
Petitioners HTC & LG - Exhibit 1019, p. 111

C1Syitectm H

More than likely, the busy -condition will have been cleared by the time
the master retries the transaction. It is pcmible. however, that the master

may have to melee several attempts before succeeding. A target is only
permitted to use this option is there is a high probability that it will be
able to complete the transfer the first time that the master retries it.

-- — . .- ofiaerwiseitmgstuseopfimfluee.
- ‘3; ' in the third.-case-(optiortthree), the target has to access a slow medium to

fetch the requested data and it will take longer than IIS clocks. in this case, -_

the target latches the adqlress, command and the firet set of byte enables
and their issues a retry to the initiator. The initiator is thereby forced to

" end the transaction with no data transferred and is required to retry the
transaction again latefusing precisely‘ the same address, command and
byte enables. The target, meanwhile, proceeds to fetch the requested data
and set it up in a buffer for the master to read later when it retries the
transaction. When the target sees the master retry the transaction, it

attempts to match the second request with the initial request by
comparing the start address, command and byte ertables to those
latched earlier. If they match, the requested data is transferred to the
master. if they aren't an exact match, the target interprets this as a new

request (for data other than that in its limiter) and issues" a retry to the
master again. To summarize, if the master doesn't duplicate the

1 transaction exactly each time it retries the transaction, it will never have

its read request fulfilled. The target is not required to service retzies from

its buffered data that aren't exact matches. Option three is referred to as a

delayed transaction. It can also be used for a write transaction (e-.g.. where.

the bus master is not permitted to proceed with other activities until it
. accomplishes the write]. In this case, the target latches the address,

cornmand, byte enables and the first data item and issues the retry. It then
proceeds to write the data item to the slow Each time that the -
master retries the write transaction it will receive a_ retry until the target '
device has aclmowledge receipt of the date. when the target is ready to
permit the transfer and the master next attempt! the access, the target
compares the address, command, byte enables and the write data I0 .
determineifthisisthesarnemaster thatirtifiallyrequestedtitewritfi
transfer. ' '-

1- —u._.-._

Page 11 1 of 235

Petitioners HTC & LG — Exhibit 1019, p. 111

Petitioners HTC & LG - Exhibit 1019, p. 112

Chapter 6: PCI Bus Arbitration

Different Master Attempts Access To Device with
Previously-Latched Request

If a master attempts to access the target and the target can only deal _i_
with one latched request at a time, it must issue a retry to the master without El.

latching its transaction inforination.

Special Cycle Monitoring While Processing Request

If the target is designed to monitor for special cycles, it must be able to

. process a special cycle during the same period of time that is processing a
previously latched read or write request.

Delayed Request and Delayed Completion

A delayed transaction consists of two parts: the request phase and the
completion phase. The request phase occurs when the target latches ‘the
request and issues retry ‘to the master. This is referred to as the delayed

request transaction. Once the transaction has been latched, the target
{typically a bridge to a slow expansion bus) the litanaactinri on the

target bus. When the transfer completes on the target bus, this is referred to as
the delayed completion transaction. This is the start of the completion phase.
A delayed transaction must complete on the target bus before it is permitted

to complete on the initiating bus. The master is required to periodically re-
attempt the transfer until the target finally asserts TRDY-# and allows the data

to be transferred. This ends the COtI.'l]:|lEl‘i0I1.'phflSB of the delayed transaction.

Handling Multiple Data Phases

When the master is successful in completing the first data phase. it may

proceed with more data phases. The target may issue a disconnect on any
data phase after the first The master is not required to resume the transaction

later. Both the master and the target consider the original request fulfilled.

Master or Target Abort Handling

A delayed transaction is also considered completed if it receives a master
abort or a target abort rather than a retry on a re-attempt of the retried

‘transaction. The target compares to ensure that the master is the one that
originated the request before it issues the master or target abort to it. This
means that the transaction on the target bus ended in a master abort because

97

Page 112 of 235

Petitioners HTC & LG — Exhibit 1019, p. 112

Petitioners HTC & LG - Exhibit 1019, p. 113

PCI Szstern Architecture

run target responded nrin a target ahorthemuse of abroken target. Inboth of
these cases, the master is not required to repeat the trartsaetion.

commands That can Use Delayed Transactions

A delayed transaction ._nqnr_1s11y t;onsist_ pi a single data phase and is used for
t1-tefollawingcanuriandsz " " ‘ ‘ '-'-— --

I Interrupt Acicnewledge.
- 1/0 read.

0 I/O write.

- a Memory read.

0 Configuuation read.
a Cnnfiguratisnwriie.

The delayed transaction could also be used with the memory write
commsnds,butit'sresultsinbettaerperfonnameta postthewrite snpermit
the master to complete the write quickly.

Delayed Read Prefetch

A delayed read can result in the reading rnnre data than indicated in the
master's initial data phase if the target knows that refetching data doesn't
alter the contents of memory lacatiens (as it would memory-mapped IIO
ports] The target can prefetch more data than initially requested under the
following circu1n£lanI:e'.i:‘

I The master has used the memory read line or memory read multiple
command, thereby that it lmowe the target is preietehable

o The master used a memory read command, but the bridge that accepted
the delayed transaction request recognises that the address falls within a
range defined as prefelichable.

Ii1 :11 other cases, the target (i.e., the bridge) cannot perfdnn any-thing elite!
than the single data phase indicatedby I.’ne originating master.

Request Queuing and Ordering Flul

A target device (typically a bridge} can be designed to latch and plate“
multiple delayed requests. The device must, however, ensure that '1“

_. 11'

as ' ‘

P398 113 of 235

Petitioners HTC & LG — Exhibit 1019, p. 113

Petitioners HTC & LG - Exhibit 1019, p. 114
Page 114 of 235

Chapter 6: PCI Bus Arbitration

transactions are perfonned in the proper order. Table 6-3 defines the rules

that the device must observe in order to ensure that posted memory writes
' ' " ' and deleyedtransactlons are performed in fltejitroper order. The table 347:5

extracted from the specification. The following abbreviations are used in the
table:

PMW =- posted memory write. The master is permitted to end a memory
write immediately it the device posts it.

DRR = delayed read request A delayed read request occurs when the
target latches the address, command and byte enables and issues a retry
to the master. It is then the responsibility of the target to perform the read
on the target bus to fetch the réquted data. -

DWI! - delayed writ: request. A delayed write request occurs when the
target latches the address, command, byte enables and write data and

issues aretry to the rnastenltis then the responeibilityofthe targetto
perform the write on the target bus.

DEC = delayed read completion. A delayed read completion occurs
when the device that latched a read requt completes reading. the
requested data on the target has and has the data ready to deliver to the
master that originated the request. The device is'now waiting for the

to retry its read so that it may deliver the data to the
master.

DWC = delayed write completion. A delayed write completion occurs
when the device that latched a write request completes writing the data
on the target for the master that originated the write. The device is now
waiting for the originating master to retry its write so that it may confirm
th_e delivery of the write data.

The table is formatted as follows:

The first column represents a delayed transaction request (one of five
types) that has’ just been latched.

The second column indicates whether the transaction just latched can pass
a previously-posted merrtorjr write

The third column indicates whether the transaction just latched can pass a
previously‘-Ia tched delayed read request.

The fourth column indicates whether the transaction just latched can pass
a previously-latched delayed write request

The fifth colunm indicates whether the transaction just latched canpass a
previously-latched delayed read completion.

99

Petitioners HTC & LG — Exhibit 1019, p. 114

.‘..;_h|.'

Petitioners HTC & LG - Exhibit 1019, p. 115

PCI System Architecture. .4

0- The sixth azolmnn irldicates whether the transacfion just latched can pass a

previously-laldied delayed write completion.

The rule list irnmediahely following the table was extracted from the

specification. The superscripts in each box corresponds to the rule list.

‘Asian example; the-table indicates that a_po§tgd__meInory write an pass (be !
performed) a delayed read or wrife request or a delayed write completim, hint '
it is not permitted to pass another posted memory write or a delayed read
oomplefion.

' Table 6-3. Orderi ; Rules

Delayed Request Delayed
' CO lE1'.'i.01'I

1. Transactions of the same type cannot pass each other.
2.. A posted memory write can pass a delayed request.
3. A delayed request canrlot complete before a posted memoxy write. 4

4. A posted memory write or a delayed request cannot pass a delayed mead "
connpletlon.

5 A delayed completion cznpass a delayed request.
6. A deiayed rend completion caxmot pass a posted memory write. 3
7. A delayed wzite completion can pass a posted memory write.

8. A posted memory write at a delayed read request can pass a
write completion.

The primary rule is that all device accesses must complete inorder from III! A
program.u1er‘spen'pective.In thefollowinglist. theauthorhas attempted”
explain each table entry.

100

Page 115 of 235

Petitioners HTC & LG — Exhibit 1019, p. 1-15

Petitioners HTC & LG - Exhibit 1019, p. 116

Chapter 6: PCI Bus Arbitration

1. A newly-latched PMW cannot pass (be completed before] a previously-
PMW because all writes have to complete in the order in which they have
been latdued.

2. A newly-latched PMW can pass a previmrsly-latched DER This is
permitted because the master has already completed l:he write while the
other master has" not yet completed its read From the programmer's
standpoirtt, this means thewiitae completed before the read.

'“ " "" ' ' '3.“ A newly-1atched-PMW- can -pass a-previously-iatdted DWTIL This is _ .___
permitted because the master has already completed the posted-write
while the other master has not yet oocrnpleted its delayed write. From the

programmer’s standpoint, this means the posted-write oompleted before
" the delayed write.

4. A newlyelatched PMW cannot pass a previorrsly-latdted DRC. From the

programmer's perspective, the write has already oornpleted but the read
has not. One master originated the read before the write was performed
by the other master, so the programmer expects to getbaclt the read data
as it looked before the write oocurred.

5. A newlyslatdted PMW can pass a previoua1y—1atd1ed DVVC. The device
has completed the write to the target and is waiting for the delayed
master to reattempt the write so that it can let the master complete the

write. From the prograrnmer"s perspective. the posted—write has already
oompleted while the delayed write hasn't.

6. A newlyilatched DER cannot pass a. previously-PMW. If this were

permitted. the read might felscll state data [because the posted write might
be to one of the locations to be read). .

'3'. A newly—1at1:l1ecl DRR cannot pass a previourlyvlatohed DRR. The roads
must complete In the order the programmer generated tliem.

B. A newly-latched DRE cannot pass a previoualyblatched DWR. The write
was originated before the read and must therefore occur before the read

(incasethey targetthe samelocatiorns.
9. A newly-tatctted DRE cannot pass a previously-latched BBC. The roads

must complete in the order the programmer generated them. ,
l 10. A newly-latched DRR can pass a_ previously-latched DWC. The target has

already been written to and updated, so it contains fresh information. The

device may therefore initiate the read from the target to fetch the data

requested by the originator.
11. A newly-latched DWR cannot pass a previously-PMW. From the

programmers perspective, the posted write occurred before the delayed
write {wl-dch has not yet completed). The device must perform the posted
write befiore the newly-accepted delayed write so that the data is

delivered to the target(s) in the correct order.

101

Page 116 of 235

Petitioners HTC & LG — Exhibit 1019, p. 116

Petitioners HTC & LG - Exhibit 1019, p. 117

PC] Szstem Architecture

12. A newly-latched DWR cannot pass at previ.ous'ly—1at::hed DRR. It is the

progr-ammer’s intention that the reed occur before the write.
13. A newly-latched DWR cannot pass a previously-latched DWR. It is the

programmer's intention that the two writes occur in the order received.

14. A newly;-latched DWR cannot pass a previously-lalrlted DRC. The
Pl‘I'.'.!g'i'a!!l'_.\‘.1"{lE!.' initiated the read before the write, so the read must be
pemu'ttedtocompIe7lé(dn&1éor1gr:ns'tingbus‘,tbeforefitewr-rte‘ _. _ _ _______ _

15. A newly-latched DWR can pas a previously-latched DWC. The data for
the first wdte (the DWC) has already been delivered to the target, so the
data from the second write (the DWR) can now be delivered. The targetfs)
will receive the data in the order intendedby lheprogrammer.

15. A newly-latched DRC cannot pass a previous1y—PMW. If the write and

read are accessing the same locations, the read would return stale data.

From the pl'OgIaI!'lI1'lE1"5 perspective, the write has already completed and

the target data updated. If reading from the same locatiorqs}, the
programmer therefore expects -to receive the newIy—w1-itten data.

17. A newly-latched DRE can pass a previously-latched DRE. The DRC is
associated with 1: DR Iiiat was received prior to the DRR that is still
outstanding. The data I1-ontthe DRC can therefore be -delivered to the

requesting master immediately.

18. A newly-latched DRC can pass a previouslydatched DWR. The data
associated with theDR-C was requested prior to the reception of the DWR
by the deirioe. Ihe read data can therefore be delivered to the requesting
master inurrediately {before the write is performed on Ihetarget bus).

19. A newlytlatched DRC cannot pass a previously-latched DRC. Read

requests must be performed in the order that they were received.

20. A. newly-latched DRC cannot pass a previouslydatrhed DWC. The data
associated with the DRC was requested prior to the reception of the DWR

' that caused the owe The read data can therefore be delivered to the

requesting rnssmr immediately (before the write is performed on the

“I89? 535)»
21. A newly-latched DWC can pass a previously-PMW. Writes must complete

in the order they are received and the write associated with the DWC was

received prior to the write associated with the PMW.
22.. A newly-latched DWC can pass a previousljr-lalnhed DRR. The wdte

originated before the read. so the music: that originated the write can be
told about its completion immediately.

23. A newlydatched DWC can pass a previously-latcls-ad DWR. The Write
associated with the DWC originated before the write that originated fl‘-E
DWR. The master that originated the DW-C em therefore be told about the
write completion irnrnediately.

1132

Page 117 of 235

Petitioners HTC & LG — Exhibit 1019, p. 117

Petitioners HTC & LG - Exhibit 1019, p. 118

Chapter 6: PCI Bus Arbitration

24. A newly-latdied DWC unnot pass a previously-latched DRC. The read
associated with the DRC originated before the write associated with the
DWC. The master that originated the read must therefore be given the
read data befote the master that originated the write is told of its
completion.

5. A newly-latched DWC cannot pass a previously—-latched DWC. The write
iE5°<=i?-ted. with *-he PmVi°!I§1x-Evslyktsd PWS3 nrisineised bef9r_e_Ihs
em‘; associated with the just completed DWC. The completions must
therefore be reported to the originating masters in that order.

Locking, Delayed Transactions and Posted Writes

The following rules must be followed when a device permits. delayed

traniand alsosupports locking: -

1. A target that acoeprts a locked access (Le, it latches the request] must

. behave as a locked target.

The target cannot accept any posted writes after aocepting a delayed lock

requestmoving in the same direction {except as noted by rule five).
While locked, the target may continue to accept delayed requests.
Posting of write data in the opposite direction of the locked aooess must
be disabled once lock has been established on the destination bus.

Posting of write data from the locking master is allowed.
Once loci: has been established (between the originatirtg master and the
actual target), the device stays locked until LOCK# and FR.AMIi# are
sampled deasserted (on the same rising-edge of the clock) on the

uriginafingbus. ‘ '

.='~..°I2»-so1°
Fast Back-to-Back Transactions

Page 118 of 235

Assertion of its grant by the PCI bus arbiter gives a PC! bus master access to

the bus for a single. transaction. If a bus niaster desires another aooeas, it
hould continue to assert its ItEQ# after it has asserted FRAMI-ht for the that

transaction. If the arbiter continues to assert its GNT# at the end of the first

lramactim, the master may then immediately initiate a second transaction.

However, a bus master attempting to perform two, back—to—bar:k transactions
usually must insert -an idle cycle between the two transac|:ions. This is
illustrated in figure 6-5. When it doesn't have to insert the idle cycle between
the two bus uansactims, this is retemed to as fast back-to-back transactions.

'I‘hiseeno:nl}rocmrifIhereisa guarantee that thEreWiilnDtIJeconte|1tion(on

103

Petitioners HTC & LG — Exhibit 1019, p. 118

Petitioners HTC & LG - Exhibit 1019, p. 119

PCI System Architecttire
any signal lines) between the masters and/or targets involved in the two
transactions. There are two scenarios where this is the case.

1. In the that case, tin.-master guarantees that there will be no contention.
2. In the second case, the master and the community of PCI targets

collectively provide the guarantee.

The sectiorls that followdescribe tl'aese—two scenarios, . .

104

“__ uu-uh.n.|..s- . -

Page 119 of 235

Petitioners HTC & LG — Exhibit 1019, p. 119

Petitioners HTC & LG - Exhibit 1019, p. 120

Cha tei: 6: PCI Bus Arbitration

4._.

Figure 5-5, Back-fa-Back Trmsadions With an Idle State In- ztween

105

Page 120 of 235

Petitioners HTC & LG — Exhibit 1019, p. 120

Petitioners HTC & LG - Exhibit 1019, p. 121

———.--7 __

PCI System Architecture

Decision to Implement Fast Back-to-Back capability

The subsequent two sections describe the rules that permit deletion ofthe idle
state between two transactions. Since they represent a fairly oonstraining set
oi-‘roles. the designerofa hos rnsstershouldmakeaninformedclecisionas so

' ‘ ' 'w11'ether or motifs worth the additional logiclt would talteto inrplementit. _

Assumethat, tltenatureofaparlzicolarlmsrrlaslaerissuch thatit typically
performs long burst transfers whenever it acquires bus ownership. In tltis

~'_ case, including the extra logic to support fast back~to-beck tnrnseefions would
not make a great deal of sense. Percentage-wise, you're only saving one clock

‘ tickof Iatmcy inbetween each pair of long transfiers.

Assume that the nature of another master is such that it typically performs
lots oisInal1dainhursts.IoI:hiscase,iIs:[tmion oftheextra logicmay resultht
a measurable increase in perfomtance. Since eedt of the small transactions

typically only consists of a few clock ticks and the master performs lots of
these small transactions in rapid succession, the savings of one clock tickin

between each irartsaction pair can amount to the removal of a fair percentage
ofoverheadnormallyspentinbusidle time.

scenario one: Master Guarantees Laok__ot Contention

In this scenario (defined in revision 1.0 of the specification and still true in

revision 2.2:), the master must ensure that, when it performs two back-to-back
transactions with no idle state in between the two, there is no "Contention on

any ofthesignals clrivenby lhebus master or onthose driventgythe target.
An idle cycle is required wheitever AD[31:El], C/BE#[3:0], FRAME!‘ and
lRDY#are drivenbydiiierentmasters firomone clockcycle laothe next. The j
idler-ycleallowsonecyclefortltemastercuurentiy drivingthesestgralsto
surrender control (cease driving} before the next bus master begins to drive -
the bus. This prevents-bus contention.

How Collision Avoided On signals Driven By Master

The master must ensure that the same set of output drivers are driving the
ntaster-relatedsignals attheendoftheEirsttra.nsactionancIt-ltesbsrtoftl'IE
second. This means that the masiaer must ensure that it is driving the bus at
tlieendofthefii-sttransactionarldatthestartoithesecond.

106

Page 121 of2_35

Petitioners HTC & LG — Exhibit 1019, p. 121

Petitioners HTC & LG - Exhibit 1019, p. 122

Chagter 6: PCI Bus Arbitration.

To meet this criteria, the first transaction must he a write transaction and the

second transaction eanbeeithera read or awrihe butrnustbe-initiated by the

_ same master. Refer to figure 6-6. When the master acquires‘ busowneishtp
'“ ' '"""" ' ' ' ' and starts the first tmnsaction (dock ed,ge- one), it asserts FRAM'E# and

- continues to assert its REQ# line to request the busagain. after the ootnpletion

of the current transaction. When the address phase is completed (clock edge
two), themaster drives the first set of data bytes onto the AD bus and sets the

* byte rmables to indicate which data paths contain vafid data bytes. At the
conclusion -of the first (clock edge three) and any subsequent data phases, the

‘ busmasterisdriving the Aflbusandlitebyteeltabies. FI.tt'ti1ermo1'e,thebI.|s

master is asserting IRDY# during the final data phase. On the rising-edge of
the PCI clock where the final data item is transferred (clock edge three),
FRAME! has already been deasserlaed and I‘RDY# asserted (along with TRDWF
and DEVSE‘L#]. It, on this same clock edge (dock edge three) the -master

samples its__GN'I'# still asserted by the arbiter, this indicates that it has retained
bus ownership for the next trtmsaclion.

In the clock cell immediately following this clock edge {clock edge three), the

mastercanitnmediatetyreassertfikrmltflilitt anctdriveanewstartaddress and

command onto the bus. There isn’t a collision on the 1'-'.RAME# signal because

the same output driver that was driving FRAME?! deasserted at the end of the
firstu‘ansaetionbeginstoassettFRAME#atd-nestartoftheseeond
transaction. There isn't a collision on theAD bus or the C/‘BE bus because the

same master's drivers that were driving the final data item and byte enables at
the end of the first transaction are driving the start address and command at
the start of the second transaction.

At the end of the address phase of the seeosnd transact-ion [clock edge four),

the same master that was deasserting IRDY# at the end of the first transaction

begins toreassert it (so thereisnoootlisionbetween two differentlRDY#'
drivers). .

I-low Collision Avoided On Signals Driven By Target

The signals asserted by the target of the first transaction at the completion of

the final data phase (clock edge three) are TRDY# and D_EVSEL# (and,
possibly, STOW}. Two clocks afterthe end of the data phase, the target may
also drive PERRtt. Since it is a rule in this scenario that the same target must

he addressed in the second transaction, the same target again drives these

signals. Even if the target has a fast address decoder and begins to assert
DEVSEL#{and TRDY#tfitis s w'rite)duringetoI:Itee]1 fonrinthe second

107

Page 122 of 235 _ _ _ _
Pet1t1oners HTC & LG — EXh1b1t 1019, p. 122

Petitioners HTC & LG - Exhibit 1019, p. 123
Page 123 of 235

PCI Sxstem Architecture

103

Iransstztion, the fact that it is the sari: target ensurm that there is not a
oollision on TRDY# and DEVSEL# {and possibly STOP# and PERR1!) between

output drivers associated with two different targets.

How Targets Recognize New Transaction Has Begun

It is a rule that all PCI targets must recognize either of the following
as start of a new

o Bus idle (FRAME? and 1RDY# deasserted) on I risirtgeedge of the PC]
dock followed on the next rising-edge by address phase in progress
[FRAME# asserted and IRDY# deassertedl.

In Final data phase _inpro_g-tess [FRAME#deasserted and IRDY#aaserted,) an
a. rising-edge of the PCI clock, followed on the next rising-edge by address
phase in Pl'°S1'¢ss (FRAME? asserted and IRDY# dessserted}.

Implementation of support for this type of fast bacloto-beck capability is

optional for an initiator, but all targets must-‘be able to decode them.

Fast Back-to-Back and Master Abort ' '

When 5. master experiences a master short on a transaction during a fast back- '
to-baekseries. itmsymnth-1ueperfomfin5fasttransactions(aslm1gasirsIill 3
has its GNT#). No target responded to the aborted transaction, the-oeby _'

ensuring that there witlnot be a collision on the target-related signals. If the _-.'
transaction that ended with a master abort was a special cycle, the targetm 1'

that received the message were already given sufifidem time (by the master)
to process the message and should be prepared to recognise another
transaction- The author would like to note that this portion of the 2.1

specification states thatthe ta1get(s) ofthespecial cyelewere givenfiveclocb
after the last data hamter to process the message. This conflicts with the
specification description of the special cycle which cites four clocks
required aiterthelastdetairsnsier. -2'

_,.
Le»..,,.,.,,__I.

"— *—Petitioners-H-TG&—LG — Exhibit 1019, p_._ 123

Jr-

Petitioners HTC & LG - Exhibit 1019, p. 124

Chapter 6: PCI Bus Arbitration

Wrife Write

' lownsbuaaoznd

Figure 6-6. Arbitration For Fast Back-To-Back

109

Page 124 of 235

Petitioners HTC & LG — Exhibit 1019, p. 124

Petitioners HTC & LG - Exhibit 1019, p. 125

PCl System Architecture

scenario Two: Targets Guarantee Lack of contention

In the second scenario (defined in revision 2.0 of the specification and still true
2.1), the entireoomutunity o.fPCI targets thstreside on the.PCI bus

and the bus master collectively guarantee lack of contmtzion during fast bacJr--
to-hack transactions. A constraint incurrecl when using the master-guaranteed
:i1ethocl(deEin'ed in revision 1:0 ofthe specification) is that the master can only.. - .

perform fast back-to-back transactions if both transactions access the same
target and thefirst transaction is_a write.

The reason that somatic one states that the target of the first and second

tmnsacfions must be the same targetis to prevent the poss'il:il.ity of a collision

on the tsrget—retated signals: TRDY#, DEVSEM and S'I'OP# (and. possibly,
PERR#). This possibility can be avoided if:

1. All targets have medium or slow address decoders and
2. All targets are capable of cliscetning that a new transaction has begun

without a transifion through the bus idle state and are capable of latching
the address and command associated with the second transaction.

If the full suite of targets cm a. PCI ‘bus meet these requirements, then any bus
master that is fast back-to-back capable can perform fast back-to-back
transactions with difierent targets in the first and second h-ansactions. The
first transaction must still he a write, however, and the second hmnsactimt

must be performed by the same master {to prevent collisions on master-
related signals).

The previous statement implies that there is a method to determine if all
targets support this feature. During system configuration (at powenup].
software polls each device's configuration status register -and checks the slate
of its FAST BACK—TO-BACK CAPABLE hit. The deslgrter of a device
harclwires this read-onlybit to zero if the device doesn't support this feature;
while hardwiring it to a one indicates that it does. If all devices indicate
support for this capability, then the configuration software can set each W5
'master‘s FAST BACK-T0-BACIC ENABLE bit in its conflglarafion command
register [this bit, and therefore this capability is optional for a bus Inaateri
When this bit is set, a rnasber is enabled to perform fast back-to-bid‘
transactions with different targets in the first and second transactions.

A target supports this capability if it meets the following criteria:

,..2

no - ’

Page 125 of 235

Petitioners HTC & LG — Exhibit 1019, p. 125

Petitioners HTC & LG - Exhibit 1019, p. 126

Chapter 6: PCI Bus Arbitration

I Nomlallye target reoogrlizes a. bus idle condition by sampling FRAMB#
and IRDY# deassertecl. It then expects and recognizes the start of the next
I1‘aII.sacl:'ton bysampIi11&FRAMH asserted and IRDY# deasserted. At that
point, it latches the address and command and begins address decode. To

support the feature under discussion, it must recognize the oompletion of
the final data phase of one transaction by sampling FRAME# deaaserted

and 'IRDY# and T_RDY# 'IJ_1is would then. be immediately-
‘ ‘followed by the start of the next transaction. as indicated by sampling

FRAME# asserted and 1RDY# deasserted on the next rising-edge of the
PCI clock. .

I The target must ensure that there isrft corttention on TP.DY#, DEVSBM
5 and 5TOP#- (and, possibly, PERM‘). If the target has a med.'u.rm or slow

addreafdecoder, this provides tlie guarantee. If the target has a fast
1- address decoder, it must delay assertion of these three signals by one

clock to pre'i'ent coentenfion. Note that this does not aifect the DEV5BL#
timingfield in the de'v‘ioe's configuration status register. The setting in this
field is used by the bus’s subtractive decoder to adjust when it asserts

DEVSEL# to claim transactions unclaimed by PCI davioes. During the

second transaction of a fast back-to-‘back transaction pair, the subtractive
decoder most delay its assertion of DEVSEU! if it normally I:lai.I:ns -during
the medium or slow_tl.me slot (otherwise, a collision may ocour on
DEVSEUP, 'I.'RDY#, and S'I‘0P# (and, possibly, PERM).

o The-reare twocttcumstanceswtterrsiargetwitha fastaddress decoder

doesn't have to insert this one clock delay:

1. 'I'hecurrenttt'aIIs'actior1wasprooededby'a busidle state (FRAME#and
IRDY? deasserted).

2. The ourrently-addressed target was also addressed in the previous
transaction. This ensures a tank of oontention on TRDY#, 5'I‘OP# and

DEVSEM (because it was driving these signals during the previous
transaction).

State of FlEO# and GNT# During HST#

While RST# is asserted, all masters must tri-state their-REG? output drivers

and must ignore their GN'I'#' inputs. '

111

1 5 1:235
Page 2 ° Petitioners HTC & LG — Exhibit 1019, p. 126

Petitioners HTC & LG - Exhibit 1019, p. 127
Page 12?‘ of 235

PCI Sygtem Architecture

Pullups on REO# From Add-In Connectors

In a system with PCI add-in connectors, the axbiter may require a weak pullup
on the KEQ# inputs that are wired to the add-in connectors. This will keep
them from floating when the connectors are unoccupied.

Broken Master

The arbiter may amunte that a master is brukenif the arbiter has issued G-‘NT#
to-the'master,tl_1ebushasbeenidlefor16 r.locl<5,and themasterhasnot

assertedFRAME#tostartits_trarIsaclinn.'Ihe arbiteris permitted to ignore-all
further requests from the broken master and may optionally report the failure
to the operating system (in a device-specific fashion).

Petitioners HTC & LG — Exhibit 1019, p. 127

Petitioners HTC & LG - Exhibit 1019, p. 128
Page 128 of 235

Chapter 7: The Commands

Chapter 7

The Previous Chapter

- pre_1ri_ons_cha1';-ter_p—roVided_a._dascrip'tioztx of -PCI bus arbitratioti.

In Thie Chapter

This chapter defines the types of oommands, or_ trartsaciion types, that a bus
master may izfitiate when it has acquired ownership of the PCI bus.

The Next Chapter

The next chapter provides a detailed analysis of the PCI tnmsfer, utilizing
timing diagrams and a desuipfion of each step involved in the traIIsl‘.'er.

Introduction

Whenabusmaster acquires of thePCI bus,itmay initiateone of
the types of transactions listed in table 7-1. During the address phae of a
transaction, the Command/Byte Enable bus, C/BE#[3:D], is used to indicate

the command, or Ixansaction, type. Table 7-1 provides the setting that the ini-
tiator" places onthe CommandfBy1e.‘Enahle lines dating the address phase of
the trar|.'sm:ti.on to indicate the type of transaction in progress. The following
sections provide a description of each of the command types.

Petitioners HTC & LG — Exhibit 1019, p. 128

Petitioners HTC & LG - Exhibit 1019, p. 129

PCI Sistem Architecture '

Table 7-]. PCI Commend .p

jZEZEI:Z
111111 _
111111

_ _ Z3111
EZZZZH
1111
I111

, _. IE1 .1
131111

. 111111 '
1111
1311111
111111 '
11
If

11 f

Interrupt Acknowledge Command |=

Introduction .

Inrespanse to an interrujat request, an Intel x86 processor issues two interrupt
acknowledge transactions to read the interrupt vector from the ,'.
trailer. ‘Ilse interrupt vector tells the processor which interrupt service routine.
to execute.

Background

In an Intel 3:36-based system, the host processor is usually the device that
services interrupt requests received from subsystems that require servicing. In
a. PC-compatible system, the subsystem requiring service issues a requestbjt
asserting one of the system interrupt request signals, IRQD through l'_.RQ15-
When the IRQ is detected by tl1e interrupt controller. it asserts INTR to thfi
host processor. Assuming that the host processor is enabled to recognize it!-
terrupt requests (the "interrupt flag bit in the EFLAGS register is set to one)-
the processor responds by requesting the interrupt vector from the intem1P*

11-1

Page 129 of 235

Petitioners HTC & LG — Exhibit 1019, p. 129

Petitioners HTC & LG - Exhibit 1019, p. 130

Chapter '7: The Commands

controller. This is accomplished by the processor stepping the follow-
in5 sequence:

1. Processor generates an interrupt acknowledge bus cycle. No address is

output by the processor because the address of the target device, the in-

terruptoonuoilet.isimpiicitinfluehuscycletype.Thepurposeof&tis bus
. cysts is ts c=m:=_-a-_rsi.et|.=-=_ imersurt tn. 1m'_°=i_fi=~‘= its ¢=!_==~=r-,t1sr-

pending and select the request to be processed. The processor
doesn't expect any data to be returned by the interrupt controller during
this bus cycle.

2. Processor generates a second interrupt acknowledge bus cycle to re-

quest the interrupt vector from the interrupt controller. BED# is asserted
by the processor, indicating that an 8-bit vector is expected to- be returned
on the lower data path. D[?:D]. To state this more plainly, the processor
requests that the interrupt controller return the index into the interrupt
tableinmen1o1‘y.'I‘histel]s the prooessorwhichtable entrytoread. The
table entry contains the start address of the device-specific interrupt serv-
ice routine in inemory. in response to the second interrupt aclrnowledge

bus cycle, the interrupt controller must drive the interrupt table index, or
vector, associated with the 1u'g11e's'e-priority request currently pending
back to the processor over the lower data. path, D[7:D], and assert ready to
the processor to indicates the presence of the Vector. In response, the
proceaorreadsthevectoriromthebtrsandusesittodetermine thestart
address of the interrupt service routine that it must execute.

Hostmcl Bridge Handling of Interrupt Acknowledge

Sequence

When the host/PC! bridge detects the start of an interrupt acknowledge se-
ql1fl1GEOIlIl\Eh0BI:5l.d£,itCE11hl.nd1BitOnE oftwo ways:

L It filters out (does not pass to the PCI bus) the first interrupt acknowledge

bus cycle. Ready is asserted to the processor to terminate the first inter-
rupt "acknowledge bus cycle. When the processor initiates the second in-
terrupt eclmowledge bus cycle, the bridge acquires the PCI bus and
ates a PCI interrupt aclptrtowledge trertsaction. This transaction is illus-

trated in Eigtire '?-1 and is described in the next section. When the PCI tar-
get that contains the interrupt oontroller detects the interrupt acknowl-
edge transaction, it asserts DEVSEL# to claim the transaction. it then in-
ternally generals two, beck-to-back interrupt acknowledge pulses to the

Page 130 of 235

115

Petitioners HTC & LG — Exhibit 1019, p. 130

Petitioners HTC & LG - Exhibit 1019, p. 131
Page 131 of'235

PCI System Architecture

B259A interrupt controller, thereby elrtulating the double interrupt ac-

knowledge generated by an Intel X36 processor. In response, the interrupt
controller drives the interrupt vector onto the lower data path and asserts
'I'RDY# to indicate thepresertce ofthetreclaortoflte initiatodthehost/PCI

bridge). When the host/PC! bridge samples 'I'RDY# and IRUY# asserted,
it reads the vector from the lower data path and terrrtinataes thePCI inher-

rupt acknowledge transaction. During this period. the bridge was insert-
ing wait states into the host processors second interrupt acknowledge bus
cycle. It then drives the Halt interrupt vector onto the processor's lower
dsta path and asserts ready to the processor. When the processor samples
ready asserted, it reads the vector from the bus and uses it to index into
the memory-based interrupt table to get the start address of the interrupt
service routine to execute.

2. Instead of filtering out the titer of the processors interrupt aclcnowledge
bus cycles, the bridge could pass it onto the PCI bus. Rather than waiting
for the cornpletion of the PCI transact:ion, however, the bridge would im-
mediately assert ready to theprooessor, permitting it to end the first inter-
rupt scknowledge bus cycle and begin the second. This would permit the
interrupt controller to claim the transaction earlier and therefore return
the vector sooner. when the interrupt controller returns the vector, it is

passed directly back to the processor and ready is asserted. perrnitting the
processor toreadtltetrecborand terrninatethesecondbus cycle

PCI Interrupt.Acknowledge Transaction

Figure 7-1 illustrates the PCI lI't\f;D.|‘1'I.1pt acknowledge transaction. The bridge .-
does not drive an address onto the AD bus during the address phase. but
must drive stable data onto the AD bus along with correct partly on the PAR 2
line. The C/BE bus contains the interrupt acknowledge command during the
address

vector back to the bridge on the AD bus. The target than drives the vector.

onto the data path(s) indicated by the byte enelble settings on the CIBE but
[just BEO# asserted in an 1186 environment) and asserts TRDY# to indicate the __
presence of the requested vector. The byte enables are a duplicate of the by‘!!! 1;;
enables asserted by the host processor during its second interrupt acl:noW1-
edge bus cycle. When the bridge sarnplm]RDY# and TRDY# asserted. it N335 E
the vector from the AD bus and tertrtirtates the PCI interrupt ackrzowledstii
transaction. It then passes the vector ‘back to the host processor and r;

116

Pot_i_tjon§IS_HT_C__& LG — Exhibit 1019, B._1_§1p

phase. During the data phase, the target holds off the assertion oi '-
TRDY#endDEVSEI.#toentoroethemmarotmdcydc.T1fisisneoessaryto:

permit the bridge sufficient time to turn off its AD bus output drivers before
the target [the interrupt controller) begins to drive the requested interrupt '

-.._.e

Petitioners HTC & LG - Exhibit 1019, p. 132

Chapter '7: The Commands

rmdytoindicateitspresenoe.Whei1fi1ehostprooes5orsamp1es readyss-
serl-ed, it reads the vector from its data bus and terminates the second inter-

rupt scknowledgebuscycie.

In a PowerPC, PR:eP-compliant plntionn, the progranuner performs a one to
!ou:bytememoryread£rommemoI}rlocafi.onBFFFPFFfllLWh2nthe

host/PCI bridge detects this read, it acquires ownership of the PC! bus and
__ . . . - _.- initiates-the PCI- interrupt aclmowledge traruacl-ion. When the i1'ite1'I'npt'can-7 ' ' '

trollersupplies the requestedvector to thehost/Pclbrldge, the bridge in turn
supplies it to the processor and asserts TA# to indicate its praenee. The proc-
essorreadsthevechoranclplaoes intothe-GPRind.i::atedby the1oadinstruo-

{ion being executed. The programmer then uses flie vector as an 5111191: into the
interrupt service routine jump table.

11'?‘

Page 132 of 235
Petitioners HTC & LG — Exhibit 1019, p. 132

Petitioners HTC & LG - Exhibit 1019, p. 133

.|.1..|lI|..I!..u.9
3......MIII:_m

Wmn.
MMM...1.»-_m...N...__7.:M.W.

MS.m

mm
Page 133 of235

Petitioners HTC & LG — Exhibit 1019, p. 133

Petitioners HTC & LG - Exhibit 1019, p. 134

Chapter '7: The Commands

Special Cycle Command

Page 134 of 235

General

'l.'he special cycle comrnand is issued. by an initiator to broadcast a message to
oneot-more targe1sres.idingoInatargetPC[bus. Eachtarget_on_the ., ..
must examine the message to determine whether thémessage applies to it (it
target may be designed not to recognize any messages or to recognize only
specific messages). Via its configuration oommsncl register, a target's ability to
monitor special cycle messages can be enabled or disabled. As an example of
message passing using the special cycle, Intel x36 processors use the special
cycle to indicate. when they are going into a halt or shutdown condition.

Du.ring'the address phase, a valid address is not drivert onto the AD bus. The
AD bus and PAR must be driven with a stable pat-tern, however, so that the
pa.rityo.EtheAD husandthecommandcanbecheckodforcorrectness.‘l1te
initiator uses the C/BE bus to indicate thatthis is a special cydetrsnsaction.

During the data phase, the initiator broadcasts the message type on AD[15:0]
and an optional, mssge-dependent data field may be presented on
AD[31:16]- The message and associated data are only valid during the clock
when IRDY# is asserted. The data contained in, and the timing of subsequent

' data phases is message dependent (the subject of multiple data phase special
cycles is discussed under the section entitled “Special -Cycle Transaction"). If
necessary, the initiator may insert wait states into t1-ie transac'ti.on by deassert-
ing IRDY#, but targets cannot insert wait states. In addition, no target should
assert DEVSEH when it recognizes a ntessagc. Since multiple‘ targets can rec-
ogttizettten1essi\8'3U'P"-‘stiterentouldbecontaention ontheDEV'SE[aHineif
they all tried to ciaim the transaction by asserting DEVSEL#; The targets must

watch IRDY# to determine the presence of the msage being sent by the ini-
tiator.Itshouldbenotedthatthemessagetype(anda11yassociated data on
AD[31:16D is only valid during the first data phase. Since all special cycles are
intended to pass msages only to PC! targets, a subtractive decode bridge
shouldnotpasstheuansactionontoanexpansionbus (sucha.sISA, EISA or

the Micro ChannelT“) when it doesn't see any target claim the transaction by
asserting DEVSEL#.

Since no target responds to the special cycle (DEVSBLJF is not asserted], an-

other means must be used to end the transaction. The initiator must perform a
master-abort to end the transaction. The master-abort process is explained in

.__ _ -. . _ - —--- — Petitioners HTC‘& LG — Exhibit 1019, 134

Petitioners HTC & LG - Exhibit 1019, p. 135

PCI System Architecture

the chapter entitled "Premature ‘Transaction Termination” It must be noted
that when the initiator terminates the transaction with a roaster-abort (because

DEVSEH was not asserted by a target), it must not set the MASTER-ABORT
DETECTED ‘bit in its configuration status register. That bit should only be set
in a transaction where a DEVSELIF is expected but not received. l

TI‘al:;1e.iF+2_p;g:l1l:i_.c_lteq_fhe.-__r:n.essage types currently defined in the specificatiort
The that two message codes} GDCIOIJ artd‘O0D1h, are defined as _ ,_ ‘
and HALT. Message code (l0D2his reserved for use by Intel x86 processors to
broadcast 1:86-specific meages. During the data phase, AD[15:O] would con.
Iain ooozh, while AD[31:16] would contain the 1:86-specific message. The x86.

specific message codes are defined by Intel in product-specific documentation,
Message codes 000313 through FFFF11 are reserved for fttture use. Al.location.of
newmessage oodesisharidiedttuough thesis anclrequestsforallocationof
new message codes should be submitted to the SIG in writing.

During system dtsdgit, each PC! device that is capable of recognizing or
broadcasting message codes must be hardwired with the message co-elm it
recognizes or broadcasts. Upon recognition of any of its asigned message
codes, a PC! target should take the application-specific action defined by the
message code received.

Message Code

_ (nn15.1)

Table 7-2..Messa - T p -. r

0000!‘!

Halt. The processor hasfetched and is executing a Halt instI.uc—
tion. In response, the processor issues the halt message using the
special bus cycle to indicate to all external devices that it is going‘

' - - and executin instructions.
The special cycle command taloes a minimum of six clocks to complete (111074
if the initiator inserts wait states by delaying the assertion of IRDY#). (In!
additional clock is required for the turn-around cycle before the next transao
tion is initiated on the bus. Therefore, a total of seven clock cycles are required _
from the start of the special cycle to the start of the next cycle. "

Page 135 of 235

Petitioners HTC & LG — Exhibit 1019, p. 135

Petitioners HTC & LG - Exhibit 1019, p. 136

 Chapter 7: The Commands

Special Cycle Generation

Host/PCI bridges are not required to provide a mechanism that permits spe-

cial cycles to be generated under software controL If the bridge does provide
this capability, however, a detailed description of a mechanism can be found
in the chapters entitled “Configuration "Transactions" and “PCI-to-PCI
Bridge.”

Special Cycle Transaction

Single-Data Phase Special cycle ‘Transaction

Figure 7-2 illustrates the special cycle transaction timing. During the address
phase, the initiator drives a stable pattern onto the AD bus and 1'-‘AI-‘.. This is

"I only for parity checking purposes. No actual address is driven. In addition.
the initiator drive the special cycle -command onto the C/BE bus during the
address phase.

At the end of the address phase, the data phase begins. The initiator drivm the

message code onto AD[15:D] and any optional. message-related data onto
AD[31:16]-. It also asserts the appropriate byte enable lines (i.e., C./'BE#[1:0] or
[320]]. The message is only guaranteed to be present on the AD bus for one
clock when the iititiator asserts IRDY#. ‘Ihe initiator can insert wait states into

the data phase by delaying the assertion of IRDY#. When the message is
driven onto the AD bus, the initiator asserts IRDY# to indicate its presence.

The targets that are designed to recognize special cycles latch the message in-
formation from the AD buswhen 1RDY# is sampled asserted

Since a target is not expected to claim a special transaction, DEVSEL# is sam-

pled deasserted (by the initiator) at the end of clocks three through six. Since
the transaction isn’t claimed on any of these clocks, the initiator executes a
master-abort-to return the bus bacl-: to the idle state. If the master inserted one

or more wait states before presenting the message and asserting]I<1DY#, the

master must extend the master abort timeoutpeiiod by at least the number of
wait states inserted (before performing the master abort to return the bus to
the idle state). The specification states that this time period is required to give
the target(s) sufficient time to "process" the -message. This period of time is
necessary to ensure that the target(s) have completed alljnterrtal actions re-
lated to reception of the message and are prepared to handle another transac-

121

Page 136 of 235

.. __ _ _ _ ._Ee1_i_Li9ners HTC &LG—Exhibit 1019, p. 136

Petitioners HTC & LG - Exhibit 1019, p. 137

PCI System Architecture

5!

lion. When it occurs, the master abort is accomplished by deasserting
FI{AMIE#ar|.dthen IRDY#.

Multiple Data Phase Special Cycle Transaction \
It is pennisafble for an initiator to deliver multiple packets of message infor-

' “ "* ' *' - - mation duringtltespeeial x:ycle..No messages are ousreotly gletinecl Eye! pm-
vide this capability, however. The target{s} Iattzh the finrl: message packet on

the rising-—edge of the clock when IRDY# is first sampled assetted. The mes-.

sage type -encoded on AD['l5:O] may implynihe number of additional message
9"" packets to be delivered or the data field encoded on AD[31:16] may state the

number of packets. The second data phase etatt durtngthe clock cell immedi-
ately following the first assertion of IRDYJF. Although ‘lite apedfimfion doesn't

dearly state so, the author interprets the specification as indirectly stating that
the initial-01' can deassert IRDY1! l.'h1!itI_g the second (ahd any subsequent) data

phase until it has placed the next message packet on the AD bus. Each addi.
ltional data phase completes when IRDY# is sampled asserted. When the final
data transfer completes, the initiator must keep IRDYfF asserted for at least
fpu: additional clocks before performing a master abort to return the bus to
the idle state. This time period is required to give the ta:get(s) suffieiertt time
to “process” the message. The specification does not explain what form this

“processing” might take.

Page 137 of 235

Petitioners HTC & LG — Exhibit 1019, p. 137

Petitioners HTC & LG - Exhibit 1019, p. 138

Chapter “.7: The Commands

7-2. The Special Cycle '1'

Page 138 of 235

Petitioners HTC & LG — Exhibit 1019, p. 138

Petitioners HTC & LG - Exhibit 1019, p. 139
Page 139 of 235

PCI System Architecture _ L

IIO Read and Write Commands ‘i

The U0 near! and write commands are used to transfer data between the ir1.l- I

tiator and the currently-addressed I/CI target. The target must decode l-.he-c-Ip-
tire 32-bit address. For a detailed description of 1/0 addressing and 1/0 read ',
and write lnnsactions, refer to the chapter entitled "The Read and Write ‘
'I‘;-angfg-5_"? _-_-. _ .___ ._ ._ _._. .,._ .

Accessing Memory

The PC! specification defines five commands utilized to access memory:

Memory read command.
Memory read line command. 1
Memory read multiple conunand.

Memory write command.

Memory write and invalidate oourumand.

The apecif:'.cafion.says that the cache size configuration register (dacribéd
in the aha-.pter entitled “CorI£ig11rat1'.on Registers”) must be intplemertled by
bus masters that utilize the memory write and invalidate command {described

later in this chapter}. It also strongly zrecomrnenda that this register be imple-
mented for bus masters that utflize the memory read, memory read line and

meotory readmultiple commands.

Ifthe cache line size oonfiguration register is implemented, the initiator should
follow the usage guidelines outlined in table 7-3 when per£on:n.ing memory "
reads. If an initiator accesses memory and does not implement the cache line

sine configuration regislaenit should follow the guidelines outlined in table 7-4
when performing memory reads. In essence, the rules are the same, but the
bus-master assumes a cache line size of 16 or 32 bytes.

The specification strongly recommends that the bulk readfwrite commands
be used when transferring large blocks of data to or from memory. The:
commands are memory write and invalidate, memory read line and memory

read multiple.

Petitioners HTC & LG — Exhibit 1019, p. 139

l

l

Petitioners HTC & LG - Exhibit 1019, p. 140

Chapter '7: The Commands

Table 7-3. I-lead Pol!’ When Cachefine Size H: . fer In Iemented

dfloulmane __ _ 'I'oBeUn __

'

Me a ReadMu'le Burst" moeethanonecacheline.

 -- Table 7-4 Ret1d‘PoI1'

, L’, L“ _ e L
Memorykeed Bursttnglesstiunacachelinetaasumingacacheline

sizeotlfiorazb --

Memory Read. Line Burs ling a cache line fasstlming a cache line size of 16 or
321:: has).

Mommy Read Multiple Bursting more 61:11 one cache line (assuming a cache
linesizeofi6or32 -'--.-

l'-Ieading Memory

The following three ootmnands are available to used when reading data. _
from memory.

ted’ _'

Memory Read command

‘me memory read commend should be used wherltraxrsferting less than a-
cache line.

Memory Read Lina command

when a master uses the memory read. line command, it La indicating that it

will read a complete cache line from the target memory device. This petmitn
the memory target to prefetch the entire line from its memory rather than ac-

cessing memory on a data phase by data phase basis. The intent is to yield bet-
ter performance when perfomurtg bulk reads from memory. A memory target
that doom‘: implement this command will treat it as a memory read and an-

oessilsmemory onadataphasebydataphase basis.

Memory Head lulultlple Command

When a master uses ihe memory read multiple conunand, it is indicating that
it will read more than one complete cache line from the target memory device.

This pezmits the men1.oIy target to pxefetch data from its memory a line at a.
lime tether than amassing memory on a data phase by data phose basis. The

125

Page 140 of 235

Petitioners HTC & LG — Exhibit 1019, p. 140

Petitioners HTC & LG - Exhibit 1019, p. 141

PCI Szstem Architecture

inten_t is to yield better performance when performing bulk reads from mem-
cry. A memory target that doesn't implement this command will treat it as a

memory read and access its memory on a data phase by data phaaebasisi

When this command is used. the target memory device should fetch the re-
quested cacheline from memory. When the requested line hasbeen fetched

. froin mernory, the memory controller should start fetching the next line from
"‘ ‘ ' — ' - -- -memory-in artticipa1:lon-oEarequest£'t'om the initiator. 'I_‘he _rr1emor3_cot_ti:ro11er

should continue to prefetch lines from memory as long as the initiator keeps‘ "'
FRAMEii asserted. It should be noted that the memory target is responsible

for ensuring the validity of data prefetched from memory tinting an anticipa-
tory read.

Writing Memory

Iheinidatormayusethememcrywriteorfltememmywtihandinvalidate

command to update data in memory.

Memory Write command

Tltiscommandisusedto transferolneormoce data objects to memory.When

the target asserts TRD‘r’#, it has assumed responsibility for maintaining the
coherency of the data. This can be done by ensuring that any software

transparent posting buffer is flushed prior to synd-lrenizafion events such as
interrupts, or the updating of an I/'0 status register or memory flag being

I passed throughthedevice thatcoattains theposted-writebuffer (i.e., a bridge).

Memory Write and lnvalltlate command

Problem

Assume that-arrotherPC'Imasterispa'foumir|g a memory write andtheproc
esso1"s write back cache(s} is snooping the transaction. It experiences a snoop
hit on a modified line. This means that the initiator is about to update a stale

line in memory. Assuming that the cache not capable of data marfing
(iatclting the data from the AD bus) to keep the cache line updated, it could
imralidate the cache line. This, however, would be a mistake. The fact that the

line is marked modified indicates that some or all of the information in the

line is more current than the corresponding line in memory. The memory

write being performed by the current initiator is updating some item in 9|!
memory line. Trasl-ling. the line from‘ the cache would quite probably trash
some data thetis more current than that in the memory line.

126

Page 141. of 235

Petitioners HTC & LG — Exhibit 1019, p. 141

Petitioners HTC & LG - Exhibit 1019, p. 142

Chapter '7: Thecommands

Lfthe cachepermils tlteiniriatouocompletethemernorywriteandthen
flushes the cache line to memory, thedata just written by the initiator is ova‘-
wrtttert by the stale data in the cache line. The correct actionwould be to force

the initiator that is attempting the write to get off the bus {abort the transac-

tion). The cache then acquires the bus and performs a memory write to trans-

fer, or flush, the modified cache line to memory. In the cache directory, the
cache line is than invalidated because the initiator will subsequently update __ ‘_

- ' the memory line mime"diatelf after the'cai':he fluahedto rriemoryi. The
cache then removes the back off, pe:mil1ing the initiator to reirlitiate the
memory write. 'I'he memory line now contains the most current data. The

cachesnoopl5tl'Iist:ranaaclionaswe]l,butitnow resultainacacltemiss
" (because the cache line was imralidated after it was deposited in memory).

The cache does not interfere in the memory write this time.

Decorlption of Memory Write and invalidate Command

The memory write and invalidate oommmd is identical to the memory write
except that it guarantees the transfer of a complete cache line (or

multiple Clflhfl lines) during the current transaction. This iinpliea that the
cache line size configuration register must be implentcnted in the initiator so
that it can make the termination that anentire cache line wiflbe written.

If, when anooping,l the write-back cache detects a memory’ write and invali-
date initiated and experiences a '8l'lDup hit on a modified ltne, the cache can
just irwalidate the line and doesn't. need to back off the initiator In order to
perform the flush to memory. This is possible bemuse the has indi-
cated that it is updating the entire memory line and all of the data in the
modifiedcachelineis Ihereforeataleand car1beir1va1ldated.Thisincreases

performanoebjrelirninatirrgtheroquirementtor theback offandltneflush.

It is a requirement that the initiator must assert all of the byte enable aignals
during each data phase of thememory write and invalidate transaction. It also

required that linear addressing he used. For irtforrrratioit on the byte enable:
and on linear addressing, refer to the chapter enfitled “The Read and Write
Transfer.”

More Intormatlon On Memory Transfers

Por a detailed description of read and write h-arisacttons, refer to the chapter
erltifled "The Read and Wfite Transfers.”

117

Page 142 of 235

Petitioners HTC & LG — Exhibit 1019, p. 142

Petitioners HTC & LG - Exhibit 1019, p. 143
Page 143 of 235

PCI Szstem Architecture

Configuration Head and Write Commantis

Each PC! device may i|:nplen'Lent up to 64 doublewords of configuration
ters that are used during system initializafion to configure the PCI device for

proper operation in the system. To access a PCI agent's configuration regis-
ters, a configuration read or write command must be initiated and the agar

T::n'ust__sgnsg_it_s irqgut the address phase. IDSEL acts as a
chip-select, AD[10:8] select the function within the'dev'ioe and‘ the contents of
AD[‘7:2] (during the address phase) are used to select one of the target‘; 54
doublewords of configuration space.

The X56 processor family implements two address spaces: memory and 1/0.

PCI requires the implementation of a third address space: configuration space.
'I'1'Le mechanism used to generate configuration transactions is described in the

chapter entitled "_Conflguration ’IiansacI:ions."

Dual-Address Cycle

The initiator uses the dual-address cycle command to indicate fltat it is 1.'II:i.ng.
64-bit addressing. 'I'.l'u's sultvject is covered in the chapter entitled "'T1‘i£'. 64-Bit

P_ClE:tter\s.itm."

F_Ieserved_ Bus commands

Targets must not respond (assert DEVSEL#) to reserved bus. commands. This

means that use of a reserved bus command will result in the initiator experi-
ertt:iI'I.g 5, master abort.

Petitioners HTC & LG — Exhibit 1019, p. 143

‘"-'<L'--I-vi..-.-

Petitioners HTC & LG - Exhibit 1019, p. 144

Chapter 8: The Read and Write Transfers

Chapter 8

The Previous Chapter

_ The previous chapter introducedthe types of commands, or transactions, that

an initiator may perform once it has acquired ownership of the PCI bus.

‘ ' In This chapter , I K
This chapter provides a detailed description of the basic PCI data lxanafier,
using timing diagrams to illustrate the exact sequence and timing of events
during the transfer.

The Next chapter

The next chapter describes the eircumstarlces under which the initiator or tar-

get my need to abort a Irarssatztion and the mechanisms provided to accom-
plish the abort.

—---—-

some Basic Hules -

The ready signal from the device sourcing the data must be asserted when it is
driving valid data onto the data bus. The PC] agent reoeiving the data can

' keep its ready line deasserted its ready signal until it is ready to receive the
data. Once a device's ready signal is asserted, it must remajrt so until the end
of the current data phase-.

An. agent may not alter its control line settings once it has indicated that it is
ready to complete the currertt data phase. Once the irritiator has asserted
IRDY#, it may not change the state of IRDY# or FRAME# regardless of the

state of 'I‘RDY#. Once a target has asserted "I'RDY# or STDP#, it may not
change 'I'RDY#, STOI’# or DEVSEUF until the current data phase completes.

129

Page 144 of 235

Petitioners HTC & LG — Exhibit 1019, p. 144

Petitioners HTC & LG - Exhibit 1019, p. 145
Page 145 Of 235

PCI Szstem Architecture

Parity

Parity generation, dteckirtg. error reporting and timing is not dismissed in
chapter. This subject is covered in detail in the chaprter entitled “Error ‘Detec-

tion and Handling.”

“Read Transaction * +e - --

Description

During the following description of the reed ttanssction, refer to figure s—1.

Each clock cycle is mimbeted for easy reference and begins and ends on the

rising-edge. It is assumed that the bus master has already arbitrated for and
beengtanted. across to lhehus. Thebus master then mustwaitfortheblas to

become idle. This is accomplished by sarnplirtg the state of FRAME? and
IRDY# on the rising-edge of each clock {along with GN'I#J. when both are
sampled deasserted {clock edge one), the bus is idle and a transaction may be

by the bus master.

At the start of clock one, the irlifiataor asserts FRAMEB, indicating that the
transaction has begun and that a valid start address and commend are on the
bus. FRAME! must remain asserted until the initiator is ready to complete the
last date phase. At the some time that the initiator asserts FR.AME#, it drives
the start address onto the AD bus and the transaction type onto the Com-
mand/Byte Enable lines, C/BE[3:0]#. The addness and transaction type are
driven onto the bus for the duration of clock one.

A.tu.m~aroImdr:yde(i.e..adeadcyc]e)isrequiredonn.I!5ig;ma1et11atmaybe
. driven by more than one PCI bus agent. Thi.s period is required to avoid 8

oollision when one agent is in the process" of turning oft‘ its output drivers and
another agent begins driving the same signalts). During clock one, £RDYi.
'I'RDY# and DEVE'-BL# are not driven (in preparation for takeover by the new
initistor and target). 'I'hey are kept in the de-asserted state by keeper resistors
on the system board (required system hoard resource].

At the start of clocktwo, the irtitiatorceases-driving the AD bus. This villa!-'
low the target to ER: control of the AD but: to drive the first requested 68*?
item (between one and four bytes) back to the initiator. During a read;
two is defined as the tum~arouIII_:l cycle because ownership of the AD 17115 '5

Petitioners HTC & LG — Exhibit 1019, p. 145

Petitioners HTC & LG - Exhibit 1019, p. 146

Hmfltu o.-. rue neat: and write Iransters

changing from the initiator to the addressed target. It is the responsibility of
the ‘addressed target to keep 'l'ItDY# deasserted to enforce this period.

Also at the start of clock two, the initiator oeases to drive the command onto

the Command/Byte Enable lines and uses them to indicate the bytes to be

transferred in the currently-addressed doubleword (as well as the data paths
to be used during the data transfer]. Typically, the initiator will assert all of
the byte enables duringaread.

The initiator also asserts IRDY# to indicate that it is ready to receive the first

data item from the target. Upon asserting]IKDY#, the initiator does not dess-

aert FRANIEW, thereby indicating. that this is not the final data phase of the ex-
ample transaction. if this were the final data phase, the initiator would assert

IRDY# and deassert FRAMEIF simultaneously to indicate that it is ready to.
- complete the final data phase.

It should be noted that the initiator does not have to assert lRDY# immedi-

ately upon enteringa data phase. _It may require some time before it's ready to
receive the first data item (e.g., it has a buffer full condition). However, the
initiator may not keep lI{1IJY# deasserted for more than eight PC! clocks dur-

ing any data phase. This rule has been added in version 2.1 of the specifics-
tion.

During clock cell three. the target:

I asserts DEVSEIAF to irtdisate that it has recognised its address and will
participate in the transaction.

begins to drive the first data item (between one and four byte, as re-

quested by the setting of the C/BE lines) onto the AD bus and asserts
‘l'RDY# to indicate the presence of the requested data.

when the initiate: and the currently-addressed target sample TRDY# and
1RDY# both asserted at the rising-edge of clock four, the East data item is read
from the bus by the initiator, completing the ‘first data phase. ‘The first data

phase oonsisted of clock cell two and the wait state {turnaround cycle] in-
serted by the target (dock cell three). At the start of the second data phase
(clock edge four), the initiator sets the byte enables to indicate the bytes to be
transferred within the next doubleword.

It is a rule that the initiator must imrhediately output the ‘byte enables for a
data phase upon entry so the data phase. It for some reason the initiator

131

Page 146 of 235 . . _ .
___Be1111one.rsH:l“C& LG — Exh1b1t 1019, p. 146—

Petitioners HTC & LG - Exhibit 1019, p. 147
Page 147' of 235

—-____.-._ _

PCI Szste-In Architecture

doesn't know what the byte enable setting, will be for the next data phase, it

should keep II-‘.DY# deasserted and not let the current data phase end until it
knows what they will be. '

|.I

In this example, the initiator keeps IRDY# asserted upon entry into the second _
data phase, but does not deassert FItAME#. This indicates that the initiator is _
ready to read the second data item, but this is not the final data phase.

' In a-multiple-data phase--tratlsaction. it is the responsibility. o.f_the target to ._
latch the start address into an address counter and to manage the address -

from data phase to data phase. As an example, upon completion of one data ;
phase, the target would increment the latched address by four to point the -
next doubleword. It then examines the iniI:iator‘s byte enable settings to de- '

terrnine the bytes to be transferred within the curoem‘1}-‘-addressed double.
word. This subject is covered in more detail later in this chapter.

In this example, the targetis going to need some time to fetch the second dala
* item requested, so it deasaerts TRDYJ? to insert a wait state (clock cell five)

into the second data phase. In order to keep the data paths from floating, the
target must continue to drive a stable data pattern, usually consisting of the
last data item, onto the AD bus undl it has acquired and is presertfing the sec-

ond requested data item. ‘This is illustrated in clock four. It is necessary to '
keep theA.Dbus from floati!1ginordertoprever1ta]1oftl1eCMOSi11poth1:.fi‘-
ersconnectedto theADbusf1'o1nosri]1aiinganddrawir|gexcessivec1rrrernt,
Mentioned earlier in the book, this is one ofthemeasutes taken to achieve the

greennatureofthePCIb1'.ts.

At the rising-edge of clock five, the initiator samples TRDY# deasserted and,

recognizing that the target is requesting more time for the transfer of the see I
and data item, it inserts a wait state into the second data phase (clock cell ,
five).

During the wait state, the target begins to d.t'iVe the sectmd data item onto lite _
AD bus and asserts TRDW to indicate its presence When the inifiator sam-

plesbolh IRDY# and TRDY# asserted at the rising-edge of clock six, it reads '5
the second data item from the bus. This completes the second data phase The
second data phase consisted of clock cells four and five.

Atthestarto£the_thi.rddataphase,theinitiatorsetsthebyteenab1est1oinIii*
cats lite bytes to be transferred in the next doubieword. It also deassefli ;

__ Petitioners HTC &_I__.Q_: l_E)_<l1_'1]2i.t.1019, p. 14_7_ _

:|.|.i.‘li-.31:-'.-'-'-

Petitioners HTC & LG - Exhibit 1019, p. 148

Chapter 8: The Read and Write Transfers

Page 148 of 235

1RDY#, indicating that it requires more than one clock cell before it will be
ready to receive the data.

,3».Du:mgc1ockdeus1m1ue:a1~getkeepsIRnr#asseued,tudscad::gu1auuss
‘ driving the third requested data item onto the AD bus. In this example, how-
ever, the iruiliator requires more time before it will hevable to [read the data _
Item (probably because it has a temporarytbuffer full _'I1\is_causes a _

' wait state to be inserted‘ inf£:'data phme three. Tiie target must continue to
drive the third data item onto the AD but during the wait state (clock cell

seven}.

During clock cell seven, the initiator asserts l1iDY#. irldicafing its willingness
to accept the third data item on the next rising clock edge. It also deasserts
FRAME}, that this is the final data phase. Sampling both £RDY#
and TRDY# asserted at the of clock eight, the irlitiator reads the
thzincl data item firom the bus. The third data phase consisted of clocks six and
seven. Sampling I-'R'AME# deasserted instructe the target that this is the final
data item.

The overall burst transfer oonsiating of three data phases has been completed.
The irtiliator deasserts IRDY#.. retuming the bus to the idle state (on the rising-

edge of clock nine), and the target deasserta TRDY# and DEVSEUF.

Petitioners HTC & LG — Exhibit 1019, p. 148

Petitioners HTC & LG - Exhibit 1019, p. 149

PCI System Architecture

Treatment of Byte Enables During Head or write

Byte Enable Settings May Vary from Data Phase to Data
Phase 3
PCI permits burst transactions where the byte enables change from acne dflfl
phase to the next. Furthermore, the initiator may use any byte enable an: ' .
consisting of contiguous or non-contiguous byte enables. During a read I1’ AI

Page 149 of 235

Petitioners HTC & LG — Exhibit 1019, p. 149

Petitioners HTC & LG - Exhibit 1019, p. 150
Page 150 of 235

Chapter 8: The Read and Write Transfers

actioti, the initiator will typically assert all of the byte enables during each
data phase, but itmay use any combination.

It should be noted that all targets may not be capable of ha.'nd].i:ng narr-
ooniiguous byte enab1s.An example wouldbe an PCUISA bridge. In this
case, the target could take one of the following actions:

assert SERR#.

break the transaction into two 16—hit tmnsters.

Data Phase with No Byte Enables Aaserted

As stated in the previous paragraph, any ooanhination of byte enables is valid
in any data phase. ‘This includes a data phase with no byte enables asserted (a
null data phase). This can occur for a number of reasons. Some examples
would be:

During a burst transfer, the programmer may wish to “skip” a double-
wntd. This would be aocomplished by keeping all byte enables deasserted
during that data phase.
At the initiation of a 64-bit transfer, the initiator does not yet know

whether the target device is s 64 or a Bzabit device. In oertain eases, ifs 32-

bit devise responds, this can resultin the met data phase being null. This
case is described in the chapter entitled "'11-Le 64-bit PCI Extension.” .

Therearecases where the last date phase ofablock transfermay nothave

any of the byte enables asserted. Assume that an expansion bus master
(EISAorMiCt'0Cl'tannel“‘)hasiIIitiatI:daseriesofacoesses wilha PCI

target. The bridge between the expansion and PCI buses will fneqttentiy
pacltetizethis series ofbus masteracoessesirtto aPCIbursl: When

the expansion bus master has completed its last data transfer, the bridge
signals this to l:’neta1'getbydeassertingFRAME#. 'I'hisirIfu:rms litetarget
that the last data transfer is in progress. -Since the bus master has already
transferred all of the data, however, the bridge will not assert any of the

byte enables during this last date phase.

When none of the byte enables are asserted, the target must react as follows:

On a read: the target must ensure that no data or status is destroyed or al——

tued as a result of this data transfer. The target must supply a stable pat-

tern on all data paths and must generate the proper -parity {for the AD and
C/BE buses) on I’ARbit.

135

Petitioners HTC & LG — Exhibit 1019, p. 150

....__._-.__...—_._—

Petitioners HTC & LG - Exhibit 1019, p. 151

PCI System Arctutecrure

o On a write: the target must not store any" data and the initiator must sup-

ply: stable pattern 0t|'l all data paths andensure that PARis valid for the
AD and C733 bus.

Target with Limited Byte Enable Support

U0 and memory targets may support restricted byte enable settings and may

_ respond with target abort for any other pattern. All device: must support any
' ' " '-byte enable combination. dIJIiIlg.Cm1fig11IfltlQIl trengagtton.-.._

Rule for Sampling oi Byte Enables

Ifthetarget requires sampling ofthe byte enables (in orderto precisely de-
termine which bytes are to be transferred within the currently-addressed
doublewordl during each date trartefer, it must wait for the byte enables to be
valid during each data. phase before completing the transfer. An example of a
device that requires sampling of byte enables would be a ntemory-mapped
U0 device. It shouldnotaccept a write to or a readfrom 8-bit ports within

the currently-addressed rloublewo-rd until it has verified (via the byte enables)
that the initiator is in tact addressing those ports.

If a target does not require exanfination of the byte enables on a read, the tar» '
get must supply all four bytes. An example of at device that would not have to .
wait to sample the byte enables would be a typical memory target. Memory
typically yields the some data from 5 location no matter how many times the =
1orafionisreedfronL1noflmrworde,performmgaspeculafivereadfi*omflte

memory does not alter the data stored in the location. This type of memory I'_
targetcanbetleeignedtoenpplyallfourbyteabtevery data phaseofareild
burst. The initiator only take the Bytes We addressing and ignores the others.

Ignore Byte Enables During Line Head

If the initiator is reading a line of data from memory, the memory target must;

return all four bytes regardless of the byte enable settings. ‘I1-tis action is guar-
anteeclin one of the following manners: -.‘T

I Ifthecacheability ofthe targetmemoryis tletermmedby the
ittitiator must ensure that all byte enables are asserted -so that the target;
will return all fourbytes

136

Page 151 of 235

‘* ‘ s— —- — Petiti9ners.H_'EC&LG—EXhibit1O19,p;151

Petitioners HTC & LG - Exhibit 1019, p. 152

Chapter 3: The Read and Write Transfers

a If the target memory detemtines that the access is cacheable, it should ig-
nore the byte enable settings during each data phase [except for parity
generation) and return all foutbytes-.

Prel'-etching

If a target does not support caching but does support prefetching (indicated _ _
PREFETC1-1ABI..E attribute bit in its base address'

ration register to a one), it mttst return all four bytes (on a read) regardless of
the by-teenable settings. A target only support: this feature if there are no side

cffiects iromthe read (for example, data destroyed oratatus ohangein unem-

ory-mapped I10 register).

. Performance During Read Transactions

As described earlier, a turn-around cycle must be included in the first data

transfer of a read transaction. This ‘being the case, a single data phase read

from a target consists ofat-least-t1-nee cycles of the PCI clock (one clock cell for
theaddraapttaseand tv.-oc1ockcells£orthedataphase)-Atactockrate of
313MHz, a read transaction consisting of a single data transfer would take 90:15
to complete. A11 idle cycle {at 315MHz, 30115 in duration) must be included he-

twean transactions, resulting in 12Dns per transaction. Using back-to-back
single data phase read transfers, the data throughput would be 3.33 million

l:t'a1'L1£ers per second. If each transfer involved four bytes, the resultant trans»
fer rate would be 33.33Mbytes per second.

In actual pracfice, though, most read transactions imroltre the transfer ofmu1-
tiple objects between the initiator and the currently-addressed target The read

transaction involving multiple data phases only requires the tum-around cy-
d'eduringttufirstdanphaseThesecondthroughthe1astdataphasescan
eachbe aocomplishedinasirtght clockeyde[ifboththei:nitiato1-arnd thecur-
rently-adclressed target are capable of zero wait state transfers). The achiev-
able transfer rate during the second through the last data phases is thus one
transfer every 3011s (at a PCI bus speed of 323MHz), or 33 million t1'a.nsfers per
second. If each data phase involves the transfer of four bytes, the resultant
data transfer rate is 132!/[bytes per second. Figure 8-2 illustrates a read trans-

action consistirtg of three data phases. two of which complete with new wait
states.

13?

f235
Page 152 ° 1 Petitioners HTC & LG — Exhibit 1019, p. 152

Petitioners HTC & LG - Exhibit 1019, p. 153

PCI System Architecture

%*:E: L

Il't'|||l||lID|:|:D..In|II.IilI|.|u|InIIIII_Iu|.|.ooIlIIuu-Illlul-ml
tubauflumadtfi

Figure 8-7. Optimized Read Trunsactiorl (no wait stem}

138

Page 153 of 235

Petitioners HTC & LG — Exhibit 1019, p. 153

Petitioners HTC & LG - Exhibit 1019, p. 154

Chapter 8: The Read and Write Transfers

Write Transaotlon

DGS¢I'ip1Ii0l'l

During the following description of the write transaction. refer totigure 8-3. __ _ _

It is assumed that the bus master has already arbitrated for and been granted

access to thebus. The bus master Iihen must wait for thebus tohecomeidie-
This is accomplished by sampling the state of FRAME# and IRDY# on the ris~

_ ing-edge or each clock. When both are sampled deasserted (cm the rising-edge
of clock one), the bus is idle. and a I:-ansactiort may be initiated by the bus mas-

. ter whose grant signal is currently asserted by the bus arbiter.

At the start of clock cell one, the initiator asserts FRAME?!‘ to indicate that the

transaclionhasbegun and that a valid start addrs and command are present

on the btm. FRAB/tE# remains asserted until the initiator is ready to complete
the last date phase. At the same time that the initiator asserts FRAME#, it
drives the start address onto the AD bus and the transaction type onto the

Commandffiyte Enable bus. The address and transaction type are driven onto
thebus for the duration of clock one.

A turn-around cycle is required on all signals that may be driven by more
thanurtePCIbusag'e.nt.Thisperiod isrequired to avoiclthecollisiortthat
would oocurif a device turned on its output drivers at the same time that an-

other device’s output drivers are disconnecting Erorn the signalts). During

dock sell one, IRDW, T'RDY# and DEVSEM are not driven (in preparation
for takeoverby the new initiator and target).

Althestart ofclockoelltwo, theinitlator changestheinformationthatitis
presenting to the target over the AD bus. During a. write transaction, the ini-
tiator is driving the AD bus during both the address and data phases. Since it

doesn't have to hand off control of the AD bus to the target, as it does during
a read, a hrm-around cycle is unnecessary. The initiator may begin to drive
thefirst data itanontotl1eADbusatti'Iestartoiciockoe1ltwo.Inadditiot1.

during clock oell two the initiator uses the Commandffiyte Enable lines to

indicate the bytes to be transferred to the ctlrrently-addressed doubleword
and the data paths to be used dursing the first data phase.

At the start of clock cell two, the initiator drives the write data onto the AD

bus and asserts the respective byte enables to indicate the data paths that

139

Page 154 of 235 _ _ _ _
Petltloners HTC & LG — EXh1b1t 1019, p. 154

Petitioners HTC & LG - Exhibit 1019, p. 155

PCI Szstem Architecture

carry valid data. It also asserts 1RDY# to indicate the presence of the data on
the bus. The irdtiator doesn't deassert FRAME? when it asserts IRDY#

(because this is not the final data phase).

It should be noted that the initiator does not have to assert IRDY# intntedi.

abeiy upon entenirtg a data phase. It may require some time before it's ready to
source the first data item {e.g., it has a- buffer empty condition). However, the
initiator maynot keep I.‘RDY# deasserted for morefltan eight _du_.r-_-

in; any data phase. This rule has been added in version 2.1 of the specifics.
tion.

‘ 'Durh\gdockCeUtwo,thetargetdecodestheaddressendcommandandas. f
serts DEVS.EL# to claim the transaction. In addition. it asserts TRDY#. indicat-

‘ ingits readiness to accept the firstdata item.-

At the rising-edge of clock three, the initiator and the currently-addressed ‘tar.

get sample both 'I"ItDY# and IRDY# asserted, that they are both .
ready tooomplete the first data phase. Thiais a-zero tr-a_ns_£er. ‘I113
target accepts the first data item from the bus on the rising-edge of clock three '
(andssmplesthe bjrheenables in order to detenninawhidtbytes arebeing
writtert), completing the first data phase. ‘

During clock. cell three, the initiator drives the second data onto the AD .
bttsartdsetsthebyteenablestoinditatethebytes tobetransferredartdtlte -'
data paths to be used during the second data phase. II: also keeps IRDWF as~
serted and does not deassert FRAME#, thereby 1'nd11'.'al:ing that it is ready to 9
complete the second data phase and that this is not the final data phase. Ar» 1
sertion of1RD‘Y# indicates that the write data is present on the bus. ,_

At the rising-edge of clock four, the iIfitI;ator_artd the currently-addressed larv It
get sample. both TRDY# and IRDY# asserted, indicating that they are both “-
meady to complete the second data phase. This is a zero wait state data phase:
The target accepts the second. data item front the bus on the rising-edge 01 _
clock four (and samples the byte stables), completing the second data pha£e.- ’

The initiator requires more time before begirmtng to drive the next data ittnt
onto the AD bus (it has a buffer errtpty condition). It inserts a wait state _:.'_'
the third data phase by deasserI:i.rtgIRDY# at the start of duck oell four.
allows the initiator to delay pmentation of the new data by one clock; but
must set the byte enables to the proper setting for the third data phase at '
start of clock oell four.

Page 155 of 235

Petitioners HTC & LG — Exhibit 1019, p. 155

Petitioners HTC & LG - Exhibit 1019, p. 156

Chapter 8: The Read and Write Transfers

In this example, the target also requires more time before it will be ready to

accept the third data item. To indicate the requirement for more time, the tar-

get 'I'RDY# during clock cell four. What the initiator and target
sample IRDY# and IRDY# deasserted at the rising-edge of clock five, they in-
sert a wait state (clock cell. five) into the third data phase.

__ _ _ Duringclockcellfour. a1thaugh.tl1einit:iatordoesyethave the third data item -—-

availahle to drive, it must drive a stable patlxrri onto the data paths rather
than let the AD bus float {i'en1ember the rule about PCI being green). The
speciflcaflon doesrft dictate the pattern to be driven during this period. It is
usually accompiished by continuing to drive the previous data item. The tar-

‘ getwillnotacceptthedatabehagpresetltedtoitforhvoreascns:

I By deasserting TRDY#, ithas hldicated that it .i.sn*t ready to accept data.
0 By deasserting IRDY#, the initiator has indicated that itis not yet present-

ing the next data item to the target.

During clock cell five, the initiator. asserts IRDYB and drives the final data
item onto the AD bus. It also dettsserts FRAh‘IE# to indicate that this is the fi-

nal data phase. The target keeps 'I'RDY# deasserted. indicating that it is not
yet 1-mdy to accept the third data item.

At the rising-edge of clock six, the irllliator samples IR'DY# asserted. indicat-
ing that it is presmting the data, but TRDY# is still deasserted (because the
target is not yet ready to accept the datfitem). The target also samples
FRAMEI‘ deasserted, irudicafing that the final data phase is in proyess. The
only thing impeding the completion of the final data phase now is the target
(by keeping '1"RDY# deasserhed until it is ready to accept the final data item).

In response to sarnpling ‘I’KDY# deasserted on. clock edge six. the target and
initiator insert a. second wait state (clock cell six) into the third data phase.

During the second wait state. the initiator continues to drive the third data

item onto the AD bus and maintains the setting on the byte enables. The target
keeps TRD'f# deasserted. indicatirtg that is not ready yet.

At the rising—edge of clock seven, the target and initiator sample IRDY# as-

serted, irtdicatirtg that the initiator is still presenting the date, but TRDY# is
still deasserted. In response, the target and initiator insert a third wait state
(clockcellseveni into thethirddataphase. Duringthe third wait atatrethe
initiator coniirtues to drive the third data item onto the AD bus and maintairis

141

Page 156 of 235

Petitioners HTC & LG — Exhibit 1019, p. 156

Petitioners HTC & LG - Exhibit 1019, p. 157

_

the setting an the byte enables. The target asserts TRDY#, indicating that it is

ready to complete the final data phase.

At the risilig-edge of clock eight, the target and initiate: sample both IRDY#

and TRDY# asserted, indicating that both the initiator and the target are ready
to end the third and final data phase. In response, the tliiiwd data. phase is

completed on the rising-edge of clock eight. The target accepts the third data
_ . . -.item from the AD bus. The third data phase. consisted of £ou_:.:;[m-_k periods

(the first clock cell of the data. phase, clock cell four. plus three wait states).

During clock cell eight, the initiator ceases to dtive the data onto the AD bus,
o. stops driving the C}BE bus, and deasserts IRDY# (ramming the bus to the

idle state). The target deaaserts TRDY# ajnd DEVSE'[.#.

142

I Page 157’ of 2.35 .
Petitioners HTC & LG — Exhibit 1019, p. 157

Petitioners HTC & LG - Exhibit 1019, p. 158

Chapter 8: The Read and Write Transfers

Figure 3-3. The PC! Write Trunsaciion

143

Page 158 of 235

Petitioners HTC & LG — Exhibit 1019, p. 158

Petitioners HTC & LG - Exhibit 1019, p. 159

PCI System Architecture

Performance Durlng Write Transactions

Transactions wherein an initiator performs a single data phase wriba to a tar-
get consist of at least two cycles of the PC] clock (the address phase and a one

____ _ _ Anidlecyde(at33MI-Igfiflnsitlduxalionjmustbeitr
duded between tr'arisecti'on§T At a‘ clbfk 'rate of‘33MHz. then, a single data
phase write transnction takes 90115 to complete. Using beck-to-back single data
phase write transfers, the data ttu-oughput would be 11.11 million transfers

peraecondlfeach t_1_‘ansfer-involved four bytes, the resulflngtransfer rate
' would be 44.44Mbytes per second.

The second through the last data transfer of a write transaction
multiple data phases can each be accomplished in a single clock cycle (if both
the initiator and the currently-addressed target are capable of zero wait state
data 'pha.ses). ‘Iihe achievable transacfion rate during the second through the

Iastdatapha&osisflmsonehansacfionevery3Dns(ataPC3busspeedui
33M'Hz), or 33 tlflnsfers per second. If each transfer involves the I:ti'ms- _'
feroffourbytes, thedata transferrateis 132Mby'bespersecond.Figu:e 8-4i1- .
Iustrates a write tnmsactiocn comisting of three zero wait state data phases.

144 .4‘

Page 159 of 235

Petitioners HTC & LG — Exhibit 1019, p. 159

Petitioners HTC & LG - Exhibit 1019, p. 160

Chapter 8: The Read and Write Transfers

i=:;gm H. Optimized Write I'ransac£:‘an {no wait states)

145

Page 160 of_235

Petitioners HTC & LG — Exhibit 1019, p. 160

Petitioners HTC & LG - Exhibit 1019, p. 161

PCI Szstern Architecture _

146

Fee 161 o_f 235

.but!‘er.artdthemasterispermittedtocom1fletethe tIaI1s,acticrr.irjt'}ten_ahri:1ge_

Posted-Write Buifer

General

A bridge (PCI.-to-PCI or ho.st{PCI) may incorporate a postecl-write
buffer that allows a bus master In complete a_ memory write quickly. The
Irartsactirm and the mile data are latched within the bridges posted-write

implements a posted-write butter, 21 potential problem exists. Another bus
master {or the same one) may initiate a memory read. irorn the target of the

posted write before the data is actually written to the memory target. If this
were permitted, the master performing the reed would not receive the fresh-
est copy of the information. In order to prevent this from occttrring. the bridge

designer must first flush all posted writes to their destination me-Jnory targets
before permitting a read to occur on the bus. A device driver can ensure that
alimentary datahas beenwritlen to its devicebyperfcsminga read iromflie
de?J*ice.Ihiswil1forcethei1uel'IiItg;ofallpostedwriteb11£fets inbridges that

reside between the processor executing the read and the target device before

the read is permitted to complete.

It is also -a requirement that the bridge must perforrn all posted writes in the
same order in which they were originally posted.

A bridge is only permitted post writes to regular memory targets. Software .,
mustbe assured real-time communication with 1/0 and memory-mapped H0

devices, as wellas with configuration registers. I.-

combining

A bridge may combine posted memory writes to successive doublewords into

a single burst memory write transaction using linear addressing. '.Th.is feature
is recommended to improve performance. The doublewords must ‘be written
in the same orderin which they were posted. This means that writes posted to
dcrubletsfords U, 1 and 2 (they were posted in that order) can be combined into I
a linear burst write, While writes posted. to dcublewords '1, 1, 0 cannot 13' 3‘

stead, these three writes would have to be perforated as three separate single
data phase memory write transactions. Writes posted to doublewords 0.» 1- .,
and 3- (in Ihatorder) eanbe combinedtnto n linearburst write withnfl b‘.Yl°g.'
enables asserted in the third data phase. The specifimticcn recommeridfi that?
bridges that permit msnbining include a control. bit to allow this feature 19 53;"
disabled.

_ P_<flt_i0ners HTC & LG — Exhibit 1019,__p. 161

Petitioners HTC & LG - Exhibit 1019, p. 162

Chapter 8: The Read and Write Transfers

Byte Merging I

A bridge may combine writes to a single doubleword to be merged within one

entry in the posteda-write buffer. This feature is recommended to improve per-
formance and is only permitted in memory address range that are prefetd1-
able (for more information on prefetfltable memory, refer to the base address

register section in the chapter entitled “Corrtig-Irration Registers" and to the

chapter entitled "PC!-to-PEI Bridge." As an example, assume that a bus mas-

" tér performs two "memory 1£o'ites:‘ the first ‘writes to locations Ofliititllilflh and"
0000010111 and the second writes to locations 00000l02h and 00000103h. These

' four locations reside within the same doubleword. The bridge om-rld absorb
the first two-byte write into a doubleword buffer entry and then absorb the

second two byte write into the same doubleword butter entry. when the

bridge performs'ti'le rnemory write, it can oomplete it in a single data phase. It
is a violation of the specification, however, tor a bridge to combine separate
byte writes to the same location into a single write on the destination bus. As

an example, assume that a bus master performs four separate memory writes
to the same doubleword: the first writes to location zero in the doubleword, E

the second to location zero again, the third to location one and the fourth to '

location two. lhrhen the bridge performs the posted writes, it has to perform a
single data phase transaction to write the first byte to location zero. It then
performs a second single data phase memory write to locations zero (the sec-

ond byte written to it by the bus master), one and two."

Collapsing _ .

Multiple writes to the some 1ocation(s) cannot be performed as a single write :

I on the other side of the bridge. Two sequential writes to -the same doubleword
where at least one of the byte enables was asserted in both transactions must

be performed as two separate transactions on the other bus. Collapsing of
writes is forbidden for any type of write transactions.

The specification states that a bridge may allow collapsing within a specific
range when a device driver indicates that this will not cause operational
proble1ns;I-low the device driver would indicate this to a bridge is outside the
scope of the specification.

Cache Line Merging

The bridge may perform cache line merging within an area of ‘memory that
the bridge knows is cacheable on-when it uses combining andfor byte merging

_ 14'?

Page 162 of 235

'-- ---" ' -' - - "Petitioners 1019, p-. 162 -

Petitioners HTC & LG - Exhibit 1019, p. 163

PCI System Architecture

to create a burst write of at cache line. It captures (i.e., it posts) individual

memory writes performed by bus masters on one PCI bus to build a cache line
‘ to be written on the other bus using a memory write and invalidate transac-
tion or a linear memory write transaction. The atuthor would like to note that

the specification doesn't specifically state that a memory write and irwalidatg
command would be used.

Addressing Seque_n'oe'Dui'ing Menioijr Biirst ‘ "

Linear and Caoheline wrap Addressing

The start address issued during any form of memory transaction is a double-

word-oligned address presented on ADE.‘-31:2] during the address phase. The
memory target latches this address. into an address oounter and uses it for the

first data phase. Upon completion of the first data phase and assurning that

it's not a single data phase transaction, the memory target must update its ad-_
dress counter to point to the next douhleword to be transferred.

On a memory access, a memory target must check the state of address bitsone

and zero (AD[1:0]) to determine the policy to use when updating its address
counter atthe oondusion of each data phase. Table 8-1 defines the addrasing
sequences defined in the revision 2.1 specification and encoded in the first two

sddressbirs. Only two addressing sequences are currently defined:

In ‘Linear, or sequuttial, address made. All memory devices that support
multiple data phase transfers must implement support of linear, or so
quential. addressing. The memory write and ittvslidate command must
use linear addressing. At the completion of each data phase, the memory

target increments its address cotmterby four to point to the next sequen-
tial doubleword for the next date phase.

I 'CsclIel1'ns wrap mode. Support for cachelirle wrap mode is optimal and
is only used for memory reads. At the start of each data phase of the burst
read. the memory target increments the doubleword address in its ad-

dressoounlenwhentheend ofthe ca.ci1.e line isenoounteredandass_un1-
ing that the transfer did not start at the first doubleword of the cache line.
the target wraps to start address of the cacheiine and continues increment-

rng the address in each data phase until the entire cache line has be!“
transferred. If the burst continues past the point where the entire caI:hE_
linehasheentrsnsterred, the targetstarls the transfer of the nextcschet
line at the same address that the transfer of the previous ltne started at. .3-..7?

143

Page 163 of 235

Petitioners HTC & LG — Exhibit 1019, p. 163

Petitioners HTC & LG - Exhibit 1019, p. 164

Chapter 8: The Read and Write Transfers

Implemerltation of the cscheline wrap mode is optional for memory and
meaningless for U0 and configuration targets. The addressing sequence used
during a cache line £111 is established at the start of the transfer based on the

start memory address and the length of the transfer. This implies that the
memory target must know that a cache line fill is in progress (wrap mode in-
dicated) and the size of a cache line (established at start-up when the platform-
specific configuration program writes the system cache line size to the mem-

- — - orytargetfs cache line-size-config1.tration register].- - - - -

The 436 processor's internal cache has a line size of sixteen bytes (four dou-

blewords) and has a 32-bit data bus. It must therefore perform four 32-bit‘

transfers to fill a cache line. The first doubleword address output by the pro:-.«
essor is the one that resulted in an zinternal cache miss. ‘Unis could. be any of
the four doublewords within the line. For a detailed description of the 486
cache line fill addressing sequence, refer to the Add.ison-We-sley publication

. entitled S0486 System Architecture For that usedby the Pentium processor,-re
fer to the Addison-Wesley publication entitled Pentium Processor System Archi-

tecture. For that used by the PowerPC 60:: processors, refer to the Addison-

Wesley publication entitled PotoerPC' System Architecture.

As an example, assume that the cache line size is 16 bytes and the start don»
blewotd address issued by the master is 0000010401. This doubleword resides

witltin the. 16-byte aligted cache line that occupies memory locations
000UD10flh through .DDOflfl1DFh. The sequence -of the cloubleword transfers
would be 0000010411, 000OD108h', 000D010Ch and 000DD100h. If the burst con-

tinues past this point, the next serim of doublewords transferred would be
0000011411, 0000011Bh, 000D011Ch and 00O00110h.

If the target does not impletrient the cache line size register, the target must is-
sue a disoor-Inect on the first data phase or a retry on the second one (it can't
handle wrap mode because it doesn't know the line size)-

If the master wants‘ to use a different sequence after the E131: line has been

read, it must end the transaction and begin a new one indicating linear ad-
dressing.

149

Page 164 of 235

Petitioners HTC & LG — Exhibit 1019, p. 164

Petitioners HTC & LG - Exhibit 1019, p. 165

PC! S stem Architecture

1 ltesened. When detected, the memory target should signal

atargetdiscmmeclafterthefirstdatapluseoreretryut
" the second data hase.

Target Response to Reserved Setting on AD[1:0]

Assumhigfiiatfliehfifiatorhasstarbedhmulfi-dataphaeemenmryh-ansacfion _
and that it has placed a reserved pattern on AD[1:U] in the address phase (101:
or 1113 pattern), the revision 2.x;compl.iant memory target must either issue a
disconnect on the transfer of the first data item, or e retry during the second i
data phase. This is necessary because the initiator is indicating anaddressing i

sequence the target is unfamiliar with (because it is reserved in the revision g
2.1 specification).

Do Not Merge Processor IIO writes into Single Burst

To ensure that I/O devices function correctly, bridges nmst never combine
sequential I/Oacoeases into a single (merging byte accesses perforated by the 3'
processor into a single-doubleword transfer) or a multi-date phase herisuo 3
tion. Each individual I/O transaction gena-aled by the host processor rmrstbe ‘E
performedon the PCI bus as it appears on the host bus. This rule includes ..
both regular and memory-mapped I10 accesses. '

Pcl I10 Addressing

General

The start 110 address placed on the AD bus during the address phase has the?
following format:

150

Page 165 of 235

Petitioners HTC & LG — Exhibit 1019, p. 165

Petitioners HTC & LG - Exhibit 1019, p. 166

Chapter 8: The Read and Write Transfers

a AD[31:2] identify the target doubleword of I,/O space.
AD[1:O] identify the least-significant byte within the target doubleword
that the initiator wishes to perform in transfer with {Nb = byte {L 011: =
byte 1, e4at:.).

At the end of flte address phase, sJ1IfO targets latch thestsrt address and the

U0 read or write command and begin the address decode. An U0 target‘
— — - - — —— claints the transaction based on the byte-specific start ‘address that'it fetched". ' '"'

If that B-bit 1/0 port is implemented in the target, the target asserts DEV5EL#
and claims the transaction. If the target “owns” the entire target duubleword,
only AD[31:2I must be decoded to identify the target deubieword and assert

, DEVSEL#.

. The byte enables asserted during the data phase identify the least-significant
byte within the daubleword. (the same one indicated by Erie setting of AD[1:{J])
as well as any additional bytes (within the addressed doublewordjt that the

initiator wishes to trsnsfu. It is illegal {and makes no sense} for the initiator to

assert any byte enables of lesser sigififiannee than the one indicated by the
AD[1:Ol setting. It the initiator does assert any of illegal byte enable pattern,
the target must terminate the transaction with a target abort. Table 8-2 con-
tainssome examples ofl/O addressing.

'I'abIe8-2.- -- r at/Ofiddressin

[=1 Don t
moo1aanh I-mi:
1--_2— 95282 and 95A-311
ZK1KE—‘i1

IIIIIIII

situation Flesultin In Target-Abort

If an I/O ‘target claims a transaction (asserts DEVSEL#) based en the byte-
speeific start address issue during the address phase, than subsequentiy exam-
ines the byte enables (issued during the data phase) and determines that it

cannot fulfill the initiators request, the target must respond by indicating a
target-abort (STOW asserted, 'I'RDY# and DEV3EL# dessserted) to the initia-
tor. The target-abort is Covered in the chapter entitled "Premature 'I‘ran£acti¢n
Termination." A typical example wherein the target must abort the transactiort
could result from the following x86

"151

Page 166 of 235 . .
Petitioners HTC & LG — EXh1b1t 1019, p. 166

Petitioners HTC & LG - Exhibit 1019, p. 167

PCI System Architecture

Ilfi 83. so ironed em bytes from no starting at address lob

W_hen e__xecute_d by an 486 processor, doubleword address UD|I|UDD60h is driven
onto the host bus iiufirig the resultant 1/0 read transaction and the processor
asserts EEG?! and BE1#,. but not 131629 and BE3#. This indicates to the host/PCI

bridge that the processor is addressing locations. Dflflflflflfiflh and Dflmflflfilh
within 1/0 doublewurd starting at pm UO0D0060h. Assuniing that the 1

_ _. _ _ _. host/PEI b_1'i_Ii1gE_¢191_’,:,it_l’§ i_nca_rpo_rate_ei1.’ne_r at these [10 port addresses, it ar-
bitrate: for and receives ownership of the PCI bus arid iriitia‘taes_an 1/0 read

h'ansacti0n.

* D1eifigfl1eaddressphasefl1ehosUPClbridgedfivesfl\eaddressoffl1ehast- I
significant I/0 port to be read. by the processor. U-O-Oflflflfioh, onto the AD bus.

' The bridge determines" this is the least-significant port to be read by examinirig .'
the processor's byte enable setting and testing for the least-sigrnifieant byte en- 3
ablesssertedbyfl1eprocessor. In Ihiscase,itisBEO#, correspondingto the-
first location in the currently-addressed doubleword, flO00OD6Uh.

In a machine, this is the address of the keyboard data part. As. I
sunning that the keyboard controller resides on lite FCI bus (e.g., embedded

or closely-associated with the PCI/ISA bridge}, the keyboard controller '

would assert DEV5EL# to claim the transaction. Subsequently, when the proc-
essor's by-I2; enables are presented during the data phaseand are sampled by
the target, BED! and B-Eli} are asserted. This identifies I/O addresses filth and .
61h as the target locations. ?

sihht pm siiihas ziothing to do with the keyboard ihteriat;-t {it is system cm ‘
trolport B, a general I/Oststus poi-ton the system board), thekeyboard fitter ‘
face cazmot service the entire request. It must therefore issue a target:-iibort to

the initiator {STOW asserted, 'I‘R‘DY# and DjevSEL# deasserted) and term!» '
note the transaction with no data transferred. As a result. the ii-tifiator sotsirs.

TARGET-ABORT DEIECTED status bit and the target sets its SIGNALBD.
TARGET-ABORT status bit (in their respective PC! configuration -status mgis
ters). ‘Iheirtiliatorreportstiiis errorbsckto thesoftwareina device-specific?

fashion (e.g., by generating an irihetrupt request). »

An ISA exjiansion bus bridge doesn't have specific lmowledge regarding 331 0f:
_ the 110 pot-Is that exists on the ISA bus. It iherefore claims U0 transaction!‘

thet tethaih unclaimed by PC1 yo devices. Since it doesn't "k'.now" what I!0_
pizrts exists behind it, it can not judge whether to target abort the tranaaclifln
based on the byte enable settings.

“J-‘J40.
152

iilfl-in-.

Page 16? of 235

Petitioners HTC & LG — Exhibit 1019, p. 167

Petitioners HTC & LG - Exhibit 1019, p. 168

Chagter B: The Read and Write Transfers

IID Address Management

As in any PCI read/write ttansactiurt, it is the responsibility of the U0 target
to latch the start address delivered by the initiator. It then assumes

bility for managing the address for each subsequent data phase that follows

the first data phase. Unlike rnentory address management. in PC! there is no

_e:tpli_cit or iinplicit.I/D address sequencing from one data phase to the next. ' ‘ "
' The initiator and the target must both understand and utilize the some U0

address management. Two examples would be:

Ir Both the initiator and the target understand that flit! dorubleword address
(on AD[31:2]) delivered by the initiator is to be im:te'meItted'by four at the

completion of each data phase. In other words, the read or write transac-
tion proceeds sequentially through the target's I/D address space a do1.1—
bleword at a time.

I 30111 the in'rti.ator and the target understand that the target doesn't incre-1
merit the doubieword address for each subsequent data phase. This is
how: desigrier would implement a FIFO port.

At the time of this writing, the author is unaware of any currently-existing

processor that is capable of performing burst U0 write transactions. It's easy
to assume that the Intel 3:36 INS [input string) and OUTS {output string) in-
structions cause the processor to generate a burst I/0 read or write series, but

this isn't so. When an INS instruction is executed by die :86 processor, it re-

sults in a series of bad.-.-to-hack 1/0 read and memory write but: cycles. The
OUTS instruction results in a string ofback-to-back memory read and 130

write bus cycles.

When IIO Target ooasrrt Support Mum-Data "
Phase Transactions

Many PCI I/0 targets are not designed to handle multi-data phase transac-
tions. A target can determine that the initiator intends to perform a second
data phase upon completion of the first by checking the state of FRAM‘.E#
when lRDY# is sampled asserted in the first data phase. It ERDY# has been as-
serted by the initiator and it still has I-7RAJ‘.n{E# "asserted," this indicates that this
is not the final data phase in the transaction.

153

Page 168 of 235
Petitioners HTC & LG — Exhibit 1019, p. 168

Petitioners HTC & LG - Exhibit 1019, p. 169

PCI System Architecture

If an 1/0 target d._oesn't support multi—data phase transactions and the initia-

tor indicates that a second data phase is forthcoming, the target must respond I
in one of two ways: '

c When it's ready to transfer the first data item, terminate the first data

phase with a disconnect (STOW, 'I'RDY# and DEVSEL# asserted). The

first datavitem is transferred successfully, but the initiator is forced to

_. _ terminate. the transaction at that point..It must then re-.arb1trate for bus- _
ownership and re-address the target a byte-spedfic start address 3
within the next I/'0 doubleword.

t Terminate the second data phase with a retry (5TUP# and DEVSEL# as-

serted, 'I'ltDY# deasserted‘). The first data phase complet normally. The
iniiiator is then forced to terminate the transaction during the second data ‘

phase without transfierring any additioznal data. The initiator then re-
arbitrates for hus ownership and re-addresses the target using a byte-
specific start address within the same I/O doubleword.

v;

Addresstoata stepping
3Advantages: Diminished Current. Drain and crosstalk

Turning on a large number of signal drivers simultaneously (e.g., driving a 32-
bit address onto the AD bus) can result in: '

u a large spike of current chain. "ff
-- a significant amount of crosstalk within the driver chip and on adjacent '-

external signal lines. :

‘lhe designer could choose to alleviate both of these problems by turning on
the drivers associated with non-adjacent signal drivers in groups over a num-
her of steps, or clock periods. ' "

As an -example, assume that the system board designer lays out the 32 AD
lines as adjacent signal traces in hit sequential order. By sirrmltaneously d.riV- "‘_.
ing all 32 lines, crosstalk would be generated on the traces [and within 319,’
driver" chip). Now assume that there are four 8-bit groups o£ signal drivers;
connected as follows:

a driver group one is connected to AD lines D, 4, 8, 12, 16, 20, 24, 28.

- driver group two is connected to AD lines 1, 5,9, 13, 1?, 21, 25, 29.

 .

154

Page 169 of 235

Petitioners HTC & LG — Exhibit 1019, p. 169

Petitioners HTC & LG - Exhibit 1019, p. 170

Chapter 8: The Read and Write‘Transfers

-I driver group three is connected to AD lines 2, 6, I0, 14, 18, 2.2, 26, 30.

I drive: group fouris connected to AD lines 3, fr‘, 11, 15,19, 23, 27, 31.

The initiator oould rum on the first drive: group in clock cell one of a u-«mac:

lion, followed by group two in clock cell two, group three in dock oell three,
. .._ .. . group}-our in_ clo_e1:_cel1 four. T_.Istr1g_thir§ sequenge, nuAn-adjacent: signal

lines are being switeheci during each clock cell, reducing the interaction and ' "F"

crosstalk.

- Why Targets Don't Latch Address D_uring Stepping
, Process

Sincettteeritireaddressisnotpreserum-ititebusunfildmkoeflfour, theini—

tiataor must delay assertion of the FRAM’E# signal until clock cell. four when

the final group driver is svditdhed on. Because the assertion of FRAME# quali-
fies the address as being valid, no targets latch and use the address until
PI-tAME# is sampled asserted.

Data stepping

Thedata presented by the during each data phase of a write transec-
tion to qualified by the assertion of the IRDY# signal by the initiator. The data
presented by the target during each data phase of a read transaction is quali-
fied by the assertion of the TRDY# signal by the target. In other words, data
can he stepped onto the bus", as well as arldress-

How Device Indicates Ability to Use Stepping"

A device indicates its ability‘ to pedorm stepping via the WAIT CYCLE CON-

TROL bit in its cornfiguration conmtand register. There are three possible
cases:

I Ifthe device is not capable ofstepping. the bit is hardwired to zero.

In If the device always using stepping, the bit is hardwired. to one.
- If the device’: ability to use stepping can be enabled and disabled via

software, the bit is implemented as e read/writable bit. If the bit is
readfwritable, reset sets it to one.

Page 170 of 235

Petitioners HTC & LG — Exhibit 1019, p. 170

