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More than likely, the busy condition will have been cleared by the time
the master retries the transaction. It is possible, however, that the master
may have to make several attempts before succeeding. A target is only
permitted to use this option is there is a high probability that it will be
able to complete the transfer the first time that the master retries it,
Otherwise, it must use option three.

. In the third-case (option three), the target has to access a slow medium to
fetch the requested data and it will take Jonger than 16 clocks. In this case, .

the target latches the address, command and the first set of byte enables
and then issues a retry to the initiator. The initiator is thereby forced to
end the transaction with no data transferred and is required to retry the
transaction again later using precisely the same address, command and
byte enables. The target, meanwhile, proceeds to fetch the requested data
and set it up in a buffer for the master to read later when it retries the
transaction. When the target sees the master retry the lransaction, it
attempts to match the second request with the initial request by
comparing the start address, command and initial byte enables to those
latched earlier. If they match, the requested data is transferred to the
master, If they aren’t an exact match, the target interprets this as a new
request (for data other than that in its buffer) and issues a retry to the
master again. To summarize, if the master doesn’t duplicate the
transaction exactly each time it retries the transaction, it will never have
its read request fulfilled. The target is not required to service retries from
its buffered data that aren't exact matches, Option three is referred to as a
delayed transaction. It can also be used for a write transaction (e.g., where
the bus master is not permitted to proceed with other activities until it

. accomplishes the write). In this case, the target latches the address,

command, byte enables and the first data item and issues the retry, It then
proceeds to write the data item to the slow destination. Each time that the
master retries the write transaction it will receive a retry until the target
device has acknowledge receipt of the data. When the target is ready to
permit the transfer and the master next attempts the access, the target
compares the address, command, byte enables and the write data to

determine if this is the same master that initially requested the wnt',e =

transfer.
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Different Master Attemptis Access To Device With
Previously-Latched Request

If a different master attempts to access the target and the target can only deal
with one latched request at a Hime, it must issue a retry to the master without
latching its transaction information,

Special Cycle Monitoring While Processing Request

If the target is designed to monitor for special cycles, it must be able to
process a special cycle during the same period of time that is processing a
previously latched read or write request.

Delayed Request and Delayed Completion

A delayed transaction consists of two parts: the request phase and the
completion phase. The request phase occurs when the target latches -the
request and issues retry to the master. This is referred to as the delayed
request transaction. Once the transaction has been latched, the target
{typically a bridge to a slow expansion bus) begins the transaction on the
target bus. When the transfer completes on the target bus, this is referred to as
the delayed completion transaction. This is the start of the completion phase.
A delayed transaction must complete on the target bus before it is permitted
to complete on the initiating bus. The master is required to periodically re-
attempt the transfer until the target finally asserts TRDY# and allows the data
to be transferred. This ends the completion phase of the delayed transaction.

Handling Multiple Data Phases

When the master is successful in completing the first data phase, it may
proceed with more data phases. The target may issue a disconnect on any
data phase after the first, The master is not required to resume the transaction
later. Both the master and the target consider the original request fulfilled.

Master or Target Abort Handling

A delayed transaction is also considered 'completed if it receives a master
abort or a target abort rather than a retry on a re-attempt of the retried

transaction. The target compares to ensure that the master is the one that

originated the request before it issues the master or target abort to it. This
means that the transaction on the target bus ended in a master abort because
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no target responded or in a target abort because of a broken target. In both of
these cases, the master is not required to repeat the transaction.

Commands That Can Use Delayed Transactions

A delayed transaction normally consist of a single data phase and is used for
the following commands: iR 3

Interrupt Acknowledge.
1/0 read.

I/O write.

Memory read.
Configuration read.
Configuration write.

The delayed transaction could also be used with the memory write
commands, but it's results in better performance to post the write an permi
the master to complete the write quickly.

Delayed Read Prefetch

A delayed read can result in the reading more data than indicated in the
master's initial data phase if the target knows that prefetching data doesn’t
alter the contents of memory locations (as it would in memory-mapped 1/0
poris) The target can prefetch more data than initially requested under the
following circumstances:’

« The master has used the memory read line or memory read multiple
command, thereby indicating that it knows the target is prefetchable
memory,

¢ The master used a memory read command, but the bridge that accepted
the delayed transaction request recognizes that the address falls within a
range defined as prefetchable.

tn all other cases, the target (i.e., the bridge) cannot perform anything other
than the single data phase indicated by the originating master.

Request Queuing and Ordering Rules

A target device (typically a bridge) can be designed to latch and process
multiple delayed requests. The device must, however, ensure that the
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transactions are performed in the proper order. Table 6-3 defines the rules
that the device must observe in order to ensure that posted memory writes
and delayed transactions are performed in the proper order. The table was
extracted from the specification. The following abbreviations are used in the
table:

PMW = pasted memory write. The master is permitted to end a memory
write immediately if the device posts it.

DRR = delayed read request. A delayed read request occurs when the
target latches the address, command and byte enables and issues a retry
to the master. It is then the responsibility of the target to perform the read
on the target bus to fetch the requested data.

DWR = delayed write request. A delayed write request occurs when the
target latches the address, command, byte enables and write data and
issues a retry to the master. It is then the responsibility of the target to
perform the write on the target bus.

DRC = delayed read completion. A delayed read completion occurs
when the device that latched a read request completes reading the
requested data on the target bus and has the data ready to deliver to the
master that originated the request. The device is ‘now waiting for the
originating master to retry its read so that it may deliver the data to the
master,

DWC = delayed write completion. A delayed write completion occurs
when the device that latched a write request completes writing the data
on the target for the master that originated the write. The device is now
waiting for the originating master to retry its write so that it may confirm
the delivery of the write data.

The table is formatted as follows:

The first column represents a delayed transaction request (one of five

types) that has just been latched,

The second column indicates whether the transaction just latched can pass
a previously-posted memory write.

The third column indicates whether the transaction just latched can pass a
previously-latched delayed read request.

The fourth column indicates whether the transaction just latched can pass
a previously-latched delayed write request.

The fifth column indicates whether the transaction just latched can pass a
previously-latched delayed read completion.
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e The sixth column indicates whether the transaction just latched can pass a

previously-latched delayed write completion.

The rule List immediately following the table was extracted from the

specification, The superscripts in each box corresponds to the rule list,

-~ Asan example; the-table indicates that a posted memory write can pass (be
performed) a delayed read or write request or a delayed write completion, but
it is not permitted to pass another posted memory write or a delayed read

completion,
Table 6-3. Ovdering Rules
Delayed Request Delayed
Completion
Transaction just latched PMW | DRR DWR DRC DWC
PMW No' Yes' Yes' No' Yes'
DRR No' | No No' No' Yes'
DWR No’ No' No' No* Yes'
DRC No® | Yes’ Yes’ No' No'
DWC Yes' |Yes' | Yes No' No'
Rule list:
1. Transactions of the same type cannot pass each other.
2. A posted memory write can pass a delayed request.
3. A delayed request cannot complete before a posted memory write.
4, A posted memory write or a delayed request cannot pass a delayed read
completion.
5. A delayed completion can pass a delayed request,
6. A delayed read completion cannot pass a posted memory write,
7. A delayed write completion can pass a posted memory wrile,
8. A posted memory write or a delayed read request can pass a delayed-
write completion.
The primary rule is that all device accesses must complete in order from the
programmer’s perspective. In the following list, the author has attempted (o
explain each table entry.
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1. A newly-latched PMW cannot pass (be completed before) a previously-
PMW because all writes have to complete in the order in which they have
been latched.

2 A newly-latched PMW can pass a previously-latched DRR. This is
permitted because the master has already completed the write while the
other master has not yet completed its read. From the programmer's
standpoint, this means the write completed before the read.

R e - - 3. A newly-latched- PMW- can pass a previously-latched DWR. This is
permitted because the master has already completed the posted-write
while the other master has not yet completed its delayed write. From the
programmer’s standpoint, this means the posted-write completed before

. the delayed write.

4. A newly-latched PMW cannot pass a previously-laiched DRC. From the
programmer’s perspective, the write has already completed but the read
has not. One master originated the read before the write was performed
by the other master, so the programmer expects to get back the read data
as it looked before the write occurred.

5. A newly-latched PMW can pass a previously-latthed DWC. The device
has completed the write to the target and is waiting for the delayed
master to reattempt the write so that it can let the master complete the
write, From the programmer’s perspective, the posted-write has already
completed while the delayed write hasn't.

6. A newly-latched DRR cannot pass a previously-PMW, If this were
permitted, the read might fetch stale data (because the posted write might
be to one of the locations to be read).

7. A newly-latched DRR cannot pass a prekusly-latdﬁed DRR. The reads
must complete in the order the programmer generated them,

8. A newly-latched DRR cannot pass a previously-latched DWR. The write
was originated before the read and must therefore occur before the read
(in case they target the same locations,

9. A newly-latched DRR cannot pass a previously-latched DRC. The reads
must complete in the order the programmer generated them. .

| 10. A newly-latched DRR can pass a previously-latched DWC. The target has

already been written to and updated, so it contains fresh information. The
device may therefore initiate the read from the target to fetch the data
requested by the originator.

11. A newly-latthed DWR cannot pass a previously-PMW. From the
programmer’s perspective, the posted write occurred before the delayed
write (which has not yet completed). The device must perform the posted
write before the newly-accepted delayed write so that the data is
delivered to the target(s) in the correct order.
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12. A newly-latched DWR cannot pass a previously-latched DRR. It is the
programmer’s intention that the read occur before the write.

13, A newly-latched DWR cannot pass a previously-latched DWR. It is the
programmer’s intention that the two writes occur in the order received.

14. A newly-latched DWR cannot pass a previously-latched DRC. The
programmer initiated the read before the write, so the read must be
permiited to complete (on the originating bus) before the write-occurs.- s

15. A newly-latched DWR can pass a previously-latched DWC. The data for
the first write (the DWC) has already been delivered to the target, so the
data from the second write (the DWR) can now be delivered. The target(s)
will receive the data in the order intended by the programmer.

16. A newly-latched DRC cannot pass a previously-PMW. If the write and
read are accessing the same locations, the read would return stale data.
From the programmer’s perspective, the write has already completed and
the target data updated. If reading from the same location(s), the
programmer therefore expects to receive the newly-written data.

17. A newly-latched DRC can pass a previously-latched DRR. The DRC is
associated with a DRR thal was received prior to the DRR that is st
outstanding. The data from the DRC can therefore be delivered to the
requesting master immediately.

18. A newly-latched DRC can pass a2 previously-latched DWR. The data
associated with the DRC was requested prior to the reception of the DWR
by the device. The read data can therefore be delivered to the requesting
master immediately (before the write is performed on the target bus).

19. A mewly-latched DRC cannot pass a previously-latched DRC. Read
requests must be performed in the order that they were received.

20. A newly-latched DRC cannot pass a previously-latched DWC. The data
associated with the DRC was requested prior to the reception of the DWR

‘ that caused the DWC. The read data can therefore be delivered to the
requesting master immediately (before the write is performed on the
target bus).

21. A newly-latched DWC can pass a previously-PMW. Writes must complete
in the order they are received and the write associated with the DWC was
received prior to the write associated with the PMW.,

22. A newly-latched DWC can pass a previously-latched DRR. The write
originated before the read, so the master that originated the write can be
told about its completion immediately.

23. A newly-latched DWC can pass a previously-latched DWR. The wrile
associated with the DWC originated before the write that originated the
DWR. The master that originated the DWC can therefore be told about the
write completion immediately.
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24, A newly-latched DWC cannot pass a previously-latched DRC. The read
associated with the DRC originated before the write gssociated with the
DWC. The master that originated the read must therefore be given the
read data before the master that originated the write is told of its
completion.

25. A newly-latched DWC cannot pass a previously-latiched DWC. The write
associated with the previously-completed DWC originated before the
write associated with the just completed DWC. The completions must
therefore be reported to the originating masters in that order.

Locking, Delayed Transactions and Posted Writes

The following rules must be followed when a device permits delayed
transactions and also supports locking: ;

1. A target that accepts a locked access (ie., it latches the request) must
behave as a locked target.

2. The target cannot accept any posted writes after accepting a delayed lock

request moving in the same direction (except as noted by rule five).

While locked, the target may continue to accept delayed requests.

Posting of write data in the opposite direction of the locked access must

be disabled once lock has been established on the destination bus.

Posting of write data from the locking master is allowed.

Once lock has been established (between the originating master and the

actual target), the device stays locked until LOCK# and FRAME# are

sampled deasserted (on the same rising-edge of the clock) on the

originating bus.

@

;o

Fast Back-to-Back Transactions

Page 118 of 235

Assertion of its grant by the PCI bus arbiter gives a PCI bus master access to
the bus for a single transaction. If a bus master desires another access, it
should continue to assert its REQ# after it has asserted FRAME# for the first
transaction, If the arbiter continues to assert its GNT# at the end of the first
transaction, the master may then immediately initiate a second transaction.
However, a bus master attempting to perform two, back-to-back transactions
usually must insert an idle cycle between the two transactions. This is
illustrated in figure 6-5. When it doesn't have to insert the idle cycle between
the two bus transactions, this is referred to as fast back-to-back transactions.
This can only occur if there is a guarantee that there will not be contention (on
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any signal lines) between the masters and/or targets involved in the two
transactons. There are two scenarios where this is the case.

1. In the first case, the master guarantees that there will be no contention.
2. In the second case, the master and the community of PCI targets
collectively provide the guarantee,

The sections that follow describe these-two scenarios..
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Decision to Implement Fast Back-to-Back Capability

The subsequent two sections describe the rules that permit deletion of the idle
state between two transactions. Since they represent a fairly constraining set
of rules, the designer of a bus master should make an informed decision as to
whether or not it's worth the additional logic-it would take to implement it. _

Assume that the nature of a particular bus master is such that it typically
performs long burst transfers whenever it acquires bus ownership. In this
case, including the extra logic to support fast back-to-back transactions would
not make a great deal of sense. Percentage-wise, you're only saving one clock
tick of latency in between each pair of long transfers.

Assume that the nature of another master is such that it typically performs
lots of small data bursts. In this case, inclusion of the extra logic may result in
a measurable increase in performance. Since each of the small transactions
typically only consists of a few clock ticks and the master performs lots of
these small transactions in rapid succession, the savings of one clock tick in
between each transaction pair can amount to the removal of a fair percentage
of overhead normally spent in bus idle time.

Scenario One: Master Guarantees Lack of Contention

In this scenario (defined in revision 1.0 of the specification and still true in
revision 2,x), the master must ensure that, when it performs two back-to-back
transactons with no idle state in between the two, there is no contention on
any of the signals driven by the bus master or on those driven by the target.
An idle cycle is required whenever AD[31:0], C/BE#[3:0], FRAME# and
IRDY# are driven by different masters from one clock cyele to the next. The
idle cycle allows one cycle for the master currently driving these signals to
surrender control (cease driving) before the next bus master begins to drive
the bus. This prevents bus contention,

How Collision Avoided On Signals Driven By Master

The master must ensure that the same set of output drivers are driving the
master-related signals at the end of the first transaction and the start of the
second, This means that the master must ensure that it is driving the bus at
the end of the first transaction and at the start of the second.
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To meet this criteria, the first transaction must be a2 write transaction and the
second transaction can be either a read or a write but must be initiated by the
same master, Refer to figure 6-6. When the master acquires bus ownership
and starts the first transaction (clock edge one), it asserts FRAME# and
continues to assert its REQ# line to request the bus again after the completion
of the current transaction. When the address phase is completed (clock edge
two), the master drives the first set of data bytes onto the AD bus and sets the
byte enables to indicate which data paths contain valid data bytes. At the
conclusion of the first (clock edge three) and any subsequent data phases, the
bus master is driving the AD bus and the byte enables. Furthermore, the bus
master is asserting IRDY# during the final data phase. On the rising-edge of
the PCI clock where the final data item is transferred (clock edge three),
FRAME# has already been deasserted and IRDY# asserted (along with TRDY#
and DEVSEL#). If, on this same clock edge (clock edge three) the master
samples its GNT# still asserted by the arbiter, this indicates that it has retained
bus ownership for the next transaction.

In the clock cell immediately following this clock edge (clock edge three), the
master can immediately reassert FRAME# and drive a new start address and
command onto the bus. There isn’t a collision on the FRAME# signal because
the same output driver that was driving FRAME# deasserted at the end of the
first transaction begins to assert FRAME# at the start of the second
transaction. There isn't a collision on the AD bus or the C/BE bus because the
same master’s drivers that were driving the final data item and byte enables at
the end of the first transaction are driving the start address and command at
the start of the second transaction.

At the end of the address phase of the second transaction (clock edge four),
the same master that was deasserting IRDY# at the end of the first (ransaction
begins to reassert it (so there is no collision between two different IRDY#
drivers). i

How Callision Avoided On Signals Driven By Target

The signals asserted by the target of the first transaction at the completion of
the final data phase (clock edge three) are TRDY# and DEVSEL# (and,
possibly, STOP#). Two clocks after the end of the data phase, the target may
also drive PERR#. Since it is a rule in this scenario that the same target must
be addressed in the second transaction, the same target again drives these
signals. Even if the target has a fast address decoder and begins to assert
DEVSEL# (and TRDY# if it is a write) during clock cell four in the second
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transaction, the fact that it is the same target ensures that there is not a
collision on TRDY# and DEVSEL# (and possibly STOP# and PERR#) between
output drivers associated with two different targets.

How Targets Recognize New Transaction Has Begun

It is a rule that all PCI targets must recognize either of the following
conditions as the start of anew transactwn

¢ Bus idle (FRAME# and IRDY# deasserted) on a mmg—edge of the PCT ¢
clock followed on the mext rising-edge by address phase in progress
(FRAME# asserted and IRDY# deasserted), 1.

« Final data phase in progress (FRAME# deasserted and IRDY# asserted) on
a rising-edge of the PCI clock, followed on the next rising-edge by address
phase in progress (FRAME# asserted and IRDY# deasserted).

ik 5

[mplementation of support for this type of fast back-to-back capability is
optional for an initiator, but all targets must be able to decode them, 1

Fast Back-to-Back and Master Abort

When a master experiences a master abort on a transaction during a fast back-
to-back series, it may continue performing fast transactions (as long as it still
has its GNT#). No target responded to the aborted transaction, thereby ;
ensuring that there will not be a collision on the target-related signals. If the 3
transaction that ended with a master abort was a special cycle, the target(s)
that received the message were already given sufficient time (by the master) -
to process the message and should be prepared to recognize another
transaction. The author would like to note that this portion of the 2.1 ;
specification states that the target(s) of the special cycle were given five clocks 2
after the last data transfer to process the message. This conflicts with the ;
specification description of the special cycle which cites four clocks are.
required after the last data transfer,
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Scenario Two: Targets Guarantee Lack of Contention

In the second scenario (defined in revision 2.0 of the specification and still true

in revision 2.1), the entire community of PCI targets that reside on the PCI bus
and the bus master collectively guarantee lack of contention during fast back-
to-back transactions. A constraint incurred when using the master-guaranteed
method (defined in revision 1.0 of the specification) is that the master can only - -
perform fast back-to-back transactions if both transactions access the same
target and the first transaction is a write.

The reason that scenaric one states that the target of the first and second
transactions must be the same target is to prevent the possibility of a collision
on the target-related signals: TRDY#, DEVSEL# and STOP# (and, possibly,
PERR#). This possibility can be avoided if:

1. All targets have medium or slow address decoders and

2. Al targets are capable of discerning that a new transaction has begun
without a transition through the bus idle state and are capable of latching
the address and command associated with the second transaction.

If the full suite of targets on a PCI bus meet these requirements, then any bus
master that is fast back-to-back capable can perform fast back-to-back
transactions with different targets in the first and second transactions, The
first transaction must still be a write, however, and the second transaction
must be performed by the same master (to prevent collisions on master-

related signals).

The previous statement implies that there is a method to determine if all
targets support this feature. During system configuration (at power-up),
software polls each device's configuration status register and checks the state
of its FAST BACK-TO-BACK CAPABLE bit. The designer of a device
hardwires this read-only bit to zero if the device doesn’t support this feature,
while hardwiring it to a one indicates that it does. If all devices indicate
support for this capability, then the configuration software can set each bus
master's FAST BACK-TO-BACK ENABLE bit in its configuration command
register (this bit, and therefore this capability is optional for a bus master)
When this bit is set, a master is enabled to perform fast back-to-back
transactions with different targets in the first and second transactions.

A target supports this capability if it meets the following criteria:
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1.

Normally a target recognizes a bus idle condition by sampling FRAME#
and IRDY# deasserted. It then expects and recognizes the start of the next
transaction by sampling FRAME# asserted and IRDY# deasserted. At that
point, it latches the address and command and begins address decode. To
support the feature under discussion, it must recognize the completion of
the final data phase of one transaction by sampling FRAME# deasserted

and IRDY# and TRDY# asserted. This would then be immediately -
~ followed by the start of the next transaction, as indicated by sampling

FRAME# asserted and IRDY# deasserted on the next rising-edge of the
PCI clock.

The target must ehsure that there isn‘t contention on TRDY#, DEVSEL#
and STOP# (and, possibly, PERR#), If the target has a medium or slow
address” decoder, this provides the guarantee. If the target has a fast
address decoder, it must delay assertion of these three signals by one
clock to prevent contention. Note that this does not affect the DEVSEL#
timing field in the device’s configuration status register. The setting in this
field is used by the bus’s subtractive decoder to adjust when it asserts
DEVSEL# to claim transactions unclaimed by PCI devices. During the
second transaction of a fast back-to-back transaction pair, the subtractive
decoder must delay its assertion of DEVSEL# if it normally claims during
the medium or slow time slot (otherwise, a collision may occur on
DEVSEL#, TRDY#, and STOP# (and, possibly, PERR#).

There are two circumstances when a target with a fast address decoder
doesn't have to insert this one clock delay:

The current transaction was preceded by a bus idle state (FRAME# and
IRDY# deasserted).

The currently-addressed target was also addressed in the previous
transaction. This ensures a lack of contention on TRDY#, STOP# and
DEVSEL# (because it was driving these signals during the previous
transaction).

State of REQi# and GNT# During RST#

While RST# is asserted, all masters must tri-state their REQ# output drivers
and must ignore their GNT# inputs.

Page 126 of 235
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Pullups On REQ# From Add-In Connectors

In a system with PCI add-in connectors, the arbiter may require a weak pullup
on the REQ# inputs that are wired to the add-in connectors. This will keep
them from floating when the connectors are unoccupied.

Broken Master

The arbiter may assume that a master is broken if the arbiter has issued GNT#
to the master, the bus has been idle for 16 clocks, and the master has not
asserted FRAMEH# to start its transaction. The arbiter is permitted to ignore all
further requests from the broken master and may optionally report the failure
to the operating system (in a device-specific fashion).
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Chapter 7

The Previous Chapter
“The previous chapter provided a description of PCI bus arbitration.
In This Chapter

This chapter defines the types of commands, or transaction types, that a bus
master may initiate when it has acquired ownership of the PCI bus.

The Next chapter

The next chapter provides a detailed analysis of the PCI transfer, utilizing
timing diagrams and a description of each step involved in the transfer,

Introduction

When a bus master acquires ownership of the PCI bus, it may initiate one of
the types of transactions listed in table 7-1. During the address phase of a
transaction, the Command/Byte Enable bus, C/BE#[3:0], is used to indicate
the command, or transaction, type. Table 7-1 provides the setting that the ini-
tiator places on the Command/Byte Enable lines during the address phase of
the transaction to indicate the type of transaction in progress. The following
sections provide a description of each of the command types.
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Table 7-1. PCI Comand Types

g
g

|

C/BE2# | C/BEi# | C/BEO# Command Type
Inherrupt Acknowledge

Special Cycle

I/O Read

I/0O Write

Reserved - -

Reserved

Memory Read

Memory Write

Reserved

Reserved

Configuration Read

Configuration Write

Memory Read Multiple

Dual-Address Cycle

Memory Read Line

Hir == = e = ololojolololajo

il lolo|lg|lo|=k = i-Hlaelalala

= IQO (=l = o|O|= | =S|
Hot—aﬁcu—bv—'brﬁot—iﬁﬂol
. i

Memory Write and Invalidate

Interrupt Acknowledge Command

Introduction

In response to an interrupt request, an Intel x86 processor issues two inten'upt
acknowledge transactions to read the interrupt vector from the mterrupt/con—
troller, The interrupt vector tells the processor which interrupt service routine
to execute.

Background

In an Intel xB6-based system, the host processor is usually the device that
services interrupt requests received from subsystems that require servicing. In
a PC-compatible system, the subsystem requiring service issues a request by
asserting one of the system interrupt request signals, IRQO through RQ15.
When the IRQ is detected by the interrupt controller, it asserts INTR to the
host processor. Assuming that the host processor is enabled to recognize in-
terrupt requests (the interrupt flag bit in the EFLAGS register is set to one)
the processor responds by requesting the interrupt vector from the interrupt
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controller. This is accomplished by the processor stepping through the follow-
ing sequence:

1. Processor generates an interrupt acknowledge bus cyele. No address is
output by the processor because the address of the target device, the in-
terrupt controller, is implicit in the bus cycle type. The purpose of this bus

S S e _cycle is to command the interrupt controller to prioritize its currently-
pending requests and select the request to be processed. The processor
doesn't expect any data to be returned by the interrupt controller during

this bus cycle.

! 2. Processor generates a second interrupt acknowledge bus cycle to re- o
quest the interrupt vector from the interrupt controller, BEC# is asserted

N by the processor, indicating that an 8-bit vector is expected to be returned

on the lower data path, D[7:0]. To state this more plainly, the processor
requests that the interrupt controller return the index into the interrupt
table in memory. This tells the processor which table entry to read. The
table entry contains the start address of the device-specific interrupt serv-
ice routine in memory. In response to the second interrupt acknowledge
bus cycle, the interrupt controller must drive the interrupt table index, or
vector, associated with the highest-priority request currently pending
back to the processor over the lower data path, D[7:0], and assert ready to
the processor to indicates the presence of the vector. In response, the
processor reads the vector from the bus and uses it to determine the start
address of the interrupt service routine that it must execute.

Host/PCI Bridge Handling of Interrupt Acknowledge
‘ Sequence

When the host/PCI bridge detects the start of an interrupt acknowledge se-
quence on the host side, it can handle it one of two ways:

1. It filters out (does not pass to the PCI bus) the first interrupt acknowledge
bus cycle. Ready is asserted to the processor to terminate the first inter-
rupt acknowledge bus cycle. When the processor initiates the second in-
terrupt acknowledge bus cycle, the bridge acquires the PCI bus and initi-
ates a PCI interrupt acknowledge transaction. This transaction is illus-
trated in figure 7-1 and is described in the next section. When the PCI tar-
get that contains the interrupt controller detects the interrupt acknowl-
edge transaction, it asserts DEVSEL# to claim the transaction. It then in-
temnally generates two, back-to-back interrupt acknowledge pulses to the
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B259A interrupt controller, thereby emulating the double interrupt ac-
knowledge generated by an Intel x86 processor. In response, the interrupt
controller drives the interrupt vector onto the lower data path and asserts
TRDY# to indicate the presence of the vector to the initiator (the host/PCI
bridge). When the host/PCI bridge samples TRDY# and IRDY# asserted,
it reads the vector from the lower data path and terminates the PCI inter-
rupt acknowledge transaction. During this period, the bridge was insert-
ing wait states into the host processor's second interrupt acknowledge bus
cycle. It then drives the 8-bit interrupt vector onto the processor’s lower
data path and asserts ready to the processor. When the processor samples
ready asserted, it reads the vector from the bus and uses it to index into
the memory-based interrupt table to get the start address of the interrupt
service routine to execute.

2. Instead of filtering out the first of the processor’s interrupt acknowledge

bus cycles, the bridge could pass it onto the PCI bus. Rather than waiting
for the completion of the PCI transaction, however, the bridge would im-
mediately assert ready to the processor, permitting it to end the first inter-
rupt acknowledge bus cycle and begin the second. This would permit the
interrupt controller to claim the transaction earlier and therefore retum
the vector sooner. When the interrupt controller returns the vector, it is
passed directly back to the processor and ready is asserted, permitting the
processor to read the vector and terminate the second bus cycle.

PCI Interrupt Acknowledge Transaction

Figure 7-1 illustrates the PCI ln\f’&m.lpt acknowledge transaction. The bridge

does not drive an address onto the AD bus during the address phase, bat

must drive stable data onto the AD bus along with correct parity on the PAR
line. The C/BE bus contains the interrupt acknowledge command during the

address phase, During the data phase, the target holds off the assertion of -
TRDY# and DEVSEL# to enforce the turnaround cycle, This is necessary to -
permit the bridge sufficient time to turn off its AD bus output drivers before -
the target (the interrupt controller) begins to drive the requested interrupt -
vector back to the bridge on the AD bus. The target then drives the vector
onto the data path(s) indicated by the byte enable settings on the C/BE bus

(just BEO# asserted in an ixB6 envirorunent) and asserts TRDY# to indicate the
presence of the requested vector. The byte enables are a duplicate of the byte
enables asserted by the host processor during its second interrupt acknowl ;
edge bus cycle. When the bridge samples IRDY# and TRDY# asserted, it reads =
the vector from the AD bus and terminates the PCI interrupt acknowledge
transaction. It then passes the vector back to the host processor and asserts {

JE—
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ready to indicate its presence. When the host processor samples ready as-
serted, it reads the vector from its data bus and terminates the second inter-
rupt acknowledge bus cycle.

In a PowerPC, PReP-compliant platform, the programmer performs a one to
four byte memory read from memory location BFFFFFFOh. When the
host/PCI bridge detects this read, it acquires ownership of the PCI bus and
- - initiates-the PCI interrupt acknowledge transaction. When the interrupt con-
troller supplies the requested vector to the host/PCI bridge, the bridge in tum
supplies it to the processor and asserts TA# to indicate its presence. The proc-
essor reads the vector and places into the GPR indicated by the load instruc-
tion being executed, The programmer then uses the vector as an index into the
interrupt service routine jump table.
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(indexrupt contraller)
is bmplicit in command
Mmhs dd\mnﬁhmh
ttem and PAR
i =2 tn correct shte, but
avalid address is not doiven.

Figure 7-1. The PCI Interrupt Acknowledge Transaction
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Special Cycle Command

General

The special cycle command is issued by an initiator to broadcast a message to
one or more targets residing on a target PCI bus. Each target on the PCI bus
must examine the message to determine whether the message applies to it (a
target may be designed not to recognize any messages or to recognize only
specific messages), Via its configuration command register, a target's ability to
monitor special cycle messages can be enabled or disabled. As an example of
message passing using the special cycle, Intel x86 processors use the special
cycle to indicate when they are going into a halt or shutdown condition,

During the address phase, a valid address is not driven onto the AD bus. The
AD bus and PAR must be driven with a stable pattern, however, so that the
parity of the AD bus and the command can be checked for correctness. The
initiator uses the C/BE bus to indicate that this is a special cycle transaction.

During the data phase, the initiator broadcasts the message type on AD[15:0]
and an optional, message-dependent data field may be presented on
| AD([31:16]. The message and associated data are only valid during the clock
when IRDY# is asserted. The data contained in, and the timing of subsequent
- data phases is message dependent (the subject of multiple data phase special
cycles is discussed under the section entitled “Special Cycle Transaction”). If
necessary, the initiator may insert wait states into the transaction by deassert-
ing IRDY#, but targets cannot insert wait states. In addition, no target should
assert DEVSEL# when it recognizes a message. Since multiple targets can rec-
ognize the message type, there would be contention on the DEVSEL# line if
they all tried to claim the transaction by asserting DEVSEL#. The targets must
watch IRDY# to determine the presence of the message being sent by the ini-
tiator. It should be noted that the message type (and any associated data on
AD([31:16)) is only valid during the first data phase. Since all special cycles are
mtended to pass messages only to PCI targets, a subtractive decode bridge
should not pass the transaction onto an expansion bus (such as ISA, EISA or
the Micro Channel™) when it doesn't see any target claim the transaction by
asserting DEVSEL#.

Since no target responds to the special cycle (DEVSEL# is not asserted), an-
other means must be used to end the transaction. The inatiator must perform a
master-abort to end the transaction. The master-abort process is explained in
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the chapter entitled “Premature Transaction Termination.” It must be noted
that when the initiator terminates the transaction with a master-abort (because
DEVSEL# was not asserted by a target), it must not set the MASTER-ABORT
DETECTED bit in its configuration status register. That bit should only be set
in a transaction where a DEVSEL# is expected but not received. |

The first two message codes, 0000h and 0001h, are defined as SHUTDOWN. |
and HALT. Message code 0002h is reserved for use by Intel x86 processors to
broadcast x86-specific messages. During the data phase, AD[15:0] would con-
tain 0002h, while AD[31:16] would contain the x86-specific message. The x86-
specific message codes are defined by Intel in product-specific documentation.
Message codes 0003h through FFFFh are reserved for future use. Allocation of
new message codes is handled through the SIG and requests for allocation of
new message codes should be submitted to the SIG in writing.

During system design, each PCl device that is capable of recognizing or i
broadcasting message codes must be hardwired with the message codes it
recognizes or broadcasts. Upon recognition of any of its assigned message [
codes, a PCI target should take the application-specific action defined by the
message code received.

Table 7-2. Message Types defined In the Specification I
Message Code
(on AD[15:0]) Message e X
0000h Shutdown. Processor is going inte a shutdown condition due to
a severe, unrecoverable software problem. '
0001h Halt. The processor has fetched and is executing a Halt instruc-
' tion. In response, the processor issues the halt message using the
special bus cycle to indicate to all external devices that it is going
to cease fetching and executing instructions.
000Zh x86-specific message. AD[31:16] contains the Intel device- H
specific message. =]
0003h-FFFFh | Reserved. — 3]

The special cycle command takes a minimum of six clocks to complete (more
if the initiator inserts wait states by delaying the assertion of IRDY#). One
additional clock is required for the tum-around cycle before the next transa¢
tion is initiated on the bus. Therefore, a total of seven clock cycles are required |
from the start of the special cycle to the start of the next cycle. '
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Special Cycle Generation

Host/PCI bridges are not required to provide a mechanism that permits spe-
dal cycles to be generated under software control. If the bridge does provide
this capability, however, a detailed description of a mechanism can be found
in the chapters entiled “Configuration Transactions” and “PCl-+o-PCI
Bridge.”

Special Cycle Transaction

Single-Data Phase Special Cycle Transaction

Figure 7-2 illustrates the special cycle transaction timing. During the address
phase, the initiator drives a stable pattern onto the AD bus and PAR. This is

| only for parity checking purposes. No actual address is driven. In addition,
the initiator drives the special cycle command onto the C/BE bus during the
address phase.

At the end of the address phase, the data phase begins. The initiator drives the
message code onto AD[15:0] and any optional, message-related data onto
ADI[31:16]. It also asserts the appropriate byte enable lines (i.e., C/BE#[1:0] or
[3:0]). The message is only guaranteed to be present on the AD bus for one
clock when the initiator asserts IRDY#. The iniHator can insert wait states inte
the data phase by delaying the assertion of IRDY#. When the message is
driven onto the AD bus, the initiator asserts IRDY# to indicate its presence.
The targets that are designed to recognize special cycles latch the message in-
formation from the AD bus when IRDY# is sampled asserted.

Since a target is not expected to claim a special transaction, DEVSEL# is sam-
pled deasserted (by the initiator) at the end of clocks three through six. Since
the transaction isn't claimed on any of these clocks, the initiator executes a
master-abort to retwmn the bus back to the idle state. If the master inserted one
or more wait states before presenting the message and asserting IRDY#, the
master must extend the master abort timeout period by at least the number of
wait states inserted (before performing the master abort to return the bus to
the idle state). The specification states that this time period is required to give
the target(s) sufficient time to “process” the message. This period of time is
necessary to ensure that the target(s) have completed all internal actions re-
lated to reception of the message and are prepared to handle another transac-
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tion. When it occurs, the master abort is accomplished by deasserting
FRAME# and then IRDY#.

Multiple Data Phase Special Cycle Transaction

It is permissible for an initiator to deliver multiple packets of message infor-
mation during-the special cycle. No messages are currently defined that pro-
vide this capability, however. The target(s) latch the frst message packet on
the rising-edge of the clock when IRDY# is first sampled asserted. The mes-
sage type encoded on AD[15:0] may imply. the number of additional message
packets to be delivered or the data field encoded on AD[31:16] may state the
number of packets. The second data phase start during the cleck cell immedi-
ately following the first assertion of IRDY#. Although the specification doesn't
clearly state so, the author interprets the specification as indirectly stating that
the initiator can deassert IRDY# during the second (and any subsequent) data
phase until it has placed the next message packet on the AD bus. Each addi-
tional data phase completes when IRDYj# is sampled asserted. When the final
data transfer completes, the initiator must keep IRDY# asserted for at least
four additional clocks before performing a master abort to retumn the bus to
the idle state. This time period is required to give the target(s) sufficient time
to “process” the message. The specification does not explain what form this
“processing” might take,
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/O Read and Write Commands .

The 1/0 read and write commands are used to transfer data between the ini- |

tiator and the currently-addressed 1/0 target. The target must decode the ep- |

tire 32-bit address. For a detailed description of 1/0 addressing and 1/0 read | :

and write fransactions, refer to the chapte: entitled “The Read and Wnte
RN : SR Transfers.” - - -

Accessing Memory
The PCI specification defines five commands utilized to access memory: |

Memeory read command.

Memory read line command. \
Memory read multiple command.

Memory write command.

Memory write and invalidate command.

The specification says that the cache line size configuration register (described
in the chapter entitled “Configuration Registers”) must be implemented by
bus masters that utilize the memory write and invalidate command (described
later in this chapter). It also strongly recommends that this register be imple-
mented for bus masters that utilize the memory read, memory read line and
memory read multiple commands.

If the cache line size configuration register is implemented, the initiator should ' -
fallow the usage guidelines outlined in table 7-3 when performing memory |
reads. If an initiator accesses memory and does not implement the cache line

size configuration register, it should follow the guidelines outlined in table 7-4
when performing memory reads. In essence, the rules are the same, but the

bus master assumes a cache line size of 16 or 32 bytes,

The specification strongly recommends that the bulk read/write commands
be used when transferring large blocks of data to or from memary. These
commands are memory write and invalidate, memory read line and memory
read multiple.
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Table 7-3. Read Policy When Cache Line Size Register Implemented

Read Command Type S ¥ To Be Used When
Memory Read Bursting less than a cache line.
Memory Read Line Bursting a cache line.

Memory Read Multiple | Bursting more than one cache line.

- Table 74. Read Policy When Cache Line Size Register Nol Implemented

_ Read Command :Ege To Be Used When
 Memory Read Bursting less than a cache line (assuming a cache line

size of 16 or 32 bytes).

H Memory Read Line Bursting a cache line (assuming a cache line size of 16 or
32 bytes).

; Memory Read Multiple | Bursting more than one cache line (assuming a cache
line size of 16 or 32 bytes).

Reading Memory

The following three commands are available to be used when reading data
from memory.

Memory Read Command

The memory read command should be used when transferring less than a
cache line,

Memory Read Line Command

When a master uses the memory read line command, it is indicating that it
will read a complete cache line from the target memory device. This permits
the memory target to prefetch the entire line from its memory rather than ac-
cessing memory on a data phase by data phase basis. The intent is to yield bet-
ter performance when performing bulk reads from memory. A memory target
that doesn’t implement this command will treat it as a memory read and ac-
cess its memory on a data phase by data phase basis.

Memory Read Muitiple Command

When a master uses the memeory read multiple command, it is indicating that
it will read more than one complete cache line from the target memory device,
This permits the memory target to prefetch data from its memory a line at a
time rather than accessing memory on a data phase by data phase basis. The
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intent is to yield better performance when performing bulk reads from mem-
ory. A memory target that doesn’t implement this command will treat it as a
memory read and access its memory on a data phase by data phase basi&.\

When this command is used, the target memory device should fetch the re-
quested cache line from memory. When the requested line has been fetched
from memory, the memory controller should start fetching the next line from

o S g -~ memory in anticipation of a request from the initiator. The memory controller
should continue to prefetch lines from memory as long as the initiator keeps
FRAME# asserted. It should be noted that the memory target is responsible
for ensuring the validity of data prefetched from memory during an anticipa-
tory read.

Writing Memory

The initiator may use the memory write or the memory write and invalidate
command to update data in memory.

Memory Write Command

This command is used to transfer one or more data objects to memory. When
the target asserts TRDY#, it has assumed responsibility for maintaining the
coherency of the data. This can be done by ensuring that any software-
transparent posting buffer is flushed prior to synchronization events such as
interrupts, or the updating of an [/0 status register or memory flag being
passed through the device that contains the posted-write buffer (ie., a bridge).

Memory Write and Invalidate Command
Problem

Assume that another PCI master is performing a memory write and the proc-
essor's write back cache(s) is snooping the transaction. It experiences a snoop
hit on a medified line. This means that the initiator is about to update a stale
line in memory. Assuming that the cache is not capable of data snarfing
(latching the data from the AD bus) to keep the cache line updated, it could
invalidate the cache line. This, however, would be a mistake. The fact that the
line is marked modified indicates that some or all of the information in the
line is more current than the corresponding line in memory. The memory
write being performed by the current initiator is updating some item in the
memory line. Trashing the line from the cache would quite probably trash
some data that is more current than that in the memory line.

E
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If the cache permits the initiator to complete the memory write and then
flushes the cache line to memory, the data just written by the initiator is over-
written by the stale data in the cache line. The correct action would be to force
the initiator that is attempting the write to get off the bus (abort the transac-
tion). The cache then acquires the bus and performs a memory write to trans-
fer, or flush, the modified cache line to memory. In the cache directory, the
cache line is then invalidated because the initiator will subsequently update
the memory line immediately after the cache line is flushed to memory. The
cache then removes the back off, permitting the initiator to reinitiate the
memory write. The memory line now contains the most current data. The
cache snoops this transaction as well, but it now results in a cache miss

N (because the cache line was invalidated after it was deposited in memory).
The cache does not interfere in the memory write this time.

Description of Memory Write and Invalidate Command

The memory write and invalidate command is identical to the memory write
command except that it guarantees the transfer of a complete cache line (or
multiple cache lines) during the current transaction. This imples that the
cache line size configuration register must be implemented in the initiator so
that it can make the termination that an entire cache line will be written,

If, when snooping, the write-back cache detects a memory write and invali-
date initiated and experiences a sncop hit onn a modified line, the cache can
just invalidate the line and doesn't need to back off the initiator in order to
perform the flush to memory. This is possible because the initiator has indi-
cated that it is updating the entire memory line and all of the datg in the
modified cache line is therefore stale and can be invalidated. This increases
performance by eliminating the requirement for the back off and line flush,

It is a requirement that the iniiator must assert all of the byte enable signals
during each data phase of the memory write and invalidate transaction. It also
required that linear addressing be used. For information on the byte enables
and on linear addressing, refer to the chapter entitled “The Read and Write
Transfer.”

More Information On Memory Transfers

For a detailed description of read and write transactions, refer to the chapter
entitled “The Read and Write Transfers.”
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Configuration Read and Write Commands

Each PCI device may implement up to 64 doublewords of configuration régis-
ters that are used during system initialization to configure the PCI device for
proper operation in the system. To access a PCI agent's configuration regis-
ters, a configuration read or write command must be initiated and the agent

must sense its IDSEL input asserted during the address phase. IDSEL acts as a

chip-select, AD[10:8] select the function within the device and the contents of
AD[7:2] (during the address phase) are used to select one of the target's 64
doublewords of configuration space.

The x86 processor family implements two address spaces: memory and 1/0,
PCI requires the implementation of a third address space: configuration space.
The mechanism used to generate configuration transactions is described in the
chapter entitled “Configuration Transactions.”

Dual-Address Cycle

The injtiator uses the dual-address cycle command to indicate that it is using
64-bit addressing, This subject is covered in the chapter entitled “The 64-Bit
PCI Extension.”

Reserved Bus Commands

Targets must not respond (assert DEVSEL#) to reserved bus commands. This
means that use of a reserved bus command will result in the initiator experi-
encing a master abort.
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Chapter 8

The Previous Chapter

The previous chapter introduced the types of commands, or transactions, that
an initiator may perform once it has acquired ownership of the PCI bus.

In This Chapter

This chapter provides a detailed description of the basic PCI data transfer,
using timing diagrams to illustrate the exact sequence and timing of events
during the transfer.

The Next Chapter

The next chapter describes the circumstances under which the initiator or tar-
get may need to abort a transaction and the mechanisms provided to accom-
plish the abort.

Some Basic Rules

The ready signal from the device sourcing the data must be asserted when it is
driving valid data onto the data bus. The PCI agent receiving the data can

' keep its ready line deasserted its ready signal unil it is ready to receive the
data. Once a device's ready signal is asserted, it must remain so until the end
of the current data phase.

An agent may not alter its control line settings once it has indicated that it is
ready fo complete the current data phase. Once the initiator has asserted
IRDY#, it may not change the state of IRDY# or FRAME# regardless of the
state of TRDY#. Once a larget has asserted TRDY# or STOP#, it may not
change TRDY#, STOP# or DEVSEL# until the current data phase completes.
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Parity

Parity generation, checking, error reporting and timing is not discussed in this
chapter. This subject is covered in detail in the chapter entitled “Error Detec-
tion and Handling.”

~ Read Transaction e e ' '

Description
During the following description of the read transaction, refer to figure 8-1.

Each clock cycle is numbered for easy reference and begins and ends on the
rising-edge. It is assumed that the bus master has already arbitrated for and
been granted access to the bus, The bus master then must wait for the bus to
become idle. This is accomplished by sampling the state of FRAME# and
IRDY# on the rising-edge of each clock (along with GNT#). When both are
sampled deasserted (clock edge one), the bus is idle and a transaction may be
initiated by the bus master.

, At the start of clock one, the initiator asserts FRAME#, indicating that the

| transaction has begun and that a valid start address and command are on the
bus. FRAME# must remain asserted until the initiator is ready to complete the
last data phase. At the same time that the initiator asserts FRAME#, it drives
the start address onto the AD bus and the transaction type onto the Com-
mand/Byte Enable lines, C/BE[3.0]#. The address and transaction type are
driven onto the bus for the duration of clock one.

A turmn-around cycle (ie., a dead cycle) is required on all signals that may be
_driven by more than one PCI bus agent. This period is required to avoid a
collision when one agent is in the process of turning off 1ts output drivers and
| another agent begins driving the same signal(s). During clock one, IRDY#,
TRDY# and DEVSEL# are not driven (in preparation for takeover by the new
initiator and target). They are kept in the deasserted state by keeper resistors
on the system board (required system board resource),

At the start of clock two, the initiator ceases driving the AD bus. This will 2+
low the target to take control of the AD bus to drive the first requested data
item (between one and four bytes) back to the initiator, During a read, Clo‘_"
two is defined as the tum-around cycle because ownership of the AD bus B

e

Page 145 of 235
PetitionersHTC & LG - Exhibit 1019, p. 145




“iapicl 0. L€ nead ana vvrite lransters

changing from the initiator to the addressed target. It is the responsibility of
the addressed target to keep TRDY# deasserted to enforce this period.

Also at the start of clock two, the initiator ceases to drive the command onto
the Command/Byte Enable lines and uses them to indicate the bytes to be
transferred in the currently-addressed doubleword (as well as the data paths
to be used during the data transfer). Typically, the initiator will assert all of
the byte enables during a read.
o> e ~ The initiator also asserts IRDY# to indicate that it is ready to receive the first
data item from the target . Upon asserting IRDY#, the initiator does not deas-
sert FRAME#, thereby indicating that this is not the final data phase of the ex-
v ample transaction. if this were the final data phase, the initiator would assert
IRDY# and deassert FRAME# simultaneously to indicate that it is ready to
' complete the final data phase.

It should be noted that the initiator does not have to assert IRDY# immedi-
ately upon entering a data phase. It may require some time before it’s ready to
receive the first data item (e.g. it has a buffer full condition). However, the
initiator may not keep IRDY# deasserted for more than eight PCI clocks dur-
ing any data phase. This rule has been added in version 2.1 of the specifica-
tion.

During clock cell three, the target:

e asserts DEVSEL# to indicate that it has recognized its address and will
participate in the transaction.

= begins to drive the first data item (between one and four byfes, as re-
quested by the setting of the C/BE lines) onto the AD bus and asserts
TRDY# to indicate the presence of the requested data.

When the initiator and the currently-addressed target sample TRDY# and
IRDY# both asserted at the rising-edge of clock four, the first data item is read
from the bus by the initiator, completing the ‘first data phase. The first data
phase consisted of dlock cell two and the wait state (tumaround cycle) in-
serted by the target (clock cell three). At the start of the second data phase
(clock edge four), the initiator sets the byte enables to indicate the bytes to be
transferred within the next doubleword.

It is a rule that the initiator must immediately output the byte enables for a
data phase upon entry to the data phase. If for some reason the initator
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doesn’t know what the byte enable setting will be for the next data phase, it
should keep IRDY# deasserted and not let the current data phase end until it
knows what they will be, y

In this example, the initiator keeps IRDY# asserted upon entry into the second
data phase, but does not deassert FRAME#. This indicates that the initiator is
ready to read the second data item, but this is not the final data phase.

> o - - - In a multiple-data phase transaction, it is the responsibility of the target to .
latch the start address into an address counter and to manage the address -
from data phase to data phase. As an example, upon completion of one data

= phase, the target would increment the latched address by four to point the -
next doubleword. It then examines the initiator’s byte enable settings to de-

' termine the bytes to be transferred within the currently-addressed double- |

word. This subject is covered in more detail later in this chapler.

In this example, the target is going to need some Hme to fetch tha second data
© item requested, so it deasserts TRDY# to insert a wait state (clock cell five)
into the second data phase. In order to keep the data paths from floating, the |
target must continue to drive a stable data pattern, usually consisting of the [
last data item, onto the AD bus until it has acquired and is presenting the sec- |
ond requested data item. This is illustrated in clock four. It is necessary to
keep the AD bus from floating in order to prevent all of the CMOS input buff-
ers connected to the AD bus from oscillating and drawing excessive current,
Mentioned earlier in the book, this is one of the measures taken to achieve the
green nature of the PCI bus. '

At the rising-edge of clock five, the initiator samples TRDY# deasserted and,
recognizing that the target is requesting more time for the transfer of the sec-
ond data item, it inserts a wait state into the second data phase (clock cell
five). .

During the wait state, the target begins to drive the second data item onto the
AD bus and asserts TRDY# to indicate its presence. When the initiator sam-
ples both IRDY# and TRDY# asserted at the rising-edge of clock six, it reads
the second data item from the bus, This completes the second data phase. The
second data phase consisted of clock cells four and five.

T eI e L e

At the start of the third data phase, the initiator sets the byte enables to indi-
cate the bytes to be transferred in the mext doubleword. It also deasserts |
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IRDY#, indicating that it requires more than one clock cell before it will be
ready to receive the data.

" During clock cell six, the target keeps TRDY# asserted, indicating that it is
dnvlng the third requested data item onto the AD bus. In this example, how-
ever, the initiator requires more time before it will be-able to read the data
item (probably because it has a temporary buffer full condition). This causes a
wait state to be inserted into data phase three. The target must continue to
drive the third data item onto the AD bus during the wait state {clock cell
seven).

During clock cell seven, the initiator asserts [IRDY#, indicating its willingness
to accept the third data item on the next rising clock edge. It also deasserts
FRAME#, indicating that this is the final data phase. Sampling both IRDY#
and TRDY# asserted at the rising-edge of clock eight, the initiator reads the
third data item from the bus. The third data phase consisted of clocks six and
seven. Sampling FRAME# deasserted instructs the target that this is the final
data item.

The overall burst transfer consisting of three data phases has been completed.
The initiator deasserts [IRDY#, returning the bus to the idle state (on the rising-
edge of clock nine), and the target deasserts TRDY# and DEVSEL#,
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Figure 8-1. The Read Transaction

Treatment of Byte Enables During Read or Write

Byte Enable Settings May Vary from Data Phase to Data
Phase

phase to the next. Furthermore, the initiator may use any byte enable sett

PCI permits burst transactions where the byte enables change from one d:;g
consisting of contiguous or non-contiguous byte enables. During a read tra
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actiori, the initiator will typically assert all of the byte enables during each
data phase, put it may use any combination.

It should be noted that all targets may not be capable of handling non-
contiguous byte enables. An example would be an PCI/ISA bridge. In this
case, the target could take one of the following actions:

» assert SERR#,
e break the transaction into two 16-bit transfers.

Data Phase with No Byte Enables Asserted

As stated in the previous paragraph, any combination of byte enables is valid
in any data phase. This includes a data phase with no byte enables asserted (a
null data phase). This can occur for a number of reasons. Some examples
would be:

¢  During a burst transfer, the programmer may wish to “skip” a double-
word, This would be accomplished by keeping all byte enables deasserted
during that data phase,

* At the iniiation of a 64-bit transfer, the initiator does not yet know
whether the target device is a 64 or a 32-bit device. In certain cases, if a 32-
bit device responds, this can result in the first data phase being null. This
case is described in the chapter entitled “The 64-bit PCT Extension.”

s There are cases where the last data phase of a block transfer may not have
any of the byte enables asserted. Assume that an expansion bus master
(EISA or Micro Channel™) has initiated a series of accesses with a PCI
target. The bridge between the expansion and PCI buses will frequently
packetize this series of bus master accesses into a PCI burst transfer. When
the expansion bus master has completed its last data transfer, the bridge
signals this to the target by deasserting FRAME#, This informs the target
that the last data transfer is in progress, Since the bus master has already
transferred all of the data, however, the bridge will not assert any of the
byte enables during this last data phase.

When none of the byte enables are asserted, the target must react as follows:

* On aread: the target must ensure that no data or status is destroyed or al--

tered as a result of this data transfer. The target must supply a stable pat-
tern on all data paths and must generate the proper parity (for the AD and
C/BE buses) on the PAR bit
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e On a write: the target must not store any data and the initiator must sup-
ply a stable pattern on all data paths and ensure that PAR is valid for the
AD and C/BE buses.

Target with Limited Byte Enable Support

1/0 and memory targets may support restricted byte enable settings and may
respond with target abort for any other pattern. All devices must support any
"~ byte enable combination during configuration transactions.

Rule for Sampling of Byte Enables

If the target requires sampling of the byte enables (in order to precisely de-
termine which bytes are to be transferred within the currently-addressed
doubleword) during each data transfer, it must wait for the byte enables Lo be
valid during each data phase before completing the transfer. An example of a
device that requires sampling of byte enables would be a memory-mapped
1/0 device. It should not accept a write to or a read from 8-bit ports within
the currently-addressed doubleword until it has verified (via the byte enables)
that the initiator is in fact addressing those ports.

If a target does not require examination of the byte enables on a read, the tar-

get must supply all four bytes. An example of a device that would not have ta

wait to sample the byte enables would be a typical memory target. Memory
typically yields the same data from a location no matter how many times the
location is read from. In other words, performing a speculative read from the

memory does not alter the data stored in the location. This type of memory |
target can be designed to supply all four bytes in every data phase of a read

burst. The initiator only take the bytes it’s addressing and ignores the others.

lgnore Byte Enables During Line Read

If the initiator is reading a line of data from memory, the memory target must

return all four bytes regardless of the byte enable settings. This action is guar-
anteed in one of the following manners:

» If the cacheability of the target memory is determined by the initiator, the |

initiator must ensure that all byte enables are asserted so that the target;

will return all four bytes.
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s« If the target memory determines that the access is cacheable, it should ig-
nore the byte enable settings during each data phase (except for parity
generation) and return all four bytes.

Prefetching

If a target does not support caching but does support prefetching (indicated -
_ by hardwiring the PREFETCHABLE attribute bit in its base address configu-

ration register to a one), it must return all four bytes (on a read) regardless of

the byte enable settings. A target only supports this feature if there are no side

effects from the read (for example, data destroyed or status change in a mem-

ory-mapped I/Q register).

¢ Performance During Read Transactions

As described earlier, a turmn-around cycle must be included in the first data
transfer of a read transaction. This being the case, a single data phase read
from a target consists of at least three cycles of the PCI clock (one clock cell for
the address phase and two clock cells for the data phase). At a clock rate of
33MHz, a read transaction consisting of a single data transfer would take 90ns
to complete. An idle cycle (at 33MHz, 30ns in duration) must be included be-
tween transactions, resulting in 120ns per transaction. Using back-to-back
single data phase read transfers, the data throughput would be 8.33 million
transfers per second. If each transfer involved four bytes, the resultant trans-
fer rate would be 33.33Mbytes per second.

In actual practice, though, most read transactions involve the transfer of mul-
tiple objects between the initiator and the currently-addressed target. The read
transaction involving multiple data phases only requires the turn-around cy-
cle during the first data phase. The secand through the last data phases can
each be accomplished in a single clock cycle (if both the initiator and the cur-
rently-addressed target are capable of zero wait state transfers). The achiev-
able transfer rate during the second through the last data phases is thus one
transfer every 30ns (at a PCI bus speed of 33MHz), or 33 million transfers per
second. If each data phase involves the transfer of four bytes, the resultant
data transfer rate is 132Mbytes per second. Figure 8-2 illustrates a read trans-
action consisting of three data phases, two of which complete with zero wait
states.
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Figure 8-2. Optimized Read Transaction (no wait states)
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Write Transaction

Description
During the following description of the write transaction, refer to figure 8-3.
It is assumed that the bus master has already arbitrated for and been granted

access to the bus. The bus master then must wait for the bus to become idle.
This is accomplished by sampling the state of FRAME# and IRDY# on the ris-

3 ing-edge of each clock. When both are sampled deasserted (on the rising-edge
of clock one), the bus isidle and a transaction may be initiated by the bus mas-
. ter whose grant signal is currently asserted by the bus arbiter,

At the start of clock cell one, the initiator asserts FRAME# to indicate that the
transaction has begun and that a valid start address and command are present
on the bus. FRAME# remains asserted until the initiator is ready to complete
the last data phase. At the same time that the initiator asserts FRAME#, it
drives the start address onto the AD bus and the transaction type onto the
Command/Byte Enable bus. The address and transaction type are driven onto
the bus for the duration of clock one.

A turn-around cycle is required on all signals that may be driven by more
than one PCI bus agent. This period is required to avoid the collision that
would occur if a device turned on its output drivers at the same time that an-
other device’s output drivers are disconnecting from the signal(s). During
clock cell one, IRDY#, TRDY# and DEVSEL# are not driven (in preparation
for takeover by the new initiator and target).

At the start of clock cell two, the initiator changes the information that it is
presenting to the target over the AD bus. During a write transaction, the ini-
tiator is driving the AD bus during both the address and data phases. Since it
doesn't have to hand off control of the AD bus to the target, as it does during
a read, a turn-around cycle is unnecessary. The initiator may begin to drive
the first data item onto the AD bus at the start of clock cell two. In addition,
during clock cell two the initiator uses the Command/Byte Enable lines to
indicate the bytes to be transferred to the currently-addressed doubleword
and the data paths to be used during the first data phase.

At the start of clock cell two, the iniHator drives the write data onto the AD
bus and asserts the respective byte enables to indicate the data paths that
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carry valid data. It also asserts IRDY# to indicate the presence of the data on
the bus. The inibator doesnt deassert FRAME# when it asserts IRDY#
(because this is not the final data phase).

It should be noted that the initiator does not have to assert IRDY# immedi-
ately upon entering a data phase. It may require some time before it's ready to
source the first data item (e.g., it has a buffer empty condition). However, the
initiator may not keep IRDY# deasserted for more than eight PCI cdlocks dur-
ing any data phase. This rule has been added in version 2.1 of the specifica-
tion.

During clock cell two, the target decodes the address and command and as-
serts DEVSEL# to claim the transaction. In addition, it asserts TRDY#, indicat-
ing its readiness to accept the first data item.

At the rising-edge of clock three, the initiator and the currently-addressed tar-
get sample both TRDY# and IRDY# asserted, indicating that they are both
ready to complete the first data phase. This is a zero wait state transfer. The
target accepts the first data item from the bus on the rising-edge of clock three
(and samples the byte enables in order to determine which bytes are being
written), completing the first data phase.

During clock cell three, the initiator drives the second data item onto the AD .
bus and sets the byte enables to indicate the bytes to be transferred and the

data paths to be used during the second data phase. It also keeps IRDY# as-
serted and does not deassert FRAME#, thereby indicating that it is ready to *
complete the second data phase and that this is not the final data phase. As-
sertion of IRDY# indicates that the write data is present on the bus.

-

4

At the rising-edge of clock four, the initiator and the currently-addressed tar- :
get sample both TRDY# and IRDY# asserted, indicating that they are both -
ready to complete the second data phase. This is a zero wait state data phase. |
The target accepts the second data item from the bus on the rising-edge of
clock four (and samples the byte enables), completing the second data phase. :

The initiator requires more time before beginning to drive the next data item§
onto the AD bus (it has a buffer empty condition). It inserts a wait state infoz
the third data phase by deasserting IRDY# at the start of clock cell four. ThiS}
allows the initiator to delay presentation of the new data by one clock, but it
must set the byte enables to the proper setting for the third data phase at 13
start of clock cell four. '
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In this example, the target also requires more time before it will be ready to
accept the third data item. To indicate the requirement for more time, the tar-
get deasserts TRDY# during clock cell four. When the initiator and target
sample IRDY# and TRDY# deasserted at the rising-edge of clock five, they in-
sert a wait state (clock cell five) into the third data phase.

During clock cell four, although the initiator does yet have the third data item
available to drive, it must drive a stable pattern onto the data paths rather
than let the AD bus float (remember the rule about PCI being green). The
specification doesn’t dictate the pattern to be driven during this period. It is
usually accomplished by continuing to drive the previous data item. The tar-
get will not accept the data being presented to it for two reasons:

» By deasserting TRDY#, it has indicated that it isn't ready to accept data.
* By deasserting IRDY#, the initiator has indicated that it is not yet present-
mg the next data item to the target.

During clock cell five, the initiator asserts IRDY# and drives the final data
item onto the AD bus, It also deasserts FRAME# to indicate that this is the fi-
nal data phase. The target keeps TRDY# deasserted, indicating that it is not
yet ready to accept the third data item.

At the rising-edge of clock six, the initiator samples IRDY# asserted, indicat-
ing that it is presenting the data, but TRDY# is still deasserted (because the
target is not yet ready toc accept the data item). The target also samples
FRAME# deasserted, indicating that the final data phase is in progress. The
only thing impeding the completion of the final data phase now is the target
(by keeping TRDY# deasserted until it is ready to accept the final data item).

In response to sampling TRDY# deasserted on dock edge six, the target and
initdator insert a second wait state (clock cell six) into the third data phase.
During the second wait state, the initiator continues to drive the third data
item onto the AD bus and maintains the setting on the byte enables. The target
keeps TRDY# deasserted, indicating that is not ready yet.

At the rising-edge of clock seven, the target and initiator sample IRDY# as-
serted, indicating that the initiator is still presenting the data, but TRDY# is
still deasserted. In response, the target and initiator insert a third wait state
(clock cell seven) into the third data phase. During the third wait state, the
initiator continues to drive the third data item onto the AD bus and maintains
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~item from the AD bus. The third data phase consisted of four clock periods {

the setting on the byte enables. The target asserts TRDY#, indicating that it is
ready to complete the final data phase.

At the rising-edge of clock eight, the target and initiator sample both IRDY#
and TRDY# asserted, indicating that both the initiator and the target are ready
to end the third and final data phase. In response, the third data phase is
completed on the rising-edge of clock eight. The target accepts the third data

(the first clock cell of the data phase, clock cell four, plus three wait states).
During clock cell eight, the initiator ceases to drive the data onto the AD bus,

stops driving the C/BE bus, and deasserts IRDY# (returning the bus to the
idle state). The target deasserts TRDY# and DEVSEL#.

TR L s
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Figure 8-3. The PCI Write Transaction
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Performance During Write Transactions

Transactions wherein an initiator performs a single data phase write to a tar-
get consist of at least two cycles of the PCI clock (the address phase and a one
o 2 o . - ~ clock data phase). An idle cycle (at 33MHz, 30ns in duration) must be in-
cluded between transactions. At a clock rate of 33MHz, then, a single data
phase write transaction takes 90ns to complete. Using back-to-back single data
phase write transfers, the data throughput would be 11.11 million transfers
per second. If each transfer involved four bytes, the resulting transfer rate
A would be 44.44Mbytes per second.

The second through the last data transfer of a write transaction involving
multiple data phases can each be accomplished in a single clock cycle (if both
the initiator and the currently-addressed target are capable of zero wait state
data phases). The achievable transaction rate during the second through the
last data phases is thus one transaction every 30ns (at a PCl bus speed of
33MHz), or 33 million transfers per second. If each transfer involves the trans-
fer of four bytes, the data transfer rate is 132Mbytes per second. Figure 84 il-
lustrates a write transaction consisting of three zero wait state data phases.
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Figure 8-4. Optimized Write Transaction (no wait states)
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Posted-Write Buffer

General

A bridge (PCI-to-PCI bridge or host/PCI) may incorporate a posted-write
buffer that allows a bus master to complete 2 memory write quickly. The
transaction and the write data are latched within the bridge’s posted-write
buffer and the master is permitted to complete the transaction. When a bridge
implements a posted-write buffer, a potential problem exists, Another bus
master (or the same one) may initiate a memory read from the target of the
posted write before the data is actually written to the memory target. If this
were permitted, the master performing the read would not receive the fresh-
est copy of the information. In order to prevent this from occurring, the bridge
designer must first flush all posted writes to their destination memory targets
before permitting a read to occur on the bus. A device driver can ensure that
all memory data has been written to its device by performing a read from the
device. This will force the flushing of all posted write buffers in bridges that
reside between the processor executing the read and the target device before
the read is permitted to complete.

It is also a requirement that the bridge must perform all posted writes in the
same order in which they were originally posted.

A bridge is only permitted to post writes to regular memory targets. Software
must be assured real-time communication with I/O and memory-mapped I/0
devices, as well as with configuration registers. .

Combining

A bridge may combine posted memory writes to successive doublewords into
a single burst memory write transaction using linear addressing. This feature
is recommended to improve performance. The doublewords must be written

l in the same order in which they were posted. This means that writes posted to
doublewords 0, 1 and 2 (they were posted in that order) can be combined into
a linear burst write, while writes posted to doublewords 2, 1, 0 cannot. Ir-
stead, these three writes would have to be performed as three separate single
data phase memory write transactions. Writes posted to doublewords 0, L
and 3 (in that order) can be combined into a linear burst write with no byt ;
enables asserted in the third data phase. The specification recommends that
bridges that permit combining include a control bit to allow this feature to be
disabled.
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Byte Merging

A bridge may combine writes to a single doubleword to be merged within one
entry in the posted-write buffer. This feature is recommended to improve per-
formance and is only permitted in memory address range that are prefetch-
able (for more information on prefetchable memory, refer to the base address
register section in the chapter entitled “Configuration Registers” and to the
chapter entitled “PCI-to-PCI Bridge.” As an example, assume that a bus mas-
ter performs two memory writes: the first writes to locations 00000100h and
00000101h and the second writes to locations 00000102h and 00000103h, These
four locations reside within the same doubleword. The bridge could absorb
the first two-byte write into a doubleword buffer entry and then absorb the
second two byte write into the same doubleword buffer entry. When the
bridge performs the memory write, it can complete it in a single data phase. It
is a violation of the specification, however, for a bridge to combine separate
byte writes to the same location into a single write on the destination bus, As
an example, assume that a bus master performs four separate memory writes
to the same doubleword: the first writes to location zero in the doubleword,
the second to location zero again, the third to location one and the fourth to
location two. When the bridge performs the posted writes, it has to perform a
single data phase transaction to write the first byte to location zero, It then
performs a second single data phase memory write to locations zero (the sec-
ond byte written to it by the bus master), one and two.

Collapsing

Multiple writes to the same location(s) cannot be performed as a single write
on the other side of the bridge. Two sequential writes to the same doubleword
where at least one of the byte enables was asserted in both bransactions must
be performed as two separate transactions on the other bus. Collapsing of
writes is forbidden for any type of write transactions.

The specification states that a bridge may allow collapsing within a specific
range when a device driver indicates that this will not cause operational
problems. How the device driver would indicate this to a bridge is outside the
scope of the specification.

Cache Line Merging

The bridge may perform cache line merging within an area of memory that
the bridge knows is cacheable or when it uses combining and /or byte merging
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to create a burst write of a cache line. It captures (i.e, it posts) individual
memory writes performed by bus masters on one PCI bus to build a cache line
to be written on the other bus using a memory write and invalidate transac-
tion or a linear memory write transaction. The author would like to note that
the specification doesn't specifically state that a memory write and invalidate
command would be used.

Addressing Sequence During Memory Burst

Linear and Cacheline Wrap Addressing

The start address issued during any form of memory transaction is a double-
word-aligned address presented on AD[31:2] during the address phase. The
memory target latches this address into an address counter and uses it for the
first data phase. Upon completion of the first data phase and assuming that
it’s not a single data phase transaction, the memory target must update its ad-
dress counter to point to the next doubleword to be transferred. '

On a memory access, a memory target must check the state of address bits one
and zero (AD[1:0]) to determine the policy to use when updating its address
counter at the conclusion of each data phase. Table 8-1 defines the addressing
sequences defined in the revision 2.1 specification and encoded in the first two
address bits. Only two addressing sequences are currently defined:

» Linear, or sequential, address mode. All memory devices that support /
multiple data phase transfers must implement support of linear, or se-
quential, addressing, The memory write and invalidate command must
use linear addressing. At the completion of each data phase, the memory
target increments its address counter by four to point to the next sequen-
tial doubleword for the next data phase.
» -Cacheline wrap mode. Support for cacheline wrap mode is optional and
is only used for memory reads. At the start of each data phase of the burst
read, the memory target increments the doubleword address in its ad-
dress counter. When the end of the cache line is encountered and assum-
ing that the transfer did not start at the first doubleword of the cache line,
the target wraps to start address of the cacheline and continues increment-
ing the address in each data phase until the entire cache line has been
transferred. If the burst continues past the point where the entire cache
line has been transferred, the target starts the transfer of the next cache
line at the same address that the transfer of the previous line started at. -
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Implementation of the cacheline wrap mode is optional for memory and
meaningless for I/O and configuration targets, The addressing sequence used
during a cache Iine £l is established at the start of the transfer based on the
start memory address and the length of the transfer. This implies that the
memory target must know that a cache line fill is in progress (wrap mode in-
dicated) and the size of a cache line (established at startup when the platform-
specific configuration program writes the system cache line size to the mem-
ory target’s cache line-size-configuration register). - - SRR

The 486 processor's internal cache has a line size of sixteen bytes (four dou-
blewords) and has a 32-bit data bus. It must therefore perform four 32-bit’
transfers to fill a cache line. The first doubleword address output by the proc-
essor is the one that resulted in an internal cache miss. This could be any of
the four doublewords within the line. For a detailed description of the 486
cache line fill addressing sequence, refer to the Addison-Wesley publication

. entitled 80486 System Architecture. For that used by the Pentium processor, re-
fer to the Addison-Wesley publication entitled Pentium Processor System Archi-
tecture. For that used by the PowerPC 60x processors, refer to the Addison-
Wesley publication entitled PowerPC System Architecture.

As an example, assume that the cache line size is 16 bytes and the start dou-
bleword address issued by the master is 00000104h. This doubleword resides
within the 16-byte aligned cache line that occupies memory locations
00000100h through 0000010Fh. The sequence -of the doubleword transfers
would be 00000104h, 00000108k, 0000010Ch and 00000100h, If the burst con-
tinues past this point, the next series of doublewords transferred would be
00000114h, 00000118h, 0000011Ch and 00000110h.

If the target does not implement the cache line size register, the target must is-
sue a disconnect on the first data phase or a retry on the second one (it can't
handle wrap mode because it doesn’t know the line size).

If the master wants to use a different sequence after the first line has been
read, it must end the transaction and begin a new one indicating linear ad-
dressing,
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Table 8-1. Memory Burst Address Sequence

AD1 | ADO Addressing Sequence
0 | Linear, or sequential, addressing sequence during the
burst. '
1 Cacheline wrap mode.

0 | Reserved. When detected, the memory target should signal
~° '| a target disconnect after the first data phase or a retry on |
the second data phase.

1 | Reserved. When detected, the memory target should signal
a target disconnect after the first data phase or a retry on
the second data phase.

Target Response to Reserved Setting on AD[1:0]

Assuming that the initiator has started a multi-data phase memory transaction
and that it has placed a reserved pattern on AD[1:0] in the address phase {10b
or 11b pattern), the revision 2.x;compliant memory target must either issue a
disconnect on the transfer of the first data item, or a retry during the secand
data phase. This is necessary because the initiator is indicating an addressing
sequence the target is unfamiliar with (because it is reserved in the revision
2.1 specification).

e

Do Not Merge Processor /O Writes into Single Burst ;

m L S

To ensure that 1/O devices function correctly, bridges must never combine
sequential I/O accesses into a single (merging byte accesses performed by the
processor into a single-doubleword transfer) or a multi-data phase transac-
tion. Each individual 1/O transaction generated by the host processor must be
performed on the PCI bus as it appears on the host bus. This rule includes .
both regular and memory-mapped I/O accesses.

PCI /O Addressing

L A e e oy

General

The start 1/O address placed on the AD bus during the address phase has the ’
following format:
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AD(31:2] identify the target doubleword of I/O space.

AD[1:0] identify the least-significant byte within the target doubleword
that the initiator wishes to perform a transfer with (00b = byte 0, 01b =
byte 1, etc.).

At the end of the address phase, all I/O targets latch the start address and the
1/0O read or write command and begin the address decode. An 1/O target
- - -~ - claims the transaction based on the byte-specific start address that it latched.
If that 8-bit /0 port is implemented in the target, the target asserts DEVSEL#
and claims the transaction. If the target “owns” the entire target doubleword,
only AD[31:2] must be decoded to identify the target doubleword and assert
. DEVSEL#,

N The byte enables asserted during the data phase identify the least-significant
byte within the doubleword (the same one indicated by the setting of AD[1:0])
as well as any additional bytes (within the addressed doubleword) that the
initiator wishes to transfer. It is illegal (and makes no sense) for the initiator to
assert any byte enables of lesser significance than the one indicated by the
AD[1:0] setting, If the initiator does assert any of illegal byte enable pattern,
the target must terminate the transaction with a target abort. Table 8-2 con-
tains some examples of [/O addressing,

Table 8-2. Examples of I/O Addressing

AD[31:0] | C/BE3# | C/BE2# (/BE1# | C/BEQ# Description
———— —_— e | e e |
00001000k 1 1 1 0 just location 1000h
000095A2h 0 0 1 1 95A2 and 95A3h
00001510h 0 0 0 0 1510h-1513h
1267AE21h 0 0 0 1 1267AE21h-
1267AE23h

Situation Resulting in Target-Abort

If an 1/O target claims a transaction (asserts DEVSEL#) based on the byte-
specific start address issue during the address phase, then subsequently exam-
ines the byte enables (issued during the data phase) and determines that it
cannot fulfill the initiator's request, the target must respond by indicating a
target-abort (STOP# asserted, TRDY# and DEVSEL# deasserted) to the initia-
tor. The target-abort is covered in the chapter entitled “Premature Transaction
Termination.” A typical example wherein the target must abort the transaction
could result from the following x86 instruction:
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IK AX., 60 ;read two bytes Zfrom I/O starting at address E0h

When executed by an 486 processor, doubleword address 00000060h is driven
onto the host bus during the resultant I/0 read transaction and the processor
asserts BEO# and BE1#, but not BE2# and BE34. This indicates tc the host/PC]
bridge that the processor is addressing locations 00000060h and 00000061h
within 1/0 dm:bleword starting at port 00000060h. Assuming that the
bitrates for and receives ownership of the PCI bug and initiates an 1/0O read
transaction.

During the address phase, the host/PCI bridge drives the address of the least-
significant I/O port to be read by the processor, 00000060h, onto the AD bus,
The bridge determines this is the least-significant port to be read by examining
the processor’s byte enable setting and testing for the least-significant byte en-

able asserted by the processor. In this case, it is BEO#, corresponding to the '

first location in the currently-addressed doubleword, 00000060h.

In a PC-compatible machine, this is the address of the keyboard data port. As- |
suming that the keyboard controller resides on the PCI bus (e.g.,, embedded
within or closely-associated with the PCI/ISA bridge), the keyboard controller
would assert DEVSEL# to claim the transaction. Subsequently, when the proc-
essor’s byte enables are presented during the data phase and are sampled by
the target, BEO# and BE1# are asserted. This identifies I/O addresses 60h and
61h as the target locations. :

Since port 61h has nothing ta do with the keyboard interface (it is system con- -
trol port B, a general I/O status port on the system board), the keyboard inter- "%
face cannot service the entire request. It must therefore issue a target-abort to |

the initiator (STOP# asserted, TRDY# and DEVSEL# deasserted) and termi 3
nate the transaction with no data transferred. As a result, the initiator sets ifs
TARGET-ABORT DETECTED status bit and the target sets its SIGNALED ¢
TARGET-ABORT status bit (in their respective PCI configuration status regis-
ters). The initiator reports this error back to the software in a device-specific |
fashion (e.g., by generating an interrpt request). ;

AnISA expansion bus bridge doesn’t have specific knowledge regarding all of.
the 1/0 ports that exists on the ISA bus, It therefore claims [/O transactions:
that remain unclaimed by PCI 1/0 devices. Since it doesn’t “know” what1/0
ports exists behind it, it can not judge whether to target abort the transacho‘l
based on the byte enable settings.
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I/O Address Management

As in any PCI read /write transaction, it is the responsibility of the I/O target

to latch the start address delivered by the initiator. It then assumes responsi-

bility for managing the address for each subsequent data phase that follows

the first data phasc. Unlike memory address management, in PCT there js no
_explicit or implicit /0 address sequencing from one data phase to the next. ~ —~
The initiator and the target must both understand and utilize the same I/0
address management. Two examples would be:

« Both the mnitiator and the target understand that the doubleword address
(on AD[31:2)) delivered by the initiator is to be incremented by four at the
completion of each data phase. In other words, the read or write transac-
tion proceeds sequentially through the target's I/O address space a dou-
bleword at a time.

» Both the initiator and the target understand that the target doesn't incre-
ment the doubleword address for each subsequent data phase. This is
how a designer would implement a FIFC port.

At the time of this writing, the author is unaware of any currently-existing
processor that is capable of performing burst I/0 write transactions. It's easy
to assume that the Intel x86 INS (input string) and OUTS (output string) in-
structions cause the processor to generate a burst I/O read or write series, but
this isn’t so. When an INS instruction is executed by the x86 processor, it re-
sults in a series of back-to-back I/O read and memory write bus cycles. The
OUTS instruction results in a string of back-to-back memory read and 1/O
write bus cycles.

When /O Target Doesn’t Support Multi-Data
Phase Transactions

Many PCI 1/O targets are not designed to handle multi-data phase transac-
tions. A target can determine that the initiator intends to perform a second
data phase upon completion of the first by checking the state of FRAME#
when IRDY# is sampled asserted in the first data phase. If IRDY# has been as-
serted by the initiator and it still has FRAME# asserted, this indicates that this
is not the final data phase in the transaction.
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If an I/0O target doesn’t support multi-data phase transactions and the initia-
tor indicates that a second data phase is forthcoming, the target must respond

in one of two ways:

When it's ready to transfer the first data item, terminate the first data
phase with a disconnect (STOP#, TRDY# and DEVSEL# asserted). The
first data itemn is transferred successfully, but the initiator is forced to
terninate the transaction at that point, It must then re-arbitrate for bus_
ownership and re-address the target using a byte-specific start address
within the next I/ O doubleword.
Terminate the second data phase with a retry (STOP# and DEVSEL# as-
serted, TRDY# deasserted). The first data phase completes normally. The
' initiator is then forced to terminate the transaction during the second data
: phase without transferring any additional data. The initiator then re-
arbitrates for bus ownership and re-addresses the target using a byte-
specific start address within the same I/O doubleword.

Address/Data Stepping

Advantages: Diminished Current Drain and Crosstalk

T U b B 2 A g 51

Tuming on a large number of signal drivers simultaneously (e.g., driving a 32- |
bit address onto the AD bus) can result in: E

» alarge spike of current drain,
a significant amount of crosstalk within the driver chip and on adjacent 3

external signal lines.

The designer could choose to alleviate both of these problems by turning on .4
the drivers associated with non-adjacent signal drivers in groups over a num-
ber of steps, or clock periods.

As an example, assume that the system board designer lays out the 32 AD 3
lines as adjacent signal traces in bit sequential order. By simultaneously driv-
ing all 32 lines, crosstalk would be generated on the traces (and within the 4
driver chip). Now assume that there are four 8-bit groups of signal drivers

connected as follows:

bl

s driver group one is connected to AD lines 0, 4, 8, 12, 16, 20, 24, 28.
= driver group two is connected to AD lines 1, 5,9, 13,17, 21, 25, 29.

154

Page 169 of 235
PetitionersHTC & LG - Exhibit 1019, p. 169



Cha_Pter 8: The Read and Write Transfers

= driver group three is connected to AD lines 2, 6, 10, 14, 18, 22, 26, 30.
» driver group four is connected to AD lines 3, 7, 11, 15, 19, 23, 27, 31.

The injtiator could turn on the first driver group in clock cell one of a transac-
tion, followed by group two in clock cell two, group three in clock cell three,

- . _...and group four in_clock cell four. Using this sequence, non-adjacent signal
lines are being switched during each clock cell, reducing the interaction and
crosstalk.

N Why Targets Don’t Latch Address During Stepping
Process

Since the entire address is not present on the bus until clock cell four, the ini-
tiator must delay assertion of the FRAME# signal until clock cell four when
the final group driver is switched on. Because the assertion of FRAME# quali-
fies the address as being valid, no targets latch and use the address until
FRAME# is sampled asserted.

Data Stepping

The data presented by the initiator during each data phase of a write transac-
ton is qualified by the assertion of the IRDY# signal by the initiator. The data
presented by the target during each data phase of a read transaction is quali-
fied by the assertion of the TRDY# signal by the target. In other words, data
can be stepped onto the bus, as well as address.

How Device indicates Ability to Use Stepping

A device indicates its ability to perform stepping via the WAIT CYCLE CON-
TROL bit in its configuration command register. There are three possible
cases:

» [f the device is not capable of stepping, the bit is hardwired to zero.
If the device always using stepping, the bit is hardwired to one.
If the device’s ability to use stepping can be enabled and disabled via
software, the bit is implemented as a read/writable bit. If the bit is
read /writable, reset sets it to one.
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