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Table 2-2. Major PCI Revision 2.1 Features

Feature

Description

e ———
Processor Independence

Componenis designed for the PCI bus are PCl-specific, not
processor-specific, theréby isolating device design from
processor upgrade treadmull.

tional devices per PCI bus

Support for up fo 256 PCI func-

Although™a typical PCI bus mmplementation supports ap-
proximately ten electrical loads, each PCI device package
may contain up to eight separate PCI functions. The PCI bus
logically supports up to 32 physical PCT device packages, for
a total of 256 possible PCI functions per PCT bus.

Support for up to 256 PCI buses

The specification provides support for up to 256 PCI buses.

Low-power consumptien

A major design geal of the PCT specification is the creation of
2 sysiem design that draws as little current as thle

Burst used for all read and write

Supports 132Mbytes per second peak transfer rate for both

transfers read and write transfers. 264Mbytes per second peak trans-
fer rate for 64-bit PC] transfers, Transfer rates of up to
524Mbytes per second are achievable on a 66MHz PCI bus.

Bus speed Revision 2.0 spec supports PCI bus speeds up to 33MHz
Revision 2.1 adds support for 66MHz bus operation.

&4-bit bus width Full definition of a 64-bit extension.

Fast access As fast a5 60ns (at a bus speed of 33MHz when an initiator

parked on the PCT bus is writing to a PCI target.

Concurrent bus éperation

High-end bridges support full bus concurrency with host
bus, PCl bus, and the expansion bus simultaneously in use.

Bus master support

Full support of PCI bus initiators allows peer-to-peer PCI
bus access, 35 well as access to main memory and expansion
bus devices through PCT and expansion bus bridges. In ad-
dition, a PCI master can access a target that resides on an-
gther PCI bus lower in the bus hierarchy.

Hidden bus arbliration

Arbitration for the PCl bug can take place while another bus
master is in possession of the PCI bus, This eliminates }a-
tency encountered dusing bus arbitration on buses other
than PCL

Low-pin count

Economical use of bus signals allows implementation of a
functional PCI target with 47 pins and a functional PC! bus
initiator with 49 pins.

Transaction integrity check

Parity checking on the address, cornmand and data.

Three address spaces

Full definition of memory, 1/0 and configuration addzess

Auto-Configuration

Epawe.

Full bit-level specification of the configuration regislers
necessary to support automatic peripheral detection and
configuration.

Software Transparency

Software drivers utilize same command set and status defi-
nition when communicating with PCI device or its expan-
sion bus-oriented cousin.

Expansion Cards

The specification indudes a definition of PCI connectars and
add-in cards.

Expansion Card Size

The specification defines three card sizes: long, short and
variable-height short cards.
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Market Niche for PCl and VESA VL

Many in the indusiry are using their crystal balls to predict the outcome of
this “bus war,” but this will not be a win/lose situation. VL is a good, cost-
effective approach for low-end machines that require fast data transfer capa-
bility with one subsystem at a time in order to achieve acceptable system per-
formance. Due to the complexity of the PCI chip sets when compared to the
logic required by VL 1.0, PCl-based systems are slightly more expensive. Bal-
ancing this added cost with PCI's superior performance in supporting bus
concurrency, auto-configuration and multiple bus masters, PCl-based ma-
chines will dominate the mid and high-end machine market niches.

It should be noted, however, that a machine can be designed without any
bridges. All components, including the processor and main memory, would
interface directly to the PCI bus. Due to the reduction in logic yielded by the
deletion of the bridge logic, this PCI machine would be very price-competitive
with a VESA VL-based machine.

PCI Device

The typical PCI device consists of a complete peripheral adapter encapsulated
within an IC package or integrated onto a PCI expangion card. Typical exam-
ples would be a network, display or SCSI adapter, During the initial period af-
ter the introduction of the PCI specification, many vendars chose to interface
pre-existent, non-PCI compliant devices to the PCI bus. This can be easily ac-
complished using programmabhle logic arrays (PLAs). Figure 2-5 illustrates ten
PCl-compliant devices attached to the PCI bus on the system board. It should
also be noted that each PCl-compliant package (VLSI component or add-in
card) may contain up to eight PCI fumetions.
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Figure 2-5. PCI Devices Attached to the PCT Bus

Specifications Book is Based On

This book is based on the documents indicated in table 2-3.

Table 2-3. This Book is Based On

Document Title Revision
e e e e——— e T L
PCI Local Bus Specification 2.1
PCI-to-PCI Bridge Specification 1.0 \
PCI Systermn Design Guide 1.0 \
PCI BIOS Specification 21 \
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Obtaining PCI Bus Specification(s)

. The PCI bus specification, version 1.0, was developed by Intel Corporation. . _

The specification is now managed by a consortium of industry partners
known as the PCI Special Interest Group (SIG). MindShare, Inc. is a member
of the SIG. The specifications are commercially available for purchase. The lat-
est revision of the specification (as of this printing) is 2.1. For information re-
garding the specifications and /or SIG membership, contact:

PCI Special Interest Group
P.0O. Box 14070 .
Portland, OR 97214
Tel. (503) 797-4207 (International)
Fax (503) 234-6762
(800) 433-5177 (in U.5.)
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Chapter 3: Intro To PCI Bus Operation

Chapter 3

The Previous Chapter

The previous chapter introduced the local bus concept, the VESA VL bus and
the PCI bus.

In This Chapter

This chapter provides an introduction to the PCI transfer mechanism, includ-
ing a definition of the following basic concepts: burst transfers, the iniHator,
targets, agents, single and multi-function devices, the PCI bus clock, the ad-
dress phase, claiming the transaction, the data phase, transaction completion
and the return of the bus to the idle state.

The Next Chapter

Unlike most buses, the PCI bus does not incorporate termination resistors at
the physical end of the bus to absorb voltage changes and prevent the wave-
front caused by the voltage change from being reflected back down the bus.
Rather, PCI uses reflections to advantage. The next chapter provides an intro-
duction to reflected-wave switching.

Burst Transfer

A burst transfer is one consisting of a single address phase followed by two or
more data phases. The bus master only has to arbitrate for bus ownership one
time. The start address and transaction type are issued during the address
phase. The target device latches the start address into an address counter and
is responsible for incrementing the address from data phase to data phase.

In the 486, EISA and Micro Channel environments, the ability to perform burst
transfers is the product of negotiation between the bus master and the target
device. If either or both of them do not support burst mode transfers, the data

39
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packet can only be transferred utilizing a series of separate bus transactions.
The bus master must arbitrate for ownership of the bus to perform each indi-
vidual transaction that comprise the series, Another bus master may acquire
bus ownership after the master completes any transaction in the series. This
can severely impact the bus master’s data throughput.

Most PCI data transfers are accomplished using burst transfers. Most PCI bus
masters and target devices are designed to support burst mode, It should be
noted that a PCI target may be designed such that it can only handle single
data phase transactions. When a bus master attempts to perform a burst
transaction, the target terminates the transaction at the completion of the first
data phase. This forces the master to re-arbitrate for the bus to attempt re-
sumption of the burst with the next data item. The target terminates each
burst transfer after the first data phase completes, This would yield very poor
performance, but may be the correct approach for a device that doesn’t re-
quire high throughput. Each burst transfer consists of the following basic
COmPpONents;

The address and transfer type are output during the address phase.

A data object (up to 32-bits in a 32-bit implementation or 64-bits in a 64-bit
implementation) may then be transferred during each subsequent data
phase.

Assuming that neither the initiator nor the target device inserts wait states in
each data phase, a data object may be transferred on the rising-edge of each
PCI clock cycle. At a PCI bus dock frequency of 33MHz, a transfer rate of
132Mbytes /second may be achieved. A transfer rate of 264Mbytes/second
may be achieved in a 64-bit implementation when performing 64-bit transfers
during each data phase. A 66MHz PCI bus implementation can achieve 264 or
524Mbytes/second transfer rates using 32 or 64-bit transfers. This chapter in-
troduces the burst mechanism used in performing transfers over the PCl bus,

Initiator, Target and Agents

There are two participants in every PCI burst transfer: the initiator and lhe!
target. The initiator, or bus master, is the device that initiates a transfer. The’
terms bus master and initiator can be used interchangeably, but the PCI speci-
fication strictly adheres to the term initiator.
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The target, or slave, is the device currently addressed by the initiator for the
purpose of performing a data transfer. The terms target and slave can be used _
-~ interchangeably, but the PCI specification strictly adheres to the term target.

All PCT initiator and target devices are commonly referred to as PCI-
compliant agents.

Single vs. Multi-Function PCI Devices

A PCI physical device package may take the form a component integrated
onto the system board or the form of a PCI add-in card. Each PCI package
may incorporate from one to eight separate functions. This is analogous to a
multi-function card found in any ISA, EISA or Micro Channel machine. A
package containing one function is referred to as a single-function PCI device,
while a package containing two or more PCI functions is referred to as a
multi-function device. ,

PCI Bus Clock

All actions on the PCI bus are synchronized to the PCI CLK signal. The fre-
quency of the CLK signal may be anywhere from 0MHz to 33MT1z. The revi-
sion 1.0 specification stated that all devices must support operation from 16 to
33MHz, while recommending support for operation down to OMHz. The re-
vision 2.x PCI specification indicates that ALL PCI devices MUST support
PCI operation within the OMHz to 33MHz range, Support for operation down
to OMHz provides low-power and static debug capability, The PCI CLK fre-
quency may be changed at any time and may be stopped (but only in the low
state). Components integrated onto the system board may operate at a single
frequency and may require a policy of no frequency change. Devices on add-
in cards must support operation from 0 through 33MHz (because the card
must operate in any platform that it may be installed in).

The revision 2.1 specification also defines PCI bus operation at speeds of up to
66MHz. The chapter entitled “66MHz PCI Implementation” describes the op-
erational characteristics of the 66 MHz PCI bus, embedded devices and add-in
cards.

All PCI bus transactions consist of an address pf\ase followed by one or more
data phases. The exception is a transaction wherein the initiator uses 64-bit
addressing delivered in two address phases. An address phase is one PCI
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CLK-in duration. The number of data phases depends on how many data
. transfers are to take place during the overall burst transfer. Each data phase
has a minimum duration of one PCI CLK. Each wait state inserted in a data
phase extends it by an additional PCI CLK.

Address Phase

As stated earlier, every PCI transaction (with the exception of a transaction
using 64-bit addressing) starts off with an address phase one PCI CLK period
in duration. During the address phase, the initiator identifies the target device
and the type of transaction. The target device is identified by driving a start
address within its assigned range onto the PCI address/data bus. At the same
time, the initiator identifies the type of transaction by driving the command
type onto the PCI Command/Byte Enable bus. The initator asserts the
FRAME# signal to indicate the presence of a valid start address and transac-
tion type on the bus. Since the initiator only presents the start address for one
PCI clock cycle, it is the responsibility of every PCI target device to latch the
address so that it may subsequently be decoded.

By decoding the address latched from the address bus and the command type
latched from the Command/Byte Enable bus, a target device can determine if
it is being addressed and the type of transaction in progress. It's important to
note that the initiator only supplies a start address to the target (during the
address phase). Upon completion of the address phase, the address/data bus
is then used to transfer data in each of the data phases. It is the responsibility
of the target to latch the start address and to auto-increment it to point to the
next group of locations during each subsequent data transfer.

Claiming the Transaction

When a PCI target determines that it is the target of a transaction, it must
claim the transaction by asserting DEVSEL# (device select). If the initiator
doesn't sample DEVSEL# asserted within a predetermined amount of time, it
aborts the transaction. ;

et
Data Phase(s) i;
The data phase of a transaction is the period during which a data object 1
transferred between the initiator and the target. The number of data bytes
be transferred during a data phase is determined by the number of C

i

Page 65 of 235
PetitionersHTC & LG - Exhibit 1019, p. 65



Chapter 3: Intro To PCI Bus Operation

mand/Byte Bnable mgnals tha.t are a.s.serted by the initiator during the data
phase.-

Both the initiator and the target must indicate that they are ready to complete
a data phase, or the data phase is extended by a wait state one PCI CLK pe-
riod in duration. The PCI bus defines ready signal lines used by both the ini-
tiator (IRDY#) and the target (TRDY#) for this purpose.

Transaction Duration

The initiator identifies the overall duration of a burst transfer with the
FRAME# signal. FRAME# is asserted at the start of the address phase and-re-
mains asserted until the initiator is ready (asserts IRDY#) to complete the final
data phase. '

Transaction Completion and Return of Bus to Idle State

The initiator indicates that the last data transfer (of a burst transfer) is in prog-
ress by deasserting FRAME# and asserting IRDY#. When the last data transfer
has been completed, the initiator retumns the PCI bus to the 1dle state by deas-
serting its ready line (IRDY#).

If another bus master had previously been granted ownership of the bus by
the PCI bus arbiter and were waiting for the current initiator to surrender the
bus, it can detect that the bus has retumed to the idle state by detecting
FRAME# and IRDY# both deasserted.

“Green” Machine

In keeping with the goal of low power consumption, the specification calls for
low-power, CMOS output drivers and receivers to be used by PCI devices.

The next chapter describes the reflected-wave switching used in the PCI bus
environment to permit low-power, CMOS drivers to successfully drive the
bus.

lf the address/data bus signals attached to the CMOS input receivers are
permitted to float (around the switching region of input buffers) for extended
periods of time, the receiver inputs would oscillate and draw excessive cur-
rent. To prevent this from happening, it is a rule in PCI that the address/data

———
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bus must not be permitted to float for extended periods of time. Since the bus

is normally driven most of the time, it may be assumed that the pre-charged

bus will retain its state while not being driven for brief periods of time during
turnaround cycles (turnaround cycles are described in the chapter entiled - - -
“The Read and Write Transfer.”

The section entitled “Bus Parking” in the chapter on bus arbitration describes
the mechanism utilized to prevent the address/data bus from floating when
the bus is idle, The chapter entitled “The Read and Write Transfer” describes
the mechanism utilized during data phases with wait states. The chapter enti-
tled “The 64-Bit Extension” describes the mechanism utilized to keep the up-
per 32 bits of the address/data bus from floating when they are not in use
(during a 32-bit transfer).
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Chapter 5

The Previous Chapter

The previous chapter provided an introduction to reflected-wave switching,

This Chapter

This chapter divides the PCI bus signals into functional groups and describes
the function of each signal. '

The Next Chapter

When a PCI bus master requires the use of the PCI bus to perform a data
transfer, it must request the use of the bus from the PCI bus arbiter. The next
chapter provides a detailed discussion of the PCI bus arbitration timing. The
PCI specification defines the timing of the request and grant handshaking, but
not the procedure used to determine the winner of a competition. The algo-
rithm used by a system's PCI bus arbiter to decide which of the requesting bus
masters will be granted use of the PCI bus is system-specific and outside the
scope of the specification.

Introduction

This chapter introduces the signals utilized to interface a PCl-compliant de-
vice to the PCI bus, Figures 5-1 and 5-2 llustrate the required and optional
signals for master and target PCI devices, respectively. A PCI device that can
act as the initiator or target of a transaction would obviously have to incorpo-
rate both initiator and target-related signals. In actuality, there is no such
thing as a device that is purely a bus master and never a target. At a mini-
mum, a device must act as the target of configuration reads and writes.

Each of the signal groupings are described in the following sections. It should
be noted that some of the optional signals are not optional for certain types of
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PCI agents. The sections that follow identify the circumstances where signals

must be implemented.
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Figure 5-1. PCI-Compliant Master Device Signals
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Figure 5-2. PCI-Compliant Target Device Signals
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 System Signals

PCI Clock Signal (CLK)

The CLK signal is an input to all devices residing on the PCI bus. It provides
timing for all transactions, including bus arbitration. All inputs to PCI devices
are sampled on the rising edge of the CLK signal. The state of all input signals
are don't-care at all other times. All PCI timing parameters are specified with
respect to the rising-edge of the CLK signal.

All actions on the PCI bus are synchronized to the PCI CLK signal. The fre-
quency of the CLK signal may be anywhere from OMHz to 33MHz. The revi-
sion 1.0 PCI specification stated that all devices must support operation from
16 to 33MHz and it strongly recommended support for operation down to
OMHz for static debug and low power operation. The revision 2.x PCI specifi-
cation indicates that ALL PCI devices (with one exception noted below)
MUST support PCI operation within the 0MHz to 33MHz range.

The clock frequency may be changed at any time as long as:

The clock edges remain clean.

The minimum clock high and low times are not violated.
There are no bus requests outstanding,.

LOCK# is not asserted.

The clock may only be stopped in a low state (to conserve power).

As an exception, components designed to be integrated onto the system board
may be designed to operate at a fixed frequency (of up to 33MHz) and may
only operate at that frequency.

For a discussion of 66MHz bus operation, refer to the chapter entitled'
“66MHz PCI Implementation.” '
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 CLKRUN# Signal

General

The CLKRUN# signal is optional and is defined for the mobile (i.e., portable)
environment. It is not available on the PCI add-in connector. This section
provides an introduction to this subject. A more detailed description of the
mobile environment and the CLKRUN# signal’s role can be found in the
document entitled PCI Mobile Design Guide (available from the SIG).

Although the PCI specification states that the clock may be stopped or its fre-
quency changed, it does not define a method for determining when to stop (or
slow down) the clock, or 2 method for determining when to restart the clock.

A portable system includes a central resource that includes the PCI clock gen-
eration logic. With respect to the clock generation logic, the CLKRUN# signal
is a sustained tri-state input/output signal. The clock generation logic keeps
CLKRUN# asserted when the clock is running normally. During periods when
the clock has been stopped (or slowed), the clock generation logic monitors
CLKRUN# to recognize requests from master and target devices for a change
to be made in the state of the PCI clock signal. The clock cannot be stopped if
the bus is not idle. Before it stops (or slows down) the clock frequency, the
clock generation logic deasserts CLKRUN# for one clock to inform PCI de-
vices that the clock is about to stopped (or slowed). After driving CLKRUN#
high (deasserted) for one clock, the clock generation logic tri-states its
CLKRUN# output driver, The keeper resistor on CLKRUN# then assumes re-
sponsibility for maintaining the deasserted state of CLKRUN# during the pe-
riod in which the clock is stopped (or slowed).

The clock continues tomnmhangedforaminimumof four clocks after the
clock generation logic deasserts CLKRUN#. After deassertion of CLKRUN#,
the clock generation logic must monitor CLKRUN# for two possible cases:

1. After the clock has been stopped (or slowed), a master (or multiple mas-
ters) may require clock restart in order to request use of the bus. Prior to
issuing the bus request, the master(s) must first request clock restart. This
is accomplished by assertion of CLKRUN#. When the clock generation
logic detects the assertion of CLKRUN# by another party, it turns on (or
speeds up) the clock and turns on its CLKRUN# output driver to assert
CLKRUN#. When the master detects that CLKRUN# has been asserted for
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two rising-edges of the PCI CLK signal, the master may then tri-state its
CLKRUN# output driver.

2. When the clock generation logic has deasserted CLKRUN#, indicating ils
intention to stop (or slow) the clock, the clock must continue to run for a
minimum of four clocks. During this period of time, a target (or master)
that requires continued clock operation (e.g., in order to perform internal
housekeeping after the completion of a transaction), may reassert
CLKRUN# for two PCI clock cycles to request continued generation of
CLK. When the clock generation logic samples CLKRUN# reasserted, it
continues to generate the clock (rather than stopping it or slowing it
down). The specification doesn’t define the period of time that the clock
will continue to run after a request for continued operation. The author in-
terprets this as implying that the period is system design-specific.

Reset Signal (RST#)

When asserted, the reset signal forces all PCI configuration registers, master
and target state machines and output drivers to an initialized state. RST# may
be asserted or deasserted asynchronously to the PCI CLK edge. The assertion
of RST# also initializes other, device-specific functions, but this subject is be-
yond the scope of the PCI specification. All PCI output signals must be driven
to their benign states. In general, this means they must be tri-stated. Excep-
tions are:

e SERR# is floated.

» If SBO# and SDONE cannot be tri-stated, they will be driven low.

= To prevent the AD bus, the C/BE bus and the PAR signals from floating
during reset, they may be driven low by a central resource during reset.

Refer to the chapter entitled “The 64-Bit PCI Extension” for a discussion of the
REQ64# signal's behavior during reset.

Address/Data Bus

The PCI bus uses a time-multiplexed address/data bus. During the address
phase of a transaction:

e The AD bus, Aﬁi31:0], carries the start address. The resolution of this
address is on a doubleword boundary (address divisible by four) during &
memory or a configuration transaction, or a byte-specific address during

58

Page 73 of 235
Petitioners HTC & LG - Exhibit 1019, p. 73



Chapter 5: The Functional Signal Groups

an I/O read or write transaction. Additional information on memory and
1/ O addressing can be found in the chapter entitled “The Read and Write
Transfer,” Additional information on configuration addressing can be
found in parts Il and IV of this book.

+ The Cammand or Byte Enable bus, C/BE#[3:0], defines the type of trans-
action. The chapter entitled “The Commands” defines the transaction
types. =

» The Parity signal, PAR, is driven by the initiator one clock after comple-
tion of the address phase and completion of each data phase of write
transactions. It is driven by the currently-addressed target one clock after
the completion of each data phase of read transactions, One clock after
completion of the address phase, the initiator drives PAR either high or
low to ensure even parity across the address bus, AD[31:0], and the four
Command/Byte Enable lines, C/BE#{3:0]. Refer to the chapter entitied
“Error Detection and Handling” for & discussion of parity.

During each data phase: - 1

+ The data bus, AD[31:0], is driven by the initiator (during a write) or the
currently-addressed target (during a read),

+ PAR is driven by either the initiator (during a write) or the currently-
addressed target (during a read) one clock after completion of the data
phase and ensures even parity across AD[31:0] and C/BE#[3:0]. If all four
data paths are not being used during a data phase, the agent driving the
data bus (the master during a write or the target during a read) must en-
sure that valid data is being driven onto all data paths (including those
not being used to transfer data). This is necessary because PAR must re-
flect even parity across the entire AD and C/BE buses.

¢ The Command/Byte Enable bus, C/BE#[3:0], is driven by the initiator to
indicate the bytes to be fransferred within the currently-addressed dou-
bleword and the data paths to be used to transfer the data. Table 5-1 indi-
cates the mapping of the byte enable signals to the data paths and to the
locations within the currently-addressed doubleword. Table 5-2 defines
the interpretation of the byte enable signals during each data phase, Any
combination of byte enables is considered valid and the byte enables may
change from data phase to data phase.
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Table 5-1. Byte Enable Mappmg To Data Paths and Locations Within the

Currently-Addressed Doubleword
Byte Enable
Signal Maps To
C/BE3# Data path 3, AD[31:24], and the fourth locatton in the currently-

addressed doubleword.

C/BE2# Data path 2, AD[23:16], and the third location in the currently-

addressed doublewoxd.

C/BEl# Data path 1, AD[15:8], and the second location in the currently-

addressed doubleword.

C/BEO# Data path 0, AD[7:0], and the first location in the currently-

addressed doubleword. -
Table 5-2. Interpretation of the Byte Enables During a Data Phase
C/BE3# | C/BE2# | C/BE1# | C/BED# Meani
e | A | e | e T —

0 0 0 0 The initiator intends to transfer all four
bytes within the currently-addressed dou-
bleword using all four data paths.

0 0 0 1 The initiator intends to transfer the upper
three bytes within the currently-addressed
doubleword using the upper three data
paths.

0 0 1 0 The initiator intends to transfer the upper
two bytes and the first byte within the cur-
rently-addressed doubleword using the
upper two data paths and the first data
path.

0 0 1 1 The initiator intends to transfer the upper
two bytes within the currently-addressed
doubleword using the upper two data
paths, -

0 1 0 0 The initiator intends to transfer the upper
byte and the lower two bytes within the |
currently-addressed doubleword using the
upper data path and the lower two data
paths.
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C/BE3#

C/BE2#

C/BE1#

C/BEO#

M

0

1

The initiator intends to transfer the second
and the fourth bytes within the currently-
addressed doubleword using the second
and fourth data paths.

The initiator intends to transfer the first and
the fourth bytes within the currently-
addressed doubleword using the first and
the fourth data paths.

The initiator intends to transfer the upper
byte within the currently-addressed dou-
bleword using the upper data path.

The initiator intends to transfer the lower
three bytes within the currently-addressed
doubleword using the lower three data
paths.

The initiator intends to transfer the middle
two bytes within the currently-addressed
doubleword using the middle two data
paths.

The initiator intends to transfer the first and
third bytes within the currently-addressed
doubleword using the first and the third
data paths.

The initiator intends to transfer the third
byte within the currently-addressed dou-
bleword using the third data path.

The initiator intends to transfer the lower

two bytes within the currently-addressed

doubleword using the lower two data
aths.

The initiator intends to transfer the second
byie within the currently-addressed dou-
bleword using the second data path.

The initator intends o transfer the first
byte within the currently-addressed dou-
bleword using the first data path.
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C/BE3# | CU/BE2¥ | C/BE1# | C/BEO# Meanin
—_— = == e =————
1 1 1 1 The initiator does not intend to transfer any

of the four bytes within the currently-
addressed doubleword and will not use any
of the data paths. This is a null data phase. |~

Preventing Excessive Current Drain

If the inputs to CMOS input receivers are permitted to float for long periods,
the receivers tend to oscillate and draw excessive current. In order to prevent
this phenomena and preserve the green nature of the PCI bus, several rules
are applied:

» When the bus is idle and no bus masters are requesting ownership, either
the bus arbiter or a master that has the bus parked on it must enable its
AD, C/BE and PAR output drivers and drive a stable patterm onto these
signal lines. This issue is discussed in the chapter entitled “PCI Bus Arbi-
tration” under the heading “Bus Parking.”

¢ During a data phase in a write transaction, the initiator must drive a sta-
ble pattern onto the AD bus when it is not yet ready to deliver the next set
of data bytes. This subject is covered in the chapter entitled “The Read
and Write Transfers.”

» During a data phase in a read transaction, the target must drive a stable
pattern onto the AD bus when it is not yet ready to deliver the next set of
data bytes. This subject is covered in the chapter entitled “The Read and
Wirite Transfers.”

= A 64-bit card plugged into a 32-bit expansion slot must keep its AD[63:32),
C/BE#[7:4] and PAR64 input receivers from floating. This subject is cov-
ered in the chapter entitled “The 64-bit PCI Extension.”
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Transaction Control Signals

Table 5-3-pfovides a brief description of each signal used to control a PCI
fransfer. '
Table 5-3. PCI Interface Control Signals

A& Master _l& Description
———
FRAME# |In/Out | In- | Cycle Frame is driven by the current initiator and
indicates the start (when it's first asserted) and du-
ration (the duration of its assertion) of a transac-
tion. In order to determine that bus ownership has
been acquired, the magter must sample FRAME#
and IRDY# both deasserted on the same rising-edge
of the PCI CLK signal. A transaction may consist of
one or more data transfers between the current ini-
tiator and the currently-addressed target. FRAME#
is deasserted when the initiator is ready to com-
plete the final data phase.
TRDY# In Out | Target Ready is driven by the currently-addressed
target. It is asserted when the target is ready to
complete the current data phase (data transfer). A
data phase is completed when the target is assert-
ing TRDY# and the initiator is asserting IRDY# at
the rising-edge of the CLK signal. During a read,
TRDY# asserted indicates that the target is driving
valid data onto the data bus. During a write,
TRDY# asserted indicates that the target is ready to
accept data from the master. Wait states are in-
serted in the current data phase until both TDRY#
and IRDY# are sampled asserted.
IRDY# In/Out | In | Initiator Ready is driven by the current bus master
; (the initiator of the transaction). During a write,
IRDY# asserted indicates that the initiator is-driv-
ing valid data onto the data bus. During a read, |
IRDY# asserted indicates that the inifiator is ready
to accept data from the currently-addressed target,
In order to determine that bus ownership has been
acquired, the master must sample FRAME# and
IRDY# both deasserted on the same rising-edge of
the PCI CLK signal. Also refer to the description of
L TRDY# in this table.
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Signal | Master Target Description

| ————— _———— — ——————_______ .
STOP# In Out | The target asserts STOP# to indicate that it wishes
the initiator to stop the transaction in progress on
the current data phase.
IDSEL In In | Initialization Device Select is an input to the PCI

device and is used as a chip select during an access

to one of the device's configuration registers. For
additional information, refer to the chapter entitled

“Configuration Transactions.”

LOCK# In/Out | In |Used by the initiator to lock the currently-

addressed memory target during an-atomic trans-
acdon series (e.g, during: a semaphore
read/modify/write operation). Refer to the de-

scription (in this chapter) under the heading

“Resource Locking” and to the chapter entitled

. “Shared Resource Acquisition.”

DEVSEL# In Out | Device Selectis asserted by a target when the tar-
get has decoded its address. It acts as an input to
the current initiator and the subtractive decoder in
the expansion bus bridge. If a master initiates a

transfer and does not detect DEVSEL# active
within six CLK periods, it must assume that the

| target cannot respond or that the address is un-
populated. A master-abort results.

Arbitration Signais

Bach PCI master has a pair of arbitration lines that connect it directly to the
PCI bus arbiter. When a master requires the use of the PCI bus, it asserts its
device-specific REQ# line to the arbiter. When the arbiter has determined that
the requesting master should be granted control of the PCI bus, it asserts the
GNT# (grant) line specific to the requesting master. In the PCI environment,
bus arbitration can take place while another master is still in control of the!
bus, This is known as “hidden” arbitration, When a master receives a grant’
from the bus arbiter, it must wait for the current initiator to complete its lrans-g
fer before initiating its own transfer. It cannot assume ownership of the PClj
bus until FRAME# is sampled deasserted (indicating the start of the last da
phase) and TRDY# is then sampled deasserted (indicating the completion ©
the last data phase). This indicates that the current transaction has been com
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pleted and the bus has been refimed to the idle state. Bus arbitration is dis-
cussed in more detail in the chapter entitled “PCI Bus Arbitration.”

While RST# is asserted, all masters must tri-state their REQ# output drivers
and must ignore their GNT# inputs. In a system with PCI add-in connectors,
the arbiter may require a weak pullup on the REQ# inputs that are wired to
the add-in connectors. This will keep them from floating when the connectors
are unoccupied.

Interrupt Request Signals

PCI agents that must generate requests for service can utilize one of the PCI
interrupt request lines, INTA#, INTB#, INTC# or INTD#. A description of
these signals can be found in the chapters entitled “Interrupt-Related Issues.”

Error Reporting Signals

The sections that follow provide an introduction to the PERR# and SERR# sig-
nals. The chapter entitled “Error Detection and Handling” provides a more
detailed discussion of error detection and handling.

Data Parity Error

The generation of parity information is mandatory for all PCI devices that
drive address or data information onto the AD bus. This is a requirement be-
cause the agent driving the AD bus must assume that the agent receiving the
data and parity will check the validity of the parity and may either flag an er-
ror or even fail the machine if incorrect parity is received.

The detection and reporting of parity emrors by PCI devices is generally re-
quired. The specification is written this way to indicate that, in some cases,
the designer may choose to ignore parity errors. An example might be a video
frame buffer. The designer may choose not to verify the correctness of the
data peing written into the video memory by the initiator. In the event that
corrupted data is received and written into the frame memory, the only effect
will be one or more corrupted video pixels displayed on the screen. Although
this may have a deleterious effect on the end user’s peace of mind, it will not
corrupt programs or the data structures associated with programs.
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Implementation of the PERR# pin is required on all add-in PCI cards (and is
generally required on system board devices). The data parity error signal,
PERR#, may be pulsed by a PCI device under the following circumstances:

¢ In the event of a data parity error detected by a PCI target during a write
data phase, the target must set the DATA PARITY SIGNALED bit in its
PCI configuration. status register and must assert PERR# (if the PARITY
RESPONSE ENABLE bit in its configuration command register is set to
ore). It may then either continue the transaction or may assert STOP# to
terminate the transaction prematurely. During a burst write, the initiator
is responsible for monitoring the PERR# signal to ensure that each data
item is not corrupted in flight while being written to the target.

* In the event of a data parity error detected by the PCI initiator during a
read data phase, the initiator must set the DATA PARITY SIGNALED bit
in its PCI configuration status register and must assert PERR# (if the PAR-
ITY RESPONSE ENABLE bit in its configuration command register is set
to one). The platform designer may include third-party logic that monitors
PERR# or may leave error reporting up to the initiator.

To ensure that correct parity is available to any PCI devices that perform par-
ity checking, all PCI devices must generate even parity on AD[31:0],
C/BE#[3:0] and PAR for the address and data phases. PERR# is implemented
as an output on targets and as both an input and an output on masters. The
initiator of a transaction has responsibility for reporting the detection of a data
parity error to software. For this reason, it must monitor PERR# during write
data phases to determine if the target has detected a data parity error. The ac-
tion taken by an initiator when a parity error is detected is design-dependent.
It may perform retries with the target or may choose to terminate the transac-
tion and generate an interrupt to invoke its device-specific interrupt handler.|
If the initiator reports the failure to software, it must also set the DATA PAR-,
ITY REPORTED bit in its PCI configuration status register. PERR# is only’
driven by one device at time. : "

A detailed discussion of data parity error detection and handling may be:
found in the chapter entitled “Error Detection and Handling.”

4
B

System Error

The System Error signal, SERR#, may be pulsed by any PCI device (o r€ |
address parity errors, data parity errors during a special cycle, and critical
rors other than parity. SERR# is required on all add-in PCI cards that

6h
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address parity checking or report other serious errors using SERR#. This sig-
nal is considered a “last-recourse” for reporting serious errors. Non-
catastrophic and correctable errors should be signaled in some other way. In a
PC-compatible machine, SERR# typically causes an NMI to the system proces-
sor (although the designer is not constrained to have it generate an NMI). In a
PowerPC™ PREP-compliant platform, assertion of SERR# is reported to the
host processor via assertion of TEA# or MC# and causes a machine check in-
terrupt. This is the functional equivalent of NMI in the Intel world, If the de-
signer of a PCI device does not want an NMI to be initiated, some means
other than SERR# should be used to flag an error condition (such as setting a
bit in the device's status regisier and generating an interrupt request). SERR#
is an open-drain signal and may be driven by more than one PCI agent at a
time. When asserted, the device drives it low for one clock and then tri-states
its output driver. The keeper resistor on SERR# is respensible for returmning it
to the deasserted state.

A detailed discussion of system error detection and handling may be found in
the chapter entitled “Error Detection and Handling.”

Cache Support (Snoop Result) Signals

Table 5-4 provides a brief description of the opticnal PCI cache support sig-
nals. The chapter entitled “PCI Cache Support” provides a more detailed ex-
planation of cache support implementation,
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oy . Table 5-4. Cache Snoop Result Signals ' R S
Signal Description
—

SBO# Snoop Back Off. This signal is an output from the PCI cache/bridge and an
input to cacheable memory subsystems residing on the PCI bus. It is asserted by
the bridge to indicate that the PCI memory access in progress is about to read or
update stale information in memory, SBO# is qualified by and only has mean-
-ing when the SDONE signal is also asserted by the bridge. When SDONE and
SBO# are sampled asserted, the currently-addressed cacheable PCI memory
subsystem should respond by signaling a retry to the current initiator,

SDONE | Snwop Done, This signal is an output from the PCI cache/bridge and an input to
cacheable memory subsystems residing on the PCI bus. It is deasserted by the
bridge while the processor’s cache(s) snoops a memory access started by the
current initiator, The bridge asserts SDONE when the sncop has been com-
pleted. The results of the snoop are then indicated on the SBO# signal. SBO#
sampled deasserted indicates that the PCI initiator is accessing a clean line in
memory and the PCI cacheable memory target is permitted to accept or supply
the indicated data. SBO# sampled asserted indicates that the PCI initiator is ac-
cessing a stale line in memory and should not complete the data access. Instead,
the memory target should terminate the access by signaling a retry to the PCI

The specification recommends that systems that do not support cacheable
memory on the PCI bus should supply pullups on the SDONE and SBO# pms !'
at each add-in connector. !

In order to guarantee proper operation in systems that do not support cache- |
able memory on the PCI bus, cacheable PCI memory targets must ignore J
SDONE and SBO# after reset is deasserted. If the system supports cacheable |

PCI memory, the configuration software will write the system cache line size !
into the target’s cache line size configuration register. )

64-bit Extension Signals

The PCI specification provides a detailed definition of a 64-bit extension to 1tsf
baseline 32-bit architecture. Systems that implement the extension support the
transfer of up to eight bytes per data phase between a 64-bit initiator and a 64
bit target. The signals nvolved are defined in table 5-5. A more detailed ex
planation can be found in the chapter entitled “The 64-Bit PCI Extension.”

68

Page 83 of 235 N N
Petitioners HTC & LG - Exhibit 1019, p. 83



Page 84 of 235

Chapter 5: The Functional Signal Groups

Table 5-5. The 64-Bit Extension

Signal Description
-— & - - = =
AD[63:32] Upper four data lanes. In combination with AD[31.0], extends

the width of the data bus to 64 bits. These pins aren't used
during the address phase of a transfer (unless 64-bit address-
ing is being used).

C/BE#[7:4) Byte Enables for data lanes four-through-seven. Used during

the data transfer phase, but not cduring the address phase
(unless 64-bit addressing is being used.)

REQé44# Request 64-bit Transfer. Generated by the current initiator to

indicate its desire to perform transfers using one or more of
the upper four data paths. REQ64# has the same timing as the
FRAME# signal. Refer to the chapter entitled “The 64-Bit PCL
Extension” for more information.

ACK64# Acknowledge 64-bit Transfer. Generated by the currently-

addressed target (if it supports 64-bit transfers) in response to
a REQ64# assertion by the initiator. ACK64# has the same
timing as the DEVSEL# signal.

PAR64 Parity for the upper doubleword. This is the even parity bit

associated with AD[63:32] and BE#{7:4]. For additional infor-
mation, refer to the chapters entitled “The 64-bit PCI Exten-
sion” and “Error Detection and Handling.”

Resource Locking

The LOCK# signal should be utilized by a PCI initiator that requires exclusive
access to a target memory device during two or more separate fransactions.
The intended use of this function is to support read/modify/write memory
semaphore operations. It is not intended as a mechanism that permits an ini-
tiator to dominate a target device or the bus in general.

If a PCI device implements executable memory or memory that contains sys-
tem data (managed by the operating system), it must implement the locking
function. It is recommended that a host/PCI bridge that has system memory
on the host side implement the locking function, Some host bus architectures,
however, do support memory locking. For this reason, the specification rec-
ommends but does not require that a host/PCI bridge support locking when
acting as the target of a system memory access by a PCI master. Since the de-
vice driver associated with a PCI master cannot depend on the ability to lock
system memory, the specification recommends that the driver use some type
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of software protocol to gain exclusive access to code or data structures shared
with other processors in the system.

An initiator requiring exclusive access to a target may use the LOCK# signal if
it isn't currently being driven by another initiator. When the target device is
addressed and LOCK# is deasserted by the initiator during the address phase
and then asserted during the data phase, the target device is reserved for as
long as the LOCK# signal remains asserted. If the target is subsequently ad-
dressed by another initiator while the lock is still in force, the target issues a
retry to the initiator. While a target is locked, other bus masters (that don't re-
quire exclusive access to a target) are permitted to acquire the bus to access
targets other than the locked target.

A more detailed description of the PCI lockmg capability can be found in the
chapter entitled “Shared Resource Acquisition.”

JTAG/Boundary Scan Signals

The designer of a PCl device may optionally implement the IEEE 1149.1
Boundary Scan interface signals to permit in-circuit testing of the PCI device.
The related signals are defined in table 5-6. A detailed discussion of boundary
scan is beyond the scope of this publication.

Table 5-6. Boundary Scan Signals
_Signal Desmphon

TCK Tast Clock. Used to clock state information and data into and out of the
device during boundary scan.
TDI Test Input. Used (in conjunction with TCK) to shift data and instructions
into the Test Access Port (TAP) in a serial bit stream.
TDO Test Ouiput. Used (in conjunction with TCK) to shift data out of the Test
Access Port (TAP) in a serial bit stream,
TMS Test Mode Select. Used to control the state of the Test Access Port con-
troller.
TRST# | Test Resetf. Used to force the Test Access Port controller into an u'uual-
ized state.
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Interrupt Request Lines

- . " The PCl'interrupt request signals (INTA#, INTB#, INTC# and INTD#) are dis-
cussed in the chapters entitled “Interrupt-Related Issues” and “The Configu-
ration Registers.”

Sideband Signals

A sideband signal is defined as a signal that is not part of the PCI bus stan-
dard and interconnects two or more PCI agents. This signal only has meaning
for the agents it interconnects. The following are some examples of sideband
signals: '

« A PCI bus arbiter could monitor a “busy” signal from a PCI device (such
as an EISA or Micro Channel™ expansion bus bridge) to determine if the
device is available before granting the PCI bus to a PCl initiator.

» PC compatibility signals like A20GATE, CPU RESET, etc.

Signal Types

The signals that comprise the PCI bus are electrically defined in one of the
following fashions:

IN defines a signal as a standard input-only signal.
QUT defines a signal as a standard output-only signal.
T/S defines a signal as a bi-directional, tri-state input/output signal.
S/T/S defines a signal as a sustained tri-state signal that is driven by only
one owner at a time. An agent that drives an s/t/s pin low must actively
drive it high for at least one clock before tri-stating it. A pullup resistor is
required to sustain the inactive state until another agent takes ownership
of and drives the signal. The resistor is supplied as a central resource in
the system design. The next owner of the signal cannot start driving the
s/t/s signal any sooner than one clock after it is released by the previous
owner.
O/D defines a signal as an open drain. It is wire-ORed with other agents, The
- signaling agent asserts the signal, but returning the signal to the inactive state
is accomplished by a weak pull-up resistor. The deasserted state is maintained
by the pullup resistor, The pullup may take two or three PCI clock periods to

- ® & @
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fully restore the signal to the deasserted state, Table 5-7 defines the PCI signa}

types
Table 5-7. PCI Signal Types
Signalls) Type
CLK ™
RSTH N
AD[31:0] T/S
C/BE#{3:0] T/S
PAR T/8
FRAME# S/T/5
TRDY# S/T/S
[RDY# S/T/S ~
STOP# 5/T/S
LOCK# S/T/S
IDSEL IN
DEVSEL# 5/T/S
REQ# T/S
GNTH T/S
PERR# S/T/S
SERR# : o/D
SBO# IN or OUT
SDONE _IN erOUT
AD[63:32] T/5
C/BE#[7:4] T/S
REQ64# S/T/S
ACK64# S/T/S
PARG4 ' T/S
TCK N
TOI N
TPO ouT
TMS IN
TRST# IN
INTA# - INTD# /D

Central Resource Functions

Any platform that implements the PCI bus must supply a toolbox of support
functions necessary for the proper operation of all PCI devices. Some exam-
ples would include:

= PCI bus arbiter, The arbiter is necessary to support PCI masters. The PCl
specification does not define the decision-making process utilized by thé
PCI bus arbiter. The design of the arbiter is therefore platform-specific-
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» Pullup resistars on signals that are not always driven to a valid state, This
would include: all of the s/t/s signals; AD[63:32]; C/BE#{7:4]; PAR64; and
SERR#.

« Error logic responsible for converting SERR# to the platform-specific sig-
nal (e.g.,, NMI in an Intel-based platform or TEA# in a PowerPC™-based
platform) utilized to alert the host processor that an error has occurred.

» Central resource to generate the proper IDSEL signal when a PCI device's
configuration space is being addressed (this function is typically per-
formed by the host/PCI bridge).

* System board logic to assert REQ64# during reset. A detailed description
of this function is provided in the chapter entitled “The 64-Bit PCI Exten-
sion.”

» Subtractive decoder. Each PCI target device must implement positive de-
code. In other words, it must decode any address placed on the PCI bus to
determine if it is the target of the current transaction. Only one agent on
the PCI bus may implement subtractive decode. This is typically the ex-
pansion bus (e.g., EISA, ISA, or Micro Channel) bridge.

Subtractive Decode

Background

The expansion bus bridge can claim transactions in one of two fashions:

1. When a transaction is not claimed by any other PCI device within a speci-
fied period of time, the PCI/expansion bus bridge may assert DEVSEL#
and pass the transaction through to the expansion bus. It can determine
that no other PCI device has claimed a transaction by monitoring the state
of the DEVSEL# signal generated by the other PCl-compliant devices. If
DEVSEL# is not sampled asserted within four clock periods after the start
of a transaction, no other PCI device has claimed the transaction. The ex-
pansion bus bridge may then claim the transaction by asserting DEVSEL#
during the period between the fifth and sixth clocks of the transaction.
This is referred to as subtractive decode. Additional information regard-
ing subtractive decode can be found in the chapter entitled “Premature
Transaction Termination” in the section entitled “Master Abort.”

2. Since this would result in very poor access fime when accessing expansion
bus devices, the expansion bus bridge may employ positive address de-
code. During system configuration, the bridge is configured to recognize
certain memory and/or IO address ranges. Upon recognizing an address
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within this pre-assigned range, the bridge may assert DEVSEL# immedi-
ately (without waiting for the DEVSEL# timeout) to claim the transaction.
The bridge then passes the transaction through onto the expansion bus,

The ISA bus environment is one that depends heavily on subtractive decoding
to claim fransactions. Because most ISA bus devices are not plug and play-
capable, the configuration software cannot automatically detect their presence
and assign address ranges to their address decoders. The ISA bridge uses sub-
tractive decode to claim all fransactions that meet the following criteria:

e No other PCI device has claimed the transaction. By definition, all PC]
device address decoders are fast (decodes address and asserts DEVSEL#
during the clock cell immediately following completion of the address
phase), medium (asserts DEVSEL# during the second clock cell after
completion of the address phase) or slow (asserts DEVSEL# during the
third clock after completion of the address phase). If the ISA bridge does
not detect DEVSEL# asserted by any other PCI device (and the target ad-
dress “makes sense” for the ISA environment), the bridge asserts
DEVSEL# during the fourth clock after completion of the address phase,
The transaction is then initiated on the ISA bus.

» The target address is one that falls within the overall ISA memory or 1/0
address ranges. Any memory address below 16MB that goes unclaimed
by PCI devices is claimed and passed through to the ISA bus, Any I/O
address in the lower 64KB of I/0O space that goes unclaimed by PCI de-
vices is claimed and passed through to the ISA bus.

Tuning Subtractive Decoder

This means that a transaction initiated by the host processor (or any other bus
master) does not appear on the ISA bus until four or five clocks after the
completion of the address phase on the PCI bus. The processor’s performance
when accessing ISA devices is therefare substantially degraded. In order to
minimize the effect of subtractive decode on performance, the ISA bridge de-
signer can permit the subtractive decoder to be “tuned.” During the configu-
ration process, the configuration software reads the configuration status regis-
ter for every device on the PCI bus. One of the required fields in the status
register is the DEVSEL# timing field, indicating whether the device has a fast
medium or slow address decoder. As an example, if every device on the pCl
bus indicates that it has a fast decoder, the software can program the subtrac*
tive decoder to assert DEVSEL# and claim the transaction during the second |
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clock after the completion of the address phase (if it doesn't detect DEVSEL#
T - asserted during the first clock after the address phase). .

Reading Timing Diagrams

Figure 5-3 illustrates a typical PCI timing diagram. When a PCI signal is as-
serted or deasserted by a PCI device, the output driver utilized is typically a
weak CMOS driver. This being the case, the driver isn't capable of transition-
ing the signal line past the logic threshold for a logic high or low in one step.
The voltage change initiated on the signal line propagates down the trace until
it hits the physical end of the trace, As it passes the stub for each PCI device
along the way, the wavefront has not yet transitioned past the new logic
threshold, so the change isn't detected by any of the devices. When reflected
back along the trace, however, the reflection doubles the voltage change on
the line, causing it to cross the logic threshold. As the doubled wavefront
propagates back down the length of the trace, the signal’s new state is de-
tected by each device it passes. The time it takes the signal to travel the length
of the bus and reflect back is referred to as the Tprop, or propagation delay.
This delay is illustrated in the timing diagrams.

As an example, a master samples FRAME# and IRDY# deasserted (bus idle)
and its GNT# asserted on the rising-edge of clock one, indicating that it has
bus acquisition. The master initiates the transaction during clock cell one by
asserting the FRAME# signal to indicate the start of the transaction. In the
timing diagram, FRAME# isn't shown transitioning from high-to-low until
sometime after the rising-edge of clock one and before the rising-edge of clock
two, thereby illustrating the propagation delay. Coincident with FRAME# as-
sertion, the initiator drives the start address onto the AD bus during clock cell
one, but the address change isn't valid until sometime after the rising-edge of
clock one and before the rising-edge of clock two.

The address phase ends on the rising-edge of clock two and the initiator be-
gins to turn off its AD bus drivers. The time that it takes the driver to actually
cease driving the AD bus is illustrated in the timing diagram (the initiator has
not successfully disconnected from the AD bus until sometime during clock
cell two).
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Figure 5-3. Typical PCI Timing Diagram
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Chapter 6

The Previous Chapter |

The previous chapter provided a detailed description of the PCl functional
signal groups.

: This Chapter

When a PCI bus master requires the use of the PCI bus to perform a data
transfer, it must request the use of the bus from the PCI bus arbiter. This
chapter provides a detailed discussion of the PCI bus arbitration timing. The
PCI specification defines the iming of the request and grant handshaking, but
not the procedure used to determine the winner of a competition. The
algorithm used by a system's PCI bus arbiter to decide which of the
requesting bus masters will be granted use of the PCI bus is system-specific
and outside the scope of the specification.

The Next Chapter

The next chapter describes the transaction types, or commands, that the
initiator may utilize when it has successfully acquired PCI bus ownership.

Arbiter

At a given instant in time, one or more PCI bus master devices may require
use of the PCI bus to perform a data transfer with another PCI device. Each
requesting master asserts its REQ# output to inform the bus arbiter of its
pending request for the use of the bus. Figure 6-1 illustrates the relationship of
the PCI masters to the central PCI resource known as the bus arbiter. In this
example, there are seven possible masters connected to the PCI bus arbiter in
the illustration. Each master is connected to the arbiter via a separate pair of
REQ#/GNT# signals. Although the arbiter is shown as a separate component,
it usually is integrated into the PCI chip set; specifically, it is typically
integrated into the host/PCI or the PCI/expansion bus bridge chip.
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REQL#
GNT1#

2 GNT3# o] | AT

Figure 6-1. The PCI Bus Arbiter
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Arbitration Algorithm

As stated at the beginning of this chapter, the PCI specification does not
define the scheme used by the PCI bus arbiter to decide the winner of the
competition when multiple masters simultaneously request bus ownership.
The arbiter may utilize any scheme, such as one based on fixed or rotational
priority or-a combination-of the two (rotational between one group of masters
and fixed within another group). The 2.1 specification states that the arbiter is
required to implement a faimess algorithm to avoid deadlocks. The exact
verbiage that is used is:

The central arbiter is required to implement a faimess algorithm to avoid
. deadlocks. Fairness means that each potential bus master must be granted
access to the bus independent of other requests. However, this does not
mean that all agents are required to have equal access to the bus. By
requiring a faimess algorithm there are no special conditions to handle
when LOCK# is active (assuming a resource lock) or when cacheable
memory is localed on PCI, A system that uses a fairness algorithm is still
considered fair if it implements a complete bus lock instead of a resource
lock. However, the arbiter must advance to a mew agent if the initial
transaction attempting to establish a lock is terminated with retry.

While the statements made regarding lock are clear, the definition of fairness
contained in the above text was not clear to the author. Fairness is defined as a
policy that ensures that high-priority masters will not dominate the bus to the
exclusion of lower-priority masters when they are continually requesting the
bus. ‘

The specification contains an example arbiter implementation that does clarify
the intent of the specification. The example follows this section.

Ideally, the bus arbiter should be programmable by the system, The startup
configuration software can determine the priority to be assigned to each
member of the bus master community by reading from the maximum latency
{Max_Lat) configuration register associated with each bus master. The bus
master designer hardwires this register to indicate, in increments of 250ns,
how quickly the master requires access to the bus in order to achieve
adequate performance.
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In order to grant the PCI bus to a bus master, the arbiter asserts the device's
respective GNT# signal. This grants the bus to the master for one transaction
(consisting of one or more data phases).

If a master generates a request, is subsequently granted the bus and does not
initiate a transaction (assert FRAME#) within 16 PCI clocks after the bus goes
idle, the arbiter may assume that the master is malfunctioning, In this case, the
action taken by the arbiter would be system design-dependent. 23 - -

Example Arbiter with Fairness

A system may divided the overall community of bus masters on a PCI bus
into two categories:

1. Bus masters that require fast access to the bus or high throughput in order
to achieve good performance. Examples might be the video adapter, an
ATM network interface or an FDDI network interface.

2. Bus masters that don’t require very fast access to the bus or high |
throughput in order to achieve good performance. Examples might bea '
SCSI host bus adapter or a standard expansion bus master,

The arbiter would segregate the REQ#/GNT# signals into two groups with
greater precedence given to those in one group. Assume that bus masters A, B
and C are in the group that requires fast access, while masters X, Y and Z are
in the other group. The arbiter can be programmed or designed to treat each
group as rotational priority within the group and rotational priority between
the two groups. This is pictured in figure 6-2.

Assume the following conditions:

Master A is the next to receive the bus in the first group.

Master X is the next to receive it in the second group.

A master in the first group is the next to receive the bus.

All masters are asserting REQ# and wish to perform multiple transactiom
(i.e., they keep their respective REQ# asserted after starting a transaction).

. & & @

The order in which the masters would receive access to the bus is:

1. Master A.
2. Master B,
3. Master X,
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Master A.
Master B.
Master Y.
Master A.
Master B,

9, Master Z.
10. Master A.
11. Master B.

12. Master X, etc.

R

The masters in the first group are permitted to access the bus more frequently
than those that reside in the second group.

First Group

Second Group

Figure 6-2. Example Arbitration Scheme
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~ Master Wishes To Perform More Than One Transaction

If the master has another burst to perform immediately after the one it just
initiated, it.should keep-its REQ# line asserted after it asserts FRAME# to
begin the current transaction. This informs the arbiter of its desire to maintain |
ownership of the bus after completion of the current transaction. Depending
on other pending requests, the arbiter may or may hot permit the master to
maintain bus ownership after the completion of the current kransaction. In the
event that ownership is not maintained, the master should keep its REQ#
asserted until it is successful in acquiring bus ownership again.

At a given instant in time, only one bus master may use the bus. This means
that no more than one GNT# line will be asserted by the arbiter during any
PCI clock cycle.

Hidden Bus Arbitration

Unlike sorhe arbitration schemes, the PCI scheme allows bus arbitration to
take place while the current initiator is performing a data transfer. If the
arbiter decides to grant ownership of the bus for the next transaction to a
master other than the initiator of the current transaction, it removes the GNT#
from the current initiator and issues GNT# to the next owner of the bus. The
next owner cannot assume bus ownership, however, until the bus is idled by «
the current initiator. No bus time is wasted on a dedicated period of time to
perform an arbitration bus cycle. This is referred to as hidden arbitration.

Bus Parking

A master must only assert its REQ# output to signal a current need for the
bus. In other words, a master must not use its REQ# output to “park” the bus
on itself. If a system designer implements a bus parking scheme, the bus
arbiter design should indicate a default bus owner by asserting the device's
GNT# signal when no request from any bus masters are currently pending. I
this manner, a REQ# from the default bus master is granted immediately (if
no other bus masters require the use of the PCI bus).

If the bus arbiter is designed to implement bus parking, it asserts GNT#to 2
default bus master when none of the REQ# lines are active. In this manner, the
bus is immediately available to the default bus master if it should require the
use of the bus (and no other higher-priority request is pending). If the mastef

I
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that the bus is parked on subsequently requires access ta the PCI bus, it
needn't assert its REQ#. Upon sampling bus idle (FRAME# and IRDY#
deasserted) and its GNT# asserted, it can immediately initiate a transaction.

g The choice of which master to park the bus on is defined by the designer of
the bus arbiter. Any process may be used, such as the last bus master to use
the bus or a predefined default bus master.

There are two possible scenarios 'regardi.ng the method utilized when
implementing bus parking:

1. The arbiter may monitor FRAME# and IRDY# to determine if the bus is
busy before parking the bus. Assume that a master requests the bus,
receives its GNT# and starts a multiple data phase burst transaction. If it
doesn’t have another transaction to run after this one 'completes, it
deasserts its REQ# when it asserts FRAME#. In this case, the arbiter may
be designed to recognize that the bus is busy and, as a result, will not
deassert the current master’s grant to park the bus on another master.

2. The arbiter may not monitor for bus idle. Assume that a master requests
the bus, receives its GNT# and starts a multiple data phase burst
transaction. If it doesn’t have another transaction to run after this one
completes, it deasserts its REQ# when it asserts FRAME#. In this case, the
arbiter may, in the absence of any requests from other masters, take away
GNT# from the current master and issue GNT# to the master it intends to
park the bus on. When the current master has exhausted its master latency
timer and determines that it has lost its grant, it is forced to relinquish the
bus, wait two clocks, and then rearbitrate for it again to resume the
transaction at the point where it left off.

The specification recommends that the bus be parked on the last master that
acquired the bus. In case two, then, the arbiter would continue to issue GNT#
to the burst master and it can continue its transaction until either it is
completed or until a request is received from another master.

When the arbiter parks the bus on a master (by asserting its grant) and the bus
is idle, that master becomes responsible for keeping the AD bus, C/BE bus
and PAR from floating (to keep the CMOS input buffers on all devices from
oscillating and drawing excessive current). The master must enable its
AD[31:0], C/BE#[3:0], and (one clock later) its PAR output drivers. The
master doesn't have to turn on all of its output drivers in a single clock (it may
take up to eight clocks, but two to three clocks is recommended). This
procedure ensures that the bus doesn't float during bus idle periods. If the
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arbiter is not designed to park the bus, the arbiter itself should drive the AD
bus, C/BE# lines and PAR during periods when the bus is idle.

Request/Grant Timing

When the arbiter determines that it is an master’s turn to use the bus, it agserts
the master’s GNT# line. The arbiter may deassert a master’s GNT# on any PC]
clock. A master must ensure that its GNT# is asserted on the rising clock edge
on which it wishes to start a transaction. If GNT# is deasserted, the
transaction must not proceed, Once asserted by the arbiter, GNT# may be
deasserted under the following circumstances:

s If GNT# is deasserted and FRAME# is asserted the transfer i8 valid and
will continue. The deassertion of GNT# by the arbiter indicates that the
master will no longer own the bus at the completion of the transaction
currently in progress. The master keeps FRAME# asserted while the
current transaction is still in progress, It deasserts FRAME# when it is
ready to complete the final data phase.

» The GNTH to one master can be deasserted simultaneously with the
assertion of another master’s GNT# if the bus isn't in the idle state. The
idle state is defined as a clock cycle during which both FRAME# and
IRDY# are deasserted. If the bus were idle, the master whose GNT# is
being removed may be using stepping to drive the bus (even though it
hasn't asserted FRAME# yet; stepping is covered in the chapter entitled
“The Read and Write Transfers”). The coincidental deassertion of its
GNT# along with the assertion of another master's GNT# could result in
contention on the AD bus. The other master could immediately start 2
transaction (because the bus is technically idle). The problem is prevented
by delaying grant to the other master by one cycle. Table 6-1 defines the
bus state as indicated by the current state of FRAME# and IRDY#.

» GNT# may be deasserted during the final data phase (FRAME# is
deasserted) in response to the current bus master's REQf being
deasserted.
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Table 6-1. Bus State

FRAME# IRDY# Description
—_— Sl SE—
deasserted | deasserted- - | Bus Idle.

deasserted | asserted

Initiator is ready to complete the last data transfer of a
transaction, but it has not yet completed.

asserted deasserted | A transaction is in progress and the initiator is not

ready to complete the current data phase.

asserted asserted

A transaction is in progress and the initiator is ready
to complete the current data phase.

Example of Arbitration Between Two Masters

Figure 6-3 illustrates bus usage between two masters arbitrating for access to
the PCI bus. The following assumptions must be made in order to interpret
this example correctly:

» Bus master A requires the bus to perform two transactions. The first
consists of a three data phase write and the second transaction type is a
single data phase write.

» The arbitration scheme is fixed and bus master B has a higher priority
than bus master A, or the scheme is rotational and it is B’s turn next.

« Bus master B only requires the bus to execute a single transaction
consisting of one data phase.

It is important to remember that all PCI signals are sampled on the rising-edge
of the PCI CLK signal. If the current owner of the bus requires the bus to
perform additional transactions upon completion of the current transaction, it
should keep its REQ# line asserted after assertion of FRAME# for the current
transaction. If no other bus masters are requesting the use of the bus or the
current bus master has the highest priority, the bus arbiter will continue te

grant the bus to the current bus master at the conclusion of the current
tranisaction. :

The sample arbitration sequence pictured in figure 6-3 proceeds as follows:

1. Prior to clock edge one, bus master A asserts its REQ# to request access to
the PCI bus. The arbiter samples its REQ# active at the rising-edge of
clock one. At this point, bus master B doesn’t yet require the bus. During
clock cell one, the arbiter asserts GNT# to bus master A, granting it
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ownership of the bus. During the same clock period, bus master B asserts
its REQ#, indicating its desire to execute a transaction.

2 Pus master A samples its GNT# asserted on the rising-edge of clock two.
In addition, it also samples IRDY# and FRAME# deasserted, indicating
that the bus is in the idle state. In response, bus master A initiates the first

" of its two transactions. It asserts FRAME# and begins to drive the start
address onto AD[31:0] and the command onto the Command/Byte Enable
bus. If master A did not have another transaction to perform after this
one, it would deassert its REQ# line during clock cell two. In this example,
it does have another transaction to perform, so it keeps its REQ# line
asserted. e :

3. The PCI bus arbiter samples the requests from bus masters A and B
asserted at the rising-edge of clock two and begins the arbitration process
to determine the next bus master.

4. During clock cell two, the arbiter removes the GNT# from master A, On
the rising-edge of clock three, master A determines that it has been
preempted, but continues its transaction because its LT timer has not yet
expired (the LT timer is covered later in this chapter).

5. During clock cell three, the arbiter asserts bus master B’s GNT#. On the
rising-edge of clock four, master B samples its GNT# asserted, indicating
that it may be the next owner of the bus. It must continue to sample its
GNT# on each subsequent rising-edge of the clock untl it has bus
acquisition. This is necessary because the arbiter may remove its grant
and grant the bus to another party with a higher priority before the bus
goes idle. Master B cannot begin to use the bus until the bus returns to the %
idle state.

6. Master A begins to drive the first data item onto the AD bus (this is a
write transaction) during clock cell three, asserts the appropriate
Command/Byte Enables (to indicate the data lanes to be used for the
transfer) and asserts IRDY# to indicate to the target that the data is
present on the bus. At the rising-edge of clock four, IRDY# and TRDY#
are sampled asserted and the first data transfer takes place.

7. At the rising-edge of clock five, IRDY# and TRDY# are sampled asserted
and the second data transfer takes place.

8. During clock cell five, master A keeps IRDY# asserted and deasserts
FRAME#, indicating that the final data phase is in progress. At the rising-
edge of clock six, IRDY# and TRDY# are sampled asserted and the third
and final data transfer takes place.

9. During clock cell six, bus master A deasserts IRDY#, returning the bus 1
the idle state.
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10. On the rising-edge of clock seven, master B samples FRAME# and IRDY#
both deasserted and determines that the bus is now idle. It also samples
its GNT# still asserted, indicating that it has bus acquisition. In response,
it starts its transaction and turns off its REQ# line during clock cell seven
(because it only requires the bus to perform this one transaction).
11. When it agserts FRAME# during clock cell seven, master B also begins
driving the address onto the AD bus and the command onto
Command/Byte Enable bus. )
12. At the rising-edge of clock eight, the arbiter samples master B's REQ#
deasserted and master A’s REQ# still asserted. In response, the arbiter de-
asserts master B's GNT# and asserts master A's GNT# during clock cell
eight. Master A had kept its REQH# line asserted because it wanted to use
the bus for another transaction. Master A now samples IRDY# and '
FRAME# on the rising-edge of each clock untl the bus is sensed idle. At .
that time, it can begin its next transaction. -
13. During clock cell eight, master B deasserts FRAME#, indicating that its
first (and only) data phase is in progress. It also begins to drive the write
data onto the AD bus and the appropriate setting onto the
Command/Byte Enable bus during clock cell. It asserts IRDY# to indicate
to the target that the data is present on the AD bus.
14. At the rising-edge of clock nine, IRDY# and TRDY# are sampled asserted
and the data transfer takes place.
15. The initiator, master B, then deasserts IRDY# (during clock cell nine) to
return the bus to the idle state.
16. Master A samples the bus idle and its GNT# asserted at the rising-edge of
clock ten and initiates its second transaction during clock cell ten, It also
deasserts its REQ# when its asserts FRAME#, indicating to the arbiter that
it does not require the bus again upon completion of this transaction.
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Figure 6-3. PCI Bus Arbitration Between Two Masters
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Bus Access Latency

When a bus master wishes to transfer a block of data between itself and a
target PCI device, it must request the use of the bus from the bus arbiter. Bus
access latency is defined as the amount of time that expires from the moment
a-bus master requests the use of the PCI bus unti] it completes the first data

transfer of the transaction. Figure 6-4 illustrates the different components of

the access latency experienced by a PCI bus master. Table 6-2 describes each

latency component.

Table 6-2. Access Latency Components

' Component

Description

Bus Access Latency

Defined as the amount of time that expires from the
moment a bus master requests the use of the PCI bus
until it completes the first data transfer of the
transaction. In other words, it is the sum of arbitration,
bus acquisition and target latency.

Arbitration Latency

Defined as the period of time from the bus master's
assertion of REQ# until the bus arbiter asserts the bus
master's GNT#. This period is a function of the
arbitration algorithm, the master's priority and whether
any other masters are requesting access to the bus.

Bus Acquisition
Latency

Defined as the period time from the reception of GNT#
by the requesting bus master until the current bus
master surrenders the bus. The requesting bus master
can then initiate its transaction by asserting FRAME#,
The duration of this period is a function of how long the
current bus master's transaction-in-progress takes to
complete, This -parameter is the larger of either the
current master’s LT value (in other words, its timeslice)
or the longest latency to first data phase completion in
the system.

Target Latency

Defined as the period of time from the start of a
transaction until the currently-addressed target is ready
to complete the first data transfer of the transaction. This
period is a function of the access time for the currently-

addressed target device.
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Figure 6-4, Access Latency Components

PCI bus masters should always use burst transfers to transfer blocks of data
between themselves and a target PCI device (some poorly-designed masters
use a series of single-data phase transactions to transfer a block of data). The
transfer may consist of anywhere from one to an unlimited number of bytes, |
A bus master that has requested and has been granted the use of the bus (iks |
GINT# is asserted by the arbiter) cannot begin a transaction until the current |
bus master completes its transaction-in-progress. If the current master were
permitted to own the bus until its entire transfer were completed, it would be
possible for the current bus master to lock out other bus masters from using
the bus for extended periods of time. The extensive delay incurred could ;
cause other bus masters (and/or the application programs they serve) to ;
experience poor performance or even to malfunction (buffer overflows or 3
starvation may be experienced). 4

As an example, a bus master could have a buffer full condition and is |
requesting the use of the bus in order to off-load its buffer contents to system -
memory. If it experiences an extended delay (latency) in acquiring the bus to
begin the transfer, it may experience a data overrun condition as it receives :
more data from its associated device (such as a network) to be placed into its
buffer.

, In order to insure that the designers of bus masters are'dealing with 2
predictable and manageable amount of bus latency, the PCI specification
defines two mechanisms:

* Master Latency Timer.
¢ Target-Initiated Termination.

<0 B
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Master Latency Timer: Prevents Master From
Monopolizing Bus

Location and Purpose of Master Latency Timer

The master latency timer, or LT, is implemented as a PCI configuradon. -
“register in the bus master’s configuration space. It is either initialized by the
configuration software at startup time, or contains a hardwired value. The
value contained in the LT defines the minimum amount of time (in PCI clock
periods) that the bus master is permitied to retain ownership of the bus
v whenever it acquires bus ownership and initiates a transaction.

: How LT Works

When the bus master detects bus idle (FRAME# and IRDY# deasserted) and
its GN'T# asserted, it has bus acquisition and may initiate a transaction. Upon
initiation of the transaction, the master’s LT is initialized to the value written
to the LT by the configuration software at startup time (or its hardwired
value). Starting on the next rising-edge of the PCI clock and on every
subsequent rising-edge, the master decrements its L.T by one.

If the master is in the midst of a burst transaction and the arbiter removes its
GNTH#, this indicates that the arbiter has detected a request from another
master and js granting ownership of the bus for the next transaction to the
other master. In other words, the current master has been preempted.

If the current master’s LT has not yet been exhausted (decremented all the
way down), it has not yet used up its timeslice and may retain ownership of
the bus untl either:

* itcompletes its burst transaction or
e its LT expires,

whichever comes first. If it is able to complete its burst before expiration of its
LT, the other master that has its GNT# may assume bus ownership when it
detects that the current master has returned the bus to the idle state. if the
current master is not able to complete its burst transfer before expiration of its

LT, it is permitted to complete one more data transfer and must then yield the
bus.

9
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If the current master has exhausted its LT, still has its GNT# and has not yet
completed it burst transfer, it may retain ownership of the bus and continue to
burst data until either:

» it completes its overall burst transfer or
» its GNT# is removed by the arbiter.

In the latter case, the current master is permitted to complete one more data
transfer and must then yield the bus.

it should be noted that; when forced to prematurely terminate a data transfer,
the bus master must “remember” where it was in the transfer. After a brief
period, it may then reassert its REQ# to request bus ownership again go that it
may continue where it left off. This topic is covered in the chapter entitled
“Premature Transaction Termination.”

Is Implementation of LT Register Mandatory?

Yes. It must be implemented as a read/writable register by any master that
performs more than two data phases per transaction.

Can LT Value Be Hardwired (read-only)?

Yes, for a master that performs one or two data phases per transaction, but
the hardwired value may not exceed 16.

How D;:es Configuration Software Determine Timeslice To
Be Allocated To Master?

The bus master designer implements a read-only register referred to as the
minimum grant (Min_Gnt) register. This register is found in the bus master’s
configuration space, A value of zero indicates that the bus master has no
specific requirements regarding the setting assigned to its LT. A non-zero
value indicates, in increments of 250ns, how long a timeslice the master
requires in order to achieve adequate performance. The value hardwired into
this register by the bus master designer assumes a bus speed of 33MHz.

Treatment of Memory Write and Invalidate Command

Any master performing a memory write and invalidate command (see the
chapters entitled “The Commands” and “PCl Cache Support”) should not

e ——
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terminate its transfer until it reaches a cache line boundary (even if its LT has
expired and it has been preempted) unless STOP# is asserted by the target. If
it reaches a cache line boundary with its LT expired and its GNT# has been
removed by the arbiter, the iniliator mwst terminate the transacton. If a
memory write and invalidate command is terminated by the target (STOP#
asserted by a non-cacheable memory target), the master should complete the
line update in memory using the memory write command as soon as it can.

Cacheable memory targets must not disconnect a memory  write and

invalidate command except at cache line boundaries, even if caching is
currently disabled. For this reason, the snooper (i.e,, the host/PCI bridge) can
always assume that the memory write and invalidate command will complete
without disconnection if the access is within a memory range designated as
cacheable.

Limit on Master's Latency

Is a rule that the initiator may not keep IRDY# deasserted for more than eight
PCI clocks during any data phase. If the initiator has no buffer space available
to store read data, it must delay requesting the bus until is has room for the
data. On a write transaction, the iniiator must have the data available before
it asks for the bus.

Preventing Target From Monopolizing Bus

General
The problem of a bus master hogging the bus is solved by:

1. The inclusion of the LT associated with each master.
2. The rule that requires the initiator to keep IRDY# deasserted for no longer
than eight PCI clocks during any data phase,

It is also possible, however, for a target with a very slow access time to
moropolize the bus while a data item is being transferred between itself and
the current master. The target currently being addressed does not allow the
transfer of a data item to complete until it is ready. This is accomplished by
holding off assertion of the target ready signal, TRDY#, until the addressed
device is ready to complete the transfer of the data item.
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This problem is addressed in the PCI specification by requiring slow targets to
terminate a transfer prematurely if it will tie up the bus for long periods.
There are three possible cases:

1. If the time to complete the first data phase will be greater than 16 PCI
CLKs (from the assertion of FRAME#), the target must (the revision 2.0
 specification used the word “should” rather than “Inust”) immediately
issue a retry to the master, This rule applies to all new devices. There are
only two exceptions: memory read performed at startup time to copy an
expansion ROM image into RAM; and configuration accesses during
startup (configuration accesses performed after startup must adhere to the
16 PCI clock limit). A host/PCI bridge that is snooping is permitted to
exceed the 16 clock limit, but may never exceed 32 clocks. An example
would be a target with an empty buffer that must access a slow device ta
get the requested data. This forces the master to terminate the transaction
with no data transferred, thus freeing up the bus for other masters to use.
After two PCI clocks have elapsed, the master that received the retry can
reassert its request and, when it receives its GNT#, reinitiate its
transaction again, The start address it issues is the address of the data
item that was retried.

2. If the target ascertains that it will take it more than eight PCI clocks to
complete the current data phase (this is referred to as the incremental
latency timeout) and it is not the final data phase (FRAME# is still
asserted), the target issues a disconnect to the master when it is ready to
transfer the current data item. The master terminates the transaction when
the current data item is transferred and “remembers” the point of
disconnection. After two PCI clocks have elapsed, the master that
received the disconnect can reassert its request and, when it receives its
GNT#, reinitiate its transaction again. The start address it issues is the
address of the data item after the one that the disconnect was detected on
earlier.

3. If an attempt to communicate with a target results in a collision on a busy -
resource (e.g, 2 PCI master is attempting a data transfer with an EISA
target, but the EISA bridge recognizes that an EISA master currently owns -
the EISA bus), the target should immediately issue a retry to the master. *
This forces the master to terminate the transaction with no data .
transferred, thus freeing up the PCI bus for other masters to use, After :
two PCI clocks have elapsed, the master that received the retry n .
reassert its request and reinitiate its transaction again. The start addressit

issues is the address of the data item that was retried, '
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For further information on termination and re-initiation, refer to the chapter
entitled “Premature Transaction Termination.”

It should be noted that the incremental latency timeout, or target-initiated
termination, is completely independent of the master's LT. The target has no
visibility to the master's LT (and visa versa) and therefore cannot tell whether
it has timed out or not. This means that slow access targets (greater than eight
clocks from the start of one data_transfer to the start of the next) always
(before or after LT expiration) disconnect from the master after each slow
access, thereby fragmenting the overall burst transaction into a series of single
data phase transactions. Two examples of devices that might perform
disconnects are:

¢ Targets that are very slow all of the time (virtually all ISA bus devices
would fall into this category).

» A target that exhibits very slow access sometimes (perhaps because of a
buffer full condition ot the need for mechanical movement) and would
therefore tie up the PCIbus.

- Target Latency on First Data Phase

The following rule was stated earlier: If the time to complete the first data
phase will be greater than 16 PCI CLKs, the target must (the revision 2.0
specification used the word “should” rather than “must”) immediately issue a
retry to the master. This rule applies to all new devices.

A master cannot depend on targets responding to the first data phase within
16 clocks because this rule only affects new devices, Target devices designed
prior to the revision 2.1 specification can take longer than 16 clocks to

respond.
Options for Achieving Maximum 186 Clock Latency

The target can use any of the following three methods to meet the 16 clock
requirement:

1. The simplest case is one where the target can always respond within 16
clocks. No special action is necessary.

2. In the second case, a target may occasionally not be able to meet the 16
clock limit due to a busy resource (e.g., a video frame buffer is being
refreshed). In this case, the target simply issues a retry to the master.
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