a2 United States Patent

Jawa et al.

US006728729B1

10y Patent No.:
45) Date of Patent:

US 6,728,729 B1
Apr. 27, 2004

(54) ACCESSING MEDIA ACROSS NETWORKS

(75) Inventors: Amandeep Jawa, San Francisco, CA
(US); Jeffrey L. Robbin, Los Altos, CA
(US); David Heller, San Jose, CA (US)

(73)

Assignee: Apple Computer, Inc., Cupertino, CA

(US)
Notice:

()

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21)
(22)
(51)
(52)
(58)

Appl. No.: 10/423,638
Filed: Apr. 25, 2003

Int. CL7 oo GO6F 17/30
U.S: 'Cly sommrmmammmarmns 707/104; 707/3; 707/203
Field of Search 707/104, 3, 4,

707/5, 203

(56) References Cited
U.S. PATENT DOCUMENTS

5,920,856 A
5983218 A

* 7/1999 Syeda-Mahmood 707/3
* 11/1999 Syeda-Mahmood 707/3
6,243,713 B1 * 6/2001 Nelson et al. 707/104.1
6,523,022 B1 * 2/2003 Hobbsccccccoevvivinnins 707/3

OTHER PUBLICATIONS

“Apple Introduces iTunes—World’s Best and Easiest To
Use Jukebox Software,” Macworld Expo, San Francisco,
Jan. 9, 2001, downloaded from http://www.apple.com/pr/
library/2001/jan/09itunes.html, on Jul. 10, 2002, 2 pages.
iTunes, Playlist Related Help Screens, iTunes v1.0, Apple
Computer, Inc., Jan. 2001.

“Apple Announces iTunes 2,” Press Release, Apple Com-
puter, Inc., Oct. 23, 2001, downloaded from: http:/ww-
w.apple.com/pr/library/2001/oct/23itunes.html, on Jul. 10,
2002, 2 pages.

Specification Sheet, iTunes 2, Apple Computer, Inc., Oct.
31, 2001.

iTunes 2, Playlist Related Help Screens, iTunes v2.0, Apple
Computer, Inc., Oct. 23, 2001.

SoundJam MP Plus, Representative Screens, published by
Casady & Greene, Inc., Salinas, CA, 2000.

“SoundJam MP Plus Manual, version 2.0"—MP3 Player
and Encoder for Macintosh by Jeffrey Robbin, bill Kincaid
and Dave Heller, manual by Tom Negrino, published by
Casady & Greene, Inc., 2000.

“WWDC 2002 Keynote Coverage,” MacCentral Staff, May
6, 2002, downloaded from: http://naccentral.macworld.com/
news/2002/05/06/wwdckeynote on Nov. 12, 2003, 8 pages.
“WWDC Keynote Coverage,” MacCentral Staff, May 6,
2002, downloaded from: http://maccentral. macworld.com/
news/2002/05/06/wwdckeynote on Nov. 12, 2003, 8 pages.
“Review: SoundJam MP Plus 2.5.1,” Daniel Chvatik, Oct.
2000, downloaded from: http://www.atpm.com/6.10/sound-
jam.shtml on Nov. 12, 2003, 8 pages.

“iHam on iRye: 2.0—VersionTracker,” downloaded from:
http://www.versiontracker.com/dyn/moreinfo/macosx/
13021 on Nov. 12, 2003, 3 pages.

“iCommune—Share your music over a network,” down-
loaded from http://www.icommune.sourceforge.net/ on Nov.
12, 2003, 1 page.

* cited by examiner

Primary Examiner—Sanjiv Shah
(74) Attorney, Agent, or Firm—Beyer Weaver & Thomas
LLP

G7) ABSTRACT

Method and apparatus for accessing media across networks.
The present invention generally allows for media to be
provided across a network. A client requests media infor-
mation from a server so the client can create a local
representation of the server’s database. The client is then
able to manage the media information locally. When the
client selects the desired media, it requests the selection
from across the network. The server then delivers the
selected media.

15 Claims, 11 Drawing Sheets

MEDIA MANAGER

205

MUSIC
DATABASE

SERVER-SIDE MEDIA MANAGEMENT SYSTEM

5210

5 200

215

SONGS

L}

220

AN

PLAYLISTS

i

APPLE 1008

U.S. Patent Apr. 27, 2004 Sheet 1 of 11 US 6,728,729 Bl

115

125

120

O

FIGURE 1

U.S. Patent Apr. 27,

2004 Sheet 2 of 11

US 6,728,729 Bl

SERVER-SIDE

MEDIA MANAGEMENT SYSTEM

210
MEDIA MANAGER j 215

5

MUSIC
DATABASE

205

S

Ne—

S

j 200

FIGURE 2

CLIENT-SIDE MEDIA MANAGEMENT SYSTEM

MEDIA
MANAGER

5 305

?

J’ 300

FIGURE 3

U.S. Patent Apr. 27, 2004 Sheet 3 of 11 US 6,728,729 Bl

SERVER CLIENT

409
406f f 403

Client Connects to Network %

SERVER-INFO Request 412

SERVER-INFO Reply

=
j 418
415 .f

CONTENT CODE Request (Optional) 421

CONTENT CODE Reply

J' -
424 430 J 427

Client Logs On (If Necessary) %

<)

FIGURE 4A

U.S. Patent Apr. 27, 2004 Sheet 4 of 11

US 6,728,729 Bl

SERVER CLIENT
P SERVER-DATABASE Request 433
- j‘ SERVER-DATABASE Reply q
j f[442
439 See FIG. 5

FIGURE 4B
SERVER CLIENT
406 403
\/\‘ DATABASE-SONGS Request 445
448 J DATABASE-SONGS Reply .,

451 j

FIGURE 4C

453
‘*/S\ee FIG. 6

U.S. Patent Apr. 27, 2004 Sheet 5 of 11 US 6,728,729 Bl

SERVER CLIENT
403

406
e DATABASE-PLAYLIST Request 454

DATABASE-PLAYLIST Reply u
j 460

FIGURE 4D

SERVER CLIENT

PLAYLIST-SONGS Request 463

PLAYLIST-SONGS Reply

J 469
466 #-/;ee FIG. 7

FIGURE 4E

U.S. Patent Apr. 27, 2004 Sheet 6 of 11 US 6,728,729 Bl

SERVER CLIENT
403

406
e SONG-DATA Request 472

Stream SONG
J I
475

FIGURE 4F

U.S. Patent Apr. 27, 2004 Sheet 7 of 11 US 6,728,729 Bl

CLIENT-SIDE DATABASE MANAGEMENT SYSTEM

\u//"‘ 305 _S— 200
MEDIA MANAGER 515

o SONGS ||
\—)/ IE_—__—:__:JJJI
520

MUSIC f > '/_J

\—”/\1 PLAYLISTS—ILH

L'?—__—;_t__—_JJJ

FIGURE 5

U.S. Patent

Apr. 27,2004 Sheet 8 of 11

US 6,728,729 Bl

CLIENT-SIDE DATABASE MANAGEMENT SYSTEM

MEDIA MANAGER

\J//\‘sos 605

j 300

FIGURE 6

U.S. Patent Apr. 27, 2004 Sheet 9 of 11 US 6,728,729 Bl

5 300
CLIENT-SIDE DATABASE MANAGEMENT SYSTEM

f 305 605
MEDIA MANAGER '///

\\—‘/\ PLAYLISTS ||

=== —

FIGURE 7

10

U.S. Patent Apr. 27, 2004 Sheet 10 of 11 US 6,728,729 Bl

SERVER CLIENT
805

810
va UPDATE Request f 815

820 I. UPDATE Reply
825 J

FIGURE 8

11

U.S. Patent Apr. 27, 2004 Sheet 11 of 11 US 6,728,729 Bl

900

905 915 910
/ / [

Processor(s) Memory Interface(s)

920
[

BUS

FIGURE 9

12

US 6,728,729 B1

1
ACCESSING MEDIA ACROSS NETWORKS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to digital media and, more
particularly, to accessing digital media across networks.

2. Description of the Related Art

The ability of computers to be able to share information
is of utmost importance in the information age. Networks are
the mechanism by which computers are able to communi-
cate with one another. Generally, devices that provide
resources are called servers and devices that utilize those
resources are called clients. Depending upon the type of
network, a device might be dedicated to one type of task or
might act as both a client and a server, depending upon
whether it is giving or requesting resources.

Increasingly, the types of resources that people want to
share are entertainment-related. Specifically, music, movies,
pictures, and print are all types of entertainment-related
media that someone might want to access from across a
network. For example, although a music library may reside
on a family computer in the den, the media owner may want
to listen to the music in the living room.

However, sharing media data can be a network-intensive
process. People have devoted significant resources to both
reducing the load on networks and increasing the capability
of networks to handle large data transfers. Due to advances
in compression technology and network bandwidth, the
throughput of information through networks has increased
dramatically over the years.

Although the described technologies work well in many
applications, there are continuing efforts to further improve
the ability to transfer digital media.

SUMMARY OF THE INVENTION

The present invention provides a method of retrieving
media across a network. First, a client connects to a network
that includes a server. The server includes at least one media
database that has media and associated media information.
The client then queries the server for at least a portion of the
media information and then receives media information
responsive to the query. The client then uses a client-side
media management system to manage the received media
information. Management of the received media information
includes selecting media. The client then requests the
selected media from across the network and, in response to
the request, receives the requested media.

In another aspect, a client queries the server for server
information and capabilities after connecting to the network.
The client then receives a response that identifies the server
and informs the client as to its capabilities. After receiving
the server information, the client queries the server for
database enumeration and receives a response that enumer-
ates all databases, how much media is available, and how
many media collections are available. After the database
identification, the client queries the server for an enumera-
tion of media collections in the database and receives a
response that identifies media collections. The client then
queries the server for data associated with an identified
media collection, the query being capable of requesting a
different level of detail than would be given by default. The
response to the media collection query identifies data asso-
ciated with the identified media collection in the requested
level of detail. The client then executes the identified media

10

15

20

25

30

35

40

45

50

55

60

65

13

2

collection, requesting media from the server when the media
collection requires the media and receiving the requested
media.

In yet another aspect, the invention provides a method of
ensuring that a media database representation on a client is
current. The server first provides a media database that
updates to a current revision indicator whenever the media
database is modified. Then, the server receives a request
from the client, the request pertaining to the database that
includes a client-provided revision indicator. After receiving
the request, the server compares the current revision indi-
cator to the client-provided revision indicator. The server
then responds to the request with a response that includes at
least an identification of the current revision indicator if the
client-provided revision indicator did not match the current
revision indicator.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by reference to the
following description taken in conjunction with the accom-
panying drawings in which:

FIG. 1 is a block diagram illustrating an exemplary
environment in which the present invention may be imple-
mented;

FIG. 2 is a block diagram illustrating an organizational
structure of a server-side media management system on the
server illustrated in FIG. 1,

FIG. 3 is a block diagram illustrating an organizational
structure of a client-side media management system on the
client illustrated in FIG. 1;

FIG. 4A is a representational control flow diagram illus-
trating one technique that can be used to determine the
features of the server-side media management system illus-
trated in FIG. 2;

FIG. 4B is a representational control flow diagram illus-
trating one technique that could be used to enumerate
databases of the server-side media management system
illustrated in FIG. 2;

FIG. 4C is a representational control flow diagram illus-
trating one technique that could be used to populate a song
records portion of the client-side media management system
illustrated in FIG. 5;

FIG. 4D is a representational control flow diagram illus-
trating a technique that could be used to enumerate playlists
of the server-side media management system illustrated in
FIG. 2;

FIG. 4E is a representational control flow diagram illus-
trating a technique that could be used to populate a playlist
records portion of the client-side media management system
illustrated in FIG. 6;

FIG. 4F is a representational control flow diagram illus-
trating a technique that could be used to retrieve a song from
a song database once a song is selected from the client-side
media management system illustrated in FIG. 7;

FIG. 5 is a block diagram illustrating an organizational
structure of the client-side media management system after
receiving a reply to the SERVER-DATABASE request illus-
trated in FIG. 4B;

FIG. 6 is a block diagram illustrating an organizational
structure of the client-side media management system after
receiving a reply to the DATABASE-SONGS request illus-
trated in FIG. 4C;

FIG. 7 is a block diagram illustrating an organizational
structure of the client-side media management system after

US 6,728,729 B1

3
receiving a reply to the PLAYLIST-SONGS request illus-
trated in FIG. 4E;

FIG. 8 is a representational control flow diagram illus-
trating one technique that could be used to ensure the client
and the server illustrated in FIG. 1 are synchronized; and

FIG. 9 is a diagram illustrating an exemplary computing
device in which various embodiments of the invention may
be implemented.

It is to be understood that, in the drawings, like reference
numerals designate like structural elements. Also, it is
understood that the depictions in the figures are not neces-
sarily to scale.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, it will be obvious to one skilled in the
art that the present invention may be practiced without some
or all of these specific details. In other instances, well known
process steps have not been described in detail in order to
avoid unnecessarily obscuring the present invention.

The present invention generally allows for client
machines to access a media database on a server. Both data
and metadata on the server describes and organizes the
media in various ways and allows the server to manipulate
the media. Instead of relying on the server to execute the
media management system, the client requests the data and
metadata and then uses the information on a local media
management system, effectively creating a representation of
the server on the client. Once media is selected on the client
through the client-side media management system, the client
can request the media from the server, and the server can
deliver the media to the client.

The invention can support both “thick” and “thin” clients.
Thick clients are typically software programs, such as
iTunes™ software available from Apple Computer, Inc. of
Cupertino, Calif., operating on hardware devices that sup-
port full user interface abilities and have considerable pro-
cessor and memory resources. Thin clients are software
programs operating on hardware devices that may have
limited user interface abilities and have reduced processing
and memory resources. The invention allows for robust
control features appropriate for thick clients, but can adapt
to minimal control features for thin clients.

Generally, a client will first make a request to determine
whether media is available on a server. Then, the client can
make a series of requests to create a representation of the
media available on the server on the client. The represen-
tation contains information about the media available on the
server (“media information”). Thick clients can choose to
retrieve a complete representation of the server’s available
media, while thin clients may choose to retrieve a partial
representation of the server’s available media. After receiv-
ing the media information from the server, the client (as
instructed by its user) can then search, browse, sort, or
otherwise interact with the media information now resident
on the client. Further, the client (as instructed by its user)
will typically select a media item to be presented (e.g.,
played). In such a case, the media content for the selected
media item is streamed from the server to the client.

In addition, clients can receive notifications from the
server when a media database has been changed. Multiple
connections can allow a client to use one connection to
access media while using another connection to wait for a
notification that the database has changed, or to browse
media listings.

10

15

20

25

30

35

40

45

50

55

60

65

14

4

FIG. 1 is a block diagram illustrating an exemplary
environment in which the present invention may be imple-
mented. A network 105 couples a server 110 to various
clients 115, 120, 125, and 130. The network 105 can
generally be a data network, such as a LAN, WAN or the
Internet. The server 110 may or may not be a dedicated
device. In the example shown in FIG. 1, the server 110 is a
general purpose computer. The various clients 115, 120, 125,
and 130 can be thick or thin clients, with varying levels of
processing power. Clients may include portable computers
115, desktop computers 120, specialized devices such as
iPods™ 125 available from Apple Computer, Inc. of
Cupertino, Calif., or even network-aware audio/video com-
ponents 130 that are designed to work across a network 105.
The following discussion will, for simplicity, assume only
the portable computer client 115 is requesting information
from the server 110.

FIG. 2 is a block diagram illustrating an organizational
structure of a server-side media management system 200 on
the server 110. The server-side media management system
200 includes a media manager 210 and a music database
205. The media manager 210 controls access to the music
database 205. More particularly, the media manager 210
receives requests from the client 115, accesses the music
database, and returns responses to the client 115.

The music database 205 has a number of records 215 and
220 that are used to classify, identify and/or describe media
(i.e., media items) in the music database 205. For simplicity,
the following discussion will assume the digital media
contained on the server 110 only contains music files that
can be streamed over the network 105. It should be appre-
ciated that any reference to “songs” or “music” made in this
document could be generalized to any form of digital media,
which can include sound files, picture data, movies, text files
or any other types of media that can be digitally stored on a
computer. Similarly, any reference to “playlists” can be
generalized to media collections, including collections of
mixed digital media.

The media manager 210 has or can obtain information
about the database 205 that may, for example, include the
name of the server, the version of the database being used,
the type of security that is required, the number of databases
available to the server, whether content codes are supported,
whether persistent identification is supported, etc. It should
be appreciated by those skilled in the art that the information
about the database 205 may exist in a single record file or
can be either partially or fully generated on demand, iden-
tifying the various pieces of information as needed.

The song records 215 contain metadata about each media
item available in the database 205. The metadata might
include, for example, the names of songs, an identification
number, a persistent identification number, the artist, the
album, the size of the song, the format of the song, the
required bit rate, and any other appropriate information. Of
course, the type of information may depend on the type of
media. A video file might additionally have director and
producer fields, but may not use the album field. Still
pictures would have no need for bit rate information. While
some fields may be standard, others may be specific to
certain applications. For example, a video signal may have
secondary audio program (SAP) information. A mechanism
for ensuring clients can properly process non-standard con-
tent codes is described in connection with FIG. 4A.

Both an identification number and a persistent identifica-

tion number can be used. If supported, a persistent identi-
fication could be used to access the same information across

US 6,728,729 B1

S

server restarts. Typically, a server would assign each record
a new identification number every time the media manage-
ment system 200 restarted. However, persistent identifica-
tion numbers would remain the same for as long as the
record is available.

The playlist records 220 contain information about each
playlist available in the music database 205. Further, the
information for a given playlist can include the identification
numbers for each of the songs within the playlist. Playlists
are collections of media that may or may not be in any
particular order. Users may choose to combine media by
genre, mood, artists, audience, or any other meaningful
arrangement. While the playlists 220 on the server 110 will
usually only include media contained in its own music
database 205, there is no reason the playlist records 220
cannot include media or playlists stored on other servers.
However, certain non-standard content codes may need to be
used, depending upon the implementation of the server-side
media management system 200.

FIG. 3 is a block diagram illustrating an organizational
structure of a client-side media management system 300 on
one of the clients 115. The client-side media management
system 300 includes a media manager 305. The media
manager 305 interacts with the media manager 210 of the
server-side media management system 200 through the
network 105 so as to replicate at least a portion of the music
database 205 at the server 110 on the client 115. When the
client-side media management system 300 first starts, it
cannot access media on the server 110 because it does not as
yet have any information about what media is available.

FIG. 4A is a representational control flow diagram illus-
trating one technique that can be used to determine the
features of the server-side media management system 200.
Operations performed by the client 115 and the server 110
are represented by corresponding vertical lines 403 and 406.
At 409 the client 115 connects to the network 105 and first
becomes aware of the server 110. The client 115 can use any
connection mechanism that allows it to interact with the
network 105. For example, if the client 115 were an
iBook™, available from Apple Computer, Inc. of Cupertino,
it might use Rendezvous™ networking technology, also
available from Apple Computer, Inc. of Cupertino, Calif., in
order to automatically configure itself with the network 105.
If the client is not aware of the server 110, other mechanisms
can be used. For example, a user might manually search for
the server 110, or the user might directly enter the address
of the server 110.

Once the client 115 is aware of the server 110, it can send
a SERVER-INFO request to the server 110 at 412. The
SERVER-INFO request is usually used to obtain informa-
tion from the server prior to attempting any other transac-
tions. If the network 105 uses the TCP/IP protocol, the
request could be formatted as an HTTP GET request. The
GET request might also allow for additional extensions to be
added to the request, enabling, for example, the client 115 to
include information about the client-side media manage-
ment system 300.

At 415 the server responds to the SERVER-INFO request
with information describing a series of features supported by
or required by the server. The information might, for
example, include information about the server-side media
management system 200, the number of available databases,
whether and what login procedures are required, whether
updates are supported, whether persistent identification
numbers are supported, whether content codes are
supported, and the protocol version.

10

15

20

25

30

35

40

45

50

55

60

65

15

6

The information provided to the client 115 at 415 permits
the client-side media management system 300 to understand
the capabilities of the server 110. Although the client 115 is
able to identify the server 110, the client 115 does not yet
have any information about the available media.

If the client 115 determines that the server 110 responded
to the SERVER-INFO request with an indication that con-
tent codes are supported at 418, the client 115 can optionally
issue a CONTENT CODE request at 421. The CONTENT
CODE request is one mechanism by which the client 115 can
obtain a list of content codes supported by the server 110 and
associated string names mapped thereto.

The inclusion of the string name allows multiple devel-
opers to use the same codes for their individualized prod-
ucts. For example, one developer may assign the code
“16000” to a feature that allows users to purchase corre-
sponding albums over the network; while another developer
may assign the same code to feature that provides users with
the lyrics of songs that are being listened to. By allowing a
string name to be included, the client 115 can determine
whether it can support the content code. Uniqueness of the
string name can, for example, be ensured by including the
developer’s URL as part of the string name.

At 424 the server 110 responds to the CONTENT CODE
request the codes and their associated string names. At 427,
the client 115 can simply ignore the code/string pairs that it
does not recognize. Otherwise, for those code/string pairs
that the client 115 does recognize, the client 115 will
associate the code with the associated string name.

At 430 the client 115 logs into the server 110. The login
procedure might require a user name (or account name) and
password so the user of the client can be authenticated. The
login procedure is only required if the server 110 requires it.
Certain security protocols might require that every future
request made by the client 115 include certain parameters
such as a session identification number.

Once logged in, the client 115 is ready to begin populating
its local representation of the music database 205. FIG. 4B
is a representational control flow diagram illustrating one
technique that can be used to enumerate databases of the
server-side media management system 200. Operations per-
formed by the client 115 and the server 110 are represented
by corresponding vertical lines 403 and 406. At 433 the
client 115 can issue a SERVER-DATABASE request, which
can be used to retrieve the list of all music databases from
the server 110. The SERVER-DATABASE request may
additionally include an index range and/or a query. Although
available to both thick and thin clients, thin clients might use
index ranges and/or queries to limit the amount of data
contained in each server response.

The index range might be used in any request to constrain
the items returned in the response to a subset of the total set
of items, based on the position (or index) of the first item and
the number of items requested. For example, an index range
could be used to request: the second music database from a
server, songs 10 through 20 from a music database, the last
5 playlists from a music database, the first 5 songs from a
given playlist, or the 42nd song in a music database.

The query might be used in any request to constrain the
items returned in the response to a subset of the total set of
items, based on the specified criteria. For example, a query
could request: songs in a database after a given year;
playlists that contain a certain word in their name; songs in
a database that do not contain a given word in their name;
or some combination thereof.

After processing the SERVER-DATABASE request at
436, the server 110 issues a response at 439. If no index

US 6,728,729 B1

d

range and/or query was given, the response would contain a
complete list of the music databases available at the server
110 together with information about the one or more music
databases. The information about each database might, for
example, include the database identification number, the
persistent database identification number, the name for each
database, the numbers of songs, and the number of playlists.
With this information, the client-side media management
system 300 becomes aware of the general structure of the
one or more music databases at the server 110.

FIG. § is a block diagram illustrating the organizational
structure of the client-side media management system 300
shown in FIG. 3 after receiving a reply to the SERVER-
DATABASE request. At 442, the client 115 is able to
identify the music database 510, the number of available
song records 515, and the number of available playlists 520.
Once the general structure of the music database 510 is
known, the client 115 can populate its representation using
any number of techniques.

FIG. 4C is a representational control flow diagram illus-
trating one technique that could be used to populate the song
records 515 portion of the client-side media management
system 300 for a specific database 510. Operations per-
formed by the client 115 and the server 110 are represented
by corresponding vertical lines 403 and 406. At 445 the
client issues a DATABASE-SONGS request to obtain meta-
data about available songs.

Acthick client may choose to issue a DATABASE-SONGS
request so that it can front load network traffic. Once
metadata about a song is received and stored, the client 115
does not need to request that metadata again. Playlists would
only need to correctly identify a song (e.g., using the song
identification number), and the client-side media manage-
ment system 300 would be able to associate it with the
already-received metadata.

Thin clients may choose to issue an index range, query,
metadata field specifier, or skip 445 all together. A metadata
field specifier would indicate that only certain metadata
fields are desired. Thick clients that use 445 may also choose
to use these same index range, query or metadata field
specifier techniques. For example, limiting the song meta-
data request to only songs in a certain genre might be a
technique that is used to provide the user with a different
user experience.

The server 10 performs any necessary filtering operations
at 448 and then issues a reply at 451. FIG. 6 is a block
diagram illustrating the organizational structure of the
client-side media management system 300 at 453, after
receiving a reply to the DATABASE-SONGS request. The
song records 605 may either be a partial or complete
representation of the server-side song records 215, having
metadata that might, for example, include the names of
songs, an identification number, a persistent identification
number, the artist, the album, the size of the song, the format
of the song, the required bit rate, and any other appropriate
information. If the server-side management system 200 had
multiple databases, a DATABASE-SONGS request (if used)
would need to be issued for each database.

FIG. 4D is a representational control flow diagram illus-
trating a technique that could be used to enumerate the
playlist records 220 portion of the server-side media man-
agement system 200. Operations performed by the client 115
and the server 110 are represented by corresponding vertical
lines 403 and 406.

At 454 the client issues a DATABASE-PLAYLIST
request to obtain a list of available playlists. Playlists on the

10

15

20

25

30

35

45

50

55

60

65

16

8

server 110 can either be user-identified or generated auto-
matically by the server-side media management system 200.
For example, a “base playlist” might be automatically cre-
ated as a special playlist that contains all the songs in the
entire song database 205 while a “John Lennon playlist”
might be a user-created collection of songs by John Lennon.

After receiving the DATABASE-PLAYLIST request and
performing any necessary filtering operations, the server 110
issues a reply at 457. The reply includes a list of all playlists
in the music database 205 and information about those
playlists. The information about the playlists might, for
example, include identification numbers and/or persistent
identification numbers for the playlists, and any other infor-
mation (e.g., whether the songs in the playlist are in order or
can be shuffled) that may have been provided. Multiple
DATABASE-PLAYLIST requests may be required to popu-
late multiple databases.

FIG. 4E is a representational control flow diagram illus-
trating a technique that could be used to populate the playlist
records 520 portion of the client-side media management
system 300. Operations performed by the client 115 and the
server 110 are represented by corresponding vertical lines
403 and 406. Once a playlist is identified at 460, the client
115 sends a PLAYLIST-SONGS request for that playlist at
463. Depending upon whether operations 445 through 451
were already performed, the PLAYLIST-SONGS request
could additionally request that metadata accompanying each
song also be delivered in order to populate the song records
605. Although thick clients that do not have a mechanism for
informing the server 110 of already-received song records
605 would run the risk of receiving duplicate song records
605, thin clients that did not retain song records 605 might
benefit from requesting song metadata along with each
playlist.

After receiving the PLAYLIST-SONGS request and per-
forming any necessary filtering operations, the server 110
issues a reply at 466 containing the requested information.
FIG. 7 is a block diagram illustrating the organizational
structure of the client-side media management system 300
after receiving a reply to the PLAYLIST-SONGS request at
469. Each time the PLAYLIST-SONGS fransaction between
the client 115 and the server 110 is completed, another
playlist record 705 is populated. The playlist record 705 may
be a complete or partial representation of the corresponding
server-side playlist record 220. Multiple PLAYLIST-
SONGS requests may be required to populate multiple
playlists.

FIG. 4F is a representational control flow diagram illus-
trating a technique that could be used to retrieve a song from
the song database 205 once a song is selected. Operations
performed by the client 115 and the server 110 are repre-
sented by corresponding vertical lines 403 and 406.

At 472 the client 115 issues a SONG-DATA request to
retrieve the song data from the server 110. If a single song
is stored in multiple formats on the server 100, the SONG-
DATA request could include a format identifier. The format
identifier could specify that the song is requested in, for
example, MPEG 3 encoded data (“mp3”), MPEG 4
advanced audio coding (“m4a”) audio interchange file for-
mat (“aiff”), or Windows sound file (“wav”). At 475 the
server 110 delivers the audio file to the client 115. In one
embodiment, the server 110 will stream the song by append-
ing song data to an http header, therefore making the client
115 responsible for parsing the data as is appropriate for
playing the song at the client 115.

The preceding description assumes no mechanism is used
to update the client 115 if the data on the server-side media

US 6,728,729 B1

9

management system 200 is modified during a session. For
example, a client-side representation of a playlist 705 may
not accurately represent the latest version of the correspond-
ing server-side playlist 220.

FIG. 8 is a representational control flow diagram illus-
trating one technique that could be used to ensure the client
115 and the server 110 are synchronized. Operations per-
formed by the client 115 and the server 110 are represented
by corresponding vertical lines 805 and 810.

At 815 the client 115 issues an UPDATE request to
retrieve the media data from the server 110. The UPDATE
request can be a flag that informs the server 110 that the
client 115 wants to be informed when data on the server 110
(e.g., music database 205) changes. In one embodiment, the
flag is a revision indicator, such as a revision number or a
time-stamp.

At 820 the server 110 processes the UPDATE request. In
one embodiment, the server 110 will not respond to the
UPDATE request until the server’s music database has
changed relative to the client’s representation for that music
database. If a revision number was used at 815, the server
110 compares the revision number provided by the client
115 with the current revision number to determine if a
change was made. The revision number of the server 110
represents the version of the music database 205 at the server
110. Any subsequent changes to records 215 or 220 may
cause the server 110 to increment its revision number by
one. Depending upon the requirements of the system, a
group of changes to records 215 or 220 may be batched so
that the revision number only increments once. Batching
may be performed by standard techniques, including by
operation (e.g., adding files as a group to the server), by time
(e.g., waiting a certain period of time after the last change
has been made to ensure no other changes will be made) or
by number of operations (e.g., changing the revision number
after a certain number of changes).

Once the server 110 determines that the revision number
provided by the client no longer equals the current revision
number, a reply is issued at 825. In one embodiment, the
reply will contain the server’s current revision number.
Although the server 110 could then the continue to monitor
for changes in the server’s current revision number, the
client 115 might re-issue a new UPDATE request with the
server’s current revision number, essentially repeating
operation 815 with the updated revision number. Some
systems might have the client 115 always start with a
client-generated revision number of “1” and the server 110
always start with a revision number “2” in order to force the
server 110 to issue an UPDATE reply the first time it
receives an UPDATE request. Such an approach can provide
the client 115 with an impetus for populating its local
representation of the music database 205 with a SERVER-
DATABASE request (see FIG. 4A at 433). Additionally, an
UPDATE reply might also be used to notify a client 115 that
the server is about to terminate connection (possibly due to
timeout or server shutdown), perhaps by issuing a current
revision number of 0.

In addition to the UPDATE request, the client 115 could
also include a revision number field in any of the objects
being requested by the requests 433, 445, 454, and 463. The
server 110 would then, on a request-by-request basis, check
the revision number provided with the requests with the
revision number for that particular object. If the revision
numbers did not match, the server 110 would issue an
UPDATE reply, specifying the current revision number and
perhaps the corresponding object. Otherwise, the server 110
would comply with the request as previously described.

10

15

20

25

30

35

40

45

50

55

60

65

17

10

In one embodiment, the database requests 433, 445, 454,
and 463 would additionally support incremental updating in
order to reduce network traffic (and to improve user expe-
rience through greater responsiveness). Incremental updates
would allow the client to request only the changes from a
historical revision number to a current revision number. If,
for example, the client 115 had populated its playlists
records 705 with information from revision “5,” and then the
client is notified by the server 110 that the latest revision is
“8,” the client can issue a new PLAYLIST-SONGS request
463, requesting only the information that has changed from
revision “5” to revision “8.” As long as the server 110
maintains or has access to a historical record of modifica-
tions from each revision number, it would be able to comply
with the incremental request.

However, an optimization might allow for the server 110
to determine whether complying with the incremental
request would actually be more efficient than re-sending the
entire reply. In certain circumstances (e.g., when more than
half of the songs in the playlist were deleted), it would use
less network resources to reply with a full PLAYLIST-
SONGS reply 466 instead of an incremental reply. However,
when the PLAYLIST-SONGS reply 466 provides a full
reply, the reply would advantageously include an indication
that the data does not represent an incremental update, so the
client 115 will be able to properly handle the information.

Generally, the techniques of the present invention may be
implemented on software and/or hardware. For example,
they can be implemented in an operating system, in a
separate user process, in a library package bound into
network applications, or on a specially constructed machine.
In a specific embodiment of this invention, the technique of
the present invention is implemented in software such as an
operating system and/or in an application program running
on the operating system.

A software or software/hardware hybrid implementation
of the techniques of this invention may be implemented on
a general-purpose programmable machine selectively acti-
vated or reconfigured by a computer program stored in
memory. In an alternative embodiment, the techniques of
this invention may be implemented on a general-purpose
network host machine such as a personal computer, work-
station or server. Further, the invention may be at least
partially implemented on a general-purpose computing
device.

Referring now to FIG. 9, a computing device 900 suitable
for implementing the techniques of the present invention
includes a master central processing unit (CPU) 905, inter-
faces 910, memory 915 and a bus 920. When acting under
the control of appropriate software or firmware, the CPU
905 may be responsible for implementing specific functions
associated with the functions of a desired computing device.
The CPU 905 preferably accomplishes all these functions
under the control of software including an operating system
(e.g., Mac OS X)), and any appropriate applications software
(e.g., iTunes).

CPU 905 may include one or more processors such as
those from the Motorola family of microprocessors or the
MIPS family of microprocessors. In an alternative
embodiment, the processor is specially designed hardware
for controlling the operations of computing device 900.

The interfaces 910 are typically provided as interface
cards. Generally, they control the sending and receiving of
data packets over the network and sometimes support other
peripherals used with the computing device 900. Among the
interfaces that may be provided are Ethernet interfaces,

US 6,728,729 B1

11

frame relay interfaces, cable interfaces, DSL interfaces,
token ring interfaces, and the like. In addition, various very
high-speed interfaces may be provided such as fast Ethernet
interfaces, Gigabit Ethernet interfaces, ATM interfaces,
HSSI interfaces, POS interfaces, FDDI interfaces, ASI
interfaces, DHEI interfaces and the like. Generally, these
interfaces may include ports appropriate for communication
with the appropriate media. In some cases, they may also
include an independent processor and, in some instances,
volatile RAM.

Regardless of computing device’s configuration, it may
employ one or more memories or memory modules (such as,
for example, the memory 915) configured to store data,
program instructions and/or other information relating to the
functionality of the techniques described herein. The pro-
gram instructions may control the operation of an operating
system and/or one or more applications, for example.

Because such information and program instructions may
be employed to implement the systems/methods described
herein, the present invention relates to machine readable
media that include program instructions, state information,
etc. for performing various operations described herein.
Examples of machine-readable media include, but are not
limited to, magnetic media such as hard disks, floppy disks,
and magnetic tape; optical media such as CD-ROM disks;
magneto-optical media such as floptical disks; and hardware
devices that are specially configured to store program
instructions, such as read-only memory devices (ROM) and
random access memory (RAM). The invention may also be
embodied in a carrier wave traveling over an appropriate
medium such as airwaves, optical lines, electric lines, etc.
Examples of program instructions include both machine
code, such as produced by a compiler, and higher level code
that may be executed by the computer (e.g., using an
interpreter).

Although illustrative embodiments and applications of
this invention are shown and described herein, many varia-
tions and modifications are possible which remain within the
concept, scope, and spirit of the invention, and these varia-
tions would become clear to those of ordinary skill in the art
after perusal of this application. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive, and the invention is not to be limited to the details
given herein, but may be modified within the scope and
equivalents of the appended claims.

What is claimed is:

1. A method of retrieving media across a network com-
prising:

connecting to a network that includes a server;

querying the server for server capabilities;

receiving a response to the server capabilities query that

describes the server;

querying the server for database enumeration;

receiving a response to the database enumeration query

that describes at least one database, the description
including how much media is available and how many
media collections are available from the at least one
database;

selecting a database from among the at least one database;

querying the server for an enumeration of media collec-

tions in the selected database;

receiving a response to the media collection enumeration

query that describes the media collections;

selecting a media collection from among the described
media collections;

10

15

20

25

30

35

45

50

55

60

65

18

12

querying the server for data associated with the selected
media collection, the media collection data query
capable of requesting a different level of detail than
would be given by default;

receiving a response to the media collection data query
that describes data associated with the selected media
collection in the requested level of detail;

determining what media is required based upon the media
collection;

requesting media from the server when the media is
required; and
receiving the requested media.
2. The method of claim 1, further comprising logging into
the server prior to the database identification query.
3. The method of claim 1, further comprising:

querying the server for content codes; and

receiving a response to the content code query that
includes a listing of supported string names and corre-
sponding codes that the server associates with those
supported string names.
4. The method of claim 1, wherein the default level of
detail does not include media details.
5. The method of claim 4, further comprising:

querying the server for media details in the database;

receiving a response to the media details query that
describes details of the media.

6. The method of claim 5, wherein:

if a database enumeration filter is included with the
database enumeration query, the response only includes
database descriptions that have not been excluded by
the database enumeration filter;

if a media details filter is included with the media details
query, the response only includes media details that
have not been excluded by the media details filter;

if a media collection enumeration filter is included with
the media collection enumeration query, the response
only includes media collection descriptions that have
not been excluded by the media collection enumeration
filter; and

if a media collection data filter is included with the media
collection data query, the response only includes media
collection data that have not been excluded by the
media collection data filter.

7. The method of claim 5, wherein:

if a database enumeration index range is included with the
database enumeration query, the response only includes
database descriptions that fall within the database enu-
meration index range;

if a media details index range is included with the media
details query, the response only includes media details
that have not been excluded by the media details index
range;

if a media collection enumeration index range is included
with the media collection enumeration query, the
response only includes media collection descriptions
that fall within the media collection identification index
range; and

if a media collection data index range is included with the
media collection data query, the response only includes
media collection data that fall within the media collec-
tion data index range.

8. The method of claim 5, wherein:

the database enumeration query includes a client-
generated database enumeration revision indicator;

US 6,728,729 B1

13

the response to the database enumeration query includes
a server-generated current database enumeration revi-
sion indicator if the server-generated current database
enumeration revision indicator does not correspond to
the client-generated database enumeration revision
indicator;

the media details query includes a client-generated media
details revision indicator;

the response to the media details query includes a server-
generated current media details revision indicator if the
server-generated current media details revision indica-
tor does not correspond to the client-generated media
details revision indicator;

the media collection enumeration query includes a client-
generated media collection enumeration revision indi-
cator;

the response to the media collection enumeration query
includes a server-generated current media collection
enumeration revision indicator if the server-generated
current media collection enumeration revision indicator
does not correspond to the client-generated media
collection enumeration revision indicator;

the media collection data query includes a client-
generated media collection data revision indicator; and

the response to the media collection data query includes
a server-generated current media collection data revi-
sion indicator if the server-generated current media
collection data revision indicator does not correspond
to the client-generated media collection data revision
indicator.

9. The method of claim 8, further comprising:

re-sending the database enumeration query if the response
to the database enumeration query includes the server-
generated current database enumeration revision indi-
cator;

re-sending the media details query if the response to the
media details query includes the server-generated cur-
rent media details revision indicator; re-sending the
media collection enumeration query if the response to
the media collection enumeration query includes the
server-generated current media collection enumeration
revision indicator; and

re-sending the media collection data query if the response
to the media collection data query includes the server-
generated current media collection data revision indi-
cator.

10. The method of claim 9, wherein:

the re-sending of the database enumeration query includes
both the server-generated current database enumeration
revision indicator and the client-generated database
enumeration revision indicator;

the re-sending of the media details query includes both the
server-generated current media details revision indica-
tor and the client-generated media details revision
indicator;

the re-sending of the media collection enumeration query
includes both the server-generated current media col-
lection enumeration revision indicator and the client-
generated media collection enumeration revision indi-
cator; and

the re-sending of the media collection data query includes
both the server-generated current media collection data

10

15

20

25

30

35

40

45

50

55

60

19

14

revision indicator and the client-generated media col-
lection data revision indicator.
11. The method of claim 10, wherein:

the response to the re-sending of the database enumera-
tion query includes an indication that only incremental
changes have been provided;

the response to the re-sending of the media details query
includes an indication that only incremental changes
have been provided;

the response to the re-sending of the media collection
enumeration query includes an indication that only
incremental changes have been provided; and

the response to the re-sending of the media collection data
query includes an indication that only incremental
changes have been provided.

12. The method of claim 10, wherein:

the response to the re-sending of the database enumera-
tion query includes an indication that no incremental
changes have been provided;

the response to the re-sending of the media details query
includes an indication that no incremental changes have
been provided;

the response to the re-sending of the media collection
enumeration query includes an indication that no incre-
mental changes have been provided; and

the response to the re-sending of the media collection data
query includes an indication that no incremental
changes have been provided.

13. The method of claim 1, wherein descriptions include

a persistent identifier.

14. The method of claim 1, further comprising:

querying the server with an update request that includes a
client-generated revision indicator; and

receiving a response to the update request that contains a
server-generated current revision indicator if the
server-generated current revision indicator does not
correspond to the client-generated revision indicator
included in the update request.

15. A method of delivering media comprising:

receiving a query for server information;

sending a response to the server information query;
receiving a database enumeration query;

sending a response to the database enumeration query that
describes at least one available database, the descrip-
tion including how much media is available and how
many media collections are available;

receiving a query requesting enumeration of a media
collection;

sending a response to the media collection enumeration
query that describes the media collections;

receiving a media collection data query requesting data
associated with an identified media collection, the
media collection data query indicating a level of detail;

sending a response to the media collection media query
that describes media associated with the identified
media collection with an appropriate level of detail;

receiving a media request; and
delivering the requested media.

