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Some gryptograghic Iechigges For Secure Data Commnication

V Varadharajan

Abstract

This thesis investigates conventional and public key
cryptographic techniques for secure data communication.

Block and stream cipher mthods to provide secure
communication over an insecure channel are discussed with particular
reference to the Data Encryption Standard (DES) algorithm. A
microprocessor based data encryption interface unit has been designed
and constructed using the DES to provide both communication and file
security. Several chaining techniques using the system have also
been investigated enabling a study of their error characteristics,
speed of operation, level of security and their ability to overcome
difficulties due to data redundancy and structure. A statistical
analysis of the randomness of the outpt sequences in each of these
techniques has been made. Furthernnre ,the developed system can be
used on the Prestel public netuork allowing storage and retrieval of
completely and partly encrypted frames of information on the Prestel
database.

The use of such a DES based encryption system in a
communication network poses problems with regard to key distribution
since the keys used need to be distributed to the users over asecure,
separate channel. Several methods of key distribution including the
use of public key systems are discussed.

Extensions of the Rivest-Shamir.Adleman (RSA) pblic key
scheme to matrix rings, polynomial rings and algebraic number fields
have been proposed. These extensions indicate that rings other than

the ring of rational integers can be used to construct public key
systems with the factorization trapoor property. The security of
such systems again relies on the difficulty of factorizing a large
integer.

An extension of the Diffie—He11man public key distribution

system to matrix rings is proposeg. Short cycling attacks against
the exponentiation system in GF(2 ) have been analysed and are shown

to be equivalent to a randomnsearch procedure. A hybrid system
using exponentiation in GF(2 ) for key distribution and the DES for

data security has been implemnted and the advantage of normal Rasis
representation in the comutation of the exponentiation in GF(2 ) is
examined.

The role of permutation polynomials in the design of public
key systems has also been investigated. In particular, it is shown
that secure public key systems can be designed using Dickson
permutation polynomials and Redei rational functions. Further the
complexity of public key systems can be increased by combining the
permutation polynomials under the law of composition.



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 14 

CHAPTER

INTROl1}Cl'I(]\l

General

The concept of data security is becoming increasingly

sigificant owing to the expanding role of distributed computation,

distribted data bases and telecommunications applications such as

electronic mail and electronic funds transfer. The computer and

communications techologies have resulted in a dramatic increase

in the volume and speed of information-collection, distribution and

storage. Greater information transfer and storage in turn imply

greater risk of exposure of sensitive or confidential information to

unauthorised users due to the ready availability of inexpensive

miniature intercepting devices. These have resulted in an increased

interest in computer data security not only in the military and

political areas but also in the field of commerce, where a.single

transaction may involve millions of pounds. This has motivated

research particularly in the art of cryptography. which forms the

centralltechnique of communication security.

Cryptography is the science and study of secret writing [1].

‘Cryptography can be defined as the transformation of a message or a

data stream by means of an algorithm so that anyone observing the

transformed data cannot deduce the hidden information. Such

transformations provide solutions to two major problem of data

security namely the privacy problem and the authetication problem [2].

In some environments the message can be transmitted in clear text as

long as its integrity is safeguarded. A common example where the

problem of authentication predominates is in telephone communication

where the called party cannot determine wh is calling. Other

environments may require that the contents of the essage be concealed

during transmission from unauthorised observation and this is a privacy

problem. The problems of privacy and authentication are closely

related and techniques for solving one can frequently be applied to

the other. Data encryption is recogised [3] as the most reliable

method for not only protecting vital information from eavesdroppers

but also a technique of mssage authentication preventing injection of

false information into a communication system by illegitimate users.

Pagel
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This thesis is mainly concerned with the data privacy problem.

Ch one hand. the easy availability of enormous computer

power enables the cryptographer to design comlicated algorithms.

But on the other hand, the comuter technology also helps the code

breakers to be more effective in cracking the system. So it is a

never ending struggle betwen code makers and code breakers.

Recent developments in encryption techniques for computer

communication network security including the Data Encryption Standard

(DES) [11] and the evolution of public key cryptosystems provided

the major thrust of the present research work. Essentially the thesis

can be divided into two parts. In the first part (Chapters 2 to 9),

the use of encryption and decryption techniques in communication

systems is investigated. The design and operation of an encryption

interface unit incorporating the DES to provide communication and file

security and different key distribution schemes are discussed. The

second part (Chapters 10 to 15) is mainly concerned with the design of

public key cryptosystems with a particular emphasis on the extensions

of the Rivest-sharnir.Ad.1eman (RSA) [12] type factorization trapdoor
systems.

1.2 Thesis Organization

In Chapter 2, basic cocepts of symmetric and asymmetric

cryptosystems and major cryptographic techniques are briefly reviewed.

An analysis of the DES is preseted in Chapter 3 which

includes a software implementation of the Standard, its possible

weaknesses. some of its underlying desig criteria and its crypto-

graphic strength.

The desig of a microprocessor based data encryption

interface unit using the DES is described in Chapter 4.

The operation of the interface uit to provide a two—way

secure data transfer in a two—nde Apple microcomputer network is the

subject of Chapter 5. Four different stream and block chaining

techiques of the DES have been investigated using the developed

interface unit.

In Chapter 6, a statistical analysis of the randomness

characteristic of the output sequences produced by the DES under

different modes has been carried out.

The use of the developed encryption interface unit has been
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extended in Chapter 7 to allow file security in Apple disk systems.

Chapter 8 is concerned with the incorporation of DES based

encryption system in Prestel Viewdata network. This enables transfer

and storage of encrypted as well as plain data between an Apple

microcomputer and the Prestel database.

Different methods of key distribution for communication and

file security are investigated in Chapter 9. It includes a brief

review of the RSA and the Knapsack public key cryptosystems.

In Chapter 10, the prototype RSA system over rational

integers has been extended to matrix and polynomial rings.

Chapter 11 discusses the notion of ideal theory and considers

the RSA type factorization trapdoor systems from an ideal point of

view.

The factorization trapdoor concept in som quadratic

algebraic number fields and the design of public key systems in such

fields are investigated in Chapter 12.

The implementation of a hybrid system using the DES and the

Diffie-Hellman public key distribution [35] system is investigated in

Chapter 13. An extension of the Diffie-Hellman system to matrix

rings is.proposed.

The role of permutation polynomials in the design of public

key systems forms the subject of Chapter 14. In particular, the use

of Dickson permutation polynomials and certain Redei functions in the

construction of public key systems is discussed.

In Chapter 15, the use of chaining techniques in the matrix

public key system and some precautions which must be taken when the

RSA system or its extensionare used in a broadcasting type situation

are described.

Chapter 16 contains the main conclusions.
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CHAPTER 2

CRYPTCFRAPHIC CDNCEPI‘S

Cryptographic Systems

Detailed treatment of cryptographic principles can be found

in [2, 3, 4]. A basic cryptographic privacy system is shown in figure

2.1. The transmitter or the sender generates a Elaintext message M

which is to be communicated to a legitimate receiver over an insecure

channel monitored by an eavesdopper. To prevent the eavesdropper from

learning the contents of M, the sender encrypts M, with an invertible

transformation to produce the cryptggram or ciphertext, C = T(M).

when the legitimate receiver obtains C. it is deciphered with the

inverse transformation to obtain the plaintext message. M = T'1(C).

The transformation I applied at the sending and receiving

ends is a key dependent mapping from a set of messages in the plaintext

to a set of ciphertext mssages and vice versa. The particular

transformation used is chsen from a family of transformations. The

parameter that selects the individual transformation to be employed is

called the 531. Note that there may be more than one key involved.

Assuming that the same key is used in both encryption and decryption,

then c = rk (M) and M = r;1(C)-
Thus a general cryptosystem consists of the following

components:

1. A plaintext message space M ;

2. A ciphertext message space C ;

3. A key space K;

4. A family of encryption transformations ER : M4-C where
kE K.

5. A family of decryption transformations Dh : C+ M where
kc K.

The encryption and decryption transformations Ek and Q‘ are defined by
the encrypting and decrypting algbrithms E and D which may be a set of

instructions. a piece of hardware or a computer program and is common

to every transformation in the family. Different values of the key (sq

result in totally different transformations of plaintexts and cipher-

texts. This implies that the family of transformations, that is, the

general cryptographic system, can be made public information without

Page4
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EAVESDROPPER

NCRYPTII DECRYPTION r1 RECEIVER

SECURE CHANNEL-— _—_.._—....—___..___

Fig. 2.1 - Basic Cryptographic Privacy System

EAVESDROPPER

ENCRYPTION DECRYPTION

SECURE CHANNEL

Fig. 2.2 - Basic Cryptographic Authentication System
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compromising the security of the system. Only the key(s) needs to be

kept secret. This satisfies one of the general requirements of a

cryptosystem that the security must not depend on the secrecy of

something like a cryptographic algorithmukfich cannot be easily changed

if it is compromised. In addition. a publicly known system is necessary

for standardization among commrcial users. Even though the opponent

knows the set of all possible keys, that is, the key space, he may

still be unable to discover the correct set of keys required if the

key space is large.

Simons [5] classifies cryptosystems as symmetric (one-key)

and asymmetric (two key). In symetric cryptosystems, the enciphering

and deciphering keys are the same or easily determined from each other.

Because te general method of encryption and decryption is known, this

means that the transformations Ek and Ck are also easily derived from

each other. Thus if both Ek and Ck are protected both secrecy and
authenticity are achieved. However secrecy cannot be separated from

authenticity because making either Ek or-Eh available, exposes the
other. Thus for secure communication; such a system requires the key

to be transmitted to the receiver via some secure channel. Figure 2.2

illustrates how such a cryptographic system can be used to solve the

authentication problem. In this case. the opponent not only sees all

ciphertexts flowing on the channel but can alter them at will. The

‘legitimate receiver protects himself from being deceived by an altered

or injected message, by decrypting all the messages he receives and

accepting only thse encrypted with the correct key.

In asymetric cryptosystems, the enciphering and deciphering

keys differ in such a way that at least one key is comptationally

infeasible to determine from the other,» Thus one of the transformations

Ek _or Dk can be revealed without endangering the other. Secrecy and
authenticity are provided by protecting the separate transformations

namely Ci for secrecy and Ek for authenticity. Such asymmetric systems
are often referred to as public key systems as in addition to E and D,

the encryption key is made public. Only the decrypting key is kept

secret by the receiver. The use of such systems thus avoid the

necessity to transmit the key used in the algcmithm over a secure

channel among the communicators. Moreover such systems can be used to

transmit the secret key required for conventional symmetric systems.

Such asymetric systems are also able to deal with the

problem of dispute that may arise between the sender and the receiver

over the actual message sent in an authentication system. The

- 6 " Page6
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inability. of the symmetric system to deal with this type of problem

limits its application. This can be seen as. follows.

The validity of contracts and agreements is usually

guaranteed by signatures. The essence of a signature is that only one

person can produce it but anybody can recognize it. For this, each

user must be able to produce messages whose authenticity can be checked

by anyone, but which could not have been produced by anyone else

especially the intended recipient. In a symmetric system, the receiver

authenticates any message that he receives from the sender by

deciphering it with the key which the two hold in common. Because this

key is held in common, however, the receiver has the ability to produce

any ciphertext that could have been produced by the sender and hence

the receiver cannot prove that it is the sender who actually sent him

the disputed message. The asymmetric system provides a direct elegant

solution to this signature problem. If user A wishes to send a

signed message M to user B, he signs the message by producing

S = DA (M). when user B receives 5, he can recover M by operating on

S with EA, that is, M = EA (5). B keeps S as the proof that user A
has sent him the particular message M as only the user A could have

generated 3 because he is the only one who knows DA. To obtain
secrecy of conmmnication as well as authentication, user A sends

E3 (5) instead of S to user B. As only B knows D -, he is the only3
one who can recover S and hence M.

Cgmtoggst Securig and Comlexity Theory

Any atteunpt by the eavesdropper either to decrypt a

cryptogrann C to get the plaintext M or to encrypt an inauthentic plain-

text M’ to get an acceptable cryptogram C’ without prior knowledge of the

key is'ca1led cxtanalysis [2]. If cryptanalysis is impossible so

that a cryptanalyst cannot deduce M from C or C’ from‘-M’ without prior

knowledge of the key. the cryptographic system can be said to_be secure.

‘In order to measure the security of a cryptosystem, Diffie and
Hellman [2] have defined at least three types of attack which the

system should withstand when being subjected.

(a) A'ciphertext only‘ attack is the weakest form of attack

which the cryptographic system must withstand. In this

attack, the cryptanalyst attempts to decipher the

cryptogrann using only the statistical properties of the

-7-

:_ 
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message source. As an example, consider a letter

written in English. Not all characters or words occur

equally often; for instance, the letter ‘E’ occurs

approximately 13% of the time [6] . Such non-

uniformities in the frequency distribution of the

alphabet are used to give clues about the message. There

is also probably a heading which contains a date and

address and a closing such as 'sincerely' . with the aid

of statistical tables, the cryptanalyst uses each of

these facts to determine which message was most likely
sent.

Under a ‘known p1aintext' attack, the cryptanalyst e is

assmned to have a substantial amonmt of corresponding

message - cryptogram pairs and tries to determine the

key used in the algorithm. ‘Ibis form of attack is a

significant threat as frequently messages are enciphered

under the same key. Hence if a system cannot withstand

such an attack, all messages which have been encrypted

under a common key needs to be kept secret as long as

any of the messages is to be kept secret. Such an

attack is quite common in practice. For instance, a

typical enample is when information may be transmitted

in secrecy which is intended for public release at a
later date.

A ‘chosen text‘ attack generally occurs less frequently

than a known plaintext attack. In this case, the

cryptanalyst is assumed to choose messages to be

enciphered or ciphertexts to be deciphered in an attempt

to determine the key.

For the purpose of certifying systems as secure, it is

necessary to consider more formidable cryptanalytical threats. These not

only give more realistic nndels of the working invironment of a

cryptographic system but also make the assessment of the system's

strength easier.

There are two fundamentally different ways in which crypto-
graphic systems may be considered secure.

A cryptosystern is said to be unconditionally secure under a
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given form of attack if the amount of information available to the

cryptanalyst is actually insufficient -to determine the solution, which

may be the key or the plaintext, whatever be the computing power the

cryptanalyst has at his disposal [7] . As an example, consider a '

cryptosystem where a message-cryptogram pair uniquely determines the

key. This system is not unconditionally secure under a chosen text

attack or a known plaintext attack. However if the information content

of the message plus the information content of the key is greater than

the maadmum possible amount of information in the cryptogram. then this

wstem is unconditionally secure under a cipher.-text only attack. The

cryptanalyst cannot determine the complete message and key from the

cryptogram alone, since he would obtain_uore information than that

provided by the cryptogram. '

Unfortunately, unconditionally secure systems require either

perfect source coding or a key whose length grows linearly with respect

to the sum of the lengths of all messages enciphered [7] . This

requirement is not practical in most applications. Thus computationally

secure systems are usually used in cryptography. A system is said to

be computationally secure under a given form of attack if the amount

of computation required to compute the solution exceeds the cryptanalyst's

abilities or the economic value of the message to him. A measure

called the work factor is often associated with a cryptosystem which

gives an expression of the minimum amount of work necessary for a

successful attack. In practice, there is no universally accepted

fixed set of parameters used to express the work factor. Frequently,

however, it is measured in one or more of the following ways‘.

cryptanalyst hours, number of mathematical or logical operations,

computing resources such as data storage and processing requirements,

special hardware and calender time or more generally the cost in some

money units such as dollars. This idea of computationally secure

system is also related to the concept of one-way functions and

complexity theory.

Algorithmic complexity theory is concerned with the comp-

utational requirements (both time and space) as a function of the size

of the problem solved by a particular algorithm. Complexity theory is

essentially a collection of results in computer science that attempts

to quantify the statement ‘Problem A is 'harder' than problem B’ [6] .

There is a class of problems called NP problems [8] and in particular

a distinguished subclass of NP ‘called the class of NP—complete problems

-9-
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which are regarded to be the ‘hardest’ problems. The class NP-

complete is thought to be a source of problems that can be adapted to

cryptographic applications and will by virtue of their computational

complexity produce strong cryptographic systems. The cryptanalyst

is then required to solve an NP—complete problem to break the

cryptosystem which theoretically should require an exponential time

algorithm.

1-bwever it is generally argued that [9] the complexity theory

deals often with the worst case behaviour whereas in cryptography. the

cryptanalytical task must be hard for alnnst all the instances. It

will be a poor cryptosystem if the system allows easy decryption of

all but a few cryptograms by the opponent. In addition computationally

hard problems are not necessarily cryptographically hard problems since -

the cryptanalyst generally possesses additional side information and

often’ tries to solve several instances of the same problem [3] .

Recently a conventional and a public key cryptosystem based on NP-

complete problems have been solved using polynomial timealgorithms

[6, 10] . This goes to show that merely starting with a computationally

hard problem may not be enough to provide secure cryptosystems.

2.3 gyptggaphic I‘echnig_t_1e5

There are two fundamental cryptographic techniques that can

be used to design strong encryption-.based protection sdienns, namely,

the block cipher technique and the stream cipher technique [3] . The

suitability of either of these two techniques for use in cryptosystems

depends on the nature of the application.

2.3.1 §_1gc!; §ighgr_ _

Let the message be divided into blocks of fixed length. A

block cipher then transforms these input blocks into output blocks using

the same key. For instance. considering a binary system a string of

input bits of fixed length is transformed into a string of output bits

of fixed length using a block cipher as shown in Figure 2.3. The

encryption and decryption functions are such that every bit in the

output block depends on every bit in the input block as well as on

I every bit of the key. In the binary system, if the blocksize is :1. than

the size of the plaintext space and the size of the ciphertext space is

2". In order that the deciphering of a ciphertext block yields an

unambiguous plaintext block, the mapping must be invertible and hence

-10-
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injective and in this case surjective as the size of the input and

outpt spaces are equal. Thus one can View a block cipher as defining

one of the 2“ E transformations on the set of n—bit blocks. In

practice, it is not feasible to implement a block cipher that realizes

all the possible combinations because of the size of the key required

and the logical complexity of the cipher. Usually a key of n—bits is

employed to select one out of a subset of 2" functions.

FLAINTEXI CIPHERTEXI

BLOCKl EJJDfiL
ENCIPHER

BLOCK

Figure 2.3 - Block Cipher.

A fundamental property of this type of cipher is that the

blocksize plays an important part in determining the cryptanalytical

strength of the cipher. The blocksize must be chosen large enough to

foil simle message exhaustion attacks. This attack consists of

encrypting all 2" possible plaintexts with a given key thus building

a dictinary of ciphertexts and corresponding plaintexts. A message

can then be recovered by searching the dictionary and relating each

intercepted ciphertext block to its corresponding plaintext block.

However if the blocksize is made large enough, the dictionary can be

made too large to costruct or store. Other attacks must also be

considered before arriving at an acceptable blocksize. An attack

called block frequency analysis based on frequecy of occurrence of

blocks is quite commn. It is similar to the analysis performed on a

simple substitution cipher by taking into account letter frequencies.

Analytical or deterministic attack — which consists of expressing

cipher operations in mathematical form as a set of equations and

solving for the unknown variables directly using analytical methods -

can be thwarted by making every bit of the output block a complex

mathematical function of every bit of input block and key thus giving

a strong.intersymbol dependence property. The block ciphers also

_ 11 -
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exhibit error propagation properties which are suitable for error

detection and authentication purposes.

The Data Encryption Standard [11] is an examle of a symmetric

block cipher of length 64 bits which well withstands the above mentioned

and nnre sophisticated attacks. The algorithm will be discussed in

Chapter 3 and is used in the desig of a encryption interface unit in

Chapters 4 and 5. Examples of pblic key block ciphers include the

RSA system £12] and the trapdoor knapsack system [13]. They are

discussed in Chapter 9.

2.3.2 §t_r_egm_C_:Lohe£

A stream cipher divides the message M into successive

characters or bits. It then uses a character or bit stream generator

to produce a cryptographic key stream which is then combined with the

plaintext message characters or bits to prodce the ciphertext

characters or bits. A similar procedure is carried out to recover the

plaintext characters or bits by combining the key stream with the

ciphertext characters or bits. The stream-cipher concept is illustrated

in Figures_2.4 and 2.5 where the ciphertext Y is produced from

plaintext X by Exclusiveaoring it with a secret binary stream R.

Let us now assume that the key to the bit stream generator

is fixed and that the cryptographic key stream R produced at each

iteration depends only on this key. This then implies that R does

not change from one iteration to the other. Now if an oppoent knows

a plaintext-ciphertext pair, then he can recover the key stream R by

forming R = X 9 Y. Having obtained R, the opponent can decipher any

intercepted ciphertext without even knowing the key to the galerator

which is unacceptable. Further, repetitions on the plaintext would

be reflected in the ciphertext even if he did not know a ciphertext—

plaintext pair. Hence to overcome this problem, the key stream st be

made to change for every iteration of the ciphering algorithm. A

stream cipher is said to be periodic if the key stream changes such

that it repeats itself after d characters or bits for some fixed d;

otherwise it is said to be non—periodic. Ideally, one would want the

key stream to have a long period and to vary in a random manner. If

the key stream were truly random and.its length is equal to the length

of the message, then this would produce an-ubreakable cipher. Because

the key stream is random, then it.ust be provided to the users in

advance via some independent and secure channel which causes

insurmountable logistical problems when the intended data traffic is

-12-
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BIT—STREAH BIT-STREAM
GENERATOR GENERATOR

R (.—-CRYPTOGRAPHIC 8 IT-STREAM ‘r-~—-‘,~ R
X

PU! INTEXT CIPHERTEXT PLA INTEXT

Fig. 214 - Stream Cipher Concept

2 o’r———INITIALIZING VECTOR —) Z

Fig. 3.5 - Stream Cipher
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very large. Hence for practical reasons, the key stream must be

implerrented as an algorithmic procedure so that the key stream can be

produced by users at both ends. ciphers generated by rotor and

Hagelin machines [1] are periodic whereas the Vernam cipher (one time

pad) [16] and running key ciphers are non—periodic ciphers.

A system in which the key stream is generated independently

of the message stream is said to be a synchronous stream cipher. In

such a nndulo 2 addition based system, each bit in the output cipher-

text is dependent upon the corresponding bit in the input plaintext

but not upon any‘ other bits in the input plaintext. This is in con-

trast to the block cipher which e>d1ibits a rmzch mre complex

relationship between the bits in the plaintext and the bits in the

ciphertext. Hence the stream ciphers can be made to have non—error

propagating property. Both approaches however have comparable

strength.

Various techniques may be used to generate the key stream

in stream ciphers. Not only the key stream generated must have good’

pseudmrandom properties but also the generation pro<:ess‘nmst be

non-linear. This limits the direct use of linear. feedbac.k.shj,ft

registers for the generation of these key streams because with such

generators, the cryptanalyst can derive the entire key stream given

a relatively small annunt of plaintext-ciphertext pair [4, 14] . It

is also important that the complexity of the linear equivalent of any

non-linear generating process be estimated [14] . It has been

suggested in [15] that non-linear substitution—per'mntation functions

when combined with a shift register produces cryptographically strong

key streams. Since the key streams can be generated in blocks, it is

also possible for a block cipher to be used to obtain a stream cipher.

Because both the sender and the receiver must generate key streams

that are equal and secret, it is necessary that the keys used in the

algorithm must also be equal and secret. This implies that a public

key block cipher algorithm can be used to obtain a stream cipher if

and only if it is used as a conventional algarithm, that is, both the

seuder and the receiver use the same algorithm (encryption E or

decryption D)\ and the same secret key.

But as noted earlier, a fixed key even.though it is kept

secret does not ensure an unpredictable cryptographic key stream. To

avoid producing the same key stream at each iteration of the

algorithm, another parameter called the initialization vector (IV) is

- 14 ..
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introduced in the ciphering process. Different initialization vectors

are generated in a pseudo-random non-repeating manner which in turn

produce different cryptographic key streams. That is, R is generated

using R = fk (2) where Z is the initialization vector, fk defines the
block cipher algorithm uder key k. Encryption and decryption

operations are then given by Y = X 69 fk (Z) and X = Y 83 fk (Z). This is
shown in Figure 2.5. For the stream cipher to be cryptographically

strong, the initialization vector needs to be varied in a pseudo-

random manner. One way to do this is to generate independently a new

initialization vector for each iteration of the ciphering algorithm.

This has the disadvantage of increasing the amotmt of transmitted data

since the initialization vectors are now added to each block of cipher-

text. A more efficient approach is as follows: at the first iteration

of the cipher algorithm, the initialization vector is used as before

to produce a block of key stream bits which can be used to encipher

the first block of plaintext (assuming the blocksize of the cipher

algorithm is same as the size of the plaintext block). At all

subsequent iterations _of ciphering algorithm, the initialization

vector is altered or determined using one of many feedback chaining

techniques. 1'hus chaining eliminates the problem of transmitting or

storing a separate initialization vector value for each ciphertext.

A feedback can be obtained from several places namely the key stream

itself, the plaintext. the ciphertext or some combination thereof.

Each of these approaches gives rise to cryptographic systems with

different characteristics with respect to recovery from errors.

Note that the initialization vector in addition to providing

cryptographic strength also establishes synchoronization between

communicating cryptographic devices. It assures that the same

cryptographic key streams are generated at the both ends of the l:i.nk.

Once the initial state of the system has been set, only the current

state of the system needs to be remembered to maintain smchronization.
In general feedback chaining techniques increase the overall

strength of a cryptographic system. The chaining techniques when used

during ciphering process make an output dependent not only on the

current input and key but also on earlier input(s) and/or output(s).

In effect it introduces noise into the ciphering process. This helps

to eliminate the undesirable effects of redundancy and structure

present within the plaintext data. Several chaining techniques will

be discussed in "Chapter 5 with special reference to the Data Encryption

Standard.
- 15 -
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C H A P T E R 3

DATA ENCRYPTION ALGORITHMS

General

In cryptography, two main operations have been used for

centuries and they still form the main elements of modern encryption

algorithms. They are transpositions and substitutions and may be

applied to words, symbols. letters and binary bits or groups of bits.

There is also another technique, that of concealment where the symbols

of the,1-message are mixed up with many other symbols which carry no

important information at all although they may appear to. This method

can be used to give considerable security but it expands the message

by a great amount. These operations lead to three different classes

of ciphers namely the.transposition ciphers, .the substitution ciphers

and a combination of both called the product ciphers.

3.1.1 Irgngagsition giEhgr__

A transposition cipher consists of rearrangement of the

characters (bits) in a block of plaintext; the characters retain their

identity but lose their position. If the transposition is one-to—one

then the process is reversible. On the other hand, if the trans-

position is not one-to-one then the operation becomes irreversible.

Consider. for instance, the transposition which maps an 8-bit block

to a 6-bit one, say by discarding bits 3 and 6 and rearranging the

others. Here the total number of zeroes and ones are no longer

preserved. Transposition by itself is not a very secure type of

encipherment because unless every message has a unique form of

transposition, the acquisition of several plaintext-cipherteact pairs

allows the cryptanalyst to discover the permutation statistically.

3.1.2 §u_l;s£itutign_Ciphe5_

A substitution cipher consists of the replacement of

characters of the plaintext with characters from another alphabet.

.In the case of binary operations, a look—up table characterises the

substitution operation. The bits are divided into small groups

which are then replaced by the contents of the look—up table addressed

-16-
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by each group. For example, if the message is divided into 4 bit

groups, there will be 16 possible combinations for each group. so

that the table will require 16 entries numbered 0 to 15. In general.

the number of ones and zeroes is not preserved and a change in one bit

of the input may affect several bits of the output. The Data Encryption

Standard (Section 3.2) uses eight such look-up tables commonly referred

to as S-boxes, each converting a six.—bit input into a four bit output.

An important advantage of the substitution cipher is that the contents

of the look-up table can be changed frequently and implementation of

such an operation can be readily done with read only meunries (ROMS).

A substitution may or may not be reversible depending on the form of

the look-up tables. One of the oldest substitution cipher is the

Caeser cipher which is a monoalphabetical substitution cipher. This

cipher can be broken in ciphertext-only attack with approximately 30

alphabet characters using letter frequency analysis [14]. An

important substitution cipher is the one-time pad in which the key is

random, non-repeating and used only once. One-time ‘pads are

unbreakable as there is not enough information in the ciphertext to

determine the key or message uniquely. The first implenentation of

the one-time pad cipher was the Vernam cipher [16] in which the key

bits were added modulo 2 to the plaintext bits. One major problem

with this cipher is that the key length grows linearly with the length

of the message.

3-1-3 .E=9.d2¢1 219121..

A product cipher involves both the steps of substitution and

transposition. Shannon [7] suggested the use of product ciphers to

build a strong system out of individually weak components. He

suggested that the product cipher be formed using substitution and

permutation ciphers in an alternating manner. The permutation shuffles

the digits providing'diffusion' and non-linear substitutions provide

‘confusion’. Confusion makes the relationship between the ciphertext

and the plaintext as complicated as possible, that is. it hides the-

key and diffusion spreads the statistics of the plaintext into the

ciphertext. This formed the basis of the Lucifer system designed by

the IBM [17]. The Data Encryption Standard which is considered next

is based on the Lucifer system.
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Data Encggption Standard

The cryptographic algorithm used in the design of the

encryption unit is the Datafincryption Standard (DES) [11]. This

algorithm is now regarded as the US Federal Standard recommended for

use by non-military Government Agencies. It has also been adopted by

1'1? American National Standards Institute (ANSI) and is recommawded for

use by the American Bankers Association, (ABA). The adoption of DES

as a Standard for encrypting data contributed to the surge in interest

in this algorithm. Before considering the development of an encryption

system to provide communication security using a hardware implement-

ation of the Standard in the next chapter. in this chapter the DES

algorithm is analysed to provide a deeper insight i.nto the design of

practical encryption algorithms. The algorithm has been implemented

by software to study sons of its characteristics. In particular, the

software approach enables the study of intermediate outputs during each

round, whereas the hardware (LSI) implementation only gives the final

ciphertext output. The software implementation is also found to-.be

useful when performing statistical tests on the randomness of the

output obtained from the algorithm. This forms the subject of

Oiapter 6.

First an overview of the algorithm is given. Then the

software implementation is described together with some performance

figures. Some of the characteristics of the algorithm together with

some of the design criteria underlying the choice of parameters in

the algorithm are presented. The controversy surrounding the DES

and possible weaknesses of the algorithm are then considered. Finally

the complexity of the algorithm and its security are investigated.

3-2-1 BEE Alspsiihe : amozervier

The Data Encryption Standard algorithm is a block product

cipher system. Block because it transforms more than one character

-at a time. Product because it is composed of a series of trans-

positions, substitutions and additive encodings combined by a sequence

of feedback cycles.

It is a complex non-linear algorithm which enciphers a

64-bit block of plaintext into a 64-bit block of ciphertext under the

control of a 56-bit cryptographic key. DES can be regarded as a huge

key-controlled substitution box (S—box) with a 64-bit input and
64

output. with such an S-box a total of (2 )'. different transformations

— 18 _

Page 18



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 32 

or functions from plaintext to ciphertext are possible. The 56-bit

key thus selects only a small subset (256) of the total set's

possible functions. As a single huge S—box is difficult to construct,

D155 is implemented by using several smaller S—boxes and permuting

their concatenated outputs. Repetition of the substitution and

permutation processes several times increases the cryptographic

strength.

The complete DES algorithm is given in [11]. The three major

steps in the algorithm are summarized in Figure 3.1.

1. A transposition operation, referred to as the initial

permutation (IP). This fixed transposition does not utilize

the 64-bit key and operates solely on the 64 data bits.

A complex key dependent product transformation that uses

block ciphering to increase the number of substitutional

and reordering patterns.

A final transposition operation referred to as the inverse

initial permutation (lP'1) which is actually the reversal of

the transformation performed in the first step.

The second step is the most important step out of the three

_and it consists of 16 separate rounds of encipherment; each round

using a product cipher approach or cipher function. The steps

performed in each round shown in Figure 3.2 are summarized below:

(i) The 64-bit input block is divided into two parts. a left half

(1.) and a right half (R),each 32pbits long.

The right half of the input block becomes the left half of

the output block. This is denoted in Figure 3.2 by an arrow

going from R1 to L1.-1

The steps (iii) to (vii) which follow can be regarded as a complex

cipher function. f , operating on both key and right half of the input
block.

(iii) The 3&bits long right half (R) undergoes an expansion

-19-
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process (E), yielding a 48-bit data block.‘ This is a fixed

expansion permutation and not key—dependent.

-Ihe -64-bit key is used to generate a 43-bit subkey through

a key scheduling procedure described in the next section.

This 48-bit subkey Ki is exclusive-ored with the expanded

right half E(Ri) yielding a 48-bit result.

This 48-bit data is divided into eight 6-bit groups each of

which is subjected to a 6—to—4—bi1: non-reversible

substitution function (Si). Six groups of 4-bits are then
concatenated to form a 32-bit output.

The 32-bit output is permuted to produce a 32-bit block by

the fixed permutation P.

The 3Lbit output of step (vii) is combined via the exclusive-

or operation with the left half of the input block to form

the right half of the 64-bit output block.

1

Details of the permutations IP. IP- , P and substitution boxes 51 can
be found in [11].

3-2-2 1112 sex 2ca'e2uie_P:osec_r-age.

The key schedule procedure is used to enlarge the keyspace by

expanding the externally supplied key into internal subkeys. The DES

key schedule operation derives its sixteen 48-bit subkeys required for

16 rounds from the 56-bit key entered externally. by simple repetition.

For reasons of security, all of these keys nust be different. This

is achieved by selecting a different subset of 48-bits from the 56-bit

key. (Note that 8-bits out of 64-bits key are used as parity bits).

The procedure is based on a shifting and bit selection algorithm.

Figure 3.3 illustrates the key schedule calculation used

for encipherma-at. It begins with an initial permutation defined by

Permuted Gsoice 1, (PC—l). PC-1 is the same for encipherment and

decipherment and it selects 56 of the 64 external key bits (stripping

off the 8 parity bits) and loads them into two 28-bit shift registers

C and D. The parity checking ‘of the external key is performed prior

_ 22 ..
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to PC-1. hiring encryption, the contents of the registers Ci 1

Di_1 are shifted one or two positions to the left according to the
schedule of circular shift operations shown in Table 3.1, Figure 3.4.

The key I((i) is then derived from (Ci. Di) through a second
permutation defined by Permuted Choice, PC—2. Nbreover the shift

schedule is such that C16 = C0 and D16 - Do. It is to be noted here

that KT»-2 does not mix the contents of Ci and Di registers. This
property together with the circular shift operations allows certain

values of keys K to generate identical internal subkeys. This is an

inherent weakness of the algorithm and is discussed further in Section

3.6.4.

During the deciphering operation the key K(16.‘) is used in

round one and K(15) in round two and so on. But the contents of Co

and D0 are the same for enciphering-and deciphering, since the external
key is loaded in both cases via the Permuted Choice P(‘»1. This means

that the key K(16) can be created at the first round merely by

omitting the first shift operation and K(15) can be created at the

second rotmd by shifting Co and Do one bit to the right. The
remainder of the internal keys are obtained in the same manner using

the shift schedule in Table 3.1, Figure 3.4, in reverse order except

that left shifts are changed to right shifts.

3-2-3 2% EnsrzP1i2n.a-;d_Ds<=9'£>.ti°n

It is seen that the same algorithm can be used to perform

encryption and decryption with minor changes. An outline of the proof

of this property is as follows:

Let the contents of L and R registers on the ith round be

L(i) and mi). Let the output of the permutation P be P(i) and the

output of FC—2 be K(i). Let the operation of the expansion permu-

tation. S—boxIes, permutation P be represented by f. Then during

encryption.

L(i) = R (i-1)

R(i) = L (1-1) ea P(i)

Pm = r [Ru-1). Km]

where 9 denotes Exc1usive—or operation.
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Round Number > Number of Shifts

|.a

0\OCO-lO'\U’!45-krl
I-' |—'

I-' I0

I-‘ \N

I--‘ -l>-

I-‘ \J|

l-' 0‘:

Figure 3.4 - Table 3.1 : Schedule of Shift operations
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Rewriting these as

L(i) R (1.1) (3.1)

R(i) 1. (1.1) as f [R(i—1). K(i)] (3.2)

th
Hence the i round is completely determined in terms of the (i—l )th

round provided the appropriate bits of key K are available. ' Similarly

(i-1 )th round can be completely expressed in terms of the ith round.

This can be done because of the reversible property of exclusive--or

operation: if A = B 9 C then B = A 9 C. Therefore rewriting (3.1) as

R(i—1) = M1)

and rewriting (3.2) as

L(i—1) = 2(1) 9: [R(i-1), K(i)]

ie.L(i-1) = 12(1) 69: [L(i), K(i)] (3.3)

it is seen that the same algorithm can be used for decryption. The

involute structure of the DES can be seen by regarding the DES as a

product of 33 mappings [6] as shown below

-1

IP xI[16x... xex]'[1xIP

IP is the initial permutation and IP_1 is its inverse

11 i, (L si 5 16) are involutions given by

11 1: (X, x’)——-->(x 6 1‘ (xi), 5:’) where x is the left
half and x’ is the right half

'8 is the interchange involution given by

9 : (x. xI)—j> (ac), x)

The inverse of the DES is then given by

(mas)'1 = (1P)"1xr(1 x0x...xOxII16xIP
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That is, decryption is essentially achieved by operating the DES

backwards.

Software DES Iglementation

The DES algorithm has been implemented using a 6502 based

Apple microcomputer system. This was done to gain a deeper insight

into the working of the algorithm and to allow a comparison between

hardware and software implementation with regard to performance

characteristics and the results produced. The two implementations may

not be compatible and the results may not agree with each other as

the FIPS publication’ [11]gives only the recommended values for the

permutations and S-boxes.

The description of the program together with a partial

listing is given in Appendix 1. The two important factors to be

considered in the software design are the storage and the speed of

the implementation. ‘In this design. a mixed approach has been adopted

as there was no real constraint on: memory or speed. In some places

storage space increases are traded to obtain speed. A typical example

of such an instance would be the use of in-line code to replace loops.

()1 the other hand. most of the transpositions and substitutions are

implemented as functions instead of using tables. Consider for

instance. the 48-bit key select function involving the 56-bit initial

permutation and then one or two left shifts of the 56-bit string and a

48-bit permutation to produce each of the 16 operational keys required

during a cycle through the algorithm. Here these subkeys are

generated at the-time required. But this whole process could have

been implemented using sixteen 48 byte tables, listing equivalent

penmrtations of the current keys bit positions. In the beginning of

the program, all the 16 operational keys can be calculated and stored

in a table. Then each round through the algorithm can obtain the

operational keys directly from the storage table.

The storage space used by this program is approximately 2

kilo-bytes. The encryption times are of the order of 100 milli-

seconds. This would allow a ma:-:im:.I.m throughput of about 640 bits

per second. Therefore the algorithm can be implemented with reasonable

performance. But it is found that 6502 instruction set is not suitable

for high speed implementation of the algorithm. If bit test instruct-

ions are available similar to those of 280, encryption time can be

_ 27 _
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much reduced.

A numerical example showing the output from intermediate

stages within an encryption round together with different key and data

values after every round is shown in Figure 3.5. It is also found

that the results produced by this program and the hardware implement-

ation (Chapter 4) agreed with each other.

Although the algorithm can be implemented in software, it

suffers from two major disadvantages. Firstly as seen from above the

operation is slow compared to LSI implementation of the algorithm which

allows of the order of 1 M bits per second or above. Secondly, in

the software approach. the key is stored within the computer system

memory which is accessible when the system is in.use. with the LS1

hardware implementation the key becomes unavailable after it has

entered into the device and hence the security of the overall system

has been greatly enhanced. In the next section a possible advantage

of the software approach is discussed.

3-3-1 A E.°ssible_A2van£a2e_°£ 9:"-§ §°£’¢Ea£e_

If the internal functions of the DES" algorithm are generated

using tables, then it seems that there exists a mechanism to increase

the difficulty of cryptanalyzing a series of encrypted messages given

an encrypted message and a copy of the corresponding plaintext.

Assuming that there is no fatal flaw which is depandxmt on these

internal tables. then it is shown that these tables (ie- permutations

and substitutions) can be altered in software implementations (in

contrast to the‘ hardware approach) to produce a significantly larger

effective key space. One may argue that changing the values of these

tables may strengthen the algorithm, but does not reduce the through-

put from the rate achieved with the specified standard. merefore each

of these tables can be used as variables. like the key, agreed between

senders and receivers. (Note that this idea may not be valid from

subsequent sections where it is argued that carefully chosen permit-

ations and substitutions strengthen the DES algorithm and that randomly

chosen parameters may introduce weaknesses into the algorithm).

The Initial Pernutation (IP) and its inverse( IP'1) operate on

64-bit data blocks and hence there are 64: different settings possible
1

for this permutation. Note that given IP, IP- is fixed. Here any

bit ordering-including an identity transform is assumed to be accept-

able but each bit’ nmst be used. The tables are defined .by a series
of 64 unique one byte addresses of bits in the Initial Permutation.

_ 23 -
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All data and key values are represented in hexadecimal tom.

Plalatezc. X: ?‘.'.'DC3L98765432l0
Key, K: i’EDC3L9E76§v452l0

' Round. 1.

Plalntnx: = L(O) . rsncasea
3(0) . 76545210

Plaintert after 1:13.]. Parnutatiun: 55?P53DOOP55OP55

Kay utter Po:-nutatxon choice 1 : OE.'96Dd.BE5498C2FE

Key after 1 1911: 311.11". : 1E3Z.u7CAJ.)256?C

Key alter Pumutation choica 2 : 'JA1E6C50‘52165254

Output from 5-boxes, S1-SE : Oc216D5O

output after Pertrutation P : 921C209c

Ciphartazt arts: round 1 : OP55OP55A1E5139C

L(1) - orssorss

2(1) - L133159C

0P55OP55AlE3139C
7AlE5C3032153234
A1E3139C7D12c5B6
4A4a4c4c6c522z32
7D1EC3B5B55A.BDO5
5c445A6A24TA3B5A

a66Anno6r2é9a5o4
Key : 45ZE305A2C4E6c50

Data: Fé29a5o4erc9PBc4
K97 = 60623£na74on4B7A
Data: 8FC9PBc4OEB8P43D
Key : 6z1AS6426o6a5474
Data: o3BaFu3Dc6B37oBA

nay : ¢57E5A54TA225372
D: ta : C5 B370 BACB723BB9
Ker : 540E3EOE4B62527c
Data: CB7238B9OCBEFF39

Key : 13563ozc6c2B3aoc
Data: OCBEPF39C3DD5534
Kay : 3642667o4E1c141A
Data: c3nn5634P5ca3c96
Key : 6B'5C0278'lB4E360A
Data-. F5G33C95A33DA004
Key = 46587E34ScS¢1c56

15- Data: a3snaoo4oB5a7529
Key = 3545555E5A4E7B05

14- Data: OBB375293393CBP1

Key : 5475521233-4-AIA64
Round 15- Data: 3393CBP145770955

Key : 242676747!-‘..3C4A14
Round 16- Data: 4577095604DED463

Key : 1A3B157B22707E1A
Ciphartaxt 0 A933P5135023B3lO

P;1.gu:eJ.5-Dataa.|'dKeyvaluesa£teread1Dm:umd
-29..



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 43 

To change I? or IP-1 requires an input of 64 bytes. There are 32!

different P permutations possible and a 32 byte input vector is

required to specify the ordering of 32—bits. Also there are(;:) i
2.25 x 1012 different possible expansion (E) permutations for mapping
3z—bits into 48—bits. The 16 intermediate keys K(1) to K(16) can be

Obtained "55-1'19 3 16 X 43 tableo Assu.m.i.ng that the 16 key select vectors rnust

be unique, the number of unique combinations is equal to] - j_
which is approximately 2.77 x 10146. Changing the key sefégtion tables

requires an input of 763 bytes. Further, there are = 2.25 x 1012
possible combinations for S-boxes which reduce the 48-bit exclusive-

ored product to 32-bits.

Thus the number of possible control variables using this

table structure is equal to (number of IP/IP'1 combinations) 3:

(number of 48-bit expansion combinations) x (number of P permutation

combinations) x (number of 6 bits to 4 bits reduction combination) x

(number of key select combinations). This is of- the order 1035. For
each of these parameter settings. there are 256 possible values of

key which must be tested if the DES is to be broken by exhaustive

attack. For this extended algorithm, an input of 1232 bytes is

required. Changing the key merely requires changing any of these

1232 bytes.

The above argumnmt shows how the permutations and substitutions _

in the DES algorithm can themselves be regarded as 'keys' . But one _

should be careful in determining the security of such a system. In

the above analysis, it has been assumed for simplicity that any one

set of permutations and substitutions can be used in the algorithm.

But the security of the algorithm may be heavily dependent on the

particular values of the S-boxes and the permutations [3] . Thus although

the above process shows how the keysize to the DES algorithm can be

extended, it must be realized that not all these ‘keys’ mayprovide

the same security.

3.4 Some Characteristics of DES Algorithm

3.4.1 Avalanche Effect

If a sma11_change in the key or plaintext were to produce a

corresponding small change in the ciphertext, then this might

effectively reduce the size of the plaintext or key space to be

searched. "Hence one of the fundamental requirements of a good.

_ 30 _
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cryptographic algorithm is to produce a ‘large’ change in the cipher-

text for a 'sma11'change in the plaintext or key. The DES exhibits

this property referred to as the 'avalanche' effect by Horst Feistel

[6]. Actually Meyer has shown in [18] that after five rounds, each

ciphertext bit depends on all plaintext bits and key bits. This inter-

symbol dependence property can be used for error detection and

authentication purposes.

Table 3.2 in Figure 3.6 shows the effect of change of a

single input bit change in the plaintext. The plaintexts X and x’

= (11111111 11111111 11111111 11111111 11111111 11111111

11111111 11111111)

X’= (011111l1 11111111 11111111 11111111 11111111 11111111

11111111 11111111}

are enciphered with a randomly chosen key and the effect of changing

a single bit as a function of the number of rounds is seen. In

Table 3.3 in Figure 3.7, the procedure is repeated. now fixing the
plaintext and changing a single bit in the key.

A similar effect is seen to occur for changes of single bit

in ciphertext and key on decryption.

3-4'2 §°E'.PL°E9l‘érZ .F.‘1'E’P.'-FE)’.

The DES is invariant under compleme-ntation of plaintext.

key and ciphertext. The relationship called the complementary property

of DES can be expressed as:

1-:. (x) = E_ ()2)K K

where Ekstands for encryption under key K

X is the plaintext

and the bars represent complementation. that is, bit-inversion.

This property arises because of the way in which the

internal suuceys are used in each round. This can be shown as

follows :

Section 3.2.]. shows that the expandedsversion of right half

_ 31 ._
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Amman58:co
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of the plaintext undergoes a complicated process together with the

key vectors K(i) at each round i. Let this process be denoted by

function f. Then,

r [R(i), K(i+l)] = f [E(R(i)) e K(i+l)]

where E(R(i)) denotes the expanded right half of plaintext at round i

9 denotes Exclusive-or operation

Complementing both R(i) and K(i+l) therefore does not change the value
of f and

r [R{i), x(1+1)] = r £fi(1), E(i+1)]

M1) = N0) .

R(1)= 1-(0) 9 f [R(0)a K(1)]

complementing plaintext X means complementing L(o) and R(o).

Complementing key K means complenx.-nting K(1), ..., K(l6). Therefore

this results in complementation of Lu) and R(1). By induction, this

can be extended to L(2) R(.5.), ..., L(16)R(16) and hence to ciphertext
C.

Because of the complementary property of DES, if a

cryptanalyst could obtain Y1 = EK(X) and Y2
X, he could reduce the size of the key space he must search from

256 to 255. The cryptanalyst enciphers X with all keys it that start

= EK(T() for an arbitrary

with a'o'. The resultant ciphertext _is compared with Y1 and Y2. If

C1: Y1 the key in use is not K, ifE4: Y2 the key in use is not R
(which starts with a 1.). That is, effectively this symmetry reduces the

search effort by 50 percent under a partially chosen plaintext attack.

An example illustrating this complementary principle of the DES

obtained using the DES software is shown in Figure 3.8. This

complementary behaviour can be avoided by selecting the S—bo>es

using one or more key bits directly,1'.nstead of employing the nodule

2 operation". On the other hand, this complementary property can

be used advantageously for testing purposes.
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Desig Criteria

Although the DES algorithm has been made public. the design

criteria-behind the specific choice of some permutations and

substitutions remain still classified. For example,one design

criterion for the DES was that the permutation schedule uust ensure

that each output (ciphertext) bit is a function of all input bits (plain-

text and key) after a minimum number of rounds. It is reported that

[3] the initial approach of random selection of the parameters such as

the permutations and substitutions had to be abandoned because they

introduced wealcrnesses into the algarithm. Instead the parameters were

randomly generated and tested against the design criteria. It is

believed that a significant portion of the random designs were rejected

in this process. one of the most important parameters in the

algorithm is the S-boxes and they are consicbred in the next section.

3.5.1 §-§o§§

All the operations involved in the DES algorithm except the

S—box mappings are linear in binary arithmetic. Therefore the S—boxes

play an important role in the security of the DES. It is therefore

crucial that the S—boxes not be affine or the whole algorithm would

be affine. A study by I-bllman et al [19] found that none of the

S—boxes are affine. But they point out that there are a number of

questionable quasi—linear structures which may tend to weaken the

algorithm. But currently no nm.-thods are found which could ezqaloit

these quasi-linearities in reducing the search effort. The designers

of DES argue that it should not be surprising that certain parameters

contain some structural properties different from those expected to

result from the use of purely random selection. Further they claim

that [3] their design effort showed that carefully selected S—box

functions produce a much stronger algorithm than one based on random

designs.

The DES S—boxes are non—invertible 6 to 4 non—linear

mappings. Each S-box is found to have the property that changing

any single bit of the input while keeping the others constant always

changes at least two bits in the output. This property results in

the error propagation property and is essential to avoid the key

clustering attack [2]. This property plays an important role in

causing the avalanche effect mentioned earlier. On average it is
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found that the number of output bits that change in the DES for a

single input is above 2 (2.5 - 2.6) [19].

Another principle underlying the design of the S—boxes is

that the difference between the number of zeroes and the number of

ones in the output when any one of the input bits is held constant

is a mininnun. This design criteria is believed [20] to strengthen

the algorithm.

3.5.2 Initial and Final Permutations

The plaintext input to the DES is first permuted using IP

before transformed by the sixteen rounds. The output of the final

1 where IP'1. 1? = I,theround undergoes an inverse permutation IP'

identity peruutation. It is important to note that in a single

aacryption process, IP and IP'1 do not cancel each other as IP

operates on the plaintext and IP'1 operates on the ciphertext produced

by the 16th round. On the other hand, the permtation 19" performed

during the encryption process is cancelled by the permutation IP

performed at the beginning of the decryption process.

It seems that the permutations IP and IP"1 do not have any

cryptographic significance. Possible reasons for their inclusion in

the algorithm are that they facilitate the implementation of the

algorithm for a particular IC layout or they result from the way the

data is loaded into the DES chip. These permutations IP and IP-1 can

be absorbed by proper layout into the main algorithm" and they do not

* slow down the algorithm. The algorithm designers claim that the

permutations do have cryptographic value and they contribute to the

security of the DES. This could be possible as follows: In many

applications, ASCII characters are used for the plaintext. Because

of the particular ASCII coding and the frequency distribution of the

Fnglish alphabets. the distribution of 'l's and 'o's will not be

uniform. The IP permutation groups every ith- bit of each input byte

into jth byte of the permuted output._ This preprocessing of the

plaintext may redistribute the 'l's and 'o's in a uniform way before

inputting to the 16 rounds and thus may enhance the security.

3-5-3 E-Eeawitstioa

Ihe function of the P-permutation in the DES as.in all

substitution—permutation ciphers is to provide the element of

diffusion [7]. This concept was first introduced by Shannon to

_ 39 _
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spread the dependencies of output bits on input bits through

successive rounds to achieve total miadng.

3.6 Criticism and Weaknesses of DES

The controversy surrounding the DES essentially comes from

two main objections given below:

(i) the small size of the key space and

(ii) the algorithm's unpublished desig:n principles.

Other criticisms of the algorithm include the small number of rounds,

the two ‘redundant’ pernutations IP and lP'1 and a relatively simple

key schedule operation.

To investigate these criticisms. two workshops were

organized by the National Eireau of Standards (NBS). The first

workshop analysed the comple>d.ty of the algorithm and restated that

no short cut methodswere found [20]. The second workshop concluded

that a key searching machine cannot be built before 1990 and will

cost several tens of millions of dollars with a probability factor

of being available even then of about 0.1 to 0.2 [21]. Let us now

consider the major criticisms of DES in turn.

3.6.1 Ih_e_ _!_(_eZ Een_g}_h_

By far the greatest source of controversy has been the choice

of 56—bits as the key length. The length of the key determines the

feasibility of key trial. Critics argued that the length of the key

is too small and that the key space is amenable to exhaustive search.

Diffie and Hellman [22] disputed the NBS claim that trying all

possible keys is not economically feasible and estimated that a DES

key can be recovered by exhaustive search for approximately $5000

"worth of computation time on a special purpose machine. The special

purpose machine would consist of a million LSI chips and could try all

the 256 keys in one day. The cost of such a machine using the semi-
conductor technology of the mid-seventies was estimated to be in

20 million dollar range. More recently [84], the cost of a Lday

average search time machine is estimated to be around 50 million

dollars. This meant that it is out of reach of most groups with the

possible exception of government security agencies. It was predicted

that in 10 years, the machine will cost approximately 200,000 dollars

_ 40 _
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and recovery of one key will be around 50 dollars. Such attacks

assume that the DES is being used in the standard code book made.

Alternative brute force attack on the DES algorithm is to

use a table look-up approach. In this approach all the ciphertexts

resulting from enciphering a chosen plaintext are stored and sorted

using all the 256 keys. The amount of memory required for this attack

is of the order of 56 (256) _'—; 4 x 1018 bits which is enormous. This

would require 4 billion magnetic tapes (about 109 bits per tape),

costing about 80 billion dollars ($20 per tape) [4]. In [23],

Hellman proposed a trade off between time and memory. Like table look

up approach, this technique requires precomputation and storage of a

table. I-hweuer, with this technique, the table size is only of the

order O(n2/3) instead of the previously O(n) where n = S6(2s6) bits.
This technique also requires searching and the search time is of the

order O(n2/3) instead of ()(n) where n = 256. Hellman predicts that
with proper combination of preconputation and searching, a machine

may be constructed that would recover the key with high probability

in one day. This in turn led to the suggestion that a bigger key

length of 128 bits is required.

Further the key space is reduced if the key is not chosen

as a 56 randomly selected bits. For instance, if the key is selected

as eight characters, each character being one of say 64 possibilities

then the number of distinct keys which need to be tested is (64)8 =

2.8 x 1014 which may be quite feasible.

The key space is also reduced by the invariant property of

DES under complementation. As seen in Section 3.4.2, this symmetry can

be used to reduce search effort by 50% under a partially chosen

plaintext attack.

3-6-2 unesslisnes 2esie~_P;iacip;es

The second major criticism of the DES algorithm is that the

design criteria behind the choice of some of the parameters are not

disclosed publicly. Those parameters are the S—boxes, fixed

permutation P and the key schedule operation.

The classified design principles led some critics to argue

that deliberate trapdoors might have been incorporated in the

algorithm by the designer to his advantage. This argument is based

on the fact that it is possible to design ‘innocent-looking‘ S—boxes

which contained trapdoors [19]. Further, regular structures were

— 41 ..
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discovered in certain parts of the DES algorithm which were surpris-

ingly similar to a type that can be used to build a trapdoor into the

system [19, 24]. Like the complementation property, it may be possible

to save another factor of two with carefully chosen S—boxes thus

saving a total of 75% over exhaustive search. Lexar Corporation [24]

examined the properties of the substitutions and permutations and

reported some ‘peculiar’ properties of the S—boxes but 'to date no

feasible cryptanalytic technique for DES has been found.

3.6.3 Number of Rounds

DES is also criticized for having a small number of rounds

and it is suggested that the number of rounds should at least be

increased to 32 [19 1- The number of rounds controls the miadng of

input bit values, that is, the amount of diffusion introduced by the

co—ordinate permutation. An increase in the number of rounds will

produce a greater avalanche effect. A two round DES was successfully

cryptanalyzed [19] by exploiting the correlation between L2R2 and the
input. Such correlation is believed to disappear after eight

rounds [6].

Some statistical analysis to test the randomness of the

DES output sequences and any correlation between plaintext input and

ciphertext output is considered in Chapter 6.

3-6-4 Ker E921-le_Al92rit£m_-_W.e;.a!s and _S.esiv_vesk_|<s-ya

The cryptographic strength of the DES will be reduced if

some of -the internal suhkeys derived from the external key are the

same. In the extreme case, if all the internal keys are the same

then the key space is reduced to 248. Referring to the key schedule
algorithm given in Figure 3.3, this situation occurs whenever all bits

in the register C are all ones or zeroes and the bits in register D

are all ones or zeroes. There are four such weak keys altogether [3].

These weak keys also have the property that there is no difference

between the operations of enciphernaat and decipherment, that is.

EkEk(x) = X = DkDk(X) for weak keys. There is another set of keys
defined as semiweak which have the property that only two different

internal keys are produced each occurring 8 times. There are six

such semiweak keys and they have the property EkEk/ (X) = X =

F1(Ek(X), where k and k’ are distinct semiueak keys. Further there
are 48 other external keys which produce only 4 different internal

— 42 _
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keys.

These special keys do not pose any threat to the security

of the algorithm because the number of such keys is small compared to

the total set. Provided that the keys are randomly selected the

probability of choosing such a key is very small. Further these keys

can easily be avoided during key generation.

The key schedule algorithm can be improved by incorporating

non—linearity in the internal key generation process [39]. A

suitably shifted external key can be inputted to a substitution-

permutation process in each ronmd to produce the internal key as

shown in Figure 3.9. The scheme allows, in addition to the enlarge-

ment of the key space, other cryptographically desirable properties

such as error propagation. As the substitution permutation function

is already available in the algorithm, this requires minixmxgn additional

hardware.

3.? C_ryEtanalysis of DES

Cryptanalytical nethods can be divided into two subcategories

namely deterministic or analytical and statistical methods.

In a deterministic approach, the cryptanalyst attempts to

express the desired quantity (such as the key or the message)

in terms of some other known quantity or quantities (such as given

ciphertext or given plaintext and corresponding ciphertext). One

method of attack is therefore to represaat the 64 cipherte:-rt output

bits as functions of the 56 key bits in a known plaintext attack

and try to solve the 64 non-linear equations over GF(2) for 56

unknowns. This problem is an NP_complete problem [8] and hence is

difficult to solve in general. Such an analytical attack of the DES

was proposed in [25]. The attack proved to be manageable with affine
S-boxes but infeasible when the real DES was considered. IBM and

NSA also reported to have conducted similar attacks as part of their

validation process with no short cut solutions being found.

In the statistical approach, the cryptanalyst attempts to

exploit statistical relationships between plaintext, ciphertext and

key. To thwart statistical attacks, the algorithm's output should be

pseudo—random even for highly structured inputs. In other words,for

a large set of plaintext and key inputs o‘ne must not be able, on the

basis of statistical analysis, to reject the hypothesis that the

_ 43 _
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PERMUTATION

Figure 3.9 - Non—linear Key Schedule Algorithm



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 58 

output bit stream is random. Some fundamental statistical tests have

been performed on the DES output streams and they are discussed in

Chapter 6.

Finally one should mention the brute force attack to find

the unknown quantity such as the message or key by using a direct

Search method, trial and error or exhaustion. As mentioned earlier

the key length is an important factor on this type of attack and

greater the key length bigger the work factor to perform the key
exhaustion.

3.8 Discussion

If an algorithm is defined to be cry-ptographically strong

when the algorithm complexity is such that,

(i) using all known shortcut solutions, it is not practically

possible to solve for the key or for the message

it is too costly to employ simple methods such as key

exhaustion because too much time and/or hardware are

required

then.despite a lot of controversy surrounding the DES, DES can be

considered to be a cryptographically strong algorithm. As far as the

author is aware not a single successful 'break' has been developed

that can produce or determine the unknown key. mrther. the life of

the DES can be extended (until a shortcut solution is found) by

enciphering the data two or more times with different keys. Double

encryption will significantly increase the difficulty of intrusion

requiring of the order of 256 words of memory and 255 operations [3].

However it is preferred that such a multiple encryption process is

specified as part of the algorithm itself." The security can also be

improved by employing DES under various chaining modes. They are

considered in subsequent chapters. In account of this, the DES

algorithm has been chosen to be employed in the design of an

encryption interface unit to be used in a communication network. This

forms the subject of the next chapter. This chapter is concluded by

noting that the DES can be used as a building block for designing more

sophisticated algorithms. For instance,the DES itself can be used as
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the cipher function f in Figure 3.2. This gives rise to the scheme

Shaun in Figure 3.10 where a block of 128 bits forms the

plaintext .

Figure 3r1O - Extended DES Algorithm
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C H A P T E R 4

DESICN OF ENCRYPTION SYSTEM: SYSTEM HARIJAIARE

System Rflirements

The requirements for the encryption system may be class-

ified into three groups namely

( i ) security requirements

( ii ) Operator requirements and

(iii ) technical requirements .

4. 1 . 1 Securi1:y_Rgqgirements

Briefly. the security requirements are as follows:

The encryption algorithm used in the system should be

cryptographically strong. That is, it should withstand at

least all the major cryptanalytic attacks described in

Section 2.2.

There should be a large number of user selectable keys to

prevent the opponent employing exhaustion techniques to

determine the key selected.

The DES algorithm outlined in Chapter 3 meets these conditions very

well.

(c) The use of the algorithm within the system should be carried

out in such a way that the wstem as a whole is at least as -

strong as. the initial strength of the algorithm itself.

At no time, keys used by the algorithm must be stored in

plain form within the system as otherwise it would enable

any unauthorized user to its recovery.

Key changes should be _made easy to implement.

A high degree of physical security measures must be provided

to protect the system against intentional or accidental
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threats .

4.1.2 Qpgr§_tgr_Rgc3i£e§e5t§

The system should be made ‘user friendly‘ thus allowing any

user to operate it efficiently with little training. This aspect is

very important in the case of large networks. Ihe unit should also

be easy to install.

'4-1-3 Ieshnisal E99/.t=i_rs'==s=1-°~_

The technical requirements for the encryption system depend

to a great extent upon the use to which the system will" be put. This

particular encryption system is designed to be used in the following

applications :

(a) transmission/reception of encrypted/plain data in a point-

to—point communication security system not containing a

host computer;

a local encrypted/plain data storage/retrieval system using

floppy disks;

transmission/reception of encrypted/plain data over the

communication link to a host computer and storage/retrieval

of encrypted/plain data using a host compute:-,in particular

with the Prestel viewdata computer.’

The requirements for a storage/retrieval encryption system

are quite different from those necessary in a point-to—point

conmmication system. some of the aspects to be considered are:

Real time processing and transmission delays: These are

particularly important in point-to—point commmication

where information flow is irregular and messages may not be
of fixed format.

Transmission data rates: This aspect is important in

determining whether asynchronous or synchronous transmission

is needed. we are concerned here with only asynchronous

transmission of data rates up to 1200 bands. Further the

.. 48 _
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communication with Prestel computer is asymmetric full

duplex in the sense that it requires 120) bauds for

transmission and 75 bands for reception.

Where a mixture of plain and encrypted texts is required to

be sent. switching between encrypted text mode and plain-

text nnde should be easy. This should be carried out within

the message so that the receiving unit can follow identical

made changes.

In the case of storage/retrieval system with a host computer,

since the encrypted information is likely to pass through

the host computer control unit where certain control

characters are generated and detected. there is a need to

prevent the occurrence of these special characters in the

encrypted information. This implies that the encryption

system should be made transparent to the host computer

protocols. This is particularly relevant when the system is

used in Prestel network.

Standard editing facilities such as character delete, line

delete eta nmst be available to the system users.

General System Description

A symmetric encryption-decryption system in an end—to—end

coumnmication configuration is shown schematically in Figure 4.1.

The operation of the system can be summarised as follows. Referring

to Figure 4.1. the plaintext from an Apple terminal forms the input to

the encryption system. The plaintext is a combination of any of the

alphanumerical characters from the keyboard. The key required for the

encryption process is entered from the terminal keyboard under the

user control prior to the commencement of the session and is stored

in an inaccessible area within the encryption device. The encryption

system operates on the input sequence using the key to produce a

ciphertext sequence. This cipher is transmitted through input-output

cotmmxnication controller to the nndem. The modem converts the binary

data pulses to analog frequencies using Frequency Shift Keying (FSC)

scheue for transmission over the ‘public switched telephone network.

.. 49 ..
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At the receiving end, another modem converts the FSK signals back to

digital form which is then deciphered to regenerate the original plain-

text. This deciphered information can then be displayed on a Visual

Display Unit or printed on a line printer.

The cotmmmication link between Apple microcomputers is a

half-duplex one thus allowing transfer of data in either direction but

not at the same time.

From Figure 4.1 it is seen that in this implementation, the

encryption system is incorporated as an in-built feature of the

terminal, rather than as a separate unit. The built—in implementation

is superior to stand—a1one implementation in the area of access

prevention as the former technique greatly reduces the chances of

detection between the terminal and the encryption unit where the text

is in plain form. l-bwever this technique may be difficult to

implement in existing systems and can require major redesigns. This

is where the stand—alone unit has the advantage in that it can simply

be inserted into existing networks with little or no impact to

existing equipment.

The different sections which constitute the system are:

Apple microcomputers - comprising 6502 microprocessor,

memory, diskette interface and Language card.

The encryption interface unit.

The modulator—denndu1ator equipment.

533212 5‘-E.r2°2“‘E‘-‘£°£

In this project. Apple microcomputers have been used to form

a two node network. The Apple microcomputer is a 6502 microprocessor

based system with diskette interfaces. disk driving units. Integer

card and a standard keyboard. The processor can directly reference

up to 64 kilobytes of memory. Along the back of the Apple's main

board, is a row of eight ‘slots’ or peripheral connectors. In seven

of these slots, peripheral interface boards designed for Apple srstem

can be installed. In slot 0, Integer firmware card is installed.

Each slot has a 2K—by1;e of conmnn shared memory associated with it,

with a View to holding programs or driving subroutines of the

peripheral interface card. The designed encryption interface card is
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installed in slot number 2 providing a memory range of (300 to CFFF.

4-2-2 En2r2P1i2n_12tsr£ase_Uai1

The unit is designed utilizing the 6502 microprocessor of

the Apple microcomputer system. A block diagram showing the various

sections of the unit is illustrated in Figure 4.2. The sections are:

1. Data Security Device.

2. Serial Input-Output Controller.

3. RS-232C "Interface Circuits.

Timing Circuits.

Decoding Circuits.

6. Memory.

4.2.2.1 gi£cgi1_: Qegcgigtion and gx_3_ration

A complete circuit diagram is shown in Figure 4.3. Some

important aspects of the circuit are now briefly considered.

4.2.2.2 9a;a_sgcg3:;ty_ Device

As mentioned earlier, it has been decided to use the DES

algorithm in hardware in the design of the interface unit. '1'he choice

of the data security device incorporating the standard was restricted

due to limitations of not only their availability but also their

access. A Western Digital device has been used for this purpose

because of its ready availability. The device is made in n—channe1

silicon gate M38 technology and is 1'11. compatible on all inputs and

outputs. The device can be interfaced to a wide variety of processors

though it is tailored to the Intel scam class microprocessor. The

device performs 64-bit b1od< encryption and decryption using 56-bit

key. The block diagram, shown in Figure 4.4, illustrates the internal

structure of the device. It contains 64-bit data register. 56-bit

key register. an 8-bit comand/status register plus the necessary logic

to check key parity and implement the DES algorithm. The device has

a single 8-bit data bus buffer with tri-state operation through which
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Fig. 4.5 - Internal Architecture of Serial I/O Controller
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data may be entered into the key register or the data register.

Output data from the status register or the data register is also

switched through the data bus buffer. ‘me device can be programmed

either via the input lines. or via the data bus. In this design, the

second approach has been adopted. The programming of the device will

be briefly discussed in system software (Chapter ).

4.2.2.3 _§e£ia1_I@1_.|_t:0:_tEu3:_ §or_It£o_1_lgr_
There are a number of such devices which would be suitable

for transmission and reception of plain and enciphered data. Again a

Western Digital device, dual enhanced comunmications element (DEUCE)

has been used. It is primarily designed to operate in an 8-bit

microprocessor environment.

‘flue controller contains two independent ful1—duplex

asynchronous receiver/transmitter channels and two internal baud rate

generators associated with the two channels. A block diagram of the

internal architecture of the device is shown in Figure 4.5.

Gomnnmications between the controlling CPU and the two receiver]

transmitter charmels or the two baud rate generators occurs via the

8-bit data bus through a conmnn set of bus transceivers. The use of

this complex device has enabled the development of a compact encryption

system.

Each channel has associated with it a number of registers

such as the Transmit Holding Register, Receive Holding Register.

Command Register, Made Register, Status Register etc,:-rhich can be

programmed to transmit and receive asynchronous serial data. It

performs serial to parallel conversion on data characters received

from the modem and parallel to serial conversion on data characters

received from the CPU. The CPU can read the status of either channel

at any time. Status information includes the type and condition of

transfer operations being performed by the device as well as any

transmission error conditions. Internal control of each channel is

achieved by means of two internal microcontrollers one for transmit

and one for receive. A block diagram of one of two communication

controllers is shown in Figure 4.6. The control registers,va.rious

counters and external signals provide inputs to the microcontrollers,

which generate the necessary control signals to send and receive

serial data according to the progranmed protocol.

device also contains Baud’Rate Registers which can -be
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programmed to desired data rates by loading them with the appropriate

number of bands. The contents of these registers are then decoded and

then addressed to a frequency select ROM for the generation of proper

frequency by the divider circuitry and the control logic during

operation. A diagram of one of the two Baud Rate generators is shown

in Figure 4.7. The baud clock source is selected using select clock

pin (SE.CIJ<) in conjunction with the clock selectbit (CR1) in the

Command Register (see Figure 4.8). when the bit CR1 is high. the

external clock node is selected. This means that the Transmit and

Receive clocks are internally tied together and SEL(1.K input determines

whether those clocks are driven from the internal baud rate generator

(SH.CL.K high) or from the external clock input xcx/aco (SEJLK low).

If the internal baud rate generator is selected, then the external

clock input becomes a baud rate generator clock output. when the

bit CR1 is a logic '0' then the internal clock select nude is chosen.

The transmit clock is driven by the internal baud rate generator clock

and the receive clock is driven by the SE.CLK input. The XCI/HI) pin

then becomes the baud clock output, the transmit clock. The inputs

to the SELCLK and XCI/ECO pins are derived using the simple logic

circuit shown in Figure 4.8(a).

when the signal present on the line marked X is low and the

signal at Y is high, this enables the tristate Z1 and sets the SELCLK

to be high. with the bit CR1 at logic '1‘, this would result in both

the transmit and receive clocks tied together and driven by internal

baud rate generator. This mode shown in Figure 4.80)) is adopted for

point-to-point cormmnication between two Apple microcomputers.

when the signal present on the line marked X is high and

the bit CR1 is at logic '0' then the tristate Z2 is enabled. The

XCI/fl output is then connected to the SELCLK input which drives

the receive clock. The transmit clock is driven by the internal baud

rate generator. This configuration thus allows to transmit and

receive at different frequencies using only one channel without using

an external baud rate generator. This is one of the main reasons for

using this I/O controller. This node of operation, shown in Figure

4.8(c), is adopted when the interface is used in the Prestel network

where the transmission data rate is 75 bands and receive data rate

is 1200 bands.

The signals Clear To Send (CTS) and Request To Send (RTS)

to and from the device are used in controlling the modem. These
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Fig. 4.7 - Baud Rate Generator Block Diagram
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signals are discussed in the next section.

4.2.2.4 RS—232C Interface Circuits

These circuits are used to interface between Data Terminal

Equipment (eg Apple computer terminal) and Data Communications

Equipment (eg Modem) in conformity with the specification of EIA stand-

ard number RS—232C. The R$—232C standard defines all the control and

data signals (including signal levels) used to enable the modem and

the terminal to operate together and transfer data. For this purpose.

a quad line driver (PC 1488) and its companion circuit (BC 1489) quad

line receiver are used to provide a complete interface system between

TTL level signals from the system to RS—232C levels.

The interface control lines can be divided into two groups,

one concerned with:..the oontrol sequences for connecting the modem to

the line and the other concerned with the sequences controlling the

application (and detection) of signal to the line.

The signals Data Terminal Ready (DTR) and Data Set Ready

(DSR) belong to the first group. The DTR signal from the terminal is

used to tell the Imdem to answer the telephone (ON) and to hang it up

(OFF). In this design. this signal is used to indicate whether the

terminal power is_CN or OFF. The DSR signal is used to indicate to

the terminal that the modem is in a state in which it is capable of

transmitting data.

'l‘he group of RS—232C control signals that relate to the

application and detection of tine signal are: Request To Send (RTS),

Clear To Send (CIS) and Data Carrier Detect (DCD). The logical

interaction of these signals is simple when they operate in a two-wire

half-duplex nude and complex when terminals operate a four-wire full-

duplex mode. In this design, the point—to—point comxminication between

two Apple microcomputers is ha1f—duplex whereas the communication with

the Prestel computer is asymmetric full—duplex.

The Request To Send signal from the terminal is used to

indicate to the modem that the terminal wishes to transmit data. The

modem then responds by initiating its transmit mode. when the modem

has reached a steady state carrier condition, and is ready to transmit,

it sends a Clear To Send signal to the terminal. However, CIS does

not imply a positive verification that communication with the other end

has been established. Therefore the Data Carrier Detect signal is

used to indicate that the receiving modem has detected a line signal

- 51 _
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(carrier) from the other end._

In point-to-point cormnunication, initially when both ends

are waiting for transmission to begin, the RTS signals of the serial

input—output controller are at logic '1' and the modem will be holding

the CTS inputs to the serial I/O device high. The terminal which

wishes to transmit activates the RTS by making it low and does not

start transmitting until CI‘S is turned ON. The RTS/CIS time delay is

determined by specific hardware settings in the modem and is vitally

important in determining the overall efficiency of data link use.

Actually, the designed encryption system has been tested with two

different modenrs - Nbdular Technology and the standard Bliones. It

is found that the former produced large annunt of noise spikes when

the tandem switched from one mode to the other. This necessitated

same. complex delay routines to be introduced to reject the noise

spikes. A typical interface timing diagram is shown in Figure 4.9.

when connected to asymmetric full-duplex Prestel system, the RTS is

kept ON continuously and the CTS ON is used to indicate that the

transmission can start. This is an easy approach to ensure that the

nndem will operate properly in the full-duplex mode.

4.2.2.5 EJ'.3:'.g_Ci_rgui_t§

This block in Figure 4.2 consists of logic circuitry to

provide the correct timing signals such as CHIP SELEII. READ, WRITE

etc for the operation of the interface unit. The inputs to this

block include anrmgst others. the clock signals from the Apple

microcomputer system for proper synchronization.

The 6502 microprocessor has two clock signals 90 and I191 of
1.023 MHz which are complementary to each other. In addition, a

general purpose timing signal, twice the frequency of the system clocks

but asymmetrical and an intermediate timing signal of 7.159 MHz are

also available. The microprocessor uses its address and data buses

only during the timing period virhen ¢>° is active. when $0 is low, the
microprocessor is carrying out internal operations and does not need the

address buses. 'l"hese timing signals are shown in Figure 4.10.

Let us now very briefly consider the min timing signals

required for the data security device and the serial input—output
controller.

The timing diagram of a typical READ cycle of the encryption

device is shown in Figure 4.11. The Data Output Request (COR), bit

in the Status Register of the device is used to indicate whether the
——-j—---— _ 52 _
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DATA (READ)

DATA (WRITE)

Fig. 4.10 - System Clock Signals and Timing Relationships
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P5-5-4-11 - Timing of D&1:m Secuurity Device.
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Fig. 4.124 WRITE Timing of Data Security Device.
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DATA WORD present on the data bus is valid or not. when it is valid,

the device is selected by making the CHIP SELECT (3) active low.

This signal remains active low for at least 410 nano—seconds (hs).

Then the READ signal is made active low to read the data from the bus.

From the timing diagram, it is seen that the READ signal needs to be

active low for 330 ns and the data must remain stable at least 30 ns

after the rising edge of the READ pulse. The READ timing is not

critical and it only needs to be greater than 330 ns. The READ

signal is therefore derived using a standard decoder which produces

an active low pulse of about 450 ns wide. This signal is also

suitable for CHIP SH.ECT signals of both the security device and the

serial I/0 controller.

The WRITE timing diagram of the encryption device is shown

in Figure 4.12. The device is selected by enabling the CHIP SE.EC1‘

active low and then the DATA RDRD or KEY ‘LORD to be written is

transferred to the data bus and a WRITE signal is produced. From the

timing diagram, the data is to remain stable on the bus at least 200

ns before the rising edge of the WRITE pulse and 90 ns after the same

edge. As the CHIP SE..ECT signal obtained from the decoder is 450 ns

wide, the required pulse can be obtained by chopping off up to 200 ns

from the rising edge of the CHIP SELEC1‘ signal. Actually, only a

90 ns pulse is subtracted as a 90 ns pulse is needed anyway in

deriving the WRITE signal for the serial input-output controller.

This pulse is then ored with the CHI? SELHZT to give the WRITE signal

of the security device. In Figure 4.13, this signal is denoted by

Q2 + CS. The pulse is produced using a simple bistable circuit as

shown in Figure 4.13 together with the timing diagram. The clock

signals 7 MHz and Q3 are obtained from the Apple system. Note that

the CHIP SELECT signal from the decoder has been used to control the

rising edge of the WRITE signal by using it as the CL.I-‘AR input signal

to the second bistable. The signal Q3 could not be used because it

changes to the high state slightly before the O-IIP SELECT thus

producing a spike,

Now let us consider the READ, WRITE and CHIP SELECT signals

required for the serial input-output controller.

The READ timing diagram of the serial input-output controller

is shown in Figure 4.14. This signal is derived using a simple logic

circuit which combines the pulse produced by the bistable circuit with

another output line from the decoder circuit to produce the RED

_ 56 _
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signal. This produces a READ pulse of about 360 ns wide. with a

rising edge some 90 ns from the valid data edge. These agree well

with the required READ pulse in the timing diagram.

The WRITE timing diagram of the serial input-output

controller is shown in Figure 4.15. In comparing this WRITE signal

with that of the one required by the security device. it is seen

that the controller requires the data to be stable on the bus for a

longer time of at least 350 ns before the rising edge. Also the

data is required to remain stable for a Inininnun time of 100 us after

the edge, which is 10 ns greater than that required for the encryption

device. This signal is produced again by oring the 90 ns pulse with

an output line from the decoder. Although this produces a WRITE

pulse of width 360 ns with 90 ns of stable data after the rising

edge, it is found that these timings do satisfy the requirements

and does not cause any problem.

The two CHIP SELECT signals required for channel A and

baud rate generator of the I/O controller are directly derived from

the output of the decoder.

4.2.2.6 Qegogix-_:g_Ci_r_c_ui_t§

This block in Figure 4.2 provides signals which together

with the output signals from the timing block are used in selecting

differalt devices when appropriate addresses are present on the

address bus. In a system where there are many devices to run, it is

necessary to decode the address bus down into individual addresses.

This allows only one device and in particular only one made of

operation of the device to be selected. For instance, say when a

control word has to be written into the serial input-output controller,

three operations are required to be carried out namely

(i) only the input-output device must be selected,

(ii) only WRITE signal must be activated and

(iii) a distinction has to be made between a control word and

a data word.

The inputs to the decoder include the Device Select line

from the Apple microcomputer system which indicates which one of the

peripheral connectors is active. whenever the interface is selected

this line will‘ be activelow. The Table 4.1 in Figure 4.16 shows

the decoded address and the corresponding operations carried out by

_ 59 _
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the system.

Address oration Performed

CDA¢ WRITE Data word to data security device.

WRITE Control Word to data security device.

READ Data word from data security device.

READ Status of data security device.

ACTIVATE latch.

ACTIVATE Tristate to test modem control signals.

RESET I/O Controller

RECEIVE (READ) Data fro I/O Controller.

READ Status of I/O Controller.

mansmn (wRI1's).'Data to I/O Controller.

WRITE Control Word to I/O Controller.

WRITE to Baud Rate Register of I/O Controller.

Figure 4.16 - Table 4.1: Decoding Arrangement

4.2.2.7 _r«1e1o5y_

The operation of the encryption unit is completely controlled

by software. Hence the proposed interface unit must have some non-

volatile memory to hold the program. For this reason. a 2K-byte

PROM is incorporated on the interface. The reasons for the choice are

two fold. Firstly, a 2K_byte is the mazcinmm amount of meunry that

can be associated with a peripheral slot in the Apple microcomputer

system. Secondly, it is estimated that a 2K—by-te rnemry should be

sufficient for each of the required system tasks.

4.2.3 hbdem

To transmit digital signals over Public Switched Telephone

network, which passes frequencies in the range 300-3030 Hz,it is

necessary for a data transmitter to mdulate the digital stream by

superimposing the 'l's and '0's onto a carrier signal. The data

receiver at the other end demodulates this signal. In addition to

its basic function of translating between the binary digital signals

of the data terminal equipment and the modulated voice frequency

signals of the cornmunication channel, as seen in section 4.2.2.4,

the nndem also performs a number of control functions which co-

ordinate the flovi ‘of data between terminal equipments.
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The digital information can be encoded by systematically

changing either the amplitude, the frequency, the phase or some

combination of these characteristics of the carrier signal. The type

of modulation used depends on the specific application. Over the

public telephone network, the maximum data rate is limited to 1200 hits

per second. For speeds up to 1800 bits per second. Frequency Shift

Keying (FSK) is the common choice and hence this is used. with FSK,

a pair of tones fl and f: are alternatively sent over the line for
the binary '1's and 'O's of the asynchronous data stream. The

receiving section essentially consists of two filters that sense the

frequency fl or £2. whenever fl is sensed. a binary '1' is produced

and whenever £2 is stmsed a binary '0' is output to the data terminal
equipnrnt.

Modular Technology (12 0/) mini modems and standard 31‘

nndems employing FSK scheme have been used with this system.
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C H A P T E R 5

POINT TO FOINT ODMMUNICATION SYSTH1 : SYSTEM SOFTWARE (1)

General

The software has been written for the encryption interface
unit to perform the following tasks

(a) Point--toepoint communication between Apple microcomputers.

(b) Storage/retrieval of encrypted information with floppy

disk system.

Storage/retrieval of encrypted information with Prestel

Viewdata system.

All the programs are written in 6502 Assembly language to minimize

the execution time and memory space required. Before considering

these programs. tap basic I/O tech:niq'ues for handling transfer of

asynchronous data are briefly examined.

5-1-1 Bolling Ieshaisus

The polling method is one of the simp1est ways to handle

asynchronous events. In this type of I/O, all operations are controlled

by the CPU program. The processor interrogates flags associated with

each possible event to determine whether any service is required.

That is, it polls the peripheral device periodically to determine its

readiness and hence the name polling technique. The CPU resources

are tied up during the time of transfer and the time of polling and

hence ca.nnot be used for other tasks. This technique is mainly used

with low speed devices.

5-1-2 lnsesrsps P.’-'i"E"_T£.<=L“‘i°.“_9_

In non-polling systems. the asynchronous event generates

an interrupt request which is passed on to the processor. The

processor in turn suspends the execution of the current process and

starts execution of the interrupt service routine which say performs

the data transfer. when the interrupt service routine is completed,

the processor resumes eaecution of the suspended process. The response
_ 72 _
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time is faster with such a system because no time is spent on

interrogating the other non-active interrupts which in turn increases

the system throughput.

The decision to adopt one technique‘ or other depends on the

nature of the application. In this project, the polling technique has

been chosen for two reasons. Firstly in this encryption system, there

are only two low speed devices which result in enough spare time for

the processor to eaamine the status flags in a repeated fashion.

Secondly the Apple 6502 system is not particularly suitable for an

interrupt driven technique.

In this chapter. only the poi.nt—to—point communication

program will be discussed. The other two tasks will be considered in

Chapters 7 and 8 respectively.

5. 1 . 3 Fbint-to-Point Conmmnication

The encryption interface allows data transfer between Apple

terminals (via a public switched telephone network) in either plain

or encrypted or a mixture of plain and encrypted formats. Five

different modes of the Data Encryption Standard have been investi-

gated [3, 26]. They are:

1. Block Encryption (ECB)

2. Chained Block Cipher (csc)

3. Stream Cipher Feedback (CFB)

4. Chained Block Cipher with Plaintext Feedback (CBC?)

5. Stream Cipher with Ciphertext and Vector Feedback (CFBV)

Each of these nodes has been implemented using the encryption inter-

face. They are described briefly in succeeding sections.
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Block Enc_1_'xEtion Mode

5.2.1 fyingiplg

This is the most basic mode of operation of the Data

Encryption Standard which transforms 64-bits of input to 64-bits of

output as mentioned in Section 3.2. The analogy to Electronic Code

Book (ECB) arises because the same plaintext-block always produces

the same ciphertext for a given cryptographic key. Thus it should be

theoretically possible to construct a codebook of plaintext blocks

and corresponding ciphertext blocks for any give key.

The ECB encryption—decryption schem is shown in Figure 5.1.

In encryption, the plaintext block (D1. D2. .... D64) is used directly

as the ass input block (I1, 12. .... I64). The input block is

processed through the DES device in the encrypt state which has been

preloaded with the appropriate cryptographic key. The resultant

output block (01, O2, ..., 064) is used directly as the ciphertext

(C1, C2, ..., C64). The decryptio process is same as the encryption

process except that the decrypt state of the DES device is used

rather than the encrypt state. That is, the key schedle selection

is reversed.

Mathematically, the operations of encipherment and deciph-

erment can be described as follows:

Let the cryptographic function f dfine the relationship between the

plaintext X and the ciphertext Y. Then,

fk (X)

where the subscript k designates the particular key (and hence the

particular function fk) which is selected out of the set of all
possible keys.

5-2-2 lme1s.msn1a1i2n_

Only a brief summary of the program is given here. The

structure of the program can be divided mainly into five parts,

namly, the initialisation routine, key input routine. data input

routine, transmission routine, which includes encryption, and receive
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PLAINTEXT

(D1, D2, . . . . . ..D64)

INPUT BLOCK

(I1, 12, . . . . . . ..I64)

DES ENCRYPTION

GUTPUT BLOCK

CIPHERTEXT

(C1. C2, . . . . . . ..C64)

CIPHERTEXT

(C1, C2, . . . . . ..C64)

INPUT BLOCK

(I1,-I2, . . . . . ..I64)

DES DECRYPTION

OUTPUT BLOCK

(01, O2, . . . . . . . ..O64)

PLAINTEXT

(D1, D2, . . . . . . . ..D64)

Fig. 5.1 — Block Encryption Codebook Mode (ECB)
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routine, which includes decryption and display routines. The basic

flowchart of the program and the complete listing can be found in

Appendix 2.

5.2.2.1 Initialisation Rotine

The initialisation routine itself can be divided into two

subsections. The first subsection contains instructions which are

executed without any user interaction whereas in the secod subsection

the user chooses the parameters for setting a particular mode of

operation of the interface.

The first subsection consists of instructions to initialise

the CPU, to set the ports of the serial I/O cotroller, to ensure the

correct state of control signals from the modem, to set the state of

the latch in the interface and to initialize some mmory loations

which would be later used as counters and flags in the program. The

Data Set Ready (DSR) sigal from the modem is tested to check whether

the modem is O and is not in the test mode. If it is not set, an

error message 'No LIN ERROR‘ is displayed. The format of the

character to be transferred is defined to consist of 1 stop bit, 8

data bits and an even parity bit. A baud rate factor of 16 is used.

The external clock mode is selected in the I/O controller. As

explained in Section 4.2.2.3, this mode has been selected in point-

to-point communication to drive the transmit and receive clocks with

the same source. The error flags have been reset to allow error

detection in subsequent transfer of data. These error flags include

parity error, overflow error and framing error. The serial I/O is

set to a null mode, that is, neither a transmission mode nor a

receive mode.

In the second subsection, to begin with the user selects the

desired data transmission rate. A choice of baud rates ranging from

50 to 1200 bits per second are available. Then the user is asked to

select one of the three formats in which the interface may operate

namely plain or encrypted or a mixture of plain and encrypted. If

plain format is selected, no further initializatio is required. If

either of the other two formats is chosen, then the data security

device is activated to encryptio state.

5-2-2-2 592 £12": Boating

If oe of the two encryptio formats is selected, then the
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PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 90 

secret DES key is entered from the keyboard by the user. It is

assumed that both the parties concerned have the prelmowledge of the

key which is a_*prerequisite for proper communication of encrypted data.

In this program, 8 characters are used to form the 64-bit key required

by the DES algorithm. Any. of the 88 alphanunrerical characters of the

keyboard can be used to form the 8 character key. As mentioned in

Section 3.6.1, the total number of distinct keys possible is then

equal to (88 )8 3.6 x 1015 which is less than the maadmum

256 ='-. 7.2 x 1016. The program can be very easily changed to accept

sixteen 4-bit characters as the key thus giving the total possible key

space. Here the 8 character key is chosen to enable the user to

remember the key without actually recording it somewhere. It is

essential that the key should be chosen randomly so that it may not be

easily guessed by the opponent. Before loading every key byte into

the KEY REGISTER of the device, the key parity is tested. If a parity

error is detected, then an appropriate error message is displayed on

the screen. The interface unit displays the entered key on the screen

to enable the user to verify the correctness of the key. However the

display is immediately‘ erased to avoid detection by others during

subsequent cormnunication. The majority of users would probably use

- some easy to remember phrase or number combination for developing the

key. In such cases, the long phrases can be converted to a form suit-

able for DES using a good hashing function. It should be sufficiently

complicated to produce essentially unbiassed and statistically

independent bits in the DES key. The program can also be modified to

provide for multiple DES key encryption-with different keys to

achieve higher levels of security-

5.2.2.3 Data Iflt_Rgu£i£e__

In point-to—point communication mode. the data to be

mciphered is assumed to be input from the keyboard of the terminal.

File transfer is considered in Onapter 7 where, file security is

discussed. This routine determines whether the data to be processed

is coming from the telephone line or from the keyboard of the terminal.

This operation is carried out using the polling technique. The

processor is allowed to poll the Data Carrier Detect (DCD) flag from

the nndem and the Keyboard Data input Flag (KDF); The KDF is

provided by the Apple system and if set indicates that a key has been

pressed. This implies that the data from. the keyboard needs to be ,

_ 77 _.
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transmitted over the line in plain or encrypted or mixture format

depending on the selection made earlier and hence the control is

transferred to Transmission routine. On the other hand, if the DU)

flag is set indicating the presence of data on the line. Receive

routine is invoked to decrypt and display the received data.

5.2.2.4 Transmission Routine

At a given time, up to a maximum of 256 bytes of message can

be input to the interface from the keyboard. A Return character is
used to mark the end of the nessage. At any tint, the key CNIRI.-X

can be used to cancel the entire message. All editing facilities of

the Apple system such as cursor movements can be used. The program

operates on the whole message (up to 256 characters) at a time. After
a whole message is processed and transmitted. the program returns to

fetch the next message from the keyboard. An important point to note

is that with block encryption mode (sea), the message needs to be

divided into blocks of 64 bi-ts (8 bytes) before encryption can be done.

Initially, the I/O controller is set to transmit mode. Each

64 bit ‘block of plaintext is then input' to the data security device in

successive 8 bytes after testing for the correct status of the Data

Input Request (DIR) flag of the device. Then the ciphertext bloc.k is

sent from the device byte by byte after testing the control signals,

Clear To Send (CIS) and Transmit Ready (TXRDY). Appropriate error

messages are displayed if the flags are not set properly and the

system is resynchronized. Special routines are developed to deal

with control characters C'N1‘RI..-G (Bell), CN1'R1,J (line feed) and

repeated Return characters in the plaintext block. when the encrypted

version of these characters are transmitted, a certain amount of delay

(approximately 80 milliseconds) is included to allow time for the

generation of these characters at the receiving end after decryption.

A I-bwever the message need not necessarily contain an exact

number of 64 bit blocks. Hence it is likely that the nessage will

end before the last block of 64 bits is complete. Therefore some

padding is required at the end of the message to fill the last block

to exactly 64 bits long. This has been done by padding the last block

with some random characters after the Return character . These random

characters are generated as part of the key input routine. The

padding results in the cryptogram expansion of up to a :na:o'.zm.Lm of 7

bytes compared‘ to the orignal plaintext message if -the last block is.
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not of full size.

5.2.2.5 Receive Routine

The Receive routine is nmch simpler than its counterpart

Transmit routine. It is known that the incoming data is encrypted by

dividing it up into blocks of 64—bits at the transmitting end. Hence

this routine should simply fetch the 64-bits of ciphertext at a time

from the link after testing the Receive Ready flag (RXRDY) of the

1/0 controller. The cipherte:-ct is then input to the data security

device which is now set to decryption mode. Then the deciphered block

of data is read from the device and is displayed on the screen using

Display routine. The Display routine is same as the one used by the

Apple system. It displays uppercase-and lowercase alphanumeric

characters in either normal or inverse or flashing modes. The control

characters in the decrypted block are not displayed. The block of

decrypted characters is tested for the presence of the Return

character. If it is not present. then it is known that another block

of encrypted data must be following the current block. l-bnce the

program loops back to test the RXRDY flag to obtain more data from the

link. cm the other hand if a Return character is detected within

the block of deciphered data, it indicates that the current block is

the last block of the message. The random characters after the

Return character are treated as dummy characters and hence they are

ignored. The decrypted information will be the same as the original

message provided the same key has been used at both ends of the link.I

The routine also performs three types of error tests on

the received characters. They are parity error, framing error and

overrun error. In each case, appropriate error messages are displayed.

A framing error is detected when the receiver finds a logic '0'

occurring at the time when stop bit, logic '1', should occur. A

overrun error is detected when a new character is loaded into the

Receive Holding Register of the serial I/0 controller before the

processor has had time to read the previous one. In all these three

cases the program loops back to the start of the data input routine

thI.B abandoning the current ciphertext block and automatically

synchronises.

5.2.2.6 Plain Data Conmunication

The routines which allow plain data transmission and
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reception are very much similar to the ones described earlier except

in this case there is no need to perform encryption and decryption.

Hence the message is processed by-te by byte rather than in blocks.

This facility of communicating in plain format is provided

to allow the transfer of non—sensitive information over the link. For

instance, one could envisage a situation where the users initially

comxminicate in plain format to set various parameters needed for

establishing a secure link. This immediate-1v led to the idea of‘ developing

a program which could handle a mixture of plain and encrypted data

and this is considered in the next section.

5-2-2-7 Ltiztsrs 2f_Plain_and_Eic£>r2tsd_Dats §.°@in_i<=sti°r_=

with this format, only parts of the message are in encrypted

form while the rest of the message is transmitted in plain form.

This Imde is useful in many applications where it is ‘not necessary to

encrypt the whole message.

The receiver must be able to identify which parts of the

received data are in encrypted form. The data transmitted is always
in plain form until the change to encryption mode is initiated. This

is do-neby typing a special character (CNTRL—A) on the keyboard that

has been designated for this purpose. Characters following this

character are encrypted by the sending terminal. The interface mit

is automatically returned to the plain format after 8 characters.

Alternatively, another special character (CNl'RlpB) can be used to

return to the plain format. The receiving end then checks for a

CNTRL-A character and starts to decrypt when it is found. when a

GNTI'RL—B is received, it switches back to plain Imde reception.

However it is necessary to ensure that the U~ITRL.—B character does not

occur within the enciphered data to ensure Lmambiguous decryption

at the receiving end. This can be achieved by using multiple

CN'1‘R1.,-B characters to- indicate the end of encrypted text. The greater

the number of such characters. the smaller the probability that they

occur in the enciphered data and hence the smaller the ambiguity

in decryption, but this increases the number of redundant characters

in the transmitted data. The key required for the encryption

algorithm is entered as before at the beginning of the communiization.

Again with the block encryption made, if the encrypted parts

of the message are not integral nultiples of 64 bits, they require

padding and this results in cryptogram expansion. The difference

-80-
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with the mixture format is that this expansion does not occur only

at the end of the message (last block), as in the complete encryption

format discussed earlier, but it may occur anywhere within the

message.

when implementing this mixture format in the Apple system,

additional problems are encountered compared to the complete

encryption format. One such problem arises from the re__quirement

that in the multi-user network the plain information transmitted may

need to be received correctly by all users whereas the encrypted

information must only be deciphered correctly by the user with the

right key. There may be cases where the encryption algorithm

transforms a non-control character to a control character and vice

versa. As a control character is not displayed by the Apple system

and the screen cursor does not move, this results in a line of text,

with parts of it encrypted at the, transmitting end. not producing a

line of text at the receiving end with the wrong key. As a certain

amount of delay is required for some special characters such as

GJTRL-G (Bell), CNTIL-J (Line feed), this can cause overrun error

at the receiving end with the wrong key. This results in errors in

the subsequent reception of data even in plain format at the receiving

end. This is further complicated in this block encryption made due

to the padding with random numbers to fill the block.

A modified version of the earlier complete encryption

format program is developed for this mixture format which overcomes

the problems mentioned above.

5-2-3 Eesuits ans 212:2:-si2n..

An example of plaintext containing some data structure and

patterns has been chosen to study the various characteristics of

different encryptia: nudes. Such an example is provided by the

assembly language program shown in Figure 5.2. This whole message

is enciphered using ECB encryption with the key 3131313131313131 in

hexadecimal form. Note that here a non—random key has been chosen

to allow the ciphertext produced to be used in some statistical tests

in Chapter 6. A ciphertext character produced can be any one of the

256 possible combinations (28). To display the ciphertext, it is
therefore necessary to extend the standard ASCII character set from

128 to 256. This has been done using Hershey characters [27]. The

complete character set-is given in Appendix 3.» Note that this extended
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character set does not in itself introduce any secure cryptographic

transformation. The ciphertext produced is shown in Figure 5.3.

The program used to produce this graphical display is given in '

Appendix 4.

From Figure 5.3, it can be seen that a potential weakness

of this block mode is that the same plaintext always produces the

same ciphertext under a fixed key. This in turn implies that if the

plaintext contains pattex-ns,they will be reflected in the ciphertext

as seen in Figure 5.3. Consider for instance. the asterisks in

lines 1 and S and sequences of blanks at the beginning of each line

’ in the assembly language program. Thus the compromise of the

plaintext block underlying any ciphertext block results in the

compromise of all repetitions of this same text for the remainder of

the cryptographic period. Thus this block encryption node is more

susceptible to code book analysis compared to the other nudes

considered later. Further if the plaintext information is highly

redundant then block encryption may not prevent cry-ptanalysis using

block frequency analysis. Block frequency analysis determines the

frequency of each ciphertext block from a large sample of intercepted

ciphertext. ‘BY relating the observed frequencies of the ciphertext

blocks to the expected frequencies of the plaintext blocks, the

cryptanalyst may be able to draw certain inferences concerning the

nature of the plaintext corresponding to a given ciphertext. Also

if the data transmitted is highly redundant, the number of possible

meaningful plaintext blocks may be small enough to construct a

dictionary.

This block encryption node is also susceptible to replay.

As each block is independently enciphered with the same key. one

block can be replayed for another. For instance, consider the

transaction shown below
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by replaying the block containing the ciphertext for £5000. This

type of replay is not possible with stream cipher and chained block

cipher modes which are considered later. (he simple solution to this

problem is to append checksus to the end of messages.

This block encryption mode is also vulnerable to insertion

and deletion of blocksbecause these changes to the message do not

affect surrounding blocks. Again use of error detecting codes before

encryption and checksums protects against this threat.

As mentioned in the implementation section, in this mode.

the information is encrypted in integral multiples of 64 bits. This

resulted in padding of last block with random characters. This causes

cipher extension and therefore may be unacceptable in some applications.

The padding effect can be seen in Figure 5.3 at the end producing a

longer ciphertext message than the original plaintext. If the

padding is due with blanks or zeroes. instead of random numbers,

then this may make them vulnerable to crypanalysis.

Since each bit of the ECB output block is a complex

function of every bit in the input block and the key, a single bit

change in either the key or the plaintext results in a ciphertext

block in which each bit is changed with approximately equal

probability. Conversely. a change in 1 bit of either the key or

ciphertext will produce changes in-an average of fifty percent of

the bits of deciphered plaintext. Although this error propagation

within the block is extensive, it is strictly limited to-the block

in which the error occurs and the decryption of other blocks is

unaffected. This can be seen from Figure 5.4 where a number of

errors have been introduced in the ciphertext prior to decryption.

Thus the ECB made does not provide error extension between blocks.

If block boundaries are lost between sender and receiver,then ECB

cryptographic synchronization will also be last until correct block '

boundaries are re-established. This may happen for instanceuhen a

bit slip occurs.

5.3 Cipher Block Chaining Made

5.3.1 l_3_r_:i;nEiEl_e__

Cipher block chaining is again a block cipher in which the

plaintext is exclusivea-ored with a block of pseudo—random data prior

to being processed through the DES device.
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This scheme is shown in Figure 5.5. In order to commence

the CK encryption, the first DES input block is formed by exclusive-

oring the first data block with a 64-"-bit initialization vector (IV).

That is,

(11, 12. I64) = (Ivmm, Ivzene, ...,Iv64eDe4).

This first CBC input block is processed through the DES device in

the encrypt state. producing a 64-bit DES output block which defines

the ciphertext. This first ciphertext block is then e:¢:1usive—ored

with the second plaintext block to produce the second DES input block.

This second input ‘block is enciphered using the ES device to produce

the second cipher.-text block. This encryption process continues to

chain successive ciphertext and plaintext blocks together until the

last plaintext block of the nessage is encrypted. In CBC decryption.

the first ciphertext block is processed through the DES device in

the decrypt state. The first output block is then exclusive—ored

with the CBC initialization vector producing the first plaintext

block. The second ciphertext block is then entered into the DES

device and the resultant output block is exclusive-ored with the

first ciphex-text block to produce the second plaintext block. "rhe

CBC decryption process continues to exclusive-or the ciphertext

block at time t-1 (t>1) with the DES output block to obtain p1ain'te_xt

at time t until the end of the message.

Mathematicallmthe scheme can be expressed as follows:

Let the cryptographic function fk define the relationship between
the 135 input block and the DES output block under the chosen key 1:.

Let function h define how the input to the DES is altered through

the introduction of the initialization vector and the feedback or

intermediate initialization vectors U(1). U(2),..., U(n—1) at time

t = l to n—l. Note that the function h may be a many-to-one--function

since identical inputs to this fimction will be available during both

encipherment and decipherment. Then

U(1) Z = Initialization Vector

U(i) h[U(i-1), feedback qnantity]’i > 1

In the CBC mode, U(i) is equal to the previous ciphertext block

Y(i—1), the feedback quantity. That is. U(i) = Y(i—1). Hence the

encipherment and decipherment operations can be expressed as
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fk[X(i)9Y(i-1)] 1 >, 1

rk“[v(1)]ea win) 1 ; 1

X(o) Y(o) 2

From the recursive nature of the above equations. there exists

functions H1, H2...., Hi such that

Y(i) = Hi [1<, x(o), x(1), ... x(i)] , 131

G
Similarly there exists functions G 2,1, .... Qi such that

xm = G; k. in-1). um, i 2 1 (5.2)

From equations (5.1) and (5.2), it follows that patterns within the

input are masked since the ciphertext block Y(i) depends on plaintext

blocks )((1), X(2), ..., X(i). However since the received plaintext

block X(i) does not depend on all ciphertext blocks 17(1), ‘((2), ...,

'{(i). the scheme does not represent a general block cipher (see

Section 5.5).

5-3-2 .I.w:21.e.r-e.n.t.a2isn_

This program is a modified version of the ECB mode program

described in Section 5.2.2. The flow chart of the program together

with the listing can be found in Appendix 5. Here only the

differences between this program and the EB mode program are briefly
discussed.

As in the ECB program, the user initially selects the data

rate, the format of data transfer (plain, encrypted or mixture) and

enters the DES secret key. Then the transmission end generates a

64 bit random. block and sends it to the receiving end. The block is

encrypted under the 503 made at both the transmitting and receivng

ends to form the initialization vector (Iv). This vector is stored

in a set of memory locations named ‘HEMP 1 at the transmitting end

and ‘IEMP 2 at the receiving end. It is necessary to divide

the message into blocks of 64 bits. Hence padding of the last block
— 89 ..
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with random characters is required to make the blocksize equal to 64.

The transmission routine fetches the plaintext block which is then
ex-c1usive—ored with the memory locations TEMP 1 before inputting it

to the DES device. The ciphertext block produced by the device is

transmitted to the receiver as in the ECB nude. The ciphertext is

also stored back into the memory locations TEMP 1 for use in the next

encryption cycle. The receive routine inputs the ciphertext to the

DES device and also stores it in memory locations TEMP 3. The output

from the DES device is exclusive-ored with the memory locations TEMP 2

to produce the plaintext. The memory locations TEMP 3 are then

transferred to TEMP 2 to form the new IV for exclusive-or operation

in the decryption of the next ciphertext block.

Finally. note that in the case of mixture of plain and

encrypted data communication, only the encrypted blocks are chained

together.

5-3-3 Results ans Eiscgssigm

The plaintext example shown in Figure 5.2 is enciphered

under CBC encryption with the same key as in .the ECB mode. The

initialization vector used is 0202020202020202. The ciphertext

produced is shown in Figure 5.6.

From Figure 5.6, it is seen that the CBC mode does not

produce the same ciphertext even when the plaintext is the same and

hence the pattern exposure problems associated with the ECB mode

have been eliminated. This is because the ciphertext produced for

a plaintext block with a given key is dependent on the plaintext as

well as the feedback (intermediate) vector used in the process which

is different at different times. So the CBC node reproduces the same

ciphertext whenever the same plaintext is encrypted under a fixed

key and initialization vector. Thus with the CBC mode, ciphertext

repetition occurs at the message level whereas with the ECB node.

ciphertext repetition is found to occur at block. level. ,Thus the

code book analysis problem has been reduced.

CBC is therefore less susceptible to replay than the ECB

mode of encryption. The type of replay mentioned in Section 5.2.3

is not possible with CBC mode as different parts of the message are

enciphered with different feedback vectors. It is also less

vulnerable to insertion and deletion of blocks as these changes to

the message affect the surrounding blocks.
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CBC also protects a block cipher against the time—memory

trade off attack [23] as follows. _ 1

Let Y(i) be the ciphertext corresponding to the chosen plaintext X(i).-

Since fgl (Y(i)) = X(i) $ Y(i—l), to determine the key k, a
cryptanalyst would have to generate tables of starting and ending

points using x(i) G Y(i—1) rather than X(i). But this would rule

out the possibility of precomputing the tables or of using the same

tables to break more than one cipher.

As noted in the implementation section. the problem of

padding still exists with the CEC mode. In the complete encryption

format, this is confined to the last block of the message. The

receiver scans the decrypted block and discards the pseudo—ranom

bits after the Return character code in the block. One way to

eliminate padding is to switch to stream cipher feedback (CFB) mode

(see Section 5.4) to encipher the short block at the end of the

message .

In addition. the security of the CBC mode depends among

other things upon the managemet of the CBC initialization vectors.

It is imortant that the initialization vector (IV) is pseudo-

randomly selected. Further the vector must be protected from

disclosure. In the above implementation. this is carried out by

using the ECB encrypted version of the random block generated as

the IV. It is also advisable to change the vectors frequently to

avoid the cryptanalyst using the ciphertext search attack.

within the ciphertext. some errors are introduced and the

deciphered with the same key and initialization vector to study the

error extension characteristics of the CBC mode. From Figure 5.7

one or more bit errors within a single ciphertext block are found

to affect the decryption of two blocks, namely. the block in which

the error occurs and the succeeding block. If the errors occur in

the ith ciphertext block, then each bit of the ith plaintext block

has_an error rate of about fifty percent. The (i+1)—th plaintext

block has only those bits in error which correspond directly to the

ciphertext bits in error. Further it is seen from Figure 5.7 that

after two blocks, cryptographic synchronization is automatically

established and the subsequent deciphered blocks are unaffected.

Comared to the ECB mode, this has extended the error propagation

to two blocks. This can also be seen from equations (5.1) and (5.2)
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where an error in the ciphertext block \’(i-].) can affect every bit

in the recovered plaintext block X(i—1) but it will affect only the

corresponding bit positions in the received plaintext block X(i).

Subsequent plaintext blocks X(i+1). X(i-I-2). ... are unaffected.

If bit_s are added or lost in a ciphertext block so that

block boundaries are lost between sender and receiver. then

synchronization is lost. However cryptographic synchronization will

automatically be re-established 64 bits after block boundaries have

been established.

This self synchronizing scheme may be useful when small

amounts of noise are present on the data coxmmnication links.

Stream Ciger Feedback

5.4.1 fringiglg

The cipher feedback mode (CFB) is an additive stream

cipher’ technique in which the CBS is used to generate a pseudo-

random binary stream. This stream is e:ac1usive—ored with the binary

plaintext to form the ciphertext which is fed back to form the next

DES input block. The pseudo-random binary stream is sometimes

referred to as the key stream and the DFS the key generator.

This node is schematically shown in Figure 5.8. Q19 '

through to sixty four bit C-‘B operation may be used unlike the ECB

mode where the message is required to be divided into blocks of a

given blocksize namely 64. A 64-bit initialization vector (IV) is

used as a starter input block to begin the CFB operation. (Note

that if the size of IV is chosen to be less than 64 bits, then. it can

be padded with '0's to form 64 bits). This vector is processed

through the DES device in the encrypt state to produce a pseudo-

random output block. The message is divided into characters of

s—bit. size where 0<s<65. The DES algorithm is operated once for

each new s—bit character. Then s—bits of the DES pseudo-random

output block (01, O2, ..., Os) are used in the eaclusiveaor operation

with the s—bits of the plaintext (D1,. [2, .... D5) to form the

ciphertext (Cl, (2, .... Cs). That is. (C1, (2, ..... Cs) =

(D1 6 01, D2 0 O2, .... D5 0 Os). This operation may be defined

when the length of the plaintext character to be encrypted is less than

._C)4_
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s-bits by concatenating zeroes to the left hand side or must

significant bits of the plaintext character. Similarly during

decryption. plaintext is produced by exclusiveuoring a 5-bit

ciphertext character with the s-bits of DES output block. That is,

(D1, ID, .... D5) = (C1 9 O1, (2 9 O2. ..., Cs 9 Os)

In both cases,the same s—bits of the DES output block are used and

the unused bits are discarded. At both ends. the next input block

is created by discarding the mst significant s—bits of the previous

input block, shifting the remaining bits 5 positions to the left and

then inserting the 5-bit ciphertext character just produced in the

encryption operation or just used in the decrypt operation into the

least significant bit positions as shown in Figure 5.8. That is.

the input block (11, I2, ..., 164) is given by,

(I1, I2. ..., 164) = (Is-I-1, Is+2, ..., I64, C1, C2, ..., Cs)

This input block is then processed through the DES device in the

encrypt state to produce the next output block. An important

difference compared with the two nodes considered in Sections 5.2 and

5.3 is that even in decryption. the DES is used in its encryption

state. This is because in CFB mode. the DES algorithm has been used

as a pseudo—random number generator rather than as a cryptographic

transformation.

Mathematically. this node can be expressed as follows:

Let x(i) be the ith plaintext input data and Y(i) be the ith

ciphertext output data. Let U(i) be the intermediate initialization

vector at time i. In general, the length of the intermediate

initialization vector may not be equal to the length of the initial-

ization vector 2. Let the function h" define how U(1) is obtained

from 2. That is, u{1)= n’(z).

Fncipherment of the first s-bit plaintext is given by:

Y(].) = )((1) G fk[U(1)]

Let the function h define the dependency of the intermediate

initialization vector at time i on the previous initialization vector

lxi-1) as well as the additional feedback quantity, That is,

-96-
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u(i) = h [U(i—1), feedback quantity]

where the feedback quantity = Y(i—1).

In CFB mode with s<64,

U(i) = U(i-1)[] ‘l(i-1), i>1

where 1] denotes concatenation of U(i—1) and Y(i-1).

with s=64.

(Xi) = Y(i-1) , i>1

That is, effectively the ciphertext at time i—1 is fed back as

input to the DES algorithm. Defining Y(O) 5 2, with s=64, it
follows that

tk [um] = rktvu-1>1,i21

Therefore equations of encipherrnent and decipherment can be expressed
35

X(i)£Dfk[U(i)] , 131 (5.3)

X(i) Y(i) sa fk[U(i)],i;1 (5.4)

respectively where U(1) = Z. '

5.4.2 _£mQlg_mg_n1a1:_ign_

An 8-bit cipher feedback made has been implemented on the

encryption system. The flowchart of the program can be found in

Appendix 6. The differences between this program and the ECB and

CBC program are now very briefly mentioned.

95 in the case of the CBC program. a 64-bit initialization

vector is generated at the transmitting end and sent to the receiver

for proper synchronization. The major difference compared to ECB

-97-
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and CBC programs is that in this unde, the message is encrypted byte

by byte and not in blocks. This implies that there is no need for

padding at the end of the message and consequently no cryptogram

extension. One additional routine SHIFT is required which shifts

the intermediate initialization vector (memory locations TEMP 1 and

TEMP 2) to the left and appends the 8 bits of the ciphertext to the

right side of the shifted input to produce the next DES input.

Finally at both the transmitting and the receiving ends. the data

security device is programmed to encryption state.

5-4-3~ Results ans 2i.s.<=2ssi2n_.

The plaintext example show: in Figure 5.2 is enciphered

under the CFB node using the same key and the initialization vector

as in the CE: nnde. The ciphertext produced is shown in Figure 5.9.

From Figure 5.9, it’ is seen that as in the case of the

CBC mode, the (FE mode does not produce the same ciphertext even

when the input plaintext is the same. This is because the inter-

mediate initialization vectors are different in each case. Thus

chaining has again eliminated patterns occurring in the ciphertext

For this made to produce the same eiphertext when the same plaintext

is encrypted, both the "key and the initialization vector must be

identical in the two cases. This mode is similar to Ca: in its

resistance to'forms of attack such as ciphertext searching. replay,

insertion and deletion.

While both the 3.‘ and ECB modes discussed earlier required

padding of the last block of the message (if its length is not equal

to an integral multiple of 64 bits). such problems do not arise in

this stream cipher nnde. That is, the key stream length can be

matched exactly to the length of the plaintext to be enciphered. So

this node allows easy encryption of 'norhb1oc.k type’ messages such
as character by character or even hit by bit encryption. Hence the

CFB node can be used for instance to encipher the short last block

occurring at the end of the message in CBC mode (Section 5.3.3).

However, C!-‘B is less efficient than CBC in that it requires for each

plaintext character one execution of the encryption algorithm. For

example. the throughput of the DES operating on 8-bit GB is reduced

by a factor of 8 or more compared to the CBC mode. This can be

overcome by enciphering n plaintext characters using the pseudo-

random key stream produced by one DES cycle where n is the largest

_ 93 _
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[block size of DES J
plaintext character size . In the caseinteger which is less than

of 8-bit Cl-‘B for instance, one can encipher 8 plaintext characters

(bytes) using the pseudo—random sequence produced by one IE5 cycle.

This will produce a throughput comparable to that of the CBC without

the need for padding.

Errors have been introduced within the ciphertext to study

the error extension characteristics of the CI-‘B nnde. From Figure 5.10

it is seen that bit errors within one CFB ciphertext character

affects not only the decryption of the garbled ciphertext character

but also the decryption of the succeeding characters until the bit

errors are shifted out of the CFB input block. The first affected

plaintext character is garbled in exactly those places where the

ciphertext character is in error. Successive plaintext characters

experience an average error rate of 50% until all errors have been

shifted out of the DES input block. In this 8-bit CFB case.errors

in one ciphertext character is seen to affect decryption of nine

characters. Ru-ther it is seen from Figure 5.10" that the C!-‘B

decryption automatically regains cryptographic synchronization.
This self-synchronization property is also reflected in equations

(5.3)and (5.4), Section 5.4.1. From equation (5.4). an error in

ciphertext Y(i-1) can potentially affect every bit in the computed

quantity fk [U(i)] and hence can cause every bit in the recovered
plaintext X(i) to be in error. From equation (5.4), an error in

ciphertext Y(i—1) causes only the corresponding bit position in the

recovered plaintext X(i-1) to be in error. The system synchronizes

when U(i) becomes equal at both .ends. lhus like the CBC mode,

CF‘B node provides limited error extension.

The recommendations given in Section 5.3.3 regarding the

management of the CBC initialization vectors and its influence on

the security are also applicable to CI-‘B.

5.5 Cipher Block Chaining with Plaintext Feedback

5.5.1 gringiglg

Cipher block chaining with plaintext feedback (CBCP) is a

block cipher in which the plaintext is exclusive—ored not only with

the previous ciphertext block but also with the previous plaintext

block prior to being processed by the DES.

This scheme is illustrated in Figure 5.11. The first DES

— 101 —
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- PLAIN TEXT (1)

INITIALISATION

INPUT TEXT (1) -

DES EI€RYPT

ISIPHER raxr (1)I

“VH5? TE” (1) = T cm:-:3 TEXT (2)

Des oecmrrr

OUTPUT TEXT (2)

PLAIN TEXT (1)

Fig 5.11 - Cipher Slock Chaining with Plaincext Feedback (CBCP)
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input block is formed by exc1usive—oring the first plaintext block

with a 64-bit initialization vector (IV). This input block is

processed through the DES device producing a 64-bit DES output block

which defines the first ciphertext block. Hence processing of the

first plaintext block is same as in the CBC mode. This first

ciphertext block is exclusive-ored with the second plaintext block

as well as the first plaintext block to construct the second DES

input block. The next DES operation produces the second ciphertext

block. This chaining process is continued until the end of the

message when the last block of ciphertext is obtained by encrypting

the last input block formed by-exc1usive—oring last plaintext block

with the (1ast—1) ciphertext and plaintext blocks.

In CCP decryption, the first ciphertext block received is

processed through the DES device to produce the DES output block.

This first output block is exc1usive—ored with the same initialization

vector (Iv) to produce the first plaintext block. Again the

deciphering process of the first ciphertext block is same as in the

CBC mode. The second ciphertext block is processed through the DES

to yield the second output block which is then exc1usive—ored with

the first ciphertext and plaintext blocks to produce the second

plaintext block. This process is continued until the end when the

last block of plaintext is obtained by exclusive-oring the last DES

output block with the (1ast—1) plaintext and ciphertext blocks.

Mathematically. the scheme can be expressed as follows:

Encipherment and decipherment procedures are given by:

Y(i) fk [x(:'.) as u(i)] i:-,1 (5.5)

‘1[v(:i.)]eau(1). in H (5.6)fl-c

is the ith plaintext block

is the corresponding ith ciphertext block
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Z, the initialization vector i = 1

h[ X(i—1), v(i-1)j i>1

Here 11 represents a simple e>a::lusive—or function.

Therefore,

u(i) = X(i—1)$ Y(i—1). i>1

Substituting (5.7) for U(i) into (5.5) gives

‘[(i) = fk [x(i) as x(:‘.-1)e Y(i-1)] , i>1

From the recursive nature of the equations (5.5) and (5.7) it

follows that there exist functions H1, H2, ..., Hi such that

Y”) = H1-_[‘kv x(0)o XU-)1 -0-’ 7((i)] ; i 31 (5.8)

where )((0) '=' Z.

Similarly from (5.6) and (5.7) it follows that,

-1

k [v(i)1e z -

£k‘1 [Y(i)]$ Y(i—1) as x(1..1)_

Thus there exist functions (31. G2. ..., Gi such that

x(3-) = Gi [kn Y(o)o ‘((1)9 -009 Y“.-)]

where ‘((0) E Z.

From equation (5.8), one can see that the enciphering

process is entirely deterministic and the output ciphertext blodv:

at time i. Y(i),is dependent only on the inputs to theciphering

process from time 1 through time i. namely, the key (k), the

initialization vector (2) and all the plaintext blocks )((1) through

to X(i). Purtherxmre, since ciphertéxt block Y('i) is dependent on

— 104 _
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the initial conditions established at the beginning of the ciphering

process. at time 1, it is said to be origin dependent[3].

From equation (5.9). it can be seen that the recovered

plaintext block at time i. X(i), depends only on the key (k), the

initialization vector (2) and all ciphertext blocks Y(1.) through

to Y(i). Thus x(i) is also origin dependent.

This scheme is defined to be a general block cipher[ 3] .

5.5.2 lI:nE1gmgn£a£ign_

The program implementing this mode of operation is very much

similar to the one used for the CHI.‘ node. The only difference is

that in this case. a plaintext block is not only exc1u.sive—ored with

the previous ciphertext block (TEMP 1) but also with the previous

plaintext block prior to DES encryption. A similar difference

occurs after DES decryption.

5.5.3 Results and Discussion

The plaintext example shown in Figure 5.; is auciphered

under this mode using the same key and initialization vector as

before. The ciphertext produced is shown in Figure 5.12.

Again from Figure 5.12 it is seen that there is no repetition

of ciphertext even when the plaintext is repetitive. This node is

similar to CE and (TB in its resistance to forms of attack such as

ciphertext searching. replay, insertion and deletion. The most

interesting property of this mode however is that of error extension.

The deciphered version of the example with some errors introduced

in the ciphertext prior to cbcryption is shown in Figure 5.13. Two

points are worth to be noted. The first one is that an error in the

ciphertext affects the decryption of all subsequent blocks until the

end of the message. That is, the scheme exhibits the property of

error propagation. This agrees with equation (5.9) where every bit
of the recovered plaintext block X(i) is a function of every bit in

the ciphertext blocks Y(1) through to \'(i). The only case in which

the error is not propagated occurs when the corrupted ciphertext block

Y(i)* and the deciphered value of Hi)‘ under key k obey the

equality

1

Y(i)' o £k' (Y(i)') = vu) 9 ask" min
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That is, the feedback Value at point A(F‘igure S.1l)’input to the next cycle,

is unchanged. Assuming that the probability that an error in _Y(i) causing

each bit in fl:1(Y(i)*) to differ from the corresponding bit in f‘:1(Y(i))
is approximately equal to 0.5, the probability that an error

cancellation occurs is approadmately equal to 2—64.

Secondly. when deciphering the ciphertext containing errors

with the right key and the right initialization vector, it is seen

that patterns or repetitions in the garbled deciphered text are

revealed which correspond to the patterns in the plaintext. The

reason for this occurrence is given as follows:

First consider the case where there are no errors in the

ciphertext prior to decryption. Referring to the diagram shown

below. assume that the plaintext blocks 2 and 3 are the same (but

1 and '92 will. be different due to
chaining). Then, for the deciphered block 3 to be equal to block 2,

their corresponding ciphertexts C

P2, one must have

2 1 _ _
O2$C2$P2— P2

9 c: = (o o) = Zero block

£2__J
Now if the block C1 has an error. Cf, then this decryption results

in plaintext block, Pi’. The second block P3 is. then equal to
C'@P'6O1 . The third block is givenby02$C1$P*and this

1 1 2 2 2 2 2. 1 . .

15 equal to P5 because 02 9 C2 is still equal to the zero block as

it is unaffected by error in C; . Thus this repetition in the
deciphered version will occur as long as the two successive blocks

are the same in the plaintext. when P2 and ‘P3 are different, then
— 108-
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1 2 _ 1 2 .
P2 0 C2 9 O2 - P3 and C2 9 O2 is not equal to the zero block.

Therefore when an error occurs in C; . P5 9 C; 6 O: = P3 # P5.
This pattern occurrence is not of great concern as far as

the security of this scheme is concerned because here we are talking

about the legitimate receiver with the right key and the right

initialization vector detecting patterns in the decrypted version of

the garbled ciphertext. This scheme is not at all suitable for

communication links prone to noise. On the other hand, this error

propagation property can be used to prevent 'spoofing' attack. This

scheme is very much suitable for message authentication purposes

where one needs to determine with a high level of confidence whether

the message has been altered.

As CBCP is a block cipher padding is again required at the

.a1d of the message like the ECB and the CBC nodes.

5.6 Stream Cipher Feedback with Vector Feedback

5.6.1 £ri._n<_:_ip_1_e_

This is an additive stream cipher technique similar to

CFB in which the DES is used to generate a pseudo—random binary

stream. This stream is exc1usived—ored with the plaintext to form

the ciphertext. The ciphertext together with the initialization

vector is then fed back to form the next DES input block. The

feedback from the initialization vector is the feature which

differentiates it from the GB nude. It is referred to as CFBV.

This scheme is illustrated in Figure 5.14. The initializ-

ation vector forms the first DES input block. This is encrypted by

the DES device producing a 64-bit pseudo—random output block. The

rightmost or the least significant s-bits (1 5 s 5 64) of the DES

output block are exc1usive—ored with the s-bits of the plaintext to

form s-bits of ciphertext. These s-bits of the ciphertext are

expanded to form a 64-bit block by repetition. This block is then

exclusive-ored with the previous initialization vector and the

result is shifted by s-bits to form the next DES input block, the

new initialization vector. This is then used in the encryption of

the next 5-bit plaintext character. This process is repeated until

the end of the message.

In C1-‘EV decryption, the first output block,produced by

encrypting the same initialization vector, is exclusive-ored with the

-109-
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first 5-bit ciphertext character to produce the first s-bit plaintext

character. The first s-bit ciphertext character is then expanded to

form a 64-bit block which is exclusive-cred with the previous

initialization vector. The result is shifted by s-bits to form the next

DES input block. This process is repeated until the end of the message.

Note that the first cycle of this scheme is exactly the

same as in CFB. Furthermore as in CFB, the DES device is used in its

encryption state at both ends.

Mathematically. this scheme can be described as follows:

The enciphermnt and decipherment can be expressed as

v(i) x(i) 9 fk [U(i)] 131 (5.10)

X(i) - Y(i) 6 fk [U(i)]

respectively

where

is the ith plaintext character

is the correspading ith ciphertext character

2, initialization vector, i = 1

h [U(i-1), Y(i-1)] , i> 1

Here the function h is given by

n [U(i-1), '{(i-!.)] = 1-: (Y(i-1)) $U(i-1). :'.> 1

E (Y(i—l)) represents expansion of 5-bit ciphertext

characters Y(i—1) repetitively to form a 64-bit block.

From the recursive nature of the equations (5.10), (5.11) and (5.12),

it folldfis that there exist functions H1, H2, ..., Hi and G1. G2, ...,

- 111 —
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Gi, such that

Y(i) ' 'Hi [k, x(o), x(1), ..., X(i-l)] 121 (5.13)

Gi [kn Y(o)o Y(1)o ---9 Y(i-'1” iii (EH14)

x(o) " no) '

The equations (5.13) and (5.14) are counterparts of the equations

(5.8_) and (5.9) given in Section 5.5.1. Hence this scheme represents

a general stream cipher [3].

From equation (5.13), it follows that the jth bit in the

ciphertext character Y(i) is directly affected by only the jth bit

in the plaintext character X(i) whereas. it is potentially affected

by every bit in plaintext characters )((1) through to X(i—1). In

like manner. from equation (5.14), it follows that the jth bit in

the received plaintext character )((i) is directly affected by only

the jth bit in the ciphertext character Y(i) whereas it is potentially

affected by every bit in ciphertext characters Y(l) through to Y(i-1 ).

5-6-2 lne1smsn_t.a£i9.n_

The program implementing this mode of operation with s=8

is very much similar to the one used for the CFB made. The only

difference compared to the C!-‘B mode is that in this case, the new

initialization vector is formed by exclusives-oring the previous

initialization vector with the expanded previous 8-bit ciphertext

character.

5 . 6. 3 §e§u11s_agd_DisEus_sing

The plaintext example shown in Figure 5.2 is enciphered under

this node using the same key and initialization vector as before. The

ciphertext produced is shown in Figure 5.15.

Like all the other modes except the ECB discussed earlier

this mode masks the patterns in the plaintext thus reducing the

code book analysis, replay. insertion and deletion attacks._ It is

-112-
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similar to GB in that the messages can be processed character by

character thus avoiding the padding required in ECB. CK: and CBCP

modes.

The most interesting property of this stream cipher mode

is that of error extension. The deciphered version of the example

with some errors introduced in the ciphertext prior to decryption is

shown in Figure 5.16. no points are worth mentioning. 1119 first

one is that an error in a ciphertext character is found to affect the

decryption of all subsequent ciphertext characters until the end of

the message. ‘mat is, like CBCP, this stream cipher exhibits the

property of error propagation. This can also be seen from equation

(5.14). Since the recovered plaintext X(i) is potentially affected

by every bit in the ciphertexts Y(1) through to Y(i—1), error

propagation is achieved. However because the jth bit in the plain-

text X(i) depends only on the jth bit in the ciphertext ‘((i), the

intersymbol dependence can be achieved for all but the final

plaintext. On the other hand with the CBCP. there is inter-symbol

dependence throughout all blocks.

Secondly, when deciphering this ciphertext containing errors

with correct key and initialization vector, it is seen from Figure

5.16 that there is no pattern or repetition in the garbled decrypted

text. This is in contrast to the CBCP scheme considered in Section

5.5.3. So even the legitimate user with right key and right

initialization vector gets a completely garbled text when the errors

are introduced in the ciphertext. This means that this scheme is

not suitable for links prone to noise but is very useful for message

authentication purposes.
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C H A P T E R 6

STATISTICAL TESTS O DES OUTHJI SEQUENCES

General

Some statistical tests are applied to the output sequences

obtained using the DES algorithm under different modes (see Chapter 5)

to test for their randomess properties. Some simple statistical tests

are also considered with a view to detecting the dependence or

correlation between the output and inputs to the DES and to determining

whether plaintext—ciphertext pairs could be used to predict the bits of
the key.

6.2 Statistical Tests for Randomness

Strictly speaking, no finite sequence is ever truly random.

The best that can be done is to single out certain properties as

being associated with randomness and to accept any sequence which has

these properties as a random sequence. In particular, it is assumed

that the opponent intercepts sections of ciphertext sequence and attempts

to exploit the statistical properties of the sequence in his crypt-

analytical attack. Therefore it is necessary to apply the statistical

tests to sections of ciphertext sequence to check their randoness

characteristics. This type of randomness is often referred to as local

randomness [14].

There are several statistical tests which can be applied to

a sequence. Here four fundamental tests have been considered which

can be used to provide a quantitative measure of randomess [14]. They

are the frequency test, the serial test, the runs test and the auto-

correlation test. All these tests measure the relative frequencies of

certain patterns of '0's and'l's in the sequence considered, in one way

or another. The sequence under consideration is'then regarded to be

random if the sequence passes the test. Levels of confidence are set so

as to decide if the sequence is random enough for our purpose.

Initially, it is necessary to choose the length of the

section or sample to be tested. The sample size mst not be too large

to swamp local variations but at the same time it must not be too

small preventing any reasonable conclusions. Accordingly, for
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the test in question. a sample size of n: = 1024 is chosen. As the

next step. the properties of the input to the DES algorithm are

defined. ‘1‘he procedure adopted is as follows: In each case, ‘non-

random' inputs are applied to the DES and the output is tested for

its randomness. For this reason, the inputs are chosen to be

periodic sequences with different period lengths, thus allowing a

variable number of cycles to be present within the selected sample

size.

Six different cycle lengths are selected namely 5, 8, 10,

20, 40 and 64 digits. within each category, five input samples are

chosen. Each of these-inputs is encrypted using DES under the five

different modes namely, the ECB, the 1, the OTB, the CBZP and the

CFBV. Ihis procedure is carried out using five different DES keys.

Among the chosen keys are included a weak key (see Section 4.6.4) and

a semi-weak key (see Section‘ 4.6.4). at ‘non-random‘ key and two

arbitrarily selected 'random' keys. The input samples and the keys

used are given in Appendix 7, Section A7.1.

The tests are performed in two parts. In the first part,

the tests are applied to output samples produced by encryption under

the different DES modes for a fixed key. This is done to investigate

the effect of different modes of encryption on randomness of the

output. In the second part, the key to the IE5 is varied to find

the effect of key on the randomness of the output.

The four tests and the confidence levels which indicate

whether a sequence is random or non-random are now briefly outlined

[14].

6.2.1 I_e_s_t__1_:_ [he Ergqgalcl Test

The frequency test checks whether there is approximately

the same number of '0's and ‘1's in the sequence.

Let the length of the sequence be n and let it contain nd

zeroes and n1 ones. Defining.

I2 = 0 when no = n1. Larger the value of 1,2, greater the
discrepancy between the observed and e:qaected frequencies. This is

a Ig— test with one degree of freedom. Thus if the value of I2 is

-117..

Page 117



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 131 

not greater than 3.84, then from the table of j{2 distribution given

in [28], the sequence is passed at 3% significance level. (Note

that if 3? = 0, the sequence might also be rejected on the grouds of
it being too good:).

6-2-2 lest.-2; Ihs §esi21_Tss£

The serial test checks whether the transition probabilities

are reasonable, that is, the probability of consecutive entries being

equal or different is about the same. This then gives some level of

confidence that each bit is independent of its predecessor.

Supposing that the sequences 00 occurs noo times, 01 occurs

nol times, 10 occurs nlo times and 11 occurs n11 times, then

no or nO—1

n1 or n1-1

(Note that n—1 occurs because in a sequece length of n bits, there

are only n-1 transitions).

11 “—;1--Good [29]_ has shownIdeally, we want noo = n01 = nlo = n
that

1
4

n_1 E . . . (6.1)
i=0 j=O '

is approximately distribted as ]C2 with two degrees of freedom.

The value of )C2 corresponding to a 5% significance level with two

degrees of freedom is 5.99. Hence the sequence is rejected if the
value of (6.1) is geater than 5.99.

The runs test is based on the theory of runs where a run

is_a succession of identical letters (zeroes or ones) which is

followed and preceded by different letters. The total number of runs

is often a good indication of a possible lack of randomness.

To find the probability that no zeroes-and—n1 ones—wil1

- 118 _
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+1‘!_n

form u runs when each of( 0 n1 1) possible arrangement of these
letters is equally likely, first consider the case where u is eva1,

namely, u = 2t, for some positive integer t. There are ways-1 . .

in which the no zeroes can form t rims and (:11 ) ways in which the
nl ones can form t rtms. It follows then that there are altogetherIn -1 n -1 . .. h
2 til) (tgl ) ways 11'! uduc those n1 4- no letters can form 2t
runs. The factor 2 is accounted for by the fact that when the two

kinds of runs are combined so that they alternate. we can begin with

a run of zero or with a run of one. Thus when u = 2t. the probability

of getting u runs is

2 (:2?) (:1?

(’'° :5‘)

1, similar arguments lead to -

(‘;'°") " -

f(u)

when no and n1 are both greater than 10 or more. the sampling
distribution of u can be approadmated with a normal. distribution.

Making use of this distribution, Gibbons [30] shows that, the

expected value E(u) and variance Var (u) are as follows:

E(u) =

2 nonl (2non — n - n1)= 1 0
var”) (no + n1 (no + n1 - 1)

Thus for sufficiently large value of no and n1, the normal test
variable 2 is given by

u— Egul

\/Var(n)

The null hypothesis that the sequence is random is rejected if

-119-
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1.96 at 5% significance level.

6.2.4 Test 4: The Autocorrelation Test

The autocorrelation function of the sequence is an

important element when testing for randomness. Random sequences

possess a special kind of autocorrelation function namely peaked in

the middle and tapering off rapidly at the ends. Autocorrelation

also reflects the periodicity within the sequence.

If{ xo, X1. ..., xn} is a binary sequence, then its
autocorrelation function can be defined as

n—r

A(r) = 1 Z xi- xi”: for r = O. 1...., mn—r i=1 -

Here a slightly modified version of A(r) has been used. The operation

between xi and xi+r is defined as one of matching (comparison)
instead of direct multiplication. That is,

n—r

A(r) = 1 Z.
n—r iz=1 1:

if x. = x.1 1+r

if x. f x.1 1+r

That is. Mr) is some sort of a measure of number of times the

shifted and original sequences match; both xi and xi” are equal to one or
zero. This operation is more sensitive than direct multiplication

which just test: for matching ones.

6-2-44 .§>2°9.t2d_Vé12e_°£ 35):. E .(.’‘.(.r.).)

The probability that Xi and Xi+r match is given by
Prob [ Z. = 1] .

it _

Forr5I50

Prob[Zir 1+: =1)+Prob(xi=0and xi+r=O)
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Let the probability that Xi = 1 be p and the probability that xi = 0
be qo Then;

2 2

Prob [Zir = 1] P + q

2 2

Therefore Pn[Zir = 0] = 1 - (p + q ) = 2pq

Hence E (zit) (p2 + q2). 1 + (2pq). o

But E (A(r))

E (NIH-

For a random sequence, assuming that the probabilities p and q is

a 55 this yields '

3 (M1)) ‘—“’ '35

This is to be expected as in a random sequence, the probability of

observing a match of zeroes or ones is equal to that of not observing

such a match. The mean value itself is an indication of non-

randomness. From this, if the sequence is random, its autocorrelation

function should vary around the 0-5 mark.

6.2.4.2 gagiance of A_(_r)_, Var Ag.-_]_

varwrn = 2 (A2(r)) — [E mm] 2

Considering first E (A2(r)), we have

-1: 11-:

2 E ( at Z )iixi+rxjxj+ri=1 j=1E (A2(r>)=(-“-1;)

I1-1’

jgl ( Zir 231))

( Z ). Z.
11' gr
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Dividing the expression (6.2) into three cases namely (1) i=j, (ii)

ifj and r=j+r or j=i+r and (iii) ifj and ifj+rcrj#i+r, we have

2 D-1'
E{A (1')) = 2 5 (2

“‘ i=1

2 l'I—I
)+ 2 ;; s(z. 2 ). Z .

1r ir (n-r) i=r+1 1r 1—r,r

1
‘—- 2 E Z. Z..

+ (n_r) E E ( lr Jr)

_ 2 2
E(Zir zit) E (zit) _ p + q

Now consider the second term E (Z. Z.1: 1—r,r )

Z Z =. . r i-r,rtr 1—r,r
0_ otherwise> 1 if 2. = Z

1

Note that here Zir and Z are not independent because1-r,r

Z. = X 0 x.
1—r,r 1-: 1

where 0 refers to matching.

Therefore,

Prob (zit, Zi_r,r = 1)

Therefore,

11-1’

2 2 z E(Z,_rZ )= e u=3+q3) W3)
(n-r) i=r+1 i'r’r n'r)

n-2r is equal to the number of terms for which i # j and i = j+r.

By symmetry. the number of terms for which, i f j and j = i+r is

n-2r. Hence the factor 2 in the expression (6.3).

-122-
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Now consider the third term L 2
01-1’)

i 9! 5. i 7! 5+: and 5-.# i+r-

Z. = 2.
1.1- J!’

otherwise

prob (Zir = 1.) and prob (Zjr =

2 2 2 2
(P +q) (p+q)

2 2 2

(_p +q)

The number of terms in the double sum 2 Z is given by
1'-:5

= total number of terms - [(n-r) -0- 2 (n—2r)]

= _(n-:')2 - (n-r) - 2(n-2r)

Therefore

1 __ 2§n—2r) L 2 2 2

(n-r)2 E (zir zjr) ' ( ' (n_r)2"n—r (P

Hmce,

E (Azm, = a*_+_cE + 2§:_:§-3 no?’ + <13) + [1—acn-_2r)2-4] (P2 + «$32(n-r) (n-1:) n-r

For a random sequence, it is assumed that p = q = 52'. Substituting

this in the above expression for E(A2(r)) gives,

E (A2(r)) _ 1 11-2: 2_+ 1 n—2r 1
2(Tr)" 2(n--r) 3? "2(n_r) "' 4(Tx)

1+;
4(n—r) 4-

E <A2m> _- [E mrm 2

1 1_[%]2_ 1
—_

- 4(n-r)+ -1- ' - 4(n—r)

-123-
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Thus the variance is inversely proportional to (n—r). That is.

greater the sample size 11. smaller the variation from the mean and

as the lag r increases,th_e variance increases. Having calculated

the eaqaected value and the variance of A(r), one can approximate

the distribution with a normal distribution for sufficiently large

value of n. Thus the normal test variable Mr) is given by

Ar — EA:

N(r) = \/TV A(r)
ar

Thus at 5% significance level if IN(r)I <1 '96, the sequence is said

to be rancbm. In this test, the autocorrelation of the ciphertext

sequences are computed and the number of lN(r)| values which exceed

lo 96 is used as a measure of non-randomness of the sequence.

6.3 _ Results and Discussion

Section A74, in Appendix 7 gives the results of the frequency,

serial and runs tests on the ciphertext sequences produced using the

ace, cra, cec, cscp ..'.a crew modes of DES under a fixed key namely

313l313131.31313L. Five input samples for each cycle length have been

encrypted under the five chosen modes of DES. The notation used in

Section 117.12 is : (Encryption Nbde r.s), where r indicates the cycle

length of the input sample and s indicates the number of the input

sample within the cycle length category, at. (see Section A7.l). For

instance Cl-‘B 1.2 refers to the nude CFB, input sample number 2,

having a cycle length of 5 digits. The figures marked with (*) indicate

that the values are in proadmity to the 5% significance level and

the figures marked with ('9) indicate the values beyond the 5%

significance level, thus showing a possible lack of randomness of the

sequence under consideration.

It is seen from the results in Section A 7.2 that in general

the DES under the EB made shows the most non-randomness characteristics

out of the selected five nudes. Section A7.2.1 shows, under each

mode, the number of sequences which are classified as non-random by

each of the three tests. In Section A7.2.2 are listed the sequences

which are classified as non-random by more than one test. Again

from Sections A7.2.l and A7.2.2, it is seen that the ECB uncle seems

to produce the most non-random sequences out'o’f the five ‘nodes



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 138 

considered.

Section A7.3 in Appendix 7 gives the results of the

frequency,seria1 and runs tests o the ciphertext sequences produced
using the five different chsen keys (see Section A7.1) under the

five DES modes. In this case, one inpt sample from each cycle length

category has been chosen for testing purposes. The input samples

selected are themselves classified as non—random by more than one of

the three tests. The chosen input sequences are : 1.5, 2.1, 3.3,

4.1, 5.2 and 6.5 (see Section A7.1). These six inpts are renumbered

as (i) to (vi) respectively. The five keys used are labelled I to V

(see Section A7.1). It is seen from the results in Section A7.3

that the variation of the key does not seem to produce any appreciable

difference in the randomness characteristic of the output sequences.

Section A7.3.l shows, under each key, the number of sequences which

are classified as non-random by each of the three tests. In Section

A7.3.2 are listed the sequences which are classified as non-random

by more than one test. Again from Sections A7.3.1 and 37.3.2, there

seems to be no great-sigificant.effect on randomness due to change

in the DES keys. This seems to suggest that the sequences produced

are more or less random like for any key being used. If so, this

may be regarded as an important positive aspect of the DES crypto-

graphic algorithm. If there were some keys which produced sigificant

non-random sequences, then this might be used in cryptanalytical

attacks and hence may be considered as a weakness.

Two input samples having cycle lengths of 5 and 10 digits

(input samples 1.5 and 3.3), encrypted using the keys I and V, have

been used in the autocorrelatio test. Only the autocorrelation

function curves of the inpt saple 1.5 (denoted as samle (i))and

its five ciphertext output sequences produced using the five DES

modes with key V, are shown in Section A7.4. The autocorrelaticn

function of the input reflects the periodic nature of the input

samle (repetition of 5 digits). Further the minimum value of the

input autocorrelation curve depends on the relative proportion of

zeroes and ones present in the input sequence. Greater the proportion

of '1‘, higher the mean value and hence higher the minimum value of

the autocorrelation curve. From the ciphertext antocorrelation curves,

it is seen that their mean value is around 0.5 which agrees with the

expected value E(A(r)) derived earlier for a random sequence. It is

also seen that the variation of the curve around the mean value seems
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to be the greatest in the case of EIZB mode. Section A7.4.1 gives

the number of points M which lie beyond the 5% significance level,

calculated using normal distribution approximation given in Section

6.2.4. The value of M can be used as a measure of randomess;

greater the value of M, less is the randomness of the sequence. It

is seen that for the input sample (i), with EB nnde,about 19% of

the points lie outside the 5% significant level thus indicating some

degree of non—1-andomness.

To sum up. it can be said that, from the four tests ..

frequency, serial. runs and autocorrelation. the DES algorithm seems

to be a very good pseudo-random number generator. Out of the five

modes considered - HEB, CI-‘B, (BC. CBCP and CFBV — the ECB mode seems

to produce the most non-randomness characteristics. There does not

seem to be any great differame between the other modes from the

point of View of randomness of output sequences produced.

Having examined the randomness characteristics of the final

ciphertext output from the DES algorithm. the next step is to apply

these tests to the intermediate outputs namely the outputs "of the 16

rounds of the DES operated in the standard ECB mode. The degree of

randomness is expected to increase as the number of rounds increases.

It is found that the first round shows a high degree of non—randomness

and as the number of rounds increases the outputs become more and

more random. some of the results obtained are given in Section

A7ISI

Other Statistical Tests

In this section, some other statistical tests which are

carried out to detect dependence or correlation between the inputs

and the output of DES are briefly mentioned.

6. 4. 1 &'oss- Correlation Test

The aim of this test is to find out whether there is any

significant correlation between the ciphertext sequences produced

using some special inputs and whether it can be of any use in a

cryptanalytical attack on DES.

A key consisting of a '1' in the most significant position '

and sixty three '0's is chosen to encrypt a plaintext block of all

'O‘Vs. d Then the bits _are"shifted one "position to right and the key

- 126 —
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is used to encrypt the same plaintext. This procedure is repeated

64 times. by shifting each tim the key bits one position to the

right. Out of the 64 ciphertexts produced, oly 56 ciphertext

sequences are distinct, since 8 bits of the key are used as parity

bits. In order to determine whether there is any correlation between

these 56 sequences, it is necessary to examine the cross correlation

of each sequence with the other 55 sequences. As this seemed to be

impracticable, two sequences are cosen and they are cross correlated

with the rest. The chosen sequences are:

(1) the first ciphertext sequence corresponding to the key

100.u»O 7

.. . . ?9th(ii) the 29th ciphertext sequence corresponding to key 0... ...O

The results obtained shwed cases with high degree of correlation;

three such cases are given below:

(a) first output cross-correlated with the third output with

lag r = 1

first output cross—correlated with the fourth output with

lag r = 1

first output crossvcorrelated with the eleventh-output-with

lag r = 0

To investigate these cases further, four other plaintext blocks are

encrypted under the same key using the above procedure. The results
are then examined for correlation for the three cases stated above.

Further these four plaintexts are encrypted using four different keys

following the above procedure and the results examined for correlation

for the three cases (a), (b) and (c) above. However, these

investigations showed that no cnclusive evidence can be feud of

the existence of any systematic correlation between these 56 cipher-

text sequences.

6-4-2 E2-_Tsss so_Dstsc1 2e2endsnse_Bst1esn_02t2ut and men:
Aifg-test [6] has been used to detect whether there is any

dependence of an output suhhblock on an-inpt sub—block for a fixed

key.

Let the plaintext block X = (xO...x63) be enciphered by

DES with key K = (kO...., kss) into ciphertext Y = (yO,...,y63).
_ 127 _
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In DES, each output bit co-ordinate yi is a function of the 64 input

bit co-ordinates xi and the 56 key co—-ordinates K1. The I42 test enables
to check whether some set of the output bit co—ordinates coout are

dependent on some set of the input bit co-ordinates coin for a fixed
key. Note that the test can also be used [6] to test for the dependency

of some set of output bit co—ordinates on some set of key co-ordinates

for a fixed input. Dependence might be used to estimate the key or

plaintext; for example, if ki is dependent on some set of output or

input bit positions, one could make this the basis of the recovery of

ki from corresponding plaintext and ciphertext.
The I .2. test used is explained below [6]:

('1) H Small subsets of coin and C001“ of sizes N.i.n and Nout are
Cmsai Where = (iop.-o, 030"‘: = I00 I

jNcut—1 )

Akey K = (ko, ... k 5)1s chosen5

A set of plaintexts is encrypted under the key K and the

2"”. by 2N°ut contingency table is formed where the (s,t)

entry is the number of times

'i.iNin ) = ‘so‘'"’ SNin—1)

( . . .o- '. . — t ... t
V1,J,O9 sV1’JN°ut ) ( on I N°ut_-1)

where (so,..., 5 . ) are the base 2Nin-1)’ “o""’ tNout-1
representations of 5 and t.

Nin-I-Nout-1
Then the](2- statistic with 2 degrees of freedom
is computed where i 2

&.(.Mfll-l.r+Nl.'19X2 g E <Ns,t(x, _ “files
= Nout

. — N -
o<s<2"'”‘ o<t<2 Z(°“b+N“‘) N5a"‘P195

In our case.Nsamp1es= 250 and the key is 3131313131313131. The

subsets are chosen to be CO. = C0 = (3,4). The contingency tablein out

for a two-tailed f. test at 1% and 99% confidence levels is given
as follows:
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The computed 12-value is 23.40B.Using the two-tailed $2-test.the 1%
and 99% confidence levels are given by 1210*: = 5.81 and

_ 2 _ . .
x upper - 32 respectively. This leads us to accept the null
hypothesis that the output bit positions in CO0“ are independent of

the input bit positiomin coin with the chosen key. In practice,
the acceptance or rejection of the null hypothesis must be based upon

the results of several independent 12-tests. The evaluation of

multiple I2—tes1s is often made using Kolnngorov—Sn:irnov test [6].
Even with multiple ];2—tests for the correlation to be of any value
in cryptanalyzing the DES, either the correlation is present for

only a limited number of pairs (which can be predetermined) or

correlation is present in a relatively large number of pairs which

can be determined by random sampling. ‘mus it is necessary to carry

out these tests on all pairs (coin, coo“). The application of X2-
test is reported [6] to have been carried out by IBM and NSA as

part of internal validation of DES.
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C H A P T E R 7

Lxtll. FILE SECURITY: SYSTEM SOFTWARE (2)

General

The second application of the developed encryption interface

unit is the encryption and decryption of files stored locally in the

Apple disk system. 'l'h.is application offers the system off-line

encryption facility whereas the configurationconsidered

in Chapter 5 provides on—1ine encryption facility.

1.2 Choice of DES Made

Iheoretically any of the DES modes previously discussed

can be used for this application. However when a file is encrypted.

recovery from an error must be effected with ciphertext alone. If

a ciphering procedure with error propagation is used for file security.

subsequent inability to read_a portion of the ciphertext because of

damage either to the physical medium or to the recorded Bits, may

prevent all the following ciphertext from being deciphered. Therefore.

a self-synchronizing approach is desirable for file encryption}. This

constraint therefore eliminates the use of the last two of the five

nndes discussed in Chapter 5, leaving CBC, (FE and ECB modes. The

ECB mode is to be avoided as it is the least secure of the three

because of its vulnerability to the code book analysis problem. The

remaining two chaining modes are the CKZ, a block cipher and the CFB,

a stream cipher. Any one of these two can be used. If stream

cipher feedback on eight bit character is used. then the maadmum

speed will _,be one—eighth of the speed that can be achieved using

the block mde. That is. if the 8-bit GB is used,the throughput

is very much reduced. Hence it is decided‘ to adopt the CBC node

for this file security program. The limited error extension property

of the CE nnde may be useful in such an application even though

complete error propagation property is not suitable. Consider for

instance. encryption of a database containing personnel records.

Suppose a figure in the salary field of the ciphertext file is

changed accidentally or deliberately. then the limited error extension

property will cause two blocks of characters to be in error when

decrypted. This would enable easy error detection.
_ 130 _
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On the other hand, with the CH2, the problem of padding

the end of the file with pseudo—random numbers exists as it is a

block cipher. Also when padding is used. an additional character

called the pad count needs to be included as part of the padding

characters. The pad count specifies the number of pad characters

including itself which have been appended to the end of the file.

This information needs to be preserved for future decipherment.

Due to padding, the ciphertext will be longer than the original

plaintext. This may be undesirable if the ciphertext is to replace

the plaintext in some previously allocated file space. we way to

avoid cipherteart expansion would be to use a stream cipher mode of

operation to handle the special situation of short blocks. In this

mixed mode of operation, the block cipher mode is used for ciphering

standard'.b1ocks and the stream cipher mode is used for ciphering the

short blocks at the end of file. Alternatively, the short blocks

can be enciphered without increasing their length using the following

method. To encipher the last short block of fibytes (lL<8) the

preceding full block of ciphertext is reenciphered and the first 2.

bytes of the result are then exr:.lusive—ored with the plaintext short

block. The preceding full block of ciphertext depends on all the _

- preceding blocks of the file and thus is sufficiently variable. Bit

as it is visible to the opponent, reencipherment of it provides the
necessary secrecy. Thus this method provides the last short block

the full strength of a standard DES encryption.

For this Apple system, as there is no stringent constraint

preventing the ciphertext expansion. the padding technique has been

adopted. It will be seen in the next chapter that such an approach

is not possible when considering the Prestel Viewdata System and

a stream cipher technique needs to be used.

7. 3 Implementation

As far as the implementation is concerned, there is to be

no change in the hardware of the encryption system. 01 the other

hand, a different program has been developed for this purpose.‘ The

program can be divided into two sections. The first section performs

encryption and decryption of files stored locally in the Apple disk

system. The files can be APPLESOFT or INTEGER BASIC files. The

second section invokes some of —the routines developed. in the point-to-.

-131-
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point communication system to transfer the encrypted files to a

remote Apple terminal where they can be automatically stored onto

floppy disks. The flowchart of the first section of the program‘

together with the listing is given in Appendix d. The two sections

of the program are now very briefly described.

The program initially asks the user to enter the name of

the file to be encrypted or decrypted. It then fetches the file

from the local Apple disk system automatically and stores the file

in a prespecified part of the mennry in the Apple microcomputer system.

The APH.E.SOF‘l‘ files are stored starting from memory locations

$00 (hex) upwards whereas the INIKEER files are stored from 9600

(hex) downwards. These addresses are referred to as 'start—of-file‘

addresses. Each Basic instruction stored in machine code consists

of a two-byte next instruction pointer. a two—byte instruction number.

a sequence of bytes representing the original source line of

instructions and a byte containing the ‘end-0f—fi1e' marker. The

Apple system also provides an ‘end-of-file‘ pointer. Briefly, the

encryption and decryption program is described as follows. In

encryption, the plain file from the start—of-file address to end-of-

file address forms the input to the program. Then the file is

divided into blocks of 64—bits and encrypted under cipher block

chaining mode. Padding of the last block of the file is done with

random characters in the usual way. The encrypted file is then

stored back into the same memory locations writing on top of the

plain filein the Apple system memory. Then an automatic transfer

of the encrypted file from the systemmemory to a floppy disk is

performed under the filaiame provided by the user. The encrypted

file can be loaded back from the disk at a later time and decrypted

to give the original file provided the same key and initialization

vectors are used. The decryption program requires the 'a1d—-of-file"

address to be able to stop the decipherment process. This in turn

implies that the 'end—of-file‘ address must be stored. along with the

cipher file during encryption. One can store this end—of—fi1e

address either at the and of I the cipher file or at the head of the

cipher _file. If the address is stored at the end of the cipher file,

the decryption program will be unable to find it as the end of file

depends on the length of the cipher file which varies. The decryption

program cannot distinguish betvseen the actual ciphertext and the

information containing the ‘end-of-file‘ address; so it is stored
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at the head of the cipher file in plain format. In addition, the

count of the number of random characters padded to the end of file,

pad count, is also stored_in a similar fashion. Having obtained

the ‘end-of-file‘ address and the pad count, the decryption program

can find the initialization vector stored at the end of the file.

Alternatively‘, the user may be asked to enter the initialization

vector along with the key at the beginning of the program. The

decryption program then deciphers the cipher file using CBC in the

normal way discarding the dummy random characters at the end.

‘I'he second section uses mdified versions of the Transmission

routine and Receive routine (Section 5.2.2) to transfer files between

two users in a point-to-point system. The user who wishes to

transmit a file initially sends some plaintext to the receiving end

using the terminal keyboard which contains information about his

identity, the idmtity' of the intended receiver, the type of file

(APF'l..ESOFT or INTEGER), the time at which it is sent etc. The

cipher file is then sent over the communication link using the

Transmission routine. The receiving end fetches the file and stores

it onto a floppy disk automatically under the file name provided

by the sender. The intended receiver can then decrypt the file at

a later time in an off—line manner.
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CHAPTER 8

SEIJJRITY IN PRESIH. VIBVDATA SYSTEM: SYSTEM SOFTWARE (3)

General

As the need and the comnnn use of large data bases to

store sensitive information increases, the requirement to maintain

secrecy becomes more and more important. The Apple microcomputer

system together with the designed encryption unit is interfaced to

the Prestel network. the British Telecom Viewdata System, thus

allowing the Apple to act as an intelligent viewdata terminal. This

enables transfer and storage of encrypted as well as plain data

between Apple and Prestel computer.

8.2 Brief Review of Prestel Viewdata §yste'm

The Prestel system consists of a network of (SEC 4082

computers linked together by high speed data links. There are two

types of computer cent res namely the Information Retrieval Centres

(IRCs) and Update Centres (UDCS). Olrrently the network consists of

one UDC linked to a number of IRCS.

The basic unit of information on Prestel is a frame which

consists up to a maximum of 960 characters. One or more frames are

1:i.nJ-ted together to form a page. These pages of information form the

Prestel database. Each page is uniquely identified by a number of

up to 9 digits. Frames are further identified by letters of the -
alphabet a to 2. Frames and pages are linked together by means of

pointers and they form a tree structure. Detailed information on

Prestel system can be found in [31].

8.3 Fmc£xEtion[Decr!ption in Prestel System

As. the basic unit of information is a frame, a natural

choice would therefore be to encipher a complete frame at a time.

However, there may be instances where encipherment of sections of a

frame may be required. So in our system, we should be able to encrypt

parts of a frame. At the start of each frame. it is to be indicated

whether encipherment has beenused.
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As discussed in Chapter 7,the two modes of DES which are

suitable for this data base application are the cipher block

chaining (CBC) and the stream cipher feedback (CFB). Since it is

required to encrypt parts of a page which may be small pieces of data

such as individual characters. the stream cipher feedback appears to

be more suitable. Further if the CBC mode is used, when parts of a

frame are encrypted, this is likely to require padding for the

encryption portion. This in turn will result in cryptogram extension

and pose a problem when storing the enciphered frame on the Prestel

data base as each frame is limited to a maximum of 960 characters.

This constraint leads us to consider the use of the CFB mode in this

application. As the backward channel, that is, from the.user to

the Prestel computer, has a speed of only 75 bits per second the

reduction in speed resulting from the use of the CFB mode des not

affect the throughput of the system.

The data format of each character transferred to the Prestel

computer consists of 7 data bits. For transmission down the line.

these 7 data bits are sent in an asynchronous start-stop format

comprising 1 start bit, 1 stop bit, 1 even parity bit and 7 data bits.

If a block cipher mode such as the CBC mode is used then it is

required to transmit 64—bits of ciphertext in the above 10-bit format.

One way to do this is to break the block into nine seven-bit groups

and a single bit group. The nine 7_bit groups can be transmitted_in

the normal fashion. The last bit can be grouped with the next block.

This needs to be done each tim a block is enciphered and this process

continues until the end of the frame or page. A1ternatively,the last

bit can be padded with 6 other bits to form an extra character. But

this results in an extra character for every block encrypted and

causes problems in storage of enciphered frame as mentioned earlier.

Further since all the 64-bits of a ciphertext block are required to

decipher correctly. the last bit mst be received before decryption

‘can begin. In account of this, the simple approach of stream cipher

feedback mode has been adopted.

The encrypted informatio passes through the Prestel

computer control unit which rejects any of the control-characters

present in the ciphertext. Referring to the coding table given in

Figure 8.1,the'codes belonging to the colums 1 and 0 are not accepted

by Prestel computer as data. Therefore there is a need to prevent

the occurrence of—these control characters in the ciphertext. That

is. the encryption system is to be made transparent to Prestel control
- 135 —
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unit. A simple way of achieving this is to use a 6-bit cipher feed-

back technique. with this technique it is always possible to ensure

that the ciphertext belongs to the set of accepted codes. But this

allows only 64 different possible characters that can be a-zciphered.

In this design, these 64 input codes are 0-9, A-2, a—z, space and

period. All other codes are transparent and bypass encryption. Thus

the output codes are reformed into the same range as the inputs thus

preserving the one to one relationship between transmission and

reception. As we are mainly interested in enciphering alphanumerical

characters present in the text, the above set of input codes is found

to be adequate for our purpose. .

This can be extended to 96 codes (32 out of the possible

128 codes being control codes) using the 'breaking—up' technique

mentioned above. First consider the case where the plaintext

(ciphertext) characters are 8-bits long. In this case, the encryption

process can either be in block cipher mode or in stream cipher nnde.

The cipher is first broken into 6-bit groups and then each 6-bit

group is expanded to form a 7-bit character by adding a '1' in the

nnst significant position. on transmission. This process_ remves any

unwanted control codes from the transmitted ciphertext character. This

is shown below

©- denotes the 6-bit ciphertext character which is expanded to

7—bits by adding a '1' in the rust significant position on transmission

C] - denotes the original 8-bit ciphertext character

Thus it is seen that to transmit 3 bytes of information, one needs to

send 4 encrypted 7-bit characters. If the length of the p_1aintex_t

to be aiciphered is n-bytes long then this rm-thod will result in

+ 1 or ET" 7-bit characters depending 8n #0 (mod 6) or
Bn 5 0 (mod 6) where|'%-I indicates the largest integer less than8n

6 .

Now consider the case where the plaintext characters are

7—bits long. In this case ,a mentioned earlier,stream cipher feed-

back mode seems to be nnre suitable than block cipher mode. To allow

encryption" of all 96 codes, again the bi.-éa'1<1n§’i.p technique can be

- 137 -
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used. In this case,cipher is first broken into groups of 6-bits and

then each 6-bit group is expanded back to 7 bits by adding a '1' in

the most significant position, on transmission. This process ensures
that the transmitted character is in the normal ASCII code range and

is acceptable to any host computer.

 fl --

Thus if the plaintext to be enciphered consists of n 7-bit characters

then this method will result in + l or characters on
transmission depending on 7n 5 o (mod 6) or 7n = 0 (mod 6).

Let us now briefly consider the connection protocol involved

when using the Apple encryption system with the Prestel computer. In

the usual way, the system is connected to the public switched

telephone network via the modem. A call to the Prestel computer is

initiated using the telephone connected to the modem. The Prestel

computer responds by sending a continuous tone of high frequency.

At this point. the DATA switch on the telephone is pressed thus

allowing the modem to get control of the line. That is, the modem

aknowledges by sending a low frequency tone to the Prestel computer.

Now the terminal is ready for data transfer.

‘nae system software essentially carries out two distinctive

tasks. Firstly, it etmlates the Prestel terminal keyboard using

Apple keyboard. That is, for the system to make use of son: extra

facilities provided by Prestel, the Apple keyboard is effectively

extended to include some special characters. Secondly it incorporates

encryption-decryption facility into the Prestel system. The software

is lengthy and complicated. Hence only some important aspects are

briefly considered here.

I Prestel system can be used in two nudes, namely, the user

mode and the information provider (1?) mode.

In the user mode, two main facilities provided by the

system are:

(a) Reception of plain and encrypted frames from the Prestel

database. '

Transmission of commands such as choosing a frame etc from

the Apple keyboard to the Prestel computer. Note that in

this case. the only keys used" are 0-9, #-and *.
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In the editing node, in addition to (a) and (b), facilities

are provided for entering. amending, copying and deleting plain or

encrypted frames of Prestel. The Prestel editing terminal keyboard

is given in Appendix 9. It is seen that this keyboard has additional

facilities compared to the Apple keyboard which are required to

provide necessary control signals. Two important ones among these

are: Start Edit and End Edit. In addition,special functions for

encryption and decryption are required.

Having entered the secret DES key in the normal fashion, at

the beginning of the communication. in the user mode, the user must

have the choice as to when to set the interface into the decryption.

mode. This enables him to decipher only those pages which are in

enciphered form and to read the other Prestel pages in plain form.

This is carried out by pressing the key GT1‘fi..-Q. Now if any of the

enciphered pages is read from the Prestel database. it is displayed

on the terminal in plain form. Only the user with the right key and

the correct initialization vector will be able to obtain the complete

original plain frame. The interface unit is set back to normal plain

mode by pressing the key G\rl‘R1.—R. This software implementation allows

changes in initialization vector during conmunication whereas to

change the DES key, the system needs to be reset and restarted again.

This has been done because every user is expected to have a single

secret key although he may use any number of different initialiration

vectors. This is particularly important when a user needs to encrypt

same portions of text in different frames. Changing the initialization

vector allows different ciphertext representations of the same

plaintext under a fixed key. As it stands. the user needs to keep

a record of‘ the frame number. together with the initialization vector

he used to aacrypt that frame and his single secret DES key. An

improved scheme would be to generate a pseudo—random key. called the

frame key, dgmamically and encrypt the frame using this key. The

frame key can then be enciphered under the user's secret key using

ECB mode and stored at the head of the frame. The initialization

vector is again generated using a pseudo—random process and can be

enciphered under the frame key using ECB mode and is also stored at

the top of the frame. Using this method one has effectively chained

the frame key and ‘the initialization vector used in the encryption of

a frame. The decryption process can automatically recover the

aiciphered frame key from the ‘top of "themframe and then decipher it
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using the user's secret key under ECB mode to produce the frame key.

The frame key is now used to decipher the next 8 bytes at the head

of the frame under ECB made to produce the initialization vector.

The initialization vector and the frame key can now be used to decipher

the frame under the CFB unde. This method would allow different

frames and different pages to be enciphered under differmt keys

without having to reset the system. Further. the user does not need

to keep a record of each frame key and the corresponding initial-

ization vector used in the encipherment of that frame. ‘I'his is being

done automatically. Nbre on such key ‘management aspects will be

considered in Chapter 9.

In the editing mode, the user is able to enter and amend

the encrypted as well as plain frames in Prestel. From the user

point of view, it is essential that the operations that need to be

done for encryption and decryption must be as simple as possible.

Start ('9) and stop () markers are used to indicate the beginning

and and of enciphered data in the frame. The key CNTRL-A is pressed

to set the interface unit to encryption state. All subsequent

characters typed are automatically encrypted under the 6-bit CFB

mode. The key CNTRL-B is used to return the interface unit to the

plain mode. This allows encryption of even single bytes of data.

The system initially produces upper case letters. Lower case letters

are obtained by pressing the key (J*r1'RL-V. All characters typed

are now in lower case until the upper case shift. CNTRL-W is typed.

Start Edit and and Edit needed to work the Prestel Editor System

are obtained using the keys CN1‘RL.—T and CNTRL-E respectively. Most

of the cursor control nnvements such as backspace, forward, downward,

upward are included in the editor facilities. The Return key behaves

slightly differently compared to the normal Apple mode in that the

cursor returns to the beginning of the same line. So to move to the

beginning of the following line, one needs to press the Return

followed by Line feed (CNTRL-J). Note that the graphic and colour

keys are not included in this Prestel encryption system.

This software implementation provides on-line editing/user

facilities on the Prestel Viewdata system. It is possible to merge

this program and the one discussed in Chapter 7 to perform local

off-line editing and encryption of a Prestel frame and then transfer

the created Prestel frame to the Prestel computer.
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An example of a completely encrypted frame and a partly

encrypted frame together with the corresponding plain frane is shown

in Figures 8.2, 8.3 and 8.4.

. . HERE IS A GAME THAT CAN BE PROGRAMMED

FOR PLAY OH A DIGITAL COMPUTER . . .

A polyomino is a figure formed by joini

ng unit squares along their edges. Pentom

inoee are 5 square polyominoes and it is

possible to construct 12 different pentominoes.

A pentomino game is played by ar

ranging the 12 pentominoes into various

size rectangular boxes . . . 3 by 20 or 4 b

y 15 or 5 by 12 or 6 by 10. computers hav

9 been used to generate many solutions. A

computer program produced two solutions

for 3 by 20 configuration and 2339 for

the most popular size 6 by 10 rectangula

r configuration.

Fig. 8.2 - Plain PRESTEL Page
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Sc:-atcbpad 651314-b Op
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D ‘:EnvBISJ’ YwQKP1:r'rmoBCLMv okflxebhrl Gxqq
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X EdIEzg0nPtmjDGt0aUVIG_ OdMF Ogi'!'mclqRYA

sdTdr1Hk'uej'Dd Qqs cnxkbuVgziK1okx‘oI-'.tpdj

_1uHOC ‘G 113 y!‘€Is@MvI dhae RHI'DbQ,Ho 'yF‘

xJ:@y 1-cz's U25 amqmV'B'E£‘ozyFjUIPQ1=‘cQ,F‘ TR

J'kzFtPA A‘JsoGpciLplwewo wkBPJ J‘yiDHEz z

uL:-um oRPg‘.-Iz0LDIWr-lr L Rkqs r 'mA_xzxs1v
PR _CSZcIVUet DtPCI"c I-fl1TEyQByjfALbp rqL

G Ip psplyee B@It1 Yxo abb ‘I::Lf'tGQpwgjLZ

y'yaI.cn.fE:JvrOLz.f.‘SBHXs1‘ Bvix w1=‘vg '1; DH Art

vbuoraZd1":LI‘vGlxS HI-!z.tdsp1g2ma.DQ BsIy'u.K/

7 indicates start of encryption.

/ indicates and of encryption.

KEY 3131313131313131

IV OOOOOOOOOOOOOOOO

MODE: 6-bit CFB

Fig. 8.3 - Completely Encrypted PRESTEL page
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Scratchpad 651314 9 Op

. . 333 IS A ?@FJI/ THAT CAN BE PROGRAMMED

FOR ? Kwtl 0? A DIGITAL COMPUTER . . .

A ?gVDy NEG] is a figure formed by joini

ng unit squares along their edges. ?1 Yhab

Qaz / are 5 square ?DtNxLC kl? / and it is

possible to construct 12 different ?Jxg1 Pa pUzA/
A ?ES MhiD/ game is played by ar

ranging the 12 ? Smw@YzL2c/ into various

size rectangular boxes . . . 3 by 20 4 b

y 15 or 5 by 12 or 6 by 10. computer-shav

e been used to generate many solutions. A

computer program produced ? jF/ solutions

for ?c KoLgq/ configuration and ?hnYv/ for

the most popular size 7bscLSto/ rectangula

r configuration.

? indicates start of encryption.

/ indicates end of encryption-
r

KEY 31513l313131313l

IV OOOOOOOOOOOOOOOO

MODE: 6-bit CFB

Fig. 8.4 - Partly Encrypted. PRESTEL page



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 157 

CHAPTER 9

KEY DISTRIBUTION AND F'UE.IC KEY CRYPICGRAH-[Y

General

Until now, the use of -DES cryptographic algorithm in

protecting the data during transfer between users has been considered.

rbwever the security of the DES depends on the secrecy of its keys.

Thus protecting the data depends on protecting the keys because they

are the means by which the data can be decrypted. Any key controlled

cryptographic algorithm thus requires a protocol for safely handling

and controlling its cryptographic keys. Keys must be produced and

distributed not once but constantly. In some systems they rmast be

changed with the passage of time. or with the amount of traffic and

in all systems, they must be changed when they are feared compromised.

Frequent key changes limit the amount of data compromised if an

opponent does learn a key. Keys must be provided to new usersof

the system and old keys must be retired as users withdraw. The

consideration of all these aspects forms the subject of key management.

There are essentially three ways to incorporate cryptography

into a communication system namely link-by-link, node—by-node and

end—to—end encryption [3].

In link-by—1ink encryption, data is encrypted across the

medium connecting two directly communicating nodes.’ Link—by—1ink

encryption is independent of the system and does not necessarily

imply that the cryptographic capability is integrated into the

communicating nodes. It may be regarded as being implemented by a

pair of cryptographic devices bracketing the line between two

communicating nodes and situated between the nodes and their nndems

as shown in Figure 9.1.

Node—by-node encryption is similar to link-by-link encryption

in that each link is protected by a unique key. Pbwever data passing

through an intermediate node are not in the clear as would be the

case with link encryption. Rather at an intermediate node, the

enciphered data are transformed from encipherment under one key to

encipherment under another key (that is,deciphered and reenciphered)

within a security module which may be a peripheral device attached

to the node. That is, theplaintext occurs only within the security
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Data i Enciglhered Datg E Data Encig-Ihered Data

Fig. 9-.]. Link Encryption

nciphered Data

Fig. 9-2 Node Encryption

Enciphered Dafa (Ke 1

(Intermediary)

Fig. 9.3 - End Encryption
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module and not within the node (Figure 9.2).

In end-to—end encryption, data encrypted at the originating

node is not decrypted until it arrives at its final destination.

Thus this method continuously protects data during transmission

between users. Unlike link and node encryption, end—to—end encryption

allows each user to have several keys, one key for each user who uses

encryption (Figure 9.3)

It appears that in terms of security. cost and flexibility,

end-to-end encryption seems to be the most attractive for systems

requiring many protected links [3] .

The Apple encryption system discussed earlier is a simple

end—to—end encryption system. More exactly, it can be referred to as

"a private end—to—end cryptographic system as the user needs to

request for cryptography and its use is not transparent.

some key management schemes which allow the DES interface

unit to be integrated into data processing systems to provide

protection for communications between individual users in an end—to-

end encryption network are discussed.

9.2 Kg! Management Using Kgy Centre

This approach uses a Key Centre (KC) which acts as a source

of session keys for encrypted calls using the DES algorithm. A

detailed description of the functioning of such a centre is given in

[3, 32].

Key centre can be operated manually in which the keys are

sent by mail or couriers. If such an arrangement is trusted, that

is, whether the risk of untoward disclosure either accidetly or as

a result of deliberate attempts is acceptable, it could work out very

well. At least. this may be possible when the network is small and

traffic volume is low. On the other hand. if the network handles

large traffic volumes,the need to change the keys often demands that

large amouts of keys to be distribted. In large networks, the

number of possible interconnections grows as n(n-1)/2 where n is the

number of users. This may become an expensive venture because the

manual systems have to be guarded against security leaks by

conventional mthods and the persons involved have to be trustworthy.
In an automatic KC, data network is used to distribute and

generate the keys automatically. Consider-the connection protocols
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involved when two users wish to communicate in a secure fashion in a

single Key Centre environment.

Fssentially two types of keys namely data encrypting keys

and key encrypting keys can be identified. The data encrypting key

is active only for a duration of a single communication session and

therefore is referred to as a session key (KS). The session key is

protected by enciphering it under key encrypting key which varies

from user to user. Therefore the Key Centre is required to store one

key encrypting key for each user. These keys are themselves stored

within the centre in enciphered form using the Centre's master key

(K01). Hence the problem of providing secrecy for cipher keys is

reduced to providing secrecy for only one key namely the master key.

This type of approach is referred to as the master key concept [3].

It is assumed that the master key is stored in some non volatile

- storage in an inaccessible area in the Centre referred to as the

cryptographic facility so that it need be loaded into the crypto-

-graphic facility only once. Furthermore, each user is required to

store only his user key (KU).

9.3 Conmunication Security

Let KS1, KS , ..., KS“ represent the time variant,
dgmamically changing data encrypting keys used for enciphering and

deciphering data. It is assumed that K5 is operational for the

duration of a communications session. Let KCM represent the master

key of the Centre and KU represent the user (or terminal) key.

To begin with. the user i requests the Centre KC for a

session key (KS) to communicate with user j. The request is

accompanied with a verifiable identification of the user i. The

whole message is enciphered under the user i's key ICU]... That is,

i * KC : i, (i, j,r°)KUi

where ro is a random number chosen by user i. It is used to prevent
an intruder impersonating the KC by replaying some previously

recorded reply containing an earlier session key which the intruder
would like the user i to use again. Upon receiving the request the

Centre fetches the user i's key Kui which is stored in its memory
under the. master .key KCM. Then it deciphers the request and checks

against its stored information to see if the request is legitimate
- 147 ..
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and if it is, it issues the session key (KS) to the user i. The

session key K5 is generated within the Centre using a pseudo-random

procedure. The reply from the Centre to the user i is given by

KC + : (KS, r°,(KS, i)KU_ )

JKUi

The ranom number ro is returned by the KC for the user i to verify
that the reply is coming from the KC and not from an intruder. Further

as the session key K5 is encrypted under KUi, it allows only the user
i to decrypt and obtain KS and not any intruder. The session key

together with the identification of user i encrypted under KU. isJ

also sent to user i. The user i cannot decrypt this portion of the

reply as he does not possess KUj. The user i then sends this cipher
portion to user j, that is,

= (Ks; i)m_J

The user j responds by sending a random number r to user i, encrypted1

uder the session key KS

.1 -1- i = (r1.J')K5

The user j does this to ensure that it is indeed user i who is

requesting the call and not any intruder using paramters of a

previous call. The user i then checks j's identity and modifies the

random number r in someyearranged fashion to result in r ,which he1 2

returns to user j under KS

(r2)Ks

Now the users i and j can be almost certain that they are talking to

each other and can communicate with each other in a secure manner

using KS as the DES secret key. Nbst of the above steps can be made

transparent to the users in the network.

A variation of the above method consists of the Key Centre

KC sending the session key directly to the user j instead of sending
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it via user i. That is, the distinction lies in the path taken by

the session key from the Centre to user j. with this approach, two

possibilities may occur — either the session key has already arrived

at user j when the latter receives the call request or it has not yet

arrived. In the latter case, one must ensure that an old key is not

used mistakenly. Further the case where user j needs to wait for the

session key increases the complexity of the connection protocols.

Thus the above outlined method where the session key arrives to user j

via user i seems to have some advantage over the other mthod.

To further iprove the integrity of the conversation and

reduce the problem of impersonation, timestamps, T, [33] can be added

to the key distribution protocol. The first three steps of the above

procedure are then modified to become:

1 + xé : i, (i, j, :0. r)KUi

(K5, r°,(KS, 1. T)KU. ' T)KU.J 1

(KS, 1, r)KU
J"

The users i and j can then verify that their messages are not replays

by checking Iclock — T] < At where clock gives the local time, At

gives some time error which includes the network delay time and the

time discrepancy between the seder's clock and the local clock.

This requires some form of time synchronization among the users of

the network.

With the above schemes, it is seen that if the session key

is soehow lost within the user's system, then a fresh call is to be

made by the user i to the KC to establish a new session key. It is

preferable that the KC generates a new session key even when the

user i did not actually use the old KS for any conversation. If on

the other hand, the KC des keep a record of session keys issued to

different users over a small period of time (say one day) then these

keys need to be stored in enciphered form within the Centre. Rather

than using the same master key for this purpose, it is advisable to

use another master key Kcnl to encrypt these temporarily stored

session keys.
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File Security

Let us now consider a key management scheme for file

security where one wishes to protect the stored data in the same way

as the comunicated data [3]. It is assumed that the encrypted files

are to be stored in a database in the host processor (HP) in the

network. (This could be for instance the Key Centre mentioned earlier).

It is also assumed that the users in the network have distinct secret

keys KU which are also stored in the host processor in enciphered
form under the master key KCM. Consider the case where the user i

wishes to store a file in encrypted form in the database uder the

name CIPHRFILE. Let the corresponding file in clear form be HLAINFILE.

To begin with the procedure followed is very similar to the one

outlined for communication security given earlier. A call is made to

the host processor

i + HP : i, (i. ro)KU.1

where to is a random number chosen by user i.

The host processor responds by generating a file key (KF) using a

pseudo—random process and encrypting it under the user i's key KUi.
This is then sent to user i

Hp~ w+ i : (KP, r°)KUi

The user i decrypts the message to obtain KF and verifies the random

number ro to ensure that the reply is coming from HP and not from an

intruder. Then the user can encrypt his FLAINFILE using KF as the

DES secret key to produce CIFHERFILE. This is then transmitted to the

host processor to be stored under the same name. To be able to

recover the H4RINFILE, it is necessary for the host processor or the

user i to record the information that the file has been encrypted under

KF. In a large system with a number of users and with each user having

a number of files, it may.not be a good idea for the Centre to.keep a

separate file containing the name of the data file and the corresponding

file key. (If this is done, then this separate file needs to be

enciphered under some master key). A better arrangement would be to

store the information at the header of the file itself. The file key

K? can be stored in the header in encrypted form under a master key

Kclfi. (KCM2 rather than KCM is chosen to achieve separation from

comuication security). with this method if a user r wishes to
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decipher the CIPHERFILE, he requests the host processor for the file

key KF.

r -> HP : r,(CIPHERFILE)

The host processor reads the header of CIPI-IE-LRFILE, decrypts

it using K012 to recover KF. This is then reenciphered under KUI and
transmitted to user r. This procedure does not allow the host

processor to differentiate between users. For instance, the user i

may wish that PLAINFILE not be available to user r. This can be

achieved if in addition to KF, the identification of the owner of

the CIPHERFILE is recorded on the file header, that is, the header

contains the information [i,(I-CF-')Kcn2]. Further-,the host processor
is required to maintain a record of which users are allowed by user i

to obtain the HAINFILE. Then if user r requests the host processor

for the file key of CIPHERFILE, the host processor first reads the header

to find the owner of the CIFHERFILE. Having found the owner, i, it

checks whether the requesting user belongs to the group of users who

are allowed to read PLAIN}-‘ILE. If user r belongs to this group, it

recovers the file key KF from the header, encrypts it under ICU: and sends
it to user r. If user r does not belong to this group, the above step

will not be carried out by the host processor "and access to the file key

is prohibited.

9.5 Kg! Distribution for Groups of Users

Consider a nnre general case where a user in the network

wishes to broadcast a message to several users [34]. Assume that a

group G is a non—empty subset of n users and members of G wish to

broadcast and receive messages from other members of‘G and to access

and update files private to G. A given user may be a member of as many

as 2114' groups and there are at most 2n—1 non-empty groups in the
system. Again it is assumed that all aspects of key distribution for any

given group is managed by a single Key Centre. One method of key

distribution among the group of users is considered in this section and

three other methods employing public key concept are described in
Section 9.7.
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9.5.1 Method 1

In this method, the Key Centre is assumed to keep a list of

personal keys of all users. In addition, the Key Centre also keeps a

record of all group keys for the groups it manages.

To establish a group G, a member i of G registers the group

with the Key Centre. The Centre returns a group identifier IG to the

user i who the distributes to the members of the group G using the

method described earlier. The KC also geerates a group key KG and

creates a record identified by IG that contains KG and the users who

belong to G. This record itself is stored in enciphered form under a

master key.

whenever a user j belonging to G wishes to comunicate with

other users or store a file to be read by other users, he obtains the

group key KG from the Centre. The key distribution protocol can be

described as follows:

j-A-KC : _-j,IG

The user j sends to KC his identification and his group identification

and requests for the group key KG from KC. KC fetches the group

record identified by IG, checks whether j is a member of the group and

returns KG to user j enciphered uder j's personal key.

KC-Pj : (IG, KG, “K0..3

where T is a timestamp used to protect against replay of previous keys.

Because the group key KG is enciphered under useILj's personal key it

is not possible for an intruder either to intercept KG or to impersonate

j and acquire a group key for a group to which he does not belong. User

j can now use the group key KG to encrypt a file to be read by other

users of the group or to decrypt an encrypted file created by any other

user of the group.

An user i of the group can obtain the group key KG from the

Centre in a similar fashion and hence the users i and j can communicate

with each other in a secure manner.
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The primary disadvantage of this approach is the storage

requirements for the group keys. KC may need to store up to 2n—l group
keys. Secondly there is no identification between group members and

hence no discrimination between group members.

The idea of one Key Centre in the above schemes can be

extended to many such Centres and a group of m users 'belonging' to

each Centre. In such a situation, each Key Centre is required to

possess a shared secret key with each of the other Key Centres. {It
could be two such keys,for instance,one for commnication security and
the other for file security). If there are n such Centres, each Centre

therefore has n-1 (or 2n—2) such keys. Then for instance, if a user i

belonging to Centre I wishes to commnicate with a user j belonging to

Centre J, then the Centre I generates the session key and sends it to

user i in the usual fashion. As the Centre I does not know the user

j's secret key, it sends the session key to Centre J enciphered under

the shared communication secret key between Centres I and J. The

Centre J recoyers the session key and reenciphers it under the user

j's key KUj and sends it to user j. A similar procedure can be
envisaged when a user i belonging to Centre I wishes to read a file

of user j belonging to Centre J.

The problem of key distribution can also be overcome using

public key cryptography concept proposed by Diffie and Hellman [35].

In the next section, the underlying principles of public key

cryptography are considered to see how such systems can be used to
solve the key distribution problem in an elegant way.

Public Key Systems

Public key systems allow two users to comnicate securely

over an insecure channel without any prearrangement. Cryptosystems

which allow this type of communication are asymmetric (See Section

2.2) in the sense that the sender and receiver have different keys
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at least one of which is comutationally infeasible to derive from

the other. These systems separate enciphering and deciphering

capabilities and privacy is achieved without keeping the enciphering

key secret because it is no longer used for deciphering. Hence the

enciphering key is published in addition to the enciphering and

deciphering algoriths without compromising the security of the

system. The concept of a public key cryptosystem is shown in

Figure 9.4. User i encrypts the message M using the public

enciphering key of user j and sends the cipher to user j over an

insecure channel. Only the user j will be able to decrypt the cipher

to recover M as he is the only oe who knows his secret deciphering

key. The encryption (E) and decryption (D) algorithms in such a

system have the following properties:

(a) Deciphering the enciphered form of a message M yields M,
that is. D(E(M)) = M.

Both E and D are easy to comute.

By publicly revealing E, the user does not reveal an easy

way to compute D. This means that only the receiver

(designer) can decrypt mssages encrypted with E or compute

D efficiently.

If a message M is first deciphered and then enciphered.

then M is the result. that is E(D(M)) = M.

The property (d) is not necessary for a public key cryptosystem but

if it is obeyed then it is possible to obtain the digital signature

feature (see Section 2.2) [34].

The public key concept gives rise to a new class of

cryptographic algorithms.’ One application of such algorithms is to

solve the problem of key distribution in systems employing symetric

cryptosystems. The public key cryptosystems would in many instances

be the ultimate solution to the key distribution problem. This can

be done as follows: User i can encrypt the session key K5 using the

pblic key of user j and the send it to user j over an insecure

channel- Because the deciphering key is only known to user j, he

is the on1‘y‘6ne who can decrypt the cipher and obtain the ‘session key.

-154-



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 168 

mmflmmmm

.__:.fi..>.n3.§._ub:_-..fln.£...1m.3m

G23xm>_uuuz

»xmpz_<4m

~xm»xm:¢Hupxm_z_<4;

AIIIIIIII

zoHpm>xuwazcHh¢>¢uzm
>mxpmzuum

>u:umdmamm.¢u>wuuug

>m:ozH»¢<»m



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 169 

The users i and j can then communicate with each other using a

symmetric cryptosystem such as the DES under Ks. The protocols as

O described above pose other problems associated with the integrity of

the public keys and false impersonations by an opponent. Again a

trustworthy third party such as the Key Centre, KC, may be required

for the maintenance of the public keys. The above set up can now be

mdified using a _Public Key Centre (PKC) which supplies and maintains

public keys of all users in the network. One can further assume that

the Centre FKC has a public key (PR) and a secret key‘(Sk) pair and

that the key Pk is known to every user in the network.

1. i + FKC : i, (i, j, r°)Pk

where :0 is a random number chosen by user i. As in Section 9.3,
this is used to prevent an opponent impersonating the PKC by replaying

some previously recorded reply.

The PKC upon receiving the request from user i for user j's

public key, encrypts the user j's public key P3. using the public key
of user i, Pi. and sends it to user i along with the random number

1- (or some modified to using a publicly arranged function).0

2. RC -> 1 : (i, Pj, r°)Pi

Note that the cipher in step 1 can only be decrypted by the Centre and

no one else and the cipher in step 2 can only be decrypted by user i

and no one else. A similar procedure can be followed by user j if he

wishes to obtain the public key of user i. From now on, user i can

communicate with user j in a secure manner, either by generating a

session key KS and transmitting it to user j enciphered under P). as
mentioned above or using public key. approach. that is. by encrypting

the messages under the public key of the‘ receiver j.

Note that in the set up procedure, the Centre PKC is not

used for generating the session keys and it does not know the secret

keys of users but is used as a distributor of public keys. Thus for

the integrity to be maintained, it is crucial that the public key

file be protected from unauthorized modification.

The public key concept can also be employed in a different

way to the one to providefla solutiionito the 7

- 156 —
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distribution problem [34]. with this method, there is no need for

decryption as such at the receiving end. It is not a public key

cryptosystem but it is a public key distribution system. Two users

wishing to exchange a key, cormnunicate back and forth until they

arrive at a key which is common. Then this common key can be used

as a session key in a syunnetric cryptosystem. The opponent

eavesdropping on this exchange finds it computationally infeasible to

compute the key from the information overheard.

Both the public key cryptosystens and the public key

distribution systems are based on one—way functions of one form or

another. For instance. it is said that in public key systems,~ it is

infeasible to determine the secret key from the knowledge of public

key. (Property (c)). A one-way function has the properties that

(i) It is an easily computed function from x to y, that is.

y = f(x)-

(ii) It has an inverse function.

(iii) It is corqautationally infeasible to discover the inverse

function .

A precise definition of a one—way function therefore depends

on a specific measure of complexity as it varies with time and

technology. As mentioned in Section 2.3. the complexity measures are

often defined in terms of time or storage required or as a time-

memary product. If the number of operations to be done in computing

the inverse is taken as a measure, then thermodynamics places a
. . . 7 .

limit of approximately 10 O on the number of operations that can be

performed even if the entire energy of the Sun could be harvested

[36, 37]. is the legal receiver has to decrypt the cipher, the

public key systems are based on 'trapdoor' one-way functions rather

than one~—way functions. A trapdoor one—way function is a one-way

function which has the additional property that:

- it is computationally infeasible to discover what the inverse

function is, unless certain specific information (trapdoor inform-

ation) that is employed in the design of the function is known. A

trapdoor one-—way‘ function becomes a trapdoor one-way peruutation -if

-157-
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it satisfies the property that:

— decryption algorithm followed by encryption algorithm produces the

original plaintext (property (d)).

In this case.the mapping between ciphertext and plaintext becomes both

injective and surjective. This is essential for implementing digital

signatures.

A brief review of two well known public key cryptosystems

and a public key distribution system is now presented.

9-6-1 Le£|<l°:Hs1lman_T£aP.d2°£ .'£n2P2ask_P2blis ‘£92 <_31'2P.t.°§yat£m_[ 13.1

The knapsack problem is a combinatorial problem in which

given a vector g of n elements, it is required to select a subset of

these which add up to a given sum S. The problem is to determine

which ai for i 1 to n are to be included in forming S, that is,

determining whether xi = o or xi = 1 for i = 1 to n in the following
equatio;

I1

s=_a_.5=_{ ai xi (9.1)i=1

It is seen that there are 2" possible ways of selecting the quantities

xi and this exponential fuction increases very rapidly as n increases
whereas it is easy to test whether a particular combination is a

_solution. But there are some instances in which the equation (9.1)

is easy to solve. One such instance is when the elements {al} form

a superincreasing sequence. That is,

a; . for all i >1 (9.2)

when this occurs, then 'xh= 1 and only if 5 2 a; and similarly for

i = n-1, n—2, ..., 1 xi = 1 if and oly if

\j=i+1

Hence the legal receiver desigs the system in such a way that only

he can transform the hard knapsack (9.1) into an easy knapsack using

the above procedure whereas the opponents are forced to solving (9.1).
He does this by choosing two numbers w and m which are relatively

— 158 -
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prime to each other and a superincreasing sequence a; for i = 1. to n.

This vector is then transformed to form the sequence {ai} using w and
m as follows:

a. = a.’. w(mod m)1 1

The vector a_ is published and it forms the encrypting key of the

public key system. The vector grand integers w and m are kept

secret and form the deciphering key. The encryption procedure consists

of taking a plaintext Si in the form of a vector 5: (X1. ..., xn)

where xi 3 {O. 1} and forming S = a_._>_<_. The ciphertext S is then sent
over the insecure channel to the receiver. The decryption process

uses w and m and 3’ as follows:

S‘: 0.1.1 . S (and m)

n

If II! is chosen such that m > X a;i=1

‘I'his knapsack is easily solved for 35 which is also the solution to

the apparently difficult trapdoor knapsack S = 3.5 . It is also

possible to iterate the basic transformation by generating several.

pairs of (w, In). For instance, rather than requiring :3’ to satisfy

(9.2), a‘ can be transformed to a new problem 2" using
an

ai (modm)

where a” satisfies (9.2) and is easy to solve. with each such4-:

successive transformation, the -structure in -the -publicly known vector

— 159 —
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a is made more amd more obscure.no

9-6-2 Eixeatzslia-ii:-&dle2an_(E5éLP3blis 592 £rzP£°§yat£m._[12]
The trapdoor in this asymmetric scheme is based on the

difference in computational difficulty in finding large primes as

opposed to factoring large numbers.

Briefly, the RSA system can be described as follows:

The receiver chooses two large primes p and q so large that factoring

m = p.q is beyond all projected computational capabilities. The

plaintext message M can be chosen from the range is M< m. The

ciphertext C corresponding to M is drived from the permutation

C Me (_mod um)

The plaintext M is retrieved from C by applying the inverse
transformatia

M E C (mod m)

The receiver choses e and d such that

(a) go; (e. ¢ (m)) = where ¢ (m) is the Euler-totient
function and in this case, it is equal

to (13-1) (11-1)

(b) e d E 1 (mod 53 (111)) (9.3)

In other words. e and d are multiplcative inverses in the group

formed by residue classes mod ¢ (m).

The reason why this encryptio—decryption scheme works is based on

the Eu1er—Fermat theorem [38] which states that for any integer M

which is relatively prime to m,

:vF’(“’) E 1 (modm)

Using (9.3) gives,

meld E MK¢("')*1 (mod m)_,for‘some_integer K.

T greatest common divisor - 160 -
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From (9.4), for all M such that p does not divide M

rvP'1 E 1 (mod p)

and since p-1 divides ¢ (m)

M"¢‘“"” E Munodp) (9.5)

when M 5 0 (mod p), the equation (9.5) is obeyed trivially. Similarly

for q

MK¢("‘)*1 E M(modq) (9.6)

Using Chinese Remainder Theorem (Appendix 10), equations (9.5) and

(9.6) imply that for all M,

Med 5 MK¢("'7’1 EM(nndzn)

In this system, the numbers e and m are made public and they form the

encrypting key. The numbers d, p and q are kept secret and form the

decrypting key. If m can be easily factorized to p and q then the

cryptanalyst can find ¢ (to) and d and hence can crack the system.

‘l"h.is cryptosystem and its possible extensions form a major

part of this thesis and hence this system is considered in detail in

subsequaat chapters.

9-6-3 .'2i£fi_e;H21lm3n..P2bli9. 592 2i§t£iEu£i2n_Sxs1e2 C351

This public key distribution system makes use of the

apparent difficulty of computing logarithms over a finite (Galois)

field GF(q) where q is a prime.

Let 'a' be a_ primitive elernait of GF(q) and let

yEax(n:adq) for 15:: \<q-1

x is referred to as the logarithm of y to the base‘a' over GI-‘(c';)

x = loga y over G]-‘(q)



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 175 

Calculation of y from x is easy whereas computation of x from y is

much more difficult, that is. it is an one—way function. This problem

is called the logarithm problem whereas the RSA system is based on the

root problem.

The key distribution occurs as follows. User i generates

a random number xi chosen uniformly from the set of integers 1. 2,
.... q—1. He then computes

a": (mod q)

and publishes yi and keeps xi secret. Similarly user j publishes

yj and keeps xj secret where

yj axj (mod -q)

The private session key, Kij, is established by forming

K13. a"i"j (mod q)

User i computes Kij by obtaining yj from the public file and forming
X.

Kij yj 1 (mad q)

(mod q)

User j similarly computes Kij using yixj (mod q). For the opponent
to form Kij, he must compute

n-:.. ‘=’ y.“'°gayj) (mod q) E y.(1°gayi) (mod q)13 1 3

Therefore if logarithms over GI-‘(q) -are easily computed, the system

can be broken. A possible extension of this system together with

a practical implelnentation are described in Chapter '13.

9.7 Key Distribution Using Public Key For Groups of Users

Let us now return to the situation where members of a

group 6 wish to broadcast and receive messages from other members of

G and to access and update files private to G and consider three

othermmethods of k'e'y"distrit:ution"for such an affangementl Method 1 is

given in Section 9.5.1. - 162 —
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9.7.1

This approach uses a public key distribution method such as

the Diffie—He11man e:q3onentiation method to distribute the group key.

Here each user i registers with the Key Centre KC a public

key yi 5 axi (mod p) where xi is only known to user i. The primitive
root 'a' and the prime p are known to all users in the network. The

user i transmits to KC a list of members of the group G.

i + KC: i, G= {u1, n2, ..., un}

If the user i belongs to the group. then the Key Centre generates a

number x and sends it to user i enciphered under his public key.G

That is,

. __ x

KC +1.1-(LG = yiG (map)

The user i upon receiving the above message computes

-1x.

(Ki,G) “
(mod p)

-1

axixGxi (mod p)

axc (mod p)

That is, the group key KG is given by axG (mod p). with this method,

storage of up to 2n—1 secret values of arc is necessary either by the
Key Centre or by the usersnvhere n is the total number of users and

the KC does not need to know the personal keys of the users xi

(1 .< i _< :1).

If the KC is however given access to users‘ personal keys,

a nzodificaticm to the above public key distribution method is as

follows:

The group key KG is now made equal to

KG = £3‘ "2""" "n (mod p) (9.7)

when the ith member of G requests KG from the Centre, KC returns KG
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enciphered under the personal key xi. The master key is represented
by the list of personal keys. Another member of G may be able to

determine axi (mod p) but he cannot compute xi without computing a

discrete logarithm. If p is chosen to be a large prime number,this

is not feasible.

Here the key centre KC needs to store only n personal keys. Although

the method uses a one—way function. it is not a public key distribution

method because the KC must have access to secret personal keys of the

users 0

Note that in both the schemes 2 and 3, for suitably chosen primes p

ofthe formp=4q+1 whereqis alsoaprime, a=2 isaprimitive
1'OOt o

This method considers the establishment of the group key

KG given by (9.7) without the use of the Key Centre. It assumes a

special situation where the n users (0 to n—l) are linked together in

a circular fashion, thus forming a ring. That is, user i always sends

messages to user i + 1 and user n—l sends message to user 0. The table

9.1 given in Figure 9.5 shows the messages received and transmitted by
user i at various time instants.

Time Instant Transmitted Message Received Message

a"i (mod p) 'a"i-1 (mod p)

a"i-1j‘1 (nod p) a"i-2_ 1-1 (mod p)

a"i.(é_-1) a"1.,=f"‘1-1 (mod p)0 I

a"i-(n-2) axi—(n—1 )°“"i-1(mod p)

Figure 9.5 - Table 9.1; Messages received and transmitted by user i.

At time instant t = r,the user i raises the message received from

user i — 1 at time instant t = r-1 to the power xi and transmits it to
user i + 1. The user i forms the group key KG by raising the

received message at time instant t n - 1 to the power xi. That is,
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Every user in the network can arrive at this common group key by

raising the message received at the (n-1)th time instant to the

power of his secret key. Any intruder who does not belong to this

ring network cannot determine the group key by nnnitoring the

transmitted messages at all links in the network. A more generalized

version of this method has recently been published in [41].

9.8 Kg Distribution Schemes for Prestel Encition System

This chapter is concluded by considering possible key

management schemes for Prestel Viewdata system with encryption

facility.

Initially consider the case urhere a user i (information

provider) wishes_to store a frame (or frames) on Prestel database

which should only be read by user j. This is referred to as the

'Postbox system’ . In this case, it is assumed that there is no direct

network link between the two users other than via the database. If

the user systems only allow DES type symmetric cryptography then the

frame key (the key with which a Prestel frame has 'been enciphered)

must be exchanged via some secure courier. This is the only method

possible if it is assumed that Prestel is only used as a database and

does not play an interactive role in the distribution of keys.

However, if the user systems support public key cnrptography, then one

of the following two approaches can be adopted.

The first approach uses a public key cryptosystem such as

the RSA system. Here the user i can encrypt the frame using the

public key of user j (this is assuming that the public file containing

enciphering keys of users is available, say, in the form of a telephone

directory). User 3' will then be the only person who would be able

to read the frame and not even user i can read the frame he had

entered. Alternatively, user i can generate a random frame key which

he can use to encrypt the frame using a symmetric algorithm such as

the DES. User i then encrypts this frame key using the public key of

user j and stores the result at the top of the frame. User _-j can

recover the frame key using his secret RSA key and then read the

Prestel frame. User i will also be able to read the frane as he can

keep a copy of the frame key which he has generated (say enciphered

under his own public key).
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The second approach uses a public key distribution system

such as the Diffie.-Hellman exponentiation system. Here the user i

obtains the public key information yj of user 3' from the public file
and performs yj xi,where xi is the secret key of user i,to form the
common key Kij. Then he generates a random frame key and uses it to
encrypt the Prestel frame. The difference between this approach and

the one above is that in this case, the frame key is enciphered under

the comxmn key and is stored at the top of the frame. User 3' will be

able to read the frame as he can obtain the common key and hence the

frame key. Here again only users i and 3' will be able to read the

Prestel frame.

Consider now the case where a group of n users who wish to

communicate with each other via the Prestel database. That is, each

one of the n users should be able to read the frames entered by any

one of the others in the group. Anrmgst the members of the group,

existence of a privileged member referred to as the Manager is

envisaged. [The group oould represent typically a small company or

an organization]. Further it is assuned that every member of the group

is linked to the Manager. In such a situation, the Manager assumes

the role of the Key Centre described earlier. Any user i who wishes

to enter an encrypted frame on Prestel initially establishes a frame

key with the Manager following the procedure outlined in Section 9.3.

This frame key can then be used to encipher the frame and stored at

the top of the frame enciphered under a master key of the Manager.

Anuser j belonging to the group can read the enciphered frame key

from the top of the frame and send it to the Manager who returns to

him the frame key enciphered under the user j's personal key. Thus

user j can decipher the frame entered by user i. with this approach,

in addition to the master key, the Manager is required to keep a

record of the personal keys of all n users and if there is more than

one group, a record of members in each group. One can also use any

one of the methods 1 to 3 given in Sections 9.5 and 9.7 to establish

a group key among the n users using the Manager as the Key Centre.

Having established the group key, the user i can follow the usual

procedure of generating a random frame key and storing this at the

top _of the frame,this time enciphered under the group key. Thus any

user belonging to the group can read the frame. Method 3 (see Section

9.7.2) is seen to be the mast attractive method as the Manager needs

to store a- list of keys which is- a polynomial function of the number

of users n.
- 166 —
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C H A P 1' E R 10

BCIENSIONS OF THE RSA CRYPIOSYSTEM

General

As seen in the last chapter, the concept of public key

cryptosystems recently proposed by Merkle and Hellman [35] not only

provides a novel way of distributing the keys required for the

sylmnetric cryptosystems but it also gives rise to a class of

asymmetric public key cryptosystems with_.digital signature capabilities.

From this stage onwards. the thesis mainly concentrates on the

analysis and the design of public key systems; in particu1ar,the RSA

public key cryptosystem and the Diffie—He1lman public key distribution

system. Both these systems are of immense interest among the

cryptographic community at the present time.

Before considering some possible extensions of the RSA

system to matrix and polynomial rings, it is useful to consider some

design aspects of the RSA system over the rational integers. These

aspects are more or less applicable to the extended RS-A systems

considered in subsequent sections.

10.2 Some Desicm Asgts of RSA System

As mentioned in Section 9.6.2. in the RSA system the

encryption is performed by raising the message at (1 5 x < m) to the

eth power nndulo m and the decryption is performed by raising the

cipher y to the power d modulo us. That is

:5 (mod 11:)

vdlmod 111-)

where m is equal to the product of two large distinct primes p and

q. The public encryption key is the pair of integers (e. m) and the

secret decryption key is (d, m). The coding exponents are chosen

such that they are multiplicative inverse of each other modulo ¢ (:11)

and that xe is a permutation of the residue classes modulo :11.

That is;
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9 d 5 1 (mild Q5 (m)) where 95 (D1) = (P-1) (Q-1)

To design the RSA system, the user needs to choose two

large primes p and q to form the modulus m. The magnitude of the

modulus m is determined by the required difficulty of breaking the

designed system. The table shown Figure 10.1,taken from [12].

gives an indication of the magnitude of In. The number of operations

computed for each value of m is based on the best known factoring

algorithm for large intergers. (see Section 10.3.1).

Number of

loglom operations

50 1.4 x 1010

2.3 x 1015 At the limits of current

technology

1.2 x 1023 Beyond current technology

2.7 x 1034 Requires significant advances

in technology

1.3 x 1051

Figure 10.1 Effort required to factor modulus m

Qmce an approximate idea of the magnitude of m is decided,

then the tun primes p and q need to be selected randomly. The prime

number theorem states that the primes near 112 are spaced on the

average one every (ln m) integers. Thus even for large primes several

hundred digits long, only a few hundred candidates must be tested

before finding a prime. Hence one needs to test whether a chosen

large number is a prime. There exists elegant probabilistic algorithms

[42] which decide with an arbitrarily small uncertainty if the chosen

number is a prime. The probabilistic algorithm consists of making many

independent tests and declaring the number to be composite when any

one test fails. If a test mistakes a composite for being prime with

probability fdthen by using k such tests the probability that the

algorithm will incorrectly declare a composite to be prime is f-k.

Three tests of primality are commonly used [43 J" namely, the Fermat

_ 158 -
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test, the Solovay-Strassen test and the Rabin test. In all these

cases, it is assumed that the tests are applied to the number b.

10.2.1 Erimglity Iegts

10.2.1.1 Fermat Test

This test is based on the Euler-Fermat theorem previously

mentioned. The theorem states that if p is a prime then

ap_1 1 (modp) for all a,1\<a<p

Thus the test consists of choosing 'a' less than the number b and

'3'!‘ (mod b) is congruent to 1 (mod b).

In practice. only a few values of 'a' need to be tried and not all

accepting b to be prime if a

'a' as indicated above. (Q-zly a small number of composites pass this

test even a few times). It is recommended that approximately one

hundred tests be made to reliably conclude that the selected number -

is prime. It is generally believed that choosing a = 3 will identify

virtually all composites. The Carmichael numbers (eg.561 = 3.11.17)

are known to pass this test even though they are composite.

10.2.1.2. §olo1aZ-§t£a§5gn_Tgs£ 145]

This test identifies the Carmichael numbers as being

composite. It picks a random number 'a' between 1 and b..1 and tests
whether

a(b—1)/2gcd (a,b) = 1 and J(a,b) = (mod b)

where J(a,b) is the Jacobi symbol and gd denotes the greatest

common divisor. The Jacobi symbol is defined as

1 when x: a. (mod p) has a solution in Z/pZ"(a'p) = §-1 when x a (mod p) has no solution in Z/pl

where Z/pZ denotes the ring of integers nndulo p.

If b is prime, then (10.1) is always true and if b is composite (10.1)

is false with a probability of a 55. Therefore making k tests yield

an answer that is wrong with a probability of 2"‘ when claiming the

input is prime. (When claiming the number is composite. it is always

—- 169 —
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correct ).

10.2.1.3 3aQix;1'_e§t__[g2_]_

As b is necessarily an odd integer, representing b as

b = 2: s + 1 where 5 is odd. this test then chooses a number of

values of 'a' randomly in the range § to b—1 and accepts b to be2 s

prime if either as ' 1 (mod b) or a — -1 (mod b) for some j where

O S j < r. Otherwise b is rejected.

All the three tests can be carried out to check whether the chosen

number b is a prime or not. The failure probabilities of each test

are discussed in length in [43]. Note that this primality testing

procedure needs to be done only once by any system designer and all

these tests require computational effort of the order of 0 (logzb)
operations on large integers.

To confound certain factoring algorithms [45]. it is

desirable to choose primes p and q such that p-1 and q—1 have a large

prime factor. This can be done by generating a large prime number b

and then letting p (or q) be the first prime in the sequence bi + l

for i = 2, 4, 6 ... Additional security can be provided if b-1 also

has a large prime factor. Furthermore. it is also advisable not to

choose [3 and q too close to each other. If p 5 q, then 2‘/-1; is a

good approximation of p + q. Knowing p + q gives immediately ¢ (m)

since Q} (m) = (p—1)(q-1) I-n+ l — (p-I-vq). Further, the primes should

not be chosen to be any special primes such as the Fermat primes or

M:-rsenne primes as these are well studied and the resulting product

may be more likely to yield to attacks of factorization.

10.2.2 g:g_ige_o§ <_':ogiy_Eg:gngn3_s___

Having chosen the primes p and q. and hence m, the next

step is to choose the coding exponents e and d. To do this, the

user chooses a number d which is relatively prime to 56 (tn). This is

done by selecting a number d (mod 11:) and computing gcd (d, 95 (m)).

This is done using the Eu.clid's algorithm given in the Appendix 11.

This not only checks whether d and $6 (m) are relatively prime but

also gives the multiplicative inverse e. It is known that the god

function is computable in 0 (1092111) time [45]. It is necessary to

choose both e and d such that they are greater than logzm. If

e < logzm, then small messages will not be disguised by the modulo
_ 170..
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reduction process. That is, Xe (mod m) = xe and the cipher is

breakable by brute force attack. If d is smaller than log2m,again

the system can be broken by a random search by the opponent to

determine its value. There is a further condition on the choice of

e. As mentioned previously, e needs to be chosen relatively prime to

¢ (m) or more exactly to SLcm1-(p—l,q-1), for the function xe (mod m)
to permute the residue classes (mod m) (see Section 14.1). But this

permutation has fixed messages. that is, there are residue classes

3: (mod m) which satisfy the congruence

are x(modm) wheree>z3 is odd andm=p.q

It is known [46] that any solution of the congruence

X3 3: (mod :11) (10.3)

also satisfies (10.2). Note that the congruence (10.3) has exactly

9 solutions in the range 1 s x g m-l, {m = pq). Thus the congruence

(10.2) will have at least 9 fixed messages. Blakely [47] has shown

that for the congruence to have only 9 fixed messages e must be

chosen such that god {e—1, lcm (p—1,q—l )} = 2.

10.3 Cganalysis of RSA cfzstem

The main cryptanalytical attack seems to be the determination

of the secret coding exponent d. There are basically three ways a

cryptanalyst might try to determine d from_the publicly revealed

information (e, In).

10.3.1 §agtgriz_a_t_:i_._or_1gf_m_

I The factorization of u: would allow the opponent to compute
¢ (m) and hence the secret coding‘ exponent C! using ed 5 1 (mod 95 (m)).

A large number of factoring algorithms exist [45]. The fastest

algorithm known at the present time can factor In in approximately

(ln m)unm’/In In my: steps and is due to R.Schroeppel (unpublished).
The table given in Section 10.1 is based on Schroeppel's method and

it shows that a number m of 200 digits (decimal) long would provide

a margin of safety against future developments.

1' l2.cm : least common rmltiple " 171 -
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103-2 E°L'P‘.*‘ét_i.°£ 2f_¢_.(2)_.WitL°2t_Fa<=2°£isa£i2n_°£ 2

_ Another method of cryptanalysis would be to somehow directly

determine 2} (m) without factorizing m. It is shown in [12] that the

approach of computing ¢ (m) directly is no easier than factoring In

since finding ¢ (m) enables the opponent to easily factor In. This

can be seen as follows:

Letx p+q=m+1-¢(m)
2 2

and? (P-q) =>< -4!!!

Knowing 95 (m), one can determine x and hence y. Using 3: and y, the

primespandqaregivenbyp=x+wI3'7andq=x-\/3'3
2 2

10-3-3- 2e£e£mi.nin9. 9 311112112 Easterina 2 2r_C2m2u1in.€4_¢_(1n_)

_ The third method of cryptanalysis consists of computing the

secret exponent d without factorizing m or determining 95 (m). Again

it is argued in [12] that provided d is chosen large enough to make

a direct search attack infeasible, computing d is no easier than

factoring 11:, since once :21 is known, In could be factorized easily.

This can be seen as follows: If d is known, then it is possible to

calculate some multiple of {J (m) using

ed— 1 = k 56 (In) for some integerk

Miller [40] has demnstrated that m can be factored using any

multiple of 95 (m). The opponent,on the other hand,may hope to find

a :3’ such that it is equivalent to the secret exponent d of the

designer. If there are a lot of such d’, then one could use a brute

force search to break the system. hit all the d’ differ by

the least common multiple "of (13-1) - and (C1-1) and if one is found

then m can be factored. Thus finding any such d’ is as difficult as

factoring m. -

‘ Now some possible extensions of the RSA system are
considered.

Extension of RSA system to Matrix Rings

10.4.1 £rap_c_!oo_r_Ring_s_

Assume R is a finite ring [48] with 1 which is associative

-172-
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but not necessarily comutative. Suppose that members of the ring R

are used_as messages and that r E R is enciphered as re where e is
the published encrypting exponent. The trapdoor property can now be

stated as fo1lows:- there exists some integer n> 0 such that rn+1= r
for all r S R. These rings are to be referred to as trapdoor rings.

For instance in Z/pl, rp=r for all r E R. More generally. if we let
. . k

R=Fq=GF(q), the field of q elements where q is a prime Power (P ) th9n
rq=r for all rie R. Further, if R and S are any two such trapdoor rings,

then the direct sum R 9 5 consists of vectors (r,s) with r e R and s E S

is another trapdoor ring say T. The number of elements in the ring T is

equal to the product of the number of elements in R and S. This above

process can be applied repeatedly taking vectors of arbitrarily many

components, each taken from some finite field. Considering finite

fields Raf for 1s1sj where qi's can be the same or different, the trap»
door ring R is formed by all vectors x=(xi,...,xj) where xi 6 Eqi for
léiéj. The ring R consists of q1.q2....qj elements and the equality
rn+1=r is obeyed for all r e R where n is equal to (q1—1)(q2—1)...(qj—1)
or any multiple of it.

There are many finite rings which are not trapdoor rings.

Consider for instance, R=Z/p22 where p is a prime. Then, p2;p35...5O
in the ring R but p#O in ring R. So the property that pn+15p is not
satisfied for any n>O. More generally, for a ring R to be a trapdoor‘

ring, it is necessary that R have no nilpotent elements except zero.

(An element, x, is said to be nilpotent if xa=0 and x§'1#0 for some

a>O). However,if we take an integer m to be a square free positive

integer say n:p1.....pj,where all the pi'S are distinct primes,then the
ring R=Z/nz is a trapdoor ring. This ring can in fact be regarded as a

direct sum of finite fields FF‘ 6 PP: 9 ... $ Fpi as described above.
If j=2, then this becoms the standard trapdoor ring used by the RSA

cryptosystem.

It has been suggested by Dr R Odoni that every finite

trapdoor ring is isomorphic to a direct sum of finite fields. The

argument relies on the use of Wedderburn's structure theory [49] for
semisimple rings. The main steps involved are as follows:

1. The ring R is trapdoor implies that R has no nilpotent

elements except 0.

A finite ring without nonzero nilpotent elements must have a

1 [50]. 173
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-fmite.
_A/‘ring with 1 and lacking nilpotents (#0) is a direct sum
of matrix rings with entries in a division algebra (skew

field) (wedderburn's theorem).

If any of these matrices is not 1 x 1 then there will be

non-zero nilpotent elements in R.

Hence R is a direct sum of finite skew fields.

6. A finite skew field is necessarily connmitative.

Thus a trapdoor ring R is a commutative ring with 1 which is

isomorphic to a direct sum of finite fields. (Note that two rings R

and S are isomorphic if there exists a function f : R + S which is

one-to—one and onto and satisfies 1‘ (r1 3 r2) = f (1-1) 1 f (1-2),

1 2 5 R)
The original RSA scheme derived its message space from

f (:1 1'2) = f (r1) f (r2) for all r , r

z/mz, the ring of integers modulo m where m is the product of two

large distinct primes p and q. Here other finite systems that might

serve as a basis for an extended RSA cryptosystem are investigated.

10-4-2 Eva-§i2951ar_Matsises Qvsazlmé

If the ring of all n x n matrices over the ring R = Z/mZ

is considered, it is seen that the ring contains nilpotent elements

when n > 1. Consider for instance M = ('37 flover 2/62 5 M2 E O (nnd 6)
but M ¢ 0 (and 6). To overcome this problem, initially only the

group Mn formed by the non—singu1ar matrices of order n. is selected
to form the message space of this extended system.

Let us first consider the finite group formed by matrices

of order n whose determinants are relatively prime to p and whose

elements are in Z/pZ (p prime). That is, the non-singular matrices

over Z/pZ are considered.

To begin with. the non—singular matrices over Z/pZ form a

finite group because (i) the product of any two members of the set

‘is congruent (and p) with some member of the ‘set, (ii) every member

has its reciprocal, that is, for any two members A and B, there

exist members C and D such that AB 3 C (rind p) and AD 5 I (and p)

and (iii) the unit matrix is the ‘identical’ member of the group.

The order of the’ group formed by‘ these‘ elements can be

-174-
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shown to be equal to Np where

up = <p“-1)-(p"-p) ... (p“ - p""’) (10.4)

The argument goes as follows: The elements of the first row vector

rgl of the matrix may consist of any of the p numbers except that
they cannot all be zero since this would make the matrix singular.

There are therefore pn—1 ways of selecting this vector. when Q1 has

been selected, then U2 may be any of the pn possible vectors except
those which are congruent with kl U1 (and p) for k1 = [0, 1, ...,

p.1}. This will be the case if and only if l_._J1 and 92 are chosen to

be linearly independent. Therefore there are pn—p ways of selecting

92’

NP is obtained.

Continuing this procedure. the eaqaression (10.4) for the order

If non—singu1ar matrices with elements over Z/pz are used

as messages, then one can form a conventional cryptographic system

where the secret key contains the modulus p- itself. The encrypting

(e) and decrypting (d) exponents can then be determined using

ed 2 1 (mod Np) (10.5)

The encrypting key is therefore (e, p, n) and the decrypting key is

(d. p, n). None of these keys can be made public and the encryption

and decryption procedures are as in the RSA system.

M° c (mod p)
and

Cd M (and p)

Where M! C E Mn (Z/P3), non-singular matrices over z/pz

The above system can be modified to include the public key property

as follows: Suppose the nndulus is a composite number m whose

factorization is
s

1 l pi‘: (10.7)
J'=l

Then the order Nm of the multiplicative group formed by non-singular
matrices of order n over Z/mz is given by



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 189 

(10.8)

This ia a consequence of the Chinese Remainder Theorem (Appendix 10).

Let us first determine the order Npr of the group of non-
singular n x n matrices over Z/prz when p is prime and r > 1.

Let e be the homomorphism [48], mapping an n x n matrix A
r+l +1

over Z/p Z to A’, a matrix over Z/13:2,, via aij (and pr ) .51)r

aij (mod p ).

Ar————>A

1-+1

M,,(z/p 2)-———> Mn <2/p'2)

This induces a surjective homomorphism between the linear groups

formed by these matrices. that is ,

9’: <1 (n. p"1)+>> GL (n. pr)

Therefore using group theory [48]

GL gng 2:“) ‘A. G. (:1. pr)
Kernel (e‘ )

(where 3 denotes isomorphic to)

The kernel consists of the set of matrices which are mapped to the

identity matrix I (and pr), ie,

- l(nnd pr) for 1 S is n (10.9)

0(Inod pr) for 1 5;! j (10.10)

There are p possilgilities for each of the equations (10.9) and (10.10)
giving rise to pn possibilities. Therefore using group theory. and

denoting order by the symbol .='F',

# G. (n, pr“) _ #6. (n, pr) = ... =

# G- (nu P)
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N
P

(p"-1) (pn-p) (pn-p"'1) from (10-4)
Therefore

# G- (“I Pr) p(r-l)n2 (Pn-1 ) - - - (pn-P"'1 )

Nr
P

n n-1
"-1.) (p'.‘-p) (p.-p. ) (10-11)

J 3 J .

2

' p.(r"1)" (P-
-- - 3’ J 3

Substituting (10.11) into (10.8) gives the order Nm. Now as in the

RSA cryptosystem if m is made to be the product of two distinct

primes p and q this simplifies to

NIII

(pn-1) (pn-p) (pn-pn'1) (qn-1) (qn-q)--~ (qr?-qnpl)

Therefore for message M

NIn

M ' I (mod :11)

and the coding exponents e and d are determined using

ed ’ 1 (mod Nm) (10.12)

The expression of the order Nm depends on the structure of m, that is,
on its prime factors. This therefore can be used to form a public

key cryptosystem by choosing an to be a large integer (say 200

decimal digits) whose security is the same as that of the RSA system.

Although the order Nm can be used in finding e and d as in
(10.12). it is usually a large number. For instance, even for small

primes such as p = 13 and q = 23, the order is approxirnately

1.6 x 1022 for 3 x 3 non-singular matrices. Therefore it is

desirable to find the exponent, EXP. of the group, that is, the least

integer greater than zero such that

Mm " I (mod 11:) for all M.

EXP is a divisor of the order NE of the group.
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Let us first consider the exponent of the group formed by the non-

singular matrices over Z/pl, Mn(Z/p2).
Let the exponent be 2. such that

12.

A I for all A 5 Mn (2/pz)

A2 5 2Assume that p>n. I (mod p) implies that x -1 is divisible by the

minimum polynomial of A. As A ranges over the non—singu1ar matrices of

order n over Z/pz, xl—1 mst be divisible by every monic irreducible

polynomial P(x) (75):) of degree 5 n in Z/pZ.u Every irreducible

polynomial P(x)u(;£x) of degree u divides xp']—'-1. Thus x9’-1 must be
divisible by xp "11’.
But

xb-1 ' 0 (mod xa—1)

implies that alb

Hence, ‘

0 (mod p“-1) for lsusn

Therefore,

2" 0 (mod 2/;m {p—1, ..., p“—1}) certainly (10.14)

Furthermore, the matrix A given by

satisfies-AP = I 94 A (pm)

That is, A has order p and hence p 2,

Hence the exponent of GL.(n,p), pm, is given by

9.: 13 Ram {p_1, p2—1, ..., p”-1} (10.15)

New for any A 2-: Mn (2/pz), using Jordan's Canonical form, there exists
a non—singu1ar matrix E such that
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Each block Bi is of the form

for some upper triangular nilpotent matrix Ni

where Xi's are non—zero in Fpri for some risn.

If the order of D is k, that is, BF 5 I (and p), then as D = E_1AE,

this gives

1
AE)k (E~1 1 k timesas" A5) (I-:' AE)

E‘1A":-:

II (mod p)

Order of A = order of D = k = Ecm of orders of Bi. If Ni = 0. then

order of Bi is a divisor of pri—1. Hence the order of A divides
Qcm {p~1, ..., pp—1} . Otherwise, B5 = X? 11 will have such an order
and hence the order of A divides p Ecm {p—1, ..., pn-1} .

A multiple of p in the expression (10.15) for the exmcmet E is

expected as the order give by (10.4) contains multiples of p.

Similarly,
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I (and q) for all A in Mn (Z/qZ)

2
q flcm {q—]., q -1, ..., qn—1}

Therefore exponent E-(P of the group GL(n,m) where m pq is given by

Let us now extend this argument to non-square free modulus

:11. First consider a matrix A in Mn(Z/&). Let a be the natural
honnnnrphism from Z/p22 onto Z/pZ (p prime). From the above
argument

e(A)B‘P ' I in Mn(Z/p2.)
9 (1)

Therefore,

6(At—I) ' o (and p) where 1: = DCP

This means that every entry in At-I is some multiple of prime p and
hence

p B for some matrix B.

I+pB

<I+pB)"

Using the binomial theorem.

Atp = I+(‘]:_') pB+(:) p2B2+...
I (mod p)

Therefore oonsidering in general a matrix in Mn(Z/pkz)

Mnez/pkz) + Mn(Z/pl)
A + BU-\)

If e (A) has order t then A has order t or pt or pzt... or pk-1t.
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(10.16)

2

= pi 2cm (pi—1, pi -1, ... pi"-1)

(assuming pi is greater than n for all i)

Again from (10.16), it is clearly seen that the exponent EXP depends

upon the prime factor decomposition of In.

The message space has so far been restricted to only non-

singular elements , Mn(Z/mz). Theoretically, the message space’
can also include some singular non—ni1potent elements. Consider for

instance, M2(Z/32). There are 48 non-singular matrices using (10.4).
But there are in addition, some non-nilpotent singular matrices

which could also be used as messages. Consider such a matrix X

a b

where X, a, b are in 2/32
Aa Ab

From the Cayley-Hamilton theorem [51] , this matrix satisfies a

quadratic characteristic equation of the form

x2— (traceX)X+(det X) I=0

‘In the singular case, det X = 0. If trace X = 0, then X2 = O and
. . X2 _ 4 _ 2 X; _ X2so X is nilpotent. If trace X 75 0, then - AX, X — A —

as A2 = 1 for 0 # A E Z/32; thus X3 = XX2 = )\2X = X. Therefore
X1+2k= X for k a 0. Therefore for such non-nilpotent matrices X in

z/3z_, x49 ' x.

Note that when n > 2, there may be singular non—ni1potent matrices

which do not satisfy an equation of the form Xk E X. This happens

for instance when the minimal equation is X4 — = 0. Or even‘

— 181 —
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consider a non-nilpotent matrix X which contains a nilpotent blodc

as shown below

:3‘ =

o 3"

As N is nilpotent for some k, Nk = O and hence

Thus in such cases, this would imply that it is not possible to

recover the message. These cases need to be avoided if one decides

to include such singular non—ni1potent matrices.

From cryptography point of view, the use of such singular

non-nilpotent matrices as messages may seem impractical as the sender

cannot easily recognize such matrices. In practice, one would like

to determine easily whether a message is within the acceptable set

or not. Even the restriction of messages to arbitrary non-singular

matrices may pose problems as the sender has no control over the matrix

elements but must accept what the plaintext dictates. That is, the

sender cannot ensure that his messages will always form non-

singular matrices (over any nndulus). The sender is faced with the

problem of determining whether a plaintext message matrix is non-

singular or not. This involves finding the determinant of the nxn

matrix and then checking whether the determinant is relatively prime

to the modulus using the Euclid's algorithm. (Appendix 11). However

it will be seen in Section 1.0.4.6 that for large m, the probability

that an agbitrarily selected matrix is.non-singular is very much

close to 1.

One comnnn approach to obtain an arbitrary non-singular

matrix over the reals is to have the diagonal entries’ of the matrix

message much bigger than the corresponding entries in the row and
- 182 —
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colunn but this ‘diagonal dominance‘ does not always ensure that the

matrix will be non—singular when uorking over finite rings. For

instance, consider the matrix A below which is ‘diagonally dominant‘

p—1

p—1

Det A = p2 - 2p = 0 over Z/pZ. Hence it is seen that ‘diagonal

dominance‘ is not applicable over finite rings.

A simple method to obtain arbitrary non-singular matrices

is described in Section 10.4.8 where system implementation is

considered.

10-4-3 9=1h299.n21_Mstsises Qvsr_ZLm£

Now let us consider the use of a special set of non-singular

matrices. namely the set of orthogonal matrices, as the message space

of the matrix based RSA wstern.

The set of orthogonal matrices over a finite field of p

elements forms a group as shown below.

Let Mi be a member of the set. Then Mi‘: Mi = I.t 1‘. 1:
As (M.M.) = M. M. , we havei J J 1

(M.M_)t M.M.1 3 1. J

Hence the closure property is obeyed. Further (Mi'1 )1.‘ = (M.t)'1 =
.. -1 - - .. -
.1) = M. and(M.1)tM 1 = M.M.1 = 1. LetJ=M. where

t1 1 1 i 1 1 1
J J = I and J is orthogonal. Hence the set of orthogonal matrices

over Z/pZ forms. a group.

The order of the group formed by the man orthogonal matrices

has been worked out by J-Mac‘.-uilliams [51].

For odd n, ie,n = 2a + 1 for some integer a, the order is given by

a-].

zpa (pza _ P23.)1

For even 11. ie n = 2a, the order is given by

-183-
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2
a

P * 1 i=0

if -1 is a square in GP (p)

and the order is to

a—].

2(pa + (_1)ar1) ’ V -I
it-1

if -1 is a non-square in GI-‘ (p).

Using the Chinese Remainder Theorem, the order of the group of the

orthogonal matrices over Z/mz, where m = p1p2, a square free integer,
is equal to

(order of orthogonal matrices over Z/p12) x (order of orthogonal

matrices over Z/p22). its the factorization of the nndulus m is
required to calculate the order, one can use the group of orthogonal

matrices in the matrix based public key system.

Now the question how easy it is to construct an orthogonal

matrix message needs to be looked at. C_ay1ey's theorem [52] gives

an easy way of constructing an orthogonal matrix using a skew-

symmetric matrix over the reals. If S is a real skew—syn:netric matrix

then I + S is non-singular because the characteristic roots of s are

purely imaginary and the matrix A = %:_—g is an orthogonal matrix.
But this is not applicable to ‘finite fields as the determ:i.nant of

I + S can be equal to 0 (mod plpz). Thus one can use the Cayley's
technique to construct orthogonal matrix messages provided ‘one

ensures that the determinant of (I +S ) is relatively prime to

plpz. ‘Note that if I +3 is non—singular over Z/mZ (m = p1p2),
then I -— S is also non-singular. This can be seen as follows:

Let W be the inverse of I + 5 (mod 111). That is, (I + 5)wE I

(and m).

Then ((1 +5)W)t = Wt(I + 5)‘ = w‘ (1-5) 5 1. Hence wt is the

inverse of (I - S) (nod In).

Hence to construct an orthogonal matrix message over 2/mz, an

arbitrary skeuhsymmetric matrix 5 over Z/mZ is chosen and I + S is
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formed. If I + 5 is non-singular over Z/mZ, then (I - S)/I +5) is
constructed to form the mssage. at again the sender is faced with

the problem of determining whether the matrix I + S is non—singular
or not.

10-4- 4 _ 1 _T_ri_aa921ar_"-atsises <2vsr_7-LEE

Alternatively, let us now consider the set of upper

triangular matrices as a possible choice for the message space. If

the diagonal entries of an upper triangular matrix are made unity,

this ensures that the matrix is invertible over any modulus m as

the determinant is equal to 1.

Let M represent such an n x n upper triangular message

matrix. Che can partition M into I + N where N is a nilpotent

matrix and I is the identity matrix. If M is in Un (Z/pz) then

(I ‘-0- N)p 5 I as, Np = 0 assuming p >, n—1. The order of the group
Pn(n—1)/'2formed by these upper triangular matrices Un over Z/p2 is

The order becomes mn(n'1,/2 when considering matrices Un over Z/ml.
To determine the exponent E(P of the group formed by such upper

triangular matrices over Z/m2-,

let
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Therefore akfl a1-ak implies that ak

c.k+1 c+<:k uccplies that ck

b_0kca+-bk

N-1

k; bk-0-1 -bk
N—l

kgo (b-0-kca)

Nb-V-ca N
2

Therefore

kb + kgk—1) ac
2

Mk = kc
1

For Mk 5 I (nod In) to be obeyed, the following conditions must be
satisfied:

‘ 0 (mod m)

kc 0 (mod In)

kb+kgk;1)ac E 0 (mod m)

To satisfy (i) and (ii) 5 O (and In)

To satisfy (iii) k§k—12 — 0 (mod In)2

ie , l<(k-1) ' 0 (mod 2111)

Therefore if m is even. the exponent, EXP. is 21:: and if m is odd

then EXP is m. Therefore it is seen that both the order and the

exponent do not depend on the prime factors of m. Hence this cannot

be used in a p'L'fl51'i<: key cryptosystem‘ but again -one can use it in a

.. 186 _
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conventional cryptosystem with the secret key (e, d, m, n) where

ed-=°1md(2morm).

On the other hand, if the mssage space is altered to

contain upper triangular matrices with diagonal entries prime to m,

then such messages are invertible modulo m. This is not a serious

problem as in practice m is a product of large primes and the

diagonal elements can be chosen to be relatively small integers.

Now the order of the group formed by such matrices is determined as

follows.

Considering a nxn matrix. it is required that all the n

diagonal entries must be coprime to m. The number of integers less

than m and coprime to m is given by the Euler totient function ¢(m).

The remaining 5 n(n-1) superdiagonal entries of the matrix may take

any value modulo m. Therefore the order is equal to mn(n‘l)/2¢(m)n.
The vital difference between this order and the one calculated above

is that now the order of the group is dependent on the prime factors

of m. Hence the modulus m needs to be factorized before the

decryption exponent d can be calculated using ed 5 l(mod(order)).

As for the set of non—singu1ar matrices, one can determine the

exponent of the group formed by these upper triangular matrices with

diagonal entries prime to m. The exponent can be used instead of

the order in finding e and d.

Initially, consider a square free modulus. Let

s

In = I I .p_
j=1 3

Consider first a mssage M in z[p1Z whose diagonal elemets are

relatively prime to pl

where (aii,p1) = 1, Vi

1.<i5n

Partitioning the matrix M into a diagonal matrix D1 and an upper

triangular nilpotent matrix U1. that is, M = D1 + U1, then it is

seen that Dl.U1, U1.D and U12 are also upper triangular nilpotent.1

Then inductively,
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if Mr = 131' + Ur, we have

Mr“ (D1 + U1) ml‘ + Ur)
rt). 1:

D1 + U1D1 + DIUI + UIUI
 ej’

nilpotent upper triangular

‘ I +U¢(modp1)

1 + u¢"1 (mod pl)
2

P

I+U¢1(nndp1)
1:

Thus MP1 ‘MP1’ ‘ I (mod pl) for some t.

If p1>, n—J. then t = 1. Therefore the exponent of upper triangular

matrices with coprime elements along the diagonal is ¢(p1).p1
S

If m = | | pj then the exponent divides
J'=1

zcm {¢(p1)-pl. ¢(p2)-p2..... ¢(P5n)—P5 ]

If m is made to be a non-square free modulus given by

S .

n = I I p '3'J‘

J'=1

then a bound for the exponent can be calculated as follows:

First consider an mm upper triangular non-singular matrix M over

Z/prz , (p 2, :1). Again let M = D1 4- U1 where D1 is a diagonal

matrix and Ul is an upper triangular nilpotent matrix over Z/prz
Following the argument given above, it is seen that

~r¢(P1':‘) E 1 + u¢ ‘(mo’d*p’)
-188-
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where U¢ is some upper triangular nilpotent matrix.

Hence

(I + u¢)P

P

(I + p. U¢1)

(I + p. U
¢r-1

Therefore

M¢(p‘) P’ ' I (mod p_") '

Hence the exponent of the group formed by upper triangular non-

singular matrices over Z/mz. where m is a non-square free nndulus

given above. divides

zcm {¢(p1r1)p1r1. ¢(p2r2)p2r2 . -.-. ¢(ps's) PS!-s }

10.4.5 l;i£e§_r__F£agtior_:_a_ZL grgug L_5_3__]

Finally, let us consider the group of linear fractional

substitutions over Z/mZ, where In is equal to the product of r

distinct primes to see if such a group is suitable for a trapdoor

system. The linear fractional group LF(n,m) is very much similar

to the linear homogenous group GL(n,.m) considered earlier- Here

only the case n = 2 is examined. First consider the group LF(2,p)

where p is a prime. These substitutions are of the form

u: x-> 1:2 over Z/p'Z={O, 1, ..., p—l,v:n}cx + d

The symbol 0° is adjoined to represent any formal quotient y/O where

y is a non—zero element of the field. The linear fractional

substitutions LF(2,p) can be obtained from the linear honngenous

substitution G.(2,p) on variables x1 and x2 setting x 5
The number of transformations of the form n is finite and they form

a group as the product of any tun substitutions is also a

substitution of the same form. The order of the group LF(2,m) can be

determined as fo11ows,where m = pi .
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For u to represent a substitution. it is required that the

matrix (2 :).be invertible, that is, the determinant ad—bc_?11me to m,.
Now let us consider the two matrices

A 'A

(2 S) and <é:_x:) wherexg Z/m2

The corresponding two substitutions represented by

ax + b and A {ax + b) over Z/mz
cx + d . A (cx + d)

are identical if (A, m) = 1

Consider the matrix Mp given by

a b .

M= PP when.-ead-bcP$o(modp)d
P Cp P P P P

If the condition that det Mgfio (mod p) can be satisfied by coosing
ap. bp, c and dp apropriately, then the Chinese Remainder TheoremP

(Appendix 10) allows us to find a, b, c and d over Z/ml such that:

(mod pl), a 5 a (mod p2),... a — a (mod pr)
P1 P2 P,

and similarly for b, c and d.

Thus the order of LF(2,m) can be found by finding the

orders of LF(2,pi) for 1 5 is r. The number of possible values of
A which result in identical substitutions is given by the Euler

totient function ¢(pi) for each pi. Thus the order is given by

I

#u=(2.=n) = #u=’(2.pi)

-fr mpi).___1

# GL(2.p)

(p2-1) (p2-p) from Section 10.4.2 with n=2
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1'

# LF<2.m) 71:; (pzi-1) - (p.

i=1

I

#u~‘(2.m) - TV (pi + 1) pi (pi-1)i=1

Thus as the order depends- on the factorization of the modulus m, this

is suitable for a trapdoor system. The messages are of the form

(2 3) with a, b, c, d e Z/mZ and ad—bc #0 (mod m). The encrypting
and decrypting exponents e and d can be determined using ed 3 1

(mad # LF(2,m)).

1°-4-6 Er2p2r£i2n_°£ £0;-.S_ia921sr_Mat;ises 9vsr_ZLmE

The extended RSA system described above requires the

message space to consist of either axbitrary non—singu1ar matrices or

orthogonal matrices or invertible upper triangular matrices including

the diagonal elements over Z/mz. In the first two cases it is required

to choose arbitrary message matrices which are non—singular. In the

case of orthogonal matrices. recall that one method of forming a

message requires the matrix (I+S) to be non-singular. Hence some

bound on the fraction of men matrices which are invertible modulo m

will be useful. If the elements of the mm matrix are chosen

uniformly from the integers modulo m. then these bounds can be taken

as the bounds on the probability that the matrix is non.-singular.

An nxn matrix M has an inverse module In if and only if the

rows (columns) of the matrix form a linearly independent set of

vectors modulo :11. Using the argument given in Section 10.4.2, if

m = p. a prime, then the number of invertible matrices (nnd p) is

given by

n-1

(pn-1) (p"—p)---(pn-p"'1) = :1 (Pn-Pi)

The tgtal number of nxn matrices with elements over Z/pZ is equal
to p" . Thus the proportion of invertible matrices (mod p) is equal
to

n-1 n i
TT (P -P )i=1

2n
P
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(1-1/pa) (1-1:/pn) (1-p“"/Pn)
11

W (1-p“)
i=1

Thus as the size of the prime increases, the probability that a chosen

matrix is non—singular approaches 1. If the proportion of non-

singular matrices over Z/mZ is considered,where m = 15Tpj, then it is
equal to 5:1

i=1

I1 ‘ .TI 1

_ 

(W) "J:

(1-pi")i=1

Similar expressions can he found for the proportion of non—singu1ar

matrices over Z/mZ,where m is a non—square free_integer,using the

expression for the order Nm derivgd in Section 10.4.2. The

proportion is then given by Nm/mn . From the cryptography point of
view where m is a large integer composed of a few large prim factors,

this proportion is very mch close to 1. Even for small primes

p1=13 and p2=23, the proportion is approximately 0.87, for n=2.

10-4-7 §ystsm_Dssi9r_I ens 992'-'2t_i.°n

The designer randomly chooses large primes pl to pr for
some r ; 2 following the guidelines suggested in Section 10.2 and

these are kept secret. But the primes need not be necessarily

distinct. Then he specifies what his mssage space is going to be.

umether it consists ofafixrary non—sihgu1ar matrices or orthogonal

matrices or upper triangular matrices with invertible elemets along

the diagonal. This information along with the dimension n of the

matrix message is made public. Then he determines the coding

exponets e and d using the equation ed 3 1 mod (Order or Exponent).

The order and the exponent expressions for the different message

spaces are given in the earlier sections. The public encryption key

is therefore given by (e, m, n) and the secret decryption key is

— 192 —
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(d, m, n). The system is also suitable for authentication purposes

like the RSA system.

A general procedure to construct a matrix mssage is as

follows. The plaintext message is divided into blocks of integers

less than the modulus m and a sequence of nxn message matrices Mi
is constructed by arranging the integers in order as they occur,

left to right and top to bottom. The encryption procedure consists

of raising each of these plaintext matrices to the power e modulo_m.

The ciphertext matrices, Ci. produced are then transmitted to the
receiver by sending the ciphertext matrix elemnts in order as they

occur in the matrix. left to right. top to bottom, with a space

separating the elements. The receiver recovers the original message

by first reconstructing the sequence of nxn ciphertext matrices_and

then raising each matrix Ci in the sequence to the power d modulo
m. Thus the main operation in both the encryption and decryption

procedures consists of raising an nxn matrix to some power modulo m.

This can be performed using the Square and Multiply Technique [45]

which is now briefly described. I

10. 4. 7 . 1 _£-_‘._q1_x'a£e_a5d_l‘-1.151E11212 1egl1:ligu_g_
Consider the binary representation of the encryption

exponent e. Each '1' in the representation is now replaced by a

pair of letters SK and each '0' is replaced by the letter S. The

symbol SX which appears at the left is now crossed off. The result

is a rule for computing Me if 5 is interpreted as the squaring

operation and X is interpreted as the multiplying operation by M.

Each of these operations is performed modulo m. The flowchart of

the algrithm is given in Figure 10.2. If the encryption exponent

is chosen to have only a few '1' digits in its binary representation.

this will make this algorithm run faster than if the exponent has a

random binary representation. A similar procedure can be carried

out for decryption using the exponent d.

Further. the intermediate computations need not be reduced

over Z/m2 but rather over Z/kmz for any positive integer k. The

final answer is computed by reducing the answer over Z/kmz into

Z/mZ. This gives the correct answer because(a1.a2 (mod km))§

a1.a2 (mod m).
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All Qperations are modulo m

Fig. 10.2 - Algorithm for computing Me (mod :2)
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10.4.8 §y_s_t§m_Ig;>le§tation

This extended RSA system using matrix messages has been

simulated on the Prime Cbmputer. The encryption and the decryption

of message matrices have been performed using the Square and

Multiply Technique given above.

10. 4.8 . 1 Non-Sig_lgr_M_at5i;< lV_le§_s§gs_

In the case of non—singular matrix message space, the

message matrix M is constructed according to the general procedure

given in Section 1.0.4.7 and its determinant is calculated using the

program DETMDDJ-‘/7 given in Appendix 12. Then Euc1id's algorithm

is used to test whether the determinant is relatively prime to the

modulus m. If so, the message is raised to the power e over‘ Z/m2

using the program MATE>(P.FTN given in Appendix l3. The same program

is used to decrypt the ciphertext matrices with exponent d. Recall

from Section 10.4.6 that the probability of anarb:h::ari1y _-chosen

matrix message M over Z/rnZ,where m = pq and p and q are large primes,

is non-singular, is very much close to 1.

Che can also construct an arbitrary non—sing'ular matrix M

over Z/m2 by multiplying together an upper triangular matrix U with

unit diagonal and a locer triangular matrix L with unit diagonal over

Z/mz. The elements other than the diagonal ones in U and L can be

arbitrarily chosen modulo m. As both U and L are non—singu1ar over

Z/mz, M = LU is non—singu1ar over Z/mZ. I-hrther the n'on—commutativity

property of matrices (UL # LU in general) ensures that the opponent

still needs to factorize m to be able to calculate the decrypting

exponent d, in contrast to the case of upper triangular matrices

with unit diagonal considered in Section 10.4.4. That is, Me =

wt)" 74 u°x.°. Thus although u°"1 E u (mod :11), Led E L (and m)

where edle: 1 (mod to or 2m) (see Section 10.4.4), Med}. ¥ M (mod m).
However M 5 M (mad m) where ed 5 1 and (#G.(n,m) or EXP C1.(n,m))

(see-Section 10.4.2). The receiver can obtain the matrices L and U

uniquely given the matrix M.

10-4-8-2 29295 lriaalerfietsiz 19352925.

In the case of upper triangular matrix messages with

invertible diagonal elements, the message matrix is again constructed

according to the general procedure given in Section 10.4.7. The

lower triangular section of the message (excluding the diagonal) is

— 195 —
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set to zero. The diagonal elements are almostarbitrarily chosen to

be relatively prime to the modulus m. This can be done provided they

are relatively small, as the prime factors of m are normally very

large. Again these messages are encrypted/decrypted using the

program MA1'D(P.F‘1"N given in Appendix 13. Note that in this case,

only the upper triangular entries of the ciphertext matrices (ie,

5-(%+—1-) elements of each ciphertext matrix) need to be transmitted
to the receiver.

An example in each of these two message spaces showing the

various parameters involved is given below.

10-4-83 Examals L 3 2 5 2 £°n—5_ir_r921er_M2t2i;< 219252925.

Let the modulus be m = p12p2 = 325 = 45
Exponent of the group formed by 2 x 2 non-singular matrices over

Z/452 divides 9,cm{ v1,v2} -
where

- 334 Earn {3,3—1,9—1} 3 11cm {3, 2, 3}

2cm [5, 5.1.25.1} stem {s. 4, 24}

Thus EXP is a divisor of 1080. Ha-ice the coding exponents e and d

are give‘: by

ed 5 1 (md 1030)

One pair (e. d) which satisfies the above congruence is e = 23, d = 47.

Let us assume that the plaintext message to be encrypted is 81334.

Dividing the message as (8 13 3 4), the plaintext message
matrix can be constructed as

8 13

3 4'

The determinant of P is equal to -7 '=' 38 (rind 45) and (det P, 45) = 1.

Hence :5 is non-singular (mod 11:).

The ciphertext matrix is then given by
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23

13) (mod 45)‘4

34

(md 45 )
39 31

This ciphertext matrix is transmitted to the receiver as(38 34 39 31‘).
. . d

The receiver reconstructs the matrix C and computes C (mod :11) to

obtain P. That is.

39 31

8 13

(3 4) (mod 45)

d 38 34 47
c (mod 45) ‘ (mod 45)

10-4-8-4 Examals 2 : 2 5 9. Epzes 1:1

Let the rrndulus m = p.q = 41.29 =

Esqaonmt of the group formed by 3 x 3 upper triangular non—singu1ar

matrices over Z/11892 divides

9.cm {4o.41. 213.29} = 332920

Choosing the encrypting exponent, e = 1317. the decrypting exponent

d can be calculated using Eu.clid's Algorithm (Appendix 11) and is

equal to 117293. That is.

1317. 117293 E 1 {mod 332920)

Let us assume that the plaintext message to be encrypted is

232677205141. In this example. the message is divided into 2-digit

blocks of integers less than m starting from right to left as

(23 26 77 20 51 41)

The upper triangular plaintext message matrices then become

90 23 26 31 20 51

0 SO 77 O 215 41

0 0 48 O O 289

-197-
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where the diagonal elements areambitrarily chosen to be relatively

prime to m (=ll89).

The ciphertext message matrices are then given by

1317
90 23 1105 458 107026

o 50 77 ‘ 0 50 (mod ll89)

o 0 as o o 831

660

41 (mod 1189)

405

These ciphertext matrices are transmitted to the receiver as

(1105 458 1070 S0 251 831 843 774 660 592 41 405).

The receiver reconstructs the matrices C1 and C2 and computes

cl“ (mad as) and czd (mod my to obtain P1 and P2 and hence the
plaintext message. That is,

117293
1105 458 1070 90 23 26

0 so 251 E 0 so 77 (mod 1189)
43O O 831 O O

' 117293
843 774 660

0 592 41 (md 1139)

0 o 405

10.4.9 Discussion

Thus one can see that the RSA system can be generalized to

matrix rings provided the message space is restricted to avoid

nilpotent elements. The group of non-singular matrices over 2/mz,

the group of orthogonal matrices over Z/mZ and the group of upper

triangular matrices over Z/mZ with diagonal elements coprime to m

have been investigated. From a practical implemetation point of

view, the upper triangular (non—singu1ar) matrix message space seems

to be the better candidate as the messages can be constructed in an

almost aditrary manner. In the case of non-singular and orthogonal

matrices, an additional procedure to find the determinant of the

mssage matrix is required. From Section 10.4.6, it is seen that

for a large eough modulus, the probability that an adbitrarily chosen

— 198 —
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message matrix is non-singular is very much close to 1.‘ Further if

the non-singular matrix is constructed as a product of upper and

lower triangular matrices. then it seems that arbitrary non—singu1ar

message matrices can be easily constructed.

For a cryptanalyst to break the system by computing the

secret decoding exponent d, he needs to find the order (or the

exponent) of the group. In all the three cases, it is seen that the

factorization of the modulus is required to compute the order (or

the exponent) of the group. Provided m is chosen to be a large

integer (say 200 decimal digits long, see Figure 10.1), this provides

a secure system. Other attacks such as the computation of the order

without finding the prime factors of m and determining the secret

coding exponent d without factoring m or calculating the order can

be shown to be as difficu1t_as factoring m using similar arguments

to those given in Section 10.3. Thus this extended matrix RSA

system provides a similar level of security as the RSA system over

integers.

Further two points are worth mentioning regarding this

extended system. Firstly it is seen that a non-square free modulus

can be used with this system which is not possible with the RSA

system over integers. That is, powers of primes can be used to form

the modulus m. Secondly, the use of a matrix as a message allows

large amounts of data to be processed within one encryption/decryption

cycle. whether this is an advantage depends upon the ease with

which matrix manipulation can be carried out in real tim.

Also the use of a matrix as a message may provide some

extra features to the system. Consider,for instance,a non—singu1ar

message matrix divided into blocks as shown below

where M1 and M2 represent genuine message blocks whereas X1 and X2 are
redundant random blocks. Encryption of such a message M would truly

'internally' mix the message elements and the random elements in the

matrix. In the case of RSA system over integers. a similar effect

can be achieved by sending a sequence of ciphers which contains some

random elements. For instance. the_sequence may be cf, x1,c2, x2,..»

— 199 —
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where c1 represents genuine cipher and xi represents random cipher.
In the former case,the internal structure of the matrix and in the

latter case, the pattern of the sequence need to be prearranged

between the sender and the receiver. In the case of the matrix

system, the knowledge of the internal structure of the matrix does

not give any help to the opponent as the message is enciphered

‘internally’ and hence this information can be made public. In the

latter case, however,the knowledge of the pattern sequence helps the

opponent to discard the random ciphers and hence this information

cannot be made public. The use of chaining techniques in such matrix

systems is considered in Chapter 15.

10.5 Extension of RSA System to Polmomial Rings

Another ring of special interest is the polynomial ring

R [x] which consists of polynomials whose coefficients are elements

of anaibitrary ring R. A possible extension of the factorization

trapdoor system in the ring of polynomials R [x] is considered. In

particular, to begin with_,the ring F‘ [x] where F is a finite field

is looked at. '

10.5.1 gogcgpt gf_G_.3l9_i§ §ig1_d_ _

Let P(x) be a given polynomial in x of degree n with

integral coefficients not all divisible by a given prime p.‘ Let

F(x) be any polynomial in x with integral coefficients. On dividing

Hat) by P(x), a quotient Q(x) and. a remainder of degree n—1 at most
is obtained, where the reminder may be written in the form f(x) +

p q(x),and

f(x)Ea +ax+a2x2+...-I-aO 1 n-1

Each of the coefficients ai belong to the set {O, 1, 2,...,p-1} and
q(x) is a polynomial with integral coefficients. That is,

F(=<) -= f(x) ‘* P CI(X) ‘* P(X)-Q(X)

The totality of functions F(x) which can be obtained by holding f(x)

fixed and varying q(x) and Q(x) in all possible ways, subject to

maintaining the named properties of q(x) and Q(x). constitute a‘

_ 200 _
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class of residues which is completely determined by f(x), the given

prime p and P(x). Two polynomials in x with integral coefficients

are congruent moduli p and P(x) if and only if they belong to the

same class of residues moduli p and P(x). The number of distinct

residue classes moduli p and P(x) is equal to the number of functions

of the form f(x). Since each of the n independet coefficients ai

can take any one of the p values. there are pn possible residue

classes. These residues constitute a finite field called the Galois

field [54]. If P(x) is not irreducible modulo p or if p is not a

prim, then the residues do not form a field since at least two non-

zero residues can be found whose product is O moduli p and P(x).

10-5-2 A Eb}y2°r.rzis1_Bassd_R§A_Sxs2eI3

Using this concept. one can design a conventional crypto-

graphic system as follows. Since the number of residue classes is

finite, it mst be possible to find two numbers r and s such that

<f(x))' ‘ (r(x))“°‘ u-odd (p.1=(xn

The non-zero elements f(x) of the extension field GF(pp) form a

multiplicative group. The order of this group is equal to pP—l,
that is,

1 + k(p"—1)
(f(x)) f(x) modd (p,P(x))

where k is an anfitrary'non-negative integer.

The system desiger chooses randomly a large prime number

p (see Section 10.2) and a high degree irreducible polynomial P(x)

over GF(p) of degree n. (See Section 10.5.2.1) The message space

of this cryptographic system'consists of polynomials {m(x)} belonging

to F & ]where F is the finite field GF(p). The messages are

represented as blocks of sequences of phary digits each of size n

associated with a polynomial m(x) over GF(p) of degree less than n.

The encryption and decryption coding exponents are determined using

ed .1 mod (order)

ed ,1 mod (pn-1)
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The encryption procedure then cosists of raising the message

polynomial to the power e to form the cipher polynomial, c(x)

c(x) ' (m<xn° mad (p.P(x))

The decryption procedure consists of raising the cipher polynomial

to the power d to obtain the message polynomial using

— d
m(><) (cm) -nodd (p.P<xn

The encryption key is (e, p, P(x)) and the decryption key is

(d, p, P(x)). Both these keys need to be kept secret since the

knowledge of the encryption key would allow the opponent to

calculate d using (10.17) and vice versa. Hence this does not give

rise to a public key system as such. ’

Note further that the probability that c(x) 5 m(x) modd

(p, P(x)) is equal to god (e—l, p"-1)/p" and this proportion can be

made small by the system designer through appropriate choice of e,

p and n.

This actually is the generalization of the Rohlig—Hellman

secret key scheme over GF(p) to abitrary finite fields GF(pP) where

p is a prime and n is a positive integer. Note that the field

GF(pn) is isomorphic to Z/pl Ex] /P(x) where P(x) is an irreducible

polynomial of degree n over Z/pz.

This can be further extended to the case where the system

designer chooses high degree irreducible polynomials Pi(x) and large

distinct primes pi for lsiss. Let the degree of irreducible
polynomials be n. for léiés. The coding exponents e. and d. can1 1 1

then be determined using

eidi 5 1 mod(pni-1) for lSi£s

The message is divided into groups of s blocks where the ith block

1

plain block is associated with a polynomial mi(x) of degree less

than ni. The ith cipher block ci(x) is produced using

is of size n. and consists of a sequence of pi—ary digits. The ith

ci(x) E (mi(x))e nndd (pi, Pi(x)) for 1.$i$s

-202-
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Now let n = maximum of (n ,...n ). Each c.(x) is now extended tomax 1 s 1

.form a polynomial of degree nmax—l by randomly generating the extra

coefficients required over Z/piz for léiis. Thus there are 5

polynomials each of degree nmax-1 with coefficients over Z/pil for

léiés. These polynomials gre combined to form a single polynomial

c(x) over z/mz where m = 22K pi using the Chinese Remainder Theorem
(Appendix 10).c(x) is the cipher polynomial which is transmitted to

the receiver. The receiver reduces the polynomial c(x) modd (pi,xni)

to obtain ci(x) for lsiss. Then he uses the coding exponents di. to
obtain mi(x) using m.1(x) E (ci(x))di mod(pi,Pi(x)) for lsiss. Hence
the encryption key consists of (ei, pi, Pi(x)) and the decryption

key consists offdi. pi, Pi(x)) for lsiss. Note that this is still
a conventional (symmetric) cryptosystem.

The above method can be modified to give a public key

system. This has been first proposed by Kravitz [55]. This is

based on the difficulty of obtaining the degrees of the irreducible

factors of a polynomial of large degree over a finite field, F

z/pz, p prime.

‘ Let f(x) be a polynomial of degree s which is equal to

the product of r distinct irreducible polynomials over Z/pZ. That is}

f(x) = fl1(x). fl2(x) ... Hr(x) (mod p)

where Hi(x),l$iss.are distinct irreducible polynomials of degree si.
Then s = s + s + ... + s = E s.l 2 r i=1 1

Let the message space consists of {m(x)} where m(x) is a polynomial

over Z/pZ of degree less than s. Then the set of polynomials of

degree less than 5 and relatively prime to f(x) form a multi-

plicative group modulo f(x). [Two polynomials are said to be

relatively prime if their greatest commn divisor has degree 0

(ie,a constant-polynomial). That is, two polynomials hi and h2
are relatively prime if ahl + bh2= 1 for som polynomials a, b in
Z/pZ[x]].
Hence

(m<xn°""" E 1 .modd<p. mm

The order of the group is determined as follous.

First let us consider a slightly different case where

— 203 —
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f(x) = fl191(x), a non square free polynomial (although it is said
earlier that f(x) consists of distinct irreducible factors mod p).

Here the degree of the message polynomial m(x) is less than the degree

of H1g1(x), that is, less than gl 1. In addition, if the greatest
common divisor of the degrees of m(x) and fl1(x) is greater than 0,
then

m(x) =1I1(x)-h(x)

where the degree of h(x) is less than glsl-s1 = s1(g1-1).

Total number of polynomia1s{m(x)}of degree less than glsl is equal to
|F|g1S1 = pglsl. Within this set, the number of polynomials mfx)

which are not relatively prime to n1(x) (that is, which are multiples

of H1(x) and for which h(x) exists) is equal to the number of such

polynomials h(x) possible. There are [FIs1(gl-1) such polynomials

|F|51(91"1)h(x) and hence there are polynomials m(x) which are

multiples of H1(x). Therefore, the order of the group is given by‘

[Fl 519: - [pl-°=1‘_91-"
1'

f(x) = T‘; H191 (x) (nnd p)

then, the order of the group becomes

_ [1-|5i(9i‘1 ’)

In this case |F|= p. Substituting this into the above expression
gives

-‘ET pgisi _psi(gi-1)) (10.19)

In particular, if gi = 1 for all lsisr, (that is, f(x) consists of
distinct irreducible factors) then the expression (10.19) becomes

As will be seen later in Section lO.S.3,the polynomial f(x) needs

-204 -
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to be square free for cryptographic application.

10-5-24 §ystsm_Dss_i9r_I ans Qpsrstios

The system designer randomly chooses a large prime p and

r distinct high-degree irreducible polynomials over Z/pZ,fl 1(x) to

Hr(x), with degrees s to st.
The chosen number can be tested to check if it is a prime

using the primality tests given in Section 10.2. A chosen polynomial

can be tested to see if it is irreducible over Z/pz as follows:

From [56], a polynomial P(x) of degree n is irreducible in Z/pZ if

and only if P(x) I (xp —x) and gcd (P(x), xp ‘.x) =1 for 1419:
where n = ul ... uk and ui's are primes and ni = n/ui. Thus to

test whether a chsen polynomial P(x) with deggee n is irreducible
over Z/pi, the designer computes gcd (P(x), xp 1-x) and tests whether

it is equal to 1 for all 1, 15151:. Berlekanrp [56] shows that a

randomly chosen polynomial of degree si is irreducible with probability

1/si. Thus an average of si tries is required to find an sith degree
irreducible polynomial.

Having selected the irreducible polynomials H1(x) to

Hr(x). the desiger forms their product f(x) which is of degree s

where s = igg si. The polynomial f(x) and the prime p are then made
public information. The r distinct irreducible factors of f(x) are

kept secret. The coding exponents e and d are calculated using

ed 1 mod (order) (10.20)
r

where order I I (psi-1) ' (10.21)
1=I

The public encryption key is (e. p, f(x)) and the secret decryption

key is (d, p, f(x)). The message is divided into blocks of size s

consisting of sequences of p—ary digits. Each such plaintext block

is associated with a polynomial m(x) of degree less than s. The

encryption procedure then consists of raising the polynomial m(x)

to the poer e using

cm ' (m<xn° modd cp. mm

and the decryption procedure is given by

mm = cam)" mode (p. £(>=))
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The above scheme can be used as a public key system as the order is

found to depend upon the degrees of the irreducible polynomial factors

of the composite modulus polynomial thus providing the trapdoor

PIOPGYTV o

10.5.2.2 §eEugi3y_p£ The §y§tgm_

The above schem is not as secure as the RSA system over

integers or the matrix based RSA system considered earlier due to

the following reasons.

Following Section 10.3, the main cryptanalytical attacks

consist of finding the order (expression (10.21)). Once the order

is found, the cryptanalyst can determine the secret decoding exponent

d using (10.20). The order expression contains the degrees of the

irreducible factors of f(x) and the prime p. As the prime p is

made public, the security of the system relies on the difficulty of

factorizing the polynomial f(x) into its irreducible factors. Further-

more,the same decoding exponent d works for all sets ofIIi(x) for

i = 1 to r with same degrees si, 1515:.
It is generally true that factorization of a polynomial

over a finite field is not a hard problem in sharp contrast with the

factorization problem of a large integer. Berlekam [571 proposed an

efficient algorithm for factoring polynomials in 2/pz where p is prim.

For large prim p. Knuth [45] suggests some modifications to the K

Berlekamp's procedure. Here the Berlekamp's procedure is briefly

described. The basic strategy of Ber1ekamp's method of factoring a

polynomialin Z/pZ is to translate the problem into that of solving

a system of linear equations with coefficients in Z/p2 and finding

greatest common divisors» Both of these steps can be done using

known methds in a finite number of steps. The idea behind the

algorithm is now briefly outlined.

Suppose that f(x) has degree 5 and suppose that a

polynomial h(x) can be found in Z/pZ of degree greater than or equal
to 1 but less than s such that

f(X) (hm)? - h(x)

If degree (h(x))= k>, 1, then (h(x))P - h(x) 7! o for the coefficient

of xpk is non—zero. By Fermat's theorem, the polynomial up_u has p

roots in Z/pZ namely u = O, 1. 2,..., phi. Thus dP_u factors (mod p)

-206..

Page206



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 220 

up-u = u(u-1) (u—2) ... (u—(p—l))

Setting u ' h(x) gives

(h(X))p — h(X) = h(x) (h(X)-}) (h(x)—2) --- (h(X)-(P-1))in Z/rl (10-22)

Since f(x) divides (h(x))P — h(x). f(x) is the greatest coumon

divisor of f(x) and (h(x))P — h(x). Since h(x)—v and h(x)-v are1 2

relatively prime if v1 f v2, from (10.22) it is seen that

too gcd= (fix). chm)" — hm)

e—.1_.

‘ I .9Cd (f(X). h(X) - 3) (10-23)
.i?o

Each factor on the right hand side has degree at mst that of h(x)

‘which is in turn less than 5, the degree of f(x). Thus there ust

be at least two non-trivial factors of f(x) on the right hand side

of (10.23),that is, at least two factors of f which have degreea>1

and hence (10.23) is a non—trivial factorization of f(x).

To factor f(x}, thus one needs to find a polynomial h(x)

such that f(x) divides (h(x))P — h(x). This is done by solving a

set of linear equations for the coefficients of h(x) as follows.

Suppose h(x) = b + blx + ... + b xs-10 5-1

b are the coefficients to be determined. To see whether f(x)s-1

divides (h(x))p _ h(x), consider first (h(x))p.

Using the equality

(a + b)p ap + hp over Z/pz
we have

(h(x))‘° bop + blpxp + + b:_1 x‘S“’P

Applying Fermat's theorem to each of b , n1...., bS_1. hip = bi in
Z/pZ for all i, and hence

(h(x))P = + bl xp + ... + b x(5'1)P (10.24)b0 5-1

Now using the division algorithm and dividing f(x) into xlp for

i = O, 1,....s-1, gives
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xip = . . (10.25)1

ti (X) . . . (lO.26)

Substituting (10.25) into (10.24) yields

(h(x))P = bOrO(x) + b1r1(x) + + b5_1rS_l(x)
+ (multiple of f(x))

Thus f(x) divides (h(x))p — h(x') if and only if f(x) divides the

polynomial

bOro(x) + b1t1(x) + ... + b r 1(x) — (ho + blx ... +5-1 s-

b :-:S-1 )5-1

But this polynomial has degrees 5.1 hence is divisible by fix) (of

degree 5) if and only if it is equal to 0.

Thus f(x) divides (h(x))p — h(x) if and only if the coefficients

b0, b1, bs of h(x) satisfy '

o(x) + b1r1(x) + ... + bs_
x5—1

.. (130 + blx + ... + bs_1

bor 1(x)
0 (10.27)

1rs-
)=

Collecting coefficients of 1. x, x2,..., x‘°"1 in (1o.27),s

simultaneous linear equations in the s unknowns b0. b1,..., bS_1
are obtained. These equations can be solved for b , ..., b and

coefficients of a polynomial h(x) such that f(x) d(i)vides (hi:-<1) )P —
h(x) can be obtained.

T0 Calculate the decoding exponent d in (10.20), one does not

need to obtain the irreducible factors but only need to obtain their

degrees. In particular, in a system where the modulus f(x) consists

of two distinct irreducible factorsfl 1(x) and}'[2(x) (analogous to
the RSA system over integers), one can follow a simple technique to

obtain the degrees of the irreducible factors. without loss of

generality, it can be assumed that polynomials are all monic. From

fiaite fields theory [56]. it is knonn that in a field of order p,
xp —- i factors into the product of all manic irreducible polynomials

whose degreesfldivide 2. Thus the cryptanalyst computes h£(x) =
gcd (f(x), xp'; x) for Q = 1, 2,..., 5/2, successively until he finds a

hi (x) # 1Q In such an instance, hE(x) = fl1(k) orfl 2(x) or f(x).
_ 208 _
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The first two cases give the degrees E = 51 or 52 and in the third

case 2.= §_= 52. Thus in all the three cases, the opponent has
obtained the degrees of irreducible factors even though in the third

case, he has not actually factorized f(x). Thus he can calculate the

order (10.21) and can determine the deioding exponent using (10.20).
To compute the gcd (f(x), xp - x) for 1 = 1, 2,..., 5/2

requires approximately

2

(i) 5/2 operations of gcd (f(x), xp -x)

.. . . . 2
(11) each such operation requires approximately log2p5/2

multiplications mod f(x). giving a total of O(s logzp)
ultiplications mod f(x) in Z/pZ.

The encryption (or decryption) procedure requires a maximum of log2 w
multiplications mod f(x) where w = (ps1—1) (p52-1) — 1 because the

maximm value of e (or d) is (psl-l) (ps1—l) - 1. As w< ps, the

computational effort is 0 (5 logzp) multiplications mod f(x). Thus
the work factor is approximately 0(5). Thus if the cryptanalyst is

required to make about 260 trials before finding the decoding

exponent d, then the degree of f(x) = 51 + 52 = s = 260. In such a
case, the length of the cipher polynomial also becomes 260 introducing-

a long delay in both encrypting and decrypting devices.

Further Gait [59] points out a short cycling attack based

on superenciphering any non-trivial polynomial t(x) with encrypting

exponent e equal to any non-trivial power of y. He shows that the

period of the sequence of powers of t(x)e and f(x) is equal to 5152.
It seems then the work required to recover the decoding exponent

depends on the difficulty of factorizing s Hence for the system
5 .

1 2

to be secure slsz needs to be very large. Short cycling attacks
against public key systems are considered in Chapter 13.

10.5.3 §n_lg5ogeg Eplygpgial_pgsgd_R§fi_§ysteg

Now let us extend this polynomial scheme further to the case

where f(x) is a composite polynomial over Z/m2, where m is a composite

numberyin an attempt to increase the security of the above mentioned

public key system.
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where pi are primes

and the degree of the polynomial f(x) be 5.

Then the message space consists of polynomials {m(x)} whose

degrees are less than 5 and whose coefficients are elements of the

ring Z/mZ. The first step is to find the order of the group formed

by the polynomials of degree less than 5 and relatively prime to f(x)

over Z/mZ. Let us denote this order using the Euler totient function

symbol ¢m (f(x)). From the expression derived for the finite field
F = Z/pl in Section 10.5.2, the order of the group formed by the

polynomials which are relatively prime to f(x) in Z/p2 is given by

¢P <r(x))=-1:I tpsibi — p‘i‘”i“’) (10.29)
1"

where f(x) 3 i=§ gibi(x) (mod 6) and gi(x) are-irreducible
polynomials of degrees si in Z/pZ.

'Note that the commutative ring R=Z/pZ[x]/f(x) under consideration is

isomorphic to Z[x]/(p,f(x)). Now let us consider the order of the
. . 1

group formed by the units in the ring Z/ptZ[X]/f(X)52[X]/(P :f(X))-
Let 6 be a surjective ring homomorphism between the rings given below

9 , ___£12£L__. ____;__g9 .__i£L§J___
<p‘*1.f(x>) tn‘. ftx))

If restricted to units, then there is a surjective homomorphism 9'such

AL _3'_1__6, : U t+1x _%>U t x
(P If(x)) (P 9 f(’‘))

The kernel of the mapping e’consists of those sets of units of the

that

left hand_side which are congruent to 1 mod (pt,f(x)), that is,

kernel 6‘ = {h(x)} such that h(x) 1 mod (pt, f(x))
or,

Mn=1+p‘wn+rw)Mn

and h(x) is a unit in . Z[x . . Let us now calculate the number of

<p‘*1.f(x)>

such classes mod (pt+l, f(x)). The standard form for representatives-of

classes mod (pt, f(x)) is given by
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5-]. t
... O4 . .

no + ulx + + us_1x where \u1<p

The standard form for representatives of classes mod (pt+1, f(x)) is

given by
s—1 1:

no + ulx + ... + uS_1 where O5ui<p

+1

As f(x) is same in both cases, h(x) E 1 + pt v(x) (ma f(x)).

1, f(x)) is p5 because:

v(x) = v + v x + ... + v XS-1 and each coefficient v. can take0 1 5-1 1

values in the range 0 to p—1. If vi is greater than p—1 then it will
get reduced mod pt+1 as pt.p = pt+1. Thus the total number of such

v(x) possible is equal to pdeg f(x) = ps.

The number of such v(x) possible in mod (pt+

Therefore

# kernal 0’ = p5

Using group theory ,'

U(_;m_<p‘*‘.£<x))

Kernel 8'

# u z[x]

(p"‘.f(x)>

where # denotes the order-

Therefore.

¢pt+1 (f(x)) ps ¢pt (f(x))

p25 ¢pt-1 (f(x))

and _ ¢pk£f(x)) — p(t—1)5 ¢p (f(x)) (10.30)
E

The next stage is to consider the case where m = J L piai and to
evaluate the required expression ¢“¢f(x)).

Using the Chinese Remainder Theorem it is seen that

z[x1 E Z[):] 6: z[x] e ea z[x]

(m.f(xn (pf: .f(xn mg» .r(x>) (pf! , ax»
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where 9 denotes the direct sum.

Thus 9,

¢m(f(x)) = I | ¢piai_ (rim) (10-31)
i=1

where fi(x) E f(x) (mod pi) for i=1. 2...,2,.

Considering the factorization of fi(x) rather than f(x)

over 2, let the factorization of fi(x) be
1'.1 b..

fi(x) = gij ‘-7 (x) (mod pi) (10.32)J=

where the degree of irreducible polynomial gijbij(x) is sij bij.
Note that the upper limit of the product term in the expression (10.32)

goes up to ri, that is, it is a function of to which prime pi the
polynomial f(x) is being factored. This is because in general f(x)

(mod pi) will factorize into some r. distinct irreducible polynomials1

as i varies.

Subsituting (10.30) into (10.31) yields

2

¢m(r<x))= W pf°'i‘1 ’5 ¢p_ (fi(x)) (10.33)i=1 1

' From (10.29), ¢p (fi(x)) is given by1
I.

¢P_<ri<x)> = T)" (pfijbij - pfi:'“°i:"”)
1 J=1

Substituting (10.34) into (10.33) gives-

1

¢m(f(x)) = .1i=1

2

Substituting m = |] piui, the above expression becomesi=1

s 3 ‘i
m s..b.. s..(b..—l) -

¢m(f(x)) = rpi ( l I ( (Pin _1.'J - P113 1-3 ) (10-35)
i=1 i=1 j=1

Although the general expression (10.35) for the order of the

group formed by polynomials {m(x)}which are relatively prime to f(x)

over Z/m2 has been derived, from cryptography point of view, only.

square free modulus m and square free f(x) are allowed. If for

instance, m is chosen to be a nonqsquare_free integer then there will

be nilpotent residue classes md f(x) for any f(x) and proper
- 212 -
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decryption will not be possible in such cases. Similar arguments

also aply to the case where f(x) is non—square free. Consider the

two examples given below which illustrate the two cases m and f(x)

non—square free.

Egample 1 : non—sggare free m

Let n = p12.p2 = 3 .5 = 45 and let f(x) = x
f(x) (mod 3) = f1(x) = x

f(x) (mod 5) f2(x) = x

¢m(f(x)) = (§§).2.4 = 24
choosing e = d = 5 so that ed §.l (mod_24)

Let the message m(x) = 6. Then (m(x))ed 5 Ged 5 36 ;’6 (mod(45,x)y

The message m(x) =36 gives 36ed 5 36 (mod(45,x))-

Thus there is ambiguous decryption as both messages 6 andEB produce

identical output after decrjption.

E 1e 2 : non-s are free f x

Let m = p1.p2 = 3.5 = 15 and let f(x) = 4x2 + 3
f(x) (mod 3) ' f1<x) = x2 E (n11(x>)2
£(x)(mod 5): f2(x)"4x‘+3 E n21<x>

¢m(f(x)) = 24
choosing e = d = 5 so that ed 3 1 (mod 24)

Let the message m(x) = x. Then (m(x))ed 5 6x ¥-x (mod(15. 4x2 + 3)y
The message m(x) i 6x gives (6x)ed 5 6x (mod(15,4x2 + 3)).'

Ihus there is ambiguous decryption as both messages x and 6x produce

identical output after decryption.

Thus if m and f(x) are made square free, then the expression (10.35)

becomes

i=1

1 ti

¢m(f(x)) = I I |j=! (pisij -1) (10.36)

Thus the order ¢m (f(x)) not only depends on the degrees of the

irreducible factors (sij) of f(x) but also on the prime factors of
the integer m. So if the original polynomial scheme is operated over

Z/m2, then this seems to give rise to a secure puhlic key cryptosystem like
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the RSA system over integers.

10.5.3.1 §ystem Desigg_apg gpgration
.______. —____

The designer randomly chooses large primes pl to pa for some
2.1 32 following the guidelines suggested in Section 10.2. He then

needs to choose a modulus polynomial f (x) with the property that

fi(x) 5 f(x) (mod pi), lsisl. are square free polynomials of degree 5.
Two methods for desiging such a polynomial f(x) are now outlined.

In method 1, the desiger chooses randomly irreducible

polynomials hij(x) of degrees sij over z/piz for i 1 to2.. As
noted in Section 10.5.2.1. an average of sij tries is required to find

an irreducible polynomial of degree sij in Z/piz. The polynomials are chosen
in such a way that the degrees of the factors modulo pi for a given

i add up to form 5. That is, the distinct factors hij(x). lsjsri.
are combined to form fi(x) (mod pi) of degree s. Thus the desigmer'

now has the values sij and pi for all lgisl and lsjsri.
In method 2, the designer randomly chooses polynomials

fi(x) of degree 5 and accepts them if they are square free over

z/piz respectively. This is dne by choosing a polynomial fi(x)

and computing the god (fi(x), f; (x)). If the gcd (fi(x),f; (x))= 1,

then fi(x) is square free." Knuth [45] estimates that a randomly

cosen polynomial fi(x) will be square free over Z/piz with a

probability of l-1/pi. Hence the expected number of trials for

finding a square free polynomial fi(x) is less than 2 for each i.
An alternative way of finding square free polynomials is to start

off with irreducible polynomials f(x) over 2. The discriminant of

f('x) can be calculated using standard forrmla [85, p 451] and the

prim p is then chosen so that p does not divide the discriminant.

Then f(x) is square free over Z/pz. This procedure can be repeated

for pi,l5is£ . Having obtained the square free polynomials fi(x)

over 2/piz, 1515 1 ,through one way or other, the designer can use
the Chinese Remainder Theorem to form a unique sth degree composite2

polynomial f(x) over Z/mZ uirhere m = TT pi and f(x) 3 fi(x)(nnd pi)i=1

for lgig 2. The degrees of the irreducible factors of fi(x) over

2/piz can be determined using the polynomial factorization algorithm
of Berlekamp (Section 10.5.2.2) or one of the modified techniques given

by Knuth [45]. Thus the designer now has the values si.3 and pi for

all 1§i§ 1 and lgjgri.

These sij and pi values can be substituted into the
— 214 —

Page214



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 228 

expression of ¢m(f(x)) given by (10.36). Recall that for the
encryption and decryption to work properly,

(m(x))“"¢m‘“"” 3 mex) modd <m.f(x))

for any m(x) with coefficients in Z/m2 and whose degree is less than 5.

The coding exponents e and d can therefore be determined using’

Gd E 1 Cd ¢m (f(x))

where e and d are multiplicative inverse of each other mod ¢m (f(x)).
The public encryption key is given by (e, m, f(x)) and the secret

decryption key is equal to (d, m, f(x)).

The message is divided into blocks of size s (degree of

f(x)), each block consisting of integers over Z/mZ. Each such block

is associated with a polynomial m(x) of degree less than 5. The

encryption procedure then consists of raising m(x) to the power e to

form the cipher polynomial c(x) using

cm 5 (m<x))° u-odd (m. f(=<))

The decryption procedure uses

m(x) E (c(x))d modd (m, f(x))

to obtain the mssage polynomial back.

10.5.3.2 §y§tgm_Implemegt§tipg

This extended polynomial based REA system has been

simulated on the Prime Computer. The encryption/decryption of message/

cipher polynomials are performed using the Square and Multiply

techique given in Section 10.4.7.1. The listing of the program is

given in Appendix 14. The cipher polynomial is transmitted to the

receiver by the sender in the form of a vector. The coefficients of

the cipher polynomial are sent to receiver, separated by a space

starting from the lowest power coefficient. The receiver reconstructs

the cipher polynomial and decrypts it to recover the message. An

example showing the various parameters involved is given below:
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Exaflle

Letm=pp2=5.7=35. Hence2.=2
1 4 2

Letf(x)=x +2: +1

f(x) (mod 5) ‘ f1(x) = (x2 + 4x+ 1) (x2 + x +1)
£(x)(mod 7)5f2(x)= (x2+5) (x2+3)
Therefore, ¢m(f(x)) = (52 - H2 (72 - 1)2 = 1327104

The coding exponents e and d are chosen to be e = 6005 and d = 221

where ed 3 1. (mod 1327104)

Let the 35-ary representation of the message to be encrypted be

(18 9 30 23), (4 21 13 7) where the message is broken into blocks of

size 4. That is,

lIl1(X) 4x3 + 21x2 + 133-: + 7 and
rn2(x) 18x3 +'9x2 + 305-: + 23

Encryption:
. . — 3 2 22

cipher polynomial c1(>c) (4x' + 21x + 13:: + 7)
x3+1. 4x2+1 2x-0-21

cipher polynomial c2(x) " (18x3+9x2+30x+23)221 ITDdd(35,x4+x2+1)
8 x3+6x2+2Ox-+1 4

1 _modd( 35, x4+x24- 1 )

Decrypt ion:
6005

Message polynomial m1(x) (x3‘+14x%'l 2x-l-21 ) modd(35,x4+x2-'6-1 )
" 4x3+21 x2 +1 3x+7

Message polynomial m2(x) '-' (8x3+6x2+2Ox+l4)60O5_nndd(35,x4+x2+l)
‘ 1.8x3+9x2+3Ox-0-23

10.5.4 Discussion

'l'hus it is seen that the RSA cryptosystem can be extended

to polynomial rings. The difficulty of factorization of a polynomial

into its irreducible factors over a finite field does not in itself

provide the necessary security required for a public key crypto-

system. It is necessary to incorporate the factorization of an

integer into its primes by considering the modulus polynomial f()<)

over (m—square free composite integer) to enhance the siécitrity
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of the system. This gives a system which is comparable in strength

to that of the RSA system over integers. Furthernnre, from crypto-

graphy point of view, it is required that both the modulus polynomial

f(x) and the modulus integer in be square free. This is very nmch

like the RSA system over integers in contrast to the matrix RSA

system discussed in Section 10.4.

10.6 Extension of RSA Szstem to Matrix Rings with Polxn-_1omial
Elements

In this section, the aim is to combine the two systems

discussed in Sections 10.4 and 10.5, thus extending the factorization

trapdoor concept to matrix messages conta:i.ning polynomials over a

ring as their elements. The approach adopted in this Section

parallels with that used in Section 10.4.2. If the ring of all nxn

matrices over R is considered, then it is seen that the ring contains

nilpotent elements when n‘)I=. -As mentioned in Section 10.4.2, from

cryptography point of view. it is necessary to avoid such nilpotent

elements to satisfy the condition Mr“ E M for some. r;>.o. As in

Section 10.4.2, to begin with the set of non-singular matrices is

investigated; then the set of upper triangular matrices is considered.

10-6-1 flow;-sisgsl.-sr_Mstsises 9.vs.=_R_=_2T_><l/imifixl)

The matrix messages are represented as M(x) instead of

M, to indicate that their elements are polynomials in a single

indeterminate x. Hence M(x) is written as

mn<=<> ‘°1..<=<1

m12(x) _ m2n(=<)- o

0 0

mm”) . . mnn(x)

The complete public key system using such messages is developed in

four separate stages.

10.6.1 .1 §_tggg l_

In this stage, the elements miJ.(x) in (10.37) for all i. 3‘
— 217 -
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R1 = ZLEILI where
fl1(x) is an irreducible polynomial in Z/pZ of degree sl (more
precisely, here Rlis a field). That is, the group Mn formed by

lsign and lgjgn, are to belong to the ring

non-singular message matrices of order n with elements in R1 is
considered. In this instance. non—singu1arity implies that the

determinant of M(x) is relatively prime to p and fl1(x). The order

of the group formed by such nxn non—singu1ar matrices can be obtained

in a similar fashion as in the case of non—singu1ar matrices over

z/pz discussed in Section 10.4.2.

The order of the group formed by these matrices is given

'by the expression below, where # denotes the order.

# G—(nn #'G-- (“I Fpgl)Z x )
(II1(><))

Zip; x] is a finite field of p51 elements
(Il1(=<))

#6. (n. 1-P51) = E151 )“ - 1] [(1:51 >" — (psmj

[(p51)" _ (p‘°’1)"‘1:| (10.38)
using (10.4) in Section 10.4.2.

If such non—singu1ar matrices are used as messages then

one can form a conventional cryptographic system where the secret

key contains the modulus p itself. The encrypting (e) and decrypting

(d) exponents can then be determined using

ed E 1 mod (# GL(n,Fpsl))

The encrypting key is therefore (e,p,n1(x),n) and the decrypting key

is (d,p,fi1(x),n). None of these keys can be made public and the
encryption and the decryption procedures are given by

CM (M(><))° modd (P.H1(3<))

Mm (c(x))d mad (p.H1(x))
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respectively where M(x), C(x) E Mn(R1)

10.6.1.2 §t§gg g

The above system can be modified to include the public key

property as follows:

To begin with, the modulus polynomial is allowed to be equal to the

product of distinct irreducible polynomials. This will result in a

public key system analogous to the original polynomial scheme

considered in Section 10.5.2 whose security depends upon the difficulty

of factorizing a composite polynomial to irreducible factors. Let
1'

r(x)=| [ 9i(><) (mod p)
i=1

where the polynomials gi(x) for lsisr are irreducible in Z/p2. The

polynomials gi(x) are of degrees si for lsisr respectively.

The order of the group formed by the non—singular message matrices

M(x) with elements in the ring R = §[EzL5l can be obtained by the2 (f(x))

application of the Chinese Remainder Theorem as follows:

#(;_(n'  )_ #G_(n’ Q _..9
(f(X)) (91(X)) (9r(X))

#_GL(n,Fps1 6 ... $ Fpsr)

_iLi— #61-(nu F
i=1 psi)

Substituting (10.38) into (10.39) gives

Z
r _ . _ _

#c:.<n.—{%,[—’§§ ) = 1| [(p5i)“-1] Epsn“-<p‘i):|... [(1:51 )"-<p5i>“‘1]1=

Thus

°"’°‘ E 1 modd <p.r(xn(M(X))

and hence the coding exponents e and d can be calculated using

ed‘=' 1 (mod (,i¢ca.(n,

(M(x>)°“ E M(><) modd<p.f(><)>
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It is seen that in this system. the order depends on the degrees of

the irreducible factors gi(x). (cfi section 10.5.2). Thus this
system can be used as a public key system with the public encryption

key (e,p,f(x).n) and the secret decryption key (d,p.f(x).n).

The encryption and decryption procedures are given by

cm ' (M(x))e mdd (p.f(xn

— (1
MM (cm) modd (p.f(x))

respectively, where M(x), C(x)E;Mn (R2).

The security of this system is dependent on the difficulty of

factorizing the modulus polynomial f(x) in Z/pl. This is so because

if the degrees of the irreducible factors of f(x) can be found then

the order of the group can be evaluated and hence the secret decoding

exponent d can be determined. For the reasons mentioned in Section

10.5.2.2, this does not give rise to a secure public key system.

10.6.1.3 §tagg 2

The next logical step is to consider the case where the

modulus polynomial f(x) consists of powers of irreducible polynomials

as its factors, that is, f(x) is a non-square free polynomial. Note

that in contrast to the system considered in Section 10.5, here it is

allowed to have a non—square free f(x) because the nilpotent elements

are being eliminated by considering only the non—singular matrices
. 2

over the ring R = -zeéizl
3 (f(><)) '

Z/pZ[x]rather than in Z[x],
let

Considering the factors of f(x) in

fix) ‘ f(x) (mod p)

. 1-'

fix) ‘TT gi"i(x) (mod p)i=1

where gi(x), lgigr, are irreducible polynomials in z/pz with degrees

51 respectively.

The order of the group formed by non-singular matrices M(x) over the

ring R3 is evaluated as follows:
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Using the Chinese Remainder Theorem,

2 [X] ‘5 zggbc] 9 ... 9 Z[§[X]

‘ ""’ (91b1(x)) (gr"r<x))

Letting T= Z/pZ[x] and pi = (9i(=<))
then,

b
GL(n,I‘/ 5 GL (n,T/pi 1) X ... XG. (n, T/-ox-.511)fix)’

where x denotes direct product.

To determine the order, # GL(n, T/pibi ), consider the sequence of
surjective homomorphisms, 9 i.

e i : ca. (n,T/pi) ———>> G1. (n.T/P14) 122

Under such a mapping an nxn matrix M(x) (mod pi) becomes M’(x)
(mod old) as shown below:

Mm (mod oi)--—-—.> M’(x) (mdpm)

Using group theory, for such an auto mapping 91,

#6:. (ml;/pi) = # <1 (n.T/Pi-1)- #(Kerne-1 ei)

The kernel ei consists of the set of matrices which are mapped to the
identity matrix I in (rnodp1'1), that is.

' 1

mh.(x) ' o (mod 9*‘) 1745 (10.40;

mn(x) - 1 (nndpi_1) isnsn (10.41)

There are pdeg gin‘) = psi possibilities 50: each of the equations
(10.40) and (10.41) giving rise to_ (psi J" total possibilities. Hence,

2

# <31. (n,1‘/pi) (p5i)“ # ca. (n,r/01-1)
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Therefore .

#sx.(n.I/Pb.) = (p'°‘i>“2“’i’1)- 1 # G..(n,'l‘/p) (10.42)

But T/p =  ) is a finite field of psi elements.1

Therefore using (10.38)

#cun.I/p) = [(p5i)"—1J Icpsi)“-(1:51)) [<p5i>“—<p‘i)" “J

Substituting this into (10.42) yields

5. nztb.-1) s. n s. n s. n-l
#6. n. Z[£L_J>< = (P 1) 1 [(13 1) -1]---[(13 1) -(P 1) ]b.

(91 1”” (10.43)
Thus r

.#cr.(n.54Ffl5J) _=| I #c:.cn.54‘£[—"—] > (10.44)
(9ibi(x))

(f(x))

i= 1

It is necessary to consider one further stage to complete the design

of a secure public key system using such non-singular matrices as
messages.

10.6.1.4 _S_tage 5

The final stage is to consider the elements m. .(x) in

1’ _ mz_f=_<.J
the message matrix man) in (10.37) to belong to the ring R4 - (fun
where

and pi. ls igt, are distinct primes

and the factorization of f(x) is given by

1.’.
- :.

fix) (mod pi) 3 fi(x) = giJ.bij(x) for 1.<i5t
i=1

Th‘? degrees of irreducible po1yno1::i.a1s giJ.(x) over 2/piz are sij
respectively. ‘

The order of the group formed by the nxn non-singular

, denoted by #a.(n, %Z?-,—E’)‘—)]- ), ismat:|::i.ces M(x) over the ring R4
evaluated as follows:
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The ring EM is_ isormrphic to the ring E-D-‘-1- ' Using the
(f(x)) (m. (x))

Chinese Remainder Theorem,

21):] Z|x| 9 ZDC] 9 ...6 Z15]

(I'n.f(x)) (P1.f(><)) (p2»f(><)) <pt.f(xn

Therefore .

21 1 ]

‘1‘“- @.‘?&‘n’ * *°”“' §r;°.‘?>:n’

Ppi[x]
G,_n_ ma.) G,_(,,,fi_J

where F is a finite field of pi elements.
pi

F ‘Ddpm

The order # G. n.fiJE=T)) has already been evaluated and is
given by (10.44) as’-

2. n

cpfia) “’ia“" [(pi‘i5)"-1]

[tpfij J“ - (pfij )“'l]

t Z.

1 2

) = I I I I (pi‘°’i:')" “’i:"” Dpisij)“-1]...
i=1 j=1

Ecpfij)" - cpfi5)““] uo.4s).

The order given by the expression (10.45) above shows that it is

dependent on the degrees of the irreducible factors of f(x), namely,

sij bij, as well as on the prime factors of the modulus m. namely _

pi, for all i and j. Thus when used as a public key system, this
provides considerably mare security than the system considered in

Stage 2. provided that the modulus m is chosen large enough. The

encryption and the decryption of messages are carried out in the

normal fashion using

cm 2 (Mtx))° mdd(m.f(x>)
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mm 5 (c<xn" n-odd (m.r(x))

where M(x), C(x) E Wk (R4)

and ed 5 1 (mod order)

and the order is given by (10.45).

Note that this system is a combined version of the systems developed

For the systems developed in the previous section, the

message space is restricted to contain only non—singular matrices.

But as mentioned in Section 10.4.2, the sender is faced with the

problem of determining whether his message matrix is non-singular or

not, to find whether it belongs to the message space. This poses

problems as the sender has no control over the matrix elements but

must accept what the plaintext dictates. Alternatively,as in Section

10.4.4,one can consider the_set of upper triangular matrices with

invertible elements along the diagonal as the mssage space. This

makes the construction of non-singular message matrices easier

especially when m is a product of a few large primes and f(x) is a

product of a few high degree irreducible polynomials. In such a

situation one can almostarbitrarily choose the diagonal elements

of the upper triangular message matrix to satisfy the condition that

they are relatively prime to f(x) modulo m. In particular, the

diagonal elements can be chosen to be elements in the ring Z/mz which

are relatively prime to m. If necessary, one can also use the

Euclid's algorithm to evaluate the god to test the relative primeness.

In this section, the set of upper triangular matrices whose

elements are polynomials over a chosen ring R forms the message space

of the developed cryptosystem. The four stages involved in developing

the complete public key system, similar to those ‘discussed in the

previous section, are now considered in turn. Note that in all these

stages, it is assumed that the diagonal elements are invertible

elements over the chosen ring R. This ensures that the message matrix

is invertible. A typical message matrix MA(x) is written as

-224-
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where A indicates that the matrix is triangular.

10.6.2.1 §tggg L

In this stage, the message space consists of upper triangular

matrices whose non—zero elements mij(x) belong to the ring R1 =
§£E§L5l where H1(x) is an irreducible polynomial in.Z/pz of degree
(111(x))
51. (That is, R is actually a field).1

The order of the group formed by such upper triangular

matrices over R1 can be found as follows:

Each diagonal entry may be any one of the polynomials which is

relatively prime to]I1(x) over Z/p2. The number of such polynomials
has already been evaluated in Sectio 10.5.2 and is given by the

Euler totient function ¢p (H1(x)) where

¢p(n1(x)) = (p-S1-1)

The remaining 5 n(n—1) superdiagonal entries of the upper triangular

matrix may take any value in the field %éE%&§% . Thus each of these1

entries has p51 possibilities as

§[EEL5l is a finite field of psl elements.
(H1(x))

. X

Thus the order of this group U (n. (H1(x))

# ” ‘“' % > = (P51-1)" (ps1>“"""/2

This can be used to form a conventional cryptographic system where

the secret coding exponets e and d can be found using

é _z1g_><1
ed 1(mod# u (n. (Him); )
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and the encryption and the decryption procedures are given by

c (x) E (M (x))° modd <p.H (x>>
A A 1

M-<x> E (cA(x))d mods (p.H1(X))A

respectively, where MA(x), CA(x) e Un(Rl)

10.6.2.2 §tg9g g

The above system can be modified to include the public key

property as follows:

Initially, it is assumed that the modulus polynomial

consists of a product of distinct irreducible polynomials modulo p.

That is,
1'

f(x) = I51 9i(x) (mod p)
i=1

where gi(x), lsisr are irreducible in Z/pZ.

The polynomials gi(x) are of degrees si, lsisr, respectively.

The order of the group formed by upper triangular matrices over the

ring R2 = %é%E%%l with invertible diagonal elements is evaluated as
follows:

Using the Chinese Remainder Theorem,

EZELL _ MEL].
# U ‘“' (f(x)§ ’ ‘ # U ‘"‘ (g1(x:)

-It

n U (n, Fpsl 9 ... Q Fpsr)

Each of the diagonal entries can be any one of the polynomials

relatively prime to f(x) over Z/pZ and is given by Qp (f(x)) where
I

¢p(f(x)) = TT(p5i_1) (See Section 10.5.2)i=1

The remaining El%:L) superdiagonal entries have ps possibilities each
where r

5 = E 5'
i=1 1

Therefore the order is given by

— 226 _
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#U (H, Z(f(xEx]) = [Sap (f(x))] n [(ps)] .n(n-1)/2

It is seen that in this system, the order depends on the degrees of

the irreducible factors of the modulus polynomial f(x) (cf Sectins

10.5.2 and 10.6.1.2). Thus this system can be used as a public key

system with the public encryption key (e.p,f(x),n) and the secret

decryption key (d,p,f(x),n). The coding exponents e and d are

calculated using

ed51(mod#U(n,  ))

(M (x))°d M (x) modd (p,f(x))
A A

where M (x) 9 Un (R2)A

For the reasons mentioned in Section 10.5.2.2, this does not offer a

secure public key syste.'

10.6.2.3 §t§gg Q

The next step is to consider the case where the modulus

polynomial f(x) consists of powers of irreducible polynomials as its

factors. that is, f(x) is a non—square free polynomial in Z/p2.

. 1‘

f(x) 5 -[]_ gi°i(x) (mod p)
i=1

where gi(x), 1515:, are irreducible polynomials in Z/pZ with degrees

si respectively.

The order of the group formed by upper triangular matrices over the

ring R = §[EEL§l is now evaluated.3 (f(x )

Using the Chinese Remainder Theorem.

zggtx] '-—= zggtxl e...ea zgg[x]

“‘*” (g1b1<x)) (grbr(x)>
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_n2L;<_1,e,__.,, §.4;sL>_<1,
(g,“’1(xn (g,”r<x))

Using arguments similar to the ones given in Section 10.6.2.2,

# U (n. éffifia = [sap (f(x))]" <p5)—“‘"‘”’2
I.’

= .b.
S 1:15‘ 1

r

¢P(f(x)) = I I [psibi - p5i‘bi'1’] (see Section 10.5.2)i=1 -

10.6.2.4 §t§gg g

Finally the group formed by the upper triangular matrices

with invertible diagonal elegents over the ring R4 = §%%%&§%
considered. The inodu1us m=;i;f1' pi°‘1, where pi, 15151;, are
distinct primes and the factorization of f(x) is given by

I’ b1. . .

f(x) (mod pi) E fi(x) = | | gij 13(x) for isist.=1

where the degreesof the irreducible polynomials gij(x) are sij
respectively. Using arguments similar to the ones given in Section

10.6.2.2, the order of the group is given by

# u (n. %Z§> = [¢n,<f<x>)]" (m5>“‘“""/2

where ¢m (f(x)) is obtained from Section 10.5.3 as

S
III I I. '

- ---" 1 .

¢u;‘fe""” 1-‘rpi I I I I tpfijbij - pfi:""i5'“)
1:1 i=1 j=1

Note also that by substituting n=1 in the expression (10.45) gives

#61. (1,(Z["]en) = ¢m(f(x)) U‘-3_=1sVii)
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Thus the order is seen to be dependent on the degrees of the

irreducible factors of f(x) as well as on the prime factors of m.

Thus this system can be used to provide a secure public key system

provided the modulus m is chosen large enough (say 200 decimal digits,

see Section 10.2). The encryption and the decryption procedures are

given by -

c (x) ‘ (M (x))° modd (m.r<x))
A A

M (x) ' (c (x))d modd <m.f<x)>
A A

where MA(x), CA(x) g Un(R4)

and ed ' 1 (mod order).

The public encryption key is given by (e,m.f(x),n) and the secret

decryption key is equal to (d,m,f(x),n).

10.7 Discussion

In this chapter, the factorization trapdoor concept has

been extended to some matrix and polynomial rings which are isomorphic

to a direct sum of finite fields. This has resulted in a general-

ization of the RSA cryptostructure to matrix and polynomial ring

message space. It is seen that some of these extended systems can

be made at least as secure as the original RSA system over integers

modulo m. Other features such as the use of non-square free moduli

seem to be possible with some of these extended systems in contrast

to the original RSA system over Z/m2. Investigation of such systems

indicate that factorization trapdoor structures required for the

design of public key system can be found in rings other than the

ring of integers modulo m. From a practical point of view, it seems

that the high complexity of such systems may favour the implementation

of the factorization trapdoor in the ring of integers.
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CHAPTER 11

FACTORIZATION TRAPDCDR FROM IDEAL POIN1‘ OF VIEW

General

In addition to considering the factorization trapdoor

system from an 'element' point of view, the trapdoor concept can

also be treated from the mre general ‘ideal’ point of view. In

particular the integer, polynomial and matrix based RSA factorization

trapdoor schems considered in the,previous chapter are briefly

re—examined from the ideal point of view. some of the principles

of the ideal theory are used in the next chapter in further extending

the trapdoor concept to such algebraic number fields as the ring

of Gaussian integers and some other quadratic fields:

To begin with, some basic definitions and principles of

the ideal theory are stated (without proofs) which will be required

in subseuent sections. A detailed treatment of ideal theory can be

found in a number of mathematical textbooks in particular in [60, 61].

Basic Concepts

11.2.1 ideal

A set J of one or more elements of a ring R is called an

ideal in R if and only if it has the following properties:

(i) If i and j are eleents of J, then i I j is an element of
J.

If i is an element of J, then for every element r of R,

ir and ri are elements of J.

11.2.2 §pg95ugpEe_
Let J be an ideal. Two elements a and b are defined to be

congruent modulo the ideal J if a-b is in J, denoted by a — b (mod J).

11.2.3 Principal Ideal

Let R be a commutative ring with 1 and 'a' be a non—zero

element of R. If A is any ideal which contains the element 'a', then

— 230 —
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A must also contain all the elements of the form ra where re R. An

ideal generated by a single element 'a' of R is called a principal

ideal and is denoted by <a> . An integral domain in which all ideals

are principal is called a principal ideal domain (PID).

11.2.4 Prime Ideal

If R is a comutative ring with 1, an ideal p in R is said

to be a prim ideal if and only if ab 3 O (modgo) implies that

a E 0 (mod 0) or b E 0 (mod p ). An alternative definition of prime

ideal is that it is an ideal p other than the unit ideal with the

property that for any two ideals A and B if p|AB then plh or p‘B.
Note that an ideal p is said to ‘divide’ an ideal A if there exists

an ideal C such that A = Q3.

11.2.5 Product of Ideals

The product AB of two ideals A and B is defined as the

ideal C ‘generated by all products‘ ab where a e A and b e B.

11.2.6 ynigge_Factp£igati9n_p£ ldgals_

Every ideal in a Dedekind domain [60] can be factored into’

the product of a finite number of prime ideals and this representation

is unique.

11 -2-7 Eastgrization IraPé°2r_

Using the ideal factorization theorem (Section 11.2.6),

let the decomposition of a non—square free ideal A be

S

A = pl

5

1 ... pr r

The number of residues modulo the ideal A is given by the norm of the

ideal, N(A). The number of invertible residue classes modulo the

ideal A is denoted by_fiTA) in a similar manner to the Euler totient

function ¢.

Theorem 1

If A and B are relatively prime ideals then

flag) =_@'ZA) . Eta)
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The congruences a = c (mod A) and a 5 d (mod B) establish a one to

one correspondence a 22 (c,d) between the'residues‘§ prime to AB and

the pairs (c,d) whose two members c,d range over the residues prime

to A and B respectively. Hence the theorem 1 follows.

Theorem 2

prime ideal then,

(Nois {1 - 1/Np }

(Np-1) wms"

A complete proof is given in [61]. But it can be proved using a

method similar to that which is employed to calculate the Euler

totient function ¢(ps) where p is a prime in Z. The complete system

of residues with respect to o is represented using Np integers

O,1,...p~1. Of these only 0 is not prime to p. Hence_§?p) =

Np—l = Np(1-1/Np). As N(AB) = N(A) N(B) for any two ideals A and B,

it is seen that N(p2) = (Np)2. with respect to Q2 there are pg-p
incongruent classes that are relatively prime to p and hence jr(p2) =

(Np)2 [l—§% ]. Use of induction, gives Theorem 2.

Using theorems 1 and 2, if

A =p151 orsr
r ,

_¢'<A) = MA) I I (1-9 ) (11.1)
i=1 "91

The expression (11.1) can be used to give the generalized version of

Fermat's theorem for ideals, namely,

if‘a is prime to an ideal A then a§?A) 5 1 (mod A)

If A is a prime ideal, ie, A = p, then

Np—l
a - 1 (nod p)

Thus the relatively prime residues modulo A form a group of order

§('A).
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Some of these concepts are now applied to the specific cases

already looked at such as the ring integers, the ring of polynomials

and matrix rings.

Ring of Integers

Let 2 be the ring of integers. If m is a fixed integer in

the ring Z then the ideal <m> contains just the integers which are

divisible by m.

Theorem 3

In the ring Z, every ideal is a principal ideal.

' Let A be an ideal in Z. If A is the zero ideal then A is

the principal ideal <0> . If A # <0> let m be the smallest integer

in A. If n is an integer then using Euclid's algorithm, we have

n = q + r

where q and r are integers and 0Sr<m.

Now if n is an element of A, then n—qm is also in A. That is, r is

in A. If r is greater than zero, then it contradicts the assumption

that m is the least positive integer. Therefore r = 0, that is,

n = qm. So all elements of A are of this form and hence A = <m>.

The prime ideals in Z are therefore precisely the ideals <p>

where p is a prime (together with the ideal <0) and the ideal Z).

If the unique factorization of m into primes over 2 is

given by

m = pl ... pr for some r; 2 (m assumed to be square free)

then one can view the ideal decomposition of <m> into prime ideals

< .> a
P1 5

<nD =<p1>.,_ (pr)

The order of the group formed by relatively prim residues modulo <rn>

is given by the Euler totient fuction for the ideal <m>,jRm>, where
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§<m> = §<P1> ---j-<P1_>

2T<pi> = N<pi> -1

N<pi> is the norm of the ideal <pi> and is equal to the number of
residue classes nndulo <pi> given by pi . Hence

éT<n» (P1-1) ... (p,—1)

afi (m) 3 1 (mod <mD)

This gives the familiar RSA system over the integers looked at from the

ideal point of view.

11 . 4 Polmomial Rings

If F is a field and x is an indeterminate, then again

every ideal in F[x] is a principal ideal. The proof is very mch

similar to the one given for the ring of integers Z (cf.Theorem 3).

In this case, m(x) is chosen to be a polynomial of least degree in a

given ideal and the Euclidean division algorithm for polynomials is

used. Hence a non-trivial ideal A of F[x] is of the form A = <f(x)>

where f(x) is a non-zero monic polynomial of minimal degree in A.

The prime ideals in this ring are those which are generated

by irreducible polynomials f(x) over F. If f(x) is comosite, then

let the unique factorization of f(x) into irreducible polynomials

9i(><) be

f(x) = 91b1(x) .-- 9rbr(x)

where the degree of polynomial gi(x) is 51.

Then one can View the decomposition of the ideal generated by f(:-c)

into ideals generated by gibi(x) as

-234-
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b b

< f(x)> = < 91b1(X)>- < 92 3(X)>--- < gr r(X)>

From Theorem 2, we have

_,fa(pb) = (Np)b_1 (~94)

number of elements in the residue class ring F[x]/agi(x)>

number of polynomials in F[x] of degree less than si

lF|"i

Hence _ _ _

2T<gib:(><)> IF! 51(1)‘ 1) {Ir-‘I51 - 1}
|Fl sibi _ lFlsi(bi—1)

This expression is same as the one obtained earlier in Section 10.5.2

by considering elements in the field.

The order of the group formed by residue classes modulo <f(x)> is

obtained using Theorem 1,

f<f(x)> 13-<g1b1(x)> ... Q-<grbr(x)>
I.’

-E: {‘F|sibi -|F[si“-3i_1)}

Matrix Rings

Let us now reconsider the matrix system discussed in

Section 10.4 to see whether it is possible to improve it using some

ideal theory principles.

The ring of nxn matrices over a field F, M;(F), has no
non—trivial ideals. The only ideals are the zero ideal and the whole

ring itself. Hence one cannot consider the ring M;(F) for our
'purpose. One can consider two possible alternatives.

(a) The first approach is to consider a subring. say

the ring of nxn upper triangular'matrices (including the diagonal

T1,: - See note on p.243 " 235 '
Page235
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elements) over F, Un(F). This ring has many ideals. For instance,
0 ?

J = 0 O is an ideal in Un(F)

? - denotes any arbitrary elements in F.

(b) The second aproach is to consider matrices over

a comutative ring R rather than a field. Then there is one to one

correspondence between the two-sided ideals in R and the two-sided

ideals in Mg(R). This may give rise to a trapdoor coding system in

M:IR). As will be seen later. the system obtained using this approach
is same as that already discussed in Section 10.4.2.

11.5.1 .5pEroach (E)

Cbnsider the ring of 2x2 upper triangular matrices with

adfixrary diaonal elements over a finite field, R = U2(Fp) where p
is a prime. Let J be an ideal generated by an element M. Then J

is the smallest ideal containing the element and by definition is

equal to

.0

as r., ri vary over Rall finite combinations}1

The element M must be chosen to be non—invertible otherwise it is

possible to choose ri = M and ri‘ = I (identity). This results in
the ideal J containing (N71 M I) = 1. Hence the ideal must contain

ril for all rig R. That is. J = R. This contradicts the assumption
that J is a proper subset of R. Hence no element of the ideal must

possess multiplicative inverse. Let us consider X to be a generator

matrix in U2(Fp) where X is equal to

_ 1 0x'(o 0)
The ideal J is

J = 1 07) u v0 O 0 0 w

where a, b, c, u, v, w 3 Z/p2, p prime.

That is,
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E (an av)O 0

Let x = au and y = av, x. yeZ/pl, then

a b

O C

xy uv

jr 2 J
O 0 0 w

The number of elements in the ring R = u2(z/pz) is equal to p3 as
each of a, b and c has p possible coices. The order of the ideal J

is p2. Hence the order of the quotient ring R/J is equal to p. Thus

the ring R/J is isomorphic to Z/pZ. From group theory, in general,

the order of the ideal J is ‘a factor of the order of the ring R. If

the ring R = U2(Z/mz) where In is equal to product of primes is now
considered, then R/J is isonnrphic to the ring 2/mz. If In is square

free,R/J forms a trapdoor system.
Let X be a generator matrix of the form given below

g 0
(11.3)(0 0)

If gcd (g,m) = 1, then the ideal J becomes { (3 36)} which is same
as the one given in (11.2). Hence assume that god (g,m) = g 5! 1.

For instance, m could be equal to the product of two large primes p

and q and some 9. , that is, In = E.p.q. Then g could be equal to

1.5 where gcd (5.13) = 1 and gcd (s,q) = 1. The ideal J then consists

of elements of the form given below
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where X, y e T = Z/mz

The residue classes of the quotient ring R/J are of the form

a b a (mod g) (mod g)

0 c c (mod m)

Progsition 1

The number of elements in the quotient ring R/J is given

by 2

# R/J = ml

If two members of the ring R are congruent to each other

nndulo J, that is.

ab

4
0c 0 c

where a, b, c, a’. b‘, c‘ e 1‘ = 2/mz

, then this implies that

a a’ (mod g)I

(mod 9)I
C

The number of possible choices for the element c is equal to m.

Let k be equal to the number of possible choices for elements a or b.

Then 1: is equal to the number of residue classes nnd g1‘ which are

distinct in '1‘. In other words, k is equal to #1‘/g‘I‘. Consider the

mappings

3': Z/Kernel 9

Z/Kemel 6 = 2/ {x e Z; a(x) 8 9'1‘ }

x 5 gy (mod :11) is soluble for

x 5 0 mod (gcd (g.m))}
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That is,

T/gl‘ ; Z/2,2 where 1!. = gcd (g,m)

.'. #1‘/gl‘ _= 9,

. . . 2
Hence the number of residue classes of the ring R/J 15 mg, .

As the order does not depend on the factorization of the modulus m,

there is no trapdoor as such yet. But let us now consider the invertible

residue classes mdulo the ideal J. that is, the diagonal elements a and

c are chosen to be invertible in the ring T/gl‘ and '1‘ respectively.

Progsition 2

The number of invertible residue classes modulo J is given by

99(1) - 1 - Wm)

The invertible residue classes of the ring 12/.) are of the

(a (mod g) b (nod g))0 c

where a, b, c E T = 2/1112

and such that a is invertible (mod 9) and c is invertible (mod m).

The number of invertible residue classes mod In is given by the Euler

totient function ¢(m). Hence the number of possible choices for the

element c is equal to ¢(m). The element b can be arbitrarily chosen

(trod g) and the number of possible choices is equal to 9. from

Proposition 1 above. Let k be equal to the number of possible choices

for the element a. From above, it is known that '1'/g‘1' 5 2/92.

Therefore, k is equal to the number of invertible elements in 2/22,

that is, ¢(fl,) . Hence the number of invertible residue classes in

12/.) = 95(2). 9. . ¢(m).
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Thus in practice if m is equal to the product of a few large primes

a.nd 2. which is itself equal to the product of a few reasonable size

prime .integers, then the elements a and c (#0) can be chosen arbitrarily

provided they are -relatively small compared to m and R. .

The above arguments can be extended to the case where the

ideal J is of the form

gfil gxzl - 9*“

O O O

O 0 O

The order of the quotient ring R/.T,that is, the number of residue

classes modulo J is now given by

in mn in-1)/2

The number of invertible residue classes modulo .1 is given by

11-1 m(n—2)(n-1)/2Ord. = ¢(g) {¢(m)} "'1 9. (11.5)

11- 5-1-1 912ise_°£ 99295310: L-=_t.=i9<.

when deciding on a generator matrix X, the following points

must be taken into account.

(5.) The smaller the generated ideal J, the larger the quotient

ring R/J. That is, the smaller the order of the ideal J

is, the greater the number of residue classes in 12/.) thus

giving rise to a larger number of possible messages that.

can be used in the system.
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For the encryption and decryption procedures to be relatively

easy, the generator matrix nmst have a simple form; hence

the choice of the matrix X in (11.3). For instance, another

simple generator matrix X is given by

O 1

X = o 0

The ideal J is then given by

0 x

J = o o

where x EZ/mZ

Hence the residue classes of R modulo J are of the form

(mod .1)

R/J E Z/mZ ea z/mz

This is equivalent to 2 scalar RSA prototype systems.

(iii) Nbre generally, one can use more than one generator matrix

to generate the ideal J but this makes the whole system

more complicated without increasing the security.

arbitr arbitra

7 Z element ( X1 . . . )fi< ) elementin R . in RGenerator matrices

11.5.1.2 §y§_t_e_m_Dgsi._g'p_

A factorization trapdoor system can therefore be constructed

as follows:

The message space consists of nxn invertible upper triangular

matrices (including the diagonal elements) modd (m,J) , wherer

In = piai and the ideal J is given by (11.4). ‘I."he~encryption
procedure raises the message matrix to the power.,e giving the cipher

- 241 ’—
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matrix C as

c ' _M° (m3dd(m,J))

The decryption procedure is given by

" (mad (mm)

The coding expoents e and d can be determined using

ed _ 1 (mod ord.)

where ord. is given by (11.5).

The public encryption key is given by (e,m,n,J) and the secret

decryption key is (d,m,n,J).

‘As the order depends on the structure of m, the security of

the system again lies in the difficulty of factorization of the

modulus m. But note that if the size of £ is is made large then

although the opponent needs to factorize 2 to be able to calculate

¢ (1) in (11.5), the factorization of m and hence the computation of

¢(m) is made that mch easier. This is because as J is made public,

the opponent knows l,the gcd‘(m,g) and hence he achieves partial

factorization of % = pq. Larger the size of 2 smaller the value of
1':

Thus it seems that the process of performing modulo an ideal

as indicated above does not appear to increase the security of the

trapdoor system but instead disguises further the basic trapdoor

system.

11.5.2 approach (b)

Let us first state an important result about two—sided

ideals in complete matrix rings. For proof refer to [62].

If M is a two—sided ideal in the ring R, then the ring M;
of all matrices of order n over M is a tvo—sided ideal in the ring

Mlof all matrices of order n over R.
In our case, R = Z and assume m ‘ pq where p and q are

distinct prims in 2. Then <nD , <pD and <q >are ideals in Z and

M;(mZ), W:(pZ) and M:(qZ) are all ideals of Mgfzj using the above

-242-
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result. Further the ideal factorization of< m> in R is given by

< m> = < p > . < q >

Using the one—to-one correspondence between the two-sided ideals in

R and in M:(R), gives

where JP, Jq and Jm denote the ideals formed by M:(pZ), M:(qZ) and
M;(mZ) in the ring MI-:(Z).

Although a trapdoor system is possible in Z/mz when m is

square free.there is no corresponding system in the case of M;(R).
This is due to the fact that the quotient ring given by P-‘ln*(Z/mZ),

M;;.(z) »=- M;-(2/mz) 5 M; (2/92) ea M; (2/qz)
* mZ.

Mn( )

is not iscmnrphic to a direct sum of finite fields whereas the

quotient ring Z/<m> is isomorphic to Z/<:p> and Z/<q>. As seen earlier

in Section 10.4.2,M;(Z/pz) is not a finite field as it contains
nilpotent elements. Thus a corresponding trapdoor system is possible

if and only if the nilpotent elements are eliminated. This has

already been considered and it gave rise to the trapdoor system in

matrix rings discussed in Section 10.4.2.

Note: Mn*(R) — Ring of all nxn matrices over R

Mn(R) — Ring of non-singular nxn matrices over R
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C H A P T E R 12

FACTORIZATION TRAPIIDOR IN ALGEBRAIC NUMBER FIELDS

General

The ring of Gaussian integers is initially considered with

a view to extending the factorization trapdoor concept to algebraic

number fields other than rational integers 2. Then the more general

quadratic fields are briefly investigated.

12.2 Factorization ‘Hair System in Gaussian Inteqers

12.2.1 gi@__o£ <_3_ags§ia_n_Igtgggr§

Before considering the design of the factorization trapdoor

system in this ring, it is useful to describe very‘ briefly some of

the properties of Gaussian integers. A detailed treatment of

Gaussian integers can be found in [ 63, 64, 65] .

Let i = E and consider the set of complex numbers Z[i]

defined by [a+bi| a,b E2 ] . This set is closed under addition and
subtraction. Moreover if a+bi, c+di E Z[i ]. then (a+b i) (c+di) =

ac+ad irbc i+bdi2 = (ac—bd) + (ad+bc )1: Z[i 1. Thus z[: 115 closed under

multiplication and is a ring.

The norm of an element, (1 = a-I-bi, in Z[i ]is defined to be

equal to 3.3 where 3 is the complex conjugate of a . That is,
Na: (a+b i)(a—b i) and hence Na: a2+b2. Further it is seen that

N(aB ) =(NoI).(NB)as N(aB) = (as) . (1%) = (ca) (33).

An integer in Z[i],a , is called a unit if 1 is divisible by

a . Hence if a is a unit both (I and 1/u are integers in Z[i ].

Lemma 1

The norm of a unit is 1 and any integer whose norm is 1 is

a unit.

If a is a unit thenc! I1, that is. 1 =aB and so 1 =

NuNB. This means that Na[1 and hence Na = 1. Ifa = a+bi, then

1 = a2-I-b2 = (a-4-bi) (a.-bi), that is, (a+bi)_ 1. So (a+bi) is a unit.

The units in Z[i ]are 3 1, + i as the only solutions of a2+b2=1 are
a=+l,b=O;a=O.b=:_1.

A prime H is an integer, not- 0 or a unit, divisible only

-244-
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by the numbers associated with itself or with 1. In Z[i], a prime

has no divisors except the eight trivial ones, namely. 1.11 , -1.-n’ ,

1, in, -1 and -111.

Lemma 2

An integer whose norm is a rational prime is also a prime.

For suppose that Not: p and thata = wherea .51: B2 E2-[1].

Then p = Not._= N81 N32. Hence either NB1 = 1 or N82 = 1 and either

31 or B 2 is a unit; and therefore (1 is a prime.

Lemma 3

If H is a prime in Z[i],then it divides exactly one

positive rational prime p.

N1] = HE’ and so IIINII. Let the prime decomposition of N]'[

in 2 be NH = pl ... pr where pi's (lsisr) are distinct positive
primes. Then Hip]. ... pr. That is. II divides one of the primes pi.

It cannot divide two primes pj and pk. If so. then one can find two
rational integers 2.3. and Bk using Euc1id's algorithm such that
2 .p. + Slkpk = 1. If H|pj and Hlpk then 1I|1. So 11 is a unit not aJ J

prime contrary to the hypothesis.

Lemma 4

Any integer, not zero or unit, is divisible by a prime and

can be expressed as a product of primes.

If a is an integer, not a prime, then

(1 =B1B2 , NB1>1, NB2>1, Na Nfi1N% and l<Nfi1<Na

If 61 is not a prime, then

B1 =83B4, N%>1, NB4>1, N81 - N33 N34 and 1<NB3<NB1

This process can be continued so long as at is not a prime. Since

Na , N81, N62 ... form a decreasing sequence of positive rational
integers, this must come to a prime gr. Thena = = 323334 = ...

=§ B3 ...B1_ and soB1__Iu,. Therefore now it is assumed that at is
and the above process can be

divisible by a prime II 1 and or = H In 1

repeated for a 1 .
- 245 ..
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In Z[i ], the representation of a as a product of primes is

unique as in Z (except from trivial variations).

The unique factorization of integers in Z[i] is equivalent

to the principality of all ideals in it [63]. That is, Z[i] is a

principal ideal domain. The argument to show this is very much

similar to the one used to prove all ideals are principal in the ring

of integers 2. Here instead of choosing the least positive number,

the element of least positive norm is used. The prime ideals in

Z[i] are therefore the ideals generated by primes in Z[i] .

'13-2-2 29219.0: Irspso-;r_~.C2di_ns §>rstsm_i2 «'_5Li_L

As before, 0! E B nnd < 7 >,wherer! .3; Y E Z[i], is defined

to imply that C! - B is in the principal ideal< y> , that is,cr - B

is divisible by Y.

Fermat's theorem in Z[i] can be stated as follows:

If 111 andflz are relatively prime then

_¢'<]'[2> _
I11 = l mod<l'[2>

where the Euler totient function §<II2 >= N I1-2-1

Now if an ideal <m >generated by a Gaussian integer m is considered

whose decomposition is

m =II1 ...IIr

where Hi for lsisr are distinct primes in Z[i], then the number of
invertible residue classes modulo <m >is given by fan)

fl<m> = P. <I12> . . . _§<II r> (12.2)

In order to‘ calculate the order _§'<m> , one needs to compute NII.i
for all i.

Using Lemma 3, let the Gaussian prime 1'[ divide a rational

prime p. ie, I[|'p. Then NlTlNp. But Np = p2. Therefore NIE-= p or
NH‘-‘P2. That is, if11=a+bi, then a2+b2=por p2.

Case 1 .: 25 3,§nnd 4}
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Since p is odd, one of a or b mst be even. the other odd.

Otherwise, the sum of their squares would be even. Let a = 2x and

b=2y+1. Ifa2+b2=p1'.hen

p 4><2+(2v+1)2
2 2

4(x +v +y)+1

1 (mod 4)

whereas to begin with,the assumption was p — 3 (mod 4). So in this

case, only a2 + b2 = p2 is possible and NH Np = p2. That is. the

rational prime p stays prime in Z[i] .

Case 2 : E 5 2 (mod 4)

p = 2 is the only prime which falls into this class and

from cryptography point of view, this case is not interesting.

(NH = 2).

Case 3 : E 5 1 gmod 4)

Here p is of the form 4k + 1 where k is any rational integer.

2+1)=<n+i>Then p|n2 + 1 for some rational integer n. But (n

(n — i) and as Hip, H divides (n + i) (n - i). But p does not divide
(n + i) or (n — i) for otherwise one of n/p 1 1/p i would be a

Gaussian integer; this cannot be possible as 1/p is not a rational

integer. Hence H and p are not associated and NH # Np. So a2 + b2

2 + b2 = p is possible, ie NH = p.f p2 and hence only a

The system desiger first chooses primes pl, p2,....pr

randomly for some r;2 such that pj — 1 (mod 4) or pj 5 3 (mod 4),
for lsjsr. Then he computes the norm of each of the Gaussian primes

nj using NR5 = pj or pjz. The orderJ§en> can then be calculated
using

I"

_§'<m> = W (NII.—1) ' (12.3)
:'=1 3 -

The coding exponents e and d required for encryption and decryption

procedures can be determined using

ed 5 1 (lnodfi-.<m>) (12.4)

The public encryption key consists of (e, m) and the secret decryption

key"is (d, m) where m 5 Z[i]. As the desiger is required to make

_ 247 _
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In public, to obtain 111, he needs to solve equations of the form

for Jéjsr

and]I.=a.+b.i.
J J J

. . . 2
Consider the problem of flndlng a and b in a + b2 =

p or p2 given p (system designer knows p). The subscript 3' has

been dropped for convenience.

Case 1 : p2 where p 5 3 (mod 4)

This implies that

a2 +b2

Suppose a if 0 (mad p),- then

b 2 _

1 + (3) - O (nod p)

Letting X = b/a, then

1 + )8 0 (mad p)

‘x2 .1 (mad p) . (12.5)

For the congruence (12.6) to have a solution, -1 must be a quadratic

residue modulo p (Section 12.3.2). That is, the Legendre Symbol

('—;) must be equal to 1.

:; 2 _ (p—1)/2
( P) ( 1)

As p 5 3 (mod 4), p = 4k + 3 for some rational integer k

ie, p-1 = 41-: + 2

Therefore» i

(_1)(p—1)/2 =' (_1)2k +

Thus when p 5 3 (mod 4), the congruence (12.5) cannot be solved for

a and b if a S 0 (mod p). 1‘hus'a' must be equal to 0 (mod p). This

implies that the only solutions of (12.5) that are possible are:
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Ca5e2: =pwherep§1(rnod4)

Method 1

Again assuming a $1 0 (mod p) and letting X = b/a,

2
1+X §O(modp) (12.8)

For the above congruence to have a solution, -1 must be a quadratic

residue modulo p , ie,

(_1

As p 5 1 (mod 4), p — 1 = 41: for some rational integer k.

Therefore, (—1)(p_1)'/2 = 1.

Hence there are solutions of (12.7) for which a, b ¥‘ 0 (mod p).

solutions to the congruence (12.8) are given by

(1)

X=:[%M (modp)
This can be seen as follows:

2:};
2 (mod P)(1.2 3;-1-) (1.2 ...

(1.2 P;—‘ > <-(p-1) 4321-2) (mod p)

(1.2 %1) (“";—1 p-1) (-1)“"1')/2

The

(p—1)! E -1 (mod p) using Wilson's theorem [38].

is a solution of (12.8).

As 13 5 a X (mad p),.a'is allowed to vary in the range 0 town)‘ and the

least positive residue ax (nod p) is tested to see whether it is less

than IE.

O<a2 + b2<2p and a2 + b2 E 0 (mod p) imply that a2

If so, then this value can be used for b because then

+b2=P.

Enle

Using the above method t_o find a and b such that

-249-
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<2-31> *

12 (mod 29)

Considering O<a<\/55, ie, O<asS, gives

' 1.12 ‘-' 12 (mod 29)

' 2.12 " 24 (mod 29)

3.12 ' 7 (mod 29)

4.12 " 19 (mod 29)

5.12 ' 2 (mod 29)

5 = 2 is the only one which is less than S and therefore
a = 5, b = 2 would satisfy (12.9).

For large prime p. this method does not appear to be feasible as oneI . .

needs to evaluate (22-11 and test values of a'upto ‘I; Thls
requires of the order of (E+Jf5) multiplications (nod p) in the worst

case. 2
Method 2

This method involves the use of Jacobsthal sum, S(c),['66]

in determining a and b in (12.7).S(c) is given by

where p E 1 (mod 4) and c E! 0 (mod p). (Note that s(c) = o if

p = 3 (mod 4)).

Considering

P

; s2(c)c-1

Consider the inner sum { }.
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if m 5 n2 (mod p), then it is equal to ggl (

if m2 E n2 (mod p), then it is equal to -1.
P P P

5 s2(c) (p—1> 2 2 <) <’—‘)-2
E

c=1 u=1 n=1 P p m=1

2(P-1)(1=>-1) - )5 (3) (0-§— (fl) )=1

2(p—1)2 + 2(p-1)

3P (P-1)

But
2 1 2 1 2

is (c) = (1%-) s <1)_ + <*°;—) s (k)_ C: _ , . .

where k is any quadratic non-residue [66].

That is, 2p (p—l) = P;—‘ 52(1) + 931- 520:)

P -(%‘—1)2 + (E55-1:2

Thus to calculate a and b in a2 + b2 = p, one finds 5(1) where
P

s(1)=Z (
n=1

and then computes p — (§éll)2 giving
2

a2 =(-*"-%1) and b2 = p - (191?

Cbnsidering the same examle as before to find a and b in a2
p = 29, using this mthod

29

n2_1
5(1) =2 (2-9) (29)n=1
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2 f*"2
(3%)-) =25hencea=5andb p—(%-U-) =2

Again this method may not seem to be attractive when p is large.

Method 3

Legendre's method [86] is based on the continued fraction

expansion of”Jp. He showed that if p is of the form 4k + 1, then

the expansion of V5.15 of the form

2qQ 4- ...

It is seen that there is a symmetrical part q1, q2, ..., q2, q1

followed by 2qO and there is no central term. Now let c be the
particular coplete quotient which begins at the middle of the period,
that is,

c cm:qm+

2qO+ 1
ql 4' one

This is a purely periodic continued fraction whose period consists of

qm, ..., ql, 2qO, ql, ..., qm. Since this period is symmetrical,- I
C _

~ — E , where E denotes the conjugate of c. c is now expressible

in the form c = E-§4£E; where a and b are integers. The equation
' -1 gives (2-335E). (9-EJCE) = -1 or a2 + b2 = p.CC:

Again consider the example p 29. The process for developing 429

in a continued fraction is

U1
1+2

C1

(5 +59)

(3, W15)

(2 + V29)

(3 + ~/2:9.)

++ 0|“0|”uN
+

|HO|Hna|Huur-mlwh|H
+

n
m
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c5 = 5 +J29

The continued fraction is S, 2, 1, 1, 2, 10. The appropriate complete

quotient to take is C = C giving a = 5 and b _= 2.3

Method 4.

The cryptographer can also design the system starting with

primes H]. in Z[i] rather than primes pj in Z. That is, he selects

Gaussian integers Hj, Isjsnarbitrarily by Ch00S5-fl9 53)’ -33- T0 be an

even integer and bj to be an odd integer in H. = a. + b. i so thatJ J J

a.2 + b.2 is always odd. Then he can test the norms Nflj for léjsr,
tg findjvqhether they are primes or squares of‘ primes in Z. The
primality testing can be done using the probabilistic algorithm

mentioned in Section 10.2. If N113. is a prime or a square of a prime

in 2, then 1'[j must be a prime in Z[i]. If NHJ. is not'a prime or
a prime square in Z, then he chooses another pair of aj and bj. As
this procedure needs to be done only once by each user at the

beginning, this could be a feasible approach especially when r 2

as in the prototype RSA system.

Choice of primes

Although the designer can choose any primes of the form

p 5 3 (mad 4) or p 5 1 (nod 4) (except.the special ones such as the

Mersenne primes), now it is shown that certain combinations will

result in the easy factorization of the composite Gaussian integer m.

If m is considered to be a product of two Gaussian primes 1'11 and I12

where]'[ 1' pl and ]'12}p2, then there are four possible combinations.
They are:

(1) 101:1 (mod 4). p2=1 (mod 4)

(ii) pl 2 3 (mod 4), p2 ‘ 3 (mod 4)

(iii) pl 1 (mod 4), p2 " 3 (mod 4)

(iv) pl 3 (mod 4), p2 " 1 (mod 4)

Case (i) ‘results in 1'11 = a1 + bli and 112 = a2 + b2 i where

a1, a2, b1, b2 75 O in Z and m = 111 1'12 9 Z[i]. The order of the group
forced by the invertible residue classes nndu1o< m> is therefore

equal to 9?"<m> (N111-1) (N112-1) = (p1_1) (p2-1).

Case (ii) yields 1'11 = a or b1 i and 112 a or b i as one of each2 2

, it is seen that In

1

pair (a,b) is equal to zero. Letting m — a1a2

--253-
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. 2 2

is a rational integer and the order §< m> = (pl -1) (pz -1).

Case (iii) and (iv) will yield an m of the form cd+cfi. As m is made

public, the opponent can easily spot the factor c and hence factorize
III.

Hence it is seen from cryptographic considerations that,

only the schemes where both p1 and p2 are chosen to be of same type
(either 1(rnod 4) or 3(mod.4))wi11 provide secure systems. This idea

extends to all primes pj. 153' 5:, when m is a_product of r Gaussian
primes .

12-2-3 §esu£i£>r_°£ Lbs §ystsm_i-1 Hi].

As in the case of the prototype RSA system over 2, the

publicly available information for the opponent consists of the

encrypting exponent e and the composite modulus m. If the rational

primes are chosen such that pj 3 3(rnod 4) for all 3', then ;:he nndulus
m can be made to be a rational integer and the norm Nm = m . If the

primes are chosen such that pj 5 Hand 4) -for all j, then m is of the
form c+di 6 Z [i ]. In this case, the opponent can easily calculate the

norm Nm = c2+d2. Hence in either case, the security of the system

essentially lies in the difficulty of factoring a large rational

integer, the norm Nm. The problem of factoring Nm is similar to that

of factoring the modulus tn (ez) in the prototype RSA system. Thus the

security of this system is same as that of its predecessor. Once the

norm Nm is factorized into r primes qj, then the order _@'< m> can be2
r

found using (Nnj-1) where NH). = qj or qj . Then the opponent can
compute the secret decoding exponent d using (12.4). Note that the

cryptanalyst does not need to know the Gaussian primesfl 1,. .., II I but
only needs to know their respective norms. In other words. the opponent

will be working over 2 not over Z[i] and does not need to solve the

equation a2+b2 = p for a and b.

12.2.4 1_2_eQrgsg_n£a1ign_o£ l*_*b§s_§g§s_a_1ld_Syste13_ (_)p<_e_r_a__t_i_on

The messages are to be represented using the residue classes

modulo the ideal generated by the modulus m. The number of distinct

messages possible is equal to the number of incongruent residues mod

(m) and is given by the norm of the ideal <m> . In the case of a‘

principal ideal domain N<m> = him, the norm of the element In.

In performing encryption or decryption using this system in

- 254 —
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Z[i], there is a problem with regard to the message representation.

First consider the process of reduction mod<m> which is required in

both encryption and decryption procedures. This can be carried out

using the Euclidean algorithm as Z[i] is a PID. Let y = xe where e

is the encrypting exponent and consider the operation y mod<m>~where

x, yandm €Z[i].

Using Euclid‘s algorithm. there exists two integers u and v in Z[fl
such that

y = um + v where Nv< Nm

Consider

y/m = A + Bi where A and B are rational numbers.

Chose rational integers s and t such that

IA-sl ~<*2ol3-1|.‘ %

This can be done by choosing s and t as rational integers nearest to

A and B respectively (see Figure I2.1). Now let u = s+ti and v = y-

um, then it is seen that Nv< Nm as

|Vl= ly—um| = Iv-(s+ti)ml

= | m I I § — s-ti[

|v[ In ||(A_s)+(a_t)i|

= in | { (A—s)2 + (B—t)2} 3

.1 lvl 5 |ml { -13 + -:5_} 5 < lm|
= Nm, the inequality is established .
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But the u and v are not uniquely determined. Thus if a message

M = xvi-iy is encrypted to form g+hi 5 (x+iy)e mod an), the decrypted

message, M‘ is given by

M’ (g+hi)d mod <m>
- k+12.:i. mod <m>

The decrypted message, k+2,i 5 x+iy mod <m> but it is of ‘different

representation‘. For instance, consider the example given below.

Let the modulus m 81-i 5 Z[i]

The norm, NH: 65

N111 N112 = 5.13

Aspl-1(mod4)a.ndp251(mod4),_§'<m>isgive-nby

§ <m> 4.12
48

Choosing e = d = 7 where ed 5'1 (md 48), consider the message

M = S+3i. Using the Euclidean algorithm,

(5-n-31),’ E -2-i mod <m> E g+hi

M’ (-2-1 )7 mod <m>

M’ (-2-1) -2-6i mod <m> Ek+9,i

(-2-6i) ‘ 5+3: ‘ 21-3 mod <m>

The receiver would not be able to differentiate say between -2-6i or

S+3i or 2i—3 although they are congruent to each other mod <m>. Thus

there is not a unique representation of messages unlike in the case

of the RSA system over 2 where a message is uniquely represented by

taking the least positive residue modulo m. In Z[i ], one approach

could be to use the norm of the modulus, Nm, to construct a standard

set of representatives. But this would not work as two elements Cl

and B can be congruent to each other and ‘their norms Na and NB be less
than Nm. Thus some form of standard set of representatives is essential.

Case 1

First consider the case where the primes H]. which form In

divide rational primes pj of the form pj E 1 (mod 4). Then the norm
is a square free rational integer given by
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r ;

Nm = where In = ]I
:'=1 P3‘ 5=1 5

The residue class ring Z[i]/<m> is isomorphic to a direct sum of finite

fields Z[i]/<r[J,> , ie, T

Zfi]/<m> 3 Z[i)/<H1> @ ___ 9 z[i]/<Hr>

The field 2[i]/<]1j_> 'con1;aj_ns NIIJ. = pj elements. Therefore one
standard method of representing the messages mod <m> would be to use

the integers in the ring Z/Nmz, that is, O to Nm-1. And every element

of Ii]l<m>is congruent to an element in Z/Nmz. This is same as the
message space of the RSA system over the rationals.

For example if p1 = 13 and p2 = 5, pl E p2 '=' 1 (mod 4) then
Nm = 65 and 13' <m> = 48. The message space is therefore equal to

{O, 1, ... 64}. The encryption and decryption processes are carried

out using C 3 Me (mod Nm) and M _ Cd (mod Nm) where ed 5 1 (nod

§'<m>). The coding exponent e and Nm are made public.
Now consider the case where the message space still consists

of the integers in Z/NmZ but now the encryption and decryption

procedures are calculated modulo m where m - a+bi E Z[i ]. In this

case, e, m and Nm are made public. Let the message be M £2/Nmz,

then the encryption procedure results in

Me nod (a+bi) 5 g+hi = cipher

Decryption produces

(g+hi)d mod (a+bi) E k+£l.i

That is, the recovered message M is equal to k1-Ili

M E k+R.i (mod a+bi‘) (12.10)

Conjugating both sides of (12.10)

M Ek-—52,i (mod at-bi) (12.11)

Using Chinese Remainder Theorem, the original M can be formed where

M E Y 1 (k—9,i) + 72 (k+!Z.i) (mod (a+bi)(a-bi))

where-_ Y1+ Y2 = 1. and M e z/Nmz, YDYZ 5 z[j_]'

A standard set of representatives of the ring /(my can.a1so

be obtained using elementary divisor theory [65].

The ideal <m> in Z[i]is generated by the element m = a+bi

-257-
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and it consists of the set of Gaussian integers

<m> = {(a+bi)A } where A E Z[i]

The ideal <m> can be regarded as a Z_nndule generated by [a+bi,

ai-b] and the Z—basis of the ideal <m> is therefore given by (a+bi,

ai-b). The integral basis of Z[i]is (l,i) [65].

Hence one can associate a matrix A with the pair of bases as follows

Z—basis of ideal <m> = A (Z—basis of Z[i] )

a+bi

ai- b

Therefore

3 (12.12)

s and E can be replaced by E and E where Q and v are equal to s and t

multiplied by som unimodular matrices respectively.
Let

D = VAU where U and V are suitably chosen unimodular

transformations such that D = diag(d1, d2) and d1‘ d2. That is,

VAU

Mltiplying s by u‘1, gives
= U-1 s

and hence

t = AU w

Mltiplying (12.13) by V gives

= VAU w

= D w

d1 0

0 d2
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The new basis of z[i] is (wl

d2w2).

Therefore, the residue classes mod (m) are represented as xlwl +

i-1 for i=1,2.

jwz) and the new basis of <nb is (dl wl,

x2w2 where xi goes from 0 to d"

Hence the system desiger is required to reduce the matrix A to its

diagonal form. The steps involved in this reduction algorithm of an

nxn matrix A are now considered [67].

First Stage of Reduction

The aim is to reduce the nxn matrix A to an equivalent nxn

matrix C of the special form

(12.14)

where dl divides each entry of C‘.
A finite sequence of elementary row and column operations is considered

which when performed on A either yields a matrix of the form (12.14) or

else leads to an nxn matrix B = (bij) satisfying the condition

bu < an (12.15)

In the latter case, one goes back to the beginning and applies the

sequence of operations again. Either the form (12.14) is achieved in

which case, this stage ends or (12.15) is reached in which case the

leading entry is reduced still further and the process continues.

After a finite number of steps, the form (12.14) will be reached.

The sequence of operations is as follows:

If A is the zero matrix, then it is already of the form (12.14);

otherwise, A has a non-zero etry and by suitable interchanges of rows

and columns this can be moved to the leading position. Therefore

assume a11#O and consider the following three possibilities:

Case i)

There is an entry aij in the first row such that a11J/alj.
By the properties of Euclidean domain,

a1j_= atl q + r
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where either r = O or r< all

Since a11A’a1j, one must have r # 0 and so r< a Subtracting q11'

times the first column from the jth column and then interchanging the

first and the jth columns, the leading entry a

(12.15) is achieved.

11 is replaced by r and

Case (i')

There is an entry all
In this case. proceeding as in Case(i) but operating with rows instead

in the first column suchthat all’+/ail.

of columns, (12.15) is reached.

Case (iii)
a

11

In this case, by subtracting suitable multiples of the first column

divides every entry in the first row and first column.

from the other columns, one can replace all the entries in the first

row other than all itself by zeroes. Similarly, subtracting multiples
of the first row from the others, a matrix is obtained which is of the

form,

If all divides every entry of D’, (12.14) has been reached; if not

there is an entry, say, dij such that a11,+’dij. In that case, by
adding the ith row to the top row leads to case (i).

Repeated application of these procedures will result in the form (12.14)

after a finite number of steps, thereby completing the first stage of

reduction.

End of Reduction

By applying the above process to the submatrix C*,one can

reduce its size still further, leaving a trail of diagonal elements.

Any elementary operation on CF'corresponds to an elementary operation

on C which does not affect the first row and column. Also any

elementary operation on C* gives a new matrix whose entries are

linear combinations of the old ones and hence the new entries will

therefore 5:111 be divisible by dl. Thus d1ld2[ ...|dn.

-260-



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 274 

In particular in the- case of a 2x2 matrix A, the unirnodular
transformations can be found as follows

a b

Let A =(c d and b> a a * gcd (b,c.,d)
It is first shown that the matrix A is equivalent to a matrix of the

form

( V) where a‘ gcd (b’,c’,d’)c d‘

Using induction on a: the case a = 1 is trivial; when .3) 1 and a4/b.
choosing q so that O<aq 1- b<a

and consider

a b q 1

c d l 0

where the leading element is a positive integer less than a.. If alb

and a,l/c, then choosing q’ such that O<aq’+c <a and consider

I) = aq'+-c: '
c d 9 *

where the leading element is once again a positive integer less than

a. Finally if a_ gcd (b,c) but a/I'd, let c = c1a.so that

1 1 1 o a b (1—c1)b+d

O1 —c11 cd *

and a/Y [(1-cl) b-rd } which reduces back to the case when a,}’b. The
inductive argument is now complete. Now a'lgc:!(b‘,c‘,d’) . Letting
b‘ = a'b" , c’ = a’c"and d’ = a’d“ and considering

1 o a’ a‘b“ 1 4:": a’ o

..c'-1 a‘c” 61'6" o 1 o a’(d“-b"c")(12.l6)

the desired result is obtained.

with A =< 3 *b), (12.16) reduces to
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I

Further as d1 d2 and Nm = dldz where Nm = 3;; pj, the only allowed
values for d1 and d2 are 1 and Nm respectively. So the messages can
be represented as x2w2 where x2 goes from O to Nnhl. In this case,

the elementary divisor d2, the encrypting exponent e and the matrix
U (see 12.13) are made public. The decrypting exponent d is kept

secret. The security lies in the difficulty of factoring d2 = Nm.

The encryption procedure is carried out as follows:
M :

Let xgwz
C s M mod <m>

(x2

x2e 29 mod <m>
w2)e mod <m>

,-

C = y2’w2 is obtained. Now reducing yé (mod d2) the cipher C is
obtained

C = y2w2 mod <m>

A similar procedure can be carried out for decryption to recover the

original message using the decrypting exponet d. An example using

this method is now given below.

Let E1 = 2+3i and H2 = 1+2i where H1 and H2 are primes in Z[i]. The
modulus m = 71-4 and Nm = 65. jI<m>= 48. Let e = d = 7 where

ed 3 1 (mod 48).
-4 7

A:
-7 -4

Using the methd given above to reduce A to diagonal matrix D,

1 0 -4 7 2 -1 0

-13 1 -7 -4 1 ‘ 0 65
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Let the message be M =

The cipher is given by

C M7 mod <7i—4>
7 7 .

4 W2 mod< 71-4>

Using (12.17), w2 1—2i

and w; 29-2731
using (12.17),

29-2731 = —220wl + 909w2 (12.13)

Now reducing (12.18) (nod dl) and (mod dz), the cipher is given by

c E 61w2 mod <7i—4>

A similar process for decryption with decoding exponent d = 7 gives

back the original message M.

Case 2

Now consider the case where the primes llj which form the
modulus III divide the rational primes pj of the form pj 5 3 (mod 4).
Then the norm N11: is a non—square free rational integer given by

I

‘IT 2N = . .
"' 3=1 P:

. . . . 2

In this case although Ii]/<]3> 15 a finite field of pj elements, one
cannot represent the residue classes nodulo <I[J.> using the integers

Z/pJ.2Z as the latter does not form a field. On the other hand, one
can represent the messages in the form x+iy where x, y e 2. As

mentioned in 1.2.2.1, the Nm can be made to equa1'm2 by appropriately

choosing m to be a rational integer. Therefore, one can represent

the distinct residue classes nnd <m> as‘ x+iy where Os:-c,y 5, I-1,

thus giving rise to Nm residue classes. Using the elementary divisor

theory described algove, this corresponds to the case where d1 =

‘fr pj and d2 = 1-7 pj. Again these are the only allowed values forJ=l J'=1

dl and d2 as the following conditions must hold:

(1) d1 |d2

(ii) d1.d2 = Na:

(iii) Z/diz is isomorphic to a direct sum of finite fields, for
-i = 1,2.

- 263 -
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The divisors d1 and d2 and the exponent e are made public.
The encryption and decryption procedures are very much simplified in

this case. If a message M is raised to the power e then ‘to perform

mod cm> , it is only necessary to reduce the coefficients by the

corresponding elementary divisors. Let M=x+iy be the message then,

the cipher C is obtained by

C - Me and can

(x-+iy)e mod <m>

g(mod d1)‘ + h (mod d2) i

where d1 = dz =|*fE|
A similar procedure can be used for decryption.

12.3 Factorization Tragoor System in Other Qaadratic Fields

12.3.1 giadrati

Note that when D-—1, R(‘r[-)),where R is the set of rational ,num_-

§€t§_,inc.1ndes the ring of Gaussian integers considered in the previous
section. Initially some of the properties of the integers in R05‘)
which are. required in the design of a trapdoor system are briefly

examined. A detailed treatment of quadratic fields can be found in

[61, 63, 65] .

A quadratic field is a field of degree 2 over the rationals.

Such a field is of the form R( 6) where 8 is a root of a quadratic

polynomial which is irreducible over the rationals. Let 3 satisfy an

equation

x2+2ax+b=0 wherea,b EZ

Then 6 = —a 3 Jaz-b. Removing from a2—b all square factors so that
2D where D has no factor higher than the first power. then‘a2—b = 5

R( B) is equivalent to R (VF). That is, every quadratic field is of

the form RN5) where D is a rational integer free. of square factors.

The ring of integers of R(\/5) for square free D depends on

the arithmetic properties of D. It is shown in [613 that the integers

in R(\rD') fall into two categories. namely,

(i) if D 5-‘ 1 (mod 4), then the integers are of the form my‘:/5
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where x, y e 2. it?’ 2 [5]

(ii) if D 5 1 (mod 4), then the integers are of the form any
-5‘ . 1 E

(1; ) wherex,ygZ,1e, Z -—L—2

Note that the Gaussian integers considered in the lastvsection falls

into the first category.

Using Lemma .1 (Section 12.2.1), it is seen that an integer in

2(6) is a unit if its norm is : 1. when D it’ 1 (trod 4). the norm of

a ‘is Na = a E = (a+bJ'5) (a.b~lB) = a2—Db2.

when D 5 1 (mod 4), the norm of Q; is given by

Na = [a +1; (1+"5)] [a +2 <1-(6)1 = <.a + W2 - 3122-
Note that the norms are positive in complex quadratic fields (ie,D is

negative) but not necessarily positive in real quadratic fields (ie,D

- is positive). Thus a is a unit if

a2-Db2=1l

D2_
4b—:1

2
(a + %b) -

when D<O, the equations (12.19) have only a finite number of solutions

[63]. when D = -1, as seen in Section 12.2.1 the ring of Gaussian

integers Z[i] has four units namely : l, + i. when D = -3, there are

six solutions to the equation (12.19) namely 1-_ 1, 1 w, I w2 where w

is the cube root of unity, w = {-1 + ‘r—_3-)/2. For all other complex

fields, the only units are 3 1. In the case of real fields, there

exists an infinite number of solutions to the equation (12.19) and

hence an infinite number of units [63]. These units however may be

expressed in the form of ten where n takes all positive and negative

rational values. The quantity 6 is called the fundamental unit.

Using the definition of a prime element given in Section

12.2.1 it is seen that the Lemmas 2, 3 and 4 are also applicable in

R(~/T5). Although every integer in R(~/I-5) can be expressed as a product

0}. P1-.ime5,it does not necessarily imply that the factorization is

unique like in Z or Z[i]. Consider for instance the factorizations of

the integer 6 in R(f1—f)) expressed as

e=2.3= (4+~Ko) (4-~/E3)

or of the integer 21 in RC:/:5)

21 = 3.7 (1 + 2~/:5) (1 - 2x/3) = (4 +\C§) (4-A/-5)
(12.20)
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Considering (12.20), we have the following situation: the integer 3,

ct Prime,divides (1 + 2 \/'3) (1 _ 2J'_‘s) but fails, to divide either

factor in R(J:§3. Such a situation does not arise for instance in Z or

ZfiL mmeithsamtmthmmfighflfimemmgfiwmdzuemt

associated can have a common factor which is not in R(¢:§). It

appears then that in such algebraic number fields H§y,Prinne5..i are

not necessarily the atoms from which all the integers are constructed.

It is in such cases the factorization of an ideal into a

unique set of prime ideals (see Section 11.2.6)comes into use. The

rings where the unique factorization of integers fails,correspond to

non—principal ideal domains. The theory of non—principal ideal

domains is considered to be beyond the scope of this thesis and hence

the desig of factorization trapdoor systems has been confined to

principal ideal domains.

12.3.2 Qegig of Trapgogr_§gding §yst m mplei §uElidga§_Quadratic

Eis12s_

The fields which possess the unique factorization of elements

property obey Euclidean algorithm of one form or other. There are just

five complex Euclidean fields namely when D =-1, -2, -3, -7 and -11.

(There are 4 other complex fields which have the property of unique

factorization of elements but obey a slightly different form of

Euclidean algorithm [38]). For these nine cases the ring R(J53 is a

principal ideal domain. The prime ideals are therefore the ideals

generated by the prime:inegers in R(¢B}. From the point of view of

desiging a factorization trapdoor system, the primes in R(J5} and the

relationship between the primes in Z and the primes in R(f5) need to

be considered. More exactly, it is necessary to know whether a

rational prime splits in R(JE3 and if so how.does it split.

From Kumer's theorem [68], the decomposition of an ideal

<p>, where p is a prime in 2, into prime ideals in R(J53 is determined

by the factorization of the polynomial f(x) = x2—D in Z/pl. Over

z/pz, the factorizations of f(x) are
2

x if pID or 4D

x2—D if D is not a square (mod p)

(x—a)(x+a)if D E a2 (mod p), a E 2.

cases therefore correspond to:
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If a prime p in Z divides the discriminant [68] of the field

RN6) (if D E 1_ (mod 4),discriminant = D and if D 5! 1 (mod 4),
discriminant = 4D), then the idea1< p) is factorized into

the square of a prime ideal in R(~/'5‘). That is,< p) = p2
where p denotes a prime ideal in RN63, and Np = p. (12.21)

An odd prime p which does not divide the discriminant

generates a prime ideal of degree 2 in R(J5) if x2 —D E 0

(mod p) does not have an integral solution. That is, p is

irreducible in R(f5) and <p> - p and Np= p2. (12.22)

On the other hand, if x2—D 5 0 (mod p) (or y2—4D 5 0 (mod p))

has a solution then <p> decomposes into two distinct conjugate

prime ideals. <9) = 9192 where N91 = N92 = P (12-23)

(Note that the prime p = 2 is of no cryptographic significance)

As an example. consider the non—principal ideal domain R(J—S) whose

discriminant is equal to 4D = -20. 2 and S are the only prime factors

of the discriminant and consequently are factorable into squares of

prime ideals as <2> = <2, 1 +\l—5>2 and <5> = <J:§>2

The congruence X2 + 5 5 0 (mod p) has solution for p = 3, 7, 23,...

but cannot be solved for p = 11, 13, 17, ... Therefore

<3> = <3, 1 +Vn:§> <3, 1 -vF:3>

<7> = <7, 3 +\f:3> <7, 3 -\f:§> ...

while <11>, <13> ... are prime ideals.

The designer chooses primes pl...., pt in 2 which give rise

to prime ideals in R(JD). If the primes pi are chosen so that x?-D
5 0 (mod pi) have integral solutions then letting

<pi> = p i1. piz where pil, pi2 are prime ideals in R(JB)

the composite idealr<m> is equal to, say,

<m> = I 1 pil1:

The number of incongruent residues with respect to the ideal <m> and

relatively prime to <m>is give byr

.c_6'<m> mail)

fr NDi1'1i=1

And hence using (12.23),
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I.‘

_§ <m> = . (pi-1) (12.25)]_=

If the primes pi. 1gi§r, are chosen such that x2_D E O (md pi) do
not have an integral solution for all i, then the ideals< pi> are

irreducible in Roffi) and
1'

_gT<m> = W (pi2—1) (12.26)
i=1

using (12.22). _

The _designer can decide whether x2—D 3 0 (mod p) for a

chosen prime p has solution or not using the law of quadratic reprocity.

In general if x2 5 a(mod,n), where gcd(a,n) = 1. has_a solution then ‘a’ is

said to be a quadratic residue modulo n. Here n=p and a=D. To

determine whether D is a quadratic residue or not modulo p. the desiger

computes the Legendre Symbol (3). If (E) = 1.then D is a quadratic
residue and if it is equal to -1 the D is a quadratic non—residue.

Calculating the Legendre symbol is not much different from evaluating

gcd of two numbers using Euclid's algorithm and can be done by repeated

divisions in polynomial time. (Note that }Dl is of small value).

The Fermat theorem in this case is give by

a 2‘<m>

where a is anznflfixrary integer in R(J5) relatively prime to <nP.

1 (mod <m> )

The encryption and decryption exponents e and d can be

calculated using

ed 3 1 (mod§<m >)

where_¢'<m> is given by (12.25) or (12.26)

The public encryption key is (e.m) and the secret: decryption key is

(d,m). Having generated the rational primes pi, calculatedjik m>, e
and d, the designer needs to obtain m to make it_public. That is.

given the primes p1...., pr in 2, he needs to calculate m where m =

II ... III andI]'s are primes in R(Jl-D’), andll. is of the formlli = a. +1 i 1

bi~f5if o;!1 (mod 4) and Hi = ai +bi(“‘2r5) if 051 (mod 4). To
obtain m, he needs to find H1,..., Hr, that is, he needs to calculate

ai and bi for all i, lsisr by solving either
_2 2_ 2

NH. a. — bi D - pi or pi1 1 , if D i‘ 1'(m'od 4) (12.27)

2 ELL 2 ' 2 . —

NH. a. + a.b. - -—— bi = pi or pi ,if D = 1 (mod 4)1 1 1 1 4

(12.28)
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Note that (12.28) can be written as

2 2 _ 2
Ai — Dbi — dpi or 4pi (12.29)

where A1 -4- (zai 4- hi)
For solving (12.27) or (12.29),the method 4 of Section 12.2.2,which

consists of arbitrarily choosing ai and bi to form integers Hi and
then checking whether their norms are primes or squares of primes,

seems to be the most attractive one for the system designer.

Again it may be advisable for the designer to choose all the

primes pi. lgigr, to be of the same type, that is, either they all
decompose into distinct conjugate prime ideals in R(~rD-)_or they are

irreducible in'R(\'5). If one of ai(Ai) or ‘bi is zero and the other is

pi(2pi), then factorization of In would be made easy as seen in Section
12.2.2.

13-3-3 §e<_=u£i:y_°£ Ihs §y2tsm_in Hf).
The security of the system seems to be the same as that of

the RSA system. The opponent needs to find the decrypting exponent d

to break the system. One way of finding this is to obtain _@'<m>. To

ca1cu1ate_¢_<m>, he needs to factorize Nm given the modulus m. If the
designer had chosen the rational primes such that congruence x2—D 5 O
(and p. have a solution for.a11 i, then the norm Nm is given by1 .1.’

Nu: '-= I i p.
1:1 -‘

G1 the other hand, if the primes have been chosen such that x2—D —:- 0

(mod pi) have no solution for all i, thenr

l I 2Nm = , pii=1

As in the case of Gaussian integers, note that the cryptanalyst does

not require to find the primes Hi in R(J'D') to break the system. Ihus
unlike the designer, he is not faced with the problem of solving

(12.27) or (12.29).

12-3-4 3e2rsse11a1i2n._°£ E-'asa9ss_a2d_$zs£eI2 Qpsratioa

If the primes pi are chosen such that x2-D 5 0 (mod pi) have
solution for all i. then-every integer of R(J'D')/<m> is -congruent to an
element in the range 0 to N<m> -1 as in-Section 12.2.4. Thus the

messages ‘can be represented using integers in Z in the range 0 to

N<m>—1. As in Section 12.2.4, the encryption and decryption procedures
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can be performed modulo Nm or m, v.-mere Nme Z and me R( 6). The messages
can also be represented in the form x + yJ5 (D ¥1(mod, 4-)) or my (1+JB)_

(D51 (mod 4)),x,ye_z, using the elementary divisor method given in 2
Section 12.2.4.

If D ; 1 (mod 4) then the integral basis of RN13‘) is (1.5)

and the matrix A in Section 12.2.4 is equal to

a b
A:

bD a

If 0 E 1 (mod 4), then the integral basis of R(~f5) is

1 1_+-C-’ 2D) and the matrix A is equal to(

a b
A =

 , a+b

Using the method given in Section 12.2.4, the matrix A can be reduced

to diagonal form (d1,d2) and the modified basis of the idea1< m> is

obtained as (di yvl, d2 wz). The residue classes mod <m> are therefore

given by xl wl + X2 w2 where Osx1<d]_ and Osx2<d2. As Nm is equal

to i=__1Pi. in this case, the only allowed values for d1 and d2 are given
by d1=1 and d2= i=1pi~.. The operation rnodu1o< m> required in
encryption and decryption is performed in the same way as that given
in Section 12.2.4.

If the primes . are chosm such that x2—-D 5 0 (mod .p1 P1
have no solution for all i, then the norm is a non.-square free rational

integer and as in Section 12.2.4. one cannot represent the residue

classes modulo< Hi > using the intcfagers Z/pg z . This case corresponds
to the situation when d1 = dz = pi in the elementary divisor method.
The messages are hence re resented in the form 3;‘ + 3:24 D for D i‘ 1

1; D) for D E 1 (nnd 4) where osx1.x2<Jfi: =
d1 = d2. The reduction mod <m> is performed by simply reducing each
of the components x1 and 3:2 and ‘mm.

Again, the elementary divisors C11 and d2 are made public

(m:>d4)andx1+x2(

together with the encrypting exponent, e.

12.3.5 3ea1_Q._5agrati_<:'_Fi_el_d_s_

There are 16 real quadratic fields which obey the Euc1id's

algorithm with respect to the field norm and hence possess the unique

factorization of integers property [65]. . They occur when D is equal to

-270-
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2,3,S,6,7,11,13,l'7,lf9,21,29,33,3‘7,41,57 and 73. One major difference

between the complex quadratic fields and real quadratic fields is that

the latter has infinitely many units (Section 12.3.1). However this

does not cause any serious problems provided we choose the message

representation within the allowed standard set mod <m>. This is done

in any case, by either using the elementary divisor method or using

the standard set of messages rrndulo Nn. Thus it seems that in this

case. there are not any major changes to the trapdoor system described

above for the Euclidean complex quadratic fields.

Discussion

The design of factorization trapdoor systems in some

quadratic fields which are principal ideal domains has been considered.

l-bwever majority of the quadratic fields are non—principa1 ideal

domains and they do not possess the unique factorization of elements

property. But the unique factorization of a non-zero ideal into prime

ideals still applies in such fields. Factorization trapdoor system

seems possible if the chosen ring modulo the ideal is isomorphic to

a direct sum of finite fields. Choosing a square. free ideal A, not

necessarily a principal ideal, in R(JE) and let

A == 01 ...D: where Di are prime ideals in R(\./5)

N5)/A 5 R(JrT)/ t e 9 R<fo”)/
pi or

Then

where R013)/pi is a finite field of Npi elements

The order of the group formed by residues relatively prime to A is

given by 1' I

_q_3'(A) = "IT flpi) = TT (Npi-1) using (11.1)‘=1 i=1

The coding exponents e and d can be found using ed 3 1 (mod _§-(A)).

From Lemma 3, every prime ideal divides a rational prime p which is

unique [63]. If the rational primes pi are chosen such that x2-D30

(nnd pi) have .solution for all i, then the residue classes modpi can be
represented using rational integers mod pi. Hence the messages modulo
A can be represented using integers O to N(A)—l. The elementary divisor

method of Section 12.2.4 can. also be employed to represent the messages.
. 2 _ _

If the primes pi are chosen such that x —D=O (mod pi) have no solution
- 27 1 —
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for all i, then both elementary divisors d1 and d2 are equal to JN(A).
Let us conclude this chapter by considering a small example

which shows some of the calculations involved in the design of a

trapdoor system in R(d—5), a nonaprincipal ideal domain.

Choosing rational primes p1=3 and p2=7, their decomposition
in R(\/-5) is given by

(3) (3! 1+“'5) (3! 1'u"5) =

47> = (7, 3+\[.?) (7, 3..\/:5‘) = p21 p22

:21 02 = (3. 1+5?) (7.3-/-s)

A (21, 7+7~/__$ 9—3\C_, a+2\/_?)

Any ideal can be represented using a two—e1emant basis over the ring [65].

Using standard rules for transforming the ideal basis [65],

A = (21, 4+\f——§)

N(A)= 21 '

The integral basis of R(V-5) is (1,V—5) as -5 ¥ 1 (mod 4)

Representing the ideal A as a Z—modu1e

[21, 219,4-0-e,—5+4e] wheree=\/-5

21 21 O

219 0 21

4+6 4 1

-5 .,./

21 O

021

41

-54

Using the algorithm given in Section 12.2.4, this matrix is reduced to

a diagonal form (d1.d2) where d d2.1

1 O

O 21

O O

O O
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Now the messages can be represented as

M="'1 1

“'1

“'2

. U_1

In this case, as d = 1,M = x w , 1<x2<d2. However if the rational
primes are chosen such that tie: stay as primes in the higher field
R (J53,then d1 = d2 = JETKB and the messages can be represented
using (12.30). _g3'(A) = (N91-1) (ND2—1) = 12. One set of coding
exponents e and d is e = S, d = S. The messages can be encrypted

using a similar procedure to that given in Section 12.2.4 for Gaussian

integers, except in this case, the recursive equation is f(9) = 62+S = 0

instead of i2 + 1 = O. The elementary divisors d1, d2, the encrypting
exponent e and the matrix U are made public and the decrypting exponent

d is kept secret.
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C H A P T E R 13

CCNVENTIONAL CRYPTOSYSTEM WITH F‘UH.IC KEY DISTRIBUTIOV

General

This chapter focusses on the concept of public key

distribution (H<D) mentioned in Section 9.6, whereby the 'pb1ic key

idea‘ is solely used to transfer a key between two users over an

insecure channel. In this case. there is no message as such which

gets encrypted at the sending end and decrypted at the receiving end.

In such a system, two users who wish to exchange a key comunicate

back and forth until they arrive at a key in commn. The opponent

eavesdropping on this exchange must therefore find it computationally

infeasible to derive the key from the information overheard. This

type of arrangement is used in conjunction with the conventional

cryptographic DES interface unit to form a DES/HKD hybrid system. An

implementation of such a hybrid system is discussed in Section 13.5.

Diffie and Hellman [35] proposed such a key distribution

system based on exponentiation over finite field. This technique

briefly described in Section 9.5.3 makes use of the apparent difficulty

of computing logarithms over a finite field GF(q) where q is a very

large prime number. Each user generates an independent random number

xi chosen uniformly from the set of integers {l,2,...q—l}, and computes

yi = axi(mod q) where'a'is a primitive element of GF(q). The number
yi is made public and the number xi is kept secret. when users i and

j wish to comunicate privately, they can use the common key Kij, given

by xii? a"i"jExyi )"a'E(yJ. )"i<mod q)-
For the system to be secure, the key Kij must be difficult

to compute for anyone who knows yi and yj but does not know either xi

or xj. ‘In order to ensure that this computation is difficult. it is
necessary that logarithms over GF(q) be difficult to compte. Other-

wise an opponent could compute xi
Som currently known algorithms for calculating the logarithms over

from yi and impersonate user i.

finite fields are now briefly looked at.

13.2 Lggarithms Over Finite Fields

Knuth's algorithm [45] to compute logarithm over GF(q)

- 274 _
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requires 2 [Ag] multiplications (mod q) in addition to other operations
of comparable complexity. This algorithm requires 2 [g%_]words of
memory each log q bits long. This algrithm can be generalized toI 2

allow a time-memory tradeoff in which time is almst proportional to

qrand mstrv to:i_r for any Osrgl. Knuth's algorithm corresponds to the

case where r=%. Allowing aflfiimary values of r enables the algorithm to

be adjusted to particular time—memory requirements. The algorithm to

comute x from y5ax(mod q) works as follows:

Let m = [qf]
Then there exist integers c and d such that

x = cm+d 1-:

Substituting for x in ax, gives

y = a°"'“’ (mod q)

ie,ad 5 y a_cm (mod q)

In order to determine c and d, the values of ad(mod q) are precomputed
for d=O,1,...nhl in 0(qr) operations and the results stored in a table

in 0(qr logz qr) operations. Then y,ya'm, yaqzm... (mod q) are each
computed and compared with the sorted table of {ad}until a match is

found. ‘Each value of c tried requires 1 multiplication (mod q) and

log? qr comparisons, thus giving a total of (1+log2 qr) operations.
There are O(q1"r) values of c to be tried. when r=l, this algorithm

is a look up table and when r=O, the algorithm reduces to an exhaustive

search. Neglecting the logarithmic factors it is seen that the time-

memory product is constant (since qr.q1-r = q) as the algorithm ranges
between the extremes of a look up table and an exhaustive search.

Hohlig and Hellman [69] proposed an improved algorithm to

compute logarithms over GF(q) when the prime q is chosen such that q—l

has only small prime factors. On the other hand, it has long been known

that a disproportionately large portion of numbers are entirely

composed of small prime factors and it is precisely this fact on which

Adleman based his very recent discrete logarithm algorithm [70].

Assuming a microsecond per operation machine, this new algorithm could

be expected to compromise a system based on a 200-bit prime q in 2.6

days rather than the 3xlO16 years using the best previously published

method due to Shanks [45]. For a large enough prime q, however,

Adleman's algorithm is also infeasible. A sketch of this subexponential

Adleman's solution to the logarithm problem is now given following [6].
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Problem: Given a, y and q (a prime) find 2-: that satisfies y5ax

(where'a' is a primitive element in GF(q) in the PKD system).

The algorithm requires the following preliminary definition: a number

at is said to be 'smooth;_ with respect to abound BD, if the factorization

of C1 into primes, (1 = ‘Fl-]pi'ei is such that all pi. 1$i.<r, satisfy1:

[Dis BD.

Step 1 Find by random sampling (and checking) a positive integer R

such that B 3 yR(mod q),1$B.<q-1 and B is smooth with respect to the

bound BD(q) = e(1nq1n1nq)% and gcd (R,q—1)=1..

Step 2 Let q1u.qm be all the primess BD(q). Find by random
sampling (and checking) positive integers Ri for 1§:'.<.m such that

Ai E aRi(mod q) where 1$AiSq—1 and A1 is smooth with respect to BD(q)
and the vectors Xi = (ei1,...eim),where A1 T7-q.eij, span the m-=]_ J

dimensional module over Z/(q—1 )2, the ring of integers modulo (q—1).

Step 3 By Gaussian elimination express E = (f1,....t’m),where-F

B = .| |q.fj as a linear combination of the namely 8 = K 411 R +...
_,_‘]=1 3 1 13 D1 1 2 2

'+nmAm (mod (q—1)) where 0sni5q—2 for leism.

Now

and

i=1

Where Ai can be replaced by aRi. m 1

Step 4 Calculate" R-1(mod q—l). Then y = i|___1 aniRiR (mod q)-.1

That is y E aR (.2 “iRi’ (mod q). That is x E R-1 in n R (mod )' 1=1 ' i=1 i 1 9

Now briefly consider the execution time of this algorithm.

-276..
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Let W (x,y)/x = Prob(2 is smooth with respect to y/zsx). Using
e—(lnx/lny)(lnlnx—l)_ Thus the

expected number of tries needed to obtain a smooth number is approx-

imately e(1nx/lny) (lnlnx"1). This search mst be carried out 6(y)

Erdos's result [6], w (x,y)/x =

times where 5(y) is the number of primes less than or equal to y and

6(y) E y/1ny = e1ny—1n]ny. Thus the total computational effort is

(lnx/lny) (lnlnx-1)+1ny.lnlny which is approximately
with c = lnxlnlnx and d = lny. But ec/d+d

%when d = c

approximately e

e°/d*d (c>O) is maximized
%

, yielding a computational effort of order e?(1"x1"1"x)‘.

A sharper analysis [6] results in an upper bound for the logarithm

problem of eunqln mq )% thus removing the factor 2 from the exponent.

System designer's avoidance of q such that q—l has only small

prime factors cannot be accomplished by first choosing a prime q such

that e(lnq1n1nq)¥ is prolibitively large from the cryptanalyst point

of view and then determining the prime power factorization of q—1-

This is because the most efficient known factorization algorithm due to

Schroeppell (unpublished) also makes use of the concept of smoothness.

It has an expected running tim for factoring q—1 of e

One way to overcome this problem is to generate a large random prim

number u and let q to be the first prime in the sequence iu+1 for

i=2,4,6... as mentioned in Section 15.2.

13.3 Public Kg! Distribution in GF§2n2

while it is possible to implement the exponentiation public

key distribution system as above, some implementation difficulties can

be overcome by considering the exponentiation system in the extension

fields cF(2").

First consider the exponentiation over GF(q) from a system

design point of vie. Initially one needs a suitable set of routines

to generate and test for large prime numbers. The tests mentioned in

Section 10.2 can be used for this purpose. Further it is required that

the routine must generate a prime q such that q—1 has no small factors.

Blakely [71] refers to such primes of the form q=2p+l where p is a

prime as ‘safe’ primes. Then one must choose a primitive element 'a'

in GF(q). The number of primitive elements (mod q) is given by the

Euler totient function ¢(q_1) and hence the probability that an

aflfitrarily chosen element 'a' is primitive is given by ¢(q—Q/q—1. If

q is of the form 4p+1 where p is,a prime then 2n(mod q) is a primitive

element (nd q) for any n relatively prime to q-1 and hence the problem

— 277 _
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of determining a primitiue elemnt is simplified. Otherwise finding a

primitive root of an arbitrary prime q may be mre cumbersome requiring

the knowledge of the factors of q—1. In addition, multiple precision

arithmetic is required which is cumbersome and slows down the response
time.

To overcome some of these problems associated with the GF(q)

implemetation, derkovits [72] proposed to perform the exponentiation in
the extension field GF(2n),instead of GF(q). As this is an extension

field of GF(2)all operations are based on modulo 2 arithmetic which is

easily implementable using digital logic systems. Addition and sub-

tractio are performed with exclusive—or operation alone, while oper-

ations in GF(q) require carry and borrow propagation. Further advan-

tages arise from the choice of n to be a prime so that 2"-1 is a

Mersenne prime. Since there are no-subgroups within the mltiplicative

group of such a field, the logarithmic attack reduces to an exhaustive

search. Furthermore, since the order of.the-multiplicative group is a

prime,-every elemnt except one is primitive. Thus the selection-of 'a'

becomes arbitrary. Finally.since all the resulting y's (yaax in GF(2p))

are also primitive, the number of possible keys is maximized.

As seen in Section 10.5, the elements of GF(pn) gan be

represented using polynomials of degree less than n whose coefficients

are in GF(p). In this system p=2 and hence the coefficients are all

either 0 or 1. Using the earlier notation, the field Z/2Z[x1/f(x),

where f(x) is an irreducible polynomial of degree n over 2/22, is

isomorphic to GF(2n). Mltiplication of two elements in GF(2n) are

programed as ultiplication of tho polynomials and the terms in the

product with exponent n or higher are reduced modulo the generating

irreducible polynomial ftx). Let f(x) be a monic polynomial and is

where his {o,1}

(mod f(x))

Then the reduction process of a polynomial P(x) modulo f(x) is

performed as follows: (cf Section 10.5)
Let

P(x) 5 mm + Rm x"

where the degree of Q(x) is less than n.
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n-l

- Q_(x) + R(x) 12:0 bixi
1

Q(><) + Z Rm x

bi=1
This result may still have terms with exponents equal to n or greater

(mod f(><))

and the process is repeated. The reduction process continues until the

result is of degree less than n.

As 2n—l is prime, any number 'a' less than Zn-l (other than

1) can be used as the base (primitive element in GF(2n)) of the PKD

system. The base 'a' can be represented as a vector whose value as a

binary number is equal to 'a'. That is, let
n—l

i
.2

£QD 31 where ai 5 2/22

Let the secret keys of users A and B"be XA and X8 which are integers
less than 2n—1 (except 1). Then,

X

n—l 1 A _

'yA(x) =L=50°i" (mod rm)
where yA(x) is a polynomial of degree less than n with coefficients

over GF(2). yA(x) can be represented as an integer YA in the range

CkYA<2n—1 by calculating the value of the polynomial yA(x) in binary.

Similarly the user B calculates YB. Thus the public key and secret

key pairs of users A and B are given by (YA,XA) and (YB,XB) respectively.
The comon key KAB is derived by users.A and B using

- X3 — XA
KAB = (V-A(><)) (V'B(3<)) (“Dd f(X))

The choice of the extension field GF(2n) depends on the

required difficulty of computing logarithms over the field. The

particular choice of the Mersenne prime 2127-1, that is, n=l27 is very

attractive from implementation point of view. In GF(2127), manip-

ulation of 127-bit blocks are conveniently performed in most computers

which have 8,16,32 or 64-bit architectures. A further attraction is

that there exists a particularly simple irreducible polynomial. a

trinomial, over GI-‘(2) namely f(x) = 3:127 + x + 1 [73] which can be used

to generate all the elements of GF(2127). But with the advent of the

subexponential algorithm for compting logarithm over finite fields by

Adleman, it is necessary to work in higher extension fields to offer

a similar amount of work factor as the DES to break the system. The
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next Mersenne prime occurs when n=S21 and 2521-1 is a prime. Thus one
can work in GF(2S21) to overcome the attack using Adleman's subexpon—

ential logarithm algorithm. In this fie1d,the corresponding irreducible

trinomial over GF(2) is given by f(x] = x521 + x32 + 1 [73]. Tore

Herlestam [74] has proposed alunristic method for computing logarithms

over GF(2P) where p is a prime. when 2P—1 is a Mersenne prime less

than or equal to 231.1, the method is reported to work in very short

running times on a general purpose computer [74]. Although the

numerical results obtained so far and the complexity of the problem

does not allow to assess the security of the corresponding public key

distribution systems with p=l27, S21 and larger, this may induce doubts

that such systems could be considered secure.

Even so,this system, referred to as the Mitre system [75],

is probably the most practical of the public key algorithms that have

been proposed so far. Hwever there is'another attack called the

short cycling attack which can be used with any public key system

discussed so far. This attack may enable 'backdoor' penetrations, for

example, in the Mitre system, a penetrator could use his knowledge of

the system parameters namely the system base 'a' and the modulus

polynomial f(x) to superencipher intercepted cipher until a cycle

occurs. The effectiveness of such an attack on the Mitre system is now

considered. This attack is of the same type as the one used by

Simmons and Norris [76] against the RSA system.

13.4 Short gycling Attack

Suppose g is a function of a set S into itself. Then given

an x in S, the sequence defined by xO=x and xi=g(xi_1) is called the

path of the element x under the action of g. If S is a finite set,

then the path of each element mst eventually repeat itself. when g

is a one to one map, then repetition begins with xk=xbex for some
minimal k. Under these circumstances, the path of x cycles around the

same k elements. This circular path is called the orbit of x under g.

The orbit of any element not in the orbit of x is completely disjoint

from the orbit of x. Thus the set S is partitioned into disjoint orbits

and hence the sum of the numbers of elemets in the distinct orbits is

the cardinality of S which is equal to the size of the largest orbit

possible. -

Now consider the cycling in the H<D system based on

exponentiation in GF(2n). Let

_ 230 _
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= {x:x an integer between 1 and 2"-1}

and C = {y:y a non—zero element of GF(2n) }

Let P denote the set of plaintexts (secret keys) and C the set of

ciphertexts (public keys) under the encrypting function E. Let us

define another function DEC from C to P as follows: If y is an

element of C, it is a polynomial of degree less than n. writing y as

the n-tuple of its coefficients and evaluating that n—tup1e as the

binary expansion of an integer, the result DEC(y) is obtained. Since

both E and DEC are one to one functions, their composition F is a one

to one map of the finite set P onto itself. The set P is partitioned

into disjoint orbits under the F-map. These orbits are the cycles.

A schematic diagram of the mappings is shown in Figure 13.1.

P C

Fig 13.1

The threat of short cycling arises as follows:

Let
X

a 0 (mod f(x))

Then

DEC(yo)

a"L (mod f(x))

DEC(y1 )

a"i (mod f(x))
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xi+1 = DEC(yi)

Hence at some point r, as the set is.finite

axr (mod f(x))

DEC(yr)

"0

a"o (mod f(x))

DEQV1-+1 ’

when this point is reached, the opponent realizes that the penultimate

number of the sequence gives the original secret key xo.
This type of short cycling analysis has been carried out in

small extension fields using irreducible polynomials of degrees 3 and

7. The primitive polynomials used are f(x) = x3+x+1 in GF(23) and

f(x} = x7+x+l in GF(27) respectively. The system base 'a' is allowed

-to vary from 2 to 7 and 2 to 127 respectively. Then the cycle lengths

are determined for various values of the secret exponent x, using the

program CYCLE.FTN given in Appendix 15. The cycle lengths §btained'in

GF(27).for several values of x are given in Appendix 17 (Section A17.l).

The complete set of results shows that in the case of GF(27) with f(x)
7 . . 2

=x +x+1. the base a=38 (evaluated using x=2 in x5+x +x, an element of

GF(27)) gives the maximum cycle length of 127. [In the case of GF(23)

with f(x)=x3+x+1, a=5 (x2+1 in GF(23)) gave the maximum cycle length

of 7]. For all the other values of the base, the cycle lengths are

less than 127. This can be explained by the reasoning that the choice

of the system base 'a' partitions the set P into disjoint orbits; in

the case of a=38 with the primitive polynomial x7+x+1, this has created

a partition consisting only of the entire set P. Thus every element

of P is in the same orbit and hence every value x gives the maximum

cycle length with a=38. The other choices of 'a' partitioned P into_

several disjoint orbits with different cycle lengths. Two different

exponent values of x having the same cycle length (for instance a=9,

x1=1S, =32, cycle length =1l6) may be due to two or more orbits
X

having tie same cardinality or it may be that x1 and x2 lie in the
same orbit.

These results may indicate that certain bases and certain

generating polynomials are superior to others thus giving rise to

maximum cycle lengths irrespective of the exponent x. If so, the

system parameters should not be chosen at random, for instance, the

system base 'a' should not be chosen randomly among all primitive
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elements. To determine whether an optimum set of parameters is
. . . 7

possible, further analysis is carried out in the extension field GF(2 ).

Considering the mappings shown in Figure 13.1, it is seen

that an opponent is not restricted to choosing the function DEC to get

back from C to P. Any one to one map of C to P will serve his purpose

and the system designer cannot guard against all possible choices of

the opponent. Consider for instance, the function G(y) where

G(y) = DEC (b~ V)

Let b take all non—zero values in the set C. That is, b can be any one

of the 127 polynomials of degree less than 7 in GF(27). Consider the
following algorithm.

1. Choose a system base 'a'.

2. Choose a particular value for 'b' in G(y) = DEC(b-‘y)

3. Vary the exponent values x (secret keys in PKD) from 2 to

127 and in each case, calculate the corresponding cycle

length.

4. Do steps 2 and 3 for 127 values of ‘b'.

This algorithm has bee implemented using the program RANDCYCLE.FTN

given in Appendix 16. Several values for the system base 'a' have

been tried; only the results for a=38 are given in Appendix 17,

Section Al7.2. The results show the expected cycle lengths obtained

as the secret exponent x varies from 1 to 127 for different values of

the polynomial b (evaluated as a binary vector). From the results, it

is seen that by varying b in G(y) = DEC(b.y) the expected cycle length

can be changed for a fixed base 'a'. Hence the opponent can obtain a

shorter cycle length than the maximm, by appropriately choosing the

value of b in G(y) for any system base 'a'. Section Al7.2 shows that

udth a=38, even though the expected cycle length is equal to the

maximum 127, when bel, with b=2, the expected cycle length é 38.87,

with b=13, expected cycle length 5 27.18, with b=125, expected cycle

length 5 32.64 and so on. Hence even if the system designer had

chosen the 'best' system base, a=38, in his FKD system in GF(27), if

the opponent chooses b=13 in his G(y) = DEC(b-V) then he only needs to

superencipher on average 28 times before obtaining'the secret exponent

x. The system desiger haszno control over the opponent chice of ‘b'.

Thus it seems that there is no best choice for the system base 'a'.

Section A17.3 of Appendix 17 gives the average expected cycle

lengths for several values of the system base 'a'. That is, having
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selected a system base 'a', the expected cycle lengths are calculated

for the 127 non-zero specialized values of the polynomial b. Then the

average of these expected cycle lengths is determined. From the results

it seems that the average expected cycle length for a chosen system

base is around 63.5. Recalling that in the algorithm given above, one

has considered only 127 functions of a specialized form for the

polynomial 'b', it apears that the average expected cycle length will

approach 63.5_if one has averaged over all the]27L possible functions
from the set C to the set P. Dr R Odoni has in fact explained using a

léuristic argument that the cycle length will be n/2 when all the

n! functions are taken into account.

Thus once the opponent chooses the function from C to P,

that is, the value of b in G(y), then he has actually chosen the order

in which he will try elements of P to search for the one that encrypts

into cipher y. That is, he has effectively decided on the elements

owl) = oat: (ml)

Gtyz) = DEC (tr-V2)

Glyn) Dfié (b.-yn)

The opponent tries each of the elements in the above sequence in turn
(an) _'

‘ ' Vin

given yl. For different values of b, the order of the sequence of

in the equation ac to find the one which matches with the

elements changes and hence the number of elements to be searched to

find the match with yl changes. The average number of such elements
to be tried is about 63.5. This imlies that for a randomly chosen

system base, the expected cycle legth of anarbitrary cycle is about

(21274)/2 and

) and GF(2S21) respectively). Thus although the

half the number of non—zero field elemets. (That is.

(25214)/2 for GF(2l27
cycling attack will eventually find a solution, the work required

appears to be equivalent to a "random" exhaustive key search and hence

confirms [77].

In the next section, the implementation of this PKD system

in conjunction with the conventional DES system. using Apple micro-

computers is considered.

13.5 DESgH(D figbrid System

A hybrid DES/H(D demonstration system has been developed
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using the DES interface unit (Chapter 4) and the exponentiation system

over GI-12127). The system has been experimented using two Apple

microcomputers forming a link. Each Apple microcomputer is assumed to

be shared by I1 users (here n = 5 ). Each of these n users can compose

and send a message to any other user at the other end in a secure way.

This system is primarily intended as a testbed for investigating the

problems of developing an application system incorporating DES/PKD

techniques on a microprocessor based system.

The DES interface card is used to encrypt messages under one

of the three modes namely the ECB, CFB or CBC (Chapter 5). The PKD

function performs the basic GF(2127 )* exponentiation system using

f(x) = x127 + x + 1 as the modulus irreducible polynomial. This is

essentially used to transfer the session keys securely between the

two Apple microcomputers over ‘a public telephone network. with

6502 microprocessor running at l MHZ, an average time of 4 seconds

with a worst case of 6 seconds is required to perform the exponentiation

in GF(2127). The PKD program size is approximately 400 bytes and the

listing of the program is given in Appendix 18 (see Section 13.6).

During system operation, the user can communicate with an

user at the other end under DES or DES/PKD modes or‘ generate a new

secret/public key pair for the RD system. The system base 'a' and

the modulus polynomial f(x) are input once to the program and they

are assumed to be fixed. The public key generated is stored in some

preallocated memory location depending upon the user ID, n. That is,

in this simple system, each terminal stores its own list of public

keys. This is sometimes referred to as the local Public Key File

(PKF) mode.

A secure connection is established between users i and 3'

through a simple connection protocol sequence. This sequence

allows to establish a D55 session key and initialization vector

was mentioned in Section 13.2, this can be changed to GF(2S21 32
f(x) = x + x + l to overcome Ad1eman's algorithm.

-285-



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 299 

required for secure communication between the users i and j. It

also enables each user to authenticate the other's identity. A new

session key and a new initialization vector,derived using the common

key K. .,are established for each session between i and 3'. This13

sequence is used with the local PKF mode mentioned above.

when user i wishes to establish a secure connection with

user j, i sends his user ID(I) along with the'ID of user j(J) to

the other end. That is,

The user j is informed at the receiving end that a connmmication

has been requested by user i and the system asks the user j to input

his secret key via the keyboard of the terminal. As soon as user 3' has

entered his 16 character (127-bit) secret key, the system requests

user i at the sending end to input his secret key. At this point,

users i and j fetch the other user's locally stored public key value

from their memories and compute the conmnn key Ki-J. using their own
secret keys independently at their respective ends. Then the sending

end generates a pseudo—random number, R,and encrypts this number under

the ECB mode of DES using the first 64 bits of Kij as the DES key.
(K.13.1). This cipher is then transmitted to the receiving end. That is.

31

The receiving end decrypts the cipher using Kjil as the DES key in
ECB unde to obtain the pseudo-random number R. Then he nndifies the

i->j : (R)K5.

number R by adding 1 to it and encrypts (R+1) under the ECB node of

DES with Kjiz and transmits to user i.
That is,

j + i : (R+1)K“
J12

This operation is done by user j to prove his identity to user i which -

requires the knowledge of the connmn key Kij = Kji. The user i at the
sending and decrypts the information and tests to see if the message is

equal to R+1. If this is the case. then the user at the receiving end
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must have computed the key Kji = Kij and hence it must be user j as he
is the only one who knows the user j's secret key. Hence user i can

start a conversation with user j at the other end. If they do not

match, then the user at the receiving end is informed that the

conversation cannot begin. This may either be due to some error

during the cormminication or more seriously due to the false identity

of user j at the receiving end.

In this simple procedure, the dynamically generated pseudo-

random number is used as the session key to be used in the DES

algorithm for encrypting data. Note that the number R is never actually

transferred over the link between users 1'. and j in its plain form.

If the DES algorithm is used in its ECB node for encrypting data

messages no more initialization procedure is required. The users i

and 3' can cormnunicate with each other-‘in a secure manner using the DES

system with R as the secret DES key. On the other hand, if the D55 is

used in either (373 or Cat‘. made-5,. then the initialization vector needs

to be transferred from the sender to the receiver. This is done using

the normal procedure explained. in Section 5.3.2, by generating another.-

pseudo-random number, encrypting it under the ECB mode using the

session key and transmitting it to the receiver.

To authenticate the identity of user i and establish an

initialization vector for transfers from 3' to i, user j generates the

pseudo—random number which he then sends to i in encrypted from.

Establishment of authentication of user i proceeds in a similar fashion

as described above by the modification of the random number by user i.

Note that user authentication in such a public key distribution system

is based cm the possession of the secret key which the user employs to

compute the common key for any other user. It is the calculation of

the common key that results in_user authentication and DES protection.

A set of 10 pairs of public/secret keys used in this demon-

stration system is given in Figure 13.2. The public keys although they

do not have to be kept secret, they still have to be authentic. Other-

wise an imposter could manufacture his om public key, claim it

belonged to_ another user and then employ it to impersonate him. Thus

public keys have to be public in the broadest sense — not only non-

secret, but guarante-ed,'acces5ible to or shared by all users of the

network‘ [78 ]. Three possible methods by which the public keys can be

distributed in this hybrid DES/PKD system are considered [75].
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Systemfiase a u 1254'5678l234567e

127
System Polynomial, f(x) : 1 + 1 + 1

$81‘ Secret key Public key
' (Bytes) (Hmcadecimal code)

_ 1 Asnrczazlmmsvcxz rsn315l175¢u34s13c7157aa55¢cn41

2 37554321375552; 9P6AC7C3DD227686F3974¢9CFA53D396

I QWERTTUIOPLKJEG? CS2C8F478l37CC55I)EID399P7¢7DE]34_D¢

¢PL.1‘flI098IJ1F»E'U7 9¢52E6c¢'E3Dc;.1-:¢3263s2ns9spcgmpg

193-Zx5"’33EDC"T'R4 225¢521579EBCE3lE‘29227A3l943A2:'2

STGIBEYENTUJTIBZAI 1asnF7pP67cF4r211 533337323-e¢725

5" # 5 <5'( )¢*=@+<> 91514E55CF6D5231D2 5BA8BA¢5D5E3.A.QJ

1! 2"3#4$75%6t7’8( 12872666521B7315¢53E!5EI1;='6B3:B83¢c

9 AzSXDCFVGBENJMXL 6199S¢8319P9QSA1C¢AD2¢A7ET9233cA

10 w2BDF62-NI\MTG:RA.M y 437753ap3'3¢3934F73aDE1¢92AC¢FE94
127

Fig. 13.2 — Public 3 Secret Key Pairs in (§E‘(2 3

1.3.5.1 gegga; §up_1;c_xgy_r-9;1g_
In this ‘approach, as in Section 9.6, the e>d.stence of a

Public Key Distribution Centre (PKDC) is envisaged which controls the

formation of user connections. The connection protocol sequence may

be described as follows. Each user registers his‘. public key with the

Pm: and each user knows the public key of the Centre. when a user i

wishes to communicate with user 3', he first enters his secret key on

the terminal. This key can then be combined with the F’KI2C's public

key. which is assumed to be locally stored on the terminal, to form a

common key between the user and the FKE12. Then the user can connect

with the PKDC, using the common key in his DES based system. to

transmit an encrypted request to the PKDC for user j's public key (or

the entire list of public keys). The FKIIZ decrypts the request and

encrypts and transmits the desired public key(s) to the user i. Hence

the connection to the PKII2 is authentic and private so that an opponent

cannot modify the public keys transmitted or impersonate the FKDC

without detection. This approach insures that the PKK controls the

access of users to the system and centralizes the dissemination of

public keys. Note that a -connection to '.the- FKDC is required to obtain

-288-

 __i



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 302 

a list of pblic keys but once the user has stored the public keys,

the FKDC is no longer needed unless the user wishes to update his

public key list.

13.5.2 Eogal £\1_t3lic_Kgy_F_ilg

This method has been used in the simple demonstration system

described earlier and is very attractive when only a small number of

users are involved. Each user possesses an authentic list of public

keys. The distribution of this local directory can be accomplished

manually through hardcopy or electronic storage media such as

programable memory PRO}. Precautions must be taken to protect the

public keys from modificatio or substitution but not from privacy.

13.5.3 §o_Pgblig fie! Eile_

The third approach assumes a more benig environment in which

the opponent is content to passively eavesdrop. If this applies, keys

do not need to be stored. To establish a connection, each user

generates a new secret key, computes a new public key, exchanges it and

then calculates the secret session key. An active opponent however

can interpose between the two users, can mirror each half of the

scenario and establish an imposter-connection with each. This method

is mentioned here for completeness sake and it is recommended that it

sould be avoided in practice.

Thus this arrangement shous that the implementation of the

PKD algorithm and its use in a hybrid system using the DES is entirely

feasible. The value of combining the protection provided by the

conventional cryptosystem with the user authentication attributes of

a public key system is most advantageous.‘ The integratio of these two

methods gives the designer of secure systems flexibility in these areas:

1. The distribution and management of keys;.whi1e most con-

ventional cryptosystems require centralized key management

and connection establishment, integration of public keys

systems with conventional cryptosystems promises centralized

control of key management functions with distributed connection

establishment.

Decentralized user authentication; since a user's identity

can be confirmed using public parameters and a single secret

parameter known only to the user.

Document or file protection; the conventional cryptosystem.
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can be used to protect against information release by

encryption using document or file key while access to the

file key is restricted by the public key system.

Egnentiation in organ)

In this section two different methods of performing

exponentiation in G1-‘(2n) are considered. These indicate that fast

exponentiation in GF(2n) is possible using dedicated hardware and

make the DES/PKD hybrid system described above a practical way of

providing both security and authentication.

Both the methods, use the well known _'square and multiply’

technique to perform exponentiation in GF(2n). This technique has

been used throughout Chapters 10, 11 and 12 and the flowchart is given

in Figure 10.2. But in this case, the operations are performed modulo

2 which makes the implementation easy and reduces the running time of

the. algorithm. The two methods differ in the way they perform

multiplication and squaring in GF(2n).

13.6.1‘ Method 1

13.6.1.1 §q§a£irlg___

Squaring operation in Galois field can be performed very

efficiently if the irreducible generator polynomial f(x) is fixed as

shown below.

Let the irreducible polynomial be a trinomial, f(x) = xn+x+1. (_In the

demonstration hybrid DES/PKD system described in Section 13.5, f(x) =

x127+x+1). Let 'a' represent an element of the field GF-‘(2n) (for

example. the system base) and representing 'a' as a binary polynomial

n a: a0 + a1x.+ ... + an_1xn_1 _ ai e GF(2)
As GF(2 ) is a field with characteristic 2. the property that

(a+b)2 = a2 + 1:2

holds true for the operations in the field. Thus the representation of
2 . .

a is given by
2 2 4 2 -1.

a = a0 + alx + 32X +19. .1-an_1X (n )
Now reducing the powers greater than n using the recursive function

. . 1 . . _ I
xmj = x-7+ + X3 for 330, gives

a2=a +a $<+ (a +a )x2+... +a xn"2+ (a +a )x"'1
O n/2 1 n/2 n—1 n/2 n-1

where n/2 denotes fn/2] , the least integer greater than n/2.
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.. .. 2'.
As the characteristic of the field 1S 2, one can represent a using

exclusive-or operator Q
2 2 n—2 . n—1

a — a0 + an/2 x + (a1$ an/2)x + ...+an_1x + (an/28 an_L) x .
This expression can be rewritten as

9

a2 = a0 + .1; {ai+gx21_l + (aie ai+g) 3-:21} (13.2)
where g = n 2 .-.. ll.

Implementation of the equation (13.2) from the hardware point of view

gives

where

) - a a )2(COgC1-goat, Cn_1 — (309 1:09; n_1
Thus squaring can be very efficiently accomplished using exc1usive—or

gates alone. Such an implementation in GF(27) using 7-bit vector is
shown in Figure 13.3.

.+.———-Z-——:——>-—~

. . . 7
Fig 13.3-Squaring in GF(2 )

13.6.1.2 @.I£tip£iga_E:i.9_n_

The mltiplication in GF(2n) can be performed using the

standard canonical basis representation of elements. That is, the

elements of Gh(2n) are expressed in terms of a canonical basis for

GF(2n) over GF(2) and the multiplication rule is derived as follows:

Suppose that U and V in GF(2n) have the representation

.(uo,u1, ... un_1) and (vO,v1,..., vn_1) respectively in terms of the. . - -1 . . .
canonical basis (1,a ,...,a n ) where a is a root of an irreducible

polynomial of degree n over G#(2). This means that

] iU = ["‘o'“1'“2' "" “n..1
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-1.
= [1.r1. ---:0" ]

= M0 + I‘-11¢. + M2u_ + + Mn__1a“
2n-2

(!

wh-ere N5‘ is the GF(2) matrix whose entry in row i and column j is the
coefficient.of uk when mu‘)-2 is expanded in the canonical basis

(1,a...., an'1). Hence if (zo,..., z ) is the representation of Z11-1.-
we have

n-1 t n- 1

a va+...+uMlva20+-21.u+...+zn_1 _ n-
where

in = (no, u1,..., un_1
It now follows from the uniqueness of the representation in terms of

)andv=

a fixed basis that
12

2k = 13 PL 3.! for k = O, 1,..., n-]. (13.4)
The right hand side of (13.4) is sometimes referred to as the bilinear

form in the vectors |_._1 and g.

Toaaoid the need to store the matrices Wk in the calculation

of the product of two elements, the algorithm given by Berlekamp in [56]

has been used.

Let the multiplicand be U and the multiplier be V and assume
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that they are stored in two n-bit registers U and V respectively. Let

the partial product register be called 2. To perform multiplication,

the Z register is initially set to zero. Depending on the lowest bit

, U is either added or not added into 2 (modulo

= 0, Z is left
of the multiplicand V0

2 addition). If v0 = 1, then U is added into 2; if yo
unchanged. The V register is then shifted right, the U register is

multiplied by a and the process is repeated. Mltiplication by a is

done according to the recursive equation a" = a+ 1. At the mth step,

U contains an times the original multiplicand, vo contains vm, the mth

bit of the original multiplier and 2 contains 1:0 Vi(Uu1). After n
such steps, the multiplication is complete. 2 contains the product of

the original U and V registers. The V register has been cycled

completely around to its original position but the U register now

contains U an'1. A schematic diagram using feedback shift registers

is shown in Figure 13.4 for the field GF(27) with f[x) = x7+x+1 as the
generating irreducible polynomial.

Fig 13.4 - Multiplication in GF(27)

This method of multiplying and squaring elements in GF(2n)

has bee used in the software imlemntation of the PKD algorithm in

the hybrid system. with dedicated hardware, the exponentiation

algorithm would take approximately 16256 (=12? x 128) clock cycles in

the worst case. Hence using IMHZ clock, this gives a worst running

time of less than 20 milliseconds compared to 6 seconds when carried

out in software using 6502 machine code programming.

13.6.2 Wbthod 2

Here exponentiation is performed in GF(2n) using a novel
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technique based on normal basis representation of elemets [79]. This
section contains some of the notes communicated by Prof J Massey, ETH,

Zurich, in private correspondence. The method has been used to design

a hardware exponentiation system in GF(27).

13.6.2.1 flulgiglicgtipg

The multiplication rule given in method 1 can be used with

any basis not only with the canonical basis.

Let a1.a2, ...,a" be any basis for GF(2") over GF(2) and
let 5 = (u1,..., un), E = (v1,v2,...,vn) and Z = (z°,z1,...,zn) be the
representations of U, V and Z in terms of this basis. It follows that

if Z = UV, then
2

Z = Eul, ...,un] 01 .... ula n
Q2611 ,

a a 2
n 1 .... a vn n

The matrix in (13.5) can be expanded as

“m: + ‘Magus + + M. vs.

an (110.00 {!n

where Wk is the GF(2) matrix whose entry in row i and column j is the
coefficient of ck when aiaj is expanded in the basis u1,a2..., an.
It follows that

zk = ut Wk 3 for k = 1,2,..., n.

In particular let us now consider a special basis called the normal
basis.

i suppose that E is an extension of the field F and E is a
vector space of dimension n over F. is said to be a

normal basis for E over F if 01...., n are a basis for E over F and
are also roots of the same irreducible polynomial in F[x]. For F =

GF(2) and E = GF(2n), this is_equivalent to saying that for some1_

element 1 of GF(2m), Hi = 12 for i = l,2,...,n;are linearly
independent over GF(2). Now letting [uo,u1,...,un‘ ]be the represent-- -1

ation of u e GF(2") in terms of the normal basis u,a , ... e27 , then
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U = u U + up 2 + ... + u _2u2n’2 + u0
so that

H

U2 = u G 2 + a 4 + ... + u
0 ul n-2

where the identity u2 E u for all u 5 GF(2) and the fact that cross-

term products vanish when raising to the power 2 in GF(2) have been

used. Thus it is seen that squaring an element U in GF(2n) merely

consists of a right cyclic shift of its representation in terms of a

normal basis for GF(2n) over GF(2). In a general extension field

GF(qn) where q is a prim, raising to the qth power an element of

GF(qF) corresponds to a right cyclical shift of its representation in
terms of a normal basis for GF(qn) over GF(q). Thus the implementation

of squaring in'multiply and square’ technique exponentiation is made

very simple using normal basis.

Now letting g = (uo, ...,un_1), v = (vq,\i,..., vn_1) and

5 = (zO,z1,-.., zn_1) be the normal basis representation of U, V and 2
respectively and Z = U.V, then

én_1 = (uo.u1,..., un_1)t M (v°.v1,..., vn_L) (13.6)
where M is the GF(Ei matrix whose entry in row i and column j is the

u2%+J—; is expanded in the normalcoefficient of a ' - ‘ a23'1 =
TI-1

basis a,u2,..., a2 . But Z2 = U2V2 and the elements U2,V2 and 22
have the normal basis representations (un_1, uO,..., un_2), (Vn_l,-V09

...,vn_2) and (zn_1, zo,..., zn_2) respectively. Thus it follows that
for the same matrix M as in (13.6)

_ t
zn—2 ‘ (“n.1' "‘o""’ “n—2) M ("n-1"’o’ "n-2)

and in general that, for this same GF(2) matrix M

2k = (u1<+1g uooju-n_.1g u0,n.., M (Vk+1gnooVn_1|VOgoooVk)
for Osksn-1.

Thus when a normal basis representation of GF(2n) over GF(2)

is employed, each digit in the product is given by the sam bilinear

form with appropriate cyclic shifting of the representations of the

factors. This property is the key to construction of simple multipliers

for finite fields.

In the FKD system, it is necessary to implement the equation

(13.6) to perform mltiplication in GF(2n). The expression (13.6) can
be written as

1 I t ‘
zn_1 — un_2 vn_2 + (uo,..., un_1) _fL_(vo,v1,...,vn_l) (13.7)
where the binary matrix./\.is symmtric-with an all zero main diagonal.
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This can be seen as follows:

writing mij for the entries in M,

2 2: 5;n-1 1 1 3 13

Suppose uk= vk = 1 and u vs = O for s # k. Then zn_1 =1mkk- But_ +k5...
for this case U = V =d2 which implies that Z = UV = . Thus

zn_1 = 1 if and only if k = n-2. Hence mkk = 1 if and only if k - n—2,
so that the next to last entry o the main diagonal of M is the only one

which is non-zero.

Because of its symetry and zero diagonal, the nxn matrix —I\—
can be written as

O 0 .... O

J\. = :1‘

E:....o

where T is the binary upper triangular (n—1) x (n—1) matrix.

tol :02 tO’n_1

1,n41

O cocoon-cocoa t
n-2,n-1

t

z = u- + (u0,..., un_2) T (v1,..., vn-1 n—2Vn—2
)n—1

(13.8)

+ [T(u1,..., un_1)] t (v0,v1...vn_2)

Using (13.8) one particular implementation of the multiplication function

is shown in Figure 13.5. The boxes labelled T Contain Exc1usive—or

gates only. Each component of the outpt is that sum of input bits

corresponding to the locations of the 'l's in the corresponding row

of the atrix T. The outpts of this box are then And-ed with the

appropriate components of the other factor. The outputs of these n—1

And gates are the summed by a tree of n—2 Exclusive—or gates. The

outputs of the two Exc1usive—or trees are summed and added to the term

un_2vfi_2. Alternatively, the two Exclusive-or trees and the Exclusive-
or gate that combines their outpts can be replaced by a single

Exclusiveuor tree with 2n—2 gates having 2n-L inputs. The circuit shown

1 . If U and V are shifted as shown in the
. n-1

diagram,.the same circuit will compute 2"

in Figure 13.5 computes 2

, z ,2 during the
_2 n_3. ...,z1 0

- 295 -

Page296



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 310 

_ I-

Fig. 13.5 — Multiplier Configuration using T-matrix
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next n—1 subsequent shifts.

A different implementation of the multiplication function is
based on the alternating property of JAL.

Let B denote any nxn matrix in any field F and let 3 and v be

any vectors in Fn. Then the bilinear form gtag defined by B is said to
be alternating if it vanishes whenever g = y. that is, if utag = O for

all u in F“. Two nxn matrices over F, B and D,are said to be congruent
if there is an invertible matrix P such that

B = Pt D P

Then

is-"Bx=u=u) D(Pv>

Thus the bilinear form ut B y can be evaluated using the matrix D if

the basis is changed by the transformation, P’ . when D has only a

small number of non—zero entries, the evaluation of (fig)t D (Pg)

requires only a small number of multiplications and additions beyond

those needed to form Pu and F3.

In [48], a binary matrix B which is symmetric and has an all

zero main diagonal is shown to be alternating. Thus the matrix./\.which_
defines the normal basis multiplier is alternating. The rank of the

matrix./\.is n when n is even and is n—l when n is odd. The matrix J\-

can be reduced to a diagonal matrix D using the elementary divisor

method given in Section 12.2.4. Thus for the nxn-matrix.fL, there

exists elemtary matrices E1, E2,...,Em (for some m) such that
t t_

Em... Efi.f\E1 ... em — D

where D is a diagonal matrix with n non—2ero entries when n is even

or n—1 non-zero entries when n is odd. Thus
t

P = ...
Em E1

The number of '1's present in the P—matrix is indicative of the number

of Exclusive-or gates required to implement this matrix. Hence using

this P—box, one can implement the multiplier function as

2 =u +(Pg)‘o<P~_»)n-1 n—2 Vn_2

This configuration is shown in Figure 13.6. The connections in the

Pubox are determined by the Phmatrix and the connections to the And

gates are determined by the D—matrix. Subsequent shifts of u and g

vectors will produce zn_2,..., 20.

_ As a final method of iplementing the ultiplier function

zn_1 = ut M 2, the 'brute—force' approach is considered. This
approach consists of first forming the vector Mg and then And-ing
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P

1 2 n-I n

I!

Fig. 13.6 - Multiplier Configuration using P matrix
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each of its components with the corresponding component of 1_1_, then

finally summing the outputs of the n And gates. This approach requires

n And gates and n-1 Ex'c1usive—or gates in addition to the Exclusive-or

gates needed to form Mg. Compared to the previous two methods, this

one lacks the 'modularity' - several sub-circuits of the same kind.

. . . 7
13.7 Hardware Desi of An E nentiator in GF 2

A hardware exponentiation system in GI-‘(27) has been designed

using the second method which involves the normal basis representation.

To begin with, a program is written to search for a generator of a

normal basis in GF(27). This consists of finding seven conjugates in

G1’-‘(27) which are linearly independent over G!-‘(2). A complete listing

of the program is given in Appendix 19. - The steps involved in this

algorithm are given as follows:

1. Gaoose an element 0: E GI-‘(2n)
2$41

2. Conrputeui =(! for i=1...., n in GF(2n) using the
irreducible 'polynomia1 f(x) = xn + x + 1.

3. Form a mm matrix using the n—bit vectors a 1,..., g .
n

4. Calculate the determinant of the matrix over GI-‘(2).

S. If determinant '=' O in GF(2), Go to step 1.

6. If determinant ¥ 0 in GF(2), thena generates a normal basis.

In this case n= 7. Initially, it is decided to look at the elements a

of the formd = xa + 1 for k<a5n—l. One such generator at is found to be
.11 . I

0-1 = x3 + 1. Then the powers ai - 21 for i = 1.2,..., 7 modulo7 .
(x + x + 1) are given by:

01=x3+l,C!2 x6+l,0i3=x6+)<5+1,fl4=x6+x5+x4+>-:3-+1,
(15:x5+x4+x3+x2+x+1,a6=x6+x3+x+1andu7=xS+

x2+1o

The symmetric matrix of the bilinear form is then given by

K6+l xsoxza-1 x6-rx5¢x¢1 xsa-35.33 x6+x x4+x3.x2+x+1 ' x3+;¢+1

' xsox-5+1 x6+x-5+x44-1 x5+x5¢xdox3+x2+l x5-v-x‘°+x3+x2+x x6+x5uc2 x6+x44x+l

' ' x6+x5+x4m3+1 x6«-x5+x" +x3+x2+xoI x5+x3+x2ox~1 x5ox4 ox x5+x5ox3

‘ ' ’ )C5+x4+x3ox2+x+I x5+x3+xo'| X6 ox}-vxze-1 3': +33 4. x

‘ " ' . x6+x3+x+1 x6+x4+x3oxz«-I x5ox4+ I

' _ x5ox2+1 x5ox4ax2¢x91

' 33+‘!
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Rewriting the above matrix in terms of the normal basis, gives

Expanding the above matrix in terms of d1.G2...., 07, yields

M=M1°1 2+”3°'3"M4°'4+Ms°‘5"”a°efM7°'7

I-O 1 O O 1 O 1

1 0 O 1 O 0 O

O O O 1 O O 1

0 1 1 O 1 1 O

1 O O 1 O 1 1

O O O 1 1 O O

1 O 1 O 1 0 1

and

M2 is obtained by rotating the rows of M1 downward by 1 position_ and
then rotating the columns right by 1 position. Similar operations on

M yield M .and so on. In the implementation of the multiplier function2 3
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M = M7 is used. The T—matrix is therefore given by
O 1 0 O O 1

O 1 O O 1 O

O 0 1 1 O 0

O 0 O 1 1 1

O O O O 0 O

O O O O 0 1

The T-box can therefore be realized as

Note that one of the six outputs is not used and is identically equal

to O. The And gate is therefore unnecessary that is fed by this 0

output. Thus the complete circuit requires 2 T—boxes with 5 Exclusive-

or gates each, 2 sets of 5 And gates operating on their outputs, 2

Exclusive-or trees with 4 Exclusive—or gates each and 2 additional

Exclusive-or gates and 1 And gate for producing the final output. The

total gate count for the multiplier function is equal to 20 Exclusive-

or gates and 11 And gates.

Using the brute force method the multiplier function can be

implemented as follows:

The number of gates required using this approach is equal to 18

Exc1usive—or gates and 7 And gates. It appears to give the minimum

number of gates of the three realizations; but the realization using

the T—matrix or the P—matrix is preferrable for large extension fields

because the the circuit is composed of two identical-subcircuits, that

is, a modular design is achieved.
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The circuit diagram of the designed comlete exponentiation

system in GF(27) is given in Appendix 20. Here the multiplier

function has been implemented using the 'brute—force' approach.

As the number of '1's present in the M—matrix give an

indication of the number of Exclusive—or gates required to implement

the mltiplier function, to minimise the number of gates, one needs to

reduce the number of '1's in the M—matrix to a minimum. In an effort

to obtain such an optimum NLmatrix, various normal basis generators a.

with four different irreducible polynomials are tried in-GF(27) and the
number of '1's in their corresponding Nhnatrices are calculated. The

results are given in Figure 13.7. From the results it is seen that

a) the difference between the minimum and the maximum number of '1's for

the tried cases is not large, that is, the variance does not appear

to be high.

b) The average number of '1's in the Mhmatrix is approximately equal to

23 which is roughly equal to n2/2 = 3% é 24.
This may imply that for a randomly chosen normal basis geerator and

an irreducible polynomial, the number of '1's is approximately equal_

to half the entries in the NLuBtrix. It appears that the random chice

of normal basis generators and different irreducible polynomials does

not seem to yield any substantial reduction in the number of '1's in

the M—matrix. The above claim should be read with caution as this is-

based on a small number of trials in a small extension field GF(27).

Normal Basis Generators in GF§2127)

From cryptography point of view, one is interested in large

extension fields namely GF(2127) or GF(2521). The next step is there-

fore to determine the generators of normal basis in these extension

fields which can then be used in the HUD exponentiation system.

Albert [48] proved that if F is a subfield of E and E is normal over

F, then E has a normal basis over F. Thus, GF(2n) has a normal basis

over GF(2) for all n. Although the theorem by Albert establishes the

existence of a normal basis for any field GF(2n), it does not give any

help to determine the generators of normal basis in practice. As no

systematic method for finding these generators was apparently evident,

it is decided to resort to the trial and error procedure using the

algorithm given in Section 13.7. However, let us first consider the

probability of finding a normal basis using this random search procedure.

- 303 _
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Irreducible polynomial of degree 7

over GF(2)

T

X7+X+1

X7

X7+X+1

X7+X+l

x7+x+1

x7+x+1
6

+x+l

X7+X +X5+X6+X2+X+1

X7+X+1

x7+x+1

X7+X+1

X7+X6+X5+X4+X2+X+1

X7+X3+X2+X+1

Normal Basis
Generator

X5+1

X5+l

X3+1

XS+X+1

X6+X+l

X6+X2+l

X4+X+1

X6+l

X5X2+1

X3+X2+1

X +X+l

X +X+1

Same numbers in brackets indicate same M-matrix

No. of 'l's in
the M-matrix

21 (1)

27 (2)

25 (3)

27 (4)

19 (5)

25 (6)

21 (7)

21 (1)

21 (1)

21 (7)

19 (5)

27 (4)

27 (2)

27 (2)

27 (2)

19 (5)

19 (5)

27 (4)

.27 (2)

27 (2)

25 (5)

27 (2)

25 (3)

19 -(5)

25 (3)

21 (7)

19 (5)

Fig. 13.7 — Table showing some normal basis generators

in GF(27) and the number of '1's in

the corresponding M-matrices

— 304 -
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From [56, Theorem 11.39], the number of elements in GF(qm)
which have m linearly independent conjugates over GF(q) is given by

q"’ I I (1 —q"’5< >k

where the dk are the degrees of the distinct irreducible factors of
x"'.1 over GF(q).

. . 127
For the extension field GF(2 )

X12‘/_1 ___ l I Q(d)(x)
d 127

where Q(d)(x) denotes the cyclotomic polynomial.

That is,

xl27_1 = Q(1)(x) Q(127)(x)
Q(1)(x) is an irreducible polynomial of degree 1. The degrees of the
irreducible factors of Q(l27)(x) are determined using the following

result [56] :

Since every element of order n has the same number of conjugates with

respect to GF(2), every irreducible factor of the cyclotomic polynomial

Q(n)(x) has the same degree over GF(2). This degree is the multi-.

plicative order of 2 modulo n.

For.the case n = 127, the multiplicative order of 2 modulo 127 is 7 as

27 E 1 (mod 127). Thus every irreducible factor of Q(127)(x) has"

degree 7 over GF(2). Hence the probability of finding a normal basis in

GH2127) = (1J-.=)(1- 1-)18 5-0.434.
27

The program FINDNORBAS.F77 in Appendix 19 is used to determine
. . 127 . .

a normal basis generator in GF(2 ) using the random search algorithm.

Initially it is again decided to consider the elements of the form

a = xa+l for igasize. The operations are performed modulo the

irreducible polynomial x127+X+1. The first such generator of normal

basis found in GF(2127) is a = x119+l. In GF(2521). with irreducible

polynomial x521+x32
be a = x+l.

The Phmatrix and the T-matrix required for the imlementation

+1, the first generator of the form xa+1 is found to

of the mltiplier function are also determined, using programs WLMATRIX.

F77 and T—MATRIX.F77. The listing of these tun programs are given in

Appendices 21 and 22. The number of Exc1usive—or gates needed to

implement the multiplier function using the T—matrix approach is

calculated using the program EXORND.F77 (Appendix 23). withut

employing any optimization techniques. the T-matrix required 3794

Exc1usive—or gates. Thus a rough estimate of the total number of

- 305 -
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Exclusive—or and And gates required to implement the mltiplier and

hence the basic exponentiation function in GF(2127) is about 2x3794+2

(125)+2 = 7840 Exc1usive~or gates and 2(126)+1 = 253 And gates. This

can be conveniently manufactured using very large scale integration

(VLSI) techiques.

' 13.9 Extesion of Diffie-Hellman System to Matrix Rings

This chapter on public key distribution system is concluded

by presenting an extension of the Diffie—He11man system to matrix rings.

As the ring of all nxn matrices over a finite field contains

nilpotent elements when n>1 (Section 10.4), again the group formed by

only the non-singular matrices of order n, Mn,is considered. In

particular, the group of non-singular matrices over Z/pl where p is a

prime is considered. To form a public key distribution system, it is

required to choose an element Aezwkca/pz) where p is a very large prime
such that

A’ E x (mod p)

where r is the order of A, the base matrix.

The base matrix A, the prime p and the order r are to be made public.

Each user chooses a secret random number xi less than r and generates a

public matrix Ci where

ci 3 A"i (mod p)
Two users can arrive at the common key in the same way as in the Diffie—

Hellman system. For instance,if user 1 wishes to initiate an interchange

of secret information with user 2, he extracts the public matrix C2 of

user 2 and comptes Czxl (mod p). Similarly user 2 computes C1x2 (mod p)
and the process yields the common key K where

K = K12 = K21 '=' c1"2 (mod p) 2 c2’& (mod p) '=' A"1"2(mod P)
with the Diffie-Hellman system operated in Z, the maximum

number of secret keys possible is limited to p—l whereas with this

extended system it depends on the order of the base matrix, r. The

larger the value of r, greater the number of users that the system can

support. Again the security of this system is dependent on the

difficulty of computing logarithms modulo p.

13.9.1 Qe_§_ign_o£ §a§_e_Mgt£i§_

The system designer needs to construct a base matrix A in n1

— 306 _



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 320 

(Z/pZ) and determine its order r. One method of construction of A with

a given order is outlined below.

Consider an irreducible polynomial f(x} of degree In for which

A is a root where A e Fq and q = pm.
1

f(x) = aO+a1x + ... + anh1xm- ai E F?
Regarding F as a m—dimensiona1 vector space over F with basis

2 . .
(1,A,A ..., )Lm'1), let '1‘ represent the following linear transformation
onF.

<2

'l‘:x-> Xx.

Am—'1 .
2

Under T. then 1-—> }.,}.—>A . ... ,Am—+ -a - ... —aO.m-1

Hence the matrix representation of the linear transformation T relative

to the basis (1,A,A2, ...,}\m-1) is given by the companion matrix

-3m—1-"-‘m.2-3m_3 - - - -30
2

Linear independence of I, T, T2,..., Tm-I implies that I, B, B , ...,

Bm'1 are linearly independent-. Since f(x) = 0, we have f(B) = 0. But

f(x) has degree In and so the linear independence implies that f(x) is

the minimum function of B.

Hence the order of the matrix B is equal to pm—1 and

m_1 -
B3’ = I (mod 1))

Thus the system designer can choose irreducible polynomials of degrees

ml, m , ...,m in 2./p2 (see Section 10.5.2.1) and form the composites

matrix B as shown below:

where the order of Bi is equal to pmi-1 for l_<_ igs . The order of the
matrix B is then given by the expression

gem { (p“‘L -1.). (p“'2 -1).I....<p‘“s -1)}

The matrix A to be used in the public key distribution can then be

obtained by conjugating B with an arbitrary non—singu1ar matrix Y

belonging to Mfi,(Z/pl). That. is,

-3Cf/-
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A =YBY-1

The order of A is the same as that of B and they are of dimension n

where n is given by:

i=1

This above method has been implemented on the Prime computer system and

the program used is given in Appedix 25. A small example of such a

public key distribution system is considered below:

13.9.2 gramlg

Let p = 5

Let f1(x) = x2+x+l where f1(x) is irreducible over 2/52.
The matrix B is therefore given by1

31:0 1 E o 1 (mods)-1- 4 4

2

o 15'1
I (mod 5)

4 4

Let f2(x) = x3+3x2+x+2 which is irreducible over Z/52.
Hence the matrix B2 is given by

0 1 0

O O 1

-2 -1 -3

3

0 1 0 5'1

- 0 o 1 " I(mod5)

3 4 2

Now it is necessary to choose Y and Y_1 such that

B2=

and

Y Y‘1 A where A E M (2/52)
0 B2 n

Let Y be an arbitrary 5x5 non-singular matrix given below:

3 1

2 2

O 3

2 1

4 O



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 322 

The determinant of Y is calculated using program DE'1‘tvDD.F77 (Appendix

12) and is equal to 4 (nod 5), hence Y is non—singu1a.r. The inverse

of Y is calculated using program IINVINDDJ-‘77 (Appendix 24) and is given

by

and hence

The order of A is equal to Jlcm {(S2—l~)(S3—-1 )] = 744 and A744 3'1 (mod 5),
verified using program MATEZXPJ-‘IN (Appendix 13). Hence the key space is

25:-:5’/43 where Ax 5 C (mod 5) compared to the key space 29:54 in the
Diffie-Hellman system with p = 5.

13.9.3 353 gf_Uppg_r_T£i_angul_a£ Lat_ri_cgs__0_v_er_ §/EZ_
On the other hand, the ring of upper triangular matrices over

Z/p2 (p prime) can also be used. If the base matrix A is chosen from

this ring, then the maacirmm order of such a matrix is equal to p(p—1)

which can be obtained having non—zero elements along the main super-

diagonal. This can be shown as follows.

Partitioning A into a diagonal matrix D and an upper triangular

nilpotent matrix U, that is, A = U+D, then it is seen that D.U, U.D and

U2 are also upper triangular nilpotent matrices. In Section 10.4.4, it
is shovm that

(D + U)¢(p) E (I + U¢) (mod p) where 95 is the Euler totient function
and U¢ is some upper triangular nilpotent

1:" ..
t marix

and (I + U¢)p E If. for some t
If p is assumed to be greater than n—1 (which is valid in a FKD

system as the prime p is very large); then t = 1. Thus the Order of
A is p¢(p) = p(p-1). Hence in this case the key space for x is

2sx.~<p(p~1_).
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C H A P T E R 14

PERMUTATION lU.YNOi‘-flAL..S IN THE DESIGN OF PUBLIC KEY SYSTEMS

14.1 General

The fact that permutation polynomials can be used in the

construction of cryptographic systems of a general mathematical nature

should not be surprising since they determine the permutation of

elements of the set. which is the essential basis of a cipher system.

The RSA permutation polynomials and some others which may be used in

the design of public key systems are investigated.

A polynomial f(x) with coefficients in a finite field F is9

called a permtation polynomial if the numbers f(a) where a e Fq are a
permutation of the a's. An equivalent statement is that the equation

f(x) = a

is solvable in Fq for every'a'in F and that the equation has a unique
solution in Fq for each a E Fq [80?.

Polmomial y E x'_‘ gmd In)

First consider the 'famous' power polynomial y = X? which has

been used in the RSA public key cryptosystem and the Diffie—He1lman

public key distribution system.
Lema 1

The polynomial

y xn in Z/pl where p is a prime

represents a permutation if and only if n is prime to p—l.

Let d be the greatest comn divisor of n and.p—l.. Then letting

y 5 xn (mod p) and raising y to the power (p—1)/d, gives,

(xn/d)P'1‘ ‘ 1 (mod P)
ie y(p'1)/d 1 (mod p)

The above congruence has (p-1)/d roots in Z/pZ and each root is a nth

power in 2/pz. If d = 1, that is, n is relatively prime to p-1, then

there exists only one nth root of each element in Z/pZ and hence y 5 xn

is a permutation modulo p.

Now the above argument can be extended to the case where
n

y = x is a permutation in Z/mZ where m = i=1 Pi and the pi, lsisr,
are distinct primes and n is a positive integer such that gcd (n,(p1-1)

_ 310 -
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(p2—1).--(pr-1))= 1-
To prove that y E xn (mod m) is a permutation one needs to

show that xn __ yn (mod m) implies that x 5 y (mod m). Following [81].

the proof is considered in three steps.

(i) x and y are relatively prime to m.

(ii) x = api and y = bpi for 1ga,b5m/pi

(iii) 3: = api and y = bpj for iafj, lgagm/pi, ]\<b\<m/pj

(i) The proof is by induction on r. From Lemma 1, if r=1, then

y X" is a permutation as gcd (n,p1—1) = 1. Assume it holds

for r5k—1. Let [a1,....a¢(m)} be a completenreducgd residue
system mod m, that is, gcd (ai,m) = 1. If a. - aj (mod m),

then (ai/aj)n E x" E 1 (mod m) and hence x" 1 (mod pi),
L<_'g<r. The gcd (n,pi-1) = 1 and Lemma 1 imply that x 5 1n

(mod pi). But then x = 1 (mod m). Thus {a1 , ..., a;(m)}
are distinct mod m.

Now suppose anpin 5 bnpin (mod rn) where 1sa,l:5m/pi. ‘then
an n—l E n P n—l npi b

pi is invertible mod m/pi. By induction hypothesis, a = b.

(mod m/pi) and so a 5 bn (nod m/pi) since

Consequently, {anpin } , Kasm/pi are distinct mod m. Nbreover

for any i, the sets [anpin } , Kagm/pi and {a1n,...an¢(m}}
are distinct since a.n }' 0 (mod pi),lgj5¢(m).J

If anpin '=' bnpjn (mod m) where lgagm/pi, lgtgm/pj, i # j,
then pi-lb, pj1a. Let a = p. a and = pi B, thenJ

n—1 — B _ m
'P]—_Pj

mp‘1' tht'“EB“ d
P. _ ies a a (mo pip)1 J 5

By the induction hypothesis and by lga,

5" (pipj ) )

pip]. invertible rrnd m mP

Egm/pipj, 3 = E and so api = bpj.
The only intersection of the sets {apkn } Ilsagm/pk, k = i,j have then,
is at the common multiples of pip”

Suppose now that xn E y (mod 11:) with x }' y (mod m). From

the first case. neither 3: nor y can be ‘relatively prime to m. But: then

x = api, y = bpj, for some i,j with 1gi,jgr. Again by the above,this
implies an: 3 y (mod :11). Thus { xn } lgxgn are distinct (mod m). Ihis

completes the induction.

Conversely, if the proposition is not true, then there is at

least one i such that gcd (n,pi—1) 55 l and hence xn does not yield a

permutation (mod pi). If x 3 y (mod pi) and xn 5 yn (mod pi), then
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for 2 = m/pi xz ¥ yz (mod m) and (xz)n E (yz)" (mod m).So.x“ is.not a
permutation (mod m).

The above paragraphs thus show why in the RSA system which

uses the polynomials x? and xd (mod m), one needs to choose the coding

exponents e and d relatively prime to (p1—1)(p2-l) where, m = plpz.

14.3 Polynomial X E ax + b (mod m)

Consider the linear permtation polynomial f(x) given by

f(x) E ax + b (mod m) (14.1)

where a and b are elements in Z/mZ and gcd (a,m) = 1 and m is a square

free integer. Assume that the message is x. lsx<m and the encryption

procedure consists of evaluating f(x). The decryption procedure is

given by the inverse po1ynomia1,f‘1(x). Rewriting (14.1) as
y ax + b (mod m)

ie. ax E (14.2)

Letting y — b

ax = y (14.3)

The congruence (14.3) has as solution

X ; V’ a¢(m)-1 (mod m)

where ¢(m) is the Euler totient function. But the opponent does not

actually need to calculate ¢(m) to find x given y. The congruence (14.3)

can be easily solved using Euclid's algorithm without the knowledge of

¢(m) as follows.

One can find a_1 using Euc1id's algorithm where

a a'1 1 (mod m)

Hence x 3 y’ a_1 (mod m)

Thus as expected, the linear congruence (14.1), does not provide a

secure public key system since the opponent can easily recover the

message x without factoring the odulus m to its prime factors. On the

other hand, this polynomial can be used to form a.conventiona1 crypto.

system where the parameters a, b and m are kept secret. Further the

parameters a and b can be Varied in some prearranged manner resulting in

a variable substitution such as

ai = g1(ai_1. ..., a1)
and

bi — g2(bi_1, ..., bl)



PMC Exhibit 2117 
Apple v. PMC 

IPR2016-00753 
Page 326 

Linear Fractional Substitution

Now consider the linear fractional substitution function
- ax+bf =

(X) cx+d (mod F)

From Section 10.4.5, the above function permutes the elements in Z/pz

if ad - bc ¥ 0 (mod p). In Section 10.4.5. the elements a.b,c and d

were used to form the message. Here the element x is considered to be

the message. For designing a public key system which is to be based on"

the difficulty of factoring a large integer, consider
ax+b

V ' cx+d ("‘°d “"

where say m = p1p2 and p1,p2 are distinct primes.y is the cipher. A
symbol m is adjoined to Z/mZ where ° = 1/0, 0 = l/m and for x E Z/mz,

m + x = m, m x E m for x ¥ 0. Th legitimate receiver can decrypt the

cipher by finding the inverse operations modulo p1 and modulo p2
separately and then use the Chinese Remainder Theorem to obtain the

message x(nnd plpg). Actually this system has no security at all
because the cryptanalyst can also find the message very easily with the

knowledge of the parameters a,b5c.d and m. That is, he does not need to

factorize nrinto its prime factors. This is because the inverse of the

matrix M==(: 3) (mod m) can be found even without the knowledge of the
prime factors of m. This can be done using a process similar to the

Gauss—Jordan elimination process over the real numbers except in this

case, the elementary operations are chosen to ensure that the

determinant of the resulting matrix is relatively prime to m (assuming

determinant of(: 2) is relatively prime to m). This type of algorithm
would require a similar number of operations as its counterpart over

the reals, that is, something like 0(n3) operations for a nxn matrix

[45]. Thus the opponent can find the A,B,C,D such that

(A B) E <3 ")4
co > c d _

If the greatest common divisor of cipher y (mod m) and m is greater

(mod m)

than 1, then this gives one of the prime factors of m. The probability

of this occurring must be small for large m,as the factorization of a

large m is known to be hard. Therefore neglecting this case and

considering gcd(y,m) = l, the opponent can choose two elements w and z

nnd m such that

zy 5 w (mod m)

Once such a pair (w,z) is found, he can easily solve for the message
X85
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Aw + B2 (mod m) (14.4)

Thus the message x can be recovered without having to factorize m. An

example illustrating the above method is given below:

Let m plpz = 3.7 = 21.
Let

3x + 5

y x + 2 (mod 21) det (f 3) I 1 (mod 21)
Let the message to be encrypted is, x = 6. Then the cipher y is

given by
_ 3.6 + 5 =

y _ ——E—:—§ _ 16 (mod 21)

Using the modified Gauss—Jordan methd, the opponent calculates the

inverse to be 1

3 5 _ 2 16 (mod 21)
1 2 20 3

Choosing w 3 2 (mod 2l), gives

162 E 2 (mod 21)

Using Euc1id's algorithm, 2 5 8 (mod 21). Now using equation (14.4),x
is calculated to be

x ‘ 2.2 +1e.s ‘(mod 21)

" 6 (mod 21)

Again such a system can be used in the design of a conventional

symmetric cryptosystem. One can vary the parameters ai.bi.ci.di such

that aidi — bici ¥ 0 (mod m),by some prearranged manner. For instance,
2one can initially select two matrices M1 and M such that det (M1) ? O. b.

(mod m) and det(M2) ¥ 0 (mod m) and Mi+ = M Mi,where NE =(:1 1):2 i+l d.

for subsequent i's. 1 1

14,5 Rédei Rational Functions

Now consider a general rational function f(x) = g%E%, a
quotient of polynomials over 2 where g(x) and h(x) are relatively prime

in Z[x]. Then f(x) is a permutation function mdulo m if h(a) (nod m)

is a prime residue class (mod m) for any a8 Z and the maping 9: 2/mz -

+ z/mz, B (a) E h(a)41g]a) is a permtation [80]. If m - plpz, then
f(x) is a permutation function (mod m) if and only if it is a permutation

function (mod p1) and (mod p2). Again a symbol 9 is adjoined to Z/mz

— 314 —
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where °°= 1/0 and O = 1/00 and for as Z/mZ,a= + a =m , aoo = an for a

¥ 0. If the quantities f(a) are distinct for all ag Z/mZ U {m} ,

the f(x) is a permutation function over Z/mZ U{m} .

Rédei [82] considered certain particular functions fn(x) which could be
used in the design of public key cryptosystems as shown below:

Letlm be a residue modulo p (p, a prime # 2) such that (%) =
-1 (ie, a is a fixed non—square). Redei then proved that the function

fn(x) given by

<:x +¢E I‘ __ fn(x) + J1?
fn(X) -JT

xa-J5‘

fn(x) = J? (x+*1En + )-7— an
(s:+‘¢E)" - (x—~!zT)“

is a permutation (mod p) if n is odd and gcd (n,p+1) = 1 and p.*fn.
Further he showed that

fed(x) = fe(fd(x)) over z/pz

fed<x)+JaT = fe(rd<><>)+4r

‘f.ed<><>-¢=T . fe(fd(x))—¢.r ;._

Thus fd is the inverse permutation of fe if d is chosen such that
ed E 1 (mod p+1)

and

fe(fd(>‘)) = fd(fe(><)) = X

The proof can be found in [82].

One can use such a function f in the desig of public key

systems as follows.

If the ring Z/mZ is considered where say m = plpé (p1,p2 are
primes 75 2) then the encrypting exponent e can be chosen such that

gcd( e, p1+1') = 1, gcd(e,p2+1) = 1 and ea’ p1 and e,{" p2, then fe(x) is
a permutation function over Z/mz. This is a consequence of the Chinese

Remainder Therorem. Now one can determine 1:he.deco_ding exponentd such
that

ed 5 1 (mod (pl+1)(p2+1)) (14.5)
The encryption procedure transforms the message x E2/m2‘ using the

function y = fe(x) and the decryption procedure recovers the message

by evaluating fd(y) in Z/mZ. The parameter a in the function f is cose

such that (‘:3 ) = -1 and ($5 )1 2

to (e,fe, m,a) and the secret key is (d, fd, m,a ).

— -1. The public key is therefore equal

-315-
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From (14.5), it is seen that to calculate the decrypting

exponent d, the opponent needs to factorize m into its prime factors.

Thus this function seems to be suitable for a public key crypmosystem

whose security again depends on the difficulty of factorizing a large

integer m.

l4.b Dickson Fblynomial Based Public Key System

Let us now consider a special class of polynomials called the

Dickson polynomials [53]. As personally suggested by Prof S D Cohen of

Glasgow University, such Dickson polynomials are used in the desig of

public key crypmosystems.

For a E Fp and any odd positive integer k, the Dickson
polynomial gk(x,m) is given by

(""'1)/2 k .{2 kgkhw) - (1-<;r)(_a)r xk—2r =( +(%r

For 0 = O, gk(x,O) is equal to the familiar poer function x? used by
the RSA system.

From [53]. it is known that if gcd(k,p2-1) = 1, then gk(x,a) is a

permutation polynomial in Pp. Further

<_=edl(x.a> = ge(gd(x.a).oE’.) = 9d(9e(=-<.a)»a.e)

Thus the inverse permutation of ge(x,a), with gcd(e,p2—1) =1 can be
found using

— 2
ed = 1 (mod(p -1))

and

9e'1(><.<!) = gdhhue) over 2/132

Now consider the polynomial ge(x,u) over z/mz where say

m=p1p2, a product of distinct primes. Then ge(x,a) represents a
permutation if and only if

2

gcd(el(P12‘1)(p2 -1)"): 1
Thus one can desig a public key system using the Dickson polynomial

gk(x,a) as follows:

1. Choose large random primes pl and p2 and let m = plp .

2. Choose the encryption exponent e such that gcd(e,(p1 «l

(p22-1)y 1.
Calculate the decrypting exponent d such that

ed 5 1 (mod (-p12—1):p2.2—1)>
— 316 —
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4. Choose an arbitrary element (1 in Z/mZ.

The encryption procedure then consists of transforming the

message x e: Z-/rnz using ge(x, <1) and the decryption procedure recovers
the message using gd(x, cte). The public key is therefore given by
(e,m,ge(X.u);a)and the secret key consists of (d,m, gd(x,c5,a). The
security of this system again lies in the difficulty of factoring the

modulus m to its prime factors to be able to calculate d using (14.6).

Thus Dickson polynomials can be used to design secure public

key systems like the RSA system. It has been simulated on the Prime

Computer system using the program DFDLYJ-‘77 given in Appendix 26. An

example showing the various parameters is given below.

Exayle

Let p1=5, p2=7andm=p1p2=35. Leta = 1
Choosing the coding exponents e and C] such that

ed 5 1 (and (_52—1)(72—1.))
ed 1 (mod 1152)

Therefore e = 11 and d = 419 are suitable.

Thus the encryption Dickson polynomial function is_ given by g:'u(x,l):
polynomial degree 11

polynomial coefficients
ll 0x x

(1o24o9o2ao2oo2_4o)

The decryption Dickson polynomial function is given by g419(x,l):
polynomial degree = 419

polynomial coefficients

X419

( 1

%

25

O

21

OOOOOOOOOOOOO 0000000000000 0000000000000 0000000000000 OOOOOOOOOOOOO
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(mod 35)

= gil(x,1) 2 25 (mod 35)
Message

The linear polynomial

- 318 —

M3MO1
E.UV.9M.9

Message x E 10

Encryption : cipher y

Decryption :

Discussion

Some permnxation.po1ynomia1s for which the inverse permutations

are easy to construct have been considered.

ax+b and the linear fractional substitution function (ax+b)/(cx+d) are
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found to be insecure when used as pblic key systems. The Redei

function and the Dickson polynomials seem to offer a similar level of

security as the prototype RSA-system. In general. it is not easy to

find the inverse permutation for an arbitrary permutation polynomial.

One way of finding the inverse permtation of a polynomial g(x) in Z/pZ

consists of raising the function gtx) successively to powers 2,3,4,...

and combining an appropriate set of them to give the inverse function.

Using this mthod, both the system designer and the cryptanalyst have

the same work factor. On the other hand, if a permutation polynomial

g(x) can be found whose inverses over Z/pi; for i§l,..., r are easy to

calculate but whose inverse over Z/mZ where m =dI;{ pi is difficult to

calculate-without knowing the prime factors pi, then one can desig a
public key system based on the factorization trapdoor as follows:. r

l. Chose large primes p1,..., pi and let m = £=] pi.
2. The permutation polynomial g(x) is made public along with m.

3. The encryption procedure consists of transforming a message

xo 2 Z/mZ -> g(xO} e Z/mZ.

The decryption procedure finds g'1(x0) in Z/piZ for i=1,...r
and then uses the Chinese Remainder Theorem to recover the

mssage X0 in 2/mz.
Note that the decryption procedure should require the knowledge of prime

factors of m to be able to provide security.

fublic key systems can also be desiged using permutation

polynomials based on the law of composition. One can combine the

permutation polynomials, for which inverses can be found if some 'extra'

information is known, under the law of composition to construct public

key systems which can be more secure than the individual polynomial

based systems. Consider for instance, the encryption procedure given

by the coposite permutation function 9 where

g = y1 O y2 0 ya 0 ... 0 yn
and

yi, l$i£n, are permutation functions.
(0 — denotes composition)

The decryption procedure is then obtained by the composition of the

inverses of the composition factors of g in the opposite order given by
-1 -1

h = yn O yn_1 0

Hence g 0 h = h 0 g = Identity, I.

The system designer can easily obtain the inverse composite permutation

function h as he knows the factors of g. But the opponent‘on1y knows g

- 319 —
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and its inverse is very difficult to calculate since it is very

difficult to find the decomposition of g with respect to composition.

As an illustration of this scheme, consider the following

simple example given below:

Let yl - xel (mod m) where m = p1p2 and e d 5 1 (mod ¢(m))1 1

Let y2 E a1:1+b1 (mod m) where gcd(a1,m) = 1 and b1 E Z/mZ
Let y3 : y2 2 (mod m) where e2d2 = 1 (mod ¢(m))
Let yd — a2y3+b2 (mod m) where gcd(a2,m) = l and b2 2 Z/mZ

Then the composite permutation g is given by
_ e e

g(x) — a2(a1x 1 + b1) 2 + b2

Letting el = 3 and e2 = 5, gives

15 _

g(x) = Z cixl (mod m) where ci=0

The system designer would mke the function g(x) and m public and keep

i E z/mz.

the prime factors p1 and p2 and the factors y1,y2,y3 and ya of the
comosition secret. If someone only knows g(x) and m, the it is very

difficult to find the inverse permutation. As seen earlier, one way

is to try g, g2, ... until the inverse permtation can be constructed

by trial and error procedure. On the other hand, the legal receiver

can find the inverse permutation very easily by calculating y4_1,
followed by y3_£ followed by y2’f followed by yl-1 to recover the
message.

The complexity of the composite system can be dramatically

increased using such an approach and there are numrous ways of

constructing such composite systems. For instance, one could combine

the RSA system and the knapsack system. The message can be ecrypted

using the RSA system or one of its extensions and the encrypted

message can be interpreted as a string of numbers in say the binary

system,which can be encrypted using knapsack system. This gives rise

to a number of possibilities to increase the security.
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C H A P T E R 15

CHAINING IECHJQUES AND BROADCASTING WITH PUBLIC KEY SYSTEMS

15.1 General

In the following section, some of the chaining techniques

are applied to the generalized RSA matrix system discussed in Section

10.4. It may be recalled that some of these techniques have been used

with the symmetric DES system (see Chapter 5). Such techiques can

also be applied to the RSA polynomial system described in Section 10.5.

By these techniques, the udesirable effects of redundancy and structure

present in the plaintext data are.e1iminated.

Finally, a precaution which should be taken when using the

1 RSA system or any one of its extensions in a broadcasting situation is

mentioned, where a single message is encrypted under several public keys

to be sent to several users.

15.2 Chaining Techigues

Let E and D denote the encryption and decryption of a message

M under the generalized RSA system. Initially, consider the inter-

symbol dependence in an individual block using the RSA matrix system.

First cgnsider the messages to be non-singular matrices over

Z/mz, where m = £éa piai, under the normal encryption mode C 5 Me
(mod m). If there is a single error in cipher matrix C then the

recovered plain matrix will be completely in error. An example

illustrating this is shown in Figure 15.1. This indicates that there;

is a strong intersymbol dependence within an individual ciphertext block.

On the other hand, with upper triangular matrix messages

(including the diagonal elements), this is not the case. Consider a

message M, a 3x3 matrix over Z/mZ,given by

311 an 313

0 a22 a23 where gcd(ai

O 0 a33

i,m) = 1. 16i$3

and the corresponding cipher matrix C

c M9 (mod m)
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An error in C1 affects decryption of all elements m1,m2,m3 and m4.

Denoting this as

(c""C_-1') —:-5 (1-"1'! .2‘! 313*! "'4'.

(29—~ 30) ——> (39. 40.3019)

Similarly.

(c2__, C2: ___q~, ( -I-’ mg}, 313:’ m4}

(7 —-n 8) ——> (11. 5, 30, 1)

(c3—->c3*) -:9 U111’. 2*. H13". H14‘

(12—> 13) ——v (11. 10, 25, 1)

(C 3 ’ 4

(13—-14) —--> (29. 2, 42, 44)

4 4_,,c-:) e,’ (H-.12’ m2i’mI me

Fig 15.1 - Intersymbol Dependence in Non—singu1ar

Matrix Message: Space.
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If there is an error in cll, denoted by cfl , then after decryption it
is found that

d ‘I I ‘I

11 12 C13 311 a12 513

0 C22 C23 ___3_s, 0 322 e23
0 0 c 0 0 a33 33

11, a12 and a13 are affected due to
That is, there is not a strong intersymbol dependence

It is seen that only the elements a

an error in cll.
between the elements as in the case of the non—singular matrix messages.

More generally, it is possible to work out which elements are being

affected by errors. Cbnsidering again 3x3 matrices, let the

message be

W1 -

O(O
a

I’!

.0

O

n+1a

an“

f==+1
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(an-dn)

<d"-f")

(ii) C-92.. 2"_—_f‘_‘
(a-d) * d—f a—f

Now if there is an error in 'a', that is, a*, this results in error in

a , b and c . Denoting this as,n n n

at a'I bici
"'-+ n ’ n ' n

b* -————> b *, c *n n

cfijg cn*

as ——a dn", bn*, en‘, cn*

,e9_j_§e-I-‘clD D

fr-—a..fn_e*'C-wen n n

Thus from the point of view of intersymbol dependence within a block,

it is preferrable to use the set of non-singular matrices as messages.

Now consider some chaining techiques using this RSA matrix

system. Suppose an user A wishes to comcrrcunicate to anuser B a total of

r messages M1, ..., Mr. Let the Corresponding ciphers be Ci, ..., C .1'

One way of chaining would be to modify the first cipher C1

using some function fl before transmitting to user B. The function fl
can be communicated to user 8 under some secure means. For the

subsequent ciphers C2, ...,Cr, both users can derive the functions f2,

..., fr using some pub1ic1y_known function g,

= not, fly Mi_1p¢oo’ PH, --u, ‘J-.71

One could also transmit the function £1 to begin with using a public
key distribution system such as the extended matrix version of the

Diffie—He11man public key distribution system discussed in Chapter 13.

Now consider the case where the fuction fl is transmitted

to the user B via the first message M1. Two such possible methods are
looked at.

15.2.1 Method 1

The operation of this method follows the pattern given

below:
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In this method, the previous cipher matrix is simply added with the

next message matrix before encryption. Here a simple modulo 1:: addition

has been suggested. Mare geuerally, one could use a publicly known

function g to form g(Mi. C.1-1)’

cause an error in the decrypt ion of Mi and Mi

with this method, an error in Ci will

+1 and then the system will
synchronize. That is,

E D 'c~ 1M. . . .* M.* L" ' '1' M.*
1 + C1.-1 T’ C1 C). F?) 1 + c1-—l -? 1 *E D i F.

Mi+1 " Ci ’ Ci+1 Ci+1 ‘° ”i+1"'Ci ' "‘1+1

This system has the same error characteristic as the stream cipher

feedback (CFB) or the cipher block chaining (CBC) modes of DES. Note 3'11!’

tfiua -melfiod. daea not f:1'ouv.'dn. a.I.Llf-.enl:\-{‘.o.l:Lbn an aztgone con encrypt 0, message.
15.2.2 Method 2

The operation of this method follows the pattern given
below:

User A User B

M1 % C1 C1 #9 M1 _M1_C1D .E .. -——-—>

M1+C1+M2 jg C2 ‘ C2 —-———-> M1+C1+I\-12 M2

In this method, the previous cipher matrix as well as the previous

message matrix are added modulo m to the nert message matrix prior to

encryption. Wore generally, again a publicly known function 9 can be

used‘instead of modulo In addition where the arguments of g are Mi,

Mi_1 and Ci_l. with this method, an error in Ci, will cause error in
the decryption of all subsequent message matrices.

— 325. —
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User B

C.""‘ $M.*+M * +C.*1 1 i—l 1-1

D

C . _+ Mi+Ci+Mi+l

Ihis system has the same error characteristic as the CBCP or the CFBV

modes of DES discussed in Chapter 5. It possesses the error

propagation property.

Note that in both these methods. the first message—cipher pair

(M1,C1) is essentially used to set up some form of ‘initialization
vector‘ (Section 2.3.2) and it is a direct block encryptio.

15.3 Broadcasting of Messages

In many applications, it is necessary to transmit the-same

set of messages to a group of users in the network. Simons has

shown that.[83]in such broadcasting situations,specia1 precautions

sould be taken to avoid the message being recovered by a cryptanalyst

without having to 'break' the underlying cryptosystem. His argument

given below applies to the prototype RSA system (over 2) or any of its

extensions proposed earlier. Thus the mssages M and ciphers C in the

argument can be rational integers, polynomials, matrices or algebraic

integers.

Let the modulus of the system be m (=p1p2) and two public

encryption exponents be el and e . Let a message M be encrypted with2

each of these exponents to form Cl and C2. That is,

cl M91 (mod :11)

C2 ‘ M92 (mod m)
where M, C1, ca 2 z/mz

Now if it is assumed that gcd(e1,e2) = 1, then there exists a and b
such that

ael + beg = 1

The values of a and b can be found using the Euc1id's algorithm. One

of the coefficients is positive and the other is negative. If a is

-326-
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negative, then using Euclid's algorithm. the multiplicative inverse of

C1 (mod m) is given by
-1

c1c1

If gcd(C1,m) = 1, then C1—1 exists and

E 1(mod m)

—1)|a| (C2)b (Me1)—|a| (Me2)b‘C1

Ma°1+b°2 (mod m)

M (mod n)

Thus the message can be recovered even without factoring m into p1 and

p2. The only information needed are the integer values of m, e1, e 9

caand (5 all of which are assumed to be publicly available. Thus

2

precautions must be taken to avoid such situations.

An example illustrating such a situation is given below:

Let m = 13.23 = 299

Lete1=5 d1=53

e2 ='7 dz = 151

_Let the message M = 4. Then,

Let

cl (4)5

c2 (4)7 ' 238 (mod 299)

127 (mod 299)

Now using Euc1id's algorithm

5a + 7b = 1

=> a = 3, b = -2

As b is negative, we form

-1 ..

c2c2 — 1 (mod 299)
1

(23s)c2' ' 1 (mod 299)

Using Euclid's algorithm C2_1 49 (mod 299)

Hence 1

(49)2 (127)3 4918167583

4 (mod 299)
M
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CHAPTER 16

CONG..USIONS

Some cryptographic techiques for secure data communication

over an insecure channel have been investigated in this thesis. The

first part has been primarily concerned with conventional crypto-

systems, in particular, the Data Encryption Standard (DES) whereas

the second part focussed on public key cryptosystems.. The main

results and conclusions are summarized below [87-90].

Part 1

A software implementation of the DES algorithm has been

carried out using an Apple microcomputer which allowed a study of some

of the properties of the DES such as the complemntary property and

the avalanche effect. It has been found however that such a software

implementation is too slow for many real time applications and since

it is necessary to store the secret key within the computer system,

there is a possibility of its recovery by an unauthorized user. These

problems can be overcome by a hardware LSI implementation of the DES

and this-has been used in the design and construction of a micro-

processor based data encryption interface uit.

The use of the interface in a point to point communication

system allowed secure data transfer between Apple microcomputers in

either plain or encrypted format. The interface has been satisfactorily

tested over the public switched telephone network with data rates up

to 1200 bits per second. If required, the security can be increased

by performing mltiple encryption with independent keys or using

chaining techniques. Several chaining techiques have been investigated

using the developed system namely Cipher Block Chaining (CBC), Stream‘

Cipher Feedback (CFB), Cipher Block Chaining with Plaintext Feedback

(CBC?) and stream Cipher Feedback with Vector Feedback (CFBV). Each

of these schemes gave rise to a cryptographic system with different

error characteristics, speed of operation and level of security and

hence is’ suitable for different applications. The error propagation

property of CBCF and CFBV schems made them 'particularly suitable for

message authentication purposes but unsuitable for use in
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communication links prone to noise. The self synchronizing property

of CFB and CBC made them more useful for links prone to small amunts

of noise. The four chaining mdes are found to be less susceptible

to attacks of replay, insertion,de1etion and code book analysis in

comparison to the standard Electronic Code Book (ECB) moderchaining

also helped to eliminate the undesirable effects of data redundancy

and structure. A statistical analysis of the randomess of the output

sequences produced under these different chaining modes confirmed the

good p5eudo—random generator property of the DES.

The use of the developed encryption interface has been

extended to provide off—1ine file security using the Apple disk system.

A self synchronizing mde is found to be mre suitable for file

encryption as in this case. recovery from an error must be effected

with ciphertext a1on<a If a ciphering procedure with error prop-

agation property is used for file security, subsequent inability to read

a portion of the ciphertext because of damage to the physical mdium

or the recorded bits, may prevent all the following ciphertext being

deciphered. with communication security, it is possible to recover

from an error by retransmitting the original message.

Further the developed system can be used on the Prestel

public network allowing storage and retrieval of completely and partly

encrypted frames of information on the Prestel database. A.6~bit

cipher feedback technique has been found to be suitable for such_an

application. This technique prevented the occurrence of control

characters in the ciphertext which are not acceptable to the Prestel

control unit.

The use of such a DES based encryption system in a

comnication network requires the keys be distributed to the users

over a separate secure channel. Several methods of key distribution

using Key Centres and public key systems have been discussed.

A generalization of the RSA system in the ring of matrices

over Z/mz, where m is a composite integer, is proposed. It is shown

that a factorization of the modulus m is needed to comute the

exponent of the group formed by either non—singu1ar matrix messages or

-329-
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upper triangular matrices with invertible diagonal elements over z/mz,

thus offering a similar level of security as the prototype RSA system.

This system allows the use of a non—square free modulus which is not

possible with the RSA system over the integers. This scheme is as

suitable for both privacy and authentication as its predecessor. The

use of chaining techniques in this generalized system to overcome the

difficulties of data redundancy has also been demonstrated.

An extesion of the RSA system to polynomial rings has been

considered. It is found that the difficulty of factorization of a

polynomial into its irreducible factors over a finite field does not

in itself provide a secure public key cryptosystem. However, if the

difficulty of factorizing an integer is comounded with the difficulty

of factorizing a polynomial, then a secure REA type system in the ring

of polynomials is seen to be possible. For cryptographic application,

both the modulus polynomial and the modulus integer need to be square
free to enable proper decryption.

The design of public key systems in some quadratic algebraic

number fields using the factorization trapdoor concept has been

presented. The security of such systems is found to be dependent on
the difficulty of factorizing the norm of the modulus. Thus a similar

level of security as the prototype RSA system can be achieved if the

norm is made to be sufficiently large. One method of message

representation in such systems involves the use of the elementary

dhdsor theory to choose a standard set of represetatives.

The investigation of such extensions indicate that rings

other than the ring of rational integers,can be used to construct public

key systems with the factorization trapoor property. From a practical

point of view, it seems that the complexity of such systems may

favour the implementation of the factorization trapdoor in the ring of

rational integers.

The Diffie—Hellman public key distribution has been

implemented in the Galois extension field cr=(2") with n = 127, where

the computations required for exponentiation can be easily performed

using digital logic. Tb withstand the most recently published

Ad1eman's subexponential algorithm to compute logarithms, it is

necessary to work in a higher extension field of GF(2521) to maintain

a work factor equivalent to that of DES key exhaustion.
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Short cycling attacks consisting of repeated encipherings

have been carried out against the exponentiation system in GF(2n) with

n = 3 and 7. It is found that if the primitive element is chosen at

random, then the expected cycle length of an arbitrary cycle is very

close to half the number of non-zero elements in the field. Thus this

type of attack appears to be very much analogous to a random search

procedure.

The exponentiation system in GF(2127) has been used in

conjunction with the DES encryption to form a hybrid system which

combines the protection provided by the conventioal cryptosystem with

the user authentication attributes of a public key system. Such a

hybrid arrangement is found to be feasible in practice.

A dedicated hardware exponentiation system in.GF(27) has

been designed and constructed. The use of normal basis representation

in the design allows a modular construction which is very useful in

large scale integrated circuit design.

An extension of the Diffie—He1lman public key distribution

system to matrix rings is proposed. Using rings of non-singular

matrices over 2/pz (p prime) and upper triangular matrices with

invertible elements along the diagonal over Z/pZ, it is shown that the

number of possible secret keys is much greater for a given prim p

compared to the original system.

The role of permutation polynomials in the design of public

key systems has been investigated and it is shown that the class of

Dickson permutation polynomials and certain Redei rational functions

can be used to construct public systems with a similar level of

security as the prototype RSA system. Further,a method of designing

public key systems using permutation polynomials under the law of

coposition has been presented. The complexity of such composite

systems can be dramatically increased to provide high security.
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