
PMC Exhibit 2084
Apple v. PMC

IPR2016-00753
Page 1

IEEE Transactions on Nuclear Science, Vol. NS-34, No. 4, August 1987

A Multiple Node
Software Development Environment

Peter Heinicke, Tom Nicinski,
Penelope Constanta—Fanourakis, Donald Petravick,

Ruth Pordes, David Ritchie, Vicky White

Fermi National Accelerator Laboratory*
Computing Department / MSIZO

884

P. O. Box 500,

ABSTRACT

Experimenters on over 30 DECnet nodes at
Fermilab use software developed, distributed, and
maintained by the Data Acquisition Software Group. A
general methodology and set of tools have been
developed to distribute, use and manage the software on
different sites. The methodology and tools are of
interest to any group developing and using software on
multiple nodes.

Introduction

The Fermi National Accelerator Laboratory
(Fermilab) is a facility dedicated to basic research in the
field of high energy physics. Research takes the form of
"'experiments”, which are conducted by groups of
physicists. The experiments are highly computerized‘,
there are usually one or more minicomputers devoted to
the tasks of data acquisition and analysis of the
experimental data.

Most experiments have at least one VAX or
MicroVAX computer, one or more PDP—11 computers,
and possibly a few programmable microprocessors. Many
different experiments either actively take data or prepare
to do so simultaneously.

The Data Acquisition Software Group of the
Fermilab Computing Department provides software and
support for the experiments. Experimenters use the
provided software to perform online data acquisition
and analysis required for their experiment. In some
cases, the software is used in a turnkey manner; more
often, it is used as the basis for more elaborate and
experiment—specific software. In the latter case, the
experimenters obtain the basic package and then
customize it to their particular needs through their own
software development efforts.

Software is usually targetted for PDP-11 or
VAX computers. Other targets include microprocessors,
such as 68020’s, etc. Target computers are physically
located at approximately 30 different sites scattered
over the 6800 acres of Fermilab. The VAX’s and
MicroVAX"s at these sites are connected to one another

via DECnet. These VAX’s (or the Central Facility VAX
Cluster) are used by the experimenters for software
development in enhancing the supplied software as well
as for online data acquisition and analysis. Software is

Batavia, IL 605 10

transferred to these machines via DECnet from the Data

Acquisition Software Group"s Development VAX. It is
also transferred via magnetic media to the computers
not connected via DECnet; (PDP—11’s not connected
mainly due to memory limitations and microprocessors).

Additionally, the software sometimes needs to
be transferred to the collaborating universities and
research institutions which participate in Fermilab
experiments. The experimenter may then continue
software development or equipment testing activities
while physically located at the home institution.

With so many sites and so much software in
use at these sites, we quickly realized that some
systemization of the task of organizing, maintaining, and
distributing the software was mandatory. Keeping track
of the software at the various sites is a formidable and
necessary job. We must be able to offer assistance with
the current Version of the software at hand.

A requirement on the systemization was that
it must support having different versions of the same
software at different sites or even at the same site.

While it might be possible in principle to
arrange to have the same version of the software at all
sites, in practice this does not occur. An ongoing
experiment does not necessarily want to avail itself of
the latest enhanced version of a piece of software; bugs
or side effects may be introduced which might
complicate the primary task of monitoring the
experiment. Even when an experiment decides that the
new features outweigh any risks of complication. it is
extremely important that the experiment be able to
switch back to the previous version as quickly and
reliably as possible.

In what follows, we describe the organization
of our software into ”Products", how these Products
are created, maintained and versioned. and how this
Product organization is used in the distribution of
software to the target VAX computers. and from there
to other target computers when necessary.

What is a Product?

A ”Product” is an arbitrary group of logically
connected directories and files (stored on a VAX/VMS
system) and referred to by a Product name and
optionally by qualifying names, such as the Version
number, target operating system, or hardware interface.
The Product name is a printable ASCII string describing
the group in a mnemonic way. For each Product name,
there is a single development version of the product
and/or one or more distribution versions. It is not
necessary that a Product be developed by the
Computing Department to fit into this scheme.
However, the Product (the directories and files which

Operated by the Universities Research Association, Inc. under contract with the United States Department of Energy

PMC Exhibit 2084

Apple v. PMC
|PR2016-00753

Page 1

0018-9499/87/O800—O884$O1.00 © 1987 IEEE

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PMC Exhibit 2084
Apple v. PMC

IPR2016-00753
Page 2

comprise it) must be organized in a prescribed way. The
constraints are relatively minor because we wanted the
ability to include all kinds of software as products--not
just those developed at Fermilab.

An example of a non—Fermi Product is

KERMIT. a communications package. KERMIT__VMS is
the Product name for the VMS version of KERMIT.

When the source code contained in the
development version of a Product is updated, either for
maintenance or enhancement reasons, a new ”Version”
of the Product is generated. This may occur even if
the source code of the Product is unchanged. For
example, if a Product is rebuilt using new ”versions"
of code on which it depends (such as an object library),
but which is not a part of the Product itself, a new
version of the Product is still generated. A Product
version is used to inform the user, developer, and
Product maintainer of not only which level of source
code of the product it contains but also the entire state
of the Product, its dependencies on other software
Products, etc.

As a simple example of a Product with
different Product versions, consider the COURIER
product for VAXONLINE. Version V1.0 of the
COURIER Product refers to the first released version of
COURIER for VMS. It will normally have a product
directory by the name of COURIER_V1__0. Later
versions will have similar product directory names, e.g.
COURIER V1 2. If a UNIX version is developed, the
support grdup -would need to decide whether to keep
the old name. If they decide to, they can rename the
two products to be COURIER_VMS and
COURIER,___UNIX, or leave it as COURIER and
COURIER_UNIX.

Products can be divided into two levels of
complexity: ”simple” and ”compound.” A simple
Product consists of a collection of software which is
expected to be used, upgraded to a new version, and
distributed to target sites independent of the state of
other software Products. The decision to organize a
product as a "sirnple” one is basically that of the
developer; it is a statement that this Product is
somehow basic and not further made up of componentProducts.

This does not necessarily mean that the
Product was not dependent upon other software external
to the Product when it was ”built” (compiled, linked,
etc.). Nor does it necessarily mean that the Product
requires no other software Product in order to function.

For example, many of our Products are
written in FORTRAN. These are definitely dependent
upon the FORTRAN compiler and the FORTRAN Run
Time Library——both of which are external to the
product and which (in the case of the Run Time
Library, at least) are required in order for the Productto function.

A compound Product is a collection of different
"'component” Products (either simple or compound),
frequently used together. These Products do not
necessarily have to be dependent upon each other
although in many cases they are. They may be grouped
together only for ease of distribution of many small
Products which change infrequently. Alternatively. they
may be grouped together because of dependencies on
each other; hence, a change in a component Product
would indicate that a new version of one or more of the
other components is either necessary or desirable.

885

Goals

The distribution and installation of the

software is only a peripheral (but time consuming)
activity. To permit us to spend more time on software
development, we have devised a formal specification for
”Products” and specialized procedures. whose goals are:

Provide a Uniform Product Specification. The
product specificationis meant to provide system
management tools and the user with a uniform interface
to the software we are responsible for. The
specification includes: ‘

0 the directory tree structure of the files in a product

0 a list of required and optional files,

0 the naming conventions for these files and directories,

0 how logical names should be used.

Kee in Track of Product Versions on a
Svstern. Different sites use different versions of a product
creating a need to maintain a database of which
products and versions reside on a particular system. This
functionality is provided by a system management tool
we call SITE_PRODUCTS.

Simplification of Product Distribution. We need
to automate the distribution of versions of products to
remote sites (making use of DECnet) and the installation
of the products on the target site. Such automated
procedures are needed both for efficient use of our time
and to minimize the risk of errors or omissions.

Trans ortabilitv to External Sites. Although
restrictions are placed on a products structure and
interaction with users (how the product is distributed
and how the system manager treats it), it is still
necessary to permit the product to be easily installed
and used on systems which do not follow our
methodology.

Permit Switching Between Product Versions. In
order to maintain and improve existing products, and
have the new releases accepted by experimenters, there
is a need to allow the use of the latest version of a
product, but also to instantly and transparently
”switch” to using a previous version residing on thesame system.

The ability to switch between versions on the
same system is also important for product developers
and maintainers. A user may discover a bug at a
previous release of the product - and the product
maintainer is then able to check for the bug in that
release just by switching to it. This capability is
provided by PRODUCT SETUP and the database of
products and their ‘versions (maintained by
SITE__PRODUCTS).

Permit the Com osition of a Product to be
Known Precisely. We make extensive use of DEC? CMS
(Code Management System) and MMS (Module
Management System) to control the source code version
of a product. and to automate the construction of that
product from its sources and any other libraries etc. it
may be dependent on. (CMS and MMS are similar
to the SCCS and MAKE utilities on UNIX). ln
situations where a product may be dependent on
libraries in other products — the specific version of the

PMC Exhibit 2084

Apple v. PMC
|PR2016-00753

Page 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PMC Exhibit 2084
Apple v. PMC

IPR2016-00753
Page 3

886

library—related products used must be both controllable
and forever known. The time—stamps of the individual
files as used by MMS are not sufficient to control such
inter-dependencies.

The procedures, (which we call BUILD), permit
the dependencies of one product on another, either as a
part of a compound product, or just as a required but
separate piece of software, which rnust be present in
order to build the product, to be expressed in a formal
way. From this formal specification the order of
creation of the component parts can be determined and
the business of creating a very large software product
can be automated in a foolproof way.

The Resulting Tools

All the management tools we have developed
are written as DCL command procedures. Any language
could have been chosen, and the system could have been
implemented in a more operating system independent
way. DCL command procedures were chosen because of
speed of implementation, and because we underestimated
the full extent of the project we were undertaking.
Future implementations of this functionality will probably
use a different tool than DCL, since DCL is so slow,
and unmodular. We are considering reimplementing the
system in FORTRAN or an inexpensive 4GL.

The remainder of this paper will discuss the
concepts and management tools introduced above which
together allow us to achieve the goals outlined in the
previous section. These include: Specification of a
product, use of the BUILD procedures, the
SITE__PRODUCTS, DISTRIBUTE and
PRODUCT_SETUP procedures.

Specification of a Product

The product specification provides system
management tools and the user with a uniform
interface to the software. We have written a 50—page
specification of a product including the mandatory and
recommended requirements thereon. The product
specification addresses three areas:

0 Directory tree structure and the files in a product.

0 Logical names to be defined (associated with the
product).

0 Required and optional command procedures and how
they are used. (definition of parameters).

Directory Tree Structures

Products reside under rooted directories.

Actually, two rooted directories are associated with a
particular product. The ”'Version” Root is the rooted
directory for a particular version of a product. This is
the rooted directory that a user will see when using a
product. Version Rooted directories reside under an
”Umbrella" Rooted directory. The Umbrella Rooted
directory contains all the versions of a product.
However, more than one product and its versions can
reside under the same Umbrella Root. For example:

DUAo.i\'A_xoNL1,

l COURIER
= l

) COURIER_\’1_O i) COURlER_\’1_}l. I I l

coUR1i:R_v1_2

Courier Product Directory

The leaves are products, while [VAXONLCOURIER] is
the Umbrella Root. The Version Roots for the products
are [COURIER_V1__O), [COUR.IER__V1__1], and
[COURIER_V1__2]. A directory named [VERSION] is
necessary for the current implementation of the product
tools, and contains information about which product is
installed. Future implementations will probably centralize
this information with the rest of the database.

For each product version, there is a set of
required and optional directories:

lPré_V1_Ol
I

77*‘,._m._

_}System CMS COM 23

K .
—‘i l l i

Listings i
l i i

1 Library)) Source ‘ li l . 1
.___._ L__j ‘

i

I Tests
i

Sample Product Version Directory

The [PRD_Vl_0] directory is the Version’s Rooted
directory, while [COM] and [SYSTEM] are required
directories, and [MAINT] is an optional directory.
Beyond these directories, the developer can use any tree
structure (under the product‘s version rooted directory).

Logical Names

To keep products site-independent, logical
names are used to point to different files. All logical
names should be defined in terms of one logical name
which points to lower level in the directory tree:

’product’$ROOT
which is the rooted logical name pointing to the

PRODUCT's Version Root. By changing
’product’$ROOT’s definition (with PRODUCT_SETUP),
a user can easily ”switch” between different versions of

PMC Exhibit 2084

Apple v. PMC
|PR2016-00753

Page 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PMC Exhibit 2084
Apple v. PMC

IPR2016-00753
Page 4

a Product. In the example in the first figure, the
rooted logical name for COURIER is

3 SHOW LOGICAL COllRIER$ROOT
"‘ COURIER $1? 0 OT“ =

“ disk:l\'AXONL.COUR IERCOURIER _V1 _0.)"

Reguired Files

The product specification requires that each
product provide two command files, of defined logical
names, to be implicitly invoked at system bootstrap time
and when a user wants to use the product. All
products must provide these files in a particular
directory for the product version. The specification also
recommends a Help file to be provided with each
product; this is automatically included in the general
product Help library when the product is entered into
the SITE__PR ODUCTS database.

COM SETUBCOM is used to define logical
names and symbols on a per process basis. That is,
the user invokes SETUPCOM (normally at login time)
if there is a need to use the product.

SYSTEMlPRSTAIi'.TUP.COM is used during
system boot time (product startup) to define shareable
logical names in the logical name table generated for the
product, and to perform any other operations which
affect the product system wide (such as INSTALLing
files, loading device drivers, starting a queue, etc.) and
other privileged initialization functions.

the Products BUILDDevelo in

The BUILD procedure is used to construct a
product based upon its dependencies on other products.
BUILD takes into account that a product may:

0 Depend on other products.

0 Depend on specific versions of other products.

0 Incorporate other products totally within it.
The construction of a product consists of compiling and

linking the software comprising the product.

A product developer uses a product
Maintenance Language (PML) file to describe how a
product is dependent upon other products. Only the
immediate dependencies need to be described, since
BUILD recursively uses the dependent product’s PML
files to generate a final list (a product Maintenance
Output (PMO) file) which sequentially describes the
order in which products should be built (to satisfy all
dependencies)

For example. the product KERMIT VMS is
to be ”BUILT”: '-

0 KERMIT_\'MS is dependent. upon an another
product called GET_POR,T

o KER.MIT_I’DP is dependent upon KER.MIT__RT,
KEIi.MIT_R.SX. and KERMIT_RSTS. BUILD would
determine that the products would need to be built in
the following order:

887

err" PORT
KERMIT_\’MS
KERMIT RT

KERMIT:RSX
KERMIT__RSTS
KERMIT_~PDP

BUILD then will construct the products in the
appropriate order to generate the final product. To
save time, BUILD will not construct a product if the
required version already exists.

The actual details of construction of each of

the component pieces are left up to the component piece
of software. We normally use DEC’s CMS and MMS
wherever possible. This is especially useful in
conjunction with our methodology of one development
version of a product and multiple distribution versions.
By having a single CMS library in the development
version of each product and creating classes for each
source release level we avoid the need to keep the
sources with or for each version of the product. We
can always recreate any version at any time. This
saves disk space and also provides a centralized record
of who changed the software and when.

Build Temporary files

[
cMs LIBRARY l"'—“' PMm‘l5t°fdependent Files)

I \

PMO: Ordered list of existing
products to b built and usedSources an

Command
Files

Command files which actually fetch
the sources. compile and

Built Files
Temporary
Area /

Steps in ”Build”ing a product

Svstern Ivianagement of Products SITE PRODUCTS

SITE_PRODUCTS was developed to keep
track of which versions of which products reside on a
system. It not only maintains a database of products
and their versions, but it schedules the starting up of
products at system boot time (or any other time) and
the shutting down of products. SITI3_I’RODUCTS

PMC Exhibit 2084

Apple v. PMC
|PR2016-00753

Page 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PMC Exhibit 2084
Apple v. PMC

IPR2016-00753
Page 5

888

avoids the need for the system manager to change the
system specific startup command procedure
(SYSTARTUP) every time a product or a version of a
product is added, modified, or removed.

Products are made "known” to

SITE_PRODUCTS. The "Known Product List” file,
maintains this information.

For each known product, SITE PRODUCTS
maintains a ’’Product Version List” file_which resides
under the product Umbrella. directory. The product
developer is able to add, modify, and remove product
versions without requiring privileges (only access to the
particular product’s area is required).

The SITE_I’RODUCTS procedures point to
the Known Product List using a logical name. Users can
use SITE_PRODUCTS to maintain their own Known
Product List, and Product Version I_.sts. This can be
extended for use on a VAX Cluster system, where a
common Known Product List is used to startup
(shutdown) all Products common to all nodes in the
Cluster. Then, by redefining the logical name, a node-
specific. Known Produc‘ List can be used to manipulate
software products licensed (or useable) only for that
particular machine.

SITE_PRODUCTS allows the addition,
modification, and removal of products and Versions.
These operations only modify the Known Product List
and Product Version Lists, not the actual files of the
products. When a product version is declared to be the
default version on a system, its Help file is included in
a general product help library (if one exists) and a
Bulletin is posted on the system.

For each product, the Known Product List
maintains the ;roduct’s name, the specification of the
Umbrella Root, and other miscellaneous information.
Associated with each product version in the product
Version List is a directory path from the Umbrella Root
to the rooted directory for the product version.

VVhen a product is started up by
SITE_I’RODUCTS, a shareable (system wide) logical
name table is created to contain logical names defined
by the product. Then the product specific startup
:ommand procedure is invok «d. This procedure usually
defines logical names, device drivers, starts up queues,
installs privileged images, etc.

Usin the Products PRODUCT SETUP

The final stage of any product is its use.
PRODUCT__SETUP is used to “setup” a product for
use by a user. It also allows a user to choose which
version of a product to setup. Setting up a product
involves the definition of logical names and symbols
required for using the product.

A symbol by the name of SETUP is used on
all systems to invoke PRODUCT__SETUP. Users of a
software Product such as our example KER.MIT_VMS
simply type

SETUP KERMIT_VMS

to use the default version of the product and all its
component sub-Products.

The ability to switch transparently between
product versions is provided by the logical name tables
created for the product. V\’hen switching between product

versions, PRODUCT_SETUI‘ creates a new logical
name table (which overrides the old table) and defines
the logical names for that particular version. Therefore,
different product versions are not required to use the
same logical names.

Obtainin the Products DISTRIBUTE

DISTRIBUTE provides a system manager on a
remote machine the ability to copy products, from an
”Archivc machine”, and install them. Most of the time,

DISTRIBUTE is used over DECnet, but it also provides
a tape mode, which permits products to be distributed
and installed at external sites using magnetic tape as a
transfer medium.

DISTRIBUTE interactively queries the user for
the information it needs. The questions are self
explanatory, so that no documentation is normally
required in order to obtain a product. Besides the
product name and version, DISTRIBUTE asks where the
product should be placed (the disk and Umbrella Root),
and whether the product and its version should be
declared to SITE__PRODUCTS.

DLLnei‘x xecunlg wall

aesllnulion
Hat HIE:TargetN002.

Vnu . re here. Rrcnlue Node

Network
Object

lnierlnce .
DMSINSYRL
and SITE P

 //flVflAW/////////J04V/ //A7441/«M im/fl//////////4'///.

Product Regislr
inauirg tool

UMS
BIICKUP

FLHT
FILES1 1

(save(sets
Intermediate
NDOE

s\\\\\\\\\\\\\\\\~\\\\\\\\\\\\\\\\\.\wmxxmc\\\\\\~w\\m\\\wN\\m\\~e\m$\\\\\~&\\s\\\\w«\\V\w\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\~\\\\\
Distribute Processes

When a product is selected by the user,
DISTRIBUTE uses that products Product Maintenance
Output (PMO) file (generated during a BUILD) to
determine which component products need to be copied
over as part of the chosen product. This provides all
sites with a complete and consistent view of a product.
Products which are not constructed with BUILD and
therefore have no PMO file can also be distributed ~
all files in the directory tree stemming from the product.
version rooted directory will be taken to comprise the
product version.

PMC Exhibit 2084

Apple v. PMC
|PR2016-00753

Page 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

