mixture, and formulation into an efficacious therapeutic agent.

The term "substituted", as used herein, means that an one or more hydrogen on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substitent is keto (i.e., =0), then 2 hydrogens on the atom are replaced. chain, such as ethenyl, propenyl and the like; and "alkynyl" is intended to include hydrocarbon chains of either a straight or branched configuration and one or
more triple carbon-carbon bonds which may occur in any stable point along the chain, such as ethynyl, propynyl and the like.

The phrase "boronic acid" as used herein means a group of the formula $-B\left(R^{34}\right)\left(R^{35}\right)$, wherein R^{34} and R^{35} are independently selected from: $-\mathrm{OH} ;-\mathrm{F} ;-\mathrm{NR}^{13} \mathrm{R}^{14}$; or $C_{1}-C_{8}$-alkoxy; or R^{34} and R^{35} can alternatively be taken together to form: a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, $1-4$ heteroatoms independently selected from N, S, or O; a divalent cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-4 heteroatoms independently selected from N, S, or O ; a cyclic boron amide-ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, 1-4 heteroatoms independently selected from N, S, or 0 . Such cyclic boron esters, boron amides, or boron amide-esters may also be optionally substituted with $1-5$ groups independently selected from R^{11}.

Boron esters include boronic acid protecting groups, including moieties derived from diols, for example pinanediol and pinacol to form pinanediol boronic acid ester and the pinacol boronic acid, respectively. Other illustrations of diols useful for deriving boronic acid esters are perfluoropinacol, ethylene glycol, diethylene glycol, 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 1,2-butanediol, 1,4-butanediol, 2,3-butanediol, 2,3-hexanediol, 1,2-hexanediol, catechol, 1,2-diisopropylethanediol, 5,6-decanediol, 1,2-dicyclohexylethanediol.
"Halo" or "halogen" as used herein refers to fluoro, chloro, bromo and iodo; and "counterion" is used
to represent a small, negatively charged species such as chloride, bromide, hydroxide, acetate, sulfate and the like.

As used herein, "aryl" or "aromatic residue" is intended to mean phenyl or naphthyl. As used herein, "carbocycle" or "carbocyclic residue" is intended to mean any stable 3- to 7- membered monocyclic or bicyclic or 7- to 14-membered bicyclic or tricyclic or an up to 26-membered polycyclic carbon ring, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocyles include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, phenyl, biphenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin).

As used herein, the term "heterocycle" or "heterocyclic ring system" is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10membered bicyclic heterocyclic ring which may be saturated, partially unsaturated, or aromatic, and which consists of carbon atoms and from 1 to 4 heteroatoms selected independently from the group consisting of N, 0 and S and wherein the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. Examples of such heterocycles include, but are not limited to, benzopyranyl, thiadiazine, tetrazolyl, benzofuranyl, benzothiophenyl, indolene, quinoline, isoquinolinyl or benzimidazolyl,
piperidinyl, 4-piperidone, 2-pyrrolidone,
tetrakydrofuran, tetrahydroquinoline, . tetrahydroisoquinoline, decahydroquinoline, octahydroisoquinoline, azocine, triazine (including

1,2,3-, 1,2,4-, and 1,3,5-triazine), 6H-1,2,5thiadiazine, $2 H, 6 H-1,5,2-d i t h i a z i n e, ~ t h i o p h e n e, ~$ tetrahydrothiophene, thianthrene, furan, pyran, isobenzofuran, chromene, xanthene, phenoxathiin, 2H-pyrrole, pyrrole, imidazole, pyrazole, thiazole, isothiazole, oxazole (including 1,2,4- and 1,3,4oxazole), isoxazole, triazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, $3 \mathrm{H}-$ indole, indole, $1 H$-indazole, purine, $4 H$-quinolizine, isoquinoline, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, 4aH-carbazole, carbazole, B-carboline, phenanthridine, acridine, perimidine, phenanthroline, phenazine, phenarsazine, phenothiazine, furazan, phenoxazine, isochroman, chroman, pyrrolidine, pyrroline, imidazolidine, imidazoline, pyrazolidine, pyrazoline, piperazine, indoline, isoindoline, quinuclidine, or morpholine. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

As used herein, the term "any group that, when administered to a mamalian subject, cleaves to form a free hydroxyl, amino or sulfhydryl" means any group bonded to an O, N, or S atom, respectively, which is cleaved from the $0, N$, or S atom when the compound is administered to a mammalian subject to provide a compound having a remaining free hydroxyl, amino, or sulfhydryl group, respectively. Examples of groups that, when administered to a mammalian subject, are
cleaved to form a free hydroxyl, amino or sulfhydryl,
include but are not limited to, $C_{1}-C_{6}$ alkyl substituted
with $0-3 R^{11}, C_{3}-C_{6}$ alkoxyalkyl substituted with $0-3$
$R^{11}, C_{1}-C_{6}$ alkylcarbonyl substituted with $0-3 R^{11}, C_{1}-C_{6}$
alkoxycarbonyl substituted with $0-3 R^{11}, C_{1}-C_{6}$
alkylaminocarbonyl substituted with $0-3 R^{11}$, benzoyl
substituted with $0-3 R^{12, ~ p h e n o x y c a r b o n y l ~ s u b s t i t u t e d ~}$
with $0-3 R^{12, ~ p h e n y l a m i n o c a r b o n y l ~ s u b s t i t u t e d ~ w i t h ~} 0-3$
R^{12} Examples of groups that, when administered to a
mammalian subject, are cleaved to form a free hydroxyl,
amino or sulfhydryl, include hydroxy, amine or
sulfhydryl protecting groups, respectively.
cyclopentyloxycarbonyl and adamantyloxycarbonyl; 5)
alkyl types such as triphenylmethyl and benzyl; 6) trialkylsilane such as trimethylsilane; and 7) thiol containing types such as phenylthiocarbonyl and
dithiasuccinoyl. Also included in the term "amine protecting group" are acyl groups such as azidobenzoyl, p-benzoylbenzoyl, o-benzylbenzoyl, p-acetylbenzoyl, dansyl, glycyl-p-benzoylbenzoyl, phenylbenzoyl, m-benzoylbenzoyl, benzoylbenzoyl. but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.

Pharmaceutically acceptable salts of the compounds of the invention can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

The term "amino acid" as used herein means an organic compound containing both a basic amino group and an acidic carboxyl group. Included within this term are
modified and unusual amino acids, such as those disclosed in, for example, Roberts and Vellaccio (1983) The Peptides, 5: 342-429, the teaching of which is hereby incorporated by reference. Modified or unusual amino acids which can be used to practice the invention include, but are not limited to, D-amino acids, hydroxylysine, 4-hydroxyproline, ornithine, 2,4-diaminobutyric acid, homoarginine, norleucine, N -methylaminobutyric acid, naphthylalanine, phenylglycine, B-phenylproline, tert-leucine, 4-aminocyclohexylalanine, N-methyl-norleucine, 3,4-dehydroproline, 4-aminopiperidine-4-carboxylic acid, 6-aminocaproic acid, trans-4-(aminomethyl)cyclohexanecarboxylic acid, 2-, 3-, and 4-(aminomethyl)benzoic acid, 1-aminocyclopentanecarboxylic acid, 1-aminocyclopropanecarboxylic acid, and 2-benzyl-5aminopentanoic acid.

The term "amino acid residue" as used herein means that portion of an amino acid (as defined herein) that is present in a peptide.

The term "peptide" as used herein means a linear compound that consists of two or more amino acids (as defined herein) that are linked by means of a peptide bond. The term "peptide" also includes compounds containing both peptide and non-peptide components, such as pseudopeptide or peptide mimetic residues or other non-amino acid components. Such a compound containing both peptide and non-peptide components may also be referred to as a "peptide analog".

A "pseudopeptide" or "peptide mimetic" is a compound which mimics the structure of an amino acid residue or a peptide, for example, by using linking groups other than amide linkages between the peptide mimetic and an amino acid residue (pseudopeptide bonds)
and/or by using non-amino acid substituents and/or a modified amino acid residue.

A "pseudopeptide residue" means that portion of an pseudopeptide or peptide mimetic (as defined herein) that is present in a peptide.

The term "peptide bond" means a covalent amide linkage formed by loss of a molecule of water between the carboxyl group of one amino acid and the amino group of a second amino acid.

The term "pseudopeptide bonds" includes peptide bond isosteres which may be used in place of or as substitutes for the normal amide linkage. These substitute or amide "equivalent" linkages are formed from combinations of atoms not normally found in peptides or proteins which mimic the spatial requirements of the amide bond and which should stabilize the molecule to enzymatic degradation.

The terms " L_{n} ", "linking group" and "linker", used interchangeably throughout, designate the group of atoms separating Q from the metal chelator, C_{h}.

The terms "activated L_{n} group", "activated $L_{n} "$, "activated linking group" and "activated linker", used interchangeably throughout, refer to a linking group that bears one or more reactive group capable of reacting with, and forming a bond with, a chelator or a Q.

The terms " C_{h} ", "metal chelator", and "chelator" are used interchangeably throughout to designate a chemical moiety capable of binding to or complexing with a metal nuclide.

The term "cyclizing moiety" means the intermediate compound that serves as the precursor to the R^{31} group of Q.

The term "ring substituted cyclizing moiety" is a cyclizing moiety bearin a substituent group one or more of its carbocyclic or heterocyclic rings.

The term "linker modified cyclizing moiety" refers to a cyclizing moiety that bears an activated I_{n} group. The term "cyclic compound intermediate" means the intermediate compound that serves as the precursor to the Q group in the claimed compounds.

The term "linker modified cyclic compound intermediate" means a cyclic compound intermediate that bears an activated L_{n} group.

The compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of organic synthesis. Preferred methods include but are not limited to those methods described below.

The following abbreviations are used herein:

20	cm	tamidomethyl
	$\mathrm{D}-\mathrm{Abu}$	D-2-aminobutyric acid
	5-Aca	5-aminocaproamide (5-aminohexanamide)
	b-Ala, b-Ala or	
	bAla	3-aminopropionic acid
25	Boc	t-butyloxycarbonyl
	Boc-iodo-Mamb	t-butyloxycarbonyl-3-aminomethyl-4-iodobenzoic acid
	Boc-Mamb	t-butyloxycarbonyl-3-aminomethylbenzoic
	acid	
30	Boc-ON	[2-(tert-butyloxycarbonyloxylimino)-2phenylacetonitrile
	$\mathrm{Cl}_{2} \mathrm{BzI}$	dichlorobenzyl
	CBZ, Cbz or z	Carbobenzyloxy
	DCC	dicyclohexylcarbodiimide

85, 2149-2154 (1963), the disclosure of which is hereby incorporated by reference.

The compounds of the invention may also be synthesized using automated peptide synthesizing
 peptide synthesis are described in Stewart and Young, "Solid Phase Peptide Synthesis", 2nd ed, Pierce Chemical Co., Rockford, IL (1984); Gross, Meienhofer, Udenfriend, Eds., "The Peptides: Analysis, Synthesis, Biology, Vol.
> "Protective Groups in Organic Synthesis" John Wiley \& Sons, New York (1981) and "The Peptides: Analysis, Sythesis, Biology, Vol. 3, Academic Press, New York (1981), the disclosure of which is hereby incorporated by reference.

The a-carboxyl group of the c-terminal residue is usually protected by an ester that can be cleaved to give the carboxylic acid. These protecting groups include: 1) alkyl esters such as methyl and t-butyl, 2) aryl esters such as benzyl and substituted benzyl, or 3) esters which can be cleaved by mild base treatment or mild reductive means such as trichloroethyl and phenacyl esters. In the solid phase case, the C-terminal amino acid is attached to an insoluble carrier (usually polystyrene). These insoluble carriers contain a group which will react with the carboxyl group to form a bond which is stable to the elongation conditions but readily cleaved later. Examples of which are: oxime resin (DeGrado and Kaiser (1980) J. Org. Chem. 45, 1295-1300) chloro or bromomethyl resin, hydroxymethyl resin, and aminomethyl resin. Many of these resins are commercially available with the desired C-terminal amino acid already incorporated.

The a-amino group of each amino acid must be protected. Any protecting group known in the art can be used. Examples of these are: 1) acyl types such as formyl, trifluoroacetyl, phthalyl, and ptoluenesulfonyl; 2) aromatic carbamate types such as benzyloxycarbonyl (Cbz) and substituted benzyloxycarbonyls, 1-(p-biphenyl)-1methylethoxycarbonyl, and 9-fluorenylmethyloxycarbonyl (Fmoc); 3) aliphatic carbamate types such as tertbutyloxycarbonyl (Boc), ethoxycarbonyl, diisopropylmethoxycarbonyl, and allyloxycarbonyl; 4)
cyclic alkyl carbamate types such as cyclopentyloxycarbonyl and adamantyloxycarbonyl; 5)
alkyl types such as triphenylmethyl and benzyl; 6) trialkylsilane such as trimethylsilane; and 7) thiol
containing types such as phenylthiocarbonyl and dithiasuccinoyl. The preferred a-amino protecting group is either Boc or Fmoc. Many amino acid derivatives suitably protected for peptide synthesis are commercially available.

The a-amino protecting group is cleaved prior to the coupling of the next amino acid. When the Boc group is used, the methods of choice are trifluoroacetic acid, neat or in dichloromethane, or HCl in dioxane. The resulting ammonium salt is then neutralized either prior to the coupling or in situ with basic solutions such as aqueous buffers, or tertiary amines in dichloromethane or dimethylformamide. When the Fmoc group is used, the reagents of choice are piperidine or substituted piperidines in dimethylformamide, but any secondary amine or aqueous basic solutions can be used. The deprotection is carried out at a temperature between 0 ${ }^{\circ} \mathrm{C}$ and room temperature.

Any of the amino acids bearing side chain functionalities must be protected during the preparation of the peptide using any of the above-identified groups. Those skilled in the art will appreciate that the selection and use of appropriate protecting groups for these side chain functionalities will depend upon the amino acid and presence of other protecting groups in the peptide. The selection of such a protecting group is important in that it must not be removed during the deprotection and coupling of the a-amino group.

For example, when Boc is chosen for the a-amine protection the following protecting groups are
acceptable: p-toluenesulfonyl (tosyl) moieties and nitro for arginine; benzyloxycarbonyl, substituțed benzyloxycarbonyls, tosyl or trifluoroacetyl for lysine; benzyl or alkyl esters such as cyclopentyl for glutamic and aspartic acids; benzyl ethers for serine and threonine; benzyl ethers, substituted benzyl ethers or 2-bromobenzyloxycarbonyl for tyrosine; p-methylbenzyl, p-methoxybenzyl, acetamidomethyl, benzyl, or $t-$ butylsulfonyl for cysteine; and the indole of tryptophan can either be left unprotected or protected with a formyl group.

When Fmoc is chosen for the a-amine protection usually tert-butyl based protecting groups are acceptable. For instance, Boc can be used for lysine, tert-butyl ether for serine, threonine and tyrosine, and tert-butyl ester for glutamic and aspartic acids.

Once the elongation and cyclization of the peptide is completed all of the protecting groups are removed. For the liquid phase synthesis the protecting groups are removed in whatever manner as dictated by the choice of protecting groups. These procedures are well known to those skilled in the art.

When a solid phase synthesis is used, the peptide should be removed from the resin without simultaneously removing protecting groups from functional groups that might interfere with the cyclization process. Thus, if the peptide is to be cyclized in solution, the cleavage conditions need to be chosen such that a free acarboxylate and a free a-amino group are generated without simultaneously removing other protecting groups. Alternatively, the peptide may be removed from the resin by hydrazinolysis, and then coupled by the azide method. Another very convenient method involves the synthesis of peptides on an oxime resin, followed by intramolecular
nucleophilic displacement from the resin, which generates a cyclic peptide (Osapay, Profit, and Taylor (1990) Tetrahedron Letters 43, 6121-6124). When the oxime resin is employed, the Boc protection scheme is generally chosen. Then, the preferred method for removing side chain protecting groups generally involves treatment with anhydrous HF containing additives such as dimethyl sulfide, anisole, thioanisole, or p-cresol at 0 ${ }^{\circ} \mathrm{C}$. The cleavage of the peptide can also be accomplished by other acid reagents such as trifluoromethanesulfonic acid/trifluoroacetic acid mixtures.

Unusual amino acids used in this invention can be synthesized by standard methods familiar to those skilled in the art ("The Peptides: Analysis, Sythesis, Biology, Vol. 5, pp. 342-449, Academic Press, New York (1981)). N-Alkyl amino acids can be prepared using procedures described in previously (Cheung et al., (1977) Can. J. Chem. 55, 906; Freidinger et al., (1982) J. Org. Chem. 48, 77 (1982)), which are incorporated here by reference.

The compounds of the present invention may be prepared using the procedures further detailed below.

Representative materials and methods that may be used in preparing the compounds of the invention are described further below.

Manual solid phase peptide synthesis was performed in 25 mL polypropylene filtration tubes purchased from BioRad Inc., or in 60 mL hour-glass reaction vessels purchased from Peptides International. Oxime resin (substitution level $=0.96 \mathrm{mmol} / \mathrm{g}$) was prepared according to published procedures (DeGrado and Kaiser (1980) J. Org. Chem. 45, 1295), or was purchased from

Novabiochem (substitution level $=0.62 \mathrm{mmol} / \mathrm{g}$). All chemicals and solvents (reagent grade) were used as supplied from the vendors cited without further purification. t-Butyloxycarbonyl (BOc) amino acids and other starting amino acids may be obtained commercially from Bachem Inc., Bachem Biosciences Inc. (Philadelphia, PA), Advanced ChemTech (Louisville, KY), Peninsula Laboratories (Belmont, CA), or Sigma (St. Louis, MO). 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and TBTU were purchased from Advanced ChemTech. N-methylmorpholine (NMM), m-cresol, D-2-aminobutyric acid (Abu), trimethylacetylchloride, diisopropylethylamine (DIEA), 3-cyanobenzoic acid and [2-(tert-butyloxycarbonyloxylimino) -phenylacetonitrile]
15 (Boc-ON) were purchased from Aldrich Chemical Company. Dimethylformamide (DMF), ethyl acetate, chloroform (CHCl_{3}), methanol (MeOH), pyridine and hydrochloric acid (HCl) were obtained from Baker. Acetonitrile, dichloromethane (DCM), acetic acid (HOAC), trifluoroacetic acid (TFA), ethyl ether, triethylamine, acetone, and magnesium sulfate were purchased from EM Science. Palladium on carbon catalyst (10\% Pd) was purchased from Fluka Chemical Company. Absolute ethanol was obtained from Quantum Chemical Corporation. Thin layer chromatography (TLC) was performed on Silica Gel 60 F254 TLC plates (layer thickness 0.2 mm) which were purchased from EM Separations. TLC visualization was accomplished using UV light, iodine, ninhydrin spray and/or Sakaguchi spray. Melting points were determined using a Thomas Hoover or Electrothermal 9200 melting point apparatus and are uncorrected. HPLC analyses were performed on either a Hewlett Packard 1090, Waters Delta Prep 3000, Rainin, or Dupont 8800 system. NMR spectra were recorded on a 300 MHz General Electric QE-300,

Varian 300, or Varian 400 spectrometer. Fast atom bombardment mass spectrometry ($F A B-M S$) was performed on a VG Zab-E double-focusing mass spectrometer using a Xenon $F A B$ gun as the ion source or a Finnigan MAT 8230.

Boc-D-2-aminobutyric acid (Boc-D-Abu) was prepared by a modification of procedures previously reported in the literature (Itoh, Hagiwara, and Kamiya (1975) Tett. Lett., 4393), as shown in the scheme below.

D-2-aminobutyric acid

D-2-aminobutyric acid (1.0 g. 9.70 mmol) was dissolved in $20 \dot{\mathrm{mI}} \mathrm{H}_{2} \mathrm{O}$ and a solution of BOC-ON $\{2.62 \mathrm{~g}$, 10.6 mmol) in 20 ml acetone was added. A white precipitate formed which dissolved upon addition of triethylamine ($3.37 \mathrm{ml}, 24.2 \mathrm{mmol}$) to give a pale yellow solution ($\mathrm{pH}=9$, wet pH paper). The solution was stirred at room temperature overnight at which time the acetone was removed under reduced pressure. The remaining aqueous layer was extracted with ether three times, acidified to pH 2 with concentrated HCl , and then extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous magnesium sulfate and evaporated under reduced pressure to give t-butyloxycarbonyl-D-2-aminobutyric acid as an oil (2.05 g,greater than quantitative yield, contains solvent), which was used without further purification. 1_{H} NMR (CDCl3) $0.98(t, 3 H), 1.45(s, 9 H), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.90$ ($\mathrm{m}, 1 \mathrm{H}$) , 4.29 ($\mathrm{m}, 1 \mathrm{H}$) , 5.05 ($\mathrm{m}, ~ 1 \mathrm{H}$).
Synthesis of B^{31} cyclizing Moieties
\because
This section teaches the synthesis of certain cyclizing moieties that serve as intermediates to the
20

3-Aminomethylbenzoic acid•HCl
25 3-Cyanobenzoic acid (10.0 g, 68 mmol) was dissolved in 200 ml ethanol by heating in a $35-50^{\circ} \mathrm{C}$ water bath. Concentrated $\mathrm{HCl}(6.12 \mathrm{ml}, 73 \mathrm{mmol})$ was added and the solution was transferred to a 500 ml nitrogen-flushed round bottom flask containing palladium on carbon catalyst ($1.05 \mathrm{~g}, 10 \% \mathrm{Pd} / \mathrm{C}$). The suspension was stirred under an atmosphere of hydrogen for 38 hours, filtered
through a scintered glass funnel, and washed thoroughly with $\mathrm{H}_{2} \mathrm{O}$. The ethanol was removed under reduced pressure and the remaining aqueous layer, which contained a white solid, was diluted to 250 ml with additional $H_{2} O$. Ethyl ether (250 ml) was added and the suspension was transferred to a separatory funnel. Upon vigorous shaking, all solids dissolved and the aqueous layer was then washed two times with ether, evaporated under reduced pressure to a volume of 150 ml , and lyophilized to give the title compound (3aminomethylbenzoic acid•HCl) ($8.10 \mathrm{~g}, 64 \%$) as a beige solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) 4.27(\mathrm{~s}, 2 \mathrm{H}), 7.60$ (t, 1H), 7.72 ($\mathrm{d}, 1 \mathrm{H}$) , 8.06 ($\mathrm{d}, 2 \mathrm{H}$).
t-Butyloxycarbonyl-3-aminomethylbenzoic Acid (Boc-Mamb)

The title compound was prepared according to a modification of standard procedures previously reported in the literature (Itoh, Hagiwara, and Kamiya (1975) Tett. Lett., 4393). 3-Aminomethylbenzoic acid (hydrochloride salt) $(3.0 \mathrm{~g}, 16.0 \mathrm{mmol})$ was dissolved in $60 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. To this was added a solution of Boc-ON (4.33 $\mathrm{g}, 17.6 \mathrm{mmol})$ in 60 ml acetone followed by triethylamine $(5.56 \mathrm{ml}, 39.9 \mathrm{mmol})$. The solution turned yellow and the pH was adjusted to 9 (wet pH paper) by adding an additional 1.0 ml (7.2 mmol) triethylamine. The solution was stirred overnight at room temperature at which time the acetone was removed under reduced pressure and the remaining aqueous layer was washed three times with ether. The aqueous layer was then acidified to pH 2 with 2 N HCl and then extracted three times with ethyl acetate. The combined organic layers were washed three times with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous magnesium sulfate, and evaporated to
dryness under reduced pressure. The material was recrystallized from ethyl acetate/ hexane, to give two crops of the title compound ($2.58 \mathrm{~g}, 64 \%$) as an offwhite solid. mp $123-125^{\circ} \mathrm{C} ; 1_{\mathrm{H}} \mathrm{NMR}(\operatorname{CDCl} 3) 1.47$ (s, 9 H), 4.38 (br s, 2 H), 4.95 (br s, 1H), 7.45 ($t, 1 H$), 7.55 (d, 1H), 8.02 (d, 2H).

Synthesis of t-Butyloxycarbonyl-3-aminophenylacetic Acid

t-Butyloxycarbonyl-3-aminophenylacetic acids useful
as intermediates in the synthesis of the compounds of the invention are prepared using standard procedures, for example, as described in Collman and Groh (1982) J. Am. Chem. Soc., 104: 1391, and as shown schematically below.

t-Butyloxycarbonyl-3-aminophenylacetic Acid

A solution of 3 -aminophenylacetic acid (Aldrich, 10
g, 66 mmol), di-tert-butyl dicarbonate (15.8 g, 72 mmol), and DIEA ($8.6 \mathrm{~g}, 66 \mathrm{mmol}$) in 50 ml of dichloromethane was stirred overnight at room temperature. The reaction mixture was concentrated, partitioned between dichloromethane- $\mathrm{H}_{2} \mathrm{O}$, the water layer was separated, acidified to pH 3 with 1 N HCl , and extracted with dichloromethane. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over anhydrous sodium sulfate,
and evaporated to dryness under reduced pressure. This material was purified by recrystallization from heptane to provide the title compound ($3.7 \mathrm{~g}, 22 \%$) as a white solid. mp $105^{\circ} \mathrm{C} ;{ }^{1_{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 7.35$ ($\left.\mathrm{s}, 1 \mathrm{H}\right), 7.25$ (m, 3H), 6.95 ($\mathrm{m}, 1 \mathrm{H}$), 6.60 (br s, 1H), 3.65 ($\mathrm{s}, 2 \mathrm{H}$), 1.50 (s, 9H).

Synthesis of 2-Aminomethylbenzoic Acid•HCl and 2Aminomethylphenylacetic Acid•HCl

 described in Naito et al J. Antibiotics, 30: 698 (1977); or Young and Sweet J. Am. Chem. Soc., 80: 800 (1958), and as shown schematically below.

1. NBS
aminomethylphenylacetic acid•HCl useful as intermediates in the synthesis of the compounds of the invention are prepared using standard procedures, for example, as

$n=0,1$

2-Aminomethylphenylacetic Acid d-Iactam

The title compound was prepared by modification of procedures previously reported in the literature (Naito et al. (1977) J. Antibiotics, 30: 698). To an ice-cooled suspension of 2 -indanone ($10.8 \mathrm{~g}, 82 \mathrm{mmol}$) and azidotrimethylsilane ($9.4 \mathrm{~g}, 82 \mathrm{mmol}$) in 115 ml of
chloroform was added 25 ml of concentrated sulfuric acid at a rate to maintain the temperature between $30-40^{\circ} \mathrm{C}$. After an additional 3 hours, the reaction mixture was poured onto ice, and the water layer was made basic with (Danishefsky et al. (1975) J. Org. Chem., 40: 796). A mixture of methyl o-toluate (45 g, 33 mol$), \mathrm{N}-$ bromosuccinimide (57 g, 32 mol$)$, and dibenzoyl peroxide
$(0.64 \mathrm{~g})$ in 175 ml of carbon tetrachloride was heated to reflux. for 4 hours. The cooled reaction mixture was filtered, evaporated to dryness under reduced pressure, dissolved in 250 ml of methanol, and concentrated ammonium hydroxide ($75 \mathrm{ml}, 1.11 \mathrm{~mol}$) was added. The reaction mixture was heated to reflux for 5 hours, concentrated, filtered, and the solid washed with $\mathrm{H}_{2} \mathrm{O}$ followed by ether. This material was purified by recrystallization from $\mathrm{H}_{2} \mathrm{O}$ to give the title compound ($11.0 \mathrm{~g}, 26 \%$) as a white solid. mp $150^{\circ} \mathrm{C} ;{ }^{1_{\mathrm{H}}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ 7.90 (d, 1H), $7.60(t, 1 H), 7.50(t, 2 H), 7.00$ (br s, 1H), 4.50 ($\mathrm{s}, 2 \mathrm{H}$).

2-Aminomethylbenzoic Acid•HCl

The title compound was prepared using the general procedure described above for 2-aminomethylphenylacetic acid•HCl. The lactam ($3.5 \mathrm{~g}, 26 \mathrm{mmol}$) was converted to the title compound ($2.4 \mathrm{~g}, 50 \%$) as colorless crystals. mp $233^{\circ} \mathrm{C}$ (dec); $1_{\mathrm{H}} \operatorname{NMR}\left(\mathrm{D}_{6}\right.$-DMSO) 13.40 (br s, 1H), 8.35 (br s, 3H), 8.05 ($\mathrm{d}, 1 \mathrm{H}$), 7.60 ($\mathrm{m}, 3 \mathrm{H}$), 4.35 (br s, 2H).

Synthesis of cyclic compound Intermediates

This section teaches the synthesis of certain cyclic compound intermediates. These are the intermediate compounds that serve as the precursor to the Q group in the claimed compounds, $\left(Q L_{n}\right) d C_{h} ;(Q) d \cdot L_{n}-C_{h}$. These compounds may be directly labeled with radioisotopes, or may be modified by attaching linker group(s) and chelator(s).
t-Butyloxycarbonyl-3-aminomethylbenzoic acid (BocMamb) is coupled to oxime resin by a modification of the method described by DeGrado and Kaiser (1980) J. Org.
-142-

Chem. 45, 1295 using 1 equivalent of the 3aminomethylbenzoic acid (with respect to the substitution level of the resin), 1 equivalent of HBTU , and 3 equivalent of NMM. Alternatively, Boc-Mamb (1
approximately $10 \mathrm{ml} / \mathrm{g}$ of DMF , adding one equivalent of HOAC (\dot{b} ased on the loading of the first amino acid), and stirring at $50-60^{\circ} \mathrm{C}$ for 60 to 72 hours. Following filtration through a scintered glass funnel, the DMF acetonitrile: $\mathrm{H}_{2} \mathrm{O}$, and lyophilized to obtain protected, cyclized material. Alternatively, the material may be dissolved in methanol and precipitated with ether to obtain the protected, cyclized material. This is then treated using standard procedures with anhydrous hydrogen fluoride (Stewart and Young (1984) "Solid Phase Peptide Synthesis", 2nd. edition, Pierce Chemical Co., 85) containing $1 \mathrm{ml} / \mathrm{g} \mathrm{m}$-cresol or anisole as scavenger at $0^{\circ} \mathrm{C}$ for 20 to 60 minutes to remove side chain
15 protecting groups. The crude product may be purified by reversed-phase HPLC using a 2.5 cm preparative Vydac C18 column with a linear acetonitrile gradient containing 0.1% TFA to produce pure cyclized material. The following $N-a-B o c-p r o t e c t e d$ amino acids may be used for the syntheses: Boc-Arg(TOS), BOC-N-a-MeArg(TOS), BocGly, Boc-Asp (OcHex), Boc-3-aminomethyl-4-iodo-benzoic acid, Boc-D-Ile, Boc-NMeAsp (OcHex), Boc-NMe-Mamb, Boc-DPhg, BOC-D-Asp (OBzl), BOC-I-Asp (OcHex), BOC-aMeAsp (OcHex), Boc-bMe-Asp (OcHex), Boc-L-Ala, Boc-I-Pro, acid ($B \circ C-D-A b u$), Boc-Phe, Boc-D-Ser $(B z l), B \circ C-D-A l a$, Boc-3-aminomethylbenzoic acid (Boc-Mamb), Boc-D-Lys(2ClZ), Boc-b-Ala, Boc-D-Pro, Boc-D-Phe, Boc-DTyr(Cl2Bzl), Boc-NMe-Amf(CBZ), Boc-aminotetralincarboxylic acid, Boc-aminomethylnaphthoic acid, Boc-4aminomethylbenzoic acid, or Boc-NMeGly.
 these syntheses are Boc-Arg(TOS), Boc-N-a-MeArg(TOS), Boc-Gly, Boc-Asp (OcHex), Boc-D-Leu, Boc-D-Val, Boc-D-2-
aminobutyric acid (Boc-D-Abu), Boc-Phe, Boc-D-Ser(Bzl), Boc-D-Ala, Boc-3-aminomethylbenzoic acid (Boc-Mamb), Boc-D-Lys (2-ClZ), Boc-Ala,Boc-D-Pro, or Boc-NMeGly.

The synthesis of the compounds of the invention is further exemplified below. The Tables below set forth representative compounds of the present invention.

Cyclic Compound Intermediate 1
cyclo-(Gly-NMeArg-Gly-Asp-Mamb); the compound of formula
(II) wherein $J=$ Giy, $K=$ NMeArg,
$I=G l y, M=A s p, R^{1}=R^{2}=H$

The title compound was prepared using the general procedure described below for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The peptide was prepared on a 0.336 mmol scale to give the protected cyclic peptide $\langle 218 \mathrm{mg}$, 84%). The peptide (200 mg) and 200 mL of m-cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 1 hour. The crude material was precipitated with ether, redissolved in aqueous HOAc, and lyophilized to generate the title compound as a pale yellow solid (158 mg, greater than quantitative yield; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column $(2.5 \mathrm{~cm})$ using a $0.23 \% / \mathrm{min}$. gradient of 2 to 11% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (21\% recovery, overall yield 16.3\%). Mass spectrum: $\mathrm{M}+\mathrm{H}=533.26$.

```
\(\bullet\)
Cyclic compound Intermediate 2
cyclo-(D-Ala-NMeArg-Gly-Asp-Mamb); the compound of formula (II) wherein \(J=D-A l a, K=N M e A r g\),
            L = Gly, M = Asp, R1 = R
The title compound was prepared using the general procedure described below for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). Recoupling of the Boc-N-MeArg(Tos) residue was found to be necessary. The peptide was prepared on a 0.244 mmol scale to give the protected cyclic peptide ( 117 mg , 61\%). The peptide ( 110 mg ) and 110 mL of \(\mathrm{m}-\) cresol were treated with anhydrous hydrogen fluoride at \(0^{\circ} \mathrm{C}\) for 1 hour. The crude material was precipitated with ether, redissolved in aqueous HOAc, and lyophilized to generate the title compound as a pale yellow solid. Purification was accomplished by reversed-phase HPLC on a preparative Vydac c18 column ( 2.5 cm ) using a \(0.25 \% /\) min. gradient of 2 to \(11 \%\) acetonitrile containing \(0.1 \%\) TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid. Mass spectrum: \(\mathrm{M}+\mathrm{H}=547.23\).
Cyclic Compound Intermediate 3
cyclo-(D-Abu-NMeArg-Gly-Asp-Mamb) ; the compound of formula (II) wherein \(J=D-A b u, K=N M e A r g\), \(\mathrm{I}=\) Gly, \(M=\) Asp, \(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\)
The title compound was prepared using the general procedure described below for Cyclic Compound
Intermediate 4. The peptide was prepared on a 0.101 mmol scale to give the protected cyclic peptide ( 51 mg , \(63 \%\) ). The peptide ( 43 mg ) and \(50 \mu \mathrm{~L}\) of m -cresol were treated with anhydrous hydrogen fluoride at \(0^{\circ} \mathrm{C}\) for 30
```

minutes The crude material was precipitated with ether, redissolved in aqueous HOAc, and lyophilized to generate the title compound as a pale yellow solid ($23 \mathrm{mg}, 68.7 \%$; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C 18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 7 to 14% acetonitrile containing 0.1% trifluoroacetic acid and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (31\% recovery; overall yield 12.4%).
Mass spectrum: $M+H=561.46$.
cyclic Compound Intermediate $3 a$
cyclo-(Abu-NMeArg-Gly-Asp-Mamb); the compound of formula
(II) wherein $J=A b u, K=N M e A r g$,
$L=$ Gly, $M=A s p, R^{1}=H, R^{2}=H$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-AspMamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. TBTU was used as the coupling reagent. The peptide was prepared on a 0.596 mmol scale to give the protected cyclic peptide ($182 \mathrm{mg}, 38.4 \%$). The peptide (176 mg) and 0.176 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 20 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (116 mg ; 90.4%; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column $(2.5 \mathrm{~cm})$ using a $0.45 \% / \mathrm{min}$. gradient of 9 to 27% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy
white solid (1.92\% recovery, overall yield 0.574\%); FABMS: $[\mathrm{M}+\mathrm{H}]=561.39$.

Cyclic compound Intermediate 4

cyclo-(D-Val-NMeArg-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D$-Val, $K=$ NMeArg, $L=G l y, M=$

Asp, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$

To a 25 ml polypropylene tube fitted with a frit was added Boc-Mamb ($0.126 \mathrm{~g}, 0.5 \mathrm{mmol}$) and 6 ml of DMF. To this was added HBTU ($0.194 \mathrm{~g}, 0.5 \mathrm{mmol}$), oxime resin (0.52 g , substitution level $=0.96 \mathrm{mmol} / \mathrm{g}$), and $\mathrm{N}-$ methylmorpholine $(0.165 \mathrm{ml}, 1.50 \mathrm{mmol})$. The suspension was mixed at room temperature for 24 hours. The resin was then washed thoroughly ($10-12 \mathrm{ml}$ volumes) with DMF ($3 x$) , $\mathrm{MeOH}(1 x), \mathrm{DCM}(3 x), \mathrm{MeOH}(2 x)$ and $\mathrm{DCM}(3 x)$. The substitution level was determined to be $0.389 \mathrm{mmol} / \mathrm{g}$ by quantitative ninhydrin assay. Unreacted oxime groups were blocked by treatment with 0.5 M trimethylacetylchloride/ 0.5M DIEA in DMF for 2 hours. The following steps were then performed: (Step 1) The resin was washed with DMF (3x), MeOH (1x), DCM (3x), MeOH (2x), and DCM (3x). (Step 2) The t-Boc group was deprotected using 25% TFA in DCM for 30 minutes. (Step 3) The resin was washed with DCM (3x), MeOH (1x), DCM (2x), MeOH (3x) and DMF (3x) (Step 4) Boc-Asp (OcHex) ($0.613 \mathrm{~g}, 1.94 \mathrm{mmol})$, HBTU ($0.753 \mathrm{~g}, 1.99 \mathrm{mmol}), 8 \mathrm{ml}$ of DMF, and N -methylmorpholine ($0.642 \mathrm{ml}, 5.84 \mathrm{mmol}$) were added to the resin and the reaction allowed to proceed for 2.5 hours. (Step 5) The coupling reaction was found to be complete as assessed by the qualitative ninhydrin assay. Steps $1-5$ were repeated until the desired sequence had been attained. The coupling of

Boc-D-Val to NMeArg was monitored by the picric acid test..

After the linear peptide was assembled, the N terminal t-Boc group was removed by treatment with 25\% TFA in DCM (30 min.) The resin was washed thoroughly with DCM ($3 x$), MeOH $(2 x)$ and $\operatorname{DCM}(3 x)$, and then neutralized with 10% DIEA in DCM (2×1 min.) The resin was washed thoroughly with DCM (3x) and MeOH (3x) and then dried. Half of the resin (0.101 mmol) was cyclized by treating with 6 ml of DMF containing HOAc $(5.8 \mathrm{~mL}$, 0.101 mol) and heating at $50^{\circ} \mathrm{C}$ for 72 hours. The resin was then filtered through a scintered glass funnel and washed thoroughly with DMF. The DMF filtrate was evaporated to an oil, redissolved in 1:1 acetonitrile: $\mathrm{H}_{2} \mathrm{O}$, and lyophilized to give the protected cyclic peptide ($49 \mathrm{mg}, 60 \%$). The peptide (42 mg) was treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$, in the presence of 50 mL of m-cresol as scavenger, for 30 minutes to remove side chain protecting groups. The crude material was precipitated with ether, redissolved in aqueous HOAC, and lyophilized to generate the title compound as a pale yellow solid ($23 \mathrm{mg}, 70 \%$; calculated as the acetate salt). Purification was accomplished using reversed-phase HPLC with a preparative Vydac C18 column (2.5 cm) and a $0.23 \% /$ minute gradient of 7 to 18% acetonitrile containing 0.1% trifluoroacetic acid to give the TFA salt of the title compound as a fluffy white solid (24\% recovery; overall yield 9.4\%); FAB-MS: $[\mathrm{M}+\mathrm{H}]=575.45$.

```
            The following abbreviations are used below for TLC
    solvert systems: chloroform/methanol 95:5. = CM;
    chloroform/acetic acid 95:5 = CA;
    chloroform/methanol/acetic acid 95:5 = CMA
BocNMeArg(TOS)-Gly-OBzl -- 25 mmol BocNMeArg (Tos) (11.07 g, Bachem), 30 mmol Gly-OBzl tosylate ( 10.10 g , Bachem), 25 mmol HBTU (O-Benzotriazole-N,N,N',N', -tetramethyl-uronium-hexafluorophosphate; \(9.48 \mathrm{~g} ;\) Advanced Chemtech), and 75 mmol DIEA
(diisopropylethylamine; Aldrich) were dissolved in 25 ml \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The reaction was allowed to proceed 1 hr , the solvent was evaporated under reduced pressure at \(50^{\circ}\) to a syrup, wich was dissolved in 400 ml ethyl acetate. This solution was extracted with ( 150 ml each) \(2 \times 5 \%\) citric acid, \(1 \times\) water, \(2 x\) sat. \(\mathrm{NaHCO}_{3}\), \(1 \times\) sat. NaCl . The organic layer was dried over \(\mathrm{MgSO}_{4}\), and the solvent evaporated under reduced pressure. The resulting oil was triturated with petroleum ether and dried under high vacuum for a minimum of 1 hr . yield 14.7 g (99.5\%); TLC \(R_{f(C M)}=0.18 R_{f(C A)}=0.10 ;\) NMR is consistent with structure; FABMS \(\mathrm{M}^{+} \mathrm{H}^{+}=590.43\) (expected 590.26).
NMeArg(TOS)-Gly-OBzl -- 14.5 g (BocNMeArg (TOS)-Gly-OBzl 25 ( 24.5 mmol) was dissolved in 30 ml TFA , allowed to react for 5 min., and the solvent evaporated at 1 mm mecury pressure at r.t. The resulting syrup was dissolved in 400 ml ice cold ethyl acetate, and extracted with 100 ml ice cold sat. NaHCO3, the aqueous phase was extracted twice with 200 ml ethyl acetate, and the combined organic phases were extracted once with 25 ml sat. Nacl. The solvent was evaporated under reduced pressure giving a viscous oil that was triturated with 300 ml ether. The resulting solid was Eiltered and washed with ether,
```

$$
-150-
$$

giving a hydroscopic compound that was dried in a vacuum desicgator: yield 10.33 g (86.2%); $T L C{\underset{f}{f(C M)}}^{R_{f}}=0.03$; $R_{f(C M A)}=0.20$; NMR is consistent with structure; FABMS $\mathrm{M}+\mathrm{H}^{+}=490.21$ (expected 490.20). solvent removed at 40° under reduced pressure. The resulting solid was triturated well with 50 ml refluxing ether, filtered, and washed with petroleum ether: yield $3.05 \mathrm{~g}(78 \%) ; \operatorname{TLC} R_{f(C M)}=0.03 ; R_{f(C M A)}=0.37 ; N M R$ is

```
    consistent with structure; FABMS M+H+}=599.4
    (expected 599.29).
    4-Nitrobenzophenone Oxime (Ox) -- 50 g 4-
```

```
nitrobenzophenone ( \(220 \mathrm{mmol}, \mathrm{Aldrich}\) ) and 30.6 g hydroxylamine hydrochloride (Aldrich, 440 mmol) were heated at reflux in 0.5 L methanol/pyridine (9:1) for 1 hr. The reaction mixture was evaporated under reduced pressure, dissolved in 500 ml ether, and extracted with 200 ml each of \(5 \%\) citric acid (2 times) and sat. NaCl (1 time), dried over \(\mathrm{MgSO}_{4}\), evaporated under reduced pressure and triturated with ether giving 44.35 g (83\%) of the oxime as a mixture of the cis and trans isomers: \(T L C R_{f(C M)}=0.50 ; R_{f(C M A)}=0.82 ; N M R\) is consistent with structure; \(\operatorname{FABMS} \mathrm{M}+\mathrm{H}^{+}=242.07\) (expected 242.07).
BocMamb-Ox -- 22 mmol BocMamb (5.522 g), 20 mmol nitrobenzophenone oxime (4.84 g), and 20 mmol DMAP (4dimethylaminopyridine; Aldrich) were dissolved in 40 ml \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\). The flask was placed on an ice bath, and 21 mmol DCC (Dicyclohexylcarbodiimide; 4.33 g ) was added. The reaction was allowed to proceed on ice for 30 min and at r.t. over night. The dicyclohexylurea formed was filtered, and washed with 40 ml methylene chloride. The filtrate was evaporated under reduced pressure at r.t. to a syrup, and dissolved in 400 ml ethyl acetate. This solution was extracted with ( 150 ml each) \(2 \times 5 \%\) citric acid, \(1 \times\) water, \(2 \times\) sat. \(\mathrm{NaHCO}_{3}\), \(1 \times\) sat. NaCl. The organic layer was dried over \(\mathrm{MgSO}_{4}\), and the solvent evaporated under reduced pressure. The resulting oil was triturated with petroleum ether and dried under high vacuum for a minimum of 1 hr .: yield 7.51 g (79\%); TLC \(R_{f(C M)}=0.41 ; R_{f(C M B)}=0.66 ;\) NMR is consistent with structure; FABMS \(M+H^{+}=476.30\) (expected 476.18).
```

TFA.MAMB-OX -- BOCMamb-Ox , 7.4 g (15.5 mmol) was dissolved in 30 ml methylene chloride plus 10 ml TFA ($25 \% \mathrm{TFA}$) . The reaction was allowed to proceed at r.t. for 1 hr , and the solvent evaporated under reduced pressure at r.t. for 10 min , then at 40° for 15 min . The resulting syrup was triturated with ether (200 ml) at -5°, giving. The resulting crystals were filtered after 1 hr and washed well with ether: yield 7.22 g (95\%); $R_{f(C M A)}=0.25$; NMR is consistent with structure; FABMS $M+H^{+}=376.22$ (expected 376.12).

Boc-Asp (OcHex)-Mamb-Ox -- 20 mmol Boc-Asp (OcHex) (6.308 g, Bachem) and 44 mol DIEA (7.66 ml) were dissolved in 20 ml DMF. $20 \mathrm{mmol} \mathrm{HBTU}(7.58 \mathrm{~g}$, Advanced Chemtech) was added, and the reaction allowed to proceed for 2 minutes with vigorous stirring. TFA•Mamb-Ox (7.13 g, 15 mmol$)$ was added, and the reaction allowed to proceed o.n. at r.t. The solvent was removed under reduced pressure giving an oil, which was dissolved in 500 ml ethyl acetate, and this solution was extracted with (150 ml each) $2 \times 5 \%$ citric acid, $1 \times$ water, $2 \times$ sat. $\mathrm{NaHCO}_{3}, 1$ x sat. NaCl. The organic layer was dried over MgSO_{4}, and the solvent evaporated under reduced pressure. The resulting oil was triturated with petroleum ether and dried under high vacuum: yield 9.76 g (97\%); $T L C R_{f(C M)}$ $=0.55$; NMR is consistent with structure; FABMS $M+H^{+}=$ 673.45 (expected 673.23).

TFA Asp (OcHex)-MAMB-Ox -- 15 mmol Boc-Asp (OcHex)-MAMB$O x$ was dissolved in $50 \mathrm{ml} 35 \% \mathrm{TFA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and allowed to react 90 min . The solvent was evaporated under reduced pressure at r.t. for 10 min , then at 40° for 15 min . To remove traces of TFA, 25 ml DMF was
added and the solvent evaporated at 50°. The resulting
syrup :was triturated with ether $(200 \mathrm{ml})$. then dried
under high vacuum: yield $9.61 \mathrm{~g}(93 \%) ; \mathrm{R}_{\mathrm{f}}(\mathrm{CMA})=0.45 ;$
NMR is consistent with structure; FABMS $M+H^{+}=573.56$
(expected 573.23).

Boc-D-Val-NMeArg(Tos)-Gly-Asp (OcHex)-MAMB-Ox 10.0 mmol each TFA Asp (OcHex)-MAMB-Ox, BOC-D-Val-NMeArg(Tos)-Gly, and HBTU, plus 30 mmol DIEA were dissolved in 20 ml DMF. After $4 \mathrm{hr} .$, the solvent was removed under reduced pressure, and the residue taken up in 600 ml ethyl acetate, which was extracted with 300 ml each of 5% citric acid, water and sat. NaCl. The organic layer was dried over MgSO_{4}, evaporated under reduced pressure, triturated with ether and dried in vacuo: yield 9.90 g (86%) : $R_{f(C M)}=0.10$; NMR is consistent with structure; FABMS $\mathrm{M}_{\mathrm{H}} \mathrm{H}^{+}=1153.22$ (expected 1153.47).

TFA•D-Val-NMeArg(TOS)-Gly-Asp (OcHex)-MAMB-Ox This compound was prepared from Boc-D-Val-NMeArg(Tos)-GlyAsp (OcHex)-MAMB-Ox ($9.8 \mathrm{~g}, 8.5 \mathrm{mmol}$) by treatment with $T E A / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ for 45 min . The solvent was evaporated and the product triturated with ether: yield 9.73 g (98\%); $R_{f(C M)}=0.10$; NMR is consistent with structure; EABMS $M+H^{+}=1053.22$ (expected 1053.4).
cyclo(•D-Val-NMeArg(TOS)-Gly-Asp (OcHex)-MAMB) TFA•D-Val-NMeArg(Tos)-Gly-Asp (OcHex)-MAMB-Ox (1.80 g, 1.54 mmol), and 2 mmol each of DIEA and acetic acid were dissolved in 200 ml DMF. The mixture was heated to 50° for 2 days, then evaporated under reduced pressure. The syrup was dissolved in 400 ml ethyl acetate $/ \mathrm{n}$-butanol (1:1), and extracted with 200 ml each of 5% citric acid (3x) and sat. NaCl (1x). The organic layer was dried

DM-6591-A -155-
over MgSO_{4} and triturated twice with 200 ml ether: yield $2.07 \mathrm{~g}(86 \%) ; R_{f(C M)}=0.10 ; N M R$ is consistent with structure; FABMS $M+H^{+}=811.25$ (expected 811.38).
cyclo(•D-Val-NMeArg-Gly-Asp-MAMB) 0.50 g cyclo(D-ValNMeArg (TOs)-Gly-Asp (OcHex)-MAMB) was treated with 5 ml HF at $0^{\circ} \mathrm{C}$, in the presence of 0.5 ml of anisole for 30 min. The $H F$ was removed under reduced pressure and the crude peptide triturated with ether, ethyl acetate and ether. The resulting solid was dissolved in 10% acetic acid and lyophilized: yield 0.321 g (82% calculated as the acetate salt). The product was purified with a recovery of approximately 40% using the same method as described for the material synthesized by the solid phase procedure.

Crystalization Cyclic Compound Intermediate 4
 Preparation of Salt Forms of the compound of cyclic Compound Intermediate 4

It has been discovered that the compounds of the present invention may be isolated by crystallization of the compound from organic and aqueous solvents.

The zwitterion of Cyclic Compound Intermediate 4 was converted to the mesyl (methanesulfonate) salt of Cyclic Compound Intermediate 4 (Cyclic Compound Intermediate 4 (methane-sulfonate)) by refluxing the zwitterion with stirring in isopropanol at $25 \mathrm{mg} / \mathrm{ml}$ and slowly adding a solution of 1.0 molar equivalent methanesulfonic acid (correcting for the water content of the z witterion) dissolved in isopropanol. The heat was turned off and the solution cooled to $5^{\circ} \mathrm{C}$ in an ice bath. After stirring 1 hour, the solution was filtered
and the solid rinsed three times with cold isopropanol and dsied under vacuum to constant weight.

The following salts of the compound of Cyclic Compound Intermediate 4 were prepared using the same procedure, by adding 1.0 equivalent of the appropriate acid:

Cyclic Compound Intermediate 4 (biphenylsulfonate): zwitterion +1.0 equivalent biphenylsulfonic acid.

Cyclic Compound Intermediate 4 (anaphthalenesulfonate): zwitterion +1.0 equiv. a-naphthalenesulfonic acid.

Cyclic Compound Intermediate 4 (bnaphthalenesulfonate) :
zwitterion + 1.0 equiv. b-naphthalenesulfonic acid.

Cyclic Compound Intermediate 4 (benzenesulfonate): zwitterion + 1.0 equiv. benezene-sulfonic acid.

Cyclic Compound Intermediate 4 (p-toluenesulfonate): $z w i t t e r i o n+1.0$ equiv. p-toluene-sulfonic acid.
temperature, a precipitate formed. This was filtered through a sintered glass funnel and dried under vacuum to constant weight. (mesyl)) :
100 mg amorphous DMP 728 dissolved per ml water +1.2 molar equiv. methanesulfonic acid (this was obtained as a 4 M aqueous solution). On standing at room temperature, a large flat crystal was formed.

Cyclic Compound Intermediate 4 (benzenesulfonate): 100 mg 2 witterion dissolved per ml water +1.2 equiv. benzenesulfonic acid added. On standing at room temeprature, a precipitate formed. This was filtered through a sintered glass funnel, rinsed with a small volume of isopropanol, and dried under vacuum to constant weight.

Cyclic Compound Intermediate 4 (p toluenesulfonate): 100 mg zwitterion dissolved per ml water +1.2 molar equiv. toluenesulfonic acid added. On standing at room temperature, a precipitate formed. This was filtered through a sintered glass funnel and dried under vacuum to constant weight.
cyclic compound Intermediate $4 b$

$$
\begin{gathered}
\text { cyclo-(D-Val-D-NMeArg-Gly-Asp-Mamb) }: J=D-V a l, K=D- \\
\text { NMeArg; } L=G l y, M=A s p, R^{1}=H, R^{2}=H
\end{gathered}
$$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-AspMamb) (Cyclic Compound Intermediate 4). The DCC/DMAP

Abstract

method was used for attachment of Boc-Mamb to the oxime resin.. The peptide was prepared on a 0.596 mmol scale to give the protected cyclic peptide ($186 \mathrm{mg}, 38.6 \%$). The peptide (183 mg) and 0.183 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (145 mg, greater than quantitative yield; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac CI8 column $(2.5 \mathrm{~cm})$ using a $0.23 \% / \mathrm{min}$. gradient of 9 to 22.5% acetonitrile containing 0.1\% TFA and then lyophilized to give the TFA salt of the title compound as, a fluffy white solid (14.8\% recovery, overall yield 5.3\%); FABMS: $[\mathrm{M}+\mathrm{H}]=575.31$.

> Cyclic Compound Intermediate 5
> cyclo-(D-Leu-NMeArg-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D-L e u, K=$ NMeArg, $L=G l y, M=A s p, R^{1}=R^{2}=H$

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The peptide was prepared on a 0.115 mmol scale to give the protected cyclic peptide $(92.4 \mathrm{mg}$, 98\%). The peptide (92.4 mg) and 93 mL of m -cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 20 minutes. The crude material was precipitated with ether, redissolved in aqueous HOAc, and lyophilized to generate the title compound as a pale yellow solid (45.7 mg, 63\%; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative

Vydac ci8 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 7 to 21% acetonitrile containing 0.1%.
TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (29\% recovery, overall yield 16.5\%);FAB-MS: $[M+H]==589.48$.

Cyclic compound Intermediate 7
cyclo-(D-Nle-NMeArg-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D-N l e, K=N M e A r g$, $\mathrm{L}=$ Gly, $\mathrm{M}=\operatorname{Asp}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb) (Cyclic Compound Intermediate
4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.586 mmol scale to give the protected cyclic peptide (305 mg , 63.3%). The peptide (295 mg) and 0.295 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (207 mg , 95.4%; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 5.4 to 18% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (44\% recovery, overall yield
22.9\%); FAB-MS: $[M+H]=589.26$.

Cyclic compound Intermediate 11

```
cyclo-(D-Phg-NMeArg-Gly-Asp-Mamb); the compound of
    .formula (II) wherein J = D-Phg, K = NMeArg,
            L = Gly, M = Asp, R' R H, R' = H
```

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-AspMamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.611 mmol scale to give the protected cyclic peptide ($296 \mathrm{mg}, 57.4 \%$). The peptide (286 mg) and 0.286 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (210 mg , 98.9\%; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 5.4 to 18% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (24.2% recovery, overall yield 11.9\%); FAB-MS: $[\mathrm{M}+\mathrm{H}]=609.27$.
cyclic Compound Intermediate 12 cyclo-(D-Phe-NMeArg-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D-P h e, K=$ NMeArg, $\mathrm{L}=\mathrm{Gly}, \mathrm{M}=\mathrm{Asp}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-AspMamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.611 mmol scale to give the protected cyclic peptide (140 mg, 26.7%).

The peptide (135 mg) and 0.135 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and calculated as the difluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C 18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient
of 5.4 to 14.4% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (33.6\% recovery, overall yield 12.1\%); FAB-MS: [M+H] $=604.32$

Solution Phase Synthesis of Cyclic compound Intermediate

 $13 f$A Scheme depicting the synthesis described below appears immediately after the description.

```
Cyclo-(D-Iys-NMeArg-Gly-Asp-Mamb); the compound of
    formula (yy) wherein
```

Part A - BOC-ASp(OBz1)
To a solution of Boc-Asp (OBzl) (45.80 g, 140 mmol$)$ and HOSu (N-hydroxysuccinimide; $16.10 \mathrm{~g}, 140 \mathrm{mmol}$) in 300 ml p-dioxane at $5-10^{\circ} \mathrm{C}$ was added DCC (30.20 g, 140 mmol). The solution was stirred for 30 minutes at 5$10^{\circ} \mathrm{C}$ then the solids were filtered and washed with dioxane ($3 \times 50 \mathrm{ml}$). The combined organics were concentrated under reduced pressure to give a clear oil which crystallized to a colorless solid (42.98 g. 73\%) when triturated with ethyl ether (3 x 100 ml). NMR is consistent with structure; $\mathrm{MP}=98-99^{\circ} \mathrm{C}$; DCI-MS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]$ $=438$.

Part B - BOC-ASP(OBzi)-Mamb
3-Aminomethylbenzoic acid•HCl (Mamb; $13.08 \mathrm{~g}, 70.0$ mmol) was dissolved in 120 ml DMF and DIEA (24.32 ml , 140 mmol) was added, changing the pH from 4 to 7.5. The white suspension was stirred for 30 min at room temperature before a solution of Boc-Asp(OBzl)-OSu $(29.40 \mathrm{~g}, 70.0 \mathrm{mmol})$ in DMF (50 ml) was added. The
mixture was allowed to stir 24 hr , during which time it turnedr to a gold solution. The solution was added to 5\% citric acid (2000 ml) and cooled to $5^{\circ} \mathrm{C}$ for 3 hr . The solids were then collected by filtration, washed with
5 ice cold water (200 ml) and ice cold ethyl ether (100 $\mathrm{ml})$, and dried under reduced pressure to give the title compound as a colorless solid (29.62 g, 92\%); MP = 149$151^{\circ} \mathrm{C} ; \mathrm{DCI}-\mathrm{MS}:\left[\mathrm{M}+\mathrm{NH}_{4}\right]=474$.

Part C - HCl•H-Asp(OBzl)-Mamb
Boc-Asp (OBzl)-Mamb (7.92 g, 17.4 mmol) was
dissolved in 4 N HCl in dioxane (50 ml), stirred for 2 hr , and the solution concentrated under reduced pressure to give the title compound as a colorless solid (5.80 g , 99\%). DCI-MS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]=374$.

Part D - Boc-D-Lys (Tfa)-NMeArg(TOs)-Gly-OBzl
NMeArg(Tos)-Gly-OBzl (14.40 g, 29.4 mmol), BOC-DIys (Tfa) ($10.00 \mathrm{~g}, 29.4 \mathrm{mmol})$, and HBTU (11.37 g, 62.0
20 mmol) were dissolved in methylene chloride (40 ml). After cooling to $0^{\circ} \mathrm{C}$, DIEA ($10.44 \mathrm{~g}, 62.0 \mathrm{mmol}$) was added and the reaction was allowed to proceed 20 minutes at $0^{\circ} \mathrm{C}$ and 2 days at room temperature. The reaction mixture was diluted with ethyl acetate (800 ml),
25 extracted with 200 ml portions of $0.2 \mathrm{~N} \mathrm{HCl}(1 X)$, sat. NaHCO_{3} (1X), and saturated NaCl (2X), dried (MgSO4), and evaporated under reduced pressure to a yellow solid. Purification by flash chromatography (silica gel; 5:1 EtOAc:acetonitrile) gave the title compound as a colorless solid ($20.34 \mathrm{~g}, 85 \%$). MP 78-85 ${ }^{\circ} \mathrm{C}$; DCI-MS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]=831$.

Part E - Boc-D-Iys(Tfa)-NMeArg(Tos)-Gly

A solution of Boc-D-Lys (Tfa)-NMeArg(Tos)-Gly-OBzl (11.00.g, 13.5 mmol) in methanol (200 ml), was placed in a Parr shaker bottle, purged with N_{2} for 10 minutes, and treated with 10% palladium on carbon catalyst ($10 \% \mathrm{Pd} / \mathrm{C}$, $3.6 \mathrm{~g})$. The shaker bottle was further purged with 7 pressurization-evacuation cycles, repressurized, and allowed to shake 90 minutes, during which time the calculated amount of hydrogen was consumed. The catalyst was removed by filtration through a bed of Celite and the filtrate was concentrated under reduced pressure yielding a solid. Trituration with refluxing ethyl ether (75 ml) gave pure product ($9.18 \mathrm{~g}, 94 \%$) as a colorless solid. DCI-MS: $[\mathrm{M}+\mathrm{H}]=724$.

Part F - Boc-D-Iys (Tfa)-NMeArg(TOS)-Gly-OSu
Boc-D-Lys (Tfa)-NMeArg (Tos)-Gly ($8.00 \mathrm{~g}, 11.0 \mathrm{mmol}$), HOSu ($1.25 \mathrm{~g}, 10.8 \mathrm{mmol}$) and DCC ($2.22 \mathrm{~g}, 10.8 \mathrm{mmol}$) were dissolved in DMF (75 ml) and stirred at room temperature for 2 days. The solids were removed by filtration and washed with DMF (2 x 15 ml). The filtrate was concentrated under reduced pressure and the resulting syrup dried under reduced pressure at $40^{\circ} \mathrm{C}$ to give a tan solid ($6.50 \mathrm{~g}, 72 \%$). $\mathrm{MP}=66-69^{\circ} \mathrm{C} ; \mathrm{FAB}-\mathrm{MS}$: $[\mathrm{M}+\mathrm{H}]=821$.

Part G-BOC-D-Iys (Tfa)-N-MeArg(TOS)-Gly-Asp(OBz1)-Mamb
A suspension of Boc-D-Lys (Tfa)-N-MeArg (Tos)-Gly-OSu ($8.85 \mathrm{~g}, 10.8 \mathrm{mmol}$) and $\mathrm{HCl} \cdot \mathrm{Asp}(\mathrm{OBzl})$-Mamb $(4,24 \mathrm{~g}, 10.8$ mmol) in $4: 1$ dioxane:DMF (100 ml) was treated with DIEA ($1.39 \mathrm{~g}, 10.8 \mathrm{mmol}$) over 10 minutes. The resulting mixture was stirred 2 days at room temperature and concentrated under reduced pressure to a syrup. This syrup was dissolved in ethyl acetate (300 ml) and washed with 75 ml portions of 0.2 N HCl (3X), sat. NaHCO_{3} (2X),
$\mathrm{H}_{2} \mathrm{O}$ (1X), and saturated NaCl (1X). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure at $40^{\circ} \mathrm{C}$ to a sticky amber solid ($9.13 \mathrm{~g}, 78 \%$). $\mathrm{MP}=90-93^{\circ} \mathrm{C} ; \mathrm{FAB}-\mathrm{MS}: \quad[\mathrm{M}+\mathrm{H}]=1062$.

5
Part H - HCl•D-Iys(Tfa)-N-MeArg(TOS)-Gly-Asp(OBzl)-Mamb
Boc-D-Lys (Tfa)-N-MeArg (Tos)-Gly-Asp (OBzl)-Mamb
($8.30 \mathrm{~g}, 7.8 \mathrm{mmol}$) was partially dissolved in 4 N HCl in dioxane (50 ml), stirred at room temperature for 30 min ,
(2X), saturated NaHCO_{3} (1X), $\mathrm{H}_{2} \mathrm{O}$ (1X), and saturated $\mathrm{NaCl}(1 \mathrm{X})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated to a brown oil. Triturated with ethyl ether (100 ml) gave a brown solid which was purified by flash chromatography (silica gel;
30 5:1 EtOAc:EtOH) to give the title compound (1.62 g, 57\%) as a colorless solid. $\mathrm{MP}=128-130^{\circ} \mathrm{C} ; \mathrm{FAB}-\mathrm{MS}: \quad[\mathrm{M}+\mathrm{H}]=$ 944.

Part J - Cyclo-(D-Iys (Tfa)-N-MeArg-Gly-Asp-Mamb)

> Cyclo-(D-Lys (Tfa)-N-MeArg (Tos)-Gly-Asp (OBzl)-Mamb) (0.85 g, 0.9 mmol) was dissolved in TFA (10 ml) and cooled to $-10^{\circ} \mathrm{C}$. Triflic acid (trifluoromethanesulfonic acid; 10 ml) was slowly added to the stirred reaction 5 while maintaining the temperature at $-5^{\circ} \mathrm{C}$. Anisole (2 ml) was added and stirring was continued for 3 hours at $-5^{\circ} \mathrm{C}$. The temperature of the reaction was decreased to $-78^{\circ} \mathrm{C}$, ethyl ether (200 ml) was added, and the reaction was stirred for 1 hour. The white sticky solids were
> 10 removed by filtration and washed with ice cold ether (50 ml). The solids were dissolved in $1: 1$ acetone: $\mathrm{H}_{2} \mathrm{O}$ (10 ml) and lyophilized to give the product ($0.63 \mathrm{~g}, 100 \%$) as a fluffy colorless solid. FAB-MS: [M+H] 700.

15 Part K - Cyclo-(D-Iys-N-MeArg-Gly-Asp-Mamb)
Cyclo-(D-Lys (Tfa)-N-MeArg-Gly-Asp-Mamb) (0.63 g, 0.9 mmol) was dissolved in 1.0 M aqueous piperdine (10 $\mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the reaction was allowed to slowly warm to room temperature over 3 hours. The solution was lyophilized to give a yellow solid. Purification was accomplished by preparative HPLC with a Vydac proteinpeptide $\mathrm{C}-18 \mathrm{column}(2.1 \mathrm{~cm})$ using a $0.36 \% / \mathrm{min}$. gradient of 9 to 18\% acetonitrile containing $0.1 \% \mathrm{TFA}$, and then lyophilized to give the title compound (0.20 g , 90\%) as 25 a colorless fluffy solid. $M P=138-142^{\circ} \mathrm{C} ; \mathrm{FAB}-\mathrm{MS}:[\mathrm{M}+\mathrm{H}]$ $=604$.
Solution Phase Synthesis of 131

$\xrightarrow{\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}} \xrightarrow{\mathrm{HOSu}, \mathrm{DCC}} \quad$ Boc-D-Lys(Tfa)-N-MeArg(Tos)-Gly-OSu DMF

TBTU

Cyclic compound Intermediate $13 r$

cyclo-(D-Ile-NMeArg-Gly-Asp-Mamb); the compound of
formula (II) wherein $J=D-I l e$, $K=$ NMeArg, $L=G l y, M=A s p, R^{1}=H, R^{2}=H$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-AspMamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.611 mmol scale to give the protected cyclic peptide ($349 \mathrm{mg}, 69.2 \%$). The peptide (342 mg) and 0.342 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound $(227 \mathrm{mg}, 90 \%$; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac c18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 10.8 to 19.8% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (22.5\% recovery, overall yield 12.1\%); FAB-MS: $[\mathrm{M}+\mathrm{H}]=589.34$.

Cyclic compound Intermediate 17
cyclo-(D-Met-NMeArg-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D-M e t, K=N M e A r g, L=G l y, M=$ Asp, $R^{1}=H, R^{2}=H$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-AspMamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for the attachment of Boc-Mamb to the resin. The peptide was prepared on a 0.179 mmol scale to give the protected cyclic peptide (105 mg, 69.7\%). The peptide (105 mg) and 0.105 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 20 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and

```
lyophilized to generate the title compound (72 mg; 92.3\% yield; calculated as the fluoride salt). . Purification was accomplished by reversed-phase HPIC on a preparative Vydac C18 column ( 2.5 cm ) using a \(0.23 \% / \mathrm{min}\). gradient
```

``` of 14.4 to \(23.4 \%\) acetonitrile containing \(0.1 \%\) TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (13.2\% recovery, overall yield 7.4\%): FAB-MS: \([\mathrm{M}+\mathrm{H}]=607.3\).
```

```
Cvelic Compound Intermediate 18
```

cyclo-(NMeGly-NMeArg-Gly-Asp-Mamb); the compound of

```
cyclo-(NMeGly-NMeArg-Gly-Asp-Mamb); the compound of
    formula (II) wherein J = NMeGly, K = NMeArg,
    formula (II) wherein J = NMeGly, K = NMeArg,
            L = Gly, M = Asp, R1= R
            L = Gly, M = Asp, R1= R
            The title compound was prepared using the general
        procedure described above for cyclo-(D-Val-NMeArg-Gly-
        Asp-Mamb). The DCC/DMAP method was used for attachment
        of Boc-Mamb to the oxime resin. The peptide was
        prepared on a 0.43 mmol scale to give the protected
        cyclic peptide (205 mg, 60%). The peptide (200 mg) and
        200 mL of m-cresol were treated with anhydrous hydrogen
        fluoride at 0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ for 30 minutes. The crude material was
        precipitated with ether, redissolved in aqueous HOAc,
        and lyophilized to generate (18) as a pale yellow solid
        (148 mg, 97%; calculated as the acetate salt).
        Purification was accomplished by reversed-phase HPIC on
        a preparative vydac C18 column (2.5 cm) using a 0.23%/
        min. gradient of. 7 to 22% acetonitrile containing 0.1%
        TFA and then lyophilized to give the TFA salt of (18) as
        a fluffy white solid (14.7% recovery, overall yield
        7.9%); FAB-MS: [M+H]=547.34.
        Cyclic Compound Intermediate 24
```

```
cyclo-(Pro-NMeArg-Gly-Asp-Mamb); the compound of formula
    * (II) wherein J = Pro, K = NMeArg,
            L=Gly, M=Asp, R1 = R2}=\textrm{H
```

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.43 mmol scale to give the protected cyclic peptide ($170 \mathrm{mg}, 48.8 \%$). The peptide (164 mg) and 164 mL of m-cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous HOAC, and lyophilized to generate (24) as a pale yellow solid ($101 \mathrm{mg}, 79 \%$; calculated as the acetate salt). Purification was accomplished by reversed-phase HPIC on a preparative Vydac $C 18$ column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 7 to 22% acetonitrile containing 0.1\% TFA and then lyophilized to give the TFA salt of (24) as a fluffy white solid (5.8\% recovery, overall yield 2.1\%);FAB-MS: $[M+H]=573.46$.

Cyclic compound Intermediate 25

cyclo-(D-Pro-NMeArg-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D-P r o, K=$ NMeArg, $\mathrm{L}=$ Gly, $\mathrm{M}=\mathrm{Asp}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.43 mmol scale to give the protected cyclic peptide ($211 \mathrm{mg}, 60.8 \%$). The peptide (200 mg) and 200 mL of m-cresol were treated with anhydrous hydrogen
fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipंitated with ether, redissolved in aqueous HOAc,
 and lyophilized to generate (25) as a pale yellow solid (145 mg, 93.3\%; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% /$ min. gradient of 7 to 22% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of (25) as a fluffy white solid (6.4\% recovery, overall yield $3.3 \%)$; $\mathrm{FAB}-\mathrm{MS}:[\mathrm{M}+\mathrm{H}]==573.35$.

Cyclic Compound Intermediate 28 c

cyclo-(b-Ala-NMeArg-Gly-Asp-Mamb); the compound of
formula (II) wherein $J=b-A l a, K=$ NMeArg, $\mathrm{L}=$ Gly, $\mathrm{M}=\mathrm{Asp}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.586 mmol scale to give the protected cyclic peptide ($264 \mathrm{mg}, 57.5 \%$). The peptide (258 mg) and 258 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound as a pale yellow solid (231 mg , greater than quantitative yield; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPIC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% /$ min. gradient of 5.4 to 14.4% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy white solid
(53.2\% recovery, overall yield 32.5\%); FAB-MS: $[M+H]=$ 547.28:

Cyclic compound Intermediate $28 f$
cyclo-(D-Tyr-NMeArg-Gly-Asp-Mamb); the compound of
formula (II) wherein $J=D-T y r$,
$K=$ NMeArg, $L=G l y, M=A s p, R^{1}=H, R^{2}=H$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.313 mmol scale to give the protected cyclic peptide (342 mg , greater than quantitative yield). The peptide (331 mg) and 0.330 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (218 mg , greater than quantitative yield; calculated as the fluoride salt). Purification was accomplished by reversedphase HPLC on a preparative Vydac C18 column $(2.5$ cm) using a $0.23 \% /$ min. gradient of 9 to 18% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (11.3\% recovery, overall yield 10.8\%): FAB-MS: $[M+H]=639.54$.

Cyclic Compound Intermediate 29
cyclo-(Gly-Arg-Gly-Asp-Mamb) ; the compound of formula
(II) wherein $J=G l y, K=A r g$,
$\mathrm{L}=$ Gly, $\mathrm{M}=\mathrm{Asp}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$

```
The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The peptide was prepared on a 0.283 mmol
```

``` scale and half was cyclized to give the protected cyclic peptide ( \(62 \mathrm{mg}, 58 \%\) ). The peptide ( 60 mg ) and 60 mL of m-cresol were treated with anhydrous hydrogen fluoride at \(0^{\circ} \mathrm{C}\) for 1 hour. The crude material was precipitated with ether, redissolved in aqueous HOAC, and lyophilized to generate the title compound as a pale yellow solid (48 mg, > quantitative yield; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac \(C 18\) column ( 2.5 cm ) using a \(0.30 \% / \mathrm{min}\). gradient of 0 to \(9 \%\) acetonitrile containing \(0.1 \% \mathrm{TFA}\) and then lyophilized to give the TFA salt of the title compound as a fluffy white solid \((36 \%\) recovery, overali yield 19.9\%); FAB-MS: [M+H] = 519.26.
cyclic compound Intermediate 30
cyclo-(D-Ala-Arg-Gly-Asp-Mamb); the compound of formula
(II) wherein \(J=D-A l a, K=A r g\), \(L=\) Gly, \(M=A s p, R^{1}=R^{2}=H\)
The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The peptide was prepared on a 0.189 mmol scale to give the protected cyclic peptide ( 211 mg , >quantitative yield). The peptide (195 mg) and 195 mL of \(m\)-cresol were treated with anhydrous hydrogen fluoride at \(0^{\circ} \mathrm{C}\) for 1 hour. The crude material was precipitated with ether, redissolved in aqueous HOAc, and lyophilized to generate the title compound as a pale yellow solid ( 125 mg , \(83 \%\); calculated as the acetate salt). Purification was accomplished by reversed-phase
```

HPLC on a preparative Vydac $C 18$ column (2.5 cm) using a $0.23 \% / \% \mathrm{~min}$. gradient of 2 to 11% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (12.5\% recovery, overall yield 13.8\%): $\mathrm{FAB}-\mathrm{MS}$: $[\mathrm{M}+\mathrm{H}]=$ 533.26 .

Cyclic compound Intermediate 31
cyclo-(Ala-Arg-Gly-Asp-Mamb); the compound of formula
(II) wherein $J=A l a, K=A r g$,
$\mathrm{L}=$ Gly, $\mathrm{M}=\mathrm{Asp}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly15 Asp-Mamb). The peptide was prepared on a 0.324 mmol scale to give the protected cyclic peptide (191 mg, 76.4%). The peptide (100 mg) and 100 mL of m -cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 1 hour. The crude material was precipitated with ether, redissolved in aqueous HOAc, and lyophilized to generate the title compound as a pale yellow solid (75 mg , 97.4\%; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac Cl8 column (2.5 cm) using a $0.23 \% /$ min. gradient of 2 to 11% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (15.5 \% recovery, overall yield 10.5\%): FAB-MS: $[M+H]=533.25$.

Cyclic compound Intermediate 32
cyclo-(D-Val-Arg-Gly-Asp-Mamb); the compound of formula
(II) wherein $J=D-V a l, K=A r g$,

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The peptide was prepared on a 0.193 mmol scale to give the protected cyclic peptide (199 mg, > quantitative yield). The peptide (193 mg) and 193 mL of m-cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 1 hour. The crude material was precipitated with ether, redissolved in aqueous HOAC, and lyophilized to generate the title compound as a pale yellow solid (130 mg , 86%; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% /$ min. gradient of 2 to 13% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (57\% recovery, overall yield 58.1\%): FAB-MS: $[\mathrm{M}+\mathrm{H}]=561.22$.

Cyclic Compound Intermediate 33
cyclo-(D-Leu-Arg-Gly-Asp-Mamb): the compound of formula
(II) wherein $J=D-L e u, K=A r g$, $\dot{L}=$ Gly, $M=$ Asp, $R^{1}=R^{2}=H$

The title, compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The peptide was prepared on a 0.202 mmol scale to give the protected cyclic peptide (152 mg, 93\%). The peptide (150 mg) and 150 mL of m-cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 1
hour. The crude material was precipitated with ether, redissolved in aqueous HOAC, and lyophilized to generate the title compound as a pale yellow solid ($78 \mathrm{mg}, 66 \%$; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 5 to 18% acetonitrile containing 0.1% trifluoroacetic acid and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (26\% recovery, overall yield 14.8%) $\mathrm{FAB}-\mathrm{MS}:[\mathrm{M}+\mathrm{H}]=575.45$.
cyclic compound Intermediate 34
cyclo-(D-Abu-Arg-Gly-Asp-Mamb); the compound of formula
(II) wherein $J=D-A b u, K=A r g$, $\mathrm{L}=$ Gly, $\mathrm{M}=\mathrm{Asp}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The peptide was prepared on a 0.193 mmol scale to give the protected cyclic peptide $(210 \mathrm{mg},>$ quantitative yield). The peptide (206 mg) and 206 mL of m-cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 1 hour. The crude material was precipitated with ether, redissolved in aqueous HOAc, and lyophilized to generate the title compound as a pale yellow solid (158 mg, 99\%; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% /$ min. gradient of 2 to 11% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (57\% recovery, overall yield 72.2\%): FAB-MS: $[\mathrm{M}+\mathrm{H}]=547.21$.
cyclic Compound Intermediate 35
cyclo-(D-Ser-Arg-Gly-Asp-Mamb); the compound of formula
$\because \quad(I I)$ wherein $J=D-S e r, K=A r g$,
$L=G l y, M=A s p, R^{1}=R^{2}=H$

The title compound was prepared using the general procedure described above for cyclo- (D-Val-NMeArg-Gly-Asp-Mamb). The peptide was prepared on a 0.193 mmol scale to give the protected cyclic peptide (224 mg, > quantitative yield). The peptide (210 mg) and 210 ml of m-cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 1 hour. The crude material was precipitated with ether, redissolved in aqueous HOAC, and lyophilized to generate the title compound as a pale yellow solid (145 mg, 89\%; calculated as the acetate salt).

Purification was accomplished by reversed-phase HPLC on a preparative Vydac c18 column (2.5 cm) using a 0.23\%/ min. gradient of 2 to 13% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (22\% recovery, overall yield 27\%); $\mathrm{FAB}-\mathrm{MS}:[\mathrm{M}+\mathrm{H}]=549.31$.
cyclic compound Intermediate 36
cyclo-(D-Phe-Arg-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D$-Phe, $K=$ Arg, $L=G l y, M=A s p, R^{1}=$ $\mathrm{R}^{2}=\mathrm{H}$

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The peptide was prepared on a 0.266 mmol scale to give the protected cyclic peptide (202 mg, 90%). The peptide (157 mg) and 157 mL of m-cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 1 hour. The crude material was precipitated with ether, redissolved in aqueous HOAc, and lyophilized to generate
the title compound as a pale yellow solid (125 mg, > quantitative yield; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac c18 column (2.5 cm) using a 0.23\%/ min. gradient of 7 to 23\% acetonitrile containing 0.1\% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (35\% recovery, overall yield 29.3\%): FAB-MS: $[\mathrm{M}+\mathrm{H}]=609.25$

> Cyclic Compound Intermediate 37
> cyclo-(Phe-Arg-Gly-Asp-Mamb); the compound of formula
> (II) wherein $J=$ Phe, $K=A r g, L=G l y$, $M=$ Asp, $R^{1}=R^{2}=H$

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The peptide was prepared on a 0.335 mmol scale to give the protected cyclic peptide (306 mg, > quantitative yield). The peptide (275 mg) and 275 mL of m-cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 1 hour. The crude material was precipitated with ether, redissolved in aqueous HOAC, and lyophilized to generate the title compound as a pale yellow solid (214 mg, 98\%; calculated as the acetate salt). Purification was accomplished by reversed-phase HPIC on a preparative Vydac Cl8 column (2.5 cm) using a $0.23 \% /$ min. gradient of 9 to 23% acetonitrile containing 0.1\% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (32\% recovery, overall yield 31.5\%); FAB-MS: [M+H] $=609.26$

Cyclic compound Intermediate 40
cyclo-(D-Val-NMeAmf-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D-V a l$,
$K=$ NMeAmf, $L=G l y, M=A s p, R^{1}=R^{2}=H$
The title compound was prepared using the
general procedure described for cyclo-(D-Val-
NMeArg-Gly-Asp-Mamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.586 mmol scale to give the protected cyclic peptide ($189 \mathrm{mg}, 39.9 \%$). The peptide (189 mg) and 0.189 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (212 mg, greater than quantitative yield; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 10.8 to 22.5% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (8.1\% recovery, overall yield 4.1\%); FAB-MS: [M+H] = 595.23.

Cyclic compound Intermediate 48 a

cyclic compound Intermediates 42-45

The synthesis of Cyclic Compound Intermediates 42-
n = 1, 2
$R 5=\mathrm{H}, \mathrm{CH}_{3}$

42,44
see synthesis of compound 41
!

Cyclic Compound Intermediates 46 and 47 are prepared according to standard procedures, for example, as described in Garigipati, Tett. Lett. (1990) 31: 1969-

45 is shown schematically below.

schematically below. The aspartic acid group may be protected (e.g., with a phenacyl protection group) to avoid side reactions.

$n=0,1$

1) $\mathrm{H}_{2} \mathrm{~S} / \mathrm{Pyr}^{2} / \mathrm{Et}_{3} \mathrm{~N}$
2) Mel/acetone
3) Amm. acetate

Cyclic Compound Intermediate 54
cyclo-(D-Val-NMeArg-b-Ala-Asp-Mamb): J = D-Val, $K=$
NMeArg,
$I=b-A l a, M=$ Asp, $R^{1}=R^{2}=H$

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.586 mol scale to give the protected cyclic peptide ($227 \mathrm{mg}, 46.9 \%$). The peptide (219 mg) and 219 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate (54) as a pale yellow solid (150 mg , 93.2%; calculated as the
fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column $(2.5 \mathrm{~cm})$ using a $0.23 \% / \mathrm{min}$. gradient of 7.2 to 16.2% acetonitrile containing 0.1% TFA and then lyophilized to

15 give the TFA salt of (54) as a fluffy white solid (43.6\% recovery, overall yield 16.5%) ; $F A B-M S:[M+H]=589.32$.

cyclic compound Intermediate 55-58

The synthesis of Cyclic Compound Intermediates 5558 is shown schematically below.

	2)	25\% TFA in D 10\% DIEA in	
BOC-Asp-Mamb-oxime		$\begin{aligned} & \mathrm{Br}_{(}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{COOH} \\ & \mathrm{DCC} \end{aligned}$	$\mathrm{n}=\mathbf{1 , 2}$

Cyclic compound Intermediate 58 c
cyclo-(D-Val-NMeArg-I-Ala-Asp-Mamb); the compound
of formula (II) wherein $J=D-V a l$,

$$
K=\text { NMeArg, } L=L-A l a, M=A s p, R^{1}=H, R^{2}=H
$$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.611 mmol scale to give the protected cyclic peptide ($375 \mathrm{mg}, 74.6 \%$). The peptide (360 mg) and 0.360 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (220 mg, 83\%; calculated as the fluoride salt).
Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 9 to 18% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then
lyophilized to give the TFA salt of the title compound as a fluffy white solid (19.9\% recovery, overall yield 10.6\%); FAB-MS: $[\mathrm{M}+\mathrm{H}]=589.31$.

Cyclic compound Intermediate 63 and 63 a cyclo-(D-Val-NMeArg-Gly-a-MeAsp-Mamb) ; the compounds of formula (II) wherein J is D-Val; K is NMeArg; L is Gly; M is a-MeAsp; $R^{1}=R^{2}=H$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-AspMamb). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.794 mmol scale to give the protected cyclic peptide ($237 \mathrm{mg}, 36.1 \%$). The peptide (237 mg) and 0.237 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound ($165 \mathrm{mg}, 94.3 \%$; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 9 to 18% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy white solid; isomer \#1 (8.36% recovery, overall yield 2.5%) ; $\mathrm{FAB}-\mathrm{MS}$: $[\mathrm{M}+\mathrm{H}]=$ 589.29; isomer \#2 (9.16\% recovery, overall yield 2.7\%); FAB-MS: $[\mathrm{M}+\mathrm{H}]=589.27$.

Cyclic Compound Intermediates 64 and 64a

cyclo-(D-Val-NMeArg-Gly-B-MeAsp-Mamb); the compounds of formula (II) wherein $J=D-V a l$, $K=$ NMeArg, $L=G l y, M=B-M e A s p, R^{1}=H, R^{2}=H$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.611 mmol scale to give the protected cyclic peptide (201 mg, 40.0%). The peptide (200 mg) and 0.200 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (162 mg, greater than quantitative yield; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 9 to 18\% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid; isomer \#1 (12.7\% recovery, overall yield 4.8\%); FAB-MS: [M+H] = 589.43; isomer \#2 (13.9? recovery, overall yield 5.3\%): FAB-MS: $[\mathrm{M}+\mathrm{H}]=589.45$.

Cyclic Compound Intermediate 64b
cyclo-(D-Val-NMeArg-Gly-NMeAsp-Mamb); the compound of formula (II) wherein $J=D-V a l$, $K=$ NMeArg, $L=G l y, M=N M e A s p, R^{1}=H, R^{2}=H$

The title compound was prepared using the general procedure described for cyclo- (D-Val-NMeArg-Gly-Asp-Mamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.611 mmol scale to give the
protected cyclic peptide ($232 \mathrm{mg}, 46.1 \%$). The peptide (225 mg) and 0.225 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated
with ether, redissolved in aqueous acetonitrile,
and lyophilized to generate the title compound (160
mg, 96.4\%; calculated as the fluoride salt).
Purification was accomplished by reversed-phase
HPLC on a preparative Vydac C18 column (2.5 cm)
using a $0.23 \% / \mathrm{min}$. gradient of 9 to 18%
acetonitrile containing $0.1 \% \mathrm{TFA}$ and then
lyophilized to give the TFA salt of the title
compound as a fluffy white solid (28.2% recovery,
overall yield 10.9\%); FAB-MS: $[M+H]=589.42$.

```
column (2.5 cm) using a 0.23%/ min. gradient of 9
to 18% acetonitrile containing 0.1% TFA and then
lyophilized to give the TFA salt of the title
compound as a fluffy white solid (44.4% recovery, overall yield 20.7\%); FAB-MS: \([\mathrm{M}+\mathrm{H}]=575.42\).
```

Cyclic Compound Intermediate 89 e
cyclo-(D-Abu-di-NMeOrn-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D-A b u$, $\mathrm{K}=$ di-NMeOrn, $\mathrm{L}=$ Gly, $\mathrm{M}=\mathrm{Asp}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. The peptide was prepared on a 0.498 mmol scale to give the protected cyclic peptide ($150 \mathrm{mg}, 39.3 \%$). The peptide (150 mg) and 0.150 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (93 mg, 86\%; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac $C 18$ column (2.5 cm) using a $0.45 \% / \mathrm{min}$. gradient of 3.6 to 18% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title
compound as a fluffy white solid (49.3\% recovery, overall yield 14.2\%); FAB-MS: $[M+H]=533.34$.

Cyclic compound Intermediate $89 f$
cyclo-(D-Abu-NMeArg-Gly-D-Asp-Mamb); compound of formula (II) wherein $J=D-A b u, K=$ NMeArg, $L=G l y, M=$ D-Asp, $R^{1}=H, R^{2}=H$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-AspMamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. TBTU was used as the coupling reagent. The peptide was prepared on a 0.596 mmol scale, to give the protected cyciic peptide ($273 \mathrm{mg}, 57.6 \%$). The peptide $(263 \mathrm{mg})$ and 0.263 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 20 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound $(218 \mathrm{mg}$; greater than quantitative yield; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 10.8 to 19.8% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (40.4% recovery, overall yield 21.9%); $F A B-M S:[M+H]=561.37$.

Cyclic Compound Intermediate 89 g
cyclo-(D-Abu-D-NMeArg-Gly-Asp-Mamb); the compound of formula (II) $J=D-A b u, K=D-N M e A r g, L=G l y, M=A s p$, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-Asp-

Mamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-Mamb to the oxime resin. TBTU was used as the coupling reagent. The peptide was prepared on a 0.596 mmol scale to give the protected cyclic peptide ($241 \mathrm{mg}, 50.8 \%$). The peptide $(235 \mathrm{mg})$ and 0.235 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 20 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (168 mg ; 98.3\%; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column $(2.5 \mathrm{~cm})$ using a $0.23 \% / \mathrm{min}$. gradient of 12.6 to 21.6% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (2.3\% recovery, overall yield 0.99\%); FABMS: $[\mathrm{M}+\mathrm{H}]=561.36$.

Cyciic Compound Intermediate 89h
Cyclo-(D-Ala-p-guanidinyl-Phe-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D-A l a, k=p-$ guanidinyl-Phe, $I=$ Gly, $M=A s p R^{1}=H, R^{2}=H$

Dissolved 25 mg (38.3 mmoles) of cyclo-(D-Ala-p-amino-Phe-Gly-Asp-Mamb) (TFA salt), 14.3 mg (114.9 umoles) formamidine sulfonic acid, and 18.7 mg (153.2 umoles) of 4-dimethyl-aminopyridine in 5 ml of ethanol
in a 10 ml round bottom flask. Refluxed the mixture for 3 hours, then added an additional 14.3 mg of formamidine sulfonic acid and 18.7 mg of 4 -dimethyl-aminopyridine. After refluxing for an additional 3 hours, the reaction

Dissolved 10.53 mg (16.3 mmoles) of cyclo-(D-Abu-diNMeOrn-Gly-Asp-Mamb) (TFA salt), 6.08 mg (48.99 umoles) formamidine sulfonic acid, and $8.00 \mathrm{mg}(65.57$
25 umoles) of 4-dimethyl-aminopyridine in 2.5 ml of ethanol in a 10 ml round bottom flask. Refluxed the mixture for 2 hours and then stirred at room temperature overnight. Refluxed for one hour, added an additional 6.08 mg of formamidine sulfonic acid and 8.00 mg of 4 -

```
dimethylaminopyridine and then refluxed for an additional 2 hours. Evaporated the ethanol under reduced pressure and purified the residue on a preparative Vydac C18 column ( 2.5 cm ) using a \(0.45 \% / \mathrm{min}\). gradient of 3.6 to \(18 \%\) acetonitrile containing \(0.1 \%\) TFA. Lyophilization afforded the TFA salt of the title compound as a white solid (57.2\% recovery), overall yield 53.5\%); FAB-MS: \([M+H]=575.34\).
```


cyclic compound Intermediates 89j

cyclo-(D-Abu-Di-NMeLys-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D-A b u, K=D i-N M e L y s, L=G l y$,

$$
M=A s p, R^{1}=H, R^{2}=H
$$

cyclo-(D-Abu-NMeLys-Gly-Asp-Mamb); the compound of formula (II) wherein $J=D-A b u, K=N M e L y s, L=G l y, M=$ Asp, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}$
Di-N-methyl amino acid derivatives may be prepared
using methods which have been described previously
(Olsen, J. Org. Chem. (1970) $35: 1912$) or,
alternatively, through the use of $\mathrm{NaH} / \mathrm{CH} 3$. The mono-
NMe-Lysine amino acid was obtained as a side product
during the synthesis of the corresponding di-NMe-lysine
derivative. The title compounds were prepared using
conventional solution phase peptide chemistry techniques
described previously. Cyclo-(D-Abu-diNMeLys-Gly-Asp-
Mamb) was obtained in 0.31% overall yield, FAB-MS: [M+H]
$=547.3$. Cyclo-(D-Abu-NMeLys-Gly-Asp-Mamb) was obtained
in 0.25% overall yield, FAB-MS: [M+H] $=533.3$.

Cyclic compound Intermediate 90
cyclo-(D-Val-NMeArg-Gly-Asp-2-aminomethylphenylacetic
acid)

5
in the Scheme below ($n=1$)

$n=0,1$

1. $\mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
2. $\mathrm{ACOH}, \mathrm{Pr}_{\mathrm{r}_{2}} \mathrm{NEt}$, DMF, $60^{\circ} \mathrm{C}$

Boc-Asp(0cHex)-2-aminomethylphenylacetic_Acid
To a suspension of 2-aminomethylphenylacetic acid• $\mathrm{HCl}(4.0 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added
$\mathrm{NaHCO}_{3}(5.0 \mathrm{~g}, 60 \mathrm{mmol})$, followed by a solution of BocAsp (OcHex)-OSu (7.5 g, 18 mmol) in THF (20 ml). The reaction mixture was stirred at room temperature for 3 hours, filtered, diluted with $\mathrm{H}_{2} \mathrm{O}$, acidified with 1 N HCl , and extracted with ethyl acetate. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over anhydrous magnesium sulfate, and evaporated to dryness under reduced pressure. This material was triturated with ether to provide the title compound (7.0 $9,83 \%$) as a white powder. ${ }^{1} \mathrm{H} \operatorname{NMR}$ ($\mathrm{D}_{6}-\mathrm{DMSO}$) 12.40 (br $\mathrm{s}, 1 \mathrm{H}$), 8.30 (br $\mathrm{t}_{\text {, }}$ 1H) , 7.20 ($\mathrm{m}, 5 \mathrm{H}$), 4.65 ($\mathrm{m}, 1 \mathrm{H}$), 4.35 ($\mathrm{q}, 1 \mathrm{H}), 4.25$ (m , $2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{dd}, 1 \mathrm{H}), 2.55(\mathrm{dd}, 1 \mathrm{H}), 1.70$ $(\mathrm{m}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~m}, 6 \mathrm{H})$.

4.4'-Dinitrobenzophenone oxime

The title compound was prepared by modification of procedures previously reported in the literature (Chapman and Fidler (1936) J. Chem. Soc, 448; Kulin and Leffek (1973) Can. J. Chem., 51: 687). A solution of chromic anhydride ($20 \mathrm{~g}, 200 \mathrm{mmol}$) in 125 ml of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise over 4 hours, to a suspension of bis(4nitrophenyl)methane ($25 \mathrm{~g}, 97 \mathrm{mmol}$) in 300 ml of acetic acid heated to reflux. The reaction mixture was heated at reflux for 1 hour, cooled to room temperature, and poured into water. The solid was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$, 5% sodium bicarbonate, $\mathrm{H}_{2} \mathrm{O}$, and air-dryed to provide a 1:1 mixture of bis(4-nitrophenyl)methane/4,4'-dinitrobenzophenone via ${ }^{1} H$ NMR. This material was oxidized with a second portion of chromic anhydride ($20 \mathrm{~g}, 200 \mathrm{mmol}$), followed by an identical work-up procedure to provide the crude product. Trituration with 200 ml of benzene heated to reflux for 16 hours provided 4, 4'-dinitrobenzophenone ($20.8 \mathrm{~g}, 79 \%$) as a yellow powder.

A solution of hydroxylamine hydrochloride (10.2 g, 147 mmol) was added to a suspension of 4, 4^{\prime} dinitrobenzophenone ($19 \mathrm{~g}, 70 \mathrm{mmol}$) in 100 ml of ethanol. The reaction mixture was heated to reflux for 2 hours, cooled to room temperature, and the solid collected by filtration. Recrystallization from ethanol provided the title compound ($14.0 \mathrm{~g}, 70 \%$) as pale yellow crystals. mp $194^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{6}\right.$-DMSO) 12.25 (s, 1H), 8.35 (d, 2H), $8.20(\mathrm{~d}, 2 \mathrm{H}), 7.60$ (d, 4H).

4.4'-Dinitrobenzophenone Oxime Boc-Asp(OcHex)-2aminomethylphenylacetate

To an ice-cooled solution of Boc-Asp (OcHex)-2aminomethylphenylacetic acid ($3.5 \mathrm{~g}, 7.6 \mathrm{mmol}$) and 4, 4'dinitrobenzophenone oxime ($2.2 \mathrm{~g}, 7.5 \mathrm{mmol}$) in 50 ml of ethyl acetate and 5 ml of DMF was added DCC (1.6 g, 7.8 mmol). The reaction mixture was stirred at room temperature for 8 hours, filtered, diluted with ethyl acetate, washed with saturated sodium bicarbonate solution, $\mathrm{H}_{2} \mathrm{O}$, brine, dried over anhydrous magnesium sulfate, and evaporated to dryness under reduced pressure. This material was purified by column chromatography on silica gel (EM Science, 230-400 mesh) using 10:1 dichloromethane/ethyl acetate to give the title compound $(4.3 \mathrm{~g}, 78 \%)$ as pale yellow crystals. 1_{H} NMR ($\mathrm{D}_{6}-\mathrm{DMSO}$) $8.30(\mathrm{dd}, 5 \mathrm{H}), 7.80(\mathrm{~d}, 2 \mathrm{H}), 7.65$ (d, 2H), 7.15 ($\mathrm{m}, 5 \mathrm{H}$) , $4.65(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{q}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H})$, 3.90 ($\mathrm{s}, 2 \mathrm{H}$) , $2: 70$ (dd, 1H), 2.50 ($\mathrm{dd}, 1 \mathrm{H}), 1.70$ (m, $4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~m}, 6 \mathrm{H})$.

4, 4'-Dinitrobenzophenone Oxime Boc-D-Val-NMeArg(TOS)-Gly-Asp(OcHex)-2-aminomethylphenylacetate

To a solution of 4, 4'-dinitrobenzophenone oxime Boc-Asp (OcHex)-2-aminomethylphenylacetate (1.5 g, 2 mmol) in 4 ml of dichloromethane was added 2 ml of trifluoroacetic acid. The reaction mixture was stirred 5 at room temperature for 1 hour, diluted with dichioromethane, and evaporated to dryness under reduced pressure. The oily residue was concentrated under high vacuum to remove traces of excess trifluoroacetic acid.

To a sclution of the crude TFA salt and Boc-D-Val-NMeArg(TOS)-Gly (1.2 g, 2 mmol) in 5 ml of DMF was added TBTU ($640 \mathrm{mg}, 2 \mathrm{mmol}$) and DIEA ($780 \mathrm{mg}, 6 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 16 hours, concentrated under high vacuum, diluted with
15 ethyl acetate, washed with 5% citric acid, $H_{2} \mathrm{O}$, brine, dried over anhydrous magnesium sulfate, and evaporated to dryness under reduced pressure. This material was triturated with ether to provide the title compound (2.3 g, 95%) as a yellow powder. This material was used without further purification.
cyclo-(D-Val-NMeArg(TOS)-Gly-Asp(OcHex)-2aminomethylpnenylacetic acid)

To a solution of 4, 4'-dinitrobenzophenone oxime Boc-D-Val-NMeArg(Tos)-Gly-Asp (OcHex)-2aminomethylphenylacetate ($1.2 \mathrm{~g}, 1 \mathrm{mmol}$) in 4 ml of dichloromethane was added 2 ml of trifluoroacetic acid. The reaction mixture was stirred at room temperature for 3 hours, diluted with dichloromethane, and evaporated to dryness under reduced pressure. The oily residue was concentrated under high vacuum to remove traces of excess trifluoroacetic acid.

To a solution of the crude TFA salt in 100 ml of DMF was added acetic acid ($0.50 \mathrm{ml}, 8.7 \mathrm{mmol}$) and DIEA ($1.52 \mathrm{ml}, 8.7 \mathrm{mmol}$). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 days, concentrated under high vacuum, diluted with ethyl acetate, and the solution allowed to crystallize overnight. Filtration provided the title compound ($563 \mathrm{mg}, 68 \%$) as a yellow powder. 1_{H} NMR ($\mathrm{D}_{6}-$ DMSO) 8.70 (d, 1H), 8.40 (br s, 1H), 8.30 (br s, 1H), 8.05 (t, 1H), $7.65(\mathrm{~d}, 2 \mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}), 7.20(\mathrm{~m}, ~ 4 \mathrm{H})$, 7.10 (br d, 1H), 6.80 (br s, 1H), 6.60 (br s, 1H), 5.10 (dd, 1H), 4.65 (m, 1H), 4.55 (m, 1H), 4.40 (m, 2H), 3.85 $(\mathrm{m}, 2 \mathrm{H}), 3.65(\mathrm{~d}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 2.80$ $(\mathrm{s}, 3 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{dd}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.70$ ($\mathrm{m}, ~ 6 \mathrm{H}$) , $1.30(\mathrm{~m}, 9 \mathrm{H}), 0.95$ (d, 3H), 0.80 (d, 3H); $\operatorname{DCI}\left(\mathrm{NH}_{3}\right)-\mathrm{MS}:[\mathrm{M}+\mathrm{H}]=825$.
cyclo-(D-Val-NMeArg-Gly-Asp-2-aminomethylphenylacetic acid)

A mixture of 352 mg (0.43 mmol) of cyclo-(D-Val-NMeArg(TOS)-Gly-Asp (OcHex)-2-aminomethylphenylacetic acid) and $352 \mu \mathrm{l}$ of anisole was treated at $0^{\circ} \mathrm{C}$ with 5 ml of HF for 20 minutes. The excess HF was removed under reduced pressure, the residue triturated with ether, dissolved in 50\% acetonitrile/ $\mathrm{H}_{2} \mathrm{O}$, and lyophilized to provide the crude cyclic peptide•HF salt as an off-white powder. Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.8 \% /$ minute gradient of 10 to 38% acetonitrile containing 0.1\% trifluoroacetic acid to give the TFA salt of the title compound ($225 \mathrm{mg}, 75 \%$) as a fluffy white solid; $1_{H} \operatorname{NMR}\left(D_{6}-D M S O\right) 8.70(d, 1 H), 8.35(d$, $1 \mathrm{H}), 8.20(\mathrm{t}, 1 \mathrm{H}), 8.00(\mathrm{t}, 1 \mathrm{H}), 7.45(\mathrm{t}, 1 \mathrm{H}), 7.20(\mathrm{~m}$, 3H), $7.10(\mathrm{~m}, ~ 1 \mathrm{H}), 7.00(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 5.10$ (dd, 1H), 4.50 (dt, 1H), $4.40(\mathrm{~m}, 2 \mathrm{H}), 3.85$ (dt, 2H), 3.65 (d, 1H),

```
3.50 (dd, 1H), 3.45 (d, 1H), 3.10 (m, 2H), 2.90 (s, 3H),
2.75 (dd, 1H), 2.55 (dd, 1H), 2.00 (m, 1H), 1.85 (m,
1H), 1.65 (m, 1H), 1.30 (m, 2H), 0.95 (d, 3H), 0.85 (d,
3H); FAB-MS: [M+H] = 589.
```


Cyclic Compound Intermediate 91

```
cyclo-(D-Val-NMeArg-Gly-Asp-2-aminomethylbenzoic acid)
```

The title compound was prepared by. the general solution-phase procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-2-aminomethylphenylacetic acid), and as shown schematically above in the Cyclic Compound Intermediate 90 Scheme ($\mathrm{n}=0$). The cyclic peptide (192 mg , 0.24 mmol) was deprotected with excess HF in the presence of anisole as scavenger. Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.8 \% /$ minute gradient of 10 to 38% acetonitrile containing 0.1% trifluoroacetic acid to give the TFA salt of the title compound ($20 \mathrm{mg}, 12 \%$) as a fluffy white solid; 1_{H} NMR (D_{6}-DMSO) 8.75 ($\mathrm{d}, 1 \mathrm{H}$) , 8.50 ($\mathrm{d}, 1 \mathrm{H}$), 7.65 ($\left.\mathrm{t}, 1 \mathrm{H}\right), 7.60$ ($\mathrm{t}, 1 \mathrm{H}$) , $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{br} \mathrm{s}, 4 \mathrm{H})$, 5.05 ($\mathrm{dd}, 1 \mathrm{H}), 4.50(\mathrm{t}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{dd}$, $1 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{q}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.80$ (dd, $1 \mathrm{H}), 2.55$ (dd, 1 H$), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}$, 1H), $1.40(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, 3 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}) ; \mathrm{FAB}-\mathrm{MS}:$ $[\mathrm{M}+\mathrm{H}]=575$.

Cyclic Compound Intermediate 92
cyclo-(D-Val-NMeArg-Gly-Asp-3-aminophenylacetic acid)

The title compound was prepared by the general solution-phase procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb), and as shown schematically in
the Scheme below. The cyclic peptide ($360 \mathrm{mg}, 0.44 \mathrm{mmol}$) was deprotected with excess $H F$ in the presence of anisole as scavenger. Purification was accomplished by reversed-phase HPLC on a preparative LiChrospher RP-18
$2 \mathrm{H}), 5.15$ (dd, 1H), 4.65 (q, $1 H), 4.55(t, 1 H), 3.65$ (m, $2 \mathrm{H}), 3.60(\mathrm{dd}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.85$ (d, $1 \mathrm{H}), 2.70$ (dd, 2H), $2.00(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}$, $2 \mathrm{H}), 0.90(\mathrm{~d}, 3 \mathrm{H}), 0.85(\mathrm{~d}, 3 \mathrm{H}) ; \mathrm{FAB}-\mathrm{MS}:[\mathrm{M}+\mathrm{H}]=575$.

Cyclic Compound Intermediate 87, 88

cyclo-(D-Val-NMeArg-Gly-Asp-4-aminomethylbenzoic acid); the compound of formula (III) wherein $J=D-V a l, K=$ NMeArg, $L=G l y, M=A s p, R^{1}=H, R^{2}=H$

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The DCC/DMAP method was used for attachment of Boc-4-aminomethylbenzoic acid to the oxime resin. The peptide was prepared on a 0.43 mmol scale to give the protected cyclic peptide ($212 \mathrm{mg}, 60.8 \%$). The peptide (200 mg) and 200 mL of m -cresol were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous $H O A C$, and lyophilized to generate the crude peptide as a pale yellow solid (152 mg, 97\% ; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \stackrel{y}{5} / \mathrm{min}$. gradient

```
of 7 to 22% acetonitrile containing 0.1% TFA. Two
```

peaks were isolated to give isomer \#l (87) (17.1\%
recovery, overall yield 9.3\%) and isomer \#2 (88) (13.4\%
recovery, overall yield 7.3\%); FAB-MS: $[M+H]=575.41$ (isomer \#1; 87); 575.44 (isomer \#2; 88).

R^{1} or R^{2} Substituted Intermediates

Cyclic compound intermediates which incorporate substituents at R^{1} or R^{2} are synthesized from the corresponding substituted cyclizing moieties. The following Schemes, discussions, and examples teach the preparation of this class of cyclizing moiety and the corresponding cyclic compound intermediates.
t-Butyloxycarbonyl-N-methyl-3-aminomethylbenzoic Acid (Boc-NMeMamb)

The title compound can be prepared according to standard procedures, for examples, as disclosed in Olsen, J. Org. Chem. (1970) 35: 1912), and as shown schematically below.

Synthesis of AminomethyIbenzoic Acid Analogs

```
    Cyclizing moieties of the formula below may be
prepared using standard synthetic procedures, for
example, as shown in the indicated reaction schemes shown below.
```


For $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, $10 \mathrm{CH}\left(\mathrm{CH}_{3}\right) 2, \mathrm{C}\left(\mathrm{CH}_{3}\right) 3, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH} 3$, benzyl, cyclopentyl, cyclohexyl; see Scheme 1.

Eor $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, phenyl; see Scheme 2 .
For $R=C H 3$, phenyl; see Scheme 3 and 4 .

Scheme 1:

5

10
Scheme 2:

Scheme 3:

Scheme 4:

3-[1'-(t-butyloxycarbonyl)aminolethylbenzoic acid (BQC-MeMAMB)

The title compound for the purpose of this invention was prepared according to the Scheme 4 (above).

3-Acetylbenzoic acid ($0.50 \mathrm{~g}, 3 \mathrm{mmol}$), hydroxylamine hydrochloride ($0.70 \mathrm{~g}, 10 \mathrm{mmol}$) and pyridine ($0.70 \mathrm{ml}, 9 \mathrm{mmol}$) were refluxed in 10 ml ethanol, for 2 h . Reaction mixture was concentrated, residue triturated with water, filtered and dried. Oxime
-203-

```
was isolated as a white solid (0.51 g ; 94.4% yield).
1 HNMR (CD3OD) 7.45-8.30(m, 4H), 2.30(s, 3H). MS (CH4-CI)
[M+H-O] = 164.
    A solution of the oxime (0.51 g, 3 mmol) in ethanol, containing \(10 \% \mathrm{Pd}\) on carbon (1.5 g) and conc. \(\mathrm{HCl}(0.25 \mathrm{ml}, 3 \mathrm{mmol})\) was hydrogenated at \(30 \mathrm{psi} \mathrm{H}_{2}\) pressure in a Parr hydrogenator for 5 h . Catalyst was filtered and the filtrate concentrated. Residue was triturated with ether. Amine hydrochloride was isolated as a white solid ( \(0.48 \mathrm{~g} ; 85.7 \%\) yield). \({ }^{1} \mathrm{HNMR}\) (CD3OD) \(7.6-8.15(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{q}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}[\mathrm{M}+\mathrm{H}]=\) 166.
Amine hydrochloride ( \(0.40 \mathrm{~g}, 2 \mathrm{mmol}\) ) was dissolved in 15 ml water. A solution of \(B O C-O N(0.52 \mathrm{~g}, 2.1 \mathrm{mmol})\) in 15 ml acetone was added, followed by the addition of triethylamine ( \(0.8 \mathrm{ml}, 6 \mathrm{mmol}\) ). Reaction was allowed to proceed for 20 h . Reaction mixture was concentrated, partitioned between ethyl acetate and water. Aqueous layer was acidified to pH 2 using \(10 \% \mathrm{HCl}\) solution. Product was extracted in ethyl acetate, which after the usual work up and recrystallization from ethyl acetate/hexane, gave the title compound as a white solid ( 0.30 g ; 57 5 yield) . m.p. 116-1180 C. \(1_{\text {HNMR }}\left(\mathrm{CDCl}_{3}\right) 7.35-8.2(\mathrm{~m}, 4 \mathrm{H}), 4.6(\mathrm{bs}, 1.5 \mathrm{H}), 1.50(\mathrm{~d}\), \(3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{CI}\right)\left[\mathrm{M}+\mathrm{NH}_{4}\right]=283\).
```

3-11'-(t-butyloxycarbonyl)aminolbenzylbenzoic acid (BOC-PhMAMB)

The title compound for the purpose of this invention was prepared according to the scheme 4 (above), by the procedure similar to that for the methyl derivative.

A solution of 3 -benzoylbenzoic acid $(2.00 \mathrm{~g}, 9$ mol), hydroxylamine hydrochloride ($2.00 \mathrm{~g}, 29 \mathrm{mmol}$) and pyridine ($2.00 \mathrm{ml}, 25 \mathrm{mmol}$) in ethanol was refluxed for 12 h . After the usual extractive work up, white solid
 was obtained (2.41 g). The product still contained traces of pyridine, but was used in the next step without further purification.

The crude product ($2.00 \mathrm{~g}, \sim 8 \mathrm{mmol}$) was dissolved in 200 ml ethanol. $10 \% \mathrm{Pd}-\mathrm{C}(2.00 \mathrm{~g})$ and con. $\mathrm{HCl}(1.3$ $\mathrm{ml}, 16 \mathrm{mmol}$) were added. Reaction mixture was hydrogenated at 30 psi for 1 h . The catalyst was filtered and the reaction mixture concentrated. Upon trituration of the residue with ether and drying under vacuum, amine hydrochloride was obtained as a white solid (2.12 g ; 97\% yield). ${ }^{1}{ }_{\text {HNMR }}$ (CD3OD) 7.4-8.15(m, $10 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}\left(\mathrm{CH}_{4}-\mathrm{CI}\right)[\mathrm{M}+\mathrm{H}-\mathrm{OH}]=211$.

Amine hydrochloride ($1.00 \mathrm{~g}, 4 \mathrm{mmol}$) was converted to its BOC-derivative by a procedure similar to the methyl case. 0.60 g (48% yield) of the recrystallized (from ethanol/hexane) title compound was obtained as a white solid. m.p. 190-1920 C. $1_{\text {HNMR (}}$ (CD3OD) 7.2-8.0(m, 10H), 5.90 ($2 \mathrm{~s}, 1 \mathrm{H}, 2$ isomers), $1.40(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{MS}\left(\mathrm{NH}_{3}-\mathrm{CI}\right)$ $\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{C}_{4} \mathrm{H}_{8}\right]=289$

Cyclic compound Intermediates 68 and 68 a
cyclo-(D-Val-NMeArg-Gly-Asp-MeMamb); the compound of
formula (II) wherein $J=D-V a l$,
$K=$ NMeArg, $L=$ Gly, $M=A s p, R^{1}=C H_{3}, R^{2}=H$

MeMAMB cyclizing moiety was prepared via Scheme 4 (described earlier). The title compound was made by following the solution phase synthetic route to attach MeMAMB to the tripeptide. Cyclization gave the protected cyclic peptide. Deprotection was achieved by treatment
of the peptide (390 mg) and anisol (0.390 ml) with anhydrous HF at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in 10% aqueous acetic acid, and lyophilized to give a mixture of the two isomers (330 mg ; greater than quantitative yield; calculated as the acetate salt). Purification and the separation of the isomers was accomplished by ReversePhase HPLC on a preparative Vydac Cl8 column (2.5 cm) using a $0.48 \% / \mathrm{min}$ gradient of 7 to 23% acetonitrile containing 0.1\% TFA. Fractions collected at Rf 24.1 min and 26.8 min were lyophilized to give the TFA salts of the isomers 1 and 2 respectively. FAB-MS (Isomer 1): $[\mathrm{M}+\mathrm{H}]=589.31 ; \mathrm{FAB}-\mathrm{MS}$ (isomer 2): $[\mathrm{M}+\mathrm{H}]=589.31$.

Cyclic compound Intermediates 76 and $76 a$

cyclo-(D-Val-NMeArg-Gly-Asp-PhMamb); the compound of formula (II) wherein $J=D-V a l$, $K=$ NMeArg, $L=G l y, M=A s p, R^{1}=P h, R^{2}=H$ PhMAMB cyclizing moiety was prepared via Scheme 4 (described earlier). The title compound was made by following the solution phase synthetic route to attach PhMAMB to the tripeptide. Cyclization gave the protected cyclic peptide. Deprotection was achieved by treatment of the peptide (470 mg) and anisol (0.470 ml) with anhydrous HF at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in 10% aqueous acetic acid, and lyophilized to give a mixture of the two isomers (310 mg ; 82.4% overall recovery). Purification and the separation of the isomers was accomplished by Reverse-Phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.55 \% / \mathrm{min}$ gradient of 18 to 36% acetonitrile containing 0.1% TFA. Fractions collected at $\operatorname{Rf} 22 \mathrm{~min}$ and 24.6 min were lyophilized to
give the TFA salts of the isomers 1 and 2 respectively. FAB-MS (Isomer 1): $[\mathrm{M}+\mathrm{H}]=651.33$; $\mathrm{FAB}-\mathrm{MS}$ (isomer 2): $[\mathrm{M}+\mathrm{H}]=651.33$.

Cyclic Compound Intermediate 79
cyclo-(D-Val-NMeArg-Gly-Asp-NMeMamb); the compound of formula (II) wherein $J=D-V a l$, $K=$ NMeArg, $L=G l y, M=$ Asp, $R^{1}=H, R^{2}=\mathrm{CH}_{3}$

Ring-Substituted R 31 Cyclizing Moieties

Cyclizing moieties possessing an aromatic ring that bears a substituent group may be prepared using the methods taught in the following examples and Schemes.

Synthesis of 4, 5, and 6-Substituted 3Aminomethylbenzoic Acid•HCl, and 4, 5, and 6-Substituted t-Butyloxycarbonyl-3-aminomethylbenzoic Acid Derivatives

4, 5, and 6-Substituted 3-aminomethylbenzoic acid•HCl, and 4, 5, and 6-substituted t-butyloxycarbonyl-3-aminomethylbenzoic acid derivatives useful as intermediates in the synthesis of the compounds of the invention are prepared using standard procedures, for example, as described in Felder et al Helv. Chim. Acta, 48: 259 (1965); de Diesbach Helv. Chim. Acta, 23: 1232 (1949); Truitt and Creagn J. Org. Chem., 27: 1066 (1962); or Sekiya et al Chem. Pharm. Bull., 11: 551 (1963), and as shown schematically below.

Synthesis of 4-Chloro-3-aminomethylbenzoic Acid•HCl

The title compound was prepared by modification of procedures previously reported in the literature (Felder
et al (1965) Helv. Chim. Acta, 48: 259). To a solution of 4 -chlorobenzoic acid ($15.7 \mathrm{~g}, 100 \mathrm{mmol}$) in 150 ml of concentrated sulfuric acid was added N-hydroxymethyl dichloroacetamide ($23.7 \mathrm{~g}, 150 \mathrm{mmol}$) in portions. The reaction mixture was stirred at room temperature for 2 days, poured onto 375 g of ice, stirred for 1 hour, the solid was collected by filtration, and washed with $\mathrm{H}_{2} \mathrm{O}$. The moist solid was dissolved in 5\% sodium bicarbonate solution, filtered, and acidified to pH 1 with
0. concentrated HCl. The solid was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$, and air-dryed overnight to give 4-chloro-3-dichloroacetylaminomethylbenzoic acid (26.2 g, 89\%) as a white powder.

A suspension of 4-chloro-3dichloroacetylaminomethylbenzoic acid (26.2 g, 88 mmol) in 45 ml of acetic acid, 150 ml of concentrated HCl , and 150 ml of $\mathrm{H}_{2} \mathrm{O}$ was heated to reflux for 3 hours, filtered while hot, and allowed to cool to room temperature. The solid was collected by filtration, washed with ether, washed with acetone-ether, and air-dryed overnight to give the title compound (7.6 $\mathrm{g}, \mathrm{39} \mathrm{\%}$) as off-white crystals. mp $278-9^{\circ} \mathrm{C} ; 1_{\mathrm{H}}$ NMR (D6-DMSO) 13.40 (br s, 1H), 8.75 ($\mathrm{br} \mathrm{s}, 3 \mathrm{H}$) , 8.20 ($\mathrm{s}, 1 \mathrm{H}$), 7.95 (dd, 1 H), 7.70 (d, 1H), 4.20 (br s, 2H).

t-Butyloxycarbony1-4-chloro-3-aminomethylbenzoic Acid

A suspension of 4-chloro-3-aminomethylbenzoic
acid• $\mathrm{HCl}(6.7 \mathrm{~g}, 30 \mathrm{mmol}$) and triethylamine ($9.3 \mathrm{~g}, 92$ mmol) in 50 ml of H 2 O , was added to a solution of $\mathrm{BOC-ON}$ $(9.2 \mathrm{~g}, 38 \mathrm{mmol})$ in 50 ml of tetrahydrofuran cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature overnight, and the volatile compounds were
removed by concentration under reduced pressure. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}$, washed with ether, acidified to pH 3 with 1 N HCl , and extracted with ethyl acetate. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over anhydrous magnesium sulfate, and evaporated to dryness under reduced pressure. This material was triturated with ether-hexane to provide the title compound (7.4 g, 87\%) as a white powder. mp $159^{\circ} \mathrm{C}$ (dec); 1_{H} NMR (D_{6}-DMSO) 13.20 (br $\mathrm{s}, 1 \mathrm{H}$), 7.90 ($\mathrm{s}, 1 \mathrm{H}$), 7.80 (dd, 1H), 7.60 (br s, 1H), 7.55 (d, 1H), 4.20 (br d, $2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of 3-Aminomethyl-6-iodobenzoic Acid•HCl

The title compound was prepared by modification of procedures previously reported in the literature (Felder et al. (1965) Helv. Chim. Acta, 48: 259). To a solution of 6-iodobenzoic acid ($24.8 \mathrm{~g}, 100 \mathrm{mmol}$) in 150 ml of concentrated sulfuric acid was added $N-$ hydroxymethyl dichloroacetamide ($23.7 \mathrm{~g}, 150 \mathrm{mmol}$) in portions. The reaction mixture was stirred at room temperature for 7 days, poured onto 375 g of ice, and stirred for 1 hour. The solid was then collected by filtration, and washed with $\mathrm{H}_{2} \mathrm{O}$. The moist solid was dissolved in 5 ㄹ sodium bicarbonate solution, filtered, and acidified to pH 1 with concentrated HCl. The solid was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$, and airdried overnight to give 3-dichloroacetyl-aminomethyl-6iodobenzoic acid ($32.0 \mathrm{~g}, 82 \%$) as a white powder.

A suspension of 3 -dichloroacetylaminomethyl-6iodobenzoic acid (32.0 g, 82 mmol) in 51 ml of acetic acid, 170 ml of concentrated HCl , and 125 ml of H_{2} Owas heated to reflux for 3 hours, and filtered while hot, and allowed to cool to room temperature. The solid was collected by filtration, washed with ether, washed with
acetone-ether, and air-dried overnight to give the title compound (13.2 g, 51\%) as a beige powder; 1H NMR (D6DMSO) 13.50 (br s, 1H), 8.50 (br s, 3H), 8.05 (d, 1H), 7.85 (s, 1H), 7.40 (d, 1H), 4.05 (br s, 2H).
t-Butyloxycarbonyl-3-Aminomethyl-6-Iodobenzoic Acid
A suspension of 3-aminomethyl-6-iodobenzoic
acid• $\mathrm{HCl}(8.0 \mathrm{~g}, 26 \mathrm{mmol}$) and triethylamine ($8.7 \mathrm{~g}, 86$ mmol) in 32 ml of $\mathrm{H}_{2} \mathrm{O}$, was added to a solution of Boc-ON $(8.0 \mathrm{~g}, 32 \mathrm{mmol})$ in 23 ml of tetrahydrofuran cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for overnight, and the volatile compounds were removed by concentration under reduced pressure. The residue was diluted with H 20 , washed with ether, acidified to pH 3 with 1 NHCl , and extracted with ethyl acetate. The extracts were washed with H2O, brine, dried over anhydrous magnesium sulfate, and evaporated to dryness under reduced pressure. This material was triturated from ether to provide the title compound (5.7 g, 59들) as a white powder; mp $182^{\circ} \mathrm{C}$ (dec); 1 H NMR (D6DMSO) 13.35 (br s, 1H), 7.95 ($\mathrm{d}, 1 \mathrm{H}$), 7.60 ($\mathrm{s}, 1 \mathrm{H}), 7.50$ (br t, 1H), $7.10(\mathrm{~d}, 1 \mathrm{H}), 4.10(\mathrm{~d}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$.

Other examples of ring-substituted R^{31} cyclizing moieties prepared using the general procedure described above for t-butyloxycarbonyl-3-aminomethyl-6-iodobenzoic acid are tabulated below.

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\multirow[b]{3}{*}{\begin{tabular}{l}

 \\
4-Bromo and 6-Bromo derivatives useful as \\
intermediates in the synthesis of the compounds of the invention may be prepared as described above for \(t\) -butyloxycarbonyl-3-aminomethyl-6-iodobenzoic acid. 4Hydroxy and \(\quad\)-Hydroxy derivatives useful as intermediates in the synthesis of the compounds of the invention may be prepared as described in Sekiya et al Chem. Pharm. Bull., 11: 551 (1963). 5-Nitro and 5-Amino derivatives useful as intermediates in the synthesis of the compounds of the invention may be prepared as described in Felder et al Helv. Chim. Acta, 48: 259 (1965). The 5-amino derivative may be converted to the 5-iodo, 5-bromo, 5-chloro, or 5-fluoro derivatives via the diazonium salt as described in Org. Syn. Coll. Vol., 2: 130 (1943); 2: 299 (1943); 2: 351 (1943); and 3: 185 (1955).
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}
4-Bromo and 6-Bromo derivatives useful as
```


-212-

Synthesis of cyclic Compound Intermediates Using Ring Substituted R^{31} Cyclizing Moieties.

 cyclizing moiety contains an aromatic ring bearing a substituent group may be prepared as taught in the following examples.Cyclic compound Intermediate 93 cyclo-iD-Val-NMeArg-Gly-Asp-3-aminomethyl-4chlorobenzoic acid)

The title compound was prepared by the general solution-phase procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The cyclic peptide (240 mg , 0.28 mmol) was deprotected with excess HF in the presence of anisole as scavenger. Purification was accomplished by reversed-phase HPLC on a preparative LiChrospher RP-18 column (5 cm) using a $1.4 \% /$ minute gradient of 22 to 90% acetonitrile containing 0.1% trifluoroaceric acid to give the TFA salt of the title compound ($80 \mathrm{mg}, 39 \%$) as a fluffy white solid; $l_{\mathrm{H}} \mathrm{NMR}$ (D_{6}-DMSO) 9.00 (d, 1H), 8.50 (d, 1H), 8.45 (t, 1H), 7.60 $(\mathrm{d}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, 2 \mathrm{H}), 7.00$ (br s, 4H), 5.15 (dd, 1H), $4.45(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~d}, 1 \mathrm{H})$, $3.55(\mathrm{~d}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.65$ ($\mathrm{dd}, 1 \mathrm{H})$, $2.50(\mathrm{~m}, ~ 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H})$, $1.05(d, 3 H), 0.85(d, 3 H) ;$ FAB-MS: $[M+H]=609$.

Cyclic Compound Intermediate 94

cyclo-(D-Val-NMeArg-Gly-Asp-iodo-Mamb);
the compound of formula (VII) wherein $J=D-V a l, K$
$=$ NMeArg, $L=$ Gly, $M=$ Asp, $R^{1}=R^{2}=H, R^{10}=H$, $R^{10 a}=I$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-AspMamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-iodo-Mamb to the oxime resin. The peptide was prepared on a 1.05 mmol scale to give the protected cyclic peptide $(460 \mathrm{mg}$, 46.8%). The peptide (438 mg) and 0.5 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetic acid, and lyophilized to generate the title compound $(340 \mathrm{mg}$, 95.6\%; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.23 \% / \mathrm{min}$. gradient of 12.6 to 22.5% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA.salt of the title compound as a fluffy white solid (39.7\% recovery, overall yield 16.6\%); 1H NMR (D6-DMSO) 29.05 (d, 1H), 8.55 (d, 1H), 8.55 ($t, 1 H$), 7.90 (d, 1H), 7.65 (d, 1H), 7.55 ($t, 1 H$), 7.20 (d, 1H), 7.15 (s, 1H), $7.00(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 5.15$ (dd, 1H), 4.50 $(\mathrm{g}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{dd}, 1 \mathrm{H}), 3.60$ (d, 1H), $3.10(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.75$ ($\mathrm{dd}, 1 \mathrm{H}), 2.55$
(dd, 1H), $2.10(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.35$ (m, 2H), $1.10(d, 3 H), 0.90(d, 3 H) ; F A B-M S:[M+H]=701.37$.

Cyclic compound Intermediate 95
 cyclo-(D-Val-NMeArg-Gly-Asp-3-aminomethyl-4methoxybenzoic acid)

 solution-phase procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The cyclic peptide (600 mg , 0.71 mmol) was deprotected with excess HF in the presence of anisole as scavenger. Purification was10. accomplished by reversed-phase HPLC on a preparative Vydac cl8 column (2.5 cm) using a $0.33 \% /$ minute gradient of 7 to 18% acetonitrile containing $0.1 \frac{c}{\bar{z}}$ trifluoroacetic acid to give the TFA salt of the title compound ($104 \mathrm{mg}, 32 \%$) as a fluffy white solid; $l_{\mathrm{H}} \mathrm{NMR}$ (D6-DMSO) 12.40 (br s, 1H), 8.25 (d, 1H), 8.20 (br s, 1H), 8.00 (br $s, 2 H), 7.85(d, 1 H), 7.75$ ($s, 1 H), 7.65$ (br s, 1H), 7.05 (d, 1H), 7.05 (br $5,4 H), 5.00$ (dd, 1H), $4.60(\mathrm{c}, 1 \mathrm{H}), 4.30(\mathrm{~d}, 1 \mathrm{H}), 4.25(\mathrm{~d}, 2 \mathrm{H}), 3.85(\mathrm{~s}$, $3 H), 3.85$ (dd, 1H), 3.70 (dd, 1H), 3.10 (q, 2H), 3.00 $(\mathrm{s}, 3 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.90$ $(\mathrm{m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, 3 \mathrm{H}), 0.90$ $(\mathrm{d}, 3 \mathrm{H}): \mathrm{FAB}-\mathrm{MS}:\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]=623$.

Cyclic Compound Intermediate 96
cyclo-(D-Val-NMeArg-Gly-Asp-3-aminomethyl-4methylbenzoic acid)

Abstract

The title compound was prepared by the general solution-phase procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb). The cyclic peptide (210 mg , 0.25 mmol) was deprotected with excess HF in the presence of anisole as scavenger. Purification was accomplished by reversed-phase $H P L C$ on a preparative LiChrospher RP-18 column (5 cm) using a $2.3 \% /$ minute


```
    gradient of 22 to 90% acetonitrile containing 0.1%
trifluoroacetic acid to give the TFA salt of the title
compound (75 mg, 42%) as a fluffy white solid; 1H NMR
(D6-DMSO) 12.30 (br s, 1H), 8.85 (d, 1H), 8.55 (d, 1H);
5 8.30 (t, 1H), 7.75 (d, 1H), 7.55 (m, 2H), 7.40 (s, 1H),
7.20 (s, 1H), 7.00 (br s, 4H), 5.20 (dd, 1H), 4.55 (q,
1H), 4.45 (dd, 1H), 4.30 (m, 2H), 4.05 (dd, 1H), 3.60
(d, 1H), 3.10 (q, 2H), 3.00 (s, 3H), 2.70 (dd, 1H), 2.50
(m, 1H), 2.25 (s, 3H), 2.10 (m, 2H), 1.60 (m, 1H), 1.35
(m, 2H), 1.10 (d, 3H), 0.90 (d, 3H); FAB-MS: [M+H] =
589.
```

10. Cyclic Compound Intermediate 97

cyclo-(D-Val-NMeArg-Gly-Asp-3-aminomethyl-6-
chlorobenzoic acid)
The title compound was prepared by the general
solution-phase procedure described above for cyclo-(D-
Val-NMeArg-Gly-Asp-Mamb), except that 4,4'-
dinitrobenzophenone oxime was employed. The cyclic
peptide ($550 \mathrm{mg}, 0.65 \mathrm{mmol}$) was deprotected with excess
$H F$ in the presence of anisole as scavenger. Purification
was accomplished by reversed-phase HPLC on a preparative
Vydac cl8 column (2.5 cm) using a $0.8 \% /$ minute gradient
of 10 to $38 \frac{c}{2}$ acetonitrile containing 0.1%
trifluoroacetic acid to give the TFA salt of the title
compound (254 mg , 54%) as a fluffy white solid; 1_{H} NMR
(D_{6}-DMSO) 12.30 (br $\mathrm{s}, 1 \mathrm{H}$), 9.05 ($\mathrm{d}, 1 \mathrm{H}$), 8.45 ($\mathrm{m}, 2 \mathrm{H}$),
$7.50(t, 1 H), 7.35(\mathrm{~d}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H})$,
7.05 (br s, 4H), 5.15 (dd, 1H), 4.45 (dd, 1H), 4.40 (q ,
$2 \mathrm{H}), 4.05(\mathrm{dt}, 2 \mathrm{H}), 3.55(\mathrm{dd}, 1 \mathrm{H}), 3.15(\mathrm{q}, 2 \mathrm{H}), 3.10$
($\mathrm{s}, 3 \mathrm{H}$) , 2.70 ($\mathrm{dd}, 1 \mathrm{H}), 2.50(\mathrm{~m}, ~ 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.65$
$(\mathrm{m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}), 0.90(\mathrm{~d}, 3 \mathrm{H}) ;$ FAB-
MS: $[\mathrm{M}+\mathrm{H}]=609$.

Cyclic compound Intermediate 99
 cyclo-(D-Val-NMeArg-Gly-Asp-3-aminomethyl-6methoxybenzoic acid)

 solution-phase procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb), except that 4,4'dinitrobenzophenone oxime was employed. The cyclic peptide ($256 \mathrm{mg}, 0.30 \mathrm{mmol}$) was deprotected with excess 10. HF in the presence of anisole as scavenger. Purification was accomplished by reversed-phase HPLC on a preparative Vydac Cl8 column (2.5 cm) using a $0.8 \% /$ minute gradient of 10 to 38% acetonitrile containing 0.1%trifluoroacetic acid to give the TFA salt of the title compound ($137 \mathrm{mg}, 63 \%$) as a fluffy white solid; 1_{H} NMR (D6-DMSO) 8.45 ($\mathrm{d}, 1 \mathrm{H}$) , 8.40 ($\mathrm{d}, 1 \mathrm{H}), 8.30$ ($\mathrm{t}, 1 \mathrm{H}), 7.65$ $(\mathrm{d}, 1 \mathrm{H}), 7.50(\mathrm{t}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, 1 \mathrm{H}), 7.05$ (d, 1H), 7.00 ($\mathrm{br} \mathrm{s}, 4 \mathrm{H}$) , 5.20 (dd, 1H), 4.55 (dd, 1H), 4.50 ($\mathrm{q}, 1 \mathrm{H}$) , 4.35 (dd, 1H), 4.25 (dd, 1H), 3.95 (dd, 1H), $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~d}, 1 \mathrm{H}), 3.10(\mathrm{q}, 2 \mathrm{H}), 3.00(\mathrm{~s}$, 3H), 2.70 ($\mathrm{dd}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}$, 1H), $1.35(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}) ; \mathrm{FAB}-\mathrm{MS}:$ $[\mathrm{M}+\mathrm{H}]=605$.

Cyclic Compound Intermediate 100 cyclo-(D-Val-NMeArg-Gly-Asp-3-aminomethyl-6methylbenzoic acid)

The title compound was prepared by the general solution-phase procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb), except that 4,4'dinitrobenzophenone oxime was employed. The cyclic peptide ($230 \mathrm{mg}, 0.28 \mathrm{mmol}$) was deprotected with excess $H F$ in the presence of anisole as scavenger. Purification
accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.8 \% /$ minute gradient of 10 to 38% acetonitrile containing 0.1%
trifluoroacetic acid to give the TFA salt of the title compound ($54 \mathrm{mg}, 27 \%$) as a fluffy white solid; $1_{\mathrm{H}} \mathrm{NMR}$ (D6-DMSO) 12.30 (br s, 1H), 8.80 (d, 1H), 8.40 ($d, 1 H$), $8.30(t, 1 H), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{q}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, 7.00 (br s, 4H), 5.15 (dd, 1H), 4.45 (m, 3H), $4.05(\mathrm{~m}$, $2 H), 3.55$ ($\mathrm{dd}, 1 \mathrm{H}$) , $3.10(\mathrm{q}, 2 \mathrm{H}), 3.05$ ($\mathrm{s}, 3 \mathrm{H}), 2.70$ $(\mathrm{dd}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.60$ ($\mathrm{m}, 1 \mathrm{H}$) , 1.35 ($\mathrm{m}, 2 \mathrm{H}$), 1.05 (d, 3H), 0.90 (d, 3H); FABMS: $[\mathrm{M}+\mathrm{H}]=589$.

Cyclic compound Intermediate 100a

cvclo-(D-Abu-NMeArg-Gly-Asp-3-aminomethyl-6-

chlorobenzoic acid)

The title compound was prepared by the general solution-phase procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb), except that 4,4'dinitrobenzophenone oxime was employed. The cyclic peptide ($330 \mathrm{mg}, 0.40 \mathrm{mmol}$) was deprotected with excess HF in the presence of anisole as scavenger. Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $1.0 \% /$ minute gradient of 10 to 38% acetonitrile containing 0.1%
trifluoroacetic acid to give the TFA salt of the title compound (114 mg, 41\%) as a fluffy white solid; ${ }^{1_{H}}$ NMR (D_{6}-DMSO) $9.00(\mathrm{~d}, 1 \mathrm{H}), 8.40(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~m}, 1 \mathrm{H}), 7.40$ (d, 1H), $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.00$ (br s, 4H), 5.15 (dd, 1H), 4.65 (q, 1H), $4.50(d d, 1 H), 4.40$ (q, $1 \mathrm{H}), 4.05$ (dd, 1H), 3.95 (dd, 1H), 3.65 ($\mathrm{dd}, 1 \mathrm{H}), 3.10$ ($\mathrm{q}, 2 \mathrm{H}$) , 3.05 ($\mathrm{s}, 3 \mathrm{H}$) , 2.75 ($\mathrm{dd}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 1.95$

$$
-218-
$$

```
(m, 1H), 1.7.5 (m, 2H), 1.60 (m, 1H), 1.35 (m, 2H), 0.95
(t, 3H); FAB-MS: [M+H] = 595.4.
```


cyclic compound Intermediate 89 d

$$
\begin{gathered}
\text { cyclo-(D-Abu-NMeArg-Gly-Asp-iodo-Mamb); the } \\
\text { compound of formula (VII) wherein } J=D-A b u, \\
K=\text { NMeArg, } L=G l y, M=A s p, R^{1}=R^{2}=H, \\
R^{10}=H, R^{10 a}=I
\end{gathered}
$$

The title compound was prepared using the general procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-iodo-Mamb to the oxime resin. The peptide was prepared on a 3.53 mmol scale to give the protected cyclic peptide (4.07 g, greater than quantitative yield). The peptide (4.07 g) and 4.0 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetic acid, and lyophilized to generate the title compound (2.97 g, greater than quantitative yield; calculated as the acetate salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.16 \% / \mathrm{min}$. gradient of 16.2 to 22.5% acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (28.7% recovery, overall yield 30.2%); FAB-MS: $[M+H]=687.33$.

Cyclic Compound Intermediate 100 b cyclo-(D-Abu-NMeArg-Gly-Asp-3-aminomethyl-6-iodobenzoic acid)

The title compound was prepared by the general solution-phase procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb), except that 4,4'dinitrobenzophenone oxime was employed. The cyclic peptide ($350 \mathrm{mg}, 0.38 \mathrm{mmol}$) was deprotected with excess $H F$ in the presence of anisole as scavenger. Purification was accomplished by reversed-phase HPLC on a preparative Vydac Cl8 column (2.5 cm) using a $1.0 \% /$ minute gradient of 10 to 38% acetonitrile containing 0.1% trifluoroacetic acid to give the TFA salt of the title compound ($150 \mathrm{mg}, 49 \%$) as a fluffy white solid; $l_{\mathrm{H}} \mathrm{NMR}$ (D_{6}-DMSO) 8.90 ($\mathrm{d}, 1 \mathrm{H}$), $8.40(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}), 7.50$ $(\mathrm{m}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, 1 \mathrm{H}), 7.00$ (br s, 4H), 5.15 (dd, 1H), 4.65 ($\mathrm{q}, 1 \mathrm{H}$), 4.45 (dd, 1H), 4.40 (q, 1H), 4.00 (q, 1H), 3.90 (q, 1H), 3.65 (dd, 1H), $3.10(\mathrm{q}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}, 1 \mathrm{H}), 2.50(\mathrm{~m}, ~ 1 \mathrm{H})$, $1.95(\mathrm{~m}, ~ 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H})$, 0.95 ($\mathrm{t}, \mathrm{3H}$); FAB-MS: $[\mathrm{M}+\mathrm{H}]=687.3$.

Cyclic compound Intermediate 100 c cyclo-(D-Abu-NMeArg-Gly-Asp-3-aminomethyl-6methylbenzoic acid)
(the compound of formula (VII) wherein $J=D-A b u, K=$ NMeArg, $L=$ Gly, $M=A s p, R^{10}=\mathrm{Me}$)

The title compound was prepared by the general solution-phase procedure described above for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb), except that 4,4'dinitrobenzcphenone oxime was employed. The cyclic peptide ($130 \mathrm{mg}, 0.16 \mathrm{mmol}$) was deprotected with excess HF in the presence of anisole as scavenger. Purification was accomplished by reversed-phase HPLC on a preparative Vydac Cl8 column (2.5 cm) using a $1.0 \% /$ minute gradient of 10 to 38 c acetonitrile containing $0.1 \frac{c}{c}$

```
trifluoroacetic acid to give the TFA salt of the title
compound (31 mg, 28%) as a fluffy white solid; 1H NMR
(D6-DMSO) 8.70 (d, 1H), 8.40 (d, 1H), 8.30 (t, 1H), 7.50
(m, 1H), 7.45 (m, 1H), 7.15 (q, 2H), 7.05 (s, 1H), 7.00
(br s, 4H), 5.15 (dd, 1H), 4.65 (q, 1H), 4.45 (m, 2H),
4.00 (m, 2H), 3.65 (dd, 1H), 3.10 (q, 2H), 3.05 (s, 3H),
2.75 (dd, 1H), 2.50 (m, 1H), 2.30 (s, 3H), 2.00 (m, 1H),
1.75 (m, 2H), 1.60 (m, 1H), 1.35 (m, 2H), 0.95 (t, 3H);
FAB-MS: [M+H] = 575.4.
```


intermediate.

cyclo-(D-Val-NMeArg-Gly-Asp-3-aminomethyl-6-iodobenzoic
 Acid)

The title compound was prepared according to the method of Scheme 6, shown below.

1. $\begin{aligned} & \text { TFA, } \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & \text { 2. } \mathrm{AcOH}, \mathrm{iPr}_{2} \mathrm{NEt}, \\ & \mathrm{DMF}, 60^{\circ} \mathrm{C}\end{aligned}$

TBTU, $\operatorname{HPT}_{2} \mathrm{NEL}, \mathrm{DMF}$

1. BOc-Asp (0cHex)-3-aminomethyl-6-iodobenzoic_Acid

To a suspension of 3-aminomethyl-6-iodobenzoic acid• $\mathrm{HCl}\left(4.9 \mathrm{~g}, 16 \mathrm{mmol}\right.$) in $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{ml})$ was added NaHCO 3 ($3.9 \mathrm{~g}, 47 \mathrm{mmol}$), followed by a solution of BocAsp (OcHex)-OSu ($5.9 \mathrm{~g}, 14 \mathrm{mmol}$) in THF (16 ml). The reaction mixture was stirred at room temperature overnight, filtered, diluted with $\mathrm{H}_{2} \mathrm{O}$, acidified with 1 N HCl, and extracted with ethyl acetate. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over anhydrous magnesium sulfate, and evaporated to dryness under reduced pressure. This material was triturated with ether to

[^0]3. 4, 4'-Dinitrobenzophenone oxime Boc-Asp (OcHex)-3-aminomethyl-6-iodobenzoate (osulting was triturated with petroleum ether to provide Boc-NMeArg(Tos)-Gly-OBzl (14.7 g. 100\%); FAB-MS: $[M+H]=590.43$. This material was used without further purification.

A solution of Boc-NMeArg(Tos)-Gly-OBzl (14.5 g, 24.6 mmol) in 30 ml of trifluoroacetic acid was stirred
at room temperature for 5 minutes, and evaporated to dryness under reduced pressure. The oily residue was diluted with cold ethyl acetate, washed with cold saturated sodium bicarbonate solution, the aqueous phase was extracted with ethyl acetate. The combined organics were washed with brine, evaporated to dryness under reduced pressure, and the resulting oil triturated with ether. The resulting solid was filtered, washed with ether, and dried in a vacuum desiccator to provide NMeArg(TOS)-Gly-OBzl (10.3 g, 86\%); FAB-MS: $[\mathrm{M}+\mathrm{H}]=$ 490.21. This material was used without further purification.

To a solution of NMeArg(Tos)-Gly-OBzl (4.80 g, 9.8 mmol), and Boc-D-Val (2.13 g, 9.8 mmol$)$ in 10 ml of dichloromethane, cooled in an ice-bath, was added HBTU ($3.79 \mathrm{~g}, 10.0 \mathrm{mmol}$) and DIEA ($2.58 \mathrm{~g}, 20.0 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 48 hours, diluted with ethyl acetate, washed with 5% citric acid, brine, dried over anhydrous magnesium sulfate, and evaporated to dryness under reduced pressure. The resulting oil was triturated with ether to provide Boc-D-Val-NMeArg(TOS)-Gly-OBzl (4.58 g, 68\%); FAB-MS: [M+H] $=689.59$. This material was used without further purification.

A solution of Boc-D-Val-NMeArg(TOS)-Gly-OBzl (4.50 g , 6.53 mmol) in 80 ml of methanol was purged with nitrogen gas, 1.30 g of $10 \% \mathrm{Pd} / \mathrm{C}$ was added, and hydrogen gas was passed over the reaction. After 1 hour the catalyst was removed by filtration through a bed of celite, and the solvent removed under reduced pressure. The resulting solid was triturated with ether, filtered, and washed with petroleum ether to provide Boc-D-Val-NMeArg(TOS)-Gly (3.05 g, 78\%); $1_{\mathrm{H}}^{\mathrm{H}} \mathrm{NMR}$ (D6-DMSO) d 7.90 (br t, 1H), 7.65 ($\mathrm{d}, 2 \mathrm{H}$), 7.30 ($\mathrm{d}, 2 \mathrm{H}$), 7.00 ($\mathrm{d}, \mathrm{1H}$),

```
    6.85 (br d, 1H), 6.60 (br s, 1H), 5.00 (dd, 1H), 4.15
    (t, 1H), 3.70 (m, 2H), 3.05 (m, 2H), 2.90 (s, 3H), 2.35
    (s, 3H), 1.90 (m, 2H), 1.55 (m, 1H), 1.35 (s, 9H), 1.25
    (m, 2H), 0.80 (br t, 6H); FAB-MS: [M+H] = 599.45.
```

``` 5. 4, 4'-Dinitrobenzophenone Oxime Boc-D-Val-NMeArg(TOs)-Gly-Asp(OcHex)-3-aminomethyl-6-iodobenzoate
To a solution of 4,4'-dinitrobenzophenone oxime Boc-Asp (OcHex)-3-aminomethyl-6-iodobenzoate (0.5 g, 0.59 mmol) in 1 ml of dichloromethane was added 0.5 ml of trifluoroacetic acid. The reaction mixture was stirred at room temperature for 90 minutes, diluted with dichloromethane, and evaporated to dryness under reduced pressure. The oily residue was concentrated under high vacuum to remove traces of excess trifluoroacetic acid.
To a solution of the crude TFA salt and Boc-D-ValNMeArg (Tos)-Gly ( \(0.52 \mathrm{~g}, 0.87 \mathrm{mmol}\) ) in 3.8 ml of DMF was added TBTU ( \(0.28 \mathrm{~g}, 0.87 \mathrm{mmol}\) ) and DIEA ( \(0.33 \mathrm{~g}, 2.58\) mmol). The reaction mixture was stirred at room temperature overnight, concentrated under high vacuum, diluted with ethyl acetate, washed with \(5 \%\) citric acid, \(\mathrm{H}_{2} \mathrm{O}\), brine, dried over anhydrous magnesium sulfate, and evaporated to dryness under reduced pressure. This material was triturated with ether to provide the title compound ( \(0.48 \mathrm{~g}, 61 \%\) ) as a powder. This material was used without further purification. 6. cyclo-(D-Val-NMeArg(Tos)-Gly-Asp(OcHex)-3-aminomethyl-6-iodobenzoic Acid)
```

To a solution of 4, 4'-dinitrobenzophenone oxime Boc-D-Val-NMeArg(TOS)-Gly-Asp (OcHex)-3-aminomethyl-6iodobenzoate ($0.48 \mathrm{~g}, 0.36 \mathrm{mmol}$) in 1 ml of dichloromethane was added 0.5 ml of trifluoroacetic acid. The reaction mixture was stirred at room temperature for 45 minutes, diluted with dichloromethane, and evaporated to dryness under reduced
pressure. The oily residue was concentrated under high vacuum to remove traces of excess trifluoroacetic acid.

To a solution of the crude TFA salt in 38 ml of DMF was added acetic acid ($0.09 \mathrm{ml}, 1.57 \mathrm{mmol}$) and DIEA
5 ($0.26 \mathrm{ml}, 1.49 \mathrm{mmol})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 days, concentrated under high vacuum, diluted with ethyl acetate, washed with 5 \% citric acid, brine, dried over anhydrous magnesium sulfate, and evaporated to dryness under reduced pressure. This deprotected with excess $H F$ in the presence of anisole as scavenger. Purification was accomplished by reversedphase HPLC on a preparative Vydac C18 column (2.5 cm) using a $0.8 \% /$ minute gradient of 10 to 38% acetonitrile containing 0.1\% trifluoroacetic acid to give the TFA white solid; $l_{H} \operatorname{NMR}\left(D_{6}\right.$-DMSO) d 12.30 (br $5,1 H$), 9.00 (d, 1H), $8.40(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 1 \mathrm{H}), 7.30$ ($\mathrm{m}, \mathrm{1H}$) , 7.05 ($\mathrm{d}, 1 \mathrm{H}$) , 7.00 ($\mathrm{s}, 1 \mathrm{H}$) , 7.00 (br $\mathrm{s}, 4 \mathrm{H}$), $5.15(\mathrm{dd}, 1 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}), 4.40(\mathrm{q}, 2 \mathrm{H}), 4.0(\mathrm{~m}, 2 \mathrm{H})$,
3.55 (dd, 1H), 3.15 ($\mathrm{q}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}$,

1H), 2.50 ($\mathrm{m}, ~ 1 \mathrm{H}$) , $2.05(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, ~ 1 \mathrm{H}), 1.35(\mathrm{~m}$, 2H), $1.15(\mathrm{~d}, 3 \mathrm{H}), 0.90(\mathrm{~d}, 3 \mathrm{H}) ; \mathrm{FAB}-\mathrm{MS}:[\mathrm{M}+\mathrm{H}]=701$.

5
Table A shows the FAB-MS obtained for certain cyclic compound intermediates.

TABLE A

10

cyclic	R	X	2	EAB-MS (M+H)
Compound				
Intermedia				
te Number				
101	D-Val	I	H	701.37
98, 102	D-Val	H	I	701
103	D-Abu	I	H	687.33
104	D-Abu	H	I	687.3
105	D-Val	Cl	H	609
106	D-Val	H	Cl	609
107	D-Abu	H	Cl	595.4
108	D-Val	Me	H	589
109	D-Val	H	Me	589
110	D-Abu	H	Me	575.4
111	D-Val	MeO	H	$623\left(+\mathrm{H}_{2} \mathrm{O}\right)$

112
D-Val
H
MeO
605

Other ring substituted cyclizing moieties can be synthesized as taught in the following schemes and discussion. The moiety of the formula above where $Z=$ NH_{2} can be synthesized by at least two different routes. For example, starting with 4-acetamidobenzoic acid (Aldrich Chemical Co.), a Friedel-Crafts alkylation with N-hydroxymethyldichloroacetamide would give the dichloroacetyl derivative of 3-aminomethyl-4acetamidobenzoic acid (Felder, Pitre, and Fumagalli (1964), Helv. Chim. Acta, 48, 259-274). Hydrolysis of the two amides would give 3-aminomethyl-4-aminobenzoic acid.

Alternatively, starting with 3-cyano-4-nitrotoluene, oxidation with chromium trioxide followed by reduction will give 3-aminomethyl-4-aminobenzoic acid.

a] CrO_{3}
b] H_{2}-catalyst

The moiety of the formula above where $Y=\mathrm{CH}_{2} \mathrm{NH}_{2}$ can be synthesized from 3,5-dicyanotoluene by oxidation of the methyl group with chromium trioxide followed by reduction.

a] CrO_{3}
b) H_{2}-catalyst

The moiety of the formula above where $Z=\mathrm{CH}_{2} \mathrm{NH}_{2}$ can be synthesized from 3-cyano-4-methylbenzoic acid (K \& K Rare and Fine Chemicals). Bromination using $N-$ bromosuccinimide would give 4-bromomethyl-3-cyanobenzoic acid. A nucleopnilic substitution reaction at the bromomethyl position using an amide anion would produce the protected amine. Amide anions which could be used in this reaction include potassium phthalimide (Gabriel synthesis), and the anion of trifluoroacetamide (Usui (1991), Nippon Kagaku Kaishi, 206-212) used in this example. Reduction of the nitrile would produce the second aminomethyl group, which would be protected by reaction with di-t-butyl dicarbonate. Removal of the trifluoroacetamide protecting group using aqueous piperidine would give the moiety.

10 a] $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HOCH}_{2} \mathrm{NHCOCHCl}_{2}$ b] H^{+}, boc-ON
c] $\mathrm{CuCN}, \mathrm{DMF}$ d] H_{2}-catalyst

These ring substituted cyclizing moieties can be used to synthesize cyclic compound intermediates.

Cyclic Compound Intermediate 113 Cyclo(D-Val-NMeArg-Gly-Asp-Mamb (4-NH2)

This compound can be prepared using the procedure described above for Cyclo(D-Val-NMeArg-Gly-Asp-Mamb substituting the ring substituted cyclizing moiety where $\mathrm{Z}=\mathrm{NH}_{2}$.

Cyclic Compound Intermediates 114, 115 and 116

[^1]Tyr-NMeArg-Gly-Asp-Mamb (5-CH2NHX 2) can be prepared via the methods described above using the ring substituted cyclizing moiety where $Y=\mathrm{CH}_{2} \mathrm{NH}_{2}$.

Cyclic Compound Intermediates 117, 118 and 119.

$$
\begin{gathered}
x_{1}=2 \text {-propyl, ethyl, or p-hydroxyphenylmethyl } \\
x_{2}=H
\end{gathered}
$$

Compounds cyclo(D-Val-NMeArg-Gly-Asp-Mamb (4-CH2NHX2), cyclo(D-Abu-NMeArg-Gly-Asp-Mamb (4-CH2NHX2), and cyclo(D-Tyr-NMeArg-Gly-Asp-Mamb (4-CH2 NHX_{2}) can be prepared via the procedures described above using the ring substituted cyclizing moiety where $Z=\mathrm{CH}_{2} \mathrm{NH}_{2}$.

Other B^{31} Cyclizing Moieties

Alternatives to Mamb useful as cyclizing moieties R^{31} in the cyclic peptides of the invention include aminoalkyl-naphthoic acid and aminoalkyltetrahydronaphthoic acid residues. Representative aminoalkyl-naphthoic acid and aminoalkyltetrahydronaphthoic acid intermediates useful in the synthesis of cyclic peptides of the present invention
are described below. The synthesis of these intermediates is outlined below in Scheme 7 .

5

DM-6591-A -236-
 8-Amino-5, 6, 7, 8-tetrahydro-2-naphthoic Acid Hydrochloride (8)

The title compound was prepared according to a modification of standard procedures previously reported in the literature (Earnest, I., Kalvoda, J., Rihs, G., and Mutter, M., Tett. Lett., Vol. 31, No. 28, pp 40114014, 1990).

As shown above in Scheme 7, 4-phenylbutyric acid (1) was converted to the ethyl ester (2) which was acylated via aluminum chloride and acetylchloride to give 4-acetylphenylbutyric acid ethyl ester (3). This ester was subjected to saponification to give 4acetylphenylbutyric acid (4). Subsequently, the acetyl group was oxidized to give 4-carboxyphenylbutyric acid (5) which was converted to the 1-tetralin-7-carboxylic acid (6) using aluminum chloride in a Friedel-Crafts cyclization with resonably high yield. At that point, the tetralone was split into two portions and some was converted to the oxime (7) using sodium acetate and hydroxylamine hydrochloride. The oxime was subjected to hydrogenolysis to give the racemic mixture of 8 -amino5, 6, 7, 8-tetrahydro-2-naphthoic acid as the hydrochloride (8) for use as an intermediate for incorporation into the cyclic peptide.

Part A - A solution of 4-phenylbutyric acid (50.0 g, 0.3 mol) in ethanol (140 mL) with concentrated sulfuric acid $(0.53 \mathrm{~mL})$ was stirred at reflux over 5 hours. The cooled solution was poured into ice water and extracted with ethyl acetate. The combined organic layers were backwashed with brine, dried over anhydrous magnesium sulfate and evaporated to dryness under reduced pressure to give 4-phenylbutyric acid ethyl ester (56.07 g, 0.29
mol, 97\%) as a yellow liquid. ${ }^{1_{H}}$ NMR (CDCl_{3}) d 7.3-7.1 ($\mathrm{m}, 5 \mathrm{H}$) , 4.1 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$), 2.7 (t, $2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}$), 2.3 (t, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$), 1.95 (quintet, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$), 1.25 ($t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$).

Part B - To a solution of aluminum chloride (153 g, 1.15 mol), and acetyl chloride ($38.5 \mathrm{~mL}, 42.5 \mathrm{~g}, 0.54 \mathrm{~mol}$) in dichloromethane (1500 mL) was added, dropwise, a solution of 4-phenylbutyric acid ethyl ester (50.0 g, 0.26 mol) in dichloromethane (500 mL). All was stirred at ambient temperature for 15 minutes. The solution was poured into cold concentrated hydrochloric acid (2000 mL) and then extracted with dichloromethane. The combined organic layers were backwashed with brine, dried over anhydrous magnesium sulfate and evaporated to dryness under reduced pressure to give 4acetylphenylbutyric acid ethyl ester (53.23 g, 0.23 mol , 88\%) as a dark yellow liquid. ${ }^{1}{ }_{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \mathrm{d} 7.9$ (d, $2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.25(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 4.1(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1$ $\mathrm{Hz}), 2.75(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.6(\mathrm{~s}, 3 \mathrm{H}), 2.35$ (t, 2 H , $J=7.6 \mathrm{~Hz}$), 2.0 (quintet, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$), 1.25 ($\mathrm{t}, 3 \mathrm{H}$, $\mathrm{J}=7.1 \mathrm{~Hz}$).

Part C-To a solution of 4-acetylphenylbutyric acid
25 ethyl ester ($50.0 \mathrm{~g}, 0.21 \mathrm{~mol}$) in ethanol (1250 mL) was added, dropwise, a solution of sodium hydroxide (50.0 g) in water (1250 mL). All was stirred at reflux over 4 hours. The solution was concentrated to half volume and then acidified to a pH equal to 1.0 using hydrochloric acid (1N). The resulting precipitate was collected and washed with water to give 4-acetylphenylbutyric acid ($53.76 \mathrm{~g}, 0.26 \mathrm{~mol}, 99 \%$) as a white solid. $\mathrm{mp}=50-52^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \mathrm{d} 7.9(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.25$ (d, 2H,
$J=9.1 \mathrm{~Hz}), 2.75(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 2.6(\mathrm{~s}, 3 \mathrm{H}), 2.4(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}$), 2.0 (quintet, $2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}$).

Part D -To a solution of sodium hypochlorite $(330 \mathrm{~mL}$,
$17.32 \mathrm{~g}, 0.234 \mathrm{~mol}$) in a solution of sodium hydroxide (50%, 172 mL), warmed to $55^{\circ} \mathrm{C}$, was added, portionwise as a solid, 4-acetylphenylbutyric acid (16.0 g, 0.078 mol$)$ while keeping the temperature between $60-70^{\circ} \mathrm{C}$. All was stirred at $55^{\circ} \mathrm{C}$ over 20 hours. The cooled solution was quenched by the dropwise addition of a solution of sodium bisulfite ($25 \%, 330 \mathrm{~mL}$). The mixture was then transferred to a beaker and acidified by the careful addition of concentrated hydrochloric acid. The resulting solid was collected, washed with water and dried, then triturated sequentially with chlorobutane and hexane to give 4-carboxyphenylbutyric acid (15.31 g, $0.074 \mathrm{~mol}, 95 \%$) as a white solid. $\mathrm{mp}=190-195^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (DMSO) d 12.55 (bs, 1H), 8.1 ($\mathrm{s}, 1 \mathrm{H}$), 7.85 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.1$ $\mathrm{Hz}), 7.3(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 2.7(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.2$ ($\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}$), 1.8 (quintet, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$).

Part E - A mixture of 4-carboxyphenylbutyric acid (10.40 $\mathrm{g}, 0.05 \mathrm{~mol})$, aluminum chloride ($33.34 \mathrm{~g}, 0.25 \mathrm{~mol}$) and sodium chloride ($2.90 \mathrm{~g}, 0.05 \mathrm{~mol}$) was heated with continual stirring to $190^{\circ} \mathrm{C}$ over 30 minutes. As the mixture cooled to $60^{\circ} \mathrm{C}$, cold hydrochloric acid (1N, 250 mL) was carefully added. The mixture was extracted with dichloromethane. The combined organic layers were backwashed with dilute hydrochloric acid and water, dried over anhydrous magnesium sulfate and evaporated to dryness under reduced pressure. The resulting solid was triturated with chlorobutane to give 1-tetralon-7carboxylic acid ($9.59 \mathrm{~g}, 0.05 \mathrm{~mol}, 100 \%$) as a brown solid. $\mathrm{mp}=210-215^{\circ} \mathrm{C} ; 1_{\mathrm{H}} \mathrm{NMR}$ (DMSO) d 8.4 ($5,1 \mathrm{H}$), 8.1
$(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.5(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 3.0$ (t, 2 H , $J=6.0 \mathrm{~Hz}), 2.65(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.1$ (quintet, 2 H , $J=6.3 \mathrm{~Hz}$).

Part E - A solution of 1-tetralon-7-carboxylic acid (1.0 $\mathrm{g}, 0.0053 \mathrm{~mol})$ and sodium acetate ($1.93 \mathrm{~g}, 0.024 \mathrm{~mol}$) and hydroxylamine hydrochloride (1.11 $\mathrm{g}, 0.016 \mathrm{~mol}$) in a mixture of methanol and water ($1: 1,15 \mathrm{~mL}$) was stirred at reflux over 4 hours. The mixture was cooled and then added was more water (50 mL). The solid was collected, washed with water and dried, then triturated with hexane to give 1-tetralonoxime-7-carboxylic acid 10.78 g , $0.0038 \mathrm{~mol}, 72 \%$) as a white solid. $\mathrm{mp}=205-215^{\circ} \mathrm{C} ; 1_{\mathrm{H}}$ NMR (DMSO) d $11.3(\mathrm{~s}, 2 \mathrm{H}), 8.4(\mathrm{~s}, 1 \mathrm{H}), 7.8(\mathrm{~d}, 1 \mathrm{H}$, $J=7.7 \mathrm{~Hz}), 7.3(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 2.8(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz})$, $2.7(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.9-1.7(\mathrm{~m}, 2 \mathrm{H})$.

Part G - A mixture of 1-tetralonoxime-7-carboxylic acid ($0.75 \mathrm{~g}, 0.0037 \mathrm{~mol}$) in methanol (25 mL) with concentrated hydrochloric acid ($0.54 \mathrm{~mL}, 0.20 \mathrm{~g}, 0.0056$ mol) and palladium on carbon catalyst ($0.10 \mathrm{~g}, 5 \% \mathrm{Pd} / \mathrm{C}$) was shaken for 20 hours at ambient temperature under an atmosphere of hydrogen (60 psi). The reaction mixture was filtered over Celite ${ }^{@}$ and washed with methanol. The filtrate was evaporated to dryness under reduced pressure and the residue was purified by flash chromatography using hexane:ethyl acetate::1:1 to give the racemic mixture of 8 -amino-5, 6,7,8-tetrahydro-2naphthoic acid hydrochloride ($0.225 \mathrm{~g}, 0.001 \mathrm{~mol} .27 \%$) as a white solid. $\mathrm{mp}=289-291^{\circ} \mathrm{C} ; 1_{\mathrm{H}} \mathrm{NMR}$ (DMSO) d 8.55 (bs, 3H), 8.2-8.1 ($\mathrm{m}, 1 \mathrm{H}$), 7.85-7.8 (m, 1H), 7.35-7.25 $(\mathrm{m}, 1 \mathrm{H}), 4.5(\mathrm{~m}, 1 \mathrm{H}), 2.9-2.8(\mathrm{~m}, 2 \mathrm{H}), 2.1-1.9(\mathrm{~m}, 3 \mathrm{H})$, 1.85-1.7 (m, 1H).

N-(BOC)-8-Aminomethyl-5,6,7,8-tetrahydro-2-naphthoic Acid (12)

As shown above in Scheme 7, the remaining tetralone was then converted to the methyl ester (9). Using a procedure from Gregory, G.B. and Johnson, A.L, JOC, 1990, 55, 1479, the tetralone methyl ester (9) was converted, first, to the cyanohydrin by treatment with trimethylsilylcyanide and zinc iodide and then, via the in situ dehydration with phosphorous oxychloride in pyridine, to the methyl 8-cyano-5,6-dihydro-2-naphthoate (11). This naphthoate was divided into two portions and some was subjected to hydrogenolysis, N-BOC-protection and saponification to give $\mathrm{N}-(\mathrm{BOC})-8$-aminomethyl-5,6,7,8-tetrahydro-2-naphthoic acid (12) as an intermediate for incorporation into the cyclic peptide.

Part A - A mixture of 1-tetralon-7-carboxylic acid (7.0 $\mathrm{g}, 0.037 \mathrm{~mol}$) in methanol ($13.6 \mathrm{~mL}, 10.8 \mathrm{~g}, 0.30 \mathrm{~mol})$ with a catalytic amount of hydrochloriic acid 10.07 mL , $0.12 \mathrm{~g}, 0.0012 \mathrm{~mol}$) was stirred at reflux over 5 hours. The cooled reaction mixture was poured into ice water and extracted with ethyl acetate. The combined organic layers were backwashed with water and brine, dried over anhydrous magnesium sulfate and evaporated to dryness under reduced pressure. The resulting solid was purified by flash chromatography using hexane:ethyl acetate: :75:25. The resulting solid was triturated with hexane to give 1-tetralon-7-carboxylic acid methyl ester ($3.61 \mathrm{~g}, 0.018 \mathrm{~mol}, 49 \%$) as a yellow solid. $\mathrm{mp}=170-$ $172^{\circ} \mathrm{C} ; 1_{\mathrm{H}} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \mathrm{d} 8.7(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1$ $\mathrm{Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, 2 \mathrm{H}$,

```
\(J=6.1 \mathrm{~Hz}), 2.7\) (t, \(2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}\) ), 2.15 (quintet, 2 H ,
```

$J=6.2 \mathrm{~Hz}$).
Part B - A solution of 1-tetralon-7-carboxylic acid
methyl ester ($3.50 \mathrm{~g}, 0.017 \mathrm{~mol}$), trimethylsilylcyanide
($1.98 \mathrm{~g}, 0.02 \mathrm{~mol}$) and zinc iodide (0.10 g) in benzene
(20 mL) was stirred at ambient temperature over 15
hours. Then added, sequentially and dropwise, was
pyridine (20 mL) and phosphorous oxychloride (4.0 mL ,
$6.55 \mathrm{~g}, 0.0425 \mathrm{~mol})$. The reaction mixture was stirred at
reflux over 1 hour then evaporated to dryness under
reduced pressure. The residue was taken up in
chloroform, backwashed with water, dried over anhydrous
magnesium sulfate and evaporated to dryness under
reduced pressure to give methyl 8-cyano-5,6-dihydro-2-
naphthoate ($1.70 \mathrm{~g}, 0.008 \mathrm{~mol}, 47 \%$) as a yellow solid.
$\mathrm{mp}=73-75^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \mathrm{d} 8.0-7.9(\mathrm{~m}, 1 \mathrm{H}), 7.3-7.2$
($\mathrm{m}, \mathrm{1H}$) , 6.95 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}$), 3.95 ($\mathrm{s}, 3 \mathrm{H}$), 2.9 (t ,
$2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 2.6-2.4(\mathrm{~m}, 3 \mathrm{H})$
Part C - A mixture of methyl 8-cyano-5,6-dihydro-2-
naphthoate ($0.80 \mathrm{~g}, 0.0038 \mathrm{~mol}$) in methanol (25 mL) with
concentrated hydrochloric acid (0.56 mL) and palladium
on carbon catalyst ($0.40 \mathrm{~g}, 5 \% \mathrm{Pd} / \mathrm{C}$) was shaken for 20
hours at ambient temperature under an atmosphere of
hydrogen (50 psi). The reaction mixture was filtered
over Celite and washed with methanol. The filtrate was
evaporated to dryness under reduced pressure and the
residue was triturated with hexane to give the racemic
mixture of methyl 8-aminomethyl-5, 6, 7, 8-tetrahydro-2-
naphthoate ($0.80 \mathrm{~g}, 0.0037 \mathrm{~mol}, 97 \%$) as a white solid.
$\mathrm{mp}=172-179^{\circ} \mathrm{C} ; 1_{\mathrm{H}} \operatorname{NMR}(\mathrm{DMSO}) \mathrm{d} 8.2-8.0(\mathrm{~m}, 4 \mathrm{H}), 7.9-7.7$
$(\mathrm{m}, 6 \mathrm{H}), 7.5-7.2(\mathrm{~m}, 4 \mathrm{H}), 3.9-3.8(\mathrm{~m}, 7 \mathrm{H}), 3.3-2.7(\mathrm{~m}$,
10H), 2.0-1.6 (m, 8H).

$$
-241-
$$

[^2]```
 as a white solid. mp = 172-1760}\textrm{C};\mp@subsup{1}{H}{\prime}NMR (DMSO) d 7.8
 (s, 1H), 7.65 (d, 1H, J=8.1 Hz), 7.15 (d, 1H, J=8.1 Hz),
 7.1-7.0 (m, 1H), 3.2-3.1 (m, 2H), 3.0-2.7 (m, 4H), 1.8-
 1.6 (m, 4H), 1.4 (s, 9H).
```


## N-(BOC)-8-aminomethyl-2-naphthoic acid (14)

```
The remaining naphthoate (11) was treated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in dioxane to aromatize the adjacent ring to give the methyl 8-cyano-2-naphthoate (13). Then, the nitrile was reduced via hydrogentation and the methyl ester saponified to the carboxylic acid. This acid was then \(N\)-BOC-protected to give \(N-(B O C)-8\)-aminomethyl-2-naphthoic acid (14) as an intermediate for incorporation into the cyclic peptide.
2 Part \(A\) - A solution of methyl 8-cyano-5,6-dihydro-2naphthoate \((1.0 \mathrm{~g}, 0.0047 \mathrm{~mol})\) and 2,3 -dichloro-5.6-dicyano-1, 4-benzoquinone (\(1.07 \mathrm{~g}, 0.0047 \mathrm{~mol}\)) in dioxane \((50 \mathrm{~mL})\) was stirred at \(120^{\circ} \mathrm{C}\) over 16 hours. The reaction mixture was poured into ice water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous magnesium sulfate and evaporated to dryness under reduced pressure. The residue was purified by flash chromatography using ethyl acetate to give methyl 8-cyano-2-naphthoate (\(0.72 \mathrm{~g}, 0.0034 \mathrm{~mol}, 73 \%\) as a tan solid. \(m p=178-182^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\) d \(8.95(\mathrm{~s}\), 1H), 8.3-8.2 (m, 1H), 8.15-8.10(m, 1H), 8.0-7.95 (m, \(2 \mathrm{H}), 7.7-7.6(\mathrm{~m}, ~ 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H})\).
```


# Part B - A mixture of methyl 8-cyano-2-naphthoate (1.0 g, 0.0047 mol ) in methanol ( 35 mL ) with concentrated hydrochloric acid ( 0.69 mL ) andpalladium on carbon catalyst ( $0.20 \mathrm{~g}, 5 \% \mathrm{Pd} / \mathrm{C}$ ) was shaken for 6 hours at ambient temperature under anatmosphere of hydrogen (50 psi). The reaction mixture was filtered over Celite ${ }^{\text {C }}$ and washed with methanol. The filtrate was evaporated to dryness under reduced pressure and the residue was triturated with hexane to give methyl 8-aminomethyl-2naphthoate ( $0.76 \mathrm{~g}, 0.0035 \mathrm{~mol}, 75 \%$ ) as an oil. ${ }^{1} \mathrm{H}$ NMR (DMSO) d 8.75 (s, 1H), 8.5 (bs, 2H), 8.2-8.05 (m, 3H), $7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 4.6(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 3 \mathrm{H})$. <br> Part C - To a solution of methyl 8-aminomethyl-2naphthoate ( $0.75 \mathrm{~g}, 0.0035 \mathrm{~mol}$ ) in dry tetrahydrofuran $(50 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, was added a solution of lithium hydroxide ( $0.5 \mathrm{M}, 5.83 \mathrm{~mL}$ ). All was stirred at ambient temperature over 20 hours. Another aliquot of lithium hydroxide was added and all was stirred for an additional 20 hours. The solid was collected and the filtrate was evaporated to dryness under reduced pressure. The solids were triturated with diethyl ether to give 8-aminomethyl-2-naphthoic acid $10.67 \mathrm{~g}, 0.0033$ mol, $95 \%$ ) as a white solid. $\mathrm{mp}=223-225^{\circ} \mathrm{C}$; $1_{\mathrm{H}} \mathrm{NMR}$ (DMSO) d 8.6 ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.1-7.9 (m, 1H), 7.8-7.7 (m, 4H), 7.55-7.5 (m, 1H) , 7,45-7.35 (m, 2H), 4.2 (s, 2H). <br> Part D - A solution of 8-aminomethyl-2-naphthoic acid $(0.50 \mathrm{~g}, 0.00025 \mathrm{~mol})$ and triethylamine $(0.038 \mathrm{~mL}, 0.028$ $\mathrm{g}, 0.000275 \mathrm{~mol}$ ) in aqueous tetrahydrofuran (50\%, 5 mL ) was added, portionwise as a solid, 2-(tertbutoxycarbonyloxyimino) -2-phenylacetonitrile ( 0.068 g , 0.000275 mol . All was stirred at ambient temperature over 5 hours. The solution was concentrated to half 

volume and extracted with diethylether. The aqueous layer was then acidified to a pH of 1.0 using hydrochloric acid (1N) and then extraced with ethyl acetate. The combined organic layers were dried over anhydrous magnesium sulfate and evaporated to dryness under reduced pressure to give the title compound, N -(BOC)-8-aminomethyl-2-naphthoic acid (0.050 g, 0.00017 mol) as a white solid. $m p=190-191^{\circ} \mathrm{C} ; \mathrm{l}_{\mathrm{H}}$ NMR (DMSO) d $13.1(\mathrm{bs}, 1 \mathrm{H}), 8.8(5,1 \mathrm{H}), 8.0(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.9$ (d, 1H, J=8.1 Hz), 7.6 ( $t, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$ ), $7.65-7.55(\mathrm{~m}$, $2 \mathrm{H}), 4.6(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.5 \mathrm{~Hz}), 1.4(\mathrm{~s}, 9 \mathrm{H})$.

## Cyclic Compound Intermediates 89a and 89b

 cyclo-(D-Val-NMeArg-Gly-Asp-aminotetralincarboxylic acid); the compound of formula (VIII) wherein $J=$ D-Val, $K=$ NMeArg, $L=G l y, M=A s p$, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-aminotetralin-carboxylic acid to the oxime resin. The peptide was prepared on a 0.164 mmol scale to give the protected cyclic peptide ( 69 mg , $49.3 \%$ ). The peptide ( 69 mg ) and 0.069 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 30 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile, and lyophilized to generate the title compound (59.7 mg, greater than quantitative yield; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac $C 18$ column ( 2.5 cm ) using a
$0.23 \% / \mathrm{min}$. gradient of 16.2 to $27 \%$ acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy white solid. Two isomers were obtained; isomer \#l 5 (12.5\% recovery, overall yield 6.2\%, FAB-MS: [M+H] $=615.34$; isomer \#2 (18.6\% recovery, overall yield 9.3\%, $\mathrm{FAB}-\mathrm{MS}:[\mathrm{M}+\mathrm{H}]=615.35$.

## Cyclic Compound Intermediate 89 c

cyclo-(D-Val-NMeArg-Gly-Asp-aminomethylnaphthoic acid); the compound of formula (IX) wherein $J=D-$ Val, $K=$ NMeArg, $L=$ Gly, $M=$ Asp, $R^{1}=H, R^{2}=H$

The title compound was prepared using the general procedure described for cyclo-(D-Val-NMeArg-Gly-Asp-Mamb) (Cyclic Compound Intermediate 4). The DCC/DMAP method was used for attachment of Boc-aminomethyl-naphthoic acid to the oxime resin. The peptide was prepared on a 0.737 mmol scale to 20 give the protected cyclic peptide ( $463 \mathrm{mg}, 73.1$ \% ) . The peptide ( 463 mg ) and 0.463 mL of anisole were treated with anhydrous hydrogen fluoride at $0^{\circ} \mathrm{C}$ for 20 minutes. The crude material was precipitated with ether, redissolved in aqueous acetonitrile,
25 and lyophilized to generate the title compound 1349 mg , greater than quantitative yield; calculated as the fluoride salt). Purification was accomplished by reversed-phase HPLC on a preparative Vydac C18 column ( 2.5 cm ) using a $0.45 \% / \mathrm{min}$. gradient of 4.5 30 to $22.5 \%$ acetonitrile containing $0.1 \% \mathrm{TFA}$ and then lyophilized to give the TFA salt of the title compound as a fluffy white solid (12.1\% recovery, overall yield 7.8\%): FAB-MS: $[\mathrm{M}+\mathrm{H}]=625.32$.

## Synthesis of Linker Modified cyclic Compound Intermediates

Linker modified cyclic compound intermediates can be synthesized either by incorporating an appropriately protected linker into a cyclizing moiety and then synthesizing the linker modified cyclic compound intermediate or by attaching the linker to a cyclic compound intermediate.

Linker Modified Cyclizing Moieties

Linker modified cyclizing moieties can be synthesized either by attaching the linker to a ring substituted cyclizing moiety synthesized as described above or by incorporating an appropriately protected linker into the synthesis of the cyclizing moiety.

For example, the ring substituted cyclizing moiety described above where $X=\mathrm{NH}_{2}$ can be reacted with the succinimidyl linker, $\mathrm{RCOOSu}\left(\mathrm{R}=-\left(\mathrm{CH}_{2}\right) 5-\mathrm{NH}_{2}\right.$ or $\mathrm{CH}_{2}-$ C6H5-p-NH2), to give a linker attached at position $X$ vià an amide group.

a] BOC-ON b] RCOOSu

The ring substituted cyclizing moiety with $X=O H$ can be reacted with a linker derived from tetraethylene glycol. This linker consists of four ethylene units separated by ether groups, and bearing a $z$-protected
amine group at one end of the tether, and a leaving group such as tosylate at the other end of the tether. This will give a linker attached at position $X$ via an ether group.

The ring substituted cyclizing moiety with $Z=\mathrm{NH}_{2}$ can be reacted with $\left(\mathrm{Z}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}\right)_{2} \mathrm{O}$ to give a linker attached at position $Z$ via an amide group.


Iinkers can be attached to the ring substituted cyclizing moiety with $\mathrm{Z}=\mathrm{OH}$. Attachment of the linkers to the ring will require the linker having a leaving group suitable for reaction with a phenolate ion. Such leaving groups include halides, aryl sulfonates (e.g., tosylate) and alkyl tosylates (e.g., mesylate). For example, an alkyl chain bearing a tosyl group at one end of the chain and a protected amine at the other end is used. The literature provides several examples of alkylation at a phenolic group in the presence of a carboxylic acid group (See, for example Brockmann, Kluge, and Muxfeldt (1957), Ber. Deutsch. Chem. Ges., 90, 2302.


The ring substituted cyclizing moiety with $\mathrm{Z}=$ $\mathrm{CH}_{2} \mathrm{NH}_{2}$ can be reacted with $\mathrm{Z}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-\mathrm{COOSu}$ to give linkers attached at position $Z$ via an amidomethyl group.


The previous examples have demonstrated the use of linkers which terminate in a protected amine. Linkers that terminate in a carboxylic acid or ester groups may also be desirable. Several such linkers can be attached to the cyclizing moieties described above. For example, in the following scheme, $t$-Boc protected 3-aminomethyl-4-hydroxybenzoic acid is treated with benzyl chloroacetate and base to introduce a short linker terminating in an ester.


A linker can be attached to the ring substituted cyclizing moiety where $Y=\mathrm{NH}_{2}$. As shown in Scheme 8 , hydrolysis of the methyl ester of $t$-Boc protected methyl 3-aminomethyl-5-aminobenzoate under mild base conditions, followed by treatment with benzyl acrylate (Lancaster Synthesis, Inc.) and acetic acid catalyst would produce the Michael addition product. Even though this linker modifed cyclizing moiety contains an unprotected secondary amine, it could be used directly in a solid phase synthesis. However, amine protection, if desired, could be accomplished by treatment with benzyl chloroformate and a mild base.


Scheme 8

The linker can also be incorporated into the synthesis of the cyclizing moieties. One example is the synthesis of linker modified cyclizing moiety 5-AcaMamb .

Synthesis of Boc-Mamb(Z-5-Aca)

This synthesis is depicted in Scheme 9, below.

Part A - Methyl 3-Nitro-5-hydroxymethylbenzoate
To a solution of monomethyl 3-nitroisophthalate ( $396.0 \mathrm{~g}, 1.76 \mathrm{~mol}$ ) in anhydrous THF (1000 ml ) was added 2.0 M BMS (borane methylsulfide complex) in THF ( 880 ml , 1.76 mol) dropwise over 1 hour. The resulting solution was heated to reflux for 12 hours, and MeOH ( 750 ml ) was slowly added to quench the reaction. The solution was concentrated to give a yellow solid which was recrystalized from toluene ( $297.5 \mathrm{~g}, 80 \%$ ). $1_{\mathrm{H}} \mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}\right): 8.71-8.70(\mathrm{~m}, 1 \mathrm{H}), 8.41-8.40(\mathrm{~m}, 1 \mathrm{H}), 8.31-8.30$ $(\mathrm{m}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MP}=$ $76.5-77.5^{\circ} \mathrm{C} ; \mathrm{DCI}-\mathrm{MS}:[\mathrm{M}+\mathrm{H}]=212$.

Part B - 3-Carbomethoxy-5-nitrobenzyl Methanesulfonate
Methyl 3-nitro-5-hydroxymethylbenzoate (296.0 g, $1.40 \mathrm{~mol})$ and proton sponge $(360.8 \mathrm{~g}, 1.68 \mathrm{~mol})$ were dissolved in ethylene dichloride ( 150 ml ). Triflic anhydride ( $292.3 \mathrm{~g}, 1.68 \mathrm{~mol}$ ) dissolved in ethylene dichloride ( 800 ml ) was added dropwise to the suspension over 90 minutes and the mixture allowed to stir 18 hour under nitrogen. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ $(2000 \mathrm{ml})$, the two layers were separated, and the organic layer was washed with 1000 ml portions of 1 N $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, saturated $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and saturated NaCl . The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The resulting yellow solid was recrystalized from toluene to give the title compound as a tan solid (366.8 g, 91ヶ) . $1_{\mathrm{H}}^{\mathrm{f}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.84-8.85$ $(\mathrm{m}, 1 \mathrm{H}), 8.45-8.46(\mathrm{~m}, 1 \mathrm{H}), 8.40-8.39(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~s}$, $2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MP}=96-97^{\circ} \mathrm{C} ; \mathrm{DCI}-\mathrm{MS}:$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]=307$.

## Part C - Methyl 3-Azidomethyl-5-nitrobenzoate

3-Carbomethoxy-5-nitrobenzyl methanesulfonate ( $300.0 \mathrm{~g}, 1.04 \mathrm{~mol}$ ) and sodium azide ( $81.0 \mathrm{~g}, 1.25 \mathrm{~mol}$ ) were suspended in DMF ( 1700 ml ) and stirred at room temperature for 5 hours. The reaction was diluted with ethyl acetate ( 2000 ml ), washed with 1000 ml portions of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{X})$ and saturated $\mathrm{NaCl}(1 \mathrm{X})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The resulting amber syrup was dried under vacuum at $40^{\circ} \mathrm{C}$ to yield the title compound as a tan solid (226.5 g, 92\%). $I_{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right): 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 4.52$ $(s, 2 H), 3.88(s, 3 H) ; M P=44-46^{\circ} \mathrm{C}$.

## Part D - Methyl 3-Amino-5-aminomethylbenzoate

A solution of Methyl 3-Azidomethyl-5-nitrobenzoate ( $15.50 \mathrm{~g}, 65.7 \mathrm{mmol}$ ) and benzene sulfonic acid (22.14 g , $140 \mathrm{mmol})$ in warm methanol ( 320 ml ) was placed in a Parr shaker bottle and purged with nitrogen for 15 minutes. Palladium on carbon catalyst ( $10 \% \mathrm{Pd} / \mathrm{C}, 4.0 \mathrm{~g}$ ) was added and the shaker bottle was further purged with 7 pressurization-evacuation cycles, repressurized, and allowed to shake 18 hours, during which time the required amount of hydrogen was consumed. The catalyst was removed by filtration through a bed of Celite and the filtrate was concentrated under reduced pressure yielding a tan oil. Trituration with refluxing EtOAc (2 x 150 ml ) followed by cooling 12 hours at $-5^{\circ} \mathrm{C}$ gave a tan solid which was collected by filtration, washed with EtOAC ( 2 X 50 ml ) and dried under vacuum (25.82 g, 80\%). $1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 8.25-8.23(\mathrm{~m}, ~ 1 \mathrm{H}), 8.07-8.06(\mathrm{~m}, 1 \mathrm{H})$, 7.86-7.80 (m, 5H), 7.49-7.42 (m, 6H), 4.29 (s, 2H), 3.97 ( $\mathrm{s}, 3 \mathrm{H}$ ).

Part E - Methyl 3-Amino-5-(t-butoxycarbonylamino)methylbenzoate

A solution of methyl 3-amino-5-aminomethylbenzoate (19.32 g, 39.0 mmol), TEA (7.89 g, 78.0 mmol ), and di-tbutyl dicarbonate ( $8.51 \mathrm{~g}, 39.0 \mathrm{mmol}$ ) in MeOH ( 350 ml ) was allowed to react 24 hours at room temperature and concentrated to yield a colorless solid. Purification by flash chromatography (silica gel; 1:1 hexane:EtOAC) gave the product ( $9.21 \mathrm{~g}, 84 \%$ ) as a colorless solid. $1_{\mathrm{H}}$ $\operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.85(\mathrm{~m}, 1 \mathrm{H}), 4.16$
$(\mathrm{S}, 2 \mathrm{H}), 3.88(\mathrm{~S}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{MP}=57-65^{\circ} \mathrm{C}$. ESIMS: $[M+H]=281$.

## Part F - Boc-Mamb (Z-5-Aca)-OMe

 TEA ( $2.97 \mathrm{~g}, 29.3 \mathrm{mmol}$ ) were dissolved in anhydrous THF $(250 \mathrm{ml})$ and cooled to $-20^{\circ} \mathrm{C}$. Isobutylchloroformate ( $4.00 \mathrm{~g}, 29.3 \mathrm{mmol}$ ) was added dropwise and the mixture allowed to react for 5 minutes at $-20^{\circ} \mathrm{C}$. Methyl 3-Amino-5-(t-butoxycarbonylamino) methylbenzoate (8.20 g, 29.3 mmol ) dissolved in anhydrous THF ( 50 ml ) was cooled to $-20^{\circ} \mathrm{C}$ and added to the reaction. The reaction mixture was allowed to slowly warm to room temperatures and was stirred for an additional 2 days. The solids were removed by filtration and the filtrate was concentrated under reduced pressure. The resulting residue was dissolved in EtOAc ( 125 ml ) and washed with two 50 ml portions each of 0.2 N HCl , saturated $\mathrm{NaHCO}_{3}$, and saturated NaCl . The organic layer was dried ( $\mathrm{MgSO}_{4}$ ) and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica gel; $1: 2$ hexane:EtOAC), and recrystallization from $\mathrm{CCl}_{4}$ to give the title compound ( $10.09 \mathrm{~g}, 65 \%$ ) as a colorless solid. $1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.03-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 5.12-4.92(\mathrm{~m}, 4 \mathrm{H}), 4.27-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}$, $2 \mathrm{H}), 1.48-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.34(\mathrm{~m}, 2 \mathrm{H})$; $\mathrm{MP}=52-54^{\circ} \mathrm{C} . \quad$ ESI-MS: $[\mathrm{M}+\mathrm{H}]=528$.
## Part G - Boc-Mamb (Z-5-Aca)

Boc-Mamb (z-5-Aca)-OMe (22.58 g, 43.0 mmol$)$ was dissolved in $1: 11 \mathrm{~N} \mathrm{NaOH:MeOH} \mathrm{(500} \mathrm{ml)} \mathrm{and} \mathrm{allowed} \mathrm{to}$ stir 18 hours at room temperature. The reaction was partitioned between EtOAC ( 300 ml ) and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ and

[^3]```
            Scheme 10 teaches how a linker attached to the cyclizing moiety via a reverse amide functional group can also be synthesized. Reduction of the nitro group of monomethyl 3-nitroisophthalate (Fluka) using
```

``` palladium on carbon would give monomethyl 3aminoisophthalate, which can be converted to the corresponding nitrile by the Sandmeyer procedure. Treatment of this ester with a mono-protected diamine would yield the corresponding amide. The protecting group on the diamine must be stable to hydrogenation conditions. The Scheme demonstrates the used of the Teoc (2-trimethylsilylethyloxycarbonyl) group, but others familiar to those skilled in the art can also be used. Reduction of the nitrile using palladium on carbon would give the linker modified cyclizing moiety.
```


Scheme 10

Linkers attached at position Y of the ring substituted cyclizing moieties via an ether linkage can be synthesized, starting from 3-hydroxy-5-aminobenzoic acid. A Sandmeyer reaction can be used to convert the amine to a 3-nydroxy-5-cyanobenzoic acid. Alkyklation
10 as above introduces the linker. Reduction of the nitrile using palladium on carbon catalyst would provide the aminomethyl group. Protection of the amine with the $t-B o c$ group using di-t-butyl dicarbonate would provide linker modified cyclizing moieties ready for use in a

Scheme 11

Linkers terminating in a carboxylic acid group can be synthesized using cyclic anhydrides. Scheme 12 illustrates such a synthesis using succinic anhydride. Reaction of t-Boc protected methyl 3-aminomethyl-5aminobenzoate with succinic anhydride would give the carboxylic acid linker. Activation of the carboxylic acid and condensation with benzyl carbazate (Lancaster Synthesis, Inc.) would give the protected hydrazide. This hydrazide serves to protect the carboxylic acid during the remainder of the synthesis. Hydrolysis of the methyl ester provides the linker modified cyclizing moiety in a form ready to be used in the solid phase synthesis. After synthesis is complete, removal of the Cbz protecting group from the hydrazide opens the way for the preparation of an azide and azide coupling to the chelator (Hofmann, Magee, and Lindenmann (1950) J.

Amer. Chem. Soc., 72, 2814). This is shown in Scheme 12.

$\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$

\square

Scheme 12

Linkers can also be incorporated into the syntheses of alternate cyclizing moieties. For example, a linker modified heterocyclic cyclizing moiety can be synthesized from 4-amino-6-carbethoxy-1-
hydroxymethylpyrimidine (Boger (1994), J. Amer. Chem. Soc., 116, 82-92). The alcohol would be converted to the amine in three steps. First, treatment with
toluenesulfonyl chloride and base would give the tosylate, which on treatment with sodium azide would give the azide. Reduction of the azide over palladium on carbon catalyst would yield the diamine. The large
difference in nucleophilicity of the two amines will allow the selective protection of the aminomethyl group

Scheme 13 using di-t-butyl dicarbonate. Attachment of a protected linker, such as $Z-5-A c a$, to the remaining amine would be accomplished using mixed anhydride or symmetrical anhydride chemistry. Finally, hydrolysis of the ethyl ester would give the linker modified heterocyclic cyclizing moiety ready to be coupled to solid phase synthesis resin. This is shown in scheme 13.

neme

Linkers

The preparation of the tetraethylene glycol tether discussed above is shown in Scheme 14. The synthesis begins with 1-amino-11-azido-3,6,9-trioxaundecane (Bertozzi and Bednarski (1990), J. Org. Chem., 56, 4326-

```
4329). Reduction of the azide with palladium on carbon
catalyst gives the amine, which is protected with the
Cbz group (designated as "Z" in Scheme 14, and
thereafter). The alcohol is now converted to the
```

$\xrightarrow{\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}} \quad$ Z-NH- $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{4}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
$\xrightarrow{\mathrm{Ts}-\mathrm{Cl}, \mathrm{E}_{3} \mathrm{~N}} \quad$ Z-NH- $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{4}-\mathrm{Ts}$

Scheme 14

$\xrightarrow{\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}} \quad$ Z-NH- $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{4}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ units is shown in the next Scheme. This linker bears a carboxylic acid group on one end, allowing it to be attached to cyclizing moieties containing amine functional groups. The synthesis begins with the Cbzprotected amino alcohol described above. Treatment of the alcohol with ethyl diazoacetate and rhodium(II) acetate dimer would give the e glycolic acid ester having the tetraethylene glycol tail. Hydrolysis of the ethyl ester would provide the linker ready to be coupled to the cyclizing moiety. This is shown in Scheme 15.

Z-NH-($\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{4}-\mathrm{H} \quad \frac{\mathrm{N}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}}{\mathrm{Rh}_{2}(\mathrm{OAc})_{4}} \quad$ Z-NH- $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{4}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$

Scheme 15

As taught below, these linker modified cyclizing moieties can be used to synthesize linker modified
monitored by the picric acid test. Steps 1-5 were repeated until the desired sequence had been attained.

After the linear peptide was assembled, the N terminal t-Boc group was removed first washing with 50% TFA in DCM, followed by treatment with 30 ml of $50 \% \mathrm{TFA}$ in DCM for 30 minutes. The resin was washed thoroughly with DCM (3X), MeOH (2X), DCM (3X), and then neutralized with 30 ml portions of 10 DIEA in DCM (2 X 1 min.) The resin was washed with $\operatorname{DCM}(3 X)$ and MeOH (3X), and dried under vacuum to give 1.965 g of brown resin. The resin was cyclized by suspending in DMF (20 ml) containing HOAC ($35 \mu \mathrm{l}, 0.609 \mathrm{mmol}$) and heating at $50^{\circ} \mathrm{C}$ for 72 hours. The resin was filtered in a scintered glass funnel and washed thoroughly with 10 ml of DMF (3X). The DMF filtrate was evaporated, and the resulting oil was redissolved in $1: 1$ acetonitrile: $\mathrm{H}_{2} \mathrm{O}$ (20 ml), and lyophilized to give the protected cyclic peptide (342 mg). Purification was accomplished using reversed-phase HPLC with a preparative Vydac C 18 column (2.1 cm) and an isocratic mobile phase of $1: 1$ acetonitrile: $\mathrm{H}_{2} \mathrm{O}$ containing 0.1\% TFA. Lyophilization of the product fraction gave purified protected peptide (127 mg).

The peptide ($120 \mathrm{mg}, 0.11 \mathrm{mmol}$) was deprotected by treating with TFA (1 ml) and triflic acid (1 ml) containing anisole (0.2 ml) for three hours at $-10^{\circ} \mathrm{C}$. The peptide was precipitated by the addition of ether and cooling to $-35^{\circ} \mathrm{C}$ for 1.5 hours. The peptide was collected by filtration, washed with ether, and dried. The resulting solid was dissolved in 1:1 acetone: $\mathrm{H}_{2} \mathrm{O}$ (12 ml) and the pH is adjusted to 4-6 by treatment with BioRad AG1-8X acetate ion exchange resin. The resin was filtered and washed with water. The filtrate was lyophilized to give HPLC pure peptide $(75 \mathrm{mg}$, overall yield 13.5\%); FAB-MS: $[\mathrm{M}+\mathrm{H}]=703.3951$.

Scheme 16
Linker Modified Cyclic Compound 2 Cyclo-(D-Abu-NMeArg-Gly-Asp-Mamb (5-Aca))
5

```
        The title compound was prepared using the general
procedure described for cyclo-(D-Val-NMeArg-Gly-Asp-
```


Linker Modified Cyclic Compounds 3-8

$$
\begin{gathered}
\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{NH}_{2} \text { or } \mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{p}-\mathrm{NH}_{2} \\
\mathrm{X}_{1}=2 \text {-propyl, ethyl, or p-hydroxyphenylmethyl }
\end{gathered}
$$

Compounds cyclo(D-Val-NMeArg-Gly-Asp-Mamb (4-NHCOR), cyclo(D-Abu-NMeArg-Gly-Asp-Mamb(4-NHCOR), and cyclo(D-

Tyr-NMeArg-Gly-Asp-Mamb (4-NHCOR) can be prepared via the procedure described above.

Linkers can be incorporated into the synthesis of cyclic compound intermediates.

Linker Modified Cyclic Compounds 9,10 and 11

$$
\mathrm{X}=\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}
$$

Cyclo(0-2-aminoethyl-D-Tyr)-NMeArg-Gly-Asp-Mamb), Cyclo(0-3-aminopropyl-D-Tyr)-NMeArg-Gly-Asp-Mamb), Cyclo(O-4-amino-butyl-D-Tyr)-NMeArg-Gly-Asp-Mamb):

These compounds can be prepared using the procedure described above for Cyclo(D-Tyr-NMeArg-Gly-Asp-Mamb) using linker modified D-Tyr. The O-derivatized D-Tyr can be prepared' via the alkylation of boc-D-Tyr with the aminoprotected 2-bromoethylamine (or 3-bromopropylamine, 4-bromobutylamine) in the presence of a base.

```
Linkers can also be attached to cyclic compound intermediates.
```

> Linker Modified Cyclic Compound 12
> Cyclo-(D-Lys (5-Aca)-NMeArg-Gly-Asp-Mamb)

5

The preparation of the title compound is depicted in Scheme 17, shown below.

A solution of cyclo-(D-Lys-NMeArg-Gly-Asp-Mamb)
(100 mg, 0.12 mmol$),$ Boc-5-aminocaproic acid hydroxysuccinimide ester ($47 \mathrm{mg}, 0.144 \mathrm{mmol})$, and Et3N at room temperature for 60 minutes. The progress of the reaction was monitored by normal phase TLC (90:8:2 $\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{HOAC}$) using the ninhydrin and Sakaguchi
tests. The DMF was removed under reduced pressure. The crude conjugate was treated with TFA (3 ml) at room temperature for 45 minutes to remove the $t-B o c$ protecting group. The TFA was removed under reduced pressure and the conjugate was purified using reversedphase HPLC with a preparative Vydac C18 column (2.1 cm) using 6% acetonitrile containing 0.1% TFA for 20 minutes, followed by a $3.0 \% / \mathrm{min}$. gradient of 6 to 36% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy colorless solid ($80 \mathrm{mg}, 70 \%$); $\mathrm{FAB}-\mathrm{MS}: \quad[\mathrm{M}+\mathrm{H}]=$

Scheme 17

Cyclo-([3-(4-hydroxyphenyl)propyl-D-Lys]-NMeArg-Gly-AspMamb)

A solution of N -succinimidyl-3-(4-hydroxyphenyl)propionate (Bolton-Hunter reagent; $0.022 \mathrm{~g}, 0.08 \mathrm{mmol})$ and DIEA ($0.02 \mathrm{ml}, 0.10 \mathrm{mmol}$) in dioxane (5 ml) was added to a solution of cyclo[D-Lys-N-MeArg-Gly-Asp-MAMB] $(0.026 \mathrm{~g}, 0.04 \mathrm{mmol})$ in pH 9 phosphate buffer (5 ml) and the reaction was allowed to stir for 2 days at room temperature. The solution was lyophilized and the resulting white solid was purified by reversed-phase preparative HPLC on a Vydac $C-18$ column (2.1 cm) using a $0.36 \% / \mathrm{min}$. gradient of 9 to 18% acetonitrile containing

```
0.1% TFA to give the product (0.018 g, 60%) as a
colorless solid. MP = 146-1550}\textrm{C}; ESI-MS: [M] = 751
```

5

Linker Modified Cyclic Compound 14 Cyclo((N-E-Tyr-D-Lys)-NMeArg-Gly-Asp-Mamb)

The desired compound can be prepared from the reaction of Cyclo(D-Lys-NMeArg-Gly-Asp-Mamb) with boc-Tyr-OSu in a solvent such as DMF in the presence of a base such as triethylamine, followed by deprotection.

Linker Modified Cyclic Compound 15
Cyclo((N-E-(4-aminophenylacetyl)-D-Lys)-NMeArg-Gly-AspMamb)

Abstract

as DMF or THF in the presence of a base such as triethylamine.

A variety of linker modifed cyclic compounds can be synthesized using bifunctional cross-linking reagents developed for the derivatization of proteins. These reagents consist of two electrophilic groups, such as active esters or isocyanates, separated by a spacer. The reagents can be homobifunctional, meaning that the two reactive groups are identical, or heterobifunctional. The spacer can be aliphatic or aromatic and may contain additional functionality to modify the lipophilicity of the conjugates, or to allow cleavage of the chain. The following examples will illustrate the use of several commercially available cross-linking reagents using as a starting point a cyclic compound intermediate synthesized with the 4aminomethyl Mamb unit.

In the first example, the cyclic compound is treated with an excess of DSS (disuccinimidyl suberate, Pierce Chemical Co.) in either aqueous or organic solvent at a pH of between 7 and 9. These are typical reaction conditions for these cross-linking reagents. The excess of cross-linker minimizes the amount of dimeric species formed. The pH of 7-9 allows the amine to react at a reasonable rate but does not produce any appreciable hydrolysis of the second reactive group and prevents reaction with the guanidino group on arginine. The active ester at the end of the linker is stable enough to allow purification by HPLC or flash chromatography. Once purified, the linker modified cyclic compound can be conjugated to a chelator
containing a nucleophilic group, such as an amine or thiol. This is depicted in Scheme 18.

Scheme 18

Heterobifunctional reagents are typically used to achieve very selective activatation of peptides and proteins. In the following example SMPB (succinimidyl 4-(p-maleimidophenyl)butyrate, Pierce Chemical Co.) is used to modify an amine-containing cyclic compound and prepare it for coupling to a thiol-containing chelator. Treatment of the cyclic compound with SMPB under
15 slightly basic conditions gives the linker modified cyclic compound in which the linker terminates in a maleimido group. Selectivity is achieved because the maleimido group shows low reactivity towards amine groups, and dimerization is minimized. After purification, the maleimido group can be coupled to a thiol-containing chelator. This is depicted in Scheme 19.

5 preferentially. with amines. Dimethyl 3,3'dithiobispropionimidate (DTBP, also called the Wang and Richards reagent; Pierce Chemical Co.) also reacts preferentially 'with amines. The disulfide is cleaved by thiols. Meares and coworkers have shown (Int. J. Cancer: Supplement 2, 1988, 99-102) that ${ }^{111}$ In labeled antibody-chelate conjugates joined by a disulfidecontaining linker show more rapid clearance of radioactivity from mice than conjugates which did not contain a cleavable linker. The third example of Scheme

[^4]Scheme 21 illustrates the use of bisisocyanates and bisisothiocyanates in the preparation of linker modified cyclic compounds. These reagents react with amines to for urea and thiourea groups, respectively. The

Scheme 21

Chelators

The present invention also provides novel reagents useful for the preparation of radiopharmaceuticals.
-274-

These reagents consist of a chelator, C_{h}, attached via a linking group, L_{n}, to a cyclic compound intermediate, Q. These reagents can be synthesized in several ways, either by attaching a chelator to a linker modified cyclic compound intermediate or by attaching a
bearing a linking group to the cyclic compound intermediate. Preferably, the chelator is attached to linker modified cyclic compound intermediate.

Any chelator can be used in this invention provided it forms a stable complex to a radioactive isotope. Typically the radioactive isotope is a metal or transition metal and the complex with the chelator is a metal chelate complex. Examples of metal chelate complexes can be found in a recent review (S. Jurisson et. al., Chem Rev., 1993, 93, 1137-1156) herein incorporated by reference.

The chelators can be attached to the linkers by a variety of means known to those skilled in the art. In general, a reactive group on the linker can react with the chelator or alternatively a reactive group on the chelator can react with the linker. Suitable reactive groups include active esters, isothiocyanates, alkyl and aryl halides, amines, thiols, hydrazines, maleimides, and the likt: Several linker modified cyclic compounds bearing reactive groups are described in the examples below.

Representative chelators include:
diethylenetriamine- pentaacetic acid (DTPA), ethylenediamine-tetraacetic acid (EDTA), 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA), 1,4,7,10-tetraaza-cyclododecane-N,N', N''-

```
    triacetic acid, hydroxybenzyl-ethylene-diamine diacetic
acid, N,N'-bis(pyridoxyl- 5-phosphate)ethylene diamine,
N,N'-diacetate, 3,6,9-triaza-12- oxa-3,6,9-
tricarboxymethylene-10-carboxy-13-phenyl-tridecanoic
```

 Synthesis of Chelators

Synthesis of 4,5 bis($(S-$

benzoyl)mercaptoacetamido)pentanoic acid (mapt).

The chelator was synthesized as described in Fritzberg et. al., Appl. Radiat. Isot. 1991, 42, 525530.

Synthesis of (S-
benzoyl)mercaptoacetylglycylglycylglycine (MAG3)

The chelator was synthesized as described in Brandau, W. et al., Appl. Radiat. Isot. 1988, 39, 121129.

Synthesis of Succinimidyl 6-Boc-hydrazinopyridine-3carboxylate (SHNH)

```
The chelator was synthesized as described in Schwartz et. al., 1990, European Patent Application 90301949.5.
```

Part B-N-2-Bromoacetyl-S-triphenylmethyl-2aminoethanethiol

A solution S-triphenylmethyl-2-aminoethanethiol (48 $\mathrm{g}, 0.15 \mathrm{~mol})$ and Et ${ }_{3} \mathrm{~N}(20.9 \mathrm{ml}, 0.15 \mathrm{~mol})$ in DCM (180
ml) was slowly added to a stirred solution of bromoacetyl bromide ($13.9 \mathrm{ml}, 0.15 \mathrm{~mol}$) in DCM (100 ml) at a temperature of $-20^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature over a one hour period. The reaction was washed with 500 ml portions of $\mathrm{H}_{2} \mathrm{O}, 0.2 \mathrm{~N}$ HCl, saturated NaHCO_{3}, and saturated NaCl . The organic solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to an oil. This oil was crystallized from DCM-hexane to give product ($54.9 \mathrm{~g}, 83 \%$) as a colorless solid, MP 137$139.5^{\circ} \mathrm{C}$ (J.A. Wolff, Ph.D. Thesis, Massachusetts Institute of Technology, February 1992, MP 130-1350 .

Part C - N, N'-Bisl(2-
triphenylmethylthiolethyllglycinamide
A solution of $\mathrm{N}-2-\mathrm{Bromoacetyl-S-triphenylmethyl-2-}$ aminoethanethiol ($35.2 \mathrm{~g}, 0.08 \mathrm{~mol}$), S-triphenylmethyl-2-aminoethanethiol ($25.5 \mathrm{~g}, 0.08 \mathrm{~mol}$), and Et ${ }_{3} \mathrm{~N}$ (16.7 $\mathrm{ml}, 0.12 \mathrm{~mol})$ in DCM (375 ml) was kept at room temperature for 24 hours. The solution was washed with 200 ml portions of $\mathrm{H}_{2} \mathrm{O}$ (1X), saturated NaHCO_{3} (2X), $\mathrm{H}_{2} \mathrm{O}$ (IX), and saturated $\mathrm{NaCl}(1 \mathrm{X})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give a viscous oil. The oil was dissolved in 70:30 DCM:EtOAc (150 ml) and cooled in an ice bath. The solid which formed was removed by filtration. The filtrate was concentrated to a viscous oil. This oil was purified by flash chromatography over 200-400 mesh, 60Á silica gel using 70:30 DCM:EtOAC mobile phase to give product ($34.4 \mathrm{~g}, 63 \%$) as a colorless, amorphous foamy solid. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) 7.42$7.18(\mathrm{~m}, 30 \mathrm{H}), 3.12-3.01(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.27(\mathrm{~m}, 6 \mathrm{H})$.

Part D - Methyl 4-(Methanesulfonylmethyl)benzoate
A solution of methyl 4-(hydroxymethyl)benzoate (10.8 g, 0.065 mol$)$ and proton sponge (19.5 g, 0.091

$$
-278-
$$

mol) in DCM (200 ml) was treated with methanesulfonic anhydride ($13.94 \mathrm{~g}, 0.08 \mathrm{~mol})$ and stirred at room temperature for 20 hours. The reaction mixture was washed with 100 ml portions of $\mathrm{H}_{2} \mathrm{O}$ (1X), $1 \mathrm{~N} \mathrm{HCl}(2 \mathrm{X})$, $\mathrm{H}_{2} \mathrm{O}$ (1X), saturated $\mathrm{NaHCO}_{3}(1 X)$, and $\mathrm{H}_{2} \mathrm{O}$ (1X). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 15.5 g of pale yellow solid. Recrystallization from CCl_{4} (150 ml) using decolorizing carbon gave product (14.2 $\mathrm{g}, 90 \%$) as colorless needles, MP 91-940 .

Part E - N-[4-(Carbomethoxy)benzyl]-N,N'-bis[(2-

 triphenylmethylthiolethyllalycinamideA solution of $N, N^{\prime-B i s}[(2-t r i p h e n y l-$ methylthio) ethyl]glycinamide ($16.27 \mathrm{~g}, 0.024 \mathrm{~mol}$) and methyl 4-(methanesulfonylmethyl)benzoate (4.88 g, 0.02 mol) in ethylene dichloride (200 ml) was heated to reflux for 28 hours. The reaction was washed with 200 ml portions of saturated NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried (MgSO_{4}), and concentrated to a light brown oil (30 g). This oil was purified by flash chromatography over 200-400 mesh, 60A silica gel using DCM:EtOAC mobile phase to give product ($9.9 \mathrm{~g}, 60 \%$) as a colorless, amorphous foamy solid. $1_{\mathrm{H}} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) 7.90(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 7.49-$ $7.18(\mathrm{~m}, 32 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{J}=6.2 \mathrm{~Hz}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz})$, 2.39-2.27 (m, 4H).

Part F - N- 4 - (carboxy)benzyll-N,N'-bisf(2-triphenylmethylthio)ethyilglycinamide
A mixture of N -[4-(carbomethoxy)benzyl]-N,N'-bis[(2-triphenylmethylthio)ethyl]glycinamide (6.00 g, 7.26 mmol) in dioxane (65 ml) and $1 \mathrm{~N} \mathrm{NaOH} \mathrm{(} 65 \mathrm{ml}$) was stirred at room temperature for 24 hours. The mixture was acidified with 2.5 M citric acid (100 ml) and the

Scheme 22

Synthesis of $\mathrm{N}-$ - $2-$ (Benzoylthio) propionyliglycylglycyl-g-Amino-butyric_Acid(Bz-Me-MAG2-gaba)

5

10

The title compound was prepared according to Scheme
$\xrightarrow[\text { TFA }]{\mathrm{Ph}_{3} \mathrm{COH}}$

 23 from N-(2-mercaptopropionyl)-glycine (1), which is commercially available from Aldrich. The protection of
the thiol group in compound 1 is achieved by reacting with benzoyl chloride under basic conditions to give compund 2. The carboxylic group can be activated by forming its succinimide ester (3), which reacts with glycyl-g-aminobutyric acid in 90% methanol solution to give the benzoyl-protected Me-MAG2-gaba (4). The spectral (IR, ${ }^{1} \mathrm{H}$ NMR and $F A B-M S$) data are completely consistent with the proposed formulation.

Scheme 23. Synthesis of Benzoyl-Protected Me-MAG \mathbf{M}_{2} gaba.

Step 1: N-[2-(benzoylthiol)propionyl]glycine
(2). Sodium hydroxide (4.5 g, 0.109 mol$)$ and N -(2mercaptopropionyl)glycine ($8.20 \mathrm{~g}, 0.05 \mathrm{~mol}$) were dissolved in a mixture of water (40 mL) and toluene (30 $\mathrm{mL})$. The temperature was lowered to $5-15^{\circ} \mathrm{C}$ using an ice bath. Benzoyl chloride ($4.6 \mathrm{~mL}, 0.051 \mathrm{~mol}$) in toluene (10 mL) was added dropwise with vigorously stirring. After addition, the mixture was stirred at 5-
$15{ }^{\circ} \mathrm{C}$ for another $30 \mathrm{~min} .$, and then at room temperature for 2 hr . The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, and discarded. Aqueous fractions were combined and acidified to $\mathrm{pH} \sim 1.5$ using concentrated HCl while white solid formed. The precipitate was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$ and small amount of ethanol, and dried under vacuum. The yield was 13.0 g (97\%). Anal. Calcd (found) for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}$, 53.90 (53.89); H, 4.90 (4.81); N, 5.24 (5.22). IR (KBr disk, in cm^{-1}): 3375 ($\mathrm{s}, \mathrm{n}_{\mathrm{N}-\mathrm{H}}$) 3200-2500(br, $\mathrm{nO}_{\mathrm{O}} \mathrm{H}$); 1745 (vs, thioester $\mathrm{n}_{\mathrm{C}}=0$) ; 1663, 1625 (vs, amide and carboxylic $\mathrm{n}_{\mathrm{C}}=0$). $1_{\mathrm{H}} \mathrm{NMR}$ ($\mathrm{DMSO} \mathrm{d}_{6}, \mathrm{~d}$ in ppm): 1.47 (d , $\left.3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.0 \mathrm{~Hz}\right) ; 3.79\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=5.9 \mathrm{~Hz}\right)$; 4.40 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{J}=7.0 \mathrm{~Hz}) ; 7.53(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}) ; 7.69$ $(\mathrm{m}, 1 \mathrm{H},=\mathrm{CH}) ; 7.90$ (dd, $2 \mathrm{H},=\mathrm{CH}, \mathrm{J}=7.0 \mathrm{~Hz}$); 8.59 (t , $1 \mathrm{H}, \mathrm{NH}, \mathrm{J}=5.8 \mathrm{~Hz}$); 12.6 (bs, $1 \mathrm{H}, \mathrm{COOH}$). DCI-MS: m/z $=268\left([M+H]^{+}\right)$.

Step 2: N-[2-(Benzoylthio)propionyl]glycine Succinimide Ester (3). To a suspension of $N-$ hydroxysuccinimide ($5.80 \mathrm{~g}, 0.05 \mathrm{~mol}$) and $\mathrm{N}-[2-$ (benzoylthiol)propionyllglycine ($13.35 \mathrm{~g}, 0.05 \mathrm{~mol}$) in dry THF (400 mL) was added DCC ($12.0 \mathrm{~g}, 0.052 \mathrm{~mol}$) in the same solvent (100 mL THF) at $5-10{ }^{\circ} \mathrm{C}$. The mixture was stirred at $5-10{ }^{\circ} \mathrm{C}$ for 2 hr , and then at room temperature for 2 days. To the reaction mixture was added $2-3 \mathrm{~mL}$ of acetic acid and then stirred for another 2 hr . The solid was filtered off, washed with $2 \times 150 \mathrm{~mL}$ of THF. The organic fractions were combined and the solvent was removed under reduced pressure to give a white solid, which was collected, washed with diethyl ether, and dried in air. The yield was 14.5 g (80%). Anal. Calcd (found) for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 52.72$ (52.70); H 4.43 (4.21); N, 7.69 (7.69). IR (KBr disk, in cm^{-1}):

```
3290 (s, nn-H); 1820 (m, succinimide nc=0); 1785 (m,
ester n}\mp@subsup{\textrm{n}}{\textrm{C}=0}{}\mathrm{ ); ; 1735 (vs, thioester n}\mp@subsup{\textrm{n}}{\textrm{C}=0}{}\mathrm{ ); 1600 (vs, amide
```



```
7.0 Hz); 2.79 (s, 4H, CH2); 4.33 (q, 1H, CH, J = 7.0
\(\mathrm{Hz}) ; 4.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 7.00(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{J}=5.8 \mathrm{~Hz})\); \(7.44(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}) ; 7.59(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}) ; 7.93(\mathrm{dd}, 2 \mathrm{H},=\mathrm{CH}\), \(\mathrm{J}=7.0 \mathrm{~Hz}) . \quad \mathrm{DCI}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=365\left([\mathrm{M}+\mathrm{H}]^{+}\right)\).
```

10. (Benzoylthio)propionyl]glycylglycyl-g-Aminobutyric Acid (Bz-Me-MAG2-gaba, 4). N-[2-
(Benzoylthio)-propionyl]glycine succinimide ester (1.82 g, 5 mmol) and glycyl-g-aminobutyric acid ($0.80 \mathrm{~g}, 5$ mmol) were suspended in a mixture of methanol (150 mL)

Step 3: N-[2-

 temperature and was kept stirring overnight.Evaporation of solvents under reduced pressure give a white solid, which was purified by washing with water, and dried under vacuum. The yield was 1.85 g (93\%). Anal. Calcd (found) for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$: C, 52.78 (52.69); H , 5.66 (5.70); $N, 10.27$ (10.17). IR (KBr disk, in cm^{-1}): $3380,3320\left(5, n_{N-H}\right) ; 3100-2500\left(b r, n_{O-H}\right) ; 1725$ (vs, thioester $\mathrm{n}_{\mathrm{C}=0}$); 1680, 1640, 1624 (vs, amide $\mathrm{n}_{\mathrm{C}=0}$). 1_{H} NMR (DMSO-d6, d in ppm): $1.49\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{~J}=7.0 \mathrm{~Hz}\right)$; 1. 62 (qin, $2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=7.1 \mathrm{~Hz}$); 2.21 (t, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOH}$, $J=7.5 \mathrm{~Hz}$); 3.05 (qart, $2 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{2}, \mathrm{~J}=7.0 \mathrm{~Hz}$); 3.67 (d, $2 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{2}, \mathrm{~J}=5.7 \mathrm{~Hz}$); $3.75\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{2}, \mathrm{~J}=7.0\right.$
Hz); 4.42 (q, 1H, CH,
$\mathrm{J}=7.0 \mathrm{~Hz}) ; 7.57(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}) ; 7.70(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}) ; 7.80$
(t, 1H, NH, J = 3.0 Hz); $7.90(\mathrm{dd}, 2 \mathrm{H},=\mathrm{CH}, \mathrm{J}=7.0$
$\mathrm{Hz})$; 8.14 (t, 1H, $\mathrm{NH}, \mathrm{J}=5.70 \mathrm{~Hz}$); 8.57 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{J}=$
5.90 Hz), 12.0 (bs, $1 \mathrm{H}, \mathrm{COOH}$). DCI-MS: $\mathrm{m} / \mathrm{z}=410$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
(Benzoylthio)propionyllglycylglycylglycine (Bz-Me-MAG3L

The title compound was synthesized as described for Bz-Me-MAG2-gaba by substituting glycylglycine for glycyl-g-aminobutyric acid. The yield was 83\%. Anal. 10. Calcd (found) for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 50.39$ (50.59); H , $5.02(5.78) ; \mathrm{N}, 11.02$ (10.70). IR (KBr disk, in cm^{-1}): 3380 , 3300 ($\mathrm{s}, \mathrm{n}_{\mathrm{N}-\mathrm{H}}$); 3100-2500 (br, $\mathrm{n}_{\mathrm{O}-\mathrm{H}}$); 1738 (vs, thioester $\mathrm{n}_{\mathrm{C}=0}$) ; 1680, 1660 (vs, amide $\mathrm{n}_{\mathrm{C}=0}$). 1_{H} NMR (DMSO-d6, d in ppm): $1.48\left(d, 3 H, C H_{3}, \mathrm{~J}=7.05 \mathrm{~Hz}\right.$);
$3.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 3.85\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=6.00 \mathrm{~Hz}\right) ; 4.41$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}) ; 7.52(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}) ; 7.70(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 7.90$ $(\mathrm{m}, 2 \mathrm{H},=\mathrm{CH}) ; 8.15(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{J}=3.00 \mathrm{~Hz}) ; 8.51$ (t , $1 \mathrm{H}, \mathrm{NH}, \mathrm{J}=3.00 \mathrm{~Hz}$) ; 8.80 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{J}=3.00 \mathrm{~Hz}$). FAB-MS: $m / z=382\left([M+H]^{+}\right) . E S I-M S: m / z=381.9$ $20\left([M+H]^{+}\right)$.

Synthesis of $\mathrm{N}-[2-$ (Benzoylthio) propionylglycylglycyl-4-

 Amino-methylcyclohexane Carboxylic Acid (Bz-Me-MAG2 $=$ ACA).Synthesis of $\mathrm{Bz}-\mathrm{Me}-\mathrm{MAG}_{2}-\mathrm{ACA}$ involves several steps (Scheme 24). Compound 1 could be easily converted to its chloride 2 , which reacted with 4 -trans-aminomethylcyclohexane carboxylic acid to give compound 3. 30 Deprotection of 3 using hydrazine in ethanol, followed by addition of HCl produces 4. Reaction of 4 with Bz-Me-MAG-Succ in methanol in presence of Et3N afforded Bz-$\mathrm{Me}-\mathrm{MAG}_{2}-\mathrm{ACA} 5$.

Step 1: Phthaloylglycyl Chloride. Phthaloylglycine $(40 \mathrm{~g})$ was suspended in chloroform (400 mL), followed by addition of thionyl chloride (60 mL). The mixture was heated to reflux for 2 hr , during which time the mixture became a homogeneous clear solution. The solvent and excess of thionyl chloride was removed under reduced pressure to give an off-white solid, which was dried under vacuum and used without further purification. ${ }^{1}{ }_{H}$ NMR was consistent with the proposed structure.

Step 2: 4-trans-
[(Phthaloylglycyl)aminomethyl]cyclohexane Carboxylic Acid. Suspended were 4-trans-aminomethylcyclohexane carboxylic acid ($7.85 \mathrm{~g}, 50 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{~g}, 50$ mmol) in DMF (150 mL). To the suspension was added phthaloylglycyl chloride (11.85 g, 50 mmol$)$ in acetonitrile (150 mL). The reaction mixture was
refluxed for 3 hr and then filtered while hot. Solvents were removed under reduced pressure to give an oil. Upon addition of diethyl ether (50 mL), a white solide formed. The solid was collected by filtration, washed with diethyl ether, and dried in air. The yield was $10.32 \mathrm{~g}(60 \%) .1_{\mathrm{H}} \mathrm{NMR}$ (in DMSO-d6, d in ppm relative to TMS) : 0.87-2.00 ($\mathrm{m}, 9 \mathrm{H}, \mathrm{CH}_{2}$ and CH from cyclohexane ring); 2.10 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCOOH}$); 2.92 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=4.6$ $\mathrm{Hz}) ; 4.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; $7.85(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}=) ; 8.21$ ($\mathrm{t}, 1 \mathrm{H}$, $\mathrm{NH}, \mathrm{J}=4.1 \mathrm{~Hz}$).

Step 3: Glycyl-4-trans-(Aminomethyl)cyclohexane Carboxylic Acid Hydrochioride (Gly-ACA-HCl). To a suspension of 4-trans[(Phthaloylglycyl)aminomethyl]cyclohexane carboxylic acid
(10.32 $\mathrm{g}, 30 \mathrm{mmol}$) in ethanol (300 mL) was added 85% hydrazine hydrate (100 mL). The mixture was heated to reflux for 12 hr , during which time a white precipitate formed. After solvent was removed, $2 \mathrm{~N} \mathrm{HCl}(200 \mathrm{~mL})$ was added to the residue. The mixture was warmed up to 60$70{ }^{\circ} \mathrm{C}$ for 20 min and the solid was filtered off and discarded. The filtrate was concentrated to $1 / 3$ of its original volume. The mixture was cooled in an ice bath for 2 hr . The precipitate was collected by filtration, washed with a small amount of water and ethanol, and dried under vacuum. The yield was $3.45 \mathrm{~g}(45 \%) .{ }^{1} \mathrm{H}$ NMR (in $\mathrm{D}_{2} \mathrm{O}$, d in ppm relative to TMS): $1.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; $1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.81-2.05(\mathrm{~m}, 4 \mathrm{H}$, CH_{2}) ; $2.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCOOH}) ; 3.15\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=4.9\right.$ $\mathrm{Hz}) ; 3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.

Step 4: N-[2-(Benzoylthio) propiony]glycylglycyl-4-Amino-methylcyclohexane Carboxylic Acid (Bz-Me-MAG2-

ACA). Gly-ACA•HCl (1.25 g, 5 mmol), Et ${ }_{3} N(1.0 \mathrm{~g}, 10$ mmol) and Bz-Me-MAG-Succ ($1.82 \mathrm{~g}, 5 \mathrm{mmol}$) were suspended in a mixture of methanol (200 mL) and acetonitrile (100 $\mathrm{mL})$. The mixture was refluxed overnight. Solvents were removed under reduced pressure to give a white solid residue, to which was added $6 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The solid was separated by filtration, washed with water and small amount of ethanol, and dried under vacuum. The yield was $1.35 \mathrm{~g}(58 \%)$. Anal. Calcd (found) for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{gN}_{3} \mathrm{O}_{6} \mathrm{~S}$: C, 57.00 (58.41); H, 6.31 (6.70); N, 9.06 (9.72). IR (KBr disk, in cm^{-1}): 3600-2000 (br, OH--N); 3270 (s, $\mathrm{n}_{\mathrm{N}-\mathrm{H}}$); 1720, 1655, 1625, and 1565 (vs, $n_{C=0}$). $F A B-M S: m / z=464(M+1) . \quad{ }^{1} H$ NMR (in DMSO- d_{6}, d in ppm relative to TMS) : 0.81-1.90 (m, $159 \mathrm{H}, \mathrm{CH}_{2}$ and CH from cyclohexane ring); $1.48\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $J=5.2 \mathrm{~Hz}$) ; 2.10 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{CHCOOH}, \mathrm{J}=9.0 \mathrm{~Hz}$); 2.91 (t , $\left.2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{~J}=4.6 \mathrm{~Hz}\right) ; 3.68\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, 4.2 \mathrm{~Hz}\right) ; 3.75$ (d, 2H, $\mathrm{CH}_{2}, \mathrm{~J}=4.1 \mathrm{~Hz}$); 4.42 (q, $1 \mathrm{H}, \mathrm{CH}, \mathrm{J}=5.2 \mathrm{~Hz}$); 7.50 ($t, 2 \mathrm{H},-\mathrm{CH}=, \mathrm{J}=5.8 \mathrm{~Hz}$); $7.71(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}=, \mathrm{J}=$ $5.4 \mathrm{~Hz}) ; 7.91(\mathrm{~d}, 1 \mathrm{H},-\mathrm{CH}=, \mathrm{J}=6.4 \mathrm{~Hz}) ; 8.14$ (t, lH, $\mathrm{NH}, \mathrm{J}=4.2 \mathrm{~Hz}) ; 8.60(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, \mathrm{J}=4.1 \mathrm{~Hz}), 12.00$ (bs, 1H, COOH).

Synthesis of 3,4-Bis[3-(Benzoylthioacetyl)amido]benzoic Acid (Bz-MABA).

To a solution of S-benzoylthioacetyl chloride ($8.69 \mathrm{~g}, 40 \mathrm{mmol}$), freshly prepared from the reaction of S-benzoylthioacetic acid with excess of thionyl chloride in chloroform, in dry THF (300 mL) was added 3.4diaminobenzoic acid (3.04 g, 20 mmol) while the solution became brown. The solution was refluxed over night, during which time a precipitate formed. The mixture was cooled, and the solid was separated by filtration,
washed with THF, ethanol and diethyl ether, and dried under vacuum to give a pale gray solid. The yield was 5.8 g (54\%). Anal. Calcd (found) for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, 59.04 (58.82); H, 3.96 (4.04); N, 5.51 (5.46). IR (KBr disk, in cm^{-1}): 3600-2000 (br, OH--N); 3340 ($\mathrm{s}, \mathrm{n}_{\mathrm{N}-\mathrm{H}}$); 1690, 1670, 1655, 1610 and 1595 (s or $m, n_{C=0}$). FAB-MS: $m / z=509(M+1) .{ }^{1} H$ NMR (in $\mathrm{CDCl}_{3}, ~ d$ in ppm relative to TMS) : 4.12 and $4.14\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ; 7.50-8.30$ ($\mathrm{m}, 13 \mathrm{H}$, aromatic H's); 9.85 and 9.89 (s, $2 \mathrm{H}, \mathrm{NH}$); 12.99 (bs, 1 H , COOH)
Synthesis of 2-15-
Iriphenylmethylmercaptolethylaminoacetyl-s-triphenylmethyl-I-cysteine ethyl ester (II2-MA-MAMA)

> a: Triphenylmethanol, TFA; b: bromoacetyl bromide, TEA, THF; c: S-triphenylmethyl2-aminoethanethiol, TEA, methylene chloride

Scheme 25

> S-Triphenylmethyl-I-cysteine ethyl ester (2): To a solution of L-cysteine ethyl ester hydrochloride (18.6 $g, 0.1$ mole) in 200 mL TFA was added triphenylmethanol (52 g, 0.2 mole). The resulting dark brown solution was allowed to stir for 2 h at room temperature under nitrogen. The solvent was removed in vacuo and ethanol (100 mL) added to the residue. A 1 M solution of sodium ethoxide (50 mL) was added to the ethanolic solution and stirred for 90 min . during which time the solution turned cloudy. The mixture was filtered, the filtrated was concentrated in vacuo to give an oily residue. Flash column chromatography using ethyl acetate:hexane (1:3) and ethyl acetate gave the desired product (containing some ethyl acetate which is difficult to remove) which was stored under vacuum.

N -Bromoacetyl-S-triphenylmethyl-L-cysteine ethyl ester (3): A solution of S-triphenylmethyl-L-cysteine ethyl ester ($18 \mathrm{~g}, 46 \mathrm{mmol}$.) and triethylamine (6.4 mL , 46 mmol.) in dry THF (250 mL) under nitrogen was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of bromoacetyl bromide ($9.28 \mathrm{~g}, 46$ mol.) in dry THF (60 mL) was added dropwise during which time the solution tirned cloudy. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and then at room temperature for 1 h . The reaction mixture was filtered and the filtrate was concentrated in vacuo to give an oil. The oil was partitioned between methylene chloride and water (60 mL each), the organic layer washed with 5% $\mathrm{HCl}, \mathrm{NaHCO} 3, ~ d r i e d ~(m a g n e s i u m ~ s u l f a t e), ~ f i l t e r e d, ~ a n d ~$ the volatiles removed to give the desired product (69\%).

2-(S-Triphenylmethylmercapto) ethylaminoacetyl-S-triphenylmethyl-L-cysteine ethyl ester (4): To a solution of N -bromoacetyl-S-Triphenylmethyl-L-cysteine

```
    ethyl ester (1.0 g, 1.98 mmol.) and triethylamine (0.4
    mL, 2.9 mmol.) in methylene chloride (10 mL) was added
    S-triphenylmethyl-2-aminoethanethiol (0.64 g, 2.0
    mmol.). The reaction mixture allowed to stir at room
```


Scheme 26

A chelator having one additional amine available for conjugation to the linker modified cycllc compound can be synthesized according to the procedure of Scheme 27. Acm protected thioglycolic acid would be coupled to N -t-butoxycarbonylethylenediamine using any of the standard coupling methods of peptide synthesis. The Boc protecting group would be removed by the use of TFA, and the resulting amine would be coupled to Boc-Cys (Acm)-OH. Removal of the Boc protecting group provides the S protected chelator in a form appropriate for reaction with the reactive group of a linker modified cyclic compound.

TFA

Scheme 27

Also subject to this invention are reagents of the formula ($Q L_{n}$) d_{h} for radiolabeling which comprise more than one linker modified cyclic compound intermediate attached to a chelator as well as reagents of the formula (Q)d'Ln-Ch, having two or more cyclic compound intermediates attached to a common linker that also bears a chelator.

An example of a reagent comprising two linker modified cyclic compound intermediates attached to a chelator is shown below (Schemes 28 and 29). Other representative examples are shown in the following schemes. In this scheme, amine groups on two linker intermediate compounds react with the shown two activated ester groups to afford a compound of this invention of formula $\left(Q L_{n}\right){ }_{2} C_{h}$.

Scheme 28

5 well as all Pg groups claimed herein, may be any sulfur protecting group capable of being displaced upon reaction with the metal nuclide. Such protecting groups are well known by those skilled in the art. Examples of

The sulfur protecting group, Pg , shown above, as suitable protecting are taught in U.S. Patents Nos. 4,897,255, 4,965,392, and 4,980,147, each of which is herebu incorporated herein by reference.

Scheme 29

Chelators useful in the synthesis of these reagents are described in Chervu et. al., U.S. Patent 4, 883, 862 and Bergstein et. al., U.S. Patent 5, 279,811. The synthesis of other useful chelators is described in the following schemes.

The following examples illustrate how three such chelators could be prepared. Scheme 30 outlines the synthesis of a $\mathrm{N}_{2} \mathrm{~S}_{2}$ ligand having two carboxylic acid group to which the targeting cyclic compound can be

```
conjugated. The synthesis begins with an alkylation
reaction on the two amines of DL-2,3-diaminosuccinic
acid (Sigma Chemical Co.), using S-triphenylmethyl-2-
bromoethanethiol. The secondary amines must now be protected to avoid self-condensation when the carboxylic acids are activated. This can be accomplished with any of the standard amine protecting groups. The 2 group would be a good choice because it can be removed under acidic conditions ( \(\mathrm{HBr} / \mathrm{HOAc}\) or
TFA/trifluoromethanesulfonic acid) at the same time as the trityl protection on sulfur.
```


Scheme 30

> The synthesis of a second $\mathrm{N}_{2} \mathrm{~S}_{2}$ having two carboxylic acid groups is shown in Scheme 31 . Alkylation of ethylenediamine- N, N '-dipropionic acid (American Tokyo Kasei) with S -triphenylmethyl-2bromoethanethiol would give the $\mathrm{N}_{2} \mathrm{~S}_{2}$ ready for conjugation. The amines are tertiary and no additional protection is required.

Scheme 31

Scheme 32 outlines the synthesis of an $\mathrm{N}_{2} \mathrm{~S}_{2}$ ligand having two additional amine groups for conjugation to targeting cyclic compounds bearing reactive electrophilic groups (e.g., active esters). A reductive amination reaction between benzyl amine and glyoxal would give $N, N '$-dibenzylethylenediamine. Alkylation of the two amines with N -(3-bromopropyl)phthalimide would give the fully protected tetraamine. The benzyl protection on the two secondary amines would be removed by catalytic reduction, and the free amines would then be alkylated with S-triphenylmethyl-2-bromoethanethiol to give the fully protected ligand. Selective deprotection of the primary amines would be accomplished with hydrazine.

Scheme 32

Reagents having two targeting groups and one chelator bound to a common linker can be synthesized according to the route shown in Scheme 33. Reaction of benzylamine with N -(3-bromopropyl)phthalimide will yield N, N-bis(3-phthalimidopropyl)benzylamine (Niitsu and
10 Samejima (1986), Chem. Pharm. Bul., 34, 1032-1038). Treatment with hydrazine will remove the phthalimido protecting groups. N,N-Bis(3-aminopropyl)benzylamine would then be reacted with succinic anhydride to give the diacid, which would be converted to the bis active
ester with DCC and N-hydroxysuccinimide. This bis active
ester would then be conjugated to a linker modified
cyclic compound. Hydrogenation to remove the benzyl
protecting group and conjugation with an activated
chelator would yield the final product.

1. H_{2}, Catalyst
2. Activated Chelator

Scheme 33

More than two compounds Q and more than one chelator can be joined together by using starburst or cascade dendrimers as linkers. Dendrimers are constructed by adding branched segments onto a
functionalized core, producing a product having twice
the number of functional groups as the original core.
This addition of branched units can be carried through
several generations to product large polyfunctional
molecules. One example is the pAMAM (polyamidoamine)
dendrimers (Aldrich chemical co.), which use
ethylenediamine as the initiator core. Scheme 34 shows
the generalized preparation of a radiopharmaceutical
based on pamam dendrimer containing targeting cyclic
compounds and chelators in a $2: 1$ ratio. For this
structure a generation $=0$ (n $=1$) dendrimer would have
two targeting cyclic compounds and one chelator. A
generation $=1$ (n $=2$) dendrimer would have four
targeting cyclic compounds and two dendrimers. The
ratio and absolute number of targeting cyclic compounds
and chelators would be controlled by the stoichiometry
of the conjugation reactions.

Scheme 34

A similar system, called the multiple antigen peptide (MAP) system was developed by Posnett, McGrath, and Tam (J. Biol. Chem., 263, (1988), 1719) to facilitate the generation of antibodies. This system constructs a branching network on a solid support using the two amino groups of lysine. Because the two different amino groups on lysine can be orthogonally protected, this system allows a higher level of control of the conjugation reactions. In Scheme 35 a MAP system terminating in four lysine groups is conjugated first to four targeting cyclic compounds at the alpha amino
groups, and them to four chelators at the epsilon amino groups.

The radiolabeled cyclic platelet glycoprotein IIb/IIIa compounds of the present invention can be synthesized using standard synthetic methods known to those skilled in the art, using radioisotopes of halogens (such as chlorine, fluorine, bromine and
iodine), technetium and indium, as well as others. Preferable radioisotopes include $123 \mathrm{I}, 125 \mathrm{I}, 131 \mathrm{I}$, 99 mP , and 111 In .

The cyclic platelet glycoprotein IIb/IIIa compounds of the invention may be labeled either directly (that is, by incorporating the radiolabel directly into the compounds) or indirectly (that is, by incorporating the radiolabel into the compounds through a chelator which has been incorporated into the compounds. For direct labeling, as those skilled in the art will recognize, the labeling may be isotopic or nonisotopic. With isotopic labeling, one group already present in the cyclic compound is substituted with (exchanged for) the radioisotope. With nonisotopic labeling, the radioisotope is added to the cyclic compounds without substituting with (exchanging for) an already existing group.

Generally, labeled compounds are prepared by procedures which introduce the labeled atom at a late stage of the synthesis. This allows for maximum radiochemical yields, and reduces the handling time of radioactive materials. When dealing with short halflife isotopes, a major consideration is the time required to conduct synthetic procedures, and purification methods. Protocols for the synthesis of radiopharmaceuticals are described in Tubis and Wolf, Eds., "Radiopharmacy", Wiley- Interscience, New York (1976) ; Wolf, Christman, Fowler, Lambrecht, "Synthesis of Radiopharmaceuticals and Labeled Compounds Using Short-Lived Isotopes", in Radiopharmaceuticals and Labeled Compounds, Vol 1, p. 345-381 (1973), the disclosures of each of which are hereby incorporated herein by reference, in their entirety.

Various procedures may be employed in preparing the radiolabeled compounds of the invention where the radiolabel is a halogen. Some common synthetic methodologies for isotopic halogen labeling of aromatic compounds such as the type present here are iododediazonization, iododeborobation, iododestannylation, iododesilation, iododethallation, and halogen exchange reactions. The most common synthetic methodology for nonisotopic halogen labeling of aromatic compounds such as the type present here is iododeprotonation or electrophilic aromatic substitution reactions. These methods and additional procedures are described in Merkushev, Synthesis, 923 (1988), and Seevers et al, Chem. Rev., 82: 575 (1982), the disclosures of each of which are hereby incorporated herein by reference, in their entirety.

By way of example, isotopically radiolabeled 4, 5 and 6-halo t-butyloxycarbonyl-3-aminomethylbenzoic acid derivatives may be prepared using the general procedures described above for the synthesis of the unlabeled compounds. In carrying out such radiolabeling, it is important that the half-life of the isotope chosen be much longer than the handling time of the reaction sequences. Known starting materials include the 2, 3, and 4-iodo (123I, 125I, and 131I) benzoic acids.

The iodo-radiolabeled Mamb derivatives may also be isotopically prepared from the anilines by the Sandmeyer reaction as described in Ellis et at Aust. J. Chem., 26: 907 (1973).

Alternatively, such compounds may prepared by way of isotopic labeling from the unlabeled bromo or iodo derivatives by various two step reaction sequences, such as through the use of trialkylsilyl synthons as described in Wilson et at J. Org. Chem., 51: 483 (1986)
and Wilbur et al J. Label. Compound. Radiopharm., 19: 1171 (1982), the use of trialkylsilyl synthons as described in Chumpradit et al J. Med. Chem., 34: 877 (1991) and Chumpradit et al J. Med. Chem., 32: 1431

5 (1989), and the use of boronic acid synthons as described in Kabalka et al J. Label. Compound. Radiopharm., 19: 795 (1982) and Koch et al Chem. Ber., 124:2091 (1991). These synthetic transformations are outlined in the Scheme 36 below.
10

Scheme 36

Although the foregoing protocol may be employed in preparing radiolabeled compounds of the present invention, to maximize radiochemical yields, to reduce the handling time of radioactive materials, and to prepare short half-life halogen labeled compounds, it is preferable to perform the isotopic halogen labeling as one of the final steps in the cyclic compound synthesis. The following provides exemplary proceudres for such late stage labeling.

The unlabeled iodo compounds are versatile precursors which can be converted to the labeled derivatives by any of the two step reaction sequences described above. Useful functionality to incorporate into the Mamb portion of the cyclic compound includes the bromo, the nitro, the trialkylsilyl, the trialkyltin, and the boronic acid groups. The synthesis and application of each of these precursors is described above.

The least complex means of radioiodination of the cyclic compounds of the present invention via isotopic labeling during the final stages of their preparation is the substitution of radioactive iodide for a stable iodine atom already present in the molecule. This can often be done by heating the compound with radioactive iodide in an appropriate solvent as described in Ellis et al., Aust. J. Chem., 26: 907 (1973). When applied to aromatic iodides, the extremely small quantities and low concentration of radioactive iodide employed leads to the incorporation of only modest specific activity. This reaction sequence is outlined in the Scheme 37.

Scheme 37

The cyclic compounds may also be isotopically iodo- labeled during the final stages of their preparation from the anilines by the Sandmeyer reaction as described in Ellis et al., Aust. J. Chem., 26: 907 (1973). This approach leads to a labeled cyclic compound with high specific activity. To avoid complications in the synthesis of the cyclic compound, the nitro group provides an ideal synthon for the aniline.

Alternatively, the cyclic compounds may be isotopically labeled late in the reaction scheme from the unlabeled bromo or iodo derivatives by various two step reaction sequences, as described above, such as through the use of trialkylsilyl synthons as described in Wilson et al., J. Org. Chem., 51: 4833 (1986) and Wilbur et al., J. Label. Compound. Radiopharm., 19: 1171 (1982), through the use of trialkylsilyl synthons as described in Chumpradit et al., J. Med. Chem., 34: 877 (1991) and Chumpradit et al., J. Med. Chem., 32: 1431 (1989), and through the use of boronic acid synthons as described in Kabalka et al., J. Label. Compound. Radiopharm., 19: 795 (1982) and Koch et al., Chem. Ber., 124:2091 (1991).

A related approach where the isotopic halogen radiolabeling may be carried out late in the synthesis scheme involves converting the substituted Mamb

```
    derivatives to cyclic compounds that already incorporate
    the trialkylsilyl, trialkyltin, or boronic acid groups.
    The synthesis of each Mamb derivative has been described
    in an earlier section.
            The forgoing synthetic transformations on the
        cyclic compounds are outlined in the Scheme 38.
```


-309-

```
    Arora et al J. Med. Chem., 30:918 (1987). Electrophilic
    aromatic substitution reactions are enhanced by the
    presence of such electron-donating substituents. This
    synthetic sequence is outlined in Schemes 39 and 40.
```

5

Scheme 40

5 radiolabeled halogen, the methyl substituted cyclic compounds may be converted to the a-halotoluene derivative with NBS or NCS under free-radical halogenation conditions. The benzylic halides may be smoothly replaced by radiolabeled iodide through a nucleophilic substitution reaction. This synthetic sequence is outlined in Scheme 41 .

-312-

Scheme 41

```
            Although primarily illustrated for the radiolabeled
        iodo compounds, the above described process chemistry
```

```
can be used to prepare any radioactive halogen isotope.
\(1^{1 B_{F}}\) derivatives of these cyclic compounds can be prepared by conjugation of \({ }^{18} \mathrm{~F}\) functionalized phenyl intermediates. \({ }^{18} \mathrm{~F}\)-functionalized cyclic compounds can be prepared as shown in Scheme 42 (R.H. Mach et al., J. Med. Chem., 1993, 36,3707-3720). Reaction of p-trimethylammonium-benzaldehyde with [18F]CsF/aqueous DMF at \(120^{\circ} \mathrm{C}\) for 10 min . (aqueous \(\left[{ }^{18} \mathrm{~F}\right] \mathrm{KF} / \mathrm{kryptofix} / \mathrm{ACN}\) can also be used to generate the \({ }^{18} \mathrm{~F}\)-phenyl compounds from the corresponding trimethylammonium or nitro groups), followed by LAH/THF/pentane and 57\% aqueous HI gives the p-18F-benzyl iodide.
```



```
Scheme 42
Reaction with the amine funtionality of the cyclic compound intermediate cyclo(D-Lys-NMeArg-Gly-Asp-Mamb) or the linker modifed cyclic compound Cyclo(D-Val-NMeArg-Gly-Asp-Mamb(5-Aca)) can give the \({ }^{18 F}\) labeled products suitable for use in positron emission tomography(PET):
```


5

> Various procedures may also be employed in preparing the radiolabeled compounds of the invention where the radiolabel is a metal, such as where the radiolabel is technetium or indium. These procedures are utilized for labeling compounds of this invention of formulae: (QLn)dCh and (Q)d'Ln-Ch. Exemplary procedures for such technetium or indium labeling are disclosed, for example, in Cerqueira et al., Circulation, Vol. 85, No. l, pp. $298-304$ (1992), Pak et al., J. Nucl. Med., Vol.

30, No. 5, p. 793, 36th Ann. Meet. Soc. Nucl. Med.
(1989), Epps et al., J. Nucl. Med., Vol. 30, No. 5, p. 794, 36th Ann. Meet. Soc. Nucl. Med. (1989), Pak et al., J. Nucl. Med., Vol. 30, No. 5, p. 794, 36th Ann. Meet.

Soc. Nucl. Med. (1989), and Dean et al., J. Nucl. Med., Vol. 30, No. 5, p. 794, 36th Ann. Meet. Soc. Nucl. Med. (1989), the disclosures of each of which are hereby incorporated herein by reference, in their entirety. In additon, specific procedures are provided in the

10. examples below.

Another useful method for labeling the cyclic compounds of the present invention involves preparing a 99 m c chelator (at the tracer level) and conjugating it to either a cyclic compound intermediate or a linker modified cyclic compound. This method is termed the prechelate approach. As shown, for example, in the scheme below, 4,5-bis (Sbenzoyl)mercaptoacetamidopentanoic acid (1) is complexed with 99 m TcO4 under reducing conditions to form (2). Then (2) is converted to the active ester (3) containing the tetrafluorophenyl group. Complex (3) then may be reacted with an appropriate cyclic compound intermediate such as (5) or (6), to yield radiolabeled compounds (4). Another appropriate technetium chelator is 2,3-bis (S-

25 . benzoyl)mercaptoacetamido-propanoic acid (7). HPLC purification of the $99 \mathrm{~m}_{\text {T }}$ complex may be performed at each step. This approach is depicted in Scheme 43.

(1) $\mathrm{Bz}=$ Benzoyl
(2)

(3)

(4)

(5)

(6)

(7)

Scheme 43

Examples

Section A. Reagents for Radiolabeling

Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb (5-Aca)) - N-[4(carboxy) benzyl]-N,N'-bis[(2-triphenylmethylthio)ethyl]-
glycinamide Conjugate

A solution of N -[4-(carboxy)benzyl]-N,N'-bis[(2triphenylmethylthio)ethyllglycinamide $N-$ hydroxysuccinimide ester (0.017 mmol$)$, cyclo-(D-Val-NMeArg-Gly-Asp-Mamb (5-Aca)) ($13.9 \mathrm{mg}, 0.015 \mathrm{mmol}$), and $E t_{3} N(6.25 \mu l, 0.045 \mathrm{mmol})$ in $\operatorname{DMF}(350 \mu \mathrm{l})$ was allowed to stir at room temperature for 14 hours. The progress of the reaction was monitored by normal phase TLC (90:8:2 $\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{HOAC}$) using the ninhydrin and Sakaguchi tests. The DMF was removed under reduced pressure. The conjugate was purified using reversedphase HPLC with a preparative Vydac C18 column (2.1 cm) using a $1.0 \% / \mathrm{min}$. gradient of 18 to $36 \frac{5}{6}$ acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy colorless solid (11 mg, 53\%); FAB-MS: $[M+H]=$

Example 2

Cyclo-(D-Lys-NMeArg-Gly-Asp-Mamb) - N-[4-(carboxy)benzyl]-N, N'-bis[(2-triphenylmethylthio)ethyl]glycinamide Conjugate

A solution of N -[4-(carboxy)benzyl]-N,N'-bis[(2triphenylmethylthio)ethyl]glycinamide $\mathrm{N}-$
hydroxysuccinimide ester ($30 \mathrm{mg}, 0.033 \mathrm{mmol}$), cyclo-(D-
Lys-NMeArg-Gly-Asp-Mamb) $(23.8 \mathrm{mg}, 0.029 \mathrm{mmol})$, and Et ${ }_{3} \mathrm{~N}$ ($12 \mu \mathrm{l}, 0.087 \mathrm{mmol}$) in DMF (0.60 ml) was allowed to stir at room temperature for 63 hours. The progress of the reaction was monitored by normal phase TLC (90:8:2 $\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{HOAC}$) using the ninhydrin and Sakaguchi tests. The DMF was removed under reduced pressure. The conjugate was purified using reversed-phase HPLC with a preparative Vydac C18 column (2.1 cm) using a $0.9 \% / \mathrm{min}$. gradient of 18 to 36% acetonitrile containing 0.1% TFA and then lyophilized to give the TFA salt of the title compound as a fluffy colorless solid ($24 \mathrm{mg}, 60 \%$); ESIMS: $[\mathrm{M}]=1397.3$.

Example 3

$$
\begin{gathered}
\text { Cyclo(D-Val-NMeArg-Gly-Asp-Mamb (N-hydrazino- } \\
\text { nicotinyl-5-ACa)) TFA salt }
\end{gathered}
$$

Part A. Synthesis of Cyclo(D-Val-NMeArg-Gly-Asp-Mamb (N-boc-hydrazino-nicotinyl-5-Aca)) TFA salt

To a solution of cyclo(D-Val-NMeArg-Gly-Asp-Mamb (5Aca) ($10 \mathrm{mg}, 0.011 \mathrm{mmol}$), succinimidyl boc-
hydrazinonicotinate $(4.6 \mathrm{mg}, 0.0132 \mathrm{mmol})$ in DMF (0.3 $\mathrm{mL})$ was added triethylamine ($0.0061 \mathrm{~mL}, 0.044 \mathrm{mmol}$) and the reaction stirred at room temperature under nitrogen for 24 hours. The solvent was removed in vacuo and the residue dissolved in a solution of acetonitrile-water and lyophilized overnight to give an off-white solid. Purification of part of the product was accomplished by reversed-phase $H P L C$ on a preparative Vydac $C-18$ column using a $2.0 \% / \mathrm{min}$. gradient of $6.3-72 \%$ aqueous acetonitrile containing $0.1 \% \mathrm{TFA}$ and lyophilized to give
the TFA salt of the title compound as a fluffy solid. MS $(\mathrm{M}+\mathrm{H}=938.4849$, calc. 938.4848) .

Part B. Deprotection to Cyclo(D-Val-NMeArg-Gly-Asp- Mamb (N-hydrazinonicotinyl-5-Aca)) TFA salt

Cyclo(D-Val-NMeArg-Gly-Asp-Mamb (N-boc-hydrazinonicotinyl-5-Aca) TFA salt was dissolved in a mixture of 98:2 TFA:anisole (2 mL) and the reaction mixture stirred for 15 min . The solvent was removed in vacuo and the residue disolved in a solution of acetonitrile-water and lyophilized to give a white solid. Purification was accomplished by reversed-phase HPLC on a preparative Vydac $C-18$ column using a $2.0 \% / \mathrm{min}$. gradient of $6.3-72 \%$ aqueous acetonitrile containing 0.1% TFA and lyophilized to give the TFA salt of the title compound as a fluffy solid. MS ($\mathrm{M}+\mathrm{H}=$ 838.4324, calc. 838.4324).

Example 4

> Cyclo(D-Abu-NMeArg-Gly-Asp-Mamb(N-hydrazinonicotinyl-5-Aca)) TFA salt

Part A. Synthesis of Cyclo(D-Abu-NMeArg-Gly-Asp-Mamb (N-boc-hydrazino-nicotinyl-5-Aca)) TFA salt

To a solution of cyclo(D-Abu-NMeArg-Gly-Asp-Mamb (5Aca) TFA salt ($10 \mathrm{mg}, 0.0109 \mathrm{mmol}$), succinimidyl bocnydrazinonicotinate ($4.55 \mathrm{mg}, 0.0131 \mathrm{mmol}$) in DMF (0.4 $\mathrm{mL})$ was added triethylamine ($0.0061 \mathrm{~mL}, 0.044 \mathrm{mmol}$) and the reaction stirred at room temperature under nitrogen for 24 hours. The solvent was removed in vacuo and the
-319-

Abstract

residue dissolved in a solution of acetonitrile-water and lyophilized overnight to give an off-white solid. Purification of part of the product was accomplished by reversed-phase HPIC on a preparative Vydac C-18 column using a $2.0 \% / \mathrm{min}$. gradient of $6.3-72 \%$ aqueous acetonitrile containing 0.1% TFA and lyophilized to give the TFA salt of the title compound as a fluffy solid. MS $(M+H=924.4699$, calc. 924.4692).

Part B. Deprotection to Cyclo(D-Abu-NMeArg-Gly-Asp-Mamb(N-hydrazino-nicotinyl-5-Aca)) TFA salt

Cyclo (D-Abu-NMeArg-Gly-Asp-Mamb (N-hydrazinonicotinyl-5-Aca)) TFA salt: Cyclo(D-Abu-NMeArg-Gly-Asp-Mamb(N-boc-hydrazinonicotinyl-5-Aca)) TFA salt was dissolved in a mixture of 98:2 TFA:anisole $(2$ $\mathrm{mL})$ and the reaction mixture stirred for 15 min . The solvent was removed in vacuo and the residue disolved in a solution of acetonitrile-water and lyophilized to give a white solid. Purification was accomplished by reversed-phase HPLC on a preparative Vydac C-18 column using a $2.07 \% / \mathrm{min}$. gradient of $6.3-85.5 \%$ aqueous acetonitrile containing 0.1% TFA and lyophilized to give the TFA salt of the title compound as a fluffy solid. MS ($\mathrm{M}+\mathrm{H}=\mathrm{xx}$, calc. xx).

Example 5

Cyclo((N-E-hydrazinonicotinyl-D-Lys)-NMeArg-Gly-Asp-Mamb) TFA salt

Part A. Synthesis of Cyclo((N-E-boc-hydrazinonicotinyl-D-Lys)-NMeArg-Gly-Asp-Mamb) TFA salt

To a solution of cyclo(D-Lys-NMeArg-Gly-AspMamb).2TFA ($4.2 \mathrm{mg}, 0.005 \mathrm{mmol}$), succinimidyl bochydrazinonicotinate ($2.1 \mathrm{mg}, 0.006 \mathrm{mmol}$) in DMF (0.15 $\mathrm{mL})$ was added triethylamine ($0.003 \mathrm{~mL}, 0.02 \mathrm{mmol}$) and the reaction stirred at room temperature under nitrogen for 48 hours. The solvent was removed in vacuo and the residue dissolved in a solution of acetonitrile-water and lyophilized overnight to give an off-white solid. Purification was accomplished by reversed-phase HPLC on a preparative Vydac $C-18$ column using a $1.7 \% / \mathrm{min}$. gradient of $6.3-85.5 \%$ aqueous acetonitrile containing $0.1 \frac{t}{\varepsilon}$ TFA and lyophilized to give the TFA sait of the title compound as a fluffy solid. MS (M+H = 839.4157, calc. 839.4164).

Part B. Deprotection to Cyclo((N-E-hydrazinonicotinyl-D-Iys)-NMeArg-Gly-Asp-Mamb) TFA salt

Cyclo((N-E-hydrazinonicotinyl-D-Lys)-NMeArg-Gly-Asp-Mamb) TFA salt: Cyclo((N-E-boc-hydrazinonicotinyl-D-Lys)-NMeArg-Gly-Asp-Mamb) TFA salt (3 mg) was dissolved in a mixture of 98:2 TFA:anisole (2 mL) and the reaction mixture stirred for 15 min . The solvent was removed in vacuo and the residue disolved in a solution of acetonitrile-water and lyophilized to give a white solid. Purification was accomplished by reversedphase HPLC on a preparative Vydac $C-18$ column using a $2.0 \% / \mathrm{min}$. gradient of 6.3-72\% aqueous acetonitrile containing 0.1% TFA and lyophilized to give the TFA salt of the title compound as a fluffy solid. MS ($\mathrm{M}+\mathrm{H}=$ 739.3629, calc. 739.3640).

Example 6.

Cyclo-([DTPA-D-Lys]-NMeArg-Gly-Asp-Mamb) Conjugate

To a solution of 250 mg (2 mmol .) of cyclo(D-Iys-NMeArg-Gly-Asp-Mamb) in 208 mL of 0.1 M Borate (pH 9.88) at room temperature was added DTPA anhydride $(743 \mathrm{mg}, 10$ mmol.) with constant stirring. The reaction was allowed to stir for 2 h . The crude mixture of products obtained after removal of the solvent was purified by preparative HPLC (Vydac C_{18} column, gradient of $0-50 \%$ ACN containing 0.1% TFA over $60 \mathrm{~min} .$, flow rate $20 \mathrm{~mL} / \mathrm{min}$). Two major components were isolated. Component A is Cyclo-([DTPA-D-Lys]-NMeArg-Gly-Asp-Mamb). MS: 979.1 ($\mathrm{M}+\mathrm{H}^{+}$)

Example 7.
[Cyclo-(D-Lys-NMeArg-Gly-Asp-Mamb) $]_{2}$ - DTPA Conjugate

Component B from the synthesis described in Example 6 is [Cyclo-(D-Lys-NMeArg-Gly-Asp-Mamb)]2-DTPA. MS: 1565.4 (M $^{+}$)

Direct Labeling
Example 8.

Cyclo-((125I)D-Tyr-NMeArg-Gly-Asp-Mamb)

To a 5 mL vial was added $22 \mathrm{mCi}(45 \mu \mathrm{~L})$ aqueous $\mathrm{Na}{ }^{125} \mathrm{I}, 100 \mu \mathrm{~L} 0.5 \mathrm{M}$ phosphate buffer $\mathrm{pH} 7.5,4.5 \mu \mathrm{~L} 1 \mathrm{~N}$ $\mathrm{HCl}, 75 \mu \mathrm{~g}$ of the cyclic compound intermediate Cyclo-(D-

Tyr-NMeArg-Gly-Asp-Mamb) dissolved in $75 \mu \mathrm{~L} 0.1 \%$ aqueous TFA, and $50 \mu \mathrm{~g}$ Chloramine-T dissolved in $50 \mu \mathrm{I} \mathrm{H}_{2} \mathrm{O}$. The reaction was allowed to proceed for 1 minute then $50 \mu \mathrm{~g}$ of sodium metabisulfite dissolved in $\mathrm{H}_{2} \mathrm{O}$ was added. The product was purified by preparative HPLC. (Zorbax-Rx C18 column, flow $=1 \mathrm{~mL} / \mathrm{min}$, gradient from 100\% A to $100 \% \mathrm{~B}$ over 30 minutes; Solvent $A=0.1 \% \mathrm{TFA}$ in $\mathrm{H}_{2} \mathrm{O}$, Solvent B $=40 \%$ ethanol in A . The product had a retention time of 30 min .

Indirect Labeling
Example 10.

```
99mTcO(MAMA)-Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb (5-Aca))
```

Part A. Deprotection

```
    The trityl protecting groups on the reagent
    described in Example l are removed: To a separate, clean
    10 cc vial was added the reagent and 0.1 mL
    trifluoroacetic acid (TFA). The solid dissolved to give
```

``` a yellow solution.
Part B. Synthesis of 99 m Tc-glucoheptonate
A Glucoscan (8) vial was reconstituted with 1.0 mL Milli-Q \(\mathrm{H}_{2} \mathrm{O}\). 0.2 mL of the solution was removed and added to a clean 10 cc vial followed by \(\sim 200 \mathrm{mCi}\) \(99 \mathrm{mCO}_{4}{ }^{-}\). The reaction proceeded at room temperature for 20 minutes.
Part C. Synthesis of 99mTcO(MAMA)-Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb (5-Aca))
To the deprotected reagent solution from Part \(A\) was added 0.2 mL 5 N NaOH , and 0.4 mL 0.2 M phosphate buffer pH 6 . The pH was measured and adjusted as needed to 6. This solution was immediately added to the 99 mp glucoheptonate solution vial, crimped and heated at 100 \({ }^{\circ} \mathrm{C}\) for 15 minutes. After cooling \(\sim 2\) minutes, \(20 \mu \mathrm{~L}\) of the solution was analyzed by HPLC using Method 1.(See Table 1)
Example 11.
99mTCO (MAMA) -Cyclo-(D-Lys-NMeArg-Gly-Asp-Mamb)
Part A. Deprotection
The trityl protecting groups on the reagent
described in Example 2 are removed: To a separate, clean 10 cc vial was added the reagent and 0.1 mL trifluoroacetic acid (TFA). The solid dissolved to give a yellow solution.
```

 Part B. Synthesis of 99 m TcO(MAMA)-Cyclo-(D-Lys-NMeArg-
 Gly-Asp-Mamb)
 To the deprotected reagent solution from Part A was added 0.2 mL 5 N NaOH , and 0.4 mL 0.2 M phosphate buffer pH 6 . The pH was measured and adjusted as needed to 6. This solution was immediately added to the 99 mc (glucoheptonate solution vial, generated as described in Example 11, Part B, crimped and heated at \(100^{\circ} \mathrm{C}\) for 15 minutes. After cooling \(\sim 2\) minutes, \(20 \mu \mathrm{~L}\) of the solution was analyzed by HPLC using Method 1. (See Table 1)
 Example 12.
99mTc(tricine)2-Cyclo(D-Val-NMeArg-Gly-Asp-
Mamb(hydrazino-nicotinyl-5-Aca)) was added 0.05 mL 1.0 N NaOH to raise the pH to 7.0 .1 1.0 mL of $99 \mathrm{mTCO}_{4}^{-}$in saline ($10-100 \mathrm{mCi}$) was added followed by $10 \mu \mathrm{~g}$ of the reagent described in Example 3 dissolved in $100 \mu \mathrm{~L}$ of 0.1 N HCl and $100 \mu \mathrm{~g}$ of SnCl_{2}. $2 \mathrm{H}_{2} \mathrm{O}$ dissolved in 0.1 N HCl . The reaction proceeded at room temperature for 45 minutes. The product was analyzed by HPLC using the method 1 and by TLC using method 2.(see Table 1)

```
99mTc (EDDA) -Cyclo(D-Val-NMeArg-Gly-Asp-Mamb (hydrazino-
                                    nicotinyl-5-Aca))
99mTc (EDDA) -Cyclo (D-Val-NMeArg-Gly-Asp-Mamb (hydrazino-nicotinyl-5-Aca))
```

 To a solution of 10 mg ethylenediamine- \(\mathrm{N}^{\prime} \mathrm{N}^{\prime-}\)
 To a solution of 10 mg ethylenediamine- $\mathrm{N}^{\prime} \mathrm{N}^{\prime-}$ diacetic acid (EDDA) in 1.0 mL of water was added 0.05 mL 1.0 N NaOH to raise the pH to 7.0 .1 - 1.0 mL of $99 \mathrm{~m}_{\mathrm{TCO}_{4}-}$ in saline (10-100 mCi) was added followed by $50 \mu \mathrm{~g}$ of the reagent described in Example 3 dissolved in $100 \mu \mathrm{~L}$ of 0.1 N HCl and $100 \mu \mathrm{~g}$ of $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ dissolved in 0.1 N HCl . The reaction proceeded at room temperature for 45 minutes. The product was analyzed by HPLC using the method 1 and by TLC using method 2.(see Table 1)

Example 14

99mTc (tricine) 2-Cyclo(D-Abu-NMeArg-Gly-AspMamb (hydrazino-nicotinyl-5-Aca))

To a solution of 70 mg tricine in 1.0 mL of water was added 0.05 mL 1.0 N NaOH to raise the pH to 7.0 .1 1.0 mL of $99 \mathrm{mTCO}_{4}^{-}$in saline ($10-100 \mathrm{mCi}$) was added followed by $10 \mu \mathrm{~g}$ of the reagent described in Example 4 dissolved in $100 \mu \mathrm{~L}$ of 0.1 N HCl and $100 \mu \mathrm{~g}$ of SnCl_{2}. $2 \mathrm{H}_{2} \mathrm{O}$ dissolved in 0.1 N HCl . The reaction proceeded at room temperature for 45 minutes. The product was analyzed by HPLC using the method 1 and by TLC using method 2.(see Table 1)

Example 15.
99mpc(tricine) ${ }_{2}$-Cyclo(D-Lys-NMeArg-Gly-Asp-Mamb(hydrazino-nicotinyl-5-Aca))

To a solution of 70 mg tricine in 1.0 mL of water was added 0.05 mL 1.0 N NaOH to raise the pH to 7.0 .1 1.0 mL of $99 \mathrm{mTCO}_{4}{ }^{-}$in saline ($10-100 \mathrm{mCi}$) was added followed by $10 \mu \mathrm{~g}$ of the reagent described in Example 5 dissolved in $100 \mu \mathrm{~L}$ of 0.1 N HCl and $100 \mu \mathrm{~g}$ of SnCl_{2}. $2 \mathrm{H}_{2} \mathrm{O}$ dissolved in 0.1 N HCl . The reaction proceeded at room temperature for 45 minutes. The product was analyzed by HPLC using the method 1 and by TLC using method 2.(see Table 1)

Table 1. Analytical and Yield Data for 99mp Labeled Reagents

	HPLC Retention Time(min)	\% Yield
Example 10	20.4	66
Example 11	19.6	95
Example 12	13.4	95
Example 13	11.5	60
Example 14	11.5	97
Example 15	8.8	90

Example 16.
Cyclo-([111In-DTPA-D-Lys]-NMeArg-Gly-Asp-Mamb)
$50 \mu \mathrm{~L}$ of $\mathrm{lll}^{11 \mathrm{InCl}} 3$ ($\sim 100 \mathrm{mCi} / \mathrm{mL}$ in 0.05 M HCl$)$ obtained from DuPont-NEN Products, Billerica, MA, was combined with an equal volume of freshly prepared 1.0 M ammonium acetate. After about five minutes, 0.1 - 1 mg of the reagent described in Example 6 dissolved in 0.25 mL water was added. The reaction proceeded at room temperature for 30 minutes. The product was analyzed by HPLC using method 3.

Example 17.
111In-DTPA-[Cyclo-(D-Lys-NMeArg-Gly-Asp-Mamb)] 2

To 0.5 mL of a solution of the reagent described in Example 7 in water ($0.9 \mathrm{mg} / 1 \mathrm{~mL}$) was added ${ }^{111} \mathrm{InCl}_{3}(\sim 3$ mCi) in 0.5 mL of $1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OAc}$ solution. The mixture was allowed to stand at room temperature for 30 minutes then analyzed by HPLC using method 3. (See Table 2)

Table 2. Analytical and Yield Data for 111 In-labeked Reagents

	HPLC Retention Time(min)	\% Yield
Example 16	13.3	97
Example 17	14.5	98

Section C. ${ }^{99 m} \mathrm{mc}$ Labeled Reagents Via the Prechelate Approach.

The 99 m T-labeled reagents described in these examples were synthesized using the prechelate approach. The prechelate approach involves the steps: (1) chelation of 99 mpc by the chelator; (2) activation of a non-coordinated carboxylic group on the resulting complex by forming its tetrafluorophenyl (TFP) ester; and (3) conjugation of the TFP-ester complex by forming an amide bond with a cyclic compound intermediate or linker modified cyclic compound.

Example 18.

```
    Cyclo-([[99mTcO(mapt)]--D-Lys]-NMeArg-Gly-Asp-Mamb)
```

Part A. Chelation of 99 mTc
To a clean 10 cc vial was added 0.35 mL Bz -mapt ($3.0 \mathrm{mg} / \mathrm{mL}$ in 1 N NaOH$), 0.10 \mathrm{~mL} \mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg} / \mathrm{mL}$ in 1 $\mathrm{N} \mathrm{HCl})$, and $200 \mathrm{mCi} 99 \mathrm{~m}_{\mathrm{TCO}_{4}-}$ in saline. The vial was crimped and placed in a $100{ }^{\circ} \mathrm{C}$ water bath for 25 minutes. After cooling ~ 2 minutes, $10 \mu \mathrm{~L}$ of the solution was analyzed by HPLC using Method 1.

Part B. Activation
To the solution from Part A was added 0.3 mL 0.5 M sodium phosphate $\mathrm{pH} 6,0.3 \mathrm{~mL} 2,3,5,6$-tetrafluorophenol $(100 \mathrm{mg} / \mathrm{mL}$ in 90% acetonitrile), $0.3 \mathrm{~mL} 1-(3-$ dimethylamino-propyl)-3-ethylcarbodiimide ($100 \mathrm{mg} / \mathrm{mL}$ in 90% acetonitrile), and $\sim 0.1 \mathrm{~mL} 1 \mathrm{~N} \mathrm{HCl}$. The pH was adjusted as needed to pH 6 . The vial was crimped and heated at $40{ }^{\circ} \mathrm{C}$ for 25 minutes. After cooling ~ 2 minutes, $20 \mu \mathrm{~L}$ of the solution was analyzed by HPLC using Method 1.

Part C. Conjugation
1.0-2.5 mg of the cyclic compound intermediate Cyclo-(D-Lys-NMeArg-Gly-Asp-Mamb) was dissolved in 0.3 mL 0.5 M pH 9 phosphate buffer and added to the solution from Part B. Using 1 N NaOH , the pH was adjusted to 9. The reaction was heated at $40^{\circ} \mathrm{C}$ for 30 minutes. After cooling ~ 2 minutes, $25 \mu \mathrm{~L}$ of the solution was analyzed by HPLC using Method 1. (See Table 3)

Example 19.

Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb ([99mPO (mapt) $]^{--5-A c a)) ~}$
1.0-2.5 mg of the linker modified cyclic compound Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb(5-Aca)) was dissolved in 0.3 mL 0.5 M pH 9 phosphate buffer and added to the solution from Example 18, Part B. Using 1 heated at $40{ }^{\circ} \mathrm{C}$ for 30 minutes. After cooling ~2 minutes, $25 \mu \mathrm{~L}$ of the solution was analyzed by HPIC using Method 1. (See Table 3)

Example 20.

Cyclo-(D-Abu-NMeArg-Gly-Asp-Mamb ([99meo(mapt)]-5-Aca))
1.0-2.5 mg of the linker modified cyclic compound Cyclo-(D-Abu-NMeArg-Gly-Asp-Mamb(5-Aca)) was dissolved in 0.3 mL 0.5 M pH 9 phosphate buffer and added to the solution from Example 18, Part B. Using 1 . N NaOH , the pH was adjusted to 9. The reaction was heated at $40{ }^{\circ} \mathrm{C}$ for 30 minutes. After cooling ~2 minutes, $25 \mu \mathrm{~L}$ of the solution was analyzed by HPLC using Method 1. (See Table 3)

Example 21.
Cyclo-([([99mTcO(mapt)]--5-Aca)D-Lys]-NMeArg-Gly-Asp-

Mamb)
1.0-2.5 mg of the linker modified cyclic compound Cyclo-((5-Aca)D-Lys-NMeArg-Gly-Asp-Mamb) was dissolved in 0.3 mL 0.5 M pH 9 phosphate buffer and added to the solution from Example 18, Part B. Using 1 N NaOH , the pH was adjusted to 9. The reaction was heated at $40^{\circ} \mathrm{C}$ for 30 minutes. After cooling ~2
minutes, $25 \mu \mathrm{~L}$ of the solution was analyzed by HPLC using Method 1. (See Table 3)

Example 22.

Cyclo-([[99mTCO (MeMAG ${ }^{9}$ gaba) $]^{--D-L y s]-N M e A r g-G l y-A s p-M a m b) ~}$
Part A. Chelation
To a 10 mL vial was added $100-250 \mathrm{mCi} 99 \mathrm{mTCO}_{4}{ }^{-}$in
1.0 mL of saline, 1.0 mL of $\mathrm{Bz}-\mathrm{MeMAG}_{2}$ gaba solution (1
$\mathrm{mg} / 1 \mathrm{~mL}$ in 0.5 M pH 12 phosphate buffer), followed by of
$0.15-0.20 \mathrm{~mL}$ of $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ solution $(15 \mathrm{mg} / 3 \mathrm{~mL}$ in 1 N
HCl). The pH was adjusted to ~ 11 and the mixture was
heated for 30 min at $100^{\circ} \mathrm{C}$. The solution was analyzed by HPLC using Method 1.

Part B. Activation
To the solution from Part A was added 0.2 mL of $1 N$ $\mathrm{HCl}, 0.5 \mathrm{~mL}$ of tetrafluorophenol solution ($100 \mathrm{mg} / \mathrm{mL}$ in $90 \% \mathrm{CH}_{3} \mathrm{CN}$), and 0.5 mL of (1-[3-(dimehtylamino) propyl]3 -ethylcarbodiimide chloride) solution (100 mg/mL in $90 \frac{c}{c}$ $\mathrm{CH}_{3} \mathrm{CN}$). The pH was adjusted to 6.0 and the mixture was heated at $50{ }^{\circ} \mathrm{C}$ for 30 min .

Part C. Conjugation

$$
1.0-2.5 \mathrm{mg} \text { of the cyclic compound }
$$ intermediate Cyclo-(D-Lys-NMeArg-Gly-Asp-Mamb) dissolved in 0.3 mL 0.5 M pH 9 phosphate buffer and added to the solution from Part B. Using 1 N NaOH , the pH was adjusted to 9. The reaction was heated at $40^{\circ} \mathrm{C}$ for 30 minutes. After cooling ~ 2 minutes, $25 \mu \mathrm{~L}$ of the solution was analyzed by HPLC using Method 1. (See Table 3)

Example 23.

```
Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb ([99mTcO(MeMAG2gaba)]--5-
```

Aca))
1.0-2.5 mg of the linker modified cyclic compound Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb(5-Aca)) was dissolved in 0.3 mL 0.5 M pH 9 phosphate buffer and added to the solution from Example 22, Part B. Using 1 N NaOH , the pH was adjusted to 9. The reaction was heated at $40{ }^{\circ} \mathrm{C}$ for 30 minutes. After cooling ~2 minutes, $25 \mu \mathrm{~L}$ of the solution was analyzed by HPIC using Method 1. (See Table 3)

Example 24.

Cyclo-(D-Abu-NMeArg-Gly-Asp-Mamb ([99mTCO (MeMAG2gaba)]--5Aca))
$1.0-2.5 \mathrm{mg}$ of the linker modified cyclic compound Cyclo-(D-Abu-NMeArg-Gly-Asp-Mamb(5-Aca)) was dissolved in 0.3 mL 0.5 M pH 9 phosphate buffer and added to the solution from Example 22, Part B. Using 1 N NaOH , the pH was adjusted to 9 . The reaction was heated at $40{ }^{\circ} \mathrm{C}$ for 30 minutes. After cooling ~ 2 minutes, $25 \mu \mathrm{~L}$ of the solution was analyzed by HPLC using Method 1. (See Table 3)

Example 25.
Cyclo-([[99mTcO(MAG 3)]--D-Lys]-NMeArg-Gly-Asp-Mamb)

This example was synthesized following the procedure described in Example 22, substituting Bz-MAG3 as the chelator. (See Table 3)

This example was synthesized following the procedure described in Example 22, substituting Bz-Me$M A G 3$ as the chelator. (See Table 3)

Example 27.
Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb ([99mTCO (MeMAG $\left.\left.{ }_{2} A C A\right)\right]^{--5-}$
Aca))

The title compund was prepared according to the procedure procedure described in Example 22 , substituting $B z-M e-M_{2}-A C A$ as the chelator in Part A and using Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb (5-Aca)) as the linker modifed cyclic compound in Part C. (See Table 3)

Example 28. Cyclo-([[99mTcO (MABA) $]^{--D-L y s]-N M e A r g-G l y-A s p-M a m b) ~}$

Part A. Chelation
To a 10 mL vial was added $50-300 \mathrm{mCi} 99 \mathrm{mTCO}_{4}-$ in 0.5 mL of saline, followed by 0.5 mL of $\mathrm{Bz}-\mathrm{MABA}$ solution (1 $\mathrm{mg} / 1 \mathrm{~mL}$ in 0.5 M pH 12 phosphate buffer) and 0.15 mL of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ solution $(5 \mathrm{mg} / \mathrm{mL}$ in 0.5 M in pH 11.5 phosphate buffer) The pH was adjusted to $10-12$ using 1 N NaOH and the mixture was heated for 30 min . at $100^{\circ} \mathrm{C}$ then analyzed by HPLC using method 1 .

Part B. Activation
To the solution from Part A was added 0.2 mL of 1 N $\mathrm{HCl}, 0.5 \mathrm{~mL}$ of TFP solution ($50 \mathrm{mg} / 0.5 \mathrm{~mL}$ in $90 \% \mathrm{CH}_{3} \mathrm{CN}$),
and 0.5 mL of DCI solution (50 mg in 0.5 mL in $90 \% \mathrm{CH}_{3} \mathrm{CN}$). The pH was adjusted to 6 if necessary and the mixture was heated at $45-50{ }^{\circ} \mathrm{C}$ for 30 min then analyzed by HPLC using method 1.

Part C. Conjugation
To the solution from Part B was added $2-3 \mathrm{mg}$ of the cyclic compound intermediate Cyclo-(D-Lys-NMeArg-Gly-AspMamb) dissolved in 0.5 mL 0.5 M phosphate buffer pH 9 and pH was then adjusted to 9.5-10. The solution was heated at $50{ }^{\circ} \mathrm{C}$ for 30 min, then analyzed by HPLC using method 1. (See Table 3)

Example 29.
Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb ([99mTcO(MABA)]-5-Aca))

The title compound was synthesized following the procedure described in Example 28, substituting the linker modified cyclic compound Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb(5-Aca)) for the cyclic compound intermediate Cyclo-(D-Lys-NMeArg-Gly-Asp-Mamb) in Part C.

Example 30.
Cyclo-(D-Abu-NMeArg-Gly-Asp-Mamb ([99mpo (MABA) $]^{--5-A c a)) ~}$

The title compound was synthesized following the procedure described in Example 28, substituting the linker modified cyclic compound Cyclo-(D-Abu-NMeArg-Gly-Asp-Mamb(5-Aca)) for the cyclic compound intermediate Cyclo-(D-Lys-NMeArg-Gly-Asp-Mamb) in Part C.

Example 31.
Cyclo-([[99mTCO (MA-MAMA)]-D-Lys]-NMeArg-Gly-Asp-Mamb)

Part A. Deprotection.
The trityl groups on the chelator MA-MAMA were removed by dissolving 6 mg in 1 mL of anhydrous trifluoroacetic acid (TFA). The resulting yellow solution was allowed to

Part C. Chelation.
To a 10 mL vial was added $50-150 \mathrm{mCi} 99 \mathrm{mTCO}_{4}{ }^{-}$in 0.5 mL of saline, followed by 0.5 mL of ligand solution from Part B. The pH was adjusted to 10-12 using 1 N NaOH and the mixture was heated for 30 min at $25100{ }^{\circ} \mathrm{C}$ then analyzed by HPLC using method 1.

Part. D. Activation.
To the solution from Part C was added 0.2 mL of 1 $\mathrm{N} \mathrm{HCl}, 0.5 \mathrm{~mL}$ of TFP solution ($50 \mathrm{mg} / 0.5 \mathrm{~mL} 90 \% \mathrm{CH}_{3} \mathrm{CN}$),

30 stand at room temperature for 5 minutes. Triethylsilane $(0.5 \mathrm{~mL})$ was added to the yellow solution to give a clear two-layered mixture. Volatiles were removed under reduced pressure to give a white residue.

Part B. Hydrolysis of the Ethyl Ester.
To the white residue from Part A was added 0.5 mL of 5 N NaOH and 1 mL of THF . The mixture was heated in a water bath ($100{ }^{\circ} \mathrm{C}$) for 5 minutes, by which time most of THF was evaporated. To the reaction mixture was added 3 mL of 0.5 M phosphate buffer pH 11.5 . The pH was adjusted to $10-12$ and sodium dithionite ($15-30 \mathrm{mg}$) was added. The mixture was filtered and the total volume was adjusted to 6 mL using 0.5 M pH 11.5 phosphate buffer. and 0.5 mL of DCI solution (50 mg in $0.5 \mathrm{~mL} 90 \% \mathrm{CH}_{3} \mathrm{CN}$). The $p H$ was adjusted to 6 if necessary and the mixture was heated at $45-50{ }^{\circ} \mathrm{C}$ for 30 min .then analyzed by HPLC using method 1.

Part E. Conjugation.
To the solution from Part D was added 2.5 mg of the cyclic compound intermediate Cyclo-(D-Lys-NMeArg-Gly-AspMamb) dissolved in 0.5 mL 0.5 M phosphate buffer pH 9 and 5 the pH was then adjusted to 9.5-10. After heating at $50{ }^{\circ} \mathrm{C}$ for 30 min , the solution was analyzed by HPLC using method 1.

Example 32.
10 Cyclo-(D-Val-NMeArg-Gly-Asp-Mamb ([99mTcO (MA-MAMA)]-5-Aca))

The title compound was synthesized following the procedure described in Example 31, substituting the linker modified cyclic compound Cyclo-(D-Val-NMeArg-Gly-

Table 3. Analytical and Yield Data for 99 mpc -labeled Reagents
20

	HPLC Retention Time (min)	\% Yield
Example 18	15.0	60
Example 19	16.2	45
Example 20	15.3	35
Example 21	15.5	55
Example 22	14.3	44
Example 23	15.5	34
Example 24	14.5	70
Example 25	13.2	50
Example 26	13.0	55
Example 27	14.3	40
Example 28	18.2	10
Example 29	19.1	22

Example 30	19.3	22
Example 31	14.8	23
Example 32	16.2	34

Analytical Methods

5 HPLC Method 1
Column: Vydac $C_{18}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 300 \AA$ pore size
Solvent A: 10 mM sodium phosphate, pH 6.0
Solvent B: 100\% acetonitrile
Gradient:
$10 \quad 0 \% \mathrm{~B} \quad 75 \% \mathrm{~B}$
0^{\prime} 15 $^{\prime}$ 25'
Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$
Detection by NaI probe

15 TLC Method 2
ITLC-SG strip, $1 \mathrm{~cm} \times 7.5 \mathrm{~cm}$, developed in 1:1
acetone:water.

HPLC Method 3
20 Column: Vydac $C_{18}, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 300$ A pore size
Solvent A: 10 mM sodium phosphate, pH 6.0
Solvent B: 75\% acetonitrile in Solvent A
Gradient:
5% B $\quad 5 \%$ B $\quad 100 \%$ B
250
5^{\prime}
40^{\prime}
Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$
Detection by NaI probe

Utility

30. The radiolabeled compounds of the invention are useful as radiopharmaceuticals for imaging a thrombus

Abstract

such as may be present in a patient with unstable angina, myocardial infarction, transient ischemic attack, stroke, atherosclerosis, diabetes, thrombophlebitis, pulmonary emboli, or prosthetic

 cardiac devices such as heart valves, and thus may be used to diagnose such present or potential disorders. The patient may be any type of a mammal, but is preferably a human. The radiolabeled compounds may be used alone, or may be employed as a composition with a radiopharmaceutically acceptable carrier, and/or in combination with other diagnostic or therapeutic agents. Suitable radiopharmaceuticals carriers and suitable amounts thereof are well known in the art, and can be found in, for example, Remington's PharmaceuticalSciences, Gennaro, A.R., ed., Mack Publishing Company, Easton, PA (1985), and The United States Pharmacopia The National Formulary, 22nd Revision, Mack Printing Company, Easton, PA (1990), standard reference texts in the pharmaceutical field. Other materials may be added, as convenient, to stabilize the composition, as those skilled in the art will recognize, including antioxidizing agents such as sodium bisulfite, sodium sulfite, ascorbic acid, gentisic acid or citric acid (or their salts) or sodium ethylenediamine tetraacetic acid (sodium EDTA), as is well known in the art. Such other materials, as well as suitable amounts thereof, are also described in Remington's Pharmaceutical Sciences and The United States Pharmacopia - The National Formulary, cited above.

The present invention also includes radiopharmaceutical kits containing the labeled compounds of the invention. Such kits may contain the labeled compounds in sterile lyophilized form, and may include a sterile container of a radiopharma-ceutically
acceptable reconstitution liquid. Suitable reconstitution liquids are disclosed in Remington's Pharmaceutical Sciences and The United States Pharmacopia - The National Formulary, cited above. Such
kits may alternatively contain a sterile container of a composition of the radiolabeled compounds of the invention. Such kits may also include, if desired, other conventional kit components, such as, for example, one or more carriers, one or more additional vials for mixing. Instructions, either as inserts or labels, indicating quantities of the labeled compounds of the invention and carrier, guidelines for mixing these components, and protocols for administration may also be included in the kit. Sterilization of the containers and any materials included in the kit and lyophilization (also referred to as freeze-drying) of the labeled compounds of the invention may be carried out using conventional sterilization and lyophilization methodologies known to those skilled in the art.

To carry out the method of the invention, the radiolabeled compounds are generally administered intravenously, by bolus injection, although they may be administered by any means that produces contact of the compounds with platelets. Suitable amounts for administration will be readily ascertainable to those skilled in the art, once armed with the present disclosure. The dosage administered will, of course, vary depending up such known factors as the particular compound administered, the age, health and weight or the nature and extent of any symptoms experienced by the patient, the amount of radiolabeling, the particular radionuclide used as the label, the rate of clearance of the radiolabeled compounds from the blood.

Acceptable ranges for administration of radiolabeled materials are tabulated, for example, in the Physicians Desk Reference (PDR) for Nuclear Medicine, published by Medical Exonomics Company, a well-known reference text.

5 A discussion of some of the aforementioned considerations is provided in Eckelman et al., J. Nucl. Med., Vol. 209, pp. 350-357 (1979). By way of general guidance, a dosage range of the radiolabeled compounds of the invention may be between about 1 and about 40 mCi.

Once the radiolabeled compounds of the invention are administered, the presence of thrombi may be visualized using a standard radioscintographic imaging system, such as, for example, a gamma camera or a computed tomographic device, and thromboembolic disorders detected. Such imaging systems are well known in the art, and are discussed, for example, in Macovski, A., Medical Imaging Systems, Information and Systems Science Series, Kailath, T., ed., Prentice-Hall, Inc., Englewood Cliffs, NJ (1983). Particularly preferred are single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Specifically, imaging is carried out by scanning the entire patient, or a particular region of the patient suspected of having a thrombus formation, using the radioscintographic system, and detecting the radioisotope signal. The detected signal is then converted into an image of the thrombus by the system. The resultant images should be read by an experienced observer, such as, for example, a nuclear medicine physician. The foregoing process is referred to herein as "imaging" the patient. Generally, imaging is carried out about 1 minute to about 48 hours following
administration of the radiolabeled compound of the invention. The precise timing of the imaging will be dependant upon such factors as the half-life of the radioisotope employed, and the clearance rate of the compound administered, as will be readily apparent to those skilled in the art. Preferably, imaging is carried out between about 1 minute and about 4 hours following administration.

The advantage of employing the radiolabeled compounds of the invention, which have the ability to localize specifically and with high affinity in thrombi, to detect the presence of thrombi and/or to diagnose thromboembolic disorders in a patient, will be readily apparent to those skilled in the art, once armed with
pulsatile pressure signal. Heart rate was monitored using a cardiotachometer (Biotach, Grass Quincy, MA) triggered from a lead II electrocardiogram generated by limb leads. A jugular vein was cannulated (PE-240) for drug administration. The both femoral arteries and femoral veins were cannulated with silicon treated (Sigmacote, Sigma Chemical Co. St Louis, MO), saline filled polyethylene tubing ($\mathrm{PE}-200$) and connected with a 5 cm section of silicon treated tubing ($\mathrm{PE}-240$) to form
an extracorporeal arterio-venous shunts ($A-V$). Shunt patency was monitored using a doppler flow system (model VF-1, Crystal Biotech Inc, Hopkinton, MA) and flow probe (2-2.3 mm, Titronics Med. Inst., Iowa City, IA) placed proximal to the locus of the shunt. All parameters were monitored continuously on a polygraph recorder (model 7D Grass) at a paper speed of $10 \mathrm{~mm} / \mathrm{min}$ or $25 \mathrm{~mm} / \mathrm{sec}$.

On completion of a 15 min post surgical stabilization period, an occlusive thrombus was formed by the introduction of a thrombogenic surface (4-0 braided silk thread, 5 cm in length, Ethicon Inc., Somerville, NJ) into the shunt one shunt with the other serving as a control. Two consecutive lhr shunt periods were employed with the test agent administered as an infusion over 5 min beginning 5 min before insertion of the thrombogenic surface. At the end of each 1 hr shunt period the silk was carefully removed and weighed and the $\%$ incorporation determined via well counting. Thrombus weight was calculated by subtracting the weight of the silk prior to placement from the total weight of the silk on removal from the shunt. The results are shown in Table 4. Arterial blood was withdrawn prior to the first shunt and every 30 min thereafter for determination of blood clearance, whole blood collageninduced platelet aggregation, thrombin-induced platelet degranulation (platelet ATP release), prothrombin time and platelet count. Template bleeding time was also performed at. 30 min intervals.

Canine Deep Vein Thrombosis Model: This model incorporates the triad of events (hypercoagulatible state, period of stasis, low shear environment) essential for the formation of a venous fibrin-rich
actively growing thrombus. The procedure was as follows: Adult mongrel dogs of either sex (9-13 kg) were anesthetized with pentobarbital sodium (35 $\mathrm{mg} / \mathrm{kg}, \mathrm{i} . \mathrm{v}$.$) and ventilated with room air via an$ veins was isolated, freed from fascia and circumscribed with silk suture. A microthermister probe was placed on the vessel which serves as an indirect measure of venous flow. A balloon embolectomy catheter was utilized to induce the 15 min period of stasis during which time a hypercoagulatible state was then induced using 5 U thrombin (American Diagnosticia, Greenwich CT) administered into the occluded segment. Fifteen minutes later, flow was reestablished by deflating the balloon. The agent was infused during the first 5 min of reflow and the rate of incorporation monitored using gamma scintigraphy. The results for Examples 12 and 19 are shown in Figure 1.

Example 33
Table 4. Experimental Data from the Arteriovenous Shunt Model
(mean \pm SEM, $T / B=$ thrombus/background)

Ex. $\#$	Venous Conditions		Arterial Conditions	
	Uptake (\%id/g)	T/B ratio	Uptake (\%id/g)	T/B ratio
8	0.25 ± 0.15	19 ± 9	1.81 ± 0.18	173 ± 22
9	0.45 ± 0.11	8 ± 3	$2.60 \pm .005$	44 ± 4
10	0.16 ± 0.02	7 ± 0.6	5.00 ± 0.51	221 ± 16
12	0.46 ± 0.19	7.0 ± 2	6.15 ± 0.66	111 ± 6
13	1.64 ± 1.32	33 ± 27	8.50 ± 0.20	163 ± 14
16	0.08	14	0.95 ± 0.29	128 ± 24
18	$0.04 \pm .01$	13 ± 3	0.47 ± 0.12	147 ± 44
19	0.58 ± 0.22	13 ± 4	5.75 ± 1.28	142 ± 24
21	0.06 ± 0.03	4.0 ± 2	1.6 ± 0.12	113 ± 1
22	0.045 ± 0.02	7 ± 4	1.28 ± 0.44	158 ± 5
23	0.21 ± 0.05	7 ± 0.4	5.41 ± 0.70	195 ± 39
32	0	0	7.4	102

Abstract

Platelet Aggregation Assay: Canine blood was collected into 10 ml citrated Vacutainer tubes. The blood was centrifuged for 15 minutes at $150 \times \mathrm{g}$ at room temperature, and platelet-rich plasma (PRP) was removed. The remaining blood was centrifuged for 15 minutes at 1500 x g at room temperature, and platelet-poor plasma (PPP) was removed. Samples were assayed on a aggregometer (PAP-4 Platelet Aggregation Profiler), using PPP as the blank (100% transmittance). $200 \mu \mathrm{l}$ of PRP was added to each micro test tube, and transmittance was set to 0%. $20 \mu l$ of various agonists (ADP, collagen, arachidonate, epinephrine, thrombin) were added to each tube, and the aggregation profiles were plotted (\% transmittance versus time). The results were expressed as $\%$ inhibition of agonist-induced platelet aggregation. For the IC50 evaluation, the test

compounds were added at various concentrations prior to the activation of the platelets.

Platelet-Fibrinogen Binding Assay: Binding of 125I-fibrinogen to platelets was performed as described by Bennett et al. (1983) Proc. Natl. Acad. Sci. USA 80 : 2417-2422, with some modifications as described below. Human PRP (h-PRP) was applied to a Sepharose column for the purification of platelet fractions. Aliquots of platelets (5×10^{8} cells) along with 1 mM calcium chloride were added to removable 96 well plates prior to the activation of the human gel purified platelets (hGPP). Activation of the human gel purified platelets was achieved using ADP, collagen, arachidonate, epinephrine, and/or thrombin in the presence of the ligand, 125 I-fibrinogen. The 125 I-fibrinogen bound to the activated, platelets was separated from the free form by centrifugation and then counted on a gamma counter. For an IC50 evaluation, the test compounds were added at various concentrations prior to the activation of the platelets.

The novel cyclic glycoprotein IIb/IIIa compounds of the invention may also possess thrombolytic efficacy, that is, they are capable of lysing (breaking up) already formed platelet-rich fibrin blood clots, and thus may useful in treating a thrombus formation, as evidenced by their activity in the tests described below. Preferred cyclic compounds of the present invention for use in thrombolysis would include those compounds having an IC_{50} value (that is, the molar concentration of the cyclic compound capable of achieving 50% ciot lysis) of less than about 1 mM , more preferably an IC_{50} value of less than about 0.1 mM , even

```
more preferably an IC50 value of less than about 0.01
mM, still more preferably an IC50 value of less than about 0.001 mM , and most preferably an \(I_{50}\) value of about 0.0005 mM .
```

IC50 determinations may be made using a standard thrombolysis assay, as described below. Another class of preferred thrombolytic compounds of the invention would include those compounds which have a Kd of $<100 \mathrm{nM}$, preferably < 10 nM , most preferably 0.1 to 1.0 nM .

Thrombolytic Assay: Venous blood was obtained from the arm of a healthy human donor who was drug-free and aspirin free for at least two weeks prior to blood collection, and placed into 10 ml citrated Vacutainer tubes. The blood was centrifuged for 15 minutes at 1500 $x g$ at room temperature, and platelet rich plasma (PRP) was removed. To the PRP was then added $1 \times 10^{-3} \mathrm{M}$ of the agonist ADP, epinephrine, collagen, arachidonate, serotonin or thrombin, or a mixture thereof, and the PRP incubated for 30 minutes. The PRP was centrifuged for 12 minutes at $2500 \times \mathrm{g}$ at room temperature. The supernatant was then poured off, and the platelets remaining in the test tube were resuspended in platelet poor plasma (PPP), which served as a plasminogen source. The suspension was then assayed on a Coulter Counter (Coulter Electronics, Inc., Hialeah, FL), to determine the platelet count at the zero time point. After obtaining the zero time point, test compounds were added at various concentrations. Test samples were taken at various time points and the platelets were counted using the Coulter Counter. To determine the percent of lysis, the platelet count at a time point subsequent to the addition of the test compound was subtracted from the platelet count at the zero time point, and the resulting

```
    number divided by the platelet count at the zero time
    point. Multiplying this result by }100\mathrm{ yielded the
    percentage of clot lysis achieved by the test compound.
    For the IC50 evaluation, the test compounds were added
    to those shown and described herein will be readily
    apparent to those skilled in the art from the foregoing
    description. Such modifications are intended to be
    within the scope of the appended claims.
1 5
```

Various modifications in the invention, in addition to those shown and described herein will be readily apparent to those skilled in the art from the foregoing description. Such modifications are intended to be within the scope of the appended claims.

```
at various concentrations, and the percentage of lysis
caused by the test compounds was calculated.
    The disclosures of each patent and publication
cited in this document are hereby incorporated herein by
reference, in their entirety.
```


WHAT IS CLAIMED IS:

1. A reagent for preparing a radiopharmaceutical of formulae:
$\left(Q I_{n}\right) d C_{h} ;(Q) d \cdot I_{n}-C_{h}$,
wherein, d is $1-3, d^{\prime}$ is $2-20, L_{n}$ is a linking group, C_{h} is a metal chelator, and Q is a compound of formula (I):

(I)
or a pharmaceutically acceptable salt or prodrug form thereof, wherein:
R^{31} is a $C_{6}-C_{14}$ saturated, partially saturated, or aromatic carbocyclic ring system, substituted with 0-4 R^{10} or $R^{10 a}$, and optionally bearing a bond to $\mathrm{I}_{\mathrm{n}} ; ~ a$ heterocyclic ring system, optionally substituted with $0-4 \mathrm{R}^{10}$ or $\mathrm{R}^{10 a}$, and optionally bearing a bond to I_{n};
R^{32} is selected from:

- $C(=0)$-;
-348-

$$
\begin{aligned}
& -C(=S)- \\
& -S(=0) 2^{-} ; \\
& -S(=0)-; \\
& -P(=Z)\left(Z R^{13}\right)-;
\end{aligned}
$$

5
z is S or 0 ;
n' and n^{\prime} are independently 0-2;
R^{1} and R^{22} are independently selected from the following groups:
hydrogen, $C_{1}-C_{8}$ alkyl substituted with $0-2 R^{11}$; $\mathrm{C}_{2}-\mathrm{C} 8$ alkenyl substituted with $0-2 R^{11}$; $\mathrm{C}_{2}-\mathrm{C}_{8}$ alkynyl substituted with $0-2 \mathrm{R}^{11}$; $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl substituted with $0-2$ R^{11};
aryl substituted with $0-2 \mathrm{R}^{12}$;
a 5-10-membered heterocyclic ring system containing $1-4$ heteroatoms independently selected from N, S, and O, said heterocyclic ring being substituted with 0-2 $\mathrm{R}^{12 ;}$
$=0, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I},-\mathrm{CF}_{3},-\mathrm{CN},-\mathrm{CO}_{2} \mathrm{R}^{13}$, $-\mathrm{C}(=0) \mathrm{R}^{13},-\mathrm{C}(=0) \mathrm{N}\left(\mathrm{R}^{13}\right) 2,-\mathrm{CHO},-\mathrm{CH}_{2} \mathrm{OR}^{13}$, $-O C(=0) R^{13},-O C(=0) O R^{13},-O R^{13}$, $-O C(=0) N\left(R^{13}\right) 2,-N R^{13} C(=0) R^{13}$, $-N R^{14} C(=0) O R^{13 a},-N R^{13} C(=0) N\left(R^{13}\right)_{2}$,
$-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{3} \mathrm{H}$, $-\mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SR}^{13},-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)} 2$, $-\mathrm{N}^{\left(R^{13}\right)} 2_{2},-\mathrm{NHC}(=\mathrm{NH}) \mathrm{NHR}^{13},-\mathrm{C}(=\mathrm{NH}) \mathrm{NHR}^{13}$, $=\mathrm{NOR}^{13}, \mathrm{NO}_{2},-\mathrm{C}(=0) \mathrm{NHOR}^{13}$, $-\mathrm{C}(=0) \mathrm{NHNR}^{13} \mathrm{R}^{13 \mathrm{a}},-\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, 2-(1-morpholino) ethoxy;
R^{1} and R^{21} can alternatively join to form a 37 membered carbocyclic ring substituted with 0-2 R^{12};
when n^{\prime} is $2, R^{1}$ or R^{21} can alternatively be taken together with R^{1} or R^{21} on an adjacent carbon atom to form a direct bond, thereby to form a double or triple bond between said carbon atoms;
R^{21} and R^{23} are independently selected from: hydrogen; $C_{1}-C_{4}$ alkyl, optionally substituted with 1-6 halogen; benzyl;
R^{22} and R^{23} can alternatively join to form a 3-7 membered carbocyclic ring substituted with 0-2 R ${ }^{12}$;
when $n^{\prime \prime}$ is $2, R^{22}$ or R^{23} can alternatively be taken together with R^{22} or R^{23} on an adjacent carbon atom to form a direct bond, thereby to form a double or triple bond between the adjacent carbon atoms;
R^{1} and R^{2}, where R^{21} is H, can alternatively join to form a $5-8$ membered carbocyclic ring substituted with 0-2 R^{12};
R^{11} is selected from one or more of the following:

$$
=\mathrm{O}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I},-\mathrm{CF}_{3},-\mathrm{CN},-\mathrm{CO}_{2} \mathrm{R}^{13},
$$

$$
\left.-\mathrm{C}(=0) \mathrm{R}^{13},-\mathrm{C}(=0) \mathrm{N}^{\left(R^{13}\right.}\right)_{2},-\mathrm{CHO},-\mathrm{CH}_{2} \mathrm{OR}^{13},
$$

$$
-O C(=0) R^{13},-O C(=0) O R^{13 a},-O R^{13},
$$

$$
-O C(=0) N^{\left(R^{13}\right)} 2,-N R^{13} C(=0) R^{13},
$$

$$
-N^{14} C(=0) O R^{13} a,-N R^{13} C(=0) N^{\left(R^{13}\right)}{ }_{2}
$$

$$
-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)_{2},}-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{R}^{13} \mathrm{a},-\mathrm{SO}_{3} \mathrm{H},
$$

$$
-\mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SR}^{13},-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)_{2}},
$$

$$
-\mathrm{N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{NHC}(=\mathrm{NH}) \mathrm{NHR}^{13},-\mathrm{C}(=\mathrm{NH}) \mathrm{NHR}^{13},
$$

$$
=\mathrm{NOR}^{13}, \mathrm{NO}_{2},-\mathrm{C}(=0) \mathrm{NHOR}^{13},
$$

$$
-\mathrm{C}(=0) \mathrm{NHNR}^{13} \mathrm{R}^{13 \mathrm{a}}, \quad-\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H},
$$

2-(1-morpholino)ethoxy,
$\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{4}$ alkenyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkylmethyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkoxyalkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl (alkyl being substituted with i-5 groups selected independently from: $-\mathrm{NR}^{13 R^{14}},-\mathrm{CF}_{3}, \mathrm{NO}_{2},-\mathrm{SO}_{2} \mathrm{R}^{13 a}$, or $\left.-S(=0) R^{13 a}\right)$,
aryl substituted with $0-2 R^{12}$,
a 5-10-membered heterocyclic ring system containing $1-4$ heteroatoms independently selected from N, S, and O, said
heterocyclic ring being substituted with 0-2 $\mathrm{R}^{12 \text {; } ; ~}$

R12 is selected from one or more of the following:
phenyl, benzyl, phenethyl, phenoxy, benzyloxy, halogen, hydroxy, nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{3}-$ C_{6} cycloalkylmethyl, $C_{7}-C_{10}$ arylalkyl, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkoxy, $-\mathrm{CO}_{2} \mathrm{R}^{13},-\mathrm{C}(=0)$ NHOR ${ }^{13 a}$, $-\mathrm{C}(=0) \mathrm{NHN}\left(R^{13}\right)_{2},=\mathrm{NOR}^{13},-\mathrm{B}\left(\mathrm{R}^{34}\right)\left(\mathrm{R}^{35}\right), \mathrm{C}_{3}-$ C_{6} cycloalkoxy, $-O C(=0) R^{13},-C(=0) R^{13},-$ $O C(=0) O R^{13 a},-O R^{13},-\left(C_{1}-C_{4}\right.$ alkyl)-OR13, $-N\left(R^{13}\right)_{2},-O C(=0) N\left(R^{13}\right)_{2},-N R^{13} C(=0) R^{13}$, $-N R^{13} C(=0) O R^{13 a},-N R^{13} C(=0) N\left(R^{13}\right) 2$, $-\mathrm{NR}^{13} \mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)_{2},-\mathrm{NR}^{13} \mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{3} \mathrm{H}, ~}$ $-\mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a}},-\mathrm{SR}^{13},-\mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)_{2},}$ $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkoxyalkyl, methylenedioxy, ethylenedioxy, $C_{1}-C_{4}$ haloalkyl, $C_{1}-C_{4}$ haloalkoxy, $C_{1}-C_{4}$ alkylcarbonyloxy, $C_{1}-C_{4}$ alkylcarbonyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylcarbonylamino, $-\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}, 2-\left(1\right.$-morpholino) ethoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$
alkyl (alkyl being substituted with $-N\left(R^{13}\right) 2,-C F_{3}, \mathrm{NO}_{2}$, or $-S(=0) \mathrm{R}^{13 \mathrm{a}}$);
R^{13} is selected independently from: $H, C_{1}-C_{10}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl, $\mathrm{C}_{4}-\mathrm{C}_{12}$ alkylcycloalkyl, aryl, $-\left(C_{1}-C_{10}\right.$ alkyl)aryl, or $C_{3}-C_{10}$ alkoxyalkyl;
$R^{13 a}$ is $C_{1}-C_{10}$ alkyl, $C_{3}-C_{10}$ cycloalkyl, $C_{4}-C_{12}$ alkylcycloalkyl, aryl, $-\left(C_{1}-C_{10}\right.$ alkyl)aryl, or $C_{3}-C_{10}$ alkoxyalkyl;

	(alkyl being substituted with $-N\left(R^{13}\right)_{2}$, $-\mathrm{CF}_{3}, \mathrm{NO}_{2}$, or $-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a}}$);
5	$J \quad$ is β-Ala or an L -isomer or D -isomer amino acid of structure $-N\left(R^{3}\right) C\left(R^{4}\right)\left(R^{5}\right) C(=0)-$, wherein:
	R^{3} is H or $\mathrm{C}_{1}-\mathrm{C}_{8}$ alkyl;
10	R^{4} is H or $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
	R^{5} is selected from: hydrogen; $\mathrm{C}_{1}-\mathrm{C}_{8}$ alkyl substituted with $0-2 \mathrm{R}^{11}$;
15	$\mathrm{C}_{2}-\mathrm{C}_{8}$ alkenyl substituted with $0-2 \mathrm{R}^{11}$; $\mathrm{C}_{2}-\mathrm{C}_{8}$ alkynyl substituted with $0-2 \mathrm{R}^{11}$; $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl substituted with $0-2$ R^{11};
20	a bond to L_{n};
	aryl substituted with 0-2 R^{12};
25	a 5-10-membered heterocyclic ring system containing l-4 heteroatoms independently selected from N, S, or O, said heterocyclic ring being substituted with $0-2 \mathrm{R}^{12}$;
30	$\begin{aligned} & =C, F, C l, B r, I,-C F_{3},-C N,-C_{2} R^{13}, \\ & -C(=0) R^{13},-C(=0) N^{13}\left(R^{13}\right),-C H O,-\mathrm{CH}_{2} O R^{13}, \\ & -O C(=0) R^{13},-O C(=0) O R^{13 a},-O R^{13}, \\ & -O C(=0) N^{13}\left(R^{13}\right),-N R^{13} C(=0) R^{13}, \\ & -R^{14} C(=0) O R^{13 a},-N R^{13} C(=0) N\left(R^{13}\right) 2, \end{aligned}$

 \(-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{R}^{13}\right)_{2,}-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{3} \mathrm{H}\),
 $-\mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SR}^{13},-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{2} \mathrm{~N}^{\left(\mathrm{R}^{13}\right)} \mathrm{R}_{2}$,
$-\mathrm{N}\left(\mathrm{R}^{13}\right) 2,-\mathrm{NHC}(=\mathrm{NH}) \mathrm{NHR}^{13},-\mathrm{C}(=\mathrm{NH}) \mathrm{NHR}^{13}$,
$=\mathrm{NOR}^{13}, \mathrm{NO}_{2},-\mathrm{C}(=0) \mathrm{NHOR}^{13}$,
$-C(=0)$ NHNR ${ }^{13} R^{13 a},=N O R^{13},-B\left(R^{34}\right)\left(R^{35}\right)$,
$-\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}, 2$-(1-morpholino)ethoxy,
$-\mathrm{SC}(=\mathrm{NH}) \mathrm{NHR}^{13}, \mathrm{~N}_{3},-\mathrm{Si}\left(\mathrm{CH}_{3}\right) 3_{3}, \quad\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right.$
alkyl) NHR ${ }^{16}$;
$-\left(C_{0}-C_{6}\right.$ alkyl)X;

, where q is
independently 0,1;
15

$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}} \mathrm{S}(\mathrm{O})_{\mathrm{p}}\left(\mathrm{CH}_{2}\right) 2 \mathrm{X}$, where $\mathrm{m}=1,2$ and
$p^{\prime}=0-2 ;$
wherein X is defined below; and
R^{3} and R^{4} may also be taken together to form

25
$\mathrm{n}=0,1$ and X is

5
R^{3} and R^{5} can alternatively be taken together
to form $-\left(\mathrm{CH}_{2}\right)_{t}$ or $-\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})_{p} \cdot \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2-}$,
where $t=2-4$ and $p^{\prime}=0-2$; or
R^{4} and R^{5} can alternatively be taken together
to form $-\left(\mathrm{CH}_{2}\right) u-$, where $u=2-5$;
R^{16} is selected from:
an amine protecting group;
1-2 amino acids;
1-2 amino acids substituted with an amine
protecting group;
5 is a D-isomer or l-isomer amino acid of
structure
$-N\left(R^{6}\right) C H\left(R^{7}\right) C(=0)-$, wherein:
R^{6} is H or $\mathrm{C}_{1}-\mathrm{C}_{8}$ alkyl;
R^{7} is selected from:
- ($\mathrm{C}_{1}-\mathrm{C}_{7}$ alkyl)X;
$-\left(\mathrm{CH}_{2}\right)$ (
each q is independently $0-2$ and
substitution on the phenyl is at the 3 or
4 position;

$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}} \mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-X, where $\mathrm{m}=1$ or
2;
$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}} \mathrm{S}(\mathrm{O})_{\mathrm{F}^{\prime}}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-X, where $\mathrm{m}=$
1 or 2 and $p^{\prime}=0-2$; and

X is selected from:

$-\mathrm{C}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right) ;-\mathrm{SC}(=\mathrm{NH})-\mathrm{NH}_{2}$; $-\mathrm{NH}-$
$\mathrm{C}(=\mathrm{NH})(\mathrm{NHCN}) ;-\mathrm{NH}-\mathrm{C}(=\mathrm{NCN})\left(\mathrm{NH}_{2}\right)$;
$-\mathrm{NH}-\mathrm{C}\left(=\mathrm{N}-\mathrm{OR}^{13}\right)\left(\mathrm{NH}_{2}\right)$;

20

25
R^{6} and R^{7} can alternatively be taken
together to form
$-\left(\mathrm{CH}_{2}\right)_{q^{(C H}}^{\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}}\left(\mathrm{CH}_{2}\right)_{q^{-}}^{-}$, wherein each q is independently 1 or 2 and wherein $\mathrm{n}=0$ or 1 and X is $-\mathrm{NH}_{2}$ or
-357-

I is $-Y\left(\mathrm{CH}_{2}\right) \vee \mathrm{C}(=\mathrm{O})$-, wherein:
Y is $N H, N\left(C_{1}-C_{3}\right.$ alkyl), O, or S; and $v=1$ or 2;

M is a D-isomer or L-isomer amino acid of structure

wherein:
q^{\prime} is $0-2$;
R^{17} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
R^{8} is selected from:
$-\mathrm{CO}_{2} R^{13},-\mathrm{SO}_{3} R^{13},-\mathrm{SO}_{2} \mathrm{NHR}^{14},-\mathrm{B}\left(\mathrm{R}^{34}\right)\left(R^{35}\right)$,
$-\mathrm{NHSO}_{2} \mathrm{CF}_{3},-\mathrm{CONHNHSO} \mathrm{CF}_{3},-\mathrm{PO}\left(\mathrm{OR}^{13}\right)_{2}$,
-PO (OR ${ }^{13}$) $\mathrm{R}^{13},-\mathrm{SO}_{2} \mathrm{NH}$-heteroaryl (said
heteroaryl being 5-10-membered and having 1-4 heteroatoms selected independently from N, S, or O) , $-\mathrm{SO}_{2} \mathrm{NH}$-heteroaryl (said heteroaryl being 5-10-membered and

```
    having 1-4 heteroatoms selected
    independently from N, S, or O),
        -SO2NHCOR 13, -CONHSO2R213a,
        - -H2CONHSO
```



```
    R34 and R35 are independently selected from:
        -OH,
        -F,
        -N(R13)}2,\mathrm{ or
        C
    R34 and R35 can alternatively be taken
        together form:
    15 a cyclic boron ester where said chain or
        ring contains from 2 to 20 carbon atoms
        and, optionally, 1-4 heteroatoms
        independently selected from N, S, or O;
        a divalent cyclic boron amide where said
        chain or ring contains from 2 to 20
        carbon atoms and, optionally, 1-4
        heteroatoms independently selected from
        N, S, or O;
        a cyclic boron amide-ester where said chain or
        ring contains from 2 to 20 carbon atoms
        and, optionally, 1-4 heteroatoms
        independently selected from N, S, or O.
            2. A reagent of Claim 1, wherein:
        R31 is bonded to (C(R23) R
        (C(R2l)R}\mp@subsup{R}{}{l}\mp@subsup{)}{n}{\prime}\mathrm{ , at 2 different atoms on said
        carbocyclic ring.
```

3. A reagent of Claim 1 , wherein:

5
10.
5. A reagent of Claim 1 wherein:
R^{32} is selected from:

- $C(=0)$-;
-C (=S) -$-S(=0) 2^{-}$;

```
4. A reagent of Claim 1 wherein \(R^{6}\) is methyl,
n' is 0 and n' is 0;
n'\prime}\mathrm{ is 0 and n' is 1;
n' is 0 and n' is 2;
n' is 1 and n' is 0;
n" is 1 and n' is 1;
n' is 1 and n' is 2;
n' is 2 and n' is 0;
n" is 2 and n' is 1; or
n' is 2 and n' is 2. ethyl, or propyl.
```

-

R^{1} and R^{22} are independently selected from the following groups:
hydrogen, $C_{1}-C_{8}$ alkyl substituted with 0-2 R^{11}, $\mathrm{C}_{2}-\mathrm{C}_{8}$ alkenyl substituted with $0-2 \mathrm{R}^{11}$, $\mathrm{C}_{2}-\mathrm{C}_{8}$ alkynyl substituted with $0-2 \mathrm{R}^{11}$, $\mathrm{C}_{3}-\mathrm{C}_{8}$ cycloalkyl substituted with $0-2$ R^{11},
$C_{6}-C_{10}$ bicycloalkyl substituted with $0-2$ R^{11};
a bond to L_{n};
5
aryl substituted with $0-2 \mathrm{R}^{12}$;
a 5-10-membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, or 0 , said heterocyclic ring being substituted with 0-2 R ${ }^{12}$;
$=0, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I},-\mathrm{CF}_{3},-\mathrm{CN},-\mathrm{CO}_{2} \mathrm{R}^{13}$, $-\mathrm{C}(=0) \mathrm{R}^{13},-\mathrm{C}(=0) \mathrm{N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{CHO},-\mathrm{CH}_{2} \mathrm{OR}^{13}$, $-O C(=0) R^{13},-O C(=0) O R^{13 a},-O R^{13}$, $-O C(=0) N\left(R^{13}\right) 2,-N R^{13} C(=0) R^{13}$, $-N R^{14} C(=0) O R^{13 a},-N R^{13} C(=0) N\left(R^{13}\right) 2$, $-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)_{2},}-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{3} \mathrm{H}$, $-\mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SR}^{13},-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a},}-\mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)} 2$, $-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{NHC}(=\mathrm{NH}) \mathrm{NHR}^{13}$, $-\mathrm{C}(=\mathrm{NH}) \mathrm{NHR}^{13}, \mathrm{NO}_{2}$;
R^{1} and R^{21} can alternatively join to form a 5-7 membered carbocyclic ring substituted with $0-2 R^{12}$;
when n^{\prime} is $2, R^{1}$ or R^{21} can alternatively be taken together with R^{1} or R^{21} on an adjacent carbon atom to form a direct bond, thereby to form a double or triple bond between said carbon atoms;
R^{22} and R^{23} can alternatively join to form a
$3-7$ membered carbocyclic ring substituted
with $0-2 R^{12}$;
when $n "$ is $2, R^{22}$ or R^{23} can
alternatively be taken together with R^{22}
or R^{23} on an adjacent carbon atom to form
a direct bond, thereby to form a double
or triple bond between said carbon atoms;
R^{1} and R^{2}, where R^{21} is H, can alternatively join to form a 5-8 membered carbocyclic ring substituted with $0-2 R^{12}$;

R11 is selected from one or more of the following:
$=\mathrm{O}, \mathrm{E}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I},-\mathrm{CF}_{3},-\mathrm{CN},-\mathrm{CO}_{2} \mathrm{R}^{13}$, $-\mathrm{C}(=0) \mathrm{R}^{13},-\mathrm{C}(=0) \mathrm{N}\left(\mathrm{R}^{13}\right) 2,-\mathrm{CHO},-\mathrm{CH}_{2} \mathrm{OR}^{13}$, -OC(=O) R13, -OC(=O)OR13a, -OR13, $-O C(=0) N\left(R^{13}\right) 2,-N R^{13} C(=0) R^{13}$, $-N R^{14} C(=0) O R^{13 a},-N R^{13} C(=0) N\left(R^{13}\right) 2$, $-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{3} \mathrm{H}$, $-\mathrm{SO}_{2} \mathrm{R}^{13 a},-\mathrm{SR}^{13},-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{R}^{13}\right)_{2}$, $-\mathrm{CH}_{2} \mathrm{~N}^{\left(\mathrm{R}^{13}\right)_{2},-\mathrm{N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{NHC}(=\mathrm{NH}) \mathrm{NHR}^{13} \text {, }, ~, ~}$ $-\mathrm{C}(=\mathrm{NH}) \mathrm{NHR}^{13},=\mathrm{NOR}^{13}, \mathrm{NO}_{2}$;
$\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{4}$ alkenyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkylmethyl, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkoxyalkyl, $C_{1}-C_{4}$ alkyl (substituted with $-\mathrm{NR}^{13} \mathrm{R}^{14},-\mathrm{CF}_{3}, \mathrm{NO}_{2},-\mathrm{SO}_{2} \mathrm{R}^{13}$, or $\left.-S(=0) R^{13 a}\right)$
aryl substituted with $0-2 R^{12}$,
a 5-10-membered heterocyclic ring system containing $1-4$ heteroatoms independently selected from N, S, or 0 , said

5 heterocyclic ring being substituted with 0-2 R12;
R^{3} is H or CH_{3};
R^{5} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{8}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{3}-$ C_{6} cycloalkylmethyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ cycloalkylethyl, phenyl, phenylmethyl, $\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{SH}, \mathrm{CH}_{2} \mathrm{OCH}_{3}, \mathrm{CH}_{2} \mathrm{SCH}_{3}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3},\left(\mathrm{CH}_{2}\right) \mathrm{SNH}_{2}$, $\left(\mathrm{CH}_{2}\right)_{\mathrm{s}} \mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right),\left(\mathrm{CH}_{2}\right)_{\mathrm{s}} \mathrm{NHR}^{16}$, where s $=3-5$; a bond to I_{n};
R^{3} and R^{5} can alternatively be taken together to form - ($\left.\mathrm{CH}_{2}\right)_{t}{ }^{-}(\mathrm{t}=2-4$) or $-\mathrm{CH}_{2} \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}-$; or
R^{7} is selected from:

$$
-\left(\mathrm{C}_{1}-\mathrm{C}_{7} \text { alkyl) } \mathrm{X} ;\right.
$$

each q is
independently 0-2 and substitution on the phenyl is at the 3 or 4 position;

is
independently $0-2$ and substitution on the cyclohexyl is at the 3 or 4 position;

$-\left(\mathrm{CH}_{2}\right) \mathrm{mO}^{-}\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-X, where $\mathrm{m}=1$ or 2;
$-\left(\mathrm{CH}_{2}\right) \mathrm{mS}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-X, where $\mathrm{m}=1$ or
2; and

X is selected from:
$-\mathrm{NH}-\mathrm{C}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right),-\mathrm{NHR}^{13},-\mathrm{C}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right)$, $-\mathrm{SC}(\mathrm{NH})-\mathrm{NH}_{2}$;
R^{6} and R^{7} can alternatively be taken together to form

$$
\begin{aligned}
& \left(\mathrm{CH}_{2}\right)_{n} \mathrm{X} \\
& -\mathrm{CH}_{2} \mathrm{CHCH}_{2}-\text {, where } \\
& \mathrm{n}=0 \text { or } 1 \text { and } \mathrm{X} \text { is }-\mathrm{NH}_{2} \text { or }-\mathrm{NH}- \\
& \mathrm{C}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right) \text {; }
\end{aligned}
$$

I is $-\mathrm{Y}\left(\mathrm{CH}_{2}\right) \mathrm{vC}(=0)-$, wherein:
Y is $N H, N\left(C_{1}-C_{3}\right.$ alkyl), O, or S; and $v=1$ or 2;

5

10
R^{17} is $H, C_{1}-C_{3}$ alkyl;
R^{8} is selected from:

```
C1-C
R34 and R}35\mathrm{ can alternatively be taken
together form:
a cyclic boron ester where said chain or
ring contains from 2 to 20 carbon atoms
and, optionally, 1-4 heteroatoms
independently selected from N, S, or O;
a divalent cyclic boron amide where said
chain or ring contains from 2 to 20
carbon atoms and, optionally, 1-4
heteroatoms independently selected from
N, S, or O;
a cyclic boron amide-ester where said
chain or ring contains from 2 to 20
carbon atoms and, optionally, l-4
heteroatoms independently selected from
N, S, or O.
```

6. A reagent of Claim 1, wherein:
R^{31} is selected from the group consisting of:
(a) a 6 membered saturated, partially saturated or aromatic carbocyclic ring substituted with $0-3 \mathrm{R}^{10}$ or $\mathrm{R}^{10 a}$, and optionally bearing a bond to Ln;
(b) a 8-11 membered saturated, partially saturated, or aromatic fused bicyclic carbocyclic ring substituted with $0-3 \mathrm{R}^{10}$ or $R^{10 a}$, and optionally bearing a bond to In; or
```
(c) a }14\mathrm{ membered saturated, partially
saturated, or aromatic fused tricyclic
carbocyclic ring substituted with 0-3 R10
```

7. A reagent of Claim 1, wherein:
R31 is selected from the group consisting of:
(a) a 6 membered saturated, partially saturated, or aromatic carbocyclic ring of formulae:

wherein any of the bonds forming the carbocyclic ring may be a single or ring is substituted with $0-3 R^{10}$, and optionally bears a bond to Ln;
(b) a 10 membered saturated, partially saturated, or aromatic bicyclic double bond, and wherein said carbocyclic carbocyclic ring of formula:

```
wherein any of the bonds forming the
carbocyclic ring may be a single or
double bond, wherein said carbocyclic
ring is substituted independently with 0-
```

10
8. A reagent of Claim 1, wherein:

25

```
R}31\mathrm{ is selected from (the dashed bond may be a
    single or double bond):
```


; or

> wherein R^{31} may be independently substituted with $0-3 R^{10}$ or $R^{10 a}$, and
$n^{\prime \prime}$ is 0 or 1; and

$$
n^{\prime} \text { is } 0-2 \text {. }
$$

9. A reagent of Claim 1, wherein:
R^{1} and R^{22} are independently selected from: phenyl, benzyl, phenethyl, phenoxy, benzyloxy, halogen, hydroxy, nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{3}{ }^{-}$ C6 cycloalkylmethyl, C7-C10 arylalkyl, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkoxy, $-\mathrm{CO}_{2} \mathrm{R}^{13},-\mathrm{C}(=0)$ NHOR ${ }^{13 \mathrm{a}}$, $-C(=0) N H N\left(R^{13}\right) 2,=N O R^{13},-B\left(R^{34}\right)\left(R^{35}\right), C_{3}-$ C_{6} cycloalkoxy, $-O C(=0) R^{13},-C(=0) R^{13},-$ $O C(=0) O R^{13 a},-O R^{13},-\left(C_{1}-C_{4}\right.$ alkyl)-OR13, $-N\left(R^{13}\right)_{2},-O C(=0) N\left(R^{13}\right)_{2},-N R^{13} C(=0) R^{13}$, $-N R^{13} C(=0) O R^{13 a},-N R^{13} C(=0) N\left(R^{13}\right) 2$, $-\mathrm{NR}^{13} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{NR}^{13} \mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{3} \mathrm{H}$, $-\mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a}},-\mathrm{SR}^{13},-\mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)} 2$, $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkoxyalkyl, methylenedioxy, ethylenedioxy, $C_{1}-C_{4}$ haloalkyl, $C_{1}-C_{4}$ haloalkoxy, $C_{1}-C_{4}$ alkylcarbonyloxy, $C_{1}-C_{4}$ alkylcarbonyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylcarbonylamino,

$$
\begin{aligned}
& -\mathrm{oCH}_{2} \mathrm{CO}_{2} \mathrm{H}, 2-\left(1 \text {-morpholino) ethoxy, } \mathrm{C}_{1}-\mathrm{C}_{4}\right. \\
& \text { alkyl (alkyl being substituted with } \\
& \left.-\mathrm{N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{CF}_{3}, \mathrm{NO}_{2}, \text { or }-\mathrm{S}(=0) \mathrm{R}^{13} \text { a }\right) .
\end{aligned}
$$

5
10. A reagent of Claim 1, wherein:

R^{31} is selected from:

;

;

> wherein R^{31} may be independently substituted with $0-3 R^{10}$ or $R^{10 a}$, and may optionally bear a bond to L_{n};

15

$$
\begin{aligned}
& \mathrm{R}^{32} \text { is }-\mathrm{C}(=0)-; \\
& \mathrm{n}^{\prime \prime} \text { is } 0 \text { or } 1 ; \\
& \mathrm{n}^{\prime} \text { is } 0-2 ;
\end{aligned}
$$

20

R^{4} is H or $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
R^{5} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C} 8$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{3}-$
C6 cycloalkylmethyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$
cycloalkylethyl, phenyl, phenylmethyl,
$\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{SH}, \mathrm{CH}_{2} \mathrm{OCH}_{3}, \mathrm{CH}_{2} \mathrm{SCH}_{3}$,
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{2}$,
$-\left(\mathrm{CH}_{2}\right)_{s} \mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right),-\left(\mathrm{CH}_{2}\right)_{s} \mathrm{NHR}^{16}$, where
$s=3-5$; and a bond to L_{n}; or
R^{3} and R^{5} can alternatively be taken together
to form $-\left(\mathrm{CH}_{2}\right)_{t^{-}}(t=2-4)$ or
$-\mathrm{CH}_{2} \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}{ }^{-}$; or
R^{4} and R^{5} can alternatively be taken together
to form $-\left(\mathrm{CH}_{2}\right) u^{-}$, where $u=2-5$;
R^{16} is selected from:
an amine protecting group;
1-2 amino acids; or
1-2 amino acids substituted with an amine
protecting group;
$\mathbf{K} \quad$ is an L -isomer amino acid of structure
$-N\left(R^{6}\right) C H\left(R^{7}\right) C(=0)-$, wherein:
R^{6} is H or $C_{1}-C_{8}$ alkyl;
R^{7} is

O or 1;
$-\left(\mathrm{CH}_{2}\right)_{r} \mathrm{X}$, where $\mathrm{r}=3-6$;

$$
-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}} \mathrm{~S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{X}, \text { where } \mathrm{m}=1 \text { or } 2 \text {; }
$$

$$
-\left(\mathrm{C}_{3}-\mathrm{C}_{7} \text { alkyl)-NH-(C} 1-\mathrm{C}_{6}\right. \text { alkyl); }
$$

10

-($\left.\mathrm{CH}_{2}\right)_{\mathrm{m}}-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-NH-($\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl), where $m=1$ or 2 ;
15

$$
\mathrm{X} \text { is }-\mathrm{NH}_{2} \text { or }-\mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right) \text {; or }
$$

20

$$
\begin{aligned}
& R^{6} \text { and } R^{7} \text { can alternatively be taken together } \\
& \text { to form } \\
& \qquad\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X} \\
& \text { and } \mathrm{X} \text { is }-\mathrm{CH}_{2} \mathrm{CHCH}_{2} \text { or where } \mathrm{n}=0 \text { or } 1
\end{aligned}
$$

25
I is $-Y\left(\mathrm{CH}_{2}\right) \mathrm{vC}(=0)-$, wherein:

```
    Y is \(\mathrm{NH}, \mathrm{O}\), or S ; and \(\mathrm{v}=1\) or 2;
    \(M\) is a D-isomer or \(L\)-isomer amino acid of
        structure
        \(-\mathrm{NR}^{17}-\mathrm{CH}-\mathrm{C}(=\mathrm{O})-\)
\(\left(\mathrm{CH}\left(\mathrm{R}^{4}\right)\right)_{\mathrm{q}^{\prime}}\)
\(\mathrm{R}^{8}\),
        wherein:
        \(q^{\prime}\) is \(0-2\);
    \(\mathrm{R}^{17}\) is \(\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{3}\) alkyl;
    \(\mathrm{R}^{8}\) is selected from:
        \(-\mathrm{CO}_{2} \mathrm{R}^{13},-\mathrm{SO}_{3} \mathrm{R}^{13},-\mathrm{SO}_{2} \mathrm{NHR}^{14},-\mathrm{B}\left(\mathrm{R}^{34}\right)\left(\mathrm{R}^{35}\right)\),
        \(-\mathrm{NHSO}_{2} \mathrm{CF}_{3},-\mathrm{CONHNHSO} \mathrm{CF}_{3},-\mathrm{PO}\left(\mathrm{OR}^{13}\right)_{2}\),
        -PO (OR \({ }^{13}\) ) \(\mathrm{R}^{13},-\mathrm{SO}_{2} \mathrm{NH}\)-heteroaryl (said
        heteroaryl being 5-10-membered and having
        1-4 heteroatoms selected independently
        from \(\mathrm{N}, \mathrm{S}\), or O ) , \(-\mathrm{SO}_{2} \mathrm{NH}\)-heteroaryl
        (said heteroaryl being 5-10-membered and
        having 1-4 heteroatoms selected
        independently from \(N\), \(S\), or 0 ),
        \(-\mathrm{SO}_{2} \mathrm{NHCOR}^{13}\), \(-\mathrm{CONHSO} \mathrm{R}_{2} \mathrm{R}^{13 \mathrm{a}}\),
        \(-\mathrm{CH}_{2} \mathrm{CONHSO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{NHSO}_{2} \mathrm{NHCOR}^{13 \mathrm{a}}\),
        \(-\mathrm{NHCONHSO} \mathrm{O}^{13 a},-\mathrm{SO}_{2} \mathrm{NHCONHR}^{13}\).
```

 11. The reagent of Claim 1 that is a 1,3-
 disubstituted phenyl compound of the formula
 (II):
 -374-

(II)

5

25
the shown phenyl ring in formula (II) may be substituted with $0-3 R^{10}$, and may optionally bear a bond to L_{n};
R^{10} is selected independently from: $H, C_{1}-C_{8}$ alkyl, phenyl, halogen, or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy;
R^{1} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, phenyl, benzyl, phenyl- $\left(C_{1}-C_{4}\right)$ alkyl, or a bond to I_{n};
R^{2} is H or methyl;

R13 13 is selected independently from: $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl, $\mathrm{C}_{4}-\mathrm{C}_{12}$ alkylcycloalkyl, aryl, $-\left(C_{1}-C_{10}\right.$ alkyl)aryl, or $\mathrm{C}_{3}-\mathrm{C}_{10}$ alkoxyalkyl;
$R^{13 a}$ is $C_{1}-C_{10}$ alkyl, $C_{3}-C_{10}$ cycloalkyl, $C_{4}-C_{12}$ alkylcycloalkyl, aryl, -(C1-C10 alkyl)aryl, or $C_{3}-C_{10}$ alkoxyalkyl;
when two R^{13} groups are bonded to a single N, said R^{13} groups may
-375-
5

```
```

 alternatively be taken together to form
    ```
```

 alternatively be taken together to form
 -(CH2) 2-5- or - (CH2)O(CH2)-;
 -(CH2) 2-5- or - (CH2)O(CH2)-;
 R14 is OH, H, C1-C4 alkyl, or benzyl;
 R14 is OH, H, C1-C4 alkyl, or benzyl;
    ```
    is \beta-Ala or an L-isomer or D-isomer amino
```

 is \beta-Ala or an L-isomer or D-isomer amino
 acid of structure -N (R}\mp@subsup{|}{}{3})C(\mp@subsup{R}{}{4})(\mp@subsup{R}{}{5})C(=0)-
 acid of structure -N (R}\mp@subsup{|}{}{3})C(\mp@subsup{R}{}{4})(\mp@subsup{R}{}{5})C(=0)-
 wherein:
 wherein:
 R3}\mathrm{ is H or CH3;
 R3}\mathrm{ is H or CH3;
 R4 is H or Cl-C3 alkyl;
 R4 is H or Cl-C3 alkyl;
 R5 is H, C1-C8 alkyl, C3-C6 cycloalkyl, C3-
 R5 is H, C1-C8 alkyl, C3-C6 cycloalkyl, C3-
 C6 cycloalkylmethyl, C1-C6
 C6 cycloalkylmethyl, C1-C6
 cycloalkylethyl, phenyl, phenylmethyl,
 cycloalkylethyl, phenyl, phenylmethyl,
 CH2OH, CH2SH, CH2OCH3, CH2SCH3,
 CH2OH, CH2SH, CH2OCH3, CH2SCH3,
 CH2CH2SCH3, (CH2) SNH2,
 CH2CH2SCH3, (CH2) SNH2,
 -(CH2) sNHC (=NH) (NH2), -(CH2) (
 -(CH2) sNHC (=NH) (NH2), -(CH2) (
 s = 3-5, or a bond to Ln;
 s = 3-5, or a bond to Ln;
 R}3\mathrm{ and R }\mp@subsup{R}{}{5}\mathrm{ can alternatively be taken together
 R}3\mathrm{ and R }\mp@subsup{R}{}{5}\mathrm{ can alternatively be taken together
 to form - CH2CH2CH2-; or
 to form - CH2CH2CH2-; or
 R4}\mathrm{ and }\mp@subsup{R}{}{5}\mathrm{ can alternatively be taken
 R4}\mathrm{ and }\mp@subsup{R}{}{5}\mathrm{ can alternatively be taken
 together to form - (CH2)u-, where u = 2-5;
 together to form - (CH2)u-, where u = 2-5;
 R16 is selected from:
 R16 is selected from:
 an amine protecting group;
 an amine protecting group;
 1-2 amino acids; or
 1-2 amino acids; or
 1-2 amino acids substituted with an amine
 1-2 amino acids substituted with an amine
 protecting group;
 protecting group;
 K is an l-isomer amino acid of structure
K is an l-isomer amino acid of structure
-N(R}\mp@subsup{R}{}{6})CH(\mp@subsup{R}{}{7})C(=0)-, wherein

```
                        -N(R}\mp@subsup{R}{}{6})CH(\mp@subsup{R}{}{7})C(=0)-, wherein
```

```
\(R^{6}\) is H or \(\mathrm{C}_{1}-\mathrm{C} 8\) alkyl;
\(R^{7}\) is:
```



``` where \(q=\)
```

5 0 or 1;

$$
-\left(\mathrm{CH}_{2}\right)_{r} \mathrm{X}, \text { where } r=3-6 ;
$$

$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}} \mathrm{S}\left(\mathrm{CH}_{2}\right) 2 \mathrm{X}$, where $\mathrm{m}=1$ or 2 ;
$-\left(C_{3}-C_{7}\right.$ alkyl) $-\mathrm{NH}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right.$ alkyl $)$

$-(\mathrm{CH} \dot{2})_{\mathrm{m}}-\dot{\mathrm{O}}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-NH-($\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl), where $m=1$ or 2 ;
$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}-\mathrm{S}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-NH-($\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl), where $m=1$ or 2 ; and

```
    X is -NH2 or -NHC(=NH) (NH2), provided that X
    is not -NH2 when r = 4; or
    R6}\mathrm{ and R7 are alternatively be taken together
    to form
        (CH2) (n
        - - \H2CHCH2-, where }n=0,1\mathrm{ and }\textrm{X
    is -NH2 or - NHC (=NH) (NH2);
    I is -Y(CH2)vC(=O)-, wherein:
1 0
```

15
R^{8} is selected from:
-PO(OR $\left.{ }^{13}\right) \mathrm{R}^{13},-\mathrm{SO}_{2} \mathrm{NH}-h e t e r o a r y l ~(s a i d$
heteroaryl being 5-10-membered and having
1-4 heteroatoms selected independently
from N, S, or 0) , $-\mathrm{SO}_{2} \mathrm{NH}$-heteroaryl

> (said heteroaryl being $5-10$-membered and having $1-4$ heteroatoms selected independently from N, S, or 0), $-\mathrm{SO}_{2} \mathrm{NHCOR}^{13},-\mathrm{CONHO}_{2} \mathrm{R}^{13 a}$,

5
12. The reagent of Claim 1 that is a 1,3 -disubstituted phenyl compound of the formula (II):

wherein:
the phenyl ring in formula (II) may be substituted with $0-3 \mathrm{R}^{10}$ or $\mathrm{R}^{10 a}$;
R^{10} or $R^{10 a}$ are selected independently from: $H, C_{1}{ }^{-}$ C_{8} alkyl, phenyl, halogen, or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy;
R^{1} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, phenyl, benzyl, or phenyl($\mathrm{C}_{2}-\mathrm{C}_{4}$)alkyl;
R^{2} is H or methyl;
R^{13} is selected independently from: $H, C_{1}-C_{10}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl, $\mathrm{C}_{4}-\mathrm{C}_{12}$
alkylcycloalkyl, aryl, -(C1-C10 alkyl)aryl, or $\mathrm{C}_{3}-\mathrm{C}_{10}$ alkoxyalkyl;
when two R^{13} groups are bonded to a single N, said R^{13} groups may alternatively be taken together to form - $\left(\mathrm{CH}_{2}\right) 2-5$ or $-\left(\mathrm{CH}_{2}\right) \mathrm{O}\left(\mathrm{CH}_{2}\right)$-;
$R^{13 a}$ is $C_{1}-C_{10}$ alkyl, $C_{3}-C_{10}$ cycloalkyl, $C_{4}-C_{12}$ alkylcycloalkyl, aryl, $-\left(C_{1}-C_{10}\right.$ alkyl)aryl, or $C_{3}-C_{10}$ alkoxyalkyl;
R^{14} is $\mathrm{OH}, \mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, or benzyl;
$J \quad$ is β-Ala or an L-isomer or D-isomer amino acid of structure $-N\left(R^{3}\right) C\left(R^{4}\right)\left(R^{5}\right) C(=0)-$, wherein:
R^{3} is H or CH_{3};
R^{4} is H;
R^{5} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{8}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$
cycloalkylmethyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ cycloalkylethyl, phenyl, phenylmethyl, $\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{SH}_{4} \mathrm{CH}_{2} \mathrm{OCH}_{3}$, $\mathrm{CH}_{2} \mathrm{SCH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3},\left(\mathrm{CH}_{2}\right){ }_{5} \mathrm{NH}_{2}$, $\left(\mathrm{CH}_{2}\right){ }_{s} \mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right),\left(\mathrm{CH}_{2}\right){ }_{s} \mathrm{R}^{16}$, where $\mathrm{s}=3-5$; or a bond to L_{n};
R^{3} and R^{5} can alternatively be taken together to form $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$;
R^{16} is selected from:
an amine protecting group;
1-2 amino acids;

```
    1-2 amino acids substituted with an amine
    protecting group;
```

```
K is an l-isomer amino acid of structure
```

K is an l-isomer amino acid of structure
-N(R}\mp@subsup{R}{}{6})\textrm{CH}(\mp@subsup{R}{}{7})\textrm{C}(=0)-, wherein
-N(R}\mp@subsup{R}{}{6})\textrm{CH}(\mp@subsup{R}{}{7})\textrm{C}(=0)-, wherein
R}\mp@subsup{}{}{6}\mathrm{ is H or C}\mp@subsup{C}{3}{}-\mp@subsup{C}{8}{\prime}\mathrm{ alkyl;
R}\mp@subsup{}{}{6}\mathrm{ is H or C}\mp@subsup{C}{3}{}-\mp@subsup{C}{8}{\prime}\mathrm{ alkyl;
R7 is

```
R7 is
```



```
1;
-(CH2)rX, where r = 3-6;
-CH2-
-(CH2)mS(CH2)2X, where m=1 or 2;
\(-\left(\mathrm{C}_{4}-\mathrm{C}_{7}\right.\) alkyl)-NH-( \(\mathrm{C}_{1}-\mathrm{C}_{6}\) alkyl)
```


5
$-\left(\mathrm{CH}_{2}\right) \mathrm{m}-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-NH-(C$-\mathrm{C}_{1}$ alkyl), where $m=1$ or 2 ;

R^{1} is H;
R^{2} is H ;
5
R^{13} is selected independently from: $H, C_{1}-C_{10}$
alkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl, $\mathrm{C}_{4}-\mathrm{C}_{12}$
alkylcycloalkyl, aryl, -(C1-C10 alkyl)aryl, or
$\mathrm{C}_{3}-\mathrm{C}_{10}$ alkoxyalkyl;
10
15
20
$J \quad$ is β-Ala or an L-isomer or D-isomer amino acid
of formula $-N\left(R^{3}\right) C H\left(R^{5}\right) C(=0)-$, wherein:
R^{3} is H and R^{5} is $H, \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) 2$,
$\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$,
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}, \quad \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) 2$, $\left(\mathrm{CH}_{2}\right){ }_{4} \mathrm{NH}_{2}, \quad\left(\mathrm{C}_{3}-\mathrm{C}_{5}\right.$
alkyl) NHR ${ }^{16 ;}$
or
。
R^{3} is CH_{3} and R^{5} is H ; or
R^{3} and R^{5} can alternatively be taken together to
form $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$;

```
    \(R^{16}\) is selected from:
                    an amine protecting group;
            1-2 amino acids;
            1-2 amino acids substituted with an amine
        protecting group;
            \(\mathbf{K}\) is an L-isomer amino acid of formula
                \(-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{R}^{7}\right) \mathrm{C}(=0)-\), wherein:
10
            \(R^{7}\) is \(-\left(\mathrm{CH}_{2}\right) 3 \mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right)\);
            I is \(-\mathrm{NHCH}_{2} \mathrm{C}(=0)\)-; and
                            M is a \(D\)-isomer or \(L\)-isomer amino acid of structure
                        \(-\mathrm{NR}^{17}-\mathrm{CH}-\mathrm{C}(=\mathrm{O})-\)
                        \(\left.\int_{R^{8}}^{1} \mathrm{CH}\left(\mathrm{R}^{4}\right)\right)_{\mathrm{q}^{\prime}}\)
            \(-\mathrm{CO}_{2} \mathrm{H}\);
            \(-\mathrm{SO}_{3} \mathrm{H}^{\prime}\).
30 14. The reagent of Claim 1 that that is a compound of
        formula (II) above, wherein:
```

the phenyl ring in formula (II) bears a bond to I_{n};
R^{1} and R^{2} are independently selected from H, methyl;
J is selected from D-Val, D-2-aminobutyric acid, DLeu, D-Ala, Gly, D-Pro, D-Ser, D-Lys, ßAla, Pro, Phe, NMeGly, D-Nle, D-Phg, D-Ile, D-Phe, D-Tyr, Ala, $N^{\varepsilon}-p$-azidobenzoyl-D-Lys, $N^{\varepsilon}-p-$ benzoylbenzoyl-D-Lys, $\mathrm{N}^{\varepsilon_{-t r y p t o p h a n y l-D-L y s, ~}^{\text {-try }} \text {, }}$ N^{ε}-o-benzylbenzoyl-D-Iys, N^{ε}-p-acetylbenzoyl-D-Lys, $N^{\varepsilon_{-}}$dansyl-D-Lys, $N^{\varepsilon_{-g l}}$ glycyl-D-Lys, $N^{\varepsilon_{-}}$ glycyl-p-benzoylbenzoyl-D-Lys, N^{ε}-p-phenylbenzoyl-D-Lys, $N^{\varepsilon-m-b e n z o y l b e n z o y l-D-~}$ Lys, $N^{\varepsilon-o-b e n z o y l b e n z o y l-D-L y s ; ~}$
\mathbf{K} is selected from NMeArg, Arg;

I is selected from Gly, β Ala, Ala;

M is selected from Asp; đeAsp; β MeAsp; NMeAsp; DAsp.
15. The reagent of Claim 1 , wherein:

R 31 bears a bond to L_{n};
R^{1} and R^{2} are independently selected from H, methyl;
J is selected from: D-Val, D-2-aminobutyric acid, D-Leu, D-Ala, Gly, D-Pro, D-Ser, D-Lys, BAla, Pro, Phe, NMeGly, D-Nle, D-Phg, D-Ile, D-Phe, D-Tyr, Ala;

K is selected from NMeArg;

L is Gly;

M is selected from Asp; OueAsp; β MeAsp; NMeAsp;
D-Asp.
16. A reagent as in one of claims 1-15, wherein C_{h}

5


```
wherein:
```

```
A 1, A}\mp@subsup{A}{}{2},\mp@subsup{A}{}{3},\mp@subsup{A}{}{4},\mp@subsup{A}{}{5},\mp@subsup{A}{}{6},\mathrm{ and }\mp@subsup{A}{}{7}\mathrm{ are
        independently selected at each occurrence
        from the group: NR }\mp@subsup{}{}{40}\mp@subsup{R}{}{41},S,SH,S(Pg), O
        OH, PR }\mp@subsup{}{}{42}\mp@subsup{R}{}{43},P(O)R\mp@subsup{R}{}{42}\mp@subsup{R}{}{43},P(S)R\mp@subsup{R}{}{42}\mp@subsup{R}{}{43
```

```
\(A^{1}, A^{2}, A^{3}, A^{4}, A^{5}, A^{6}\), and \(A^{7}\) are independently selected at each occurrence from the group: \(N R^{40} R^{41}, S, S H, S(P g), O\), \(O H, P R^{42} R^{43}, P(O) R^{42} R^{43}, P(S) R^{42} R^{43}\), \(P\left(N R^{44}\right) R^{42} R^{43}\);
W is a bond, CH , or a spacer group selected from the group: \(C_{1}-C_{10}\) alkyl substituted with \(0-3 R^{52}\), aryl substituted with \(0-3\) \(R^{52}\), cycloaklyl substituted with \(0-3 R^{52}\), heterocycloalkyl substituted with \(0-3\) \(R^{52}\), aralkyl substituted with \(0-3 R^{52}\) and alkaryl substituted with \(0-3 R^{52}\);
\(W^{a}\) is a \(C_{1}-C_{10}\) alkyl group or a \(C_{3}-C_{14}\) carbocycle;
\(R^{40}, R^{41}, R^{42}, R^{43}\), and \(R^{44}\) are each independently selected from the group: a bond to \(L_{n}\), hydrogen, \(C_{1}-C_{10}\) alkyl substituted with \(0-3 R^{52}\), aryl substituted with \(0-3 R^{52}\), cycloaklyl substituted with 0-3 \(\mathrm{R}^{52}\), heterocycloalkyl substituted with \(0-3\) \(R^{52}\), aralkyl substituted with \(0-3 \mathrm{R} 52\), alkaryl substituted with 0-3 \(R^{52}\) substituted with 0-3 \(R^{52}\) and an electron, provided that when one of \(R^{40}\) or \(R^{41}\) is an electron, then the other is also an electron, and provided that when one of \(R^{42}\) or \(R^{43}\) is an electron, then the other is also an electron;
```

```
    additionally, R40 and R }\mp@subsup{R}{}{41}\mathrm{ may combine to form
    =C(C1-C3 alkyl) (C1-C3 alkyl);
R52 is independently selected at each
        occurrence from the group: a bond to In,
        =O, F, Cl, Br, I, -CE3, -CN, -CO2R53,
        -C(=0) R 53, -C(=0)N(R53)2, -CHO, --CH2OR 53,
        -OC(=O)R53, -OC(=0)OR53a, -OR53,
        -OC(=0)N(R53)2, -NR 53C(=0)R年3,
        -NR 54}C(=0)OR53a, -NR 53C (=0)N(R53)2
        -NR54}\mp@subsup{\textrm{SO}}{2}{N}(\mp@subsup{R}{}{53}\mp@subsup{)}{2}{2},-N\mp@subsup{R}{}{54}\mp@subsup{\textrm{SO}}{2}{}\mp@subsup{R}{}{53a}, -SO3H
        -SO2R53a, -SR53, -S (=0)R53a, -SO2N(R53)2,
        -N (R }\mp@subsup{}{}{53})2,-NHC(=NH)NHR53, -C (=NH)NHR53
        =NOR 53, NO2, -C (=0) NHOR 53,
        -C(=0) NHNR53R53a, -OCH2CO2H,
        2-(1-morpholino)ethoxy,
        C1-C5 alkyl, C2-C4 alkenyl, C3-C6
        cycloalkyl, C3-C6 cycloalkylmethyl, C2-C6
        alkoxyalkyl,
        aryl substituted with 0-2 R 53,
        a 5-10-membered heterocyclic ring system
        containing l-4 heteroatoms independently
        selected from N, S, and O;
R53, R
        at each occurrence from the group: a bond
        to In, C1-C6 alkyl, phenyl, benzyl, C1-C6
        alkoxy, halide, nitro, cyano, and
        trifluoromethyl; and
```

Pg is a thiol protecting group capable of being displaced upon reaction with a radionuclide.

5
17.

A reagent as in one of Claims 1-15, wherein C_{h} is selected from the group:

wherein:
$A^{1}, A^{2}, A^{3}, A^{4}, A^{5}, A^{6}$, and A^{7} are independently selected at each occurrence from the group: $N R^{40} R^{41}, S, S H, S(P g)$, OH ;

W is a bond, CH, or a spacer group selected from the group: $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl substituted with 0-3 R52;

```
Wa is a methylene group or a C3-C6 carbocycle;
```

$R^{40}, R^{41}, R^{42}, R^{43}$, and R^{44} are each
independently selected from the group: a
bond to L_{n}, hydrogen, $C_{1}-C_{10}$ alkyl
substituted with $0-3$ R 52 , and an
electron, provided that when one of R^{40}
or R^{41} is an electron, then the other is
also an electron, and provided that when
one of R^{42} or R^{43} is an electron, then
the other is also an electron;
additionally, R^{40} and R^{41} may combine to form,
$=C\left(C_{1}-C_{3}\right.$ alkyl) ($C_{1}-C_{3}$ alkyl);

R52 is independently selected at each occurrence from the group: a bond to L_{n}, $=\mathrm{O}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I},-\mathrm{CF}_{3},-\mathrm{CN},-\mathrm{CO}_{2} \mathrm{R} 5$, $-\mathrm{C}(=0) \mathrm{R}^{53},-\mathrm{C}(=0) \mathrm{N}\left(\mathrm{R}^{53}\right)_{2},-\mathrm{CHO},-\mathrm{CH}_{2} \mathrm{OR}^{53}$, $-O C(=0) R^{53},-O C(=0) O R 53 a,-O R 53$, $-O C(=0) N\left(R^{53}\right) 2,-N R 53 C(=0) R^{53}$, $-N R^{54} C(=0) R^{53 a},-N R^{53} C(=0) N\left(R^{53}\right)_{2}$, $-\mathrm{NR}^{54} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{R}^{53}\right)_{2},-\mathrm{NR}^{54} \mathrm{SO}_{2} \mathrm{R}^{53 a},-\mathrm{SO}_{3} \mathrm{~F}$,

$-\mathrm{SO}_{2} \mathrm{R}^{53 a},-\mathrm{SR}^{53},-\mathrm{S}(=0) \mathrm{R}^{53 a}$, $-\mathrm{N}\left(\mathrm{R}^{53}\right)_{2},-\mathrm{NHC}(=\mathrm{NH}) \mathrm{NHR}^{53},-\mathrm{C}$ $=\mathrm{NOR}^{53}$, $\mathrm{NO}_{2},-\mathrm{C}(=0)$ NHOR ${ }^{53}$, $-\mathrm{C}(=0) \mathrm{NHNR}^{2} 3_{\mathrm{R}} 53 \mathrm{a},-\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, 2-(1-morpholino)ethoxy; and	

R53, R53a, and R54 are independently selected at each occurrence from the group: a bond to L_{n}, $C_{1}-C_{6}$ alkyl.
18. A reagent as in one of Claims 1-15, of formula:

$$
\left(0 L_{n}\right) d C_{h}
$$

wherein d is 1 ; and
C_{h} is selected from:

wherein:
A^{1} and A^{4} are $S H$ or $S P g$; A^{2} and A^{3} are $N R^{41}$;
W is independently selected from the group: $\mathrm{CHR}^{52}, \mathrm{CH}_{2} \mathrm{CHR}^{52}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHR}^{52}$ and $\mathrm{CHR}^{52} \mathrm{C}=\mathrm{O}$; and
R^{41} and R^{52} are independently selected from hydrogen and a bond to L_{n},
and,

19. A reagent as in one of Claims 1-15, of formula:

$\left(Q L_{n}\right) d C_{h}$,

wherein:
A^{1} is NH_{2} or $\mathrm{N}=\mathrm{C}\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl) $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$
alkyl);
W is a bond;
A^{2} is $N^{2} R^{40}$, wherein R^{40} is heterocycle
substituted with R^{52}, wherein the
heterocycle is selected from the
group: pyridine, pyrazine, proline,
furan, thiofuran, thiazole, and
diazine, and R^{52} is a bond to L_{n}.
wherein d is $1 ;$ and
wherein C_{h} is:

wherein:
A^{1} is NH_{2} or $\mathrm{N}=\mathrm{C}\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl) ($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl);
W is a bond;
A^{2} is NHR 40 , wherein R^{40} is heterocycle
substituted with R^{52}, wherein the
heterocycle is selected from pyridine and thiazole, and R^{52} is a bond to L_{n}.
20. A reagent as in one of Claims $1-15$, wherein In
a bond between Q and C_{h}; or, a compound of formula:

$$
M^{1}-\left[Y^{1}\left(C R^{55} R^{56}\right)_{h}\left(Z^{1}\right)_{h} " Y^{2}\right]_{h} \cdot-M^{2}
$$

wherein:

$$
M^{1} \text { is }-\left[\left(\mathrm{CH}_{2}\right)_{g} \mathrm{Z}^{1}\right]_{g}-\left(\mathrm{CR}^{55} \mathrm{R}^{56}\right) g^{\prime \prime-} \text {; }
$$

$$
M^{2} \text { is }-\left(\mathrm{CR}^{55} \mathrm{R}^{56}\right) \mathrm{g}^{\prime \prime}-\left[Z^{1}\left(\mathrm{CH}_{2}\right) \mathrm{g}\right] \mathrm{g}^{\prime-} \text {; }
$$

g is independently $0-10$;
g^{\prime} is independently $0-1$;
$g^{\prime \prime}$ is $0-10$;
h is $0-10$;
h^{\prime} is $0-10$;
h" is 0-1
Y^{1} and Y^{2}, at each occurrence, are
independently selected from:
a bond, $0, \mathrm{NR}^{56}, \mathrm{C}=0, \mathrm{C}(=0) 0$, OC (=0) 0 , $C(=0) N H-, C=N R 56, S, S O, \mathrm{SO}_{2}, \mathrm{SO}_{3}$, $\mathrm{NHC}(=0),(\mathrm{NH}) 2 \mathrm{C}(=\mathrm{O}),(\mathrm{NH}) 2 \mathrm{C}=\mathrm{S}$;
Z^{1} is independently selected at each occurrence from a $C_{6}-C_{14}$ saturated, partially saturated, or aromatic carbocyclic ring system, substituted with 0-4 R^{57}; a heterocyclic ring

```
    system, optionally substituted with
    0-4 R }\mp@subsup{\textrm{R}}{}{57}\mathrm{ ;
R55 and R56 are independently selected at
        each occurrence from:
            hydrogen;
        C1-C10 alkyl substituted with 0-5
            R57;
        (C1-C10 alkyl)aryl wherein the aryl
            is substituted with 0-5 R57;
            R57 is independently selected at each
        occurrence from the group: hydrogen,
        OH, NHR58, C(=0)R58, OC (=0) R58,
        OC(=0)OR58,C(=0)OR58,C(=0)NR58-,
        C\equivN, SR58, SOR 58, SO2R58,
        NHC (=0) R58, NHC (=0) NHR58,
        NHC (=S)NHR58; or, alternatively,
        when attached to an additional
        molecule Q, R57 is independently
        selected at each occurrence from the
        group: 0, NR58, C=0, C(=0) 0,
        OC(=0)O,C(=0)N-, C=NR58, S, SO,
        SO2, SO3, NHC(=0), (NH) 2C(=O),
        (NH) 2C=S; and,
            R58 is independently selected at each
        occurrence from the group:hydrogen; C C -
        C6 alkyl; benzyl, and phenyl.
```

21. A reagent as in Claim 16, wherein L_{n} is:
a compound of formula:

$$
M^{1}-\left[Y^{1}\left(C R^{55} R^{56}\right)_{h}\left(Z^{1}\right)_{h} " Y^{2}\right]_{h}-M^{2}
$$

wherein:

5
M^{1} is $-\left[\left(\mathrm{CH}_{2}\right)_{g^{2}} \mathrm{Z}^{1}\right]^{\prime}-\left(\mathrm{CR}^{55} \mathrm{R}^{56}\right)_{g^{\prime \prime}}$;

g is independently $0-10$;
g^{\prime} is independently $0-1$;
$g^{\prime \prime}$ is 0-10;
h is $0-10$;
h^{\prime} is $0-10$;
$h^{\prime \prime}$ is 0-1
Y^{1} and Y^{2}, at each occurrence, are
independently selected from:
a bond, $0, N R^{56}, C=0, C(=0) 0$,
$O C(=0) 0$,
$\mathrm{C}(=0) \mathrm{NH}-, \mathrm{C}=\mathrm{NR}^{56}, \mathrm{~S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{SO}_{3}$,
$\mathrm{NHC}(=0),(\mathrm{NH}) 2 \mathrm{C}(=0), \quad(\mathrm{NH}) 2 \mathrm{C}=\mathrm{S}$;
Z^{1} is independently selected at each
occurrence from a $C_{6}-C_{14}$ saturated,
partially saturated, or aromatic
carbocyclic ring system, substituted
with $0-4 R^{57}$; a heterocyclic ring
system, optionally substituted with
0-4 R^{57};
R^{55} and R^{56} are independently selected at
each occurrence from:
hydrogen;
$C_{1}-C_{10}$ alkyl substituted with $0-5$
R^{57};
$\left(C_{1}-C_{10}\right.$ alkyl)aryl wherein the aryl
is substituted with $0-5 \mathrm{R}^{57}$;
R^{57} is independently selected at each occurrence from the group: hydrogen, OH, $\mathrm{NHR}^{58}, \mathrm{C}(=0) \mathrm{R}^{58}, \mathrm{OC}(=0) \mathrm{R}^{58}$, $O C(=0) O R^{58}, C(=0) O R^{58}, C(=0) N R^{58}$-, $\mathrm{C} \equiv \mathrm{N}, \mathrm{SR}{ }^{58}$, $\mathrm{SOR}^{58}, \mathrm{SO}_{2} \mathrm{R}^{58}$, $\mathrm{NHC}(=0) \mathrm{R}^{58}$, $\mathrm{NHC}(=0) \mathrm{NHR}^{58}$, NHC (=S) NHR 58 ; or, alternatively, when attached to an additional molecule Q, R57 is independently selected at each occurrence from the group: $0, N R^{58}, C=0, C(=0) 0$, $\mathrm{OC}(=0) \mathrm{O}, \mathrm{C}(=0) \mathrm{N}-, C=\mathrm{NR}^{58}, \mathrm{~S}, \mathrm{SO}$, $\mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{NHC}(=0)$, $(\mathrm{NH})_{2} \mathrm{C}(=0)$, (NH) $2 \mathrm{C}=\mathrm{S}$, and R 57 is attached to an additional molecule Q; and,
R^{58} is independently selected at each occurrence from the group:hydrogen; $C_{1}-C_{6}$ alkyl; benzyl, and phenyl.
22. A reagent as in Claim 17, wherein L_{n} is:

wherein:
g" is 1-10;
h is $0-10$;
h^{\prime} is $1-10$;
Y^{1} and Y^{2}, at each occurrence, are independently selected from:

R58 is independently selected at each occurrence from the group:hydrogen; $C_{1}-C_{6}$ alkyl; benzyl, and phenyl.
23. A reagent as in Claim 18, wherein L_{n} is:

$$
-\left(C R^{55} R^{56}\right)_{g "-}-\left[Y^{1}\left(C R^{55} R^{56}\right)_{h} Y^{2}\right]_{h}-\left(C R^{55} R^{56}\right)_{g "-}
$$

wherein:
$\mathrm{g}^{\prime \prime}$ is 1-5;
h is 0-5;
h^{\prime} is 1-5;
Y^{1} and Y^{2}, at each occurrence, are
independently selected from:
O, $\mathrm{NR}^{56}, \mathrm{C}=0, \mathrm{C}(=0) 0, \quad \mathrm{OC}(=0) 0$,
$C(=0) N H-, C=N R^{56}, S, S O, \mathrm{SO}_{2}, \mathrm{SO}_{3}$,
$\mathrm{NHC}(=0), \quad(\mathrm{NH})_{2} \mathrm{C}(=0), \quad(\mathrm{NH}) 2 \mathrm{C}=\mathrm{S}$;
R^{55} and R^{56} are independently selected at
each occurrence from:
hydrogen;
$\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl;
($C_{1}-C_{10}$ alkyl)aryl.
24. A reagent as in Claim 19, wherein L_{n} is:
$-\left(C R^{55} R^{56}\right) g^{\prime \prime}-\left[Y^{1}\left(C R^{55} R^{56}\right) h^{2}\right]_{h}-\left(C R^{55} R^{56}\right) g^{\prime \prime}$,
wherein:

$$
\begin{aligned}
& 0, \quad N R^{56}, \quad C=0, \quad C(=0) 0, \quad O C(=0) 0, \\
& C(=0) N H-, \quad C=N R^{56}, S, \\
& N H C(=0), \quad(N H) 2 C(=0), \quad(N H) 2 C=S ;
\end{aligned}
$$

5

```
R55}\mathrm{ and R}\mp@subsup{R}{}{56}\mathrm{ are independently selected at
    each occurrence from:
```

hydrogen.
25. The reagents of Claim 1 , which are:

5
26. A kit for preparing a radiopharmaceutical comprising a predetermined quantity of a sterile, pharmaceutically acceptable reagent of Claim 23.
27. A kit for preparing a radiopharmaceutical comprising a predetermined quantity of a sterile, pharmaceutically acceptable reagent of Claim 24.
28. A kit for preparing a radiopharmaceutical comprising a predetermined quantity of a sterile, pharmaceutically acceptable reagent of Claim 25.
29. A radiopharmaceutical comprising a complex of a reagent of Claims $1-15$ and a radionuclide selected from the group $99 \mathrm{mTc},{ }^{94 \mathrm{~m}} \mathrm{Tc},{ }^{95} \mathrm{Tc},{ }^{111} \mathrm{In},{ }^{62} \mathrm{Cu}$, $43 \mathrm{Sc},{ }^{45} \mathrm{Ti},{ }^{67} \mathrm{Ga},{ }^{68 \mathrm{Ga},}{ }^{97_{\mathrm{Ru}},}{ }^{72} \mathrm{As},{ }^{82} \mathrm{Rb}$, and ${ }^{201 \mathrm{Tl}}$.
-403-

30. A radiopharmaceutical comprising a complex of a reagent of claim 16 and a radionuclide selected from the group $99 \mathrm{~m} \mathrm{Tc},{ }^{94 \mathrm{~m} \mathrm{Tc},}{ }^{95 \mathrm{Tc},}{ }^{111} \mathrm{In},{ }^{62} \mathrm{Cu},{ }^{43} \mathrm{Sc}$, ${ }^{45} \mathrm{Ti},{ }^{67} \mathrm{Ga},{ }^{68} \mathrm{Ga},{ }^{97} \mathrm{Ru},{ }^{72} \mathrm{As},{ }^{82} \mathrm{Rb}$, and ${ }^{201}{ }^{\mathrm{T} 1}$.

31. A radiopharmaceutical comprising a complex of a reagent of Claim 17 and a radionuclide selected from the group $99 \mathrm{~m} \mathrm{Tc},{ }^{94 \mathrm{~m} \mathrm{Tc},}{ }^{95} \mathrm{Tc},{ }^{111 \mathrm{In},}{ }^{62} \mathrm{Cu},{ }^{43} \mathrm{Sc}$, ${ }^{45} \mathrm{Ti},{ }^{67} \mathrm{Ga},{ }^{68} \mathrm{Ga},{ }^{97} \mathrm{Ru},{ }^{72} \mathrm{As},{ }^{82} \mathrm{Rb}$, and ${ }^{201} \mathrm{Tl}$.
32. A radiopharmaceutical comprising a complex of a reagent of Claim 18 and a radionuclide selected from the group $99 \mathrm{~m} \mathrm{Tc}, 94 \mathrm{mTc},{ }^{95 \mathrm{Tc},} 111 \mathrm{In},{ }^{62} \mathrm{Cu},{ }^{43} \mathrm{sc}$, ${ }^{45} \mathrm{Ti},{ }^{67} \mathrm{Ga},{ }^{68} \mathrm{Ga},{ }^{97} \mathrm{Ru}, 72_{\mathrm{As}},{ }^{82} \mathrm{Rb}$, and ${ }^{201}{ }^{1} \mathrm{Tl}$.
33. A radiopharmaceutical comprising a complex of a reagent of Claim 19 and a radionuclide selected from the group $99 \mathrm{~m} \mathrm{Tc},{ }^{94 \mathrm{~m}} \mathrm{Tc},{ }^{95} \mathrm{Tc},{ }^{111} \mathrm{In},{ }^{62} \mathrm{Cu},{ }^{43} \mathrm{Sc}$, $45 \mathrm{Ti}, 67_{\mathrm{Ga}}, 68 \mathrm{Ga}, 97_{\mathrm{Ru}}, 72_{\mathrm{As}}, 82_{\mathrm{Rb}}$, and 201_{Tl}.
34. A radiopharmaceutical comprising a complex of a reagent of Claim 20 and a radionuclide selected from the group $99 \mathrm{~m} \mathrm{Tc}, 94 \mathrm{~m} \mathrm{C},{ }^{95} \mathrm{Tc},{ }^{111} \mathrm{In},{ }^{62} \mathrm{Cu},{ }^{43} \mathrm{Sc}$, ${ }^{45} \mathrm{Ti},{ }^{67} \mathrm{Ga},{ }^{68} \mathrm{Ga},{ }^{97} \mathrm{Ru},{ }^{72} \mathrm{As},{ }^{82} \mathrm{Rb}$, and ${ }^{201} \mathrm{Tl}$.
35. A radiopharmaceutical comprising a complex of a reagent of Claim 21 and a radionuclide selected from the group $99 \mathrm{~m} \mathrm{Tc},{ }^{111 \mathrm{In},}$ and $6^{2} \mathrm{Cu}$.
36. A radiopharmaceutical comprising a complex of a reagent of Claim 22 and a radionuclide selected from the group $99 \mathrm{~m}_{\mathrm{Tc}}, 111 \mathrm{In}$, and 62 Cu .
37. A radiopharmaceutical comprising a complex of a reagent of Claim 23 and a radionuclide selected from the group $99 \mathrm{~m}_{\mathrm{Tc}}, 111 \mathrm{In}$, and ${ }^{62 \mathrm{Cu}}$.

5 38. A radiopharmaceutical comprising a complex of a reagent of Claim 24 and a radionuclide selected from the group 99 m Tc , and ${ }^{111} \mathrm{In}$.
39. The radiopharmaceuticals of Claim 29, which are: 10

-405-

-406-

-407-

5

[^5]

40. A method for visualizing sites of platelet deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount of a radiopharmaceutical of Claim 29, and (ii) scanning the mammal using a radioimaging devise.
41. A method for visualizing sites of platelet deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount of a radiopharmaceutical of Claim 30 , and (ii) scanning the mammal using a radioimaging devise.
42. A method for visualizing sites of platelet deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount of a radiopharmaceutical of Claim 31, and (ii) scanning the mammal using a radioimaging devise.
43. A method for visualizing sites of platelet deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount of a radiopharmaceutical of Claim 32, and (ii) scanning the mammal using a radioimaging devise.
44. A method for visualizing sites of platelet deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount of a radiopharmaceutical of Claim 33, and (ii) scanning the mammal using a radioimaging devise.
45. A method for visualizing sites of platelet deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount of a radiopharmaceutical of Claim 34, and (ii) scanning the mammal using a radioimaging devise.
46. A method for visualizing sites of platelet deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount of a radiopharmaceutical of Claim 35 , and (ii) scanning the mammal using a radioimaging devise.
47. A method for visualizing sites of platelet deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount of a radiopharmaceutical of Claim 36, and (ii) scanning the mammal using a radioimaging devise.
48. A method for visualizing sites of platelet deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount

```
of a radiopharmaceutical of Claim 37, and (ii)
```

scanning the mammal using a radioimaging devise.
49. A method for visualizing sites of platelet

25 deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount of a radiopharmaceutical of Claim 38 , and (ii) scanning the mammal using a radioimaging devise.
50. A method for visualizing sites of platelet deposition in a mammal by radioimaging, comprising (i) administering to said mammal an effective amount of a radiopharmaceutical of Claim 39, and (ii) scanning the mammal using a radioimaging devise.
51. A direct radiolabeled compound of formula (I):

(I)

```
or a pharmaceutically acceptable salt or
        prodrug form thereof wherein:
    R}\mp@subsup{}{}{31}\mathrm{ is a C6}-\mp@subsup{C}{14}{}\mathrm{ saturated, partially saturated,
        or aromatic carbocyclic ring system
        substituted with 0-4 R R
R32 is selected from:
```

 -413-
    ```
Z is S or O;
n' and n' are independently 0-2;
```

 -C (=0) -;
 \(-C(=S)-\)
 \(-S(=0) 2^{-}\);
 -S (=0) -;
 \(-P(=2)\left(2 R^{13}\right)-\);
 hydrogen, $C_{1}-C_{8}$ alkyl substituted with 0-2 R^{11}; $\mathrm{C}_{2}-\mathrm{C} 8$ alkenyl substituted with $0-2 \mathrm{R}^{11}$; $\mathrm{C}_{2}-\mathrm{C}_{8}$ alkynyl substituted with $0-2 \mathrm{R}^{11}$; $C_{3}-C_{10}$ cycloalkyl substituted with $0-2$ R11;
aryl substituted with $0-2 R^{12}$;
a 5-10-membered heterocyclic ring system containing $1-4$ heteroatoms independently selected from N, S, and O, said heterocyclic ring being substituted with 0-2 R12;
$=\mathrm{O}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I},-\mathrm{CF}_{3},-\mathrm{CN},-\mathrm{CO}_{2} \mathrm{R}^{13}$, $-\mathrm{C}(=0) \mathrm{R}^{13},-\mathrm{C}(=0) \mathrm{N}_{\left(\mathrm{R}^{13}\right)_{2},-\mathrm{CHO},-\mathrm{CH}_{2} \mathrm{OR}^{13} \text {, }, ~(1)}$ -OC (=O) R13, -OC (=0)OR13a, -OR13, $-O C(=0) N\left(R^{13}\right) 2,-N R^{13} C(=0) R^{13}$, $-N R^{14} C(=0) O R^{13} a,-N R^{13} C(=0) N\left(R^{13}\right) 2$, $-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO} 3 \mathrm{H}$,
$-\mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SR}^{13},-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)} \mathrm{R}^{2}$, $-\mathrm{N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{NHC}(=\mathrm{NH}) \mathrm{NHR}^{13},-\mathrm{C}(=\mathrm{NH}) \mathrm{NHR}^{13}$, $=\mathrm{NOR}^{13}, \mathrm{NO}_{2},-\mathrm{C}(=0) \mathrm{NHOR}^{13}$, $-\mathrm{C}(=0) \mathrm{NHNR}^{13} \mathrm{R}^{13 \mathrm{a}},-\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}$,
R^{1} and R^{21} can alternatively join to form a 37 membered carbocyclic ring substituted with 0-2 R^{12};
R^{22} and R^{23} can alternatively join to form a 3-7 membered carbocyclic ring substituted with 0-2 R^{12};
when $n^{\prime \prime}$ is $2, R^{22}$ or R^{23} can alternatively be taken together with R^{22} or R^{23} on an adjacent carbon atom to form a direct bond, thereby to form a double or triple bond between the adjacent carbon atoms;
R^{1} and R^{2}, where R^{21} is H, can alternatively join to form a 5-8 membered carbocyclic ring substituted with $0-2$ R^{12};
R^{11} is selected from one or more of the following:

```
=O, F, Cl, Br, I, -CF3, -CN, --CO2R13,
-C}(=0)\mp@subsup{R}{}{13},-C(=0)N(\mp@subsup{R}{}{13})2,-CHO,-CH2OR13
-OC(=0) R13, -OC(=0)OR13a, -OR13,
-OC (=0)N(R13) 2, -NR 13C (=0) R13,
-NR14C
-NR14}\mp@subsup{\textrm{SO}}{2}{}\textrm{N}(\mp@subsup{R}{}{13}\mp@subsup{)}{2,}{2,}-\mp@subsup{\textrm{NR}}{}{14}\mp@subsup{\textrm{SO}}{2}{}\mp@subsup{\textrm{R}}{}{13a},-\mp@subsup{\textrm{SO}}{3}{}H
-SO2R13a, -SR13, -S (=0)R13a, -- SO2N(R13) 2,
-N(R (13) 2, -NHC (=NH) NHR 13, -C (=NH) NHR 13,
=NOR 13, NO2, -C (=0) NHOR 13,
-C(=0) NHNR13R13a, -0CH2CO2 H,
2-(1-morpholino)ethoxy,
C1-C5 alkyl, C2-C4 alkenyl, C3-C6
cycloalkyl, C3-C6 cycloalkylmethyl, C2-C6
alkoxyalkyl, C}\mp@subsup{C}{3}{}-\mp@subsup{C}{6}{}\mathrm{ cycloalkoxy, C C - C C4
alkyl (alkyl being substituted with 1-5
groups selected independently from:
-NR 13 R14, -CF3, NO
-S(=0)R13a),
aryl substituted with \(0-2 R^{12,}\)
a 5-10-membered heterocyclic ring system
selected from \(N\), \(S\), and 0 , said heterocyclic ring being substituted with 0-2 R \({ }^{12}\);
R12 is selected from one or more of the following:
```

phenyl, benzyl, phenethyl, phenoxy, benzyloxy, halogen, hydroxy, nitro,

R14 is $\mathrm{OH}, \mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, or benzyl;
R^{21} and R^{23} are independently selected from:
hydrogen;
$C_{1}-C_{4}$ alkyl, optionally substituted with

1-6 halogen;
benzyl;
R^{2} is H or $\mathrm{C}_{1}-\mathrm{C}_{8}$ alkyl;
R^{10} and $R^{10 a}$ are selected independently from one or more of the following:
phenyl, benzyl, phenethyl, phenoxy, benzyloxy, halogen, hydroxy, nitro, cyano, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{3}-$ C_{6} cycloalkylmethyl, $C_{7}-C_{10}$ arylalkyl, $\mathrm{C}_{1}-\mathrm{C}_{5}$ alkoxy, $-\mathrm{CO}_{2} \mathrm{R}^{13},-\mathrm{C}(=0) \mathrm{N}\left(\mathrm{R}^{13}\right)_{2,}$ $-C(=0)$ NHOR ${ }^{13 a},-C(=0) N H N\left(R^{13}\right)_{2},=N O R^{13}$, $-B\left(R^{34}\right)\left(R^{35}\right), C_{3}-C_{6}$ cycloalkoxy, $-O C(=0) R^{13},-C(=0) R^{13},-O C(=0) O R^{13 a}$, $-O R^{13},-\left(C_{1}-C_{4}\right.$ alkyl)-OR ${ }^{13},-N\left(R^{13}\right)_{2}$, $-O C(=0) N\left(R^{13}\right)_{2},-N R^{13} C(=0) R^{13}$, $-N R^{13} C(=0) O R^{13} a,-N R^{13} C(=0) N\left(R^{13}\right) 2$, $-\mathrm{NR}^{13} \mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)_{2},-\mathrm{NR}^{13} \mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{3} \mathrm{H}, ~}$ $-\mathrm{SO}_{2} \mathrm{R}^{13} \mathrm{a},-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a}},-\mathrm{SR}^{13},-\mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)_{2} \text {, }, ~}$ $C_{2}-C_{6}$ alkoxyalkyl, methylenedioxy, ethylenedioxy, $C_{1}-C_{4}$ haloalkyl (including
$-C_{v} F_{w}$ where $v=1$ to 3 and $w=1$ to $(2 \mathrm{v}+1)), \mathrm{C}_{1}-\mathrm{C}_{4}$ haloalkoxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylcarbonyloxy, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylcarbonyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylcarbonylamino, $-\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, 2-(1-morpholino)ethoxy, $C_{1}-C_{4}$ alkyl (alkyl being substituted with $-N\left(R^{13}\right)$ 2, $-\mathrm{CF}_{3}, \mathrm{NO}_{2}$, or $-\mathrm{S}(=0) \mathrm{R}^{13 \mathrm{a}}$);

```
J is \beta-Ala or an L-isomer or D-isomer amino
    acid of structure
    -N(R3)C(R4)(R5)C(=0)-, wherein:
```

5

```
R}\mp@subsup{}{}{3}\mathrm{ is H or C}\mp@subsup{C}{1}{}-\mp@subsup{C}{8}{}\mathrm{ alkyl;
R4 is H or C1-C3 alkyl;
```

R^{5} is selected from:
hydrogen;
$C_{1}-C_{8}$ alkyl substituted with 0-2 R^{11};
$\mathrm{C}_{2}-\mathrm{C}_{8}$ alkenyl substituted with $0-2 \mathrm{R}^{11}$;
$\mathrm{C}_{2}-\mathrm{C}_{8}$ alkynyl substituted with $0-2 \mathrm{R}^{11}$;
$\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl substituted with $0-2$
R^{11};
aryl substituted with $0-2 \mathrm{R}^{12}$;
a 5-10-membered heterocyclic ring system
containing $1-4$ heteroatoms independently
selected from N, S, or 0 , said
heterocyclic ring being substituted with
0-2 R $R^{12 ; ~}$
$=\mathrm{O}, \dot{\mathrm{F}}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I},-\mathrm{CF}_{3},-\mathrm{CN},-\mathrm{CO}_{2} \mathrm{R}^{13}$,
$-\mathrm{C}(=0) \mathrm{R}^{13},-\mathrm{C}(=0) \mathrm{N}\left(\mathrm{R}^{13}\right) 2,-\mathrm{CHO},-\mathrm{CH}_{2} \mathrm{OR}^{13}$,
-OC (=0)R13, -OC (=0)OR13a, -OR13,
$-O C(=0) N\left(R^{13}\right) 2,-N R^{13} C(=0) R^{13}$,
$-N R^{14} C(=0) O R^{13 a},-N R^{13} C(=0) N\left(R^{13}\right) 2$,
$-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{NR}^{14} \mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{3} \mathrm{H}$,
$-\mathrm{SO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SR}^{13},-\mathrm{S}(=0)^{13 \mathrm{a}},-\mathrm{SO}_{2} \mathrm{~N}^{\left(R^{13}\right)} 2$,
$-\mathrm{N}\left(\mathrm{R}^{13}\right)_{2},-\mathrm{NHC}(=\mathrm{NH}) \mathrm{NHR}^{13},-\mathrm{C}(=\mathrm{NH}) \mathrm{NHR}^{13}$,
$=\mathrm{NOR}^{13}, \mathrm{NO}_{2},-\mathrm{C}(=0) \mathrm{NHOR}^{13}$,

$$
\begin{aligned}
& -\mathrm{C}(=0) \mathrm{NHNR}^{13} \mathrm{R}^{13 \mathrm{a}},=\mathrm{NOR}^{13},-\mathrm{B}\left(\mathrm{R}^{34}\right)\left(\mathrm{R}^{35}\right), \\
& -\mathrm{OCH} 2 \mathrm{CO}_{2} \mathrm{H}, 2-(1 \text {-morpholino }) \text { ethoxy, } \\
& -\mathrm{SC}(=\mathrm{NH}) \mathrm{NHR}^{13}, \mathrm{~N}_{3},-\mathrm{Si}\left(\mathrm{CH}_{3}\right) 3,\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right. \\
& \mathrm{alkyl}) \mathrm{NHR}^{16} ;
\end{aligned}
$$

5

10
$-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right.$ alkyl) X ;

$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}} \mathrm{S}(\mathrm{O})_{\mathrm{p}^{\prime}}\left(\mathrm{CH}_{2}\right) 2 \mathrm{X}$, where $\mathrm{m}=1,2$ and $p^{\prime}=0-2$;
wherein X is defined below; and R^{3} and R^{4} may also be taken together to form $\frac{\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{X}}{-\mathrm{CH}_{2} \mathrm{CHCH}_{2}-\text {, where }}$
$\mathrm{n}=0,1$ and X is $-\mathrm{NH}-\mathrm{C}_{\mathrm{N}\left(\mathrm{R}^{13}\right) \mathrm{R}^{1:} ; ~ ; ~}^{\text {NR }}$

$$
\begin{aligned}
& R^{3} \text { and } R^{5} \text { can alternatively be taken together } \\
& \text { to form }-\left(\mathrm{CH}_{2}\right)_{t} \text { or }-\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})_{p^{\prime}}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2^{-}}, \\
& \text {where } t=2-4 \text { and } p^{\prime}=0-2 \text {; or }
\end{aligned}
$$

R^{4} and R^{5} can alternatively be taken together to form $-\left(\mathrm{CH}_{2}\right)_{u-}$, where $u=2-5$;

```
R16 is selected from:
    an amine protecting group;
    1-2 amino acids;
    1-2 amino acids substituted with an amine
    protecting group;
```

```
\(\mathbf{K}\) is a D-isomer or L -isomer amino acid of
    structure
            \(-\mathrm{N}\left(\mathrm{R}^{6}\right) \mathrm{CH}\left(\mathrm{R}^{7}\right) \mathrm{C}(=0)-\), wherein:
```

 \(\mathrm{R}^{6}\) is H or \(\mathrm{C}_{1}-\mathrm{C}_{8}\) alkyl;
 \(R^{7}\) is selected from:
 \(-\left(C_{1}-C_{7}\right.\) alkyl)X;
 \(-\left(\mathrm{CH}_{2}\right)\)
 each \(q\) is independently \(0-2\) and
 substitution on the phenyl is at the 3 or
 4 position;
 \(-\left(\mathrm{CH}_{2}\right)\)
 is independently \(0-2\) and substitution on
 the cyclonexyl is at the 3 or 4 position;
 \(-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right.\) alkyl)
 -421-
 $-\left(\mathrm{CH}_{2}\right)_{\mathrm{mO}} \mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-X, where $\mathrm{m}=1$ or 2;
X is selected from:

$-\mathrm{C}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right) ;-\mathrm{SC}(=\mathrm{NH})-\mathrm{NH}_{2} ;-\mathrm{NH}-$
$\mathrm{C}(=\mathrm{NH})(\mathrm{NHCN}) ;-\mathrm{NH}-\mathrm{C}(=\mathrm{NCN})\left(\mathrm{NH}_{2}\right)$;
$-\mathrm{NH}-\mathrm{C}\left(=\mathrm{N}-\mathrm{OR}^{13}\right)\left(\mathrm{NH}_{2}\right)$;
R^{6} and R^{7} can alternatively be taken
together to form

$\mathrm{n}=0$ or 1 and X is $-\mathrm{NH}_{2}$ or

25
I is $-\mathrm{Y}\left(\mathrm{CH}_{2}\right) \mathrm{vC}(=0)-$, wherein:

$$
-422-
$$

```
\(Y\) is \(N H, N\left(C_{1}-C_{3}\right.\) alkyl), \(O\), or \(S\); and \(v=1\)
    or 2;
```

M is a D-isomer or L-isomer amino acid of structure

$$
\begin{gathered}
-\mathrm{NR}^{17}-\mathrm{CH}-\mathrm{C}(=\mathrm{O})- \\
\left(\mathrm{CH}\left(\mathrm{R}^{4}\right)\right)_{\mathrm{q}}, \\
\mathrm{R}^{8}
\end{gathered}
$$

wherein:

$$
q^{\prime} \text { is } 0-2 \text {; }
$$

R^{17} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
R^{8} is selected from:
$-\mathrm{CO}_{2} \mathrm{R}^{13},-\mathrm{SO}_{3} \mathrm{R}^{13},-\mathrm{SO}_{2} \mathrm{NHR}^{14},-\mathrm{B}\left(\mathrm{R}^{34}\right)\left(\mathrm{R}^{35}\right)$,
$-\mathrm{NHSO}_{2} \mathrm{CF}_{3},-\mathrm{CONHNHSO} \mathrm{CF}_{3},-\mathrm{PO}\left(\mathrm{OR}^{13}\right)_{2}$,
-PO(OR $\left.{ }^{13}\right) \mathrm{R}^{13},-\mathrm{SO}_{2} \mathrm{NH}-h e t e r o a r y l ~(s a i d$
heteroaryl being 5-10-membered and having
1-4 heteroatoms selected independently from N, S, or O$),-\mathrm{SO}_{2} \mathrm{NH}$-heteroaryl
(said heteroaryl being 5-10-membered and
having 1-4 heteroatoms selected
independently from N, S, or O),
$-\mathrm{SO}_{2} \mathrm{NHCOR}^{13},-\mathrm{CONHSO} \mathrm{R}_{2}{ }^{13 \mathrm{a}}$,
$-\mathrm{CH}_{2} \mathrm{CONHSO} \mathrm{C}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{NHSO}_{2} \mathrm{NHCOR}^{13 \mathrm{a}}$, $-\mathrm{NHCONHSO} \mathrm{O}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{2} \mathrm{NHCONHR}^{13}$;
R^{34} and R^{35} are independently selected from:
-OH ,

- F ,
$-N\left(R^{13}\right)_{2}$, or
$\mathrm{C}_{1}-\mathrm{C}_{8}$-alkoxy;
R^{34} and R^{35} can alternatively be taken
together form:
a cyclic boron ester where said chain or
ring contains from 2 to 20 carbon atoms
and, optionally, 1-4 heteroatoms
independently selected from N, S, or 0 ;
a divalent cyclic boron amide where said
chain or ring contains from 2 to 20
carbon atoms and, optionally, 1-4
heteroatoms independently selected from
N, S, or O ;
a cyclic boron amide-ester where said
chain or ring contains from 2 to 20
carbon atoms and, optionally, 1-4
heteroatoms independently selected from
N, S, or O; and
wherein the radiolabel is selected from the
group: $123 \mathrm{I}, 125 \mathrm{I}, 131_{\mathrm{I}}, 18_{\mathrm{F}},{ }^{11} \mathrm{C}, 13_{\mathrm{N}}$,
$150,75 \mathrm{Br}$.
52. A radiolabeled compound of Claim 51, wherein:
R^{31} is bonded to $\left(C\left(R^{23}\right) R^{22}\right)_{n "}$ and
$\left(C\left(R^{2 l}\right) R^{1}\right)_{n}$ at 2 different atoms on said
carbocyclic ring.

53. A radiolabeled compound of Claim 51, wherein:
```
    n' is 0 and n' is 0;
    n' is 0 and n' is I;
```

$$
\begin{aligned}
& n^{\prime \prime} \text { is } 0 \text { and } n^{\prime} \text { is } 2 ; \\
& n^{\prime \prime} \text { is } 1 \text { and } n^{\prime} \text { is } 0 ; \\
& n^{\prime \prime} \text { is } 1 \text { and } n^{\prime} \text { is } 1 ; \\
& n^{\prime \prime} \text { is } 1 \text { and } n^{\prime} \text { is } 2 ; \\
& n^{\prime \prime} \text { is } 2 \text { and } n^{\prime} \text { is } 0 ; \\
& n^{\prime \prime} \text { is } 2 \text { and } n^{\prime} \text { is } 1 \text {; or } \\
& n^{\prime \prime} \text { is } 2 \text { and } n^{\prime} \text { is } 2 \text {. }
\end{aligned}
$$

54. A radiolabeled compound of Claim 51 wherein R^{6} is methyl, ethyl, or propyl.
55. A radiolabeled compound of Claim 51, wherein: R^{31} is selected from the group consisting of:
(a) a 6 membered saturated, partially saturated or aromatic carbocyclic ring substituted with $0-3 R^{10}$ or $R^{10 a}$;
(b) a 8-11 membered saturated, partially saturated, or aromatic fused bicyclic carbocyclic ring substituted with $0-4 R^{10}$ or $\mathrm{R}^{10 a}$; or
(c) a 14 membered saturated, partially saturated, or aromatic fused tricyclic carbocyclic ring substituted with 0-4 R^{10} or $R^{10 a}$.
56. A radiolabeled compound of Claim 51, wherein:

R31 is selected from the group consisting of:
-425-
(a) a 6 membered saturated, partially saturated, or aromatic carbocyclic ring of formula:

5

10

25

wherein any of the bonds forming the carbocyclic ring may be a single or double bond,
and wherein said carbocyclic ring is substituted independently with 0-4 R^{10};
(b) a 10 membered saturated, partially saturated, or aromatic bicyclic carbocyclic ring of formula:

, wherein any of the bonds forming the carbocyclic ring may be a single or double bond,
and wherein said carbocyclic ring is substituted independently with 0-4 R^{10} or $\mathrm{R}^{10 \mathrm{a}}$;
(c) a 9 membered saturated, partially saturated, or aromatic bicyclic carbocyclic ring of formula:

wherein any of the bonds forming the carbocyclic ring may be a single or double bond,
and wherein said carbocyclic ring is substituted independently with 0-4 R^{10} or $R^{10 a}$.
57. A radiolabeled compound of Claim 51, wherein:

```
R31 is selected from (the dashed bond may be a
            single or double bond):
```

15


```
        n" is 0 or 1; and
        n' is 0-2.
\(n^{\prime \prime}\) is 0 or 1 ; and
\(n^{\prime}\) is \(0-2\).
```

59. A radiolabeled compound of Claim 51, wherein:
R^{31} is selected from:

$$
\begin{aligned}
& \text { wherein } R^{31} \text { may be substituted } \\
& \text { independently with } 0-3 R^{10} \text { or } R^{10 a} \text {; }
\end{aligned}
$$

$$
\mathrm{R}^{32} \text { is }-\mathrm{C}(=0)-\text {; }
$$

$$
n^{\prime \prime} \text { is } 0 \text { or } 1 \text {; }
$$

$$
n^{\prime} \text { is } 0-2 \text {; }
$$

$$
\begin{gathered}
R^{1} \text { and } R^{22} \text { are independently selected from } H, \\
C_{1}-C_{4} \text { alkyl, phenyl, benzyl, } \\
\text { phenyl-(} \left.C_{2}-C_{4}\right) \text { alkyl, } C_{1}-C_{4} \text { alkoxy; }
\end{gathered}
$$

R^{21} and R^{23} are independently H or $C_{1}-C_{4}$ alkyl;

30
R^{2} is H or $C_{1}-C_{8}$ alkyl;
R^{13} is selected independently from: $H, C_{1}-C_{10}$
alkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl, $\mathrm{C}_{4}-\mathrm{C}_{12}$
alkylcycloalkyl, aryl, -(C1-C10
alkyl)aryl, or $C_{3}-C_{10}$ alkoxyalkyl;
$R^{13 a}$ is $C_{1}-C_{10}$ alkyl, $C_{3}-C_{10}$ cycloalkyl,
$C_{4}-C_{12}$ alkylcycloalkyl, aryl, - $\left(C_{1}-C_{10}\right.$
alkyl)aryl, or $\mathrm{C}_{3}-\mathrm{C}_{10}$ alkoxyalkyl;
when two R^{13} groups are bonded to a
single N, said R^{13} groups may
alternatively be taken together to form
- $\left(\mathrm{CH}_{2}\right)_{2-5}$ - or $-\left(\mathrm{CH}_{2}\right) \mathrm{O}\left(\mathrm{CH}_{2}\right)$-;
R^{14} is $\mathrm{OH}, \mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, or benzyl;
R^{10} and $R^{10 a}$ are selected independently from:
$\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{8}$ alkyl, phenyl, halogen, or $\mathrm{C}_{1}-\mathrm{C}_{4}$
alkoxy;
$J \quad$ is β-Ala or an L-isomer or D-isomer amino
acid of structure
$-N\left(R^{3}\right) C\left(R^{4}\right)\left(R^{5}\right) C(=0)-$, wherein:
R^{3} is H or CH_{3};
R^{4} is H or $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
R^{5} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{8}$ alkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{3}-$
C_{6} cycloalkylmethyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$
cycloalkylethyl, phenyl, phenylmethyl,
$\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{SH}, \mathrm{CH}_{2} \mathrm{OCH}_{3}, \mathrm{CH}_{2} \mathrm{SCH}_{3}$,
-430-

$$
\begin{aligned}
& \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}, \quad\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{2} \text {, } \\
& -\left(\mathrm{CH}_{2}\right)_{s} \mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right),-\left(\mathrm{CH}_{2}\right)_{\mathrm{N}^{2}} \mathrm{NHR}^{16} \text {, where } \\
& s=3-5 \text {; or }
\end{aligned}
$$

R^{6} is H or $C_{1}-C_{8}$ alkyl;
$R^{7} \quad$ is

0 or 1;
$-\left(\mathrm{CH}_{2}\right) r \mathrm{X}$, where $\mathrm{r}=3-6$;

$-\left(\mathrm{C}_{3}-\mathrm{C}_{7}\right.$ alkyl)-NH-(C1-C6 alkyl)

$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-NH-($\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl), where $m=1$ or 2;
$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}-\mathrm{S}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-NH-($\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl), where $m=1$ or 2 ; and

$$
\mathrm{X} \text { is }-\mathrm{NH}_{2} \text { or }-\mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right) \text {; or }
$$

R^{6} and R^{7} can alternatively be taken together to form
$\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}$
$-\mathrm{CH}_{2} \mathrm{CHCH}_{2}{ }^{-}$, where $\mathrm{n}=0$ or 1
and X is $-\mathrm{NH}_{2}$ or $-\mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right)$;

I is $-\mathrm{Y}\left(\mathrm{CH}_{2}\right) \vee \mathrm{VC}(=0)$-, wherein:

Y is NH, O, or S ; and $\mathrm{v}=1$ or 2;
M is a D-isomer or L-isomer amino acid of structure

$$
\begin{gathered}
-\mathrm{NR}^{17}-\mathrm{CH}-\mathrm{C}(=\mathrm{O})- \\
\mathrm{I}^{\left(\mathrm{CH}\left(\mathrm{R}^{4}\right)\right)_{\mathrm{q}^{\prime}}} \\
\mathrm{R}^{8}
\end{gathered}
$$

wherein:
q^{\prime} is $0-2 ;$

5
R^{17} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
R^{8} is selected from:
$-\mathrm{CO}_{2} \mathrm{R}^{13},-\mathrm{SO}_{3} \mathrm{R}^{13},-\mathrm{SO}_{2} \mathrm{NHR}^{14},-\mathrm{B}\left(\mathrm{R}^{34}\right)\left(\mathrm{R}^{35}\right)$,
$-\mathrm{NHSO}_{2} \mathrm{CF}_{3},-\mathrm{CONHNHSO} 2 \mathrm{CF}_{3},-\mathrm{PO}\left(\mathrm{OR}^{13}\right)_{2}$, $-\mathrm{FO}\left(\mathrm{OR}^{13}\right) \mathrm{R}^{13},-\mathrm{SO}_{2} \mathrm{NH}-h e t e r o a r y l ~(s a i d$ heteroaryl being 5-10-membered and having 1-4 heteroatoms selected independently from N, S, or O) , $-\mathrm{SO}_{2} \mathrm{NH}$-heteroaryl (said heteroaryl being 5-10-membered and having 1-4 heteroatoms selected independently from N, S, or 0), $-\mathrm{SO}_{2} \mathrm{NHCOR}^{13},-\mathrm{CONHSO} \mathrm{R}^{13}{ }^{13}$, $-\mathrm{CH}_{2} \mathrm{CONHSO} \mathrm{O}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{NHSO}_{2} \mathrm{NHCOR}^{13 \mathrm{a}}$, $-\mathrm{NHCONHSO}_{2} \mathrm{R}^{13 \mathrm{a}},-\mathrm{SO}_{2} \mathrm{NHCONHR}^{13}$.
60. A radiolabeled compound of Claim 51 that is a radiolabeled 1,3-disubstituted phenyl the formula (II):

(II)
the shown phenyl ring in formula (II) may
be further substituted with 0-3 R^{10};
R^{10} is selected independently from: $H, C_{1}-\mathrm{C}_{8}$
alkyl, phenyl, halogen, or $C_{1}-C_{4}$ alkoxy;
R^{1} is $H, C_{1}-C_{4}$ alkyl, phenyl, benzyl, or phenyl-($\left.\mathrm{C}_{1}-\quad \mathrm{C}_{4}\right)$ alkyl;

```
R2 is H or methyl;
```

R^{13} is selected independently from: $H, C_{1}-C_{10}$
alkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl, $\mathrm{C}_{4}-\mathrm{C}_{12}$
alkylcycloalkyl, aryl, -(C1-C10
alkyl)aryl, or $C_{3}-C_{10}$ alkoxyalkyl;
$R^{13 a}$ is $C_{1}-C_{10}$ alkyl, $C_{3}-C_{10}$ cycloalkyl,
$\mathrm{C}_{4}-\mathrm{C}_{12}$ alkylcycloalkyl, aryl, -(C)-C10
alkyl)aryl, or $\mathrm{C}_{3}-\mathrm{C}_{1} 0$ alkoxyalkyl;
when two R^{13} groups are bonded to a
single N, said R^{13} groups may
alternatively be taken together to form
$-\left(\mathrm{CH}_{2}\right)_{2-5}$ - or $-\left(\mathrm{CH}_{2}\right) \mathrm{O}\left(\mathrm{CH}_{2}\right)$-;
-434-

```
    R14 is OH, H, C1-C4 alkyl, or benzyl;
    J is \beta-Ala or an L-isomer or D-isomer amino
        acid of structure
        -N(R3)C(R4)}(\mp@subsup{R}{}{5})C(=0)-, wherein
    R}\mp@subsup{}{}{3}\mathrm{ is H or CH3;
R4 is H or Cl - C3 alkyl;
R5 is H, Cl-C8 alkyl, C3-C6 cycloalkyl, C3-
        C6 cycloalkylmethyl, C1-C6
        cycloalkylethyl, phenyl, phenylmethyl,
        CH2OH, CH2SH, CH2OCH3, CH2SCH3,
        CH2CH2SCH3, (CH2) sNH2,
        -(\mp@subsup{\textrm{CH}}{2}{})\mp@subsup{)}{S}{}\textrm{NHC}(=\textrm{NH})(\mp@subsup{\textrm{NH}}{2}{}),-(\mp@subsup{\textrm{CH}}{2}{})\mp@subsup{)}{S}{}\mp@subsup{\textrm{NHR}}{}{16}\mathrm{ , where}
        s = 3-5; or
    R16 is selected from:
        an amine protecting group;
        1-2 amino acids; or
        1-2 amino acids substituted with an amine
        protecting group;
2 5
    R}\mp@subsup{}{}{3}\mathrm{ and }\mp@subsup{R}{}{5}\mathrm{ can alternatively be taken together
        to form - - +H2CH2CH2-; or
        R4}\mathrm{ and R}\mp@subsup{R}{}{5}\mathrm{ can alternatively be taken
        together to form - (CH2)u-, where u = 2-5;
30
    K is an L-isomer amino acid of structure
    R6}\mathrm{ is H or C1-C8 alkyl;
        -435-
```

R^{7} is:

$-\left(\mathrm{CH}_{2}\right)_{\mathrm{q}}$
0 or $1 ;$
$-\left(\mathrm{CH}_{2}\right)_{r} \mathrm{X}$, where $\mathrm{r}=3-6$;

$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}\left(\mathrm{CH}_{2}\right) 2 \mathrm{X}$, where $\mathrm{m}=1$ or 2 ;
$-\left(C_{3}-C_{7}\right.$ alkyl)-NH-($C_{1}-C_{6}$ alkyl)
$-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)
$-\left(\mathrm{CH}_{2}\right) \mathrm{m}-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-NH-($\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl), where $m=1$ or 2 ;
$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m}}-\mathrm{S}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl)-NH-($\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl), where $m=1$ or 2 ; and

X is $-\mathrm{NH}_{2}$ or $-\mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right)$, provided that X
is not $-\mathrm{NH}_{2}$ when $r=4$; or

```
\(R^{6}\) and \(R 7\) are alternatively be taken together
        to form
                    \(\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}\)
                1
            \(-\mathrm{CH}_{2} \mathrm{CHCH}_{2}{ }^{-}\), where \(\mathrm{n}=0,1\) and X
        is \(-\mathrm{NH}_{2}\) or \(-\mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right)\);
```

I is $-Y\left(\mathrm{CH}_{2}\right) v \mathrm{C}(=0)-$, wherein:
Y is $N H, O$, or S; and $v=1,2$;
10
wherein:
q^{\prime} is $0-2 ;$
R^{17} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
20
M is a D-isomer or L-isomer amino acid of
structure

$$
\begin{gathered}
-\mathrm{NR}^{17}-\mathrm{CH}-\mathrm{C}(=\mathrm{O})- \\
\left.\int_{R^{8}}^{1} \mathrm{CH}\left(\mathrm{R}^{4}\right)\right)_{q^{\prime}} \\
\mathrm{R}^{8}
\end{gathered}
$$

wherein:
q^{\prime} is $0-2 ;$
R^{17} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
R^{8} is selected from:
$-\mathrm{CO}_{2} \mathrm{R}^{13},-\mathrm{SO}_{3} \mathrm{R}^{13},-\mathrm{SO}_{2} \mathrm{NHR}^{14},-\mathrm{B}\left(\mathrm{R}^{34}\right)\left(\mathrm{R}^{35}\right)$,
$-\mathrm{NHSO}_{2} \mathrm{CF}_{3},-\mathrm{CONHNHSO} 2 \mathrm{CF}_{3},-\mathrm{PO}\left(\mathrm{OR}^{13}\right)_{2}$,
$-\mathrm{PO}\left(\mathrm{OR}^{13}\right) \mathrm{R}^{13},-\mathrm{SO}_{2} \mathrm{NH}$-heteroaryl (said
heteroaryl being 5-10-membered and having
1-4 heteroatoms selected independently
from N, S, or O$),-\mathrm{SO}_{2} \mathrm{NH}$-heteroaryl
(said heteroaryl being 5-10-membered and
having $1-4$ heteroatoms selected
independently from N, S, or 0),

```
-SO2NHCOR 13, -CONHSO2R2
-CH2CONHSO2R13a, -NHSO2NHCOR 13a,
-NHCONHSO2R2
```

61. A radiolabeled compound of Claim 51 that is a radiolabeled 1,3-disubstituted phenyl of the formula (II):

wherein:
the phenyl ring in formula (II) may be further substituted with $0-3 \mathrm{R}^{10}$ or $\mathrm{R}^{10 a}$;
R^{1} is $H, C_{1}-C_{4}$ alkyl, phenyl, benzyl, or phenyl-
($\mathrm{C}_{2}-\mathrm{C}_{4}$) alkyl;
R^{2} is H or methyl;
R13 is selected independently from: $H, C_{1}-C_{10}$
alkyl, $\mathrm{C}_{3}-\mathrm{C}_{10}$ cycloalkyl, $\mathrm{C}_{4}-\mathrm{C}_{12}$
alkylcycloalkyl, aryl, -(C1-C10 alkyl)aryl, or
C3-C10 alkoxyalkyl;

$$
-438-
$$

when two R^{13} groups are bonded to a single N, said R^{13} groups may alternatively be taken together to form - $\left(\mathrm{CH}_{2}\right)_{2-5}$ or $-\left(\mathrm{CH}_{2}\right) \mathrm{O}\left(\mathrm{CH}_{2}\right)$-;
$R^{13 a}$ is $C_{1}-C_{10}$ alkyl, $C_{3}-C_{10}$ cycloalkyl, $\mathrm{C}_{4}-\mathrm{C}_{12}$ alkylcycloalkyl, aryl, -(C1-C10 alkyl)aryl, or $\mathrm{C}_{3}-\mathrm{C}_{1} 0$ alkoxyalkyl;

R14 is $\mathrm{OH}, \mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, or benzyl;
$J \quad$ is β-Ala or an L-isomer or D-isomer amino acid of structure $-N\left(R^{3}\right) C\left(R^{4}\right)\left(R^{5}\right) C(=0)-$, wherein:
R^{3} is H or CH_{3};
R^{4} is H ;
R^{5} is $H, C_{1}-C_{8}$ alkyl, $C_{3}-\mathrm{C}_{6}$ cycloalkyl, $\mathrm{C}_{3}-\mathrm{C}_{6}$ cycloalkylmethyl, $\mathrm{C}_{1}-\mathrm{C}_{6}$ cycloalkylethyl, phenyl, phenylmethyl, $\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{SH}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$, $\mathrm{CH}_{2} \mathrm{SCH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3},\left(\mathrm{CH}_{2}\right){ }_{5} \mathrm{NH}_{2}$, $\left(\mathrm{CH}_{2}\right){ }_{s} \mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right),\left(\mathrm{CH}_{2}\right){ }_{s} \mathrm{R}^{16}$, where $\mathrm{s}=3-5$;
R^{3} and R^{5} can alternatively be taken together to form $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$;
R^{16} is selected from:
an amine protecting group;
1-2 amino acids;
1-2 amino acids substituted with an amine protecting group;
\mathbf{K} is an L-isomer amino acid of structure

$$
\begin{aligned}
& -N\left(R^{6}\right) C H\left(R^{7}\right) C(=0)-\text {, wherein: } \\
& R^{6} \text { is } H \text { or } C_{3}-C_{8} \text { alkyl; } \\
& R^{7} \text { is } \\
& -\left(\mathrm{C}_{4}-\mathrm{C}_{7} \text { alkyl)-NH-(C } \mathrm{C}_{1}-\mathrm{C}_{6} \text { alkyl }\right)
\end{aligned}
$$

 I is -YCH2C(=O)-, wherein:
    ```
```

```
                    X is -NH2 or -NHC (=NH) (NH2), provided that X is
```

```
                    X is -NH2 or -NHC (=NH) (NH2), provided that X is
                not -NH2 when r = 4; or
```

 not -NH2 when r = 4; or
    ```
```

 Y is NH or O;
 M is a D-isomer or L-isomer amino acid of structure
 -NR NTM-CH-C(=O)--
 q' is 1;
 R17 is H, Cl}-\mp@subsup{C}{3}{\prime}\mathrm{ alkyl;
 R8 is selected from:
 -CO2H}\mathrm{ or - SO}3\mp@subsup{R}{}{13}
 62. A radiolabeled compound of Claim 51 that is a
 radiolabeled compound of formula (II) above,
 wherein:
 the phenyl ring in formula (II) may be further
 substituted with 0-2 R R
 R10}\mathrm{ or R Rl0a are selected independently from: H, C1-
 C8 alkyl, phenyl, halogen, or C C - C C4 alkoxy;
 R1 is H;
 R2 is H;
    ```
        -441-
```

R13 is selected independently from: H, C1-C10
alkyl, C3-C10 cycloalkyl, C4-C12
alkylcycloalkyl, aryl, -(C1-C10 alkyl)aryl, or
C3-C10 alkoxyalkyl;
R13a is C1-C10 alkyl, C3-C10 cycloalkyl, C4-C12
alkylcycloalkyl, aryl, -(C1-C10 alkyl)aryl, or
C3-C10 alkoxyalkyl;

```
10
    when two \(R^{13}\) groups are bonded to a single \(N\),
        said R \({ }^{13}\) groups may alternatively be taken
        together to form - \(\left(\mathrm{CH}_{2}\right)_{2-5}\) - or \(-\left(\mathrm{CH}_{2}\right) \mathrm{O}\left(\mathrm{CH}_{2}\right)-\);
    \(R^{14}\) is \(\mathrm{OH}, \mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{4}\) alkyl, or benzyl;
    \(\boldsymbol{J} \quad\) is \(\beta\)-Ala or an \(L\)-isomer or \(D\)-isomer amino acid
    of formula \(-N\left(R^{3}\right) C H\left(R^{5}\right) C(=0)-\), wherein:
\(R^{3}\) is \(H\) and \(R^{5}\) is \(\mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) 2\),
    \(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\),
    \(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) 2,\left(\mathrm{CH}_{2}\right){ }_{4} \mathrm{NH}_{2},\left(\mathrm{C}_{3}-\mathrm{C}_{5}\right.\)
    alkyl) NHR \({ }^{16 ;}\)
    or
    \(\mathrm{R}^{3}\) is \(\mathrm{CH}_{3}\) and \(\mathrm{R}^{5}\) is H ; or
    \(R^{3}\) and \(R^{5}\) can alternatively be taken together to
    form \(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\);
\(R^{16}\) is selected from:
    an amine protecting group;
    1-2 amino acids;
-442-

1-2 amino acids substituted with an amine protecting group;

K is an \(L\)-isomer amino acid of formula \(-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{R}^{7}\right) \mathrm{C}(=0)-\), wherein:
\(\mathrm{R}^{7}\) is \(-\left(\mathrm{CH}_{2}\right) 3 \mathrm{NHC}(=\mathrm{NH})\left(\mathrm{NH}_{2}\right)\);

I is \(-\mathrm{NHCH}_{2} \mathrm{C}(=\mathrm{O})\)-; and
\(M\) is a D-isomer or \(L\)-isomer amino acid of structure

\(q^{\prime}\) is \(1 ;\)
\(\mathrm{R}^{4}\) is H or \(\mathrm{CH}_{3}\);
\(\mathrm{R}^{17}\) is H ;
\(R^{8}\) is
\(-\mathrm{CO}_{2} \mathrm{H}\);
\(-\mathrm{SO}_{3} \mathrm{H}\).
63. A radiolabeled compound of Claim 51 that is a radiolabeled compound of formula (II), or a pharmaceutically acceptable salt thereof, wherein:
\(R^{1}\) and \(R^{2}\) are independently selected from \(H\), methyl;
> \(\boldsymbol{J}\) is selected from D-Val, D-2-aminobutyric acid, DLeu, D-Ala, Gly, D-Pro, D-Ser, D-Lys, ßAla, Pro, Phe, NMeGly, D-Nle, D-Phg, D-Ile, D-Phe, D-Tyr, Ala, \(N^{\varepsilon}-p-a z i d o b e n z o y l-D-L y s, ~ N^{\varepsilon}-p-\) benzoylbenzoyl-D-Lys, \(\mathrm{N}^{\varepsilon}\)-tryptophanyl-D-Lys, \(N^{\varepsilon}\)-o-benzylbenzoyl-D-Iys, \(N^{\varepsilon}\)-p-acetylbenzoyl-D-Lys, \(N^{\varepsilon_{-}}\)dansyl-D-Lys, \(N^{\varepsilon_{-}}\)-glycyl-D-Lys, \(N^{\varepsilon_{-}}\) glycyl-p-benzoylbenzoyl-D-Lys, \(N^{\varepsilon}-p-\) phenylbenzoyl-D-Lys, \(N^{\varepsilon}-m-\) benzoylbenzoyl-DLys, \(N^{\varepsilon}\)-o-benzoylbenzoyl-D-Lys;

> K is selected from NMeArg, Arg;

> L is selected from Gly, ßAla, Ala;
> \(M\) is selected from Asp; aleAsp; ßMeAsp; NMeAsp; DAsp.
64. A radiolabeled compound of Claim 51 that is a radiolabeled compound of formula (II), or a pharmaceutically acceptable salt thereof, wherein:
\(R^{1}\) and \(R^{2}\) are independently selected from \(H\), methyl;
\(J\) is selected from: D-Val, D-2-aminobutyric acid, D-Leu, D-Ala, Gly, D-Pro, D-Ser, D-Lys, ßAla, Pro, Phe, NMeGly, D-Nle, D-Phg, D-Ile, D-Phe, D-Tyr, Ala;

K is selected from NMeArg;
```

 L is Gly;
 M is selected from Asp; MeAsp; \betaMeAsp; NMeAsp;
 D-Asp.
 65. The radiolabeled compounds of Claim 51 that are:
 the radiolabeled compound of formula (II)
 wherein Rl and R2 are H; J is D-Val; K is
 NMeArg; L is Gly; and M is Asp;
 the radiolabeled compound of formula (II)
 wherein R}\mp@subsup{R}{}{1}\mathrm{ and R}\mp@subsup{R}{}{2}\mathrm{ are H; J is D-2-aminobutyric
 acid; K is NMeArg; L is Gly; and M is Asp;
 the radiolabeled compound of formula (II)
 wherein R1 and R}\mp@subsup{R}{}{2}\mathrm{ are H; J is D-Leu; K is
 NMeArg; L is Gly; and M is Asp;
 the radiolabeled compound of formula (II)
 wherein Rl and R2 are H; J is D-Ala; K is
 NMeArg; L is Gly; and M is Asp;
 the radiolabeled compound of formula (II)
 wherein R1 and R}\mp@subsup{R}{}{2}\mathrm{ are H; J is Gly; K is
 NMeArg; L is Gly; and M is Asp;
 the radiolabeled compound of formula (II)
 wherein }\mp@subsup{R}{}{1}\mathrm{ and }\mp@subsup{R}{}{2}\mathrm{ are H; J is D-Pro; K is
 NMeArg; L is Gly; and M is Asp;
    ```
the radiolabeled compound of formula (II) wherein \(R^{1}\) and \(R^{2}\) are \(H\); \(J\) is \(D\)-Lys; \(K\) is NMeArg; \(L\) is Gly; and \(M\) is Asp;
the radiolabeled compound of formula (II) wherein \(R^{1}\) and \(R^{2}\) are \(H\); \(J\) is \(\beta-A l a ; ~ K\) is NMeArg; \(L\) is Gly; and \(M\) is Asp;
the radiolabeled compound of formula (II) wherein \(R^{1}\) and \(R^{2}\) are \(H\); \(J\) is NMeGly; \(K\) is NMeArg; \(L\) is Gly; and \(M\) is Asp;
the radiolabeled compound of formula (II) wherein \(R^{1}\) is methyl (isomer 1); \(R^{2}\) are \(H\); J is D-Val; \(K\) is NMeArg; \(L\) is Gly; and \(M\) is Asp;
the radiolabeled compound of formula (II)
wherein \(R^{1}\) is methyl (isomer 2); \(R^{2}\) are \(H ; J\) is D-Val; K is NMeArg; L is Gly; and M is Asp;
```

the radiolabeled compound of formula (II)
wherein J = D-Abu, K = diNMe-Lys, L = Gly, M =
Asp, R1 = H, R}\mp@subsup{}{}{2}=H\mathrm{ ;
the radiolabeled compound of formula (II)
wherein R1 and R2 are H; J is NE-p-
azidobenzoyl-D-Lysine; K is NMeArg; L is Gly;
and M is Asp;
the radiolabeled compound of formula (II)
wherein R1 and R}\mp@subsup{R}{}{2}\mathrm{ are H; J is N}\mp@subsup{N}{}{\varepsilon-p-
benzoylbenzoyl-D-Lysine; K is NMeArg; L is
Gly; and M is Asp;
the radiolabeled compound of formula (II)
wherein R}\mp@subsup{R}{}{1}\mathrm{ and }\mp@subsup{R}{}{2}\mathrm{ are H; J is NE-tryptophanyl-
D-Lysine; K is NMeArg; L is Gly; and M is Asp;
the radiolabeled compound of formula (II)
wherein R R
benzylbenzoyl-D-Lysine; K is NMeArg; L is Gly;
and M is Asp.
The radiolabeled compound of formula (II)
wherein }\mp@subsup{R}{}{1}\mathrm{ and }\mp@subsup{R}{}{2}\mathrm{ are H; J is N N
acetylbenzoyl-D-Lysine; K is NMeArg; L is Gly;
and M is Asp;
the radiolabeled compound of formula (II)
wherein }\mp@subsup{R}{}{1}\mathrm{ and }\mp@subsup{R}{}{2}\mathrm{ are H; J is NE-dansyl-D-
Lysine; K is NMeArg; L is Gly; and M is Asp;

```
```

 the radiolabeled compound of formula (II)
 wherein R R
 Lysine; K is NMeArg; L is Gly; and M is Asp;
 the radiolabeled compound of formula (II)
 wherein R}\mp@subsup{R}{}{1}\mathrm{ and }\mp@subsup{R}{}{2}\mathrm{ are H; J is N&-glycyl-p-
 benzoylbenzoyl-D-Lysine; K is NMeArg; L is
 Gly; and M is Asp;
 the radiolabeled compound of formula (II)
 wherein R R
 phenylbenzoyl-D-Lysine; K is NMeArg; L is Gly;
 and M is Asp;
 the radiolabeled compound of formula (II)
 wherein }\mp@subsup{R}{}{1}\mathrm{ and }\mp@subsup{R}{}{2}\mathrm{ are H; J is N N-m-
 benzoylbenzoyl-D-Lysine; K is NMeArg; L is
 Gly; and M is Asp;
 the radiolabeled compound of formula (II)
 wherein R R
 benzoylbenzoyl-D-Lysine; K is NMeArg; L is
 Gly; and M is Asp;
the radiolabeled compound of formula (III)
wherein Rl and R2 are H; J is D-Val; K is
NMeArg; L is Gly; and M is Asp;

```

(III);

20
the radiolabeled compound of formula (II) wherein \(R^{1}\) and \(R^{2}\) are \(H\); \(J\) is \(D-V a l ; ~ K\) is \(D-\) NMeArg; L is Gly; and \(M\) is Asp;
the radiolabeled compound of formula (II) wherein \(R^{1}\) and \(R^{2}\) are \(H\); \(J\) is \(D-N l e ; ~ K\) is NMeArg; \(L\) is Gly; and \(M\) is Asp;
the radiolabeled compound of formula (II) wherein \(R^{1}\) and \(R^{2}\) are \(H\); \(J\) is \(D-\) Phg; \(K\) is NMeArg; \(L\) is Gly; and \(M\) is Asp;
the radiolabeled compound of formula (II) wherein \(R^{1}\) and \(R^{2}\) are \(H\); \(J\) is \(D\)-Phe; \(K\) is NMeArg; \(L\) is Gly; and \(M\) is Asp;
the radiolabeled compound of formula (V) wherein \(R^{1}\) and \(R^{2}\) are \(H\); \(J\) is D-Ile; \(K\) is NMeArg; L is Gly; and \(M\) is Asp;

(V);
the radiolabeled compound of formula (V)
wherein \(n^{\prime \prime}=1 ; R^{1}, R^{2}\), and \(R^{22}\) are \(H\); \(J\) is \(D-\) Val; \(K\) is NMeArg; \(L\) is Gly; and \(M\) is Asp;
the radiolabeled compound of formula (V)
wherein \(n^{\prime \prime}=0 ; R^{1}\) and \(R^{2}\) are \(H\); \(J\) is \(D-V a l ; K\) is NMeArg; L is Gly; and \(M\) is Asp;

the radiolabeled compound of formula (VI) wherein \(R^{2}\) and \(R^{22}\) are \(H\); \(J\) is \(D-V a l ; ~ K\) is NMeArg; \(L\) is Gly; and \(M\) is Asp;

(VII)
```

the radiolabeled compound of formula (VII)
wherein R R , R
the radiolabeled compound of formula (VII)
wherein R}\mp@subsup{R}{}{1},\mp@subsup{R}{}{2}\mathrm{ , and R R
D-Abu; K is NMeArg; L is Gly; and M is Asp;
the radiolabeled compound of formula (VII)
wherein Rl, R}\mp@subsup{R}{}{1}\mathrm{ , and R}\mp@subsup{R}{}{10}\mathrm{ are H; Rl0a is Me; J is
D-Val; K is NMeArg; L is Gly; and M is Asp;
the radiolabeled compound of formula (VII)
wherein R', R}\mp@subsup{R}{}{2}\mathrm{ , and R10a are H; R'10 is Cl; J is
D-Val; K is NMeArg; L is Gly; and M is Asp;
the radiolabeled compound of formula (VII)
wherein R R , R
is D-Val; K is NMeArg; L is Gly; and M is Asp;

```
```

the radiolabeled compound of formula (VII)
wherein R1, R2, and R10a are H; R10 is Me; J is
D-Val; K is NMeArg; L is Gly; and M is Asp;
the radiolabeled compound of formula (VII)
wherein R1, R2, and R10 are H; R10a is Cl; J is
D-Abu; K is NMeArg; L is Gly; and M is Asp;
the radiolabeled compound of formula (VII)
wherein R', R2, and R10 are H; R10a is I; J is
D-Abu; K is NMeArg; L is Gly; and M is Asp.
The radiolabeled compound of formula (VII)
wherein R1, R2, and R10 are H; R10a is Me; J
is D-Abu; K is NMeArg; L is Gly; and M is Asp;
the radiolabeled compound of formula (II)
wherein }\mp@subsup{R}{}{1}\mathrm{ and }\mp@subsup{R}{}{2}\mathrm{ are H; J is D-Tyr; K is
NMeArg; L is Gly; and M is Asp;
the radiolabeled compound of formula (II)
wherein R R and R}\mp@subsup{R}{}{2}\mathrm{ are H; J is D-Val; K is
NMeAmf; L is Gly; and M is Asp;
the radiolabeled compound of formula (II)
wherein R}\mp@subsup{R}{}{1}\mathrm{ and R}\mp@subsup{R}{}{2}\mathrm{ are H; J is D-Val; K is
NMeArg; L is Gly; and M is pheAsp;
the radiolabeled compound of formula (II)
wherein R R is H; R}\mp@subsup{}{}{2}\mathrm{ is CH3; J is D-Val; K is
NMeArg; L is Gly; and M is Asp;

```
```

the radiolabeled compound of formula (III)
wherein R R and R2 are H; J is D-Val; K is
NMeArg; L is Gly; and M is Asp;
the radiolabeled compound of formula
(VIII) wherein J is D-Val; K is NMeArg; L
is Gly; and M is Asp;

```


10

66. A radiolabeled compound as in one of Claims 51-65 wherein the radiolabel is selected from the group: \({ }^{18} \mathrm{~F},{ }^{11} \mathrm{C},{ }^{123} \mathrm{I}\), and \({ }^{125} \mathrm{I}\).
67. A radiolabeled compound of Claim 66 wherein the radiolabel is 123 I .
68. A radiopharmaceutical composition comprising a radiopharmaceutically acceptable carrier and a radiolabeled compound of any of Claims 51-67.

5 69. A method of determining platelet deposition in a mammal comprising administering to said mammal a radiopharmaceutical composition comprising a compound of any of Claims 51-67, and imaging said mammal.
70. A method of diagnosing a disorder associated with platelet deposition in a mammal comprising administering to said mammal a radiopharmaceutical composition comprising a compound of any of Claims 51-67, and imaging said mammal.

\section*{Fig. Ia}


Fig. 1b



Furm PCT/ISA/210 (second sheet)(July 1992)*


Furin PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNA JNAL SEARCH REPORT
Inu. ational application No. PCT/US94/03256
```

B. FIELDS SEARCHED
STN-lile CA
LI 39073 S THOMB?/AB, BI
L工 1133 S "IIB/IIIA"/AB, BI
1234 S CYCLIC(W) PEP
2 S Ll AND L2 AND L3
112986 S ANTAGON!/AB. BI
27S Ll AND L2 AND LS
E MOUSA, S/AU
E MOUSA, SHA?/AU
O S MOUSA SH/AU
E MOUSA S/AU
18S E7-E9
M 3S L2 AND L8

```
Electronic data bases consulted (Name of data base and where practicable terms used):
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization
International Bureau
(43) International Publication Date 4 April 2013 (04.04.2013)
(10) International Publication Number WO 2013/048558 A2
(51) International Patent Classification
\begin{tabular}{ll} 
A61K 31/235 (2006.01) & C12Q 1/00 (2006.01) \\
A61K 31/192 (2006.01) & G01N 21/78 (2006.01) \\
A61P 7/00 (2006.01) &
\end{tabular}
(21) International Application Number:

PCT/US2012/028620
(22) International Filing Date:

9 March 2012 ( 09.03 .2012 )
(25) Filing Language:
(26) Publication Language:

English
English
(30) Priority Data:

61/542,100 30 September 2011 (30.09.2011) US
61/564,668 29 November 2011 (29.11.2011) US
(71) Applicant (for all designated States except US): HYPERION THERAPEUTICS, INC. [US/US]; 601 Gateway Blvd., Suite 200, South San Francisco, CA 94080 (US).
(72) Inventors; and
(71) Applicants : SCHARSCHMIDT, Bruce [US/US]; 45 St.

Francis Boulevard, San Francisco, California 94127 (US).

MOKHTARANI, Masoud [US/US]; 725 Castle Rock Road, Walnut Creek, California 94598 (US).
(74) Agent: MORRIS, Patrick D.; Perkins Coie LLP, P.O Box 1208, Seattle, Washington 98111-1208 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): \(\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}\), \(\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}\), \(\mathrm{CA}, \mathrm{CH}, \mathrm{CL}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{DO}\), DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
[Continued on next page]
(54) Title: METHODS OF THERAPEUTIC MONITORING OF NITROGEN SCAVENGING DRUGS

Figure 2

(57) Abstract: The present disclosure provides methods for evaluating daily ammonia exposure based on a single fasting ammonia blood level measurement, as well as methods that utilize this technique to adjust the dosage of a nitrogen scavenging drug, determine whether to administer a nitrogen scavenging drug, and treat nitrogen retention disorders.

\section*{WO 2013/048558 A2 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||}

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, - without international search report and to be republished upon receipt of that report (Rule 48.2(g))

\title{
METHODS OF THERAPEUTIC MONITORING OF NITROGEN SCAVENGING DRUGS \\ RELATED APPLICATIONS
}
[0001] The present application claims the benefit of U.S. Provisional Application No. 61/564,668, filed November 29, 2011, and U.S. Provisional Application No. 61/542,100, filed September 30, 2011, the disclosures of which are incorporated by reference herein in their entirety, including drawings.

\section*{BACKGROUND}
[0002] Nitrogen retention disorders associated with elevated ammonia levels include urea cycle disorders (UCDs) and hepatic encephalopathy (HE).
[0003] UCDs include several inherited deficiencies of enzymes or transporters necessary for the synthesis of urea from ammonia, including enzymes involved in the urea cycle. The urea cycle is depicted in Figure 1, which also illustrates how certain ammonia-scavenging drugs act to assist in elimination of excessive ammonia. With reference to Figure 1, N-acetyl glutamine synthetase (NAGS)-derived \(N\)-acetylglutamate binds to carbamyl phosphate synthetase (CPS), which activates CPS and results in the conversion of ammonia and bicarbonate to carbamyl phosphate. In turn, carbamyl phosphate reacts with ornithine to produce citrulline in a reaction mediated by ornithine transcarbamylase (OTC). A second molecule of waste nitrogen is incorporated into the urea cycle in the next reaction, mediated by arginosuccinate synthetase (ASS), in which citrulline is condensed with aspartic acid to form argininosuccinic acid. Argininosuccinic acid is cleaved by argininosuccinic lyase (ASL) to produce arginine and fumarate. In the final reaction of the urea cycle, arginase (ARG) cleaves arginine to produce ornithine and urea. Of the two atoms of nitrogen incorporated into urea, one originates from free ammonia \(\left(\mathrm{NH}_{4}{ }^{+}\right)\)and the other from aspartate. UCD individuals born with no meaningful residual urea synthetic capacity typically present in the first few days of life (neonatal presentation). Individuals with residual function typically present later in childhood or even in adulthood, and symptoms may be precipitated by increased dietary protein or physiological stress (e.g., intercurrent illness).
[0004] Hepatic encephalopathy (HE) refers to a spectrum of neurologic signs and symptoms believed to result from hyperammonemia, which frequently occur in subjects with cirrhosis or certain other types of liver disease. Subjects with HE typically show altered mental status ranging from subtle changes to coma, features similar to subjects with UCDs.
[0005] Subjects with nitrogen retention disorders whose ammonia levels and/or symptoms are not adequately controlled by dietary restriction of protein and/or dietary supplements are generally treated with nitrogen scavenging agents such as sodium phenylbutyrate ( NaPBA , approved in the United States as BUPHENYL \({ }^{(®)}\) and in Europe as AMMONAPS \({ }^{(®)}\) ) or sodium benzoate. These are often referred to as alternate pathway drugs because they provide the body with an alternate pathway to urea for excretion of waste nitrogen (Brusilow 1980; Brusilow 1991). NaPBA is a phenylacetic acid (PAA) prodrug. Another nitrogen scavenging drug currently in development for the treatment of nitrogen retention disorders is glyceryl tri-[4-phenylbutyrate](HPN-100), which is described in U.S. Patent No. 5,968,979.
HPN-100, which is commonly referred to as GT4P or glycerol PBA, is a prodrug of PBA and a pre-prodrug of PAA.
[0006] HPN-100 and NaPBA share the same general mechanism of action: PBA is converted to PAA via beta oxidation, and PAA is conjugated enzymatically with glutamine to form phenylacetylglutamine (PAGN), which is excreted in the urine. The structures of PBA, PAA, and PAGN are set forth below.
 pherybutyrate


Phenyacatic acio


Phenybeetygitamine
[0007] The clinical benefit of NaPBA and HPN-100 with regard to nitrogen retention disorders derives from the ability of PAGN to effectively replace urea as a vehicle for waste nitrogen excretion and/or to reduce the need for urea synthesis (Brusilow 1991; Brusilow 1993). Because each glutamine contains two molecules of nitrogen, the body rids itself of two waste nitrogen atoms for every molecule of PAGN excreted in the urine. Therefore, two equivalents of nitrogen are removed for each mole of PAA converted to PAGN. PAGN
represents the predominant terminal metabolite, and one that is stoichiometrically related to waste nitrogen removal, a measure of efficacy in the case of nitrogen retention states. The difference between HPN-100 and NaPBA with respect to metabolism is that HPN-100 is a triglyceride and requires digestion, presumably by pancreatic lipases, to release PBA (McGuire 2010).
[0008] In contrast to NaPBA or HPN-100, sodium benzoate acts when benzoic acid is combined enzymatically with glycine to form hippuric acid. For each molecule of hippuric acid excreted in the urine, the body rids itself of one waste nitrogen atom.
[0009] Methods of determining an effective dosage of PAA prodrugs such as NaPBA or HPN-100 for a subject in need of treatment for a nitrogen retention disorder are described in WO09/1134460 and WO10/025303. Daily ammonia levels, however, may vary greatly in a subject. This can lead to overestimation by the physician of the average daily ammonia levels, which may result in overtreatment. Thus, there is a need in the art for improved methods for PAA prodrug dose determination and adjustment based on ammonia levels in subjects with nitrogen retention disorders such as UCDs or HE.

\section*{SUMMARY}
[0010] Provided herein in certain embodiments are methods for determining whether to increase a dosage of a nitrogen scavenging drug in a subject with a nitrogen retention disorder by measuring a fasting blood ammonia level and comparing the fasting blood ammonia level to the upper limit of normal (ULN) for blood ammonia, where a fasting blood ammonia level that is greater than half the ULN for blood ammonia indicates that the dosage needs to be increased. In certain embodiments, the nitrogen retention disorder is a UCD or HE. In certain embodiments, the nitrogen scavenging drug is HPN-100, PBA, NaPBA, sodium benzoate, or any combination thereof (i.e., any combination of two or more of HPN\(100, \mathrm{PBA}, \mathrm{NaPBA})\). In certain embodiments, the ULN is around \(35 \mu \mathrm{~mol} / \mathrm{L}\) or \(59 \mu \mathrm{~g} / \mathrm{mL}\). In certain embodiments, the methods include an additional step of administering an increased dosage of the nitrogen scavenging drug if the need exists, and in certain of these embodiments administration of the nitrogen scavenging drug produces a normal average daily ammonia level in the subject. In certain embodiments wherein a determination is made to administer an increased dosage of nitrogen scavenging drug and wherein the nitrogen scavenging drug is a PAA prodrug, the methods include an additional step of measuring urinary PAGN excretion and determining an effective dosage of the PAA prodrug based on a mean conversion of PAA prodrug to urinary PAGN of \(60-75 \%\).
[0011] Provided herein in certain embodiments are methods for determining whether to administer a nitrogen scavenging drug to a subject with a nitrogen retention disorder by measuring a fasting blood ammonia level and comparing the fasting blood ammonia level to the ULN for blood ammonia, where a fasting blood ammonia level that is greater than half the ULN for blood ammonia indicates that the nitrogen scavenging drug needs to be administered. In certain embodiments, the nitrogen retention disorder is a UCD or HE. In certain embodiments, the nitrogen scavenging drug is HPN-100, PBA, NaPBA, sodium benzoate, or any combination thereof (i.e., any combination of two or more of HPN-100, PBA, NaPBA). In certain embodiments, the ULN is around \(35 \mu \mathrm{~mol} / \mathrm{L}\) or \(59 \mu \mathrm{~g} / \mathrm{mL}\). In certain embodiments, the methods include an additional step of administering a nitrogen scavenging drug if the need exists, and in certain of these embodiments administration of the nitrogen scavenging drug produces a normal average daily ammonia level in the subject. In certain embodiments wherein a determination is made to administer a nitrogen scavenging drug and wherein the nitrogen scavenging drug is a PAA prodrug, the methods further include a step of determining an effective initial dosage of the PAA prodrug by determining a target urinary PAGN output based on a target nitrogen output and calculating an effective initial dosage that results in the target urinary PAGN output based on a mean conversion of PAA prodrug to urinary PAGN of \(60-75 \%\). In certain embodiments, the methods include a step of administering the calculated effective initial dosage.
[0012] Provided herein in certain embodiments are methods for treating a nitrogen retention disorder in a subject who has previously been administered a nitrogen scavenging drug by measuring a fasting blood ammonia level, comparing the fasting blood ammonia level to the ULN for blood ammonia, and administering an increased dosage of the nitrogen scavenging drug if the fasting ammonia level is greater than half the ULN for blood ammonia. In certain embodiments, administration of an increased dosage of the nitrogen scavenging drug produces a normal average daily ammonia level in the subject. In certain embodiments, the nitrogen retention disorder is a UCD or HE. In certain embodiments, the nitrogen scavenging drug is HPN-100, PBA, NaPBA, sodium benzoate, or any combination thereof (i.e., any combination of two or more of HPN-100, PBA, NaPBA). In certain embodiments, the ULN is around \(35 \mu \mathrm{~mol} / \mathrm{L}\) or \(59 \mu \mathrm{~g} / \mathrm{mL}\). In certain embodiments wherein the nitrogen scavenging drug is a PAA prodrug, the methods include an additional step of measuring urinary PAGN excretion and determining an effective dosage of the PAA prodrug based on a mean conversion of PAA prodrug to urinary PAGN of \(60-75 \%\). In certain embodiments, the methods include a step of administering the calculated effective dosage.

\section*{BRIEF DESCRIPTION OF DRAWINGS}
[0013] Figure 1: The urea cycle and how certain nitrogen-scavenging drugs may assist in elimination of excessive ammonia.
[0014] Figure 2: Relationship between fasting ammonia and average ammonia UCD patients.
[0015] Figure 3: Venous blood ammonia values over 24 hours in (A) adult and (B) pediatric UCD patients.

\section*{DETAILED DESCRIPTION}
[0016] The following description of the invention is merely intended to illustrate various embodiments of the invention. As such, the specific modifications discussed are not to be construed as limitations on the scope of the invention. It will be apparent to one skilled in the art that various equivalents, changes, and modifications may be made without departing from the scope of the invention, and it is understood that such equivalent embodiments are to be included herein.
[0017] In subjects with a nitrogen retention disorder, the desired effect of treatment with a nitrogen scavenging drug is control of blood ammonia level. Control of blood ammonia level generally refers to ammonia values within the normal range and avoidance of hyperammonemic crises, which are often defined in the art as transient ammonia values exceeding \(100 \mu \mathrm{~mol} / \mathrm{L}\) or \(178 \mu \mathrm{~g} / \mathrm{mL}\) accompanied by clinical signs and symptoms of hyperammonemia. Dosing of nitrogen scavenging drugs is usually based upon clinical assessment and measurement of ammonia. However, assessment of treatment effect and interpretation of ammonia levels is confounded by the fact that individual ammonia values vary several-fold over the course of a day and are impacted by timing of the blood draw in relation to the last meal and dose of drug (see, e.g., Lee 2010; Lichter-Konecki 2011; Diaz 2011).
[0018] A random ammonia value obtained during an outpatient visit may fail to provide a reliable measure of a subject's status and the drug effect. For example, basing treatment on a blood sample taken after eating a meal might overestimate average daily ammonia level and result in overtreatment. Conversely, basing treatment on a blood sample taken after drug administration might underestimate average daily ammonia level and result in undertreatment. A fasting ammonia level at or near the ULN might be taken as an indication of satisfactory control without appreciating the fact that the ammonia burden during the day (average and/or highest possible value) might be significantly higher. Thus, a fasting level at or near the ULN may actually reflect undertreatment in a subject already a receiving nitrogen
scavenging drug or the need for treatment in a subject not currently prescribed a nitrogen scavenging drug. A more accurate view of daily ammonia level could be obtained by multiple blood draws in a controlled setting over an extended period of time. Although this is currently done in clinical trials, it is clinically impractical.
[0019] As set forth below, the relationship between fasting ammonia levels and daily ammonia exposure was evaluated in subjects with nitrogen retention disorders. It was found that fasting ammonia correlates strongly with daily ammonia exposure, assessed as a 24 hour area under the curve for ammonia, daily average, or maximal daily concentration, and that a target fasting value which does not exceed half of the ULN is a clinically useful and practical predictor of ammonia values over 24 hours. As such, provided herein are clinically practical methods of evaluating ammonia exposure in subjects with nitrogen retention disorders based on fasting ammonia levels, as well as methods of using the resultant information to adjust the dosage of a nitrogen scavenging drug, determine whether to administer a nitrogen scavenging drug, treat a nitrogen retention disorder, and predict daily ammonia burden. The use of fasting ammonia levels to predict ammonia exposure provides a significant advantage over previously developed methods by reducing the number of required blood draws and eliminating the confusion associated with conflicting ammonia levels over the course of the day.
[0020] As further disclosed herein, the relationship between ammonia control and neurocognitive outcome was evaluated in UCD patients. Previous research has demonstrated that UCD patients often exhibit lower IQ overall and deficient executive function manifested by difficulty in goal setting, planning, monitoring progress and purposeful problem solving. As set forth herein, it was found that ammonia control with GPB resulted in a significant improvement in executive functions in pediatric patients. Based on these results, methods are provided herein for improving executive function in a pediatric subject with a UCD by administering one or more nitrogen scavenging drugs.
[0021] As further disclosed herein, the relationship between elevated PAA levels and neurological adverse events (AEs) was analyzed. Many of the over 30 reports of administration of NaPBA and/or sodium PAA to humans describe AEs, particularly when administered intravenously. IV administration of PAA to cancer patients was shown previously to result in AEs that included fatigue, dizziness, dysgeusia, headache, somnolence, lightheadedness, pedal edema, nausea, vomiting, and rash (Thibault 1994; Thibault 1995). These AEs correlated with PAA levels from 499 to \(1285 \mu \mathrm{~g} / \mathrm{mL}\). Although NaPBA has been used in UCD treatment for over two decades and AEs reportedly associated with PAA are
similar to those associated with hyperammonemia, little was known previously about the relationship between PAA levels and neurological AEs in UCD patients. As shown herein, increased PAA levels did not correlate with increased neurological AEs in subjects with UCD. However, PAA levels were associated with an increase in neurological AEs in healthy subjects. Based on these results, methods are provided herein for predicting or diagnosing AEs in a subject by measuring PAA levels. Further provided herein are methods of treating and/or preventing AEs in a subject with elevated PAA levels by administering one or more nitrogen scavenging drugs.
[0022] Provided herein are specific target values for blood ammonia upon which an effective dosage of a nitrogen scavenging drug can be based. In certain embodiments, an effective dosage of a nitrogen scavenging drug may be an initial dosage, subsequent/maintenance dosage, improved dosage, or a dosage determined in combination with other factors. In certain embodiments, the effective dosage may be the same as or different than the initial dosage. In other embodiments, the effective dosage may be higher or lower than the initial dosage. In certain embodiments, methods are provided for adjusting the dose or regimen of a nitrogen scavenging drug to achieve a target ammonia level that is predictive of the average daily ammonia level and/or the highest ammonia value that the subject is likely to experience during the day.
[0023] Using the methods herein, a subject's fasting blood ammonia level may be used as a predictor of daily ammonia burden, average daily ammonia level, and/or highest daily ammonia value. Whether a subject with a nitrogen retention disorder is receiving an optimum dosage of nitrogen scavenging drug may be determined based on predicted daily ammonia exposure. By optimizing the therapeutic efficacy of a nitrogen scavenging drug, the therapeutic dosage of the nitrogen scavenging drug is adjusted so that the subject experiences the desired nitrogen scavenging effect. In particular, the dose is adjusted so that the subject may experience a normal average daily ammonia level. In certain embodiments, the effective dosage of nitrogen scavenging drug is determined by adjusting (e.g., increasing) a dosage to achieve a fasting blood ammonia level for a subject that is less than or equal to half the ULN for blood ammonia.
[0024] Provided herein in certain embodiments are methods of determining whether the dosage of a nitrogen scavenging drug needs to be increased in a subject with a nitrogen retention disorder comprising comparing a fasting blood ammonia level for the subject to a ULN for blood ammonia. If the fasting blood ammonia level has a value that greater than half the ULN, the dosage of the nitrogen scavenging drug needs to be increased. In certain
embodiments, the methods further comprise increasing the dosage of the nitrogen scavenging drug if the need exists, and in certain of these embodiments the methods further comprise administering the increased dosage. In certain of these embodiments, administration of the increased dosage results in a normal average daily ammonia level in the subject.
[0025] Provided herein in certain embodiments are methods of determining whether the dosage of a nitrogen scavenging drug needs to be increased in a subject with a nitrogen retention disorder comprising measuring a fasting blood ammonia level for the subject and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, the dosage of the nitrogen scavenging drug needs to be increased. In certain embodiments, the methods further comprise increasing the dosage of the nitrogen scavenging drug if the need exists, and in certain of these embodiments the methods further comprise administering the increased dosage. In certain of these embodiments, administration of the increased dosage results in a normal average daily ammonia level in the subject.
[0026] Provided herein in certain embodiments are methods of adjusting the dosage of a nitrogen scavenging drug in a subject with a nitrogen retention disorder comprising comparing a fasting blood ammonia level for the subject to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, the dosage of the nitrogen scavenging drug is increased, and if the dosage is less than or equal to half the ULN the dosage of the nitrogen scavenging drug is not increased. In certain embodiments, the methods further comprise administering the increased dosage. In certain of these embodiments, administration of the increased dosage results in a normal average daily ammonia level in the subject.
[0027] Provided herein in certain embodiments are methods of adjusting the dosage of a nitrogen scavenging drug in a subject with a nitrogen retention disorder comprising measuring a fasting blood ammonia level for the subject and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, the dosage of the nitrogen scavenging drug is increased, and if the dosage is less than or equal to half the ULN the dosage of the nitrogen scavenging drug is not increased. In certain embodiments, the methods further comprise administering the increased dosage. In certain of these embodiments, administration of the increased dosage results in a normal average daily ammonia level in the subject.
[0028] Provided herein in certain embodiments are methods of adjusting the dosage of a nitrogen scavenging drug in a subject with a nitrogen retention disorder comprising
measuring a fasting blood ammonia level for the subject and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, the dosage of the nitrogen scavenging drug is increased, and if the dosage is significantly less than half the ULN, the dosage of the nitrogen scavenging drug may be decreased. In certain embodiments, the methods further comprise administering the adjusted dosage. In certain of these embodiments, administration of the adjusted dosage results in a normal average daily ammonia level in the subject.
[0029] Provided herein in certain embodiments are methods of adjusting the dosage of a nitrogen scavenging drug in a subject with a nitrogen retention disorder comprising administering an initial dosage of the nitrogen scavenging drug, measuring fasting blood ammonia level, and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, subsequent maintenance dosages of the nitrogen scavenging drug are adjusted to be greater than the initial dosage. In certain embodiments, the methods further comprise administering the increased maintenance dosage, and in certain of these embodiments, administration of the increased maintenance dosage results in a normal average daily ammonia level in the subject.
[0030] Provided herein in certain embodiments are methods of adjusting the dosage of a nitrogen scavenging drug in a subject with a nitrogen retention disorder to achieve a fasting blood ammonia level that is less than or equal to half the ULN for blood ammonia comprising measuring a fasting blood ammonia level for the subject and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, the subject is administered an increased dosage of the nitrogen scavenging drug. After a time period sufficient for the drug to reach steady state (e.g., 48 hours, 48 to 72 hours, 72 hours to 1 week, 1 week to 2 weeks, greater than 2 weeks), fasting blood ammonia level is measured again and compared to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, the dosage of the nitrogen scavenging drug is increased. This process is repeated until a fasting blood ammonia level of less than or equal to half the ULN is obtained.
[0031] Provided herein in certain embodiments are methods for assessing whether a subject with a nitrogen retention disorder is more or less likely to need a dosage adjustment of a nitrogen scavenging drug comprising measuring a fasting blood ammonia level for the subject and comparing the fasting blood ammonia level to a ULN for blood ammonia, wherein a fasting blood ammonia level that is greater than half the value of ULN indicates that the subject is more likely to need a dosage adjustment and a fasting blood ammonia level
less than or equal to half the value of ULN indicates that the subject is less likely to need a dosage adjustment.
[0032] Provided herein in certain embodiments are methods of determining whether to administer a nitrogen scavenging drug to a subject with nitrogen retention disorder comprising comparing a fasting blood ammonia level for the subject to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, a nitrogen scavenging drug needs to be administered to the subject. In certain embodiments, these methods further comprise administering the nitrogen scavenging drug. In certain embodiments, the subject may not have been administered any nitrogen scavenging drugs prior to the determination. In other embodiments, the subject may have previously been administered a nitrogen scavenging drug other than the one being evaluated. In these embodiments, the methods provided herein can be used to determine whether to administer a new nitrogen scavenging drug to a subject.
[0033] Provided herein in certain embodiments are methods of determining whether to administer a nitrogen scavenging drug to a subject with nitrogen retention disorder comprising measuring a fasting blood ammonia level for the subject and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, a nitrogen scavenging drug needs to be administered to the subject. In certain embodiments, these methods further comprise administering the nitrogen scavenging drug. In certain embodiments, the subject may not have been administered any nitrogen scavenging drugs prior to the determination. In other embodiments, the subject may have previously been administered a nitrogen scavenging drug other than the one being evaluated. In these embodiments, the methods provided herein can be used to determine whether to administer a new nitrogen scavenging drug to a subject.
[0034] Provided herein in certain embodiments are methods for selecting a dosage of a nitrogen scavenging drug for treating a nitrogen retention disorder in a subject based on blood ammonia levels comprising selecting a dosage that results in a fasting blood ammonia level that is less than or equal to half the ULN for blood ammonia. In certain embodiments, selecting the effective dosage is further based on diet, endogenous waste nitrogen excretion capacity, or any combination thereof. In certain embodiments, the methods further comprise administering the selected dosage.
[0035] Provided herein in certain embodiments are methods of treating a subject with a nitrogen retention disorder who has previously been administered a nitrogen scavenging drug comprising measuring a fasting blood ammonia level for the subject and comparing the
fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, the subject is administered an increased dosage of the nitrogen scavenging drug. If the fasting blood ammonia level has a value that is less than or equal to half the ULN, the subject is administered the same dosage or a decreased dosage of the nitrogen scavenging drug. In certain embodiments, administration of an increased dosage results in a normal average daily ammonia level in the subject.
[0036] Provided herein in certain embodiments are methods of treating a subject with a nitrogen retention disorder who has previously been administered an initial dosage of a nitrogen scavenging drug comprising measuring a fasting blood ammonia level for the subject and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, the subject is administered a maintenance dosage that is greater than the initial dosage of the nitrogen scavenging drug. If the fasting blood ammonia level has a value that is less than or equal to half the ULN, the subject is administered the initial dosage or a lower dosage. In certain embodiments, administration of an increased maintenance dosage results in a normal average daily ammonia level in the subject.
[0037] Provided herein in certain embodiments are methods of treating a subject with a nitrogen retention disorder comprising administering a nitrogen scavenging drug, then measuring a fasting blood ammonia level for the subject at some point after drug administration and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, the subject is administered an increased dosage of the nitrogen scavenging drug. If the fasting blood ammonia level has a value that is less than or equal to half the ULN, the subject is administered the original or a lower dosage of the drug.
[0038] Provided herein in certain embodiments are methods of treating a subject with a nitrogen retention disorder comprising administering a first dosage of a nitrogen scavenging drug, measuring a fasting blood ammonia level for the subject, and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, a second dosage of a nitrogen scavenging drug that is greater than the first dosage is administered to the subject. A fasting ammonia blood level is measured again in the subject and compared to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, a third dosage of a nitrogen scavenging drug that is greater than the second dosage is administered to the subject.

This process is repeated until the subject exhibits a fasting blood ammonia level with a value less than or equal to half the ULN.
[0039] Provided herein in certain embodiments are methods of monitoring the efficacy of nitrogen scavenging drug administration in a subject with a nitrogen retention disorder who has previously been administered a nitrogen scavenging drug comprising measuring a fasting blood ammonia level for the subject and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, the previously administered dosage of the nitrogen scavenging drug is considered inadequate to treat the nitrogen retention disorder. If the fasting blood ammonia level has a value that is less than or equal to half the ULN, the previously administered dosage is considered adequate to treat the nitrogen retention disorder. In certain embodiments where the previously administered dosage is considered inadequate to treat the nitrogen retention disorder, the methods provided herein further comprise administering an increased dosage of the nitrogen scavenging drug.
[0040] Provided herein in certain embodiments are methods for monitoring therapy with a nitrogen scavenging drug in a subject having a nitrogen retention disorder comprising measuring a fasting blood ammonia level from the subject and comparing the fasting blood ammonia level to a ULN for blood ammonia, wherein a fasting blood ammonia level that is greater than half the ULN indicates that the subject is more likely to need a dosage adjustment of the nitrogen scavenging drug, and wherein a fasting blood ammonia level less than or equal to half the ULN indicates that the subject is less likely to need a dosage adjustment.
[0041] A nitrogen retention disorder as used herein refers to any condition associated with elevated blood nitrogen/ammonia levels. In certain embodiments, a nitrogen retention disorder may be a UCD. In other embodiments, a nitrogen retention disorder may be HE.
[0042] A nitrogen scavenging drug as used herein refers to any drug that decreases blood nitrogen and/or ammonia levels. In certain embodiments, a nitrogen scavenging drug may remove nitrogen in the form of PAGN, and in certain of these embodiments the nitrogen scavenging drug may be an orally administrable drug that contains or is metabolized to PAA. For example, a nitrogen scavenging drug may be a PAA prodrug such as PBA or HPN-100, a pharmaceutically acceptable salt of PBA such as NaPBA, or a pharmaceutically acceptable ester, acid, or derivative of a PAA prodrug. In other embodiments, a nitrogen scavenging drug may remove nitrogen via hippuric acid. In certain of these embodiments, a nitrogen scavenging drug may be benzoic acid, a pharmaceutically acceptable salt of benzoic acid
such as sodium benzoate, or a pharmaceutically acceptable ester, acid, or derivative of benzoic acid.
[0043] Increasing the dosage of a nitrogen scavenging drug may refer to increasing the amount of drug per administration (e.g., an increase from a 3 mL dosage to a 6 mL dosage), increasing the number of administrations of the drug (e.g., an increase from once-a-day dosing to twice- or three-times-a-day), or any combination thereof.
[0044] A subject that has previously been administered a nitrogen scavenging drug may have been administered the drug for any duration of time sufficient to reach steady state. For example, the subject may have been administered the drug over a period of 2 to 7 days, 1 week to 2 weeks, 2 weeks to 4 weeks, 4 weeks to 8 weeks, 8 weeks to 16 weeks, or longer than 16 weeks.
[0045] In certain embodiments of the methods disclosed herein, the fasting period for obtaining a fasting blood ammonia level is overnight. In certain embodiments, the fasting period is 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, 8 hours or more, 9 hours or more, 10 hours or more, 11 hours or more, or 12 hours or more, and in certain embodiments the fasting period is \(4-8\) hours, 6-8 hours, or \(8-12\) hours. During the fasting period, the subject preferably does not ingest any food. In certain embodiments, the subject may also refrain from ingesting certain non-food substances during the fasting period. For example, in certain embodiments the subject does not ingest any supplements and/or nitrogen scavenging drugs during the fasting period. In certain of these embodiments, the subject may nonetheless ingest one or more drugs other than nitrogen scavenging drugs during the fasting period. In certain embodiments, the subject does not ingest any high calorie liquids during the fasting period. In certain of these embodiments, the subject does not ingest any liquids other than water during the fasting period. In other embodiments, the subject may ingest small amounts of low calorie beverages, such as tea, coffee, or diluted juices.
[0046] In certain embodiments of the methods disclosed herein, blood samples used for measuring fasting blood ammonia levels and/or ULN blood ammonias are venous blood samples. In certain embodiments, a blood sample is a plasma blood sample. Any methods known in the art may be used to obtain a plasma blood sample. For example, blood from a subject may be drawn into a tube containing heparin or ethylenediaminetetraacetic acid (EDTA). In certain embodiments, the sample can be placed on ice and centrifuged to obtain plasma within 15 minutes of collection, stored at \(2-8^{\circ} \mathrm{C}\left(36-46^{\circ} \mathrm{F}\right)\) and analyzed within 3 hours of collection. In other embodiments, the blood plasma sample is snap frozen, stored at
\(\leq-18^{\circ} \mathrm{C}\left(\leq 0^{\circ} \mathrm{F}\right)\) and analyzed at a later time. For example, the sample may be analyzed at \(0-\) 12 hours, 12-24 hours, 24-48, 48-96 hours after freezing, or within any other timeframe over which the sample has demonstrated stability. In certain embodiments, blood samples are taken in a laboratory or hospital setting. In certain embodiments, a single fasting blood sample is used to measure fasting blood ammonia level. However, in other embodiments, multiple fasting blood samples may be obtained. In certain embodiments, a subject's blood ammonia level may be monitored throughout the day. Further, in certain embodiments, the methods disclosed herein comprise an additional step of obtaining one or more blood samples from a subject prior to or after measuring fasting blood ammonia level.
[0047] In certain embodiments, a blood sample is analyzed immediately after collection. In other embodiments, the blood sample is stored for some period between collection and analysis. In these embodiments, the sample may be stored for less than 1 hour, 1 hour to 6 hours, 1 hour to 12 hours, 1 hour to 24 hours, or 1 hour to 48 hours. In certain of these embodiments, the blood sample is stored at a temperature between \(0-15^{\circ} \mathrm{C}\), such as \(2-8^{\circ} \mathrm{C}\). In other embodiments, the blood sample is stored below \(0^{\circ} \mathrm{C}\) or below \(-18^{\circ} \mathrm{C}\).
[0048] Measurement of ammonia levels in a fasting blood sample is carried out using techniques known in the art. For example, ammonia levels may be measured using a colorimetric reaction or an enzymatic reaction. In certain embodiments, a colorimetric reaction may involve the use of bromophenol blue as an ammonia indicator. In these embodiments, ammonia may react with bromophenol blue to yield a blue dye. In certain embodiments, an enzymatic reaction may involve glutamate dehydrogenase catalyzing the reductive amination of 2-oxoglutarate with \(\mathrm{NH}^{4+}\) and NADPH to form glutamate and NADP \({ }^{+}\). The formation of NADP \({ }^{+}\)formed is directly proportional to the amount of ammonia present in the blood sample. Therefore, the concentration of ammonia is measured based on a decrease in absorbance.
[0049] In certain embodiments of the methods disclosed herein, a subject exhibiting a fasting blood ammonia level less than or equal to half the ULN for blood ammonia has an average likelihood within a confidence interval that their average daily ammonia level will remain within a normal average daily ammonia level. In certain embodiments, the average likelihood of having a normal daily ammonia value is \(80 \%\) to \(90 \%\). In certain embodiments, one may predict with \(95 \%\) confidence that a blood ammonia level will fall within a certain range. In certain embodiments, one can predict with \(95 \%\) confidence that a true probability of predicting normal values based on fasting blood ammonia is between \(65 \%\) and \(93 \%\). In other embodiments, one can predict with \(80 \%\) confidence that a true probability of predicting
normal values based on fasting blood ammonia is at least 70\%. In certain embodiments, the average likelihood of predicting normal ammonia value based on fasting blood ammonia is about \(84 \%\) with \(95 \%\) confidence that the true probability is between \(65 \%\) and \(93 \%\).
[0050] In certain embodiments of the methods disclosed herein, a subject exhibiting a fasting blood ammonia level less than or equal to half the ULN for blood ammonia has an average likelihood within a confidence interval that their maximum daily blood ammonia level will not exceed 1.5 times the ULN for blood ammonia. In certain of these embodiments, the average likelihood is about \(70 \%\) to \(80 \%\). In certain embodiments, the confidence interval is a \(95 \%\) confidence interval. In certain embodiments, the average likelihood is about \(75 \%\) with \(95 \%\) confidence that the true probability is between \(58 \%\) and \(86 \%\).
[0051] In certain embodiments of the methods disclosed herein, a subject exhibiting a fasting blood ammonia level less than or equal to half the ULN for blood ammonia has an average likelihood within a confidence interval that their maximum daily blood ammonia level will be less than \(100 \mu \mathrm{~mol} / \mathrm{L}\). In certain of these embodiments, the average likelihood is \(90 \%\) to \(98 \%\). In certain embodiments, the confidence interval is \(95 \%\). In certain embodiments, the average likelihood is about \(93 \%\) with \(95 \%\) confidence that the true probability is between \(77 \%\) and \(100 \%\).
[0052] The maximal ammonia value refers to the maximum amount of ammonia that may be detected in a subject following consumption of meals, if repeated measurement of blood ammonia can be instituted to detect such maximum value over an extended period of time. Based on well-controlled clinical trials with repeated blood sampling over 24 hours, the maximum blood ammonia has been observed to occur following the third major meal of the day in the early to mid evening hours (4-8PM, assuming that breakfast is approximately 8AM; see, e.g., Lee 2010; Lichter-Konecki 2011).
[0053] The ULN for blood ammonia typically represents the highest level in the range of normal values, which may be influenced by a variety of factors such as the assay method, types of regents, standard reference samples used, and specifications and calibration of equipment used to perform the measurement. In certain embodiments of the methods disclosed herein, the ULN for blood ammonia is determined for a subject individually. In other embodiments, the ULN for blood ammonia may be based on measurements obtained across a range of subjects (i.e., subjects with UCD or with a particular subtype of UCD, subjects with HE, healthy subjects, etc.). In certain embodiments, the ULN for blood ammonia may represent a standard reference value disclosed in the art, such as a mean ULN
developed across a particular subset of subjects. In other embodiments, the ULN for blood ammonia may represent a standard measurement that has been developed by a particular entity that performs blood draws and/or blood evaluations, such as a particular clinical laboratory. In certain embodiments, the ULN is a standard reference value utilized by the same entity that measures the fasting blood ammonia level. In these embodiments, one skilled in the art will appreciate that interpretation of average daily ammonia in subject with a nitrogen retention disorder must be made relative to the reference range of normal values at the laboratory in which the ammonia was measured. Furthermore, the units of ammonia measurement may also vary from lab to lab (e.g., \(\mu \mathrm{g} / \mathrm{mL}\) or \(\mu \mathrm{mol} / \mathrm{L}\) ), emphasizing the importance of interpreting the subject's ammonia levels relative to the ULN at the laboratory in which the measurement was performed. In certain embodiments, the ULN for blood ammonia may be in the range of 26-64 \(\mu \mathrm{mol} / \mathrm{L}\). In certain of these embodiments, the ULN for blood ammonia may be in the range of \(32-38 \mu \mathrm{~mol} / \mathrm{L}\) or \(34-36 \mu \mathrm{~mol} / \mathrm{L}\), and in certain of these embodiments the ULN for blood ammonia is \(35 \mu \mathrm{~mol} / \mathrm{L}\). In certain embodiments, the ULN for blood ammonia may be in the range of \(50-65 \mu \mathrm{~g} / \mathrm{mL}\). In certain of these embodiments, the ULN for blood ammonia may be in the range of \(55-63 \mu \mathrm{~g} / \mathrm{mL}\) or \(57-61\) \(\mu \mathrm{g} / \mathrm{mL}\), and in certain of these embodiments the ULN for blood ammonia is \(59 \mu \mathrm{~g} / \mathrm{mL}\). [0054] In certain embodiments, the average daily ammonia is the average amount of ammonia an individual may experience during the day, if serial blood sampling were performed for ammonia measurements. In well-controlled clinical studies, it has been established that ammonia fluctuates several fold during the day, depending on the timing of blood draw relative to food and drug intake. Due to these fluctuations, the timing of individual or serial blood sampling should be controlled relative to the timing of food and drug intake. Even serial sampling may not be enough to capture the peaks and troughs of the fluctuating ammonia values, unless samples are taken frequently enough. Therefore, obtaining a simple average of several measurements may provide inadequate or misleading information regarding the total ammonia burden a subject may experience during the day.
[0055] Provided herein are methods to better estimate a subject's average daily ammonia assessed as the area under the curve for \(24-\mathrm{hr}\) ammonia (ammonia \(\mathrm{AUC}_{0-24 \mathrm{hr}}\) ) obtained from adequate and well-spaced samples over 24 hours. This ammonia \(\mathrm{AUC}_{0-24 \mathrm{hr}}\) can be further normalized for the entire actual period of sampling, i.e., ammonia \(\mathrm{AUC}_{0-24 \mathrm{hr}}\) is divided by the sampling period (e.g., 24 hours). For example, if an AUC of \(1440 \mu \mathrm{~mol} * \mathrm{hr} / \mathrm{L}\) is calculated using the trapezoidal rule based on 8-11 ammonia values obtained over 24 hours, then the average daily ammonia value or time-normalized \(\mathrm{AUC}_{0-24 \mathrm{hr}}\) would be equal to 1440
\(\mu \mathrm{mol} * \mathrm{hr} / \mathrm{ml}\) divided by the sampling time of 24 hr , or \(60 \mu \mathrm{~mol} / \mathrm{L}\). If the normal reference range at the laboratory which performed the ammonia analysis was \(10-35 \mu \mathrm{~mol} / \mathrm{L}\), then the average daily ammonia value for this subject would be approximately 1.71 times the ULN of \(35 \mu \mathrm{~mol} / \mathrm{L}\). Similarly, if the ammonia AUC \(_{0-24 \mathrm{hr}}\) was determined to be equal to 840 \(\mu \mathrm{mol}{ }^{*} \mathrm{hr} / \mathrm{L}\) based on multiple, well-spaced samples over 24 hours and analyzed at the same laboratory, and the sampling period was 24 hours, then the time-normalized \(\mathrm{AUC}_{0-24 \mathrm{hr}}\) would be \(35 \mu \mathrm{~mol} / \mathrm{L}\). This corresponds to an average ammonia or daily ammonia burden within the ULN. Finally, subjects with nitrogen retention disorders such as UCDs may experience a hyperammonemic crisis, which is often defined clinically as a blood level exceeding 100 \(\mu \mathrm{mol} / \mathrm{L}\) and clinical manifestations of hyperammonemia, which may require intervention to prevent irreversible hard and enable recovery.
[0056] Provided herein are methods of adjusting nitrogen scavenging drug dosage by measuring fasting blood ammonia to minimize the likelihood a subject may experience an ammonia value (Cmax) over 24 hours that exceeds \(100 \mu \mathrm{~mol} / \mathrm{L}\). It has been found that 100 \(\mu \mathrm{mol} / \mathrm{L}\) corresponds to approximately 2-3 times the ULN in most laboratories. Previously, if a subject with a nitrogen retention disorder such as UCD had a blood ammonia level within or slightly above the normal reference range for the laboratory which performed the analysis, the subject was considered to be in good clinical control regardless of the timing of the blood draw in relation to meals and last administration of drug dose. However, it has been shown that a subject with a UCD who has a fasting blood ammonia level between the ULN and 1.5 times the ULN (e.g., 35 to \(52 \mu \mathrm{~mol} / \mathrm{L}\) ) has an average likelihood of only \(45 \%\) (with a \(95 \%\) confidence interval of \(21 \%\) to \(70 \%\) ) that his or her average daily ammonia is within the normal range; an average likelihood of only \(35 \%\) (with a \(95 \%\) confidence interval of \(13 \%\) to \(60 \%\) ) that his or her maximal level of ammonia during the day is less than 1.5 times the ULN (e.g., \(52 \mu \mathrm{~mol} / \mathrm{L}\) ); and an average likelihood of \(25 \%\) that his or her maximal daily ammonia level exceeds \(100 \mu \mathrm{~mol} / \mathrm{L}\) during the day. Thus, after measuring a UCD subject's fasting blood ammonia, the dosage of a nitrogen scavenging drug may be progressively increased and/or his or her protein intake progressively decreased until the fasting ammonia value is less than or equal to half of the ULN for the local laboratory in which the ammonia analysis was performed.
[0057] In certain embodiments of the methods disclosed herein, one or more factors other than ammonia level may be taken into consideration when evaluating nitrogen scavenging drug dosage. For example, blood ammonia measurements may be combined with urinary PAGN measurements in determining whether to administer a nitrogen scavenging drug,
adjusting the dosage of a nitrogen scavenging drug, or treating a nitrogen retention disorder. US Patent Publication No. 2010/0008859 discloses that urinary PAGN levels correlate more closely to PBA prodrug dosage than plasma PAA, PBA, or PAGN levels, and further discloses that PBA prodrugs are converted to urinary PAGN with a mean efficiency of 60\(75 \%\). Therefore, certain embodiments of the methods disclosed herein comprise an additional step wherein urinary PAGN levels are measured. In certain of these embodiments, calculation of an effective dosage of nitrogen scavenging drug is based in part on a mean 60\(75 \%\) conversion of PAA prodrug to urinary PAGN. For example, in certain embodiments the methods disclosed herein for determining whether to administer a nitrogen scavenging drug to a subject comprise an additional step of measuring urinary PAGN and calculating an effective initial dosage based on a mean conversion of PAA prodrug to urinary PAGN of 60\(75 \%\). Similarly, in certain embodiments the methods disclosed herein for adjusting the dosage of a nitrogen scavenging drug comprise an additional step of measuring urinary PAGN and calculating an effective dosage based on a mean conversion of PAA prodrug to urinary PAGN of \(60-75 \%\). In certain of these embodiments, the effective dosage is calculated based on a target nitrogen output. In certain embodiments, urinary PAGN may be determined as a ratio of the concentration of urinary PAGN to urinary creatinine. In certain embodiments, urinary PAGN is a factor that is taken into consideration when determining whether to administer or increase the dosage of a nitrogen scavenging drug, i.e., urinary PAGN is evaluated in combination with ammonia level to determine whether to administer or increase the dosage of the drug. In other embodiments, ammonia level alone is used to determine whether to administer or increase the dosage of a nitrogen scavenging drug, and urinary PAGN is simply used to calculate the initial or adjusted dosage.
[0058] One skilled in the art will recognize that a variety of other factors may be taken into consideration when determining the effective dosage of a nitrogen scavenging drug. For example, factors such as diet (e.g., protein intake) and endogenous waste nitrogen capacity (e.g., urea synthesis capacity) may be considered.
[0059] Provided herein in certain embodiments are kits for carrying out the methods disclosed herein. In certain embodiments, kits are provided for determining whether to administer or adjust the dosage of a nitrogen scavenging drug for a subject with a nitrogen retention disorder. The kits disclosed herein may include one or more nitrogen scavenging drugs and/or one or more reagents (e.g., bromophenol blue) or enzymes (e.g., glutamate dehydrogenase) to measure blood ammonia levels in a sample. The kit may additionally include other pigments, binders, surfactants, buffers, stabilizers, and/or chemicals necessary
to obtain a blood sample and to measure the ammonia level in the sample. In certain embodiments, the kits provided herein comprise instructions in a tangible medium.
[0060] One of ordinary skill in the art will recognize that the various embodiments described herein can be combined.
[0061] The following examples are provided to better illustrate the claimed invention and are not to be interpreted as limiting the scope of the invention. To the extent that specific materials are mentioned, it is merely for purposes of illustration and is not intended to limit the invention. One skilled in the art may develop equivalent means or reactants without the exercise of inventive capacity and without departing from the scope of the invention. It will be understood that many variations can be made in the procedures herein described while still remaining within the bounds of the present invention. It is the intention of the inventors that such variations are included within the scope of the invention.

\section*{Examples}

Example 1: Analysis of predictability of pharmacodynamic ammonia values from fasting ammonia in UCD patients:
[0062] This example demonstrates the relationship between fasting ammonia and the pharmacodynamic (PD) profile of daily ammonia in patients receiving PAA prodrugs for UCDs. Ammonia values vary many-fold over the course of 24 hours in UCD patients. As depicted in Figures 3a and 3b, venous ammonia was measured for 24 hours following one week of dosing with either NaPBA or glycerol phenylbutyrate (GPB). The graphs display ammonia values as mean \(\pm\) SD over 24 hours, where time zero corresponds to just prior to dosing and breakfast (i.e., fasting state). In view of this variability in daily ammonia levels, a single measurement may not be very informative in determining whether a UCD patient is optimally dosed. The ability to predict the highest potential ammonia a UCD patient may experience during the day and the average 24 -hour ammonia from a single measurement such as fasting levels has important practical implications for nitrogen scavenging drug dosing guidelines and patient management.
[0063] Data from two Phase 2 studies and one Phase 3 study comparing ammonia control assessed by 24-hour sampling during steady state treatment with HPN-100 versus NaPBA in 65 UCD patients were used for the analysis. The two Phase 2 studies include protocols UP 1204-003 and HPN-100-005 (Lee 2010; Lichter-Konecki 2011). The Phase 3 study includes protocols from HPN-100-006 (Diaz 2011).
[0064] Ammonia values obtained from different hospital laboratories with different normal ranges were normalized to a standard laboratory range of \(9-35 \mu \mathrm{~mol} / \mathrm{L}\). The patient
population included a broad range of ages, UCD subtypes, and doses of drug, and is summarized in Table 1 below.
Table 1: UCD demographics in studies UP 1204-003, HPN-100-005, and HPN-100-006:
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Gender \\
n (\%)
\end{tabular}} & Male & \(18(27.7)\) \\
\cline { 2 - 3 } \begin{tabular}{c} 
Age at screening \\
(years)
\end{tabular} & Female & \(47(72.3)\) \\
\cline { 2 - 3 } & N & 65 \\
\cline { 2 - 3 } & Mean (SD) & \(29.46(15.764)\) \\
\cline { 2 - 3 } & UCD diagnosis \\
n (\%)
\end{tabular}\(\quad\) Median \(\quad 24.00\)
[0065] Exploratory analysis:
[0066] Several PD parameters for steady-state ammonia were explored: AUC \({ }_{0-24 \mathrm{hr}}\), timenormalized AUC, \(\log\) AUC, maximal ammonia value over 24 hours (Cmax), and average ammonia. Data from 65 subjects from all three studies with steady-state ammonia and fasting ammonia were used. Missing data were imputed per procedures specified in the protocol and statistical analysis plan, except that no imputations were made for subjects who had no PK sampling conducted while on a given study drug.
[0067] Sample collection times of 0-hr (before first daily dose) and 24-hours post-dose (before first daily dose of the following day) were both evaluated as representative of fasting ammonia. No noticeable difference in the shape or quality of the relationship due to the choice of time point was observed.
[0068] The relationship between fasting ammonia and pharmacokinetic profile was evaluated separately for HPN-100 and NaPBA , with no apparent difference in the strength or magnitude of the relationship. Therefore, all data from both HPN-100 and NaPBA treatments were used and conclusions regarding fasting ammonia pertain to both HPN-100 and NaPBA.
[0069] The relationships between (1) fasting ammonia and \(\mathrm{AUC}_{0-24 \mathrm{hr}}\) and (2) fasting ammonia and maximum observed ammonia (Cmax) were visually explored for the whole population. The effects of the following covariates were also observed: age, weight, gender, and dietary protein intake. A positive and strong relationship was observed between fasting ammonia and \(\mathrm{AUC}_{0-24 \mathrm{hr}}\), with increasing fasting ammonia being associated with higher \(\mathrm{AUC}_{0-24 \mathrm{hr}}\) and maximum observed ammonia (Figure 2).
[0070] Prediction of \(\mathrm{AUC}_{0-24 \mathrm{hr}}\) through GEE Modeling:
[0071] The aim of this modeling was to predict average daily or highest achieved ammonia based on the subject's fasting ammonia. In order to take into account the differences in normal ranges at different laboratories, all ammonia values were normalized to a reference range of \(9-35 \mu \mathrm{~mol} / \mathrm{L}\), and the predictions were referenced to the ULN rather than a fixed value.
[0072] Generalized Estimating Equations (GEE) were used to model the predictive ability of fasting ammonia against various ammonia PD properties. GEE methodology can be used to analyze repeated measures of categorical data, in which the repeated measures are assumed to be correlated (Liang 1986). The model allows for the specification of the assumed correlation structure without the knowledge of the magnitude of the correlation.
[0073] The 24-hour ammonia profile was divided into ordered categories using a variety of endpoints and cutpoints as follows:
1) AUC \(\left[0-1.0 * \mathrm{ULN},>1.0^{*} \mathrm{ULN}\right]\);
2) AUC \(\left[0-1.5^{*} \mathrm{ULN},>1.5^{*} \mathrm{ULN}\right]\);
3) Cmax \(\left[0-1.0^{*} \mathrm{ULN},>1.0^{*} \mathrm{ULN}\right]\);
4) Cmax \([0-1.5 * \mathrm{ULN},>1.5 * \mathrm{ULN}]\); and
5) Cmax \([0-100] \mu \mathrm{mol} / \mathrm{L}\).
[0074] Three levels of fasting ammonia were considered in separate models as input:
1) \([0-0.5 * \mathrm{ULN}]\);
2) \(\left[>0.5^{*} \mathrm{ULN}-<1.0 \mathrm{ULN}\right]\); and
3) \([>1.0 * \mathrm{ULN}-1.5 * \mathrm{ULN}]\).
[0075] Using Statistical Analysis Software (SAS) Proc Genmod, generalized linear models were fit with a logit link function. Pre-dose fasting ammonia was the only predictor variable in the model. The repeated nature of the data (two study periods per subject) was modeled using GEE with exchangeable correlation matrix. ULN for fasting ammonia was set at 35 \(\mu \mathrm{mol} / \mathrm{L}\). ULN for AUC over 24 hours was taken as 840 ( \(35 \mu \mathrm{~mol} / \mathrm{L} * 24\) hours); i.e., the AUC which corresponds to an average daily ammonia less than or equal to \(35 \mu \mathrm{~mol} / \mathrm{L}\), which
was the normalized ULN among the participating study sites and is derived by dividing the 24 -hour area under the curve by the sampling time of 24 hours. The GEE model was bootstrap-resampled 1,000 times according to the method outlined in Davison, A.C. \& Hinkley, D.V., Bootstrap Methods and their Application, Cambridge University Press, London (1997), pp.358-362. The results of these models are shown in Table 2 below.

Table 2: Summary of results from GEE model to predict ability of fasting ammonia against various ammonia PD properties:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model \# & Fasting ammonia level & Ammonia PK outcome & Probability of outcome in category & \[
\begin{aligned}
& \text { Bootstrap } \\
& \mathbf{9 5 \%} \text { c.i. }
\end{aligned}
\] & Bootstrap \(\mathbf{8 0 \%}\) c.i. & Bootstrap pred. error rate* (\%) \\
\hline 1 & \[
\begin{aligned}
& \hline[0-0.5 \\
& \text { ULN] }
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { AUC in } 24 \\
\text { hours [0-1.0 } \\
\text { ULN] }
\end{gathered}
\] & 0.84 & 0.67, 0.93 & 0.71, 0.89 & 11.5 \\
\hline 2 & & \[
\begin{gathered}
\text { AUC in } 24 \\
\text { hours [0-1.5 } \\
\text { ULN] }
\end{gathered}
\] & \multicolumn{4}{|c|}{Did not converge} \\
\hline 3 & & \[
\begin{gathered}
\text { Cmax } \\
\text { observed [0- } \\
\text { 1.0 ULN] } \\
\hline
\end{gathered}
\] & 0.53 & 0.38, 0.65 & 0.42, 0.61 & 45.8 \\
\hline 4 & & \[
\begin{gathered}
\text { Cmax } \\
\text { observed [0- } \\
1.5 \text { ULN] }
\end{gathered}
\] & 0.76 & 0.61, 0.86 & 0.66, 0.82 & 23.3 \\
\hline 5 & & \[
\begin{gathered}
\text { Cmax } \\
\text { observed [0- } \\
100] \\
\hline
\end{gathered}
\] & 0.93 & 0.78, 1.00 & 0.85, 0.97 & 5.7 \\
\hline 6 & \multirow[t]{7}{*}{\[
\begin{gathered}
{[0-<1.0} \\
\text { ULN }]
\end{gathered}
\]} & \[
\begin{gathered}
\text { AUC in } 24 \\
\text { hours [0-1.0 } \\
\text { ULN] } \\
\hline
\end{gathered}
\] & 0.58 & 0.42, 0.73 & 0.48, 0.68 & 42.8 \\
\hline 7 & & \[
\begin{gathered}
\hline \text { AUC in } 24 \\
\text { hours [0-1.5 } \\
\text { ULN] }
\end{gathered}
\] & 0.88 & 0.78, 0.97 & 0.82, 0.94 & 11.1 \\
\hline 8 & & AUC in 24 hours [0-2 ULN] & 0.97 & 0.90, 1.00 & 0.93, 1.00 & 2.2 \\
\hline 9 & & \[
\begin{aligned}
& \text { Cmax } \\
& \text { observed [0- } \\
& \text { 1.0 ULN] } \\
& \hline
\end{aligned}
\] & 0.21 & 0.11, 0.38 & 0.14, 0.33 & 20.0 \\
\hline 10 & & \[
\begin{gathered}
\text { Cmax } \\
\text { observed [0- } \\
1.5 \text { ULN] } \\
\hline
\end{gathered}
\] & 0.52 & 0.35, 0.66 & 0.42, 0.61 & 46.0 \\
\hline 11 & & \[
\begin{gathered}
\text { Cmax } \\
\text { observed [0- } \\
\text { 2.0 ULN] } \\
\hline
\end{gathered}
\] & 0.74 & 0.62, 0.85 & 0.91, 1.00 & 27.2 \\
\hline 12 & & \[
\begin{gathered}
\text { Cmax } \\
\text { observed [0- }
\end{gathered}
\] & 0.95 & 0.88, 1.00 & 0.66, 0.81 & 4.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & 100] & & & & \\
\hline 13 & \multirow[t]{7}{*}{\[
\begin{gathered}
{[>1.0-1.5} \\
\text { ULN] }
\end{gathered}
\]} & \[
\begin{gathered}
\text { AUC in } 24 \\
\text { hours [0-1.0 } \\
\text { ULN] }
\end{gathered}
\] & 0.45 & \(0.24,0.71\) & 0.30, 0.63 & 43 \\
\hline 14 & & \[
\begin{gathered}
\text { AUC in } 24 \\
\text { hours [0-1.5 } \\
\text { ULN] }
\end{gathered}
\] & \multicolumn{4}{|c|}{Did not converge} \\
\hline 15 & & \begin{tabular}{l}
AUC in 24 hours [0-2 \\
ULN]
\end{tabular} & 0.80 & 0.49, 0.99 & 0.63, 0.92 & 27 \\
\hline 16 & & Cmax
observed [0-
1.0 ULN] & \multicolumn{4}{|c|}{Did not converge} \\
\hline 17 & & Cmax
observed [0-
1.5 ULN] & 0.35 & 0.16, 0.58 & 0.23, 0.51 & 33 \\
\hline 18 & & \[
\begin{gathered}
\text { Cmax } \\
\text { observed [0- } \\
\text { 2.0 ULN] }
\end{gathered}
\] & \multicolumn{4}{|c|}{Did not converge} \\
\hline 19 & & Cmax
observed [0-
\(100]\) & \multicolumn{4}{|c|}{Did not converge} \\
\hline
\end{tabular}
[0076] From Table 2 above, we can conclude that in the population of UCD patients described in Table 1, we can be \(95 \%\) confident that, given a fasting ammonia less than or equal to half the ULN, the true probability of having an AUC in the range [0-840] is on average \(84 \%\), at least \(67 \%\), and as high as \(93 \%\).
[0077] Row 1 of Table 2 above suggests that a UCD patient with a fasting ammonia of 17 \(\mu \mathrm{mol} / \mathrm{L}\) as determined by a laboratory with a normal reference range of \(9-35 \mu \mathrm{~mol} / \mathrm{L}\) (i.e., a fasting ammonia in the range [0-0.5 ULN]) has an \(84 \%\) chance (with a \(95 \%\) confidence interval of \(67 \%\) to \(93 \%\) ) of having a time normalized \(\mathrm{AUC}_{0-24 \mathrm{hr}}\) in the normal range [AUC 0 24 hr of \(0-840\) or an average daily ammonia of \(35 \mu \mathrm{~mol} / \mathrm{L}]\), a \(76 \%\) chance (with a \(95 \%\) confidence interval of \(61 \%\) to \(86 \%\) ) of having a Cmax of less than 1.5 ULN, and a \(93 \%\) chance (with a \(95 \%\) confidence interval of \(78 \%\) to \(100 \%\) ) of never having an ammonia of more than \(100 \mu \mathrm{~mol} / \mathrm{L}\). Therefore, this patient would be optimally controlled and unlikely to suffer from high ammonia during the day.
[0078] This Example shows that fasting ammonia correlates strongly with daily ammonia exposure, assessed as a daily average or as maximal daily concentration, and that a target fasting value which does not exceed half of the upper level of normal for the local lab appears to be a clinically useful as well as practical predictor of ammonia values over 24 hours as well. Furthermore, this Example shows that a subject with a fasting ammonia in the range 0-
0.5 ULN has an \(84 \%\) chance of having an \(\mathrm{AUC}_{0-24 \mathrm{hr}}\) in the normal range ( \(0-840\) or an average daily ammonia of \(35 \mu \mathrm{~mol} / \mathrm{L}\) ).

Example 2: Selecting and adjusting HPN-100 dosage based on fasting blood ammonia levels in a patient with UCD:
[0079] Patient A is an adult with UCD being managed with amino acid supplements and dietary protein restriction only. Patient A consumes neither his supplements nor food for approximately 8 hours prior to a fasting morning blood draw. A venous blood draw is performed, and fasting blood ammonia level is determined to be \(52 \mu \mathrm{~mol} / \mathrm{L}\). This fasting blood ammonia level is compared to the ULN for blood ammonia in the laboratory performing the blood draw, which is \(35 \mu \mathrm{~mol} / \mathrm{L}\). Based on the correlation of fasting ammonia level to average ammonia level, it is determined that Patient A's fasting blood ammonia level of approximately 1.5 times the ULN represents only a \(45 \%\) chance on average of having an average ammonia during the day within the normal range. Thus, the ratio of fasting blood ammonia level to ULN for blood ammonia indicates that Patient A will benefit from treatment with a nitrogen scavenging drug.
[0080] The physician elects to treat Patient A with HPN-100. Initial dosage is determined based on body surface area or as otherwise instructed according to HPN-100 drug labeling. Patient A's body surface area is \(1.4 \mathrm{~m}^{2}\), and therefore the initial dosage is determined to be 9 mL per day or 3 mL TID, which is approximately \(60 \%\) of the maximum allowed dosage per HPN-100 label. Patient A is treated with \(9 \mathrm{~mL} /\) day of HPN-100 for at least 7 days, and returns for an additional blood draw. The fasting blood ammonia level at this time is \(33 \mu \mathrm{~mol} / \mathrm{L}\), which is slightly below the ULN and falls into the range of 0.5 to 1.0 times normal. Patient A's blood ammonia level is monitored throughout the day after administration of a 3 mL dose of HPN-100 with each meal. It is observed that Patient A's maximum ammonia reaches 95 \(\mu \mathrm{mol} / \mathrm{L}\) after dinner with an average daily ammonia of \(66 \mu \mathrm{~mol} / \mathrm{L}\), which is almost two times the upper normal range. Therefore, Patient A's dosage of HPN-100 is increased by approximately one-third to 12 mL total or 4 mL TID. Patient A returns after at least 7 days of treatment with HPN-100. Patient A's fasting ammonia level is \(15 \mu \mathrm{~mol} / \mathrm{L}\), which is less than half of the ULN range. It is determined that Patient A has reached satisfactory ammonia control.
[0081] It is expected that if Patient A adheres to his prescribed diet, his maximal daily ammonia is not expected to exceed approximately \(52 \mu \mathrm{~mol} / \mathrm{L}\), i.e., approximately 1.5 times the ULN, with an average likelihood of \(75 \%\) with \(95 \%\) confidence. The average ammonia level during the day is expected to remain within normal range with greater than \(84 \%\)
likelihood and \(95 \%\) confidence. Moreover, Patient A's maximal daily ammonia is highly unlikely to reach \(100 \mu \mathrm{~mol} / \mathrm{L}\) during the day.

Example 3: Adjusting HPN-100 dosage based on fasting blood ammonia levels in a patient with UCD:
[0082] Patient B is an 11-year UCD patient receiving 24 pills of BUPHENYL \({ }^{\circledR}\) per day, amino acid supplements, and restricted dietary protein intake. Patient B does not consume BUPHENYL \({ }^{(3)}\), supplements, or food for approximately 6 hours prior to a fasting morning blood draw. A venous blood draw is performed, and fasting blood ammonia level is determined to be \(40 \mu \mathrm{~mol} / \mathrm{L}\). This fasting blood ammonia level is compared to the ULN for blood ammonia for the laboratory performing the blood draw, which is \(35 \mu \mathrm{~mol} / \mathrm{L}\). Based on the correlation of fasting ammonia level to average ammonia level, it is determined that Patient B's fasting blood ammonia level falling between 1 and 1.5 times the ULN represents a \(55 \%\) chance of having an average ammonia during the day that is greater than the normal range, and as high as a \(65 \%\) chance that her ammonia will go above \(52 \mu \mathrm{~mol} / \mathrm{L}\) or 1.5 times ULN during the day.
[0083] Based on discussion with the patient and her mother, the physician suspects that Patient B is noncompliant with her medication, and decides to change her to HPN-100. The initial dosage is determined based on the amount of BUPHENYL \({ }^{\circledR 3}\) Patient B was receiving, and it is determined that Patient B needs to take 10.5 mL of HPN-100 per day. Patient B is treated with 3.5 mL of HPN-100 3 times a day for at least 7 days, and returns for additional blood draws. Her fasting blood ammonia level at this time is \(17 \mu \mathrm{~mol} / \mathrm{L}\), which is below the ULN and falls into the range of 0 to 0.5 times normal. It is determined that Patient \(B\) has reached satisfactory ammonia control.
[0084] It is expected that if Patient B adheres to her prescribed diet, her maximal daily ammonia will not go above approximately \(50 \mu \mathrm{~mol} / \mathrm{L}\), which is less than 1.5 times the ULN. Her average ammonia level during the day is expected with greater than \(84 \%\) average likelihood to remain within normal range. Moreover, there is only a small chance (7\%) that Patient B's maximal daily ammonia will exceed \(100 \mu \mathrm{~mol} / \mathrm{L}\) during the day.
Example 4: Selecting and adjusting sodium benzoate dosage based on fasting blood ammonia levels in a patient with UCD:
[0085] Patient C is an adult UCD patient who is allergic to PBA and is therefore being managed with amino acid supplements and dietary protein restriction only. Patient C complains of chronic headache and frequent nausea. Patient C consumes neither his supplements nor food for approximately 8 hours prior to a fasting morning blood draw. A
venous blood draw is performed, and fasting blood ammonia level is determined to be 77 \(\mu \mathrm{mol} / \mathrm{L}\). This fasting blood ammonia level is compared to the ULN for blood ammonia for the laboratory performing the blood draw, which is \(35 \mu \mathrm{~mol} / \mathrm{L}\). Based on the correlation of fasting ammonia level to average ammonia level, it is determined that Patient C's fasting blood ammonia level of approximately 2 times the ULN represents a high likelihood of ammonia levels going over \(100 \mu \mathrm{~mol} / \mathrm{L}\) during the day. Thus, the ratio of fasting blood ammonia level to ULN for blood ammonia indicates that Patient C will benefit from treatment with a nitrogen scavenging drug.
[0086] The physician decides to treat Patient C with 15 g of sodium benzoate per day since the patient is allergic to PBA. Patient C is treated with \(15 \mathrm{~g} /\) day of sodium benzoate for at least 7 days, and returns for additional blood draws. Fasting blood ammonia level at this time is \(35 \mu \mathrm{~mol} / \mathrm{L}\), which is equal to the ULN. Patient C's dosage of sodium benzoate is increased by approximately \(30 \%\) to 18 grams per day. After at least 7 days of treatment, Patient C's fasting ammonia level is \(15 \mu \mathrm{~mol} / \mathrm{L}\), which is less than half of the ULN. It is determined that Patient C has reached satisfactory ammonia control.
[0087] It is expected that if Patient C adheres to his prescribed diet and medication, his maximal daily ammonia will not exceed approximately \(52 \mu \mathrm{~mol} / \mathrm{L}\), which is approximately 1.5 times the ULN. His average ammonia level during the day is expected with greater than \(80 \%\) likelihood to remain within normal range. Moreover, Patient C's maximal daily ammonia is highly unlikely to reach \(100 \mu \mathrm{~mol} / \mathrm{L}\) during the day.

Example 5: Evaluation of the effect of ammonia control on neurocognitive outcome:
[0088] It has been shown that UCD patients are likely to suffer from diminished intelligence and impaired neurocognitive functions (Kirvitsky 2009). These neuropsychological impairments have been attributed to repeated episodes of acute hyperammonemia interspersed on chronically elevated ammonia. Abnormalities in neuropsychological function and/or brain imaging have been detected even in UCD patients with mild disorders who exhibit normal IQ and/or appear clinical normal (Gropman 2008a; Gropman 2008b). Therefore, it was hypothesized that maintaining average daily ammonia within normal limits and thereby reducing the long term ammonia burden could result in improved cognition.
[0089] The relationship between reducing ammonia burden by maintaining fasting ammonia at or close to half ULN and neuropsychological outcomes in pediatric UCD patients was explored in clinical trials. Eleven pediatric patients ages 6-17 were enrolled in short term switch over comparison of NaPBA and HPN-100 in controlling ammonia. These patients
underwent \(24-\mathrm{hr}\) serial sample collection in a confined setting where the last sample at 24 hr was considered fasting and under supervision of the study personnel. At the end of treatment with HPN-100 the average fasting ammonia at \(24-\mathrm{hr}\) time point was \(15.5 \mu \mathrm{~mol} / \mathrm{L}\) or less than half ULN, indicating good clinical control. These 11 patients along with another 15 pediatric patients were enrolled in two long term studies and received HPN-100 for 12 months, during which monthly fasting ammonia were collected. At the time of enrollment and at the end of the study, all patients underwent assessment for neuropsychological outcomes including the following: BRIEF (Behavior Rating Inventory of Executive Function) to assess day-to-day executive functioning, CBCL (Child Behavior Checklist) to evaluate internalizing (e.g., mood/anxiety) and externalizing behaviors, and WASI (Wechsler Abbreviated Scale of Intelligence) to estimate of intellectual ability.
[0090] During the 12 month treatment with HPN-100, pediatric UCD patients experienced fewer episodes of acute hyperammonemia than in the 12 months preceding enrollment ( 5 episodes during the study versus 9 before enrollment), with peak ammonia dropping from a mean of \(233 \mu \mathrm{~mol} / \mathrm{L}\) before enrollment to \(166 \mu \mathrm{~mol} / \mathrm{L}\) during the study. Fasting ammonia remained controlled and monthly averages were at or close to half ULN, ranging from 17 to \(22 \mu \mathrm{~mol} / \mathrm{L}\). Although patients had been instructed to remain fasting before monthly study visits, some ammonia samples were taken in a non-fasted state, resulting in average monthly ammonia of slightly above half ULN.
[0091] In pediatric patients, WASI and CBCL scores were stable in comparison to baseline. The majority of the BRIEF subscales at baseline were at or close to 65 , consistent with borderline and/or clinically significant dysfunction. Among 22 pediatric subjects who completed the neuropsychological testing at 12 months, all BRIEF domains were improved (lower T scores) with means (SD) at end of study compared to baseline for Behavioral Regulation Index 53.7 (9.79) vs. 60.4 (14.03) ( \(\mathrm{p}<0.05\) ); Metacognition Index 57.5 (9.84) vs. 67.5 (13.72) ( \(\mathrm{p}<0.001\) ), and Global Executive Scale 56.5 (9.71) vs. 66.2 (14.02) ( \(\mathrm{p}<0.001\) ). [0092] The significant improvement in executive functions in this group of pediatric UCD patients indicates the importance of long term ammonia control and achieving target levels of fasting ammonia.

Example 6: Correlation of elevated PAA levels to neurological AEs in UCD and healthy subjects:
[0093] Elevated plasma levels of PAA may cause symptoms that mimic those associated with hyperammonemia, including headache, nausea, somnolence, etc. Since such symptoms are common and nonspecific, an ammonia level below half the upper limit of normal in a
subject with a nitrogen retention disorder who exhibits such symptoms and is receiving a PAA prodrug would prompt a physician to check plasma PAA levels.
[0094] The relationship between elevated PAA levels and neurological AEs was evaluated in three populations: (1) 130 healthy adults dosed with 4 to 12 mL TID of GPB in a thorough QTc study, (2) 54 adult and 11 pediatric UCD patients (ages 6-17) enrolled in one of 3 protocols involving short term (2-4 week) switchover comparisons of NaPBA vs. GPB, and (3) 77 patients enrolled in two nearly identical 12-month GPB treatment protocols. In populations 1 and 2, maximal PAA (i.e., Cmax) levels were analyzed in relation to neurological AEs as defined by MEDDRA using an Exact non-parametric Mann-Whitney test and Generalized Estimating Equations (GEE) with a logit link function and effects for dose and PAA level. The relationship between PAA levels and the occurrence of the AEs reported by Thiebault was also explored in population 3.
[0095] No statistically significant relationship was observed between neurological AEs and PAA levels for either GPB or NaPBA. The odds ratio of a neurological AE occurring for each \(20 \mu \mathrm{~g} / \mathrm{mL}\) increase in PAA levels for the two drugs combined was 0.95 , very close to 1 . Thus, among UCD patients dosed with HPN-100 or NaPBA over the ranges used in these studies, increasing levels of PAA (ranging up to \(244 \mu \mathrm{~g} / \mathrm{mL}\) ) were not associated with an increase in neurological AEs. Similarly, in population 3, PAA levels did not increase over time and exhibited no apparent relationship to neurological AEs, which also did not increase in frequency over time. The pediatric patient with the highest PAA level \((410 \mu \mathrm{~g} / \mathrm{mL})\) did not report neurological AEs close to the timing of the blood draw.
[0096] Unlike UCD subjects, healthy adult volunteers who reported a nervous system AE had statistically significantly higher PAA \(C_{\text {max }}\) levels than those who did not. While this analysis in healthy adults is compromised by the fact that PAA levels were not always available at the time of occurrence of the AEs, as well as by the small sample size in the higher dose groups, the odds ratio of \(1.75(\mathrm{p}=0.006)\) suggests that increasing levels of PAA are associated with increased probability of experiencing a nervous system AE among healthy adults. AEs reported by healthy adults generally began within 36 hours of dosing and, among those adults who remained on study, most resolved with continued dosing.
[0097] A significant relationship between PAA levels and occurrence of neurological AEs, which generally resolved with continued dosing, was detected in healthy volunteers. Unlike in healthy adults, PAA \(C_{\text {max }}\) did not correlate with nervous system AEs in UCD patients over a similar range of doses and PAA levels. These findings may reflect metabolic differences
among the populations (e.g., UCD patients exhibit high glutamine levels compared with healthy humans) and/or metabolic adaptation with continued dosing.
[0098] Population PK model building was performed on 65 UCD patients who participated in the short-term switchover Hyperion studies using NONMEM (version 7.2) based on 2981 ([PBA], [PAA], [PAGN], and urine PAGN [UPAGN])) data points from 53 adult and 11 pediatric UCD patients (ages 6-17) who participated in 3 switchover studies of NaPBA and GPB. The median GPB dose, expressed as grams of PBA per m2, was 8.85 and 7.01 for pediatric and adult subjects, respectively. Diagnostic plots and statistical comparisons were used to select among candidate models, and covariates were assessed by graphical analyses and covariate modeling. Using the final popPK model and parameter estimates, Monte Carlo simulations were performed in \(\sim 1000\) virtual patients for a range of NaPBA and GPB doses to predict systemic metabolite exposure and UPAGN output.
[0099] The final model that best fit the data was characterized by (a) partial conversion of PBA to PAGN prior to reaching the systemic circulation, (b) saturable conversion of PAA to PAGN ( \(\mathrm{Km} \sim 161 \mathrm{ug} / \mathrm{ml}\) ), and (c) \(\sim 60 \%\) slower PBA absorption when delivered as GPB vs. NaPBA. Body surface area (BSA) was a significant covariate such that metabolite clearance was proportionally related to BSA. Fractional presystemic metabolism of PBA was higher for adults than for pediatric patients receiving GPB ( \(43 \%\) vs. \(14 \%\) ), whereas the reverse was true for NaPBA ( \(23 \%\) vs. \(43 \%\) ). Predicted median PAA exposure based on simulated GPB dosing at the PBA equivalent of \(13 \mathrm{~g} / \mathrm{m} 2\) of NaPBA was \(\sim 13 \%-22 \%\) lower in adults than NaPBA (Cmax \(=82\) vs. \(106 \mu \mathrm{~g} / \mathrm{mL} ;\) AUC \(_{0-24}=649\) vs. \(\left.829 \mu \mathrm{~g} . \mathrm{h} / \mathrm{m}\right)\) and \(\sim 13 \%\) higher in pediatric subjects ages 6-17 than NaPBA ( \(\mathrm{Cmax}=154 \mathrm{vs} .138 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{AUC}_{0-24}=1286 \mathrm{vs}\). \(1154 \mu \mathrm{~g} . \mathrm{h} / \mathrm{ml}\) ); predicted upper 95th percentile PAA exposure was below \(500 \mu \mathrm{~g} / \mathrm{mL}\) and \(25 \%-40 \%\) lower for adult subjects on GPB versus NaPBA and similar for pediatric subjects. Simulated dosing at the PBA equivalent of \(\sim 5 \mathrm{~g} / \mathrm{m}^{2}\) of NaPBA yielded similar and less variable PAA exposure for both drugs and for pediatric and adult patients. Recovery of PBA as UPAGN was very similar whether delivered orally as GPB or NaPBA.
[00100] These findings based on PopPK modeling and dosing simulations suggest that while most patients treated with PAA prodrugs including NaPBA or HPN-100 will have PAA levels below those reportedly associated with toxicity and while no relationship between PAA levels and neurological AEs was found on a population basis, individual patients exhibiting symptoms such as headache or nausea might be suffering from either hyperammonemia or high PAA levels and that a fasting ammonia level equal to or below half the upper limit of normal would prompt the physician to check plasma PAA levels.
[00101] As stated above, the foregoing is merely intended to illustrate various embodiments of the present invention. The specific modifications discussed above are not to be construed as limitations on the scope of the invention. It will be apparent to one skilled in the art that various equivalents, changes, and modifications may be made without departing from the scope of the invention, and it is understood that such equivalent embodiments are to be included herein. All references cited herein are incorporated by reference as if fully set forth herein.

\section*{REFERENCES}
1. Brusilow Science 207:659 (1980)
2. Brusilow Pediatr Res 29:147 (1991)
3. Diaz Mol Genet Metab 102:276 (2011)
4. Gropman Mol Genet Metab 94:52 (2008a)
5. Gropman Mol Genet Metab 95:21 (2008b)
6. Lee Mol Genet Metab 100:221 (2010)
7. Liang Biometrika 73:13 (1986)
8. Lichter-Konecki Mol Genet Metab 103:323 (2011)
9. McGuire Hepatology 51:2077 (2010)
10. Thibault Cancer Res 54:1690 (1994)
11. Thibault Cancer 75:2932 (1995)

What is claimed is:
1. A method for determining whether to increase a dosage of a nitrogen scavenging drug in a subject currently receiving the nitrogen scavenging drug, comprising:
a) measuring a fasting blood ammonia level for the subject; and
b) comparing the fasting blood ammonia level to the upper limit of normal for blood ammonia level to determine whether to increase the dosage of a nitrogen scavenging drug, wherein the dosage needs to be increased if the fasting blood ammonia level is greater than half the upper limit of normal for blood ammonia level.
2. A method for determining whether to administer a nitrogen scavenging drug to a subject having a nitrogen retention disorder comprising:
a) measuring a fasting blood ammonia level for the subject; and
b) comparing the fasting blood ammonia level to the upper limit of normal for blood ammonia level to determine whether to administer a nitrogen scavenging drug to the subject, wherein a nitrogen scavenging drug needs to be administered to the subject if the fasting blood ammonia level is greater than half the upper limit of normal for blood ammonia level.
3. A method of treating a subject with a nitrogen retention disorder who has previously been administered a nitrogen scavenging drug comprising:
a) measuring a fasting blood ammonia level for the subject; and
b) comparing the fasting blood ammonia level to the upper limit of normal for blood ammonia level and administering an increased dosage of the nitrogen scavenging drug if the fasting blood ammonia level is greater than half the upper limit of normal for blood ammonia level.
4. The method of claim 1, further comprising:
c) administering an increased dosage of the nitrogen scavenging drug if the need exists.
5. The method of any of claims 1-3, wherein the nitrogen retention disorder is selected from the group consisting of a urea cycle disorder and hepatic encephalopathy.
6. The method of any of claims 1-3, wherein the nitrogen scavenging drug is a PAA prodrug.
7. The method of claim 6, wherein the PAA prodrug is selected from the group consisting of glyceryl tri-[4-phenylbutyrate] (HPN-100), phenylbutyric acid (PBA), sodium PBA (NaPBA), and a combination of two or more of HPN-100, PBA, and NaPBA.
8. The method of any of claims 1-3, wherein the nitrogen scavenging drug is sodium benzoate.
9. The method of claim 3 or 4, wherein administering an increased dosage of the nitrogen scavenging drug produces a normal average daily ammonia level in the subject.
10. The method of any of claims \(1-3\), further comprising the step of determining an upper limit of normal for blood ammonia level for the subject prior to step (b).
11. The method of any of claims 1-3, wherein the upper limit of normal blood ammonia level is \(35 \mu \mathrm{~mol} / \mathrm{L}\).
12. The method of claim 6, further comprising:
c) measuring urinary PAGN excretion; and
e) determining an effective dosage of the PAA prodrug based on a mean conversion of PAA prodrug to urinary PAGN of \(60-75 \%\).

Figure 1


Figure 2

Relationship belween Fasting Ammonia and AuC of Ammonia 0 - 24 hours Unear Fegression and \(95 \%\) of of Preciction Al Studies combined 65 entoue subjects


Figure 3
A.

B.

-3-
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization
International Bureau

\section*{(10) International Publication Number WO 2013/158145 A1}
(43) International Publication Date 24 October 2013 (24.10.2013)
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(51) International Patent Classification A61K 31/216 (2006.01) A61K 31/185 (2006.01)
(21) International Application Number:

PCT/US2012/054673
(22) International Filing Date:

11 September 2012 (11.09.2012)
(25) Filing Language:
(26) Publication Language:
(30) Priority Data: 61/636,256 20 April 2012 (20.04.2012)

English
English
US
(72) Inventors; and
(71) Applicants : SCHARSCHMIDT, Bruce [US/US]; 45 St . Francis Boulevard, San Francisco, California 94127 (US). MOKHTARANI, Masoud [US/US]; 725 Castle Rock Road, Walnut Creek, California 94598 (US).
(74) Agent: MORRIS, Patrick; Perkins Coie LLP, P.O. Box 1208, Seattle, WA 98111-1208 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): \(\mathrm{AF}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}\),
\(\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BN}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}\), BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian ( \(\Lambda M, \Lambda Z, B Y, K G, K Z, R U, T J\), TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

\section*{METHODS OF THERAPEUTIC MONITORING OF PHENYLACETIC ACID PRODRUGS \\ RELATED APPLICATIONS}
[0001] The present application claims priority to U.S. Provisional Application No. \(61 / 636,256\), filed April 20, 2012, the disclosure of which is incorporated by reference herein in its entirety, including drawings.

\section*{BACKGROUND}
[0002] Nitrogen retention disorders associated with elevated ammonia levels include urea cycle disorders (UCDs), hepatic encephalopathy (HE), and advanced kidney disease or kidney failure, often referred to as end-stage renal disease (ESRD).
[0003] UCDs include several inherited deficiencies of enzymes or transporters necessary for the synthesis of urea from ammonia, including enzymes involved in the urea cycle. The urea cycle is depicted in Figure 1, which also illustrates how certain ammonia-scavenging drugs act to assist in elimination of excessive ammonia. With reference to Figure 1, N-acetyl glutamine synthetase (NAGS)-derived \(N\)-acetylglutamate binds to carbamyl phosphate synthetase (CPS), which activates CPS and results in the conversion of ammonia and bicarbonate to carbamyl phosphate. In turn, carbamyl phosphate reacts with ornithine to produce citrulline in a reaction mediated by ornithine transcarbamylase (OTC). A second molecule of waste nitrogen is incorporated into the urea cycle in the next reaction, mediated by arginosuccinate synthetase (ASS), in which citrulline is condensed with aspartic acid to form argininosuccinic acid. Argininosuccinic acid is cleaved by argininosuccinic lyase (ASL) to produce arginine and fumarate. In the final reaction of the urea cycle, arginase (ARG) cleaves arginine to produce ornithine and urea. Of the two atoms of nitrogen incorporated into urea, one originates from free ammonia \(\left(\mathrm{NH}_{4}{ }^{+}\right)\)and the other from aspartate. UCD individuals born with no meaningful residual urea synthetic capacity typically present in the first few days of life (neonatal presentation). Individuals with residual function typically present later in childhood or even in adulthood, and symptoms may be precipitated by increased dietary protein or physiological stress (e.g., intercurrent illness). For UCD patients, lowering blood ammonia is the cornerstone of treatment.
[0004] HE refers to a spectrum of neurologic signs and symptoms believed to result from hyperammonemia, which frequently occur in subjects with cirrhosis or certain other types of liver disease. HE is a common manifestation of clinically decompensated liver disease and most
commonly results from liver cirrhosis with diverse etiologies that include excessive alcohol use, hepatitis B or C virus infection, autoimmune liver disease, or chronic cholestatic disorders such as primary biliary cirrhosis. Patients with HE typically show altered mental status ranging from subtle changes to coma, features similar to patients with UCDs. It is believed that an increase in blood ammonia due to dysfunctional liver in detoxifying dietary protein is the main pathophysiology associated with HE (Ong 2003).
[0005] ESRD results from a variety of causes including diabetes, hypertension, and hereditary disorders. ESRD is manifested by accumulation in the bloodstream of substances normally excreted in the urine, including but not limited to urea and creatinine. This accumulation in the bloodstream of substances, including toxins, normally excreted in the urine is generally believed to result in the clinical manifestations of ESRD, sometimes referred to also as uremia or uremic syndrome. ESRD is ordinarily treated by dialysis or kidney transplantation. To the extent that urea, per se, contributes to these manifestations and that administration of a phenylacetic (PAA) prodrug may decrease synthesis of urea (see, e.g., Brusilow 1993) and hence lower blood urea concentration, PAA prodrug administration may be beneficial for patients with ESRD.
[0006] Subjects with nitrogen retention disorders whose ammonia levels and/or symptoms are not adequately controlled by dietary restriction of protein and/or dietary supplements are generally treated with nitrogen scavenging agents such as sodium phenylbutyrate (NaPBA, approved in the United States as BUPHENYL \({ }^{(\mathbb{B}}\) and in Europe as AMMONAPS \({ }^{(\mathbb{B}}\) ), sodium benzoate, or a combination of sodium phenylacetate and sodium benzoate (AMMONUL(B). These are often referred to as alternate pathway drugs because they provide the body with an alternate pathway to urea for excretion of waste nitrogen (Brusilow 1980; Brusilow 1991). NaPBA is a PAA prodrug. Another nitrogen scavenging drug currently in development for the treatment of nitrogen retention disorders is glyceryl tri-[4-phenylbutyrate] (HPN-100), which is described in U.S. Patent No. 5,968,979. HPN-100, which is commonly referred to as GT4P or glycerol PBA, is a prodrug of PBA and a pre-prodrug of PAA. The difference between HPN100 and NaPBA with respect to metabolism is that HPN-100 is a triglyceride and requires digestion, presumably by pancreatic lipases, to release PBA (McGuire 2010), while NaPBA is a salt and is readily hydrolyzed after absorption to release PBA.
[0007] HPN-100 and NaPBA share the same general mechanism of action: PBA is converted to PAA via beta oxidation, and PAA is conjugated enzymatically with glutamine to
form phenylacetylglutamine (PAGN), which is excreted in the urine. The structures of PBA, PAA, and PAGN are set forth below:

pherybutytake


Phenylacetic acid


Pheryiacetylatuamine
[0008] The clinical benefit of NaPBA and HPN-100 with regard to nitrogen retention disorders derives from the ability of PAGN to effectively replace urea as a vehicle for waste nitrogen excretion and/or to reduce the need for urea synthesis (Brusilow 1991; Brusilow 1993). Because each glutamine contains two molecules of nitrogen, the body rids itself of two waste nitrogen atoms for every molecule of PAGN excreted in the urine. Therefore, two equivalents of nitrogen are removed for each mole of PAA converted to PAGN. PAGN represents the predominant terminal metabolite, and one that is stoichiometrically related to waste nitrogen removal, a measure of efficacy in the case of nitrogen retention states.
[0009] In addition to nitrogen retention states, PAA prodrugs may be beneficial in a variety of other disorders for which PBA and/or PAA are believed to modify gene expression and/or exert post-translational effects on protein function. In the case of maple syrup urine disease (MSUD, also known as branched-chain ketoaciduria), for example, the apparently beneficial effect of NaPBA in lowering plasma levels of branched chain amino acids is reported to be mediated by PBA-induced inhibition of the kinase that regulates activity of branched chain alpha-keto acid dehydrogenase complex or BCKDC. BCKDC is the enzyme that normally breaks down branched-chain amino acids and is genetically defective in MSUD patients (Bruneti-Pieri 2011). Similarly, the putative beneficial effects of PAA prodrugs for the
treatment of cancer (Chung 2000), neurodegenerative diseases (Ryu 2005), and sickle cell disease (Perrine 2008) all involve alteration of gene expression and/or post-translational effects on protein function via PBA and/or PAA.
[0010] Numerous publications reports adverse events following administration of PBA and/or PAA (Mokhtarani 2012), and PAA is reported to cause reversible toxicity when present in high levels in circulation. While many of these publications have not recorded PAA blood levels and/or temporally correlated adverse events with PAA levels, toxicities such as nausea, headache, emesis, fatigue, weakness, lethargy, somnolence, dizziness, slurred speech, memory loss, confusion, and disorientation have been shown to be temporally associated with PAA levels ranging from \(499-1285 \mu \mathrm{~g} / \mathrm{mL}\) in cancer patients receiving PAA intravenously, and these toxicities have been shown to resolve with discontinuation of PAA administration (Thiebault 1994; Thiebault 1995). Therefore, when administering PAA prodrugs for treatment of nitrogen retention disorders and other conditions, it is important to optimize dosing so as to achieve the desired therapeutic effect while minimizing the risk of PAA associated toxicity.

\section*{SUMMARY}
[0011] Provided herein is a clinically practical approach for utilizing and interpreting blood levels of PAA and PAGN to adjust the dose of a PAA prodrug in order to minimize the risk of toxicities and maximize drug effectiveness.
[0012] Provided herein in certain embodiments are methods of treating a nitrogen retention disorder or a condition for which PAA prodrug administration is expected to be beneficial in a subject comprising the steps of administering a first dosage of a PAA prodrug, measuring plasma PAA and PAGN levels, calculating a plasma PAA:PAGN ratio, and determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range. In certain embodiments, the target range is 1 to \(2.5,1\) to 2,1 to \(1.5,1.5\) to 2, or 1.5 to 2.5. In certain embodiments, a PAA:PAGN ratio above the target range indicates that the dosage of the PAA prodrug needs to be decreased. In other embodiments, a PAA:PAGN ratio above the target range indicates that the dosage may need to be decreased, with the final determination of whether to decrease the dosage taking into account other characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. In certain embodiments, a PAA:PAGN ratio below the target range indicates that the dosage of the PAA prodrug needs to be increased. In other embodiments, a PAA:PAGN
ratio below the target range indicates that the dosage may need to be increased, with the final determination of whether to increase the dosage taking into account other characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. In certain embodiments, a PAA:PAGN ratio that is within the target range but within a particular subrange (e.g., 1 to 1.5 or 2 to 2.5 where the target range is 1 to 2.5 ) indicates that the dosage of the PAA prodrug does not need to be adjusted, but that the subject needs to be subjected to more frequent monitoring. In certain embodiments, the methods further comprise a step of administering an adjusted second dosage if such an adjustment is determined to be necessary based on the PAA:PAGN ratio and, optionally, other characteristics of the subject. In other embodiments, the methods further comprise a step of administering a second dosage that is the same as or nearly the same as the first dosage if no adjustment in dosage is deemed to be necessary. In certain embodiments, the nitrogen retention disorder is UCD, HE, or ESRD. In certain embodiments, the condition for which PAA prodrug administration is expected to be beneficial is cancer, a neurodegenerative diseases, a metabolic disorder, or sickle cell disease. In certain embodiments, the PAA prodrug is HPN-100 or NaPBA. In certain embodiments, measurement of plasma PAA and PAGN levels takes place after the first dosage of the PAA prodrug has had sufficient time to reach steady state, such as at 48 hours to 1 week after administration.
[0013] Provided herein in certain embodiments are methods of treating a nitrogen retention disorder or a condition for which PAA prodrug administration is expected to be beneficial in a subject who has previously received a first dosage of PAA prodrug comprising the steps of measuring plasma PAA and PAGN levels, calculating a plasma PAA:PAGN ratio, and determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range. In certain embodiments, the target range is 1 to \(2.5,1\) to 2,1 to \(1.5,1.5\) to 2 , or 1.5 to 2.5 . In certain embodiments, a PAA:PAGN ratio above the target range indicates that the dosage of the PAA prodrug needs to be decreased. In other embodiments, a PAA:PAGN ratio above the target range indicates that the dosage may need to be decreased, with the final determination of whether to decrease the dosage taking into account other characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. In certain embodiments, a PAA:PAGN ratio below the target range indicates that the dosage of the PAA prodrug needs to be increased. In other embodiments, a PAA:PAGN
ratio below the target range indicates that the dosage may need to be increased, with the final determination of whether to increase the dosage taking into account other characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. In certain embodiments, a PAA:PAGN ratio that is within the target range but within a particular subrange (e.g., 1 to 1.5 or 2 to 2.5 where the target range is 1 to 2.5 ) indicates that the dosage of the PAA prodrug does not need to be adjusted, but that the subject needs to be subjected to more frequent monitoring. In certain embodiments, the methods further comprise a step of administering an adjusted second dosage if such an adjustment is determined to be necessary based on the

PAA:PAGN ratio and, optionally, other characteristics of the subject. In other embodiments, the methods further comprise a step of administering a second dosage that is the same as or nearly the same as the first dosage if no adjustment in dosage is deemed to be necessary. In certain embodiments, the nitrogen retention disorder is UCD, HE, or ESRD. In certain embodiments, the condition for which PAA prodrug administration is expected to be beneficial is cancer, a neurodegenerative diseases, a metabolic disorder, or sickle cell disease. In certain embodiments, measurement of plasma PAA and PAGN levels takes place after the first dosage of the PAA prodrug has had sufficient time to reach steady state, such as at 48 hours to 1 week after administration.
[0014] Provided herein in certain embodiments are methods of adjusting the dosage of a PAA prodrug to be administered to a subject comprising the steps of administering a first dosage of a PAA prodrug, measuring plasma PAA and PAGN levels, calculating a plasma PAA:PAGN ratio, and determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range. In certain embodiments, the target range is 1 to \(2.5,1\) to 2,1 to \(1.5,1.5\) to 2 , or 1.5 to 2.5 . In certain embodiments, a PAA:PAGN ratio above the target range indicates that the dosage of the PAA prodrug needs to be decreased. In other embodiments, a PAA:PAGN ratio above the target range indicates that the dosage may need to be decreased, with the final determination of whether to decrease the dosage taking into account other characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. In certain embodiments, a PAA:PAGN ratio below the target range indicates that the dosage of the PAA prodrug needs to be increased. In other embodiments, a PAA:PAGN ratio below the target range indicates that the dosage may need to be increased, with the final
determination of whether to increase the dosage taking into account other characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. In certain embodiments, a PAA:PAGN ratio that is within the target range but within a particular subrange (e.g., 1 to 1.5 or 2 to 2.5 where the target range is 1 to 2.5 ) indicates that the dosage of the PAA prodrug does not need to be adjusted, but that the subject needs to be subjected to more frequent monitoring. In certain embodiments, the methods further comprise a step of administering an adjusted second dosage if such an adjustment is determined to be necessary based on the PAA:PAGN ratio and, optionally, other characteristics of the subject. In other embodiments, the methods further comprise a step of administering a second dosage that is the same as or nearly the same as the first dosage if no adjustment in dosage is deemed to be necessary. In certain embodiments, measurement of plasma PAA and PAGN levels takes place after the first dosage of the PAA prodrug has had sufficient time to reach steady state, such as at 48 hours to 1 week after administration.
[0015] Provided herein in certain embodiments are methods of determining whether a first dosage of a PAA prodrug can be safely administered to a subject comprising the steps of administering the first dosage of a PAA prodrug, measuring plasma PAA and PAGN levels, calculating a plasma PAA:PAGN ratio, and determining whether the first dosage can be safely administered based on whether the PAA:PAGN ratio falls above a target range. In certain embodiments, the target range is 1 to \(2.5,1\) to 2,1 to \(1.5,1.5\) to 2 , or 1.5 to 2.5 . In certain embodiments, a PAA:PAGN ratio above the target range indicates that the first dosage is unsafe and needs to be decreased. In other embodiments, a PAA:PAGN ratio above the target range indicates that the first dosage is potentially unsafe and may need to be decreased, with the final determination of whether to decrease the dosage taking into account other characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. In certain embodiments, a PAA:PAGN ratio that is within the target range but within a particular subrange (e.g., 2 to 2.5 where the target range is 1 to 2.5 ) indicates that the first dosage is likely safe, but that the subject needs to be subjected to more frequent monitoring. In certain embodiments, the methods further comprise a step of administering an adjusted second dosage if such an adjustment is determined to be necessary based on the PAA:PAGN ratio and, optionally, other characteristics of the subject. In certain embodiments, measurement of plasma PAA and PAGN
levels takes place after the first dosage of the PAA prodrug has had sufficient time to reach steady state, such as at 48 hours to 1 week after administration.
[0016] Provided herein in certain embodiments are methods of determining whether a first dosage of a PAA prodrug is likely to be effective for treating a nitrogen retention disorder or another disorder for which PAA prodrug administration is expected to be beneficial comprising the steps of administering the first dosage of a PAA prodrug, measuring plasma PAA and PAGN levels, calculating a plasma PAA:PAGN ratio, and determining whether the first dosage is likely to be effective based on whether the PAA:PAGN ratio falls below a target range. In certain embodiments, the target range is 1 to \(2.5,1\) to 2,1 to \(1.5,1.5\) to 2 , or 1.5 to 2.5 . In certain embodiments, a PAA:PAGN ratio below the target range indicates that the first dosage is unlikely to be effective needs to be increased. In other embodiments, a PAA:PAGN ratio below the target range indicates that the first dosage is potentially ineffective and may need to be increased, with the final determination of whether to increase the dosage taking into account other characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. In certain embodiments, a PAA:PAGN ratio that is within the target range but within a particular subrange (e.g., 1 to 1.5 where the target range is 1 to 2.5 ) indicates that the first dosage is likely effective, but that the subject needs to be subjected to more frequent monitoring. In certain embodiments, the methods further comprise a step of administering an adjusted second dosage if such an adjustment is determined to be necessary based on the PAA:PAGN ratio and, optionally, other characteristics of the subject. In certain embodiments, measurement of plasma PAA and PAGN levels takes place after the first dosage of the PAA prodrug has had sufficient time to reach steady state, such as at 48 hours to 1 week after administration.
[0017] In certain embodiments, methods are provided for optimizing the therapeutic efficacy of a PAA prodrug in a subject who has previously been adminsitered a first dosage of PAA prodrug comprising the steps of measuring plasma PAA and PAGN levels, calculating a plasma PAA:PAGN ratio, and determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range. In certain embodiments, the target range is 1 to \(2.5,1\) to 2,1 to \(1.5,1.5\) to 2 , or 1.5 to 2.5 . In certain embodiments, a PAA:PAGN ratio above the target range indicates that the dosage of the PAA prodrug needs to be decreased. In other embodiments, a PAA:PAGN ratio above the target range indicates that the dosage may
need to be decreased, with the final determination of whether to decrease the dosage taking into account other characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. In certain embodiments, a PAA:PAGN ratio below the target range indicates that the dosage of the PAA prodrug needs to be increased. In other embodiments, a PAA:PAGN ratio below the target range indicates that the dosage may need to be increased, with the final determination of whether to increase the dosage taking into account other characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. In certain embodiments, a PAA:PAGN ratio that is within the target range but within a particular subrange (e.g., 1 to 1.5 or 2 to 2.5 where the target range is 1 to 2.5 ) indicates that the dosage of the PAA prodrug does not need to be adjusted, but that the subject needs to be subjected to more frequent monitoring. In certain embodiments, the methods further comprise a step of administering an adjusted second dosage if such an adjustment is determined to be necessary based on the PAA:PAGN ratio and, optionally, other characteristics of the subject. In other embodiments, the methods further comprise a step of administering a second dosage that is the same as or nearly the same as the first dosage if no adjustment in dosage is deemed to be necessary. In certain embodiments, measurement of plasma PAA and PAGN levels takes place after the first dosage of the PAA prodrug has had sufficient time to reach steady state, such as at 48 hours to 1 week after administration.
[0018] In certain embodiments, methods are provided for obtaining a plasma PAA:PAGN ratio within a target range in a subject comprising the steps of administering a first dosage of a PAA prodrug, measuring plasma PAA and PAGN levels, calculating a plasma PAA:PAGN ratio, and determining whether the PAA:PAGN ratio falls within the target range. If the PAA:PAGN ratio does not fall within the target range, an adjusted second dosage is administered, and these steps are repeated until a plasma PAA:PAGN ratio falling within the target range is achieved. In certain embodiments, the target range is 1 to \(2.5,1\) to 2,1 to \(1.5,1.5\) to 2 , or 1.5 to 2.5 . In certain embodiments, a PAA:PAGN ratio above the target range indicates that the dosage of the PAA prodrug needs to be decreased and a PAA:PAGN ratio below the target range indicates that the dosage of the PAA prodrug needs to be increased. In certain embodiments, measurement of plasma PAA and PAGN levels takes place after the first dosage
of the PAA prodrug has had sufficient time to reach steady state, such as at 48 hours to 1 week after administration.

\section*{BRIEF DESCRIPTION OF DRAWINGS}
[0019] Figure 1: Urea cycle.
[0020] Figure 2: Plasma PAA levels versus plasma PAA:PAGN ratio in (A) all subjects combined (healthy adults, patients age 2 months and above with UCDs, and patients with cirrhosis), (B) patients age 2 months and above with UCDs, and (C) patients with cirrhosis. [0021] Figure 3: Estimated probability ( \(95 \%\) confidence interval (c.i.)) of correctly detecting elevated plasma PAA:PAGN ratio ( \(\geq 2.0\) ) with a single blood sample at a designated time.
[0022] Figure 4:Distribution of plasma PAA:PAGN ratio (log scale) by time since dosing (hours) and category of maximum PAA:PAGN ratio in all subjects combined.
[0023] Figure 5: Distribution of plasma PAA concentrations ( \(\mu \mathrm{g} / \mathrm{mL}\) ) by PAA:PAGN ratio for (A) all subjects and (B) UCD and HE subjects.

DETAILED DESCRIPTION
[0024] The following description of the invention is merely intended to illustrate various embodiments of the invention. As such, the specific modifications discussed are not to be construed as limitations on the scope of the invention. It will be apparent to one skilled in the art that various equivalents, changes, and modifications may be made without departing from the scope of the invention, and it is understood that such equivalent embodiments are to be included herein.
[0025] The enzymes responsible for beta oxidation of PBA to PAA are present in most cell types capable of utilizing fatty acids as energy substrates, and the widespread distribution of these enzymes presumably accounts for the rapid and essentially complete conversion of PBA to PAA. However, the enzymes that conjugate PAA with glutamine to form PAGN are found primarily in the liver and to a lesser extend in kidneys (Moldave 1957). Therefore, the conversion of PAA to PAGN may be affected under several circumstances, including the following: a) if conjugation capacity is saturated (e.g., by high doses of PAA prodrug); b) if conjugation capacity is compromised (e.g., by severe hepatic and/or renal dysfunction); c) if the substrate (glutamine) for PAA to PAGN conjugation is rate limiting; d) genetically determined variability (i.e., polymorphisms) in the enzymes responsible for PAA to PAGN conversion, or e) in young children, since the capacity to convert PAA to PAGN varies with body size measured
as body surface area (Monteleone 2012). The presence of any one of these conditions may lead to accumulation of PAA in the body, which causes reversible toxicity.
[0026] The goal of PAA prodrug administration in subjects with nitrogen retention disorders is to provide a sufficient dosage to obtain a desired level of nitrogen removal while avoiding excess build-up of PAA. The goal of PAA prodrug administration in patients without a nitrogen retention disorder (e.g., a neurodegenerative disease) is to achieve circulating metabolite levels necessary to produce a clinical benefit by alteration of gene expression and/or protein folding or function. However, there are several difficulties associated with determining the proper dosage in patients with nitrogen retention disorders.
[0027] Plasma PAA and PAGN levels are affected by various factors, including timing of the blood draw in relation to drug administration, hepatic function, availability of metabolizing enzymes, and availability of substrates required for metabolism. A random PAA level drawn during an outpatient visit to determine if levels are in the toxicity range without considering concomitant PAGN level is insufficient to inform dosing. First, PAA levels vary many-fold over the course of the day, fluctuating a great deal between peak and trough levels. For example, in the Hyperion pivotal study evaluating HPN-100 for use in treating adult UCD (Study ID HPN-100-006, Clinical Trials ID NCT00992459), serial blood samples were obtained for PK studies over a 24 hour period during which subjects were receiving HPN- 100 or NaPBA. The fluctuation index for PAA over a 24 hour period, which represents the fluctuation between maximum concentration (typically observed after the last daily dose or at approximately 12 hours) and minimum concentration (typically observed in the morning after overnight fasting or at 0 hours), indicated a very high degree of variability ( \(2150 \%\) for NaPBA and \(1368 \%\) for HPN100). Therefore, a single plasma PAA level may not be representative of the highest PAA level a patient may experience during the day. Second, a high plasma PAA level may only be indicative of the high doses a subject is receiving rather than a point of concern if the subject is effectively conjugating PAA with glutamine to form PAGN. Therefore, basing dose adjustment on only on a high PAA level without considering concomitant plasma PAGN level may result in unnecessary dose reduction and under-treatment of the patient. Conversely, a PAA level seemingly below the levels associated with toxicity might be taken as an indication of satisfactory dosing without appreciating the fact that the concomitant PAGN level may not be proportional to PAA, indicating that PAA is not being efficiently utilized and may be accumulating.
[0028] Previous studies have shown that conversion of PAA to PAGN is a saturable process that varies considerably among individuals (see, e.g., Monteleone 2012), and that patients with hepatic impairment have higher PAA levels than patients without hepatic impairment (Ghabril et al., "Glycerol phenylbutyrate (GPD) administration in patients with cirrhosis and episodic hepatic encephalopathy (HE)," submitted to Digestive Disease Week, 2012). If PAGN formation is affected by any of the above factors, PAA will be accumulated and waste nitrogen may not be removed from the body. Previous studies have also shown that a small proportion of individuals, including both healthy adults ad patients with UCDs or HE, have higher PAA levels than the remainder of the population, presumably due to individual differences in conjugating PAA to PAGN, and that PAA levels fluctuate many-fold during the day depending on the dose and the timing of blood sample relative to the last dose so that a single plasma level may not be informative (Lee 2010; Lichter 2011).
[0029] Although the goal of PAA prodrug therapy for nitrogen retention disorders is to achieve ammonia levels within a normal limit, there is no correlation between plasma PAA levels and blood ammonia. Nitrogen retention disorder subjects are normally "dosed to effect," meaning that subjects with absent or severely deficient urea synthetic capacity require higher doses of PAA prodrugs than do mildly deficient UCD patients. These higher dosages are generally associated with higher PAA levels, such that the conventional PK/PD response (higher active moiety, i.e., PAA, correlates with lower harmful substance, i.e., ammonia) does not apply. Therefore, there is no single target plasma PAA level that can be applied to patients with UCDs or other nitrogen retention disorders based on their blood ammonia.
[0030] Patients with severe hepatic impairment are at increased risk of PAA accumulation due to inadequate levels of PAA conjugating enzymes if treated with PAA-prodrugs. UCD patients without hepatic impairment whose PAA conjugating enzymes are readily saturated are also at increased risk of PAA accumulation if treated with PAA-producing compounds. Other patients without nitrogen retention are at increased risk of PAA accumulation due to limited availability of glutamine as the substrate to form PAGN if treated with PAA-producing compounds, which accumulates in patients with nitrogen retention states.
[0031] WO09/134460 and WO10/025303 disclose methods for determining an effective dosage of a PAA prodrug based on urinary PAGN levels, which was found to be a more reliable indictor of effective dosage than plasma levels of PAA or other metabolites. Although such
measurements are highly useful for evaluating waste nitrogen removal, they do not provide complete information regarding a subject's ability to utilize the prodrug.
[0032] Since PAA, PAGN, and ammonia levels do not provide the information necessary to determine whether a subject is effectively converting PBA to PAGN (i.e., effectively utilizing the PAA prodrug), there is a need for improved methods of adjusting PAA prodrug dosage and incorporating such adjustments into methods of treating nitrogen retention disorders.
[0033] As disclosed herein, plasma PAA:PAGN ratio has been found to provide an unexpectedly accurate measure of PAA prodrug metabolism in subjects with nitrogen retention disorders and/or hepatic impairment. It was found that subjects who can readily convert PAA to PAGN and have not reached the saturation point with respect to PAA to PAGN conversion will have a plasma PAA:PAGN ratio of 2.5 or below (when both are measured in \(\mu \mathrm{g} / \mathrm{mL}\) ), and that subjects with PAA:PAGN ratios above 2.5 have a significantly higher chance of experience a PAA level above \(400 \mu \mathrm{~g} / \mathrm{mL}\) or \(500 \mu \mathrm{~g} / \mathrm{mL}\) over a 24 hour period. A PAA/PAGN ratio of less than 2.5 was associated primarily with healthy adult or adolescent subjects and normal liver function, with subjects having a ratio below 2.5 exhibiting a \(1 \%\) probability of experiencing a PAA level greater than \(400 \mu \mathrm{~g} / \mathrm{mL}\) and almost no chance of exhibiting a PAA level greater than \(500 \mu \mathrm{~g} / \mathrm{mL}\) at any point during a 24 hour period. A ratio greater than 2.5 , on the other hand, was generally seen in subjects with moderate hepatic impairment, a subset of healthy subjects or UCD patients with relatively lower saturation point and difficulty conjugating PAA to form PAGN, and patients with a low body surface area. Subjects with a ratio greater than 2.5 , on the other hand, exhibited a \(20-36 \%\) likelihood of experiencing a PAA level greater than \(400 \mu \mathrm{~g} / \mathrm{mL}\) during the day, and an approximately \(10 \%\) likelihood of experiencing a PAA level of \(500 \mu \mathrm{~g} / \mathrm{L}\) or greater. In subjects with a ratio greater than 3 , the likelihood of experiencing a PAA level higher than \(500 \mu \mathrm{~g} / \mathrm{mL}\) increased to as high as \(25 \%\). These results show that a plasma PAA:PAGN ratio exceeding 2.5 in a patient with unexplained neurological adverse events and normal ammonia indicates that dosage adjustment should be considered. Thus, plasma PAA:PAGN ratio provides a clinically useful surrogate for evaluating the efficiency of PAA to PAGN conversion.
[0034] Plasma PAA:PAGN ratio indicates whether a PAA prodrug is being effectively utilized and scavenging nitrogen, and therefore provides an indirect and simple measure of saturation of conjugating enzymes, availability of substrate, and possible effect of hepatic or renal impairment on this process. Calculating this ratio will allow effective treatment and dose
adjustment in subjects with known hepatic impairment, subjects presenting with signs and symptoms overlapping between hyperammonemia and PAA toxicities, and subjects who are not clinically controlled despite increasing the dosage of drugs.
[0035] One of ordinary skill in the art would generally not consider the ratio of an active metabolite such as PAA to a terminal metabolite such as PAGN when making therapeutic decisions because they would expect that higher levels of the active metabolite would result in a proportionately higher response (as measured by PAGN production) and increased efficacy (i.e., waste nitrogen removal). However, the results provided herein show that the use of plasma PAA:PAGN ratios to evaluate and adjust PAA prodrug dosage is unexpectedly superior to the use of PAA or PAGN levels alone. Once a subject exceeds a specific PAA:PAGN ratio, there is a high likelihood that they are not effectively utilizing the active moiety and that further increasing PAA prodrug dosage may not increase efficacy and may actually result in PAA accumulation and toxicity.
[0036] Based on these findings, methods are provided herein for treating nitrogen retention disorders and evaluating and adjusting the dosage of a PAA prodrug based on plasma PAA:PAGN ratio. Generally, these methods comprise steps of measuring plasma PAA and PAGN levels, calculating the PAA:PAGN ratio, and determining whether the ratio falls within a target range, with this determination being used at least in part to decide whether to adjust PAA prodrug dosage. In these methods, PAA:PAGN ratio can be used to ensure that urinary PAGN output, plasma ammonia concentration, and/or PAA levels fall within a predefined target range. Such methods represent an improvement over previously developed methods for evaluating
PAA prodrug dosage and efficacy in that they allow for more accurate dosing, greater efficacy, and decreased risk of toxicity associated with PAA accumulation.
[0037] Disclosed herein are target ranges for the ratio of plasma PAA to PAGN in subjects who are receiving PAA prodrug therapy. In certain embodiments, a subject exhibiting a PAA:PAGN ratio falling within a target range is classified as properly dosed, meaning that they do not require a PAA prodrug dosage adjustment, while a subject exhibiting a PAA:PAGN ratio falling outside the target range is classified as improperly dosed, meaning that they require an adjustment in PAA prodrug dosage. In certain of these embodiments, a subject exhibiting a plasma PAA:PAGN ratio falling above a target range is classified as requiring a decreased dosage of PAA prodrug, while a subject exhibiting a plasma PAA:PAGN ratio falling below a target range is classified as requiring an increased dosage of PAA prodrug. In other
embodiments, a subject exhibiting a plasma PAA:PAGN ratio falling above a target range is classified as requiring a decreased dosage of PAA prodrug, while a subject exhibiting a plasma PAA:PAGN ratio falling below a target range is classified as potentially requiring an increase in PAA prodrug dosage. In still other embodiments, a subject exhibiting a plasma PAA:PAGN ratio falling above a target range is classified as potentially requiring a decreased dosage of PAA prodrug, while a subject exhibiting a plasma PAA:PAGN ratio falling below a target range is classified as potentially requiring an increase in PAA prodrug dosage. In those embodiments where a subject is classified as potentially requiring an increase or decrease in PAA prodrug dosage based on their PAA:PAGN ratio, a decision as to whether to increase or decrease dosage may be based on one or more additional characteristics of the subject such as biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health.
[0038] In certain embodiments, the target range for plasma PAA:PAGN ratio is 1 to 2.5 , meaning that a subject exhibiting a PAA:PAGN falling within this range is classified as properly dosed. In other embodiments, the target range for plasma PAA:PAGN ratio is 1 to 2,1 to 1.5 , 1.5 to 2 , or 1.5 to 2.5 . In certain of those embodiments where the target range is 1 to 2.5 , a subject with a PAA:PAGN ratio above 2.5 is classified as requiring a decrease in PAA prodrug dosage, while a subject with a PAA:PAGN ratio falling below 1 is classified as potentially requiring an increase in PAA prodrug dosage. In certain of these embodiments, a subject is necessarily classified as requiring an increase in PAA prodrug dosage if their ratio is below 1 . In other embodiments, a subject with a PAA:PAGN ratio of less than 1 is only classified as requiring an increase in PAA prodrug dosage if one or more additional clinical or biochemical characteristics are satisfied (e.g., the subject is exhibiting severe symptoms of a nitrogen retention disorder).
[0039] In certain embodiments, the target range for plasma PAA:PAGN ratio may comprise one or more subranges, with subjects falling within different subranges being treated differently despite falling within the target range. For example, where a target range is 1 to 2.5 , a subject exhibiting a PAA:PAGN ratio below 1 or above 2.5 may be classified as requiring an adjustment in PAA prodrug dosage. Within the target range, subjects with a PAA:PAGN ratio falling within a particular subrange may be treated as properly dosed, improperly dosed (i.e., requiring a dosage adjustment), or properly dosed but requiring more frequent monitoring. For example,
subjects having a PAA:PAGN ratio greater than 2 but not greater than 2.5 may be classified as properly dosed but requiring more frequent monitoring.
[0040] In certain embodiments, subrange boundaries or the treatment of subjects falling within a particular subrange will depend in part on a subject's specific characteristics, including for example biochemical profile or clinical characteristics such as target nitrogen excretion, actual nitrogen excretion, symptom severity, disorder duration, age, or overall health. For example, in certain embodiments a first subject with a PAA:PAGN ratio falling within the subrange of 2 to 2.5 may be classified as properly dosed but requiring frequent monitoring, while a second subject falling within the same subrange may be classified as requiring a decreased dosage of PAA prodrug. Similarly, a first subject with a PAA:PAGN ratio falling within the subrange of 1 to 1.5 may be classified as properly dosed but requiring frequent monitoring, while a second subject falling within the same subrange may be classified as requiring an increased dosage of PAA prodrug. For example, a subject who has recently exhibited particularly acute symptoms associated with a particular disorder may be classified as requiring an increased dosage of PAA prodrug when exhibiting a PAA:PAGN ratio of 1 to 1.5 , while a subject who is clinically controlled may be classified as properly dosed despite a ratio falling within the same subrange.
[0041] In certain embodiments, methods are provided herein for treating a nitrogen retention disorder or a condition for which PAA prodrug administration is expected to be beneficial in a subject that has previously received a first dosage of a PAA prodrug. These methods comprise measuring plasma PAA and PAGN levels, calculating the plasma PAA:PAGN ratio, determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range, and administering a second dosage of the PAA prodrug. In certain embodiments, the target range for PAA:PAGN ratio is 1 to 2.5 or 1 to 2 . In certain of these embodiments, the second dosage is greater than the first dosage if the PAA:PAGN ratio is less than 1 (i.e., the dosage is increased) and less than the first dosage if the PAA:PAGN ratio is greater than 2.5 (i.e., the dosage is decreased). In other embodiments, the second dosage may or may not be greater than the first dosage if the PAA:PAGN ratio is less than 1 , depending on one or more other characteristics of the subject. In certain embodiments, the second dosage is equal to the first dosage when the PAA:PAGN ratio is 1 to 2.5 , i.e., falling within the target range. In certain embodiments, the target range is divided into one or more subranges. In certain of these embodiments, the second dosage may be equal to the first dosage if the PAA:PAGN ratio is 1 to
1.5 or 2 to 2.5 , but the subject may be subjected to more frequent monitoring. In certain other embodiments, the second dosage may be greater than the first dosage if the PAA:PAGN ratio is 1 to 1.5 or 1 to 2 and the subject has recently exhibited particularly acute symptoms of a nitrogen retention disorder or another condition for which PAA prodrug administration is expected to be beneficial. Similarly, the second dosage may be less than the first dosage if the PAA:PAGN ratio is greater than 1.5 or 2 but not greater than 2.5 , depending on the subject's specific characteristics. In certain embodiments, the increase or decrease in the second dosage versus the first dosage depends on the precise plasma PAA:PAGN ratio. For example, where the plasma PAA:PAGN ratio is only slightly less than 1 , the dosage may be increased only slightly, but where the PAA:PAGN ratio is significantly less than 1 , the dosage may be increased more. Similarly, the decrease in dosage for subjects exhibiting a ratio above 2.5 may vary depending on how far above 2.5 the ratio extends. In certain embodiments, measurement of plasma PAA and PAGN ratio takes place after the PAA prodrug has had sufficient time to reach steady state (e.g., 48 hours, 48 to 72 hours, 72 hours to 1 week, 1 week to 2 weeks, or greater than 2 weeks after PAA prodrug administration). In certain embodiments, the above steps may be repeated until a desired plasma PAA:PAGN ratio (e.g., 1 to 2.5 or 1 to 2 ) is achieved. For example, the methods may comprise measuring plasma PAA and PAGN levels after administration of the second dosage, calculating the plasma PAA:PAGN ratio, determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within the target range, and administering a third dosage of the PAA prodrug.
[0042] In certain embodiments, methods are provided for treating a nitrogen retention disorder or a condition for which PAA prodrug administration is expected to be beneficial in a subject that has not previously been administered a PAA prodrug. These methods comprise administering a first dosage of a PAA prodrug, measuring plasma PAA and PAGN levels, calculating the plasma PAA:PAGN ratio, determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range, and administering a second dosage of the PAA prodrug. In certain embodiments, the target range for PAA:PAGN ratio is 1 to 2.5 or 1 to 2 . In certain of these embodiments, the second dosage is greater than the first dosage if the PAA:PAGN ratio is less than 1 (i.e., the dosage is increased) and less than the first dosage if the PAA:PAGN ratio is greater than 2.5 (i.e., the dosage is decreased). In other embodiments, the second dosage may or may not be greater than the first dosage if the PAA:PAGN ratio is less than 1 , depending on one or more additional characteristics of the
subject. In certain embodiments, the second dosage is equal to the first dosage when the PAA:PAGN ratio is 1 to 2.5 , i.e., falling within the target range. In certain embodiments, the target range is divided into one or more subranges. In certain of these embodiments, the second dosage may be equal to the first dosage if the PAA:PAGN ratio is 1 to 1.5 or 2 to 2.5 , but the subject may be subjected to more frequent monitoring. In certain other embodiments, the second dosage may be greater than the first dosage if the PAA:PAGN ratio is 1 to 1.5 or 1 to 2 and the subject has recently exhibited particularly acute symptoms of a nitrogen retention disorder or another condition for which PAA prodrug administration is expected to be beneficial. Similarly, the second dosage may be less than the first dosage if the PAA:PAGN ratio is greater than 1.5 or 2 but not greater than 2.5, depending on the subject's specific clinical or biochemical characteristics. In certain embodiments, the increase or decrease in the second dosage versus the first dosage depends on the precise plasma PAA:PAGN ratio. For example, where the plasma PAA:PAGN ratio is only slightly less than 1 , the dosage may be increased only slightly, but where the PAA:PAGN ratio is significantly less than 1 , the dosage may be increased more. Similarly, the decrease in dosage for subjects exhibiting a ratio above 2.5 may vary depending on how far above 2.5 the ratio extends. In certain embodiments, measurement of plasma PAA and PAGN ratio takes place after the PAA prodrug has had sufficient time to reach steady state (e.g., 48 hours, 48 to 72 hours, 72 hours to 1 week, 1 week to 2 weeks, or greater than 2 weeks after PAA prodrug administration). In certain embodiments, the above steps may be repeated until a desired plasma PAA:PAGN ratio (e.g., 1 to 2.5 or 1 to 2 ) is achieved. For example, the methods may comprise measuring plasma PAA and PAGN levels after administration of the second dosage, calculating the plasma PAA:PAGN ratio, determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within the target range, and administering a third dosage of the PAA prodrug.
[0043] A method of administering a PAA prodrug to a subject with a nitrogen retention disorder or another condition for which PAA prodrug administration is expected to be beneficial. These methods comprise administering a first dosage of the PAA prodrug, measuring plasma PAA and PAGN levels, calculating the plasma PAA:PAGN ratio, determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range, and administering a second dosage of the PAA prodrug. In certain embodiments, the target range for PAA:PAGN ratio is 1 to 2.5 or 1 to 2 . In certain of these embodiments, the second dosage is greater than the first dosage if the PAA:PAGN ratio is less than 1 (i.e., the
dosage is increased) and less than the first dosage if the PAA:PAGN ratio is greater than 2.5 (i.e., the dosage is decreased). In other embodiments, the second dosage may or may not be greater than the first dosage if the PAA:PAGN ratio is less than 1, depending on one or more additional characteristics of the subject. In certain embodiments, the second dosage is equal to the first dosage when the PAA:PAGN ratio is 1 to 2.5 , i.e., falling within the target range. In certain embodiments, the target range is divided into one or more subranges. In certain of these embodiments, the second dosage may be equal to the first dosage if the PAA:PAGN ratio is 1 to 1.5 or 2 to 2.5 , but the subject may be subjected to more frequent monitoring. In certain other embodiments, the second dosage may be greater than the first dosage if the PAA:PAGN ratio is 1 to 1.5 or 1 to 2 and the subject has recently exhibited particularly acute symptoms of a nitrogen retention disorder or another condition for which PAA prodrug administration is expected to be beneficial. Similarly, the second dosage may be less than the first dosage if the PAA:PAGN ratio is greater than 1.5 or 2 but not greater than 2.5 , depending on the subject's specific biochemical or clinical characteristics. In certain embodiments, the increase or decrease in the second dosage versus the first dosage depends on the precise plasma PAA:PAGN ratio. For example, where the plasma PAA:PAGN ratio is only slightly less than 1 , the dosage may be increased only slightly, but where the PAA:PAGN ratio is significantly less than 1 , the dosage may be increased more. Similarly, the decrease in dosage for subjects exhibiting a ratio above 2.5 may vary depending on how far above 2.5 the ratio extends. In certain embodiments, measurement of plasma PAA and PAGN ratio takes place after the PAA prodrug has had sufficient time to reach steady state (e.g., 48 hours, 48 to 72 hours, 72 hours to 1 week, 1 week to 2 weeks, or greater than 2 weeks after PAA prodrug administration). In certain embodiments, the above steps may be repeated until a desired plasma PAA:PAGN ratio (e.g., 1 to 2.5 or 1 to 2 ) is achieved. For example, the methods may comprise measuring plasma PAA and PAGN levels after administration of the second dosage, calculating the plasma PAA:PAGN ratio, determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within the target range, and administering a third dosage of the PAA prodrug.
[0044] In certain embodiments, methods are provided herein for achieving a target plasma PAA:PAGN ratio in a subject with a nitrogen retention disorder or another condition for which PAA prodrug administration is expected to be beneficial. These methods comprise administering a first dosage of a PAA prodrug, measuring plasma PAA and PAGN levels, calculating the plasma PAA:PAGN ratio, determining whether the PAA prodrug dosage needs to
be adjusted based on whether the PAA:PAGN ratio falls within a target range, and administering a second dosage of the PAA prodrug based on the PAA:PAGN ratio. If the PAA:PAGN ratio is above the target range, the second dosage is less than the first dosage. If the PAA:PAGN ratio is below the target range, the second dosage is greater than the first dosage. These steps are repeated until a target plasma PAA:PAGN ratio is achieved. In certain embodiments, the target ratio falls within a target range of 1 to 2.5 or 1 to 2 . In certain embodiments, the increase or decrease in the second dosage versus the first dosage depends on the precise plasma PAA:PAGN ratio. For example, where the plasma PAA:PAGN ratio is only slightly less than 1, the dosage may be increased only slightly, but where the PAA:PAGN ratio is significantly less than 1 , the dosage may be increased more. Similarly, the decrease in dosage for subjects exhibiting a ratio above 2.5 may vary depending on how far above 2.5 the ratio extends. In certain embodiments, measurement of plasma PAA and PAGN ratio takes place after the PAA prodrug has had sufficient time to reach steady state (e.g., 48 hours, 48 to 72 hours, 72 hours to 1 week, 1 week to 2 weeks, or greater than 2 weeks after PAA prodrug administration).
[0045] In certain embodiments, methods are provided for evaluating the dosage of a PAA prodrug in a subject who has previously been administered a first dosage of a PAA prodrug. These methods comprise measuring plasma PAA and PAGN levels, calculating the plasma PAA:PAGN ratio, and determining whether the first dosage of the PAA prodrug is effective based on whether the PAA:PAGN ratio falls within a target range. In certain embodiments, the target range for PAA:PAGN ratio is 1 to 2.5 or 1 to 2 . In certain of these embodiments, the first dosage is considered too low if the PAA:PAGN ratio is less than 1 , and too high if the PAA:PAGN ratio is greater than 2.5. In other embodiments, the first dosage is considered potentially too low if PAA:PAGN ratio is less than 1 , with a final decision depending on one or more additional characteristics of the subject. In certain embodiments, the target range is divided into one or more subranges. In certain of these embodiments, the first dosage is considered potentially effective if the PAA:PAGN ratio is 1 to 1.5 or 2 to 2.5 , but the subject may be subjected to more frequent monitoring. In certain other embodiments, the first dosage may be considered too low if the PAA:PAGN ratio is 1 to 1.5 or 1 to 2 and the subject has recently exhibited particularly acute symptoms of a nitrogen retention disorder or another condition for which PAA prodrug administration is expected to be beneficial. Similarly, in certain embodiments the first dosage may be considered too high if the PAA:PAGN ratio is greater than 1.5 or 2 but not greater than 2.5 , depending on the subject's specific biochemical or
clinical characteristics. In certain embodiments, measurement of plasma PAA and PAGN ratio takes place after the PAA prodrug has had sufficient time to reach steady state (e.g., 48 hours, 48 to 72 hours, 72 hours to 1 week, 1 week to 2 weeks, or greater than 2 weeks after PAA prodrug administration). In certain embodiments, the methods further comprise a step of administering a second dosage that differs from the first dosage, and in certain of these embodiments the above steps may be repeated until a desired plasma PAA:PAGN ratio (e.g., 1 to 2.5 or 1 to 2 ) is achieved. For example, the methods may comprise administering a second dosage that differs from the first dosage, measuring plasma PAA and PAGN levels after administration of the second dosage, calculating the plasma PAA:PAGN ratio, and determining whether the second dosage of the PAA prodrug is effective based on whether the PAA:PAGN ratio falls within a target range.
[0046] In certain embodiments, methods are provided for adjusting the dosage of a PAA prodrug in a subject who has previously been administered a first dosage of a PAA prodrug. These methods comprise measuring plasma PAA and PAGN levels, calculating the plasma PAA:PAGN ratio, and determining whether to adjust the dosage of the PAA prodrug based on whether the PAA:PAGN ratio falls within a target range. In certain embodiments, the target range for PAA:PAGN ratio is 1 to 2.5 or 1 to 2 . In certain of these embodiments where the target range is 1 to 2.5 , a PAA:PAGN ratio of less than 1 indicates the PAA prodrug dosage needs to be adjusted upwards, while a PAA:PAGN ratio above 2.5 indicates the PAA prodrug dosage needs to be adjusted downwards. In other embodiments, a PAA:PAGN ratio of less than 1 indicates that the PAA prodrug dosage potentially needs to be adjusted upwards, with a final decision depending on one or more additional characteristics of the subject. In certain embodiments, the target range is divided into one or more subranges. In certain of these embodiments, a PAA:PAGN ratio of 1 to 1.5 or 2 to 2.5 indicates that the dosage need not be adjusted, but that the subject should be subjected to more frequent monitoring. In certain other embodiments, a PAA:PAGN ratio of 1 to 1.5 or 1 to 2 indicates that the dosage needs to be increased when the subject has recently exhibited particularly acute symptoms of a nitrogen retention disorder or another condition for which PAA prodrug administration is expected to be beneficial. Similarly, in certain embodiments a PAA:PAGN ratio greater than 1.5 or 2 but not greater than 2.5 may indicate that the dosage needs to be decreased, depending on the subject's specific biochemical or clinical characteristics. In certain embodiments, measurement of plasma PAA and PAGN ratio takes place after the PAA prodrug has had sufficient time to reach steady
state (e.g., 48 hours, 48 to 72 hours, 72 hours to 1 week, 1 week to 2 weeks, or greater than 2 weeks after PAA prodrug administration). In certain embodiments where a determination is made that the dosage needs to be adjusted, the methods further comprise a step of administering a second dosage that differs from the first dosage, and in certain of these embodiments the above steps may be repeated until a desired plasma PAA:PAGN ratio (e.g., 1 to 2.5 or 1 to 2 ) is achieved. For example, the methods may comprise administering a second dosage that differs from the first dosage, measuring plasma PAA and PAGN levels after administration of the second dosage, calculating the plasma PAA:PAGN ratio, and determining whether the second dosage of the PAA prodrug needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range. In certain embodiments, the increase or decrease in the second dosage versus the first dosage depends on the precise plasma PAA:PAGN ratio. For example, where the plasma PAA:PAGN ratio is only slightly less than 1 , the dosage may be increased only slightly, but where the PAA:PAGN ratio is significantly less than 1 , the dosage may be increased more. Similarly, the decrease in dosage for subjects exhibiting a ratio above 2.5 may vary depending on how far above 2.5 the ratio extends.
[0047] In certain embodiments, methods are provided for optimizing the therapeutic efficacy of a PAA prodrug for use in treating a nitrogen retention disorder in a subject. These methods comprise measuring plasma PAA and PAGN levels in a subject who has previously been administered a PAA prodrug, calculating the plasma PAA:PAGN ratio, determining whether to adjust the dosage of the PAA prodrug based on whether the PAA:PAGN ratio falls within a target range, and administering an adjusted dosage of the PAA prodrug as necessary. These steps are repeated until the subject exhibits a plasma PAA:PAGN ratio falling within the target range (e.g., 1 to 2.5 or 1 to 2 ). In certain embodiments where the target range is 1 to 2.5 , a plasma PAA:PAGN ratio of less than 1 indicates that the dosage needs to be adjusted upwards, while a ratio greater than 2.5 indicates that the dosage needs to be decreased. In certain embodiments, the target range is divided into one or more subranges. In certain of these embodiments, a PAA:PAGN ratio of 1 to 1.5 or 2 to 2.5 indicates that the dosage does not need to be adjusted, but that the subject should be subjected to more frequent monitoring. In certain other embodiments, a PAA:PAGN ratio of 1 to 1.5 or 1 to 2 indicates that the dosage needs to be increased when the subject has recently exhibited particularly acute symptoms of a nitrogen retention disorder or another condition for which PAA prodrug administration is expected to be beneficial. Similarly, in certain embodiments a PAA:PAGN ratio greater than 1.5 or 2 but not
greater than 2.5 may indicate that the dosage needs to be decreased, depending on the subject's specific biochemical or clinical characteristics. In certain embodiments, measurement of plasma PAA and PAGN ratio takes place after the PAA prodrug has had sufficient time to reach steady state (e.g., 48 hours, 48 to 72 hours, 72 hours to 1 week, 1 week to 2 weeks, or greater than 2 weeks after PAA prodrug administration). In certain embodiments, the magnitude of the increase or decrease in dosage may be based on the precise PAA:PAGN ratio. For example, a PAA:PAGN ratio that is slightly less than 1 may indicate that the dosage needs to be increased slightly, while a ratio significantly less than 1 may indicate the dosage needs to be increased to a greater degree. In certain embodiments, the above steps are repeated until the subject exhibits a PAA:PAGN ratio falling within the target range.
[0048] In certain embodiments, methods are provided for determining whether a prescribed first dosage of a PAA prodrug can be safely administered to a subject. These methods comprise administering the prescribed first dosage to the subject, measuring plasma PAA and PAGN levels, calculating the plasma PAA:PAGN ratio, and determining whether the prescribed first dosage is safe for the subject based on whether the PAA:PAGN ratio falls above a target range, wherein a PAA:PAGN ratio falling above the target range indicates that the first dosage cannot be or potentially cannot be safely administered to the subject. In certain embodiments, the target range for PAA:PAGN ratio is 1 to 2.5 or 1 to 2 . In certain of these embodiments where the target range is 1 to 2.5 , a PAA:PAGN ratio above 2.5 indicates the PAA prodrug dosage is unsafe and needs to be adjusted downwards. In certain embodiments, the target range is divided into one or more subranges. In certain of these embodiments, a PAA:PAGN ratio of 2 to 2.5 indicates that the first dosage is safe, but that the subject should be subjected to more frequent monitoring. In other embodiments, a PAA:PAGN ratio of 2 to 2.5 indicates that the first dosage is potentially unsafe, with a final determination of safety taking into account the subject's specific biochemical or clinical characteristics. In certain embodiments, measurement of plasma PAA and PAGN ratio takes place after the PAA prodrug has had sufficient time to reach steady state (e.g., 48 hours, 48 to 72 hours, 72 hours to 1 week, 1 week to 2 weeks, or greater than 2 weeks after PAA prodrug administration). In certain embodiments where a determination is made that the first dosage is unsafe and needs to be decreased, the methods further comprise a step of administering a second dosage that is lower than the first dosage, and in certain of these embodiments the above steps may be repeated until a desired plasma PAA:PAGN ratio (e.g., 1 to 2.5 or 1 to 2 ) is achieved. For example, the methods may comprise administering a second
dosage that is lower than the first dosage, measuring plasma PAA and PAGN levels after administration of the second dosage, calculating the plasma PAA:PAGN ratio, and determining whether the second dosage of the PAA prodrug can be safely administered to the subject based on whether the PAA:PAGN ratio falls above a target range.
[0049] In certain embodiments, methods are provided for determining whether a prescribed first dosage of a PAA prodrug will be effective for treating a nitrogen retention disorder or another disorder for which PAA prodrug administration is expected to be beneficial. These methods comprise administering the prescribed first dosage to the subject, measuring plasma PAA and PAGN levels, calculating the plasma PAA:PAGN ratio, and determining whether the prescribed first dosage will be effective for the subject based on whether the PAA:PAGN ratio falls below a target range, wherein a PAA:PAGN ratio falling below the target range indicates that the first dosage will not be or potentially will not be effective for treating a disorder. In certain embodiments, the target range for PAA:PAGN ratio is 1 to 2.5 or 1 to 2 . In certain of these embodiments where the target range is 1 to 2.5 , a PAA:PAGN ratio below 1 indicates the PAA prodrug dosage is unlikely to be effective and needs to be adjusted upwards. In other embodiments, a PAA:PAGN ratio below 1 indicates that the first dosage is potentially ineffective, with a final determination of whether the dosage is likely to be ineffective based on the subject's specific biochemical or clinical characteristics. In certain embodiments, the target range is divided into one or more subranges. In certain of these embodiments, a PAA:PAGN ratio of 1 to 1.5 indicates that the first dosage is likely to be effective, but that the subject should be subjected to more frequent monitoring. In other embodiments, a PAA:PAGN ratio of 1 to 1.5 indicates that the first dosage is potentially ineffective, with a final determination of whether the dosage is likely to be ineffective taking into account the subject's specific biochemical or clinical characteristics. In certain embodiments, measurement of plasma PAA and PAGN ratio takes place after the PAA prodrug has had sufficient time to reach steady state (e.g., 48 hours, 48 to 72 hours, 72 hours to 1 week, 1 week to 2 weeks, or greater than 2 weeks after PAA prodrug administration). In certain embodiments where a determination is made that the first dosage is likely to be ineffective and needs to be increased, the methods further comprise a step of administering a second dosage that is higher than the first dosage, and in certain of these embodiments the above steps may be repeated until a desired plasma PAA:PAGN ratio (e.g., 1 to 2.5 or 1 to 2 ) is achieved. For example, the methods may comprise administering a second dosage that is higher than the first dosage, measuring plasma PAA and PAGN levels after
administration of the second dosage, calculating the plasma PAA:PAGN ratio, and determining whether the second dosage of the PAA prodrug is likely to be ineffective for treating a disorder based on whether the PAA:PAGN ratio falls above a target range.
[0050] Provided herein in certain embodiments are methods for monitoring therapy with a PAA prodrug in patients with a nitrogen retention disorder. These methods comprise administering a PAA prodrug to the subject, measuring plasma PAA and PAGN levels, and calculating the plasma PAA:PAGN ratio. In these methods, a PAA:PAGN ratio falling within a target range (e.g., 1 to 2.5 or 1 to 2 ) indicates that the therapy is effective, while a ratio falling outside this range indicates that the therapy may need to be adjusted. In certain embodiments, the plasma PAA:PAGN ratio is compared to a previously obtained PAA:PAGN ratio from the same subject to evaluate the effectiveness of PAA prodrug administration.
[0051] In certain embodiments, the methods provided herein may be used in conjunction with the methods described in WO09/134460 and WO10/025303. In these embodiments, urinary PAGN levels may be determined in addition to plasma PAA:PAGN ratio, with both measurements being used to evaluate or adjust PAA prodrug dosage.
[0052] A "PAA prodrug" as used herein refers to any drug that contains or is converted to PAA following administration to a subject, or to any pharmaceutically acceptable salt, ester, acid, or derivative thereof. A PAA prodrug may be administered via any route, including oral or parenteral administration. A PAA prodrug may be converted directly to PAA (e.g., a salt or ester of PAA; PBA or a salt or ester thereof such as NaPBA), or it may be converted to PAA via an intermediate (e.g., a pre-prodrug such as HPN-100). Other examples of PAA prodrugs include butyroyloxymethyl-4-phenylbutyrate.
[0053] An adjustment to the dosage of a PAA prodrug as discussed herein may refer to a change in the amount of drug per administration (e.g., an increase from a first dosage of 3 mL to a second dosage of 6 mL ), a change in the number of administration within a particular time period (e.g., an increase from once a day to twice a day), or any combination thereof.
[0054] A "subject in need thereof" as used herein refers to any individual having a condition or suspected of having a condition for which administration of a PAA prodrug is expected to be beneficial. For example, a subject may be an individual with a nitrogen retention disorder or suspected of having a nitrogen retention disorder, including for example UCD, HE, and/or kidney failure/ESRD (Lee 2010; McGuire 2010; Lichter 2011). Likewise, a subject may have or be suspected of having another condition for which PAA prodrug administration is expected to
be beneficial, including for example cancer (Thiebault 1994; Thiebault 1995), neurodegenerative disorders such as Huntington's Disease (Hogarth 2007), amyotrophic lateral sclerosis (ALS) (Cudkowicz 2009), and spinal muscular atrophy (SMA) (Mercuri 2004; Brahe 2005), metabolic disorders (e.g., maple syrup urine disease (MSUD) (Bruneti-Pieri 2011), or sickle cell disease (Hines 2008).
[0055] A subject that has previously been administered a PAA prodrug may have been administered the drug for any duration of time sufficient to reach steady state. For example, the subject may have been administered the drug over a period of 2 to 7 days, 1 week to 2 weeks, 2 weeks to 4 weeks, 4 weeks to 8 weeks, 8 weeks to 16 weeks, or longer than 16 weeks.
[0056] A "PAA prodrug" as used herein refers to any drug that contains or is converted to PAA following administration to a subject, or to any pharmaceutically acceptable salt, ester, acid, or derivative thereof. A PAA prodrug may be administered via any route, including oral or parenteral administration. A PAA prodrug may be converted directly to PAA (e.g., PBA or a salt thereof such as NaPBA), or it may be converted to PAA via an intermediate (e.g., a preprodrug such as HPN-100). Other examples of PAA prodrugs include butyroyloxymethyl-4phenylbutyrate.
[0057] An adjustment to the dosage of a PAA prodrug as discussed herein may refer to a change in the amount of drug per administration (e.g., an increase from a first dosage of 3 mL to a second dosage of 6 mL ), a change in the number of administration within a particular time period (e.g., an increase from once a day to twice a day), or any combination thereof.
[0058] The terms "treat," "treating," or "treatment" as used herein may refer to preventing a disorder, slowing the onset or rate of development of a disorder, reducing the risk of developing a disorder, preventing or delaying the development of symptoms associated with a disorder, reducing or ending symptoms associated with a disorder, generating a complete or partial regression of a disorder, or some combination thereof. For example, where the disorder being treated is a nitrogen retention disorder, "treating" may refer to lowering waste nitrogen levels below a threshold level, preventing waste nitrogen levels from reaching a threshold level, decreasing the likelihood of waste nitrogen levels exceeding a threshold level, reducing or ending symptoms associated with elevated waste nitrogen levels, or a combination thereof.
[0059] With regard to the methods of treatment disclosed herein, interpretation of the PAA:PAGN ratio must be performed in the context of the therapeutic objective. For example, in subjects being treated for a nitrogen retention disorder, the therapeutic objective is elimination of
waste nitrogen in the form of PAGN. In subjects being treated for other disorders for which PAA prodrug administration is expected to be beneficial (e.g., neurodegenerative disorders, MSUD), the therapeutic objective is safely achieving target plasma levels of PAA and/or PBA.
[0060] Any methods known in the art may be used to obtain a plasma blood sample. For example, blood from a subject may be drawn into a tube containing heparin or ethylenediaminetetraacetic acid (EDTA). In certain embodiments, the sample can be placed on ice and centrifuged to obtain plasma within 15 minutes of collection, stored at \(2-8^{\circ} \mathrm{C}\left(36-46^{\circ} \mathrm{F}\right)\) and analyzed within 3 hours of collection. In other embodiments, the blood plasma sample is snap frozen, stored at \(\leq-18^{\circ} \mathrm{C}\left(\leq 0^{\circ} \mathrm{F}\right)\) and analyzed at a later time. For example, the sample may be analyzed at 0-12 hours, 12-24 hours, 24-48, 48-96 hours after freezing, or within any other timeframe over which the sample has demonstrated stability. In certain of these embodiments, the blood sample is stored at a temperature between \(0-15^{\circ} \mathrm{C}\), such as \(2-8^{\circ} \mathrm{C}\). In other embodiments, the blood sample is stored below \(0^{\circ} \mathrm{C}\) or below \(-18^{\circ} \mathrm{C}\).
[0061] Measurement of PAA and PAGN levels in a plasma sample is carried out using techniques known in the art. For example, PAA and PAGN levels may be measured using liquid chromatography/mass spec analyses.
[0062] Any combination of embodiments described herein can be envisioned. Although individual features may be included in different claims, these may be advantageously combined.
[0063] The following examples are provided to better illustrate the claimed invention and are not to be interpreted as limiting the scope of the invention. To the extent that specific materials are mentioned, it is merely for purposes of illustration and is not intended to limit the invention. One skilled in the art may develop equivalent means or reactants without the exercise of inventive capacity and without departing from the scope of the invention. It will be understood that many variations can be made in the procedures herein described while still remaining within the bounds of the present invention. It is the intention of the inventors that such variations are included within the scope of the invention.

\section*{EXAMPLES}

Example 1: Analysis of PAA:PAGN ratio in UCD and HE subjects:
[0064] Plasma PAA and PAGN levels and PAA:PAGN ratio were analyzed in more than 4000 plasma samples obtained from various clinical trials of healthy adults, severely hepatic impaired adults with clinically decompensated Child-Pugh B or C cirrhosis, and UCD patients ages 29 days or older. Healthy and hepatically impaired adults received HPN-100, while UCD
subjects received both HPN-100 and NaPBA. Clinical trial populations are summarized in Tables 1 and 2.

Table 1: Clinical studies and analysis populations
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Study \\
Group
\end{tabular} & Description & Demographics & \begin{tabular}{l} 
Protocols \\
Included
\end{tabular} & \begin{tabular}{l} 
Analysis \\
Populations
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Short-term (<=2-4 weeks) \\
exposure in UCD subjects
\end{tabular} & \begin{tabular}{l} 
Adults and children \\
ages 29 days or \\
greater (N=81)
\end{tabular} & \begin{tabular}{l} 
UP 1204-003 \\
HPN-100-005SO \\
HPN-100-006 \\
HPN-100-012
\end{tabular} & A, B \\
\hline 2 & \begin{tabular}{l} 
Long-term exposure in \\
UCD and HE subjects
\end{tabular} & \begin{tabular}{l} 
Adults and children \\
ages 6 years or \\
greater (N=180)
\end{tabular} & \begin{tabular}{l} 
HPN-100-005SE \\
HPN-100-007 \\
HPN-100-008 Part \\
B
\end{tabular} & A \\
\hline 3 & \begin{tabular}{l} 
Short-term (<= 4 weeks) \\
exposure in hepatic \\
impaired subjects
\end{tabular} & Adults (N=15) & \begin{tabular}{l} 
HPN-100-008 Part \\
A
\end{tabular} & A, B \\
\hline 4 & \begin{tabular}{l} 
Short-term exposure \((<=4\) \\
weeks) in healthy subjects
\end{tabular} & Adults (N=98) & HPN-100-010 & A, B \\
\hline
\end{tabular}

Table 2: Demographics and number of samples used
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Attribute} & \multicolumn{2}{|l|}{No. of subjects} & \multicolumn{2}{|l|}{\begin{tabular}{l}
No. of sample points \\
(Population A)
\end{tabular}} & \multicolumn{2}{|l|}{No. of timespecific PK sample points (Population B)} \\
\hline & & Count & Percent & Count & Percent & Count & Percent \\
\hline \multirow[t]{5}{*}{Population} & Healthy & 86 & 17.0 & 2126 & 34.4 & 2126 & 38.5 \\
\hline & Hepatic & 103 & 20.4 & 830 & 13.4 & 830 & 15.0 \\
\hline & Encephalopathy (HE) & & & & & & \\
\hline & UCD & 158 & 31.3 & 1616 & 26.1 & 1281 & 23.2 \\
\hline & Total & 347 & 100.0 & 4572 & 100.0 & 4237 & 100.0 \\
\hline \multirow[t]{3}{*}{Age} & 29 days \(-<6\) yrs & 15 & 4.3 & 110 & 2.4 & 110 & 2.6 \\
\hline & \(6-<18 \mathrm{yrs}\) & 47 & 13.5 & 373 & 8.2 & 213 & 5.0 \\
\hline & \(18+\mathrm{yrs}\) & 285 & 82.1 & 4089 & 89.4 & 3914 & 92.4 \\
\hline \multirow[t]{2}{*}{Sex} & F & 199 & 57.3 & 2394 & 52.4 & 2152 & 50.8 \\
\hline & M & 148 & 42.7 & 2178 & 47.6 & 2085 & 49.2 \\
\hline
\end{tabular}
[0065] Analysis Population A consisted of quantifiable levels of PAA and PAGN metabolites derived from all studies described above. All PAA and PAGN levels used for analysis came from blood samples drawn once dosing with NaPBA or HPN-100 had reached steady state. Analysis Population B consisted of quantifiable levels of PAA and PAGN metabolites during studies in which pharmacokinetics were analyzed and for which blood draws were performed over 12 or 24 hours at steady state and for which the timing of the blood sample in relation to dosing was known. Subjects in study groups 1,3 and 4 above contributed to these
points. Analysis Population B was the source of analyses that examined how PAA levels changed with time relative to dosing, where dosing could have been with either NaPBA or HPN100. To be eligible for Analysis Population B, the time of the blood draw relative to the time of initiation of dosing during the dosing period had to have been recorded.
[0066] Data on metabolite levels were pooled across a wide range of age levels- infants, toddlers, children, adolescents, and adults. All children, defined as ages under 18, were UCD patients. The majority of the blood sampling points came from adults ( \(89.4 \%\) ). Newborn infants ( \(<29\) days old) were not studied in any of the clinical trials for the investigational agent HPN100. The population of blood sampling points were roughly equally divided between female and male ( \(57.3 \%\) female, \(42.7 \%\) male).
[0067] To examine the predictive ability of PAA:PAGN ratios, a subject was considered to have achieved a high value of PAA if any PAA value up to 24 hours since initiation of dosing equaled or exceeded \(400 \mu \mathrm{~g} / \mathrm{mL}\) or equaled or exceeded \(500 \mu \mathrm{~g} / \mathrm{mL}\). PAA:PAGN ratios were grouped into one of three categorization schemes: a.) \([0-<=2.0],[>2.0]\), b.) \([0-<=2.5,>2.5]\), c.) \([0-<=3.0,>3.0]\). The repeated measures categorical outcome was modeled using GEE with a logit link function, ratio category as the independent variable, and SUBJECTID as the repeated measures factor. Confidence intervals for the predicted probabilities were computed by bootstrap estimation of 1000 resamplings of the original data, as detailed in Davison \& Hinkley, "Bootstrap Methods and Their Application," Cambridge Univ. Press (1997), pp. 358-362.
[0068] Results are summarized in Figures 2-5. A striking curvilinear relationship was observed between plasma PAA levels and PAA:PAGN ratio at any given timepoint. Figure 2A shows the relationship between the ratio of PAA:PAGN concentrations and absolute PAA levels in micrograms per milliliter among blood samples that had quantifiable values for both PAA and PAGN. The ratio axis (i.e. ' X ' axis) is plotted on a logarithmic (base e) scale. For ratios less than 1.0 , increases in ratio are not associated with correspondingly elevated or increased levels of PAA. Above ratios of 1.0, there is a gradual increase in PAA levels, and a noticeable upswing in PAA levels that begins in the vicinity of a ratio of 2.0. This finding suggests that when the ratio of PAA precursor to PAGN product approaches higher values, the values of PAA are also correspondingly high. This increase in the ratio of precursor (PAA) to product (PAGN) implies ineffective PAA to PAGN conversion, regardless of whether the PAA is derived from HPN-100 or NaPBA.
[0069] To determine whether excessive PAA build-up is a function of dosing, the plots mentioned above were repeated, but this time adjusting for assigned dose level of NaPBA or HPN-100 at the time of the blood draw. Since the UCD population consisted of a mixture of children and adults undergoing both short-term therapy and long-term therapy, total assigned daily dose for UCD patients was standardized to body surface area and reported in PBAequivalent grams meter \({ }^{2}\). Healthy and HE subjects were all adults and their assigned dose was not adjusted by body surface area. Dose levels for healthy and HE subjects were reported in HPN-100 equivalent mL. Dose levels for UCD subjects were reported in NaPBA-equivalent grams.
[0070] The excess of PAA over PAGN, indicated by larger ratios as PAA increases, was evident across all dosage groups, disease populations, and types of treatment in UCD patients (i.e., applies to both NaPBA and HPN-100). This finding suggests that analysis of the precursor (PAA) to product (PAGN) ratio may be predictive of the efficiency of conversion among patients with or without liver dysfunction (UCD patients have normal liver function apart from their urea cycle dysfunction) and independently of dose. As a corollary, the presence of liver dysfunction (e.g. cirrhosis) by itself, is not necessarily a reliable determinant of whether a particular patient is at risk for high PAA levels.
[0071] The ability of PAA:PAGN ratios to predict extremely high plasma PAA concentrations was determined by modeling the probability that a subject would exceed a PAA value of 400 or \(500 \mu \mathrm{~g} / \mathrm{mL}\) anytime during a 24 hour dosing period, based on the ratio of PAA to PAGN computed at pre-dose (presumably trough), 12 hours after dosing (presumably peak), and the maximum ratio encountered anytime between pre-dose and 12 hours post-dose. This interval of \(0-12\) hours was chosen for practical reasons, as it would encompass the entire interval corresponding to the usual outpatient visit.
[0072] Since subjects could have multiple dosing periods within a given clinical study, the probability was modeled using Generalized Estimating Equations. Three categorizations of ratios were modeled: a.) \([0-<=2.0][>2.0]\), b.) \([0-<=2.5,>2.5]\), c.) \([0-<=3.0,>3.0]\). The models were repeated with PAA values greater than or equal to \(500 \mu \mathrm{~g} / \mathrm{mL}\) considered extreme. Results are summarized in Table 3.

Table 3: Probabilities of extreme PAA values encountered during 24 hour PK sampling with
PAA:PAGN ratios (all subjects combined)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PAA Value Considered High} & \begin{tabular}{l}
Time of Blood \\
Draw Used For \\
Ratio \\
Classification
\end{tabular} & Observed Ratio of PAA/PAGN & \begin{tabular}{l}
Probability \\
Subject Wi \\
Ratio Will \\
Value* (\%)
\end{tabular} & \begin{tabular}{l}
that a \\
h This Exceed High
\end{tabular} & \begin{tabular}{l}
Bootstrapped 95\% \\
Confidence \\
Interval**
\end{tabular} \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& {[<=2.0,} \\
& >2.0]
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& >=400 \\
& \mu \mathrm{~g} / \mathrm{mL}
\end{aligned}
\]} & \(\mathrm{t}=0\) (fasting) & \[
\begin{aligned}
& <=2.0 \\
& >2.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.005 \\
& 0.164
\end{aligned}
\] & \[
\begin{aligned}
& \hline(0.5 \%) \\
& (16.4 \%) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.004,0.020 \\
& 0.041,0.281
\end{aligned}
\] \\
\hline & & \(\mathrm{t}=12\) hours & \[
\begin{aligned}
& <=2.0 \\
& >2.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& 0.227
\end{aligned}
\] & \[
\begin{aligned}
& (0.3 \%) \\
& (22.7 \%)
\end{aligned}
\] & \[
\begin{aligned}
& 0.004,0.021 \\
& 0.048,0.412
\end{aligned}
\] \\
\hline & & \(\operatorname{MAX}(0-12)\) & \[
\begin{aligned}
& <=2.0 \\
& >2.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.002 \\
& 0.143
\end{aligned}
\] & \[
\begin{aligned}
& (0.2 \%) \\
& (14.3 \%)
\end{aligned}
\] & \[
\begin{aligned}
& 0.004,0.010 \\
& 0.036,0.263
\end{aligned}
\] \\
\hline & \multirow{3}{*}{\[
\begin{aligned}
& >=500 \\
& \mu \mathrm{~g} / \mathrm{mL}
\end{aligned}
\]} & \(\mathrm{t}=0\) (fasting) & \[
\begin{aligned}
& <=2.0 \\
& >2.0
\end{aligned}
\] & \multicolumn{3}{|c|}{did not converge} \\
\hline & & \(\mathrm{t}=12\) hours & \[
\begin{aligned}
& <=2.0 \\
& >2.0
\end{aligned}
\] & \multicolumn{3}{|c|}{did not converge} \\
\hline & & \(\operatorname{MAX}(0-12)\) & \[
\begin{aligned}
& <=2.0 \\
& >2.0
\end{aligned}
\] & \multicolumn{3}{|c|}{did not converge} \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& {[<=2.5} \\
& >2.5]
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& >=400 \\
& \mu \mathrm{~g} / \mathrm{mL}
\end{aligned}
\]} & \(\mathrm{t}=0\) (fasting) & \[
\begin{aligned}
& <=2.5 \\
& >2.5
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.008 \\
& 0.191
\end{aligned}
\] & \[
\begin{aligned}
& \hline(0.8 \%) \\
& (19.1 \%) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.004,0.023 \\
& 0.053,0.366
\end{aligned}
\] \\
\hline & & \(\mathrm{t}=12\) hours & \[
\begin{aligned}
& <=2.5 \\
& >2.5
\end{aligned}
\] & \[
\begin{aligned}
& 0.007 \\
& 0.364 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (0.7 \%) \\
& (36.4 \%) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.004,0.016 \\
& 0.125,0.752 \\
& \hline
\end{aligned}
\] \\
\hline & & MAX (0-12) & \[
\begin{aligned}
& <=2.5 \\
& >2.5
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& 0.200 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (0.3 \%) \\
& (20.0 \%)
\end{aligned}
\] & \[
\begin{aligned}
& 0.004,0.013 \\
& 0.050,0.381
\end{aligned}
\] \\
\hline & \multirow{3}{*}{\[
\begin{aligned}
& >=500 \\
& \mu \mathrm{~g} / \mathrm{mL}
\end{aligned}
\]} & \(\mathrm{t}=0\) (fasting) & \[
\begin{aligned}
& <=2.5 \\
& >2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& 0.084 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (0.3 \%) \\
& (8.4 \%) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.004,0.011 \\
& 0.029,0.214 \\
& \hline
\end{aligned}
\] \\
\hline & & \(\mathrm{t}=12\) hours & \[
\begin{array}{|l}
\hline>2.5 \\
\hline<=2.5 \\
>2.5
\end{array}
\] & \multicolumn{3}{|r|}{did not converge} \\
\hline & & MAX (0-12) & \[
\begin{aligned}
& <=2.5 \\
& >2.5
\end{aligned}
\] & \multicolumn{3}{|c|}{did not converge} \\
\hline \multirow{6}{*}{\([<=3,>3]\)} & \multirow{3}{*}{\[
\begin{aligned}
& >=400 \\
& \mu \mathrm{~g} / \mathrm{mL}
\end{aligned}
\]} & \(\mathrm{t}=0\) (fasting) & \[
\begin{aligned}
& <=3.0 \\
& >3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.010 \\
& 0.205 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline(1.0 \%) \\
& (20.5 \%)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.004,0.025 \\
& 0.059,0.398
\end{aligned}
\] \\
\hline & & \(\mathrm{t}=12\) hours & \[
\begin{aligned}
& <=3.0 \\
& >3.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.013 \\
& 0.250
\end{aligned}
\] & \[
\begin{aligned}
& (1.3 \%) \\
& (25.0 \%) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.004,0.028 \\
& 0.113,0.576
\end{aligned}
\] \\
\hline & & MAX(0-12) & \[
\begin{aligned}
& <=3.0 \\
& >3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& 0.229 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (0.3 \%) \\
& (22.9 \%) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.004,0.014 \\
& 0.059,0.438 \\
& \hline
\end{aligned}
\] \\
\hline & \multirow{3}{*}{\[
\begin{aligned}
& >=500 \\
& \mu \mathrm{~g} / \mathrm{mL}
\end{aligned}
\]} & \(\mathrm{t}=0\) (fasting) & \[
\begin{aligned}
& <=3.0 \\
& >3.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.003 \\
& 0.102 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline(0.3 \%) \\
& (10.2 \%)
\end{aligned}
\] & \[
\begin{aligned}
& 0.004,0.010 \\
& 0.032,0.255
\end{aligned}
\] \\
\hline & & \(\mathrm{t}=12\) hours & \[
\begin{aligned}
& <=3.0 \\
& >3.0
\end{aligned}
\] & \multicolumn{3}{|c|}{did not converge} \\
\hline & & MAX (0-12) & \[
\begin{aligned}
& <=3.0 \\
& >3.0
\end{aligned}
\] & \multicolumn{3}{|c|}{did not converge} \\
\hline
\end{tabular}

Analysis repeated for each ratio cut off category independently.
* Probability derived from Generalized Estimating Equations model with logit link function.
** Confidence interval derived from method disclosed in Davison \& Hinkley, "Bootstrap Methods and Their Application," Cambridge Univ. Press (1997), pp. 358-362, using 1000 re-samplings of original data.
[0073] Because of the sparseness of samples in which PAA equaled or exceeded \(500 \mu \mathrm{~g} / \mathrm{mL}\), \(400 \mu \mathrm{~g} / \mathrm{mL}\) proved to be a more stable and predictable target (i.e. high) value. Of the three categorizations of ratio considered, the cutpoint of 2.5 was the best discriminator and predictor
of the risk of experiencing an high value. For example, referring to Table 3, a subject with a PAA:PAGN ratio \(>2.5\) at \(\mathrm{t}=12\) hours after dosing has a \(36.4 \%\) chance \((95 \% \mathrm{c} . \mathrm{i} .=0.125,0.752)\) of exceeding \(400 \mu \mathrm{~g} / \mathrm{mL}\) in PAA sometime during the 24 -hour PK sampling period.
[0074] Results were similar whether the ratio was computed from plasma drawn at pre-dose, 12 hours after initiation of dosing, or the maximum ratio encountered anytime between pre-dose and 12 hours after initiation of dosing.
[0075] Due to the very high intra-day variability of plasma PAA levels, a PAA:PAGN ratio observed as exceeding 2.0 at a certain time following dosing may not remain greater than 2.0 in subsequent times. To evaluate the optimal time for obtaining a PAA:PAGN ratio measurement (i.e., the time that gives the greatest probability of correctly detecting a subject whose

PAA:PAGN ratio ever equals or exceeds 2.0 during the dosing period), ratios were evaluated at 0 (pre-dose) and 2, 4, 6, 8, 10, and 12 hours post-dosing and modeled using GEE methodology. Pairwise differences in sensitivity between time points were evaluated using LS means and confidence intervals were computed.
[0076] Figure 3 plots the estimated probabilities of correctly detecting a ratio profile that ever equals of exceeds 2.0. With the exception of time \(=2\) hours and time \(=10\) hours, time points of \(0,4,6,8\), and 12 hours post-dosing were equally effective in detecting subjects who equal or exceed a PAA:PAGN ratio of 2.0 at some point during the dosing period. Sensitivities were in the range of \(75-90\) percent. There were too few blood samples collected at \(t=10\) hours to analyze inter-time differences. Differences in predictive value were observed. For example, blood samples collected at \(\mathrm{t}=2\) hours post-dosing had a significantly lower probability of detecting subjects who equal or exceed a PAA:PAGN ratio of 2.0 than samples collected at \(\mathbf{t}=0\) ( \(p=\) 0.036 ), \(4(p=0.032)\), or 6 hours ( \(\mathrm{p}=0.017\) ) post-dosing ( p values are comparisons of \(\mathrm{t}=2\) hour probability with other time points). Similarly, a sample collected at \(\mathrm{t}=12\) hours following initiation of dosing had the highest probability ( \(87 \%\) ) of detecting a subject whose ratio ever equals or exceeds 2.0. However, for practical clinical purposes, the differences in predictive value among time points was trivial relative to the dramatically greater variability in PAA values themselves, meaning that random blood draws can be used for measurement of PAA:PAGN ratio.
[0077] Further exploration of the fluctuation of PAA:PAGN ratios over time was conducted by dividing the subject population into cohorts according to the maximum PAA:PAGN ratio achieved during the 24 -hour PK sampling time during the dosing period. Cohorts were divided
into "low" (maximum ratio < = 2.0), "medium" (maximum ratio: 2.01-2.50), and "high" (maximum ratio \(>2.50\) ). Each cohort was then followed over time during the dosing period at \(\mathrm{t}=0\) hours( pre-dose), 4,6 , and 8 hours post-dosing and the distribution of PAA:PAGN ratios within the cohort summarized using a box-and-whisker plot at each time point. This analysis was conducted for the PK-timepoint-specific population as a whole (analysis population B ) as well as for each disease subpopulation separately.
[0078] Figure 4 plots the progression of ratios for all subjects combined. Each "panel" of the plot that divides the graphing space into thirds represents one cohort. Subjects in the high cohort had high ratios throughout the day and not only at a particular time point. Therefore, subjects in this cohort ( \(\mathrm{n}=73\) subject/dosing periods) started with high ratios (median ratio \(>2.5\) ) and remained high throughout the first 12 hours. This finding is consistent with the findings plotted in Figure 3 which revealed the consistency of sensitivity in ratios.
[0079] The relationship between PAA levels and PAA:PAGN ratios was further analyzed by categorizing ratios into "low" (maximum ratio \(<=2.0\) ), "medium" (maximum ratio: 2.01-2.50), and "high" (maximum ratio \(>2.50\) ). Unlike the previous analysis, this analysis did not associate subject/dosing periods with particular cohorts (i.e., all samples and all time points are combined with regard to the subject or dosing period).
[0080] Figure 5A shows the box-and-whisker plots of PAA levels grouped by the above categories of PAA:PAGN ratio for all subjects, while Figure 5B shows the same for UCD and HE subjects only. The results were very similar in both analysis sets. Following a statistically significant overall Kruskal-Wallis test ( \(p<0.0001\) ), pairwise comparisons of PAA levels were conducted using Wilcoxon-Mann-Whitney with a Bonferroni alpha correction of (0.0167). In both analysis sets, ratios greater than 2.5 had significantly higher PAA levels ( \(\mathrm{p}<0.001\) ) than either ratios between \(2.0-2.5\) or ratios less than 2.0. Furthermore, ratios between \(2.0-2.5\) were associated with significantly higher PAA levels than ratios less than 2.0 ( \(\mathrm{p}<0.001\) ).
Example 2: Analysis of PAA:PAGN ratio as a guide to dose adjustment and monitoring in a UCD patient:
[0081] Patient 1 was a 15 year old partial OTC female receiving HPN-100 as maintenance therapy for her UCD at a dose of \(9 \mathrm{~mL} /\) day. The patient's ammonia had been controlled since her last routine visit around 6 months ago, but she was complaining of headache and lack of appetite for the past 3 days. Ammonia and metabolite levels were tested after overnight fasting and showed the following results: ammonia \(55 \mu \mathrm{~mol} / \mathrm{L}\), PAA and PAGN below levels of
quantification. The physician suspected non-compliance with drug and repeated the tests in midday several hours after lunch and found the following results: ammonia: \(117 \mu \mathrm{~mol} / \mathrm{L}\); PAA \(55 \mu \mathrm{~g} / \mathrm{L}\), PAGN \(121 \mu \mathrm{~g} / \mathrm{L}\), and PAA:PAGN ratio approximately 0.5 . The patient indicated that she had been fully compliant with her medication. Based on the PAA to PAGN ratio of 0.5 and ammonia of 117 , the physician decided to increase the dosage of HPN-100 to \(12 \mathrm{~mL} /\) day. After one week of treatment with the new dose of HPN-100, all symptoms resolved and the laboratory tests after overnight fasting showed the following: ammonia \(9 \mu \mathrm{~mol} / \mathrm{L}\); PAA \(12.9 \mu \mathrm{~g} / \mathrm{L}, \mathrm{PAGN}\) of \(9 \mu \mathrm{~g} / \mathrm{L}\), and PAA:PAGN ratio of 1.3. Midday tests showed the following: ammonia 35 \(\mu \mathrm{mol} / \mathrm{L}\), PAA \(165 \mu \mathrm{~g} / \mathrm{L}\), PAGN \(130 \mu \mathrm{~g} / \mathrm{L}\), and PAA:PAGN ratio of \(\sim 1.2\). The patient was considered controlled and the dose remained at \(12 \mathrm{~mL} /\) day.
Example 3: Analysis of PAA:PAGN ratio as a guide to dose adjustment in a UCD patient:
[0082] Patient 2 was a 1 year old male OTC receiving \(600 \mathrm{mg} / \mathrm{kg}\) of NaPBA per day. The patient presented with poor feeding and somnolence. Laboratory tests showed ammonia levels of \(<9 \mu \mathrm{~mol} / \mathrm{L}\), PAA levels of \(530 \mu \mathrm{~g} / \mathrm{L}\), PAGN levels of \(178 \mu \mathrm{~g} / \mathrm{L}\), and a PAA:PAGN ratio of \(>2.5\), suggesting that the dose of NaPBA was greater than the patient could effectively convert to PAGN. The treating physician decided to decrease the dose of NaPBA to \(450 \mathrm{mg} / \mathrm{Kg} / \mathrm{day}\). After one week of treatment with the new dosage, the patient's mother reported that he was eating well and was no longer somnolent. Laboratory tests showed the following: ammonia \(20 \mu \mathrm{~mol} / \mathrm{L}\), PAA \(280 \mu \mathrm{~g} / \mathrm{L}\), and PAGN \(150 \mu \mathrm{~g} / \mathrm{L}\).
Example 4: Analysis of PAA:PAGN ratio as a guide to assessment of importance of a high PAA level in a UCD patient:
[0083] Patient 3 is a 25 year old OTC female who is being treated with HPN-100. The physician had to increase the dose of HPN-100 several times in order to achieve clinical and blood ammonia within normal limits. Patient 3 was treated at a dose of \(18 \mathrm{~mL} /\) day for her UCD for the past month. In her next office visit, she did not have any complaints and the following lab results were reported: ammonia \(22 \mu \mathrm{~mol} / \mathrm{L}\), PAA \(409 \mu \mathrm{~g} / \mathrm{L}\), PAGN \(259 \mu \mathrm{~g} / \mathrm{L}\), and PAA:PAGN ratio of 1.5 . Despite the patient's relatively high PAA levels, the PAA:PAGN ratio indicated that the subject was being adequately treated and that the patient was able to effectively metabolize the high dose of HPN-100 that she was receiving. The physician decided to continue the treatment as planned.

Example 5: Analysis of PAA:PAGN ratio as a guide to dose adjustment in a patient with spinal muscular atrophy and concomitant liver disease:
[0084] Patient 4 was a 2 year old female being treated with a liquid form of NaPBA for her type II SMA. The patient also suffered from chronic hepatitis \(C\) virus infection acquired perinatally from her infected mother. The patient had been having mild to moderate elevation of transaminases since birth, with episodes of icterus and a recent liver biopsy has confirmed presence of chronic hepatitis and cirrhosis. The patient was receiving 4 g of NaPBA per day, and the physician wanted to increase the dosage due to the patient's growth but was concerned about the effects of liver dysfunction on drug metabolism. The physician ordered plasma PAA and PAGN levels and the results were as follows: PAA \(110 \mu \mathrm{~g} / \mathrm{L}\), PAGN \(85 \mu \mathrm{~g} / \mathrm{L}\), PAA:PAGN ratio of 1.2. The physician decided to increase the dosage of NaPBA to \(6 \mathrm{~g} /\) day, and repeated the plasma metabolite level measurements after one week of treatment with the new regimen. The results were as follows: PAA \(155 \mu \mathrm{~g} / \mathrm{L}\), PAGN \(110 \mu \mathrm{~g} / \mathrm{L}\), and PAA:PAGN ratio of 1.4. The physician decided to leave the patient on \(6 \mathrm{~g} /\) day of NaPBA since his liver seems to have adequate capacity to metabolize 6 g of NaPBA .
Example 6: Analysis of PAA:PAGN ratio as a guide to dose adjustment in a patient with Huntington's Disease and concomitant liver disease:
[0085] Patient 5 was a 56 year old male diagnosed with Huntington's disease several years ago. He also had a history of alcohol abuse and was diagnosed with alcoholic cirrhosis last year. His wife enrolled him in clinical trials that involved an experimental drug delivering PBA at a slow rate, thereby enabling once-a-day dosing of the drug. The study had an option for dose escalation after 2 weeks of treatment if clinically safe. Although the protocol did not exclude patients with liver dysfunction, the investigator was concerned about PBA metabolism and possible accumulation of PAA in higher doses due to the patient's liver dysfunction. The investigator enrolled the patient in the low dose group and performed plasma PBA, PAA and PAGN measurements after 6 weeks of treatment with experimental drug. The patient reported improvement in his HD symptoms with no specific complains. Plasma metabolite levels after six weeks of treatment were as follows: PBA \(45 \mu \mathrm{~g} / \mathrm{L}\); PAA \(159 \mu \mathrm{~g} / \mathrm{L}\), and PAGN \(134 \mu \mathrm{~g} / \mathrm{L}\). The dosage of the drug was increased by \(50 \%\). After four days of treatment at the new dosage, the patient started to complain about short episodes of somnolence. The investigator performed a blood test and observed the following: PBA \(44 \mu \mathrm{~g} / \mathrm{L}\); PAA \(550 \mu \mathrm{~g} / \mathrm{L}\), PAGN \(180 \mu \mathrm{~g} / \mathrm{L}\), and PAA:PAGN ratio of \(>3\). The PAA:PAGN ratio of greater than 2.5 indicated that the patient's
liver could not effectively metabolize the higher dose of the drug, and the investigator therefore decided to reduce the dosage of the experimental drug and not continue dose escalation. Example 7: Analysis of PAA:PAGN ratio as a guide to dose adjustment in a patient with MSUD:
[0086] Patient 6 was a 4 year old female being treated with HPN- 100 for MSUD. The patient was receiving 6 mL of HPN- 100 once a day, and the physician wanted to increase the dosage due to the patient's growth. Midday plasma PAA and PAGN measurements after the dose of medication were as follows: PAA \(550 \mu \mathrm{~g} / \mathrm{L}\), PAGN \(180 \mu \mathrm{~g} / \mathrm{L}\), and PAA:PAGN ratio of \(>2.5\). The physician believed a lower dosage of HPN-100 would not be as effective for the patient, and decided to change the dosing regimen to 3 mL BID instead of 6 mL QD based on the high PAA:PAGN ratio. The tests were repeated after one week of treatment with the new BID regimen, with the following results: PAA \(350 \mu \mathrm{~g} / \mathrm{L}\), PAGN \(190 \mu \mathrm{~g} / \mathrm{L}\), and PAA:PAGN ratio of 1.8 . Based on the ratio of 1.8 , the physician decided to leave the patient on 3 mL BID since she can efficiently use a total dose of \(6 \mathrm{~mL} /\) day given in divided doses but not as a bolus. Example 8: Analysis of PAA:PAGN ratio as a guide to monitor a patient with HE and hepatic impairment:
[0087] Patient 7 was a 55 year old Caucasian male diagnosed with alcoholic cirrhosis 3 years ago. His transaminase levels had been mildly elevated and he had recently experienced mild episodes of HE. In the last assessment at the time of hospital admission for a grade 2 HE episode, the patient had a blood ammonia of \(85 \mu \mathrm{~mol} / \mathrm{L}\), ALT of \(55 \mathrm{U} / \mathrm{L}\), and AST of \(47 \mathrm{U} / \mathrm{L}\), and a calculated MELD score of 11 . The physician decided to start an ammonia scavenging therapy for the patient and treated him with HPN-100 6 mL BID. The patient returned for a follow up visit after 3 months, during which time he had experienced no episodes of HE. His laboratory assessments showed the following: ammonia of \(30 \mu \mathrm{~mol} / \mathrm{L}\), plasma PAA level of 285 \(\mu \mathrm{g} / \mathrm{mL}\), PAGN level of \(120 \mu \mathrm{~g} / \mathrm{L}\), ALT of \(66 \mathrm{U} / \mathrm{L}\), AST of \(50 \mathrm{U} / \mathrm{L}\), and calculated MELD score of 13. The physician suspected that the patient's hepatic function may be deteriorating and was concerned about possible accumulation of PAA. She calculated the ratio of PAA to PAGN as 2.4, and confirmed that the patient had not experienced any unusual symptoms such as dizziness, headache, or nausea. Considering patient's ammonia control, lack of specific side effects, and clinical remission, the physician decided not to change the dose and to see the patient in two weeks to repeat the laboratory tests. The physician also warned the patient to call her immediately if he experienced any of these symptoms. In two weeks, the patient's laboratory
assessments were essentially unchanged from the previous visit, with a PAA to PAGN ratio of 2.3, and the patient did not report any unusual symptoms. Based on the PAA:PAGN ratio of less than 2.5, the physician decided to continue dosing with 6 mL BID of HPN-100 until the next routine visit.

Example 9: Analysis of PAA:PAGN ratio as a guide to monitoring treatment in a patient with Parkinson's Disease:
[0088] HPN-100 treatment was initiated at a dose of 4 mL twice a day in a patient with Parkinson's Disease to produce target circulating levels of PAA expected to produce clinical benefit. After one week of treatment, the patient's circulating PAA level of \(50 \mu \mathrm{~g} / \mathrm{mL}\) was below the target range, and the PAA:PAGN ratio was determined to be 0.9 . The physician concluded that the HPN-100 dose could be safely adjusted upward, and the dose was increased by \(50 \%\) to 6 mL BID. The PAA level and PAA/PAGN ratio one week later were found to be 75 \(\mu \mathrm{g} / \mathrm{mL}\) and 1.4 , respectively. Since \(75 \mu \mathrm{~g} / \mathrm{mL}\) was still below the therapeutic PAA target level and the PAA:PAGN ratio of 1.4 indicated that conversion of PAA to PAGN had not been saturated, the patient's dosage was increased again by \(50 \%\) to 9 mL BID. One week later, the patient's PAA and PAA:PAGN ratio were found to be \(159 \mu \mathrm{~g} / \mathrm{mL}\) and 2.6 , respectively. Since the target PAA level was now approximately therapeutic but the PAA:PAGN ratio indicated that PAA to PAGN conversion was approaching saturation, HPN-100 dosage was decreased to 8 mL BID, at which time the patient's circulating PAA level was determined to be close to the target range and his PAA:PAGN ratio was determined to be 2 . The patient's dose was not further adjusted and he continued to be monitored.
[0089] As stated above, the foregoing is merely intended to illustrate various embodiments of the present invention. The specific modifications discussed above are not to be construed as limitations on the scope of the invention. It will be apparent to one skilled in the art that various equivalents, changes, and modifications may be made without departing from the scope of the invention, and it is understood that such equivalent embodiments are to be included herein. All references cited herein are incorporated by reference as if fully set forth herein.

\section*{REFERENCES}
1. Brahe Eur J Hum Genet 13:256 (2005)
2. Bruneti-Pieri Human Molec Genet 20:631 (2011)
3. Brusilow Science 207:659 (1980)
4. Brusilow Pediatr Res 29:147 (1991)
5. Brusilow Metabolism 42:1336 (1993)
6. Chung Clin Cancer Res 6:1452 (2000)
7. Cudkowicz ALS 10:99 (2009)
8. Hines Pediatr Blood Cancer 50:357 (2008)
9. Hogarth Mov Disord 22:1962 (2007)
10. Lee Mol Genet Metab 100:221 (2010)
11. Lichter Mol Genet Metab 103:323 (2011)
12. McGuire Hepatology 51:2077 (2010)
13. Mercuri Neuromuscul Disord 14:130 (2004)
14. Mokhtarani Mol Genet Metab 105:342 (2012)
15. Moldave J Biol Chem 229:463 (1957)
16. Monteleone Mol Genet Metab 105:343 (2012)
17. Ong Am J Med 114:188 (2003)
18. Perrine Pediatr Ann 37:339 (2008)
19. Ryu J Neurochem 93:1087 (2005)
20. Thiebault Cancer Res 54:1690 (1994)
21. Thiebault Cancer 75:2932 (1995)

\section*{What is claimed is:}
1. A method of treating a nitrogen retention disorder in a subject comprising:
(a) administering a first dosage of a PAA prodrug,
(b) measuring plasma PAA and PAGN levels,
(c) calculating a plasma PAA:PAGN ratio,
(d) determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range, where a PAA:PAGN ratio below the target range indicates that the dosage potentially needs to be increased and a PAA:PAGN ratio above the target range indicates that the dosage needs to be decreased, and
(e) administering a second dosage of the PAA prodrug based on the determination in (d).
2. A method of treating a nitrogen retention disorder in a subject who has previously been administered a first dosage of a PAA prodrug comprising:
(a) measuring plasma PAA and PAGN levels,
(b) calculating a plasma PAA:PAGN ratio,
(c) determining whether the first PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range, where a PAA:PAGN ratio below the target range indicates that the dosage potentially needs to be increased and a PAA:PAGN ratio above the target range indicates that the dosage needs to be decreased, and
(d) administering a second dosage of the PAA prodrug based on the determination in (c).
3. A method of treating a condition for which PAA prodrug administration is expected to be beneficial in a subject comprising:
(a) administering a first dosage of a PAA prodrug,
(b) measuring plasma PAA and PAGN levels,
(c) calculating a plasma PAA:PAGN ratio,
(d) determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range, where a PAA:PAGN ratio below the target range indicates that the dosage potentially needs to be increased and a PAA:PAGN ratio above the target range indicates that the dosage needs to be decreased, and
(e) administering a second dosage of the PAA prodrug based on the determination in (d).
4. A method of treating a condition for which PAA prodrug administration is expected to be beneficial in a subject who has previously been administered a first dosage of a PAA prodrug comprising:
(a) measuring plasma PAA and PAGN levels,
(b) calculating a plasma PAA:PAGN ratio,
(c) determining whether the first PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range, where a PAA:PAGN ratio below the target range indicates that the dosage potentially needs to be increased and a PAA:PAGN ratio above the target range indicates that the dosage needs to be decreased, and
(d) administering a second dosage of the PAA prodrug based on the determination in (c).
5. A method of adjusting the dosage of a PAA prodrug comprising:
(a) administering a first dosage of a PAA prodrug,
(b) measuring plasma PAA and PAGN levels,
(c) calculating a plasma PAA:PAGN ratio,
(d) determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range, where a PAA:PAGN ratio below the target range indicates that the dosage potentially needs to be increased and a PAA:PAGN ratio above the target range indicates that the dosage needs to be decreased, and
(e) administering a second dosage of the PAA prodrug based on the determination in (d).
6. A method of optimizing the therapeutic efficacy of a PAA prodrug in a subject who has previously been administered a first dosage of a PAA prodrug comprising:
(a) measuring plasma PAA and PAGN levels,
(b) calculating a plasma PAA:PAGN ratio,
(c) determining whether the PAA prodrug dosage needs to be adjusted based on whether the PAA:PAGN ratio falls within a target range, where a PAA:PAGN ratio below the target range indicates that the dosage potentially needs to be increased and a PAA:PAGN ratio above the target range indicates that the dosage needs to be decreased, and
(e) administering a second dosage of the PAA prodrug as necessary based on the determination in (c).
7. The method of claim 1 or 2, wherein the nitrogen retention disorder is selected from the group consisting of UCD, HE, and ESRD.
8. The method of claim 3 or 4 , wherein the disorder is selected from the group consisting of cancer, a neurodegenerative diseases, a metabolic disorder, and sickle cell disease.
9. The method of any of claims 1-6, wherein the target range is 1 to 2.5 .
10. The method of any of claims 1-6, wherein the target range is 1 to 2 .
11. The method of any of claims 1-6, wherein measurement of PAA and PAGN levels is carried out after the first dosage of PAA prodrug has had sufficient time to reach steady state.
12. The method of claim 11, wherein measurement of PAA and PAGN levels is carried out 48 hours to 1 week after the first dosage of PAA prodrug is administered.
13. The method of any of claims 1-6, wherein the PAA prodrug is selected from the group consisting of NaPBA and HPN-100.

Figure 1


Figure 2A


Ratio of Plasma PAA to Plasma PAGN(log scale)

Figure 2B


Rakio of Plasma PAA to Plasma PAGN(log soale)

Figure 2C


Rasio of Plasma PAA to Plasma PAGN(log scale)

Figure 3




Figure 4


Figure 5A


Ratio of PAA to PACN
Figure 5B


\section*{INTERNATIONAL SEARCH REPORT}

International application No.
PCT/US \(12 / 54673\)


Form PCT/ISA/210 (second sheet) (July 2009)

\section*{INTERNATIONAL SEARCH REPORT}

International application No.
PCT/US 09/30362


Form PCT/ISA/210 (second sheet) (April 2007)


Form PCT/ISA210 (second sheet) (April 2005)


\section*{\(\mathbb{P C T}\)}

\section*{INTERNATIONAL SEARCH REPORT}
(PCT Article 18 and Rules 43 and 44)
\begin{tabular}{|c|c|c|}
\hline Applicant's or agent's file reference 079532-8007.WOOO & \begin{tabular}{l}
FOR FURTHER \\
ACTION
\end{tabular} & \begin{tabular}{l}
see Form PCT/SA/220 \\
as well as, where applicable, item 5 below.
\end{tabular} \\
\hline International application No. PCT/US2014/060543 & \begin{tabular}{l}
International filing date (day/month/year) \\
14 October 2014
\end{tabular} & (Earliest) Priority Date (day/month/year) 14 October 2013 \\
\hline \begin{tabular}{l}
Applicant \\
HYPERION THERAPEUTICS, INC.
\end{tabular} & & \\
\hline
\end{tabular}

\section*{This international search report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.}

This international search report consists of a total of \(\square\) sheets.
It is also accompanied by a copy of each prior art document cited in this report.

\section*{1. Basis of the report}
a. With regard to the language, the international search was carried out on the basis of:

区 the international application in the language in which it was filed.
\(\square\) a translation of the international application into \(\qquad\) which is the language of a translation furnished for the purposes of international search (Rules 12.3(a) and 23:1(b)).
b. \(\square\) This international search report has been established taking into account the rectification of an obvious mistake authorized by or notified to this Authority under Riule 91 (Rule 43.6bis(a)).
c. \(\square\) With regard to any nucleotide and/or amino acid sequence disclosed in the international application, see Box No. I.
2.Certain claims were found unsearchable (see Box No. II).
3. \(\square\) Unity of invention is lacking (see Box No. III).
4. With regard to the title,
the text is approved as submitted by the applicant.
\(\square\) the text has been established by this Authority to read as follows:
5. With regard to the abstract,
X. the text is approved as submitted by the applicant.
\(\square\) the.text has been established, according to Rule 38.2; by this Authority as it appears in Box No. IV. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.
6. With regard to the drawings,
a. the figure of the drawings to be published with the abstract is Figure No. 1 \(\qquad\)
\(\square\) as, suggested by the applicant.
区
as selected by this Authority, because the applicant failed to suggest a figure.
as selected by this Authority, because this figure better characterizes the invention.
b. \(\square\) none of the figures is to be published with the abstract.

Form PCT/ISA/210 (first sheet) (July 2009)


\section*{PATENT COOPERATION TREATY}

From the INTERNATIONAL SEARCHING AUTHORITY

1. This opinion contains indications relating to the following items:


Box No. I Basis of the opinion
Box No. II Priority
Box No. III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
Box No. IV Lack of unity of invention
Box No.V Reasoned statement under Rule 43 bis. 1(a)(i) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

Box No. VI Certain documents cited
Box No. VII - Certain defects in the international application
Box No. VIII Certain observations on the international application
2. FURTHERACTION

If a demand for international preliminary examination is made, this opinion will be considered to be a written opinion of the International Preliminary Examining Authority ("IPEA") except that this does not apply where the applicant chooses an Authority ther than this one to be the IPEA and the chosen IPEA has notified the International Bureau under Rule 66.1 bis(b) that written opinions of this International Searching Authority will not be so considered.
If this opinion is, as provided above, considered to be a written opinion of the IPEA, the applicant is invited to submit to th IPEA a written reply together, where appropriate, with amendments, before the expiration of 3 months from the date of mailing of Fom PCT/ISA/220 or before the expiration of 22 months from the priority date, whichever expires later
For further options, see Form PCT/ISA/220.
\begin{tabular}{|l|c|c|}
\hline \begin{tabular}{l} 
Name and mailing address of the ISA/US \\
Mail Stop PCT. Attr: ISA/US
\end{tabular} & Date of completion of this opinion & Authorized officer: \\
Commissioner for Patents \\
P.O. Box 1450, Alexandria, Virginia 22313-1450 & 15 December 2014 & \\
Facsimile No. 571-273-3201 & \(\therefore\) & Blaine R. Copenheaver
\end{tabular}

Form PCT/ISA/237 (cover sheet) (July 2011)

\section*{WRITTEN OPINION OF THE NTERNATIONAL SEARCHING AUTHORITY}

\section*{Box No. I Basis of this opinion}
1. With regard to the language, this opinion has been established on the basis of:
X. the international application in the language in which it was fileda translation of the international application into \(\qquad\) which is the language of a translation furnished for the purposes of international search (Rules 12.3(a) and 23.1(b)).
2.This opinion has been established taking into account the rectification of an obvious mistake authorized by or notified to this Authority under Rule 91 (Rule 43bis.1(a))
3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, this opinion has been established on the basis of a sequence listing filed or furnished
a. (means)
\(\square\) on paperin electronic form
b. (time)

in the international application as filed
\(\square\) together with the international application in electronic formsubsequently to this Authority for the purposes of search
4.In addition, in the case that more than one version or copy of a sequence listing has been filed or furmished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
5. Additional comments:

Form PCT/ISA/237 (Box No. 1) (July 2011)

\section*{WRITTEN OPINION OF THE \\ International application No INTERNATIONAL SEARCHING AUTHORITY PCT/US2014/060543}

\section*{Box No. V Reasoned statement under Rule 43bis.1(a)(i) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement}
I. Statement
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Novelty ( N )} & Claims & 2-4, 7-13, 15-20 & YES \\
\hline & Claims & 1, 5, 6, 14 & NO \\
\hline \multirow[t]{2}{*}{Inventive step (IS)} & Claims & None & YES \\
\hline & Claims & 1-20 & NO \\
\hline \multirow[t]{2}{*}{Industrial applicability (IA)} & Claims & 1-20 & YES \\
\hline & Claims & None & NO \\
\hline
\end{tabular}

\section*{2. Citations and explanations:}

Claims 1, 5, 6, and 14 lack novelty under PCT Article 33(2) as being anticipated by Hyperion Therapeutics Inc (hereafter Hyperion Therapeutics).

Regarding claim 1, Hyperion Therapeutics discloses a method of determining an effective dosage of a phenylacetic acid (PAA) prodrug for treating a urea cycle disorder (UCD) in a subject in need thereof (methods for determining whether to increase a dosage of a nitrogen scavenging drug in a subject with a nitrogen retention disorder is a UCD; wherein a determination is made to administer an increased dosage of nitrogen scavenging drug and wherein the nitrogen scavenging drug is a PAA pro-drug. Pg. 3, [0010]) comprising: calculating a body surface area (BSA) for the subject; and comparing the BSA to a predetermined threshold value (Initial dosage is determined based on body surface area (BSA) or as otherwise instructed according to HPN-100 drug labeling. Patient A's body surface area is \(1.4 \mathrm{~m} 2, \mathrm{Pg}\). \(24 ;[0080]\) ), wherein the effective dosage is a first dosage if the BSA is at or above the predetermined threshold value or a second dosage if the BSA is below the predetermined threshold value, and wherein the second dosage is higher than the first dosage as a function of BSA (administering a first dosage of a nitrogen scavenging drug, measuring a fasting blood ammonia level for the subject, and comparing the fasting blood ammonia level to a ULN for blood ammonia. If the fasting blood ammonia level has a value that is greater than half the ULN, a second dosage of a nitrogen scavenging drug that is greater than the first dosage is administered to the subject, Pg. 11; [0038]).

Regarding claim 5, Hyperion therapeutics discloses the method of claim 1, wherein the PAA pro drug is selected from the group consisting of glyceryl tri-[ 4-phenylbutyrate] and phenylbutyrate (treatment of nitrogen retention disorders is glyceryl tri-[4-phenylbutyrate] (HPN-100), Pg: 2; [0005]) or a pharmaceutically acceptable salt thereof including sodium phenylbutyrate (sodium phenylbutyrate (NaPBA, Pg. 2; [0005]).
Regarding claim 6, Hyperion therapeutics discloses a method of evaluating compliance with a phenylacetic acid (PAA) pro-drug treatmen regimen in a subject with a urea cycle disorder (UCD) being treated with a PAA pro-drug (the methods disclosed herein for adjusting the dosage of a nitrogen scavenging drug comprise an additional step of measuring urinary PAGN and calculating an effective dosage based on a mean conversion of PAA prodrug to urinary PAGN of \(60-75 \%, \mathrm{Pg}\). 18; [0057]) comprising: classifying the subject into a dosage group based on the dosage of a PAA pro-drug the subject is currenty receiving; determining a urinary phenylacetyiglutamine (PAGN) level for the subject (Patient B is an 11-year UCD patient receiving 24 pills of BUPHENYL ®per day, amino acid supplements, and restricted dietary protein intake. Patient B does not consume BUPHENYL © supplements, or food for approximately 6 hours prior to a fasting morning blood draw, Pg. 25; [0082]); and comparing the urinary PAGN level to a predetermined threshold urinary PAGN level (Based on the correlation of fasting ammonia level to average ammonia level, it is determined that Patient B 's fasting blood ammonia level falling between 1 and 1.5 times the Upper limit of normal (ULN) represents a \(55 \%\) chance of having an average ammonia during the day that is greater than the normal range, and as high as a \(65 \%\) chance that her ammonia will go above 52 micro mol/L or 1.5 times ULN during the day, Pg. 25; [00821), wherein a urinary PAGN level below the predetermined threshold urinary PAGN level indicates that the subject is non-compliant with the PAA pro-drug treatment regimen (Based on discussion with the patient and her mother, the physician suspects that Patient B is noncompliant with her medication, and decides to change her to HPN-100, Pg. 25; [0083]).

Regarding claim 14, Hyperion therapeutics discloses a method of treating a urea cycle disorder (UCD) in a subject in need thereof comprising: classifying the subject into a body surface area (BSA) group based on the subject's BSA level (Initial dosage is determined based on body surface area, Pg. 24; [0080]. Population PK model building was performed on 65 UCD patients who data points from 53 adult and 11 pediatric UCD patients (ages 6-17) who participated in 3 switch over studies of NaPBA and GPB. The median GPB dose, expressed as grams of PBA per m2, was 8.85 and 7.01 for pediatric and adult subjects, Pg. 29; [0098]); and determining a urinary phenylacetyiglutamine (PAGN) level for the subject; comparing the urinary PAGN level to a predetermined threshold urinary PAGN level; administering a dosage of a PAA pro-drug to the subject if the urinary PAGN level for the subject is below the predetermined threshold urinary PAGN level (The final model that best fit the data was characterized by (a) partial conversion of PBA to PAGN prior to reaching the systemic circulation, (b) saturable conversion of PAA to PAGN (Km about \(161 \mathrm{microg} / \mathrm{ml}\) ), and (c) about 60\% slower PBA absorption when delivered as GPB vs. NaPBA. Body' surface area (BSA) was a significant covariate such that metabolite clearance was
proportionally related to BSA. Fractional presystemic metabolism of PBA was higher for adults thari for pediatric patients receiving GPB ( \(43 \%\) vs. \(14 \%\) ), whereas the reverse was true for NaPBA ( \(23 \%\) vs. \(43 \%\) ). Predicted median PAA exposure based on simulated GPB dosing at the PBA equivalent of \(13 \mathrm{~g} / \mathrm{m} 2\) of NaPBA was about \(13 \%-22 \%\) lower in adults than NaPBA (Cmax = 82 vs . \(106 \mathrm{micro} \mathrm{g} / \mathrm{mL}\); AUCO_24 = 649 vs. 829 micro \(\mathrm{g} . \mathrm{h} / \mathrm{m}\) ) and about \(13 \%\) higher in pediatric subjects ages \(6-17\) than NaPBA (Cmax \(=154 \mathrm{vs} .138 \mathrm{mic}\). \(\mathrm{g} / \mathrm{mL}\); AUC 0_24 = 1286 vs. 1154 microg.h/ml), Pg. 29; [0099]).

Form PCT/ISA/237 (Box No. V) (July 2011)

\section*{WRITTEN OPINION OF THE \\ INTERNATIONAL SEARCHING AUTHORITY}

PCT/US2014/060543

\section*{Supplemental Box}

In case the space in any of the preceding boxes is not sufficient.
Continuation of
Claims 2-4 and 15-18 lack an inventive step under PCT Article 33(3) as being obvious over hereafter Hyperion Therapeutics in view of Scharschmidt.

Regarding claim 2, Hyperion Therapeutics discloses the method of claim 1, wherein the predetermined threshold value is 1.4 m 2 (Patient A's body surface area is \(1.4 \mathrm{m2}\), and therefore the initial dosage is determined to be 9 mL per day or 3 mL TID (three-time-a-day), which is approximately \(60 \%\) of the maximum allowed dosage per HPN-100 label, Pg. 24; [0080]), but fails to explicitly discose wherein the predetermined threshold value is 1.3 m 2 . Further, Scharschmidtteaches wherein the predetermined threshold value is 1.3 m 2 (The threshold level for this analysis, \(30 \mathrm{micro} \mathrm{mol} / \mathrm{L}\), was the average upper limit for normal ammonia levels among the study sites, Pg. 11 ; [0098]). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics wherein the predetermined threshold value is \(1.3 \mathrm{m2}\), as taught by Scharschmidt. The motivation for doing so would be to provide provides a novel approach for a determining and adjusting the schedule and dose of orally administered nitrogen scavenging drugs (Scharschmidt, Pg. 2; [0021]).

Regarding claim 3, Hyperion therapeutics discloses the method of claim 1, wherein the first dosage (the initial dosage is determined to be 9 mL per day or 3 mL TID, Pg. 24; [0080]; Predicted median PAA exposure based on simulated GPB dosing at the PBA equivalent of \(13 \mathrm{~g} / \mathrm{m} 2\) of NaPBA), but fails to explicitly disclsoes wherein the first dosage is about \(7.18 \mathrm{~g} . \mathrm{m} 2 /\) day. Further, Scharschmidt in the field of nitrogen scavenging drug (Abstract) teaches wherein the first dosage is about \(7.18 \mathrm{~g} / \mathrm{m} 2 / \mathrm{day}(9.9-13.0 \mathrm{~g} / \mathrm{m} 2 / \mathrm{day}\), Pg. 4; Table 1; Single Dose- \(3 \mathrm{~g} / \mathrm{m} 2 /\) day, Pg. 5; Table 2; PBA is pro-drug for PAA; Pg. \(5 ;[0041]\) ). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics wherein the first dosage is about \(7.18 \mathrm{~g} / \mathrm{m} 2 / \mathrm{day}\), as taught by Scharschmidt. The motivation for doing so would be to provide provides a novel approach for a determining and adjusting the schedule and dose of orally administered nitrogen scavenging drugs (Scharschmidt, Pg. 2; [0021]).

Regarding claim 4, Hyperion therapeutics discloses the method of claim 1, wherein the second dosage (Patient A's dosage of HPN-100 is increased by approximately one-third to 12 mL total or 4 mL TID, Pg. 24; [0080]; his maximal daily ammonia is not expected to exceed approximately 52 micro mol/L, i.e., approximately 1.5 times the ULN, Pg. 24; [0081]), but fails to explicitly disclose wherein the second dosage is about \(8.35 \mathrm{~g} / \mathrm{m} 2 /\) day Further, Scharschmidt in the field of nitrogen scavenging drug (Abstract) teaches wherein the second dosage is about \(8.35 \mathrm{~g} / \mathrm{m} 2 /\) day (For a subject weighing more than 20 kg , a dosage range for HPN-1 00 would be between 8.6 and 11.2 \(\mathrm{mL} / \mathrm{m} 2 ; \mathrm{Pg} .14 ;[0114]\) ). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics wherein the second dosage is about \(8.35 \mathrm{~g} / \mathrm{m} 2 /\) day, as taught by Scharschmidt. The motivation for doing so would be to provide provides a novel approach for a determining and adjusting the schedule and dose of orally administered nitrogen scavenging drugs (Scharschmidt, Pg. 2; [0021]).

Regarding claim 15. Hyperion therapeutics discloses the method of claim 14, but fails to explicitly disclose wherein the predetermined threshold urinary PAGN level is a.25th percentile urinary PAGN level.for the subject's BSA group. However, Scharschmidt in the field of in the field of nitrogen scavenging drug (Abstract) teaches wherein the predetermined threshold urinary PAGN level is a 25th percentile urinary PAGN level for the subject's BSA group (HPN-100 that was excreted in urine was PAGN, accounting for \(39 \%\) of the administered HPN-100. By contrast, when oral sodium PBA was administered, PAGN accounted for only 23\% of the radio labeled material, and unchanged PBA accounted for \(48 \%\) of the administered dosage of oral sodium PBA, Pg. 26-27; [0290]). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics wherein the predetermined threshold urinary PAGN level is a 25th percentile urinary PAGN level for the subject's dosage group, as taught by Scharschmidt. The motivation for doing so would be to provide provides a novel approach for a determining and adjusting the schedule and dose of orally administered nitrogen scavenging drugs (Scharschmidt, Pg. 2; [0021]).
Regarding claim 16, Hyperion therapeutics in view of Scharschmidt discloses the method of claim 15. Hyperion therapeutics discloses wherein the subject's BSA group is less than or equal to 1.3 m 2 or greater than 1.3 m 2 (Initial dosage is determined based on body surface area or as otherwise instructed according to HPN-100 drug labeling. Patient A's body surface area is \(1.4 \mathrm{m2}, \mathrm{Pg}\). 24; [0080]).

Form PCT/ISA/237 (Supplemental Box) (July 2011)

\section*{WRITTEN OPINION OF THE INTERNATIONAL SEARCHING AUTHORITY}

\section*{Supplemental Box}

In case the space in any of the preceding boxes is not sufficient.
Continuation of:

Regarding claim 17, Hyperion therapeutics in view of Scharschmidt discloses the method of claim 16. Hyperion therapeutics fails to explicitly disclose wherein the 25 th percentile urinary PAGN level is about \(8390 \mathrm{microg} \mathrm{g} / \mathrm{mL}\) for the less than or equal to 1.3 m 2 BSA group and the 25th percentile urinary PAGN level is about 5259 micro \(\mathrm{g} / \mathrm{mL}\) for the greater than 1.3 m 2 BSA group. However, Scharschmidt in the field of in the field of nitrogen scavenging drug (Abstract) teaches wherein the 25 th percentile urinary PAGN level is about 8390 micro \(\mathrm{g} / \mathrm{mL}\) for the less than or equal to 1.3 m 2 BSA group; and the 25 th percentile urinary PAGN level is about \(5259 \mathrm{microg} \mathrm{g} / \mathrm{mL}\) for the greater than 1.3 m 2 BSA group ( \(9.9-13.0 \mathrm{~g} / \mathrm{m} 2 /\) day of Sodium PBA; 9.4-12.4 g/m2/day of HPN-100 PBA, Pg. 27; Table ; HPN -100 is typically converted into urinary PAGN with an efficiency of about \(40 \%\) to \(70 \%\) (typically about \(54 \%\) conversion was found in UCD patients), thus the physician would expect to observe about 17 g of urinary PAGN output per day from this dosage of HPN-100. Pg. 27; [0296], Pg. 14; [0114]). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics teachies wherein the 25th percentile urinary PAGN level is about 8390 micro \(\mathrm{g} / \mathrm{mL}\) for the less than or equal to 1.3 m 2 BSA group; and the 25th percentile urinary PAGN level is about 5259 microg \(/ \mathrm{mL}\) for the greater than 1.3 m 2 BSA group, as taught by Scharschmidt. The motivation for doing so would be to provide provides a novel approach for a determining and adjusting the schedule and dose of orally administered nitrogen scavenging drugs (Scharschmidt, Pg. 2; [0021]).
Regarding claim 18, Hyperion therapeutics in view. of Scharschmidt discloses the method of claim 16. Hyperion therapeutics fails to explicitly disclose wherein the 25 th percentile urinary PAGN level is about \(8000 \mathrm{microg} / \mathrm{mL}\) for the less than or equal to 1.3 m 2 BSA group; and the 25th percentile urinary PAGN level is about 5000 micro \(\mathrm{g} / \mathrm{mL}\) for the greater than 1 . 3 m 2 BSA group. However, Scharschmidt in the field of in the field of nitrogen scavenging drug (Abstract) teaches wherein the 25th percentile urinary PAGN level is about 8000 micro \(\mathrm{g} / \mathrm{mL}\) for the less than or equal to 1.3 m 2 BSA group; and the 25 th percentile urinary PAGN level is about 5000 mic , \(\mathrm{g} / \mathrm{mL}\) for the greater than 1.3 m 2 BSA group ( \(9.9-13.0 \mathrm{~g} / \mathrm{m} 2 /\) day of Sodium PBA; 9.4-12.4 g/m2/day of HPN-100 PBA, Pg. 27; Table HPN-100 is typically converted into urinary PAGN with an efficiency of about \(40 \%\) to \(70 \%\) (typically about \(54 \%\) conversion was found in UCD patients), thus the physician would expect to obseive about 17 g of urinary PAGN output per day from this dosage of HPN-100. Pg. 27; [0296], Pg. 14; [0114]). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics teaches wherein the 25th percentile urinary PAGN level is about \(8000 \mathrm{microg} \mathrm{g} / \mathrm{mL}\) for the less than or equal to 1.3 m 2 BSA group; and the 25th percentile urinary PAGN level is about \(5000 \mathrm{microg} \mathrm{g} / \mathrm{mL}\) for the greater than 1.3 m 2 BSA group, as taught by Scharschmidt. The motivation for doing so would be to provide provides a novel approach for a determining and adjusting the schedule and dose of orally administered nitrogen scavenging drugs (Scharschmidt; Pg. 2; [0021]).

Claims 7, 12, and 13 lack an inventive step under PCT Article 33(3) as being obvious over Hyperion Therapeutics in view of Monteleone et al.
Regarding claim 7, Hyperion therapeutics discloses the method of claim 6, but fails to explicitly disclose wherein the subject is less than 6 years of age. However, Monteleone et al. in the field of impaired urea synthesis and hyperammonemia (Abstract) teach wherein the subject is less than 6 years of age (Patients collectively spanned ages 2 months to 72 years, Abstract and Pg. 5; 6th Para.). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics wherein the subject is less than 6 years of age, as taught by Monteleone et al. The motivation for doing so would be to provide a novel approach for particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations (Monteleone et al. Abstract).
Regarding claim 12, Hyperion therapeutics in view of Monteleone et al. discloses the method of claim 7. Hyperion therapeutics discloses wherein a dosage of a PAA pro-drug is administered to the subject if the urinary PAGN level for the subject is below the predetermined threshold urinary PAGN level (In certain embodiments wherein a determination is made to administer an increased dosage of nitrogen scavenging drug and wherein the nitrogen scavenging drug is a PAA pro-drug; the methods include an additional step of measuring urinary PAGN excretion and determining an effective dosage of the PAA pro-drug based on a mean conversion of PAA pro-drug to urinary PAGN of \(60-75 \%, \mathrm{Pg} .3 ;[0010]\). These findings based on PopPK modeling and dosing simulations suggest that while most patients treated with PAA pro-drugs including NaPBA or HPN-100 will have PAA levels below those reportedly associated with toxicity, Pg. 29; \{00100]).

Regarding claim 13. Hyperion therapeutics in view of Monteleone et al. discloses the method of claim 12. Hyperion therapeutics teaches wherein the dosage of the PAA pro drug is an effective dosage (a determination is made to administer an increased dosage of nitrogen scavenging drug and wherein the nitrogen scavenging drug is a PAA pro-drug, the methods include an additional step of measuring urinary PAGN excretion and determining an effective dosage of the PAA pro-drug, Pg. 3 ; [0010]).

\section*{WRITTEN OPINION OFTHE INTERNATIONAL SEARCHING AUTHORITY}
```

International application No
PCT/US2014/060543

```

\section*{Supplemental Box}

In case the space in any of the preceding boxes is not sufficient.
Continuation of
Claims 8-11 lack an inventive step under PCT Article 33(3) as being obvious over Hyperion Therapeutics in view of Monteleone et al and Scharschmidt.

Regarding claim 8, Hyperion therapeutics in view of Monteleone et al. discloses the method of claim 7. Hyperion therapeutics fails to explicitly disclose wherein the predetermined threshold urinary PAGN level is a 25 th percentile urinary PAGN level for the subject's dosage group. However, Scharschmidt in the field of in the field of nitrogen scavenging drug (Abstract) teaches wherein the predetermined threshold urinary PAGN level is a 25th percentile urinary PAGN level for the subject's dosage group (HPN-100 that was excreted in urine was PAGN, accounting for \(39 \%\) of the administered HPN-100. By contrast, when oral sodium PBA was administered, PAGN accounted for only \(23 \%\) of the radio labeled material, and unchanged PBA accounted for \(48 \%\) of the administered dosage of oral sodium PBA, Pg. 26-27, [0290]). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics wherein the predetermined threshold urinary PAGN level is a 25 th percentile urinary P AGN level for the subject's dosage group, as taught by Scharschmidt. The motivation for doing so would be to provide provides a novel approach for a determining and adjusting the schedule and dose of orally administered nitrogen scavenging drugs (Scharschmidt, Pg. 2; [0021]).

Regarding claim 9 , Hyperion therapeutics in view of Monteleone et al. discloses the method of claim 8 . Hyperion therapeutics fails to explicitly disclose wherein the dosage group is selected from the group consisting of less than \(6 \mathrm{~mL} / \mathrm{m} 2,6\) to \(10 \mathrm{~mL} / \mathrm{m} 2\), and greater than \(10 \mathrm{~mL} / \mathrm{m} 2\). However, Scharschmidt in the field of nitrogen scavenging drug (Abstract) teaches wherein the dosage group is selected from the group consisting of less than \(6 \mathrm{~mL} / \mathrm{m} 2,6\) to \(10 \mathrm{~mL} / \mathrm{m} 2\), and greater than \(10 \cdot \mathrm{~mL} / \mathrm{m} 2\) (a daily dosage in a range of \(9.9-13.0 \mathrm{~g} / \mathrm{m} 2 \mathrm{set}\) according to the subject's size for subjects over 20 kg in weight; and a dosage within a range of \(450-600 \mathrm{mg} / \mathrm{kg}\) for subjects weighing less than or equal to 20 kg is indicated; For a subject weighing more than 20 kg , a dosage range for HPN-100 would be between 8.6 and 11.2 \(\mathrm{mL} / \mathrm{m} 2\). For a subject weighing less than 20 kg , a dosage range of about 390 to \(520 \mathrm{mic} / \mathrm{L} / \mathrm{kg}\) per day of HPN- 100 would be appropriate, based on the use of an equimolar amount compared to the recommended doses of \(\mathrm{HPN}-100, \mathrm{Pg}\). 14; [0114]). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics wherein the dosage group is selected from the group consisting of less than \(6 \mathrm{~mL} / \mathrm{m} 2,6\) to \(10 \mathrm{~mL} / \mathrm{m} 2\), and greater than \(10 \mathrm{~mL} / \mathrm{m} 2\), as taught by Scharschmidt. The motivation for doing so would be to provide provides a novel approach for a determining and adjusting the schedule and dose of orally administered nitrogen scavenging drugs (Scharschmidt, Pg. 2; [0021]).

Regarding claim 10; Hyperion therapeutics in view of Monteleone et al. discloses the method of claim 9. Hyperion therapeutics fails to explicitly disclose wherein the 25 th percentile urinary PAGN level is about \(1256 \mathrm{micro} \mathrm{g} / \mathrm{mL}\) for the less than \(6 \mathrm{~mL} / \mathrm{m} 2\) dosage group; the 25th percentile urinary PAGN level is about \(3053 \mathrm{micro} \mathrm{g} / \mathrm{mL}\) for the 6 to \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group; and the 25th percentile urinary PAGN level is about \(6990 \mathrm{microg} / \mathrm{mL}\) for the greater than \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group. However, Scharschmidt in the field of in the field of nitrogen scavenging drug (Abstract) teaches wherein the 25th percentile urinary PAGN level is about \(1256 \mathrm{microg} \mathrm{g} / \mathrm{mL}\) for the less than \(6 \mathrm{~mL} / \mathrm{m} 2\) dosage group; the 25th percentile urinary PAGN level is about \(3053 \mathrm{micro} \mathrm{g} / \mathrm{mL}\) for the 6 to \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group; and the 25th percentile urinary PAGN level is about 6990 micro \(\mathrm{g} / \mathrm{mL}\) for the greater than \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group ( 1 gram of PAA mediates the excretion of about 0.18 grams of waste nitrogen if completely converted to PAGN; \(54 \%\) of the PAA delivered as the PBA pro-drug released from HPN-100 is converted to PAGN; 47\% of dietary protein is excreted as waste nitrogen, and \(16 \%\) of dietary protein consists of nitrogen, Pg. 15; [0124]). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics teaches wherein the 25th percentile urinary PAGN level is about 1256 micro \(\mathrm{g} / \mathrm{mL}\) for the less than \(6 \mathrm{~mL} / \mathrm{m} 2\) dosage group; the 25th percentile urinary PAGN level is about \(3053 \mathrm{micro} \mathrm{g} / \mathrm{mL}\) for the 6 to \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group; and the 25th percentile urinary PAGN level is about 6990 micro \(\mathrm{g} / \mathrm{mL}\) for the greater than \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group, as taught by Scharschmidt. The motivation for doing so would be to provide provides a novel approach for a determining and adjusting the schedule and dose of orally administered nitrogen scavenging drugs (Scharschmidt, Pg. 2; [0021]).
Regarding claim 11. Hyperion therapeutics in view of Monteleone et al. discloses the method of claim 9. Hyperion therapeutics fails to explicitly disclose wherein the 25 th percentile urinary PAGN level is about \(1000 \mathrm{microg} / \mathrm{mL}\) for the less than \(6 \mathrm{~mL} / \mathrm{m} 2\) dosage group; the 25th percentile urinary PAGN level is about \(3000 \mathrm{microg} / \mathrm{mL}\) for the 6 to \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group; and the 25th percentile urinary PAGN level is about 7000 microg \(/ \mathrm{mL}\) for the greater than \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group. However, Scharschmidt in the field of in the field of nitrogen scavenging drug (Abstract) teaches wherein the 25th percentile urinary PAGN level is about \(1000 \mathrm{microg} / \mathrm{mL}\), for the less than \(6 \mathrm{~mL} / \mathrm{m} 2\) dosage group; the 25 th percentile urinary PAGN level is about \(3000 \mathrm{microg} / \mathrm{mL}\) for the 6 to \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group; and the 25th percentile urinary PAGN level is about 7000 microg/mL for the greater than \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group (Dose 1: 3 mL BID Corresponds to about \(0.47 \times\) the dose administered in Example 2, for a 70 kg adult and about 0.35 x the amount of PBA (about 6.1 g ) delivered in the maximum approved dose of sodium PBA of 20 g expected to mediate excretion of waste nitrogen associated with about 8 g of dietary protein; Dose 2: 9 mL BID Corresponds to about 1:42x the dose administered in Example 2, for a 70 kg adult and about 1.1 x the amount of PBA (about 18.2 g ) delivered in the maximum approved dose of sodium PBA of 20 g expected to mediate excretion of waste nitrogen associated with about 25 g of dietary protein- Dose 3: 15 mL BID Corresponds to about 2.36 x the dose administered in Example 2; for a 70 kg adult and about 1.73 x the amount of PBA' (about 30.3 g ) delivered in the maximum approved dose of sodium PBA of 20 g expected to mediate excretion of waste nitrogen associated with about 40 g of dietary protein, Pg. 15; Table 5). It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Hyperion Therapeutics teaches wherein the 25th percentile urinary PAGN level is about \(1000 \mathrm{micro} \mathrm{g} / \mathrm{mL}\) for the less than \(6 \mathrm{~mL} / \mathrm{m} 2\) dosage group; the 25th percentile urinary PAGN level is about \(3000 \mathrm{micro} \mathrm{g} / \mathrm{mL}\). for the 6 to \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group; and the 25th percentile urinary PAGN level is about \(7000 \mathrm{micro} \mathrm{g} / \mathrm{mL}\) for the greater than \(10 \mathrm{~mL} / \mathrm{m} 2\) dosage group, as taught by Scharschmidt. The motivation for doing so would be to provide provides a novel approach for a determining and adjusting the schedule and dose of orally administered nitrogen scavenging drugs (Scharschmidt, Pg. 2; [0021]).


\footnotetext{
Form PCT/ISA/237 (Supplemental Box) (July 2011)
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 22545063 \\
\hline Application Number: & 13775000 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 7929 \\
\hline Title of Invention: & METHODS OF THERAPEUTIC MONITORING OF NITROGEN SCAVENGING DRUGS \\
\hline First Named Inventor/Applicant Name: & Bruce Scharschmidt \\
\hline Customer Number: & 101325 \\
\hline Filer: & Dennis A. Bennett/Vicki Truman \\
\hline Filer Authorized By: & Dennis A. Bennett \\
\hline Attorney Docket Number: & HORO026-201D1-US \\
\hline Receipt Date: & 05-JUN-2015 \\
\hline Filing Date: & 22-FEB-2013 \\
\hline Time Stamp: & 18:48:31 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Submitted with Payment} & \multicolumn{4}{|l|}{no} \\
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & \begin{tabular}{l}
Multi \\
Part /.zip
\end{tabular} & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & \multirow{2}{*}{Foreign Reference} & \multirow{2}{*}{WO9422494A1.pdf} & 12620304 & \multirow{2}{*}{no} & \multirow{2}{*}{460} \\
\hline & & & \[
\begin{gathered}
\text { 3c4bf1d6042a077773a3ce513df/225657fa } \\
\text { f744 }
\end{gathered}
\] & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{2} & \multirow{2}{*}{Foreign Reference} & \multirow{2}{*}{WO2013048558.PDF} & 1888960 & \multirow{2}{*}{no} & \multirow{2}{*}{37} \\
\hline & & & \begin{tabular}{l}
22400ae41 d096f1cd99145 aeff6b53c4c64 \\
89b
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{3} & \multirow{2}{*}{Foreign Reference} & \multirow{2}{*}{WO2013158145A1.pdf} & 2539118 & \multirow{2}{*}{no} & \multirow{2}{*}{50} \\
\hline & & & \begin{tabular}{l}
Od5a792e8d77a2ee55c5cebc ldab781a55c54 \\
c6170
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{4} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Maestri_1995.pdf} & 2431046 & \multirow{2}{*}{no} & \multirow{2}{*}{7} \\
\hline & & & \begin{tabular}{l}
a79699bd0402992884cdaa7dd1 1d2b8e7c2 \\
61794
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{5} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Summar_2001A.pdf} & 3434083 & \multirow{2}{*}{no} & \multirow{2}{*}{10} \\
\hline & & & bocbe 2 Z 5 F C3b5eeee5ef5d73a0dccla0329 \(\begin{gathered}\text { ca5e3 }\end{gathered}\) & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{6} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Phuphanich_2005A.pdf} & 4936519 & \multirow{2}{*}{no} & \multirow{2}{*}{6} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 7 & Non Patent Literature & ScottishMedicinesConsortium_ 2006A.pdf &  & no & 5 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 8 & Non Patent Literature & Seakins_1971A.pdf & \begin{tabular}{c|}
7028036 \\
\hline \begin{tabular}{c} 
4632a6bd2870d9a66e0058c477 \\
1b5382da075
\end{tabular} \\
\hline
\end{tabular} & no & 11 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 9 & Non Patent Literature & Zeitlin_1999A.pdf & \begin{tabular}{|c|}
\hline 5019045 \\
\hline 5a8a00f809bddd9C697fd3c1 chb2F3415728 \\
3962
\end{tabular} & no & 6 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 10 & Non Patent Literature & ANDA_Hyperion.pdf & \begin{tabular}{c|}
1828552 \\
\hline \begin{tabular}{c}
353709 de 30629160 c 699 c 3558 bb 3888556 \\
cdafb
\end{tabular} \\
\hline
\end{tabular} & no & 27 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{11} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Barsotti_2001A.pdf} & 6404000 & \multirow{2}{*}{no} & \multirow{2}{*}{10} \\
\hline & & & \begin{tabular}{l}
18d4317a40b5b4c45db705449ad1 1294a \\
De3a40
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{12} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Carducci_2001.pdf} & 98483 & \multirow{2}{*}{no} & \multirow{2}{*}{9} \\
\hline & & & 998813a544ae9d14e80123d478b1e7285d a772f6 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{13} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Batshaw_1975A.pdf} & 3550517 & \multirow{2}{*}{no} & \multirow{2}{*}{6} \\
\hline & & & 7356 b 39 f 946 ba 4932 a 55 fb 3610746 c 4334 d d5377 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{14} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Blau_1996A.pdf} & 8872480 & \multirow{2}{*}{no} & \multirow{2}{*}{20} \\
\hline & & & 75669dd767ca3508b04350fff8366689748 d57da & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{15} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Clay_2007A.pdf} & 457537 & \multirow{2}{*}{no} & \multirow{2}{*}{11} \\
\hline & & & 24d8809абаа69d116482f352ac8e82dабc2 de13c & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{16} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{EurMedAgency_2005.pdf} & 644026 & \multirow{2}{*}{no} & \multirow{2}{*}{12} \\
\hline & & & \({ }^{\text {d951375C26b9958886629 lef3bff76b0lacd }} 7\) & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{17} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{EurMedAgencyAnnexA.pdf} & 16323565 & \multirow{2}{*}{no} & \multirow{2}{*}{33} \\
\hline & & & be6351760ffcdae2554c3d887ea90463262b 3a1c & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{18} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{EurMedAgency_2005A.pdf} & 8935166 & \multirow{2}{*}{no} & \multirow{2}{*}{12} \\
\hline & & & f73d78b2269be0a08f292c6182a3a5f26677
\(1 b 3 a\) & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow[b]{2}{*}{19} & \multirow[b]{2}{*}{Non Patent Literature} & \multirow[b]{2}{*}{EurMedAgency_2004A.pdf} & 12768003 & \multirow[b]{2}{*}{no} & \multirow[b]{2}{*}{19} \\
\hline & & & fe10ff 77402971 delc07b00ea52149425ee
e40f & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{20} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Fernandes_2000A.pdf} & 3678938 & \multirow{2}{*}{no} & \multirow{2}{*}{8} \\
\hline & & & \begin{tabular}{l}
\({ }^{\text {C3a3c703d5877eeldabbbbof5 deacf95800 }}\) \\
Od07
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 21 & Non Patent Literature & FDA_Carbaglu_Label_2010A. pdf &  & no & 7 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 22 & Non Patent Literature & ISR_PCTUS200930362.PDF &  & no & 1 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 23 & Non Patent Literature & ISR_PCTUS2009055256.PDF &  & no & 2 \\
\hline Warning & & & & & \\
\hline Informa & & & & & \\
\hline 24 & Non Patent Literature & Maestri_EnglJMed_1996.pdf &  & no & 5 \\
\hline Warning & & & & & \\
\hline Informa & & & & & \\
\hline 25 & Non Patent Literature & Majeed_2001A.pdf & \begin{tabular}{c|}
\hline 7550179 \\
\hline \begin{tabular}{c} 
d6094c729956932eba37a92098877639776 \\
19aa
\end{tabular} \\
\hline
\end{tabular} & no & 12 \\
\hline Warning & & & & & \\
\hline Informa & & & & & \\
\hline 26 & Non Patent Literature & Mokhtarani_2012A.pdf & \begin{tabular}{|c|}
\hline 52104 \\
\hline \begin{tabular}{c} 
7ca7bfee2970723Fab70e7d05966c6d9243 \\
fcee
\end{tabular} \\
\hline
\end{tabular} & no & 2 \\
\hline Warning & & & & & \\
\hline Informa & & & & & \\
\hline 27 & Non Patent Literature & NECMP_2001A.pdf & \begin{tabular}{|c|}
\hline 147920 \\
\hline \begin{tabular}{c} 
720a8605aObdes8796catc64a2b95a536ca \\
\(4036 a\)
\end{tabular} \\
\hline
\end{tabular} & no & 7 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 28 & Non Patent Literature & NECMP_Infant_2001A.pdf &  & no & 7 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{29} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Salam_2012.pdf} & 131713 & \multirow{2}{*}{no} & \multirow{2}{*}{8} \\
\hline & & & \begin{tabular}{l}
8680709882dbfedf5a47cbaocde266555b3 \\
ббаа
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{30} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{ExamReport_GB09155458.PDF} & 65562 & \multirow{2}{*}{no} & \multirow{2}{*}{1} \\
\hline & & & 927e7ef6fdebf2781e3ad6b6de017f0daa72 4a64 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{31} & \multirow{2}{*}{Non Patent Literature} & \multirow[t]{2}{*}{Par_Invalidity_ContentionsA. pdf} & 5829771 & \multirow{2}{*}{no} & \multirow{2}{*}{93} \\
\hline & & & \begin{tabular}{l}
bfee90c94d50c9228b \(3 f 0 \mathrm{~b} 0\) e507bb8fod02 \\
61d 6 b
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{32} & \multirow{2}{*}{Non Patent Literature} & \multirow[t]{2}{*}{\begin{tabular}{l}
ISR_andWO_PCTUS201406054 \\
3A.pdf
\end{tabular}} & 1742695 & \multirow{2}{*}{no} & \multirow{2}{*}{9} \\
\hline & & & \begin{tabular}{l}
8c92526258f06604d44340d64737d3eoff78 \\
87ab
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{33} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Sherwin_1919A.pdf} & 4967873 & \multirow{2}{*}{no} & \multirow{2}{*}{8} \\
\hline & & & 1974aed88c0c014ee3108a6ed9b1026f3a3 b7cdb & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{34} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Smith_JPediatr_2013.pdf} & 1042582 & \multirow{2}{*}{no} & \multirow{2}{*}{15} \\
\hline & & & 5b8el 1afd2233 17054577695dd8f445054a5 езаз & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{35} & \multirow{2}{*}{Non Patent Literature} & \multirow[t]{2}{*}{NORD_Physician_Guide_to_Ur ea_Cycle_Disorders.pdf} & 802700 & \multirow{2}{*}{no} & \multirow{2}{*}{28} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{36} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Walsh_1990A.pdf} & 2442362 & \multirow{2}{*}{no} & \multirow{2}{*}{9} \\
\hline & & & \(\underset{44 \text { 4f00667e82972c48d8d7ab7b390cce83dd }}{1 \mathrm{cf7f}}\) & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{3}{*}{37} & \multirow{3}{*}{Non Patent Literature} & \multirow{3}{*}{Wilcken_2004A.pdf} & 4932118 & \multirow{3}{*}{no} & \multirow{3}{*}{6} \\
\hline & & & \(\longrightarrow\) & & \\
\hline & & & \begin{tabular}{l}
192de04003685d617a649d7b3cd4cf5e608 \\
6da69
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{38} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Yajima_1982A.pdf} & 2403964 & \multirow{2}{*}{no} & \multirow{2}{*}{8} \\
\hline & & & \begin{tabular}{l}
c3998e406f9b2fc 48d4e654da5bec70798c \\
codo
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 39 & Non Patent Literature & Rockey_Hepatology_2012A.pdf & \begin{tabular}{c|}
255974 \\
\begin{tabular}{c} 
el ca6bb55461 12964a3fe86be207d 3b2 264 \\
8e991
\end{tabular} \\
\hline
\end{tabular} & no & 1 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 40 & Non Patent Literature & Diaz_Hepatology_2013A.pdf &  & no & 16 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 41 & Non Patent Literature & MOKHTARANI_MolGenetMetab _2013.pdf & \begin{tabular}{|c|}
\hline 1552206 \\
\hline \begin{tabular}{c} 
brbc6f227533169108211e5d 133c1968ft272 \\
e7ba
\end{tabular} \\
\hline
\end{tabular} & no & 21 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 42 & Non Patent Literature & Lee_2013.pdf & \begin{tabular}{|c|}
\hline 76104 \\
\hline \begin{tabular}{c} 
96ae 17e2630771 \\
(80055e19d558cec699beaa \\
893e7
\end{tabular} \\
\hline
\end{tabular} & no & 2 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 43 & Non Patent Literature & Lizardi-CerveraA.pdf & \begin{tabular}{c|}
\hline 7193 \\
\hline \begin{tabular}{c} 
6a5dtfba66 ddffibec8293afet 6241 bob 07 coo \\
fcel
\end{tabular} \\
\hline
\end{tabular} & no & 2 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 44 & Non Patent Literature & Lee_2005.pdf &  & no & 9 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 45 & Non Patent Literature & Praphanproj_2000.pdf & \begin{tabular}{c|}
1939933 \\
\hline \begin{tabular}{c} 
7a0989dac96bib7110ffbd42d66840d0 024 \\
19a52
\end{tabular} \\
\hline
\end{tabular} & no & 8 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 46 & Non Patent Literature & EuroMedAgency_2009.pdf & \begin{tabular}{c|}
157291 \\
\hline \begin{tabular}{c} 
3el 182555ccgcoodocdoa2556af62e97953e0 \\
e757
\end{tabular} \\
\hline
\end{tabular} & no & 2 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{47} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{CDER_Ammonaps.pdf} & 18572853 & \multirow{2}{*}{no} & \multirow{2}{*}{34} \\
\hline & & & O20fdbe0556108606fe3dfe5a4dd6ede84a2 25 c 5 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{48} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{CDER_Ammonaps_Label.pdf} & 12642794 & \multirow{2}{*}{no} & \multirow{2}{*}{20} \\
\hline & & & \(\underset{\substack{\text { c256d47cc01 } 1 \mathrm{~b} 7 \mathrm{bb} 52 \mathrm{bfcb} 4 c c 11837 \mathrm{~d} 0532 \\ \text { b7fdd }}}{ }\) & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{49} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{CDER_Ammonaps_Med_Revie w_Part1.pdf} & 16640989 & \multirow{2}{*}{no} & \multirow{2}{*}{27} \\
\hline & & & a22da4b3c827c27ef62990760a170732da2 e467 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{50} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{CDER_Ammonaps_Med_Revie w_Part2.pdf} & 18000139 & \multirow{2}{*}{no} & \multirow{2}{*}{28} \\
\hline & & & 762153662643f/19d55205ba08374eaaac2
\[
76 d 56
\] & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{51} & \multirow{2}{*}{Non Patent Literature} & \multirow[t]{2}{*}{WilsonC_JnheritMetabDis_200 1.pdf} & 82320 & \multirow{2}{*}{no} & \multirow{2}{*}{5} \\
\hline & & & 795 fd d88010e07a52ca029982fo0422ca2d4
d59a & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{52} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Maestri_1991.pdf} & 2996575 & \multirow{2}{*}{no} & \multirow{2}{*}{6} \\
\hline & & & C2c90bdd4a2f5ab68d25876e4bld081460 \(6565 f\) & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline & & Total Files Size (in bytes) & \multicolumn{3}{|l|}{218564248} \\
\hline
\end{tabular}

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

\section*{New Applications Under 35 U.S.C. 111}

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

PTO/SB/30 (07-09)
Approved for use through 07/31/2012. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995. no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|}
\hline Request & Application Number & 13/775,000 \\
\hline & Filing Date & 02/22/2013 \\
\hline Transmittal & First Named Inventor & Bruce Scharschmidt \\
\hline Address to: & Art Unit & 1621 \\
\hline Commissioner for Patents & Examiner Name & RAO, SAVITHA M. \\
\hline Alexandria, VA 22313-1450 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}

This is a Request for Continued Examination (RCE) under 37 CFR 1.114 of the above-identified application. Request for Continued Examination (RCE) practice under 37 CFR 1.114 does not apply to any utility or plant application filed prior to June 8 , 1995, or to any design application. See Instruction Sheet for RCEs (not to be submitted to the USPTO) on page 2.
1. Submission required under 37 CFR 1.114 Note: If the RCE is proper, any previously filed unentered amendments and amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant instructs otherwise. If applicant does not wish to have any previously filed unentered amendment(s) entered, applicant must request non-entry of such amendment(s).
a. \(\square\) Previously submitted. If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked.
i.Consider the arguments in the Appeal Brief or Reply Brief previously filed on \(\qquad\)
li. Other
b. \(\sqrt{ }\) Enclosed
I. \(\boxed{\square}\) Amendment/Reply
iii.
Information Disclosure Statement (IDS)
ii. Affidavit(s)/ Declaration(s)
iv. \(\quad \checkmark\) Other Notice of related litigation
2. Miscellaneous
a. \(\square\)
b. Suspension \(\qquad\) months. (Period of suspension shall not exceed 3 months; Fee under 37 CFR 1.17(i) required) period of \(\qquad\)
3. Fees

The RCE fee under 37 CFR 1.17 (e) is required by 37 CFR 1.114 when the RCE is filed.
The Director is hereby authorized to charge the following fees, any underpayment of fees, or credit any overpayments, to
a. Deposit Account No. 50-4297 \(\qquad\) —.
i. \(\square\) RCE fee required under 37 CFR 1.17(e)
ii. \(\square\) Extension of time fee (37 CFR 1.136 and 1.17)
iii.
 Other
(37 1.136 and 17 )
b. \(\square\) Check in the amount of \(\$\) \(\qquad\) enclosed
c. \(\square\)

Payment by credit card (Form PTO-2038 enclosed)
WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED } \\
\hline Signature & /Lauren L. STEVENS/ & Date & \(6-2-2015\) \\
\hline Name (Print/Type) & Lauren L. Stevens & Registration No. & 36691 \\
\hline
\end{tabular}

\section*{CERTIFICATE OF MAILING OR TRANSMISSION}

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Mail Stop RCE, Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450 or facsimile transmitted to the U.S. Patent and Trademark Office on the date shown below.
\begin{tabular}{|l|l}
\hline Signature & \\
\hline Name (Print/Type) \\
\hline
\end{tabular}

This collection of information is required by 37 CFR 1.114. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Ale xandria, VA 22313-1450. DO NOT SE ND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop RCE, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

\section*{Instruction Sheet for RCEs \\ (not to be submitted to the USPTO)}

\section*{NOTES:}

An RCE is not a new application, and filing an RCE will not result in an application being accorded a new filing date.

\section*{Filing Qualifications:}

The application must be a utility or plant application filed on or after June 8, 1995. The application cannot be a provisional application, a utility or plant application filed before June 8, 1995, a design application, or a patent under reexamination. See 37 CFR 1.114(e).

\section*{Filing Requirements:}

Prosecution in the application must be closed. Prosecution is closed if the applicat ion is under appeal, or the last Office action is a final action, a notice of allowance, or an action that otherwise closes prosecution in the application (e.g., an Office action under Ex parte Quayle). See 37 CFR 1.114(b).

A submission and a fee are required at the time the RCE is filed. If reply to an Office action under 35 U.S.C. 132 is outstanding (e.g., the application is under final rejection), the submission must meet the reply requirements of 37 CFR 1.111. If there is no outstanding Office action, the submission can be an information disclosure statement, an amendment, new arguments, or new evidence. See 37 CFR 1.114(c). The submission may be a previously filed amendment ( e.g., an amendment after final rejection).

\section*{WARNINGS:}

\section*{Request for Suspension of Action:}

All RCE filing requirements must be met before suspension of action is granted. A request for a suspension of action under 37 CFR 1.103(c) does not satisfy the submission requirement and does not permit the filing of the required submission to be suspended.

\section*{Improper RCE will NOT toll Any Time Period:}

Before Appeal - If the RCE is improper (e.g., prosecution in the application is not closed or the submission or fee has not been filed) and the application is not under appeal, the time period set forth in the last Off ice action will continue to run and the application will be abandoned after the statutory time period has expired if a reply to the Office action is not timely filed. No additional time will be given to correct the improper RCE.

Under Appeal - If the RCE is improper (e.g., the submission or the fee has not been filed) and the application is under appeal, the improper RCE is effective to withdraw the appeal. Withdrawal of the appeal results in the allowance or abandonment of the application depending on the status of the claims. If there are no allowed claims, the application is abandoned. If there is at least one allowed claim, the application will be passed to issue on the allowed claim(s). See MPEP 1215.01.

See MPEP \(706.07(\mathrm{~h})\) for further information on the RCE practice.

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

\section*{MATENT COOPGZATTON TREATY}

From the INTERNATONAL SEARCHING AUTHORITY
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
To: Coumey Prommos \\
Perkins Coie lip \\
P.O. Box 1208 \\
Seatle, Washingion \(98111-1208\) \\
United States of America \\
 \\
JAN 212015
\end{tabular} & \begin{tabular}{l}
PCT \\
NOTHFICATLON OE TRANSMBTTAL OF THE INTERNATIONAL SEARCH REPORT AND THE WRITEEN OPTNION OF THE INTERNATIONAL SEARCHRG AUTHORITY, OR THE DECLARATION \\
(PCTRuse AK.1)
\end{tabular} \\
\hline  & \begin{tabular}{l}
Date of mailing \\
 \\
16 JAN 2015
\end{tabular} \\
\hline Applicant's or agent's fle reference \(795328008 \mathrm{W0} 0\) & FOR FURTHEER ACTION See maragraphs i and 4 below \\
\hline Knemational application No. PCTUST4 28489 & \begin{tabular}{l}
Bremational ming tate \\
(Xaymomysum) 30 September 2014(30.09.2014)
\end{tabular} \\
\hline Applicant hyperion Therapleutices WC. & \\
\hline
\end{tabular}
 Authority have been estmolimed and are transmitted herewith.
Fibing of smembments and statement under Aricke 19:
The applicam is cnitied, if he so wishes, to amend the chams of the international apphication (sex Rule 46):
When? The time limit for filing such amendments is normally two months from the date of transmital of the intemational scarch repon.
 1213 Geneva 20, Swizestand, Facsimite No.: +41223388270

2.

The aphicant is hereby notifed that no inernatomal seach report will be established amd that the decharation mater Aricle 17(Z) a) to that effect and the written opinton of the futernational Searching Authority are transmited herewith.
3.

With regart to any protest asainst payment of (on) additional fee(s) under Rule 40.2 , the applicant is notified that: \(\square\) the protest together with the decision thereon has beens transmited to the laternational Eurean together with any request to forward the texts of both the protest and the decision theren to the designated Offces.mo decision has beten made yet on be protest; the appleame will be notifed as soon as a decision is made.
4. Eraminders
 to the tmernatioual Eureau. These comments will be made available to the public after international publication. The memational Busean will send a copy of such combems to all desigrated Oftices unfess an intemational prefininary examination report has been or is to be established
Shorty after the expiration of 48 months from the priority date, the international application with be published by the faternational Eurcat. If the applicank wishes to awoid or postpone prablication, a notice of withersawnt of he memational
 imsemational publication (Rules 908Es. 1 and 90bis. 3 ).
Whain 19 montha from the priority dite, but only in respect of wome designated Oftices, a demand for inemational preliminary examination must be fled if the applicant wishes to postpone the eniry into the national phase untid 30 months from the priority date (in some Offices even later); otherwise, the bpplicant must, within 20 months from the priority date, perform the prescribed acts for entry intw the national phase before those desiguated Oifices. In respect of other designated Ottices, the time limit of 36 monshs (or later) will apoly even if no dermand is filed within 19 months. For details aboul the applicable thase

Within 99 mwastss from the priority date, the apy


\begin{tabular}{|c|c|}
\hline Name and mailing address of the ISA/ & Authorized minces \\
\hline Smail sion Pct, Aticisaus & Shane Thomas \\
\hline \begin{tabular}{l}
Commissiantr for Pawnts \\

\end{tabular} & 907 \\
\hline Focsimile No. 579.273 -3209 & Telephone No, ger ose spamatrs \\
\hline
\end{tabular}

Fom PCThSA/220 (buly 201A)

\section*{PATENT COOPERATION TREATY}

\section*{PCT}

\section*{INTERNATIONAL SEARCH REPORT}
(PCT Article 18 and Rules 43 and 44)


This intemational search report has been prepared by this International Searching Authority mod is transmitted to the applicant according to Article 18. A copy is being transmitted to the international Bursts.

This international search eyot consists of a total of \(\qquad\) streets.
X It is also accompanied by a copy of each prion ant document cited in this report.

\section*{1. Basis of the report}
A. With regard to the language, the intemational search was carried out on the basis of:

X the international application in the language ha which it was med.
\(\square\) a translation of the intemathonal application jato \(\qquad\) which is the language of a transition famished for the purposes of international search (Rules 12.3(a) and 23.1 (b)).
b.This international search sepors has been established taking into account the rectification al m obvious mistake authorized by or notified to this Authority under Ruse 91 (Rule \(43.6 b i s(a)\) ).
c.


3. Unity of invention is lack un (see Box No. II).
4. With regard to the the,
\(\square\) the text is approved as submitted by the applicant.the text has hem established by this Authority to read as follows:

DIAGNOSIS, GRADING, MONITORING, AND TREATING HEPATIC ENCEPHALOPATHY
5. With regard to the abstract,
X. the text is approved as submitted by the applicant.
\(\square\) the text has been established, according to Rule 38.2, by this Authority as it appears in Box No. TV. The applicant may, whin one month from the date of ensiling of this international search report, submit comments to this Authority.
6. With regard to the drawings,
a. the figure of the drawings to be published with the abstract is Figure No. \(\qquad\)
as suggested by the applicant.as selected by this Authority, because the applicant failed to suggest figure.
 as selected by this Authority, because this faye better characterizes the invention.
b. \(\boxtimes\) none of the figures is to be published with the abstract.

Form PCTHSA/210 (first sheet) (July 2009)

\section*{INTERNATIONAX SEARCH REPORT.}

International spplication No. PCTHSTM 58489


\section*{PATENT COOPERATION TREATY}

From the
INTERNATONAL SEARCEMNG AUTHORTYY

1. This opimion conames indications relating to the following items:
\begin{tabular}{|c|c|}
\hline gox No. 1 & Basis of the opinion \\
\hline Box No. II & Friority \\
\hline Box No. 31 L &  \\
\hline Eox No. YV & Lack of wnity of myention \\
\hline Box No. V & geasoned statement undes Rule 4 Bir. ( (a)(i) with regard to novelty, inventive step or industrial apphicability; cieations and explanations sugporting such staternens \\
\hline Box No. VI & Certain docaments cied \\
\hline Box No. Vh & Certain defects in the mentional apphicaton \\
\hline Bax No. V]si & Certain observations on the international application \\
\hline
\end{tabular}

\section*{2. BUKTKER ACTION}

If a demand for hatembthoms prelminary exammation is made, this opinion will be considered to be a witten opinion of the Intemational Prebmuinary Examinitg Authority ("ppes") execpt that this does not apply where the applicant chooses ant Authoriy
 opimons of this laternational Searching Anthoriny will mot be so considered.
If this opinion is, as provided above, sansidered to be a writen opinion of the TPEA, the applicant is invited to subnat to th IPEA a written reply together, where approwiate, with amendments, before the expiration of 3 mosths from the date of mailing of Fom PCT/SSA 220 or before the expiration of 22 months from the prionty date, whichever expies later.
For futher options, see Fom PCThSA/220.
\begin{tabular}{|c|c|c|}
\hline Name and mailing address of the [SADS & Date of completion of his opinion & Authorized ofticer: \\
\hline Mell Stop Pct, Atm: SAMUS & & Shant Thomas \\
\hline Commbissionse for Patenta & 23 Eecember \(2014(23,12,2014)\) &  \\
\hline Fscsimile No. \(571-273-3201\) & & PCTOSP 577.272 .7774 \\
\hline
\end{tabular}

Form PCThSA237 (caver sheet) (July 201)
\begin{tabular}{|c|c|}
\hline  & International mpplication No. \\
\hline  & PCTUS14/58498 \\
\hline
\end{tabular}

\section*{Sox Na. Y Basis of this opinion}
1. With regard to the gangeage, this opinion has been established on the basis of
Q) the international application ins the language in which it was fies.

Lam transhation of the intemationat application into \(\qquad\) which is the longuage of a translation fumished for the pumposes of intermional search (Rules 12.3(a) and 23.10)).
2.This opinion has been established kaking into account the rectincation of an obwious mistake authorized by or notified to this Aubsority wnet Rule 91 (Ruse 43bis. 1 \{a\})
3. Whth regard to any suscheotide andibr amber acid sequences disclosed in hee mernational application, this opinion has been estabished on the basis of a sequence listing filed or furnished:
a. (means)
\(\square\) on paperin electronic form
b. (time)

in the international apphostion as filed

wegether with the matamanal application in electronic form
subsequenty to this Authority for the purposes of search
4.

I In addition, in the case that more then one version or copy of a sequence listing has been fied or furmished, the required statements that the information in the subsequent or additional copies is identical to that im the application as filed or does not go beyond the mplioations as fled, as approgriate, were furnibhed.
5. Additional comments:

\section*{WKKTTEN OPMNGNOETYE
}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{ citations and explamations sapporting such statement} \\
\hline \multicolumn{4}{|l|}{1. Statement} \\
\hline \multirow[t]{2}{*}{Wavelty (N)} & Clams & \(3-20\) & YES \\
\hline & Clams & 12 & NO \\
\hline \multirow[t]{2}{*}{Inventive step (S)} & Claims & NOME & YES \\
\hline & Clams & 1-20 & NO \\
\hline \multirow[t]{2}{*}{Bndustrial applecatikty (A)} & Chams & H29 & YES \\
\hline & Clamms & NONE & NO \\
\hline
\end{tabular}

\section*{2. Citations and exphanations:}
 "Wurtman").
As per ciaim 1. Wurtman discloses a methou of determining whether a subject is axpeniencing an overt HE episode (a dlagnosis of grade 4
 compringe: (a) deiamining whather the subjech has beien tisoriented as to tme, phace, or person for bit least one hour, (b) determining



 a comar without response to palnul stimul; paragraphs [0065], [006e\}\}.
As per salm 2. Whrmandiscloses the method of clam 1, wherein a therapeute intervention is admintared to the subject if the subject meess any one of the criterta set forth in (a), (b), or (c) (adminishering to a subject with grade 4 hepatic encephatopathy, large neural


As per chaim 6, Munoz disclosess a mothod of treating an HE qpisode in a subject in neen thereof (Phamacologic therapy; pages 803-80A), compising: (a) defermining whether a sub\}ect is experiencing ay least a grade 2 HE paisode (Cinical presentation. Table 2; pages 797 799) by (i) determining whether the subject has been disoriented as to time, place, or persen for andior (ili detarmining whether the subjech has been lethargic (Table 2, Stage h, conschoushess; page 797) and is exhbiting astenixis (Table 2, Stage 13, Neuromuscular 3bnomatites; page 797). wherein the subject is classifed as experiencing ai least a grade 2 HE episode if they meat the criteria ser forth
 presentation, Table 2; gasges 797.799) by (im) detemining whether the subjeet has been disorienisd as to time, place, and person andor (iv) detemining whether the subject has been somnolent (Table 2. Stage in, conecousnass; page 7e7), wherein the subject bs ciassifed as expertencing at least a grade 3 HE episode if they meel the cniteria set forth in either (im) or (iv) (Tabla 2 , slage ilif; page 797); and (c) determining whether a subjeck is experiencing at least a grade 3 HE episode by (v) determining whether the subject is comatose (Table 2 . Stage IN; page 797), wherein the subject is classified as experiencing a grade 4 HE episode if they meet the criteria set forth in (v) (Table 2, Stage \(1 V\); page 797 ) and (d) administering a therapeutic intervention if the subject is chassifed as experiencing a grade 2, 3, or 4 HE



 subject has been disoriented as to time, place, and person, or lethargic, or somndent of at least one hour (other signs can be intermittent, wax and wane, or inconsistently occur with a stage of HE; page 782 , for the advantage of strenginening the diagnosis for each grade of an HE episode, based upon an extended petiod of observation, and thereby mitigating the grading of he eplsodes based an any transitory observztions.


\section*{YyRFTEN OPSNGONOF T\&RE} INTEXXATYONARSEARCEYMGAUTBOBRTX

\section*{Supplamental \%ox}

\section*{In case the space in say wf the preceding boxes is not suffecient}

Comabuyatim3 of:

 encephalopathy' (CORDOSA).

As per caim 11 , Cordobes 3 bschoses a tool for screening a subject in need thereof for HE symptoms (mwnitoring and assessment of



 move atwps selected from; (iv) determining whether the subjeci can shay awake when baing spoken to (kethargy, stujpor; suaplementary table 4. section 30), (v) detemining whether the subtect is disoriented asd to person, (vi) deteminhrg whether the subject is disoriented as to piace, and (vil) determining whether the subject is disoriented as to time, wherein the second set of steps is performed only it one or more critaria from the first set of steps are mat fognitive function assessment in HE can be parformed with a cakegorical or a continuous approach; cogntive assessments (i) exclude spisodic HE, (in) cinical scales io assess severity of episobic He; figure f; page 1032; page 1038, 2nd column. Cordoba doens not disclose wherein a user is instructed to conken a physician th one or more cricena trom the second

 sacond stens ware observed in a patient to provide necossary medical intervention.

Claims 3-5 hack an inventive step under PCT Article \(33(3)\) as being obvious over Wurtman in view of US \(8,404,21581\) to Scianschmidt, et al. (hereinafier 'Scharschmig').



 amino acd supplements, and restricted diatary protein intake resuted in a patients tasting blood ammonia favel between tand 1.5 imes the upper limit of nomas (ULN); column 1, lines 14-16; column 20 , thes \(10-21\) ). It soutd have baen obvious to a person of ordinary skill in the art, af the time of thes invention, to have masined the method of wurman to hadude the therapeutic interventon of scharschmidt, for the astuandege of treating overt hapatic enoephatopathy with an approach that inchedes treating and monitoring ammonia levels within a gaskent.



 drug of Scharschmidt, for the advantage of treathy hyperammenemia, which is commonly associsked sith fepatic encephatopathy (Scharschmmidt; column 1, limes 44-46).



 fines \(10-12\) ). th would have bean obyous to a person of ordinary skilf in the art, at the fime of the invertion, to have nodites the method of Whitman to include the spacific nitrogen scaverging drugs of Scharschmidt, for the advantage of treating hyperammonemia, with commonhy used medicallons (Fcharschmide; cohumn 1, bines 40w6),

 dosage suffichent to maimain the subjects fasting hood ammonia fevel at or below specified threshoid of 1.5 times the upper limit of nommal. Schamshmidt discioses wherein the thorapeutic intervention is administered at 3 dosage suffichent mantain ine subiect's fasting






As per cham 8 , Munoz and Scharschmidt, im owmbination, disctose the method of cham 7 . Munoz does not dischose wherein the therapeuto intervertion is a nitrogen soavenging drug, Scharsehmidt discioses wherein the therapeutic intervention is a nitrogen scavenging drug the intervention includes the nitrogen scavengirg sing sodium benzoate (Euphyenyl), column 3 , bines \(18-39\); column 20, fines 30 - 22 ), it wauld have beren phvious to a person of ordinary skif in the art, bithe time of the inyention, ho have modifed the mathod of phanoz to inctude the


-*A*-Contimued Whthin the Kext Supplemental gox-***

\section*{WRYTEN OFKNON OF KKE}


\section*{Supqumental}

\section*{In case the space im any of the preceding boxes is not stffickent}

Comtinuation of:
\(x^{* * *}\) Oonthred from Prevous Supplemental Box****:
As per cham 3, Munoz and Scharschmidt, in cambination, disclose the method of cham 3 . Runoz does not disclose wherein the nitrogen scavenging drug is selected from the group consisting of a PAA pro drug and sodium benzoate. Scharschmid discloses wherain the nitrogen scavenging drug is selected from the group consisting of a PAA pro drag and sodium benzoate fitrogen scavenging drug comprising HPN-100 (a PAA pro drug) and soctum berzoate (Buphyenyl), or any combination thereof, column 3, lines \(16-19\); coumin 20 . lings 1012 ). It would have geen obvious to a person of crdinary skill in the art, ak the time of the invention, to have modited the mathod of



As ger cham 10, whmoz sand Scharschmidt, in combination, disctese the memod of cham S. Munoz does mot disclose wherein the PAA
 and a combination of two ar more of \(4 P \mathrm{~N}-100\). PBA, and NaPBA. Scharschmide discloses wherein the PAA prodrug is glyceryl
tri-(4-ghenylbutyratel (HPN-100) (column 20, lines 26-26), ti weald have been obvous to a person of crdinary skill in the att, at the tirne of the invertion, to have modifed the method of humoz to include the specific PAA produg of Scharschmidt, tor the advantage of treating hyparammonemia, when a patient is non-comphiant with the nitrogen scavenging drug, suphyenyl (Scharsehmidt; column 20 , lines \(10-30\) ).

As per chaim 12, Cordoba discloses the tool of ciaim 11. Cordoba does not disclose wherein the user is a caregiver of the subject in need thereof. Young discloses wherein the user is a caregiver of the subject in need thereot (heaith care prowider it is a private physician of the patient 12; figure i; paragraph poosol. It would have been obvious to a person of ordinary skill in the ant, 34 the time of the invention, to have modifed the tool of Corcoba to include the caregiver of the subpect in need thereor of Young, for the advantage of having medical protestions in charge ot the patient undergoing the evaluakon.
As par chaim 13, Cordoba and Young, in combination, disclose the toot of clam 12, zand Cordoba furthor discloses the fist set of steps
 disclose wherein the set of steps are perfomed on a dally basis to monitor the subeget. 隹 would have been obvious to a persom of ordinary skil in the ant, at the time of the invention, and it would have required only rotine axpermentation, to have moditied the toot or Cordoba to include wherein the set of steps are performed on a dally basis to monilor the sublect, since doing so could be readily achieved through routine experimentation and lesting, for the advantage of daily menikoring the he patient, and thereby atowing the caregiver to record any progression ar stabibution of the disorder for the gatient ower tims.
As par caim 14, Cordobs and Young, in combination, dischas the fook of caim th, and Cordobs futher biscosess wherein the steps of the took are grovided in a questiombire format (supplementary tzoles 3-4).
As per daim 15, Cordoba and Young. in combination, disclose the tool of claim 34. Cordoba does not disclose wherein the tool is provided in an electronic formal with a branching logie afgorithm. Young discloses wherein a toot is provided in an electronic format with a branching logis algorithm (questions ate presented on a cornputer 42, with a branching chain logit (algorithm), paragraphs [0044) [0045]). It woutd have been obvious to a parson of ordinary skil in the art, at the time of the invention, to have modified the tool of Cordooa to inchude the
 segrentiak logic, such that the patient may proceect to any next section, pending a repty to the previous section.
As per ciam ti, Cordoba and Young, in combination, disclose the tool of ciam 15. Cordobs does nol dischose wherein the tool is provided on a web-enabled deviee. Young disoloses wherein a tool is provided on a web-enabled device (computer system 30 is provided to host and access an internet-based website, for access by computer 42; figures 2, 5; paragraphs [00211, [0037], [0038], [0040], [00441]. Il wouto have been obvious to a person of ordinary skill in the ant, at the fine of the invention, to have modified the fool of Cordobs to include the web-enabled device of Young, for the advantage of allowing the patient to complete the guestionnaire in a non-physical bomat, such that


As per claim 17, Cordoba and Young, in combination, disclose the tool of claim 16. Cordoba does not disclose whereln dally reminders are electroniontly sem to he caregiver at the same time each dipy to semind the caregiver to use the too. Levy discloses wherem daily reminders are electronicaly sent to the caregives at the same time each day to remind the caregiver to use a tool (aler device assists

 of the invantion, to have modifod the tool of Cordeba to includes the aterting device of hevy, for the advandege of have a means of a casegiver receiving dally ramirders on a porteble electronic devioe.
-***-Gontinued Within the Aext Supplemertal Box-***-

\title{
\%
 \\ 
}

\section*{Supglemental Mox}

In case the space in may wf che grecedhrg boxes is not suffcient.
Contimuation of:
\({ }^{* * 0}\)-Gonmucd from Previms Suppienental Box-***-

As per chatm 18, Cordoba and Young, in combination disclose the tool of clam 12, Cordoba does not dischose whersin the subjact in need thereof is administered a herapeutic intervention according to the physiciants recommendation if one or more criteria are met from the second sef of steps. Munoz discloses wherein the subject in meed theroot is administered a therapeuthe intervention according to the physichan's recommendeskion if wne or more critaria are met frem the second ast of steps flactulese is administared to a patient who
 bsan obvious to a person of crdinary skill in the art, at the thme of the invention, amd it woud have renubged snly routhe experimentation to have modifad the tool of Cordoba to include khe therapeute imbrvention of Amoz, and io further include the intervention being based according to the physician's reconmendation, since such pecommengations are known in the ant to be based upon a prysician's recommendation.

As per cialm 19, Cordoba, Young and Munoz, in oombination, disciose the tcol of caim 18. Cordoba does not dizclose wherein if the subject was previousiy diministered a dosage of lactulase, the dosscge of lactulose is meressed and the increased dosage of lactulose is

 go3), the cosage of hatutose is incrassed and the increased tasage of lactubse ls zuministared to the subject tiactubse is atministered

 expermentation to have modified the tool of Cordoba to include the increased dosages of Munox, such that the same patient receives higher dosages of Lactuose, if that patient progresses to higher levgis of hepatic encephalopathy, since dwing so could be readily achibved trough routine experimentation and tesing, for the advantage of having a more eftectue treament for higher sages of hepatic encepheropathy.

 threshold of 1.5 times tha upper limit of nomal. Munoz dischosss wherein the therapeutic interventon is adminishered at a dosage sufficien to maintain the subiects ammonia fevel fachutose can decrease ammonia production and hcreass ammonia excretion; Pharmacologic thersay' and 'Lasctulose', page 803). It wouth have been obvioss to a person of ordinary skill in thes ast, at the time of the invention, and it wothd have required only routine experimemtation-to have modifed tha tool of Cordoba to include the decressed ammonia teyels of Munor

 and besing, for the adyantage of keeping the levels of ammonia bebow toxic levels, and thereby mithating the progression ctit hepatic encephabrpathy.

Ciams \(1-20\) have industris applicablity as definad by PCT Article \(33(4)\) because the subject matter can be made or used in modustry.

PTO/SB/08 (09-06)
Approved for use through 03/31/2007. OMB 0651-0031
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(m 1\) & /PTO & & plete if Known \\
\hline & DS & OSURE & Application Number & 13/775000 \\
\hline & AP & ICANT & Filing Date & 02-22-2013 \\
\hline & Marc & 2012 & First Named Inventor & Bruce Scharschmidt \\
\hline & & & Art Unit & 1621 \\
\hline (use & s a & ecessary) & Examiner Name & Savitha M. Rao \\
\hline 1 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{U.S. PATENT DOCUMENTS} \\
\hline \multirow[t]{2}{*}{Exami ner Initials*} & Cite & Document Number & \multirow[b]{2}{*}{Publication Date MM-DD-YYYY} & \multirow[b]{2}{*}{Name of Patentee or Applicant of Cited Document} & \multirow[t]{2}{*}{Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear} \\
\hline & No.
1 & Number-Kind Code \({ }^{2}\) (if known) & & & \\
\hline & P1 & 4,457,942 & 07-03-1984 & Brusilow, S.W. & \\
\hline & P2 & 5,654,333 & 08-05-1997 & The United States Of America As Represented By The Department Of Health And Human Services & \\
\hline & P3 & 8,094,521 & 01-10-2012 & Nightengale Products LLC & \\
\hline & P4 & 8,404,215 & 03-26-2013 & Hyperion Therapeutics, Inc. & \\
\hline & P5 & 2003/0195255 & 10-16-2003 & Marshall L. Summar & \\
\hline & P6 & 2005/0273359 & 12-08-2005 & Young, D.E. & \\
\hline & P7 & 2010/0016207 & 01-21-2010 & Wurtman, RJ et al & \\
\hline & P8 & 2013/0281530 & 10-24-2013 & Scharschmidt, B et al & \\
\hline & P9 & 2014/0142186 & 05-22-2014 & Hyperion Therapeutics, Inc. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{FOREIGN PATENT DOCUMENTS} \\
\hline \multirow[b]{2}{*}{Exami ner Initials*} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cite \\
No. \({ }^{1}\)
\end{tabular}} & Foreign Patent
Document & \multirow[b]{2}{*}{Publication Date MM-DD-YYYY} & \multirow[b]{2}{*}{Name of Patentee or Applicant of Cited Documents} & \multirow[t]{2}{*}{Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear} & \multirow[b]{2}{*}{\(\mathrm{T}^{6}\)} \\
\hline & & Country Code \({ }^{3-}\) Number \({ }^{4}\)-Kind Code \({ }^{5}\) (if known) & & & & \\
\hline & F1 & WO1994/22494 & 10-13-1994 & The DuPont Merck Pharmaceutical Company & & \\
\hline & F2 & WO2013/048558 & 04-04-2013 & Hyperion Therapeutics, Inc. & & \\
\hline & F3 & WO2013/158145 & 10-24-2013 & Hyperion Therapeutics, Inc. & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 3 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the pubic which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Application Number & 13/775000 \\
\hline & & & & Filing Date & 02-22-2013 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Date Submitted: March 12, 2012 (use as many sheets as necessary)}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & & Art Unit & 1621 \\
\hline & & & & Examiner Name & Savitha M. Rao \\
\hline Sheet & 2 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Exami ner Initials* & \begin{tabular}{l}
Cite \\
No. \({ }^{1}\)
\end{tabular} & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D1 & AMODIO, P., et al., "Detection of Minimal Hepatic Encephalopathy: Normalization and Optimization of the Psychometric Hepatic Encephalopathy Score. A Neuropsychological and Quantified EEG Study," J. Hepatol. 49:346-353 (2008). & \\
\hline & D2 & ANDA Notice Letter, Par Pharmaceutical, Inc. to Hyperion Therapeutics, inc.. Re: Glycerol Phenylbutyrate \(1.1 \mathrm{gm} / \mathrm{ml}\) oral liquid; United States Patent Nos. 8,404,215 and 8,642,012 Notice of Paragraph IV Certification March 12, 2014. & \\
\hline & D3 & BAJAJ, J. S., et al., "Review Article: The Design of Clinical Trials in Hepatic Encephalopathy -An International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) Consensus Statement," Aliment Pharmacol Ther. 33 (7):739-747 (2011). & \\
\hline & D4 & Barsotti, Measurement of Ammonia in Blood, 138 J. Pediatrics, S11-S20 (2001) & \\
\hline & D5 & Batshaw, et al., Treatment of Carbamyl Phosphate Synthetase Deficiency with Keto Analogues of Essential Amino Acids, 292 The New England J. Medicine, 1085■90 (1975) & \\
\hline & D6 & Batshaw, M. L. et. al., Alternative Pathway Therapy for Urea Cycle Disorder: Twenty Years Later, 138 J. Pediatrics S46 (2001). & \\
\hline & D7 & Blau, Duran, Blaskovics, Gibson (editors), Physician's Guide to the Laboratory Diagnosis of Metabolic Diseases, 261-276 (2d ed. 1996) & \\
\hline & D8 & BLEI, A. T., et al., "Hepatic Encephalopathy," Am. J. Gastroenterol. 96(7):1968-1976 (2001). & \\
\hline & D9 & Burlina, A.B. et al., Long-Term Treatment with Sodium Phenylbutyrate in Ornithine Transcarbamylase-Deficient Patients, 72 Molecular Genetics and Metabolism 351-355 (2001). & \\
\hline & D10 & Carducci, M., Phenylbutyrate Induces Apoptosis in Human Prostate Cancer and Is More Potent Than Phenylacetate, 2 Clinical Cancer Research 379 (1996). & \\
\hline & D11 & Carducci, M.A. et al., A Phase I Clinical and Pharmacological Evaluation of Sodium Phenylbutyrate on an 120-h Infusion Schedule, 7 Clin. Cancer Res. 3047 (2001). & \\
\hline & D12 & Center for Drug Evaluation and Research, Clinical Pharmacology and Biopharmaceutics Review for New Drug Application No. 20-645 (Ammonul(8) (2005). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609 . Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Application Number & 13/775000 \\
\hline & & & & Filing Date & 02-22-2013 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Date Submitted: March 12, 2012 (use as many sheets as necessary)}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & & Art Unit & 1621 \\
\hline & & & & Examiner Name & Savitha M. Rao \\
\hline Sheet & 3 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Exami ner Initials* & Cite No. \({ }^{1}\) & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(T^{6}\) \\
\hline & D13 & Center for Drug Evaluation and Research, Labeling for New Drug Application No. 20-645 (Ammonul(B) (2005). & \\
\hline & D14 & Center for Drug Evaluation and Research, Medical Review for New Drug Application No. 20-645 (Ammonul(B) (2005). & \\
\hline & D15 & Chen, Z. et al., Tributyrin: A Prodrug of Butyric Acid for Potential Clinical Application in Differentiation Therapy, 54 Cancer Research 3494 (1994). & \\
\hline & D16 & Clay, A. et. al, Hyperammonemia in the ICU, 132 Chest 1368 (2007). & \\
\hline & D17 & Collins, A.F. et al., Oral Sodium Phenylbutyrate Therapy in Homozygous Beta Thalassemia: A Clinical Trial, 85 Blood 43 (1995). & \\
\hline & D18 & CONN, H. O., et al., "Liver Physiology and Disease: Comparison of Lactulose and Neomycin in the Treatment of Chronic Portal-Systemic Encephalopathy. A Double Blind Controlled Trial," Gastroenterology 72(4):573-583 (1977). & \\
\hline & D19 & CORDOBA, J., "New Assessment of Hepatic Encephalopathy," Journal of Hepatology 54: 10301040 (2011). & \\
\hline & D20 & Darmaun, D. et al., Phenylbutyrate-Induced Glutamine Depletion in Humans: Effect on Leucine Metabolism, 5 Am. J. of Physiology: Endocrinology and Metabolism E801 (1998). & \\
\hline & D21 & DIAZ, G. A., et al., "Ammonia Control and Neurocognitive Outcome Among Urea Cycle Disorder Patients Treated with Glycerol Phenylbutyrate," Hepatology 57(6):2171-2179 (2013). & \\
\hline & D22 & Dixon, M. A. and Leonard, J.V., Intercurrent Illness in Inborn Errors of Intermediary Metabolism, 67 Archives of Disease in Childhood 1387 (1992). & \\
\hline & D23 & Dover, G. et al, Induction of Fetal Hemoglobin Production in Subjects with Sickle Cell Anemia by Oral Sodium Phenylbutyrate, 54 Cancer Research 3494 (1994). & \\
\hline & D24 & Endo, F. et al., Clinical Manifestations of Inborn Errors of the Urea Cycle and Related Metabolic Disorders During Childhood, 134 J . Nutrition 1605S (2004). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609 . Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Application Number & 13/775000 \\
\hline & & & & Filing Date & 02-22-2013 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Date Submitted: March 12, 2012 (use as many sheets as necessary)}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & & Art Unit & 1621 \\
\hline & & & & Examiner Name & Savitha M. Rao \\
\hline Sheet & 4 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Exami ner Initials* & Cite No. \({ }^{1}\) & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D25 & European Medicines Agency, Annex I: Summary of Product Characteristics for Ammonaps. & \\
\hline & D26 & European Medicines Agency, European Public Assessment Report: Summary for the Public for Ammonaps (2009). & \\
\hline & D27 & European Medicines Agency, Scientific Discussion for Ammonaps (2005). & \\
\hline & D28 & European Medicines Agency, Scientific Discussion for Carbaglu (2004). & \\
\hline & D29 & FDA Label for Carbaglu, seven pages. (Mar. 2010). & \\
\hline & D30 & Feillet, F. and Leonard, J.V., Alternative Pathway Therapy for Urea Cycle Disorders, 21 J. Inher. Metab. Dis. 101-111 (1998). & \\
\hline & D31 & Feoli-Fonseca, M. L., Sodium Benzoate Therapy in Children with Inborn Errors of Urea Synthesis: Effect on Carnitine Metabolism and Ammonia Nitrogen Removal, 57 Biochemical and Molecular Medicine 31 (1996). & \\
\hline & D32 & FERENCI, P., et al., "Hepatic Encephalopathy-Definition, Nomenclature, Diagnosis, and Quantification: Final Report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998," Hepatology 35:716-721 (2002). & \\
\hline & D33 & Fernandes, Saudubray, Berghe (editors), Inborn Metabolic Diseases Diagnosis and Treatment, 219222 (3d ed. 2000) & \\
\hline & D34 & Geraghty, M.T. and Brusilow, S.W., Disorders of the Urea Cycle, in LIVER DISEASE IN CHILDREN 827 (F.J. Suchy et al., eds. 2001). & \\
\hline & D35 & Ghabril, M. et al., "Glycerol Phenylbutyrate in Patients with Cirrhosis and Episodic Hepatic Encephalopathy: A Pilot Study of Safety and Effect on Venous Ammonia Concentration," Clinical Pharmacology in Drug Development 2(3): 278-284 (2013). & \\
\hline & D36 & Gilbert, J. et al., A Phase I Dose Escalation and Bioavailability Study of Oral Sodium Phenylbutyrate in Patients with Refractory Solid Tumor Malignancies, 7 Clin. Cancer Research 2292-2300 (2001). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Application Number & 13/775000 \\
\hline & & & & Filing Date & 02-22-2013 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Date Submitted: March 12, 2012 (use as many sheets as necessary)}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & & Art Unit & 1621 \\
\hline & & & & Examiner Name & Savitha M. Rao \\
\hline Sheet & 5 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline & & \multicolumn{1}{|c|}{ NON PATENT LITERATURE DOCUMENTS } \\
\hline \begin{tabular}{l} 
Exami \\
ner \\
Initials*
\end{tabular} & \begin{tabular}{c} 
Cite \\
No.
\end{tabular} & \begin{tabular}{l} 
Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the \\
item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue \\
number(s), publisher, city and/or country where published.
\end{tabular} & T6 \\
\hline & D37 & \begin{tabular}{l} 
Gore, S. et al., Impact of the Putative Differentiating Agent Sodium Phenylbutyrate on \\
Myelodysplastic Syndromes and Acute Myeloid Leukemia, 7 Clin. Cancer Res. 2330 (2001).
\end{tabular} \\
\hline & D38 & \begin{tabular}{l} 
Gropman, A.L. et al., Neurological Implications of Urea Cycle Disorders, 30 J. Inherit Metab Dis. 865 \\
(2007).
\end{tabular} & \\
\hline & D39 & \begin{tabular}{l} 
HASSANEIN, T. I., et al., "Randomized Controlled Study of Extracorporeal Albumin Dialysis for \\
Hepatic Encephalopathy in Advanced Cirrhosis," Hepatology 46:1853-1862 (2007).
\end{tabular} & \\
\hline & D41 & \begin{tabular}{l} 
HASSANEIN, T. I., et al., "Introduction to the Hepatic Encephalopathy Scoring Algorithm (HESA)," \\
Dig. Dis. Sci. 53:529-538 (2008).
\end{tabular} & \begin{tabular}{l} 
HASSANEIN, T., et al., "Performance of the Hepatic Encephalopathy Scoring Algorithm in a Clinical \\
Trial of Patients With Cirrhosis and Severe Hepatic Encephalopathy," Am. J. Gastroenterol. \\
104:1392-1400 (2009).
\end{tabular} & \\
\hline & \begin{tabular}{l} 
Honda, S. et al., Successful Treatment of Severe Hyperammonemia Using Sodium Phenylacetate \\
Power Prepared in Hospital Pharmacy, 25 Biol. Pharm. Bull. 1244 (2002).
\end{tabular} & \\
\hline & D43 & \begin{tabular}{l} 
International Search Report and Written Opinion for PCT/US09/30362, mailed Mar. 2, 2009, 8 \\
pages.
\end{tabular} & \begin{tabular}{l} 
International Search Report and Written Opinion for PCT/US2009/055256, mailed Dec. 30, 2009, 13 \\
pages.
\end{tabular} & \\
\hline & D45 & \begin{tabular}{l} 
INTER PARTES REVIEW OF U.S. PATENT NO. 8,404,215
\end{tabular} \\
\hline & D46 & \begin{tabular}{l} 
INTER PARTES REVIEW OF U.S. PATENT NO. 8,642,012
\end{tabular} & \\
\hline & D48 & \begin{tabular}{l} 
Kleppe, S. et al., Urea Cycle Disorders, 5 Current Treatment Options in Neurology 309- 319 (2003). \\
Kubota, K. and Ishizaki, T., Dose-Dependent Pharmacokinetics of Benzoic Acid Following Oral \\
Administration of Sodium Benzoate to Humans, 41 Eur. J. Clin. Pharmacol. 363 (1991).
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609 . Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Application Number & 13/775000 \\
\hline & & & & Filing Date & 02-22-2013 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Date Submitted: March 12, 2012 (use as many sheets as necessary)}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & & Art Unit & 1621 \\
\hline & & & & Examiner Name & Savitha M. Rao \\
\hline Sheet & 6 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Exami ner Initials* & Cite No. \({ }^{1}\) & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D49 & Lee, B. and Goss, J., Long-Term Correction of Urea Cycle Disorders, 138 J. Pediatrics S62 (2001). & \\
\hline & D50 & Lee, B. et al., Considerations in the Difficult-to-Manage Urea Cycle Disorder Patient, 21 Crit. Care Clin. S19 (2005). & \\
\hline & D51 & Lee, B., et al., "Optimizing Ammonia (NH3) Control in Urea Cycle Disorder (UCD) Patients: A Predictive Model," Oral Abstract Platform Presentations, Biochemical Genetics, Phoenix, AZ, March 22, 2013 & \\
\hline & D52 & Leonard, J.V., Urea Cycle Disorders, 7 Semin. Nenatol. 27 (2002). & \\
\hline & D53 & Lizardi-Cervera, J. et al., Hepatic Encephalopathy: A Review, 2 Annals of Hepatology 122-120 (2003). & \\
\hline & D54 & Maestri NE, et al., Prospective treatment of urea cycle disorders. J Paediatr 1991;119:923-928. & \\
\hline & D55 & Maestri, N.E., et al., Long-Term Survival of Patients with Argininosuccinate Synthetase Deficiency, 127 J. Pediatrics 929 (1993). & \\
\hline & D56 & Maestri, N.E., Long-Term Treatment of Girls with Ornithine Transcarbamylase Deficiency, 355 N. Engl. J. Med. 855 (1996). & \\
\hline & D57 & Majeed, K., Hyperammonemia, eMedicine.com (Dec. 2001). & \\
\hline & D58 & Marini, J.C. et al., Phenylbutyrate Improves Nitrogen Disposal via an Alternative Pathway without Eliciting an Increase in Protein Breakdown and Catabolism in Control and Ornithine Transcarbamylase-Deficient Patients, 93 Am. J. Clin. Nutr. 1248 (2011). & \\
\hline & D59 & Matsuda, I., Hyperammonemia in Pediatric Clinics: A Review of Ornithine Transcarbamylase Deficiency (OTCD) Based on our Case Studies, 47 JMAJ 160 (2004). & \\
\hline & D60 & McGuire, B.M. et al., Pharmacokinetic (PK) and Safety Analyses of a Novel Ammonia- Reducing Agent in Healthy Adults and Patients with Cirrhosis, Hyperion Therapeutics, poster, one page (2009). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{3}{|l|}{Substitute for form 1449/PTO} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & Application Number & 13/775000 \\
\hline & & & & Filing Date & 02-22-2013 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Date Submitted: March 12, 2012}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & & Art Unit & 1621 \\
\hline & \multicolumn{3}{|l|}{(use as many sheets as necessary)} & Examiner Name & Savitha M. Rao \\
\hline Sheet & 7 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Exami ner Initials* & Cite No. \({ }^{1}\) & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D61 & Mizutani, N. et al., Hyperargininemia: Clinical Course and Treatment with Sodium Benzoate and Phenylacetic Acid, 5 Brain and Development 555 (1983). & \\
\hline & D62 & MOKHTARANI, M., et al., (2013) "Elevated Phenylacetic Acid Levels Do Not Correlate with Adverse Events in Patients with Urea Cycle Disorders orHepatic Encephalopathy and Can Be Predicted Based on the Plasma PAA to PAGN Ratio," Mol Genet Metab 110(4):446-453 & \\
\hline & D63 & MOKHTARANI, M., et al., (2012) "Urinary Phenylacetylglutamine as Dosing Biomarker for Patients with Urea Cycle Disorders," Mol Genet Metab 107(3):308-314 & \\
\hline & D64 & MONTELEONE, JPR, et al., (2013) "Population Pharmacokinetic Modeling and Dosing Simulations of Nitrogen-Scavenging Compounds: Disposition of Glycerol Phenylbutyrate and Sodium Phenylbutyrate in Adult and Pediatric Patients with Urea Cycle Disorders," J. Clin. Pharmacol. 53(7): 699-710. & \\
\hline & D65 & MUNOZ, S. J., "Hepatic Encephalopathy," Med. Clin. N. Am. 92:795-812 (2008). & \\
\hline & D66 & Nassogne, M.C., Urea Cycle Defects: Management and Outcome, 28 J. Inherit. Metab. Dis. 407 (2005). & \\
\hline & D67 & New England Consortium of Metabolic Programs, Acute Illness Protocol: Urea Cycle Disorders: The Infant/Child with Argininosuccinate Lyase Deficiency, adapted from Summar, M and Tuchman, M, Proceedings of a Consensus Conference for the Management of Patients with Urea Cycle Disorders, 138 J. Peds. Suppl. S6 (2001). & \\
\hline & D68 & New England Consortium of Metabolic Programs, Acute Illness Protocol: Urea Cycle Disorders: The Infant/Child with Citrullinemia, adapted from Summar, M and Tuchman, M, Proceedings of a Consensus Conference for the Management of Patients with Urea Cycle Disorders, 138 J . Peds. Suppl. S6 (2001). & \\
\hline & D69 & Newmark, H. L. and Young, W. C., Butyrate and Phenylacetate as Differentiating Agents: Practical Problems and Opportunities, 22 J. Cellular Biochemistry 247 (1995). & \\
\hline & D70 & ORTIZ, M., et al., "Development of a Clinical Hepatic Encephalopathy Staging Scale," Aliment Pharmacol Ther 26:859-867 (2007). & \\
\hline & D71 & PAR PHARMACEUTICAL, INC.'S INITIAL INVALIDITY CONTENTIONS AND NON-INFRINGEMENT CONTENTIONS FOR U.S. PATENT NOS. 8,404,215 AND 8,642,012 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner \\
Signature
\end{tabular}\(\quad\)\begin{tabular}{l} 
Date \\
Considered
\end{tabular}\(\quad\)\begin{tabular}{l} 
Cod \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{3}{|l|}{Substitute for form 1449/PTO} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & Application Number & 13/775000 \\
\hline & & & & Filing Date & 02-22-2013 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Date Submitted: March 12, 2012}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & & Art Unit & 1621 \\
\hline & \multicolumn{3}{|l|}{(use as many sheets as necessary)} & Examiner Name & Savitha M. Rao \\
\hline Sheet & 8 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Exami ner Initials* & \begin{tabular}{l}
Cite \\
No. \({ }^{1}\)
\end{tabular} & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D72 & PARSONS-SMITH, B. G., et al., "The Electroencephalograph in Liver Disease," Lancet 273:867-871 (1957). & \\
\hline & D73 & Phuphanich, S. et al., Oral Sodium Phenylbutyrate in Patients with Recurrent Malignant Gliomas: A Dose Escalation and Pharmacologic Study, Neuro-Oncology 177 (2005). & \\
\hline & D74 & Praphanproj, V. et al., Three Cases of Intravenous Sodium Benzoate and Sodium Phenylacetate Toxicity Occurring in the Treatment of Acute Hyperammonemia," 23 J. Inherited Metabolic Disease 129 (2000). & \\
\hline & D75 & ROCKEY, D. C., et al., "Randomized, Controlled, Double Blind Study of Glycerol Phenylbutyrate in Patients with Cirrhosis and Episodic Hepatic Encephalopathy," Hepatology 56:248(A) (2012). & \\
\hline & D76 & SALAM, M., et al., "Modified-Orientation Log to Assess Hepatic Encephalopathy," Aliment Pharmacol Ther. 35(8):913-920 (2012). & \\
\hline & D77 & Scientific Discussion for Ammonaps, EMEA 2005, available at http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_Scientific Discussion/human/000219/WC500024748.pdf & \\
\hline & D78 & Scottish Medicines Consortium, Carglumic Acid 200 mg Dispersible Tablets (Carbaglu®) No. 299/06 (Sept. 8, 2006). & \\
\hline & D79 & Seakins, J.W.T., The Determination of Urinary Phenylacetylglutamine as Phenylacetic Acid: Studies on its Origin in Normal Subjects and Children with Cystic Fibrosis, 35 Clin. Chim. Acta. 121 (1971). & \\
\hline & D80 & Search and Examination Report for British Patent Application No. GB 0915545.8, dated Oct. 8, 2009, 5 pages. & \\
\hline & D81 & Sherwin, C. et al., The Maximum Production of Glutamine by the Human Body as Measured by the Output of Phenylacetylglutamine, 37 J . Biol. Chem. 113 (1919). & \\
\hline & D82 & SMITH, W., et al., "Ammonia Control in Children Ages 2 Months through 5 Years with Urea Cycle Disorders: Comparison of Sodium Phenylbutyrate and Glycerol Phenylbutyrate," J Pediatr. 162(6):1228-1234.e1 (2013). & \\
\hline & D83 & Summar, M., Current Strategies for the Management of Neonatal Urea Cycle Disorders, 138 J . Pediatrics S30 (2001). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Application Number & 13/775000 \\
\hline & & & & Filing Date & 02-22-2013 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Date Submitted: March 12, 2012 (use as many sheets as necessary)}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & & Art Unit & 1621 \\
\hline & & & & Examiner Name & Savitha M. Rao \\
\hline Sheet & 9 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Exami ner Initials* & \begin{tabular}{l}
Cite \\
No. \({ }^{1}\)
\end{tabular} & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D84 & Summar, M. and Tuchman, M., Proceedings of a Consensus Conference for the Management of Patients with Urea Cycle Disorders, 138 J . Pediatrics S6 (2001). & \\
\hline & D85 & Summar, M., Urea Cycle Disorders Overview, Gene Reviews, www.genetests.org (Apr. 2003). & \\
\hline & D86 & Summar, M. et al., Unmasked Adult-Onset Urea Cycle Disorders in the Critical Care Setting, 21 Crit. Care Clin. S1 (2005). & \\
\hline & D87 & \begin{tabular}{l}
The National Organization for Rare Disorders (2012). The Physician's Guide to Urea Cycle Disorders, at http://nordphysicianguides.org/wp- \\
content/uploads/2012/02/NORD Physician Guide to Urea Cycle Disorders.pdf
\end{tabular} & \\
\hline & D88 & Todo, S. et al., Orthotopic Liver Transplantation for Urea Cycle Enzyme Deficiency, 15 Hepatology 419 (1992). & \\
\hline & D89 & Tuchman, M., and Yudkoff, M., Blood Levels of Ammonia and Nitrogen Scavenging Amino Acids in Patients with Inherited Hyperammonemia, 66 Molecular Genetics and Metabolism 10-15 (1999). & \\
\hline & D90 & UNITED STATES PATENT AND TRADEMARK OFFICE, International Search Report and Written Opinion dated January 16, 2015 for PCT/US14/58489. & \\
\hline & D91 & UNITED STATES PATENT AND TRADEMARK OFFICE, International Search Report and Written Opinion for PCT/ US2014/060543 dated January 23, 2015. & \\
\hline & D92 & VILSTRUP, H., et al., "Hepatic Encephalopathy in Chronic Liver Disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver," Hepatology 60 (2):715-735 (2014). & \\
\hline & D93 & Walsh et al., Chemical Abstract vol. 112, No. 231744 & \\
\hline & D94 & Welbourne, T. et al., The Effect of Glutamine Administration on Urinary Ammonium Excretion in Normal Subjects and Patients with Renal Disease, 51 J. Clin. Investigation 1852 (1972). & \\
\hline & D95 & Wilcken, B., Problems in the Management of Urea Cycle Disorders, 81 Molecular Genetics and Metabolism 85 (2004). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609 . Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
\begin{tabular}{|c|c|c|c|c|}
\hline & m 1 & /PTO & & plete if Known \\
\hline & IS & OSURE & Application Number & 13/775000 \\
\hline & A & ICANT & Filing Date & 02-22-2013 \\
\hline & Marc & 2, 2012 & First Named Inventor & Bruce Scharschmidt \\
\hline & & 2, 2012 & Art Unit & 1621 \\
\hline (use & s a & ecessary) & Examiner Name & Savitha M. Rao \\
\hline 10 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline & & \multicolumn{1}{|c|}{ NON PATENT LITERATURE DOCUMENTS } \\
\hline \begin{tabular}{l} 
Exami \\
ner \\
Initials*
\end{tabular} & \begin{tabular}{l} 
Cite \\
No.
\end{tabular} \\
\hline & D96 & \begin{tabular}{l} 
Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the \\
item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue \\
number(s), publisher, city and/or country where published.
\end{tabular} & \begin{tabular}{l} 
Wilson, C.J., et al., Plasma Glutamine and Ammonia Concentrations in Ornithine \\
Carbamoyltransferase Deficiency and Citrullinaemia, 24 J. Inherited Metabolic Disease 691 (2001).
\end{tabular} \\
\hline & D97 & \begin{tabular}{l} 
Wright, G., et al., Management of Hepatic Encephalopathy, 2011 International Journal of Hepatology \\
1 (2011).
\end{tabular} & \\
\hline & D98 & \begin{tabular}{l} 
Wright, P., Review: Nitrogen Excretion: Three End Products, Many Physiological Roles, 198 J. \\
Experimental Biology 273 (1995).
\end{tabular} & \\
\hline & D99 & \begin{tabular}{l} 
Yajima, et al. Diurnal Fluctuations of Blood Ammonia Levels in Adult-Type Citrullinemia, 137 Tokohu \\
J. Ex/ Med, 213-220 (1982)
\end{tabular} & \\
\hline & D100 & \begin{tabular}{l} 
Yu, Ryan and Potter, Murray, Diagnosis of Urea Cycle Disorders in Adulthood: Late- Onset \\
Carbamyl Phosphate Synthetase 1 Deficiency, 7 MUMJ 30 (2010).
\end{tabular} & \\
\hline & D102 & \begin{tabular}{l} 
Yudkoff, M. et al., In Vivo Nitrogen Metabolism in Ornithine Transcarbamylase Deficiency, 98 J. Clin. \\
Invest. 2167 (1996).
\end{tabular} & \begin{tabular}{l} 
Zeitlin, P., Novel Pharmacologic Therapies for Cystic Fibrosis, 103 J. Clinical Investigation 447 \\
(1999).
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner & & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline Signature & & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

\begin{tabular}{|c|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & Sub-Total in USD(\$) \\
\hline \multicolumn{5}{|l|}{Miscellaneous:} \\
\hline Request for Continued Examination & 2801 & 1 & 600 & 600 \\
\hline & \multicolumn{3}{|c|}{Total in USD (\$)} & 600 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 22519772 \\
\hline Application Number: & 13775000 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 7929 \\
\hline Title of Invention: & METHODS OF THERAPEUTIC MONITORING OF NITROGEN SCAVENGING DRUGS \\
\hline First Named Inventor/Applicant Name: & Bruce Scharschmidt \\
\hline Customer Number: & 101325 \\
\hline Filer: & Dennis A. Bennett/Vicki Truman \\
\hline Filer Authorized By: & Dennis A. Bennett \\
\hline Attorney Docket Number: & HOR0026-201D1-US \\
\hline Receipt Date: & 05-JUN-2015 \\
\hline Filing Date: & 22-FEB-2013 \\
\hline Time Stamp: & 18:45:13 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Deposit Account \\
\hline Payment was successfully received in RAM & \$600 \\
\hline RAM confirmation Number & 5198 \\
\hline Deposit Account & 504297 \\
\hline Authorized User & BENNETT, DENNIS A. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \\
Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) \\
Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)
\end{tabular}} \\
\hline
\end{tabular}

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & \begin{tabular}{c|}
\hline Multi \\
Part /.zip
\end{tabular} & Pages
(if appl.) \\
\hline \multirow{2}{*}{1} & & \multirow{2}{*}{20150603_Response.pdf} & 45748 & \multirow{2}{*}{yes} & \multirow{2}{*}{5} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|c|}{Multipart Description/PDF files in .zip description} \\
\hline & \multicolumn{2}{|l|}{Document Description} & Start & \multicolumn{2}{|c|}{End} \\
\hline & \multicolumn{2}{|l|}{Amendment/Req. Reconsideration-After Non-Final Reject} & 1 & \multicolumn{2}{|c|}{1} \\
\hline & \multicolumn{2}{|l|}{Claims} & 2 & \multicolumn{2}{|c|}{4} \\
\hline & \multicolumn{2}{|l|}{Applicant Arguments/Remarks Made in an Amendment} & 5 & \multicolumn{2}{|c|}{5} \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{2} & \multirow{2}{*}{Transmittal Letter} & \multirow{2}{*}{20150603_IDS_Trans.pdf} & 20365 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & bdfdae55f1baac2cdc41442dd748db8aa30 5 d 8 ec & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{Notice of concurrent proceedings / decisions} & \multirow[t]{2}{*}{20150603_Notice_Related_Liti gation.pdf} & 19179 & \multirow[t]{2}{*}{no} & \multirow[t]{2}{*}{2} \\
\hline & & & fe7a75c16cb81 156e8a95462 1fb54db00ab & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{4} & \multirow[t]{2}{*}{Request for Continued Examination (RCE)} & \multirow{2}{*}{20150603_RCE1.pdf} & 191250 & \multirow{2}{*}{no} & \multirow{2}{*}{3} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{This is not a USPTO supplied RCE SB30 form.} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{5} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Chen_1994.pdf} & 1364493 & \multirow{2}{*}{no} & \multirow{2}{*}{7} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{6} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Amodio_JHepatol_2008.PDF} & 10178291 & \multirow{2}{*}{no} & \multirow{2}{*}{8} \\
\hline & & & e023c895552d47a9386de234659C25f7dd3
d 110 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 7 & Non Patent Literature & Bajaj_AlimentPharmacolTher_2 011.PDF & \begin{tabular}{c|}
525014 \\
\hline \begin{tabular}{c}
\(814310 a 71\) lbeco677ca94f33dd2a3740bof 150 \\
3629
\end{tabular} \\
\hline
\end{tabular} & no & 16 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 8 & Non Patent Literature & Blei_AmJGastroenterol_2001. PDF & \begin{tabular}{|c|}
\hline 227027 \\
\hline fc3b5ed203fad8fad26199330db53aodel 1554 \\
fedf
\end{tabular} & no & 9 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 9 & Non Patent Literature & Batshaw2001A.pdf & \begin{tabular}{|c|}
\hline 7711240 \\
\hline \begin{tabular}{c} 
f88 966befe6codootcef616041a 1963 ae82c3is \\
909
\end{tabular} \\
\hline
\end{tabular} & no & 10 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 10 & Non Patent Literature & Burlina2001A.pdf & \begin{tabular}{|c|}
\hline 3476217 \\
\hline \begin{tabular}{c}
51386 f3272578d900eftcic1dee48eeb7e24d44 \\
b162
\end{tabular} \\
\hline
\end{tabular} & no & 5 \\
\hline Warning & & & & & \\
\hline Informa & & & & & \\
\hline 11 & Non Patent Literature & Carducci_1996A.pdf & \begin{tabular}{|c|}
\hline 7645689 \\
\hline \begin{tabular}{c} 
b4eoffd 7 Pd2 \(284384 a b e 7 d f a 76\) fed \(08493 a 12\) \\
8336
\end{tabular} \\
\hline
\end{tabular} & no & 10 \\
\hline Warning & & & & & \\
\hline Informa & & & & & \\
\hline 12 & Non Patent Literature & Collins_1995A.pdf & \begin{tabular}{|c|}
\hline 6098184 \\
\hline \begin{tabular}{c} 
4bdad80cf82b744 1501c22e881 Idd 15fceffc \\
567
\end{tabular} \\
\hline
\end{tabular} & no & 8 \\
\hline Warning & & & & & \\
\hline Informa & & & & & \\
\hline 13 & Non Patent Literature & Conn_Gastroenterology_1977. PDF &  & no & 11 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 14 & Non Patent Literature & Cordoba_JHepatol_2011.PDF &  & no & 11 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{24} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Gilbert_2001A.pdf} & 8059098 & \multirow{2}{*}{no} & \multirow{2}{*}{10} \\
\hline & & & \(5 a 769918\) beaae 44500 e630488e9b9f0fbb2 0735c & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{25} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Gore_2001A.pdf} & 8586901 & \multirow{2}{*}{no} & \multirow{2}{*}{11} \\
\hline & & & theb004033a5811 ceff f9eae9e9497719d8f bc88 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{26} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Gropman_2007A.pdf} & 17152815 & \multirow{2}{*}{no} & \multirow{2}{*}{26} \\
\hline & & & \begin{tabular}{l}
1c0674d3fb3dda5de4d79fb4a6a53f1c9da2 \\
0859
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 27 & Non Patent Literature & Hassanein_AmJGastroenterol_ 2009A.pdf & \begin{tabular}{|c|}
\hline 211886 \\
\hline \begin{tabular}{c} 
0847 8721514 dd \(408069540664 a 3334 e b d b\) \\
44834
\end{tabular} \\
\hline
\end{tabular} & no & 9 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 28 & Non Patent Literature & Hassanein_DigDisSci_2008A. pdf & \begin{tabular}{c|}
22039102 \\
\hline \begin{tabular}{c}
207 cede7e5fb9495559504be5345dc5cobo \\
30290
\end{tabular} \\
\hline
\end{tabular} & no & 10 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 29 & Non Patent Literature & Hassanein_Hepatology_2007A. pdf & \begin{tabular}{|c|}
\hline 481035 \\
\hline \begin{tabular}{c} 
b7d7c14d4993dfi95b 13bffec7if01 1d9beo \\
b8lc
\end{tabular} \\
\hline
\end{tabular} & no & 10 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 30 & Non Patent Literature & Honda_2002A.pdf & \begin{tabular}{|c|}
\hline 2260511 \\
\hline \begin{tabular}{c} 
943208904a_5de712 fesfefeeae 1365 ede899 \\
854c
\end{tabular} \\
\hline
\end{tabular} & no & 3 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 31 & Non Patent Literature & Kleppe_2003A.pdf & \begin{tabular}{|c|}
\hline 7683625 \\
\hline \begin{tabular}{c} 
768f79f170elbee94c6d7b 1 bfol 1 15encficb 2 \\
d4a \\
\hline
\end{tabular} \\
\hline
\end{tabular} & no & 11 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 32 & Non Patent Literature & Kubota_1991A.pdf & \begin{tabular}{|c|}
\hline 4739877 \\
\hline \begin{tabular}{c} 
5a9fe8652f5899956970c379397bdbbabfi7 \\
cbbd
\end{tabular} \\
\hline
\end{tabular} & no & 6 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{33} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Lee_2001A.pdf} & 7977588 & \multirow{2}{*}{no} & \multirow{2}{*}{10} \\
\hline & & & \begin{tabular}{l}
d4c375f0e78bflela963e0a75be3378e46fe \\
707b
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{34} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Leonard_2002A.pdf} & 6155259 & \multirow{2}{*}{no} & \multirow{2}{*}{9} \\
\hline & & & fe3818002b44csfabab9544addbeff 20ccsdd 07dd & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{35} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Marini.pdf} & 261641 & \multirow{2}{*}{no} & \multirow{2}{*}{8} \\
\hline & & & b1ff13c289395c414fc8cf03c982805c8c4b6 ac 3 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{36} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{McGuire.pdf} & 78727 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & e30193fad22b15a835f23e8c5e30e4579f52 a396 & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 37 & Non Patent Literature & Monteleone_JClinPharmacol20 13.PDF &  & no & 19 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 38 & Non Patent Literature & Munoz_MedClinNAm_2008. PDF & \begin{tabular}{|c|}
\hline 1119379 \\
\hline 4e639a44462eb46674245cleeeda7499470 \\
5 af20
\end{tabular} & no & 18 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{39} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Matsuda1.pdf} & 3879029 & \multirow{2}{*}{no} & \multirow{2}{*}{6} \\
\hline & & & \[
\begin{array}{|c|}
\begin{array}{c}
941 \text { 1d02e7c895a92606ab43c56b0892elb } \\
\text { b2bc63 }
\end{array} \\
\hline
\end{array}
\] & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 40 & Non Patent Literature & MizutaniA.pdf &  & no & 9 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 41 & Non Patent Literature & Nassgone_2005A.pdf & \begin{tabular}{c|}
\hline 4906055 \\
\hline \begin{tabular}{c} 
C2b30a09a40fr69bd92946dfees bb2e2230 \\
6ddal
\end{tabular} \\
\hline
\end{tabular} & no & 8 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{42} & \multirow{2}{*}{Non Patent Literature} & \multirow{2}{*}{Newmark_1995A.pdf} & 6119917 & \multirow{2}{*}{no} & \multirow{2}{*}{7} \\
\hline & & & \begin{tabular}{l}
621a57f/1ba56d60820eab5248105b5eb29 \\
b88f3
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 43 & Non Patent Literature & Ortiz_AlimentPharmacolTher_2 007.PDF & \begin{tabular}{c|}
101842 \\
\hline \begin{tabular}{c}
\(91 b 014 c \mathrm{c} 1\) d855fficcee88e72a32139cc750c \\
a9b3
\end{tabular} \\
\hline
\end{tabular} & no & 9 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 44 & Non Patent Literature & Parsons-Smith_Lancet_1957. PDF & \begin{tabular}{c|}
8761025 \\
\hline \begin{tabular}{c} 
d778c2b6952ac9443ac22209727a3800bd2 \\
5002 \\
\hline
\end{tabular} \\
\hline
\end{tabular} & no & 5 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 45 & Non Patent Literature & SciDiscussionAmmonaps.pdf & \begin{tabular}{c|}
649610 \\
\hline becbdc52403acd6629fterifbca4395ffci9 \\
944 a
\end{tabular} & no & 12 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 46 & Non Patent Literature & Summar_2001.pdf & \begin{tabular}{c|}
391683 \\
\hline \begin{tabular}{c} 
Cca2bfbb \(69 \%\) cbby9ab6e2056645cccdl asbo \\
b164
\end{tabular} \\
\hline
\end{tabular} & no & 5 \\
\hline Warning & & & & & \\
\hline Informa & & & & & \\
\hline 47 & Non Patent Literature & Summar_2003.pdf & \begin{tabular}{c|}
748564 \\
\hline \begin{tabular}{c} 
8cae638daee9567ebb8fectcd5dc85bb8d7ff \\
5boc
\end{tabular} \\
\hline
\end{tabular} & no & 15 \\
\hline Warning & & & & & \\
\hline Informa & & & & & \\
\hline 48 & Non Patent Literature & Summar_2005A.pdf &  & no & 8 \\
\hline Warning & & & & & \\
\hline Informa & & & & & \\
\hline 49 & Non Patent Literature & Todo_1992A.pdf & \begin{tabular}{|c|}
\hline 3354072 \\
\hline \begin{tabular}{c} 
91dddof 4901 b7a36bdd2912866239663544f \\
oodeb
\end{tabular} \\
\hline
\end{tabular} & no & 4 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 50 & Non Patent Literature & Tuchman_1999A.pdf & \begin{tabular}{c|}
4086742 \\
\hline \begin{tabular}{c} 
31 Idd4eod 7456e2dad5552bd771 83cf9b86 \\
af90c
\end{tabular} \\
\hline
\end{tabular} & no & 6 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 51 & Non Patent Literature & PCTUS1458489_SearchReporta ndWrittenOpinion.PDF & \begin{tabular}{c}
21732609 \\
\hline \begin{tabular}{c} 
010baa4a006449bbccof7486278da07cdfo \\
f40c
\end{tabular} \\
\hline
\end{tabular} & no & 9 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 52 & Non Patent Literature & Vilstrup_Hepatology_2014.PDF & \begin{tabular}{c}
259254 \\
\begin{tabular}{c} 
5f885958a89ed48b9455a354ad881 c5bed8 \\
c1dc9
\end{tabular} \\
\hline
\end{tabular} & no & 21 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 53 & Non Patent Literature & Welbourne_1972A.pdf & \begin{tabular}{|c|}
\hline 7410168 \\
\hline \begin{tabular}{c}
\(435 f\) çd66129c96430b708072119310a26aee \\
4049
\end{tabular} \\
\hline
\end{tabular} & no & 9 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 54 & Non Patent Literature & Wright_1995A.pdf & \begin{tabular}{c|}
6807016 \\
\hline \begin{tabular}{c} 
5e945e44c la733 1 es5209ddc27cd855 5 aesd \\
8e548
\end{tabular} \\
\hline
\end{tabular} & no & 9 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 55 & Non Patent Literature & Wright_2011B.pdf & \begin{tabular}{c}
9355737 \\
\hline 1375adfd015b5ebdf5a67baaddd8a93904ac \\
e523f
\end{tabular} & no & 11 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 56 & Non Patent Literature & Yu_2010A.pdf & \begin{tabular}{c|}
2574203 \\
\hline 5e7b8cd944e2b808baecla88f00e7dd403do \\
9653 af
\end{tabular} & no & 3 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline 57 & Information Disclosure Statement (IDS) Form (SB08) & 20150603_IDS.pdf & \begin{tabular}{c|}
125394 \\
\hline 23d72473b 1d6a4b08b92co9off12d2f9720 \\
223ff
\end{tabular} & no & 10 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{6}{|l|}{This is not an USPTO supplied IDS fillable form} \\
\hline 58 & Fee Worksheet (SB06) & fee-info.pdf & \begin{tabular}{c|}
30594 \\
\hline \begin{tabular}{c} 
Od5e0e8b9394483e9feaetecta77f616e882 \\
\(28 c a\) \\
\hline
\end{tabular} \\
\hline
\end{tabular} & no & 2 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{3}{|c|}{283107698} \\
\hline
\end{tabular}

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

\section*{New Applications Under 35 U.S.C. 111}

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.
\begin{tabular}{ll} 
Applicant: & Bruce Scharschmidt et al. \\
Title: & \begin{tabular}{l} 
METHODS OF THERAPEUTIC MONITORING OF NITROGEN \\
SCAVENGING DRUGS
\end{tabular} \\
Appl. No.: & 13/775,000 \\
Filing Date: & February 22, 2013 \\
Examiner: & Savitha M. Rao \\
Art Unit: & 1621 \\
\begin{tabular}{ll} 
Confirmation \\
Number:
\end{tabular} & 7929
\end{tabular}

\section*{AMENDMENT}

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Commissioner:

Applicant respectfully requests that the application be amended as follows:
Amendments to the Claims are reflected in the listing of claims which begins on page 2 of this document.

Remarks/Arguments follow the amendments to the claims.

Please amend the application as follows:

\section*{Amendments to the Claims:}

This listing of claims will replace all prior versions, and listings, of claims in the application:

\section*{Listing of Claims:}
1. (Currently Amended) A method for adjusting the dosage of glyceryl tri-[4-
phenylbutyrate] in a subject being treated for a urea cycle disorder who has previously been administered an initial dosage of glyceryl tri-[4-phenylbutyrate] and who has a fasting plasma ammonia level less than the upper limit of normal for plasma ammonia level, the method comprising:
(a) measuring a fasting plasma ammonia level for the subject;
(b) comparing the fasting plasma ammonia level to the upper limit of normal for plasma ammonia level; and
(c) administering an adjusted dosage of glyceryl tri-[4-phenylbutyrate], wherein the adjusted dosage is greater than the initial dosage if the fasting plasma ammonia level is greater than half the upper limit of normal for plasma ammonia level.
2. (Currently Amended) A method of treating a subject with a urea cycle disorder who has previously been administered an initial dosage of glyceryl tri-[4-phenylbutyrate] and who has a fasting plasma ammonia level less than the upper limit of normal for plasma ammonia level, the method comprising:
(a) measuring a fasting plasma ammonia level for the subject;
(b) comparing the fasting plasma ammonia level to the upper limit of normal for plasma ammonia level; and
(c) administering an adjusted dosage of glyceryl tri-[4-phenylbutyrate] that is greater than the initial dosage if the fasting plasma ammonia level is greater than half the upper limit of normal for plasma ammonia level.
3. (Currently Amended) A method of administering glyceryl tri-[4-phenylbutyrate] to a subject having a urea cycle disorder, the method comprising:
(a) measuring a first fasting plasma ammonia level for the subject;
(b) comparing the first fasting plasma ammonia level to the upper limit of normal for plasma ammonia level; and
(c) administering an initial dosage of glyceryl tri-[4-phenylbutyrate] to the subject if the fasting plasma ammonia level is greater than half the upper limit of normal for plasma ammonia level and less than the upper limit of normal for plasma ammonia level.
4. (original) The method of claim 1 or 2, wherein administering the adjusted dosage of glyceryl tri-[4-phenylbutyrate] produces a normal average daily ammonia level in the subject.
5. (Currently Amended) The method of claim \(\underline{4}\) [[1 or 2]], further comprising repeating steps (a) to (c) until the subject exhibits a fasting plasma ammonia level at or below half the upper limit of normal for plasma ammonia level.
6. (Currently Amended) The method of claim 3, further comprising:
(d) measuring a second fasting plasma ammonia level for the subject;
(e) comparing the second fasting plasma ammonia level to the upper limit of normal for plasma ammonia level; and
(f) administering an adjusted dosage of glyceryl tri-[ 4-phenylbutyrate] that is greater than the initial dosage if the second fasting plasma ammonia level is greater than half the upper limit of normal for plasma ammonia level and less than the upper limit of normal for plasma ammonia level.
7. (original) The method of any of claims 1-3, wherein the upper limit of normal for plasma ammonia level is \(35 \mu \mathrm{~mol} / \mathrm{L}\).
8. (original) The method of any of claims 1-3, wherein the upper limit of normal is specific to the laboratory in which the fasting plasma ammonia level is measured.
9. (original) The method of any of claims 1-3, further comprising the step of determining an upper limit of normal for plasma ammonia level for the subject prior to step (b).
10. (original) The method of claim 1 or 2 , wherein the adjusted dosage is calculated by:
(i) measuring urinary phenylacetyl glutamine (P AGN) output; and
(ii) calculating an effective adjusted dosage of glyceryl tri-[4-phenylbutyrate] based on the urinary P AGN output, wherein the effective adjusted dosage is calculated based on a mean conversion of glyceryl tri-[ 4-phenylbutyrate] to urinary PAGN of 60 to \(75 \%\).
11. (original) The method of claim 3, wherein the initial dosage is calculated by:
(i) determining a target urinary phenylacetyl glutamine (P AGN) output; and (ii) calculating an effective initial dosage of glyceryl tri-[4-phenylbutyrate] based on a mean conversion of glyceryl tri-[ 4-phenylbutyrate] to urinary PAGN of 60 to \(75 \%\).
12. (new) The method of claim 1, wherein the adjusted dosage of glyceryl tri-[4phenylbutyrate] is administered orally.
13. (new) The method of claim 2, wherein the adjusted dosage of glyceryl tri-[4phenylbutyrate] is administered orally.
14. (new) The method of claim 3, wherein the initial dosage of glyceryl tri-[4phenylbutyrate] is administered orally.
15. (new) The method of claim 6, wherein the adjusted dosage of glyceryl tri-[4phenylbutyrate] is administered orally.

\section*{REMARKS}

With entry of this amendment, claims 1-15 are pending. Certain of the claims have been amended to specify that the fasting plasma ammonia level is greater than half the upper limit of normal for plasma ammonia level and less than the upper limit of normal for plasma ammonia level or that the subject with a urea cycle disorder has previously been administered an initial dosage of glyceryl tri-[4-phenylbutyrate] and has a fasting plasma ammonia level less than the upper limit of normal for plasma ammonia level. In addition, claims 12-15, which recite oral administration, have been added. Support for those amendments can be found throughout the specification, e.g., at [0080].

Applicants believe that the present application is now in condition for allowance. Favorable consideration of the application as amended is respectfully requested.

The Examiner is invited to contact the undersigned by telephone or email, if it is felt that an interview would advance the prosecution of the present application.

Respectfully submitted,

By /Lauren L. STEVENS/
Lauren L. Stevens
Attorney for Applicant
Registration No. 36,691 1stevens@globalpatentgroup.com

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
}

Applicant: Bruce Scharschmidt et al.
Title: METHODS OF THERAPEUTIC MONITORING OF NITROGEN SCAVENGING DRUGS

Appl. No.: 13/775,000
Filing Date: February 22, 2013
Examiner: Savitha M. Rao

Art Unit: 1621
Confirmation 7929
Number:

\section*{INFORMATION DISCLOSURE STATEMENT}

UNDER 37 CFR §1.56

\section*{Mail Stop Missing Parts}

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Commissioner:
Applicants submit herewith documents for the Examiner's consideration in accordance with 37 C.F.R. §§ 1.56, 1.97 and 1.98.

Applicants respectfully request that each listed document be considered by the Examiner and be made of record in the present application and that an initialed copy of Form PTO/SB/08 be returned in accordance with MPEP § 609.

Applicant requests that, in accordance with 37 CFR §1.98(d), the Examiner review all applications relied on for an earlier effective filing date under 35 U.S.C. 120, including application no. 13/417,137, filed 03/09/2012; for copies of references of
record therein that are not being provided here; although Applicant would be pleased to provide copies of any such documents at the Examiner's request.

The submission of any document herein is not admission that such document constitutes prior art against the claims of the present application or that such document is considered material to patentability as defined in 37 C.F.R. § 1.56(b). Applicants do not waive any rights to take any action which would be appropriate to antedate or otherwise remove as a competent reference any document submitted herewith.

The Commissioner is hereby authorized to charge any fees which may be due to Deposit Account No. 50-4297.

Respectfully submitted,

> By /Lauren L. STEVENS/

Lauren L. Stevens Attorney for Applicant
Registration No. 36,691

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
}

Applicant: Bruce Scharschmidt, et al.

\section*{Title: METHODS OF THERAPEUTIC MONITORING OF NITROGEN SCAVENGING DRUGS}

Appl. No.: 13/775000

Filing Date: 02-22-2013
Examiner: Savitha M. Rao
Art Unit: 1621
Confirmation 7929
Number:

\section*{NOTICE OF RELATED LITIGATION}

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Applicant hereby notifies the U.S. Patent and Trademark Office that the subject matter of the present application is involved in litigation in the United States.

Specifically, Par Pharmaceutical, Inc. ("Par") sent a PIV notice letter to Hyperion Therapeutics, Inc. ("Hyperion") on March 12, 2014 providing notice that Par had filed an Abbreviated New Drug Application ("ANDA") with respect to RAVICTI \({ }^{\oplus}\) (Glycerol Phenylbutyrate) Oral Liquid, with a certification under 21 U.S.C. § 355(j)(2)(A)(vii)(IV) ("Paragraph IV") alleging that U.S. Patent Nos. 8,404,215 and 8,642,012 are invalid, unenforceable and/or will not be infringed by the commercial manufacture, use or sale of the Watson drug product.

Under 21 U.S.C. § \(355(\mathrm{j})(5)(\mathrm{B})\) (iii), Hyperion had forty-five days from receipt of the ANDA notice letter to file suit against Watson for patent infringement. Accordingly, on April 23, 2014, Hyperion brought suit on those patents against Par in the United

States District Court for the Eastern District of Texas, Marshall Division. The Complaint alleged that Par infringes U.S. Patent Nos. 8,404,215 and 8,642,012. Subsequently, in May of 2015, Horizon Pharma plc ("Horizon") acquired Hyperion Therapeutics, Inc. through a merger. The subject application is a divisional of U.S. Patent No. 8,404,215. The Complaint is provided with an SB-08 filed concurrently herewith.

Respectfully submitted,

\section*{By /Lauren L. STEVENS/}

Lauren L. Stevens Attorney for Applicant Registration No. 36,691 (650) 387-3813


This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Document code: WFEE
United States Patent and Trademark Office Sales Receipt for Accounting Date: 06/08/2015

LHUMES SALE \#00000002 Mailroom Dt: 06/05/2015 50429713775000 01 FC : 2202 160.00 DA

\title{
NOTICE OF ALLOWANCE AND FEE(S) DUE
}

\author{
\({ }^{101325} \stackrel{7590}{\text { 06/18/2015 }}\) \\ GLOBAL PATENT GROUP - HOR \\ 1005 NORTH WARSON ROAD \\ SUITE 404 \\ SAINT LOUIS, MO 63132
}
\begin{tabular}{|c|}
\hline EXAMINER \\
RAO, SAVITHA M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ART UNIT & PAPER NUMBER \\
\hline 1621 \\
DATE MAILED: \(06 / 18 / 2015\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \(13 / 775,000\) & \(02 / 22 / 2013\) & Bruce Scharschmidt & HORO026-201D1-US \\
\hline
\end{tabular}

TITLE OF INVENTION: METHODS OF THERAPEUTIC MONITORING OF NITROGEN SCAVENGING DRUGS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & ENTITY STATUS & ISSUE FEE DUE & PUBLICATION FEE DUE & PREV. PAID ISSUE FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & SMALL & \(\$ 480\) & \(\$ 0\) & \(\$ 0\) & \(\$ 480\) & \(09 / 18 / 2015\)
\end{tabular}

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.
THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

\section*{HOW TO REPLY TO THIS NOTICE:}
I. Review the ENTITY STATUS shown above. If the ENTITY STATUS is shown as SMALL or MICRO, verify whether entitlement to that entity status still applies.
If the ENTITY STATUS is the same as shown above, pay the TOTAL FEE(S) DUE shown above.
If the ENTITY STATUS is changed from that shown above, on PART B - FEE(S) TRANSMITTAL, complete section number 5 titled "Change in Entity Status (from status indicated above)".
For purposes of this notice, small entity fees are \(1 / 2\) the amount of undiscounted fees, and micro entity fees are \(1 / 2\) the amount of small entity fees.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section "4b" of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

\section*{PART B - FEE(S) TRANSMITTAL}

\section*{Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE \\ Commissioner for Patents P.O. Box 1450 \\ Alexandria, Virginia 22313-1450 \\ or Fax (571)-273-2885}

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

\section*{Certificate of Mailing or Transmission}

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

\author{
GLOBAL PATENT GROUP - HOR \\ 1005 NORTH WARSON ROAD \\ SUITE 404 \\ SAINT LOUIS, MO 63132
}
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \(13 / 775,000\) & \(02 / 22 / 2013\) & Bruce Scharschmidt & HOR0026-201D1-US \\
\hline
\end{tabular}

TITLE OF INVENTION: METHODS OF THERAPEUTIC MONITORING OF NITROGEN SCAVENGING DRUGS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & ENTITY STATUS & ISSUE FEE DUE & PUBLICATION FEE DUE & PREV. PAID ISSUE FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & SMALL & \$480 & \$0 & \$0 & \$480 & 09/18/2015 \\
\hline & & ART UNIT & CLASS-SUBCLASS & & & \\
\hline RAO, & ННА M & 1621 & 424-009200 & & & \\
\hline \multicolumn{3}{|l|}{1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363).
\(\square\) Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached.} & \multicolumn{2}{|l|}{(2) The name of a single firm (having as a member a registered attorney or agent) and the names of up to 2 registered patent attorneys or agents. If no name is listed, no name will be printed.} & \begin{tabular}{cc} 
& 1 \\
a & 2 \\
to & \\
is & 3
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)}

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : \(\quad \square\) Individual \(\square\) Corporation or other private group entity \(\quad \square\) Government
\begin{tabular}{ll} 
4a. The following fee(s) are submitted: & 4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) \\
\(\square\) Issue Fee & \(\square\) A check is enclosed. \\
\(\square\) Publication Fee (No small entity discount permitted) & \(\square\) Payment by credit card. Form PTO-2038 is attached. \\
\(\square\) Advance Order - \# of Copies & \begin{tabular}{l} 
The director is hereby authorized to charge the required fees(s), any deficiency, or credits any \\
overpayment, to Deposit Account Number
\end{tabular}
\end{tabular}
5. Change in Entity Status (from status indicated above)

Applicant certifying micro entity status. See 37 CFR 1.29Applicant asserting small entity status. See 37 CFR 1.27
\(\square\) Applicant changing to regular undiscounted fee status.

NOTE: Absent a valid certification of Micro Entity Status (see forms PTO/SB/15A and 15B), issue fee payment in the micro entity amount will not be accepted at the risk of application abandonment
NOTE: If the application was previously under micro entity status, checking this box will be taken to be a notification of loss of entitlement to micro entity status.
NOTE: Checking this box will be taken to be a notification of loss of entitlement to small or micro entity status, as applicable.

NOTE: This form must be signed in accordance with 37 CFR 1.31 and 1.33 . See 37 CFR 1.4 for signature requirements and certifications
\begin{tabular}{ll} 
Authorized Signature & Date \\
Typed or printed name & Registration No. \(\quad\) _
\end{tabular}

Page 2 of 3
PTOL-85 Part B (10-13) Approved for use through 10/31/2013.
OMB 0651-0033 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

United States Patent and Trademark Office


Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(Applications filed on or after May 29, 2000)
The Office has discontinued providing a Patent Term Adjustment (PTA) calculation with the Notice of Allowance.
Section 1(h)(2) of the AIA Technical Corrections Act amended 35 U.S.C. 154(b)(3)(B)(i) to eliminate the requirement that the Office provide a patent term adjustment determination with the notice of allowance. See Revisions to Patent Term Adjustment, 78 Fed. Reg. 19416, 19417 (Apr. 1, 2013). Therefore, the Office is no longer providing an initial patent term adjustment determination with the notice of allowance. The Office will continue to provide a patent term adjustment determination with the Issue Notification Letter that is mailed to applicant approximately three weeks prior to the issue date of the patent, and will include the patent term adjustment on the patent. Any request for reconsideration of the patent term adjustment determination (or reinstatement of patent term adjustment) should follow the process outlined in 37 CFR 1.705.

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

\section*{OMB Clearance and PRA Burden Statement for PTOL-85 Part B}

The Paperwork Reduction Act (PRA) of 1995 requires Federal agencies to obtain Office of Management and Budget approval before requesting most types of information from the public. When OMB approves an agency request to collect information from the public, OMB (i) provides a valid OMB Control Number and expiration date for the agency to display on the instrument that will be used to collect the information and (ii) requires the agency to inform the public about the OMB Control Number's legal significance in accordance with 5 CFR 1320.5(b).

The information collected by PTOL-85 Part B is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. \(552 \mathrm{a}(\mathrm{m})\).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review ( 35 U.S.C. 181) and for review pursuant to the Atomic Energy Act ( 42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.
\begin{tabular}{|l|l|l|l|}
\hline \multirow{4}{*}{ Notice of Allowability } & \multicolumn{2}{|l|}{ Application No. } & \multicolumn{2}{|l|}{ Applicant(s) } \\
\cline { 2 - 4 } & \(13 / 775,000\) & \multicolumn{2}{l|}{ SCHARSCHMIDT ET AL. } \\
\cline { 2 - 4 } & Examiner & Art Unit & \\
& SAVITHA RAO & 1621 & \\
\hline
\end{tabular}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.
1. \(\boxtimes\) This communication is responsive to \(\underline{06 / 05 / 2015}\).
2. \(\square\)

An election was made by the applicant in response to a restriction requirement set forth during the interview on \(\qquad\) ; the restriction requirement and election have been incorporated into this action
3. \(\boxtimes\) The allowed claim(s) is/are 1-15. As a result of the allowed claim(s), you may be eligible to benefit from the Patent Prosecution Highway program at a participating intellectual property office for the corresponding application. For more information, please see http//www.uspto.gov/patents/init events/pph/index.isp or send an inquiry to PPHfeedback@uspto.gov.
4.
\(\square\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)
All
b)Some*None of the:Certified copies of the priority documents have been received.Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3. Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
* Certified copies not received: \(\qquad\) —.
Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.

\section*{THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.}
5.
\(\square\) CORRECTED DRAWINGS ( as "replacement sheets") must be submitted.
including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \(\qquad\)
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).
6.
\(\square\) DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

\section*{Attachment(s)}
1. \(\square\) Notice of References Cited (PTO-892)
5. \(\square\) Examiner's Amendment/Comment
2. \(\boxtimes\) Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date 06/05/2015
3.Examiner's Comment Regarding Requirement for Deposit of Biological Material
4.Interview Summary (PTO-413), Paper No./Mail Date \(\qquad\) -.
/SAVITHA RAO/
Primary Examiner, Art Unit 1621

The present application is being examined under the pre-AIA first to invent provisions.

\section*{DETAILED ACTION}

Claims 1-15 are pending in the instant application.

A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 06/05/2015 has been entered.

Applicants amended claim 1 to include the limitation "who has a fasting plasma ammonia level less than the upper limit of normal for plasma ammonia level", and amended claim 2 to include the limitation " and less than the upper limit of normal for plasma ammonia level". Applicants also added new claims 12-15 which are all dependent on previously allowed claims and does not add any new limitations. No new matter is added.

\section*{Information Disclosure Statement}

Receipt is acknowledged of the Information Disclosure Statement filed 06/05/2015 The Examiner has considered the reference cited therein to the extent that each is a proper citation. Please see the attached USPTO Form 1449.

The information disclosure statement filed 06/05/2015 fails to comply with the provisions of 37 CFR 1.97, 1.98 and MPEP § 609 because citations D45, D46 and D93 on the IDS (which has been lined out in 1449 form) does not contain a date of publication and therefore is not a proper citation in accordance with MPEP 609. It has been placed in the application file, but the information referred to therein has not been considered as to the merits. Applicant is advised that the date of any re-submission of any item of information contained in this information disclosure statement or the submission of any missing element(s) will be the date of submission for purposes of determining compliance with the requirements based on the time of filing the statement, including all certification requirements for statements under 37 CFR 1.97(e). See MPEP § 609.05(a).

\section*{REASONS FOR ALLOWANCE}

Applicants have filed a petition to withdraw this application from issue and filed an RCE so that the newly filed IDS dated 06/05/2015 and the claim amendments as recited above are considered.

Examiner has reviewed the amended claims and the new claims 12-15 and has determined that these claims does not add any limitations which would change the scope of the claims. The amendments to claims 1 and 2 further narrows the claim scope and claims 12-15 are dependent on previously allowed claims which are now determined by the examiner to be allowable

Examiner has reviewed the submitted IDS and its contents and has determined that the cited references do not teach nor provide adequate motivation to arrive at the instantly claimed methods. In lieu of a diligent search conducted during the time of the issuance of this application 05/20/2015 and searches updated at this time, the instant claims including the new claims are seen to be novel and non-obvious over the teachings of the prior art

Following a diligent search it was determined that the prior art neither teaches nor provides adequate motivation to arrive at the instantly claimed method A method for adjusting the dosage of glyceryl tri-[4- phenylbutyrate] in a subject being treated for a urea cycle disorder who has previously been administered an initial dosage of glyceryl tri-[4-phenylbutyrate] and who has a fasting plasma ammonia level less than the upper limit of normal for plasma ammonia level, the method comprising: (a) measuring a fasting plasma ammonia level for the subject; (b) comparing the fasting plasma ammonia level to the upper limit of normal for plasma ammonia level; and (c) administering an adjusted dosage of glyceryl tri-[4-phenylbutyrate], wherein the adjusted dosage is greater than the initial dosage if the fasting plasma ammonia level is greater than half the upper limit of normal for plasma ammonia level,.

\section*{Conclusion}

Claims 1-15 are allowed.
Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably
accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Any inquiry concerning this communication or earlier communications from the examiner should be directed to SAVITHA RAO whose telephone number is (571)2705315. The examiner can normally be reached on Mon-Fri 7.00 am to 4.00 pm .

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Melanie McCormick can be reached at 571-272-8037. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.
/SAVITHA RAO/
Primary Examiner, Art Unit 1621
\begin{tabular}{|c|c|c|}
\hline Search Notes & Application/Control No.
\[
13775000
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
SCHARSCHMIDT ET AL.
\end{tabular} \\
\hline  & \begin{tabular}{l}
Examiner \\
SAVITHA RAO
\end{tabular} & Art Unit
\[
1621
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ CPC- SEARCHED } \\
\hline Symbol & Date & Examiner \\
\hline A61K31/216 OR G01N31/221 OR Y10T436/175383 & \(5 / 14 / 2015\) & SR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline CPC COMBINATION SETS - SEARCHED \\
\hline Symbol & Date & Examiner \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{6}{|c|}{ US CLASSIFICATION SEARCHED } \\
\multicolumn{7}{|c|}{} \\
\hline Class & Subclass & Date & Examiner \\
\hline 424 & 9.2 & \(5 / 14 / 2015\) & SR \\
\hline 514 & \(432,433,544,570,533\) & \(5 / 14 / 2015\) & SR \\
\hline 436 & 4,113 & \(5 / 14 / 2015\) & SR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SEARCH NOTES} \\
\hline Search Notes & Date & Examiner \\
\hline eaST search (See attached) & 12/21/2014 & SR \\
\hline Inventor search in EAST and PALM & 12/21/2014 & SR \\
\hline Reviewed STN searches from the Parent application, further NPL search in Google & 12/21/2014 & SR \\
\hline updated EAST search (See attached) & 5/14/2015 & SR \\
\hline updated inventor search in EAST & 5/14/2015 & SR \\
\hline updated NPL and STN search & 5/14/2015 & SR \\
\hline updated EAST search (See attached) & 6/11/2015 & SR \\
\hline updated inventor search in EAST & 6/11/2015 & SR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{INTERFERENCE SEARCH} \\
\hline US Class/ CPC Symbol & & US Subclass / CPC Group & Date & Examiner \\
\hline A61K & 31/216 & & 5/14/2015 & SR \\
\hline G01N & 31/221 & & 5/14/2015 & SR \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
SAVITHA RAO/ \\
Primary Examiner.Art Unit 1621
\end{tabular} \\
\hline
\end{tabular}

INTERFERENCE SEARCH
\begin{tabular}{|l|l|r|l|}
\hline \begin{tabular}{c} 
US Class/ \\
CPC Symbol
\end{tabular} & \multicolumn{1}{|c|}{ US Subclass /CPC Group } & Date & Examiner \\
\hline Y 10 T & \(436 / 175383\) & \(5 / 14 / 2015\) & SR \\
\hline 424 & 9.2 & \(5 / 14 / 2015\) & SR \\
\hline 514 & \(533,432,433,544,570\) & \(5 / 14 / 2015\) & SR \\
\hline 435 & 4,113 & \(5 / 14 / 2015\) & SR \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
SAVITHA RAO/ \\
Primary Examiner.Art Unit 1621
\end{tabular} \\
\hline
\end{tabular}

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{\multirow[t]{3}{*}{Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Application Number & 13/775000 \\
\hline & & & & Filing Date & 02-22-2013 \\
\hline \multicolumn{4}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Date Submitted: March 12, 2012 \\
(use as many sheets as necessary)
\end{tabular}}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & & Art Unit & 1621 \\
\hline & & & & Examiner Name & Savitha M. Rao \\
\hline Sheet & 1 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{U.S. PATENT DOCUMENTS} \\
\hline \multirow[t]{2}{*}{Exami ner Initials} & \multirow[t]{2}{*}{\begin{tabular}{l}
Cite \\
No.
\end{tabular}} & Document Number & \multirow[b]{2}{*}{Publication Date MM-DD-YYYY} & & Pages, Columns, \\
\hline & & Number-Kind Code \({ }^{2}\) (if known) & & Applicant of Cited Document & Passages or Relevant Figures Appear \\
\hline & P1 & 4,457,942 & 07-03-1984 & Brusilow, S.W. & \\
\hline & P2 & 5,654,333 & 08-05-1997 & The United States Of America As Represented By The Department Of Health And Human Services & \\
\hline & P3 & 8,094,521 & 01-10-2012 & Nightengale Products LLC & \\
\hline & P4 & 8,404,215 & 03-26-2013 & Hyperion Therapeutics, Inc. & \\
\hline & P5 & 2003/0195255 & 10-16-2003 & Marshall L. Summar & \\
\hline & P6 & 2005/0273359 & 12-08-2005 & Young, D.E. & \\
\hline & P7 & 2010/0016207 & 01-21-2010 & Wurtman, RJ et al & \\
\hline & P8 & 2013/0281530 & 10-24-2013 & Scharschmidt, B et al & \\
\hline & P9 & 2014/0142186 & 05-22-2014 & Hyperion Therapeutics, Inc. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{FOREIGN PATENT DOCUMENTS} \\
\hline \multirow[b]{2}{*}{Exami ner Initials*} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Cite } \\
& \text { No. }{ }^{1}
\end{aligned}
\]} & Foreign Patent Document & \multirow[b]{2}{*}{Publication Date MM-DD-YYYY} & \multirow[b]{2}{*}{Name of Patentee or Applicant of Cited Documents} & \multirow[t]{2}{*}{Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear} & \multirow[b]{2}{*}{\(T^{6}\)} \\
\hline & & Country Code \({ }^{3-}\) Number \({ }^{4}\)-Kind Code \({ }^{5}\) (if known) & & & & \\
\hline & F1 & WO1994/22494 & 10-13-1994 & The DuPont Merck Pharmaceutical Company & & \\
\hline & F2 & WO2013/048558 & 04-04-2013 & Hyperion Therapeutics, Inc. & & \\
\hline & F3 & WO2013/158145 & 10-24-2013 & Hyperion Therapeutics, Inc. & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner \\
Signature
\end{tabular}\(\quad\)\begin{tabular}{l} 
Date \\
Considered
\end{tabular}\(\quad\)\begin{tabular}{l} 
\\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Gommissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline \[
\begin{aligned}
& \text { Exami } \\
& \text { ner } \\
& \text { Initials* }
\end{aligned}
\] & Cite No. \({ }^{1}\) & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D1 & AMODIO, P., et al., "Detection of Minimal Hepatic Encephalopathy: Normalization and Optimization of the Psychometric Hepatic Encephalopathy Score. A Neuropsychological and Quantified EEG Study," J. Hepatol. 49:346-353 (2008). & \\
\hline & D2 & ANDA Notice Letter, Par Pharmaceutical, Inc. to Hyperion Therapeutics, inc.. Re: Glycerol Pheny|butyrate \(1.1 \mathrm{gm} / \mathrm{ml}\) oral liquid; United States Patent Nos. 8,404,215 and 8,642,012 Notice of Paragraph IV Certification March 12, 2014. & \\
\hline & D3 & BAJAJ, J. S., et al., "Review Article: The Design of Clinical Trials in Hepatic Encephalopathy -An International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) Consensus Statement," Aliment Pharmacol Ther. 33 (7):739-747 (2011). & \\
\hline & D4 & Barsotti, Measurement of Ammonia in Blood, 138 J. Pediatrics, S11-S20 (2001) & \\
\hline & D5 & Batshaw, et al., Treatment of Carbamyl Phosphate Synthetase Deficiency with Keto Analogues of Essential Amino Acids, 292 The New England J. Medicine, 1085■90 (1975) & \\
\hline & D6 & Batshaw, M. L. et. al., Alternative Pathway Therapy for Urea Cycle Disorder: Twenty Years Later, 138 J . Pediatrics S46 (2001). & \\
\hline & D7 & Blau, Duran, Blaskovics, Gibson (editors), Physician's Guide to the Laboratory Diagnosis of Metabolic Diseases, 261-276 (2d ed. 1996) & \\
\hline & D8 & BLEI, A. T., et al., "Hepatic Encephalopathy," Am. J. Gastroenterol. 96(7):1968-1976 (2001). & \\
\hline & D9 & Burlina, A.B. et al., Long-Term Treatment with Sodium Phenylbutyrate in Ornithine Transcarbamylase-Deficient Patients, 72 Molecular Genetics and Metabolism 351-355 (2001). & \\
\hline & D10 & Carducci, M., Phenylbutyrate Induces Apoptosis in Human Prostate Cancer and Is More Potent Than Phenylacetate, 2 Clinical Cancer Research 379 (1996). & \\
\hline & D11 & Carducci, M.A. et al., A Phase I Clinical and Pharmacological Evaluation of Sodium Phenylbutyrate on an 120-h Infusion Schedule, 7 Clin. Cancer Res. 3047 (2001). & \\
\hline & D12 & Center for Drug Evaluation and Research, Clinical Pharmacology and Biopharmaceutics Review for New Drug Application No. 20-645 (Ammonul(B)) (2005). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner \\
Signature
\end{tabular}\(\quad\)\begin{tabular}{l} 
Date \\
Considered
\end{tabular}\(\quad\)\begin{tabular}{l} 
\\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto gov or MPEP 901.04 . 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Gommissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|}
\hline & /PTO & & plete if Known \\
\hline & OSURE & Application Number & 13/775000 \\
\hline & LICANT & Filing Date & 02-22-2013 \\
\hline & 2012 & First Named Inventor & Bruce Scharschmidt \\
\hline & & Art Unit & 1621 \\
\hline (use & necessary) & Examiner Name & Savitha M. Rao \\
\hline 3 & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline \[
\begin{array}{|l|}
\hline \text { Exami } \\
\text { ner } \\
\text { Initials* }
\end{array}
\] & \begin{tabular}{l}
Cite \\
No. \({ }^{1}\)
\end{tabular} & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D13 & Center for Drug Evaluation and Research, Labeling for New Drug Application No. 20-645 (Ammonul(2)) (2005). & \\
\hline & D14 & Center for Drug Evaluation and Research, Medical Review for New Drug Application No. 20-645 (Ammonul(9)) (2005). & \\
\hline & D15 & Chen, Z. et al., Tributyrin: A Prodrug of Butyric Acid for Potential Clinical Application in Differentiation Therapy, 54 Cancer Research 3494 (1994). & \\
\hline & D16 & Clay, A. et. al, Hyperammonemia in the ICU, 132 Chest 1368 (2007). & \\
\hline & D17 & Collins, A.F. et al., Oral Sodium Phenylbutyrate Therapy in Homozygous Beta Thalassemia: A Clinical Trial, 85 Blood 43 (1995). & \\
\hline & D18 & CONN, H. O., et al., "Liver Physiology and Disease: Comparison of Lactulose and Neomycin in the Treatment of Chronic Portal-Systemic Encephalopathy. A Double Blind Controlled Trial," Gastroenterology 72(4):573-583 (1977). & \\
\hline & D19 & CORDOBA, J., "New Assessment of Hepatic Encephalopathy," Journal of Hepatology 54: 10301040 (2011). & \\
\hline & D20 & Darmaun, D. et al., Phenylbutyrate-Induced Glutamine Depletion in Humans: Effect on Leucine Metabolism, 5 Am. J. of Physiology: Endocrinology and Metabolism E801 (1998). & \\
\hline & D21 & DIAZ, G. A., et al., "Ammonia Control and Neurocognitive Outcome Among Urea Cycle Disorder Patients Treated with Glycerol Phenylbutyrate," Hepatology 57(6):2171-2179 (2013). & \\
\hline & D22 & Dixon, M. A. and Leonard, J.V., Intercurrent Illness in Inborn Errors of Intermediary Metabolism, 67 Archives of Disease in Childhood 1387 (1992). & \\
\hline & D23 & Dover, G. et al, Induction of Fetal Hemoglobin Production in Subjects with Sickle Cell Anemia by Oral Sodium Phenylbutyrate, 54 Cancer Research 3494 (1994). & \\
\hline & D24 & Endo, F. et al., Clinical Manifestations of Inborn Errors of the Urea Cycle and Related Metabolic Disorders During Childhood, 134 J. Nutrition 1605S (2004). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner & & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline Signature & & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Gommissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & Application Number & 13/775000 \\
\hline & & & Filing Date & 02-22-2013 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Date Submitted: March 12, 2012 \\
(use as many sheets as necessary)
\end{tabular}}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & Art Unit & 1621 \\
\hline & & & Examiner Name & Savitha M. Rao \\
\hline 4 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline \begin{tabular}{l}
Exami \\
ner \\
Initials*
\end{tabular} & \begin{tabular}{l}
Cite \\
No. \({ }^{1}\)
\end{tabular} & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D25 & European Medicines Agency, Annex I: Summary of Product Characteristics for Ammonaps. & \\
\hline & D26 & European Medicines Agency, European Public Assessment Report: Summary for the Public for Ammonaps (2009). & \\
\hline & D27 & European Medicines Agency, Scientific Discussion for Ammonaps (2005). & \\
\hline & D28 & European Medicines Agency, Scientific Discussion for Carbaglu (2004). & \\
\hline & D29 & FDA Label for Carbaglu, seven pages. (Mar. 2010). & \\
\hline & D30 & Feillet, F. and Leonard, J.V., Alternative Pathway Therapy for Urea Cycle Disorders, 21 J. Inher. Metab. Dis. 101-111 (1998). & \\
\hline & D31 & Feoli-Fonseca, M. L., Sodium Benzoate Therapy in Children with Inborn Errors of Urea Synthesis: Effect on Carnitine Metabolism and Ammonia Nitrogen Removal, 57 Biochemical and Molecular Medicine 31 (1996). & \\
\hline & D32 & FERENCI, P., et al., "Hepatic Encephalopathy-Definition, Nomenclature, Diagnosis, and Quantification: Final Report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998," Hepatology 35:716-721 (2002). & \\
\hline & D33 & Fernandes, Saudubray, Berghe (editors), Inborn Metabolic Diseases Diagnosis and Treatment, 219222 (3d ed. 2000) & \\
\hline & D34 & Geraghty, M.T. and Brusilow, S.W., Disorders of the Urea Cycle, in LIVER DISEASE IN CHILDREN 827 (F.J. Suchy et al., eds. 2001). & \\
\hline & D35 & Ghabril, M. et al., "Glycerol Phenylbutyrate in Patients with Cirrhosis and Episodic Hepatic Encephalopathy: A Pilot Study of Safety and Effect on Venous Ammonia Concentration," Clinical Pharmacology in Drug Development 2(3): 278-284 (2013). & \\
\hline & D36 & Gilbert, J. et al., A Phase I Dose Escalation and Bioavailability Study of Oral Sodium Phenylbutyrate in Patients with Refractory Solid Tumor Malignancies, 7 Clin. Cancer Research 2292-2300 (2001). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner & & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline Signature & & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto. gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Gommissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Exami ner Initials* & Cite No. \({ }^{1}\) & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D37 & Gore, S. et al., Impact of the Putative Differentiating Agent Sodium Phenylbutyrate on Myelodysplastic Syndromes and Acute Myeloid Leukemia, 7 Clin. Cancer Res. 2330 (2001). & \\
\hline & D38 & Gropman, A.L. et al., Neurological Implications of Urea Cycle Disorders, 30 J. Inherit Metab Dis. 865 (2007). & \\
\hline & D39 & HASSANEIN, T. I., et al., "Randomized Controlled Study of Extracorporeal Albumin Dialysis for Hepatic Encephalopathy in Advanced Cirrhosis," Hepatology 46:1853-1862 (2007). & \\
\hline & D40 & HASSANEIN, T. I., et al., "Introduction to the Hepatic Encephalopathy Scoring Algorithm (HESA)," Dig. Dis. Sci. 53:529-538 (2008). & \\
\hline & D4 1 & HASSANEIN, T., et al., "Performance of the Hepatic Encephalopathy Scoring Algorithm in a Clinical Trial of Patients With Cirrhosis and Severe Hepatic Encephalopathy," Am. J. Gastroenterol. 104:1392-1400 (2009). & \\
\hline & D42 & Honda, S. et al., Successful Treatment of Severe Hyperammonemia Using Sodium Phenylacetate Power Prepared in Hospital Pharmacy, 25 Biol. Pharm. Bull. 1244 (2002). & \\
\hline & D43 & International Search Report and Written Opinion for PCT/US09/30362, mailed Mar. 2, 2009, 8 pages. & \\
\hline & D44 & International Search Report and Written Opinion for PCT/US2009/055256, mailed Dec. 30, 2009, 13 pages. & \\
\hline & 48450 &  & \\
\hline & - &  & \\
\hline & D47 & Kleppe, S. et al., Urea Cycle Disorders, 5 Current Treatment Options in Neurology 309-319 (2003). & \\
\hline & D48 & Kubota, K. and Ishizaki, T., Dose-Dependent Pharmacokinetics of Benzoic Acid Following Oral Administration of Sodium Benzoate to Humans, 41 Eur. J. Clin. Pharmacol. 363 (1991). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner \\
Signature
\end{tabular}\(\quad\)\begin{tabular}{l} 
Date \\
Considered
\end{tabular}\(\quad\)\begin{tabular}{l} 
\\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Gommissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Substitute for form 1449/PTO \\
INFORMATION DISCLOSURE STATEMENT BY APPLICANT
\end{tabular}}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & Application Number & 13/775000 \\
\hline & & & Filing Date & 02-22-2013 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Date Submitted: March 12, 2012}} & First Named Inventor & Bruce Scharschmidt \\
\hline & & & Art Unit & 1621 \\
\hline \multicolumn{3}{|l|}{(use as many sheets as necessary)} & Examiner Name & Savitha M. Rao \\
\hline 6 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline \begin{tabular}{l}
Exami \\
ner \\
Initials*
\end{tabular} & \begin{tabular}{l}
Cite \\
No. \({ }^{1}\)
\end{tabular} & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D49 & Lee, B. and Goss, J., Long-Term Correction of Urea Cycle Disorders, 138 J. Pediatrics S62 (2001). & \\
\hline & D50 & Lee, B. et al., Considerations in the Difficult-to-Manage Urea Cycle Disorder Patient, 21 Crit. Care Clin. S19 (2005). & \\
\hline & D51 & Lee, B., et al., "Optimizing Ammonia (NH3) Control in Urea Cycle Disorder (UCD) Patients: A Predictive Model," Oral Abstract Platform Presentations, Biochemical Genetics, Phoenix, AZ, March 22, 2013 & \\
\hline & D52 & Leonard, J.V., Urea Cycle Disorders, 7 Semin. Nenatol. 27 (2002). & \\
\hline & D53 & Lizardi-Cervera, J. et al., Hepatic Encephalopathy: A Review, 2 Annals of Hepatology 122-120 (2003). & \\
\hline & D54 & Maestri NE, et al., Prospective treatment of urea cycle disorders. J Paediatr 1991;119:923-928. & \\
\hline & D55 & Maestri, N.E., et al., Long-Term Survival of Patients with Argininosuccinate Synthetase Deficiency, 127 J. Pediatrics 929 (1993). & \\
\hline & D56 & Maestri, N.E., Long-Term Treatment of Girls with Ornithine Transcarbamylase Deficiency, 355 N. Eng|. J. Med. 855 (1996). & \\
\hline & D57 & Majeed, K., Hyperammonemia, eMedicine.com (Dec. 2001). & \\
\hline & D58 & Marini, J.C. et al., Phenylbutyrate Improves Nitrogen Disposal via an Alternative Pathway without Eliciting an Increase in Protein Breakdown and Catabolism in Control and Ornithine Transcarbamylase-Deficient Patients, 93 Am. J. Clin. Nutr. 1248 (2011). & \\
\hline & D59 & Matsuda, I., Hyperammonemia in Pediatric Clinics: A Review of Ornithine Transcarbamylase Deficiency (OTCD) Based on our Case Studies, 47 JMAJ 160 (2004). & \\
\hline & D60 & McGuire, B.M. et al., Pharmacokinetic (PK) and Safety Analyses of a Novel Ammonia- Reducing Agent in Healthy Adults and Patients with Cirrhosis, Hyperion Therapeutics, poster, one page (2009). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner & & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline Signature & & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto. gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Gommissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Exami ner Initials* \({ }^{*}\) & Cite No. \({ }^{1}\) & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D61 & Mizutani, N. et al., Hyperargininemia: Clinical Course and Treatment with Sodium Benzoate and Phenylacetic Acid, 5 Brain and Development 555 (1983). & \\
\hline & D62 & MOKHTARANI, M., et al., (2013) "Elevated Phenylacetic Acid Levels Do Not Correlate with Adverse Events in Patients with Urea Cycle Disorders orHepatic Encephalopathy and Can Be Predicted Based on the Plasma PAA to PAGN Ratio," Mol Genet Metab 110(4):446-453 & \\
\hline & D63 & MOKHTARANI, M., et al., (2012) "Urinary Phenylacetylglutamine as Dosing Biomarker for Patients with Urea Cycle Disorders," Mol Genet Metab 107(3):308-314 & \\
\hline & D64 & MONTELEONE, JPR, et al., (2013) "Population Pharmacokinetic Modeling and Dosing Simulations of Nitrogen-Scavenging Compounds: Disposition of Glycerol Phenylbutyrate and Sodium Phenylbutyrate in Adult and Pediatric Patients with Urea Cycle Disorders," J. Clin. Pharmacol. 53(7): 699-710. & \\
\hline & D65 & MUNOZ, S. J., "Hepatic Encephalopathy," Med. Clin. N. Am. 92:795-812 (2008). & \\
\hline & D66 & Nassogne, M.C., Urea Cycle Defects: Management and Outcome, 28 J. Inherit. Metab. Dis. 407 (2005). & \\
\hline & D67 & New England Consortium of Metabolic Programs, Acute Illness Protocol: Urea Cycle Disorders: The Infant/Child with Argininosuccinate Lyase Deficiency, adapted from Summar, M and Tuchman, M, Proceedings of a Consensus Conference for the Management of Patients with Urea Cycle Disorders, 138 J . Peds. Suppl. S6 (2001). & \\
\hline & D68 & New England Consortium of Metabolic Programs, Acute Illness Protocol: Urea Cycle Disorders: The Infant/Child with Citrullinemia, adapted from Summar, M and Tuchman, M, Proceedings of a Consensus Conference for the Management of Patients with Urea Cycle Disorders, 138 J . Peds. Suppl. S6 (2001). & \\
\hline & D69 & Newmark, H. L. and Young, W. C., Butyrate and Phenylacetate as Differentiating Agents: Practical Problems and Opportunities, 22 J . Cellular Biochemistry 247 (1995). & \\
\hline & D70 & ORTIZ, M., et al., "Development of a Clinical Hepatic Encephalopathy Staging Scale," Aliment Pharmacol Ther 26:859-867 (2007). & \\
\hline & D71 & PAR PHARMACEUTICAL, INC.'S INITIAL INVALIDITY CONTENTIONS AND NON-INFRINGEMENT CONTENTIONS FOR U.S. PATENT NOS. 8,404,215 AND 8,642,012 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner & & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline Signature & & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by \(35 \mathrm{U} . \mathrm{S.C}\).122 and 37 CFR 1.14 . This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Ary comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|}
\hline & /PTO & & plete if Known \\
\hline & OSURE & Application Number & 13/775000 \\
\hline & LICANT & Filing Date & 02-22-2013 \\
\hline & 2012 & First Named Inventor & Bruce Scharschmidt \\
\hline & & Art Unit & 1621 \\
\hline (use & necessary) & Examiner Name & Savitha M. Rao \\
\hline 8 & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline \[
\begin{array}{|l|}
\hline \text { Exami } \\
\text { ner } \\
\text { Initials* }
\end{array}
\] & \begin{tabular}{l}
Cite \\
No. \({ }^{1}\)
\end{tabular} & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D72 & PARSONS-SMITH, B. G., et al., "The Electroencephalograph in Liver Disease," Lancet 273:867-871 (1957). & \\
\hline & D73 & Phuphanich, S. et al., Oral Sodium Phenylbutyrate in Patients with Recurrent Malignant Gliomas: A Dose Escalation and Pharmacologic Study, Neuro-Oncology 177 (2005). & \\
\hline & D74 & Praphanproj, V. et al., Three Cases of Intravenous Sodium Benzoate and Sodium Phenylacetate Toxicity Occurring in the Treatment of Acute Hyperammonemia," 23 J . Inherited Metabolic Disease 129 (2000). & \\
\hline & D75 & ROCKEY, D. C., et al., "Randomized, Controlled, Double Blind Study of Glycerol Phenylbutyrate in Patients with Cirrhosis and Episodic Hepatic Encephalopathy," Hepatology 56:248(A) (2012). & \\
\hline & D76 & SALAM, M., et al., "Modified-Orientation Log to Assess Hepatic Encephalopathy," Aliment Pharmacol Ther. 35(8):913-920 (2012). & \\
\hline & D77 & Scientific Discussion for Ammonaps, EMEA 2005, available at http://www.ema.europa.eu/docs/en_GB/document library/EPAR Scientific Discussion/human/000219/WC500024748.pdf & \\
\hline & D78 & Scottish Medicines Consortium, Carglumic Acid 200 mg Dispersible Tablets (Carbagluß) No. 299/06 (Sept. 8, 2006). & \\
\hline & D79 & Seakins, J.W.T., The Determination of Urinary Phenylacetylglutamine as Phenylacetic Acid: Studies on its Origin in Normal Subjects and Children with Cystic Fibrosis, 35 Clin. Chim. Acta. 121 (1971). & \\
\hline & D80 & Search and Examination Report for British Patent Application No. GB 0915545.8, dated Oct. 8, 2009, 5 pages. & \\
\hline & D81 & Sherwin, C. et al., The Maximum Production of Glutamine by the Human Body as Measured by the Output of Phenylacetylglutamine, 37 J . Biol. Chem. 113 (1919). & \\
\hline & D82 & SMITH, W., et al., "Ammonia Control in Children Ages 2 Months through 5 Years with Urea Cycle Disorders: Comparison of Sodium Phenylbutyrate and Glycerol Phenylbutyrate," J Pediatr. 162(6):1228-1234.e1 (2013). & \\
\hline & D83 & Summar, M., Current Strategies for the Management of Neonatal Urea Cycle Disorders, 138 J . Pediatrics S30 (2001). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner & & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline Signature & & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto. gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Gommissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|}
\hline & m 1 & /PTO & & plete if Known \\
\hline & DIS & OSURE & Application Number & 13/775000 \\
\hline & AP & ICANT & Filing Date & 02-22-2013 \\
\hline & Marc & 12, 2012 & First Named Inventor & Bruce Scharschmidt \\
\hline & & & Art Unit & 1621 \\
\hline (use & ts as & necessary) & Examiner Name & Savitha M. Rao \\
\hline 9 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Exami ner Initials* & Cite No. \({ }^{1}\) & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D84 & Summar, M. and Tuchman, M., Proceedings of a Consensus Conference for the Management of Patients with Urea Cycle Disorders, 138 J . Pediatrics S6 (2001). & \\
\hline & D85 & Summar, M., Urea Cycle Disorders Overview, Gene Reviews, www.genetests.org (Apr. 2003). & \\
\hline & D86 & Summar, M. et al., Unmasked Adult-Onset Urea Cycle Disorders in the Critical Care Setting, 21 Crit. Care Clin. S1 (2005). & \\
\hline & D87 & \begin{tabular}{l}
The National Organization for Rare Disorders (2012). The Physician's Guide to Urea Cycle Disorders, at http://nordphysicianguides.org/wp- \\
content/uploads/2012/02/NORD Physician Guide to Urea Cycle Disorders.pdf
\end{tabular} & \\
\hline & D88 & Todo, S. et al., Orthotopic Liver Transplantation for Urea Cycle Enzyme Deficiency, 15 Hepatology 419 (1992). & \\
\hline & D89 & Tuchman, M., and Yudkoff, M., Blood Levels of Ammonia and Nitrogen Scavenging Amino Acids in Patients with Inherited Hyperammonemia, 66 Molecular Genetics and Metabolism 10-15 (1999). & \\
\hline & D90 & UNITED STATES PATENT AND TRADEMARK OFFICE, International Search Report and Written Opinion dated January 16, 2015 for PCT/US14/58489. & \\
\hline & D91 & UNITED STATES PATENT AND TRADEMARK OFFICE, International Search Report and Written Opinion for PCT/ US2014/060543 dated January 23, 2015. & \\
\hline & D92 & VILSTRUP, H., et al., "Hepatic Encephalopathy in Chronic Liver Disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver," Hepatology 60 (2):715-735 (2014). & \\
\hline & 03 & 4 为 & \\
\hline & D94 & Welbourne, T. et al., The Effect of Glutamine Administration on Urinary Ammonium Excretion in Normal Subjects and Patients with Renal Disease, 51 J. Clin. Investigation 1852 (1972). & \\
\hline & D95 & Wilcken, B., Problems in the Management of Urea Cycle Disorders, 81 Molecular Genetics and Metabolism 85 (2004). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner & & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \\
\hline Signature & & \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Gommissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|}
\hline & m 1 & /PTO & & plete if Known \\
\hline & IS & OSURE & Application Number & 13/775000 \\
\hline & A & ICANT & Filing Date & 02-22-2013 \\
\hline Dat & & , 2012 & First Named Inventor & Bruce Scharschmidt \\
\hline & & & Art Unit & 1621 \\
\hline use & S & cessary & Examiner Name & Savitha M. Rao \\
\hline 10 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline \begin{tabular}{l}
Exami \\
ner \\
Initials*
\end{tabular} & \begin{tabular}{l}
Cite \\
No. \({ }^{1}\)
\end{tabular} & Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.) date, page(s), volume-issue number(s), publisher, city and/or country where published. & \(\mathrm{T}^{6}\) \\
\hline & D96 & Wilson, C.J., et al., Plasma Glutamine and Ammonia Concentrations in Ornithine CarbamoyItransferase Deficiency and Citrullinaemia, 24 J . Inherited Metabolic Disease 691 (2001). & \\
\hline & D97 & Wright, G., et al., Management of Hepatic Encephalopathy, 2011 International Journal of Hepatology 1 (2011). & \\
\hline & D98 & Wright, P., Review: Nitrogen Excretion: Three End Products, Many Physiological Roles, 198 J. Experimental Biology 273 (1995). & \\
\hline & D99 & Yajima, et al. Diurnal Fluctuations of Blood Ammonia Levels in Adult-Type Citrullinemia, 137 Tokohu J. Ex/ Med, 213-220 (1982) & \\
\hline & D100 & Yu, Ryan and Potter, Murray, Diagnosis of Urea Cycle Disorders in Adulthood: Late- Onset Carbamyl Phosphate Synthetase 1 Deficiency, 7 MUMJ 30 (2010). & \\
\hline & D101 & Yudkoff, M. et al., In Vivo Nitrogen Metabolism in Ornithine Transcarbamylase Deficiency, 98 J. Clin. Invest. 2167 (1996). & \\
\hline & D102 & Zeitlin, P., Novel Pharmacologic Therapies for Cystic Fibrosis, 103 J. Clinical Investigation 447 (1999). & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & Savitha Rao/ & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \(06 / 11 / 2015\) \\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto. gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Gommissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

\section*{EAST Search History}

\section*{EAST Search History (Prior Art)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ref & Hits & Search Query & DBs & Default Operator & Plurals & Time Stamp \\
\hline S1 & 0 & \[
\begin{aligned}
& 13417137 \text { ".rlan. or ("13".src. and } \\
& \text { " } 417137 \text { ".ap.) }
\end{aligned}
\] & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 11 / 15 \\
& 13: 46
\end{aligned}
\] \\
\hline S2 & 4 & \[
\sqrt{(\text { (BRUCE) near2 }}
\] & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& \quad \sqrt{2012 / 11 / 15} \\
& 13: 46
\end{aligned}
\] \\
\hline 53 & 0 & ((MASOUD) near2 (MOKHTARANI)).INV. & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 11 / 15 \\
& 13: 46
\end{aligned}
\] \\
\hline S4 & 9 & \[
\left(\begin{array}{l}
(\text { BRUCE) near2 } \\
\text { SCHARSCHMIDT) } . I N V .
\end{array}\right.
\] & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
12012 / 11 / 15
\] \\
\hline 55 & 0 & ((MASOUD) near2 (MOKHTARANI)).INV. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 11 / 15 \\
& 13: 56
\end{aligned}
\] \\
\hline 56 & 0 & ((MASOUD) near2 (MOKHTARANI)).INV. & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
12012 / 11 / 15
\] \\
\hline S7 & 18 &  & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
12012 / 11 / 15
\] \\
\hline 58 & 0 & S1 and nitrogen & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 11 / 15 \\
& 14: 08
\end{aligned}
\] \\
\hline 59 & 8 & S7 and nitrogen & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 11 / 15 \\
& 14: 08
\end{aligned}
\] \\
\hline 510 & 2 & S9 and scavenging & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 11 / 15 \\
& 14: 08
\end{aligned}
\] \\
\hline 511 & 109 & "nitrogen scavenging" & US-PGPUB UUSPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 11 / 15 \\
& 14: 12
\end{aligned}
\] \\
\hline 512 & 4 & S11 and PAA & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
14: 12
\] \\
\hline 513 & 4 & (BRUCE) near2
(SCHARSCHMIDT). INV. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 11 / 15 \\
& 14: 13
\end{aligned}
\] \\
\hline 514 & 9 & \[
\sqrt{(\text { (BRUCE near2 }} \text { (SCHARSCHMI DT)).INV. }
\] & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; USOCR; } \\
& \text { FPRS; EPO; } \\
& \text { JPO; }
\end{aligned}
\] & OR & OFF & \[
12012 / 11 / 15
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & DERWENT; & & & \\
\hline S15 & 18 &  & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
: 07: 11
\] \\
\hline S16 & 2 & S15 and "nitrogen scavenging" & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\sqrt{207: 11}
\] \\
\hline S17 & 1 & ("6083984").PN. & USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 11 / 16 \\
& 07: 12
\end{aligned}
\] \\
\hline S18 & 9 & ((Saul) near2 (Brusilow)).INV. & US-PGPUB;
USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 11 / 16 \\
& 07: 13 \\
& \hline
\end{aligned}
\] \\
\hline S19 & 0 & \[
\begin{aligned}
& \text { 13417137".rlan. or ("13".src. and } \\
& \text { "417137".ap.) }
\end{aligned}
\] & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\sqrt{2012 / 12 / 20}
\] \\
\hline S20 & 4 & ((BRUCE) near2 (SCHARSCHMIDT)).INV. & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 10: 56
\end{aligned}
\] \\
\hline 521 & 0 & ((MASOUD) near2 (MOKHTARANI)).INV. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; USOCR }
\end{aligned}
\] & OR & OFF & \[
\sqrt{2012 / 12 / 20}
\] \\
\hline S22 & 9 & \[
\left(\begin{array}{l}
(\text { BRUCE }) \text { near2 } \\
\text { (SCHARSCHMIDT) }) . I N V .
\end{array}\right.
\] & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
1 / 2012 / 12 / 20
\] \\
\hline S23 & 0 & \[
\sqrt{(\text { MASOUD }) ~ n e a r 2 ~}
\] & US-PGPUB; UUSPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 10: 56
\end{aligned}
\] \\
\hline S24 & 0 & \[
\sqrt{(\text { (MASOUD) near2 }}
\] & US-PGPUB;
USPAT; USOCR;
IPRS; EPO;
UPP;
DERWENT;
IIMM TDB & OR & OFF & \[
10: 56
\] \\
\hline S25 & 18 &  & US-PGPUB;
USPAT; USOCR;
IPRS; EPO;
UPO;
DERWENT;
IIMM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 10: 56
\end{aligned}
\] \\
\hline 526 & 0 & S19 and nitrogen & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
10
\] \\
\hline S27 & 8 & S25 and nitrogen & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 10: 56
\end{aligned}
\] \\
\hline 528 & 2 & S27 and scavenging & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
10: 56
\] \\
\hline 529 & 109 & "nitrogen scavenging" & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 10: 56
\end{aligned}
\] \\
\hline 530 & 4 & S29 and PAA & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
12
\] \\
\hline 531 & 4 & \((\) (BRUCE) near2
(SCHARSCHMI DT)).INV. & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 10: 56
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 532 & 9 & \[
\begin{aligned}
& \text { ((BRUCE) near2 } \\
& \text { (SCHARSCHMIDT)).INV. }
\end{aligned}
\] & \[
\begin{array}{l|l|}
\hline \text { US-PGPUB; } \\
\text { USPA; USOCR; } \\
\text { UPPRS; EPO; } \\
\text { JPO; } \\
\text { DERWENT; } \\
\text { DBM TDB }
\end{array}
\] & OR & OFF & \[
\sqrt{2012 / 12 / 20}
\] \\
\hline 533 & 18 &  & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USPAT; USOCR; } \\
& \text { DERWENT }
\end{aligned}
\] & OR & OFF & \[
\sqrt{2012 / 12 / 20}
\] \\
\hline 534 & 2 & S33 and "nitrogen scavenging" & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& \sqrt[2012 / 12 / 20]{10: 56} \\
& \hline
\end{aligned}
\] \\
\hline 535 & 1 & ("6083984").PN. & USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& \sqrt[2012 / 12 / 20]{10: 56}
\end{aligned}
\] \\
\hline 536 & 9 & ((Saul) near2 (Brusilow)).INV. & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{array}{r}
2012 / 12 / 20 \\
10: 56
\end{array}
\] \\
\hline 537 & 0 & \[
\begin{aligned}
& \sqrt[3]{" 13417137 " . r l a n . ~ o r ~(" 13 " . s r c . ~ a n d ~} \\
& \hline 17137 \text { ".ap.) }
\end{aligned}
\] & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\sqrt{2012 / 12 / 20}
\] \\
\hline 538 & 4 & \[
\sqrt{(\text { (BRUCE }) \text { near2 }}(\text { SCHARSCHMID)) INV }
\] & US-PGPUB; & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline 539 & 0 & ((MASOUD) near2 (MOKHTARANI).INV. & US-PGPUB; & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline 540 & 9 & ((BRUCE) near2
(SCHARSCHMIDT)).INV. & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\sqrt{2012 / 12 / 20}
\] \\
\hline S41 & 0 & ( (MASOUD) near2 (MOKHTARANI)).INV. & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S42 & 0 & \[
\sqrt{(\text { (MASOUD) near2 }}
\] & US-PGPUB USPAT; USOCR; fPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S43 & 18 &  & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S44 & 0 & S37 and nitrogen & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S45 & 8 & S43 and nitrogen & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S46 & 2 & S45 and scavenging & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline 547 & 109 & "nitrogen scavenging" & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\sqrt{2012 / 12 / 20}
\] \\
\hline & & S47 and PAA & US-PGPUB; USPAT; USOCR; & OR & OFF & \[
\begin{aligned}
& 16: 43 \\
& 12012 / 12 / 20 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & DERWENT & & & \\
\hline S49 & 4 & (BRUCE) near2
(SCHARSCHMI DT). INV. & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S50 & 9 & \[
\sqrt{(\text { (BRUCE) near? }}(\text { SCHARSCHMIDT)).INV. }
\] & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
12012 / 12 / 20
\] \\
\hline 551 & 18 &  & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S52 & 2 & S51 and "nitrogen scavenging" & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\sqrt{2012 / 12 / 20}
\] \\
\hline 553 & 1 & ("6083984").PN. & USPAT; USOCR & OR & IOFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline 554 & 9 & ((Saul) near2 (Brusilow)).INV. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; USOCR }
\end{aligned}
\] & OR & IOFF & \[
1 \begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S55 & 0 & \[
\begin{aligned}
& \text { "13417137".rlan. or ("13".src. and } \\
& \text { 417137".ap.) }
\end{aligned}
\] & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S56 & 4 & \[
\begin{aligned}
& (\text { (BRUCE near2 } \\
& \text { (SCHARSCHMIDT). INV. }
\end{aligned}
\] & US-PGPUB;
USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43 \\
& \hline
\end{aligned}
\] \\
\hline S57 & 0 & ((MASOUD) near2 (MOKHTARANI)).INV. & US-PGPUB; UUSPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 202 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline 558 & 9 & \[
\begin{aligned}
& (\text { (BRUCE) near? } \\
& (\text { SCHARSCHMI DT)).INV. }
\end{aligned}
\] & US-PGPUB;
USPAT; USOCR;
IPRS; EPO;
IPO;
DERWENT;
IIMM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline 559 & 0 & ((MASOUD) near2 (MOKHTARANI)).INV. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline 560 & 0 & ((MASOUD) near2 (MOKHTARANI)).INV. & US-PGPUB;
USPAT; USOCR;
IPRS; EPO;
IPO;
DERWENT;
IBM TDB & OR & OFF & \[
\sqrt{2012 / 12 / 20}
\] \\
\hline 561 & 18 &  & US-PGPUB; USPAT; USOCR; IFPRS; EPO; JJPO; DERWENT: IIBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S62 & 0 & S55 and nitrogen & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
1 \begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline 563 & 8 & S61 and nitrogen & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S64 & 2 & S63 and scavenging & US-PGPUB; UUSPAT; USOCR; DERWENT & OR & OFF & \[
1 \begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S65 & \({ }^{109}\) & "nitrogen scavenging" & US-PGPUB; !USPAT; USOCR; & OR & \[
\sqrt{\text { OFF }}
\] & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & IDERWENT & & & \\
\hline S66 & 4 & 565 and PAA & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
16
\] \\
\hline 567 & 4 & \[
\begin{aligned}
& (\text { (BRUCE) near2 } \\
& (\text { SCHARSCHMIDT).INV. }
\end{aligned}
\] & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S68 & 9 & \[
\begin{aligned}
& (\text { (BRUCE) near2 } \\
& (\text { SCHARSCHMI DT) ).INV. }
\end{aligned}
\] & US-PGPUB; USPAT; USOCR FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
16: 43
\] \\
\hline S69 & 18 &  & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
16
\] \\
\hline S70 & 2 & S69 and "nitrogen scavenging" & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
16: 43
\] \\
\hline 571 & 1 & ("6083984").PN. & USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S72 & 9 & ((Saul) near2 (Brusilow)).INV. & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2012 / 12 / 20 \\
& 16: 43
\end{aligned}
\] \\
\hline S73 & 49 & ( (BRUCE) near2
(SCHARSCHMIDT)).INV. & US-PGPUB; USPAT; USOCR FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2014 / 12 / 18 \\
& 12: 08
\end{aligned}
\] \\
\hline S74 & 127 & "nitrogen scavenging" & US-PGPUB; USPAT; USOCR: DERWENT & OR & OFF & \[
\begin{aligned}
& 2014 / 12 / 18 \\
& 12: 08
\end{aligned}
\] \\
\hline S75 & 13 & S74 and PAA & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2014 / 12 / 18 \\
& 12: 08
\end{aligned}
\] \\
\hline S76 & 11 & "glyceryl tri-[4-phenylbutyrate]" & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
12014 / 12 / 18
\] \\
\hline S77 & 98 & ((Lee) near2 (Honigberg)).INV. & US-PGPUB; USPAT; USOCR & OR & OFF & \[
12014 / 12 / 18
\] \\
\hline S78 & 14 & \[
\sqrt{(\text { MASOUD near2 }}
\] & US-PGPUB; USPAT; USOCR FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
12014 / 12 / 18
\] \\
\hline S79 & 9 &  & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2014 / 12 / 18 \\
& 13: 24
\end{aligned}
\] \\
\hline 580 & 1 & \[
\begin{aligned}
& 13775000 \text { ".rlan. or ("13".src. and } \\
& 775000 \text { ".ap.) }
\end{aligned}
\] & US-PGPUB; USPAT; USOCR DERWENT & OR & OFF & \[
\begin{aligned}
& 2015 / 05 / 14 \\
& 07: 52
\end{aligned}
\] \\
\hline 581 & 159 & \(\sqrt{((A 61 K 31 / 216 ~ O R ~ G 01 N 31 / 221 ~ O R ~}\) & US-PGPUB; & OR & OFF & \(\sqrt{2015 / 05 / 14}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & YY10T436/175383).CPC. AND (514/533).CCLS. ) & UUSPAT; USOCR; & & & 07:53 \\
\hline 582 & 3 & "US 8404215" & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF &  \\
\hline S83 & 551 & ( (A61K31/216 OR G01N31/221 OR Y10T436/175383).CPC. AND (514/533 OR 514/432 OR 514/433 OR 514/544 OR 514/570 OR 424/9.2 OR 435/4 OR (436/113).CCLS. ) & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
07: 54
\] \\
\hline 584 & 233 & 583 and nitrogen & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2015 / 05 / 14 \\
& \mathbf{N B : 1 0}
\end{aligned}
\] \\
\hline 585 & 13 & S84 and scavenging & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2015 / 05 / 14 \\
& 08: 10
\end{aligned}
\] \\
\hline 586 & 13 & "glyceryl tri-[4-phenylbutyrate] " & US-PGPUB; USPAT; USOCR; FPRR; EPO; UPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2015 / 05 / 14 \\
& 08: 10
\end{aligned}
\] \\
\hline 587 & 6 & S83 and 586 & ```
US-PGPUB;
USPAT; USOCR;
IPPRS; EPO;
JJPO;
DERWENT;
IBM TDB
``` & OR & OFF & \[
\begin{aligned}
& 2015 / 05 / 14 \\
& \hline 08: 10
\end{aligned}
\] \\
\hline 592 & 1 & \[
\begin{aligned}
& \text { "13775000".rlan. or ("13".src. and } \\
& 775000 \text { ".ap.) }
\end{aligned}
\] & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2015 / 06 / 11 \\
& 12: 05
\end{aligned}
\] \\
\hline 593 & 54 & \[
\sqrt{(\text { (BCHACE }) \text { near? }}
\] & US-PGPUB; USPAT; USOCR; IFPRS; EPO; JJP; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2015 / 06 / 11 \\
& 12: 06
\end{aligned}
\] \\
\hline 594 & 19 & ((MASOUD) near2 (MOKHTARANI)).INV. & US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
12015 / 06 / 11
\] \\
\hline 595 & 25 & & US-PGPUB; USPAT; USOCR; IFPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
1
\] \\
\hline 596 & 8 & S95 and nitrogen & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
\begin{aligned}
& 2015 / 06 / 11 \\
& 12: 06
\end{aligned}
\] \\
\hline 597 & 2 & S96 and scavenging & US-PGPUB; USPAT; USOCR; DERWENT & OR & OFF & \[
12015 / 06 / 11
\] \\
\hline
\end{tabular}

EAST Search History (Interference)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \# & & & & Operator & & Stamp \\
\hline 588 & 412 & ((A61K31/216 OR G01N31/221 OR Y10T436/175383).CPC. AND (514/533 OR 514/432 OR 514/433 OR 514/544 OR 514/570 OR 424/9.2 OR 435/4 OR 436/113). CCLS.) & & OR & OFF & \[
\begin{aligned}
& 2015 / 05 / 14 \\
& 08: 21
\end{aligned}
\] \\
\hline S89 & 214 & S88 and nitrogen & & OR & OFF & \[
\begin{aligned}
& 2015 / 05 / 14 \\
& 08: 21
\end{aligned}
\] \\
\hline 590 & 11 & S89 and scavenging & & OR & OFF & \[
\begin{aligned}
& \sqrt[2015 / 05 / 14]{30: 21}
\end{aligned}
\] \\
\hline 591 & 6 & S90 and "glyceryl tri-[4-phenylbutyrate]" & & OR & OFF & \[
\begin{aligned}
& 2015 / 05 / 14 \\
& 108: 21
\end{aligned}
\] \\
\hline 598 & 415 & ((A61K31/216 OR G01N31/221 OR Y10T436/175383).CPC. AND (514/533 OR 514/432 OR 514/433 OR 514/544 OR 514/570 OR 424/9.2 OR 435/4 OR 436/113). CCLS.) & & OR & OFF & \[
\begin{aligned}
& 2015 / 06 / 11 \\
& 12: 06
\end{aligned}
\] \\
\hline 599 & 215 & S98 and nitrogen & & OR & OFF & \[
\begin{aligned}
& 2015 / 06 / 11 \\
& 12: 06
\end{aligned}
\] \\
\hline S100 & 11 & S99 and scavenging & & OR & OFF & \[
\begin{aligned}
& 2015 / 06 / 11 \\
& 12: 06
\end{aligned}
\] \\
\hline S101 & 6 & S100 and "glyceryl tri-[4-phenylbutyrate]" & & OR & OFF & \[
\begin{aligned}
& 2015 / 06 / 11 \\
& 12: 06
\end{aligned}
\] \\
\hline
\end{tabular}

6/11/2015 2:07:46 PM
H:\EAST - WKSP\ Workspaces 13 applications \(13775000 . w s p\)
\begin{tabular}{|c|c|c|}
\hline Issue Classification & Application/Control No.
\[
13775000
\] & Applicant(s)/Patent Under Reexamination SCHARSCHMIDT ET AL. \\
\hline & \begin{tabular}{l}
Examiner \\
SAVITHA RAO
\end{tabular} & Art Unit
\[
1621
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
NONE \\
(Assistant Examiner)
\end{tabular} & (Date) & \multicolumn{2}{|l|}{Total Claims Allowed:
\[
15
\]} \\
\hline \begin{tabular}{l}
/SAVITHA RAO/ \\
Primary Examiner. Art Unit 1621 \\
(Primary Examiner)
\end{tabular} & \begin{tabular}{l}
06/11/2015 \\
(Date)
\end{tabular} & O. G. Print Claim(s)
\[
1
\] & \begin{tabular}{l}
O.G. Print Figure \\
1
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue Classification & Application/Control No.
\[
13775000
\] & Applicant(s)/Patent Under Reexamination SCHARSCHMIDT ET AL. \\
\hline & \begin{tabular}{l}
Examiner \\
SAVITHA RAO
\end{tabular} & Art Unit
\[
1621
\] \\
\hline
\end{tabular}

\begin{tabular}{|l|c|c|}
\hline NONE & & Total Claims Allowed: \\
(Assistant Examiner) & (Date) & \\
\hline \begin{tabular}{l}
SAVITHA RAO/ \\
Primary Examiner.Art Unit 1621 \\
(Primary Examiner)
\end{tabular} & \(06 / 11 / 2015\) & O.G. Print Claim(s) \\
\hline O.G. Print Figure \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Issue Classification & Application/Control No.
\[
13775000
\] & Applicant(s)/Patent Under Reexamination SCHARSCHMIDT ET AL. \\
\hline & Examiner SAVITHA RAO & Art Unit
\[
1621
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 区 & \multicolumn{7}{|l|}{Claims renumbered in the same order as presented by applicant} & \(\square\) & \multicolumn{2}{|c|}{CPA} & 区 T.D. & \multicolumn{2}{|r|}{\(\square \quad \mathrm{R}\)} & \multicolumn{2}{|c|}{R.1.47} \\
\hline Final & Original & Final & Original \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline NONE & & Total Claims Allowed: \\
(Assistant Examiner) & (Date) & \\
\hline \begin{tabular}{l}
SAVITHA RAO/ \\
Primary Examiner.Art Unit 1621 \\
(Primary Examiner)
\end{tabular} & \(06 / 11 / 2015\) & O.G. Print Claim(s) \\
\hline O.G. Print Figure \\
\hline
\end{tabular}
U.S. Patent and Trademark Office

Part of Paper No. 20150611

\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
TERMINAL \\
DISCLAIMER
\end{tabular} & \(\square\) APPROVED & \(\boxtimes\) DISAPPROVED \\
\hline \multicolumn{1}{|c|}{\begin{tabular}{c}
Date Filed :5/11/15
\end{tabular}} & \begin{tabular}{c}
This patent is subject \\
to a Terminal \\
Disclaimer
\end{tabular} & \\
\hline
\end{tabular}

\section*{Approved/Disapproved by:}

The person who signed the terminal disclaimer (only for applicati ns filed on or after
September 16,2012
is not the applicant, patentee or an attorney or agent of record. 37 CFR 1.321 (a) and (b).
(See FP 14.26.08)
failed to state hislher capacity to sign for the juristic entity, and he/she has not been
established as being authorized to act on behalf of the applicant. (See FP 14.26.09).
Jean Proctor
U.S. Patent and Trademark Office

\section*{PART B - FEE(S) TRANSMITTAL}

\section*{Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE \\ Commissioner for Patents P.O. Box 1450 \\ Alexandria, Virginia 22313-1450 \\ or Fax (571)-273-2885}

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

\section*{Certificate of Mailing or Transmission}

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below
GLOBAL PATENT GROUP - HOR
1005 NORTH WARSON ROAD
SUITE 404
SAINT LOUIS, MO 63132
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline \(13 / 775,000\) & \(02 / 22 / 2013\) & Bruce Scharschmidt & HOR0026-201D1-US \\
\hline
\end{tabular}

TITLE OF INVENTION: METHODS OF THERAPEUTIC MONITORING OF NITROGEN SCAVENGING DRUGS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & ENTITY STATUS & ISSUE FEE DUE & PUBLICATION FEE DUE & PREV. PAID ISSUE FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline \multirow[t]{2}{*}{nonprovisional} & CMAALI & - 480 & \multirow[t]{2}{*}{\$0} & \multirow[t]{4}{*}{\$0} & \multirow{4}{*}{\$960} & \multirow[t]{4}{*}{09/18/2015} \\
\hline & LARGE & \$960 & & & & \\
\hline \multicolumn{2}{|c|}{EXAMINER} & ART UNIT & CLASS-SUBCLASS & & & \\
\hline \multicolumn{2}{|c|}{RAO, SAVITHA M} & 1621 & 424-009200 & & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \\
Change of correspondence address (or Change of Correspondence Address form \(\mathrm{PTO} / \mathrm{SB} / 122\)) attached.
"Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.
\end{tabular}} & \begin{tabular}{l}
2. For printing on the p \\
(1) The names of up to or agents OR, alternati \\
(2) The name of a sing registered attorney or 2 registered patent atto listed, no name will be
\end{tabular} & \begin{tabular}{l}
atent front page, list 3 registered patent attor ely, \\
e firm (having as a memb gent) and the names of up neys or agents. If no nam printed.
\end{tabular} & \(\begin{array}{cc}\text { ys } & 1 \\ \text { a } & \\ \text { to } & \\ \text { is } & 3\end{array}\) & \\
\hline
\end{tabular}

\section*{3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)}

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

HORIZON THERAPEUTICS, INC
Deerfield, IL
Please check the appropriate assignee category or categories (will not be printed on the patent) : \(\quad\) Individual \(\quad \begin{aligned} & \text { Corporation or other private group entity } \\ & \text { Government }\end{aligned}\)
\begin{tabular}{ll}
4a. The following fee(s) are submitted: & 4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) \\
Issue Fee & \(\square\) A check is enclosed. \\
\(\square\) Publication Fee (No small entity discount permitted) & \(\square\) Payment by credit card. Form PTO-2038 is attached. \\
\(\square\) Advance Order - \# of Copies & The director is hereby authorized to charge the required fees(s), any deficiency, or credits any \\
(enclose an extra copy of this form).
\end{tabular}
5. Change in Entity Status (from status indicated above)

Applicant certifying micro entity status. See 37 CFR 1.29
\(\square\) Applicant asserting small entity status. See 37 CFR 1.27
Applicant changing to regular undiscounted fee status.

NOTE: Absent a valid certification of Micro Entity Status (see forms PTO/SB/15A and 15B), issue fee payment in the micro entity amount will not be accepted at the risk of application abandonment
NOTE: If the application was previously under micro entity status, checking this box will be taken to be a notification of loss of entitlement to micro entity status.
NOTE: Checking this box will be taken to be a notification of loss of entitlement to small or micro entity status, as applicable.

NOTE: This form must be signed in accordance with 37 CFR 1.31 and 1.33 . See 37 CFR 1.4 for signature requirements and certifications
\begin{tabular}{llll}
Authorized Signature /Lauren L. STEVENS/ & & Date \(\quad 6 / 24 / 2015\) \\
Typed or printed name Lauren L. Stevens & & Registration No. 36691 \\
\hline
\end{tabular}

Page 2 of 3
PTOL-85 Part B (10-13) Approved for use through 10/31/2013.
OMB 0651-0033 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

\begin{tabular}{|l|c|c|c|c|}
\hline & Description & Fee Code & Quantity & Amount
\end{tabular} \begin{tabular}{c}
\begin{tabular}{c}
Sub-Total in \\
USD(\$)
\end{tabular} \\
\hline Extension-of-Time: \\
\hline Miscellaneous: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 22735370 \\
\hline Application Number: & 13775000 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 7929 \\
\hline Title of Invention: & METHODS OF THERAPEUTIC MONITORING OF NITROGEN SCAVENGING DRUGS \\
\hline First Named Inventor/Applicant Name: & Bruce Scharschmidt \\
\hline Customer Number: & 101325 \\
\hline Filer: & Dennis A. Bennett/Vicki Truman \\
\hline Filer Authorized By: & Dennis A. Bennett \\
\hline Attorney Docket Number: & HOR0026-201D1-US \\
\hline Receipt Date: & 25-JUN-2015 \\
\hline Filing Date: & 22-FEB-2013 \\
\hline Time Stamp: & 09:56:27 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Deposit Account \\
\hline Payment was successfully received in RAM & \$960 \\
\hline RAM confirmation Number & 24396 \\
\hline Deposit Account & 504297 \\
\hline Authorized User & BENNETT, DENNIS A. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \\
Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) \\
Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)
\end{tabular}} \\
\hline
\end{tabular}

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi Part /.zip & Pages (if appl.) \\
\hline 1 & Issue Fee Payment (PTO-85B) & 20150625_Issue_Fee_Trans.pdf & & no & 1 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{2} & \multirow{2}{*}{Fee Worksheet (SB06)} & \multirow{2}{*}{fee-info.pdf} & 30641 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{3}{|c|}{1024954} \\
\hline \multicolumn{6}{|l|}{This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.} \\
\hline \multicolumn{6}{|l|}{New Applications Under 35 U.S.C. 111} \\
\hline \multicolumn{6}{|l|}{If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.} \\
\hline \multicolumn{6}{|l|}{National Stage of an International Application under 35 U.S.C. 371} \\
\hline \multicolumn{6}{|l|}{If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.} \\
\hline \multicolumn{6}{|l|}{New International Application Filed with the USPTO as a Receiving Office} \\
\hline \multicolumn{6}{|l|}{If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.} \\
\hline
\end{tabular}

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.
\begin{tabular}{|c|c|c|c|c|}
\hline & m 1 & /PTO & & plete if Known \\
\hline & dis & OSURE & Application Number & 13/775000 \\
\hline & AP & LICANT & Filing Date & 02-22-2013 \\
\hline & Marc & 12,2012 & First Named Inventor & Bruce Scharschmidt \\
\hline & & & Art Unit & 1621 \\
\hline (use & ts a & necessary) & Examiner Name & Savitha M. Rao \\
\hline 1 & of & 10 & Attorney Docket Number & HOR0026-201D1-US \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multicolumn{6}{|c|}{U.S. PATENT DOCUMENTS} \\
\hline & \multirow[t]{3}{*}{Exami ner Initials*} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Cite } \\
& \text { No. }
\end{aligned}
\]} & Document Number & \multirow[b]{2}{*}{Publication Date MM-DD-YYYY} & \multirow[b]{2}{*}{Name of Patentee or Applicant of Cited Document} & \multirow[t]{2}{*}{Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear} \\
\hline & & & Number-Kind Code \({ }^{2}\) (if known) & & & \\
\hline & & P1 & 4,457,942 & 07-03-1984 & Brusilow, S.W. & \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Change \\
to docun \\
/S.R.R. \\
6/30/20
\end{tabular}} & \multirow[t]{2}{*}{) applied ent,} & P2 & 5,654,333 & 08-05-1997 & The dinited States Of America As Pepresented By The Department Of Health And Human Services & Samid \\
\hline & & P3 & 8,094,521 & 01-10-2012 & Dightangale Rraducts_15 & Levy \\
\hline & \multirow[t]{6}{*}{15} & P4 & 8,404,215 & 03-26-2013 & Hyperion Thorapoutics Jac. & Scharschmidt et al. \\
\hline & & P5 & 2003/0195255 & 10-16-2003 & Marshall L. Summar & \\
\hline & & P6 & 2005/0273359 & 12-08-2005 & Young, D.E. & \\
\hline & & P7 & 2010/0016207 & 01-21-2010 & Wurtman, RJ et al & \\
\hline & & P8 & 2013/0281530 & 10-24-2013 & Scharschmidt, B et al & \\
\hline & & P9 & 2014/0142186 & 05-22-2014 & HypenionThomepouticornam & Scharschmidt et al. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{FOREIGN PATENT DOCUMENTS} \\
\hline \multirow[b]{2}{*}{Exami ner Initials*} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cite \\
No. \({ }^{1}\)
\end{tabular}} & Foreign Patent Document & \multirow[b]{2}{*}{Publication Date MM-DD-YYYY} & \multirow[b]{2}{*}{Name of Patentee or Applicant of Cited Documents} & \multirow[t]{2}{*}{Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear} & \multirow[b]{2}{*}{\(T^{6}\)} \\
\hline & & Country Code \({ }^{3-}\) Number \({ }^{4}\) Kind Code \({ }^{5}\) (if known) & & & & \\
\hline & F1 & WO1994/22494 & 10-13-1994 & The DuPont Merck Pharmaceutical Company & & \\
\hline & F2 & WO2013/048558 & 04-04-2013 & Hyperion Therapeutics, Inc. & & \\
\hline & F3 & WO2013/158145 & 10-24-2013 & Hyperion Therapeutics, Inc. & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner \\
Signature
\end{tabular}\(\quad\)\begin{tabular}{l}
Date \\
Considered
\end{tabular}\(\quad\)\begin{tabular}{l}
\\
\hline
\end{tabular}
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 1 Applicant's unique citation designation number (optional). 2 See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. 3 Enter Office that issued the document, by the two-letter code (WIPO Standard ST 3). 4 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. 5 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. 6 Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Gommissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Examin er Initials} & \multicolumn{6}{|c|}{U.S. PATENT DOCUMENTS} \\
\hline & \multirow[b]{2}{*}{Cite No.} & \multicolumn{2}{|l|}{U.S. Patent or Application} & \multirow[b]{2}{*}{Name of Patentee or Inventor of Cited Document} & \multirow[t]{2}{*}{Date of Publication or Filing Date of Cited Document} & \multirow[b]{2}{*}{Pages, Columns, Lines, Where Relevant Figures Appear} \\
\hline & & \multicolumn{2}{|l|}{NUMBER \begin{tabular}{r}
Kind Code \\
(if known)
\end{tabular}} & & & \\
\hline & A1 & 2004/0229948 & A1 & SUMMAR et al. & 11/18/2004 & \\
\hline & A2 & 2006/0135612 & A1 & FERRANTE & 06/22/2006 & \\
\hline & A3 & 2008/119554 & A1 & JALAN et al. & 05/22/2008 & \\
\hline & A4 & 4,284,647 & & BRUSILOW et al. & 08/18/1981 & \\
\hline & A5 & 5,968,979 & & BRUSILOW & 10/19/1999 & \\
\hline & A6 & 6,050,510 & A & BONNEWITZ O4 & 05109/2000 & \\
\hline & A7 & 6,083,984 & & BRUSILOW & 07/04/2000 & \\
\hline
\end{tabular}

United States Patent and Trademark Office
P.O. Box 1450
Alexandria, Vir

Www.uspto.gov

\section*{ISSUE NOTIFICATION}

The projected patent number and issue date are specified above.

\section*{Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)}
(application filed on or after May 29, 2000)
The Patent Term Adjustment is 230 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management (ODM) at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):

Masoud Mokhtarani, Walnut Creek, CA;

The United States represents the largest, most dynamic marketplace in the world and is an unparalleled location for business investment, innovation, and commercialization of new technologies. The USA offers tremendous resources and advantages for those who invest and manufacture goods here. Through SelectUSA, our nation works to encourage and facilitate business investment. To learn more about why the USA is the best country in the world to develop technology, manufacture products, and grow your business, visit SelectUSA.gov.```

[^0]: provide the title compound ($6.7 \mathrm{~g}, 82 \%$) as a white powder. 1_{H} NMR d (D_{6}-DMSO) 8.45 ($b r t, 1 H$) 7.90 (d, 1H) , $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~m}$, 1H) , $4.25(\mathrm{~d}, 2 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}$,
 $4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~m}, 6 \mathrm{H})$.
 2. 4, 4'-Dinitrobenzophenone Oxime

 The title compound was prepared by modification of procedures previously reported in the literature (Chapman and Fidler (1936) J. Chem. Soc, 448; Kulin and Leffek (1973) Can. J. Chem., 51: 687). A solution of chromic anhydride ($20 \mathrm{~g}, 200 \mathrm{mmol}$) in 125 ml of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise over 4 hours, to a suspension of bis(4nitrophenyl)methane ($25 \mathrm{~g}, 97 \mathrm{mmol}$) in 300 ml of acetic acid heated to reflux. The reaction mixture was heated at reflux for 1 hour, cooled to room temperature, and poured into water. The solid was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$, 5% sodium bicarbonate, $\mathrm{H}_{2} \mathrm{O}$, and air-dryed to provide a 1:1 mixture of bis (4-nitrophenyl)methane/4,4'-dinitrobenzophenone via 1_{H} NMR. This material was oxidized with a second portion of chromic anhydride ($20 \mathrm{~g}, 200 \mathrm{mmol}$), followed by an identical work-up procedure to provide the crude product. Trituration with 200 ml of benzene heated to reflux for 16 hours provided 4,4'-dinitrobenzophenone ($20.8 \mathrm{~g}, 79 \%$) as a yellow powder.

 A solution of hydroxylamine hydrochloride (10.2 g, 147 mmol) was added to a suspension of 4,4'dinitrobenzophenone ($19 \mathrm{~g}, 70 \mathrm{mmol}$) in 100 ml of ethanol. The reaction mixture was heated to reflux for 2 hours, cooled to room temperature, and the solid collected by filtration. Recrystallization from ethanol provided the title compound ($14.0 \mathrm{~g}, 70 \%$) as pale yellow crystals. mp $194^{\circ} \mathrm{C}$; $1_{\mathrm{H}} \operatorname{NMR}$ (D_{6}-DMSO) d 12.25 ($\mathrm{s}, 1 \mathrm{H}$), $8.35(d, 2 H), 8.20(d, 2 H), 7.60(d, 4 H)$.

[^1]: $X_{1}=2$-propyl, ethyl, or p-hydroxyphenylmethyl $\mathrm{X}_{2}=\mathrm{H}$.

 Compounds cyclo(D-Val-NMeArg-Gly-Asp-Mamb (5-CH2NHX ${ }_{2}$), cyclo(D-Abu-NMeArg-Gly-Asp-Mamb (5-CH2NHX2), and cyclo(D-

[^2]: Part D - A solution of methyl 8-aminomethyl-5,6,7,8-tetrahydro-2-naphthoate ($0.78 \mathrm{~g}, 0.0036 \mathrm{~mol}$) and triethylamine ($0.55 \mathrm{~mL}, 0.40 \mathrm{~g}, 0.004 \mathrm{~mol}$) in aqueous tetrahydrofuran (50%, 75 mL) was added, portionwise as a solid, 2-(tert-butoxycarbonyloxyimino)-2phenylacetonitrile ($0.99 \mathrm{~g}, 0.004 \mathrm{~mol}$). All was stirred at ambient temperature over 3 hours. The solution was concentrated to half volume and extracted with diethylether. The aqueous layer was then acidified to a pH of 1.0 using hydrochloric acid (1N) and then extraced with ethyl acetate. The combined organic layers were dried over anhydrous magnesium sulfate and evaporated to dryness under reduced pressure. The residue was purified by flash chromatography using hexane:ethyl acetate::8:2 to give methyl N -(BOC)-8-aminomethyl-5, 6,7,8-tetrahydro2 -naphthoate ($0.54 \mathrm{~g}, 0.0017 \mathrm{~mol}, 47 \%$) as a white solid. $m p=72-80^{\circ} \mathrm{C} ;{ }^{{ }^{1} H} \operatorname{NMR}(D M S O)$ d $13.8(\mathrm{~s}, 1 \mathrm{H}), 7.8-7.65(\mathrm{~m}$, 3H), 7.6-7.5 (m, 3H), 7.25-7.20 (m, 1H), 7.15-7.05 (m, 1H), 3.9-3.8 ($\mathrm{m}, 1 \mathrm{H}$), 3.2-2.8 ($\mathrm{m}, 4 \mathrm{H}$), 1.8-1.6 (m, 3H), $1.4(5,6 H)$.

 Part E - To a solution of methyl N-(BOC)-8-aminomethyl-$5,6,7,8$-tetrahydro-2-naphthoate ($0.50 \mathrm{~g}, 0.0016 \mathrm{~mol}$) in ethanol (12.5 mL) was added, dropwise, a solution of sodium hydroxide (0.50 g) in water (12.5 mL). All was stirred a reflux over 4 hours. The reaction mixture was concentrated to half volume and then acidified to a pH equal to 1.0 using hydrochloric acid (1N). The residue was puified by flash chromatography using a gradient of hexane:ethyl acetate::1:1 to ethyl acetate to ethyl acetate: methanol::9:1 to give the racemic mixture of the title compound, N-(BOC)-2-aminomethyl-5,6,7,8-tetrahydro-2-naphthoic acid ($0.19 \mathrm{~g}, 0.00062 \mathrm{~mol}, 39 \%$)

[^3]: the two layers were separated. The pH of the aqueous layer was lowered to 4.5 , and the resulting oily precipitate was extracted into EtOAc (2 X 300 ml). The organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to a
 yellow solid. The solid was triturated with refluxing $\mathrm{CCl}_{4}(3 \mathrm{X} 100 \mathrm{ml}$) to give the product ($14.17 \mathrm{~g}, 64 \%$) as a colorless solid. $1_{H} \operatorname{NMR}\left(C D_{3} O D\right): 8.04(s, 1 H), 7.71-$ $7.66(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~s}$, $2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, \mathrm{J}$

[^4]: 20 demonstrates the use of BSOCOES (bis[2(succinimidooxycarbonyloxy)ethyl)sulfone, Pierce
 *
 Chemical Co.), a homobifunctional cross-linker which
 contains an interior sulfone group. This reagent
 5 produces a carbamate group on conjugation with an amine.

 $\left(\mathrm{Su}-\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2}\right)_{2}$
 pH 7-9

 $\left(\mathrm{Su}-\mathrm{OCO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2}$

 Scheme 20
 -273-

[^5]:

 ;

