an appli-
cation has almost no ordering requirements, achieving parallelism
is straightforward.

For applications with more complex ordering requirements,
WireGL implements extensions to OpenGL that were first pro-
posed by Igehy, Stoll and Hanrahan [12). Their simulations showed
that scalable applications could easily be written using their exten-
sions, results that were further verified by the Pomegranate simula-
tions [6]. These extensions add traditional synchronization primi-
tives (barriers and semaphores) to the graphics library. WireGL is
the first implementation of this API in a hardware-accelerated (that
is, not simulated) architecture,

Although OpenGL is an immediate-mode API, some OpenGL
features like display lists and texture objects allow data to be stored
by the graphics system and reused. WireGL supports this by storing
those data on the server, so that users who want to replicate data
across the nodes of the cluster can do so. In addition, texture objects
can optionally be shared between multiple clients, which means that
they can be specified once at the start of the application and do not
need to be cuplicated per-client. It would also be easy to allow
similar sharing of display lists between clients, although we have
not implemented this feature.

3 WireGL

A WireGL based rendering system consists of one or more clients
submitting OpenGL commands simultaneously 10 one or more
graphics servers, called pipeservers. The pipeservers are organized
as a sort-first parallel graphics pipeline [19], and together they ren-
der a single output image. Bach pipeserver has its own graphics
accelerator and a high-speed network connecting it to all clients.
The output image is divided into tiles, which are pastitioned over
the servers, each server potentially managing multiple tiles. The
assembly of the final output display from the tiles is described in
section 4, A high-level view of the system is shown in figure 1. In
that figure, zach rendering node is a pipeserver. WireGL vinalizes
this architecture, providing a single conceptual graphics pipeline to
the clients.
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3.1 Client implementation

This section provides an overview of WireGL's sort-first client im-
plementation. Interested readers should refer to Humphreys et
al. [10] for a more complete description of our sort-first system,
the protocol efficiency, and display size scalability resuits, The
state tracking system is described in detail in Buck, Humphreys,
and Hanrahan [3].

The WireGL client library is implemented as a replacement for
the system’s OpenGL library on Windows, Linux, or IRIX. As the
application makes calls to the OpenGL AP, WireGL classifies each
call into one of three categories: geometry, state, or special. Spe-
cial commands, such as swapBuffers, glPinish, and glClear,
require individual treatment, and will not be described here.

Geometry commands are those that legally appear between a
glBegin/glEnd pair, as well as commands that can generate frag-
ments on their own, such as glDrawPixels, These commands are
packed immediately into a global “geometry buffer”. This buffer
contains a copy of the arguments to the function, as well as an op-
code. Each opcode is encoded in a single byte, and opcodes and
data are packed into separate portions of the buffer which grow in
opposite directions. This representation allows the buffer to retain
each argument’s memory alignment, minimizes the space overhead
of the opcodes, and keeps opcodes and data contiguous in memory
so that they can be sent with a single call to the networking library.
Some commands that can appear legally between a glBegin/glEnd
pair do not generate fragments, such as glNormal3f. These com-
mands are still packed immediately into the buffer, but their state ef-
fects are also recorded. Our geometry packing code has been care-
fully engineered, and achieves a maximum packing performance of
over 20 million vertices per second (the exact computer configura-
tion used to perform these experiments is described in section 5).

As each vertex is specified, WireGL maintains an object-space
bounding box. Each incremental update to the bounding box re-
quires only six conditional moves, which can be implemented ef-
ficiently using a SIMD instruction set such as the Pentium I1I's.
When geometry is sent to the servers, this bounding box is trans-
formed into screen space, and the set of overlapped screen tiles is
computed. This set is used to compute the servers that need to re-
ceive the geometry buffer. Because geometry sorting is done on
groups of primitives, the overhead of bounding box transformation
and extent intersection is amortized over many vertices.

State commands are those that directly affect the graphics state,
such as glRotatef, glBlendFunc, or glTexImage2D. The effects
of state commands are recorded into a graphics context data struc-
ture. Each element of state has n bits associated with it indicating
whether that state element is out of sync with each of n servers.
When a state command is executed, the bits are all set to 1, indi-
cating that each server might need a new copy of that element. The
OpenGL state is represented as a hierarchy, roughly mirroring the
layout described in the OpenGL specification [20]. For example,
GL_LIGHTO's diffuse color is a member of GL_LIGHT0's state, which
is an element of the lighting state. Each non-leaf node in the hier-
archy also has a vector of n synchronization bits which reflect the
logical OR of all its children. We have shown that this representa-
tion allows for very efficient computation of the difference between
two contexts [3].

Either of two circumstances can trigger the transmission of the
geometry buffer. First, if the buffer fills up, it must be flushed to
make room for subsequent commands. Second, if a state com-
mand is called while the geometry buffer is not empty, the geometry
buffer must be flushed before the state command is recorded, since
OpenGL has strict ordering semantics. However, we cannot send
the geometry buffer to the overlapped servers immediately, because
they might not have the correct OpenGL state. We must prepend a
packed representation of the application’s state before transmitting
any geometry. To do this, the client library keeps a copy of each

server’s graphics state. Using our efficient context differencing op-
eration, the commands needed to bring the server up to date with
the application are placed in that server’s outgoing network buffer.
The global geometry buffer can then be copied after the state dif-
ferences. By updating state lazily and bucketing geomery, we keep
network traffic to a minimum.

This behavior has an important implication for the granularity of
work in WireGL. Sorting individual primitives in software would be
100 expensive, but grouping too many primitives may result in ex-
cessive overlap and inefficient network usage. Assuming that a state
call is macle before a network buffer fills, WireGL’s work granular-
ity is that of groups of primitive blocks, or multiple g1Begin/glEnd
pairs. The optimal granularity of work will be a balance between
screen-space coherency and the expense of bounding-box transfor-
mation,

It would be impractical to transform each primitive separately,
but it is not always beneficial to coalesce the maximum number of
primitive blocks, as this may result in partial network broadeasts if
the geometry is not spatially coherent and requires a large screen-
space bounding box. WireGL currently has no automatic mecha-
nism for determining the best time to bucket geometry. Applica-
tions that are aware of their bucketing needs can optionally force a
sort after a specified number of primitive blocks.

When running a parallel application, each client node behaves
in the manner described above, performing a sort-first distribution
of geometry and state to all pipeservers. This means that each
pipeserver must be prepared to handle multiple asynchronous in-
coming streams of work, each with its own associated graphics
context. OpenGL guarantees that commands from a serial context
will appear to execute in the order they are issued. When multi-
ple Open(GL contexts render to a single image, this restriction must
be relaxed because the graphics commands are being issued in par-
allel. To provide ordering control for parallel rendering, WireGL
adds barriers and semaphores to the OpenGL API, as proposed by
Igehy et al. [12].

The key advantage of these synchronization primitives is that
they do not block the application. Instead, the primitives are
encoded into the graphics stream, and their implied ordering is
obeyed by the graphics system when a context switch occurs.
A graphics context may enter a barrier at any time by calling
glBarrierExec(name). Semaphores can be acquired and released
with gl$emaphoreP (name) and glSemaphoreV(name), respec-
tively. Note that these ordering commands must be broadcast, as
the same ordering restrictions must be observed by all servers, and
we wish to avoid a central oracle making global scheduling deci-
S10NS.

When running a parallel application, WireGL does not change
the semantics of any commands, even those with global effects.
For example, SwapBuffers marks the end of the frame and causes
a buffer swap to be executed by all servers. Therefore, it is impor-
tant that only one client execute SwapBuffers per frame. Also, a
parallel application with no intra-frame ordering dependencies will
still need two barriers per frame. To ensure that the framebuffer
clear happens before any drawing, a barrier must follow the call
to glClear. Similarly, all nodes must have completely submitted
their data for the current frame before swapping buffers, so another
barrier must precede the call to SwapBuf fers. Pseudocode for this
minimal usage is shown in figure 3. More complex usage examples
can be found in Igehy’s original paper [12).

3.2 Plpeserver Implementation

A pipeserver maintains a queve of pending commands for each con-
nected client. When new commands arrive over the network, they
are placed on the end of their client’s queue. These queues are
stored in a circular “run queue” of contexts. A pipeserver continues
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Display{} {

if (my_thread_id == 0) // I am the master
glClear( ... };

glBarrierExec( global barrier };

DrawFrame () ;

glBarrierExec( global barrier };

if (my_thread id == 0) // I am the master
glSwapBuffers(});

Figure 3: A minimal parallel display routine. Although the
geometry itself has no intra-frame ordering dependencies, the
imposition of frame semantics requires barriers following the
framebuffer clear and preceding the buffer swap to ensure that
the entire frame is visible.

executing a client’s commands until it runs out of work or the con-
text “blocks™ on a barrier or semaphore operation. Blocked contexts
are placed on wait queues associated with the semaphore or barrier
they are waiting on. The pipeserver’s queue structures are shown in
figure 4.

Because each client has an associated graphics context, a con-
text switch must be performed each time a client's stream blocks.
Although all modern graphics accelerators can switch contexis fast
enough to support several concurrent windows, hardware context
switching is still slow enough 10 discourage fine-grained sharing of
the graphics hardware. When programmatically forced to switch
contexts, the fastest modern accelerators achieve a rate of approx-
imately 12,000 times per second [3], which is slow enough that
it would limit the amount of intra-frame parallelism achievable in
WireGL.

To overcome this limitation, each pipeserver uses the same state
tracking library as the client to maintain the state of each client in
software. Just as an extremely efficient context differencing opera-
tion is the key to lazy state update between the client and the server,
it is also effective for performing context switching on the server.
Since nodes in a parallel application are collaborating to produce a
single image, they will typically have similar graphics states, and
performing context switching with our hierarchical representation
has a cost proportional to the contexts’ disparity. We have measured
this hierarchical approach as being able 10 switch contexts almost
200,000 times per second for contexts that differ in current color
and transformation matrix, and over 5 million times per second for
identical contexts [3].

In practice, when a context blocks, the servers ofien have a
choice of many potentially runnable contexts. Because a parallel
application will almost always enter a barrier immediately before
the end of the frame, it is unlikely that one context will become
starved. Therefore, in choosing a scheduling algorithm, the main
concerns are the expense of the context switch itself as well as the
amount of useful work that can be done before the next context
switch. In practice, we have found that a simple round-robin sched-
uler works well, for two reasons. First, clients participating in the
visualization of a large dataset are likely to have similar contexts,
making the expense of context switching low and uniform. Also,
since we cannot know when a stream is going to block, we can only
estimate the time to the next context switch by using the amount of
work queued for a particular context. Moreover, any large disparity
in the amount of work queued for a particular context is most likely
the result of an application-level load imbalance. This load im-
balance, not context switching overhead, will certainly be the main
performance limitation of the application. In general, because of the
low cost of context switching, and because we need to complete ex-
ecution of all contexts before the end of the frame, the pipeserver’s

scheduling alzorithm is not a significant factor in an application's
performance.

Since each pipeserver may manage more than one tile, it may
be necessary to render a block of geometry more than once. The
arrangement of tiles in the local framebuffer is described in section
4.1. The client library inserts the bounding box for each block of
geometry between the geomerry itself and its preceding state com-
mands. Each server compares this bounding box against the extents
of the tiles managed by that server. For each intersection found, a
translate and scale matrix is prepended to the current transforma-
tion matrix, positioning the resulting geometry with respect to the
intersected tile’s portion of the final output. Because of the seman-
tics of OpenGL rasterization, this technique can lead to seaming
artifacts for anti-aliased or wide lines and points. Unfortunately,
not all OpenGL implementations adhere to the same rules regard-
ing clipping of wide lines and points that are larger than one pixe!,
so this problem is difficuit to address in general.

Calls to glViewport and glScissor are then issued to restrict
the drawing 1o the tile’s extent in the server’s local framebuffer, and
finally the gecometry opcodes are decoded and executed. Because
the geometry block also includes vertex attribute state, the graphics
state may have changed by the end of the geometry block. However,
the client will insest commands to restore the vertex aitribute siate
al the beginning of the geometry buffer. Therefore, if the geometry
overlaps more than one tile, the vertex attribute state will always be
properly resiored before the geometry is re-executed.

3.3 Network

We use a connection-based network abstraction to support multi-
ple network types such as TCP/IP and Myrinet. Qur abstraction
provides a credit-based flow control mechanism to prevent servers
from exhausting their memory resources when they cannot keep up
with the clients. Flow control is particularly important when a con-
text is blocked, since additional commands may come in from the
client at any time even though the server cannot drain a blocked
context’s command queue.

Each server/client pair is joined by a connection. By making
buffer allocation the responsibility of the network layer, we allow a
zero-copy send. For example, the client packs OpenGL commands
directly into network buffers, and the Myrinet network layer sends
them over the network using DMA. In order for this to work, these
buffers must be pinned (locked and unpageable), which is done by
the implementation of our network abstraction for Myrinet. Receiv-
ing data on our network operates in a similar manner: the network
layer allocates (possibly pinned) buffers, allowing a zero-copy re-
ceive.

The connection is completely symmetric, which means that the
servers can return data such as the results of glReadPixeles to the
clients. More importantly, WireGL supports the glFinish call so
that applications can determine when the commands they have is-
sued have been fully executed. This is available so that applica-
tions that rieed to synchronize their output with some external input
source can make sure the graphics system's internal buffering is
not causing their output to lag behind the input. The user can op-
tionally enable an implicit g1lFinish-like synchronization on each
SwapBuffers call, which ensures that no client will ever get more
than one frame ahead of the servers.

4 Display Management

To form a seamless outpul image, tiles must be extracted from the
framebuffers of the pipeservers and reassembled to drive a display
device. We provide two ways to perform this reassembly. For
highest performance, the images may be reassembled after being
scanned out of the graphics accelerator. If this is not possible, the
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Figure 4: Inside a pipeserver. Runnable contexts will be serviced in a round-robin fashion. Graphics commands being issued by a
context’s application can be appended to the end of a work queue at any time, until the client consumes its allotted server-side buffer
space. Blocks A-F show sequential timesteps as the pipeserver decodes commancl blocks: the currently executing context is shown with
a heavy outline. In timestep A, the pipeserver encounters the SemaP operation in context 0, which blocks the context and removes it
from the run quene. In timestep C, context 1’s SemaV command will unblock context 0 and place it back on the run queue.

tiles can be extracted from the framebuffer over the host bus inter-
face and distributed over a general purpose network, often the same
one used for distributing geometry commands.

Of course, the most straightforward way (o reassemble the image
after scan-out is 1o allow each pipeserver to drive a single locally-
attached display. These displays can then be abuited to form a large
logical output space. This arrangement constrains each pipeserver
1o manage exactly cone tile that is precisely the size of its local
framebuffer. This limits WireGL’s ability to provide an application
with flexible ioad balancing support, but makes the final display
simple to construct.

4.1 Display Reassembly in Hardware

For our experiments with hardware display assembly, we use the
Lightning-2 system [27]. Each Lightning-2 board accepts 4 DVI
inputs from graphics accelerators and emits up to 8 DVI outputs
to displays. Multiple Lightning-2 boards can be connected in a
column via a “pixel bus” to provide more total inputs. Muitiple
columns can also be chained by repeating the DVI inputs, provid-
ing more DVI outputs. An arbitrary number of accelerators and dis-
plays may be connected in such a two-dimensional mesh, and pixel
data from any accelerator may be redirected to any location on any
output display. Routing information is drawn into the framebuffer
by the application in the form of two-pixel-wide (48 bit) “strip
headers”. Each header specifies the destination of a one-pixel-high,
arbitrarily wide strip of pixels following the packet header in the
frame buffer. Lightning-2 can drive a variable number of displays,
including a single monitor.

Each input to Lightning-2 usually contributes to multiple output
displays, so Lightning-2 must observe a full output frame from each
input before it may swap, inroducing exactly one frame of latency.
However, almost no currently available graphics accelerators have
external synchronization capabilities. For this reason, Lightning-2
provides a per-host back-channel using the host’s serial port. When
Lightning-2 has accepted an entire frame from all inputs, it then

notifies all input hosts simultaneously that it is ready for the next
frame. WireGL waits for this notification before executing a client’s
swapBuffers command. Because the framebuffer scan-out hap-
pens in parallel with the next frame’s rendering, Lightning-2 will
usually be ready to accept the new frame before the host is done
rendering it, unless the application runs at a faster rate than the
eventual monitor’s refresh rate. In this case, the application will be
limited to the display’s refresh rate, which is often a desirable prop-
erty. Lighitning-2 can also lock groups of outputs to swap together.
Having synchronized outputs allows Lightning-2 to drive tiled dis-
play devices such as IBM’s Bertha or a multi-projector display wall
without tearing artifacts. This in turn enables stereo rendering on
tiled displays.

Each pipeserver reserves space for its assigned tiles in its local
framebuffer in a left-to-right. top-to-bottom pattern, leaving two-
pixel-wice gaps between tiles, as shown in figure 5. A fixed pattern
of strip headers is drawn into the gaps to route the tiles to their cor-
rect destination in the display space. Because Lightning-2 routes
portions of a single horizontal scanline, non-uniform decomposi-
rions of the screen such as octrees or KD-trees can easily be accom-
plished using WireGL and Lightning-2. In general, each application
will have different tiling needs which should be determined experi-
mentally. In the future, we would like to be able to adjust the screen
tiling on the fly to meet the application’s needs automatically.

4.2 Display Reassembly in Software

Without special hardware to support image reassembly, the final
rendered image must be read out of each local framebuffer and re-
distributed over a network. This network can be the same one used
to distribute graphics commands, or it could be a separate dedicated
network for image reassembly.

To provide this functionality, WireGL has a mode called the “vi-
sualization server”. In this mode, all pipeservers read the color
contents of their managed tiles at the end of each frame. Those
images are then sent over the cluster’s interconnect to a separate
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Figure 5: Allocating multiple tiles to a single accelerator with
Lightning-2. In the zoomed-in region, the two-pixel wide strip
headers are clearly visible.

compositing server for reassembly, with the same protocol used
by the clients 1o send geometry to the pipeservers. In effect, each
pipeserver becomes a client in a parallel image-drawing applica-
tion. The compositing server is simply another WireGL pipeserver
accepling glDrawPixels commands and parallel AP synchroniza-
tion directives.

The primary drawback of this pure software approach is its po-
tential impact on performance. Pixel data must be read out of the lo-
cal framebuffer, ransferred over the internal network of the cluster,
and written back to a framebuffer for display. Even with the limited
bandwidth available on modem cluster networks, image drawing
bandwidth will tlend to be the limiting factor for applications that
can update at high framerates. As networks and graphics cards im-
prove and can carry more pixel data along with the geometry data,
this technique may hecome more attractive, but it cannot currently
sustain high frame rates, as we will show in section 5.3.

5 Performance and Scalability

The cluster used for all our experiments, called “Chromium”, con-
sists of 32 Compag SP750 workstations. Each node has two
800 MHz Intel Pentium I1I Xeon processors, 256 megabytes of
RDRAM, and an NVIDIA Quadro2 Pro graphics adapter. The
SP750 uses the Intel 840 chipset to control its /O and memory
channels, including a 64-bit, 66 MHz PCI bus, an AGP4x slot, and
dual-channel RDRAM. Each SP750 is running RedHat Linux 7.0
with NVIDIA's 0.9-769 OpenGL drivers.

Each node has a Myricom high-speed network adapter [2] con-
nected to its PCI bus. Each network card has 2MB of local mem-
ory and a2 66 MHz LANai 7 RISC processor. The cluster is fully
connected using two cascaded 16-port Myricom switches. Using
the 1.4pre37 version of the Myricom Linux drivers, we are able to
achieve a bandwidth of 101 MB/sec when communicating between
wwo different hosts.

When rendering locally, each node can draw 21.4 million unlit
points per second using an immediate mode interface (i.e., with-
out display lists or vertex arrays). WireGL’s maximum packing
rate (the speed at which WireGL can construct network buffers)
is 21.8 million vertices per second. When using WireGL 1o ren-

Speedup
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Figure 6: Speedup for March, Nurbs, and Hundy using up
10 16 pipeservers. With 16 clients and 16 servers, Hundy
achieves 83% efficiency, Nurbs achieves 81% efficiency, and
March achieves 64% efficiency.

der remotely from one client to one server, we achieve a maximum
rate of 7.5 million points per second. Since each point occupies
13 bytes (three floats plus an opcode byte), this represents a net-
work bandwidth of 93 MB/sec, which is close to the 10} MB/sec
we have measured when repeatedly resending the same packet after
creation.

For our experiments with parallel applications, we partition the
cluster into 16 computation nodes and 16 visualization nodes. This
is done because our network does not perform well when senders
and receivers are running on the same host, as shown in section 5.4.

5.1 Applications

We have analyzed WireGL’s performance and scalability with three
applications:

* March is a paralle] implementation of the marching cubes voi-
ume rendering algorithm [15). A 200 x 200 x 200 volume is
dividec! into subvolumes of size 4 x 4 x 4 which are processed
in parallel by a number of isosurface extraction and rendering
processes. March draws jndependent triangles (three vertices
per triangle) with per-vertex normal information. March ex-
tracts and renders 385,492 lit triangles per frame at a rate of
374,000 tris/sec on a single node. Our graphics accelerators
can render 2.9 million lit, independent triangles with vertex
normals per second.

o Nurbs is a parallel patch evaluator that uses multiple proces-
sors to subdivide curved surfaces and tessellate them for sub-
mission to the graphics hardware. For our tests, Nurbs tessel-
lates and renders 413,100 lit, stripped triangles per frame with
vertex normals, at a rate of 467,000 tris/sec on a single node.

s Hundy is a paraliel application that renders 2 set of unorga-
nized triangle strips. Each strip is assigned 2 color, but no
lighting is used. Hundy is representative of many scientific vi-
sualization applications where the data are computed off-line
and the visualization can be decomposed almost arbitrarily.
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Figure 7: Scaling interface-limited applications. For each application, the number of clients and servers is varied. Hundy uses a tile size
of 100 x 100, and achieves a peak rendering performance of 71 million tris/sec at a rate of 17.7 fps. Nurbs uses a tile size of 100 x 100,
and achieves a peak rendering performance of 6.1 million tris/sec at a rate of 14.9 fps. March uses a tile size of 200 x 200, and achieves
a peak rendering performance of 4 million tris/sec at a rate of 10.6 fps. For each run, the display is a single 1600 x 1200 monitor. As
the number of clients surpasses the number of servers, the performance of the application once again becomes limited by the interface.

Each processor is responsible for its own portion of the scene
database. Each frame of Hundy renders 4 million triangles,
at a rate of 7.45 million tris/sec. On a single node, Hundy is
completely limited by the interface to the graphics system; it
cannot submit its data fast enough to keep the graphics system
busy.

Scaling March, Nurbs, and Hundy using a single system is a chal-
lenging problem. Although other useful applications could be writ-
ten thar pose less of a challenge for WireGL, the applications we
have chosen stress our implementation. Each application has very
different load balancing behavior, requires immediate mode seman-
tics, and gencrates a large amount of network traffic per frame. The
speedup for these applications using 16 pipeservers is shown in fig-
ure 6.

5.2 Paraliel interface

To scale any interface-limited application, it is necessary to allow
parallel submission of graphics primitives. To demonstrate this, we
have run our applications in a number of different configurations,
shown in figure 7. In these graphs, the tile size is chosen empiri-
cally, and Lightning-2 reconstructs a final 1600 x 1200 output im-
age.! Each curve represents a different number of pipeservers, from
1 to 16. As the number of clients grows greater than the number
of servers, the performance flattens out, demonstrating that such a
configuration is once again limited by the interface.

Some of Hundy's performance measurements show a super-
linear speedup; this is because Hundy generates a large amount of
network traffic per second. This traffic is spread uniformly over
all the servers, and when the number of servers is greater than the
number of clients, each path in the network is less fully utilized.
Essentially, this shows that Hundy’s performance is very sensitive
to the behavior of our network under high load.

WireGL's approach provides scalable rendering to applications
with a variety of graphics performance needs. To measure scalabil-
ity with a compute-limited application, we have artificially limited
Hundy's geometry issue rate. The number of submitting clients is
then varied while only using one pipeserver. The results of this
experiment are shown in figure 8. For each test, the application
scales excellently until it reaches the interface limit of the single
pipeserver or the size of the cluster.

| Currently, Lightning-2 supports input resolutions up to 1280 x 1024, so
for one pipeserver we bypass Lightning-2 and drive the display directly

—a— rate=200k
e —ae-—- pate=1 6M

——— rate=50k
—— rate=500k

6 : : e

Clients

Figure 8 Scaling a compute-limited application with a sin-
gle pipeserver. For each curve, Hundy’s issue rate has been
restricted. We achieve excellent scalability up to either the
pipeserver interface limit, or the full 32 nodes of our cluster.

The results shown in figures 7 and 8 demonstrate WireGL's
fexibility. Interface-limited applications can be scaled by adding
servers and clients, while compute-limited applications can be
scaled by adding clients only.

5.3 Hardware vs. Software Image Reassembly

The overhead of performing sofiware image reassembly can
quickly dominate the performance of an application as the cutput
image size grows. Each node in our cluster has a pixel read per-
formance of 28 million pixels/sec, and a pixel write performance
of 64 million pixels/sec. If we can transmit {00 MB/sec of image
data into a display node, this implies a maximum performance of
33 million pixels/sec for the visualization server. In practice, we
achieve approximately half this rate in all-to-one communication,
yielding a maximum frame rate of approximately 8 Hz at a resolu-
tion of 1600 x 1200.

To measure the overhead of the visualization server versus
Lightning-2, we wrote a simple serial application that calls
SwapBuf fers repeatedly. The performance of this application rep-
resents an upper bound on the achievable frameratc of any applica-
tion. A serial application is a fair test because, as described in sec-
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Figure 9: Maximum framerate achievable using Lightning-
2 or the visualization server. As the image size increases,
the expense of reading and writing blocks of pixels to the
framebuffer quickly limits the visvalization server to non-
interactive framerates.

tion 3.1, only one node in a parallel application cails swapBuffers
for each frame. In each experiment, 12 pipeservers are used. The
results are shown in figure 9. The “displays=4" curves are represen-
tative of a tiled display wall or a multi-input display such as IBM’s
Bertha,

This graph demonstrates that hardware supported image re-
assembly is necessary to maintain high framerates for most output
image sizes. Lightning-2 is able to maintain a constant refresh rate
of 90 Hz for any image size ranging from 320 x 240 to 3200 x 2400,
The visualization server provides a maximum refresh rate of 8 Hz
for a 1600 x 1200 image, which is approximately 46 MB/sec of net-
work traffic. This is consistent with the measured bandwidth of our
network under high fan-in congestion.

54 Loed Balance

When evaluating a scalable graphics application, there are two
different kinds of load balancing to consider. First, there is
application-level load balance, or the amount of computation per-
formed by each client node. This type of load balancing cannot
be addressed by WireGL; it is the responsibility of the application
writer to distribute work evenly among the application nodes in the
Cluster.

To evaluate application-level load balance, we measured the
speedup of our applications in a full 32-node configuration without
a network (i.e., discarding packets). In this configuration, March
achieved 85% efficiency, Nurbs 98% efficiency, and Hundy 96% ef-
ficiency. From these results, we conclude that each application has
a good distribution of work across client nodes.

The other type of load balancing is graphics work. For most
applications, the interface to a single rendering server quickly be-
comes a bottleneck, and it is necessary to distribute the rendering
work across multiple servers. However, the rendering work re-
quired 1o generate an output image is typically not uniformly dis-
tributed in screen space. Thus, the tiling of the output image intro-
duces a potential load imbalance, which may in tumn create a load
imbalance on the network as well.

Because the triangles in our lest applications are uniformly
small, the server-side load balance can be reasonably measured
by the total number of bytes sent to each server. For each appli-
cation, the total incoming traffic when using one pipeserver is a
lower bound on the total amount of network traffic for any number
of pipeservers, since adding servers will result in some redundant
communication. The overlap factor is the ratio of total traffic re-
ceived by all servers to this lower bound, and the load imbalance
is the ratio of the maximum traffic received by any server to the

average waffic. In figure 10, the height of each curve shows the
overlap factor. The error bars indicate the overlap if each server
received the maximum or minimum traffic received by any server.
The load imbalance is therefore the ratio of the maximum shown to
the observed overlap factor for that number of servers.

As expected, the choice of tile size affects the load balance and
the overlap factor. For smaller tiles, there is less variance in the to-
tal number of bytes received, resulting in a better load balance, but
the overall average data transmitted has increased due to overlap.
As the tiles get larger, the overlap is smaller, but longer error bars
indicate a poorer load balance. At a tile size of 100 x 100, Nurbs
has a load imbalance of 1.53 on 16 servers, while at 32 servers the
load imbalance increases to 2.13. The load imbalance will continue
to increase as the number of servers increases. Currently, Nurbs is
sufficiently compute-limited that its load imbalance is not exposed
in the speedup curve shown in figure 6. However, as cluster size in-
creases, the increasing load imbalance will eventually limit Nurbs’
scalability. Monetheless, WireGL provides excellent scalability up
to 16 pipeservers, which makes it a useful solution for many appli-
cations on many current cluster configurations.

To verify our assumption that the server load balance can be rea-
sonably measured by simply counting network traffic, we ran all our
measurements in a mode where the pipeservers discarded incoming
traffic rather than decoding it. The performance measurements in
this mode were almost identical to the measurements when graph-
ics commands were actually executed. This demonstrates that the
performance of interface-limited applications will largely be deter-
mined by the scalability of the network under heavy all-to-all com-
munication, and not by the execution of the graphics commands.
As networks improve, this effect will be reduced.

To fully understand our scalability results, we have measured the
achievable send and receive bandwidths of our network when per-
forming all-to-all communication. We performed this test in a par-
titioned configuration, in which sources and sinks run on different
cluster nodes, and an unpartitioned configuration where sources and
sinks run on the same cluster nodes. This test was performed with
a WireGL-independent program in which each source node sends
fixed-size network packets to all sink nodes in a round-robin pat-
tern. The results are shown in figure 11. The partitioned dataset,
shown with green crosses, achieves much higher overall perfor-
mance, and has much less transmit bandwidth variance. For ex-
ample, in an unpartitioned 18-way test, the ransmit bandwidth
ranges from 26.02 10 60.75 10 MB/sec, while a partitioned run us-
ing 9 clients and 9 servers had bandwidths ranging from 93.92 to
96.96 MB/sec. It is interesting 10 note that any individual node will
observe a very stable transmit bandwidth over the lifetime of its
run. That is, the node achieving 26 MB/sec will always achieve 26
MB/sec, although varying the number of nodes will change which
nodes perform poorly.

6 Discussion and Future Work

The real power of WireGL derives from its flexibility, Because
WireGL. is based on commodity parts, it is easy and inexpensive 10
build a parallel rendering system with a cluster. Although there can
be a tradeoff between using commodity parts and parallel efficiency,
the ability 1o reconfigure the system to meet an application’s load
balancing and resource needs is a large advantage for commodity-
based parallel rendering solutions like WireGL. on small to medium-
sized clusters.

Because the techniques used to provide scalability are indepen-
dent of specific graphics adapters and networking technology, any
component in our system may be upgraded al any time to obtain
better performance. In particular, we believe that WireGL"s perfor-
mance on a 16 to 32 node cluster will improve dramatically with
the introduction of new server-area networking technology such as
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Figure 10: Overlap factor and load imbalance with various tile sizes on a 1600 x 1200 display. The height of each curve indicates the
overlap factor, while the size of the error bars is proportional to the load imbalance. Increasing the tile size decreases the total amount
of network traffic, but at the expense of load balance. Note that with a 400 x 400 tile size, only 12 total tiles are needed to cover the

display, so no more than 12 servers can contribute o the final image.

InfiniBand. To achieve peak performance today, it is necessary to
perform image reassembtly after scan-out. Our Lightning-2 imple-
mentation is a large custom piece of hardware, but a smaller version
could be built very cheaply and would enable the construction of a
small, self-contained cluster that could act as a standalone graphics
subsystem for a larger cluster.

6.1 Scalabllity Limits

We have demonstrated that WireGL’s sort-first approach to parallel
rendering on clusters provides excellent scalability for a variety of
applications with a configuration of up to 16-pipeservers and 16-
clients. Our experiments indicate that the system would scale well
in a 32-server, 32-client setup if the cluster were bigger, or if the
network had better support for all-to-all communication. However,
there is a limit to the amount of screen-space parallelism available
at any given output size. This limit will prevent a sort-first approach
from scaling to much bigger configurations, such as clusters of 128
nodes or more. For clusters that large, the tile size becomes small
enough that it is very difficult to provide a good load balance for
any non-trivial application without intreducing a prohibitively high
overlap factor. One possible solution to this problem would be to
provide dynamic screen tiling, either automatically (using frame-
coherent heuristics) or with application support. We believe alter-
nate architectures such as sort-last image composition would scale
better on larger clusters, but this will likely come at the cost of or-
dered semantics.

6.2 Texture Management

WireGL's client implementation treats texture data as staie ele-
ments, and lazily updates it to servers as needed. In the worst case,
this will result in each texture being replicated on every server node
in the system. This replication is a direct consequence of our de-
sire to use commoedity graphics accelerators in our cluster: it is not
possible to introduce a stage of communication to remotely access
texture memory.

WireGL's naive approach to parallel texture management can be
a limitation for some applications. More work needs to be done in
this area, and we are beginning to investigate new texture manage-
ment sirategies. One approach being considered will leverage our
recent work in parallel texture caching [11].
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Figure 11: Transmit and receive bandwidth for Myrinet with
all-to-all communication. For each cluster size, the observed
send and receive bandwidth is plotted for all nodes. The top
dataset represents a partitioned n-to-n run, where sources and
sinks are not run on the same nodes. The bottom dataset is
an unpartitioned run of all n nodes. Partitioning the cluster
results in much higher bandwidth in general, as well as less
transmit bandwidth variance.

6.3 Latency

There are two main sources of latency in WireGL.: the display re-
assembly stage, and the buffering of commands on the client. When
using Lightning-2, display reassembly will add exactly one frame
of latency. While single-frame latency is usually acceptable for in-
teractive applications, it can be a problem for certain virtual reality
applications. The overhead of using software image reassembly
will usually be much higher (on the order of 50-100 milliseconds),
although it will vary with the image size.

The latency due to command buffering will depend on the size of
the network buffers. WireGL's default buffer size is 128KB, which
we can fill with geometry in half a millisecond, given our packing
rate of 20 MTris/sec (recall that a triangle occupies 13 bytes in our
protocol). Additional latency can occur due to network transmis-
sion, although the latency of most high-speed cluster interconnects
is less than 20 us. Finally, since the pipeserver cannot process the
buffer until it has been completely received, we incur slightly over
one millisecond of additional lalency for a 128KB buffer on a net-
work with 100 MB/sec of bandwidth.
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