
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 637 of 1442

 —
condition_double_check_stmt Indicates that the neighbors with empty ports have the

_ same set ofneighbors

Indicates that the broadcast channel is being shutdown

Flow Diagrams

Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the

5 connect routine in one embodiment. This routine is passed a channel type (e.g., application

name) and channel instance (e.g., session identifier), that identifies the broadcast channel to

which this process wants to connect. The routine is also passed auxiliary information that

includes the list of portal computers and a connection callback routine. When the connection

is established, the connection callback routine is invoked to notify the application program.

10 When this process invokes this routine, it is in the seeking connection state. When a portal

computer is located that is connected and this routine connects to at least one neighbor, this

process enters the partially connected state, and when the process eventually connects to four

neighbors, it enters the frilly connected state. When in the small regime, a frilly connected

process may have less than four neighbors. In block 801, the routine opens the call-in port

15 through which the process is to communicate with other processes when establishing external

and internal connections. The port is selected as the first available port using the hashing

algorithm described above. In block 802, the routine sets the connect time to the current

time. The connect time is used to identify the instance of the process that is connected

through this external port. One process may connect to a broadcast channel of a certain

20 channel type and channel instance using one call-in port and then disconnects, and another

process may then connect to that same broadcast channel using the same call-in port. Before

the other process becomes fully connected, another process may try to communicate with it

thinking it is the fully connected old process. In such a case, the connect time can be used to

identify this situation. In block 803, the routine invokes the seek portal computer routine

25 passing the channel type and channel instance. The seek portal computer routine attempts to
locate a portal computer through which this process can connect to the broadcast channel for

the passed type and instance. In decision block 804, if the seek portal computer routine is

[03004-8004/Sb003733.l00] -25- -,,,,,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 637 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 638 of 1442

successful in locating a fully connected process onthat portal computer, then the routine

continues at block 805, else the routine returns an tmsuccessful indication. In decision block

805, if no portal computer other than the portal computer on which the process is executing

was located, then this is the first process to fully connect to broadcast channel and the

5 routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

connected. In block 807, the routine installs the external dispatcher for processing messages

received through this process’ external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispatcher is invoked.

10 The routine then returns. In block 808, the routine installs an external dispatcher. In block

809, the routine invokes the connect request routine to initiate the process of identifying

neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the channel type and channel

15 instance of the broadcast channel to which this process wishes to connect This routine, for

each search depth (e.g., port number), checks the portal computers at that search depth. If a

portal computer is located at that search depth with a process that is frilly connected to the

broadcast channel, then the routine returns an indication of success. In blocks 902-911, the

routine loops selecting each search depth until a process is located. In block 902, the routine

20 selects the next search depth using a port number ordering algorithm. In decision block 903,

if all the search depths have already been selected during this execution of the loop, that is

for the currently selected depth, then the routine returns a failure indication, else the routine

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer

and determining whether a process of that portal computer is connected to (or attempting to

25 connect to) the broadcast charmel with the passed charmel type and channel instance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the I

portal computers have already been selected, then the routine loops to block 902 to select the

next search depth, else the routine continues at block 906. In block 906, the routine dials the

selected portal computer through the port represented by the search depth. In decision block

30 907, if the dialing was successful, then the routine continues at block 908, else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call—in port of the broadcast charmel of the passed charmel type and channel

[o3oo4-soo4/swo3133.|oo| -26. gm./oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 638 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 639 of 1442

instance of a process executing on that portal computer. In block 908, the routine invokes a

contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is fully connected to the broadcast

channel. In block 909, the routine hangs up on the selected portal computer. In decision

5 block 910, if the answering process is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processes that call. The routine then

loops to block 904 to select the next portal computer.

10 Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment. This routine determines whether the process of the selected

portal computer that answered the call-in to the selected port is fully connected to the

broadcast channel. In block 1001, the routine sends an external message (i. e.,

seeking_connection_call) to the answering process indicating that a seeking process wants to

15 know whether the answering process is fully connected to the broadcast charmel. In block

1002, the routine receives the external response message from the answering process. In

decision block 1003, if the external response message is successfully received (i. e.,

seeking_connection_resp), then the routine continues at block 1004, else the routine returns.

Wherever the broadcast component requests to receive an external message, it sets a time out

20 period. If the external message is not received within that time out period, the broadcaster

component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In

25 decision block 1004, if the answering process indicates in its response message that it is fully

connected to the broadcast channel, then the routine continues at block 1005, else the routine

continues at block 1006. In block 1005, the routine adds the selected portal computer to a

list of connected portal computers and then returns. In block 1006, the routine adds the

answering process to a list of fellow seeking processes and then returns.

30 Figure 11 is a flow diagram illustrating the processing of the connect request

identified as being fully_ connected to the broadcast charmel to initiate the connection of this

[03004-8004/SLOO3733.l00] -27- 731,00

_|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 639 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 640 of 1442

process to the broadcast channel. In decision block 1101, if at least one process of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A process of the portal

computer may no longer be in the list if it recently disconnected from the broadcast charmel.

5 In one embodiment, a seeking computer may always search its entire search depth and find

multiple portal computers through which it can connect to the broadcast channel. In block

1102, the routine restarts the process of connecting to the broadcast channel and returns. In

block 1103, the routine dials the process of one of the found portal computers through the

call-in port. In decision block 1104, if the dialing is successful, then the routine continues at

10 block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

example, the dialed process recently disconnected from the broadcast channel. In block

1105, the routine sends an external message to the dialed process requesting a connection to

the broadcast charmel (i. e., connection_request_call). In block 1106, the routine receives the

response message (i. e., connecu'on_request_resp). In decision block 1107, if the response

15 message is successfully received, then the routine continues at block 1108, else the routine

continues at block 1113. In block 1108, the routine sets the expected number of holes (i. e.,

empty internal connections) for this process based on the received response. When in the

large regime, the expected number of holes is zero. When in the small regime, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated

20 diameter of the broadcast channel based on the received response. In decision block 1111, if

the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

neighbor to this process. This adding of the answering process typically occurs when the

25 broadcast channel is in the small regime. When in the large regime, the random walk search

for a neighbor is performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking

so process is attempting to establish a connection to the broadcast charmel through this process.

In block 1201, the routine attempts to answer a call on the call-in port. In decision block

1202, if the answer is successful, then the routine continues at block 1203, else the routine

[osoouooa/suoo3733.1oo) -28- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 640 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 641 of 1442

returns. In block 1203, the routine receives the external message from the external port. In

decision block 1204, if the type of the message indicates that a seeking process is calling

(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine

returns. In block 1205, the routine sends an external message (i. e., seeking_connection_resp)

5 to the other seeking process indicating that this process is also is seeking a connection. In

decision block 1206, if the sending of the external message is successful, then the routine

continues at block 1207, else the routine returns. In block 1207, the routine adds the other

seeking process to a list of fellow seeking processes and then returns. This list may be used

if this process can find no process that is fully connected to the broadcast channel. In which

10 case, this process may check to see if any fellow seeking process were successful in

connecting to the broadcast channel. For example, a fellow seeking process may become the

first process fully connected to the broadcast chaimel.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment. This routine sets the state of this process to fully connected to the

is broadcast channel and invokes a callback routine to notify the application program that the

process is now fully connected to the requested broadcast channel. In block 1301, the

routine sets the connection state of this process to fully connected. In block 1302, the

routine notifies fellow seeking processes that it is fully connected by sending a connected

extemal message to them (i.e., connected_strnt). In block 1303, the routine invokes the

20 connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment. This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine to handle that message. This routine loops processing

25 each message until all the received messages have been handled. In block 1401, the routine

answers (e.g., picks up) the external port and retrieves an external message. In decision

block 1402, if a message was retrieved, then the routine continues at block 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if

the message type is for a process seeking a connection (i. e., seeking_connection_call), then

30 the routine invokes the handle seeking connection call routine in block 1404, else the routine

continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i. e., connection_request_call), then the routine invokes the handle connection

[03004-8004/SU)03733.100] -29- -rm/oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 641 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 642 of 1442

request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (i.e., edge_proposal_call), then the

routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connect call

5 (i.e., port_connect_call), then the routine invokes tlte handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 1411, if the message

type is a connected statement (i.e., connected_stmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement (i. e., condition_repair_stmt),

10 then the routine invokes the handle condition repair routine in block 1413, else the routine

loops to block 1414 to process the next message. Afier each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

15 connection call routine in one embodiment. This routine is invoked when a seeking process

is calling to identify a portal computer through which it can connect to the broadcast charmel.

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully

20 connected to the broadcast channel and continues at block 1505. In block 1503, the routine

sets a message to indicate that this process is not fully connected. In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this

process is not fully connected, then it is attempting to connect to the broadcast channel. In

block 1505, the routine sends the external message response (i. e., seeking_connection_resp)
25 to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment. This routine is invoked when the calling process

wants this process to initiate the connection of the process to the broadcast charmel. This

routine either allows the calling process to establish an internal connection with this process

30 (e.g., if in the small regime) or starts the process of identifying a process to which the calling

process can connect. In decision block 1601, if this process is currently fully connected to

the broadcast channel, then the routine continues at block 1603, else the routine hangs up on
|03004-8004ISL003733.l00] -30- 7,5,,”

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 642 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 643 of 1442

the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. In block 1604, the

routine sets the estimated diameter in the response message. In block 1605, the routine

indicates whether this process is ready to connect to the calling process. This process is

5 ready to connect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an

external message that is responsive to the connection request call (i.e.,

connection_request_resp). In‘ block 1607, the routine notes the number of holes that the

calling process needs to fill as_indicated in the request message. In decision block 1608, if

10 this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continues at block 1611. In block 1609, the routine invokes the add

neighbor routine to add the calling process as a neighbor. In block 1610, the routine

decrements the number of holes that the calling process needs to fill and continues at block

1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if

15 this process has no holes or the estimated diameter is greater than one (i.e., in the large

regime), then the routine continues at block 1613, else the routine continues at block 1616.

In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connect to the calling process to the broadcast channel. One request is forwarded for each

pair of holes of the calling process that needs to be filled. In decision block 1613, if the

20 number of holes of the calling process to be filled is greater than or equal to two, then the

routine continues at block 1614, else the routine continues at block 1616. In block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

to an indication of the calling process and the random walk distance. In one embodiment, the

distance is twice in the estimated diameter of the broadcast channel. In block 1614, the

25 routine decrements the holes left to fill by two and loops to block 1613. In decision block

1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine

returns. In block 1617, the routine invokes the fill hole routine passing the identification of

the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,

connection_port_search_stmt) for a hole of a connected process through which the calling
30 process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment. This routine adds the process calling on the external port as a
[ozooesooa/snoo3733.1oo] -3 1- 7,, mo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 643 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 644 of 1442

neighbor to this process. In block 1701, the routine identifies the calling process on the

external port. In block 1702, the routine sets a flag to indicate thaththe neighbor has not yet

received the broadcast messages from this process. This flag is used to ensure that there are

no gaps in the messages initially sent to the new neighbor. The external port becomes the

5 internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of this process to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this process. In block 1706, the routine

10 installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when

a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process bufiered up messages while not fully connected, then

the routine continues at block 1708, else the routine continues at block 1709. In one

embodiment, a process that is partially connected may bufl‘er the messages that it receives

15 through an internal connection so that it can send these messages as it connects to new

neighbors. In block 1708, the routine sends the buffered messages to the new neighbor

through the internal port. In decision block 1709, if the number of holes of this process

equals the expected number of holes, then this process is fully connected and the routine

continues at block 1710, else the routine continues at block 1711. In block 1710, the routine

2o invokes the achieve connected routine to indicate that this process is fully connected. In

decision block 1711, if the number of holes for this process is zero, then the routine

continues at block 1712, else the routine returns. In block 1712, the routine deletes any

pending edges and then returns. A pending edge is an edge that has been proposed to this

process for edge pinning, which in this case is no longer needed.

25 Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment. This routine is responsible for passing

along a request to connect a requesting process to a randomly selected neighbor of this

process through the internal port of the selected neighbor, that is part of the random walk. In

decision block 1801, if the forwarding distance remaining is greater than zero, then the

30 routine continues at block 1804, else the routine continues at block 1802. In decision block

1802, if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine

[o3oo4—aoo4.'swo3733.1oo} -32- 1/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 644 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 645 of 1442

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

this process, then the routine returns, else the routine continues at block 1804. In blocks

1804-1807, the routine loops attempting to send a connection edge search call internal

message (i.e., connection_edge_search_call) to a randomly selected neighbor. In block 1804,

5 the routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

message and the routine returns, else the routine continues at block 1806. In block 1806, the

routine sends a connection edge search call intemal message to the selected neighbor. In

decision block 1807, if the sending of the message is successful, then the routine continues at

10 block 1808, else the routine loops to block 1804 to select the next neighbor. When the

sending of an intemal message is unsuccessful, then the neighbor may have disconnected

fiom the broadcast charmel in an tmplarmed manner. Whenever such a situation is detected

by the broadcaster component, it attempts to find another neighbor by invoking the fill holes

routine to fill a single hole or the forward connecting edge search routine to fill two holes. In

15 block 1808, the routine notes that the recently sent connection edge search call has not yet

been acknowledged and indicates that the edge to this neighbor is reserved if the remaining

forwarding distance is less than or equal to one. It is reserved because the selected neighbor

may offer this edge to the requesting process for edge pirming. The routine then returns.

Figure 19 is a flow diagram illustrating the processing of the handle edge

20 proposal call routine. This routine is invoked when a message is received from a proposing

process that proposes to connect an edge between the proposing process and one of its

neighbors to this process for edge pinning. In decision block 1901, if the number of holes of

this process minus the number of pending edges is greater than or equal to one, then this

process still has holes to be filled and the routine continues at block 1902, else the routine

25 continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a

neighbor of this process, then the routine continues at block 191], else the routine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed neighbor is already

pending as a proposed neighbor, then the routine continues at block 1911, else the routine

30 continues at block 1907. In block 1907, the routine sends an edge proposal response as an

external message to the proposing process (i.e., edge_proposal_resp) indicating that the

proposed edge is accepted. In decision block 1908, if the sending of the message was
Iosooa-soo4/si.oo3733.too] -33- 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 645 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 646 of 1442

successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add .

neighbor routine to add the proposing process on the external port as a neighbor. The routine

then retmns. In block 1911, the routine sends an external message (i. e., edge_proposaJ_resp)

5 indicating that this proposed edge is not accepted. In decision block 1912, if the number of

holes is odd, then the routine continues at block 1913, else the routine returns. In block

1913, the routine invokes the fill hole routine and then retinns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked when an external

10 message is received then indicates that the sending process wants to connect to one hole of

this process. In decision block 2001, if the number of holes of this process is greater than

zero, then the routine continues at block 2002, else the routine continues at block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

block 2004, else the roufine continues to block 2003. In block 2003, the routine sends a port

15 connection response external message (i.e., port_connection_resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then returns. In block

2004, the routine sends a port connection response external message to the sending process

that indicates mat is okay to connect this process.‘ In decision block 2005, if the sending of
the message was successful, then the routine continues at block 2006, else the routine

20 continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add

the sending process as a neighbor of this process and then returns. In block 2007, the routine

hangs up the external connection. In block 2008, the routine invokes the connect request

routine to request that a process connect to one of the holes of this process. The routine then
returns.

25 Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

one embodiment. This routine is passed an indication of the requesting process. If this

process is requesting to fill a hole, then this routine sends an internal message to other

processes. If another process is requesting to fill a hole, then this routine invokes the routine

to handle a connection port search request. In block 2101, the routine initializes a

30 connection port search statement internal message (i.e., connection_port_search_stmt). In

decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes

[o3oo4—soo4/s1.oo3733.1oo] -34- 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 646 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 647 of 1442

the message to the neighbors of this process through the internal ports and then returns. In

block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment. This routine is passed an indication of the neighbor who sent the

5 internal message. In block 2201, the routine receives the internal message. This routine

identifies the message type and invokes the appropriate routine to handle the message. In

block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. In decision block 2203, if this

process is the originating process of the message or the message has already been received

10 (i. e., a duplicate), then the routine ignores the message and continues at block 2208, else the

routine continues at block 2203A. In decision block 2203A, if the process is partially

connected, then the routine continues at block 2203B, else the routine continues at block

2204. In block 2203B, the routine adds the message to the pending connection buffer and

continues at block 2204. In decision blocks 2204-2207, the routine decodes the message

15 type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement (i. e., broadcast_stmt), then the

routine invokes the handle broadcast message routine in block 2205. After invoking the

appropriate handling routine, the routine continues at block 2208. In decision block 2208, if

the partially connected buffer is full, then the routine continues at block 2209, else the

20 routine continues at block 2210. The broadcaster component collects all its internal

messages in a buffer while partially connected so that it can forward the messages as it

connects to new neighbors. If, however, that buffer becomes full, then the process assumes

that it is now fully connected and that the expected number of connections was too high,

because the broadcast channel is now in the small regime. In block 2209, the routine invokes

25 the achieve connection routine and then continues in block 2210. In decision block 2210, if

the application program message queue is empty, then the routine returns, else the routine

continues at block 2212. In block 2212, the routine invokes the receive response routine

passing the acquired message and then returns. The received response routine is a callback

routine of the application program.

30 Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment. This routine is passed an indication of the originating
process, an indication of the neighbor who sent the broadcast message, and the broadcast

[03004-8004/SL003733.l00] -35- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 647 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 648 of 1442

message itself. In block 2301, the routine performs the out of order processing for this

message. The broadcaster component queues messages from each originating process until it

can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the message to the

5 neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting

to receive messages, then the routine continues at block 2304, else the routine returns. In

block 2304, the routine sends the messages in the correct order if possible for each

originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute

10 broadcast message routine in one embodiment. This routine sends the broadcast message to

each of the neighbors of this process, except for the neighbor who sent the message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message. In decision block 2402, if all such neighbors have already been selected,

then the routine returns. In block 2403, the routine sends the message to the selected

15 neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statement routine in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the message itself. In block 2601, the routine invokes the

distribute internal message which sends the message to each of its neighbors other than the

20 sending neighbor. In decision block 2602, if the number of holes of this process is greater

than zero, then the routine continues at block 2603, else the routine returns. In decision

block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,

else the routine continues _at block 2604. In block 2604, the routine invokes the court

neighbor routine and then returns. The court neighbor routine connects this process to the

25 requesting process if possible. In block 2605, if this process has one hole, then the neighbors

with empty ports condition exists and the routine continues at block 2606, else the routine

returns. In block 2606, the routine generates a condition check message (i. e.,

condition_check) that includes a list of this process’ neighbors. In block 2607, the routine

sends the message to the requesting neighbor.

30 Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port
[o3oo4—soo4/sr.oo3733. I00] -36- mmo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 648 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 649 of 1442

connection call external message to the prospective neighbor and adds the prospective

neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a

neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if the number of holes of

5 this process is greater than zero, then the routine continues at block 2704, else the routine

continues at block 2706. In block 2704, the routine sends a port connection call extemal

message (i.e., port_connection_call) to the prospective neighbor and receives its response

(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,

the routine adds the prospective neighbor as a neighbor of fliis process by invoking the add

10 neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.

Figure 28 is a flow diagram illustrating the processing of the handle connection

edge search. call routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine either forwards the

message to a neighbor or proposes the edge between this process and the sending neighbor to

15 the requesting process for edge pinning. In decision block 2801, if this process is not the

requesting process or the number of holes of the requesting process is still greater than or

equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

20 continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented

forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, then the routine

25 continues at block 2805, else the roufine continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication of the requesting

party and a toggle indicator that alternatively indicates to continue the random walk for one

or two more computers. The roufine then continues at block 2815. In block 2806, the

routine dials the requesting process via the call-in port. In block 2807, the routine sends an

30 edge proposal call extemal message (i. e., edge_proposal_cal1) and receives the response (i. e.,

edge_proposal_resp). Assuming that the response is successfully received, the routine

continues at block 2808. In decision block 2808, if the response indicates that the edge is
[o3oo4-soo4/smo3733.ioo] -3 7- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 649 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 650 of 1442

acceptable to the requesting process, then the routine continues at block 2809, else the

routine continues at block 2812. In block 2809, the routine reserves the edge between this

process and the sending neighbor. In block 2810, the routine adds the requesting process as

a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the

5 sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

continues at block 2815. In decision block 2813, if this process is the requesting process and

the number of holes of this process equals one, then the routine continues at block 2814, else

the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.

In block 2815, the routine sends an connection edge search response message (i.e.,

10 connection__edge_search_response) to the sending neighbor indicating acknowledgement and

then returns. The graphs are sensitive to parity. That is, all possible paths starting from a

node and ending at that node will have an even length unless the graph has a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary the random walk

distance between even and odd distances.

15 Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. This routine is passed as indication of the

requesting process, the sending neighbor, and the message. In block 2901, the routine notes

that the connection edge search response (i.e., connection_edge_search_resp) has been

received and if the forwarding distance is less than or equal to one unreserves the edge

20 between this process and the sending neighbor. In decision block 2902, if the requesting

process indicates that the edge is acceptable as indicated in the message, then the routine

continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge

between this process and the sending neighbor. In block 2904, the routine removes the

sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor

25 routine to connect to the requesting process. In decision block 2906, if the invoked routine

was unsuccessful, then the routine continues at block 2907, else the routine returns. In

decision block 2907, if the number of holes of this process is greater than zero, then the

routine continues at block 2908, else the routine returns. In block 2908, the routine invokes
the fill hole routine and then returns.

30 Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In

103004-8004/SLO03733.l00] -38- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 650 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 651 of 1442

decision block 3001, if this process has at least one neighbor, then the routine continues at

block 3002, else the routine retums since it is the only process connected to be broadcast

channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast _strnt). In block 3003, the routine sets the sequence number of the

5 message. In block 3004, the routine invokes the distribute internal message routine to

broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment. The acquire message routine may be invoked by the application

program or by a callback routine provided by the application program. This routine returns a

10 message. In block 3101, the routine pops the message from the message queue of the

broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram

15 illustrating processing of the handle condition check message in one embodiment. This

message is sent by a neighbor process that has one hole and has received a request to connect

to a hole of this process. In decision block 3201, if the number of holes of this process is

equal to one, then the routine continues at block 3202, else the neighbors with empty ports

condition does not exist any more and the routine returns. In decision block 3202, if the

20 sending neighbor and this process have the same set of neighbors, the routine continues at

block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a

condition double check message (i. e., condition_double_check) with the list of neighbors of

this process. In block 3204, the routine sends the message internally to a neighbor other than

sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of

25 the sending process that is not also a neighbor of this process. In block 3206, the routine

sends a condition repair message (i.e., condition_repair_strnt) externally to the selected

process. In block 3207, the routine invokes the add neighbor routine to add the selected

neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition

30 repair statement routine in one embodiment. This routine removes an existing neighbor and

connects to the process that sent the message. In decision block 3301, if this process has no

holes, then the routine continues at block 3302, else the routine continues at block 3304. In

[03004-8004ISL003733.l00| -39- .,m,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 651 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 652 of 1442

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty

ports condifion. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now has at least one hole. In *

block 3304, the routine invokes the add neighbor routine to add the process that sent the

5 message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine. This routine determines whether the neighbors with empty ports

condition really is a problem or whether the broadcast channel is in the small regime. In

decision block 3401, if this process has one hole, then the routine continues at block 3402,

10 else the routine continues at block 3403. If this process does not have one hole, then the set

of neighbors of this process is not the same as the set of neighbors of the sending process. In

decision block 3402, if this process and the sending process have the same set of neighbors,

then the broadcast channel is not in the small regime and the routine continues at block 3403,

else the routine continues at block 3406. In decision block 3403, if this process has no holes,

15 then the routine returns, else the routine continues at block 3404. In block 3404, -the routine

sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a

diameter reset internal message (i. e., diarneter_reset) indicating that the estimated diameter is

one and then returns. In block 3400, the routine creates a list of neighbors of this process. In

block 3407, the routine sends the condition check message (i.e., condition_check_stmt) with

20 the list of neighbors to the neighbor who sent the condition double check message and then

returns. 1

From the above description, it will be appreciated that although specific

embodiments of the technology have been described, various modifications may be made

without deviating from the spirit and scope of the invention. For example, the

25 communications on the broadcast channel may be encrypted. Also, the channel instance or

session identifier may be a very large number (e.g. , 128 bits) to help prevent an unauthorized

user to maliciously tap into a broadcast channel. The portal computer may also enforce

security and not allow an unauthorized user to connect to the broadcast charmel.

Accordingly, the invention is not limited except by the claims.

[o3oo4.soo4/s1.oo3733.roo1 .40- 7,31,“,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 652 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 653 of 1442

CLAIMS

1 1. A method of broadcasting data through a computer network, the method

2 comprising:

3 receiving at a computer the data from a neighbor computer;

4 determining whether the received data has already been transmitted

5 from the receiving computer to its neighbor computers;

6 when it is determined that the data has already. been transmitted,

7 disregarding the received data; and

8 when it is determined that the data has not already been transmitted,

9 uansmitting the received data to neighbor computers of the receiving computer.

1 2. The method of claim 1 wherein the computer network is a 4-regular

2 graph.

1 3. The method of claim 1 wherein the computer network implements a

2 broadcast charmel wherein the neighbor computers of the computer network are connected

3 using point-to-point connections.

1 4. The method of claim 3 wherein the connections are TCP/IP connections.

1 5. The method of claim 1 wherein the computer network is a broadcast

2 charmel that is implemented using an underlying network that connects computers using

3 point-to-point connections.

1 6. The method of claim 5 wherein the underlying network is the lntemet.

[03004-8004/SL003733. I00] .4] - 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 653 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 654 of 1442

1 7. A broadcaster component in a computer connected to a computer

2 network, comprising:

3 an originating module that transmits data that originates from the

4 computer to each of the neighbor computers;

5 a receiving module that receives multiple copies of data that originates

6 from another computer, each copy of the data being received from a different neighbor

7 computer; and

8 a forwarding module that transmits a copy of the received data to each

9 neighbor computer other than that neighbor computer from which the copy was received.

1 8. The broadcaster component of claim 7 including

2 a sending module that provides a copy of the received data to an-

3 application program.

1 9. The broadcaster component of claim 7 wherein the computer network is

2 a broadcast charmel implemented using an underlying point-to-point computer network.

1 10. The broadcaster component of claim 7 including:

2 a locating module for locating a portal computer that is connected to the

3 computer network.

1 1 l. The broadcaster component of claim 7 including:

2 a connecting module for connecting the computer to the computer

3 network.

1 - 12. The broadcaster component of claim 7 including:

2 a portal module for initiating joining of a requesting computer to the

3 computer network.

1 13. The broadcast component of claim 7 wherein the computer is connected

2 to its neighbor computer using a point-to-point connection.

[o3oo4-soo4/su)o3733.1oo] -42- 7m,‘-,0

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 654 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 655 of 1442

1 14. A method of broadcasting data on a computer network, the method

2 comprising: V

3 establishing connections between each computer of the computer

4 network and at least three other computers of the computer network;

5 when a computer originates data, sending the data to each of the

6 computers to which it is connected; and

7 when a computer receives data, sending a first copy of the data that it

8 receives to each of the computers to which it is connected other than the computer from

9 which it received the data.

1 15. The method of claim 14 wherein computers and connections of the

2 computer network form an m-regular graph.

1 16. The method of claim 15 wherein each computer is connected to an even

2 number of computers.

1 17. The method of claim 14 wherein the computers and connections of the

2 computer network form an m-regular and m-connected graph.

1 18. The method of claim 17 wherein m is even.

1 19. The method of claim 17 wherein m is 4.

1 20. The method of claim 14 wherein the computers are connected using
2 point-to-point connections.

1 21. The method of claim 14 wherein the computers are connected using the
2 Internet.

[o3oo4-soo4/s1no3733.1oo) .43- 7,3,,o0

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 655 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 656 of 1442

1 22. A computer-readable medium containing instructions for controlling a

2 computer system to broadcast data on a broadcast channel, by a method comprising:

3 establishing connections between each computer of the broadcast

4 channel and three other computers of the broadcast channel using point-to-point connections;

5 when a computer originates data, sending the data to each of the

6 computers to which it is connected; and

7 when a computer receives data, sending a copy of the data that it

8 receives to each of the computers to which it is connected other than the computer from

9 which it received the data.

1 23. The computer-readable medium of claim 22 wherein computers and

2 connections of the computer network form an m-regular graph.

1 24. The computer-readable medium of claim 23 wherein each computer is

2 connected to an even number of computers.

1 25. The computer-readable medium of claim 22 wherein the computers and

2 connections of the broadcast channel form an m-regular and m-connected graph.

1 26. The computer-readable medium of claim 25 wherein in is even.

1 27. The computer-readable medium of claim 25 wherein m is 4.

1 28. The computer-readable medium of claim 22 wherein the computers are

2 connected using the lntemet.

{oaoo-3.8004/smo3733.1oo] -44- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 656 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 657 of 1442

:||'u)nI‘¢ol.|lII|II.l.|Xn|I.|IIl||I.I......(.3|..1|’:.1!...|5#5Tu3Cu.
yl.):I5|ll3k..l..el

8

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 657 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 658 of 1442

Cummp.»9:oJ.3U<u..Dv?.&,..of?m.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 658 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 659 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 659 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 660 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 660 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 661 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 661 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 662 of 1442

.+<..Q¢.ww0~U9+
Q0

S0:o.J.sobr>..mn.$....w.<6»(_»

..a

..+1&»ow$8>m._was

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 662 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 663 of 1442

Node;fl)
3 E

«u

2"’
*2’.

N 29‘-
§

5
U.

H i
0-

L)

(J

G

QT"\

:4 “’
é

\ if «‘-’s ’
'0 \

K‘

\ :3
5

‘~L /

H ,,
/

01

Q :. 3
7.

U ~\‘

‘§
2

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 663 of 1442

.T.‘F=m07

l'FW\

Mode}3'9

‘s\

.ol

f:_g'7

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 664 of 1442

\Q <Hu.r«s9wH<.EH

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 664 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 665 of 1442

0.9

_0»on»

!.|loIaI.A.IJ.Iu...3..o,,.@.%.T...r9,.f .IL

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 665 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 666 of 1442

3Eu.

2.£..m

 i-5...-llL
0Q

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 666 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 667 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 667 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 668 of 1442

.Q4..Qg

MO

fun

\nL_u

.9

::

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, -
Ex. 1102, p. 668 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 669 of 1442

..w,..._o._.:.3HW.‘?l5.1.
.._>

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 669 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 670 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 670 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 671 of 1442

mum...4.cn._.Q.u..n9$.NMfwn.u_Ja..M

2w..§w.%21;.;4Z.Jwa¢

I\u..+.......TuQxn..,...uJt:.o.\.__.0«.3l\

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 671 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 672 of 1442

ii

V9460ktfimN_2.
.7603+9.lquw«,5ilul%...,1.$,...,oT---,.‘...iW.._«:28. ...|<¢+r.1335b+w.Wm.£¢»m..bNoAI.V.N.0Alvin—+..?2ou.«.w,.%u.LU;sou..1.12890...T.nt«Am£3:1%‘~93a.._H§§.u~.s23:.:u.76.:432wit.w...uo_was

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 672 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 673 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 673 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 674 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 674 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 675 of 1442
IPR2016-00726 -ACTIVISION, EA,'TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 675 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 676 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 676 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 677 of 1442

U.S. Patent Application No. 09/629,024 ,

EXPRESS MAIL no. 12:L4o4935279u:I

DISTRIBUTED CONFERENCING SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. Patent Application No. ,

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attomey Docket

5 No. 030048001 US); U.S. Patent Application No. , entitlled “JOINING A

BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No.l 030048002 US);

U.S. Patent Application No. , “LEAVING A BROADCAST CHANNEL,"

filed on July 31, 2000 (Attorney Docket No. 030048003 US); U.S. Patent Application

No. , entitled “BROADCASTING ON A BROADCAST ql-IANNEL,” filed

10 on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent Application

No. , entitled “CONTACTING A BROADCAST CHANNEL,” filed on

July 31, 2000 (Attorney Docket No. 030048005 US); U.S. Patent Application

No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed on

July 31,2000 (Attorney Docket No. 030048006 US); U.S. Paqent Applicafion

15 No. , entitled “AN INFORMATION DELIVERY SERlVICE,” filed on
July 31,2000 (Attorney Docket No. 030048007 US); U.S. Patbnt Application

No. ' entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on
July 31, 2000 (Attorney Docket No. 030048008 US); and U.S. Patent Application
No. entitled “DISTRIBUTED GAME ENVIRONM|ENT,” filed on

20 July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are
incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer 11 twork and more

particularly, to a broadcast channel for a subset of a computers of an underlying network.

25 BACKGROUND i

There are a wide variety of computer network communication techniques such

as point-to-point network protocols, client/server middleware, mul casting network

[o3oo4§oa1/siioomaios] -1-
I

for»! [‘"
|

7B]/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 677 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 678 of 1442

protocols, and peer—to-peer middleware. Each of these communications ltechniques have

their advantages and disadvantages, but none is particularly well suited to ihe simultaneous

sharing of information among computers that are widely distributed. For example,

collaborative processing applications, such as a network meeting programs, have a need to

5 distribute information in a timely manner to all participants who may be geographically

distributed.

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,

allow processes on different computers to communicate via point-to-point connections. The

interconnection of all participants using point-to-point connections, while theoretically

10 possible, does not scale well as a number of participants grows. For example, each

participating process would need to manage its direct connections to all other participating

processes. Programmers, however, find it very difficult to manage single connections, and

management of multiple connections is much more complex. In additibn, participating

processes may be limited to the number of direct connections that they cagn support. This
15 limits the number of possible participants m the sharing of informan'on. I

The client/server middleware systems provide a server that coordinates the

communications between the various clients who are sharing the infomiatron. The server
fimctions as a central authority for controlling access to shared resourceb. Examples of

client/server middleware systems include remote procedure calls (“RPC”), database servers,

20 and the common object request broker architecture (“CORBA”). Client/server rniddleware

systems are not particularly well suited to sharing of information among mbuy participants.

In particular, when a client stores information to be shared at the server, each other client

would need to poll the server to determine that new information is being shared. Such
polling places a very high overhead on the communications network. Alternatively, each

25 client may register a callback with the server, which the server then in okes when new

information is available to be shared. Such a callback technique presen a performance

bottleneck because a single server needs to call back to each client whenever new

information is to be shared. In addition, the reliability of the entire sh ' of information

depends upon the reliability of the single server. Thus, a failure at a singl computer (i. e.,

30 the server) would prevent communications between any of the clients. .

The multicasting network protocols allow the sending of broaclcast messages to
mulfiple recipients of a network. The current implementations of such mul 'casn'ng network

[03004-8001 lSLO03733. 106] -2- 7/3 [/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 678 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 679 of 1442

protocols tend to place an unacceptable overhead on the underlying network. For example,

UDP multicasting would swamp the Internet when trying to locate all possible participants.
IP multicasting has other problems that include needing special-purpose infirastnicture (e.g.,

routers) to support the sharing of information emciently. i
5 The peer-to-peer middleware communications systems rely on a multicasting

network protocol or a graph of point-to-point network protocols. Such peer-to-peer

Iniddleware is provided by the T.'120 Internet standard, which is used in such products as

Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-ipeer middleware
systems rely upon a user to assemble a point-to-point graph of the conriections used for

10 sharing the information. Thus, it is neither suitable nor desirable to iuse peer-to-peer
middleware systems when more than a small number of participants is desiied. In addition,

the underlying architecture of the T.l20 Internet standard is a tree structure} which relies on
the root node of the tree for reliability of the entire network. That is, each miessage must pass

through the root node in order to be received by all participants.
15 It would be desirable to have a reliable communications ‘network that is

suitable for the simultaneous ‘sharing of information among a large number of the processes

that are widely distributed.

3

BRIEF DESCRIPTION or THE DRAWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a
20 broadcast charmel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast

channel. .

Figures 3A and 3B illustrate the process of connecting a new iomputer Z to the
broadcast channel.

25 Figure 4A illustrates the broadcast charmel of Figure] with an added

computer. I
Figure 4B illustrates the broadcast charmel of Figure 4A}with an added

3
COIl'lp1ltCI'.

Figure 4C also illustrates the broadcast channel of Figure 4.+t with an added
30 computer. ‘

[D3004-8001/SLO03733.l06] -3- 3 -,,,,,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 679 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 680 of 1442

x
Q

I

Figure 5A illustrates the disconnecting of a computer frorii the broadcastI1

channel in a planned manner. 5

Figure 5B illustrates the disconnecfing of a computer from the broadcast

channel in an unplanned manner.

5 Figure 5C illustrates the neighbors with empty ports conditioni

Figure 5D illustrates two computers that are not neighbors; who now have
empty ports.

Figure 5E illustrates the neighbors with empty ports condition in the small
regime.

10 Figure SF illustrates the situation of Figure 5E when in the large regime.

Figure 6A is a block diagram illustrating components of a computer that is
connected to a broadcast charmel.

Figure 7 is a block diagram illustrating the sub-components oi" the broadcaster
component in one embodiment.

15 Figure 8 is a flow diagram illustrating the processing of the connect routine in
one embodiment. E

Figure 9 is a flow diagram illustrating the processing of lthe seek portal
computer routine in one embodiment.

Figure 10 is a flow diagram illustrating the processing of the] contact process

20 routine in one embodiment.
Figure 11 is a flow diagram illustrating the processing of thei connect request

routine one embodiment. .

Figure 12 is a flow diagram of the processing of the check ifor external call
routine in one embodiment. _

25 ' Figure 13 is a flow diagram of the processing of the achieve ccinnection routine
in one embodiment. '

Figure 14 is a flow diagram illustrating the processing if the external
dispatcher routine in one embodiment. i

Figure 15 is a flow diagram illustrating the processing of the handle seeking
30 connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment.

[O3004-8001/SL003733.l06] -4- 7/3|/no

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 680 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 681 of 1442

3

i .
Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment.

Figure 18 is a flow diagram illustrating the processing iof the forward
connection edge search routine in one embodiment.

5 Figure 19 is a flow diagram illustrating the processing of ithe handle edge
proposal call routine. ;

Figure 20 is a flow diagram illustrating the processing ofithe handle port

connection call routine in one embodiment. .

Figure 21 is a flow diagram illustrating the processing of the till hole routine in

10 one embodiment. 2

Figure 22 is a flow diagram illustrafing the processing of the iriternal dispatcher

routine in one embodiment. I

Figure 23 is a flow diagram illustrating the processing of the iiandle broadcast
message routine in one embodiment.

15 Figure 24 "is a flow diagram illustrating the processing the distribute

broadcast message routine in one embodiment.
Figure 26 is a flow diagram illustrating the processing of the himdle connection

port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of court neighbor
20 routine in one embodiment. i

Figure 28 is a flow diagram illustrating the processing of the hpndle’ connection

edge search call routine in one embodiment. A
Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. F

25 Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. .

Figure 31 is a flow diagram illustrating the processing of theiacquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the iiandle condifion
30 check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the iiandle condition
repair statement routine in one embodiment.
[D3004-800]/SL003733.l06] -5- 5 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 681 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 682 of 1442

E

Figure 34 is a flow diagram illustrating the processing of the :[handle condition
double check routine.

!
DETAILED DESCRIPTION

A broadcast technique in which a broadcast charmel overlaysi a point-to-point
5 communications network is provided. The broadcasting of a message o\i;'er the broadcast

charmel is effectively a multicast to those computers of the network tliiat are currently

connected to the broadcast channel. In one embodiment, the broadcast teclinique provides a
logical broadcast channel to which host computers through their executing ‘processes can be

connected. Each computer that is connected to the broadcast channel can broadcast

10 messages onto and receive messages off of the broadcast channel. Each {computer that is
connected to the broadcast channel receives all messages that are broadcast while it is

connected. The logical broadcast charmel is implemented using an underlying network
system (e.g., the Internet) that allows each computer connected to the underlying network

system to send messages to each other connected computer using each corpputer’s address.

15 Thus, the broadcast technique effectively provides a broadcast charmel usiiig an underlying
« i

network system that sends messages on a point-to-point basis. X

The broadcast technique overlays the underlying network sysiem with a graph
of point-to-point connections (i.e., edges) between host computers (i.e. nodes) through
which the broadcast channel is implemented. In one embodiment, each computer is

20 connected to four other computers, referred to as neighbors. (Actually, a pirocess executing
on a computer is connected to four other processes executing on or four other
computers.) To broadcast a message, the originating computer sends the meitssage to each of

its neighbors using its point-to-point connections. Each computer that receives the message
then sends the message to its three other neighbors using the point-to-point‘ connections. In

25 this way, the message is propagated to each computer using the ‘underlying iietwork to effect

the broadcasting of the message to each computer over a logical broadcast zharmel. A graph

in which each node is connected to four other nodes is referred to as a 4-refiilar graph. The
ected from the

broadcast chaimel only if all four of the connections to its neighbors fail. e graph used by

30 the broadcast technique also has the property that it would take a failure of flour computers to

use of a 4-regular graph means that a computer would become disco

(03004-8001/SL003733.l06] -6- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 682 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 683 of 1442

divide the graph into disjoint sub-graphs, that is two separate broadcasti channels. This
property is referred to as being 4-connected. Thus, the graph is both $4-regular and 4-

connected. :

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents

5 the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to
the broadcast channel, and each of the edges represents an “edge” connection between two

computers of the broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connections between the

computers and the number of connections between the originating computer and each other

10 computer on the broadcast channel. The minimum number of connectionjs that a message

would need to traverse between each pair of computers is the “distanhce” between the
computers (i.e., the shortest path between the two nodes of the graph). For example, the

distance between computers A and F is one because computerA is dire tly connected to

computer F. The distance between computers A and B is two because there is no direct
15 connection between computers A and B, but computer F is directly connected to computer B.

Thus, a message originating at computer A would be sent directly to com xuter F, and then

sent from computer F to computer B. The maximum of the distances betwein the computers
is the “diameter” of broadcast channel. The diameter of the broadcast channel represented

by Figure 1 is two. That is, a message sent by any computer would traveise no more than
20 two connections to reach every other computer. Figure 2 illustrates a graph representing 20

computers connected to a broadcast charmel. The diameter of this broadcast charmel is 4. In

particular, the shortest path between computers 1 and 3 contains four conneictions (1-12, 12-
15, 15-18, and 18-3). ;

The broadcast technique includes (1) the connecting of ciomputers to the

25 broadcast channel (i.e., composing the graph), (2) the broadcasting of miessages over the

broadcast channel (i.e., broadcasting through the graph), and (3) the iiisconnecting of

computers from the broadcast charmel (i.e., decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking the} connection first

30 locates a computer that is currently fully connected to the broadcast channel and then

[03004-8001/SLDO3733.l06] -7- ' 7,3 "00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 683 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 684 of 1442

establishes a connection with four of the computers that are already cionnected to the
broadcast channel. (This assumes that there are at least four computers alr dy connected to

the broadcast channel. When there are fewer than five computers connect‘ d, the broadcast

channel cannot be a 4-regular graph. In such a case, the broadcast charmel: is considered to
5 be in a “small regime.” The broadcast technique for the small regime is dciscribed below in

detail. When five or more computers are connected, the broadcast channel is considered to

be in the “large regime.” This description assumes that the broadcast chaniiiel is in the large
regime, unless specified otherwise.) Thus, the process of connecting |to the broadcast

charmel includes locating the broadcast channel, identifying the neighbors tlior the connecting
10 computer, and then connecting to each identified neighbor. Each computei is aware of one

or more “portal computers” through which that computer may locate the bioadcast channel.
A seeking computer locates the broadcast charmel by contacting the portal computers until it
finds one that is currently fully connected to the broadcast charmel. The found portal

‘computer then directs the identifying of four computers (i. e., to be the seeking computer’s

15 neighbors) to which the seeking computer is to connect. Each of these foiir computers then
cooperates with the seeking computer to effect the connecting of the seeking computer to the

broadcast channel. A computer that has started the process of locating a pot-il computer, but
does not yet have a neighbor, is in the “seeking connection state.” A

connected to at least one neighbor, but not yet four neighbors, is in the “pdjrtially connected

omputer that is

20 state.” A computer that is currently, or has been, previously connected to four neighbors is

in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified

computers is already connected to four computers. Thus, some connections between

computers need to be broken so that the seeking computer can connect to foiir computers. In

25 one embodiment, the broadcast technique identifies two pairs of computers that are currently

connected to each other. Each of these pairs of computers breaks the coiilnection between

them, and then each of the four computers (two from each pair) connecls to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the
broadcast charmel. Figure 3A illustrates the broadcast channel before computer Z is

30 connected. The pairs of computers B and E and computers C and D are the two pairs that are

identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

[03004-8001/SL003733. 106] .3- 7,, W,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 684 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 685 of 1442

is established as indicated by Figure 3B. The process of breaking the coimection between
two neighbors and reconnecting each of the former neighbors to another cotinputer is referred

to as “edge pinning” as the edge between two nodes may be considered to! be stretched and

pinned to a new node.
5 ‘ Each computer connected to the broadcast channel! allocates five

communications ports for communicating with other computers. Four lof the ports are

referred to as “internal” ports because they are the ports through which messages of the
broadcast channels are sent. The connections between internal ports hf neighbors are
referred to as “intem ” connections. Thus, the internal connections of the llvroadcast channel

10 form the 4-regular and 4-connected graph. The fifth port is referred to as an “external” port

because it is used for sending non-broadcast messages between two computers. Neighbors

can send non-broadcast messages either through their internal ports of their connection or
through their external ports. A seeking computer uses external ports wheni locating a portal

computer.

15 In one embodiment, the broadcast technique establishes the computer

connections using the TCP/IP communications protocol, which is a point-to-point protocol,

as the underlying network. The TCP/IP protocol provides for reliable and% ordered delivery

of messages between computers. The TCP/IP protocol provides each computer with a “port

space” that is shared among all the processes that may execute on that computer. The ports

20 are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific

applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports

that are available to any process. In one embodiment, a set of port numbers can be reserved

for use by the computer connected to the broadcast charmel. In an alternative embodiment,

the port numbers used are dynamically identified by each computer. . Each computer

25 dynamically identifies an available port to be used as its call-in port. This cjall-in port is used

to establish connections with the external port and the internal ports. Eacli computer that is
connected to the broadcast channel can receive non-broadcast messages thiough its external

port. A seeking computer tries “dialing” the port numbers of the portal computers until a

portal computer “answers,” a call on its call-in port. A portal computer answers when it is

30 connected to or attempting to connect to the broadcast channel and its calll-in port is dialed.

(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to anotheri port. Thus, the
|o3oo4-soot/s1.oo37:3.io6] -9- | 731,00' _

I

iI

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 685 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 686 of 1442

seeking computer actually communicates through that transfer-to port, which is the external

port. The call is transferred so that other computers can place calls to that !computer via the

call-in port. The seeking computer then communicates via that external p(:)I't to request the
portal computer to assist in connecting the seeking computer to the broadcast channel. The

5 seeking computer could identify the call-in port number of a portal computeir by successively
dialing each port in port number order. As discussed below in detail, the brdadcast technique

uses a hashing algorithm to select the port number order, which may result in improved

performance. F

A seeking computer could connect to the broadcast channel connecting to

10 computers either directly connected to the found portal computer or directly iconnected to one

of its neighbors. A possible problem with such a scheme for identifying the neighbors for
the seeking computer is that the diameter of the broadcast charmel may increase when each

seeking computer uses the same found portal computer and establishes a connection to the

broadcast charmel directly through that found portal computer. Conceptually, the graph

15 becomes elongated in the direction of where the new nodes are added. Figures 4A-4C

illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with

an added computer. Computerl was connected to the broadcast channel-by edge pinning

edges C-D and E-H to computer J. The diameter of this broadcast charmel is still two.

Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.

20 Computer K was connected to the broadcast charmel by edge pinning edges E-J and B-C to

computer K. The diameter of this broadcast charmel is three, because the shortest path from

computer G to computer K is through. edges G-A, A-E, and E—K. Figure 4C also illustrates

the broadcast channel of Figure 4A with an added computer. Computer K was connected to

the broadcast channel by edge pinning edges D—G and E-J to computer K. .The diameter of

25 this broadcast charmel is, however, still two. Thus, the selection of neiglibors impacts the

diameter of the broadcast charmel. ‘To help minimize the diameter, the brqadcast technique
uses a random selection technique to identify the four neighbors of a computer in the seeking

connection state. The random selection technique tends to distribute the coiinections to new
seeking computers throughout the computers of the broadcast channel which may result in

30 smaller overall diameters.

[0300-1-SOOI/Su)03733.l06] -10- 7/3] /no

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 686 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 687 of 1442

Broadcasting Through the Graph

As described above, each computer that is connected to the broadcast charmel

can broadcast messages onto the broadcast charmel and does receive all riiessages that are

broadcast on the broadcast charmel. The computer that originates a message to be broadcast

5 sends that message to each of its four neighbors using the internal connections. When a

computer receives a broadcast message from a neighbor, it sends the message to its three

other neighbors. Each computer on the broadcast charmel, except the originating computer,

will thus receive a copy of each broadcast message from each of its four neighbors. Each

computer, however, only sends the first copy of the message that it receives to its neighbors

10 and disregards subsequently received copies. Thus, the total number of copies of a message
that is sent between the computers is 3N+1, where N is the number of coniputers connected

to the broadcast channel. Each computer sends three copies of the message, except for the

originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability

is of the broadcast charmel. Since each computer has four connections to the broadcast

charmel, if one computer fails during the broadcast of a message, its neighbors have three
other connections through which they will receive copies of the broadcast riiessage. Also, if

the internal connection between two computers is slow, each computer: has three other

connections through which it may receive a copy of each message sooner.

20 Each computer that originates a message numbers its own messages

sequentially. Because of the dynamic nature of the broadcast charmel and because there are

many possible connection paths between computers, the messages may be received out of

order. For example, the distance between an originating computer and a certain receiving

computer may be four. After sending the first message, the originating computer and

25 receiving computer may become neighbors and thus the distance between Ethem changes to

one. The first message may have to travel a distance of four to reach the receiving computer.

The second message only has to travel a distance of one. Thus, it is possible for the second

message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i. e., no computers connecting

30 or disconnecting from the broadcast channel), out-of-order messages are not a problem

because each computer will eventually receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a

[03004-800]/SL003733.l06] -1 1- 7;; mo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 687 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 688 of 1442

steady state, then problems can occur. In particular, a computer may; connect to the

broadcast channel after the second message has already been received and lforwarded on by

its new neighbors. When a new neighbor eventually receives the first message, it sends the

message to the newly connected computer. Thus, the newly connected computer will receive
5 the first message, but will not receive the second message. If the newly corinected computer

needs to process the messages in order, it would wait indefinitely for the secbnd message.

One solution to this problem is to have each computer queuelall the messages
that it receives until it can send them in their proper order to its neighbori. This solution,
however, may tend to slow down the propagation of messages through the bomputers of the

10 broadcast charmel. Another solution that may have less impact on the propagation speed is
to queue messages only at computers who are neighbors of the newly conniected computers.

Each already connected neighbor would forward messages as it receives them to its other

neighbors who are not newly connected, but not to the newly connected neighbor. The

already connected neighbor would only forward messages from each originating computer to

15 the newly connected computer when it can ensure that no gaps in the messages from that

originating computer will occur. In one embodiment, the already connected neighbor may

track the highest sequence number of the messages already received and forwarded on from
each originating computer. The already connected computer will send only lhigher numbered

messages from the originating computers to the newly connected computeri Once all lower

20 numbered messages have been received from all originating computers, then the already

connected computer can treat the newly connected computer as its other neighbors and

simply forward each message as it is received. In another embodiment, each computer may

queue messages and only forwards to the newly connected computer thosei messages as the

gaps are filled in. For example, a computer might receive messages 4 and and then receive

25 message 3. In such a case, the already connected computer would forward queue messages 4
and 5. When message 3 is finally received, the already connected computer will send

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the

newly connected computer before message 3, then the newly connected :computer would

process messages 4 and 5 and disregard message 3. Because the already connected computer

30 queues messages 4 and 5, the newly connected computer will be able to prbcess message 3.

It is possible that a newly connected computer will receive a set of messages fiom an

originating computer through one neighbor and then receive another set of message from the

(03004-8001/Sb003733.l06] -12- E 7/3,/no

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 688 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 689 of 1442

same originating computer through another neighbor. If the second set of messages contains

a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

5 Decomposing the Graph

A connected computer disconnects fiom the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a plarmed manner, it sends a

disconnect message to each of its four neighbors. The disconnect message includes a list that

identifies the four neighbors of the disconnecting computer. When a neighbor receives the

10 disconnect message, it tries to connect to one of the computers on the list. In one

embodiment, the first computer in the list will try to connect to the second computer in the

list, and the third computer in the list will try to connect to the fourth computer in the list. If

a computer cannot connect (e.g., the first and second computers are already connected), then

the computers may try connecting in various other combinations. If connections cannot be

15 established, each computer broadcasts a message that it needs to establish a connection with

another computer. When a computer with an available internal port receives the message, it

can then establish a connection with the computer that broadcast the message. Figures 5A-

SD illustrate the disconnecting of W a computer from the broadcast channel. Figure SA

illustrates the disconnecting of a computer from the broadcast charmel in a planned manner.

20 When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors

(computers A, E, F and I) and then disconnects from each of its neighbors. When

computers A and I receive the message they establish a connection between them as

indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from

25’ a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next ‘message to the now disconnected

computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i. e., it has a hole or empty port). When a connected computer detects that one of

- its neighbors is now disconnected, it broadcasts a port connection request on the broadcast

30 charmel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

[D3004-8001/Sl..003733.l06] -13. -,,,,,m

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 689 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 690 of 1442

computer that is also short a connection receives the connection request, lit communicates

with the requesting computer through its external port to establish a connedtion between the

two computers. Figure 5B illustrates the disconnecting of a computer fro:m the broadcast

channel in an unplatmed manner. In this illustration, computer H has diiconnected in an
5 unplarmed manner. When each of its neighbors, computers A, E, F, and l, recognizes the

disconnection, each neighbor broadcasts a port connection request indicating that it needs to

fill an empty port. As shown by the dashed lines, computers F and I and computers A and E

respond to each other’s requests and establish a connection.

It is possible that a planned or unplanned disconnection may result in two

10 neighbors each having an empty intemal port. In such a case, since they are neighbors, they

are already connected and carmot fill their empty ports by connecting to each other. Such a

condition is referred to as the “neighbors with empty ports” condition. Each neighbor

broadcasts a port connection request when it detects that it has an empty port as described

above. When a neighbor receives the port connection request from the other neighbor, it will

15 recognize the condition that its neighbor also has an empty port. Such a condition may also

occur when the broadcast channel is in the small regime. The condition can only be

corrected when in the large regime. When in the small regime, each computer will have less

than four neighbors. To detect this condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the

20 condition and sends a condition check message to the other neighbor. The condition check

message includes a list of the neighbors of the sending computer. When the receiving

computer receives the list, it compares the list to its own list of neighbors. If the lists are

different, then this condition has occurred in the large regime and repair is needed. To repair

this condition, the receiving computer will send a condition repair request to one of the

25 neighbors of the sending computer which is not already a neighbor of the receiving

computer. When the computer receives the condition repair request, it disconnects from one

of its neighbors (other than the neighbor that is involved with the condition): and connects to
the computer that sent the condition repair request. Thus, one of the oiiginal neighbors

involved in the condition will have had a port filled. However, two computers are still in

30 need of a connection, the other original neighbor and the computer that is now disconnected

from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to

[D3004-8001/SU)D3733.l06] -14- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 690 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 691 of 1442

each other when they receive the requests. If, however, the two computers are neighbors,

then they repeat the condition repair process until two non-neighbors are in need of

connections.

It is possible that the two original neighbors with the condition may have the

5 same set of neighbors. When the neighbor that receives the condition check message

determines that the sets of neighbors are the same, it sends a condition double check message

to one of its neighbors other than the neighbor who also has the condition. When the

computer receives the condition double check message, it determines whether it has the same

set of neighbors as the sending computer. If so, the broadcast channel is in the small regime

10 and the condition is not a problem. If the set of neighbors are diiferent, then the computer

that received the condition double check message sends a condition check message to the

original neighbors with the condition. The computer that receives that condition check

message directs one of it neighbors to connect to one of the original neighbors with the

condition by sending a condition repair message. Thus, one of the original neighbors with

15 the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this

illustration, computer H disconnected in an unplanned manner, but computers F and I

responded to the port connection request of the other and are now connected together. The

other former neighbors of computer H, computers A and E, are already neighbors, which

20 gives rise to the neighbors with empty ports condition. In this example, computer E received

the port connection request from computer A, recognized the possible condition, and sent

(since they are neighbors via the internal connection) a condition check message with a list

of its neighbors to computer A. When computer A received the list, it recognized that

computer E has a different set of neighbor (i. e., the broadcast channel is in the large regime).

25 Computer A selected computer D, which is a neighbor of computer E and sent it a condition

repair request. When computer D received the condition repair request, it disconnected from

one of its neighbors (other than computer E), which is computer G in this example.

Computer D then connected to computer A. Figure 5D illustrates two computers that are n.ot

neighbors who now have empty ports. Computers E and G now have empty ports and are

30 not currently neighbors. Therefore, computers E and G can connect to each other.

Figures SE and 51-‘ further illustrate the neighbors with empty ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this

[03004-8001/SLO03733.l06] -15- 731/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 691 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 692 of 1442

example, if computer E disconnected in an unplanned manner, then each computer

broadcasts a port connection request when it detects the disconnect. When computer A

receives the port connection request form computer B, it detects the neighbors with empty

ports condition and sends a condition check message to computer B. Computer B recognizes

5 that it has the same set of neighbors (computer C and D) as computer A and then sends a

condition double check message to computer C. Computer C recognizes that the broadcast

channel is in the small regime because is also has the same set of neighbors as computers A

and B, computer may then broadcast a message indicating that the broadcast channel is in

the small regime.

10 Figure 5F illustrates the situation of Figure 5E when in the large regime. As

discussed above, computer C receives the condition double check message from computer B.

In this case, computer C recognizes that the broadcast chaimel is in the large regime because

it has a set of neighbors that is different fi'om computer B. The edges extending up from

computer C and D indicate connections to other computers. Computer C then sends a

15 condition check message to computer B. When computer B receives the condition check

message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C, and tries to connect to computer B and the neighbor from which it

disconnected tries to connect to computer A. i

20 Port Selection

As described above, the TCP/IP protocol designates ports above number 2056

as user ports. The broadcast technique uses five user port numbers on each computer: one

external port and four internal ports. Generally, user ports carmot be statically allocated to

an application program because other applications programs executing on the same computer

25 may use conflicting port numbers. As a result, in one embodiment, the computers connected

to the broadcast channel dynamically allocate their port numbers. Each computer could

simply try to‘ locate the lowest number unused port on that computer and use that port as the

call—in port. A seeking computer, however, does not know in advance the call-in port

number of the portal computers when the port numbers are dynamically allocated. Thus, a

30 seeldng computer needs to dial ports of a portal computer starting with the lowest port

number when locating the call—in port of a portal computer. If the portal computer is

[O3004-800]/SLO03733.I06] — 16- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 692 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 693 of 1442

connected to (or attempting to connect to) the broadcast charmel, then the seeking computer

' would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application

program on a computer tried to allocate low-ordered port numbers, then a portal computer

5 may end up with a high-numbered port for its call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a

relatively slow process, it would take the seeking computer a long time to locate the call-in

port of a portal computer. To minimize this time, the broadcast technique uses a port

ordering algorithm to identify the port number order that a portal computer should use when

10 finding an available port for its call-in port. In one embodiment, the broadcast technique

uses a hashing algorithm to identify the port order. The algorithm preferably distributes the

ordering of the port numbers randomly through out the user port number space and only

selects each port number once. In addition, every time the algorithm is executed on any

computer for a given charmel type and channel instance, it generates the same port ordering.

>—‘ LII
As described below, it is possible for a computer to be connected to multiple broadcast

charmels that are uniquely identified by charmel type and channelinstance. The algorithm

may be “seeded” with channel type and charmel instance in order to generate a unique

ordering of port numbers for each broadcast charmel. Thus, a seeking computer will dial the

ports of a portal computer in the same order as the portal computer used when allocating its

20 call-in port.

If many computers are at the same time seeking connection to a broadcast

channel through a single portal computer, then the ports of the portal computer may be busy

when called by seeking computers. The seeking computers would typically need to keep on

redialing a busy port. The process of locating a call-in port may be significantly slowed by

25 such redialing. In one embodiment, each seeking computer may each reorder the first few

port numbers generated by the hashing algorithm. For example, each seeking computer

could randomly reorder the first eight port numbers generated by the hashing algorithm. The

random ordering could also be weighted where the first port number generated by the

hashing algorithm would have a 50% chance of being first in the reordering, the second port

30 number would have a 25% chance of being first in the reordering, and so on. Because the

seeking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is

[o3oo4.soo:/s1.oo3733. me) .17. 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 693 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 694 of 1442

possible that eight seeking computers could be simultaneously dialing ports in different

sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer _

Each computer that can connect to the broadcast charmel has a list of one or

I

5 more portal computers through which it can connect to the broadcast channel. In one

embodiment, each computer has the same set of portal computers. A seeking computer

locates a portal computer that is connected to the broadcast charmel by successively dialing

the ports of each portal computer in the order specified by an" algorithm. A seeking computer

could select the first portal computer and then dial all its ports until a call-in port of a

10 computer that is fully connected to the broadcast channel is found. If no call-in port is

found, then the seeking computer would select the next portal computer and repeat the

process until a portal computer with such a call-in port is found. A problem with such a

seeking technique is that all user ports of each portal computer are dialed until a portal

computer fully connected to the broadcast channel is found. In an alternate embodiment, the

15 seeking computer selects a port number according to the algorithm and then dials each portal

computer at that port number. If no acceptable call-in port to the broadcast channel is found,

then the seeking computer selects the next port number and repeats the process. Since the

call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first

dials the port numbers that are most likely to be call-in ports of the broadcast channel. The

20 seeking computers may have a maximum search depth, that is the number of ports that it will

dial when seeking a portal computer that is fully connected. If the seeking computer

exhausts its search depth, than either the broadcast channel has not yet been-established or, if

the seeking computer is also a portal computer, it can then establish the broadcast channel

with itself as the first fully connected computer.

25 When a seeking computer locates a portal computer that is itself not fully

connected, the two computers do not connect when they first locate each other because the

broadcast channel may already be established and accessible through a higher-ordered port

number on another portal computer. If the two seeking computers were to connect to each

other, then two disjoint broadcast channels would be formed. Each seeking computer can

30 share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seekingicomputer has searched all the portal computers to a depth of eight,

[03004-8001/SU303733.I06] -18- 751/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 694 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 695 of 1442

then the one seeking computer can share that it has searched to a depth of eight with another

seeking computer. If that other seeking computer has searched to a depth of, for example,

only four, it can skip searching through depths five through eight and that other seeking

computer can advance its searching to a depth of nine.

5 In one embodiment, each computer may have a different set of portal

computers and a different maximum search depth. In such a situation, it may be possible that

two disjoint broadcast charmels are formed because a seeking computer cannot locate a fully

connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast charmels would be formed.

10 Idengffigg Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are

preferably selected randomly from the set of currently connected computers. One advantage

of the broadcast channel, however, is that no computer has global knowledge of the

broadcast channel. Rather, each computer has local knowledge of itself and its neighbors.

15 This limited local knowledge has the advantage that all the connected computers are peers

(as far as the broadcasting is concerned) and the failure of any one computer (actually any

three computers when in the 4-regular and 4-connect form) will not cause the broadcast

channel to fail. This local knowledge makes it difficult for a portal computer to randomly
select four neighbors for a seeking computer. A

20 V To select the four computers, a portal computer sends an edge connection

request message through one of its internal connections that is randomly selected. The

receiving computer again sends the edge connection request message through one of its

internal connections that is randomly selected. This sending of the message corresponds to a

random walk through the graph that represents the broadcast chamtel. Eventually, a

25 receiving computer will decide that the message has traveled far enough to represent a

randomly selected computer. That receiving computer will offer the internal connection

upon which it received the edge connection request message to the seeking computer for

edge pinning. Of course, if either of the computers at the end of the offered internal ~

connection are already neighbors of the seeking computer, then the seeking computer cannot

30 connect through that internal connection. The computer that decided that the message has

[OJOO4-8001/SL003733. l06] -19- 1/3 1/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 695 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 696 of 1442

_ traveled far enough will detect this condition of already being a neighbor and send the

message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximately twice the estimated 0

5 diameter of the broadcast charmel. The message includes an indication of the distance that it

is to travel. Each receiving computer decrements that distance to travel before sending the

message on. The computer that receives a message with a distance to travel that is zero is

considered to be the randomly selected computer. If that randomly selected computer cannot

connect to the seeking computer (e.g., because it is already connected to it), then that

10 randomly selected computer forwards the edge connection request to one of its neighbors

with a new distance to travel. In one embodiment, the forwarding computer toggles the new

distance to travel between zero and one to help prevent two computers from sending the

message back and forth between each other.

Because of the local nature of the information maintained by each computer

15 connected to the broadcast charmel, the computers need not generally be aware of the

diameter of the broadcast channel. In one embodiment, each message sent through the

broadcast charmel has a distance traveled field. Each computer that forwards a message

increments the distance traveled field. Each computer also maintains an esfimated diameter

of the broadcast charmel. When a computer receives a message that has traveled a_ distance

20 thatindicates that the estimated diameter is too small, it updates its estimated diameter and

broadcasts an estimated diameter message; When a computer receives an estimated diameter

message that indicates a diameter that is larger than its own estimated diameter, it updates its

own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

25 External Data Regresentation

The computers connected to the broadcast charmel may intemally store their

data in different fonnats. For _example, one computer may use 32-bit integers, and another

computer may use 64-bit integers. As another example, one computer may use ASCII to

represent text and another computer may use Unicode. To allow communications between

30 heterogeneous computers, the messages sent over the broadcast channel may use the XDR

(“eXtema1 Data Representation”) format.

[O3004-8001/SU)03733.l06] -20- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 696 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 697 of 1442

The underlying peer-to-peer communications protocol may send multiple

messages in a single message stream. The traditional technique for retrieving messages from

a stream has been to repeatedly invoke an operating system routine to retrieve the next

message in the stream. The retrieval of each message may require two calls to the operating

5 system: one to retrieve the size of the next message and the other to retrieve the number of

bytes indicated by the retrieved size. Such calls to the operating system can, however, be

very slow in comparison to the invocations of local routines. To overcome the inefliciencies

of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the

message boundaries in a stream of messages. The broadcast technique may request the

10 operating system to provide the next, for example, 1,024 bytes from the stream. The

broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages

and use the success or failure of each invocation to determine whether another block of 1,024

bytes needs to be retrieved from the operating system. The invocation of XDR routines do

not involve system calls and are thus more efficient than repeated system calls.

‘15 M-Regglar

In the embodiment described above, each fully connected computer has four

internal connections. The broadcast technique can be used with other numbers of internal

connections. For example, each computer could have 6, 8,‘or any even number of internal

connections. As the number of internal connections increase, the diameter of the broadcast

20 channel tends to decrease, and thus propagation time for a message tends to decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,

increase as the number of internal connections increases. When the number of internal

connectors is even, then the broadcast channel can be maintained as m-regular and

m-connected (in the steady state). If the number of internal connections is odd, then when

25 the broadcast charmel has an odd number of computers connected, one of the computers will

have less than that odd number of internal connections. In such a situation, the broadcast

network is neither m-regular nor m-connected. When the next computer connects to the

broadcast channel, it can again become m-regular and m-connected. Thus, with an odd

number of internal connections, the broadcast channel toggles between being and not being

30 m-regular and m-connected.

[03004-8001/SLO03733.l06] -2 l - ml/on

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 697 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 698 of 1442

Components

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was

only one broadcast channel and that each computer had only one connectionsto that broadcast

5 chaimel. More generally, a network of computers may have multiple broadcast charmels,

each computer" may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast charmel. The broadcast channel is well

suited for computer processes (e.g., application programs) that execute collaboratively, such

as network meeting programs. Each computer process can connect to one or more broadcast

10 charmels. The broadcast channels can be identified by charmel type (e.g., application

program name) and channel instance that represents separate broadcast channels for that

charmel type. When a process attempts to connect to a broadcast channel, it seeks a process

currently connected to that broadcast channel that is executing on a portal computer. The

seeking process identifies the broadcast charmel by cliarmel type and channel instance.

15 Computer 600 includes multiple application programs 601 executing as

separate processes. Each application program interfaces with a broadcaster component 602

for each broadcast channel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of the application

program. Alternatively, the broadcaster component may execute as a separate process or

20 thread from the application program. In one embodiment, the broadcaster component

provides functions (e.g., methods of class) that can be invoked by the application programs.

The primary fimctions provided may include a connect ftmction that an application program

invokes passing an indication of the broadcast channel to which the application program

wants to connect. The application program may provide a callback routine that the

25 broadcaster component invokes to notify the application program that the connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message function that the application program can

invoke to retrieve the next message that is broadcast on the broadcast charmel. Alternatively,

the application program may provide a callback routine (which may be a virtual fimction

30 provided by the application program) that the broadcaster component invokes to notify the

application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

(03004-8001/SLD03733.l06] -22- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 698 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 699 of 1442

the call-in port, they are transferred to other ports that serve as the external and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

5 (e.g., display devices), and storage devices (e.g., disk drives). The memory and storage

devices are computer-readable medium that may contain computer instructions that

implement the broadcaster component. In addition, the data structures and message

structures may be stored or transmitted via a signal transmitted on a computer-readable

media, such as a communications link.

10 Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in- one embodiment. The broadcaster component includes a connect component

701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an

acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response component 711 that

15‘ are invoked by the broadcaster component. The application program invokes the connect

component to establish a connection to a designated broadcast channel. The connect

component identifies the external port and installs the external dispatcher for handling

messages that are received on the external port. The connect component invokes the seek

portal computer component 705 to identify a portal computer that is connected to the

20 broadcast channel and invokes the connect request component 706 to ask the portal computer

(if fully connected) to select neighbor processes for the newly connecting process. The

external dispatcher receives external messages, identifies the type of message, and invokes

the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

25 received broadcast messages are stored in the broadcast message queue 709. The acquire

message component is invoked to retrieve messages from the broadcast queue. The

broadcast component is invoked by the application program to broadcast messages in the

broadcast channel.

A Distributed Conferencing System

30 In one embodiment, a conferencing system is implemented using the broadcast

' charmel. Each participant in a conference connects to the conference’s broadcast channel,

[o3oo4.sooi/suoo3733.io6] A -23- 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 699 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 700 of 1442

and a participant is designated as the speaker. The conferencing application program may

include a speaker component and an attendee component. The speaker component

broadcasts the conference events on the broadcast channel. Each attendee component

receives the conference events and displays the results of the conference events. For

5 example, the speaker may present slides at the conference along with a description of each

slide. Each attendee may receive an electronic copy of the slides in advance of the

conference. At the scheduled time for the conference, the speaker and each attendee joins

the conference by connecting to the broadcast channel of the conference. The speaker

component allows the speaker to indicate when to displaywhich slide. When a new slide is

10 displayed, the speaker component broadcasts a new slide message. When the attendee

component receives the new slide message, it displays the new slide to the participant. Also,

the speaker component may allow the speaker to draw on a slide using a stylus or other

pointing device. The speaker component then broadcasts draw messages on the broadcast

channel so the attendee component can display the drawing to the attendees. The

15 conferencing system may also use speech-to-text and text-to—speech to distribute the

speaker’s comments to all attendees.

The conferencing system may provide a directory web site where

participants can locate and sign up for a conference of interest. The directory may provide a

hierarchical categorization of scheduled conferences. When a user decides to sign up for a

20 conference, the web server may download the broadcaster component and the conferencing

application program to the attendee’s computer, if not already stored on the attendee’s

computer. The web server will also download the channel type and channel instance

associated with the broadcast channel for the conference along with the identification of the

portal computers for the broadcast channel. The web server may also download the slides or

25 other content to be displayed to the attendees during the conference.

The conferencing system may allow an entity to schedule conferences

using the web site. For example, a software company may want to schedule a conference to

announce a new product. The creation of the conference would entail the generation of a

channel type and charmel instance, the specification of a security level (e.g., encrypted

30 messages), the specification of attendee qualifications, the providing of a description and

scheduled time of. the conference, the specification of the content to be distributed to the

attendees, and so on. The speaker at a conference may not want to publicize the actual

[03004-8001/SL003733.l06] -24- -,,,,,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 700 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 701 of 1442

content (e.g., slides) in advance. In such a situation, the content can be encrypted when

distributed to the attendees, and a key to decrypt the content can be distributed by the

speaker during the conference. For example, each slide for the software company’s

announcement can be encrypted with a different key, and the appropriate key can be

5 broadcast with each new slide message.

The conferencing system may allow attendees to broadcast comments

on the broadcast charmel. The times when an attendee can broadcast comments may be

controlled by the speaker. For example, the speaker component may broadcast a comments

allowed message and a comments not allowed message to delimit the times when comments

l0 will be allowed. Comments broadcast outside those times may be ignored. Alternatively, the

attendees may be allowed to broadcast comments at any time, but the other attendees ignore

those comments until the speaker broadcasts an approval message indicating that the attendee

component can display a certain comment.

The conferencing system may allow each attendee to connect to and

15 disconnect from the conference broadcast channel as this wish during the conference. In

addition, the conferencing system may allow multiple speakers to share the “podium.” The

speakers can pass a speakers token between them to indicate who is currently speaking and

thus in control of the conference. An attendee who joins the conference late may be able to

synchronize with the conference by accessing a conference monitoring web server. The

20 monitoring web server may be connected to the conference broadcast channel and monitor

the current state of the conference. When an attendee joins late, the monitoring web server

can provide the attendee with the current state of the conference. From then on, the attendee

can listen on the broadcast channel to follow the progress of the conference. In addition, the

attendee component may allow the attendee to view parts of the presentation other than that

25 which is currently being presented. In this way, an attendee can refer back to or ahead to

other portions of the presentation.

The following tables list messages sent by the broadcaster components.

_ EXTERNAL MESSAGES

Messasew
seeking_connection_call Indicates that a seeking process would like to know whether the

receiving process is frilly connected to the broadcast channel

[03004-800 l/SLOO3733. I06] -25- 7/3 1 /99

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 701 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 702 of 1442

Indicates that the sending process would like the receiving

process to initiate a connection of the sending process to the !
broadcast channel

connection_request_call

oi
Indicates that the sending process is proposing an edge through

which the receiving process can connect to the broadcast

channel (i. e., edge pinning)

edge_proposal_call

Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcast ,

por1_connection_ca1l

charmel

connected_stmt Indicates that the sending process is connected to the broadcast ‘

channel]

condition_repair_stmt Indicates that the receiving process should disconnect fiom one !
of its neighbors and connect to one of the processes involved in

the neighbors with empty port condition

INTERNAL MESSAGES

 Message Type

broadcast_stmt

Description

 Indicates a message that is being broadcast through the

broadcast charmel for the application programs

 connection_poi1__search_stmt Indicates that the designated process is looking for a port

through which it can connect to the broadcast charmel

connection_edge_search_ca1I Indicates that the requesting process is looking for an edge‘

through which it can connect to the broadcast channel

 connection_edge_search_resp Indicates whether the edge between this process and the

sending neighbor has been accepted by the requesting

Pm)’

diarneter_estimate_stmt Indicates an estimated diameter of the broadcast charmel

dia.rneter_reset_stmt Indicates to reset the estimated diameter to indicated
diameter

 disconnect_strnt Indicates that the sending neighbor is disconnecting from
the broadcast charmel

condition_check_stmt Indicates that neighbors with empty port condition have
been detected

condition_doub1e_check_snnt Indicates that the neighbors with "empty ports have the
same set of neighbors

 Indicates that the broadcast channel is being shutdownshutdown_smit

[03004-800]/SLOO3733.l06] -26- 731/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 702 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 703 of 1442

Flow Diaggams

Figures 8-34 are flow diagrams illustrating the processing of the bI08d0aSt€f

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment. This routine is passed a charmel type (e.g., application

5 name) and channel instance (e.g., session identifier), that identifies the broadcast channel to

which this process wants to connect. The routine is also passed auxiliary information that

includes the list of portal computers and a connection callback routine. When the connection

is established, the connection callback routine is invoked to notify the application program.

When this process invokes this routine, it is in the seeking connection state. When a portal

10 computer is located that is connected and this routine connects to at least one neighbor, this

process enters the partially connected state, and when the process eventually connects to four

neighbors, it enters the fully connected state. When in the small regime, a fully connected

process may have less than four neighbors. In block 801, the routine opens the call-in port

through which the process is to communicate with other processes when establishing external

15 and internal connections. The port is selected as the first available port using the hashing

algorithm described above. In block 802, the routine sets the connect time to the current

time. The connect time is used to identify the instance of the process that is connected

through this external port. One process may connect to a_ broadcast channel of a certain

channel type and channel instance using one call-in port and then disconnects, and another

20 process may then connect to that same broadcast channel using the same call-in port. Before

the other process becomes fully connected, another process may try to communicate with it

thinking it is the fully connected old process. In such a case, the connect time can be used to

identify this situation. In block 803, the routine invokes the seek portal computer routine

passing the channel type and channel instance. The seek portal computer routine attempts to

25 locate a portal computer through which this process can connect to the broadcast charmel for

the passed type and instance. In decision block 804, if the seek portal computer routine is

successful in locating a frilly connected process on that portal computer, then the routine

continues at block 805, else the routine returns an unsuccessful indication. In decision block

805, if no portal computer other than the portal computer on which the process is executing

30 was located, then this is the first process to fully connect to broadcast channel and the

routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully
[o3oo4-soor/suoo3733. 106] -27- mmo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 703 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 704 of 1442

connected. In block 807, the routine installs the external dispatcher for processing messages

. receivedthrough this process’ external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispatcher is invoked.

The routine then returns. In block 808, the routine installs an external dispatcher. In block

5 809, the routine invokes the connect request routine to initiate the process of identifying

neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the charmel type and channel

instance of the broadcast channel to which this process wishes to connect. This routine, for

10 each search depth (e.g., port number), checks the portal computers at that search depth. If a

portal computer is located at that search depth with a process that is fiilly connected to the

broadcast charmel, then the routine returns an indication of success. In blocks 902-911, the

routine loops selecting each search depth until a process is located. In block 902, the routine

‘selects the next search depth using a port number ordering algorithm. In decision block 903,

15 if all the search depths have already been selected during this execution of the loop, that is

for the currently selected depth, then the routine returns a failure indication, else the routine

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer

and determining whether a process of that portal computer is connected to (or attempting to

connect to) the broadcast charmel with the passed charmel type and channel instance. In

20 block 904, the routine selects the next portal computer. In decision block 905, if all the

portal computers have already been selected, then the routine loops to block 902 to select the

next search depth, else the routine continues at block 906. block 906, the routine dials the

selected portal computer through the port represented by the search depth. In decision block

907, if the dialing was successful, then the routine continues at block 908, else the routine

25 loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call-in port of the broadcast channel of the passed charmel type and charmel

instance of a process executing on that portal computer. In block 908, the routine invokes a

contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is fully connected to the broadcast

30 channel. In block 909, the routine hangs up on the selected portal computer. In decision

block 910, if the answering process is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the

[03004-8001/SU)03733.l06] .-28- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 704 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 705 of 1442

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processes that call. The routine then

loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process

5 routine in one embodiment. This routine determines whether the process of the selected

portal computer that answered the call-in to the selected port is fully connected to the

broadcast charmel. In block 1001, the routine sends an external message (i.e.,

seeking_connection_call) to the answering process indicating that a seeking process wants to

know whether the answering process is fully connected to the broadcast channel. In block

10 1002, the routine receives the external response message from the answering process. In

decision block 1003, if the external response message is successfully received (i. e.,

seeking_connection_resp), then the routine continues at block 1004, else the routine returns.

Wherever the broadcast component requests to receive an external message, it sets a time out

period. If the external message is not received within that time out period, the broadcaster

15 component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

_ The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In

decision block 1004, if the answering process indicates in its response message that it is fully

20 connected to the broadcast channel, then the routine continues at block 1005, else the routine

continues at block 1006. In block 1005, the routine adds the selected portal computer to a

list of connected portal computers and then returns. In block 1006, the routine adds the

answering process to a list of fellow seeking processes and then retums.

Figure 11 is a flow diagram illustrating the processing of the connect request

25 routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this

process to the broadcast charmel. In decision block 1101, if at least one process of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A process of the portal

30 computer may no longer be in the list if it recently disconnected from the broadcast channel.

In one embodiment, a seeking computer may always search its entire search depth and find

multiple portal computers through which it can connect to the broadcast channel. In block

[03004-800llSI.0O3733.l06] -29- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 705 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 706 of 1442

20

25

30

1102, the routine restarts the process of connecting to the broadcast channel and returns. In

block 1103, the routine dials the process of one of the found portal computers through the

call-in port. In decision block 1104, if the dialing is successful, then the routine continues at

block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

example, the dialed process recently disconnected from the broadcast charmel. In block

1105, the routine sends an external message to the dialed process requesting a connection to

the broadcast channel (i. e., connection_request_call). In block 1106, the routine receives the

response message (i.e., connection_request_resp). In decision block 1107, if the response

message is successfully received, then the routine continues at block 1108, else the routine

continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,

empty internal connections) for this process based on the received response. When in the

large regime, the expected number of holes is zero. When in the small regime, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated

diameter of the broadcast channel based on the received response. In decision block 1111, if

the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

I V neighbor to this process. This adding of the answering process typically occurs when the

broadcast channel is in the small regime. When in the large regime, the random walk search

for a neighbor is performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then returns. ,

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking

process is attempting to establish a connection to the broadcast charmel through this process.

In block 1201, the routine attempts to answer a call on the call-in port. In decision block

1202, if the answer is successful, then the routine continues at block 1203, else the routine

returns. In block 1203, the routine receives the external message from the external port. In

decision block 1204, if the type of the message indicates that a seeking process is calling

(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine

returns. In block 1205, the routine sends an external message (i. e., seeking_connection_resp)

to the other seeking process indicating that this process is also is seeking a connection. In

decision block 1206, if the sending of the external message is successful, then the routine

[03004-800] /SL003733.l 06] -3 0.. 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 706 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 707 of 1442

continues at block 1207, else the routine returns. In block 1207, the routine adds the other

seeking process to a list of fellow seeking processes and then returns. This list may be used

if this process can find no process that is fully connected to the broadcast charmel. In which

case, this process may check to see if any fellow seeking process were successful in

5 connecting to the broadcast channel. For example, a fellow seeking process may become the

first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment. This routine sets the state of this process to fully connected to the

broadcast channel and invokes a callback routine to notify the application program that the

10 process is now fully connected to the requested broadcast charmel. In block 1301, the

routine sets the connection state of this process to fiilly connected. In block 1302, the

routine notifies fellow seeking processes that it is fully connected by sending a connected

external message to them (i.e., connected_stmt). In block 1303, the routine invokes the

connect callback routine to notify the application program and then returns.

15 Figure 14 is a flow diagram illustrating the processing ?of the external

dispatcher routine in one embodiment. This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine to handle that message. This routine lloops processing
each message until all the received messages have been handled. In block 1401, the routine

20 answers (e.g., picks up) the external port and retrieves an external message. In decision

block 1402, if a message was retrieved, then the routine continues at block 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if

the message type is for a process seeking a connection (i._e., seeking_connection_call), then

the routine invokes the handle seeking connection call routine in block 1404, else the routine

25 continues atblock 1405. In decision block 1405, if the message type is for a connection

request call (z‘.e., connection_request_cal1), then the routine invokes the handle connection

request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (i.e., edge_proposal_call), then the

.routine invokes the handle edge proposal call routine in block 1408, "else the routine

30 continues at block 1409. In decision block 1409, if the message type is port connect call

(i.e., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 1411, if the message

[03004-8001/Sm03733.l06] -3 l - 7/31/oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 707 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 708 of 1442

type is a connected statement (i. e., connected_stmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement (i. e., condition_repair_stmt),

then the routine invokes the handle condition repair routine in block 1413, else the routine

5 loops to block 1414 to process the next message. After each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

connection call routine in one embodiment. This routine is invoked when a seeking process

10 is calling to identify a portal computer through which it can connect to the broadcast charmel.

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully

connected to the broadcast channel and continues at block 1505. In block 1503, the routine

15 sets a message to indicate that this process is not fully connected. In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this

process is not fully connected, then it is attempting to connect to the broadcast channel. In

block 1505, the routine sends the external message response (i. e., seeking_connection_resp)

to the seeking process and then returns.

20 Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment. This routine is invoked when the calling process

wants this process to initiate the connection of the process to the broadcast charmel. This

routine either allows the callingvprocess to establish an internal connection with this process

(e. g., if in the small regime) or starts the process of identifying a process to which the calling

25 process can connect. In decision block 1601, if this process is currently frilly connected to

the broadcast charmel, then the routine continues at block 1603, else the routine hangs up on

the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. In block 1604, the

routine sets the estimated diameter in the response message. In block 1605, the routine

30 indicates whether this process is ready to connect to the calling process. This process is

ready to connect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an

[03004-800lISb003733.lO6| -32- 7,31/oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 708 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 709 of 1442

external message that is responsive to the connection request call (1‘.e.,

connection_request_resp). In block 1607, the routine notes the number of holes that the

calling process needs to fill as indicated in the request message. In decision block 1608, if

this process is ready to connect to the calling process, then the routine continues at block

5 1609, else the routine continues at block 1611. In block 1609, the routine invokes the add

neighbor routine to add the calling process as a neighbor. In block 1610, the routine

decrements the number of holes that the calling process needs to fill and continues at block

1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if

this process has no holes or the estimated diameter is greater than one (i. e., in the large

10 regime), then the routine continues at block 1613, else the routine continues at block 1616.

In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connect to the calling process to the broadcast charmel. One request is forwarded for each

pair of holes of the calling process that needs to be filled. In decision block 1613, if the

number of holes of the calling process to be filled is greater than or equal to two, then the

15 routine continues at block 1614, else the routine continues at block 1616. In block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

to an indication of the calling process and the random walk distance. In one embodiment, the

distance is twice in the estimated diameter of the broadcast channel. In block 1614, the

routine decrements the holes left to fill by two and loops to block 1613. In decision block

20 1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine

returns. In block 1617, the routine invokes the fill hole routine passing the identification of

the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,

connection_port_search_stmt) for a hole of a connected process through which the calling

process can connect to the broadcast charmel. The routine then returns.

25 Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment. This routine adds the process calling on the external port as a

neighbor to this process. In block 1701, the routine identifies the calling process on the

external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet

received the broadcast messages from this process. This flag is used to ensure that there are

30 no gaps in the messages initially sent to the new neighbor. The external port becomes the

internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

[o3oo4.xoo I /su)o3733. 105} -3 3 - 7,3 1 /03

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 709 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 710 of 1442

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of this process to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this process. In block 1706, the routine

installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when

5 a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process buffered up messages while not fully connected, then

the routine continues at block 1708, else the routine continues at block 1709. In one

embodiment, a process that is partially connected may buffer the messages that it receives

through an internal connection so that it can send these messages as it connects to new

10 neighbors. In block 1708, the routine sends the buffered messages to the new neighbor

throughthe internal port. In decision block 1709, if the number of holes of this process

equals the expected number of holes, then this process is fully connected and the routine

continues at block l7l0, else the routine continues at block 1711. In block 1710, the routine

invokes the achieve connected routine to indicate that this process is fully connected. In

15 decision block 1711, if the number of holes for this process is zero, then the routine

continues at block 1712, else the routine returns. In block 1712, the routine deletes any

pending edges and then returns. A pending edge is an edge that has been proposed to this

process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward

20 connection edge search routine in one embodiment. This routine is responsible for passing

along a request to connect a requesting process to a randomly selected neighbor of this

process through the internal port of the selected neighbor, that is part of the random walk. In

decision block 1801, if the forwarding distance remaining is greater than zero, then the

routine continues at block 1804, else the routine continues at block 1802. In decision block

25 1802," if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

this process, then the routine returns, else the routine continues at block 1804. In blocks

1804-1807, the routine loops attempting to send a connection edge search call internal

30 message (i. e., connection_edge_search_calI) to a randomly selected neighbor. ln block 1804,

the routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

[o3oo4—soo1/suoo3733.ios] -34- 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 710 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 711 of 1442

message and the routine returns, else the routine continues at block 1806. In block 1806, the

routine sends a connection edge search call internal message to the selected neighbor. In

decision block 1807, if the sending of the message is successful, then the routine continues at

block 1808, else the routine loops to block 1804 to select the next neighbor. When the

5 sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast channel in an unplarmed manner. Whenever such a situation is detected

by the broadcaster component, it attempts to find another neighbor by invoking the fill holes

routine to fill a single hole or the forward connecting edge search routine to fill two holes. In

block 1808, the routine notes that the recently sent connection edge search call has not yet

10 been acknowledged and indicates that the edge to this neighbor is reserved if the remaining

forwarding distance is less than or equal to one. It is reserved because the selected neighbor

may offer this edge to the requesting process for edge pinning. The routine then returns.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine. This routine is invoked when a message is received from a proposing

15 process that proposes to connect an edge between the proposing process and one of its

neighbors to this process for edge pinning. In decision block 1901, if the number of holes of

this process minus the number of pending edges is greater than or equal to one, then this

process still has holes to be filled and the routine continues at block 1902, else the routine

continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a

20 neighbor of this process, then the routine continues at block 1911, else the routine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed neighbor is already

pending as a proposed neighbor, then the routine continues at block 1911, else the routine

continues at _block 1907. In block 1907, the routine sends an edge proposal response as an

25 external message to the proposing process (i.e., edge_proposa1_resp) indicating that the

proposed edge is accepted. In decision block 1908, if the sending of the message was

successfiil, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add

neighbor routine to add the proposing process on the external port as a neighbor. The routine

30 then returns. In block 1911, the routine sends an external message (i. e., edge_proposal_resp)

indicating that this proposed edge is not accepted. In decision block 1912, if the number of

IOJOO4-8001/SU)03733.106] -3 5- -,,3,,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 711 of 1442

