
PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 1

United States Patent (1)
Tokeet al.

[54] NUMERICAL CONTROL SYSTEM WITH

DOWNLOADING CAPABILITY

(75] Inventors: Ronald J. Toke, Bratenahl Village;
William A. Donze, Mentor, both of
Ohio

[73] Assignee: Allen-Bradley Company, Milwaukee,
Wis.

[21] Appl. No.: 850,927

[22] Filed: Nov. 14, 1977

[ST], Tints CU? ccstsiccsveiscvaciseiss GO6F 3/02; GO6F 13/00
[52] WS OU, esssssscnnsssosnetsonsnseresascseswosnsesansmaases 364/200
[58] Field of Search ... 364/200 MS File, 900 MS File

[56] References Cited
U.S. PATENT DOCUMENTS

3,626,385 12/1971 Bouman... cceesseeessseenene 364/200
3,744,031 7/1973 Averyetal.. lve
3,810,104 5/1974=Markleycccccsesseecens 364/200

OTHER PUBLICATIONS

IBM TDB-vol. 14, No. 11, Apr. 1972, pp. 3418-3419

[11] 4,138,718

[45] Feb. 6, 1979

Bensaude et al.-“Host Processor Contro! of Satellite

Disk Storage”.

Primary Examiner—Harvey E. Springborn
Altorney, Agent, or Firm—Quarles & Brady

[57] ABSTRACT

A numerical control system which employs a pro-
grammed numerical control processor to perform the
numerical control functions is coupled to a bulk storage
device by a host computer. The bulk storage device
stores a download library which includes not only part
programs, but also system software programs and diag-
nostic programs which may be downloaded to the nu-
merical control system upon request. By downloading a
system software program the numerical control capabil-
ities of the system can be completely reconfigured to, in
essence, provide a new machine.

9 Claims, 22 Drawing Figures

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 1

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 2

U.S. Patent Feb. 6, 1979 Sheet 1 of 21 4,138,718

PMC Exhibit 2075

Apple v. P
IPR2016-00753

Page 2

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 3

U.S. Patent Feb. 6, 1979 Sheet 2 of 21 4,138,718

‘Sig, 2

i1

PMC Exhibit 2075

Apple v. P
IPR2016-00753

Page 3

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 4

U.S. Patent Feb. 6, 1979 Sheet 3 of 21 4,138,718

al
uJ
=
<

s a
WY

R ‘DISPLAY WU MEMORY
IS

Lara
— — NUMERICAL CONTROL

SS

Hil a
PROCESSORNUMERICAL CONTROL

Mi]\ fil R A CcK
1
NHiil\ R A G K 2 TWN KEYBOARD MW

~~

20

UAR/T
=

=WU & ed 50\
W WwW

=

io
502

W

7 \
fil

a
oO
w
un
WW
U
o
c
oa

1

STORAGE DEVICE 550

WW
ALM

S|
eG ig.8WW

&
x

=SN
a
<uw
x

MEMORY
PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 4

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 5

4,138,718Sheet 4 of 21U.S. Patent Feb..6, 1979

PMC Exhibit 2075

7,sn@Vlvwd ¥OSS390ud
Y3LSI934vivdAYOWSN

 ¥3LS1938NOILONYLSNI-O8SVA

 aesa1ev.viva&(oOW3LSASONwSeaeS&o[|MaviovisWI1SAS201aweenreeares<o6|+-~--===261={|eST---S-=>--=---==—SB

W==eeae

|3YWvM140SW31SAS

wh
ye

ANVONS3Sd30Swiss| fescecwoceewens,
ZAY3000N3uaddwNSY?Sesanvsa|eeALIMOINdALIMOId7ONLNOD

oyEi—-.6)WWLatyePReeootidldhdddd,

Apple v. PMC
IPR2016-00753

Page 5

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 6

Sheet 5 of 21 4,138,718Feb. 6, 1979U.S. Patent

snavivayOSSs00NdYe
 431LRLINDYIOly=—=igA

AYOWSW

¥300930NOILONYLSNI

W

X1NO-QV3u

REGISTER

MICRO-

INSTRUCTION

WVYD0Nd-OSIN
3OVSUSLNIANdLAO/LNANI

4YOSS390Nd31907ONYJILSWHLINY

SYpu

UO|—dsa:

Ss

ay‘Sr,|
W/

“o

€S\
PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 6

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 7

4,138,718Sheet 6 of 21Patent Feb. 6, 1979US.

2gii+\|mnLL,4300030&—pag177SS
nq

7—=—

Y31SI93uVv\U/

¢“SLE,

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

 WveoOudNOIL

“VOINNINNNWODAN301S3uY

 L REGISTER

y31LSI93ya qowisewf)N,&y31SI9SyWd

Page 7

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 8

U.S. Patent Feb. 6, 1979 Sheet 7 of 21 4,138,718

ADDRESS

REGISTER
PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 8

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 9

U.S. Patent Feb. 6, 1979 Sheet 8 of21 4,138,718

129 ig.7BINARY TO OCTAL DECODER

140,

30

~Vbndr nn - 9

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 9

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 10

U.S. Patent Feb. 6, 1979

FROM

FROM

5I1

525

526

527

529

530

528

START

DISABLE
INTERRUPTS ¢

TURN-OFF
OUTPUTS

FETCH DOWN-

LOAD REQUEST
WORD & JUMP
TO TRANSMIT
SUBROUTINE

 FETCH VERSION
1.0. CHARACTER&

JUMP TO
TRANSMIT

SUBROUTINE

JUMP TO
RECEIVE

SUBROUTINE

NEGATE ¢@
STORE RECORD

SIZE AT
“COUNT”

 INITIALIZE

CHECKSUM

 IN
B REGISTER

JUMP TO
RECEIVE

SUBROUTINE

Sheet 9 of 21 4,138,718

Sig. 6A

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 10

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 11

U.S. Patent Feb. 6, 1979 Sheet 10 of 21 4,138,718

STORE STARTING

ADDRESS OF
DOWNLOADED

RECORD AT
“ADDR"™

 CHECK “ADDR”

TO DETERMINE
IF WITHIN

COMMUNICATIONS
PROGRAM

 INDICATE _
“ADDRESS ERROR’

ON CRT 9

 JUMP TO

RECEIVE
SUBROUTINE

 STORE

INSTRUCTION IN
MEMORY 30

AT LOCATION
INDICATED BY

"ADDR"

 535

INCRE ME NT
“A DDR" €“COUNT"™

& UPDATE
CHECKSUM

ACCUMMULATOR

 536

‘Sig. &B

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 11

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 12

U.S. Patent Feb. 6, 1979 Sheet 11 of 21 4,138,718

JUMP TO

RECEIVE

SUBROUTINE

COMPARE

CHECKSUM WORD

WITH CHECKSUM

ACCUMMULATOR

INDICATE
“CHECKSUM

ERROR"

ON CRT 9

Sig. &C

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 12

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 13

4,138,718Sheet 12 of 21U.S. Patent Feb. 6, 1979

SaNniinoysnsNOLLY10d¥aLNIS391A30SNILvVYSdO40SNLIVLSLNdLNO 3YVM1I0SANVON3d3GBNIHOWW3LN93X3

Lal

SNILNOY’GuvogAa™

3NLLNOYu30V3"N3dVL40NOILYOd=|99LdNdya.ni

$391A30ONISN3S4OSNivlisSLAN

30NOILYOdidNyy3.Nni

SNILNOY39IAN3SWSINVHOSWOAN3S

16!O61vel

S3NILNOYONNOYONOVSG

Sl

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 13

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 14

U.S. Patent Feb. 6, 1979 Sheet 13 of 21 4,138,718

Sig. 10

INITIALIZE

FOR NEW

PROGRAM

KEY BOARD

ROUTINE

MANUAL

ROUTINE

UPDATE

CRT

DISPLAY

INITIALIZE

TAPE

READER

CALL BLOCK

EXECUTE

ROUTINE

FILL UP

FROM TAPE

READER

DECODE

AND SET UP

1ST BLOCK

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 14

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 15

U.S. Patent Feb. 6, 1979

 BLOCK

EXECUTE

ROUTINE

SET UP

BLOCK

EXECUTION

FLAGS

INITIALIZ

ASC IE DATA

BUFFERS
YES BLOCK

‘DELETE
?

RESET EXCHANGE

STATE OF ACTIVE AND
PREVIOUS TEMPORARY

BLOCK BUFFER POINTER

EXECUTE
PRELUDE

UPDATE FUNCTIONS AND
POINTERS MAKE BLOCK
TO NEXT ACTIVE

BLOCK

ENABLE

INTERPOLATION

SET UP

NEXT

BLOCK

 INITIATE

TAPE READER

IF STORAGE
AVAILABLE

Sheet 14 of 21

‘Sic, A

4,138,718

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 15

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 16

U.S. Patent Feb. 6, 1979 Sheet 15 of 21 4,138,718

Sis. 1B

UPDATE

CRT

DISPLAY

UPDATE

CRT

DISPLAY

 EXECUTE

POSTLUDE

FUNCTIONS

UPDATE

CRT

DISPLAY

END“ee OF BLOCK

=\OYFORCE NO
CYCLE

sTOP

OFFSETS
PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 16

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 17

U.S. Patent Feb. 6, 1979 Sheet 16 of 21 4,138,718

Sig, 120

REGISTERS

 10 MSE

INTERRUPT
YES sie

PRELUDE @

POST LUDE

FLAGS

SERVO-
MECHANISM

SERVICE
ROUTINE

M CODE

 STATUS OF
SENSING
DEVICES
EXECUTE

187 MACHINE
DEPENDANT
SOFTWARE

ROUTINE

 OUTPUT

STATUS OF
OPERATING

DEVICES

194

INHIBIT

INTERPOLATION
PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 17

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 18

U.S. Patent Feb. 6, 1979 Sheet 17 of 21 4,138,718

.

(R “Sig. 12B
END NO YES

OF BLOCK

ANY
STOP

RESET “ages
POSTLUDE YES

FLAG

REQUEST

CYCLE

OR

EMERGENCY\,YES

STOP TURN ON

PROGRAM

STOP FLAG

EOB
sToP

?

 SET END

OF
PROGRAM

FLAGS

 REQUEST

cYCLE

STOP

 SUBROUTINE

SET TIMED
RESTORE INTERRUPT

EXIT FLAG TO
NOT BUSY REGISTERS

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 18

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 19

U.S. Patent Feb. 6, 1979 Sheet 18 of 21 4,138,718

Sis. 138A

513

518

5)4

 RECEIVE

REPLY FROM

HOST COMPUTER

AND DISPLAY ON
CRT 9

TRANSMIT

COMMAND
TO HOST

COMPUTER

SI7

S2l

DISSABLE
INTERRUPTS S)

TURN OF

OUTPUT DEVICES

FROM
i368

DISPLAY

“READY”

ON CRT 9
INPUT COMMAND

FROM

KEYBOARD 7

“SIGN ON”
COMMAND?

DISPLAY
n

aK

ON CRT 9

am
 DOW NLOAD

COMMAND ?

YES

TRANSMIT
DOWNLOAD

COMMAND TO

HOST COMPUTER

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 20

U.S. Patent Feb. 6, 1979 Sheet 19 of 21 4,138,718

RECEIVE

REPLY FROM

HOST COMPUTER
AND DISPLAY

IT ON CRT9

 522.

523

TYPE 1"

CODE

REPLY
?

JUMP TO

“LOAD 2” OF

RESIDENT

COMMUNICATIONS

PROGRAM

"Sis. 13B

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 20

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 21

U.S. Patent Feb. 6, 1979 Sheet 20 of 21 4,138,718

START

Sig, 14

RECEIVE AND

STORE MACHINE

IDENTIFICATION

TRANSMIT

’ n

“BUSY RECEIVE AND

Coae STORE FILE
NAME AND TYPEMACHINE e

TRANSMIT

ERROR

MESSAGE TO

NC MACHINE

SECURITY

2

TRANSMIT

DATA RECORD
TO NC

MACHINE

READ DATA

RECORD FROM

DOWNLOAD

LIBRARY

CONVERT

DATA RECORD
TO ASCII

CHARACTERS
554

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 21

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 22

U.S. Patent

Sig, 15

Feb. 6, 1979 Sheet 21 of 21 4,138,718

RESIDENT
COMMUNICATIONS

PROGRAM (i28 LINES)
HIGHEST 4K MEMORY ADDRESS

§5]

READ/WRITE

MEMORY

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 22

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 23

4,138,718
1

NUMERICAL CONTROL SYSTEM WITH
DOWNLOADING CAPABILITY

BACKGROUND OF THE INVENTION

The field of the invention is numerical control sys-
tems, and particularly, numerical control systems of the
type which employ programmed processors as the
means for carrying out the numerical control functions.

Such a numerical control system is known in the art
as a computer numerical control or “CNC” and they
are characterized generally by their use of a pro-
grammed minicomputer or microprocessor in lieu of
hardwired logic circuitry. Such a system which em-
ploys a programmed processoris disclosed in U.S. Pat.
No. 4,038,533 which issued on July 26, 1977 and is
entitled “Industrial Control Processor System.” Al-
though CNC systems are programmable and do there-
fore offer a certain amountofflexibility, as a practical
matter the system program which determines the basic
operational characteristics of the system is seldom al-
tered once the system is attached to a specific machine
tool. For example, the CNC system may be pro-
grammed to provide full contouring for a three-axis
milling machine without automatic tool changer and
with certain “canned cycles.” That software system is
usually not altered during the life of the machine despite
the fact that for much ofthe time the machine tool may
not require contouring capability and could make better
use of the memory space occupied by the circular and
linear interpolation programs.

The flexibility afforded by the use ofa programmable
processor in a numerical control system has thus never
been fully realized in prior systems.

SUMMARYOF THE INVENTION

The present invention relates to a numerical control
system in which a system program may be readily
downloaded from a library stored in a bulk storage
device. More specifically, the invented numerical con-
trol system includes a main memory, a processor, a
read-only memory which stores a resident communica-
tion program, means for transferring the resident com-
munications program from the read-only memory to the
main memory and for initiating the execution of said
program by the numerical control system processor, a
storage device for storing a plurality of programs in-
cluding a system program for the numerical control
system, and a host processor coupled to said storage
device and said numerical control system processor and
being responsive to a download command generated by
said numerical control system processor during its exe-
cution of the resident communications program to
download said system program to the main memory,
wherein the numerical control system processor jumps
from the resident communications program to said
downloaded system program after the download has
been completed.

A general object of the invention is to download a
system program to the memory of a CNCsystem.If the
main memoryis completely empty, as for example, after
a prolonged power failure or a malfunction which
erases part or all of the system program, a new system
program can be downloaded from the download library
in the storage device byinitiating the execution of the
resident communications program.

Anotherobject of the invention is to enable the oper-
ator to select a system program from the download

15

25

35

45

55

60

65

2
library. A manual data entry means such as a keyboard
is associated with the numerical control processor and
the download commandis selected by the operator to
identify a specific program in the download library. In
this manner different system programs may be down-
loaded to alter the capabilities of the numerical control
system to meet the requirements of the machinetool to
which it is attached and the part being machined.

The foregoing and other objects and advantages of
the invention will appear from the following descrip-
tion. In the description reference is made to the accom-
panying drawings which form a part hereof, and in
which there is shown by wayofillustration a preferred
embodiment of the invention. Such embodiment does

not necessarily representthe full scope of the invention,
however, and reference is made to the claims herein for
interpreting the breadth of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of the system of the
present invention connected to a machine tool;

FIG. 2 is a perspective view of the numerical control
system which forms part of the system of FIG. 1 with
the enclosure door open;

FIG.3 is a block diagram of the system of FIG.1,
FIGS. 4a and 48 are a block diagram ofthe industrial

control processor which forms part of the system of
FIG.3;

FIG. 5 is a block diagram ofthe arithmetic and logic
processor which forms part of the industrial control
processor of FIG. 45;

FIG.6 is a block diagram of the input/outputcir-
cuitry which forms a part of the industrial control pro-
cessor of FIG. 4b;

FIG.7 is a schematic diagram of the priority encoder
circuit which forms part of the industrial control pro-
cessor of FIG, 4a;

FIGS.8a-< are a flow chart of the resident communi-

cations program which forms part of the industrial con-
trol processor of FIG.4;

FIG. 9 is a flow chart of a system program which
maybe stored in the numerical control processor mem-
ory;

FIG.10 is a flow chart of the main controller routine

which forms part of the software system of FIG.9;
FIGS. 11a and 110 is a flow chart of the block exe-

cute routine which forms part of the software system of
FIG.9;

FIGS.12a and 126 is a flow chart of the ten millisec-

ond timed interrupt routine which forms part of the
software system of FIG. 9;

FIGS.13a and 130 is a flow chart of a program called
COMPACwhichis stored in the download library;

FIG. 14 is a flow chart of the download program
(DNLDNC)stored in the host computer memory of
FIG.3;

FIG. 15 is a representation of the contents of the
numerical control system memory at one stage of the
download procedure; and

FIG. 16 is a block diagram of the host computer of
FIG.1.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring to FIG. 1, a numerical control system is
housed in a cabinet 1 and connected througha cable 2 to
a multi-function machine tool with automatic tool

changer 3. The numerical control system controls the

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 23

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 24

4,138,718
3

motion of a cutting tool 4 along two or more axes of
motion in response to a part program which is read
from a tape reader 5. In addition, the numerical control
system operates in response to commands read from the
tape reader 5 to control auxiliary functions on the ma-
chine tool3, such as automatic tool selection and chang-
ing from a tool magazine 6, pallet selection and chang-
ing, spindle speed and coolant operation. The imple-
mentation of such auxiliary functions involves the sens-
ing of one-bit signals generated by numerous input de-
vices such as limit switches, selector switches, and
photo-electric cells, which are mounted to the machine
tool 3, and the operation of numerous output devices
such as solenoids, lights, relays and motorstarters. The
numbers and types of such input and output devices, as
well as the manner in which they are operated, will
vary considerably from machine to machine.

The numerical control system includes a programma-
ble interface whichallowsit to be easily interfaced with
machine tools of any make and model. This interface is
accomplished by entering a control program comprised
of programmable controller-type instructions through a
keyboard 7. When this control program is executed the
system operates as a programmable controllerto selec-
tively sense the status of the particular input devices on
the machine tool to be controlled and to selectively
operate the output devices thereon to provide the de-
sired manner ofoperation.

Mounted to the door of the cabinet 1 immediately
above the keyboard 7 is an associated cathode ray tube
(CRT) display 9. Mounted to the right of the keyboard
7 and CRTdisplay 9 is a main control panel 10 which
includes a variety of pushbuttons and selector switches
for providing standard operator controls such as mode
selection, feedrate override, spindle speed override, jog
select, axis select, etc. One of the pushbuttons enables
the keyboard 7 to enter data.

Referring particularly to FIGS.2 and 3, the elements
ofthe numerical control system are mounted within the
cabinet 1 to allow easy access for inspection, testing and
maintenance. The keyboard 7 is mounted to the cabinet
door11 along with the tape reader 5, CRT display 9 and
main control panel 10. A secondary control panel 12
mounts immediately above the tape reader 5 andall of
these system I/O devices are connected to a numerical
control processor 13 which is housed at the bottom of
the cabinet 1. More specifically, the tape reader 5 con-
nects through a cable 14, the secondary control panel 12
connects through a cable 15, the keyboard 7 connects
through a cable 25, the CRT display 9 connects through
a cable 17, and the main control panel 10 connects
through a cable 18 to a wire harness 19 which leads to
the processor 13. A processor front panel 26 provides a
number of manually operable pushbuttons and visual
indicators whichrelate to the operation ofthe processor
13 and which are connected thereto through a bus 27.

Twoinput/output (I/O)interface racks 20 and 21 are
mounted in the cabinet 1 above the processor 13 and are
connected thereto by a wiring harness 22 which extends
upward alongtheir left-hand side. A main power supply
23 mounts above the I/O interface rack 21 and a mem-

ory powersupply 24 mounts ontheleft side wall of the
cabinet1.

The I/Ointerface racks 20 and 21 mounta variety of
input circuits and output circuits on closely spaced,
vertically disposed printed circuit boards (not shownin
the drawings). These input and outputcircuits serve to
couple the industrial control processor 13 with the

20

25

30

35

40

45

60

65

4
cable 2 that leads to the machine tool 3 and mayinclude
inputcircuits for sensing the status of limit, selector and
pushbutton switches such as that disclosed in U.S.Pat.
No. 3,643,115 entitled “Interface Circuit for Industrial
Control Systems,” and outputcircuits for driving sole-
noids and motors such as that disclosed in U.S. Pat. No.

3,745,546 entitled “Controller Output Circuit.” The
input circuits also include position feedback accumula-
tors which receive feedback data from the position
transducers on the machine tool 3 and the outputcir-
cuits include registers for providing axis motion com-
mand words to the machine tool servo mechanisms.

Referring particularly to FIGS. 1-3, the numerical
control system 1 is connected to a host computer 500
through a cable 501 in what is known in the art as a
DNCconfiguration. The cable 501 connects to a uni-
versal asynchronous receiver/transmitter (UAR/T) 8
which is mounted within the numerical control proces-
sor housing 13 and it in turn is connected to the numeri-
cal control processor 13 through the wire harness 19.
The UAR/T8is treated as another input/output device
by the processor 13 as will be described in more detail
hereinafter.

The host computer 500 is a general purpose digital
computer such as the Model 7/32 manufactured by
Interdata, Inc. As will be described in more detail here-
inafter, it is coupled to the cable 501 by a UAR/T 502
which connects to an I/O port on a computer processor
550. The processor 550 is coupled to a read/write mem-
ory 551 through a bus 552 and a bulk storage device 507
in the form of a disc couples to the memory 551 andit
serves to store not only a large number ofpart pro-
grams, but also, a variety of numerical control system
software packages which may be downloaded to the
numerical control system 1. Programs stored in the host
computer memory 551 enable the computer to commu-
nicate with the numerical control system 1 and to man-
age the library of programs stored in the bulk storage
507.

As will be described in more detail hereinafter, an
operator at the numerical control system 1 can call up a
particular part program ora particular numerical con-
trol software system by generating commands through
the keyboard 7. Referring particularly to FIG. 3, a
communications package stored in a numerical control
system memory 34 couples these commands to the host
computer 500, which in turn reads the selected part
program or numerical control system software package
out of the bulk storage 507 and downloads it to the
numerical contro] system 1. The downloaded program
is stored in the memory 34 at a location determined by
the communications package. To better understand the
nature of a numerical control software system package
which can be downloaded from the bulk storage 507 to
the memory 34, a description of a preferred numerical
control system — both hardware and software — will
now be made. This preferred numerical control system
is sold commercially by the Allen-Bradley Company as
the Model 7300 B and it is described in detail in U.S.
Pat. No. 4,038,533.

Referring particularly to FIGS.4a and 4, the numer-
ical control processor 13 is organized arounda sixteen-
bit bidirectional processor data bus 30. Data is moved
from one element of the processor to another through
this data bus 30 in response to the execution of a micro-
instruction which is held in a 24-bit micro-instruction

register 31. Each such micro-instruction indicates the
source of the data to be applied to the data bus 0, the

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 24

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 25

4,138,718
5

destination of the data, and any operations that are to be
performed on that data. The micro-instructions are
stored in a micro-program read-only memory 32, and
oneis read out every 200 nano-seconds through a bus 33
to the micro-instruction register 31. The read-only
memory 32 stores a large numberofseparately address-
able, or selectable, micro-routines, each of which is
comprised of a set of micro-instructions. To enable the
processor 13 to perform a desired function, the appro-
priate micro-routine is stored in the read-only memory
32 and it is selected for execution by a 16-bit macro-
instruction which is stored in a read/write main mem-

ory 34.
The main memory 34 is comprised of 4K by 1 dy-

namic MOS RAMswhichare organized to store up to
32,000 16-bit words. Macro-instructions and data are
read out of and written into the main memory 34
through a 16-bit memory data register 35 which con-
nects to the processor data bus 30. The memory words
are selected, or addressed, through a 15-bit memory
address register 36 which also connects to the processor
data bus 30. To write into the main memory 34, an
addressis first loaded into the memory address register
36 by applying a logic high voltage to its clock lead 29.
The data to be loaded appears on the processor data bus
30 and is gated through the memory data register by
applying a logic high voltageto its data in clock lead 27.
A logic high voltage is then applied to a read/write
controlline 34’ on the memory 34 to complete the load-
ing operation. Data or a macro-instruction is read out of
an addressed line of the main memory 34 when a
READmicro-instruction is executed. A logic low volt-
age is applied to the read/write control line 34’ and a
logic high voltage is applied to a data out enable line 28
on the memorydata register 35. The data word is mo-
mentarily stored in the register 35 and is subsequently
transferred through the processor data bus 30 to the
desired destination.

In response to the execution of a micro-routine called
FETCH,which includes the READ micro-instruction,
a macro-instruction is read from the main memory 34
and coupled to a 16-bit macro-instruction register 37
through the data bus 30. The macro-instruction is stored
in the register 37 by a logic high voltage which is ap-
plied to a macro-instruction register clock line 37’. Cer-
tain of the macro-instructions include operation codes
which are coupled through an instruction register bus
39 to a macro-decodercircuit 38, and other instructions
also include a bit pointer code which is coupled through
the same instruction register bus 39 to a bit pointer
circuit 40. The bit pointer circuit 40 is a binary decoder
having four inputs connected to the least significant
digit outputs of the macro-instruction register 37 and
having a set of 16 outputs connected to respective leads
in the processor data bus 30. In response to the execu-
tion of a selected micro-instruction (MASK), a logic
high voltage is applied to a terminal 41, and the bit
pointer circuit 40 drives a selected one of the sixteen
leads in the processor data bus 30 to a logic low voltage.
The bit pointer circuit 40 facilitates the execution of
certain programmable controller type macro-instruc-
tions.

In response to an operation code in a macro-instruc-
tion stored in the register 37, one of the micro-routines
in the read-only memory 32is selected. The operation
code is applied to the macro-decodercircuit 38 which
enables one of four mapper proms 42-45 and addresses
a selected line in the enabled mapper prom. Eachline of

5

10

15

20

25

30

35

40

45

50

55

60

65

6
the mapper proms 42-45 stores a twelve-bit micro-rou-
tine starting address, which when read out, is coupled
through a micro-program address bus 46 to preset a
twelve-bit micro-program sequencer 47. The sequencer
47 is a presettable counter which includes a load termi-
nal 52, an increment terminal 53 and a clock terminal 54.
The clock terminal 54 is driven by a five-megahertz
clock signal which is generated by a processor clock
circuit 85 that is coupled to the sequencer 47 through an
AND gate 86. Each time a logic high clock pulse is
applied to the terminal 54 on the micro-program se-
quencer 47, it is either preset to an address which ap-
pears on the bus 46 orit is incremented one count. Con-
currently, the micro-instruction register 31 is clocked
through a line 88 and AND gate 88' to read and store
the micro-instruction which is addressed by the micro-
program sequencer 47. The AND gates 86 and 88 can
be disabled in response to selected codes in a micro-
instruction to decouple the 5 mHz clock. Such decou-
pling of the clock 85 from the sequencer 47 occurs, for
example, during input and output operations to allow
data one micro-second to propagate.

Each micro-second which is read out of the read-only
memory 32 to the micro-instruction register 31 is cou-
pled through a micro-instruction bus 31a to a micro-
instruction decoder circuit 48 which is also coupled to
the clock line 88. The micro-instructions are decoded

and executed before the next clock pulse is applied to
the terminal 54 on the micro-program sequencer 47.
Each micro-instruction is comprised of a plurality of
separate codes called micro-orders which are each sepa-
rately decoded to enable one of the processor elements.

Each micro-routine stored in the micro-program
read-only memory 32 is terminated with a special mi-
cro-instruction which includes a code, or micro-order,

identified hereinafter by the mnemonic EOX or EOXS.
When coupled to the micro-instruction decodercircuit
48, this code causes a logic high voltage to be generated
on an EOXline 49 to a priority mapper prom 50.If the
industrial control processor 13 is in the RUN mode, the
starting address of the FETCH micro-routine is read
from the priority mapper prom 50 and is applied to the
micro-sequencer 47 through the bus 46. The micro-
instruction decoder circuit 48 also generates a logic
high voltage on a preset line 51 which connects to the
load terminal 52 on the micro-program sequencer 47 to
preset the sequencer 47 to the starting address of the
FETCH micro-routine.

As indicated above, the FETCH micro-routine func-
tions to read the next macro-instruction to be executed

from the main memory 34, couple it to the macro-
instruction register 37, and initiate the execution of that
macro-instruction. The last micro-instruction in the
FETCH micro-routine includes a code whichis identi-

fied hereinafter by the mnemonic MAP. This micro-
instruction code causes the micro-instruction decoder

circuit 48 to generate a logic high voltage to the macro-
decoder circuit 38 through a MAP line 52 and to
thereby initiate decoding of the macro-instruction
which is stored in the macro-instruction register 37. A
logic high voltageis also generated on the preset line 51
to load the micro-program sequencer 47 with thestart-
ing address of the micro-routine called for by the de-
coded macro-instruction.

As shown in FIG. 4%, mathematical and logical oper-
ations are performed bythe industrial control processor
13 in an arithmetic and logic processor 55 which con-
nects to the processor data bus 30 and to the micro-

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 25

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 26

4,138,718
7

instruction decodercircuit 48 through a bus 56. Refer-
ring particularly to FIG. 5, the arithmetic and logic
processor 55 includes a 16-bit “L” register 57 which has
inputs that connectto the leads in the processor data bus
30 and a corresponding set of outputs which connect
through a bus 58 to the “B”inputs of a 16-bit arithmetic
and logic unit (ALU) 59. Data on the bus 30 is clocked
into the L register 57 whena logic high is applied to a
lead 60 and the L register 57 is cleared when a logic
high is applied to a lead 61. The leads 60 and 61 connect
to the micro-instruction decodercircuit 48 through the
bus 56 and are thus controlled by selected micro-
instructions.

The ALU 59 is comprised of four commercially
available arithmetic logic units combined with a com-
mercially available full carry look-ahead circuit to per-
form high speed functions suchas add, substract, decre-
mentand straight transfer. The ALU 59 has a set of 16
“A” inputs which connect directly to the leads in the
processor data bus 30 and a set of four function-select
lines 62 which connectto the micro-instruction decoder

circuit 48 through the bus 56. In response to selected
micro-instructions, the ALU 59 performs functions on
data applied to its A and B inputs and generates the
16-bit results to a shifter circuit 63 through a bus 64.

Also, the ALU 59 generates signals to an ALU de-
coder 114 which indicate when the result of a logical or
arithmetic functionis zero, all “ones,” odd, negative or
whenit causes an overflow or a carry. The existence of
such a condition is separately tested by micro-orders, or
codes in micro-instructions which enable the ALU de-

coder 114 through the bus 56. The existence of the
tested condition results in the generation ofa logic high
on a skip line 115 which connects to the decoder 48.

The existence of an overflow condition in the ALU

59 can also be stored in an overflow flip-flop 116 when
a logic high is applied to its clock terminal through a
line 117 by the decodercircuit 48. The Q output on the
flip-flop 116 connects to the ALU decoder 114 andits
condition can be tested by an appropriate micro-order.
A system flag flip-flop 118 connects to the ALU de-
coder 114 andit can be clocked in response to an appro-
priate micro-order through a line 119 from the micro-
instruction decoder 48. Theflag flip-flop 118 maybe set
in response to one of the tested ALU conditions, andits
state, or condition can in turn be tested by an appropri-
ate micro-order acting through the ALU decoder 114.

Theshifter circuit 63 is comprised of eight commer-
cially available, dual four-line-to-one-line data selectors
having their inputs connected to selected leads in the
bus 64. Sixteen outputs on the shifter 63 connect to a
16-lead ALU data bus 65 and a pair of control leads 66
connectit to the micro-instruction decoder circuit 48.

In response to selected micro-instructions, the shifter 63
passes the sixteen-bit data word from the ALU 59 di-
rectly to the ALU data bus 65,or it shifts or rotates that
data one or fourbits.

The 16-bit data word on the ALU bus 65 is coupled
to a 16-bit “A”register 67, a 16-bit “B”register 68, or a
random access memory bank 69. The data is clocked
into the A register 67 by applying a logic high voltage
to a lead 70 which connects the A register 67 to the
micro-instruction decoder circuit 47, or the data is
clocked into the B register 68 by applying a logic high
voltage to a lead 71 which connects the B register 68 to
the micro-instruction decoder circuit 48. The sixteen

outputs of the A register 67 connect to the “A” inputs
on a 16-bit multiplexer 72 and the 16 outputs on the B

20

25

30

35

45

65

8

register 68 connectto the “B”inputs on the multiplexer
72. Sixteen outputs on the multiplexer 72 connectto the
leads in the processor data bus 30, and whenalogic
high voltage is applied to an enable lead 73 thereon, the
contents ofeither the A register 67 or the B register 68
are coupled to the processor data bus 30. Theselection
is made througha select lead 74 which, along with the
enable lead 73, connect to the micro-instruction de-
codercircuit 48. In response to the execution ofselected
micro-instructions, therefore, the A register 67 or the B
register 68 may provide the source of data to the pro-
cessor data bus 30 through the multiplexer 72, or they
may be designated by selected micro-instructions as the
destination of data on the processor bus 30 whichis
coupled through the ALU 59 andthe shifter circuit 63.

The random access memory 69 is comprised of four
commercially available 64-bit (164) random access
memories which are arranged to provide 16 16-bit regis-
ters identified hereinafter as the “P” register and the
RI-R15 registers. A sixteen-bit data word is written
into the random access memory 69 from the ALUdata
bus 65 when a logic high voltage is applied to a read-
write line 75. On the other hand, the contents of one of
the 16 registers in the memory 69 are read out through
a bus 76 to a 16-bit data latch 77 when theline75is at

a logic low voltage and the data latch 77 stores this
word when a logic high voltage is applied to its clock
line 78. The lines 75 and 78 connect to the micro-
instruction decoder circuit 48 and both the random

access memory 69 and the data latch 77 are thus respon-
sive to selected micro-instructions.

Theparticular register in the random access memory
69 which is to be accessed is determined by a four-bit
address code which is applied to a set of terminals 79.
The address terminals 79 are connected to the outputs
of a four-bit multiplexer 80 which has a set of “A”
inputs connected to receive bits 4-7 of the micro-
instruction (source field) and a set of four “B” inputs
which are connected to receive bits 9-12 of the micro-

instruction (destination field) through the micro-
instruction bus 31¢. The multiplexer 80 is enabled
through a lead 81 which connects to the micro-instruc-
tion decodercircuit 48 and the four-bit address on the A

or B inputs is selected by the logic signal applied to a
lead 82 which connects to receive a 5 mHz “destina-
tion” signal from the clock circuit 85. When the random
access memory 69 is identified as the source of data, the
address of the particular register in the memory 69 from
which the data is to be read appears at the A inputs of
the multiplexer 80, and when the random access mem-
ory 69is identified as the destination ofdata, the address
of the particular register into which the data is to be
written appears on the B inputs.

Data read from the random access memory 69 and
stored in the data latch 77 is coupled to the processor
data bus 30 by a set of 16 gates 83. The gates 83 are
enabled through a lead 84 which connects to, and is
controlled by, the micro-instruction decodercircuit 48.
For example, the P register in the memory 69 serves as
the macro-program counter, and when the FETCH
micro-routine is executed, the contents of the P register
is read out through the data latch 77 and the gates 83 to
the processor data bus 30 whereit is coupled to the
main memory address register 36.

The arithmetic and logic processor 55 also includes a
10-bit binary transfer counter 141 which has its inputs
connected to the ten least significant digit leads in the
processordata bus 30. A constant can be loaded into the

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 26

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 27

4,138,718
9

transfer counter 141 by a micro-order which designates :
it as the destination of the data and which enables it

through an enable lead 142. The same micro-order gen-
erates a logic high voltage to a preset terminal through
a lead 143, The transfer counter 141 can be incremented
through a lead 144 and an outputsignal is generated on
respective leads 156 and 157 when a countof15 or 1,023
is reached. The leads 142-144, 156 and 157 connect to
the micro-instruction decoder 48.

Connected to the processor data bus 30 and the trans-
fer counter 141 is a resident communication program
read-only memory 158. The ROM 158 is a 4-bit by 1024
line read-only memory whichhas its address terminals
connected to the counter 141 through a nine-lead bus
159 and its four data output terminals connected to the
four least significant leads in the data bus 30. The ROM
158 is enabled to read a four-bit byte of data onto the
bus 30 whenalogic high voltage is applied to an enable
terminal 159 by the micro-instruction decoder 48.

Referring again to FIGS.3 and 48, data is coupled to
and is received from the I/O interface racks 20 and 21

and the system I/O devices 5, 7, 8, 9 and 10 through an
input/output interface circuit 87 which connects to the
processor data bus 30. Referring particularly to FIG.6,
the I/Ointerface circuit 87 includesaset of sixteen data

output gates 90 which have inputs connected to the
leads in the processor data bus 30 and outputs which
connect to a 16-bit input/output data bus 91. An enable
line 92 connects a second input on each of the data
output gates 90 to the micro-instruction decoder circuit
48, and when driven to a logic high voltage, a 16-bit
data word on the processordata bus 30 is coupled to the
input/output data bus 91. The input/output data bus 91
connects to the wiring harness 19 and 22 which couple
the industrial control processor 13 to the interface racks
20 and 21and to the respective system I/O devices such
as the CRT display 9.

The input/outputinterface circuit 87 also includes a
six-bit input/output address register 93 which connects
to the six least significant digit leads in the processor
data bus 30. The I/O address register 93 connects to the
micro-instruction decoder circuit 48 through a clock
lead 94 and when a logic high voltage is generated on
the clock lead 94, a six-bit I/O address is clocked into
the register 93 from the processor data bus 30. Six out-
put terminals on the register 93 connect to leads in a
six-bit 1/O address bus 95. The I/O address bus 95 joins
the wiring harness 22, and the I/O address stored in the
register 93 is thus coupled through the bus 95 to the I/O
interface racks 20 and 21. A clear line 96 connects the
address register 93 to the micro-instruction decoder
circuit 48, and whenalogic high voltage is generated
thereon, the register 93 is reset to zero. As will be de-
scribed in more detail hereinafter, when an OTA mac-
To-instruction is executed, the [/O address (rack num-
ber and slot number)is loaded into the output address
register 93 and is applied to the I/O address bus 95. The
addressed device acknowledges receipt of its address
and a 16-bit data word may then be applied to the pro-
cessor data bus 30 and gated onto the input/output data
bus 91 to the addressed device.

Data is coupled into the industrial control processor
13 through a 16-bit multiplexer 97 which forms part of
the input/output interface circuit of FIG. 6. A set of 16
“B”input terminals on the multiplexer 97 connect to the
input/output data bus 91 andaset of 16 outputterminals
thereon connectto the respective leads in the processor
data bus 30. Thesix least significant digit inputs of a set

15

20

25

30

35

40

45

50

35

60

65

10
of 16 “A” inputs on the multiplexer 97 connect to an
interrupt address bus 95a. An enable line 98 andaselect
line 99 on the multiplexer 97 connect to the micro-
instruction decoder circuit 48. When a logic high volt-
age is generated on the enableline 98, the data on either
the I/O data bus 91 or the interrupt address bus 95a is
coupled to the processor data bus 30. Theselection is
madebythe logic state of the select line 99 which is also
controlled by selected micro-instructions through the
decodercircuit 48.

Decoding of the I/O address for the system I/O
devices 5, 7, 8, 9 and 10 is accomplished in the input-
/output interface circuit of FIG. 6. The three most
significantdigit leads ofthe input/output address bus 95
connect to the respective inputs on three exclusive
NORgates 102-104 and thethree least significant digit
leads therein connect to the inputs of a BCD decoder
105. A second input on each ofthe exclusive NORgates
102-104 connects through respective switches 106-108
to a logic low voltage supply terminal 109 and an output
terminal on each of the gates 102-104 connects to re-
spective inputs on an AND gate 110, An output on the
AND gate 110 connects to an enable terminal 112 on
the BCD decoder 105, and when a logic high voltage is
generated thereat, the three-bit binary coded decimal
numberapplied to the inputs of the decoder 105 is de-
coded. As a result, a logic low voltage is generated at
one of eight terminals 113, the five least significant of
which connect to the respective system I/O devices 5,
7, 8, 9 and 10 through the wire harness 19. The three
switches 106-108 are set to indicate the rack number

(which in the preferred embodiment is number 1), and
whenthis number appears on the three mostsignificant
digit leads of the I/O address bus 95, one of the system
I/O devices is addressed.

The input/output interface circuit 87 of FIG. 6 also
includes a timed interrupt circuit 162. The circuit 162
includes an R-S flip-flop 163 having a set terminal con-
nected through a lead 164 to the processor clock circuit
85 (FIG. 45). Every 10.25 milliseconds a logic high
clock pulse is applied to set the flip-flop 163 and a logic
high voltage is generated at its Q output terminal and
applied to an interrupt request line 160. The interrupt
request line connects to a priority encoder circuit 127
(FIG.4a) as will be described hereinafter, and when the
interruptis granted,a logic high voltage is generated on
an interrupt acknowledge line 161. The interrupt ac-
knowledge signal is gated through an AND gate 166
and clocked into a d.c. flip-flop 167 connects through a
lead 168 to one input on each of six AND gates 169 and
through a lead 170 to an AND gate 171. The outputs of
the AND gates 169 connect to the respective leads in
the interrupt address bus 95a and their respective sec-
ond input terminals are connected to logic high and
logic low voltage sources in such fashion as to generate
the octal address seventeen on the bus 95¢ whenthe d.c.

flip-flop 167 is set. Thus, every 10.24 milliseconds the
circuit 162 generates an interrupt request to the priority
encoder 127 and when an acknowledge signal is re-
ceived it asserts the I/O address seventeenon theinter-
rupt address bus 95a,

Circuits similar to the timed interrupt circuit 162
reside in the keyboard 7, the UAR/T 8 andthe tape
reader 5. Each of these system I/O devices connect to
the interrupt request line 160 and each is connected in
“daisy chain” fashion to the interrupt acknowledgeline
161. As shown in FIG.6, the interrupt acknowledge
line 161 is coupled through the interrupt circuit 162 by

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 27

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 28

4,138,718
11

an ANDgate 172 whichis controlled by the Q output
terminal on the R—S flip-flop 163. Thus, when the
circuit 162 requests the interrupt, it not only respondsto
the resulting interrupt acknowledge signal, but it also
prevents that signal from being coupled to subsequent
system I/O devices in the daisy chain. In this manner,
only one interrupting I/O device is serviced at a time.
Aswill be described in more detail hereinafter, when an
interrupt is acknowledged by the priority encoder cir-
cuit 127, it also initiates the execution of an interrupt
service micro-routine which loads the I/O address of

the interrupting device into register R4 of the memory
69. This I/O address is then employed to locate the
starting address in the main read/write memory 34 of a
macro-routine which services that particular system
I/O device. For example, the timed interruptcircuit 162
calls up a ten millisecond timed interrupt routine.

It should be apparent from the description thus far
that the various elements of the industrial contro! pro-
cessor 13 are operated in sequence in response to micro-
instructions which are read from the micro-program
read-only memory 32into the micro-instruction register
31 and which are then decoded by the decoder circuit
48. The address of the first micro-instruction in any
micro-routine to be executed is loaded into the micro-

program sequencer 47 from one of the mapper prom
42-45 or 50 and as the micro-instructions are executed,
the micro-program sequencer 47 is incremented one
count to read out the next micro-instruction in the mi-
cro-routine until an EOX or EOXS code is detected
which indicates the end of the micro-routine.

Referring particularly to FIG. 4%, to enable the use of
JUMPmicro-instructions, and to thus allow one level of
micro-subroutine, a 12-bit save register 120 is connected
to the outputs of the micro-program sequencer 47
through a bus 121, and a twelve-bit multiplexer 122 is
connected to the inputs of the sequencer 47 through the
address bus 46. The save register includes a clock lead
123 which connects to the micro-instruction decoder
circuit 48, and when selected JUMP micro-instructions
are executed, the address stored in the micro-program
sequencer 47 is stored in the save register 120. The
outputs of the save register 120 connect to a set of 12
“A” inputs on the multiplexer 122, and when a return
call micro-instruction is subsequently executed, the
address stored in the save register is coupled through
the multiplexer 122 and loaded back into the micro-pro-
gram sequencer 47. The multiplexer 122 also includes a
set of “B” inputs which connect to the micro-instruc-
tion bus 31a, and when a JUMP micro-instruction is
executed,the target address in the instruction is coupled
from the micro-instruction register 31 to the micro-pro-
gram sequencer 47 through the multiplexer 122. The
multiplexer 122 is controlled by the data select lead 124
and an enable Jead 125, both of which connect to the
micro-instruction decoder circuit 48.

Referring to FIG. 48, the micro-instruction bus 31a
also couples to the processor data bus 30 throughaset
of 16 AND gates 158. One input on each gate 158 con-
nects to a lead in the bus 31a and a second input on each
is commonly connected through a lead 159 to the mi-
cro-instruction decoder circuit 48. Their outputs con-
nect to the respective leads in the processor data bus 30.

Referring particularly to FIG.4a, the switches, lights
and other control and indicating devices on the proces-
sor front panel 26 and the secondary control panel 12
are coupled to the processor data bus 30 by a control
panelinterface circuit 126. The control panel interface

10

20

30

35

40

45

50

55

65

12

circuit 126 in turn is connected to inputs of a priority
encoder 127 through a seventeen-lead bus 128 and five
outputs on the priority encoder 127 connect to the pri-
ority mapper prom 50 through a bus 129. The control
panel interface circuit 126 receives signals from panels
12 and 26 through the cables 15 and 27, and it receives
signals through the processor data bus 30. In response,
it generates a logic low on one or more of the leads in
the cable 128 which determine the mode in which the

industrial control processor 13 is to operate.
Referring particularly to FIG. 7, the priority encoder

127 includes a first three-bit binary encoder 130 which
has a set of eight inputs, seven of which connectto the
bus 128. The eighth input connects to the interrupt
request line 160 from the I/O interface circuit 87. An
eight-bit data latch 131 also has a set of eight inputs
which connect to leads in the bus 128 andits eight
output terminals connect to respective inputs on a sec-
ond three-bit binary encoder circuit 132. Three output
terminals 133 onthefirst binary encoder 130 connect to
respective first inputs on three NAND gates 134-136.
Similarly, three output terminals 137 on the second
encoder 132 connect to respective second inputs on the
NAND gates 134-136 and a fourth output terminal 138
on the second encoder 132 connects to an enable termi-

nal 139 on the first binary encoder 130. The fourth
output 138, the outputs of the respective NAND gates
134-136 and a seventeenth lead 140 in the bus 128 con-

nect to respective leads in the bus 129 which in turn
connects to the priority mapper prom 50. The lead 140
also connects to input number 4 on the first binary en-
coder 130.

The priority encoder 127 generates a five-bit binary
code to the priority mapper prom 50 whichis respon-
sive to a logic low voltage at one of the seventeen leads
in the bus 128, and which operates to addressaline of
the mapper prom 50. The mapper prom 50 is enabled
when its EOX terminal 49 is driven to a logic high
voltage at the completion of the micro-routine then
being executed and a twelve-bit starting address is read
out of the addressed line of the enabled mapper prom 50
to the micro-program sequencer 47. Although more
than one of the leads in the bus 128 may be low at any
given time, the encodercircuit 127 generates the code,
or mapper prom line address, only for that lead which
has the highest priority. Listed from the lowest to high-
est priority, the signals on the respective lead numbers
0-16 in the bus 128 result in the following functions
being performed:

Micro

Lead No. -Routine Description
0 FETCH RUN mode in which the program

stored in the main memory is

' ‘ executed.1 NTER- A requested interrupt isRUPT serviced.
A higher priority interrupt2 POWER UP

{DOWN which is serviced before other
interrupts.

3 START Initiates the processor whenit is switched from HALTto
mode.

4 HALT Three-instruction micro-loop
in which no execution of macro-
instructions or servicing of
interrupts will occur.

5 CLR DISPL Display comer on processorfront panel 26 is cleared.
6 PAR NHLT Interrupts and displays “memoryerror"on CRT.
7 PAR HLT Interrupts and halts processor.
8 DISPL R Display contents of a selected

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 28

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 29

4,138,718

13 14

-continued ©

Micro__PROCESSORFUNCTIONMICRO-ORDERCODES_
Lead No. -Routine Description Mnemonic Bit Pattern Description

rocessor register on processor ASGI1 11010 Enables decoding ofalter/skip
ront panel 26. 5 up | of macro-instruction.

9 DISPL T Display contents of a selected ASG2 11011 les decodingofalter/skip
memory location on processor up 2 of macro-instruction.front panel 26. CFLG oll Siear processorflagflip-flop

10 STORE R Store contents of processor 118.

front ae display in selected COV 01101=Clear overflow fli icp 116.— register. YFL ltl If processo i 118it STORE T tore contents of processor 10 c ool aoe ee
front panel display in selected ALU39.memory location. DIV 10000 Divide 32-bit number in A and

12 DECM aememory address B registers by number in L
13 INCM Increment memory address DMA 01011 Enables DMA cycle after execution

register 36. 4 . of micro-instruction.

4 STEP epertaad macro-instruction, 1§ DWEL 00100 Causes | usec. ree bydis-
15 BBL eetoan which transfers ad EE EE DSO Senerresident communications 1110 les setti f

program stored in ROM 158 to PLC ' fogbie ease
main memory 34 andinitiates FLGS 11100 Inverts condition of processor
its execution. : flag bit.

16 MPFF Writes HALTcodes in every 20 ICNT 00010—sIncrements the transfer counter
location of the main memory 141 by one count.
when battery power is lost 10FF 00101 ‘Disables interrupt recognition
during an extended shutdown. except party errors and powerfail interrupts.

. . . 10G 01010 Initiates a}usec.1/O cycle.
The priority encoder 127 also includes a binary-to- _—LI 10100 Performs a one-bitlogical|

octal decoder 165 which has a set of threeinputs which 25,, 10111‘ Performsafour-bit logecal
connect to the respective NAND gates 134-136. The left shift on data leaving ALU.
second of eight output terminals on the decoder 165 MPY tO bymakeGLaeRepeies
connects to the interrupt acknowledge line 161, and NOP 00000 Nooperation is performed.
when the interrupt service micro-routine is requested nit
by a logic high voltageonthe interrupt request line 160, 39 p, 10101 Performs a one-bit logical
a logic high voltage is generated on the interrupt ac- right shift on data leaving ALU.
knowledge line 161 when the request is granted. ee 01000 salveconker32rtpene|

The above described hardware is operated in re- data or macro-instruction into
memory data register 35.

35 RPT 00011 be next micro-instructionincrements transfer counter
sponse to micro-routine comprised of micro-instruc-
tions which are executed at a rate of one every 200
nanoseconds. These micro-instructions include codes 141.
which are decoded by the circuit 48 to generate en- *°S THAD Recemiespene OC SRIEVEEAG
abling signals to the appropriate system elements, The§SFLG O1N10 Sets oe processor flag flip-
operation of the hardware will become more apparent SOV o1loo Sets overflow flip-flop 116,
after the micro-instruction set which this hardware 40 srai 11000 fantastic or rotational shiftis di of data leaving ALU as deter-
execules = discussed. z - mined by bits6 through9 in the

The micro-instruction set is comprised of three types macro-instruction register 37.

of instructions. Thefirst type of micro-instruction has§SRG2 11001 rectedGone ccupoled
the following format and is employed to transfer data pucretadacitcn vegies 37.
between processor elements which couple to the pro- 45 WRTE 01001 Loads address into main memory
cessor data bus 30, to perform logical and arithmetic pases padislaw stepencda
functions on data applied to the ALU 59, and to per- 35 into main memory 34.
form data test and micro-instruction skip operations.

Bit No. 2322212019 18171615 14 131211109 87654 3210

PROCESSOR ALU DESTINATION SOURCE SKIP, FLAG
Description FUNCTION FUNCTION FIELD FIELD and MAP

53

ALU FUNCTION MICRO-ORDER CODES
Mnemonic Git Pattern Description

The micro-instruction decoder circuit 48 simulta- ADD 00100 Adds the data on processordata
neously decodes eachofthe five “micro-orders” in this 60 ber 30 to coments of L sepsis
first type of micro-instruction and enables the appropri-§ADDO 00101 Sameas ADD. butextend andan overtlow 10, €nal 5
ate processor elements to performone or more func ears 01100 Performs a logical “‘and"of the
tions. The processor element identified by the destina- data on the processor bus 30 andtion codeis not enabled, however,until the last 50 nano- contents ofLregister 57.

second portion of the200 nanosecond execution time 65 “®S tto10 SconeaorDancinnstieeioein
period. The codes which may be employed in the five perform arithmetic shift of _
micro-orders of a “type one” micro-instruction are as Sextaaeeik. reer
follows: CMPS 01010=Ones complement data on processor

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 29

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 30

15

-continued
ALU FUNCTION MICRO-ORDER CODES

Mnemonic Bit Pattern Description
data bus 30.

CRS 11001 Used in combination with shift
processor function codes to
perform circular rotate shift
of contents of A register 67
and B register 68.

DEC 00110 Decrement data on processor
data bus 30 by one count.

INC 00010 Increment data on processor
data bus 30 by one count.

INCO 00001 Increment data on processor
data bus 30 by one count with
extend and overflow logic enabled.

IOR 01110 Logical “or"of the data on
processor data bus 30 and
contents of L register 57.

LGS 11000 Logical left shift of combined
A register 67 and B register 68
when combined with processorshift codes.

LWF 1001! Combined with proper processor
shift codes, it performs rotational
shift of data applied to shifter
63 and the flag bit.

NAND O1L0] Performs a logical “nand"on
the data on processor data bus
30 and contents of L register 57.

NOR ON) Performs a logical “nor”of
the data on processor data bus

a and contents of L register
ONES O1OlL gis all “ones"to the shifter
PASS 00000 Passes the data unchanged.
RSB 10010 Loads contents of save register

120 into micro-program sequencer47.
SUB OO1LL Subtracts contents of L register

57 from data on processor databus 30,
sWwD 1 Switch on the processor control

owe specifies the destinationield.
SwWs 11110)=Switch on the processor control

panel specifies the source field.
XNOR 00011 Performs logical exclusive

“nor"of the data on the processordata bus 30 and the contents of
L register 57.

XOR OL000 Performs logical exclusive “or™
of the data on the processor
data bus 30 and the contents of
L register 57.

ZERO O1001 ALU passes all zeros,

DESTINATION FIELD MICRO-ORDER CODES

Mnemonic Bit Pattern Description

4,138,718
16

-continued

A 10100=Stores data on ALU bus 65 in

A register 67,
ABT 101L0 A register 67, B register 68 or

memory 34 depending on contents
of memory address register 36.B 10101 Stores data on ALU bus 65 in B
register 68.

CAB 10001 A register 67 or B register 68
depending on bit 11 in macro-
instruction register 37.

CNTR 11110 Stores lower eight bits onr data bus 30 in
vansier¢counter 141.

DSPL 11010=Stores data on processor data
bus 30 in processor front panel
display.

100 10111 Couples data on processor data
bus 30 to I/O data bus 91.

IR 11011 Stores data on processor databus 30 in macro-instruction
register 37.IRIO 11001 Stores lower six bits on pro-
cessor data bus 30 in I/
address register 93.L 10000 Stores data on processor data
bus 30 in L register 57.

10011 Stores data on processor data
bus 30 in memory address
register 36.

NOP ana Nostore operation.

20

25

30

35

45

50

55

65

DESTINATION FIELD MICRO-ORDER CODES

Mnemonic Bit Pattern Description
P 00000 Store data on ALU bus 65 in the

P register of memory 69.
T 10010 Store data on processor data

bus 30 in the memory data
register 35.

RI- 00001 Store data on ALU bus 65 in one
R15 through of the respective registers

O11) R1 through R15 of the memory 69.

SOURCE FIELD MICRO-ORDER CODES
Mnemonic Sit Pattern Description

A 10100 Couples data from A register 67
to the processor data bus 30.

ABT 10110 A register 67, B register 68
or memory 34 depending on contents
of memory address register 36.

ADDR L1001 Couples low portion of macro-
instruction register 37 and high
portion of memory address register
36 to the processor data bus 30.

B 10101 Couples data from B register 68
to the processor data bus 30.

CAB 10001 Couples data from A register 67
to the processor data bus 30 if
bit 11 in macro-instruction reg-
ister 37 is 0; couples data from
B register 68 to the processordata bus 30 if bit 11 is a one.

cIR 11000=Couples six-bit address from L‘O
interrupt bus 95a to the processordata bus 30.

DSPL 11010 Couples contents of processor
front panel display register (not
shown) to the processor data bus30.

101 10111 asdata from the I/O databus 91 to the processor data bus

IR 11031 Couples data in macro-instruction
tegister 37 to the processor data
bus 30.

LDR 11101 Couples data from resident com-
munications program ROM 158 to
processor data bus 30.

M 10011 Couples data in memory address

oar 36 to the processor databus
MASK 11100 Enables bit pointer circuit 40.NOP 111 Processor data bus 30 contains

all ones.
P 0000 Couples contents of P register

in memory 69 to the processordata bus 30.
Rl 00001 Couples data from respective
R15 through registers R1 through R15 in the

O1ln prey S5:ko he pooeeaace: iets
T 10010 Couples main memory data from

register 35 to the processordata bus 30.
TIMR Lilo Couple output ofreal-time clock

145 to the processor data bus 30.

SKIP MICRO-ORDER CODES
Mnemonic ‘Bit Pattern Description

ALO 0010 Skips the next micro-instructionif bit O at output of ALU 59isone,

ALI5 ooll Skips the next micro-instructionif bit 15 at output of ALU 59 isaone.

ALZ 0001 Skips the next micro-instruction
if output of ALU 59is zero.

CNT4 1001 Skips the next micro-instruction
if the four least significant bitsof the transfer counter 141 are
all ones.

CNT8 1000 Skips the next micro-instruction
if all the bits of the transfer
counter 14] are ones {i.e., count =
2047).

COUT 0100 Skips the next micro-instruction

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 30

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 31

4,138,718
17

-continued ~
SKIP MICRO-ORDER CODES

Mnemonic Bit Pattern Description

if the ALU 59 produces a carry.FLG 1011 Skips the next micro-instruction 5
iftheprocessor flag flip-flop118 is set.

INTP 1010 Skips the next micro-instruction
if an interrupt is pending.

NOP 0000 Do not skip the next micro-instruction.
ONES o101 Skips the next micro-instruction 10

if ALU 59 outputs are allones.

OVFL 0110 he the next micro-instruction
Legaieg overflow flip-Sop 116 is set

UNCD Ol! Skips the next micro-instruction
unconditionally. 15

FLAG MICRO-ORDER CODES

Mnemonic Bit Pattern Description 20
ALO o010 Set the processo

118 if the least siganbi
Li5 ool! Gattheeoccessuas fe flip.A ir i

118 if the most si abit
output of ALU59is a one.

ALZ 0001 Set the processor flag fip-fic 25118 if the outputs of the ALU 59 .are all zero.
COUT 0100 Set the processor flag flip-flop

ou thier MekoneONES o101 Set the processor meeeTiditoutputs of AL 59 areall 0
OVFL o110 Settthe processor flag flip-flop118 if an overflow occurs.
UNCD Olll the processorflag flip-flop

Bit No. 23 22 21 20 19

18

The processor function micro-order coders and the
destination micro-order codes are the sameas those for

“type one” micro-instructions which are listed above.
There are only two ALU function micro-order codes
and in addition to the functions which these two codes

specify as described below, they serve to identify the
micro-instruction as one having the type two format.

ALU FUNCTION MICRO-ORDER CODES
Mnemonic Bit Pattern Description
IMM 10100 Places sixteen bits onto the

processor data bus 30 consisting
of the I's complement of the
eight-bit binary OPERAND and
another eight bits of all ones.
The ALU 59 performs a PASS
operation.
Same as IMM except the ALU 59
performs a I's complement of thedata on data bus 30.

MODIFIER MICRO-ORDER CODES

Bit Pattern aifies that the I's co

the OPERAND is appimost significant bit leadsthe processor data bus 30.

seus that the 1's complementhe OPERAND is applied to the
atleast significant bit leadsthe processor data bus 30.

10101

Mnemonic
HIGH 1

lement
ied to the

Low 0

The OPERAND micro-order code is an eight-bit
binary integer which specifies a decimal number from 0
to 255 or an octal number from 0 to 377.

The third type of micro-instruction has the following
format:

18171615 14 13 12 11109876543210

PROCESSOR ALU
DESCRIPTION FUNCTION

118 unconditionally.
40

The FLAG micro-orders are enabled only when the
FLG or FLGSprocessor function micro-order appears
in the same micro-instruction. Absent the FLG or
FLGS micro-order, the SKIP micro-orders are en-
abled. 45

MAPPING MICRO-ORDER CODES

Mnemonic Bit Pattern Description

EOX 1100 Indicates that micro-routine is 50
complete after execution of nextmicro-instruction and enables

orityEOXS 1101 ovaletetekecconiae’is
complete and enables priority

prom 50.
MAP ilil macro-decoder circuit

38 to call up micro-routine 55
sprites bgtmacro-instruction

MAPL 1110 Ena macro-decoder circuit
38 to call up micro-routine after
indirect ressing is resolved.

60

The second type of micro-instruction has the follow-
ing format:

Bit No. 23 22 21 20 19 18171615 14 131211109 8
PROCESSOR ALU

Description FUNCTION

FUNCTION MODIFIER OPERAND

The processor function micro-order codes are the
same as those for “type one” micro-instructions which
are listed above. There are only two ALU function
micro-order codes and in addition to the functions

which these two codes specify as described below,they
serve to identify the micro-instruction as one having the
type three format.

—ALUFUNCTIONMICRO-ORDERCODES
Mnemonic Bit Pattern Description
JMP 10110 Jump unconditionally to themicro-instruction address.

specified in the OPERAND.
Jump unconditionally to the
micro-instruction address
specified in the OPERAND and
store the return address in the
save register 120.

ISB 10111

MODIFIER MICRO-ORDER CODES
Mnemonic Bit Pattern Description
J30 ol Replaces the four least signifi-cantbits of the OPERAND with

the four least significant bits
in the macro-instruction register

763543210

FUNCTION DESTINATION MODIFIER OPERAND

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 31

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 32

4,138,718
19

-continued
MODIFIER MICRO-ORDER CODES

Mnemonic Bit Pattern Description
37.

374 10 Replaces the four least signifi-cantbits of the OPERAND with
bits 4-7 in the macro-instruction
register 37.NOP 11 No modification of the OPERAND

The OPERAND micro-order code in a type three
micro-instruction is a 12-bit address which is coupled
through the multiplexer 122 to the micro-program se-
quencer 47.

The above-defined micro-instructions are combined
to form micro-routines which are stored in the micro-

program read-only memory 32. These micro-routines
are in turn employed to execute macro-instructions
which are stored in the main memory 34. The macro-
instructions are combined to form programs, or rou-
tines, which when executed, perform the various nu-
merical control functions and operate the discrete digi-
tal devices associated with the machine tool. Before a

more detailed description is made of the manner in
which macro-instructions are executed by selected mi-
cro-routines, a general description of the software sys-
tem of the industrial control processor 13 will be made
in order to acquaint the reader with the objectives
whichare to be accomplished and the general manner in
which the system operates to accomplish these objec-
tives.

The operation of the industrial control processor 13 is
determined by the software routines stored in its main
memory 34 which together form the software system.
The software system is comprised of four main catego-
ries: background routines; 10-millisecond timed inter-
rupt control routine; tape reader service routine; and
keyboard service routine.

Referring to FIG. 9, the background routines 175
consist of such basic numerical control routines as

setup, decode, noninterrupt portion ofthe keyboard and
tape reader routines, display update subroutine, ASCII-
to-octal and octal-to-ASCII converters, math and sup-
port routines, jog, keyboard servicing, tool and fixture
offset, cutter compensation, and part program editing.
The background routines also include those associated
with the programmable controller aspects of the sys-
tem, such as machine dependent software loader and
editor, hardcopy output, punch output and I/O moni-
tor. Most of these background routines are selectively
called up by a main control, or executive, routine 176
which is comprised of three program loops 177-179.
The three loops 177-179 are selected by the mode
switches on the main control panel10; the first loop 177
responding to the selection of the automatic or block-
by-block modes; the second loop 178 responding to the
keyboard mode; and the third loop 179 responding to
the manual mode. A detailed flow chart of the main
control routine 176 is shown in FIG. 10.

The automatic and block-by-block modes of opera-
tion are performed by a commonloop 177 whichcalls
up selected background routines 175. These routines
initialize the tape reader 5, read in the block of part
program data, decode it and set it up. The routine 177
then calls up a block execute routine which performs
the actual execution of the block of part program data.

As shown in the detailed flow chart of FIGS. 11a and

115, the block execute routine is divided into a pre-
block, or prelude, portion, an interpolation portion and

20

25

35

45

50

60

65

20

a post-block, or postlude, portion. During the prelude
portion selected system flags are set to indicate that
certain functions such as turn on spindle, coolants, etc.,
are to be performed. These flags are stored in selected
memory locations in a system flag table 182 in the main
memory 34. Similarly, during the postlude portion of
the block execute routine flags are set in the table 182 to
indicate that certain functions such as tool changes,
shuttles, turning off coolants and spindle, etc., are to be
performed by the machine dependent discrete devices.
Theflag table 182 interfaces the numerical control func-
tions of the system with the programmable controller
functions of the system.

The second loop 178 of the main control routine 176
is entered when the keyboard enable pushbutton on the
main control panel 10 is pushed. This mode is em-
ployed, for example, to perform such functions as part
program editing of the machine dependent software
routine. The third loop 179 of the main control routine
176 is entered when the front panel selector switchis set
to manual. The manual routine contains all of the opera-
tor functions such as jog, tape controls, and set zero
which are each performed by respective routines that
are selectively called up. The main control routine 176
thus manages all of the background functions of the
system which serve to prepare the industrial control
processor 13 to provide data to the servo mechanisms
on the machine tool and to indicate to the associated

discrete digital devices the auxiliary functions that are
to be performed.

The remaining portions of the software system inter-
rupt the main control routine 176 to service the I/O
interface racks 20 and 21 and the system 1/O devices. A
ten millisecond timed interrupt routine 183 performs the
actual transfer of data from the industria] control pro-
cessor 13 to the machine servo mechanisms and the

discrete digital devices on the controlled machine. This
routine is indicated generally in FIG. 9 and it is exe-
cuted to the finish every 10.24 milliseconds following an
interrupt posted by the timed interrupt circuit 162. As
indicated above, an interrupt service micro-routine
loadsthe starting memory address of the ten millisecond
timed interrupt routine 183 in the P register (program
counter) of the memory 69 and itis then executed to the
finish.

Referring to FIG. 9 and the detailed flow chart of the
10 millisecond timed interrupt routine in FIGS, 12a and
124, after various housekeeping functions are per-
formed, position feedback data and position command
data is coupled between the I/Ointerface rack 20 and
the industrial control processor 13 by a servo mecha-
nism service routine 184. For a three-axis machine, for
example, the x, y and z axis position feedback accumula-
tors are connected to slots 0-2 ofthefirst L/O interface

rack 20 and servo mechanism command registers are
connected to slots 3-5. The routine 184 sequentially
couples the three sixteen-bit feedback words to corre-
sponding lines in the read/write memory 34 and the
three 16-bit command words previously calculated and
stored at three memory locations in the main memory
34 are coupled to slots 3-5 of I/O interface rack 20.

The status ofall sensing devices connected to the [/O
interface racks 20 and 21 are then coupled to the main
memory 34 by an input status routine 186. The routine
186 sequentially couples the sixteen bits of status data
from slots in the I/O interface racks 20 and 21 to an

associated line in the main memory 34. A portion of the

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 32

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 33

4,138,718
21

main memory 34, hereinafter called the I/O image table
185, is dedicated to storing this status data as well as the
data whichis to be outputted to the I/O interface racks
20 and 21.

A machine dependent software routine 187 is exe-
cuted next to determine the state to whichall operating
devices connected to the I/O interface racks 20 and 21

are to be driven. The machine dependent software rou-
tine 187 is comprised of programmable controller in-
structions which are executed in sequence to solve
Boolean expressions and thereby determine the state of
operating devices. In making these determinations the
status of selected bits in the I/O image table 185 and the
system flag table 182 are examined to ascertain a picture
of the currentstate of both the numerical control system
process and the machine dependent devices connected
to the system. The determined states are stored in the
I/O image table 185, and after the routine 187 is exe-
cuted, these states are coupled to the output circuits in
the I/O interface racks which drive the associated oper-
ating devices by an output status routine 194, The rou-
tine 195 couples sixteen-bit status words from the main
memory 34 to their associated I/O interface rack and
slot.

If a block of part program data has been set up and
the prelude functions completed, an interpolation sub-
routine 188 is executed to calculate position command
data for the machine servo mechanisms. These calcu-

lated position command words control the servo mech-
anisms for a 10.24 millisecond time period and are out-
putted by the servo mechanism service routine 184
during the subsequent ten-millisecond interrupt. The
timed interrupt routine 183 is exited back to the main
control routine 176.

Referring again to FIG.9, a third category of rou-
tines which comprise the software system is the tape
reader routine which is divided into two portions; the
interrupt portion 190 and the background portion. The
tape reader routine is called by the main controller
routine 176 which employs the background portion of
the tape reader routine to perform the initialization
functions. After initialization by the background por-
tion, a tape reader interrupt will then occur whenever a
new tape characteris positioned under the read head of
the tape reader 5 and the interrupt portion of the tape
reader routine 190 is executed. This routine reads the

tape character and stores it in a selected data buffer in
the main memory M.It also sets flags in the system table
182 whenthe end ofblock characteris read or when the
block limit is exceeded.

A fourth category of routines which comprise the
software system is the keyboard and CRTroutine. This
includes an interrupt portion 191 which is entered each
time a key is depressed on the keyboard 7. Background
portions of the keyboard and CRTroutine interpret the
received ASCII characters as data which is stored in

10

25

22
the main memory 34 or as codes which call for the
execution of specific subroutines.

The above described software forms no part of the
present invention, but instead, the descriptionillustrates
the nature of the system software, machine dependent
software, tables and storage areas which reside in a
computerbased numerical control system (CNC). These
elements, which are referred to collectively herein as a
system program, or system software package, deter-
mine the functions which the numerical control system
can perform. As is known to those skilled in the art,
such system software packages vary considerably in
content and structure depending on the type of machine
tool the numerical control system is to operate, the
types of parts to be run on the machine, andthe types of
optional features to be included. For examples, the ma-
chine tool may perform drilling operations or punching
operations which require only point-to-point control
rather than contouring. The system software would not
include interpolation capability and more space in the
numerical control system memory would be made
available for part program storage. The contrary is the
case where full contouring is required with linear, cir-
cular and perhaps even spline interpolation present.

The present invention enables the entire resident
software system in the numerical control system mem-
ory to be changed by downloadinga different software
system package from the bulk storage device 507. Such

* a change maybe required, for example, because a differ-
30

35

40

45

ent type ofpart is to be machined which requires differ-
ent interpolation capability or special “canned cycles”
for efficient production. Also, the ability to download
an entire system software package enhances thereliabil-
ity of CNC systems which employ destructable memo-
ries. Thatis, rather than providing expensive and bulky
battery backup systems for maintaining power to the
system memory during poweroutages, the system soft-
ware package may be downloaded bythe present inven-
tion from a non-destructable memory after poweris
restored.

Downloadingis initiated by depressing a pushbutton
510 located on the secondary control panel 12 of the
numerical control system 1. Referring to FIGS. 4 and 7,
the logic high voltage thus generated is coupled
through the control panel interface 126 to lead number
fifteen of the priority encoder 127. Asa result, the prior-
ity encoder 127 generates a five-bit binary code to the
priority mapper prom 50 which addresses the BBL
micro-routine stored in the micro-program read-only
memory 32.

The BBL micro-routine is then executed to load a

communications program into the top of the main mem-
ory 34, load the starting address of the communications
program into the program register (P), and then execute
a macro-instruction fetch to begin execution of that
program. The BBL micro-routine is as follows:

Proc. ALU Dest. Source Field or

Label Function Function Field Mod. & Operand Comments
BBL ZERO RI Load Zeros in RI.
LOAD R IMM RO HIGH 200B Initialize R9 to

maximum possible
memory address.

DMA IMMC RE HIGH 0208 Initialize R& to
OL0000B.

LOAD I IMM L LOW O77B Load mask (1777008)
into L register.

AND P Rd Load maximum memory
address into P register.

DMA CMPS R10 P Form 2's complement
INC RIO R10 of memory address

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 33

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 34

4,138,718
23

-continued
Proc.

Label Function
ALU
Function

Dest.
Field

Source Field or
Mod. & Operand Comments

WRTE

DMA

READ

DMA
LOAD2 L4

ICNT

ICNT

ICNT

DMA

WRTE

ICNT

INC
PASS

PASS

INC
SUB
PASS

XOR
JMP

PASS

IMM
PASS

PASS

AND

PASS

AND

PASS

AND

INC
PASS

JIMP

CMPS
INC

T

R9

CNTR
R8

RB

Rs

>>

Ro
RIO

RB

Ro
Ro
RIO

TALZ
LOAD |

P

LOW 377B
LDR

RB

LDR

R8

LDR

R&

LDR

R9
R8 CNTS

LOAD 2

P EOX

and store in R10.
Write contents of
R10 into memory location
indicated by R9 andincrement R9.
Store contents of R8
in latch L.
Read contents of
location written into
to determine if
memory is present.
Is memory present?
No, loop back and try
with maximum memory
address reduced by 4K.
Yes, save maximum
memory address in R9.Clear transfer counter.
Read out contents of
addressed line in ROM
(58, shift left four
laces and store in R&.
ncrement transfer

counter and store con-
tents of R& in latch L.
Read out contents of
addressed line in ROM
158, AND with contents
of L, shift result left
four places and storein R8.
Increment transfer
counter and store con-
tents of R& in latch L.
Read out contents of
addressed line in ROM
158, AND with contents
of L, shift result
left four places and
store in R&.
Increment transfer
counter and store con-
tents of R8 in latch L.
Read out contents of
addressed line in ROM
158, AND with contents of
L and store in R8.
Write 16-bit word in
R8 into memory 34 at
location indicated by
RY, increment R9 and
check to see if transfer
counter is all ones.
No, loop back to transferneat 16-bit word to
memory 34.
YES, putstartingaddress of resident
communications program
in A register and
jumpto first instruc-tion therein.

The BBL micro-program operatesfirst to determine
the size of the memory 34. It performs this function by
writing into the maximum possible memory address
(i.e., the maximum memory address when the largest
possible memory is employed in the system) and then
reading data out of the memory location. If the data
differs no memory is present at that address and the
same procedureis carried out with an address whichis
4Kless.

When the memorysize is determined the BBL micro-
program sequentially transfers the instructions of the
resident communications program from the ROM 58 to
the top of the memory 34. The 16-bit instructions are
stored as 4-bit bytes which are read out in sequence into
the register R8. The reconstructed 16-bit instruction is
then transferred to the memory 34 at the address indi-
cated in the register R9. When the transfer counter 141
counts out (i.e., all one’s) the starting address of the
resident communications programis stored in the P and
A registers and the micro-routine is completed. The

50 system then fetches and executes the first macro-

55

65

instruction in the resident communications program.
The resident communications program is stored on

the top 128 lines of the main memory 34. Referring to
FIG. 8a, when executed this resident communications

program first disables all interrupts and turns off all
output devices as indicated by process block 511. As
indicated by process blocks 525 and 526 a download
request word (octal 20) is then fetched from a location
in the memory 34 andis transmitted to the host com-
puter 500 along with a version character. This data is
interpreted as a download commandby the host com-
puter 500. The octal 20 identifies a communications
program, COMPAC,and the version character distin-
guishes the various versions of this program which may
reside in the host computerlibrary.

As will be described in more detail hereinafter, the
host computer 500 reads COMPACout of the disc
memory 507 and divides it into a series of records, each

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 34

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 35

4,138,718
25

of which record is comprised of a-predetermined num-
ber of words which are downloaded to the numerical

control system 1 via the UAR/Ts 502 and 8. The host
computer 500 first downloads a record size number, a
record load address number, a series of ASCII charac-
ters and then a checksum number. As shown in FIG.8,

the resident communications program jumps to a RE-
CEIVE subroutine as indicated by process blocks 527
and 528 to input this data. The record size number is
stored at memory location “COUNT”after being ne-
gated as indicated by process block 529,the B registeris
initialized as indicated by process block 530 and the
record load address is stored in the memory 34 at
“ADDR.”

Referring particularly to FIG. 84, a loop is then es-
tablished in the program during which a record com-
prised of the number of words indicated by COUNTis
downloaded and stored in the memory 34 at the loca-
tion indicated by ADDR. A checkis first made to in-
sure that the downloaded record will not destroy any
part of the resident communications program as indi-
cated by process blocks 531 and 532 and the decision
block 533. If a program is detected the message “AD-
DRESS ERROR”is displayed on the CRT 9 as indi-
cated by process block 534 and the program loops back
to START to begin the entire download procedure
again. If everything is in order, the system remains in
the loop to sequentially download words until the entire
record has been received and stored. The contents of
“ADDR,” “COUNT”and the checksum accumulator
(B register) are adjusted accordingly as each wordis
received and stored as indicated by process block 535,
and when COUNT reaches zero as indicated by deci-
sion block 536, the loopis exited.

Referring particularly to FIG. 8c, after an entire re-
cord has been downloaded a checksum word is down-

loaded and compared with the checksum accumulator
as indicated by process blocks 537 and 538 and decision
block 539. If an error in the number of words down-

loaded has occurred, the message “CHECKSUM ER-
ROR”is displayed on CRT 9 as indicated by process
block 540 and the system loops back to START. Other-
wise, the system loops back to process block 527 (FIG.
8a) to commence downloading the next record. The
system continues downloading records comprised of
fixed numbers of words until the end of transmission

code (ETX)is received. This is detected in the BYTE
subroutine which forms part of the RECEIVEsubrou-
tine, and when it occurs, the system jumps to thefirst
instruction in the downloaded program.

The listing of the resident communications program
along with the RECEIVE and BYTEsubroutines ap-
pear in APPENDIX A.A definition of the instruction
set appears in “Instruction Manual 7320/40/60” pub-
lished in 1977 by the Allen-Bradley Company.

An examination of the resident communications pro-
gram listing reveals thatit is relatively short and thus of
limited capability. This is done in the preferred embodi-
ment to minimize the amount of space required within
the numerical control system ROM 158 for permanent
storage of the resident communications program.It can
be appreciated, however, that where space permits,
communications programs of greater capability may be
stored at the numerical control system and loaded by
the BBL micro-routine.

The program downloaded by the resident communi-
cations program described above is a more powerful
communications program referred to hereinafter as

0

20

25

30

40

45

55

65

26
COMPAC. Whereas the resident communications pro-
gram merely downloads a program and indicates any
transmission errors which might occur, COMPACena-
bles the operator at the numerical control system 1 to
interractively communicate with the host computer 500
through the numerical control system keyboard 7 and
CRT9. In this manner the operatoris able to identify
the particular program which is to be downloaded and
stored in the main memory 34. As shown in FIG.15,at
this juncture inthe download procedure the main nu-
merical control system memory 34 contains the resident
communications program and COMPAC.The remain-
der of the memory 34 is empty.

Referring to FIGS. 13a and 135 COMPACis entered
from the resident communications program at the point
512 when the “ETX” character is received at the
UAR/T 8. This indicates that the entire COMPAC

program has been downloaded (see BYTE SUBROU-
TINE — APPENDIX A)and that it can now be exe-
cuted. As indicated by process block 513 interrupts are
disabled and all operating devices connected to inter-
face racks 20 and 21 are deenergized. The word
“READY”is then displayed on the CRT9 as indicated
by process block 514 and the system waits for the opera-
tor to enter a command through the keyboard 7. The
only valid commandsatthis point are sign-on, sign-off
and download. If either the sign-on or sign-off com-
mand is entered the system branches at decision blocks
515 and 516 and the command is transmitted via the

UAR/T 8 to the host computer 500 as indicated by
process block 517. The reply from the host computer
500 is then received and displayed on the CRT 9 as
indicated by process block 518 and the system loops
back to process block 519 to await a further command
from the operator. If an invalid commandis entered by
the operator an asterisk is displayed on the CRT 9 as
indicated by the process block 520.

When a proper download commandis entered the
code is transmitted to the host computer 500 as indi-
cated by process block 521. The reply from the host
computer 500 is received and displayed on the CRT 9 as
indicated by process block 522 and the reply is then
analyzed as indicated by decision block 523 to deter-
mine whetherit is a type “1” or type “2.” If a type “1”
reply is received a problem has been detected by the
host computer 500 and the system loops back to start.
Otherwise, it jumps to the resident communications
program to commence the download sequence. The
actual downloading is thus performed by the resident
communications program in the manner described
above. The downloaded executive program is written
over the COMPACprogram since in mostinstances the
downloaded executive system will include its own so-
phisticated communications programs.

It should be apparent from the above description that
COMPACenables the keyboard 7 and CRT 9 so that
the operator may enter commandsand transmit them to
the host computer 500. A sign-on command (SN,X)
indicates to the host computer that a new user has
logged in. The X is a 6-character identification number,
or password, which may be associated with specific
access privileges. The host computer 500 responds with
a message such as PASSWORD NOT FOUNDwhich
is displayed on the CRT 9 if a mistake is made in the
6-character identification number. Otherwise, a blank is
transmitted to the numerical control system by the host
computer 500. A sign-off command (SF) notifies the
host computer 500 that the current user has logged out.

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 35

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 36

4,138,718
27

A blank is sent back by the host computer 500 as an
acknowledgemeht.

A download commandis entered through the key-
board 7 and has the following format:

CT, ST, TX,file name, type of file (A, T or X)
where:

CT indicates to the numerical control system that
data is to be transmitted to the host computer 500;

ST indicates to the host computerthat a task is to be
started;

TX indicates that the task to be performed is a down-
load;

file name identifies the name of the program to be
downloaded; and

file type indicates the file to be downloaded, A =
application, or part program, T = testing or diagnostic
program, X = system software package.

COMPACdoes not recognize any commands other
than these three even though the host computer 500 is
programmed to carry out a large numberofothertasks.
A complete listing of COMPACis provided in AP-
PENDIXBusing the sameinstruction set as the resi-
dent communications program.

Referring to FIG. 16, the host computer 500 is a
32-bit minicomputer such as the Model 7/32 manufac-
tured by Interdata, Inc. It includes a processor 550
which has 16 32-bit general registers and which per-
forms logical and arithmetic functions in response to
program instructions. The processor 550 is coupled to a
read/write memory 551 througha bidirectional bus 552.
The memorystores the programs which direct the pro-
cessor 550 to perform its function, including the down-
load NC system program (DNLDNC) to be described
hereinafter. A selector channel 553 also couples to the
memory 551 through a bidirectional DMA bus 554. The
selector channel 553 controls the transfer of data di-

rectly between the disc 507 and the memory 551. The
selector channel 553 operates simultaneously with the
processor 550 by stealing memorycycles to couple data
between the disc 507 and memory 551. A “downward
library” comprised of COMPAC, NCsystem software
packages, testing and diagnostic programs and applica-
tion programs is stored in the disc 507 and when a
download commandis received at processor 550, the
selector channel 553 is directed to read the requested
program from the disc 507 and store it in the memory
551.

The processor 550 couples to the UAR/T 502
through a bidirectional multiplexer bus 555. The
UAR/T 502 is an interrupt driven I/O device and each
time it receives an ASCII character or transmits an

ASCII characterit interrupts the operation of the pro-
cessor 550, During the interrupt the processor 550 exe-
cutes an interrupt service routine for the UAR/T 5302
which inputs an ASCII character therefrom or outputs
an ASCII character thereto. A buffer storage area
within the read/write memory 551 is dedicated to the
UAR/T 502 and as characters are received they are
stored in this buffer until an ETX code is received.

Similarly, the buffer stores data which is to be down-
loaded to the numerical control system, and during each
interrupt by the UAR/T 502 one of the ASCII charac-
ters in this buffer is coupled to the UAR/T 502 for
transmission.

The library of programs and files which may be
downloaded is stored as binary data in the disc memory
507. This “download library” is compressed, with each
file comprised of a plurality of records, and with each

25

35

40

45

55

60

65

28

record preceded by a record length number and an
absolute load address number. The last halfword of

each record is the checksum number. The 16-bit binary
words stored in the download library must be con-
verted to ASCII data before they can be transmitted
through UAR/Ts 502 and 8 to the numerical control
system. This is accomplished by converting each 16-bit
binary word into three 7-bit ASCII characters and
transmitting these characters sequentially via UAR/T
502 to the numerical control system 1. The division is
madeas follows:

ASCII
BIT NUMBER 6 5 4 3 2 1 0

CHARACTERI| 1 © Bs B; B, B Bo
CHARACTER2 1 0 By Bg By Be Bs
CHARACTER} I Bis Big By; By By Bio

When a download command (TX)is received from
the numerical control system 1 and stored in the buffer
storage area in memory 551, a download NC system
program (DNLDNC)stored in the host computer
memory 551is entered and executed. Referring particu-
larly to the flow chart of this program in FIG. 14, the
identification number of the requesting machine is first
received and stored as indicated by process block 545
and then the file name andfile type codes are received
and stored as indicated by process block 546. The ma-
chine identification number is then checked to deter-

mine whether or not the requested file can be down-
loaded to it. If not, as indicated by decision block 547,
the system branches to a routine called OUCH which
transmits an error message to the numerical control
system 1 as indicated by process block 548. If the re-
questing machineis cleared to receive the identified file,
the first record in that file is read from the disc*memory
507 as indicated by process block 549 and is converted
to ASCII characters as indicated by process block 550.
As indicated by process block 551, the characters in the
record are then sequentially transmitted to the request-
ing machine and a check is then made to determine
whether a further request from the machine has been
made. If so, as indicated by decision block 552, a
“BUSY”messageis transmitted to the machineas indi-
cated by process block 553. Regardless, the system
loops back to the process block 549 to read the next
record from the disc 507 and transmit it to the numerical

control system 1. As indicated by decision block 554,
when the end offile code (ETX) is read out of the disc
507 and downloaded, the system branches back tostart
to await the next request. A listing of DNLDNC ap-
pears in APPENDIXCand a definition of the instruc-
tions which appear in this listing is given in “Model
7/32 Processor User's Manual” published by Interdata,
Inc. in 1976.

It should be apparent that the invention has been
described herein as embodied in a DNC system in
which the host computer 500 is a relatively large com-
puter system which mayserve a plurality of numerical
control systems on a time shared basis. The present
invention may, however, be applied in other hardware
configurations without departing from thespirit of the
invention. For example, the host computer may be a
commercially available microprocessor which is con-
nected only to the single numerical control system and
which is programmed to managethefiles in the “down-
load library” and download a file when requested by

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 36

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 37

4,138,718
29

the numerical control system. In such a configuration
the download library may be stored in devices such as
UV proms or bubble memories and the microprocessor
and associated download library storage device may be
located adjacent to or even in the same enclosure as the 5
numerical control system. In such case, communication

LOAD 1

LOAD 2

LOAD3

F.ERR

30
links other than the UAR/Ts may be employed since
industrial noise may not be as great a factor. Also, the
present invention may apply to process controllers and
programmable controllers as well as numerical con-
trols.

APPENDIX A
RESIDENT COMMUNICATIONS PROGRAM

Instruction
STA MAXAD

CLF 00B
CLC 0,C
EQULDA DLE

ISB TRANS

LDA VERSN

ISB TRANS

EQU
LDA ADDR
ADA, MAXAD
SSA, RSS

IMP A.ERR

JSB RECEIVE

ADB A
STA ADDR,I

ISZ ADDR

1sZ COUNT

IMP LOAD 3

JSB RECEIVE
CPB A

JMP LOAD 2

EQU
STA WORD

LDA NAK

JSB TRANS

LDA WORD
HLT 11B
JMP LOAD

EQU
LDA NAK

JSB TRANS
HLT 55B
JMP LOAD

LDA NAK

JSB TRANS
HLT 22B
JMP LOAD

EQULDA NAK

JSB TRANS

HLT 44B

Comment

SAVEboundary address of
resident communications program
at memory location AD.
Disable interrupts.
Turn off all L/O devices.

Fetch constant at memory
location DLE.
Jump to TRANSsubroutine and
transmit constant 20 (octal).
Fetch ASCII version character
from memory #4.
Jump to TRANSsubroutine andtransmit version character.

Jump to RECEIVEsubroutine and
input word count.

eeeewordcount and store
ennvosload address.Initialize checksum in B

Store record load address at“ADDR.”

Check to determine whether
downloaded program will writeover resident communication

ir 80, jump to address errorindication subroutine.
Jump to RECEIVEsubroutinedownload next word.

Store download word in memory
34 at location indicated by ADDR.
Increment memory address
stored at ADDR.
Has the last word in the

nloading.
If yes, download “checksum”
number and compare with valuein B :
if scuer: agree loop backto LOAD 2 to download next
record.

ane contents of A mpieett memory location WORD,
Fetch 025 (octal) stored at
memory location NAK.
Transmit 025 (octal) to host
computer.
Restore contents of A register.
Output “CHECKSUM ERROR"to CRT9.
Loop back to restart do
procedure.

Fetch 025 (octal) stored at
memory location NAK.
Transmit 025 (octal).
Output “ADDRESS ERROR"to CRT 9.
Loop back to restart download
procedure.

Fetch 025 (octal) from memory
location NAK.
Transmit 025 (octal).
Output “PARITY ERROR" to CRT 9.
Loop back to restart download
procedure.

Fetch 025 (octal) from memory
location NAK.

sate:025 (octal) to host
Output“FRAMING ERROR"toCRT 9.

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 37

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 38

H.ERR

Label
BYTE

CLF!
LIAI

CLF2
LIA2

Label
BEGIN
OCRTI

START
ICRT1

BUFAD

4,138,718

31 32
-continued

JMP LOAD Loop back to restart download
procedure.

EQU
HLT 33B Output “HOST ERROR"to CRT 9.
JMP LOAD Loop back to restart download

procedure.
_BYTESUBROUTINEInstructions Comment

NOP
CLA
STA LPCNT Setup loops.STA CNTLP
CLF RS232 Enable “Interrupt.”

a RS232 Clear UAR/T receiver.JMP CLF2
ISZ LPCNT Wait for “Interrupt.”JMP SFS1
ISZ CNTLP
JMP SFS1
JMP LOAD
CLF RS232
LIA RS232 Input UAR/T status and receivedter.
OTA OLB isplay status and character onbir
SSA Signal present?
JMP H.ERR If not jump to subroutine

which displays “HOST ERROR.”ALF,SLA Data received?
RSS
JMP SFS1 If not, loop back to SFS1.
ALF,SLA Parity error?
JMP P.ERR If yes, jump to subroutine

which displays “PARITY ERROR.”
RAR,SLA Overrun or framing error?
JMP F.ERR If yes, jump to subroutine

which displays "FRAMING ERROR.”
RAL Align bytes.
ALF,ALF Rightjustify received character.
AND CHAR Isolate bits 6-0.
CPA ENQ Is the received character the

start of a message?
JMP BYTE+1 If so, loop back to receive

next byte.
CPA ETX Is the character ETX?
JMP 00002B If so, jump to and begin

executing downloaded program.ANDBITS Isolate bits 5-0.
JMP BYTE,I Return to receive subroutine.

APPENDIX B

COMPAC PROGRAM

Instruction Comment

EQU *
JSB .020 Output “READY”message to CRT 9.DEF *+2
JMP START
ASC 3, READY
OCT 001
EQU*
JSB .120 Read in command from keyboard 7.
DEC —30
DEF BUFER
LDA BUFER Fetch first two CHAR in CMD “CT”
CPA =ACT command?
RSS -Yes-
JMP ERROR -No-
LDA BUFAD Fetch a (Buffer)
INA Skip “CT
RAL Form character ADDR
STA ADDR Save for .UPK
ISB .UPK Fetch 3rd character
DEF ADDR
CPA =B054 Comma?
RSS -Yes-
JMP ERROR -No-
ISB .UPK Fetch 4th ByteDEF ADDR
ALF,ALF SwapBytesSTA HOLD Save for later
JSB .UPK Fetch 5th ByteDEF ADDR
IOR HOLD Merge with 4th Byte
CPA =AST Is ita “START TASK” command?
JMP STCMD -Yes-
CPA =ASN Is it a “SIGN ON" command?

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 38

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 39

ERROR
OCRT2

SNCMD
SFCMD

DEF1

OCRT3

COPY

DEF2

OCRT4

-PAK

33

JMP SNCMD
CPA =ASF

IMP SFCMD

INA
IOR SIGN
STA DEF]
JSB .SEND
NOP
JSB .RECV
DEC —30
DEF BUFER
ISB .020
DEF BUFER
IMP START

EQU *
LDA BUFER+3
CPA =ATX
RSS
IMP ERROR
JSB .UPK
DEF ADDR
CPA ETX
RSS
JMP *—4
CCA
ADA ADDR
STA ADDR
LDA ASIZE
RAL
STA POINT
EQU*
JSB .UPK
DEF POINT

DEF ADDR
LDA BUFAD
INA
IOR SIGN
STA DEF2
JSR SEND
NOP
JSB .RECV

JMP A,I

NOP
AND =B377
STA CHAR
LDA .PAK,I
LDB AI
1SZ A,I
CLE,ERB

4,138,718

" APPENDIX B—continued

Yes-

-Yes-
Is it a “SIGN OFF" command?

Output “*" to CRT 9.

Fetch Byte from buffer storage

End of message?-Yes-
-No-*.

* Decrement pointer
Fetch
Place

Fetch
Place

Fetch

cR
CRinto buffer

ETX
ETX into buffer

a (Buffer)
Skip Ist and 2nd Bytes
Skip 3rd Byte
Save for SEND
Send command to Host Computer

Wait for reply from host computer

Display reply on CRT 9

Go read in next command from
keyboard 7
Fetch task ID code
Download task?
-Yes-
-No-
Fetch Byte from buffer

End of message?-Yes-
-No-

_Decrement pointer

Save for .UPK

Fetch Byte ofsize
End of size?
-Yes-
Add size to command

LoopPlace end of download code
(ETX
Fetch

until done

) into buffer

a (buffer)
Skip Ist and 2nd Bytes
Skip 3rd ByteSave for SEND
Send command to host computer

Wait for reply from host
computer

Display reply on CRT 9
Fetch

Ne

JMP to LOAD2 in resident

Message type code“9

communications program
Character pack subroutineIsolate character
Savefor later
Fetch
Fetch
Increment CHAR ADDR
Form word ADDR and U/L Bit

a (CHAR ADDR)
a (CHAR)

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 39

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 40

4,138,718
35 36

APPENDIX B—continued

LDAB,I Fetch word
SEZ,RSS Upper or lower Byte?
ALF,ALF Upper - rotate
AND =B177400 off lower byte
IOR CHAR Merge in CHAR
SEZ,RSS Upper or lower byte?
ALF,ALF Upper - rotate
STA B,I Store in buffer
ISZ .PAK P+2 return
JIMP .PAK,I Exit

CHAR NOP
-UPK NOP Character unpack subroutine

LDA .UPK,I Fetch a (R ADDR)
LDB A,I Fetch a (CHAR)
ISZ AI Increment CHAR ADDR
CLE,ERB Form word ADDR and U/L Bit
LDA BI Fetch word
SEZ,RSS Upper or lower Byte?
ALF,ALF U - rotate
AND =B377 Isolate character
ISZ .UPK P+2 return
JMP .UPK,I Exit

020 NOP CRT output subroutine
LDA.020,! Fetch a)
RAL Form character ADDR
STA ADDR Save for later
ISZ .020 P+2
LDA =BO0l4 Fetch “FORM FEED”
JSB OUT 20 Output it to CRT 9

LOOP! EQU *
JSB .UPK Fetch character from buffer
DEF ADDR
CPA ETX End of buffer?
IMP **3 -Yes-
ISB OUT 20 Output CHAR to CRT 9
IMP LOOP | Loop unit! buffer emptyLDA =B013 Fetch “ERASE TO END OF PAGE”

command
JSB OUT 20 Output it to CRT 9
JMP .020,1 Return

OUT 20 NOP CRT character output subroutine

LIB CRT 20 — CRTstatusSSB CRT busy?IMP *—2 -Yes-
IOR = 8200 Make character bright
OTA CRT 20 Ou character
AND =BI77 off brightbit
IMP OUT 20,1 Return

£20 NOP Keyboard message input sub-

DLD .120,1 PesciLD .120, ‘etch parameters
RBL Form character ADDR
STB HOLD Save for test
DST COUNT Save for later
ISZ .120 P+2
18Z .120 P+3
LDA =BO011 Fetch “HOME” command
JSR OUT 20 Output IT to CRT 9

RD20 EQU *
JSB INP 20 Input character from keyboard 7
CPA ETX Message end code?

CPA BO c Beckapace?‘A =BOl
IMP BKSPC -Yes-
CPA =B020 ABS?
IMP RD20 -Yes-
CPA =B021 CAR?
IMP RD20 -Yes-
CPA =B022 DTG?
JMP RD20 -Yes-
CPA =B023 Offset?
JMP RD20 -Yes-
CPA =BO77 Right arrow?JMP RD20 -Yes-
CPA =B010 Up arrow?
IMP RD20 -Yes-
CPA =BO012 Down arrow?
IMP RD20 -Yes-
CPA =B043 EOB?
LDA =A # -Yes-
JSB OUT20 Display character on CRT 9ISB .PAK Place CHAR into buffer
DEF ADDR
18Z COUNT Buffer full?
IMP RD20 -No-
LDA ETX Fetch ETX

ETX20 U *
JSB .PAK Place ETX into buffer
DEF ADDR
LDA =B135 Fetch right bracket
JSB OUT20 Display itLDA =B013 Fetch “EEOP" command

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 40

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 41

BKSPC

INP20

SEND

STCl
LIA2

SEND!

SEND2

OCRTS

SEND3

SEND4

SENDS

SEND6

SEND?

37
4,138,718

' APPENDIX B—continued

JSB OUT20
JMP.120,1
EQU*LDA ADDR
CPA HOLD
JMP RD20
LDA =B016
JSB OUT20
LDA =B040
JSB OUT20
LDA =B016
JSB OUT20
CCA
ADA ADDR
STA ADDR
JMP RD20
NOP

STC CRT20
CLC CRT20
LIA CRT20
RAL
CMA,SSA
IMP *—3
RAR
AND =B177
JMP INP20,1
NOP

LDA .SEND,I
RAL
STA HOLD
ISZ SEND
STC RS232,C
LIA RS232
LDA =D—-10
STA LOOP
EQU *
LDA ENQ
ISB .OUT
JSB ..IN
RSS
IMP SEND3
EQU *ISZ LOOP
JMP SENDI
ISB .020
DEF *+2
IMP START
ASC 9, DNC NOT RESPONDING
OCT 043403
EQU *CPA ACK

Outputit to CRT 9
Return

Fetch buffer pointer

Baer aay-Yes-
Fetch “CURSOR LEFT" command
Output it to CRT 9Fetch blank
Output it to CRT 9Fetch “CURSOR LEFT” command
Output it to CRT 9

* Decrement pointer.

Keyboard character inputubroutine5
Enable keyboard input
Disable keyboard interrupt
Input status*character
Character in?
-No-

[solate character
Return
Subroutine to transmit a
message to the host computer
Fetch a (buffer)
Form character ADDR
Save for later
P+2
Enable status
Clear UAR/T receiver
Fetch loop count
Setup loop count

Fetch enquiry
Transmitxt to host computer
Wait for replyError
Character OK

Time-out
Try again

Rekmowionge?-Tes-
End of transmission?
-Yes-
-No-

Fetch 50H
Initialize BCC
Transmit SOH
Fetch ASCIT"C"
Transmit it to host computerFetch STX
Transmit it to host computer
Fetch a (buffer)Save for .UPK

Fetch character from buffer

Buffer empty?-Yes-
Transmit CHAR to host computer
Loop until buffer emptyTransmit ETX code to host
computer
Fetch BCC
Transmit it to host computer
Fetch loop count
Setup loop count

Wait for replyError
Character OK
Time-out
Acknowledge?-Yes-
Negative acknowledge?-Yes-

Data link escape?-Yes-

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 41

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 42

4,138,718
39 40

APPENDIX B—continued

ISZ LOOP Give up?RSS -No-
JMP ABORT -Yes-
LDA ENQ Fetch enquiry
JSB .OUT Transmit it to host computer
IMP SEND6 Try again

SENDS EQU*
LDA EOT Fetch EOT
ISB .OUT Transmit it to host computerIMP .SEND,I Return

FAIL EQU * DNCfailureOCRT6 JSB .020
DEF *+2
JMP START
ASC 6, DNC FAILURE

OUT NOP Subroutine to transmit a
register contents to host
computer

CLF CLF RS232 *Enable
LIBI LIB RS232 *“Interrupt”

AND =B177 Isolate output Byte
OTAI OTS RS232 Transmit character

XOR BCC Compute new BCC
STA BCC Updata BCCSFS1 SFS RS232 =
JMP SFSI *Wait for “Interrupt”CLF4 CLF RS232 r

LIB2 LIB RS232 Input UAR/T status
RBL,SLB Line signal detect?JMP FAIL -No-
RBL SLB Transmitter buffer empty?JMP .OUT,I -Yes-
JMP SFS1 -No-

BCC NOP Block check character
IN NOP Subroutine to wait 200 ms for

a character from host computerLDB =D—22500 Fetch time-out count
CLF2 CLF RS232 Enable “Interrupt”LIA3 LIA RS232 Clear UAR/T receiver
SFS2 SFS RS232 .

JMP ISZB *Wait for “Interrupt"CLF3 CLF RS232 s
LIAI LIA RS232 Input status+character

STA INPUT Savestatus+character
SSA Line signal detect?
IMP.IN,I -No-
ALF,SLA Data available?
IMP ERRCK -Yes-

ISZB EQU *
ISZ B Time-out
IMP SFS2 -No-
ISZ .IN -Yes-
ISZ .IN P+3 Exit
IMP .IN,I Return

ERRCK EQU *
AND =B30000 Isolate error bits
SZA Any errors?
JMP .IN,I -Yes-
LDA INPUT ‘etch status +character
AND =BI77 Isolate character
STA B Save character
XOR BCC Compute new BCC
STA BCC Update BCCLDA B Restore character
ISZ .IN P+2 exit
JMP .IN,I Return

INPUT NOP
s-RECV NOP Subroutine to receive a message

from the host computer
DLD .RECV,I Fetch parametersRBL Form character ADDR
DST HOLD Save for later
ISZ .RECV P+2
ISZ .RECV P+3

RECVO EQU *
JSB .IN Wait for ENQJIMP RECVO Error
RSS Character OK
JMP RECVO Time-out
CPA EOT End of transmission?
JMP RECVI -Yes-
CPA ENQ Enquiry?
JMP RECV2 -Yes-
CPA DLE Data link escape?JMP ABORT -Yes-
JMP RECVO Noneof the above

RECVI EQU *
JSB OUT Transmit EOT code to host

computer
JMP RECVO Wait again

RECV2 EQU *
LDA ACK Fetch acknowledge code

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 42

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 43

RECV4

RECV6

RECV8

ABORT

OCRT7

41
4,138,718

* APPENDIX B—continued

JSB .OUT Transmit it to host computerU *
JSB .IN Wait for SOH
IMP RECV4 Error

Character OK
IMP ABORT Time-out
CPA EN Enquiry?IMP 2 -Yes-
CPA DLE Data link escape?JMP ABORT -Yes-
CPA SOH Start of header?

aeRECV6 -Yes-.
JSB .IN Wait for time-out
IMP RECV4 Error
IMP RECV4 Character OK

iL *
LDA NAK Fetch negative acknowledge codeJSB .OUT Transmit it to host computer

JMP RECV3 Wait for SOH
DLD HOLD Fetch parameters
DST COUNT Copy to work areaCLA Clear A-REG
STA BCC Initialize BCC
JSB .IN Wait for CMD ByteJMP RECV4 Error

Character OK
IMP RECVS Time-out
CPA ONE Type “I"'?
RSS -Yes-
CPA TWO Type “2"7-Yes-
JMP RECV4 -No-

STA TYPE Save message typeJSB .IN Wait for startoftest code
(STX) from host computerIMP RECV4 Error

RSS Character OK
IMP RECVS Time-out
CPA STX Start of text?
RSS -Yes-

JMP RECV4 -No-
ISB .IN Wait for text
IMP RECV4

Character OK
JMP RECV5S Time-out
CPA ETX End of text?
JMP RECV8 -Yes-
JSB .PAK Place CHARinto buffer
DEF ADDR
ISZ COUNT Buffer full?
JMP RECV7 -No-

eens -Yes-
JSB .PAK Save ETX in buffer
DEF ADDR
JSB .IN Wait for BCC
JMP RECV4 Error

Character OK
JMP RECV5S Time-out
LDA BCC Fetch BCC

BCCcorrect?
IMP RECVS -No-
LDA ACK Fetch acknowledge code

song Transmit it to host computer
ISB .IN Wait for rep!
JMP *—3 Error eeRSS Character OK

JMP Eng’ Time-outCPA i
IMP *—7 ve
CPA EOT End of transmission?

-Yes-
IMP RECV9 -No-
JSB .OUT Transmit EOT
IMP .RECV,I Return

iu * Communications aborted
JSB .IN Delay one character time
LDA EOT Fetch EOT
JSB .OUT Transmit it
JSB .020
DEF *+2
JMP START
ASC 12, COMMUNICATIONS ABORTED
OCT 020003

CONSTANTS / VARIABLES
FOR COMPAC PROGRAM

42

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 43

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 44

4,138,718

43 44
APPENDIX B—continued

Label Instruction Comment
EOT OCT 004 End of transmission
ENQ OCT 005 Enquiry
DLE OCT 020 Data link escape
ACK OCT 006 Acknowledge
SOH OCT 001 Start of header
NAK OCT 025 Negative acknowledgeSTX OCT 002 Start oftext
ETX OCT 003 End of text
ONE OCT 061 ASCII "1"

SB OcT a ASCII "2"OCT Ol Carri
SIGN OCT 100000 Sign bit
BUFER EQU*

ASC 10,
ASC 10,
OCT 001400
ASC 5

HOLD DEC 0,0 Count and ADDR hold words
COUNT NOP Byte counter

wt Ne oeMessage typeLOOP NOP counter
POINT NOP ler pointerASIZE DEF*+1

ASC 3,,48,12

APPENDIX C

DNLDNC PROGRAM

Label Instruction Comment

DNLDNC RTL R5,DNLDNCQ Get ID number of N/C
system from buffer

BO EOJOB If no more tasks, jumpto EOJOB
NI R5,Y‘00OFFFFFF" Strip off reason code
BAL RF,ASMACHIN Jump to ASMACHIN sub-routine
L R6,MCB,CDBF(R5)
LIS R23 Search command in
LIS R31 from after ‘ST........"
LHI R4,CMDBFSZ Get buffer size

FRSTCOMA LB RA,(R6,R2) Find first comma incommand
CLHI RA,C’”
BES GETFNAME Get file name from

command in buffer
BXLE R2,FRSTCOMA

GETFNAME B FNCHK Jump to FNCHK subroutineGETTYPE AR R2,R6
AIS R2,1
ST R2A

BAL RF,TYPECHK Jump to TYPECHKsub-routine
DCX 4

ATYPE DCF 0
LH R2,TYPE COMPACrequested?BNZS STO.TYPE No - OK
LHI RCA’ Yes - Fake Type "A’

STO,TYPE STB R2,FNTP+1 Store type call
BAL RF,XRFHAN XRFHAN to i
DAC GET,DNC.PARM which NC systems the

file can be
downloaded to

FNTP DB 1,0,5,4
DAC FILENAME,0,ASG.LFD
DCF 0

SRFERR DS 2
LH R2,XRFERR
BNZ XRF\ERR Error in findinginternal name
LH R2,TYPE COMPAC ested?

BZ ASGLIB Yea :Skip assignmentc
LH RI,DNC.ASSI Get machines to which

file can be assi
LR R2,R5 A (MCB)
SI R2,DNC,.MCB Subtract a (First MCB)
DH R2,DNC.MCSZ Get MCB number

LR R4,R3 er => R3SRLS R44 FWDoffset from
DNC.ASSI

SLLS R4,1
AR RLR4 Adjust DNC.ASSIoffset
SLLS R43

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 44

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 45

4,138,718

45 a6
” APPENDIX C—continued

SR R3,R4 Bit offset
TBT R3,GET(R1) Checkis prog assignedto machine
BNZS ASGLIB
LA RB,NOTASGD Send “ not
B SEND.TM Assi, message

to NC system
ASGLIB svc 7,A8G.LIB Assign request for file

BAL RF,SVCERR to managementProgram
DCF 0,7
DAC LIB

LH RBTYPE COMPACrequested?BZS READINDX Yes - BR
svc 1,ST.MSG No, Send start message

to NC system
BAL RF,SVCERR
DAC 0,1,DONE + 1,ST.MSG

READINDX BAL RF,RDLIB Jump to RDLIB subroutine
READLIB BAL RF,RDLIB to read record from disc

L R&,TRAIL End of file flag set?
BNZS SEND,ETX If end of file, jump toSEND.ETX
BAL RF,UNLOAD Jump to UNLOAD SUBROUTINE
B READLIB Loop back to read nextrecord from disc

SEND.ETX LA R&,TBUF
ST R§,DNLDMCB+4 Store start address
AIS R8,2
ST R8,DNLDMCB+8 Store end address
svc |,DNLDMCB Send ETX,0,0 to N/C

system
BAL RF,SVCERR
DCF 01
DAC TRAILERR,DNLDMCB

DONE LA RB,EOJ.MSG
BAL RF,OK.OUCH Send END of JOB message
BS CLOSELIB to N/C systemTMSG LA RB,TRAILMSG
BAL RF,MSG.OUCH

CLOSELIB svc 7,DEAS.LIB — download library
BAL RF,SVCERR
DCF 0,7
DAC NEXTTASK+1,DEAS.LIB
BS NEXTTASK

XRF.ERR LA RB,XRFER.A
LA RB,XRFER.A
BAL RF,|MSG.OUCH
BS N ASK

ASGERR LA RB,ASGMSG
BAL RF,MSG.OUCH

NEXTTASK svc 7,.DEASSIGN DEASSIGN MACHINE
BAL RF,SVCERR
DCF 0,7
DAC EOJOB.0+ 1,DEASSIGN

EOJOB svc 3,0
BLACKOUT svc 9,UDL.PWRO Resume after power failure
ASGMSG DB C‘LU ASSIGNMENT ERROR’, X'D"SSS

FNCHK SUBROUTINE ‘

Label Instruction Comment
FNCHK XR R9,R9

AIS R2,1
SR R9,R2

BYTECHK LB RA,O(R6,R2) Get file name code
CLHI RAC’
BE GETTYPE from buffer storage,STB RA,FILENAME (R9,R2)
BXLE R2,BYTECHK check to make sure it
LA RB,IFN
BAL RF,MSG.OUCH has no more than 8B NEXTTASK

IFN Dc C'INVALID FILENAME’ characters, thenDCX Doo
ALIGN 4 store at “FILENAME”FILENAME DO 3
bc c 8°
pbc Cc
DC c r

ASMACHIN SUBROUTINE

Labe] Instruction Commenteee
ASMACHIN ST RF,MCRFSAV Save R15

ST RS,MCBADD Store MCB ADDR
L RO,MCB.MFDXR5) Load machine file

descriptor
ST RO,LUIFD Store LU- Assignment
SVC 7,ASSIGN Assign terminal to LU-3
BAL RF,SVCERR Any errors?

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 45

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 46

4,138,718

47 48
-continued

DCF 0,7
DAC JMPTBL,ASSIGN
L RF,MCRFSAV Load R 15
BR RF Return

MCRFSAV DSF 1
ASSIGN DCX 4080,3 Assign/SRW/LU-3

DCF o
LU3FD DCF 0 Machinefile descriptor

TYPECHK SUBROUTINE

Label Instruction Comment
TYPECHK AIS RF,4 Align RF to fullword

NI RF,—4
STM RB,TYPERS Save registers
L RD,O(RF)
LB RD,QORD) Load ‘TYPE’ code
CLHI RD,x'C9" Type = COMPAC?
BE RET Yes - Return
L RC,MCB.AP(R5) No - check operator

access privilege with
ID ¢ in sign-on
command

STH RD,TYPE Store type
CLHI RD,X‘41" Requested Type = ‘A’?
BNES CHKT No - Branch operator
NI RC,SDA has application program

download cavilege
BNZ RET Yes - Return
B LOG.ACS Jump to authorized access

CHKT CLHI RD,xX‘54 Requested Type - ‘T'?
BNES CHKX No - BR
NI RC,$DT Yes - check operator

access privilege
BNZ RET Operator has privilege-return
BS LOG.ACS Jump to unauthorizedaccess

CHKX CLHI RD,X'58" Requested Type = X?
BNES LOG.TM No - branch
NI RC,$DX Operator has N/C

system program access
rivilege?

BNZS RET es - return
LOG.ACS LA RB,ACS.MSG

BS SEND.TM
LOG.TM LA RB,TYPEMSG
SEND.TM BAL RF,MSG.OUCH Send Type | message to

B NEXTTASK N/C system to indicatedo command cannot
be executed

RET LM RB,TYPERS Restore registers
B 4(RF)

TYPERS DSF 5 Register SAVEAREA

TYPEMSG DB CUNBRECMIERELE TYPE’"»X'D’ALIGN
ACS.MSG DB C'UNAUTHORIZED ACCESS’,X'D’
TYPE DCX Qo

BINARY TO ASCII CONVERSION
(BTA) SUBROUTINE

Label Instruction Comment
BTA AIS RF,4 Align RF to fullword

boundary
NI RF,—4
STM RD,BTARS Save registers
L RE,O(RF) A (Binary)
LH RE,Q(RE) Load value
L RE,4(RF) A (ASCID
LR RD,RE Save binary value
SRHLS-~ RD,10 Getfirst binary part
AHI RD,X*40° Set (B7)=1
STB RD,2(Store Byte
NHI RE, 1023 Mask
L RD,RE
SRHLS RD,5 Get second part
AHI RD,X'40' Set (B7)=1
STB RD,1(RF) Store Byte
NHI RE31 Mask
AHI RE,X‘40" Third
STB RE, Store Byte
LM RD,BTARS Restore registers
B 8(RF) Return

BTARS DSF 3 Register save area

TASKQS SUBROUTINE

Label Instruction Comment

TASKQS STM R5,TQSRS Save registers
GETLIST RTL R3,DNLDNCO Get Q request

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 46

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 47

4,138,718

49
-continued

BO TKQ.RET No more Q requests -return
EXHR R&,R9
EXBR R&,R8
NI R9, Y‘'OOFFFFFF’ Strip off reason code
NHI R8,X‘FF" Get reason code
CLHI R8,1 New request?
BE NEWREQ Yes - B
CLHI R8,6 Tell Command ESCA?BE TELL.END
CLHI R88 L/O Req done?
BNE GETLIST

TKQ.RET LM R5,TQSRS Load registersBR RF Return
NEWREQ L R5,MCBADD

LM RE,MCB,MACH{(R5) FD of present terminal
ST RE,TERM1
EXHR »RF
STH RF,TERM2
LR R5,R9 Log ‘download busy"message
L R6,MCB.CDBF(R5) CMD BUFof new terminal
LA RB,DNLDBUSY
BAL RF,MSG.OUCH
B GETLIST

TELL.END L R7,TELL.BUF+ 12 Send ‘escape’ message
ci R7,C'ESCA’
BNE GETLIST

TELL.Q RTL R5,DNLDNCQ
BO TEL.END Send ‘escape’
LA RB,TELL.BUF + 12 to all leftover tasks
BAL RF,MSG.OUCH
BS TELL,

TEL.END LA RB,TELL.BUF+ 12
L RS,MCBADD
BAL RF,MSG.OUCH
svc 3,0

TELL.BUF DAC TELL.BUF
DSF 18

TQSRS DSF ilALIGN 4
DNLDBUSY BC C***DNLDNCBUSY:*
TERMI DCF 0
TERM2 DCX 0,D00

. TASK QUEUE
ALIGN 4

DNLDNCQ DLIST 10

RDLIB SUBROUTINE

Label Instruction Comment

RDLIB STM RE,RDRS Save registers
svc I,.RDPARBLK Read record from down-

load library into memory
BAL RF,SVCERR
DCF 0,1
DAC RDLIBERR,RDPARBLK

RD,LDREG LM RE,RDRS Restore registersBR RF Return
TRAILER LIS RE,I End offile?

sT RE,TRAIL fee - set end of fileRD.LDREG
ALIGN 4

RDPARBLK Xx 5804,0 Read/Wait/LU-4/Status
DAC BBUF,BBUFEND
DCF oy

RDRS DSF 2
RDLIBERR DAC RD.LDREG,RD.LDREG

DCF A(TRAILER) + ¥‘88000000"
DCF A(TRAILER)+ ¥‘90000000",0TRAIL DCF 0

BBUF DS BBUFSZ
BBUFEND EQU *-]

UNLOAD SUBROUTINE

Label Instruction Comment

UNLOAD STM RA,ULDRS Save registersLI RB,BBUFSZ Buffersize
LA RC,ABUF
L RA,TEMPKNT Get leftover count
BZ NEWBUF Noleftover from last time
LIS RFO
ST RF,TEMPKNT
LB RE,TEMP Leftover record lengthAR RE,RE Byte count
AIS RE,6 us 3 more half words
SR RE,RA Number of Bytes ofleft-

over record in new buffer
SR RB,RE Adjust buffer Byte count

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 47

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 48

LEFTOVER

TBBUF
TABUF

NEWBUF
EXAMIN

GOTCOUNT

TRANS

ABBUF
AABUF

ASCTIO

STORTEMP

STLFTVR

ULDLR

SEND.ERR

ULDRS
TEMPKNT
TEMP

ABUF

DNLDMCB

MSG.ABRT

Label
MSG.OUCH

OK.OUCH
STOREPB

-continued

51

LA RD,TEMP
ST RD,TBBUF
ST RC,TABUF
BAL RF,BTA

DCK 6
DCF 0
DCF 0
AIS RD,2
AIS RC3
SIS RA,2
BP LEFTOVER
LA RD,BBUF
B TRANS
LA RD,BBUF
LB RE,(RD
cl RD,BBUFEND
BP ULDLR
AR RE,RE

BNZS GOTCOUNT
AIS RD,2
sis RB,2

LH RE,Q(RD)
BZ ULDLR
BS EXAMIN
AIS RE,6

LA RC,ABUF
SR RB,RE
BM STORTEMP
ST RD,ABBUF
ST RC,AABUF
BAL RF,BTA
DCX 6
DCF 0
DCF 0
AIS RD,2
AIS RC3
sis RE,2
BP NS
ST RC,ASCHO
BAL RF,BTA
DCX 6
DAC __Binary0DAC 0
AIS RC.2
ST RC,DNLDMCB+8
svc 1,DNLDMCB

LB R1,DNLDMCB+2
CLHI— RLX'CA’
BE SEND.ERR
BAL RF,SVCERR
DCF 0,1
DAC SEND.ERR+ 1, DNLDMCB
BAL RF,TASKQSB EXAMIN
AR B,RE
ST RB,TEMPKNT
LA RC,TEMP
XR RF,

4,138,718
52

First effective word

Call binary to ASC |conversion subroutine

Neat binary word
Next ASCIIlocation
Left over Byte count

A(remaining binary)

Yes - keep translate
Half word count
End of binary buffer?

Incl t, loadADDR&CHESUM
Start of eererspace for|record?NoBR

Tag 3 ASCII0's

End of ASCII record
Transmit to N/C system
(LU-3)
Status = ‘CA?

Yes - error

Check on TASK Queve
Store leftover record to
a temporary storage area

Return
Send Abort MSG

Write/Wait/Image/LU-3,status

MSG.OUCH SUBROUTINE

AIS RF,2
CR RB,RF
BPS R

~ LA,ULDRS
LA RB,MSG.ABRT
BAL RF, MSG.OUCH
B NEXTTASK
DSF 6
DCF
DS IBUFSZ
ALIGN 4

ABUFSZ
ALIGN 4

x 2903,0

DAC ABUF,0,0,0
DB C'DNLDNC ABORTS',X'D'

Instruction

LHI RO,X'31'
BS STOREPB
LHI RO,X'32"
STB RO,—1(R6)
LR RC,R6

Comment

Type 1 MSG

Type 2 MSG

AMREDBES

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 48

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 49

MOVE

ENDSTRNG

SEND.MSG

SENDSTAT

NEXTQ

TSKCOM
DNC.PARM

DNC.CDMN

DNC.CDID

DNC.TKMN
DNC.TKID
DNC.VMT
DNC.SVOL
DNC. VDTA

DNC.OUCH

DNC.TASK
DNC.XGET

DNC.XFSZ

DNC.ASSI

DNC.DATE

DNC.XTRN

DNC.FMT

DNC.NTRN

DNC.OPTI

DNC.SIZE

DNC.TIME

DNC.TRNS

DNC.NMSZ
DNC.IXLN
DNC.PFLD
DNC.TFLD
DNC.NMAC

DNC.MCB

* DNC.OPTI

svc

LHI

STB

svc

BR
ALIGN
DCX

2%Bg
2

BB8RR3oBABBARRE
DS
ow

ENDS

4,138,718
53

-continued
2,MOVE Move message to be sent

RO,X'D’ Add‘Dp carriage return

© character
R5,NEXTQ A(MCB)
6,SEND.MSG Transmit message to

N/C systemRF Return
4
C012,B0C
ENDSTRNG
1oD
4
COUCH '
SFUN.DOM +SFUN.QM
0,0,00

0
0,0,0

CONSTANTS & VARIABLES
FOR DNLDNC PROGRAM

Comment

SPARM PART#field definitions
ADDR
External command mnemonic
table ADDR
Internal
table ADDR
External task ID table ADDR

ADDR(Active L)
Ouch task Q ADDR(Also Online
Q)

XsfhanSVC?get sorget storage
Parblk
XRFSIZ SXREF Entry size

-ASSI Assignments Offset
-DATE Date offset

-EXTRN EXT PART# Offset

-FMT Format Offset

-INTRN INT PART# Offset

OPTI Options Offset

SIZE Footage Offset
-TIME Time Offset

‘TRANSTransparent Offeet
NAMSIZ EXTERNAL PART# Size
IDXLIN Index line
SPFLDS # PART Fields
$TFLDS # TRANS
SNMACH # MACHINES
SYSOPT SYSTEM OPTIONS
EN Endtask Mnemonic
MCB Size (Bytes)
MCBTABStart

OsSSBEedeeoe*hae-»~
nw

* XRF ENTRY PART PROGRAM OPTIONS
* BIT EQU'S ASSUME OPTION BYTE OCCUPIES LSB OF HALFWORD

(BITS8-15)

DOPT.LTB
DOPT.LTM
DOPT.DPB
DOPT.DPM

* DNC.SYOP

EQU
EQU
EQU
EQU

9

-= Set=Trailing;Reset =Leading
x'80’ Set= Production; Reset=

Development

DNC SYSTEM OPTIONS

DSYO.DBB
DSYO.DBM EQU

EQU
13
X'0001"

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 49

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 50

4,138,718

55

-continued

DSYO.SDB EQU 1
DSYO.SDM EQU X'4000" Set= Scheduling
DSYO.SCB EQU 0
DSYO.SCM EQU X'8000" Set=Sec* A(DNC.MCB).+MCB*MACHINE#= ADDRESS OF MACHINE'S MCB
MCB STRUC
MCB.MACH D5 6 SMACH Machine ID'S
MCB.LMN- DS 2 Logical Machine #
MCB.MFD DS 4 Machine file descriptor

MCB.OPTI DS 2 SOPTIOptionsMCB.STAT DS SMSTATStatus

*BEGIN OUCH SVCI PARBLKDS MCB ADDR (CDPB—4)
MCB.CDPB DS 4 OUCH SVC! PARBLK
MCB.CDBF D5 4 Command Buffer Start ADDR

DS 16 Balance of PARBLK
* END OUCH SVCI PARBLK
* BEGIN PPCT SVC4 PARBLK
MCB.CMPB_ DS 4
MCB.FQ DS 4
MCB.MTQ DS 4
MCB.DSEL DS I

DS 3
* END PPCT SVC4 PARBLK
MCB.CMBF DS 4
MCB.CMSZ DS 1
MCB.CMNB DS 1

DS 2
MCB.EXNM DS 4
MCB.MPAT DS 4

MCB.PW DS 8
MCB.AP DS 4
MCB.APD DS 4

ENDS*
* MCB.STAT

* DNC TERMINALSTATUS
MSTA.LTB EQU 9
SFUN.DMS EQU ¥*C0000000"
SFUN.ECM EQU ‘10000000
SFUN.EDM EQU ¥'20000000"
SFUN.LM EQU ¥'2000000"
SFUN.LB EQU 6
SFUN.HM _EQU ¥'00800000"
SFUN.HB EQU 8
SFUN.SM EQU ¥‘00400000"
SFUN.SB EQU 9
SFUN.MM EQU ¥'00100000°
SFUN.MB EQU u
SFUN.QM EQU ¥'80000"
SFUN.QB EQU 12
SFUN.PM EQU ¥'40000"
SFUN.PB EQU 13
SFUN.OM EQU ¥"8000"
SFUN.OB EQU 16
SFUN.TM EQU ¥"4000"
SFUN.TB EQU 17
SFUN.IM EQU ¥'2000"
SFUN.IB EQU 8
SFUN.FM EQU Y‘1000"
SFUN.FB EQU 9
SFUN.UM EQU Y'800'
SFUN.UB EQU 20
SFUN.RM EQU ¥'00000080"
SFUN.RB=EQU 24
SFUN.NM EQU ¥'00000040"
SFUN.NB EQU 25
SFUN.SIM EQU ¥'2"
SFUN.SDM EQU Y‘4ENDS*.

RO EQU 0
Ri EQU L
R2 EQU 2
R3 EQU 3
R4 EQU 4
MSTA.LTM EQU x'40"
MSTA.ALB EQU 4
MSTA.ALM EQU ‘800°
MSTA.OLB EQU 3
MSTA.OLM EQU X'1000"
MSTA.ABB EQU 2
MSTA.ABM EQU %'2000"
MSTA.ACB EQU 1
MSTA.ACM EQU X'4000"
MSTA.ASB EQU 0
MSTA.ASM EQU "8000"
*MCB.OPTI
DNC TERMINAL OPTIONS

PPCT SVC4 PARBLK
$FQ FULL QUEUE ADDR
$MTQ EMPTY QUEUE ADDR
DEVSELDevice Select,ASCII,
“N”"B", ETC.
Balance of PARBLK

SABUFF ADDRofIst COMBUPF
SBUFSZ #SECTORS/COMBUF

a#COMBUFS/MACHINEt
SEXTNM EXTERNAL PART # ADDR
SMPAT MACHINE/PROGRAMASSIGN-
MENT TABL
PWTAB PASSWORD CURRENT
APTBL ACCESS PRIVILEGES CURRENT
APDFLT ACCESS DEFAULT

Direction: Self
End Task: Cancel
End Task: Delete
Load

Task Resident

Suspend Execution

Send Message

Queue Parameter

Change Priority

Connect Device to Called Task

Thaw

Sint

Freeze

Unconnect

Release

Task Non-resident

Start Immediately
Delay Start

Set=Trailing; Reset =Leading
Set=P.P. File Allocated
Set=P.P. File Allocated

Set=Online; Reset = Offline

Set =Aborted

Set = Active

Set = Assigned

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 50

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 51

4,138,718

57 58
-continued

orm oe St=Magen!MOPT. = ent Information
MOPT.PDB EQU 14
MOPT.PDM EQU 2 Set=Permanent Default JCOPY SVC6.
SVC6. STRUC
SVC6.ID DS 8 TASKID
SVC6.FUN DS 4 Function
SUC6.TST DS 2 Task Status
SVC6.STA DS 2 Error Pointer & Code
$VC6.LU DS 1 Load LU
SVC6.PRI DS 1 Priority to be Set
SVC6.RPI DS 1 Return Priority

DS 1 Reserved
SVC6SAD DS 4 Start Address
$VC6.TIM DS 4 Time Type & Delay Time
SVC6.DMN DS 4 Device Mnemonic
SVC6.PAR DS 4 Parameter (High Byte must

be Zero)
SVC6.MSG DS 4 A(Mess Buff)Ds 2°4 ed

ENDS
SFUN. STRUC
SFUN.DOM EQU ¥'80000000" Direction: Other Tasks
RS EQU 5
R6 EQU 6
R? EQU 7
RE EQU 8

RA FOU 10RA
RB EQU 13
RC EQU 12
RD EQU 13
RE EQU 14
RF U 15

PY UDL
UDL STRUC
UDL.CTOP DS 4 CTOP
UDL.UTOP DS 4 UTOP
UDL.UBOT DS 4 UBOT

DS 4 Reserved
UDL.TSKQ DS 4 A(TASK QUEUE)
UDLSTKQ DS 4 A(SUBTASK QUEUE
UDL.MSGR DS 4 ESSAGERING)
UDL.SV14 DS 4 A(SVC 14 ARG)

DS 16 Reserved
UDL.PWRO DS 8 Power restoration old TSW
UDL.PWRN DS 8 Power restoration new TSW
UDL.ARFO DS 8 Arithmetic fault old TSW
UDL.AFRN DS 8 Arithmetic fault new TSW
UDL.SUBO DS 8 Subtask Queue service old TSW
UDL.SUBN DS 8 Subtask service new TSW
UDLS1I40)=—s~DS 8 SVC 14 old TSW
UDL,.S14N Ds 8 SVC 14 new TSW
UDL.TSKO DS 8 Task Queue service old TSW
UDL.TSKN DS 8 Task Queue service new TSW
UDL.MAFO DS 8 Memory access fault old TSW
UDL.MAFN DS 8 Memory access fault new TSW
UDL.IITO DS 8 Illegal instruction old TSW
UDL.IITN DS 8 Illegal instruction new TSWDs 16*2 Reserved
UDL.AIDS DS a Reserved for aids

ENDS
TSW.WIM EQU Y'80000000" Trap Wait
TSW.WTB EQU 0

TSW.PWRM EQU '¥'40000000° oe Restoration TrapEnable
TSW.PWRB EQU I
TSW.AFM EQU 20000000" Arith Fault Trap Enable
TSW.AFB EQU
TSW.S14M EQU ‘Y‘10000000" SVC 14 Trap Enable
TSW.S14B EQU 3

TSW.TSKM EQU ‘Y's000000" esdgi Service TrapEnable
TSW.TSKB EQU
TSW.MAFM EQU ‘¥'4000000° Memory Access Fault TrapEnable
TSW.MAFB EQU 3

TSW.IITM EQU ‘Y*2000000° ShInstruction Trap
TSW.ITB EQU 6
TSW.SUBM EQU Y'1000000" Subtask Status Change TrapEnable
TSW.SUBB EQU 7.
TSW.NRLM EQU Y‘800000' Non-Rollable
TSW.NRLB EQU 8
TSW.DIOM EQU Yy's007 Queue Entry Device Interrupt
TSW.DIOB EQU 16
TSW.TCM EQU y'4007° Queue Entry Task Call
TSW.TCB EQU 17
TSW.LMM EQU 'Y'2000" Queue Entry Subtask Log

Message
TSW.LMB EQU 18
TSW.PMM EQU Y'1000° Queue Entry Peer Task Message

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 51

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 52

4,138,718

59 60
-continued

TSWSTM EQU ¥'800 Entry Supertask MessageTSW.STB -EQU 20 oa
TSW.OM EQU "400" Queue Entry 1/O ProceedTermination
TSW.IOB=EQU 21
TSW.TMCM EQU Y'200' Queue Entry Timeout Completion
TSW.TMCB EQU 22
TSW.ITM EQU ¥'100° ITAM Bit
TSW.1ITB EQU 23
TSW.SSM EQU ¥'80" Queue Entry Subtesk Status

Change

TswLoc EGU ri Displacement of LOC Fullword. ol ulwo
SDX EQU 32768 Download EXEC Tape Access

SDA EQU 16384 Dowsload Application Tape
$DT EQU $192 Download Testing Tape Access
CMDBFSZ EQU 64
ABUFSZ EQU 200
BBUFSZ EQU 126

Weclaim: mented to successively address each program instruc-
1. A numerical control system, the combination com- 20 tion stored in said read-onl-memory.

prising: 5. The numerical control system as recited in claim 4
a read/write memoryfor storing programs including in which said N/C processor performs functions in

an executive system program; response to the execution of microroutines stored in a
an N/C processor coupled to said read/write mem- second read-only memory and said means forinitiating

ory by a data bus and an address bus, said N/C 25 the transfer of the resident communications program is
processor being operable to write data into said a manually operable switch, which when operated,
read/write memory through said data bus; causes the N/C processor to execute a selected one of

a read-only memory coupled to said N/C processor said microroutines.
and storing a resident communications program; 6. The numerical control processoras recited in claim

means coupled to said N/C processorfor initiating 30 5 in which said N/C processor operates in response to
the transfer of said resident communications pro-_—said one selected microroutine to read program instruc-
gram from said read-only memory to said read/- tions addressed by said transfer counter out of said
write memory; read-only memory and write them into said read/write

means associated with said N/C processor whichis
responsive to said initiating means for sequentially
transferring each instruction in said resident com-
munications program to said read/write memory
and for causing said N/C processor to commence
executing said resident communication program;

33
memory.

7. A control system, the combination comprising:
a processor which is operable in response to program

instructions stored in an associated read/write
memory;

a host processor coupled to said processor by a data
link;host processor means coupled to said N/C processor; 40

storage means for storing executive system programs a storage device coupled to said host processor for
for numerical control systems, said storage storing a download library comprised of a plurality
being coupled to said host processor to download of executive system programs for said processor to
selected executive system programs to said N/C enable it to control the operation ofa machine tool;
processor; 45 means for generating a download command to said

wherein said N/C processor is operable in response host processor, which command includes a code
to said resident communications program to trans- that identifies one of said executive system pro-
mit to said host processor a request for a selected grams, said host processor being responsive to said
executive system program and to receive and store received download command to read the selected
in said read/write memory the downloaded in- 50 executive system program out of said storage de-
structions of said selected executive system pro- vice and download it to said processor read/write
gram. memory through said data link;

2. The numerical control system as recited in claim 1 second memory means coupled to said processor
in which a keyboard is coupled to said N/C processor read/write memory for storing a resident commu-
for enabling the manual selection of the executive sys- 55 nication program; and
tem program to be downloaded. means forming part of said processor for transferring

3. The numerical control system as recited in claim 1 said resident communications program from said
in which the host processor is located remotely from second memory means to said read/write memory
the N/C processor and the downloaded executive sys- and means for sequentially reading the instructions
tem program is coupled to the N/C processor through 60 of said resident communications program out of
a data link. said read/write memory and executing them;

4. The numerical control system as recited in claim 1 wherein said processor operates in response to the
in which said means for sequentially transferring the execution of said resident communications pro-
resident communications program to said read/write gram instructions to store instructions of said
memory includes a transfer counter which connects to 65 downloaded executive system program received
said read-only memory to address memory locations
therein and said transfer counter is repeatedly incre-

through said data link in its associated read/write
memory.

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 52

PMC Exhibit 2075
Apple v. PMC

IPR2016-00753
Page 53

4,138,718

data, and to coupled the download command to the host

61
8. The control system as recited-in claim 7 in which

said means for generating a download commandin-
cludes a keyboard coupled to said processor and said
processor is operable in response to instructions in said
resident communication program to input data from
said keyboard, to form a download commandusing said

25

35

45

35

65

processor through said data link.

62

9. The control system as recited in claim 7 in which
5 said second memory meansis an indestructible memory.*

PMC Exhibit 2075

Apple v. PMC
IPR2016-00753

Page 53

