VUMA Proposed Stanc 4 ,ESA Confidential

‘1 12 '3 L4 .5 '8 7] ‘9
CPUGK _/ ./ /" ./ \/
Signats L__ComLoge il : =
sigrais [Comiooe > ~Fioa A ' VRS TS
M.GN‘T; - - = . \ 0 . . "

MREQ# is driven low from clock edge 2. Core logic samples it active on clock edge 3.
Arbiter can give the bus right away, so core logic drives all s#/s signals high from the
" same clock edge. Core logic tri-states all the shared signals (s/t/s and t/s) and drives
MGNT# active from clock edge 4 . VUMA device samples MGNT# active at clock edge
5 and starts driving the bus from the same edge.

The shared DRAM signals are driven by VUMA device when it is the owner of the
physical system memory bus. VUMA device relinquishes the physical system memory
bus by de-asserting MREQ#. Bus Arbiter gives the bus back to core logic by de-asserting
MGNT#. Also, as mentioned above, before core logic starts driving the bus, VUMA
device should drive the s/t/s signals high for one CPUCLK clock and tri-state them.
VUMA device should also tri-state all the shared t/s signals. The float condition on the
bus should be for one CPUCLK clock, before core logic starts driving the bus. These
activities are overlapped to improve performance as shown in Figure 5-6.

Figure 5-6 Bus hand off from VUMA device to core logic

MREG# /
ws - : : : : . :
Signals { - VUMA Device _y High w : elLogic
vs . . ; . .
Signats [VoW Dever e “Core Logic
MGNT# LN : o

VUMA device drives all s/t/s signals high from clock edge 3. VUMA device tri-states all
shared signals (s/t/s and t/s) and de-asserts MREQ# from clock edge 4. Core logic
samples MREQ# inactive on clock edge 5. Core logic drives all shared signals and
deasserts MGNT# from clock edge 5.

5.3.2 DRAM Precharge

25 Version. 1.0p, Rev. 0.4p

Page 211 of 280
Petitioners HTC & LG - Exhibit 1002, p. 211

VUMA Proposed St {ard VESA Confidential

When the physical system memory bus is handed off from core logic to VIUMA device or .

vice a versa, the DRAM needs to be precharged before the new master starts driving it.
Part of this precharge can be hidden by overlapping with the arbitration protocol. As
shown in Figure 5-5 and 5-6, all the DRAM control signals (including RAS# lines) are
driven high for and tri-stated for one CPUCLK clock each. When RAS# lines are tri-
stated, pull ups on those lines pull them to a logical high. Thus when a new master gets
the control, the RAS# lines are already been precharged for two CPUCLK clocks. The
rest of the precharge needs to be taken care by the new master.

1. VUMA device gets the bus from core logic - As shown in Figure 5-5, when VUMA
device gets the physical system memory bus at clock edge 5, the DRAM has been
precharged for two CPUCLK clocks. VUMA device needs to take care of the rest of the
DRAM precharge. This precharge can be overlapped by VUMA device over some of its
activity e.g. VUMA device may be running at a different clock than the CPUCLK clock
and the precharge can be overlapped with the synchronization of MGNT# signal. VUMA
device can calculate the number of clocks it needs to precharge the DRAM with the
following formula:

No. of VUMA device clocks for DRAM fmchargc = {RAS# Precharge Time (tRP) - (2 *
CPUCLK Clock Time Period)}/ VUMA device Clock Time Period

Example: CPU running at 66.66 MHz, VUMA device running at 50 MHz. 70ns Fast Page
DRAM used.

No. of VUMA device clocks for DRAM precharge = {50ns - (2* 15ns)}/ 20ns
= {20ns}/ 20ns
=] clock

2. Core logic gets the bus from VUMA device - As shown in Figure 5-6, when core logic
gets the physical system memory bus at clock edge 5, the DRAM has beenprecharged for
two CPUCLK clocks. core logic needs to take care of the rest of the DRAM precharge.
This precharge can be overlapped by core logic over some of its activity e.g. driving of
new row address. Core logic can calculate the number of clocks it needs to precharge the
DRAM with the following formula:

No. of CPU clocks for DRAM precharge = {RAS# Precharge Time (tRP) - (2 * CPUCLK
Clock Time Period)}/ CPUCLK Clock Time Period _

Example: CPU running at 66.66 MHz, VUMA device running at 50 MHz. 70ns Fast Page
DRAM used. ' '

No. of CPU clocks for DRAM precharge = {50ns - (2* 15ns)}/ 15ns
= {20ns}/ 15ns
=2 clock

26 Version. 1.0p, Rev. 0.4p

Page 212 of 280

Petitioners HTC & LG - Exhibit 1002,

. 212

VUMA Proposed Stanc 4 /ESA Confidential

5.4 Synchronous DRAM

Synchronous DRAM support is 6ptiona.l for both core logic and VUMA device. Various
Synchronous DRAM support scenarios are as follows:

1. Core logic does not support Synchronous DRAM - Since core logic does not support.
Synchronous DRAM, there would not be any Synchronous DRAM as the physical
system memory and hence whether VUMA device supports Synchronous DRAM or
not is irrelevant.

2. Core logic supports Synchronous DRAM - When core logic supports Synchronous
DRAM, VUMA device may or may not be supporting it. Whether core logic and
VUMA device support Synchronous DRAM or not should be transparent to the
operating system and application programs. To achieve the transparency, system BIOS
needs to find out if both core logic and VUMA device support this feature and set the
system appropriately at boot. The following algorithm explains how it can be
achieved. The algorithm is only included to explain the feature. Refer to the latest
VUMA VESA BIOS Extensions for the most updated BIOS calls:

a. Read <VUMA BIOS signature string (refer to VUMA VESA BIOS
Extensions)>. Check if VUMA device supports Synchronous DRAM.

b. If VUMA device does not support Synchronous DRAM, do not assign
Synchronous DRAM banks for Main VUMA Memory. Assign Main VUMA
Memory to Fast Page Mode or EDO bank. Also, if Auxiliary VUMA Memory is
assigned by operating system to Synchronous DRAM banks, do not use it. Either
repeat the request for Auxiliary VUMA Memory till it is assigned to Fast Page
Mode or EDO bank or use some alternate method.

c. If VUMA device supports Synchronous DRAM, read < VUMA BIOS signature
string (refer to VUMA VESA BIOS Extensions)> to find out if VUMA device
supports multiple banks access.

d. If only single bank access supported on VUMA device, exit, as the Main
VUMA Memory and Auxiliary VUMA Memory bank is fixed.

e. If multiple banks access is supported and if the CS# for Synchronous DRAM
bank is supported on VUMA device, assign the Main VUMA Memory to obtain
the best possible system performance and exit.

5.4.1 Programmable Parameters

Synchronous DRAMs have various programmable parameters. Core légic programs
Synchronous DRAM parameters to obtain the best possible results. The most efficient
way for VUMA device to program its DRAM controller is to make a BIOS call to find

27 Version. 1.0p, Rev. 0.4p
1

Page 213 of 280
Petitioners HTC & LG - Exhibit 1002, p. 213

VUMA Proposed Sta. ird . VESA Confidential

out the parameters core logic has decided and program its DRAM controller with the
same parameters. Alternately, VUMA device could program its DRAM controller with
one or all different parameters. If VUMA device programs its DRAM controller with any
different parameters, it is VUMA device’s responsibility to reprogram Synchronous
DRAM back with the original parameters, before the physical system memory bus is
handed off to core logic. In other words, VUMA device is free to change any or all of the
parameters, but the change should be transparent to core logic.

How core logic programs various parameters-and how VUMA device could inquire them
is as follows: of '

.1. Burst Length - Burst Length can be programmed as 1, 2 or 4. VUMA device needs
to make a BIOS call <Return Memory Speed Type (refer to VUMA
VESA BIOS Extensions)> to find out the Burst Length.

2. CAS Latency - As CAS latency depends on the speed of Synchronous DRAM used’
and the clock speed, this standard does not want to fix this
parameter. Core logic programs this parameter to an appropriate
value. VUMA device needs to make a BIOS call <Return Memory
Speed Type (refer to VUMA VESA BIOS Extensions)> to find out
the CAS latency.

3. Burst Ordering - Most efficient Burst Ordering depends upon the type of CPU used.
VUMA device needs to make a BIOS call <Return Memory Speed
Type (refer to VUMA VESA BIOS Extensions)> to find out the
Burst Order. :

5.4.2 Protocol Description and Timing

All the DRAM signals are shared by core logic and VUMA device. They are driven by
current bus master. When core logic and VUMA device hand over the bus to each other,
they must drive all the shared s/t/s signals high for one CPUCLK clock and then tri-state
them. Also, they should tri-state all the shared t/s signals.

Synchronous DRAMs are precharged by precharge command. When the physical system
memory bus is handed off from core logic to VUMA device or vice a versa, the DRAM
precharge has two options:

1. Precharge both the internal banks before hand-off - This is a simple case where both
the internal banks of the active synchronous DRAM bank are precharged and then the
bus is handed off.

2. Requesting Master snoops the physical system memory bus and synchronous DRAM
internal banks need not be precharged - In this case the requesting master snoops the
DRAM address and control signals to track the open pages in the internal banks of the
active synchronous DRAM bank. The internal banks of the active synchronous DRAM

28 Version. 1.0p, Rev. 0.4p

Page 214 of 280

Petitioners HTC & LG - Exhibit 1002, b. 214

VUMA Proposed Stan. 4 JESA Confidential

are not precharged when the physical system memory bus is handed-off to the
requesting master. If needed, the requesting master takes care of precharge after getting
the physical system memory bus. '

Both core logic and VUMA device have an option of either implementing or not
implementing DRAM snoop. feature. Whether core logic and VUMA device support
DRAM snoop or not should be transparent to the operating system and application
programs. To achieve the transparency, system BIOS and VUMA BIOS need to find out
if both core logic and VUMA device support this feature and set the system appropriately
at boot. The following algorithm explains how it can be achieved. The algorithm is only
included to explain the feature. Refer to the latest VUMA VESA BIOS Extensions for the

most updated BIOS calls:

1. System BIOS reads <VUMA BIOS signature string (refer to VUMA VESA BIOS
Extensions)>, to find out if VUMA device can snoop the physical system memory bus.

2. If no, System BIOS programs core logic to precharge synchronous DRAM before bus
hand-off.

3. If yes, System BIOS programs core logic not to precharge synchronous DRAM before
bus hand-off.

4. VUMA BIOS makes a call, <Report VUMA - core logic capabilities (refer to VUMA
VESA BIOS Extensions)>, to find out if core logic can snoop the physical system
memory bus. -

5. If no, VUMA BIOS programs VUMA device to precharge synchronous DRAM before
bus hand-off.

6. If yes, VUMA BIOS programs VUMA device not to precharge synchronous DRAM
before bus hand-off.

None, only one, or both of core logic and VUMA device can support this feature. When
only one of them supports this feature memory precharge will be asymmetrical i.e. there
will be precharge before hand-off one way and no precharge the other way.

5.4.2.1 Non-Snoop Cases

The shared DRAM signals are driven by core logic when it is the owner of the physical
system memory bus. VUMA device requests the physical system memory bus by
asserting MREQ#. Bus Arbiter grants the bus by asserting MGNT#. Also, before VUMA
device starts driving the bus, core logic should drive all the shared s/t/s signals high for
one CPUCLK clock and tri-state them. Core logic should also tri-state all the shared t/s
signals. The tri-state condition on the bus should be for one CPUCLK clock, before
VUMA device starts driving the bus. These activities are overlapped to improve

- performance as shown in Figure 5-7. Since VUMA device does not support DRAM

snoop feature, DRAM is precharged before handing off the physical system memory bus
as shown in Figure 5-7.

29 Version. 1.0p, Rev. 0.4p

Page 215 of 280

Petitioners HTC & LG - Exhibit 1002, p. 215

VUMA Proposed Stz ard VESA Confidential

Figure 5-7 Bus hand off from Core Logic to VUMA device

1 .2 .3 L4 .5 .6 37 '8 .9
cruck N/ /NS N\ NN\
MREQ# —_'-""'\ - . . : : : :
stg::: [_Comioge X/ wign ‘—pg;;-(_ T VUM Davica .

: - " , Pmorg v . ' . .
vs : —
sigats L— S T— gy R YT
MGNT# : ; ; . \ 3 : ; :

MREQ¥ is driven low from clock edge 2. Core logic samples it active on clock edge 3.
Arbiter can give the bus right away, so core logic gives precharge command to DRAM
from the same clock edge. Core logic drives all the shared s/t/s signals high from clock
edge 4. Core logic tri-states all the shared signals (s/t/s and t/s) and drives MGNT# active
from clock edge 5. VUMA device samples MGNT# active at clock edge 6 and starts
driving the bus from the same edge. '

The shared DRAM signals are driven by VUMA device when it is the owner of the
physical system memory bus. VUMA device relinquishes the physical system memory
bus by de-asserting MREQ#. Bus Arbiter gives the bus back to core logic by de-asserting
MGNT#. Also, as mentioned above, before core logic starts driving the bus, VUMA
device should drive all the shared s/t/s signals high for one CPUCLK clock and tri-state
them. VUMA device should also tri-state all the shared t/s signals. The float condition on
the bus should be for one CPUCLK clock, before core logic starts driving the bus. These
activities are overlapped to improve performance as shown in Figure 5-8. Since core logic
does not support DRAM snoop feature, DRAM is precharged before handing off the
physical system memory bus as shown in Figure 5-8. '

Figure 5-8 Bus hand off from VUMA device to Core Logic

Y2 3 4 s s 1 s .8
CPUCK _/ /S
MREQ# : : : S ; :
Signats [VOPRDwEe A ™ b 1T]
Sigrals [Ve b con Loge
MGNT# : 7

VUMA device gives precharge command from clock edge 3. It drives all shared s/t/s
signals high from clock edge 4. It tri-states all shared signals (s/t/s and t/s) and de-asserts

30 . Version. 1.0p, Rev. 0.4p

Page 216 of 280

Petitioners HTC & LG - Exhibit 1002,

. 216

VUMA Proposed Stand> - ESA Confidential

MREQ# from clock edge 5. Core logic samples MREQ# inactive on clock edge 6. Core
logic drives all shared signals and deasserts MGNT# from clock edge 6.

5.4.2.2 Snoop Cases

The shared DRAM signals are driven by core logic when it is the owner of the physical
system memory bus. VUMA device requests the physical system memory bus by
asserting MREQ#. Bus Arbiter grants the bus by asserting MGNT#. Also, before VUMA .-
device starts driving the bus, core logic should drive all the shared s/t/s signals high for
one CPUCLK clock and tri-state them. Core logic should also tri-state all the shared t/s
signals. The tri-state condition on the bus should be for one CPUCLK clock, before
VUMA device starts driving the bus. These activities are overlapped to improve

- performance as shown in Figure 5-9. Since VUMA device supports DRAM snoop
feature, core logic does not precharge DRAM before handing off the physical system
memory bus as shown in Figure 5-9.

Figure 5-9 Bus hand off from core logic to VUMA device

sitls
ts
Signals [VUMA Devee —}—?I?l-(. Core Loge
MGNT# N\ i

MREQ# is driven low from clock edge 2. Core logic samples it active on clock edge 3.
Arbiter can give the bus right away and since VUMA device supports DRAM snoop
feature, core logic drives all the shared s/t/s signals high from the same clock edge. Core
logic tri-states all the shared signals (s/t/s and t/s) and drives MGNT# active from clock
edge 4. VUMA device samples MGNT# active at clock edge 5 and starts driving the bus
from the same edge.

The shared DRAM signals are driven by VUMA device when it is the owner of the
physical system memory bus. VUMA device relinquishes the physical system memory
bus by de-asserting MREQ#. Bus Arbiter gives the bus back to core logic by de-asserting
MGNT#. Also, as mentioned above, before core logic starts driving the bus, VUMA
device should drive all the shared s/t/s signals high for one CPUCLK clock and tri-state
them. VUMA device should also tri-state all the shared t/s signals. The float condition on
the bus should be for one CPUCLK clock, before core logic starts driving the bus. These
activities are overlapped to improve performance as shown in Figure 5-10. Since core

31 Version. 1.0p, Rev. 0.4p

Page 217 of 280
Petitioners HTC & LG - Exhibit 1002, p. 217

VUMA Proposed St: ‘ard . VESA Confidential

logic supports DRAM snoop feature, VUMA. devwc does not precharge DRAM before
handing off the physxcal system memory bus as shown in Figure 5-10

Figure 5-10 Bus hand off from VUMA device to core logic

| 2. .3 14 ‘5 ‘6. T .8 . .8

CPUCLK

MREG# L Y = .

Si;uml: L WMA-b““’ ’ Hign b,W-(— — TRt
vs : I o '

Signals | umu,—.. , i—?—-—(: ‘-c'or_e'ﬁc'u‘i"

MGNT# : : Lo ' .

VUMA device drives all shared s/t/s signals high from clock edge 3. It tri-states all shared
signals (s/t/s and t/s) and de-asserts MREQ# from clock edge 4. Core logic samples
MREQ# inactive on clock edge 5. Core logic' drives all shared signals and deasserts
MGNT# from clock edge 5.

5.5 Memory Parity support

Memory Parity support is optional on both core logic and VUMA device. If core logic
supports parity it should be able to disable parity check for Main VUMA Memory and
Auxiliary VUMA Memory areas while parity check on the rest of the physical system
memory is enabled. A

5.6 Memory Controller Pin Muitiplexing

The logical interfaces for Fast Page, EDO and BEDO DRAMs are very similar but are
significantly different than that of Synchronous DRAM. If mother board designers want
to mix different DRAM technologies on the same mother board, core logic will have to
multiplex DRAM control signals. The meaning of a multiplexed signal will depend on the
type of DRAM core logic is accessing at a given time. If a VUMA device supports
multiple banks access and mix of different DRAM tcchnologws, it will also have to
multiplex DRAM control signals. Both core logic and VUMA devices will have to have
same multiplexing scheme. The appropriate JEDEC standard should be followed for
multiplexing scheme.

6.0 Boot Protocol

32 Version. 1.0p, Rev. 0.4p

Page 218 of 280
Petitioners HTC & LG - Exhibit 1002, . 218

VUMA Proposed Stan d VESA Confidential

6.1 Main VUMA Memory Access at Boot

In unified memory architecture, part of the physical system memory is assigned to Main -
VUMA Memory. The existing operating systems are not aware of unified memory
architecture. Also, some of the existing operating systems size memory themselves. This
poses a problem as the operating systems after sizing the total physical system memory,
will assume that they could use all of the memory and might overwrite Main VUMA
Memory. The solution to this problem is explained below: :

As shown in Figure 6-1, the solution to this problem is to disable core logic access to

Main VUMA Memory area at boot time. In that case even if operating system, sizes the

memory, it will find only (total physical system memory - Main VUMA Memory) and

will not be aware of the Main VUMA Memory existence. This will avoid operating

- system ever writing to the Main VUMA Memory area. If VUMA device supports.
multiple banks access, it can access total physical system memory all the time. If VUMA

device supports single bank access, it can access the bank of Main VUMA Memory all

the time.

If VUMA device is a graphics controller, it needs a special consideration. Video screen is
required during boot and since core logic can not access the Main VUMA Memory, it can
not write to it. The problem is solved by programming the graphics controller into a
pseudo legacy mode. In this mode graphics controller treats Main VUMA Memory
exactly the same way as in non unified memory architecture situations i.e. as if it has its
own separate frame buffer. So now, the total system looks just like a non unified memory
architecture system and this mode is called as pseudo legacy mode. Core logic performs
accesses to video through legacy video memory address space of A000:0 and B000:0.
These accesses go on the PCI bus. Graphics controller claims these cycles. Graphics
controller still needs to arbitrate for the physical system memory bus. After getting the
bus, graphics controller performs reads/writes to Main VUMA Memory (frame buffer).
After the system boots, it is still in the pseudo legacy mode. When operating system calls
display driver, the driver programs core logic to allow access to Main VUMA Memory
and switches the system from pseudo legacy mode to unified memory architecture.

In the case of other type of VUMA devices, device driver needs to program core logic to
allow access to Main VUMA Memory.

Figure 6-1 Pseudo Legacy Mode

33 Version. 1.0p, Rev. 0.4p

Page 219 of 280

Petitioners HTC & LG - Exhibit 1002, . 219

VUMA Proposed Stz ird VESA Confidential

PClBus
S
cPu @ CoreLogic R B e B
] Accessible (ORAM) o —u
at Boot

The following algorithm sums up the boot process in the case of VUMA device being a
graphics controller:

1. System BIOS sizes the physical system memory.

2. System BIOS reads the size of Main VUMA Memory at previous boot (where this
value is stored is System BIOS dependent, but needs to be in some sort of non volatile
memory).

3. System BIOS programs its internal registers to reflect that total memory available is
[total physical system memory(from step 1) - Main VUMA Memory at previous boot
(from step 2)].

4. System boots and operating system calls display driver.

5. Display driver makes a System BIOS call, <Enable/Disable Main VUMA Memory
(refer to VUMA VESA BIOS Extensions)>, to program core logic internal registers to
reflect that it can access total physical system memory.

6. Display driver switches VUMA device to unified memory architecture mode.

Even though core logic can not access Main VUMA Memory till the time display driver
enables it, core logic is responsible for Main VUMA Memory refresh.

VUMA device should claim PCI Master accesses to Main VUMA Memory till display
driver enables core logic access to that area. Core logic should claim PCI Master accesses
to Main VUMA Memory after display driver enables core logic access to that area.

6.2 Reset State

On power on reset, both core logic and VUMA device have their unified memory
architecture capabilities disabled. MREQ# is de-asserted by VUMA device and MGNT#
is de-asserted by core logic. System BIOS can detect if VUMA device supports unified
memory architecture capabilities by reading <VUMA BIOS signature string (refer to
VUMA VESA BIOS Extensions)>.

34 Version. 1.0p, Rev. 0.4p

Page 220 of 280
Petitioners HTC & LG - Exhibit 1002, p. 220

7.0 Electrical Speci®~ation

7.1 Signal Levels

This section describes the electrical signal levels for the arbitration signals only. DRAM
signal levels depend on the type of DRAM used and hence can not be specified by the

standard.

MREQ# output 5vTTL or 3.3vLVTTL
input 5v TTL for 5v buffer, 5v tolerant LVTTL for 3.3v buffer

MGNT# output 5vTIL or 3.3vLVTIL
input 5v TTL for 5v buffer, 5v tolerant LVTTL for 3.3v buffer

CPUCLK output S5vTIL or 3.3vLVTIL
input 5v TTL for 5v buffer, Sv tolerant LVTTL for 3.3v buffer

7.2 AC Timing

This section describes the AC timing parameters for the arbitration signals only. DRAM
AC timing parameters depend on the type of DRAM used and hence can not be specified
by the standard. Both MREQ# are MGNT# timing parameters are with respect to
CPUCLK rising edge.

MREQ# output tClk to Out (max) -10mns
_ tClk to Out (min) -2ns
“input Set up time tSU (min)- 3 ns
-Hold time tH (min) -0ns

MGNT# output tClktoOut(max) -10ns
tClk to Out (min) -2ns
input Set up time tSU (min)- 3 ns

Hold time tH (min) -0Ons

CPUCLK output clock frequency (max) - 66.66 MHz

7.2.1 Timing Budget

A margin for signal flight time and clock skew is added to the timing parameters. + 2ns is
allowed for the total of CPUCLK skew and signal flight time. Worst case timing budget
calculations for setup and hold time are as follows:

35 Version. 1.0p, Rev. 0.4p

Page 221 of 280
Petitioners HTC & LG - Exhibit 1002, p. 221

VUMA Proposed Sta ird VESA Confidential

72.1.1 Worst case for Setup time

Figure 7-1 shows the worst case for setup time. tClk to Out, flight time and clock skew
have converged to reduce available setup time.

Figure 7-1 Worst case for setup time

Driving CPUCLK
Driver Qutput . n .). L
~4— tCLK to Out (max) —p C
' . emip{ f— Flight Trme
Receiver Input A e+l

Samping CPUCLK TN

‘e Negative
= cPUCLK
w
min)

[tCLK to Out (max) + flight time + tSU (min) + negative CPUCLK skew] < CPUCLK
period i.e. 15ns @ 66.66 MHz. _
[10ns + flight time + 3ns + negative CPUCLK skew] < 15ns

(flight time + negative CPUCLK skew] < 2ns

7.2.1.2 Worst case for Hold time
Figure 7-2 shows the worst case for hold time. tClk to Out and clock skew have
converged to reduce available hold time. Positive flight time number helps in this case

and hence it is assumed to be zero.

Figure 7-2 Worst case for hold time

T

: {CLK to Out
— f4— (min)
Dnver Cutput,
Receiver Input X n / n+l

. tH
{min)

Samping CPUCLK

Positive
CPLCLK
Skew

36 Version. 1.0p, Rev. 0.4p

Page 222 of 280

Petitioners HTC & LG - Exhibit 1002, p. 222

VUMA Proposed Star rd VESA Confidential

[positive CPUCLK skew + tH (min)] < tCLK to Out (min)
[positive CPUCLK skew + Ons] < 2ns
positive CPUCLK skew <2ns -

7.3 Pullups

All sit/s signals need pullups to sustain the inactive state until another agent drives them.
Core logic has to provide pullups for all the s/t/s signals. VUMA device has as option of -
providing pullups on some of the s/t/s signals. All t/s signals need pulldowns. Core logic
has to provide pulldowns for all the t/s signals. VUMA device has as option of providing
pulldowns on the t/s signals. Pullups and pulldowns could either be internal to the chips
or external on board.

DRAM Address - Core logic is responsible for pullups on DRAM Address lines.

DRAM control signals - Core logic is responsible for pullups on DRAM control signals.
VUMA device has as option of providing pullups on them.

DRAM Data Bus - Core logic is responsible for pulldowns on DRAM data bus.
VUMA device has as option of providing pulldowns on them.

Pullups and pulldowns are used to sustain the inactive state until another agent drives the
‘signals and hence need to be weak. Recommended value for pullups and pulldowns is
between 50 kohm and 80 kohm.

-

7.4 Straps

As some VUMA devices and core logic chips use DRAM data bus for straps, DRAM
data bus -needs to be assigned for straps for different controllers. The assignment of
DRAM Data Bus for straps is as follows:

MD [0:19] VUMA device on Motherboard
MD [20:55] Reserved
MD [56:63] Core Logic

All the straps need to be pullups of 10 kohm.

7.5 DRAM Driver characteristics

Loading plays a critical role in DRAM access timing. In case of PC motherboards end
- users can expand the existing memory of a system by adding extra SIMMs. Hence,
typically the total DRAM signal loading is not constant and could vary significantly.
Both Core Logic and VUMA device must be able to drive the maximum load that the

37 Version. 1.0p, Rev. 0.4p

Page 223 of 280
Petitioners HTC & LG - Exhibit 1002, p. 223

VUMA Proposed St ‘ard . VESA Confidential

system motherboard is designed to accommodate. In typical motherboard designs DRAM
signal loading can be excessive (on the order of 1000pF for some signals) and hence care
must be taken for DRAM driver selection. Some gcneral guide lines for DRAM driver.
design are as follows: .
Slew-rate controlled drivers are recommended. Drivers with selectable current drive (such
as 8/16 mA drivers) may be used. This can reduce overshoot and undershoot associated
with over-driving lightly loaded signals-and can prevent excessive rise and fall time delay -
due to not providing enough current drive on heavily loaded signals.

As shown in Figure 7-3, buffers may be placed on the system motherboard to reduce the
per signal loading and/or provide larger drive strength capabilities. DRAM Write Enable
and DRAM Address signals are typically the most heavily loaded signals. Column
Address Strobe signals may also become overioaded when more than two DRAM banks
are designed into a system. TTL or CMOS buffers (typically 244 type) may be used to
isolate and duplicate heavily loaded signals on a per bank basis. 244 type buffers
typically have very good drive characteristics as well and can be used to drive all of the
heavily loaded DRAM control signals if the Core Logic and/or VUMA device has
relatively weak drive characteristics. If external buffers are used, the buffer delays should
be taken in to timing considerations.

Figure 7-3 Optional Buffers for DRAM Signals

PCI Bus
VUMA
- - C Device
CPU < P> Core Logic "4 - " - (0.9. Gruphics
Optional Contraier)
Buffer
Physical
System Memory
(DRAM)

Wider DRAM devices offer reduced system loading on some of the control signals. x4
DRAMs require four times the physical connections on RAS, MA (Address), and write
enables as x16 DRAMs. The reduction in loading can be significant. If the designer has
control over the DRAMs which will be used in the system, the DRAM width should be
chosen to provide the least loading.

38 Version. 1.0p, Rev. 0.4%

Page 224 of 280
Petitioners HTC & LG - Exhibit 1002, 8. 224

L
VESA® VUMA | Proposal

(Draft)

Video Electronics Standards Association

2150 North First Street, Suite 440 Phone: (408) 435-0333
San Jose, CA 95131-2029 : 'FAX: (408) 435-8225 °

VESA Unified Memory Architecture

VESA BIOS Extensions (VUMA-SBE)
Proposal

Version: 1.0
Document Revision: 2.2p
November 1, 1995

Important Notice: This is a draft document from the Video Electronics Standards
Association (VESA) Unified Memory Architecture Committee (VUMA) It is only for
discussion purposes within the committee and with any other persons or organizations
that the committee has determined should be invited to review or otherwise contribute to
it. It has not been presented or ratified by the VESA general membership.

Purpose

To allow the video BIOS and other GUI specific software to control the VUMA hardware
without specific knowledge or direct hardware access.

Summary

This document contains a specification for a system and video BIOS interface, VUMA-
SVBE. The VUMA-SVBE interface will allow the video BIOS and other GUI specific
sofrware to control the VUMA hardware without specific knowledge or direct hardware
access. The hardware protocol is described in VESA document VUMA 1.0.

1

Page 225 of 280

Petitioners HTC & LG - Exhibit 1002, .

225

VUMA Proposed St. ard VESA Confidential

Scope

Because this is a draft document, it cannot be considered complete or accurate in all
respects although every effort has been made to minimize errors.

Intellectual Property

© Copyright 1995 =" Video Electronics Standards Association. Duplication of this
document within VESA member companies for review purposes is permitted. All other
rights are reserved. :

" Trademarks

All rademarks used in this document are the property of their respective owners. VESA
and VUMA are rademarks owned by the Video Electronics Standards Association.

Patents

The proposals and standards developed and adopted by VESA are ‘intended to promote
uniformity and economies of scale in the video electronics industry. VESA strives for
standards that will benefit both the industry and end users of video electronics products.
VESA cannot ensure that the adoption of a standard; the use of 2 method described as a
standard: or the making, using, or selling of a product in compliance with the standard
does not infringe upon the intellectual property rights (including patents, trademarks, and
copyrights) of others. VESA., therefore, makes no warranties, expressed or implied, that
products conforming to a VESA standard do not infringe on the intellectual property
rights of others. and accepts no liability direct, indirect or consequential, for any such
infringement. -

2 Version. 1.0p, Rev. 2.2p

Page 226 of 280
Petitioners HTC & LG - Exhibit 1002, p. 226

" VUMA Proposed Standaiu '~ VESA Confidential

Support For This Specification

If you have a product that incorporates VUMA™, you should ask the company that
manufactured your product for assistance. If you are a manufacturer of the product,
VESA can assist you with any clarification that you may require. All questions must be
sent in writing to VESA via: -

(The following list is the preferred order for contacting VESA.)

VESA World Wide Web Page: www.vesa.org

Fax: (408) 435-8225

Mail: VESA
2150 North First Street
Suite 440

San Jose, California 95131-2029

Acknowledgments

This document would not have been possible without the efforts of the members of the
1995 VESA Unified Memory Architecture Committee and the professional support of the
VESA staff.

Work Group Members
Any industry standard requires information from many sources. The following list
recognizes members of the VUMA Committee, which was responsible for combining all

of the industry input into this proposal.

VUMA Chairperson.
Rajesh Shakkarwar OPTi

Software work group Members

Tim Crawford Work group leader, Cirrus Logic
Phil Mummah Phoenix Technologies
Josh Grossman S3, Inc.

Christopher Rhodes Award Software

3 Version. 1.0p, Rev. 2.2p

Page 227 of 280

Petitioners HTC & LG - Exhibit 1002, p.

227

VUMA Proposed Sta ard . VESA Confidentia!

Revision History

Initial Revision Aug 14495
Rev.7 ‘ - Aug24°'95
Rev .8 Aug 28 ‘95
Rev.9 - Aug 28 ‘95

Added sssumption F, modified issues and moved some to assumptions, remove references
to main and aux VUMA memory, removed fimction for sxx VUMA memory, modified

speed/type function

Rev 1.0 Sept 8 ‘95
Added VUMA device DRAM support, SDRAM parameters in finction 6

Rev 1.1 ‘ Sept 11 ‘95
Add items to Boot sequence ’
Remove a function call and ciesned up others

Rev 1.2) B Sept 22 “95
Add changes suggested in previous VESA meeting ‘

Rev 1.3 Sept 29 ‘95

Added 32 bit IF, sdded Aux functions, Added 16 bit protected mode LF,
Modified several functions

Rev 1.4 Oct 6 ‘95
Modified assumptions, issues, updated some fimctions.

Rev 1.5) Oct 6 ‘95
Modified the table of contents

Rev 1.6 Oct 10 ‘95
Minor modifications to assumptions

Rev 1.7 Oct 16 ‘95

Changes to assumptions, & goals.
Made chages 10 some functions per discusion at last committee meeting.

Oct 18 *95

Rev 1.8 o .
Made changes to how memory is reported, funcs 1 & 6. Modified ROM signamure.

Rev 1.9 Oct 18 ‘95
Modified function 6 and assumptions. Other minor typos fixed.

Rev 2.0 - Oct23°95

Modified assumptions C, J, L, N. Added assumptions O, P, Q, R. Removed issue 4.
Added error code 5, 6. Changed unit of memory in ROM signature from LK to 64K.
Modificd register definition in function 0, 1, 2, 6, and 7. Other minor typos fixed.
Rev 2.1 : Oct 24 ¢95-
Added assumption “s”. ’

Rev 2.2 Nov 195
Added requirement for 32 and 16 bit protected mode call stack selector and 10
q R d issue section. Updated 32-bit and 16 bit interface section.
Modified P l,o.s. R sec, 3.1, 32.. Modified sec.3.4,3.5.03.5.1, 3.5.6,
4 " Version. 1.0p, Rev. 2.2p
1

Page 228 of 280
Petitioners HTC & LG - Exhibit 1002, B. 228

VUMA Proposed Stan .d | ' VESA Confidential

358

5 Version. 1.0p, Rev. 2.2p

Page 229 of 280
Petitioners HTC & LG - Exhibit 1002, p. 229

VUMA Proposed Stan d

1.0
20
2.1

23
3.0
3.1
32
3.3
34
35
3.5.0
351
352
3.53
354
355
3.5.6
3.5.7
358
3.5.9

VE_SA Confidential -

TABLE OF CONTENTS
Introduction 7
Goals & Assumptions 7
Goals 7
Assumptions 8
Boot Sequence 8
VUMA VESA SYSTEM BIOS Extensions (VUMA-SBE) 9
VUMA-SBE 32 bit interface.......... 9
VUMA-SBE 16 bit interface 11
Status Information 12
ROM signature 12
VUMA-SBE Functions 13
00h — Report VUMA -Core Logic Capabilities. 13
01h - Request Memory capabilities 15
02h - Set (Request) Memory Size for Next Boot 16
03h - Get Memory Size for Next Boot for a Device. 17
04h - Get Memory Size for Next Boot for all of VUMA Memory 18
05h - Get Current Memory Size for 2 Device or for all VUMA MemOry...ueweeeeeemeceseresnscsennes 19
06h - Return Memory Speed/Type ' 20
07h - Enable/disable memory \ 2
08h - Set (Request) VUMA Aux Memory 23
09h -Get VUMA Aux Memory Size 24

Page 230 of 280
Petitioners HTC & LG - Exhibit 1002,

Version. 1.0p, Rev. 2.2p

. 230

" VUMA Proposed Stand... J ' VESA Confidential

1.0 Introduction

This document contains specifications for VESA unified memory architecture system and
video BIOS interface. The system BIOS VUMA-SBE (System BIOS Extensions) will allow
the video BIOS and other GUI specific software to control the VUMA hardware without
specific knowledge or direct hardware access. The video BIOS VUMA-VBE (Video BIOS
Extensions) will allow the system BIOS and other GUI specific software to access the VUMA
hardware without specific knowledge or direct hardware access. The hardware protucol is
described in VESA document VUMA 1.0.

Readers of this document should already be familiar with the VESA BIOS extensions and
programming at the BIOS level.

.2.0 Goals and Assumptions

VUMA-SBE provides a hardware independent means for operating system and configuration
utility software to control and get status from the VUMA hardware.

VUMA-SBE services need to be provided as part of the system and video BIOS ROMs since
the functions need to be used during system boot up.

2.1 Goals

a. Allow system memory access to non system controller devices. These devices, called
VUMA devices will have their own memory controller and access system memory
directly. All of system memory is potentially accessible by VUMA devices.

b. Allow multiple devices. Although only one connector is allowed, multiple devices on the
motherboard as well as multiple devices on the expansion board are allowed.

c. Ifa VUMA device that previouély has requested memory is taken out of the system, the
memory will be returned to the O/S on the next boot.

d. Ifa VUMA device is replaced by another VUMA device, the system will allocate the same
amount of memory, if it meets the minimum requirements of the new board. Otherwise
the memory allocated will be increased to the minimum required by the new board.

7 Version. 1.0p, Rev. 2.2p

Page 231 of 280
Petitioners HTC & LG - Exhibit 1002, p. 231

VUMA Proposed St: .ard ‘ "~ VESA Confidentiai

2.

a

b.

2 Assumptions

System BIOS will manage memory allocation requests from VUMA devices.

Memory must be sized, typed and connguous before control is turned over to a VUMA
device.

VUMA devices wxlltstandmmahzcthmrowannVUMAmemory (This is similar to
the way they initialize and test their video memory on conventional VGA devices.)

The lowest PCI PFA number w:ll have priority if more than one VGA device is plugged
in. The manufacture can decide if the VUMA slot has the highest, lowest or middle PFA
number. :

The Video BIOS must be in shadow ram and writeable when control i is passed to the video
ROM as defined by the PCI SIG.

The values that BIOS reports in function 6 for cmrcnn voltage and speed wﬂl be
determined at build/compile time.

A device driver should insure that when requesting VUMA memory for the next boot that
enough memory will be left for the O/S to boot.

The device driver should take into consideration memory bandwidth when requesting
memory.

Memory is installed on the mother board in the bank or banks (RAS/CS) that the VUMA
device can access. If a user moves memory to a bank (RAS/CS) that the VUMA
controller can not access, the VUMA device will be disabled.

On a warm boot the sytem will reallocate VUMA memory for each device.

For a multi-function plug in board, only function 0 on the board may require a minimum
amount of memory for booting. See section 3.4, point A. Set next boot size call (VUMA-
SBE function 2) can only be made using the PFA of function 0 on the board.

. If a plug in card has a bridge, only the first function of ‘the first device behind the bridge

may require a minimum amount of memory for booting. See section 3.4, point A.

Svstem BIOS will insure that PCI addresses will not conflict with Main VUMA memory
that is placed above system memory. Main VUMA memory could have addresses that are
not contiguous with system memory. (See h/w spec.)

Main VUMA memory that is contiguous to system memory must be disabled before OS -

boots.

VUMA device driver is responsible for enabling CPU access to Main VUMA memory.
Note. all of Main VUMA memory access by the CPU is enabled when any part is enabled,
i.e.. all or nothing. Disabling CPU access is not allowed at run time.

The Main VUMA memory must be contiguous, but it is not necessary to be contiguous
with system memory.

- If Main VUMA memory is not contiguous with system memory, CPU access does not

need to be disabled prior to INT 19h.

When requesting Aux VUMA memory, if system memory is being cache by any type of
cache. the cache must be cleared by an I/O instruction, not by reading memory. This is
necessary since in protected mode a selector will not be available to the BIOS.

8 Version. 1.0p, Rev. 2.2p

Page 232 of 280

Petitioners HTC & LG - Exhibit 1002, n.

232

" VUMA Proposed Standard VESA Confidential

9 Version. 1.0p, Rev. 2.2p

Page 233 of 280
Petitioners HTC & LG - Exhibit 1002, p. 233

VUMA Proposed St ard . VESA Confidential

2.3 Boot Sequence

L.

2.

System BIOS sizes and configures (makes contiguous) all system memory.

System BIOS scans ROM space for VUMA devices and determine if there are any
devices present that were not present at the last boot. If yes, then add the minimum
amount of memory required by that device for booting, to VUMA memory.

Allocate VUMA memory. At this point all memory, including VUMA memory is
enabled. If this is not possible to allocate all requested memory (possibly memory
has been removed between boots) then the system will scan all VUMA ROMs and
allocate the minimum necessary to boot.

Next, call the entry point to the VGA device. The VGA device tests and initializes
it’s memory at this time.

After the VGA device has initialized itself, control is given back to the system
BIOS.

System BIOS then continues POST. During POST the system gives control to the
other PCI devices (including VUMA devices). They then initialize themselves.

When the OS starts it’s boot process, it will then load and execute the video driver.
If necessary the video driver will then enable the CPU access to memory allocated

‘to the VUMA device.

Any changes to the size of the memory allocated to the VUMA device will be
requested by the video driver, O/S, or uuhty/properlty sheet. These requests will
then be 1mplememed on the next boot.

10 Version. 1.0p, Rev. 2.2p

Page 234 of 280

Petitioners HTC & LG - Exhibit 1002,

. 234

VUMA Proposed Standad VESA Confidential

3.0 VUMA VESA SYSTEM BIOS Extensions (VUMA-SBE)

The new system BIOS calls have that have been defined can be accessed via the following
VUMA-SBE interfaces.

31 VUMA-SBE 32 bit interface.

Detecting the presence of thc 32-bit’ zmerfwe for the VUMA-SBE functions is done using the
BIOS32 Service Directory’. Use of the service directory involves 3 steps : locating the service
directory, using the service directory to get the VUMA services entry point and finally calling the
VUMA services to perform the desired function. The BIOS32 Service Directory is a contigous
16-byte data structure which begins on a 16-byte boundary somewhere in the physical address
range OE000Ch - OFFFFFh. It has the following format :

Offset Size Description

00h | 4 bytes | ASCH Signature String _32_
" | This puts an underscore at offset 0, a "3' at offset 1, 2 2' at offset 2 and

another underscore offset 3.

04h 4 bytes | Entry point for BIOS32 Service directory
This is a 32-bit physical addrss through which the service directory can
be called.

08h 1 byte | Revision level
The current revision level is 00h.

Length of data structure in paxagraph (i.e., 16-byte) units.

0%h 1 byte | The data structure in this revision is 16 bytcs long so this field has a
value of 01h.

0Ah I bvte | Checksum

' This field is a checksum of the complete data structure. It has a value
such that when all of the bytes in the data structure are added together in
a byte wide sum they add up to 00h.

0Bh 5 bvtes | Reserved
Must be 0

To locate the service directory a caller must scan 0E0000h to OFFFFFh on 16-byte boundaries
looking for the ASCII signature " _32_" and a valid checksummed data structure, If the
service directory is NOT found then 32-bit VUMA support is not present in the BIOS.

' The BIOS32 Service Directory is an industry standard and is described by the document Standard BIOS 32-bit
Service Directory Proposal, Revision 1.0 May24, 1993 available from Phoenix Technologies Ltd., Irvine, CA

11 Version. 1.0p, Rev. 2.2p

Page 235 of 280

Petitioners HTC & LG - Exhibit 1002, p.

235

VUMA Proposed St. _ard VESA Confidential

To get the VUMA services entry point a CALL FAR to service directory is done using the
value specified at offset 04h in the service directory data structure. The following is a list of
the entry conditions and the return values when calling the service directory.

INPUT:

EAX Service Identifier -
This is a 4 character string used to identify which 32-bit BIOS service
is being sought. For VUMA is it "VUMA" where EAX =
414D5556h (NOTE: This corresponds to mov eax, VUMA")
EBX[31:8] Reserved

Must be set to 00h
EBX[7:0] 00h _
CS Code selector set up to encompass the physical page holding the entry

point as well as the immediately following physical page. It MUST
have the same base. CS is execute only.

DS Data selector set up to encompass the physical page holding the entry
point as well as the immediately following physical page. It MUST
have the same base. DS is read-only.

Ss Stack selector must provide at least 1K of stack space and be 32-bit.

/O I/O Permissions must be provided so that the BIOS can perform any
/O necessary. .

" OUTPUT:
AL Return Code

00h - Requested service is present.

80h - Requested service is NOT present.

81h - Unimplemented function specified in BL.
EBX Physical address to use as the selector BASE for the service.
ECX Value to use as the selector LIMIT for the service.
EDX Entry point for the service relative to the BASE returned in EBX.

Once the VUMA entry point has been found the caller should create an execute-only CODE
and read-only DATA selectors based on the values in EBX and ECX. The VUMA entry point
can now be invoked using a CALL FAR with the created CODE selector and the offset in
EDX. The following additional conditions must exist when calling the VUMA entry point :

12 Version. 1.0p, Rev. 2.2p

Page 236 of 280
Petitioners HTC & LG - Exhibit 1002, p. 236

' VUMA Proposed Standarg ' VESA Confidential

I/O permissions are such that the service can perform any I/O necessary

The stack is a 32-bit stack and provides at least 1K of stack space

The appropriate privilege is provided so that the service can enable/disable interrupts
are needed '

All other register settings are specified to the function being called.
3.2 VUMA-SBE 16 bit interface.

The 16 bit Interface is function-based and all parameters are passed in registers. If a register is
not specified as an output parameter for a finction, then it will be preserved. All flags are
preserved. Function values are passed as input parameters in register BL. Return status is
passed back in register AL. A return status of 00h indicates that the function was successful.

Prior to calling into the 16-bit interface in protected mode using the PUSHF / CALL sequence
the following requirements must be met :

CS is an execute-only selector with a BASE of 0F0000h and a LIMIT of 64K.

DS is a read-only selector with a BASE of 0F0000h and a LIMIT of 64K.

1/0 permissions are such that the service can perform any I/O necessary

The stack is a 16-bit stack and provides at least 1K of stack space

The appropriate privilege is provided so that the service can enable/disable interrupts
are needed

Entry to the 16 bit interface may be done one of two ways:

1. Entry point to the 16 bit services is F000:F859. To call these services:
Set up the registers as indicated in the function description. Status information is -

returned in AX.

PUSHF
CALL FAR F000:F859
Check results

!’J

The 16 bit interface may also be accessed through the INT 15h instruction. The value
F401lh is passed in the AX register, with the subfunction passed in BL. Status
information is returned in AX.

13 Version. 1.0p, Rev. 2.2p

Page 237 of 280
Petitioners HTC & LG - Exhibit 1002, p. 237

VUMA Proposed Star. rd _ VESA Confidential .

3.3 Status Information for the calls

Every function returns information in the AX register. The format of the status word is as’
follows:

AL =F4h: Function is supported.
AL =FFh: -No error, but function NOT supported.
AL =00h: Function error or not completed yet, see error codes in AH.

AH =00h: .Function call successful.
AH '=00h: Function call failed. :
= 01h: Unknown PFA. PFA does not match devices in system.
=(02h: Invalid Input Argument.
=03h: Too many banks (RAS/CS lines) requested.
=04h: Regquested bank(s) RAS/CS line(s) not supported.
=05h: Aux Memory not supported.
=06h: Noncacheable/ write through cache area not available.
= 80h: Function needs to be called again to return additional information.
= FFh: Other unknown error.

3.4 ROM Signature
VUMA devices must have a ROM signature, within the first 1K, “_VUMA_XX>x” where XX
is major version and xx is minor version. Following the minor version number:

A. 16 bit value with the minimum amount of memory necessary, in 64Kblocks, for
booting. It is not a requirement to have all devices working to boot. Only devices
essencial to bring up 2 system. such as VGA and a boot device (hard drive) are
necessary. After booting, a device driver or utility may request additional memory

" for nor-essential devices. .

B. 16 bit value with bit map of memory banks (RAS/CS lines) supported. Bit 0
corresponds to bank number 0 etc. If a bit is set then the bank (RAS/CS line) is
supported by the VUMA device.

C. 16 bit value for DRAM support. Bit set if supported.

Bit 0 = Fast Page

Bit 1 =EDOn

Bit 2 = SDRAM

Bit 3 = PN EDO (Burst EDO)
All other bit ate reserved.

D. 8 bit value for features.

Bit 0 = Snooping supported by VUMA device if set. (See h/w spec for definition
of snooping. :

14 Version. 1.0p, Rev. 2.2p

Page 238 of 280

Petitioners HTC & LG - Exhibit 1002.Ip. 238

T

’ VESA Confidential

" VUMA Proposed Shnd’

3.5 VUMA-SBE Functions

The following defined VUMA-SBE services are not included in the VBE standard
documentation.

3.5.0 00h - Report VUMA Core Logic Capabilities

This function should be called before any other VUMA- SBEﬁmcuoniscaﬂedtoensmtha:
the VUMA system is present, and to inquire the core logic capabilities

Input: (AX is used only when being called by one of the two 16 bit interfaces.)
AH=F4h
AL =01h
BL =00h

Qutput:
AX = Status (see section 3.3)
BL =Major BIOS revision=01h
BH = Minor BIOS revision = 00h
CX = Banks (RAS/CS) that are supported, could have memory installed, by
the core logic controller
Bit 0 = bank 0
Bit 1 = bank 1
etc.
DX[3:0] = Core logic capabilities
0 =No special features
Bit 0 = 1 -> Controller supports non-cacheable regions
Bit | = 1 -> Controller supports write-thru cache regions
Bit 2 = 0 -> Cannot change at run time from cached to non-cached
and back
1 -> Can change at run time from cached to non-cached
and back
Bit 3 = 0 -> Cannot change at run time from non-write through to
write through and back
1 -> Can change at run time from cached to non-write
through and back
DX[4] = Core logic supports snoopmg this item is rclevam only when
synchrounous DRAM is supported
0 = Snooping is NOT supported
1 = Snooping is supported
SI =Bank (RAS/CS) numbers with memory. Bit set if has memory.
Bit 0 = bank 0

[

15 Version. 1.0p, Rev. 2.2p

Page 239 of 280
Petitioners HTC & LG - Exhibit 1002 p. 239

VUMA Proposed Sta. ard o . VESA danﬁdenﬁal

Bit1 =bank 1
ete. .
DI =Bank (RAS/CS) numbers with memory and support VUMA.
Bit 0 = bank 0
Bit 1 = bank 1
etc.

16 Version. 1.0p, Rev. 2.2p

Page 240 of 280

Petitioners HTC & LG - Exhibit 1002, §. 240

VUMA Proposed Standa.d VESA Confidential

3.5.1 Q1h - Request VUMA Main Memory capabilities
This function returns system controller capabilities. '

Input: (AX is used only when being called by one of the two 16 bit interfaces.)
AH=F4h .
AL =01h
BL=01h

Output: .

AX = Status (see section 3.3)

BX = Minimum size can allocate in 64 K increments

CX = Maximum size can allocate in 64 K increments

SI = System memory noncacheable or write through area granularity in 64 K
blocks. Minimum block size region in system memory that can have
L2 cacheable, non-cacheable, or write through cache. This is a basis
provided for rounding up Aux memory size request.
0 = Not defined

DI = VUMA main memory size increments from minimum size in 64K.
When memory is disabled the CPU does not have access to it but
refresh still occurs.
0 = Not defined

17 Version. 1.0p, Rev. 2.2p

Page 241 of 280
Petitioners HTC & LG - Exhibit 1002, p. 241

VUMA Proposed Sta ird | VESA Confidential

3.5.2 Q2h - Set (Request) VUMA Main Memory for Next Boot

This function sets the size of the Main VUMA memory for the next boot. An input parameter
is the memory bank numbers (RAS/CS numbers) that can be accessed by the VUMA device.
The banks supported (parameter passed in DX) must be the same as reported in the ROM
signature as specified in section 3.4 of this document.

Input: (AX is used only when being called by one of the two 16 bit interfaces.)

AH =F4h -

AL =01

BL =02

CX = PFA number.
CH = Bus Number (0 .. 255)
CL[7:3] = Device number

. CL[2:0] = Function Number

DX = Banks (RAS/CS) that are supported by the calling device.
Bit0=bank 0
Bit 1 =bank 1
etc.

SI = Size in 64 Kbytes (Will be rounded up by the system BIOS if necessary)

OQurput:
AX = Status (see section 3.3)
DX = Actual size in 64 K bytes allocated.

18 Version. 1.0p, Rev. 2.2p

Page 242 of 280

Petitioners HTC & LG - Exhibit 1002, p.

242

VUMA Proposed Standurd . " VESA Confidential

3.5.3 03h - Get VUMA Main Memory Size for Next Boot for a Device

' This function returns the size of Main VUMA memory to be set for the next boot for the
selected controller.

Input: (AX is used only when being called by one of the two 16 bit interfaces.)
AH =F4h
AL =01h-
BL=03h
CX =PFA number
CH = Bus Number (0 .. 255)
CL{[7:3] = Device number
CL[2:0] = Function Number
Output: ‘
AX = Status (see section 3.3)
DX = Size in 64 K bytes

19 Version. 1.0p, Rev. 2.2p

Page 243 of 280
Petitioners HTC & LG - Exhibit 1002, p. 243

VUMA Proposed St. Jard .. VESA Confidential

This function returns the size of Main VUMA memory to be set for the next boot.

Input: (AX is used only when being called by one of the two 16 bit interfaces.)
AH =F4h .
AL =01h
BL = 04h
Output: .
AX = Status (see section 3.3)
DX = Size in 64 K bytes

20 Version. 1.0p, Rev. 2.2p

Page 244 of 280
Petitioners HTC & LG - Exhibit 1002, p. 244

VUMA Proposed Stanaard VESA Confidential

3.5.5 05h-Get Current Memory Size for a Device or for all VUMA Memory

This function returns the size of Main VUMA memory for the selected controller. Note:
Value returned in BH is for all of VUMA main memory since all main memory is either
enabled or disabled. (Allows CPU access or does not allow CPU access.)

Input: (AX is used only when being called by one of the two 16 bit interfaces.)
AH =F4h
AL=01h
BL =05h
CX = PFA number
CH = Bus Number (0 .. 255)
CL[7:3] = Device number
CL[2:0] = Function Number
If CX = FF then return for all devices
Qutput:
AX = Status (see section 3.3)
BH[0] = Memory access for all of Main VUMA memory.
0 -> Memory is not enabled, not visible to the CPU
1 -> Memory is enabled, visible to the CPU
CX = Bit map of bank (RAS/CS) numbers used. Bit set if bank is used.
Bit 0 =bank 0
Bit 1 = bank 1
etc.
DX = Size in 64 Kbytes
SI = upper 16 bits of physical start address
DI = lower 16 bits of physical start address

21 Version. 1.0p, Rev. 2.2p

Page 245 of 280

Petitioners HTC & LG - Exhibit 1002, p. 245

VUMA Proposed S dard VESA Confidential

This function returns information about the type of memory installed for the selected bank
(RAS/CS). Fractions greater than 0.5 are rounded up. Fractions 0.5 and lower are rounded
down. If a bank is logically divided into more than one area, then the function needs to be
called more than once. AX indicates whether the function is done or not. If more than 1 bitin
CX is set then error code AH= 03H will be returned, therefore only one bit should be set in
CX when calling this function. Note: If 2 bank has contigous memory, but part of the memory
is system memory and part is VUMA memory, the information will also be returned in two
steps. BX[14] will reflect the type of memory. '

Input: (AX is used only when being called by one of the two 16 bit interfaces.)
AH =F4h :
AL =01h
BL = 06h
CX = Bank (RAS/CS) number
Bit 0 = bank 0 _
Bit] =bank 1 _ - ' N el
etc.
DX = Serial calling number
Qutput:
AX
BX[15]
BX[14]

[}

Status (see section 3.3, if equal to 80, must call for more info)
Reserved.

MAIN VUMA memory.

0 = not main VUMA memory, is system memory
1 = main VUMA memory.

BX[13:7] = Speed of memory in nano-seconds

0 = undefined, else value.

Core logic controller speed in nano-seconds
0 = undefined, else value.

Type of memory

0000 = Undefined

0001 = Fast page mode

0010 = EDO

0011 = SDRAM

0100 = PN EDO (Burst EDO)

CX[5:4] = CAS latency

CX[7:6] = Burst

" o0=1

1=2

2=4

3 = undefined

non

BX[6:0]

CX[3:0]

2 Version. 1.0p, Rev. 2.2p

Page 246 of 280

Petitioners HTC & LG - Exhibit 1002 p. 246

VUMA Proposed Standard

Page 247 of 280

VESA Confidential
CX[8] = Burst order

0 =Linear

1 = Sequential
CX[15:9] = Voltage of memory in tenths of a volt

0 =undefined
DX[7:0] = Size in Mega-bytes
SI = upper 16 bits of physical start address
DI = lower 16 bits of physical start address

23

Version. 1.0p, Rev. 2.2p

Petitioners HTC & LG - Exhibit 1002, p. 247

VUMA Prqpmd S\ dard . VESA Confidential

3.5.7 Q7h - Enable/disable Main VUMA memory

The ability to enable/disable CPU access to Main VUMA memory is not required if Main
VUMA memory is not contiguous with system memory. If supported, this function
enables/disables CPU access to Main VUMA memory. When any device makes this call, all
devices that have main VUMA memory will be affected. When CPU access to main VUMA
memory is disabled, access to video memory may be done through the PCI bus.

Note: During run time (after Int 19) CPU access can not be disabled.

Input: (AX is used only when being called by one of the two 16 bit interfaces.)
AH=F4h
AL=01h
BL =07h _
BH[0] = Memory access
OéEnableCPUacccsstoVUMAMamm:mory
1 -> Disable CPU access to VUMA Main memory. (Can not be done at
run time.)

AX = Status (see section 3.3)

24 Version. 1.0p, Rev. 2.2p

Page 248 of 280
Petitioners HTC & LG - Exhibit 1002, p. 248

VUMA Proposed Stan.ard -VESA Confidential

3.5.8 08h - Set (Request)/Free VUMA Aux Memory

This function sets (requests) the size of the aux memory for use at run time. See “How To
Access Aux VUMA Memory” in the Appendix to be added at a later time. A physical starting
address and size is passed in. This function will flush and then turn off caching for this area
or change the area to write through cache.

Input: (AX is used only when being called by one of the two 16 bit interfaces.)

AH = F4h
AL = 01
BL = 08
BH[1:0] = Type of cache

Bit 0 set if non-cachable

Bit 1 set if write-Thru -
CX = PFA number

CH = Bus Number (0 .. 255)

CL[7:3] = Device number

CL[2:0] = Function Number
DX = Size in K bytes, free VUMA Aux memory if setto 0
SI = upper 16 bits of physical address
DI = lower 16 bits of physical address

Qurput:
'‘AX = Status (see section 3.3)
DX = Actual size in Kbytes allocated (rounded up by the system BIOS if

necessary) -

25 Version. 1.0p, Rev. 2.2p

Page 249 of 280
Petitioners HTC & LG - Exhibit 1002, p. 249

VUMA Proposed St lard VESA Confidential

3.5.9 0%h - Get VUMA Aux Memory Size
This function returns the size of the aux memory being used by a VUMA device.

Input: (AX is used only when being called by one of the two 16 bit interfaces.)
AH =F4h
AL=01h
BL =0%
CX =PFA number
CH = Bus Number (0 .. 255)
CL[7:3] = Device number
CL[2:0] = Function Number
Output: .
AX = Status (see section 3.3)
DX = Size in Kbytes
SI = upper 16 bits of physical address
DI = lower 16 bits of physical address

26 Version. 1.0p, Rev. 2.2p

Page 250 of 280
Petitioners HTC & LG - Exhibit 1002, p. 250

Page 251 of 280
Petitioners HTC & LG - Exhibit 1002, B. 251

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1994 by Adrian King

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
King, Adrian, 1953-
Inside Windows 95 / Adrian King.
. cm.
Includes index.
ISBN 1-55615-626-X
1. Windows (Computer programs) 2. Microsoft Windows (Computer
file) 1. Title.
QA76.76.W56K56 1994
005.4'469--dc20 93-48485
CIp

Printed and bound in the United States of America.
123456789 QMQM 987654

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation. '

AcIp catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office. Or contact Microsoft Press
International directly at fax (206) 936-7329.

PageMaker is a registered trademark of Aldus Corporation. Apple, AppleTalk, LaserWriter, Mac,
Macintosh, and TrueType are registered trademarks of Apple Computer, Inc. LANtastic is a registered
trademark of Artisoft, Inc. Banyan and Vines are registered trademarks of Banyan Systems, Inc.

Compagq is a registered trademark of Compaq Computer Corporation. CompuServe is a registered
trademark of CompuServe, Inc. Alpha AXP, DEC, and Pathworks are trademarks of Digital Equipment
Corporation. LANstep is a trademark of Hayes Microcomputer Products, Inc. HP and Laser]et are
registered trademarks of Hewlett-Packard Company. Intel is a registered trademark and EtherExpress,
Pentium, and SX are trademarks of Intel Corporation. COMDEX is a registered trademark of Interface
Group-Nevada, Inc. AS/400, IBM, Micro Channel, OS/2, and PS/2 are registered trademarks and PC/
XT is a trademark of International Business Machines Corporation. 1-2-3, Lotus, and Notes are
registered trademarks of Lotus Development Corporation. Microsoft, MS, MS-DOS, and XENIX are
registered trademarks and ODBC, Win32s, Windows, Windows NT, and the Windows operating system
logo are trademarks of Microsoft Corporation. MIPS is a registered trademark and R4000 is a trade-
mark of MIPS Computer Systems, Inc. NetWare and Novell are registered trademarks of Novell, Inc.
Soft-Ice/W is a registered trademark of Nu-Mega Technologies, Inc. DESQview is a registered trade-
mark and Qemm is a trademark of Quarterdeck Office Systems. OpenGL is a trademark of Silicon
Graphics, Inc. PC-NFS, Sun, and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.
TOPS is a registered trademark of TOPS, a Sun Microsystems company. UNIX is a registered trademark
of UNIX Systems Laboratories.

Acquisitions Editor: Mike Halvorson
Project Editor: Erin O'Connor
Technical Editors: Seth McEvoy and Dail Magee, Jr.

Page 252 of 280
Petitioners HTC & LG - Exhibit 1002,

v
»
£
&

. 252

THREE: A Tour of Chicago

ctions
. refer-
-esolve

LLs. It
iies not

; of the
open a
ge fault
es from
ystem is

stem in-
Vindows
jvileged
e details
which it 38
ger with

:r can be

VxDs. A ¥
sed inter- 33
e device. }
g at the §
deal with 38
aality that 3
:hitecmf‘l’

Page 253 of 280

was originally designed as a standardized format for 32-bit protected
mode code modules. There is an API, internal to the base system, that
VxDs can use.!! Obviously, the scope of these functions is at a much lower
level than the scope of the services called on directly by applications.

Memory Management

Memory management in Windows takes place at two different levels: a
level seen by the application programmer and an entirely different view
seen by the operating system. Over the course of different releases of
Windows, the application programmer has seen little change in the avail-
able memory management APIs. Within the system, however, the
memory management changes have been dramatic. Originally, Win-
dows was severely constrained by real mode and 1 megabyte of
memory. Then expanded memory provided a little breathing room,
and currently the use of enhanced mode and extended memory re-
lieves many of the original constraints. Windows 95 goes further yet
and essentially removes all the remaining memory constraints.

Windows 95 continues to support all the API functions present in
Windows 3.1, and you can still build and run applications that use the
segmented addressing scheme of the 286 processor. However, if you
look at the detailed documentation for the Windows 95 memory man-
agement AP, you'll see that all of the API functions originally designed
to allow careful management of a segmented address space are now
marked “obsolete.” The “obsolete” list includes, for example, all the
functions related to selector management. The reason, of course, is the
Windows 95 support for 32-bit linear memory and the planned obsoles-
cence of the segmented memory functions—yet another unsubtle hint
that the Win32 AP is the API you should be using to write Windows ap-
plications.

Although use of the 32-bit flat memory model simplifies a lot of
Windows programming issues, it would be misleading to say that Win-
dows memory management has suddenly gotten easy.? Windows 95
actually has a number of new application-level memory management

11. The Windows Device Driver Kit is the best reference for detailed information
on VxDs and the associated API functions.

12. The Windows 95 documentation lists 45 API functions under the heading
“Memory Management.” The “obsolete” list numbers 28 API functions.

Petitioners HTC & LG - Exhibit 1002,

. 253

INSIDE WINDOWS 95

86

Page 254 of 280

Application Virtual Memory

capabilities. All of the functions relate to the management of memory
within the application’s address space, the private virtual memory allocated
to the process. The systemwide management of memory is the responsi-
bility of the base system, and the Windows API aims to hide many of the
details of the system'’s lower-level functions.

Figure 3-3 illustrates the basic layout of a Win32 application’s virtual
memory. Every Win32 application has a similar memory map, and each
such address space is unique. However, it is still not fully protected: the
private memory allocated to one Win32 applicaton can be addressed
by another application. The Win32 application’s private address space
is also the region in which the system allocates memory to satisfy appli-
cation requests at runtime.

The system address space is used to map the system DLLs into the
application’s address space. Calls to the system DLLs become calls into
this region. Applications can also request the dynamic allocation of
memory by means of virtual addresses mapped to the shared region.
Having virtual addresses mapped to the shared address space caters to
the need for controlled sharing of memory with other applications.

4GB

13GB

; 2GB

Figure 3-3.
Application virtual memory map.

Requests for memory at runtime fall into one of two categories:
the application can make an explicit request for extra memory, or the
system can respond to an implicit request for memory—that is, allocate
memory to an application as a side effect of allocating some other re-
source. An implicit request occurs, for example, when an applican'on.

Petitioners HTC & LG - Exhibit 1002, @

254

nory
ated

onsi-
f the

rtual
each
l: the
assed
ipace
ppli-

o the
;into g
on of 4
gion. 3
ersto
ns. £

yories:

or the,
llocate,
ner rcg
catioy

Page 255 of 280

e g S TN e et

THREE: A Tour of Chicago

creates a new window on screen: the system must allocate memory for the
data structures used to manage the window. Windows 95 claims memory
for resource allocation from a large 32-bit linear region rather than from
the restrictive 64K segment used in previous versions of Windows. An on-
going problem in versions through Windows 3.1, running out of memory
during resource allocation, has been largely eradicated in Windows 95.

Heap Allocation

In Windows parlance, the term heap describes the region of memory
used to satisfy application memory allocation requests. In Windows 3.1,
the system maintains both a local heap and a global heap. The local heap
is a memory region within the application’s address space, and the glo-
bal heap is a memory region belonging to the system. As an application
makes requests for local memory, its address space is adjusted to en-
compass the newly allocated memory. The system resolves requests for
global memory from the same system memory pool used for all applica-
tions. It's possible to run out of either or both resources, although the
use of a 2-GB address space makes this highly unlikely. Exhaustion of
the local heap affects only a single application. Exhaustion of the glo-
bal heap has systemwide repercussions.

Windows 3.1 programmers have to consider a variety of factors as
they decide how to satisfy an application's runtime memory require-
ments. Windows 3.1 also has a range of API functions for manipulating
dynamically allocated segments, and the manipulation of these shifting
regions is further complicated by the underlying segmented memory
model. It isn’t just a chunk of memory that must be allocated. The ap-
plication also needs a selector so that it can address the memory cor-
rectly. Under Windows 95, the Win32 application model does away with
all these considerations. Selectors are no longer required—it’s simply a
82-bit address that identifies the new memory—and the local and glob-
al heaps are merged into a single heap. The API functions that deal
with selectors and the manipulation of memory regions in a segmented
model all become obsolete. :

Windows 95 Application Memory Management

For a Windows programmer, the Win32 API greatly simplifies the most
common dynamic memory allocation chores. Furthermore, the in-
creased capability of the underlying 32-bit architecture allowed the
Windows designers to add a number of new functions for application
memory management.

87

Petitioners HTC & LG - Exhibit 1002, p. 255

INSIDE WINDOWS 95

s

88

—

Page 256 of 280

System Memory Management

. which Windows programmers have always dealt with dynamic memory #

B Windows 95 provides functions that support private
heaps whereby an application can reserve a part of mem-
ory within its own address space. The application can create .g
and use as many private heaps as it wishes and can direct 4
the system to satisfy subsequent memory allocation calls ta
]
5
¢
3

from a specific private heap. An application might use the
local heap functions to create several different memory
pools that each contain data structures of the same type
and size.

® Windows 95 provides functions that allow an application
to reserve a specific region of its own virtual address space
that once reserved won't be used to satisfy any other dynamic
memory allocation requests. In a multithreaded application,
the 32-bit pointer to this reserved region is a simple way to
provide each thread with access to the same memory.

B Memory mapped files allow different applications to share
data. An application can open a named file and map a region
of the file into its virtual address space. The data in the file is
then directly addressable by means of a single 32-bit memory
address. Other applications can open the same file, map it
into their private address spaces, and reference the same data
by means of a single pointer.

Regardless of changes in the details of application memory manage-
ment, the Windows programming model has remained pretty consis-
tent through the different product releases. Allocating blocks of
memory at runtime, using a reference to a block to manipulate it, and
ultimately returning the block to the system for re-use is the way in

requirements. Windows 95 is no different. What has changed, however, %
is the way in which the system realizes the application’s requests for dy- @
namic memory.

Starting with the Windows 3.0 enhanced mode and continuing §
with the Windows 95 Win32 application model, the Windows APl ma- 3
nipulates only the application’s virtual address space. This means that §
an application request for a block of memory will adjust the,
application’s virtual address map but might do absolutely nothing to
the system’s physical memory. Remember that the 386 deals with physical

f

Petitioners HTC & LG - Exhibit 10021p. 256

THREE: A Tour of Chicago

memory in pages each 4K in size. This page size is reflected in the vir-
tual address space map of every Windows application. If an application

sm-
create requests 100K of memory, for example, its virtual ‘address space will
ect have 25 pages of memory added to it. The system will also adjust the
ils data in its own control structures to reflect the application’s new
s the memory map
ry However, at the time of allocation, Windows won't do anything to
pe the physical memory in the system. It's only when the application starts
to use the memory that the underlying system memory management
kicks in and allocates physical memory pages to match the virtual
el memory references the application makes. If the application allocates
pace but never references a region of its virtual memory space, the system
lym_’mlc might never allocate any physical memory to match the virtual
o memory. The ability of the 386 to allow physical memory pages to be
2y to used at different times within different virtual address spaces is the ba-
sis for the operating system'’s virtual memory capabilities.
share Deep within the system are a range of memory management
aregion primitives available to device drivers and other system components that
e file is sometimes deal with virrual memory and sometimes force the system to
nemory commit actual physical memory pages. But these primitives are specific
1ap it to the base operating system. Neither applications nor the Windows
me data subsystem knows or cares about physical memory. Applications can
force the system to allocate physical memory only by actually using the
memory: namely, by reading from and writing to locations within a
: page. The separation of Windows memory management into the vir-
manage- § tual and physical levels is a key aspect of the system. Applications and
ty consis- 3 the Windows subsystems deal with defined APIs and virtual address
slocks of spaces. The base system deals with physical memory as well as virtual
te it, and address spaces._
1e way in 1 Although physical memory is transparent to an application, its be-
- memory 3 havior can radically affect the performance of the system. For example,
however, § scanning through a two dimensional array of data row by row using C as
sts for dy- 2 the programming language will cause memory to be accessed from low
' to high virtual addresses because C stores two dimensional array data
ntinuing & structures in row major order. As the memory sweep proceeds, the system
; API ma- - will allocate physical memory pages to match the virtual memory ac-
eans that cesses. Byte-at-a-time access will cause the system to allocate a new physi-
jjust the, cal page every 4096 references. Other languages—FORTRAN, for
othing t@ example-—store two dimensional arrays in column major order. Referencing
the data row by row will generate memory references to widely scattered

 physical

? -

89

Page 257 of 280
Petitioners HTC & LG - Exhibit 1002, p. 257

INSIDE WINDOWS 95

memory locations, forcing a much higher frequency of physical page
allocation and much-reduced application performance. So, although
the programmer doesn’t have to worry about matching virtual memory
to physical memory, it is a good idea for the programmer to know
something about how the underlying system primitives and hardware
support the application.

Windows Device Support

The most important aspect of the Windows device driver architecture is
its ability to virtualize devices. (Yes, it's that word again.) The greatest
difference between the device drivers of Windows 95 and Windows 3.1
is the extensive use of protected mode drivers in Windows 95—in fact,
it will be unusual if your system uses any real mode drivers at all after
you install Windows 95. The use of protected mode for the drivers pays
off in terms of both system performance and robustness. The manufac-
turers of disk devices can adopt a new driver architecture—borrowed
from Windows NT—that almost guarantees the availability of a pro-
tected mode driver for every hard disk. In addition, new protected
mode drivers for CD ROM devices, serial ports, and the mouse make
the possibility of needing to support a device with a real mode driver
quite remote.

Device Virtualization

The device virtualization capability allows Windows 95 to use the
. memory and [/O port protection capabilities of the 386 processor £
to share devices among the different virtual machines. Every MS- 3
DOS VM believes it has full control over its host PC and is unaware §
of the fact that it might be sharing the screen with other MS-DOS §
VMs or with the Windows applications running in the System VM. :
For MS-DOS applications, the display drivers must reside in the low- 3
est level of the operating system. Many MS-DOS applications, par- S
‘ticularly those that use the display in a graphics mode or use serial 3
ports, will address the hardware directly. Windows has to intercept 4
all such direct access in order to bring order to a potentially chaotic ;
situation. The MS-DOS application knows nothing of the need to
cooperate with other applications and certainly doesn’t depend on
a system device driver to get the job done. With Windows applica-,
tions, the system has a slightly easier task since device access is a!WaYI‘ .

90

Page 258 of 280

‘ PetitionersHTC & LG - Exhibit 1002] p. 258

4P

/A

SGS-THOMSON
MICROELECTRONICS

TECHNICAL NOTE

MPEG VIDEO OVERVIEW |

AN OVERVIEW OF THE MPEG COMPRESSION
ALGORITHM

The MPEG standard was developed in response

to industry needs for an efficient way of storing and
retrieving video information on digital storage me-
dia. One inexpensive medium is the CD-ROM
which can deliver data at approximately 1.2 Mbps,
the MPEG standard was subsequently aimed at
this data rate, in fact the data rate is variable and
all decoders must be able to decode at rates up to
1.856 Mbps. Although the standard was developed
with CD-ROM in mind, other storage and transmis-
sion media can include DAT, Winchester Disk, Op-
tical Disk, ISON and LAN.

Two other relevant intemational standards were
also being developed during the work of the MPEG
committee : H.261 by CCITT aimed at telecommu-
nications appfications and ISO 10918 by the ISO
JPEG committee aimed at the coding of stll pic-
tures. Elements of both standards were incorpo-
rated into the MPEG _standard, but' subsequent
development work by the committee resulted in
coding elements found in neither.

Some of the participants in the MPEG committee
include : Intel, Bellcore, DEC, IBM, JVC Corp,
THOMSON CE, Philips CE, SGS-THOMSON,
Sony Corp, NEC Corp and Matsushita EIC. These
are not nacassarily be the mostimportant members
of the committee but it gives an indication of the
relevant importance of the MPEG standard.

Although the MPEG standard is quite flexible, the
basic algorithms have been tuned to work well at
data rates from 1 to 1.5 Mbps, at resolutions of
about 350 by 250 Pixels at picture rates of up 10 25

A~nl 19492

or 30 pictures per second. MPEG codes progres-
sively-scanned images and does not recognise the
concept of interlace; interlaced source video must
be converted to a non interlace format prior to
encoding. The format of the coded video allows
forward play and pause, typical coding and decod-
ing methods allow random access, fastforward and
reverse play also, the requirements for these func-
tions are very much application dependent and
diffierent encoding techniques will include varying
levels of flexibility to account for these functions.
Compression of the digitised video comes from the
use of several techniques : Sub sampfing of the
chroma information to match the human visual
system, differential coding to exploit spatial redun-
dancy, motion compensation to explit temporai
redundancy, Discrete Cosine Transform (DCT) to
match typical image statistics, quantization, vari-
able length coding, entropy coding and use of
interpolated pictures.

ALGORITHM STRUCTURE AND
TERMINOLOGY

The MPEG hierarchy is arranged into layers (Fig-
ure 1). This layered structure is designed for fiexi-
bility and management efficiency, each layer is
intended to support a spedcific function i.e. the
sequence layer specifies sequence parameters
such as picture size, aspect ralio, picture rate, bit
rate elcetera , whereas the picture layer defines
parameters such as the temporal reference and
picture type.

This layered structure improves robustness and
reduces susceptibility to data corruption.

14

Page 259 of 280

Petitioners HTC & LG - Exhibit 1002)p. 259

MPEG VIDEO OVERVIEW E

Figure 1 : MPEG Bistream.Hierarchy

Picture and aspect ratio
Picture rate
Bit rate
Minimum decoder buller size
Constrained parameters flag
(Intra quantization table)
(Non-intra quantization table)

(=]

{User data)
Time Code
I Group of Picture Closed GOP flag
Broken link flag
(User data)

| Picture

Temporal Reference
Pictura type (I/P/B/0)
Decoder bufter initial occupancy

{Forward

{Backward motion vector resclution and range

vector 1 and range)

(User data) 3

Slice vertical position
. Quantizer scale

Macroblock

-
(Swffing)

Address increment (VLC)
Macroblock type (VLC)
(Quantizer scale)

(Forward motion vector) (VLC)
{Backward mation vector) (VLC)
{Coded Yock pattem) (VLC)

(DCT coefficients for up to 6 blocks) (VLC)

2240-01.EPS

For convenience of coding, macroblocks are di-
vided into six blocks of component Pixels - four
luma and two chroma (Cr and Cb) (Figure 2)_.

Page 260 of 280

Blocks are the basic coding unit and the DCT is
applied at this block level. Each block contains 64
component Pixels arranged in an 8x8 array (Fig-
ure 3))

Petitioners HTC & LG - Exhibit 1002, p. 260

i o T I W

MPEG VIDEO OVERVIEW

Figure 2 : Macrablock Structure

Figure 3 : Block Structure

Y Cr Cb
3240-02EPS

3240-03EPS

There are four picture types : | pictures or INTRA
pictures, which are coded withoul referenca to any
other pictures; P pictures or PREDICTED pictures
which are coded using mation compensation from
a previous picture; B pictures or BIDIRECTION-
ALLY predicted pictures which are coded using
interpolation from a previous and a future picture
and D pictures or DC pictures in which only the low
frequency component is coded and which are only
intended for fast forward search mode. B and P
pictures are often called Inter pictures. Some other
terminology that is olten used are the terms M and
N, M+1 represents the number of frames between
successive | and P pictures whereas N+1 repre-
sents the number of frames between successive |
pictures. M and N can be varied according to
different applications and requirements such as
fast random access. In Figure 4, M =3 and N= 12.

A typical coding scheme will contain a mix of I,P
and B pictures. A typical scheme will have an |
picture aevery 10 to 15 pictures and two B pictures
between succesive | and P pictures: refer to Fig-
ure 4.

MPEG COMPRESSION ALGORITHM
The MPEG algorithm'is based around two key

techniques : temporal compression and spatial
compression. Temporal compression relies upon
similarity between succassive pictures using pre-
diction and motion compensation whereas spatial
compression relies upon redundancy within small
areas of a picture and is based around the DCT
transform, quantization and entropy coding tech-
nigues.

TEMPORAL COMPRESSION

Inter (B and P) pictures are coded using maotion
compensation, primarily prediction and interpola-
tion. . .

Prediction :

The predicted picture is the previous picture modi-
fied by motion compensation. Motion vectors are
calculated for each macroblock. The motion vector
is applied to afl four luminance blocks in the macro
block. The motion vector for both chrominance
blocks is calkculated from the luma vector. This
technique refies upon the assumption that within a
macroblock the difference between successive pic-
tures can be represented simply as a vector trans-
form (i.e. there is very little difference between
successive pictures, the key differenca being in
position of the Pixels.).

Figure 4 : Typical sequence of pictures in display order

==

9 o n 12 13 14 15
324004 EPS

Page 261 of 280

Petitioners HTC & LG - Exhibit 1002, p. 261

MPEG VIDEO OVERVIEW

Interpolation

Interpolation (or blduectlonal prediction) gener-
ates high compression in that the picture is repre-
sented simply as an interpolation between the past
and future | or P pictures (again this is perfgrmed
on a macroblock leve!).

Pictures are not transmitted in display order but in
the order in which the decoder requires them to
decode the bitstream (the decoder must of course
have the reference picture(s) before any interpo-
lated or predicted pictures can be decoded). The
transmission order is shown in Figure 6.

s

Figure 5 : Make up of |, B and P pictures

H

3240-05.EPS

fim

Figure 6 : Typical sequence of pictures in transmission order

J240-06 EPS

SPATIAL COMPRESSION

The spatial compression techniques are similar to
those of JPEG , DCT, Quantization and entropy
coding. The compression algorithm takes advan-
tage of the redundancy within each block (8 x 8
Pixels).

The resulting compressed datastream is made up
of a combination of spatial and temporal compres-
sion techniques which best suit the type of picture
being compressed. Decoding is controlled through
the use of MPEG system codes which are put into
the data stream explaining how to reconstruct spe-
cific areas of picture - as shown in Figure 1.

CONCLUSION A

* Through a combination of techniques, MPEG com-
pression is designed to give good quality (typically
similar or better quality to VHS) images from such

storage media as CD-ROM. The quality is however,
dependent upon the type of picture compressed
and the level of redundancy within the sequence
coded. Picture quality will also depend upon how
well the sequence has been coded and which
features are required - For Example : For fast
random access, N will tend towards zero hence the
quality of compression will deteriorate, if random
access is not required then the number of P and B8
frames can increase, hence increasing the poten-
tial quality. The standard does not specify a method
of compression but a syntax for the compressed
data, this allows for differing compression tech-
niques depending upon differing requirements. The
decoding techniques are defined due to the nature
of the compressed data stream.

This method aflows for true flexibility in coding
whilst retaining the format and hierarchy ensuring
compatibility in the datastream and hence uniform
readability.

d la belleved o be and reflable. H

, SGS-THOMSON Microel nor

ponsibiiity

for the consequences of use of such information nor for any hlﬂngomom of patents or other rights of third parties which may result

from Rs use. No It Is granted by implication or atherwiss under any patent or patent rights of SOS-YNOUSON Microelectronics.
Speciticats ¢ d in this pubfication are subject 10 change without notice. This pubHh des and repl alt
Intormation previously supplisd. sos-mousou lllcmbcuonla d are not rzed for use as mlcal companents n Iffe

support duﬂc.n or systems wRhout express written spproval of scs-‘monsou Wicroslectronics.

,/'/_\
1992 -THOMSON nleﬂnbetnnlco AR Rights Reserved
S-THOMSON Microelectronics GROUP OF COMPANKES
Austalia - Brazt - Chuna - France - Germany - Hong Kong - Iul - Japan - Korea - Malsysa - Maza - Morocco
The Netherlands - 5ingapore - Spain - Sweden - Swizenand - Tawan - United Kingdom - US A,

ORDER CODE :

Page 262 of 280

Petitioners HTC & LG - Exhibit 1002, n. 262

F3.

On the Bus Arbitration for MPEG 2 Video Decoder

Chia-Hsing Lin and Chein-Wei Jen

Department of Electronics Engineering and Institte of Electronics
National Chiao Tung University

Abstract

A bus arbitration scheme for the MPEG-2 video
decoder VLSI developed by NCTU is proposed in this
paper. Compared to the traditional pure stochastic bus
scheduling scheme, the internal buffer requirement
and bus arbitration overheads are reduced due to the
deterministic nature of this strategy. This bus
arbitration scheme has been verified using Verilog
simulator and will be implemented in the NCTU
MPEG-2 decoder.

1. Introduction

ISO standard 13818[1] known as MPEG-2
(Moving Pictures Expert Group) have been adopted in
many applications like TV set-top boxes, PC add-on
cards and entertainment machines. To promote the
success of this motion picture standard, it is attractive
to develop a single chip decoder, accompanied by
DRAMSs, to establish a low cost decoding system. The
cheapness of standard DRAM:s is the main reason for
MPEG-2 decoder VLSI to use as the temporal picture
buffer. However, the decoder VLSI also has to
contain several internal buffers, which will increase
the cost of this decoder, to conquer the limited
memory bandwidth provided by DRAM. Therefore, it
is important to design a suitable bus arbitration
scheme for memory access to utilize the bandwidth
efficiently in order to reduce the amount.of internal
buffers.

In this paper, we propose a bus arbitration
scheme for MPEG-2 decoder of main profile and
main level (MP@ML). We will first give an
architectural overview and functional description of

NCTU MPEG-2 decoder in the next section Jhe

bottl

tesults usi
simulator. Section 5 concludes the paper.

2. MPEG-2 Decoder Design

The architecture of the MPEG-2 video decoder
developed by NCTU is shown in Fig.1. The system
controller provides controls for other functional units.
The decoding pipeline (including variable-length
decoder, inverse quantizer, inverse discrete cosine
transform unit and motion compensation unit)
performs the main MPEG-2 decoding operations. A
64-bit memory data bus is used for the VO
transactions between functional units and external
memory (which is used as the VBV buffer and
reference picture buffer). The memory IO
transactions are managed by a memory controller.
The video interface controls the display timing for
video output and performs some post-processing
operations like the output format conversion from
4:2:0t0 4:2:2.

To perform the decoding and display processes,
the decoder first receives compressed bitstream from
host interface to bitstream buffer (BBUF) and
transfers them to the VBV buffer, which is located in
the external memory. The decoder will then re-read
the bitstream from VBV buffer to VLD buffer (VLD
BUF) for the requirement of decoding pipeline. If the
macroblock currently decoded is nonintra-coded, the
decoder may also need to load the reference blocks
from reference picture buffer, which is also in the
external memory, to perform motion-compensation
and interpolation. After adding the results from IDCT
and MC units, the decoder will write back the sums to
the reference buffer. Finally, at the time to display the

‘previous decoded data, the decoder will read video

data again from reference picture buffer to video
output buffer (VBUF). Fig.2 shows the timing
diagram for each functional unit in the MPEG-2
decoder.

\LsT Toch ﬁgﬁsv o I}W_ml 1G9S Sypngosionn .

Reproduced with permission of copyright owner. Fhrther reproduction prohibited.

Page 263 of 280

Petitioners HTC & LG - Exhibit 1002, p. 263

3. Bus Arbitration for Memory Access

3.1 The Problem of limited Memory Bandwidth

In order to reduce the number of DRAMSs and the
number of I/O pins, the VBV buffer and reference
picture buffer share the same external memory port. A
memory bandwidth problem occurs because of the
several memory /O transactions (including the
bitstream-- data-- loadms-aml szmswaddm,mm

overheads introduced by stochastic bus arbitration
between different transaction requests will worsen the
bus load. The traditional bus arbiter using fixed
priority scheme[3] may cause functional units to
starve without large internal memories for I/O
buffering because of the heavy memory bus load in
MPEG-2 with CCIR and higher resolution. In [4],
Tatsuhiko, et al. proposed a sophisticated scheme to
reduce the memory bottleneck. The basic idea of this
scheme is a combination of priority assignment and
polling (Fig.3). However, the extra FIFO and internal
memories are still required to accommodate the stall
of the decoding pipeline due to the stochastic nature of
. this scheme.

3.2 The Proposed Scheduling Scheme for Memory
Access

Unlike the previous pure stochastic scheduling
scheme, a "pseudo-deterministic” scheme to- allocate
the bandwidth for each I/O transaction is proposed in
this paper. For each macroblock prediction mode, we
analyze the worst case in data transferring and
allocate the required duration for each memory /O in
one macroblock period according to the following
criteria:
Nogo t Npas t Nt # Ny + Ny + N,

clock rate
(no of MBs in a frame) x (frame rate)

. 0}
+ N,,)x Nocees XNy,

SNy

NHB
Nygio X Noyigw X Ny
S Noiseo @

where

Nw is the number of cycles to decode one
macroblock,

N is the number of cycles to transfer video output
data to display buffer,

Nuw is the number of cycles to read reference blocks
from reference picture buffer,

Ne... is the number of cycles to write predicted
macroblock to display buffer,

N is the number of cycles to read from and write to
VBV buffer,

N, is the number of cycles to refresh DRAM,

N i the bus arbitration overhead,

Naw is the ratio of system clock and video output
frequencies.

N is the width of memory bus,

N.. is the number of DRAM page mode overhead,
N.oe 18 the number of cycles to access one word from
external memory in page mode, and

N, is the number of samples to display for one pixel.

Furthermore, to guarantee that the display process
does not overrun the decoding process, the decoding
rate must be larger than the display rate. Hence one
more condition must be held:

No of pixels in one picture
No. of samples output in one macroblock time
No of pixels in active region of a picture
No. of samples in one macroblock

3

where :
No. of samples output in one macroblock time

= NHB
Nogsio X Noypias X N g,

After we determine suitable time period for each
I/O transaction, we can schedule them in the decoding
time domain as the state diagram for bus arbitration
shown in Fig. 4. The memory controller normally
monitors the /O requests (i.e., polling) to or from
VBV buffer and perform the compressed bitstream
input and output. While it is time for the transaction
of any other I/O process, the bus will be allocated to
that process until its transaction encounters end. The

Reproduced with permission of copyright owner. Furger reproduction prohibited.

Page 264 of 280

Petitioners HTC & LG - Exhibit 1002, p. 264

memory controller will then return to the state to
handle the memory access for VBV buffer input or
output.

Fig.5 shows one example of the scheduling
scheme for different macroblock prediction modes,
Assume that the chip outputs one 8-bit video sample
at 27 MHz for 4:2:2 format (converted from 4:2:0
encoded in MPEG-22MP@ML, 720x480@30Hz).
Also, the whole system operates at 27MHz that can

access DRAM one word per 1.5 cycles in the fast -

‘page mode (cycle time 40ns). The decoder must
output 480 bytes of previous decoded data for display
and decode 384 bytes of data in one macroblock
period (640 cycles@27MHz). While bi-directional-
predicted macroblock is encountered (Fig. 5a and Fig.
5b), we will allocate more bus cycles for the loading
of predicted blocks, which has relatively larger
amount of data to be transferred. Although in this
case we limit the bitstream I/O sustained rate to about
200Mbps, the rate is still far lager than the bit rate
specified in MPEG-2:2MP@ML (i.e., 15Mbps). For
intra macroblock, on the other hand, more cycles will
be allocated to bitstream I/O transactions because of
the relatively lower compression ratio (Fig. 5¢) in this
type of macroblock. The display process will not
overrun the decoding process because the criterion (3)
is met;

858 x 525

= _ 720x480
50— = 9382900= .

384

4. Simulation Results and Implementation

Fig. 6 shows the simulation results of the buffer
occupancy using the fixed-priority dynamic
scheduling and the proposed scheme. The test video
sequence is "Flower garden" with bit rate 15Mbps and
the simulation duration is one-frame time. Also, the
simulation models are uninterpreted[2] to reduce the
simulation time. Furthermore, we use intra-type data
for bitstream input/output and inter-type data (frame
picture and bidirectionally field-based prediction) for
reference and predicted pictures. Although conditions
with such heavy bus load for memory access could
hardly occur in real case, it is useful to test the
robustness of the arbitration scheme.

Here we fix the size of VLD buffer to 1kbit and
observe the occupancy of bitstream buffer and video

203

output buffer. Obviously, in the case adopting the
fixed-priority dynamic scheduling scheme both of
those buffer are larger than the ones in the case using
the proposed scheme. Furthermore, although the
buffer requirement in the latter case is smaller, the
residual time for header decoding in a frame period is
still larger than the one in the former case. It is
because there exists less arbitration overhead with the
proposed scheme. Table 1 summarizes the results.
The proposed bandwidth allocation scheme for
memory access has been verified by Verilog
simulation. We will implement this scheme in our
MPEG-2 VLSI that is currently developed in NCTU.

5. Conclusion

Concluding, compared to the pure stochastic bus
arbitration scheme, the proposed scheme reduces the
required amount of internal /O buffer and the
overheads of bus arbitration for our MPEG-2
decoder. The only drawback is the little reduction in
bitstream I/O sustained rate. We will implement this
scheme in the NCTU MPEG-2 decoder.

6. Acknowledgment

This work was supported by the National Science
Council under Grant NSC 79-0414-E009-008 and
United Microelectronics Corporation.

"7, References

[1] ISO/IEC CD 13818, "Generic Coding of Moving
Pictures and Associated Audio," (MPEG-2).

[2] J. M. Schoem, editor, "Performance and Fault
Modeling with VHDL," Prentice-Hall, 1992.

[3] Thierry Fautier, "VLSI Implementation of
MPEG Decoders," in Proc. IEEE ISCAS 94
Tutorials, may 1994,

[4] T. Demura, T. Oto, K. Kitagaki, S. Ishiwata, G.
Otomo, S. Michinaka, S. Suzuki, N. Goto, M.
Matsui, H. Hara, T. Nagamatsu, K. Seta, T.
Shimazawa, K. Maeguchi, T. Odaka, Y. Uetani,
T. Oku, T. Yamakage and T. Sakurai, "A
Single-Chip Video Decoder LSL" in ISSCC

Reproduced with permission of copyright owner. Fur¥her reproduction prohibited.

Page 265 of 280

Petitioners HTC & LG - Exhibit 1002, p. 265

Digest of Technical Papers, pp.712-12, Feb
’m”

h-mcmnm
wrling T 100N RN PR
.
hmmn e

-.mpn
Telssnce puse

Fig. 3 The bus scheduling scheme proposed by Tatsuhiko
Demura, et al.

| ence l e
.u-m'
elerence Sorng Paadng
mecroblock Jieplay buf

Fig. 4 The state diagram of proposed bus arbitration
scheme.

P = R

Fig.1 Architecture of the MPEG-2 decoder

B3 storing batrsam from bistream bufler 1o rate bufler
B Loading bistream from rate bufiet 1o VLD butier

H ORAM retresh
-_-,___ T N ¢ Buside
- = ; ond Y v Vo e
R [refererice biocks blocks Output macroblock
™ eldia e Pl L] " 108 20 20 28 128 75 20
y : X o)
Ll [
“) ..1 :
s = e .
i [repee———" Dt i
= : e
' N, . " "
. {840 oycles @ 27TMHz)
Fig.2 The decoding timing diagram of decoding pipeline
(For frame picture, bidirectional field predicted Fig.5 Examples using the proposed bus allocation
macroblock). scheme, (a) for frame picture, bidirectional field predicted

macroblock (worst case), (b) for frame picture,
bidirectional frame predicted macroblock,
(c) for intra macroblock.

204

Reproduced with permission of copyright owner. Further reproduction prohibited.

Page 266 of 280
Petitioners HTC & LG - Exhibit 1002, p. 266

o - el — The Fixed- The Saving
e et = Priority Proposed
ol Dynamic Scheduling
) scheduling scheme
i Scheme
i - Size of
E Bitstream 1200bits 800bits 33%
= am Buffer
LI Size of
= \ a\‘ Video 480Bytes | 360Bytes 25%
i Qutput
Buffer
. : — - Residual 4%
CT T Bl Time for | 20980cycles | 29610cycles | (compared
@ Header | @27MHz | @27MHz | toone-
Oecupancy of Hosl iniadace nput Bufler . . Decodl_.gg frame llm_E_l_
- A

Table. 1 Comparison of buffer size and residual time for
header decoding in both scheduling schemes.

Bufler Fullness UNIT: B

Fig. 6 Comparison of buffer occupancy in both scheduling
schemes, (a) Video Output FIFO, (b) Host Input FIFO.

205

Reproduced with permission of copyright owner. Further reproduction prohibited.

Page 267 of 280
Petitioners HTC & LG - Exhibit 1002, p. 267

A Low-Cost Graphics and Multimedia
Workstation Chip Set

mmtmmmmmmmmmmopnmm
and cost at the system level. Its Hummingbird microp fe P

mmmwmawmalmwm
cache, an integrated external cache controller, an integrated memory and I/O controller,
plus enhancements for little-endian and multimedia applications. Its Artist graphics

controller integrates a graphical user interface accelerator, a frame buffer controller, and a
video controller on a single chip.
Steve Undy he computer system design approach the end product—an entire workstation or serv-
known as disintegration spurns com- er—as a whole rather than just a sum of its parts
Mick Bass plex, highly integrated system com- makes integration another degree of freedom in
ponents in favor of less complex, design optimization. In particular, the goal of the
Dawve Hollenbeck generic parts. A system house can have different processor design team becomes overall system
design goals than its component supplier, lead- optimization rather than simply processor sub- E
Wayne Kever ing to situations where the component vendor system optimization. !
provides features on an integrated part not de- |
Larry Thayer sired by the system house. A three-chip workstation system
Using standard, off-the-shelf parts lets system Recently, we introduced a number of entry-
designers pick and choose exactly the features level workstations and servers based on the
Hewdett-Packard they need without having to pay for unwanted ~ Hummingbird PA7100LC processor. Figure 1
ones, Component vendors may also charge pre- shows a block diagram of one of these comput- |
: miums for integrated designs, cutting into the ers, the HP 9000 .Model 712/60 workstation. |
1 profits of the system house, which wantstoadd ~ Because of integration, this design uses only three
! value to its products itself. Further, a system very large-scale integration parts. The Humming-
! house may not want to depend on the availabil- bird processor chip connects directly to static
i ity of a vendor's complicated integrated design cache RAMs and dynamic main memory RAMSs. It
| when shipping products to customers. also connects directly to the other two VLSI parts,
An alternative computer design approach is named LASI and Artist, via a proprietary system
toward highly integrated parts and systems, atack bus. LASI, short for LAN (local-area network) and
we have taken with the low-cost workstationswe ~ SCSI (Smaller Computer System Interface), pro-
discuss here. As both a system house and acom- vides a number of built-in /O connections for the
ponent vendor to itself, Hewlett-Packard can opti- computer—RS-232, 16-bit stereo audio, and a par-
mize a design for both performance and costfrom allel port among others—in addition to the two it
a system perspective, giving it more flexibility in ~ was named for. The Artist chip is a graphics sub-
deciding where and how to place value-adding system that connects directly to a color monitor.
features. The system house thus can specify what Integrating so much onto the three VLSI pans
fearures must be built into the components to pre- ‘was not an arbitrary choice. For example, inte-
cisely meet overall needs. Schedules, oo, arenow grating a memory controller onto the processor
visible and their risks more controllable. Treating chip results in shorter cache miss penalties than
10 IEEE Micro 0272-1732/94/504.00 © 1994 IEEE
1
Reproduced with permission of copyright owner. Further reproduction prohibited.
Page 268 of 280
Petitioners HTC & LG - Exhibit 1002| p. 268

External cache
SRAMs

Main memory
DRAMs

I Frame buffer
VRAMs

i

i - U—

Figure 1. Model 712/60 block diagram.

a nonintegrated solution. This, in tum, enables performance
improvements—especially for memory-intensive applica-
tions. It also allows the design of systems with smaller caches

lative to ne grated sy , without compromising sys-
tem performance. The 712/60 uses a fairly small 64-Kbyte
external cache. Including a second integer execution unit on
the processor also improves performance. The direct con-
nection between the processor and the graphics controller
allows for fast data transfers and increased graphics perfor-
mance. The net effect of integration on performance is that
last year's mid-range workstation performance is now avail-
able on this year’s entry-level workstation. Figure 2 gives
SPECint92 and SPECIp92 benchmark performunce ratings for
the 60-MHz 712/60 and estimated numbers for the 80-MHz
Series 800 Model E45. Also shown is the estimated pecfor-
mance for a system running at 100 MHz.

Integration also reduces costs. Figure 3 shows the single
processor board used in the 712/60. The 712/60 uses a frac-
tion of the components used in systems built just a couple of
years ago. The number of parts used in our processors has
steadily decreased from the first CMOS design completed in
1988. Figure 4a (next page) shows this integration trend for
processors, with each rectangle representing one VLSI part.
The number of components used in graphics controllers has
likewise decreased over the years, as Figure 4b shows. As an
example, we have incorporated the RAM digital-analog con-
verter, used 1o generate video signals, directly into the Artist
chip, saving both the cost of an external component and the
hoard area it would have occupied. The LASI chip replaces the
many separate components needed to provide the /O con-
nections expected on a workstation.

.
Hummingbird integrated processor chip
Hummingbird is the fourth in a series of CMOS PA-RISC
processors,”® though in many ways, it is a departure from

SPECinte2 SPECIp92

Figure 2. Benchmark performance.

Figure 3. Processor board.

the earlier designs. Rather than concentrating on producing
the most performance possible from a given piece of silicon,
we designed Hummingbird to be the most cost-effective solu-
tion without compromising performance. Humminghird also
uniguely integrates the memory controller, /O bus con-
troller, and cache controller onto the processor chip.
Design goals. Humminghird's several design objectives
are not just isolated component goals, but are constriints we
derived by carcfully considering the needs of the entire com-
puter system. For example. the choice to place the memory
controller on the processor chip actually increases the cost

April 1994 11

Reproduced with permission of copyright owner. Further reproduction prohibited.

Page 269 of 280

Petitioners HTC & LG - Exhibit 1002, p. 269

Hummingbird/Artist

Floating point

CPU/cache
controllers

Bus interface

Memory controller

Model Model Model Model
870 720 736 712
® 1989 1991 1992 1999

Bus Interface/
GUI accelerator

Frame buffer
control

Model Model Model
720 715 712
(b) 1991 1992 1993

Figure 4. Integration trend: PA-RISC processor (a);
graphics (b).

of the processor, but reduces the cost of the system. The
goals include

Reduced cost ial for competing in the very cost-
sensitive, entry-level workstation market. Integration of
the memory controller helped lower system costs.
Equally important, however, was the reduced cost cache
organization that we implemented and support for
industry-standard SRAMs, DRAMs, and memory SIMMs.
Uncompromised performance—considered system wide.
It was important that the cost objective not compromise
processing power. Although Hummingbird boasts im-
pressive integer and floating-point performance, it also
has features to support high-performance graphics and
multimedia applications. Included are a low-latency
cache and memory system, new functional units and
instructions, and an efficient system bus connection.
Inberently scalable—creating an easy upgrade patb.
Hummingbird is scalable in clock rate, external cache
sizes, main memory sizes, system bus clock ratios, and
DRAM timing parameters.

Reduced power- hieved largely by using gated clocks
and by eliminating dynamic circuit elements.
Architecturally compi; king Hi ingbird com-

pletely compliant with the PA-RISC architecture. Back-
ward compatible with existing implementations, it
includes extensions to improve the performance of little-
endian and multimedia applications, and connection to
standard I/O buses.

Improved manufacturability. We wanted to reduce man-
ufacturing costs and times by
using standardized test method-
ologies and dedicated diagnostic

Instruction

DRAMs

A

circuitry.

Features. The Hummingbird CPU
design leveraged many of its core
technologies and features from the
PA7100. Thus it has a pipeline design
very similar to that of the PA7100,
although we made several minor
changes. As Figure 5 shows, Hum-
mingbird is a two-way superscalar
implementation incorporating two
integer execution units, a floating-
point execution unit, an internal
instruction cache, a controller for
external cache, and a main memory

SRAMs

and /O controller. It interfaces direct-
ly to static cache RAMs, as well as to
standard DRAMs.

Figure 5. Hummingbird block diagram.

12 {EEE Micro

Dual-integer superscalar execution.
Hummingbird has three execution

Reproduced with permission of copyright owner. Further reproduction prohibited.

Page 270 of 280

Petitioners HTC & LG - Exhibit 1002, @

270

Instruction

Figure 6. Instruction steering.

units. The first executes integer arithmetic, shift-type and
branch instructions. The second executes integer arithmetic
and memory reference instructions (both integer and float-
ing-point). The third executes all floating-point arithmetic
instructions.

The ability to execute two integer instructions simultane-
ously is a new feature for PA-RISC processors, requiring
implementation of a second integer arithmetic logic unit.
Through careful redesign of the integer datapath and by
shrinking the translation look-aside buffer and other blocks
from the PA7100, we made room for the second ALU in the
chip floor plan. To keep costs down, we did not make the
second execution unit as flexible as the first. Only the first
execution unit, for instance, has the barrel shifter needed for
shift and merge instructions. This relatively small ir

. Bundies if both are going to
adjacent words within an
aligned doubleword

Figure 7. Superscalar bundling chart.

result of the first. Also, it will not bundle some instructions,

especially those that modify global resources such as the TLB
or control regushers due to the complexity in determining

in hardware lets us accelerate integer-only software by super-
scalar execution. The earlier PA7100 processor accelerated
mostly floating-point applications by superscalar execution.

Every cycle, the instruction steering block (Figure 6) may
issue an instruction to two of the three execution units. On
each cycle, the instruction steering block fetches two instruc-
tions from the instruction cache. Depending on whether one
or two instructions previously went to execution units, those
instructions could be several instructions ahead of the pro-
gram counter. Immediately after fetching instructions, the
steering block examines them (along with any instructions
from the previous fetch that have not yet executed) to deter-
mine which execution units they are to be directed to and
whether two instructions may be bundled, that is, issued in
the same cycle.

Several considerations arise for determining if two candi-
date instructions may be bundled. First is functional unit
availability. For instance, with only one shifter implemented,
only one shift instruction may issue per cycle. This does not
tend to limit performance, as shifter use occurs less fre-
quently than does ALU use. Figure 7 shows the combina-
tions of instructions that can be bundled.

Even though the instruction steering block can bundle two
addition instructions, it cannot do so if the second uses the

dencies. Branches are not bundled with the following
instruction. The PA-RISC architecture$ incorporates a con-
cept called nullification, in which certain instructions can
cause the following instruction to be nullified (not executed).
The instruction steering block will not bundle instructions
that can cause nullification with the following instruction.
Like many architectures, PA-RISC uses delayed branching,
where the processor fetches the instruction immediately fol-
lowing the branch, regardless of whether or not the branch
is taken. We call this instruction the delay-slot instruction; it
is not bundled.

Hummingbird has no add: li i ints on bun-
dles. ltalsonﬂmﬂwbimdlmgoftwoloadormkmc-
tions referencing adjacent words in memory so long as they
do not cross a double-word boundary. In this case, only a sin-
gle double-word address—generated by the second integer
execution unit—suffices for both instructions. Therefore, the
wo loads or stores may be bundled together. We designed
special hardware to detect this case quickly enough to make
the decision to bundle. Code that performs loads and stores
to linear address ranges—especially procedure calls and con-
text switches—will see an acceleration by this feature,

Cost-effective floating point. The floating-point unit (FPU)
design for Hummingbird supports two goals: reduced system
cost compared with PA7100-based systems and high perfor-
mance for graphics. Floating-point performance is critical to

April 1994 13

Reproduced with permission of copyright owner. Further reproduction prohibited.
1

Page 271 of 280

Petitioners HTC & LG - Exhibit 1002,

0. 271

Hummingbird/Artist

Table 1. Floating-point latencies and issue rates.

Issue Issue
Latency rate Stalls Latency rate Stalls
Add/subtract 2 1 0 2 1 0
Multiply 2 1 0 3 2 1
Mpyadd/mpysub 2 1 0 3 2 1
Divide 8 8 7 15 15 14
Square root 8 8 7 15 15 14

graphics performance in PA-RISC systems because a signif-
icant amount of graphics processing takes place in the CPU.
Fortunately, the PA7100 FPU provided an excellent starting
point for performance, so we focused our design decisions
on reducing cost without affecting performance for the tar-
geted market. We wanted area reduction in the FPU to
enable the integration of new features on the chip, such as
the memory controller. We needed reduced power to mini-
mize system power supply costs and cooling fan noise.

In graphics processing, only single-precision (32-bit) float-
ing-point performance is critical. We could thus perhaps
sacrifice some double-precision (64-bit) floating-point per-
formance to make room on the chip for the memory con-
troller. The PA7100 FPU has separate units for multiply,
divide/square root, and ALU operations. Of these, only the
multiplier architecture promised substantial area savings
without a major redesign effort. For Hummingbird, we cut
the array in half so that single-precision operations make
one pass, while double-precision operations circulate their
partial products through a second time before the final addi-
tion and rounding. Double-precision multiply is now a three-
cycle operation, and a new operation can start every two
cycles. This change reduced the multiplier power con-
sumption because of the reduced amount of circuitry active
on any cycle. Single-precision performance is unaffected and
remains a two-cycle operation, where a new operation can
start each cycle.

The change to the multiply latency and issue rate brought
up an issue in the control logic. The two-cycle latency oper-
ations fit inside the normal five-stage pipeline of the CPU.
Operations with longer latency require more control logic
to avoid pipeline stalls. We elected to take an uncondition-
al pipeline stall on any operation longer than two cycles. In
practice, data dependencies often force these stalls anyway,
so0 the performance impact is quite small, even for double-
precision floating-point applications. By reducing the control
logic we also save area. The number of register dependen-
cy comparators fell by 30 percent, and the random logic con-
trol core cell count dropped by 15 percent. Treating the
long-latency operations in a simple, uniform way greatly sim-

14 IEEE Micro

plified the controller design task. Table 1 summarizes laten-
cies and issue rates.

The biggest opportunity for power savings in dynamic cir-
cuits comes from making evaluation conditional. This way,
Hummingbird only draws current from the supply when
precharging the logic following an evaluation cycle. The
floating-point data path is composed almost entirely of
dynamic logic to satisfy speed and area constraints. Given
Hummingbird's lower frequency goal, we buffered the clocks
into the three floating-point math units and qualified them
with contro! signals. The three units have separate power
switches. Whenever a valid floating-point operation begins,
a power token gets passed along with the data, flowing
through the pipeline and causing each stage to evaluate only
on the cycle it is needed. With a continuous stream of flops,
all the stages are active at the same time. However, when-
ever there are states on which new flops do not start, only
those pipe stages with real work to do are active. Even in
most floating-point benchmark programs, many states arise
in which at least part of each math unit can remain inactive.

Cost- and performance-optimized caches and TLB. Like its
predecessors, Hummingbird cycles its external cache at the
processor frequency, allowing load instructions to execute
every cycle without penalty. Unlike its predecessors, its exter-
nal cache is combined, containing both instructions and data,
and has a small (1-Kbyte) internal instruction cache. Even
though we designed Hummingbird for low-cost systems, we
had several reasons for retaining a single-cycle external
cache. First, we felt that the silicon area on Hummingbird
was better spent on other features (such as a second integer
ALU and a memory controller) than on a relatively small data
cache. Second, for low-cost systems running at moderate fre-
quencies, our design does not require aggressive—costly—
SRAM specifications. In fact, systems based on relatively slow
12-ns parts can run up to 66 MHz. The design required only
12 such parts. Lastly, the external cache organization allows
for a greater degree of scalability and flexibility than a fixed-
size internal cache.

We added the internal instruction cache to supply the
needed instruction fetch bandwidth, as both instruction and
data caches can be referenced in a single cycle. The caches
are virtually indexed and physically tagged. The external
cache has a 32-byte cache line size, while the internal cache
has an 8-byte cache line size. Developers can configure the
external cache size between 8 Kbytes and 2 Mbytes.

Hummingbird implements a two-level instruction cache
hierarchy. The first level is the 1-Kbyte internal cache and
the second level is one half of the external cache. The first
level is a strict subset of the second. Both can provide two
instructions every cycle. If a typical operation detects a first-
level instruction cache miss, it forwards the instruction fetch
to the second-level cache. If the second-level access hits, the
cache controller forwards the double-word of instructions to

Reproduced with permission of copyright owner. ,"urther reproduction prohibited.

Page 272 of 280

Petitioners HTC & LG - Exhibit 1002, p. 272

the instruction steering logic while also sending it to the first-
level cache for insertion. If the second-level cache indicates
a miss, the memory controller begins handling the miss.

Load and store instructions represent only approximately
40 percent of the total instruction mix for PA-RISC processors.
Consequently, bandwidth is available to the external cache,
which contains both the data cache and the second-level
instruction cache. Taking advantage of this extra bandwidth
is a prefetching machine that copies instructions from the
second-level cache to the first (see Figure 8). Hummingbird
will perform this prefetch every cycle that the external cache
is not busy satisfying a data reference. The prefetch machine
attempts to stay ahead of the program counter so that a first-
level miss will not occur. At times, enough data references
block the external cache that the prefetching machine can-
not keep up with the program counter. If so, the prefetch
machine advances to the current instruction fetch address to
make future prefetches useful.

Prefetched instructions go into a two-entry queue of
instructions to be written to the first-level cache. Writes into
the first-level cache from this queue proceed in parallel with
reads from the first-level cache. An instruction fetch may use
an instruction out of this queue without penalty. If a first-
level cache miss is detected at the same time a prefetch is in
progress for that address, the instruction goes directly to the
instruction-steering logic from the external cache, reducing

the normal instruction miss penalty by one cycle. Branches'

take advantage of this feature by beginning a prefetch to the
target of the branch immediately after issuing the target
address to the first-level cache. After a branch is taken, the
prefetch machine will begin prefetching from the new pro-
gram counter location.

The data cache on Hummingbird is a conventional single-
level external cache. Reads from the external cache require
a single processor cycle—even at 100 MHz. Writes, howev-
er, require two consecutive cycles. Since store instructions
generally must read the tag portion of the cache before writ-
ing the data portion, the design uses store pipelining. This
optimization technique entails using separate address lines
for the external tag and data SRAMs. This, in turn, allows the
cache controller to read the tag for a given store at the same
time it writes the data for the prior store. Thus store instruc-
tions effectively use only two cycles of cache bandwidth
employing standard asynchronous SRAMs. The data cache
uses another store optimization that involves only stalling
the pipeline if a instruction bundle containing a store (which
will begin a two-cycle cache sequence) immediately pre-
cedes a bundle containing a data reference. In this way, the
data cache can effectively hide the extra cycle of cache band-
width needed by a store instruction if the instructions exe-
cuted on the following cycle do not need to access the cache.

The advantage of integrating a memory controller on the
same chip as the CPU becomes apparent when second-level

Prefetch
machine

Second | Instructions First
level > level
lcache lcache

To steering

Figure 8. Instruction prefetching.

instruction or data cache misses occur. The cache controller
is tightly coupled to the memory controller: the memory con-
troller detects and begins handling a cache miss at the same
time the CPU detects the miss. The cache controller uses sev-
eral techniques to reduce the penalties associated with cache
misses. It uses instruction streaming on second-level instruc-
tion cache misses, which allows the CPU to continue exe-
cuting as soon as the first, or critical, double-word arrives
from the memory controller. It writes the double-word to
both levels of instruction cache while the CPU steps, or con-
tinues execution. This will occur for each double-word until
all are written. Another feature, called stall-on-use, lets the
CPU continue executing after it detects a data cache miss on
a load instruction.

The cache controller can handle up to two outstanding
cache misses at a time. Even though the CPU will stop step-
ping after detecting a second cache miss while a cache miss
is in progress, it will resume stepping as soon as the cache
line move-in for the first miss completes. This feature allows
the memory controller to optimize misses to consecutive
cache lines.

The virtual memory system for Hummingbird is essential-
ly the same as that on the PA7100. We reduced the TLB from
120 entries to 64 to save area, although it remains fully asso-
ciative. The TLB also contains eight block TLB entries for
mapping large (512 Kbyte to 64 Mbyte) contiguous address
ranges,

Tightly coupled memory system. The design of the memo-
ry system reflects the system-level design goals of low cost
and power with high performance and scalability. We trans-
lated the system design goals into the following objectives for
the memory system. The memory system should use the low-
est cost commodity parts available at any given time. It
should enable versatile system design by allowing 2 wide

- range of possible main memory sizes for scalability. The

memory system should be capable of maintaining good per-
formance levels, at the lowest possible cost, over a wide

April 1994 15

Reproduced with permission of copyright owner. F8rther reproduction prohibited.

Page 273 of 280

Petitioners HTC & LG - Exhibit 1002, p. 273

Hummingbird/Artist

Table 2. Memory system performance (at 60 MHz).
Transaction Value
Miss occurrence to critical data
Data cache miss 7 cycles
Instruction cache miss:
Prefetch hit 4 cycles
Prefetch miss 7 cycles
Cache move-in bandwidth
Page mode 160 Mbytes/s
Nonpage mode 107 Mbytes/s

range of system frequencies. The memory controller design
should be simple, helping to achieve low development cost
through first-time correctness, small area, and ease of testing.

Integrating the memory controller onto the same die as
the CPU provides the memory controller with access to many
important CPU internal resources. This enables performance
gains that would not be possible in a nonintegrated solution.
For example, the memory controller can eavesdrop on the
real page number produced by the TLB. It can use this infor-
mation to drive addresses to the DRAM before the occur-
rence of a miss is known. This speculative address issue
saves a cycle on memory latency for cache misses. Integra-
tion also allows more effective use of the fast page mode of
the DRAM than would otherwise be possible. Due to the
early detection of cache misses, our design can in some cases
avoid DRAM precharge penalties that a stand-alone memo-
1y controller could not. To further reduce miss penalties, the
memory controller returns missing data to the cache in a
critical-word-first fashion. '

The memory controller implements an instruction pre-
fetching algorithm. This prefetch mechanism occurs between
memory and the instruction caches, and is in addition to the
second-level cache to first-level cache prefetching described
earlier. The algorithm very effectively reduces second-level
instruction cache miss penalties, due to the proximity of the
prefetch buffer to the CPU core. In the case of an instruction
prefetch buffer hit, data can be sourced to the CPU and exe-
cution can continue within four CPU cycles of the detection
of the second-level instruction cache miss.

The memory controller shares a four-entry transaction
queue with the 1/O controller. The transaction queue in
many cases allows the CPU to continue execution, while the
memory controller performs the queued transactions. When
a cache miss occurs in which the cache line to be replaced
has been modified, the memory controller queues the mod-
ified data while fetching the missing data from memory. Only
then does it post the modified data to memory. Table 2
shows some performance characteristics of a typical Hum-
mingbird memory system.

16 IEEE Micro

The memory controller is versatile enough to allow use of
state-of-the-art commodity parts throughout the expected life-
time of the product. Industry-standard DRAM SIMMS form
the system’s main memory. The main memory data bus is 72-
bits wide. Eight of the 72 bits serve for an error cotrecting
code that can correct any single-bit error and detect any dou-
ble-bit error. Since SIMMs of different types require different
address bits to be multiplexed into the row and column
addresses, the memory controller implements the address
multiplexing function in a programmable fashion, memory
card by memory card. This approach maximizes flexibility in
the type of memory that may be installed in the system:

We built the memory controller with system scalability in
mind. Systems may be built with as few as one, and as many
as 16 SIMM slots, providing possible main memory sizes of
4 Mbytes to 2 Gbytes. Delays between DRAM address, con-
trol, and data edges are programmable, allowing for tailor-
ing the speed (and cost) of the DRAM used for main memory
to system requirements. The design supports DRAMs that
implement an extended-data-out mode, providing superior
page mode bandwidth at higher system frequencies.

Some systems may require buffering of some or all of the
DRAM control lines. All DRAM control lines have program-
mable sense—active high versus active low—for this reason.
The sense of each of the control lines may be programmed
independently, allowing maximum system design flexibility.

Although the Hummingbird system caches are smaller than
those in previous systems, the cycles per instruction contri-
butions due to cache misses are on the same order as in sys-
tems with larger caches. By drastically reducing miss
penalties through an integrated approach, our design main-
tains good performance at a lower system cost.

High-bandwidth /O system. The 1/O system uses a 32-bit
bus onto which addresses and data are multiplexed. This sub-
stantially lowers the pin count and cost from a nonmultiplexed
bus, thus allowing integration of the I/O controller onto the
same die as the CPU and memory controiler. Tight coupling
between the /O bus and the CPU and memory controller
maintains performance, as does an efficient 1/O protocol.

The I/O controller performs /O reads and writes on behalf
of the CPU, and direct-memory access on behalf of masters
residing on the 1/0 bus. A transaction queue, shared with
the memory controller, receives all CPU I/O requests, allow-
ing the CPU to continue execution, in most cases, while the
1/0 transaction proceeds. DMA requests always insert direct-
ly into the head of the transaction queue. Addresses issue in
a speculative manner to the DRAM address bus from the I/O
bus when the I/O bus is not granted to the CPU. This not
only benefits performance, but also allows the memory con-
troller to handle DMA in the same way that it handles mem-
ory requests from the CPU, reducing the design complexity.

We paid particular attention to performance at the system
level while designing the 1/O system. For example, the

Reproduced with permission of copyright owner. Futher reproduction prohibited.

Page 274 of 280

Petitioners HTC & LG - Exhibit 1002, p. 274

processor retains access to main memory while the 1/0 bus
is granted to an external master that is performing DMA. The

. memory controller alternates between memory requests from

the CPU and DMA requests from the 1/O system.

The ability of the CPU to quickly move data from main
memory to the /O system is ial for good system graph-
ics performance. The memory and I/O systems work togeth-
er to allow overlapped execution of processor reads from
memory and processor writes to 1/O devices. The CPU can
atain a bandwidth of 50 Mbytes/s from main memory to /O
by using this technique, without requiring special block
move or DMA hardware.

The design of the I/O system also reflects system scala-
bility. We structured the I/O bus to operate properly to a fre-
quency of 40 MHz. The CPU-to-10 bus frequency ratio is
programmable to either 2:1 or 3:1. For maximum system
design flexibility, we left the system arbitration logic off chip.

New architectural extensions for flexibility and performance.
The Hummingbird CPU is completely compliant with the PA-
RISC 1.1 architecture.b Existing code will automatically be
accelerated by the performance features we implemented,
although newer compilers take better advantage of the super-
scalar abilities of the CPU. Besides being backwards compat-
ible, Hi ingbird also impl ral new extensions
to the architecture: litle-endian addressing, uncachable mem-
ory pages, and multimedia-oriented instructions.

Hummingbird supports both big-endian addressing, which
all previous PA-RISC processors implement, and little-endian
addressing. The difference between the two modes specifi-
cally deals with the order of bytes within larger data quan-
tities and can be conceptualized as whether the most
significant, or leftmost, byte in a 4-byte register will be loaded
from or stored to byte address 0 or 3. This may seem trivial,
but many programs implicitly assume one byte order or the
other, therefore representing a roadblock to porting software
berween computers having different byte-endian address-
ing. We wanted to tap into the large pool of software writ-
ten for litde-endian processors but still remain compatible
with existing PA-RISC code. Thus we added a mode bit to the
PA-RISC processor architecture that selects between big- and
linle-endian byte addressing. Called the E bit, we put it into
the processor status word so that it can vary from process to
process. A single workstation thus can run both big- and
lile-endian applications concurrently. The dynamic nature
of this bit dictated that memory be one endianess or the other
(chosen to be big-endian on Hummingbird) and that data
quantities be either byte-swapped or not on transfers
between the CPU's registers and memory. In this way, both
big- and little-endian software consistently treat a datum cor-
rectly that they are processing.

Cenain types of software can be better optimized if some
memory pages never get loaded into the data cache, for
example, a device driver that communicates with an I/O

I
e e A e

A T Nrr‘M

Figure 9. Hummingbird die.

device by reading and writing messages in main memory
locations, If memory is always cachable, the driver must exe-
cute time-consuming cache flushes to prevent memory writes
caused by cache line replacements from corrupting the 1/0
device's messages. Hummingbird supports uncachable pages
because we added another bit, called the U bit, to each TLB
entry. This bit controls whether a data cache miss to memo-
ry space will cause a move-in of the target memory line or not.
An active area of multimedia research at Hewlett-Packard
involves the algorithms used to decompress real-time audio
and video information. Performance research suggested that
many of the algorithms studied frequently used a few oper-
ations: addition and subtraction with either modular arith-
metic or saturation, taking the average of two numbers, and
multiplication by a small constant. Saturation clips the result
to the largest value on positive overflow or clips to the small-
est value on negative overflow. We have speeded up all
these operations in Hummingbird. Each integer execution
unit can execute two of these operations together, meaning
that with the two integer units, four operations can occur
imultaneously, thus accelerating the various multimedia
algorithms substantially. These multimedia-motivated en-
hancements added insignificant (less than 0.2-percent) sili-
con area, while improving performance substantially and
without requiring a dedicated multimedia accelerator chip.
Figure 9 shows a die photograph of Hummingbird; Table
3 (next page) gives some of the pariculars about the chip
design.

April 1994 17

Reproduced with permission of copyright owner. Furtfer reproduction prohibited.

Page 275 of 280

Petitioners HTC & LG - Exhibit 1002, p. 275

* [s the proposed function best implemented in the CPU,
or could the same function be implemented just as effec-
tively in the graphics subsystem?

* Does the envisioned enhancement fit within the gener-
al CPU architecture in an economical fashion? (We never
considered adding significant cost to the CPU.)

+ Does the proposed enhancement provide a significant
performance advantage?

One important operation in a GUI is passing data from
main memory to the display for painting backgrounds or fill-
ing patterns. Graphics hardware cannot alone perform this
operation: the CPU and memory system must also be
involved. Our approach has the CPU/memory system pro-
viding a fast path from memory through the floating-point
registers to the system bus (50 Mbytes/s) and the graphics

Table 3. Hummingbird detalils.
Parameter Value
Transistors 500,000
Die size 14x14 mm
Metal layers 3
Lt 0.61 pm (NFETs)

0.66 um (PFETS)
Frequency 0-100 MHz
Power (60 MHz) 9.0W (worst case)
6.8W (typical)
Package 432-pin CPGA
1.8x1.8-inch
Supplies 5V,3.3v
Artist integrated graphics chip

Coupled to the Hummingbird processor is a single-chip
graphics system that complements the capabilities of the
processor (see Figure 1).

Design goals. We designed the Artist graphics system to
perform well in three areas:

* Fast 2D graphical user interface. Nearly every comput-
er user has grown accustomed to running some sort of
GUL. Speed is important for general user productivity.

« Efficient 3D graphics. HP’s PowerShade software
enables 3D graphics on even the least expensive work-

hard having adequate frame buffer write bandwidth (96
Mbytes/s) from the system bus.

The CPU also had to be able to send data quickly from
CPU integer registers to graphics hardware. This sends low-
level GUI primitives to the GUI accelerator. High bandwidth
streams of CPU writes to I/O addresses have become stan-
dard in PA-RISC processors. Providing this capability
involved reducing processor penalty cycles associated with
1/O references and designing efficient mechanisms to trans-
fer data between the CPU's connection to the memory and
YO controller and the system bus where the graphics con-
troller resides. :

Early investigations clearly showed that our cost con-

station systems.

* Digital video decompression. Most of today's solutions
require significant additional hardware. To meet the cost
goals of the target workstation, we needed to provide
this capability without additional hardware cost.

While it would be possible to design a graphics subsystem
without considering other aspects of the system, the result
would most likely be more expensive and slower than a sys-
tem-oriented approach. Design and partitioning tradeoffs
between GUI, 3D graphics, and decompression considera-
tions let us place functionality where it can be provided most
efficiently. In most cases, our graphics system design includ-
ed performance margins to allow for the inevitable improve-
ments in CPU speed.

Grapbical user interface. Fast GUI performance is a good
example of a sy qui involving hard fea-
tures in both the CPU and the*graphics subsystem. GUISs use
a number of low-level primitive routines that account for a
majority of the time spent in typical user interactions.
Accelerating these routines with a minimum of hardware to
keep costs low presents the real problem.

Our criteria for including special features in the CPU were:?

18 IEEE Micro

would not allow us to use hardware acceleration for
all other GUI routines. Instead, we accelerated only those
routines deemed most important: vectors, rectangles, screen-
to-screen block moves, memory-to-screen block moves, text,
cursor motion, and pixel formatting. Hardware support for
vectors includes a vector drawing engine that can be loaded
with a single word per connected polyline segment, while
the CPU formats the word and performs the write-to-1/0
space. The graphics hardware limit for vector drawing is over
2 million vectors/s.

Found in such areas as window backgrounds and bound-
aries, rectangle fill is another commonly used operation.
Since VRAMs have a fast block mode to draw large, constant-
color regions, we added hardware support for this function

‘as well. Software specifies rectangles via a pair of writes. The

hardware takes advantage of the four-column block mode to
achieve a 425-million pixel/s peak rectangle fill rate with 2-
Mbit VRAMs, and 850 million pixels/s peak with 4-Mbit
VRAMs.

Since nearly all applications include text, user productiv-
ity demands fast text painting and scrolling. Artist lets the
CPU provide just four words to define a 6x13 character, then
optimizes the VRAM accesses to maximize text performance.
An Artist chip can paint over one million characters/s.

Reproduced with permission of copyright owner. F‘urtker reproduction prohibited.

Page 276 of 280

Petitioners HTC & LG - Exhibit 1002, p. 276

Another aspect of fast text scrolling

fom one location on the display 16 PO Lo esson20 ot G200 | 260t [coor
another. We also use this capability to image LY conversion | RGB e —]
move entire windows on the display.
Because moving pixels from one loca- — e ,
tion to another would be inefficient if -bit__| Frame . Color 24-bit

> > |
all the data had to go through the CPU, RGB | buffer | RGB recovery [| pge * DisPlaY
Artist includes hardware to handle this

operation. With this support, Artist can
achieve a block move rate of 47 million
pixels/s within the frame buffer.

To make all these features work
seamlessly and efficiently for the GUI
software drivers, we incorporated a number of addressing
and data modes. These permit pixel accesses to be any of
several pixel configurations (one, four, or 32 pixels per 32-
bit word) with arbitrary frame buffer data alignment. Pixel
replication can extend single-bit pixels to full depth; either
ordered dithering or color compression can reduce 24-bit
pixels to eight bits.

A hardware cursor maximizes GUI interactivity by allow-
ing a cursor that does not affect the image bitmap. A hard-
ware cursor can save many of the system CPU cycles spent
on the GUL

Three-dimensional graphbics. Consistent with the system-
design criteria used with GUI acceleration, Artist offers fea-
tures to aid in the display of 3D data sets. These include a
hardware vector rasterizer for accelerating wireframes and
dithering and color compression for displaying 3D solids.

Fast memory-to-frame buffer writes help when double-
buffering is required. Software can draw images to a virtual
window in main memory, then quickly write them to the
frame buffer when complete. The CPU's dual-i ALUs

Figure 10. Image decompression pipeline. [Red-green-blue (RGB) and yellow-
ultramarine-violet (YUV) are competing color schemes.]

Figure 11. Dithering (top) versus color recovery (bottom).

pression performance. (See Figure 10.)

Artist has circuitry to convert the color-space and to color
compress the image into its 8-bit frame buffer. The colors
are restored as part of the video refresh process; they are
true color and appear to be 24-bits deep. The resultant

help 3D graphics solids rendering into main memory in addi-
tion to aiding general-purpose processing, CPU floating-point
enhancements for graphics, including fast clip checking and
parallel multiplication and addition, allow very efficient vec-
tor vertex calculations.”

Multimedia. A new use of graphics hardware is for the
display of images or image sequences that had previously
been compressed. To make image retrieval interactive and
real-time video sequencing possible, image restoration must
be quick. Typically, this process includes variable-length
decoding, inverse quantization, inverse discrete cosine trans-
formation, and color-space conversion, as for example, in
MPEG video decompression.

System-level design is especially helpful with digital
image/video decompression. 3ince the CPU can do most of
the full-motion digital video decoding with some instruction
set tuning, dedicated hardware need not be added. Putting
the last step of the decompression process (YUV-t0-RGB
color space conversion) in Artist further improves decom-

ges are much better that ones generated using dither-
ing, a common technique (see Figure 11). The result pro-
vides real-time, decompressed, true-color video images on
the display with only an entry-level, 8-bit hardware
configuration. ~

Features. Bringing such advanced capabilities into wide-
spread use requires a cost-effective solution. The graphics
subsystem described here incorporates acceleration for GUIs,
3D graphics, and digital video with RAM control and video
refresh in a single custom VLSI chip. When coupled with
four or eight VRAMs (depending on the resolution of the dis-
play), this chip provides a complete workstation graphics
hardware subsystem. (See Figure 12, next page, for its block
diagram and Table 4 for its performance highlights.)

To minimize costs, we put the entire graphics system
(except video RAM) on a single chip. Most graphics controller
chips require external video clocks or digital-to-analog con-
verters, but we included these in Antist to keep the parts count
low. As Figure 13 shows, Artist consists of seven main blocks:

Bus interface/FIFO. Artist connects to the 32-hit multi-

April 1994 19

Reproduced with permission of copyright owner. Further reproduction prohibited.

Page 277 of 280

Petitioners HTC & LG - Exhibit 1002, p. 277

|
|

Hummingbird/Artist

Artist - Table 4. Artist performance. -
cPU 1o accg}ajrlator RGa Monitor Parameter Value (per second)
bus Video timing/
Frame buffer || Curso/RAMDAC Large rectangle fill (peak) 850M pixels
controller 10-pixel, randomly oriented 2.1M vectors
10%x10 rectangles 1.7M
32 bits 32bits Text characters (6x13 pixel) 1M
. Y FB BitBit (unaligned) 47M pixels
Random port Serial port
VRAM array
L 1or2Mbytes (8 bits/pixel) |

ous pixel depths, plane masks, color spaces, and data

Figure 12. Graphics system block diagram.

1/0 bus RGB analog out
32-bits muxed addr/data

Input FIFO

¢ GUI accelerator
§ (vectors, ractangles,
text, BLTs)

Pixel 1O
data path

LUT select/

cursor control
V, Decompressiol
i cursor, LUT

£
: State registers
8 Color space converter
Pixel formatter
Tile builder
Read-ahead FIFO

VRAM controller

VRAM controller VRAM serial port

select RAM

alignments required by the software drivers. Con-
tained in this block are the color converter, color com-
pressor, dither unit, data barrel shifter, and lookup
table and cursor data mapper.

Programmable VRAM controller. A VRAM controller
at the output of the ACF accesses the random-access
port of the VRAMS and initiates data-transfer cycles
for updating the VRAM shift registers. Some of the
timing parameters are programmable to maintain high
levels of performance even when running at a slow-
er clock frequency. Page mode cycles are 37.5 ns, with
a clock frequency of 80 MHz. Making extensive use
of block mode writes provides further performance
optimization.

Video timing generator/PLL. A necessary part of any
display controller is the video timing generator. The
one built into Artist has programmable timing para-
meters, including the dot clock frequency itself. Artist
reads in lookup-table select bits for each scan line
during the horizontal blanking period prior to the dis-
play of that line. It supports a wide assortment of res-

n,

Figure 13. Artist chip block diagram.

plexed address/data system bus connecting the CPU, graph-
ics, and 1/O chip. Bus cycles run up to 40 MHz. Artist can
accept either one or two data transfers per address cycle,
making the peak available bandwidth over 100 Mbytes/s. A
32-deep first-in, first-out memory buffers transactions direct-
ed to various parts of the chip.

GUI accelerator. The GUI accelerator consists of an ALU
connected to seven registers that manipulate display address
and two registers that generate display data. Because these
registers operate in a master/slave configuration, one oper-
ation can proceed while the next is being set up. Accelerated
GUI functions include vector stepping, rectangle filling, text
painting, pixel block moving, and lookup table writing.

Addpress/color formatter. At the output of the GUI acceler-
ator is the address/color formatter that maps graphics data
into the frame buffer. This process includes handling vari-

20 IEEE Micro

olutions and refresh rates, from 640x480 pixels to
1,280x1,024 pixels with 72-Hz refresh.

Color recovery. Before the video refresh data reach-
es the lookup tables, it can pass through the color
recovery unit. Whether the colors are recovered depends on
whether the lookup-table selection bit matches the color
recovery enable bit. The lookup tables make a small amount
of correction to achieve the final image.

Lookup table/DACs. There are two lookup tables, each
with a configuration of three 256 entries. Either all three
RAMSs can use a single 8-bit index in indexed (pseudocol-
or) mode or three separate indices can provide true-color
decompression mode. Cursor data inserts into the video data
stream after the lookup tables so it does not interfere with
the images on the display. The DACs have a 75-ohm output
so they can have a direct electrical connection to the display.

Chip details. All this circuitry fits on a die measuring
9.7x12 mm in a 208-pin package (See Figure 14). A digital
flat-panel port requires a 240-pin package. Table 5 provides
additional details about the Artist chip.

Reproduced with permission of copyright owner. Burther reproduction prohibited.

Page 278 of 280

Petitioners HTC & LG - Exhibit 1002, 9. 278

venen -
480400000000 B FPAEDITLIISETEN SOULHIINSRIVIUSRIIS ENOTAOE

.
.
.
.
.
.
°
-
.
-
.
.
»
.
.
.
.
»
.
-
.
.
.
.
.
.
.
s
.
H

66446020800 00R0easE TN es s mu—

PeeanureBIsssIRcetsatsarcuntey

Figure 14. Artist die photograph.

Chip design methodology

Our low-cost goals drove several aspects of the chip
designs for the initial systems. The cost of a high perfor-
mance package becomes a significant portion of the deliv-
ered part cost. Reducing power dissipation was also a key
consideration during the initial design phase.

The leveraged CPU design made heavy use of local two-
phase nonoverlapping clock generators. We migrated this
design to one that included a qualifier for each local clock
phase, for idling circuits when not active, an especially impor-
tant consideration for global bus drivers. Thus, for example,
Hummingbird does not update or read registers unnecessar-
ily. It uses 2 custom design approach in large, regularly struc-
tured blocks such as RAM, DACs, and most of the data path.

We also designed a special 432-pin ceramic pin-grid array
for Hummingbird. Our power reduction strategies enabled
us to use a package without bypass capacitors, reducing
package and assembly costs. Qur Artist packaging strategy
involved using commonly available, inexpensive packaging.

For both chips, we synthesized control blocks from both
behavioral descriptions and programmable logic array-style
equations. We used a three-layer-over-the-top router for
composing the artwork for these blocks, a departure from

Table 5. Artist details.

Parameter Value

Transistors 525,000

Die size 9.7%x12.1 mm

Metal layers 3

[0.61 pm (NFETs)
0.66 pm (PFETS)

Frequency 40-80 MHz (control)
25-135 MHz (video)

Power 3.5 W (worst case)}

Package 208-pin QFP/240-pin QFP

Supplies SV, 3.3v

our previous PLA-style designs which markedly improved
area efficiency. We used timing analysis and circuit simula-
tion to find paths that needed optimization or custom circuits.

‘We incorporated an aggressive diagnostic capability into
Hummingbird that involved piggybacking internal signals
onto the system bus during its idle states. By presetting a sig-
nal group before running a test, the user can dump all the
critical signals, including instruction and data addresses,
instructions, and bundling information, virtual translation
information, memory and I/O transaction information, and
more. These diagnostic signals are driven transparently
through the pin driver from their sources at twice
Hummingbird's internal frequency.

Artist contains signature generators in several key posi-
tions to isolate failures to a single component. A signature in
the bus interface verifies proper operation to the graphics
system. Signatures on the VRAM random access and serial
ports separate VRAM from Artist failures. A signature taken
at the input to the DACs helps identify faults in the Artist
video section. A crude ADC on the analog video port can
identify major errors in the DAC output. Hummingbird also
includes a signature generator to accelerate manufacturing
tests of the internal instruction cache.

We also included IEEE 1149.1 compliance to help lower
board test manufacturing cost. In addition, for Hummingbird,
we merged our previous serial test methodology to allow
sampling of all scanable nodes on the processor on a spe-
cific clock cycle and scanning the sampled values out of the
chip while the system continues to run. This greatly aids
diagnosis of failures on prototype systems.

‘WITH THE PA7100LC VLSI CHIP SET, Hewlett-Packard
has pursued a path of high system integration to maximize
both cost effectiveness and raw processing power. While

Jperformance continues to be an important factor, other

design goals such as low cost and low power came into play

April 1994 21

Reproduced with permission of copyright owner. Further reproduction prohibited.

Page 279 of 280

Petitioners HTC & LG - Exhibit 1002, p. 279

e e

Hummingbird/Artist

for this particular design. By performing system wide opti-
mization, we both improved performance and lowered costs
as we integrated an entire workstation system into three V1SI
chips. [@

We only have space here to thank those who were direct-
ly involved with this article: Charlie Kohlhardt, Mark Forsyth,
Craig Gleason, Doug Josephson, Joel Lamb, Tom Meyer,
Leith Johnson, Pat Knebel, Paul Martin, Tony Barkans, John
Wheeler, and Ruby Lee.

References

1. P.Knebel et al, “"HP's PAT100LC: A Low-Cost Superscalar PA-
RISC Processor,” Compcon Digest of Papers, Feb. 1993, pp.
441-447.

2. T. Asprey et al., “Performance Features of the PA7100 Micro-
processor, " IEEE Micro, Vol. 13, No. 3, June 1993, pp. 22-35.

3. E.Delanoetal., "A High Speed Superscalar PA-RISC Processor,”
Compcon Digest of Papers, Feb. 1992, pp. 116-121.

4. M. Forsyth et al., “CMOS PA-RISC Processor for a New Family
of Workstations,” Compcon Digest of Papers, Feb. 1991, pp.
202-207.

5. D.Tanksalvalaetal., *A90-MHz CMOS RISC CPU Designed for
Sustained Performance, " Digest of Tech. Papers, IEEE Solid-State
Circuits Conf,, Vol. 33, 1990, pp. 52-53.

6. R.Lee, "Precision Architecture,” Computer, Vol. 22, No. 1, Jan,
1989, pp. 78-91.

7. C.Casey and L. Thayer, “Scalable Graphics Enhancements for
PA-RISC Workstations,” Compcon Digest of Papers, Feb. 1992,
pp. 122-128,

Steve Undy is an engineer/scientist for
Hewlett-Packard in Fort Collins, Colorado.
He has contributed to the design and ver-
ification of six PA-RISC processors and
N was a key designer of the cache system
i on the Hummingbird processor. He pre-
sented the Hummingbird design at Hot

Undy received a BS in electrical engineering and a BS in
computer engineering from the University of Michigan and
an MS in electrical engineering from Purdue University. He
is a member of the IEEE Computer Society.

22 IEEE Micro

Mick Bass works at the Fort Collins site as
a member of technical staff. He has con-
tributed to CPU, memory controller, and
1/O controller designs used in PA-RISC
workstations. He has also worked on chip
and system verification.
Bass received a BS degree in comput-
] er engineering from the University of
Illinois at Urbana/Champaign. He is a member of the IEEE.

Dave Hollenbeck is a member of the
technical staff at Fort Collins. He has been
1 involved with CPU, memory controller,
and system 1/O chip designs for PA-RISC

systems.
Hollenbeck eamed an MSEE and BSEE
from the University of South Florida.

‘Wayne Kever is a member of the tech-
nical staff at Fort Collins. He has been
involved with the design of four PA-RISC
CPU chip sets. His interests include high-
speed circuit design, cost/performance
trade-offs, and low-power design.

Kever received the BS degree from the
University of Oklahoma and the MS

degree from Stanford University, both in electrical engi-
neering. He is a member of the IEEE and the IEEE Computer
Society.

Larry Thayer is an engineer/scientist at
Fort Collins where he has been involved
with a number of chip designs for work-
station graphics systems. He has pub-
lished articles and papers in Byte, IEEE
Spectrum, and the proceedings of ACM
Siggraph and IEEE Compcon, among
others.

Thayer received BS and MS degrees in electrical engi-
neering from Ohio State University.

Direct any questions concerning this article to Steve Undy,
Hewlett-Packard, 3404 E. Harmony Rd., Fort Collins, CO
80525; sru@fc.hp.com.

Reader Interest Survey

Indicate your interest in this article by circling the appropriate
number on the Reader Service Card,

Low 153 Medium 154 High 155

Reproduced with permission of copyright owner. Further reproduction prohibited.

Page 280 of 280

Petitioners HTC & LG - Exhibit 1002, 1

280

