
A Sense of Self for Unix Processes
�

Stephanie Forrest
Steven A. Hofmeyr

Anil Somayaji
Dept. of Computer Science
University of New Mexico

Albuquerque, NM 87131-1386�
forrest,steveah,soma � @cs.unm.edu

Thomas A. Longstaff

CERT Coordination Center
Software Engineering Institute
Carnegie-Mellon University

Pittsburgh, PA 15213
tal@cert.org

Abstract

A method for anomaly detection is introduced in which
“normal” is defined by short-range correlations in a pro-
cess’ system calls. Initial experiments suggest that the defi-
nition is stable during normal behavior for standard UNIX
programs. Further, it is able to detect several common in-
trusions involving sendmail and lpr. This work is part
of a research program aimed at building computer security
systems that incorporate the mechanisms and algorithms
used by natural immune systems.

1 Introduction

We are interested in developing computer security meth-
ods that are based on the way natural immune systems dis-
tinguish self from other. Such “artificial immune systems”
would have richer notions of identity and protection than
those afforded by current operating systems, and they could
provide a layer of general-purpose protection to augment
current computer security systems. An important prereq-
uisite of such a system is an appropriate definition of self,
which is the subject of this paper. We view the use of im-
mune system inspired methods in computer security as com-
plementary to more traditional cryptographic and determin-
istic approaches. By analogy, the specific immune response
is a secondary mechanism that sits behind passive barriers
(e.g., the skin and mucus membranes) and other innate re-
sponses (e.g., generalized inflammatory mechanisms). In
related work, we studied a number of immune system mod-
els based on these secondary mechanisms [10, 13, 11] which
provide the inspiration for the project described here.�

In Proceedings of the 1996 IEEE Symposium on Security and Privacy,
IEEE Computer Society Press, Los Alamitos, CA, pp. 120–128 (1996).
c
�

1996 IEEE

The natural immune system has several properties that we
believe are important for robust computer security. These
include the following: (1) detection is distributed and each
copy of the detection system is unique, (2) detection is prob-
abilistic and on-line, and (3) detectors are designed to rec-
ognize virtually any foreign particle, not just those that have
been previously seen. These properties and their signifi-
cance are discussed in [11].

Previously, we developed a computer virus detection
method based on these principles [11]. The method was
implemented at the file-authentication level, and self was
defined statically in terms of files containing programs or
other protected data. However, if we want to build a general-
purpose protective capability we will need a more flexible
sense of self. One problem with this is that what we mean
by self in a computer system seems at first to be more dy-
namic than in the case of natural immune systems. For
example, computer users routinely load updated software,
edit files, run new programs, or change their personal work
habits. New users and new machines are routinely added
to computer networks. In each of these cases, the normal
behavior of the system is changed, sometimes dramatically,
and a successful definition of self will need to accommodate
these legitimate activities. An additional requirement is to
identify self in such a way that the definition is sensitive
to dangerous foreign activities. Immunologically, this is
known as the ability to distinguish between self and other.
Too narrow a definition will result in many false positives,
while too broad a definition of self will be tolerant of some
unacceptable activities (false negatives).

This paper reports preliminary results aimed at estab-
lishing such a definition of self for Unix processes, one in
which self is treated synonymously with normal behavior.
Our experiments show that short sequences of system calls
in running processes generate a stable signature for normal
behavior. The signature has low variance over a wide range
of normal operating conditions and is specific to each dif-

000001 Blue Coat Systems - Exhibit 1004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ferent kind of process, providing clear separation between
different kinds of programs. Further, the signature has a
high probability of being perturbed when abnormal activi-
ties, such as attacks or attack attempts, occur. These results
are significant because most prior published work on intru-
sion detection has relied on either a much more complex
definition of normal behavior or on prior knowledge about
the specific form of intrusions. We suggest that a simpler
approach, such as the one described in this paper, can be ef-
fective in providing partial protection from intrusions. One
advantage of a simple definition for normal behavior is the
potential for implementing an on-line monitoring system
that runs in real-time.

2 Related Work

There are two basic approaches to intrusion detection
[16, 15]: misuse intrusion detection and anomaly intrusion
detection. In misuse intrusion detection, known patterns of
intrusion (intrusion signatures) are used to try to identify in-
trusions when they happen. In anomaly intrusion detection,
it is assumed that the nature of the intrusion is unknown, but
that the intrusion will result in behavior different from that
normally seen in the system. Many detection systems com-
bine both approaches, a good example being IDES [18, 4, 8].
In this paper we are concerned only with anomaly intrusion
detection.

Most previous work on anomaly intrusion detection has
determined profiles for user behavior. Intrusions are de-
tected when a user behaves out of character. These anoma-
lies are detected by using statistical profiles, as in IDES
[18, 4, 8], inductive pattern generation, as in TIM [19],
or neural networks [12]. Generation of user profiles by
such methods requires an audit trail of actions for each
user. These are typically slowly adaptive, changing profiles
gradually to accommodate changing user behavior. Abrupt
changes in behavior are flagged as irregular and identified
with intrusions.

An alternative approach is taken by Fink, Levitt and Ko
[9, 14]. Instead of trying to build up normal user profiles,
they focus on determining normal behavior for privileged
processes, those that run as root. They define normal be-
havior using a program specification language, in which the
allowed operations (system calls and their parameters) of a
process are formally specified. Our approach is similar to
theirs, in that we consider processes that run as root. How-
ever, it differs in that we use a much simpler representation
of normal behavior. We rely on examples of normal runs
rather than formal specification of a program’s expected be-
havior, and we ignore parameter values. An advantage of
our approach is that we do not have to determine a behavioral
specification from the program code; we simply accumulate
it by tracing normal runs of the program.

3 Defining Self

Program code stored on disk is unlikely to cause damage
until it runs. System damage is caused by running programs
that execute system calls. Thus, we restrict our attention to
system calls in running processes. Further, we consider only
privileged processes. Monitoring privileged processes has
several advantages over monitoring user profiles[14]. Root
processes are more dangerous than user processes because
they have access to more parts of the computer system.
They have a limited range of behavior, and their behavior is
relatively stable over time. Also, root processes, especially
those that listen to a particular port, constitute a natural
boundary with respect to external probes and intrusions.
However, there are some limitations. For example, it will be
difficult to detect an intruder masquerading as another user
(having previously obtained a legal password).

Every program implicitly specifies a set of system call
sequences that it can produce. These sequences are de-
termined by the ordering of system calls in the set of the
possible execution paths through the program text. During
normal execution, some subset of these sequences will be
produced. For any nontrivial program, the theoretical sets
of system call sequences will be huge, and it is likely that
any given execution of a program will produce a complete
sequence of calls that has not been observed. However, the
local (short range) ordering of system calls appears to be
remarkably consistent, and this suggests a simple definition
of self, or normal behavior.

We define normal behavior in terms of short sequences
of system calls in a running process, currently sequences of
lengths 5, 6, and 11. The overall idea is to build up a separate
database of normal behavior for each process of interest. The
database will be specific to a particular architecture, software
version and configuration, local administrative policies, and
usage patterns. Given the large variability in how individual
systems are currently configured, patched, and used, we
conjecture that these individual databases will provide a
unique definition of self for most systems. Once a stable
database is constructed for a given process, the database
can be used to monitor the process’ ongoing behavior. The
sequences of system calls form the set of normal patterns for
the database, and abnormal sequences indicate anomalies in
the running process.

This definition of normal behavior ignores many aspects
of process behavior, such as the parameter values passed to
system calls, timing information, and instruction sequences
between system calls. Certain intrusions might only be
detectable by examing other aspects of a process’s behavior,
and so we might need to consider them later. Our philosophy
is to see how far we can go with the simple assumption.

000002 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3.1 Details

There are two stages to the proposed algorithm. In the
first stage, we scan traces of normal behavior and build
up a database of characteristic normal patterns (observed
sequences of system calls). Forks are traced individually,
and their traces are included as part of normal.1 In the
second stage, we scan new traces that might contain abnor-
mal behavior, looking for patterns not present in the normal
database. In our current implementation, analysis of traces
is performed off-line.

To build up the database, we slide a window of size���
1 across the trace of system calls and record which calls

follow which within the sliding window. Suppose we choose�	�
3 and are given the following sequence of system calls

to define normal behavior:

open, read, mmap, mmap, open, getrlimit, mmap, close

As we slide the window across the sequence, we record for
each call the call that follows it at position 1, at position 2,
and so forth, up to position

�
. For the first window, from

index 1 in the sequence to index 4, the following database
is produced:

call position 1 position 2 position 3
open read mmap mmap
read mmap mmap
mmap mmap

Whenever a call occurs more than once, it can be followed
by several different possible calls. These are all recorded.
After sliding the window across the complete sequence, we
produce this expanded database:

call position 1 position 2 position 3
open read, mmap mmap,

getrlimit close
read mmap mmap open
mmap mmap, open, getrlimit,

open, getrlimit mmap
close

getrlimit mmap close
close

Once we have the database of normal patterns, we check
new traces against it using the same method. We slide a
window of size

�
�
1 across the new trace, determining if

the sequence of system calls differs from that recorded in
the normal database. In our work to date, we simply test for
the presence or absence of legal sequences. As an example,
suppose that we had constructed the above database and were
given a new trace of calls, differing at one location from the
normal sequence (open replaces mmap as the fourth call in
the sequence):

1Due to a limitation of our tracing package, we are not currently fol-
lowing virtual forks.

open, read, mmap, open, open, getrlimit, mmap, close

This trace would generate 4 mismatches, because:

� open is not followed by open at position 3,

� read is not followed by open at position 2,

� open is not followed by open at position 1, and

� open is not followed by getrlimit at position 2.

We record the number of mismatches as a percentage of
the total possible number of mismatches. The maximum
number of pairwise mismatches for a sequence of length �
with a lookahead of

�
is:

�� ��� �������� � 1
������ � 2

�����������
1

���� ��� ����
1
���

2
� �

In our example trace, � �
8,

���
3, and we have 4 mis-

matches. From the above formula, we get a maximum
database size of 18, giving a 22% miss rate. Mismatches are
the only observable that we use to distinguish normal from
abnormal.

This simple algorithm can be efficiently implemented to
run in ! #"��

time, where
"

is the length of the trace (in terms
of system calls). For example, our current implementation
analyzes traces at an approximate rate of 1250 system calls
per second.

4 Experiments

In the previous section we introduced a definition for
normal behavior, based on short sequences of system calls.
The usefulness of the definition will largely be determined
by the answers to the following questions:

� What size database do we need to capture normal be-
havior?

� What percentage of possible system call sequences is
covered by the database of “normal” system call se-
quences?

� Does our definition of normal behavior distinguish be-
tween different kinds of programs?

� Does our definition of normal detect anomalous behav-
ior?

This section reports our preliminary answers to these ques-
tions. In these experiments, we focus on sendmail al-
though we report some data for lpr. The sendmail pro-
gram is sufficiently varied and complex to provide a good
initial test, and there are several documented attacks against
sendmail that can be used for testing. If we are successful
with sendmail we conjecture that we will be successful

000003 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

with many other privileged Unix processes. All of our data
to date have been generated on Sun SPARCstations running
unpatched versions of SunOS 4.1.1 and 4.1.4, using the in-
cluded sendmail. The strace package, version 3.0,
was used to gather information on system calls.

4.1 Building a normal database

Although the idea of collecting traces of normal behavior
sounds simple, there are a number of decisions that must
be made regarding how much and what kind of normal
behavior is appropriate. Specifically, should we generate
an artificial set of test messages that exercises all normal
modes of sendmail or should we monitor real user mail
and hope that it covers the full spectrum of normal (more
in the spirit of our approach)? This question is especially
relevant for sendmail because its behavior is so varied.
If we fail to capture all the sources of legal variations, then
it will be easier to detect intrusions and be an unfair test
because of false positives. We elected to use a suite of
112 artificially constructed messages, which included as
many normal variations as possible. These 112 messages
produced a a combined trace length of over 1.5 million
system calls. For a window size of 6, the 112 messages
produced a database with $ 1500 entries, where one entry
corresponds to a single pair of system calls with a lookahead
value (e.g., read is a legal successor to open at position 1).

Once the normal database is defined, the next decision is
how to measure new behavior and determine if it is normal or
abnormal. The easiest and most natural measure is simply to
count the number of mismatches between a new trace and the
database. We report these counts both as a raw number and
as a percentage of the total number of matches performed in
the trace, which reflects the length of the trace. Ideally, we
would like these numbers to be zero for new examples of
normal behavior, and for them to jump significantly when
abnormalities occur. In a real system, a threshold value
would need to be determined, below which a behavior is
said to be normal, and above which it is deemed anomalous.
In this study, we simply report the numbers, because we are
not taking any action or making a binary decision based on
them. Because our normal database covers most variations
in normal, any mismatches are in principle significant.

Returning to our earlier questions, the size of the nor-
mal database is of interest for two reasons. First, if the
database is small then it defines a compact signature for the
running process that would be practical to check in real-time
while the process is active. Conversely, if the database is
large then our approach will be too expensive to use for
on-line monitoring. Second, the size of the normal database
gives an estimate of how much variability there is in the
normal behavior of sendmail. This consideration is cru-
cial because too much variability in normal would preclude

Type of Behavior # of msgs.
message length 12
number of messages 70
message content 6
subject 2
sender/receiver 4
different mailers 4
forwarding 4
bounced mail 4
queuing 4
vacation 2
total 112

Table 1. Types and number of mail messages
used to generate the normal database for
sendmail.

detecting anomalies. In the worst case, if all possible se-
quences of length 6 show up as legal normal behavior, then
no anomalies could ever be detected. A related question is
how much normal behavior should be sampled to provide
good coverage of the set of allowable sequences. We used
the following procedure to build the normal database:2

1. Enumerate potential sources of variation for normal
sendmail operation.

2. Generate example mail messages that cause
sendmail to exhibit these variations.

3. Build a normal data base from the sequences produced
by step 2.

4. Continue generating normal mail messages, recording
all mismatches and adding them to the normal database
as they occur.

We considered variations in message length, number
of messages, message content (text, binary, encoded, en-
crypted), message subject line, sender/receiver and mailers.
We also looked at the effects of forwarding, bounced mail
and queuing. Lastly, we considered the effects of all these
variations in the cases of remote and local delivery. For each
test, we generated three databases, one for each different
window size (5, 6 and 11). Each database incorporates all
of the features described above, producing zero mismatches
for mail with any of these features.

Table 1 shows how many messages of each type were
used to generate the normal databases. We began with mes-
sage length and tried 12 different message lengths, ranging
from 1 line to 300,000 bytes. From this, we selected the

2We followed a similar procedure to generate the normal database for
lpr and obtained a database of 534 normal patterns.

000004 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

shortest length that produced the most varied pattern of sys-
tem calls (50,000 bytes), and then used that as the standard
message length for the remaining test messages. Similarly,
with the number of messages in a sendmail run, we first
sent 1 message and traced sendmail then we sent 5 mes-
sages, tracing sendmail, and so forth, up to 20 messages.
This was intended to test sendmail’s response to bursts
of messages. We tested message content by sending mes-
sages containing ascii text, uuencoded data, gzipped data,
and a pgp encrypted file. In each case, a number of vari-
ations was tested and a single default was selected before
moving on to the next stage. These messages constituted
our corpus of normal behavior. We reran this set of stan-
dard messages on each different OS and sendmail.cf
variant that we tried, thus generating a normal database that
was tailored to the exact operating conditions under which
sendmail was running. Of the features considered, the
following seemed to have little or no effect: the number of
messages, message content, subject line, senders/receivers,
mailers and queuing. Two more unusual features, forwarded
mail and bounced mail, affected remote traces far less than
local traces.

Figure 1 shows how new patterns are added to the
database over time during a normal sendmail run. The
data shown are for 10,000 system calls worth of behavior,
but we have also performed runs out to 1.5 million system
calls (data not shown), with essentially zero mismatches.
Overall, the variability in the behavior of sendmail at the
system call level is much smaller than we expected.

Finally, we ask what percentage of the total possible
patterns (for sequences of length 6) is covered by the nor-
mal database. For example, if the database is completely
full (all possible patterns have been recorded as normal)
by 3000 system calls, then it would hardly be surprising
that no new patterns are seen over time. However, as we
discussed earlier, such variability would be useless for iden-
tifying anomalous behavior. Consequently, the goal is to
find a database that is small with respect to the space of
possible patterns. Our initial data here are encouraging. We
estimate that the sendmail database described above cov-
ers about 5 % 10 & 5% of the total possible patterns of system
calls (that is, sequences built from all possible system calls,
about 180 for Unix, not just those invoked by sendmail),
an extremely small fraction. This figure is somewhat mis-
leading, however, because it is unlikely that the sendmail
program is capable of generating many of these sequences.
The most accurate comparison would be against a database
that contained all the patterns that sendmail could possi-
bly produce. This would require a detailed analysis of the
sendmail source code, an area of future investigation.

5 6 11
Process % # % # % #

sendmail 0.0 0 0.0 0 0.0 0
ls 6.9 23 8.9 34 13.9 93
ls -l 30.0 239 32.1 304 38.0 640
ls -a 6.7 23 8.3 34 13.4 93
ps 1.2 35 8.3 282 13.0 804
ps -ux 0.8 45 8.1 564 12.9 1641
finger 4.6 21 4.9 27 5.7 54
ping 13.5 56 14.2 70 15.5 131
ftp 28.8 450 31.5 587 35.1 1182
pine 25.4 1522 27.6 1984 30.0 3931
httpd 4.3 310 4.8 436 4.7 824

Table 2. Distinguishing sendmail from other
processes. Each column lists two numbers:
the percentage of abnormal sequences (la-
beled %) and the number of abnormal se-
quences (labeled #) in one typical trace of
each process (when compared against the
normal database for sendmail). The columns
labeled 5, 6 and 11 refer to the sequence
length (window size) used for analysis. The
sendmail data show no misses, because
sendmail is being compared against its own
database.

4.2 Distinguishing Between Processes

To determine how the behavior of sendmail compares
with that of other processes, we tested several common pro-
cesses against the normal sendmail database with 1500
entries. Table 2 compares normal traces of several com-
mon processes with those of sendmail. These processes
have a significant number of abnormal sequences, approx-
imately, 5–32% for sequences of length 6, because the ac-
tions they perform are considerably different from those
of sendmail. We also tested the normal database for
lpr and achieved similar results (data not shown). lpr
shows even more separation than that shown in Figure 2,
presumably because it is a smaller program with more lim-
ited behavior. These results suggest that the behavior of
different processes is easily distinguishable using sequence
information alone.

4.3 Anomalous Behavior

We generated traces of three types of behavior that dif-
fer from that of normal sendmail: traces of success-
ful sendmail intrusions, traces of sendmail intrusion

000005 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

