
APPLE EX. 1023
Page 1

10

The Z8000 family is a new set of microprocessor
components (CPU, CPU support chips, peripherals,
and memories) which supports the Z8000 architec­
ture. The account of how architectural goals were
selected and achieved for two key members of this
family-=-the Z8000 CPU and the memory manage­
ment unit-illustrates how much of a challenge
microprocessor architecture represents to the semi­
conductor industry. MOS technology shows enor­
mous potential, but it is still difficult to use because
of limitations on pin count, power dissipation, speed,
and complexity.1

Since this discussion is restricted to technical
issges, we will not allude to the many additional fac­
tors (marketing considerations, human considera­
tions, self-imposed restrictions, etc.) which make ar­
chitecture such a fascinating and difficult discipline.
Furthermore, no attempt has been made to ex­
haustively describe the Z8000 architecture and com­
ponents. Interested readers should consult the
specific manuals for a more complete description. 2•3

The goals of the Z8000 architecture:
increased capabilities, architectural
compatibility, increased clarity

The primary reason for introducing a new system
~chitecture is to signifi~ntly improve the control
and processing capabilities of microprocessors while
maintaining their price/performance advantages.
Technical advances have permitted the implementa­
tion of substantially increased processor power, but
the most significant motivation for a new component
family is generality. Only through such a family
could we provide for architecturally compatibie
growth over a wide range of processing power re­
quirements.

Increased capabilities,
architectural compatibility, and
clearly defined interfaces were
the chief architectural goals of
Zilog's new ZBOOO microprocessor
family. Here is an account
of how those goals were met
for two members of that family­
the ZBOOO CPU and the MMU.

Our approach was a staged system architecture
which attempts to provide new components, enhanc­
ed features, and new functions, while protecting the
user 's investment in hardware and software. The
Z8000 family supports a single unified architecture
for all small, medium, and high-end user applications
which are implemented using a mix of components
within the same family.

The goals of the Z8000 architecture can be grouped
into three categories: increased capabilities, architec­
tural compatibility over a wide range of processing
powers, and increased clarity. In all these cases the
resulting architectural features apply either to the
basic architecture (that seen by an applications pro­
grammer) or to system architecture (that seen by a
system designer or an operating system program-
mer). '

Increased capabilities. All existing 8-bit micro­
processors and many 16-bit minicomputers suffer
from having a small address space. So, one of our
goals was to provide access to a large address space
(8M bytes). A second goal was to provide more re­
sources in terms of registers (16 general-purpose
16-bit registers), in terms of data types (from bits to
32 bits), and in terms of additional instructions com­
pared to existing micropr~essors (multiply and
divide, multiple register saving instructions,
specialized instructions for compiler support etc.).

To facilitate complex applications it was important
to support multiprogramming with good hardware
support of task switching, interrupts, traps, and two
execution modes. Operating systems also required a
good hardware protection system.

Finally, we wanted to increase overall system per­
formance. This resulted in the choice of an implemen­
tation using a 16-bit-wide data path to memory.

0018-9162/79/0Q20-00!0$00.75 © 1979 IEEE COMPUTER

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

APPLE EX. 1023
Page 2

Architectural compatibility. One of the important
lessons learned from previous computer system
designs is that the design of a new family architecture
is a rare occurrence. One way to apply this lesson is to
design a unified architecture compatible over a wide
range of processing powers. If we anticipate user
growth from small to large systems within a family
architecture, then such an approach can significantly
increase its life.

The two versions of the Z8000 (a 40·pin
unsegmented and a 48·pin segmented versionl are
designed to achieve this goal, but many other
features contribute indirectly to the family com­
patibility. For small aplications an unsegmented
Z8000 with one or more 64K ·byte address spaces can
be used. For medium applications, a segmented
Z8000 and one memory management unit allows
direct access to 4M bytes of address space. For large
applications a segmented Z8000 and multiple pairs of
MMUs allow the use of several 8M·byte address
spaces.

Since the segmented Z8000 can run in an unseg­
mented mode, both systems are compatible. Finally,
to achieve even larger processing power through
hardware replication, the architecture provides basic
mechanisms for both multiprocessing and dis·
tributed processing.

Clarity. Clarity in an architecture is a measure of
how well key interfaces are defined and specified.
This is an elusive but important goal in a family
where new and unforeseen components will be added
during the life of its architecture.

We felt bus protocols were so important
that we developed an independent

specification for the Z-bus along with the
individual device manuals.

Clarity in terms of the basic architecture means
regularity and extendability of the instruction set, as
well as the general and simple handling of the
operating system interfaces. Clarity in terms of the
system architecture means a well-defined method of
communication between the various components.
The key link between these components is the Z-bus,
which is a shared system bus. In the section on com­
munication with other devices, we describe some of
the various types of bus protocols. At· Zilog we felt
this was so important that we developed an indepen­
dent specification for the Z-bus along with the in·
dividual device manuals. 4 ·

Comparison with other system architectures

We are convinced that the differences between
microprocessor system architecture and large com­
puter system architecture are not sufficient to re-

February 1979

quire a different design approach, although they cer­
tainly influence the details of design compromises.
The last section of this paper deals with implementa­
tion tradeoffs and illustrates some particular com•
promises. (In a few places we mix implementation
considerations with descriptions of architectural
tradeoffs. Despite the importance of separating an ar­
chitecture from its implementation, we found that
this separation is often absent during the actual crea­
tion of a new architecture.l .

Two differences between conventional computer
systems and microprocessor systems have the
greatest impact: price structure and component
boundary differences. For high-end LSI systems, it
makes sense to have one unified architecture, but
unlike their computer family counterparts (IBM
360/370, PDP-11l different implementations cannot
be justified on a price/performance basis. Speed and
performance are mainly dependent on the state of
technology, and therefore, for a given application, a
user will waste the speed willingly since another
slower implementation would cost the same. This
does not exclude different versions of one implemen­
tation, which reflect only different test and produc­
tion criteria such as package type, functional tem­
perature range, and even speed range.

Most computer systems have both external and in­
ternal interfaces. External interfaces which define
system boundaries are often standardized (e.g., the
IBM channel interface or the DEC unibusl. The inter­
nal interfaces of most mini or large computer systems
are essentially hidden. In contrast, the component
boundaries of a microprocessor-based system repre­
sent actual interfaces, and most users must be famil­
iar with them as well as with external interfaces.
Because the component interfaces are more visible
and often must be more general, the microprocessor­
oriented system bus emerges as a key standardiza­
tion link to allow a wider mix of components and
designs.

The basic architecture

Address space considerations. It is advantageous
to have more than one address space, with each ad­
dress space as large as possible. In the Z8000,
memory references and I/0 references are viewed as
references to different address spaces. The 1/0 space
is discussed in the section below on communication
with other devices. Memory references may be in­
structions or data and stack accesses, with each type
of access possible in either system or normal modes.
The Z8000 distinguishes between each of these
reference possibilities by using different combina­
tions of its status lines. Separating the various ad­
dress spaces can be used to increase the total number
of addressable bytes and to achieve protection. The
size of each address space depends on the versions of
the Z8000 used. The 40-pin package version allows
each address space to be at most 64K bytes, the
48-pin package version allows each address apace to
be at most 8000K bytes.

11

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

APPLE EX. 1023
Page 3

12

The 40-pin version is intended for systems, often
used as dedicated systems, where the program and
data spaces are small. In this case, relocation is not
usually important. Using the different address
spaces, one has a simple way to address in practice up
to 4 x 64K bytes (with a maximum of 6 x 64K bytes).
Some simple protection is achieved by separating
these spaces in hardware.

The 48-pin version with one or more MMUs is in­
tended for the medium to large applications where
relocation and better memory protection are impor­
tant. 3 In these cases, status information can also be
used to separate between address spaces by using
multiple MMU s. But it is also essential to achieve the
detailed memory protection required. (It is possible
to use the 48-pin version without an MMU.) For these
high-end applications, the address spaces are so large
that one is unlikely to exhaust them. Experience with
large computers shows that 8M bytes is probably
adequate. The current implementation of the Z8000
uses 8M-byte address spaces, but the architecture
provides for 31-bit address (214 7M bytes).

In both versions, the Z8000 allows direct acce!!s
to each address space. Direct access means that the
addresses used in instructions or registers have as
many bits as the address space size requires. In other
schemes the effective address is a combination of a
shorter field in the instruction and other extension
bits often found in an implied register. Despite the
shorter address fields, we believe this "indirect ac­
cess" does not save bytes, because extra instructions
must be used to load and save the implied registers,
which are typically in short supply.

Registers. The Z8000 is primarily a memory-to­
register architecture. This characteristic does not en­
tirely exclude other organizations, and mechanisms
exist in the Z8000 to support them. For example,
memory-to-memory operations are supported for
strings, whereas stack operations are supported for
procedure and process changes. This choice provides
upward compatibility with the Z80. A register ar­
chitecture also results in good performance, since
register accesses are made at a greater speed than
memory accesses in the current implementation.

Experience with register-oriented machines seems
to confirm that four general-purpose registers are not
enough and that a "proper" number is between eight
and 32.5 The Z8000 supports bytes, words (16-bit),
and long words (32-bit), and a few instructions even
use quadruple-word (64-bit) data elements. If we
choose 16, 16-bit registers allow eight 32-bit registers
as well as four 64-bit registers (Figure 1). Since ad­
dresses are 32 bits, the necessity of at least eight
32-bit registers was obvious. The impact of the 4-bit
register field on the instruction format depends also
on the number of address modes and operands. Six­
teen registers allowed a reasonable tradeoff, whereas
32 registers would have resulted in too few one-word
instructions.

With one minor restriction any register can be used
by any instruction as an accumulator, source

, operand, index, or memory pointer. This regularity of

the structure is so important that it is worthwhile to
sacrifice any possible encoding improvements in in­
struction formats which could result from dedicating
registers to special functions. Encoding improve­
ments based on instruction frequency, so that fre­
quent instructions use one word, are more effective in
saving space without having a negative effect on the
architecture.

Why not have specialized registers? The
difficulty lies in the fact that the

restrictions caused by dedication are
inconsistent with one another.

Most applications dedicate the available registers
to specific functions. For example, most high-level
languages require a stack pointer and a stack frame
pointer. Then why not, one might argue, have
specialized registers? The difficulty lies in the fact
that the restrictions caused by dedication are incon­
sistent with one another. If the architecture supplies
only general-purpose registers, the user is free to
dedicate them to specific usages for his application
without restrictions. This is important in the context
of microprocessors where user applications are not
well known and where high-level languages are still
used infrequently.

For example, the Z8000 allows software stacks to
be implemented with any register. There are also two
hardware supported stacks, but the registers used
are. still general-purpose and can participate in any
operation. There is no allocated stack frame pointer,
since any register can be used by means of the proper ·
combination of addressing modes. The savings realiz­
ed by register specialization are unattractive when
the given function can still be performed simply. The
loss that would result from restricting the applica­
tions would be too great. In contrast, significant sav­
ings result from excluding RO from use as an index or
memory pointer. This exclusion allows one to distin­
guish between the indexed and direct addressing
modes which use the same combination of the in­
struction address mode field. The price is small, since
RO still can be an acumulator or source register and
15 others accumulator, index, and/or memory
pointers are available. In this case the restriction
madesense. ·

Another decision to be made about registers is their
size. Since the architecture handles multiple data
types we must have multiple data register sizes,
which can hold each data type. The solution of the
problem is implemented in the architecture by pair­
ing registers, two 1-byte registers make a word
register, two word registers make a long word
register, etc.

Data types. Users would like to have as many
directly implemented data types as possible. A data
type is supported when it has a hardware representa-

COMPUTER

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

APPLE EX. 1023
Page 4

RRO {
RO 17
R1 15

RR2 {
R2

R3

RR4 {
R4

R5

RR6 {
R6

R7

RRB {
R8!15

R9

RR10 { R10
R11

{ R12
RR12

R13

RHO ni.7 RLO

RH1 ! RL1

RH2 'RL2

RH3 RL3

RH4 RL4

RH5 RL5

RH6 RL6

RH7 RL7

SYSTEM STACK POINTER

NORMAL STACK POINTER

ol
0

ROO

R04

GENERAL
PURPOSE
REGISTERS

I.::·· RR14 R15 ,
SYSTEM STACK POINTER

R15 f'JORMAL STACK POINTER :,
I FLAG CONTROL WORD I

PCSEGMENTNO. · ~
PROGRAM
STATUS

PC OFFSET I

SEGMENT NUMBER -~A\'illll }
PROGRAM
STATUS AREA
POINTER UPPER OFFSET

1514 98 0
It RATE I COUNTER }REFRESH

Figure 1. CPU registers (segmented version).

tion and instructions which directly apply to it. New
data types can always be simulated in terms of basic
data types, but hardware support provides faster and
more convenient operations. At the same time, a pro­
liferation of fully supported data types complicates
the.architecture and the implementations.

The Z8000 supports several primitive types in the
architecture and provides expansion mechanisms.
The basic data types are obviously the ones expected
to be used most frequently. The extended data types
are built using existing data types and manipulated
using existing instructions.

The basic data type is the byte, which is also the
basic addressable element. All other data types are
referenced using their first byte address and their
length in bytes. The architecture also supports the
following data types: bytes (8 bits), words (16 bits),
long words (32 bits), bytes, ,and word strings. In addi­
tion, bits are fully supported and addressed by
number within a byte or word. BCD digits are sup­
ported an!l represented. as two 4-bit digits in 1 byte.
One consequence of this data type organization is
that byte, word, and long-word registers are needed

February 1979

to support them. The Z8000 even provides quadruple
register-another extension-used in long-word
manipulation. ,

Other data types are supported by using one of the
preceding data types; for example, addresses are
manipulated as long words, and each element (seg­
ment number or offset) can be manipulated as a byte
or a word. Instructions are one to five-word strings,
the program status is four words, etc.

As the family grows, support for new data types
will be added. The architecture will need to support
them in its registers or in memory if they do not fit in
registers (as strings are implemented today). But
most important, the architecture will have to support
the addition of new instructions to its repertoire.

Instructions. In designing an instruction format
the architect must decide how to allocate a limited
number of bits to the opcode field, address mode field,
and other operand subfields. Instruction usage
statistics are the best source of data to influence deci­
sions about instruction set format.1• 6• 7 Behind their
usage lies a strong technical position: we do not

13

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

APPLE EX. 1023
Page 5

LD
LOB

ADD
ADDB

MODE . OPCODE
REG

I

MODE OPCODE

~:g~ I 0 I 1 I 0 I 0 I 0 I 0 I 0 ~BI 0 I 0 I 0 I 0 I
I DA

I

OPCODE

REG I ONE
I WORD

REG I TWO I

I WORDS

I ONE
WORD JR CCIRA j1 I 1 11 I 0 I cc

I
RA

I

Figure 2. Examples of instruction formats (nonsegmented version).

14

believe that any one of the various instruction set
structures-register oriented, memory oriented,
stack oriented, symmetrical, or asymmetrical,
etc.-are always better when used exclusively. Thus
the task of the architect is to decide what his most im­
portant goiils are, and for each of them adapt the best
features of the various structures so that on the
average, and for his set of goals, an optimum solution
can be found. We do not believe that the optimum will
be very sharp; it will be more like a range of applica­
tions for which the resulting composite structure
works well. We decided to use a register structure for
compatibility, multiple word instructions for speed,
memory-to-memory instructions for strings, stack
structure for process control and procedure support,
"short" instruction for byte density improvement,
etc.

Instruction fonnat consideration. The Z8000 has
over 110 distinct instruction types; several instruc­
tion formats are illustrated in Figure 2. The opcode
field specifies the type of instruction (for example,
ADD and LD). The mode field indicates the address­
ing modes (for example, Register (R), Direct Address
(DA). The data element type (W/B) and register
designator fields complete the basic instruction
fields. Long word instructions use a different opcode
value from their byte or word counterpart. Frequent
instructions are encoded in a single word, and less fre­
quent instructions which use more than two
operands use two words. There are often additional
fields for 'special elements such as immediate values
or condition code descriptors (CC). Instructions can
designate one, two, or three operands explicitly. The
instruction TRANSLATE AND TEST is the only one with
four operands and is also the only one with an implied
register operand.

Several restraints can guide the proper choice of an
instruction format. A large number of opcodes (used
or reserved) is very important: having a given in­
struction implemented in hardware saves bytes and
improves speed. But one usually needs to concen­
trate more on the completeness of the operations
available on a particular data type rather than on ad­
ding more and more esoteric instructions which, if us­
ed frequently, will not significantly affect perfor­
mance. Great care must be given to the problem of ex­
panding the instruction set so, for example, new data
types can be added.

Addressing modes. The Z8000 has eight address­
ing modes: register (R), indirect register (IR), direct
address (DA), indexed (X), immediate (IM), base ad­
dress (BA), base indexed (BX), and relative address
(RA). Several other addressing modes are implied by
specific instructions such as autoincrement or auto­
decrement.

Although a very large number of addressing modes
is beneficial, usage statistics demonstrate that not all
combinations of operands, address modes, and
operators are meaningful. 6 The five basic addressing
modes of R, IR, DA, X, and IM are the most frequent­
ly used and apply to most instructions with more
than one address mode. For two-operand instruc­
tions, statistics show that most of the time the
destination is a register. Other cases of addressing
mode combinations and less basic addressing modes
are associated -with special instructions. Thus, the
frequent combination of autodecrement for the
destination operand with the five basic address
modes for the source operand is provided by the PUSH
instruction. The combination of autoincrement ad­
dressing modes for both source and destination
operands is one of the block move instructions. In
essence, the address mode field space has been traded
for opcode field space. This allows more instructions
and combinations while staying within a one-word
format. ·

The price for this tradeoff is the infrequent occur­
rence of pairs or triples of instructions simulating a
missing addressing mode. This situation occurs in
most instruction sets in any case.

Code density. Because current microprocessors are
restricted to primitive pipeline structures, their
speed is largely dependent on the number of executed
i11-struction words. Therefore, code density is not only
important because of program size reduction but also
because of speed improvement. One would like to en­
code in the smallest number of bits the most frequent
instructions. The basic instruction size increment
was chosen to be a word for reasons dealing with
alignment, speed penalties, and hardware complexi­
ty. Thus the most frequent one and two-operand in­
structions take one word in their register or register­
to-register forms. Less frequent instructions or in­
structions which use more than two operands use at
least two words.

The Z8000 goes even further by selecting several
special instructions as "short" instructions which
take only one word, when normally they would take
two words. These instructions, such as LOAD BYTE
REGISTER IMMEDIATE and WAD WORD REGISTER IM·
MEDIATE (for small immediate values), CALL RELA·
TIVE, and JUMP RELATIVE, are SO frequent statistical­
ly that they deserve such special treatment.

A one-word JUMP RELATIVE and DECREMENT AND
JUMP ON NON-ZERO also have a very significant impact
on speed. The short offset mechanism used by ad­
dresses (and described below) is also designed to
allow one-word addresses. Compared to previous
microprocessors, the largest reduction in size and in­
crease in speed results from the Z8000's consistent

COMPUTER

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

