
APPLE EX. 1025
Page 1

42

A mere six years of microprocessor evolution have yielded a
three-orders-of-magnitude performance improvement.

Intel Microprocessors -
8008to8086

Stephen P. Morse,* Bruce W. Rav~ncl,* Stanley Mazor, and W!lliam B. Pohlman
lntel Corporation

Intel introduced its first microprocessor in November
1971 with the advertisement, "Announcing a New Era in
Integrated Electronics." The fulfillment of this prophecy
has already occurred with the delivery of the 8008 in 1972,
the 8080 in 1974, the 8085 in 1976, and the 8086 in 1978.
During this time, throughput has improved one-hundred­
fold, the price of a CPU chip has declined from $300 to
$3, and microcomputers have revqlutionized design
concepts in countless applications. They are now entering
our homes and cars.

Each successive product implementation depended on
fabrication innovations, improved architecture, better
circuit design, and more sophisticated softwan:, and
throughout this development, upward compatibility not
envisioned by the first designers was maintained. Here,
we will try to provide an insight into the evolutionary
process that transformed the 8008 into the 8086 and give
descriptions of the various processors, emphasizing the
8086.

Historical setting. In the late 1960's it became clear that
the practical use of LSI circuits depended on defining
chips having ·

• a high gate-to-pin ratio,
• a regular cell structure, and
• a large standard part market.

In 1968, Intel Corporation was founded to exploit the
semiconductor memory market, which uniquely fulfilled
these criteria. Early semiconductor RAM&, ROMs, and
shift registers were welcomed wherever small memories
were needed, especially in calculators and CRT terminals.

*Curre:m1y wit~ Language Resources~ S'!nnyvale, California.

In 1969, Intel engineers began to study ways of integrating
and partitioning the control logic functions of these
systems into LSI chips.

At this time, other companies (notably Texas lnstn.l­
ments) were exploring ways to reduce the time needed to
develop custom integrated circuits. Computer-aided
<:lesign of custom ICs was a hot issue then. Custom ICs are
making a comeback today, this time, in the high-volume
applications that typify the low end of the microprocessor
market.

An alternate approach was to think of a customer's
application as a computer system requiring a control
program, 110 monitoring, and arithmetic routines,
rather than as a collection of special-purpose logic chips.
Drawing on its strength jn memory, Intel partitioned
systems into RAM, ROM, an<:! single controller chips,
i.e., CPUs.

Intel embarked on the design of two customer­
sponsored microprocessors-the 4004 for a calculator
and the 8008 for a CRT terminal. The 4004 replaced what
otherwise would have been six customized chips usable by
only one customer. Because the first microcomputer ap­
plications were known' and easy to understand, instruc­
tion sets and architectures were defined in a matter of
weeks. As programmable computers, their uses could be
extended indefinitely.

Both microprocessors were complete CPUs on a chip
and had similar characteristics. But because the 4004 was
designed for serial BCD arithmetic and the 8008 for 8-bit
character handling, their instruction sets differed.

The succeeding years saw the evolution that eventually
led to the 8086. Table 1 summarizes the progression of
features that took place during these years.

0018·9162/80/1000-0042$00.75 © i980 IEEE COMPUTER

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

APPLE EX. 1025
Page 2

The 8008

Late in 1969, Computer Terminal Corporation (today
called Datapoint) contracted Intel to do a pushdown
stack chip for a processor to be used in a CRT terminal.
Datapoint had intended to build a bit-serial processor in
TTL logic, using shift register memory. Intel counter­
proposed that the entire processor be implemented on one
chi),'. This processor was to become the 8008 and, along
with the 4004, was to be fabricated using PMOS, the then­
current memory fabrication technology; Due to the long
lead time required by lntel, Datapoint proceeded to
market the serial processor, and thus compatibility con­
straints were imposed on the 8008.

Most of the instruction set and register organization
were specified by Datapoint. Intel modified the instruc­
tion set so the processor would fit on one chip and added
instructions to make it more general-purpose. For
although Intel was developing the 8008 for a specific
customer, they wanted to have the option of selling it to
others. And since Intel was using only 16- and 18-pin
packages in those days, they chqse to use 18 pins for the
8008 rather tha.n design a new package for what was
believed to be a low-volume chip.

8008 instruction set processor. The 8008 processor ar­
chitecture is quite simple compared to that of today's
microprocessors. The data hanqling facilities provide for
byte data only. The memory space is limited to 16K bytes,
and the stack is on the chip a11d limited to a depth of eight.
The instruction set is small but symmetrical, with only a
few operand addressing modes available. An interrupt
mechanism is provided, but there is no way to disable in­
terrupts.

Memory and 1/0 structure. The 8008 addressable
memory space consists of 16K bytes. That seemed like a
lot back in 1970 when memories were expensive and LSI
deviCes were slow. It was inconceivable in those days that
anybody would want to put more than 16K of this pre­
cious resource on anything as slow as a microprocessor.

The memory size limitation was imposed by the lack of
available pins. Addresses are sent out in two consecutive
clock cycles over an · 8-bit address bus. Two control
signals, which would have been on dedicated pins if such
were available, are sent out with every address instead,
thereby limiting addresses to 14 bits. ·

The 8008 supports eight 8-bit input ports and 24 8-bit
output ports. Each port is directly addressable by the in-

Table 1.
Feature comparisol'!-lntel microprocessors, 1972-1978.

8008 8080 8085 8086

INTRODUCTION 1972 1974 1976 1978
DATE

NUMBER OF 66 111 113 133
INSTRUCTIONS

NUMBER OF 4 5 9
FLAGS

MAXIMUM 16K BYTES 64K BYTES 64K BYTES 1M BYTES
MEMORY SIZE

1/0 PORTS 8 INPUT 2561NPUT 256 INPUT 64KINPUT
24 OUTPUT 256 OUTPUT 256 OUTPUT 64K OUTPUT

NUMBER OF 16 40 40 40
PINS

ADDRESS BUS 8* 16 16 20*
WIDTH

DATA BUS 8* 8 8 16*
WIDTH

DATA TYPES 8-BIT UNSIGNED 8-BIT UNSIGN~D 8-BIT UNSIGNED 8-BIT UNSIGNED
16-BIT UNSIGNED 16-BIT UNSIGNED 8-BIT SIGNED

(LIMITED) (LIMITED) 16-BIT UNSIGNED
16'BIT SIGNED

PACKED BCD PACKED BCD PACKED BCD
{LIMITED) (LIMITED) UNPACKED BCD

ADDRESSING REGISTER MEMORY DIRECT MEMORY DIRECT MEMORY DIRECT
MODES IMMEDIATE** (LIMITED) (LIMITED) MEMORY INDIRECT

MEMORY INDIRECT MEMORY INDIRECT REGISTER
(LIMITED) (LIMITED) IMMEDIATE

REGISTER REGISTER INDEXING
IMMEDIATE** I M M EIJIATE* *

•ADDRESS AND DATA BUS MULTIPLEXED.
••MEMORY CAN BE ADDRESSED AS A SPECIAL CASE BY USING REGISTER M.

October 1980 43

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

APPLE EX. 1025
Page 3

struction set. The chip's designers felt that output ports
were more important than input ports because input ports
can always be multiplexed by external hardware under
control of additional output ports.

One of the interesting things about that era was that,
for the first time, users were given access to the memory
bus and could define their own memory structure; they
were not confined to what the vendors offered, as they
had been with minicomputers. The user had the option,
for example, of putting 1/0 ports inside the memory ad­
dress space instead of in a separate 1/0 space.

Saving and restoring flags in the 8008

Interrupt routines must leave all processor flags and registers
unaltered so as not to contaminate the processing that was inter·
rupted. This is most simply done by having the interrupt routine
save all flags and registers on entry and restore them prior to ex·
iting. The 8008, unlike its successors, has no instruction for directly
saving or restoring flags. Thus, 8008 interrupt routines that alter
flags (practically every routine does) must conditionally test each
flag to obtain its value and must then save that value. Since there
are no instructions for directly setting or clearing flags, the flag
values must be restored by executing code that will put the flags in
ttw saved state.

The 8008 flags can be restored very efficiently if they are saved in
a bytE! in memory in the following format:

765432 0

c s s ololzlziF>
most significant bit = bit 7 = original value of CARRY

bit 6 = original value of SIGN
bit 5 = original value of SIGN
bit4 = 0
bit 3 = 0
bit 2 = complement of original value of ZERO
bit 1 = complement of original value of ZERO
bii 0 = complement of original value of PARITY

With the formatted information saved in a byte called FLAGS, the
following two instructions will restore all the saved flag values:

LOA FLAGS
ADDA

; load saved flags into accumulator
; add the accumulator to itself

This instruction sequence loads the saved flags into the ac·
. cumulator and then doubles the value, thereby moving each bit one
position to the left. This causes each flag to be set to its original
value for the following reasons:

44

• The original value of the CARRY flag, in the leftmost bit, will be
moved out of the accumulator and wind up in the CARRY flag.

• The original value of the SIGN flag, in bit 6, will wind up in bit 7
and will become the sign of the result. The new value of the
SIGN flag will reflect this sign.

• The complement of the original value of the PARITY flag will
wind up in bit 1, and it alone will determine the parity of the
result (all other bits in the result are paired up and have no

Register structure. The 8008 processor contains two
register files and four 1-bit flags. The register files are the
scratchpad and the address stack.

Scratchpad. The scratchpad file contains an 8-bit ac­
cumulator called A and six additional8-bit registers called
B,C,D,E,H, and L. All arithmetic operations use the ac­
cumulator as one of the operands and store the result back
in the accumulator. All seven registers can be used inter­
changeably for on-chip temporary storage.

There is one pseudoregister, M, which can be used in­
terchangeably with the scratchpad registers. M is, in ef-

net effect on parity). The new setting of the PARI­
TY flag will be the complement of this bit (flag
denotes even parity) and therefore will take on the
original value of the PARITY flag.

• Whenever the ZERO flag is 1, the SIGN flag must
be 0 (zero is a positive 2's-complement number)
and the PARITY flag must be 1 (zero has even
parity). Thus, an original ZERO flag value of 1 will
C().use all bits of FLAGS, with the possible excep­
flon of bit 7, to be 0. After the execution of the
ADD instruction, all bits of the result will be 0 and
the new value of the ZERO flag will therefore be 1.

• An original ZERO flag value of 0 will cause two
bits in FLAGS to be 1 and will wind up in the result
as well. The new value of the ZERO flag will
therefore be 0.

The above algorithm relies on consistent flag
values; i.e., the SIGN flag cannot be a 1 when the ZERO ·
flag is a 1. This is always true in the 8008, since the
flags come up in a consistent state whenever the pro­
cessor is reset and since flags can be modified only by
instructions which always leave the flags in a consis­
tent state. The 8080 and its derivatives allow the pro­
grammer to arbitrarily modify the flags by popping a
value of his choice off the stack and into the flags.
Thus, the above algorithm will not work on those pro­
cessors.

A code sequence for saving the flags in the required
format is as .follows:

MVI A,O
JNC L1
ORA SOH

L 1: JZ L3

ORA 06H

JM L2
ORA 60H

L2: JPE L3
ORA 01H

L3: STA FLAGS

; move zero in accumulator
; jump if CARRY not set
; OR accumulator with SOH hex

(set bit?)
; jump if ZERO set (and SIGN

not set and PARITY set)
; OR accumulator with 03 hex

(set bits 1 and 2)
; jump if negative (SIGN set)

OR accumulator with 60 hex
(set bits 5 and 6)
jump if parity even (PARITY set)
OR accumulator with 01 hex
(set bit 0)
store accumulator in FLAGS

COMPUTER

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

APPLE EX. 1025
Page 4

feet, that particular byte in memory whose address is cur­
rently contained in H and L (L contains the eight low­
order bits of the address and H contains the six high-order
bits). Thus, M is a byte in memory and not a register;
although instructions address Mas if it were a register, ac­
cesses to M actually involve memory references. The M
register is the only mechanism by which data in memory
can be accessed.

Address stack. The address stack contains a 3-bit stack
pointer and eight 14-bit address registers providing
storage for eight addresses. The programmer cannot
directly access these registers; instead, he manipulates
them with control-transfer instructions.

Any one of the eight address registers in the address
stack can serve as the program counter; the current pro­
gram counter is specified by the stack pointer. The other
seven address registers permit storage for nesting of
subroutines up to seven levels deep. The execution of a
call instruction causes the next address register to become
the current program counter, and the return instruction
causes the address register that last served as the program
counter to again become the program counter. The stack
will wrap around if subroutines are nested more than
seven levels deep.

Flags. The four flags in the 8008 are CARRY, ZERO,
SIGN, and PARITY. They reflect the status of the latest
arithmetic or logical operation. Any flag can be used to
alter program flow through the use of the conditional
jump, call, or return instructions. There is no direct
mechanism for saving or restoring flags, which places a
severe burden on interrupt processing (see box at left for
details).

The CARRY flag indicates if a carry-out or borrow-in
was generated, thereby providing a multiple-precision
binary arithmetic capability.

The ZERO flag indicates whether or not the result is
zero. This provides the ability to compare two values for
equality.

The SIGN flag reflects the setting of the leftmost bit of
the result. The presence of this flag creates the illusion
that the 8008 is able to handle signed numbers. However,
there is no facility for detecting signed overflow on addi­
tions and subtractions. Furthermore, comparing signed
numbers by subtracting them and then testing the SIGN
flag will not give the correct result if the subtraction
resulted iil signed overflow. This oversight was not cor­
rected until the 8086.

The PARITY flag indicates whether the result is of even
or odd parity. This permits testing for transmission er­
rors, an obviously useful function for a CRT terminal.

Instruction set. The 8008 instructions are designed for
moving or modifying 8-bit operands. Operands are con­
tained in the instruction itself (immediate operand), in a
scratchpad register (register operand), or in theM register
(memory operand). Since theM registers can be used in­
terchangeably with the scratchpad registers, there are on­
ly two distinct operand addressing modes-immediate
and register. Typical instruction formats for these modes
are shown in Figure 1.

The instruction set consists of scratchpad-register in-

of-control instructions, input/output instructions, and
processor-control instructions.

The scratchpad-register instructions modify the con­
tents of theM register or any scratch pad register. This can

NO OPERANDS

OPCODE

ONE OPERAND

OPCODE I REG I OPERAND IN REGISTER

I OPC I REG I OPCOO I OPERAND IN REGISTER

I OPC I RP I OPCODE I OPERAND IN REGISTER PAIR (80800NLY)

I OPC I RP I OPCODE 'INDIRECT ADDRESSING(80800NLY)

OPCODE II DATA I IMMEDIATE OPERAND

DIRECT

OPCODE II ADDR·LO II ADDR·HI
I ADDRESSING

(8080
ONLY)

TWO OPERANDS

I oPel REG I REG I BOTH OPERANDS IN REGISTER

I I I I I I ONE OPERAND IN REGISTER.
OPC REG OPG L __ D_A_TA __ ..J OTHER IS IMMEDIATE OPERAND

ONE OPERAND
,---------, IN REGISTER

IOPC I RP I ~PCODE I I DATA·LO I I DATA-HI I PAIR, OTHER
. . . . '-· ------' IS IMMEDIATE

OPERAND
(8080 ONLY)

INPUT /OUTPUT

loPe I PORT I D I (80080NLY)

OPCODE II PORT I (80800NLY)

JUMPS AND CALLS

OPCODE II ADDR·LO Ill ADDR·HI I (80080NLY!

OPCODE I I ADDR·LO I I AODR·HI I (80800NLY)

8008 8080

OOO:A 000:8 8080
001 B 001:C
010 G 010:D OO:BC

REG 011 :D REG 011 :E RP 01 :DE
100:E 100:H 10:HL
101 :H 101 :L 11 :SP
110:L 110:M
111:M 111:A

structions, accumulator-specific instructions, transfer- Figure 1. Typical8008 and 8080 instruction formats.

October 1980 45

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

APPLE EX. 1025
Page 5

involve moving data between any two registers, moving
immediate data into a register, or incrementing or
decrementing the contents of a register. The incrementing
and decrementing instructions were not in Datapoint's
specified instruction set; they were added by Intel to pro­
vide for loop control, thereby making the processor more
general-purpose.

Most of the accumulator-specific instructions perform
operations involving the accumulator and a specified
operand. The operand can be any one of the scratch pad
registers, including M, or it can be immediate data. The
operations are add, add-with-carry, subtract, subtract­
with-borrow, logical ANI:), logical OR, logical exclusive­
OR, and compare. Furthermore, there are four unit­
rotate instructions that operate on the accumulator.
These instructions perform either ah 8- or 9-bit rotate (the
CARRY flag acts as a ninth bit) in either the left or right
direction.

Transfer-of-control instructions consist of jumps,
calls, and returns. Any transfer can be unconditional, or
conditional based on the setting of any one of the four
flags. Making calls and returns conditional was done only
to preserve the symmetrY with jumps. A short one-byte

Jl.n m:be)Seginning . ..

Jln the beginning Intel created the 4004 and ttie 8008. Arid these
processors were without enough memory and throughput. And In·
tel said, "Let there be an 8080," and there was an 8080 and Intel saw
that it was good. And Intel separated the 8008 market from the 8080
market.
~nd Intel said, "Let there be an 8085 with an oscillator on the

sa:me chip as the proce:;;sor, and let an on,chip system controller
separate. the data from the control. lines. And Intel made a firma·
ment ahd divided the added instructions which were under the fir·
rhament from the added instructions which were·above the firma·
ment. And Intel called the first set of instructions RIM and SIM.
And the other instructions Intel never announced.

~ntl Intel said, "Let the market below the 8085 market be served
with a processor and let on-chip ROM appear." And Intel called the
new processor the 8048. And the market it served Intel called the
low end. And Intel saw that it was good.

~nd Intel said, "Let a hew-generation processor serve the mid·
range market. .Arid let there be true 16·bit facilities in the mid-range.
Alld let there be one megabyte of memory and efficient interrupt·
ible byte-string instructions and full decimal arithmetic." And in tel
saw the collection of all these things, that it was good, and Intel
called it the 8086.
~nd Intel said, "Now let.u:;; make a processor in our image, after

our likeness, and let it have dominion over the high-end market."
So Intel created the APX 432 in his own image, in the image of Intel
created he it, data processor and 1/0 processor created he them.
And Intel blessed them and said uhto them. be fruitfui and
multiprocess and revolutionize the microprocessor market and
have dominion over the Z8000 and the M68000 and over every com·
petitor that enters the market.
~nd Intel saw everything that he had made and, behold, it was

good.

-S.P. Morse

46

form of call-which will be discussed with interrupts-is
also provided. .

Each jump and call instruction (with the exception of
the one-byte call) specifies an absolute code address in the
second and third byte of the instruction. The. second byte
contains the six high•order bits of the address and the
third byte the eight low-order bits. This inverted storage,
which was to haunt all processors evolved from the 8008,
was a result of a need for compatibility with the Datapoint
bit-serial processor, which processes addresses from low
bit to high biL This inverted storage did have a virtue in
those early days when 256 x 8 memory chips were popular:
It allowed all memory chips to select a byte and latch it for
output while waiting for the six high-order bits which
selected the chip. This speeded up memory access.

There are eight input and 24 output instructions using
up 32 opcodes. Each 1/0 instruction transfers a byte of
data between the accumulator and a designated 110 port.

The processor-control instructions are halt and no-op.
Halt puts the processor into a waiting state. The processor
remains in that state until an interrupt occurs. No-op is
actually one of the move instructions; specifically, it
moves the contents of the accumulator into the ac­
cumulator, thereby having no net effect (move instruc­
tions do not alter flag settings).

Interrupts. Interrupt processing was not a requirement
for the 8008. Hence, only the most primitive mechanism
conceivable-not incrementing the program counter­
was provided. Such a mechanism permits an interrupting
device to jam an instruction into the processor's instruc­
tion stream. This is accomplished by having the interrupt­
ing device, instead of memory, respond to the instruction
fetch; since the program counter isn't incremented, the
instruction in memory that didn't get fetched won't be
skipped. The instruction typically supplied by the inter­
rupting device is a call, so that an interrupt service routine
can be entered and then the main program can be resumed
after interrupt processing is complete (a jump instruction
would result in the loss of the main program return ad­
dress). To simplify the interrupting device's task of
generating an instruction, the 8008 instruction set pro­
vides eight one-byte subroutine calls, each to a fixed loca­
tion in memory.

There are no instructions for disabling the interrupt
mechanism; thus, this function must be realized whh ex­
ternal hardware. More important, there are no instruc­
tions for conveniently saving the registers and flags when
an interrupt occurs.

The soso

By 1973, memory fabrication technology had ad­
vanced from PMOS to NMOS. As an engineering exer­
cise, Intel decided to use the 8008 layout masks with the
NMOS process to obtain a faster 8008. After a short
study, the company determined that a new layout was re­
quired. It therefore decided to enhance the processor at
the same time aild to utilize the new 40-pin package made
practical by high-volume calculator chips. The resuit was
the 8080 processor.

COMPUTER

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

