
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 549 of 1442

Components 5

Figure 6 is a block diagram illustrating components of a ozomputer that is

connected to a broadcast channel. The above description generally assumeid that there was

only one broadcast channel and that each computer had only one connection io that broadcast
5 channel. More generally, a network of computers may have multiple broladcast channels,

each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast channel. The broadcas charmel is well

suited for computer processes (e.g., application programs) that execute coll boratively, such

as network meeting programs. Each computer process can connect to one o more broadcast

10 charmels. The broadcast charmels can be identified by charmel type (.g., application

program name) and channel instance that represents separate broadcast charmels for that

channel type. When a process attempts to connect to a broadcast channel, ii seeks a process
currently connected to that broadcast charmel that is executing on a portal computer. The

seeking process identifies the broadcast charmel by charmel type and charme instance.

15 Computer 600 includes multiple application programs 6d] executing as

separate processes. Each application program interfaces with a broadcasteril component 602
for each broadcast channel to which it is connected. The broadcaster corhponent may be»

‘ implement as an object that is instantiated within the process space oil the application
program. Alternatively, the broadcaster component may execute as a seplgarate process or

20 thread from the application program. In one embodiment, the broadcaster component
provides functions (e.g., methods of class) that can be invoked by the applifcation programs.
The primary fimctions provided may include a connect fimction that an appilication program
invokes passing an indication of the broadcast charmel to which the application program
wants to connect. The application program may provide a callback ’routine that the

25 broadcaster component invokes to notify the application program that the; connection has
been completed, that is the process enters the fully connected state. lfhe broadcaster

‘ component may also provide an" acquire message function that the application program can
invoke to retrieve the next message that is broadcast on the broadcast channeil. Alternatively,

the application program may provide a callback routine (which may be ax virtual function
30 provided by the application program) that the broadcaster component invokes to notify the

application program that a broadcast message has been received. Elach broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

[03004-8005/S1fi03733.I0l] -22- -,,3,,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 549 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 550 of 1442

the call-in port, they are transferred to other ports that serve as the exter:nal and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

5 (e.g., display devices), and storage devices (e.g., disk drives). The memiory and storage
devices are computer-readable medium that may contain computer iiistructions that

implement the broadcaster component. In addition, the data structureis and message
structures may be stored or transmitted via a signal transmitted on a cqimputer-readable
media, such as a communications link. I

10 Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment. The broadcaster component includes a corinect component
701, an external dispatcher 702, an internal dispatcher 703 for each internall connection, an
acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response coniponent 711 that
15 are invoked by the broadcaster component. The application program invoikes the connect

component to establish a connection to a designated broadcast channeli. The connect

component identifies the external port and installs the external dispatchier for handling

messages that are received on the external port. The connect component iilnvokes the seek
portal computer component 705 to identify a portal computer that is connected to the

20 broadcast channel and invokes the connect request component 706 to ask theiportal computer

(if fully connected) to select neighbor processes for the newly connecting process. The
external dispatcher receives external messages, identifies the type of message, and invokes

the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

25 received broadcast messages are stored in the broadcast message queue 709. The acquire

message component is invoked to retrieve messages from the broadcast queue. The

broadcast component is invoked by the application program to broadcast inessages in the
broadcast channel.

The following tables list messages sent by the broadcaster components.

[D3004-8005/SUJOS 733. I01] -23 - 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 550 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 551 of 1442

EXTERNAL MESSAGES

Message Type Description

seeking_connection_call Indicates that a seeking process would like to knhw whether the
receiving process is fully connected to the broaditast channel

connection_request_ca11 Indicates that the sending process would like thei receiving
process to initiate a connection of the sending prfocess to the
broadcast charmel .

edge_proposa1_cal1 Indicates that the sending process is proposing edge through
which the receiving process can connect to the broadcast
charmel (i. e., edge pinning)

port_connection_call Indicates that the sending process is proposing aiport through
which the receiving process can connect to the broadcast
channel

connected_stmt Indicates that the sending process is connected to the broadcast

charmel I

condition__repair_stmt Indicates that the receiving process should discoimect from one
of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition '

INTERNAL MESSAGES : ~

Message Type Description _

broadcast_stmt Indicates a message that is being broadcast lthrough the
I broadcast charmel for the application programs <

 connectionJJ0l't__SC8ICh_StlIlt Indicates that the designated process is looliing for a port

through which it can connect to the broadc st channel

connection_edge_search_call Indicates that the requesting process is loo ' g for an edge
through which it can connect to the broadc st channel

connection_edge_search_resp Indicates whether the edge between this pr cess and the
sending neighbor has been accepted by the - equesting
party i

d1ameter__estimate_stmt Indicates an estimated diameter of the broa cast charmel

diameter_reset_sunt Indicates to reset the estimated diameter to dicated

diameter 5

disconnect__stmt Indicates that the sending neighbor is disconnecting from
the broadcast channel -

Indicates that neighbors with empty port co dition have

[03004-8005/SID03733.l0l] -24- 5 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 551 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 552 of 1442

been detected

Indicates that the neighbors with empty por:ts have the
same set of neighbors =

Indicates that the broadcast channel is being shutdown

condition_double_check_stmt

shutdown_stmt

Flow Diagrams .

Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the
5 connect routine in one embodiment. This routine is passed a charmel type :(e.g., application

name) and channel instance (e.g., session identifier), that identifies the brozidcast channel to
which this process wants to connect. The routine is also passed auxiliarylinforrnation that

includes the list of portal computers and a connection callback routine. Whein the connection
is established, the connection callback routine is invoked to notify the application program.

10 When this process invokes this routine, it is in the seeking connection statelt When a portal

computer is located that is connected and this routine connects to at least ope neighbor, this
process enters the partially connected state, and when the process eventually’ connects to four

neighbors, it enters the fully connected state. When in the small regime, a; fully connected
process may have less than four neighbors. In block 801, the routine openls the call-in port

15 through which the process is to communicate with other processes when esta;blishing external

and internal connections. The port is selected as the first available port uising the hashing‘
algorithm described above. In block 802, the routine sets the connect tinie to the current

time. The connect time is used to identify the instance of the process 11:18! is connected
through this external port. One process may connect to a broadcast ch ' el of a certain

20 channel type and channel instance using one call-in port and then disconn cts, and another

process may then connect to that same broadcast charmel using the same cal.-in port. Before
the other process becomes fully connected, another process may try to cornllmunicate with it
thinking it is the fully connected old process. In such a case, the connect tirrie can be used to
identify this situation. In block 803, the routine invokes the seek portal domputer routine

25 passing the channel type and channel instance. The seek portal computer I'O;lltinC attempts to
locate a portal computer through which this process can connect to the broadcast channel for

the passed type and instance. In decision block 804, if the seek portal corpputer routine is

(03004-8005/SLOO3733.lOl] -25- 7/moo

I

i
4
a,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 552 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 553 of 1442

successful in locating a fully connected process on that portal computer, lthen the routine
continues at block 805, else the routine returns an unsuccessful indication. decision block

805, if no portal computer other than the portal computer on which the proéhess is executing
was located, then this is the first process to fully connect to broadcast !channel and the

5 routine continues at block 806, else the routine continues at block 808. Ilh block 806, the

routine invokes the achieve connection routine to change the state of process to fully
connected. In block 807, the routine installs the external dispatcher for processing messages

received through this process’ external port for the passed charmel type and charmel instance.

When a message is received through that external port, the external dispatcher is invoked.
10 The routine then returns. In block 808, the routine installs an external dispiatcher. In block

809, the routine invokes the connect request routine to initiate the process of identifying
neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of ithe seek portal

computer routine in one embodiment. This routine is passed the channel tiype and charmel
15 instance of the broadcast channel to which this process wishes to connect. {This routine, for

each search depth (e. g., port number), checks the portal computers at that stiarch depth. If a
portal computer is located at that search depth with a process that is fully :'connected to the

broadcast channel, then the routine returns an indication of success. In bloicks 902-911, the
routine loops selecting each search depth until a process is located. In blocki 902, the routine

20 selects the next search depth using a port number ordering algorithm. In decjiision block 903,
if all the search depths have already been selected during this execution ofi the loop, that is

for the currently selected depth, then the routine returns a failure indication; else the routine
continues at block 904. In blocks 904-911, the routine loops selecting eachi portal computer
and determining whether a process of that portal computer is connected to {or attempting to

25 connect to) the broadcast charmel with the passed charmel type and chaniiel instance. In

block 904, the routine selects the next portal computer. In decision block 905, if all the

portal computers have already been selected, then the routine loops to block :902 to select the

next search depth, else the routine continues at block 906. In block 906, thejroutine dials the

selected portal computer through the port represented by the search depth. decision block

30 907, if the dialing was successful, then the routine continues at block 908,; else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

«dialed port is the call-in port of the broadcast channel of the passed channel tiype and channel
[O3004-8005/Sb003733. I 0 l] -26- 5 7/3 "00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 553 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 554 of 1442

instance of a process executing on that portal computer. In block 908, the ioutine invokes a
contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is fully connected 0 the broadcast

channel. In block 909, the routine hangs up on the selected portal computer. In decision

5 block 910, if the answering process is frilly connected to the broadcast diharmel, then the
routine returns a success indicator, else the routine continues at block 911. block 911, the
routine invokes the check for external call routine to determine whether anlextemal call has
been made to this process as a portal computer and processes that call. llhe routine then

loops to block 904 to select the next portal computer.
10 Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment. This routine determines whether the procesis of the selected
portal computer that answered the call-in to the selected port is fully connected to the

broadcast charmel. In block 1001, the routine sends an external message (i. e.,

seeking__connection_call) to the answering process indicating that a seekingiprocess wants to
is know whether the answering process is fully connected to the broadcast channel. In block

1002, the routine receives the external response message from the answering process. In

decision block 1003, if the extemal response message is successfully received (i.e.,
seeking_connection__resp), then the routine continues at block 1004, else routine returns.
Wherever the broadcast component requests to receive an external message: it sets a time out

20 period. If the external message is not received within that time out period, the broadcaster

component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error as appropriate. In

25 decision block 1004, if the answering process indicates in its response message that it is fully

connected to the broadcast channel, then the routine continues at block 1005, else the routine

continues at block 1006. In block 1005, the routine adds the selected portal computer to a

list of connected portal computers and then returns. In block 1006, thelroutine adds theI

answering process to a list of fellow seeking processes and then returns. 1

30 Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this

[03004-8005ISLDO3733.l0l] -27- 7/moo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 554 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 555 of 1442

.

i»

process to the broadcast charmel. In decision block 1101, if at least one process of a portal

then the routinecomputer was located that is fully connected to the broadcast channel,i

continues at block 1103, else the routine continues at block 1102. A proiess of the portal
computer may no longer be in the list if it recently disconnected from the bioadcast channel.

5 In one embodiment, a seeking computer may always search its entire searcih depth and find
multiple portal computers through which it can connect to the broadcast charmel. In block

1102, the routine restarts the process of connecting to the broadcast channel and returns. In -

block 1103, the routine dials the process of one of the found portal compiiters through the

call-in port. In decision block 1104, if the dialing is successful, then the rovlitine continues at
to block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for

example, the dialed process recently disconnected from the broadcast cliarmel. In block
1105, the routine sends an external message to the dialed process requesting a connection to

the broadcast channel (i.e., connection_request_call). In block 1106, the roiitine receives the
response message (i.e., connection_request_resp). In decision block 1107:, if the response

15 message is successfully received, then the routine continues at block ll08lr else the routine
continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,

empty internal connections) for this process based on the received responise. When in the
large regime, the expected number of holes is zero. When in the small regiine, the expected
number of holes varies from one to three. In block 1109, the routine sets the estimated

20 diameter of the broadcast charmel based on the received response. In idecisi;bn block 1111, if
the dialed process is ready to connect to this process as indicated by the résponse message,

then the routine continues at block 1112, else the routine continues at block 1113. In block
1112, the routine invokes the add neighbor routine to add the answe ' g process as a

neighbor to this process. This adding of the answering process typicallzjntccurs when the
25 broadcast channel is in the small regime. When in the large regime, the r om walk search

for a neighbor is performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then returns. 5

Figure 12 is a flow diagram of the processing of the check ifor external call
routine in one embodiment. This routine is invoked to identify whether fellow seeking

30 process is attempting to establish a connection to the broadcast channel thrqlugh this process.

In block 1201, the routine attempts to answer a call on the call-in port. Iii decision block
1202, if the answer is successful, then the routine continues at block l203,l else the routine
[03004-8005/SL003733.10l 1 -28- ‘ 7,3,,o°

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 555 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 556 of 1442

returns. In block 1203, the routine receives the external message from the iexternal port. In

decision block 1204, if the type of the message indicates that a seeking iirocess is calling
(i. e., seeking_connection_call), then the routine continues at block 1205,; else the routine

returns. In block 1205, the routine sends an external message (i.e., seeking_Zconnection_resp)

5 to the other seeking process indicating that this process is also is seeking connection. In
decision block 1206, if the sending of the external message is successful,ithen the routine

continues at block 1207, else the routine returns. In block 1207, the routirie adds the other
seeking process to a list of fellow seeking processes and then returns. Thisllist may be used

if this process can find no process that is fully connected to the broadcast clitannel. In which

10 case, this process may check to see if any fellow seeking process wclire successful in
connecting to the broadcast channel. For example, a fellow seeking process! may become the

first process fully connected to the broadcast charmel.

Figure 13 is a flow diagram of the processing of the achieve coimnection routine
in one embodiment. This routine sets the state of this process to fully izonnected to the

15 broadcast channel and invokes a callback routine to notify the application program that the

process is now fully connected to the requested broadcast channel. In block 1301, the

routine sets the connection state of this process to fully connected. block 1302, the
routine notifies fellow seeking processes that it is fully connected by sending a connected

external message to them (i.e., connected_stmt). In block 1303, the rolitine invokes the
20 connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing Lof the external
dispatcher routine in one embodiment. This routine is invoked ‘when e external port

receives a message. This routine retrieves the message, identifies the exterrial message type,
and invokes the appropriate routine to handle that message. This routine iloops processing

25 each message until all the received messages have been handled. In block :l140l, the routine

answers (e.g., picks up) the external port and retrieves an external messége. In decision
block 1402, if a message was retrieved, then the routine continues at blocik 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if
the message type is for a process seeking a connection (i. e., seeking_connection_call), then

30 the routine invokes the handle seeking connection call routine in block 1404, else the routine

continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i.e., connection_request_cal1), then the routine invokes the handle connection

(03004-8005/SL003733.l0l] -29- ’ , 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 556 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 557 of 1442

request can routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (i.e., edge_propos: _call), then the

routine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is i on connect call

5 (1. e., port_connect_ca1l), then the routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In decision block 141

type is a connected statement (i.e., connected_stmt), the routine invhkes the handle

 .1, if the message

connected statement in block 1112, else the routine continues at block 1#12. In decision
block 1412, if the message type is a condition repair statement (i. e., condition_repair_stmt),

10 then the routine invokes the handle condition repair routine in block 1413 else the routine
————v

loops to block 1414 to process the next message. After each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the tfzxtemal port and
continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

15 connection call routine in one embodiment. This routine is invoked when seeking process
is calling to identify a portal computer through which it can connect to the bioadcast channel.

In decision block 1501, if this process is currently fully connected to the liroadcast channel
identified in the message, then the routine continues at block 1502, else the ioutine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is frilly
20 connected to the broadcast channel and continues at block 1505. In block ‘[1503, the routine

sets a message to indicate that this process is not fully connected. In block il504, the routine

adds the identification of the seeking process to a list of fellow seeking jirocesses. If this
process is not fully connected, then it is attempting to connect to the broa Ecast charmel. In

block 1505, the routine sends the external message response (i. e., seeking_i:.onnection_resp)

25 to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the himdle connection
request call routine in one embodiment. This routine is invoked when thi: calling process

wants this process to initiate the connection of the process to the broadcaist channel. This
routine either allows the calling process to establish an internal connection this process

30 (e.g., if in the small regime) or starts the process of identifying a process to iwhich the calling

process can connect. In decision block 1601, if this process is currently figrlly connected to
the broadcast charmel, then the routine continues at block 1603, else the routine hangs up on
[o3oo4—soos/stoo3733.1ou‘ -3 0- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 557 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 558 of 1442

the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. Injblock 1604, the

routine sets the estimated diameter in the response message. In block 1l605, the routine

indicates whether this process is ready to connect to the calling process. This process is
5 ready to connect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an
external message that is responsive to the connection requlest call (i. e.,

connection_request_resp). In block 1607, the routine notes the number of holes that the

calling process needs to fill as indicated in the request message. In decision block 1608, if
10 this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continues at block 1611. In block 1609, the routinei invokes the add

neighbor routine to add the calling process as a neighbor. In block 1610, the routine

decrements the number of holes that the calling process needs to fill and ccimtinues at block
1611. In block 1611, the routine hangs up on the external port. In decisitin block 1612, if

15 this process has no holes or the estimated diameter is greater than one (i'.e., in the large

regime), then the routine continues at block 1613, else the routine continueés at block 1616.
In blocks 1613-1615, the routine loops forwarding a request for an edge through which to

connect to the calling process to the broadcast charmel. One request is forwarded for each
pair of holes of the calling process that needs to be filled. In decision b ock 1613, if the

20 number of holes of the calling process to be filled is greater than or equal to two, then the

routine continues at block 1614, else the routine continues at block 1616. I block 1614, the

routine invokes the forward connection edge search routine. The invoked ioutine is passed
to an indication of the calling process and the random walk distance. In one iembodiment, the

distance is twice in the estimated diameter of the broadcast channel. lngblock 1614, the

25 routine decrements the holes left to fill by two and loops to block 1613. decision block
1616, if there is still a hole to fill, then the routine continues at block 1617; else the routine
returns. In block 1617, the routine invokes the fill hole routine passing thei identification of

the calling process. The fill hole routine broadcasts a connection port search statement (i. e.,
connection_port_search_stmt) for a hole of a connected process through which the calling

30 process can connect to the broadcast charmel. The routine then retums. I

Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment. This routine adds the process calling on the elxtemal port as a
|03004-8005/SL003733. lol 1 -31- 1 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 558 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 559 of 1442

neighbor to this process. In block 1701, the routine identifies the calling process on the
external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet
received the broadcast messages from this process. This flag is used to ensure that there are

no gaps in the messages initially sent to the new neighbor. The external riort becomes the
5 internal port for this connection. In decision block 1703, if this process in the seeking

connection state, then this process is connecting to its first neighbor and the routine

continues at block 1704, else the routine continues at block 1705. In block I704, the routine

sets the connection state of this process to partially connected. In block I705, the routine

adds the calling process to the list of neighbors of this process. In block l_706, the routine
to installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when

a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process buffered up messages while not full connected, then

the routine continues at block 1708, else the routine continues at blocll 1709.‘ In one
embodiment, a process that is partially connected may buffer the messages that it receives

15 through an internal connection so that it can send these messages as it connects to new

neighbors. In block 1708, the routine sends the buffered messages to the new neighbor

through the internal port. In decision block 1709, if the number of holesi of this process
equals the expected number of holes, then this process is fully connectedi and the routine

continues at block 1710, else the routine continues at block 1711. In block 1:710, the routine

20 invokes the achieve connected routine to indicate that this process is fully connected. In
decision block 1711, if the number of holes for this process is zero, then the routine

continues at block 1712, else the routine retums. In block 1712, the roiitine deletes any

pending edges and then returns. A pending edge is an edge that has been iproposed to this

process for edge pirming, which in this case is no longer needed. '

25 Figure 18 is a flow diagram illustrating the processing bf the forward

connection edge search routine in one embodiment. This routine is responiiible for passing
along a request to connect a requesting process to a randomly selected iieighbor of this

process through the internal port ‘of the selected neighbor, that is part of the riandom walk. In
decision block 1801, if the forwarding distance remaining is greater zero, then the

30 routine continues at block 1804, else the routine continues at block 1802. decision block

1802, if the number of neighbors of this process is greater than one, tihen the routine
continues at block 1804, else this broadcast charmel is in the small regime] and the routine
[o3oo4.soo5/sr.oo3733. 101] -32- 7,3 mm

1
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 559 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 560 of 1442

continues at block 1803. In decision block 1803, if the requesting process Dis a neighbor of
this process, then the routine returns, else the routine continues at block 1804. In blocks
1804-1807, the routine loops attempting to send a connection edge seaich call internal

message (i. e., connection_edge_search_call) to a randomly selected neighborgi. In block 1804,
5 the routine randomly selects a neighbor of this process. In decision blocld 1805, if all the

neighbors of this process have .already been selected, then the routine carinot forward the
message and the routine returns, else the routine continues at block 1806. block 1806, the

routine sends a connection edge search call internal message to the selectied neighbor. In
decision block 1807, if the sending of the message is successfiil, then the ro1i;tine continues at

10 block 1808, else the routine loops to block 1804 to select the next neigllbor. When the
sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast charmel in an unplarmed manner. Whenever such a situiation is detected

by the broadcaster component, it attempts to find another neighbor by involciing the fill holes

routine to fill a single hole or the forward connecting edge search routine to f:il1 two holes. In
15 block 1808, the routine notes that the recently sent connection edge searchl call has not yet

been acknowledged and indicates that the edge to this neighbor is reservedlif the remaining

forwarding distance is less than or equal to one. It is reserved because the sielected neighbor
may offer this edge to the requesting process for edge pinning. The routine tiien returns.

Figure 19 is a flow diagram illustrating the processing of ihe handle edge
20 proposal call routine. This routine is invoked when a message is received from a proposing

process that proposes to connect an edge between the proposing process and one of its

neighbors to this process for edge pinning. In decision block 1901, if the number of holes of

this process minus the number of pending edges is greater than or equal to one, then this
process still has holes to be filled and the routine continues at block 1902, else the routine

25 continues at block 1911. In decision block 1902, if the proposing process orj its neighbor is a

neighbor of this process, then the routine continues at block 1911, else the iioutine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed nelrghbor is already
pending as a proposed neighbor, then the routine continues at block 1911,] else the routine

30 continues at block 1907. In block 1907, the routine sends an edge proposal response as an

external message to the proposing process (i.e., edge_proposal_resp) imlilicating that the
proposed edge is accepted. In decision block 1908, if the sending of the message was
[o3oo4-soos/suoo3'm.1on -33- ! 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 560 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 561 of 1442

successful, then the routine continues at block 1909, else the routine retumsi. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routineiinvokes the add
neighbor routine to add the proposing process on the external port as a neighbor. The routine

then returns. In block 1911, the routine sends an external message (i. e., edge_proposal_resp)

5 indicating that this proposed edge is not accepted. In decision block 1912, the number of
holes is odd, then the routine continues at block 1913, else the routine rietums. In block
1913, the routine invokes the fill hole routine and then retums.

Figure 20 is a flow diagram illustrating the processing of Ethe handle port
connection call routine in one embodiment. This routine is invoked when an external

10 message is received then indicates that the sending process wants to connect to one hole of

this process. In decision block 2001, if the number of holes of this process is greater than

zero, then the routine continues at block 2002, else the routine continues at block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port

15 connection response external message (i. e., port_connection_resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then returns. In block

2004, the routine sends a port connection response external message to the sending process

that indicates that is okay to connect this process. In decision block 2005, if the sending of

the message was successful, then the routine continues at block 2006, else the routine

20 continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add

the sending process as a neighbor of this process and then returns. In_block l:2007, the routine

hangs up the external connection. In block 2008, the routine invokes the: connect request
routine to request that a process connect to one of the holes of this process. iThe routine then

returns. I

25 Figure 21 is a flow diagram illustrating the processing of the fiill hole routine in

one embodiment. This routine is passed an indication of the requesting process. If this

' process is requesting to fill a hole, then this routine sends an internal message to other

processes. If another process is requesting to fill a hole, then this routine invokes the routine

to handle a connection port search request. In block 2101, the routine initializes a

30 connection port search statement internal message (i.e., connection_port_search_stmt). ln

decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
|o3oo4-sous/su>o3733.rot] .34. 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 561 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 562 of 1442

the message to the neighbors of this process through the intemal ports and ithen returns. In
block 2104, the routine invokes the handle connection port search routine then returns.

Figure 22 is a flow diagram illustrating the processing of the initernal dispatcher
routine in one embodiment. This routine is passed an indication of the neighbor who sent the

5 internal message. In block 2201, the routine receives the internal message. This routine

identifies the message type and invokes the appropriate routine to handle ihe message. In

block 2202, the routine assesses whether to change the estimated diameter iof the broadcast
channel based on the information in the received message. In decision bl<;)ck 2203, if this
process is the originating process of the message or the message has alrea y been received

10 (i. e., a duplicate), then the routine ignores the message and continues at blolk 2208, else the
routine continues at block 2203A. In decision block 2203A, if the pr ess is partially

connected, then flie routine continues at block 2203B, else the routine c tinues at block

2204. In block 2203B, the routine adds the message to the pending conn ction buffer and

continues at block 2204. In decision blocks 2204-2207, the routine decdides the message
15 type and invokes the appropriate routine to handle the message. For exarnple, in decision

block 2204, if the type of the message is broadcast statement (i.e., broadcad:t_stmt), then the
routine invokes the handle broadcast message routine in block 2205. Aiiter invoking the

appropriate handling routine, the routine continues at block 2208. In decisiciin block 2208, if
the partially connected buffer is full, then the routine continues at bloclit 2209, else the

20 routine continues at block 2210. The broadcaster component collectsi all its internal

messages in a buffer while parfially connected so that it can forward messages as it
connects to new neighbors. If, however, that buffer becomes "full, then the [process assumes

that it is now fully connected and that the expected number of connectioriis was too high,
because the broadcast channel is now in the small regime. In block 2209, the routine invokes

25 the achieve connection routine and then continues in block 2210. In decisicin block 2210, if

the application program message queue is empty. then the routine retums,i else the routine
continues at block 2212. In block 2212, the routine invokes the receive iresponse routine .
passing the acquired message and then returns. The received response routine is a callback

. routine of the application program. '
30 Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment. This routine is passed an indication (if the originating
process, an indication of the neighbor who sentthe broadcast message, ariid the broadcast
[03004-8005/SL003733.l0l| -3 5- 7,3;/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 562 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 563 of 1442

message itself. In block 2301, the routine performs the out of order prcicessing for this
message. The broadcaster component queues messages from each originating process until it

can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the [message to the

5 neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting
to receive messages, then the routine continues at block 2304, else the rotitine returns. In

block 2304, the routine sends the messages in the correct order if pc;)ssibl’e for each

originating process and then returns.
Figure 24 is a flow diagram illustrating the processing the distribute

10 broadcast message routine in one embodiment. This routine sends the broadcast message to
each of the neighbors of this process, except for the neighbor who sent thei message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message. In decision block 2402, if all such neighbors have already been selected,

then the routine retums. In block 2403, the routine sends the messagei to the selected
15 neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the hijindle connection
port search statement routine in one embodiment. This routine is passed an iindication of the
neighbor that sent the message and the message itself. In block 2601, the roiitine invokes the
distribute internal message which sends the message to each of its neighbolis other than the

20 sending neighbor. In decision block 2602, if the number of holes of this pirocess is greater
than zero, then the routine continues at block 2603, else the routine returins. In decision

block 2603, if the requesting process is a neighbor, then the routine continuis at block 2605,
else the routine continues at block 2604. In block 2604, the routine irivokes the court

neighbor routine and then returns. The court neighbor routine connects process to the
25 requesting process if possible. In block 2605, if this process has one hole, tlien the neighbors

with empty ports condition exists and the routine continues at block 2606,i else the routine

returns. In -block 2606, the routine generates a condition checkf message (i. e.,

condition_check) that includes a list of this process’ neighbors. In block 2607, the routine

sends the message to the requesting neighbor.

30 Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. lfthis process can connect to the prospective neighbor, then it sends a port

[o3oo4.soo5/sr.oo3733.ror] -36- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 563 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 564 of 1442

connection call external message to the prospective neighbor and addsgthe prospective
neighbor as a neighbor. In decision block 2701, if the prospective neighilbor is already a
neighbor, then the routine retums, else the routine continues at block 2702.2 In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if the nuimber of holes of
5 this process is greater than zero, then the routine continues at block 2704,i else the routine

continues at block 2706. In block 2704, the routine sends a port connection call external '
message (i.e., port_connection_call) to the prospective neighbor and receives its response

(i. e., port_connection_resp). Assuming the response is successfully received, in block 2705,
the routine adds the prospective neighbor as a neighbor of this process by invoking the add

10 neighbor routine. In block 2706, the routine hangs up with the prospect and lihen returns.
Figure 28 is a flow diagram illustrating the processing of the hzimdle connection

edge search call routine in one embodiment. This routine is passed a ihdication of the

neighbor who sent the message and the message itself. This routine either forwards the

message to a neighbor or proposes the edge between this process and the seriding neighbor to
15 the requesting process for edge pinning. In decision block 2801, if this piocess is not the

requesting process or the number of holes of the requesting process is still greater than or
equal to two, then the routine continues at block 2802, else the routine cq'ntinues at block

2813. In decision block 2802, if the forwarding distance is greater thaii zero, then the
random walk is not complete and the routine continues at block 2803, else the routineI

20 continues at block 2804. In block 2803, the routine invokes the forward iconnection edge

search routine passing the identification of the requesting process and iihe decremented
forwarding distance. The routine then continues at block 2815. In decisiorn block 2804, if
the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, {hen the routine

25 continues at block 2805, else the routine continues at block 2806. In block 2j80S, the routine
invokes the forward connection edge search routine passing an indication the requesting

party and a toggle indicator that alternatively indicates to continue the random walk for one

or two more computers. The routine then continues at block 2815. In lblock 2806, the
routine dials the requesting process via the call-in port. In block 2807, the routine sends an

30 edge proposal call external message (i. e., edge_proposal_call) and receives tliie response (i. e.,
edge_proposal_resp). Assuming that the response is successfully receiiied, the routine

continues at block 2808. In decision block 2808, if the response indicatesjthat the edge is
[D3004-8005/SL003733. 101] -3 7- 7,3 "00II

Is

i
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 564 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 565 of 1442

acceptable to the requesting process, then the routine Continues at b10Ci< 2309, C155 the

routine continues at block 2812. In block 2809, the routine reserves the efdge between this

process and the sending neighbor. In block 2810, the routine adds the reqiiesting process as
a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the

5 sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and
continues at block 2815. In decision block 2813, if this process is the requesting process and

the number of holes of this process equals one, then the routine continues at block 2814, else

the routine continues at block 2815. In block 2814, the routine invokes thei fill hole routine.

In block 2815, the routine sends an ‘connection edge search responsie message (i. e.,
10 connection_edge_search_response) to the sending neighbor indicating acknciawledgement and

then returns. The graphs are sensitive to parity. That is, all possible patlis starting from a

node and ending at that node will have an even length unless the graph has a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary the random walk
distance between even and odd distances. ,

15 Figure 29 is a flow diagram illustrating the processing of the hiandle connection
edge search response routine in one embodiment. This routine is passed asiindication of the
requesting process, the sending neighbor, and the message. In block 2901, ithe routine notes

that the connection edge search response (i.e., connection_edge_searchi_resp) has been
received and if the forwarding distanceis less than or equal to one unrieserves the edge

20 between this process and the sending neighbor. In decision block 2902, if the requesting
process indicates that the edge is acceptable as indicated in the message,ithen the routine
continues at block 2903, else the routine returns. In block 2903, the routine iieserves the edge

between this process and the sending neighbor. In block 2904, the routine removes the
sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor

25 routine to connect to the requesting process. In decision block 2906, if thei invoked routine
was unsuccessful, then the routine continues at block 2907, else the rouitine returns. In

decision block 2907, if the number of holes of this process is greater zero, then the
routine continues at block 2908, else the roufine returns. In block 2908, the routine invokes
the fill hole routine and then returns. Z

30 Figure 30 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast charmel. This routine is passed the message to be broadcast. In
[03004-8005/SL003733.lOl] -3 8- ‘ -,,3,,o°

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 565 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 566 of 1442

20

25

30

decision block 3001, if this process has at least one neighbor, then the routine continues at

block 3002, else the routine returns since it is the only process connected} to be broadcast

channel. In block 3002, the routine generates an internal message of the brdadcast statement

type (i.e., broadcast _strnt). In block 3003, the routine sets the sequence number of the
message. In block 3004, the routine invokes the distribute internal message routine to

broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the gacquire message

routine in one embodiment. The acquire message routine may be invoked by the application

program or by a callback routine provided by the application program. This lroutine returns a

message. In block 3101, the routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine returns indication of failure?
Figures 32-34 are flow diagrams illustrating the processing of messages

associated with the neighbors with empty ports condition. Figure 32 is|a flow diagram

illustrating processing of the handle condition check message in one emiiodiment. This
message is sent by a neighbor process that has one hole and has received a reiquest to connect
to a hole of this process. In decision block 3201, if the number of holes df this process is

equal to one, then the routine continues at block 3202, else the neighbors xilvith empty ports
condition does not exist any more and the routine returns. In decision bllock 3202, if the

sending neighbor and this process have the same set of neighbors, the routine continues at

block 3203, else the routine continues at block 3205. In block 3203, the rodttine initializes a

condition double check message (i.e., condiu'on_double_check) with the list of neighbors of

this process. In block 3204, the routine sends the message internally to a ne’ bor other than

& sending neighbor. The routine then returns. In block 3205, the routine sele ts a neighbor of

the sending process that is not also a neighbor of this process. In block 3:206, the routine
sends a condition repair message (i.e., condition_repair_stJnt) extemallyi to the selected

process. In block 3207, the routine invokes the add neighbor routine to ;add the selected

neighbor as a neighbor of this process and then retums. I

Figure 33 is a flow diagram illustrating processing of the liiandle condition
repair statement routine in one embodiment. This routine removes an existing neighbor and
connects to the process that sent the message. In decision block 3301, if ' process has no

holes, then the routine continues at block 3302, else the routine continues at block 3304. In
(03004-8005/SbOO3733.l0l| -3 9- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 566 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 567 of 1442

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty

ports condition. In block 3303, the routine removes the selected neighbor is a neighbor of
this process. Thus, this process that is executing the routine now has at least one hole. In

block 3304, the routine invokes the add neighbor routine to add the proceiss that sent the
5 message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the liandle condition
double check routine. This routine determines whether the neighbors wilith empty ports
condition really is a problem or whether the broadcast charmel is in the sinall regime. In

decision block 3401, if this process has one hole, then theroutine continue at block 3402,

10 else the routine continues at block 3403. If this process does not have one liole, then the set
of neighbors of this process is not the same as the set of neighbors of the sending process. In
decision block 3402, ifthis process and the sending process have the same SECI of neighbors,

then the broadcast charmel is not in the small regime and the routine continuefrs at block 3403,
else the routine continues at block 3406. In decision block 3403, if this process has no holes,

15 then the routine returns, else the routine continues at block 3404. In block 3:404, the routine
sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a
diameter reset internal message (i. e., diameter_reset) indicating that the estiniatcd diameter is

' one and then returns. In block 3406, the routine creates a list of neighbors of; this process. In

block 3407, the routine sends the condition check message (i. e., condition_qfheck_strnt) with

20 _the list of neighbors to the neighbor who sent the condition double check rriessage and then

returns. ,

From the above description, it will be appreciated that although specific
embodiments of the technology have been described, various modifrcatioris may be made

without deviating from the spirit and scope of the invention. Fojt example, the
25 communications on the broadcast channel may be encrypted. Also, the chainnel instance or

session identifier may be a very large number (e.g., 128 bits) to help prevent|an unauthorized
‘ user to maliciously tap into a broadcast channel. The portal computer ay also enforce

security and not allow an unauthorized user to connect to the broadcast charmel.l

Accordingly, the invention is not limited except by the claims. ;I

i

[D3004-8005/SLO03733. ml) -40- ; 7/31/oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 567 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 568 of 1442

CLAIMS

1 l. A method in a computer for locating a computer tlirough which to

2 connect to a network, the method comprising:
3 providing an identification of a portal computer, the lportal computer

4 having communications ports with one of the communications ports bding enabled for
5 communications when the portal computer is in a state to coordinate theiconnection of a
6 seeking computer to the network;

7 repeatedly selecting a communications port of the portial computer and
8 attempting to communicate with the selected communications port until theicommunications
9 with the selected communications port is successful; and

10 using the selected communications port to requesti that the portal
11 computer coordinate the connecting of the computer to the network.

1 2. The method of claim 1 wherein the communications porits are selected in

2 an order that is the same as used by the portal computer when it selected aicommunications

3 port. v

1 3. The method of claim 1 wherein the communications piorts are selected
2 based on a hashing algorithm ordering. E

1 4. The method of claim 3 wherein the hashing algorithm drdering provides
2 an ordering in which each communications port is selected without re-selecting a
3 communications port.

1 5. The method of claim 3 wherein the hashing algorithm ordering is

2 -modified to reduce conflicts with other seeking computer that use the same hashing
3 algorithm. A I

[03004-8005/SL003733. 1 0 1| -4 1- 1 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 568 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 569 of 1442

1
l

1 6. The method of claim 5 wherein a number of the first [Fommunications

2 ports ordered by the hashing algorithm are reordered.

1 7. The method of claim 1 wherein the identification of a plurality of portal

2 computers is provided and when a communications port is selectedi, attempting to

3 communicate with each of the identified portal computers through the selected

4 communications port before selecting the next communications port.

1 - 8. The method of claim 1 wherein the communications piorts are TCP/IP

2 ports.

1 9. A method in a computer system for locating a comrriunications port,
2 each communications port having a port number, the method comprising:

3 providing an ordering of the communications ports ithat is not port
4 number sequential; and

5 until a communications port through which a corinection can be
6 established is found, Z

7 selecting the next communications port the provided

8 order; and I

9 determining whether a connection cané be established

10 through the selected communications port.

1 10. The method of claim 9 wherein the ordering is provided by a hashing

2 algorithm. '

1 11. The method of claim 9 wherein the communications ports are TCP/IP
2 port. I

1 12. The method of claim 9 wherein the communications riorts are ports of
2 another computer.

[O3004-8005/SL003733.l0l] -42- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 569 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 570 of 1442

1 13. The method of claim 12 wherein the other computei uses the same

2 provided ordering of communications ports when selecfing its communicatiozris port.
x
1
l

1 14. The "method of claim 9 including reordering some portions of the

2 provided ordering of the communications ports.

1 15. A data structure transmitted on a communications channel comprising a

2 sequence of messages, each message in the sequence identifying a communications port of a

3 computer system, whereby a hashing algorithm is used to order the identification of the

i .

1 16. The data structure of claim 15 wherein each message requests a

4 communications ports in the sequence of messages.

2 connection to a receiving computer via the identified communications port. E

1 17. The data structure of claim 15 wherein the messages are TCP/IP
2 messages.

I 18. The data structure of claim 15 wherein the communications channel is
2 the Internet.

1 19. The data structure of claim 15 wherein the sequence of iriessages is used _
2 to locate a portal computer through which a sending computer can request ii connection to a
3 broadcast channel.

1 20. A computer network having a plurality of participants,ieach participant
2 having connections to neighbor participants, wherein a participant locates a |commiinications

3 port of a portal computer by repeatedly selecting a communications pcirt of the portal

4 computer and attempting to communicate with the selected communications port until the

5 communications with the selected communicadons port is successful.

[03004—8005/SU)03733.I0l] -43- 5 7,-31,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 570 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 571 of 1442

1 21. The computer network of claim 20 wherein the selecting of the

2 communications ports is ordered according to a function.

1 22. The computer network of claim 21 wherein the portal computer uses the

2 same fimction to order its selection of a communications port.

1 23. The computer network of claim 20 wherein an originhting participant

2 sends data to the other participants by sending the data through each of its cbnnections to its

3 neighbor participants, wherein when each participant sends data that it receives from a

4 neighbor participant to its other neighbor participants.

1 24. The computer network of claim 20 wherein eacl:n participant is
2 connected to 4 other participants.

1 25. The computer network of claim 20 wherein each participant is

2 connected to an even number of other participants.

1 26 The computer network of claim 20 wherein the netwcisrk is m-regular,1

2 where m is the number of neighbor participants of each participant. ;

1 27. The computer network of claim 26 wherein the network: is m-connected,
2 where m is the number of neighbor participants of each participant.

1 ' 28. The computer network of claim 20 wherein the netwiork is m¢regular
2 and m-connected, where m is the number of neighbor participants of each pahicipant.

i
1 29. The computer network of claim 20 wherein all the par’tici:ipants are peers.

I

1 30. The computer network of claim 20 wherein the connections are peer-to-

2 peer connections.

qosoo-a—soos/s1ioo3733.1on -44- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 571 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 572 of 1442

I
l
i

I o

1 31. The computer network of claim 20 wherein the connections between

2 neighbor computers are point-to-point.

1 32. The computer network of claim 20 wherein the connectiions are TCP/IP
2 connections.

1 33. A component in a computer system for locating a comrinunications port
2 of a portal computer, comprising:
3 means for identifying the portal computer, the portal coinputer having a

4 dynamically selected communications port for communicating with other computers; and

5 means for identifying the communications port of the [identified portal

6 computer by repeatedly trying to establish a connection with the identifiediportal computer
7 through communications ports until a connection is successfully established. :

1 34. The component of claim 33 wherein the communications ports are

2 trying in an order that is the same as used by the portal computer when it dynamically selects

3 a communications port.

1 35. The component of claim 33 wherein the communicatiorils ports are tried

2 based on a hashing algorithm ordering.

1 36. The component of claim 35 wherein the hashing al :orithm ordering

2 provides an ordering in which each communications port is tried without re-trying a
I

3 communications port. .

1 37. The component of claim 35 wherein the hashing algorithm ordering is

2 modified to reduce conflicts with other computers that use the same hashing flgorithm.
!

1 38. The component of claim 37 wherein a numbeir of the first
2 communications ports ordered by the hashing algorithm are reordered.

II

[osoocsoos/su1o3733.1ou .45- I 7,3,,oo
II

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 572 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 573 of 1442

1 39. The component of claim 33 including: ;

2 means for identifying a plurality of portal computers; and
3 means for trying to establish a connection with each of the identified

4 portal computers through a certain communications port before tiiying the next
5 communications port.

1 40. The component of claim 33 wherein the communications ports are

2 TCP/IP ports.

(o3oo4—aoos/snoo3733.1ou -45- 7/moo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 573 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 574 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 575 of 1442
IPR2016-00726 - TIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 57 0 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 576 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 5 44276 of1

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 577 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 578 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 579 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 580 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 581 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 581 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 582 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 583 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 584 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 584 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 585 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 585 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 586 of 1442

4.3.2_.5'TU‘=°U

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 586 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 587 of 1442

.~, r{u,,,.,.,...1 Twp-I
‘P , _o\D-IWV\€0IIL$+0V<-2_

O‘ ‘.Covu\ca“AT1-'\X.Cr\

xI

Ind?‘-Q efitlwafl

D:sp«J*clr~€r-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 587 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 588 of 1442

Mk 5.%‘c?%.1z c\.MeA+.,fe2
Rue? ‘ ‘——- ‘- cy\a_“1\e_\ Io\$+OV\£.9.

I

1
i
I

:

QM
F <..r~c-cg; \

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 588 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 589 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 589 of 1442

Qe cew e.ExTA»-rfl

9~°s=ogt

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 590 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 590 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 591 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 591 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 592 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 592 of 1442

r\o1\‘(\T ?e\\o‘u.)

.‘$-¢§Je.L~o‘

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 593 of 1442

FIE I“]

2
-9 J £fi 6£§~§'osau .0:

I ConV~“—’ca|\o4Ij-CC‘-‘I

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 593 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 594 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 594 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 595 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 595 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 596 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 596 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 597 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 597 of 1442

-ft» .~|<:J'r/(-

oué {'ow¢Q Ve

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 598 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 598 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 599 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 599 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 600 of 1442

‘Hold \eCo~nnec{-,5

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 600 of 1442

PO -('

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 601 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 601 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 602 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 602 of 1442

B rob ¢-as
0.,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 603 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 603 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 604 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 604 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 605 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 605 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 606 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 606 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 607 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 607 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 608 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 608 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 609 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 609 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 610 of 1442

 :08:oz.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 610 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 611 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 611 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 612 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 612 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 613 of 1442

U.S. Patent Application No. 09/629,575

20

25

EXPRESS MAIL N3, EL404935353US

BROADCASTING ON A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED APPLICATIONS

. This application is related to U.S. Patent Application No. .

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket

No. 030048001 US); U.S. Patent Application No. , entitled “JOINING A

BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002 US);

U.S. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”

filed on July 31," 2000 (Attorney Docket No. 030048003 US); U.S. Patent Application

 No. entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed

on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent Application

No. ' , entitled “CONTACTING A BROADCAST CHANNEL,” filed on

July 31,2000 (Attorney Docket No. 030048005 US); U.S. Patent Application

No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed on

July 31, 2000 (Attomey Docket No. 030048006 US); U.S. Patent Application

No. , entitled “AN (INFORMATION DELIVERY SERVICE,” filed on

July3l, 2000 (Attorney Docket No. 030048007 US); U.S. Patent Applicafion

No. , entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on

July3l, 2000 (Attorney Docket No. 030048008 US); and U.S. Patent Application

No. entitled “DISTRIBUTED GAME ENVIRONMENT,” filed -on

July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer network and more

particularly, to a broadcast channel for a subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multicasting network

[D3004-8004ISl.D03733.l00] -1 - 7,, mo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 613 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 614 of 1442

protocols, and peer-to-peer middleware. Each of these communications techniques have

their advantages and disadvantages, but none is part:icularly well suited to the simultaneous

sharing of information among computers that are widely distributed. For example,

collaborative processing applications, such as a network meeting programs, have a need to

5 distribute information a timely manner to all participants who may be geographically
distributed.

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,

allow processes on different computers to communicate via point-to-point connections. The

interconnection of all participants using point-to-point connections, while theoretically

I 10 possible, does not scale well as a number of participants grows. For example, each

participating process would need to manage its direct connections to all other participating

processes. Programmers, however, find it very diflicult to manage single connections, and

management of multiple connections is much more complex. In addition, participating

processes may be limited to the number of direct connections that they can support. This

15 limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server that coordinates the

communications between the various clients who are sharing the information. The server

fimctions as a central authority for controlling access to shared resources. Examples of

client/server middleware systems include remote procedure calls (“RPC”), database servers,

20 and the common object request broker architecture (“CORBA”). Client/server middleware

systems are not particularly well suited to sharing of information among many participants.

In particular, when a client stores information to be shared at the server, each other client

would need to poll the sewer to determine that new information is being shared. Such

polling places a very high overhead on the communications network. Alternatively, each

25 client may register a callback with the server, which the sewer then invokes when new

information is available to be shared. Such a callback technique presents a perfomiance

bottleneck because a single server needs to call back to each client whenever new

information is to be shared. In addition, the reliability of the entire sharing of information

depends upon the reliability of the single server. Thus, a failure at a single computer (i. e.,

30 the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such multicasting network‘

[D3004-8004ISU)03733.l00] -2- mmo

IPR2016-00726 -ACT|V|S|0l_\l, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 614 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 615 of 1442

protocols tend to place an unacceptable overhead on the underlying network. For example,

UDP multicasting would swamp the Internet when trying to locate all possible participants.

IP multicasting has other problems that include needing special-purpose infiastructure (e.g.,

routers) to support the sharing of information efficiently.

5 The peer-to-peer middleware commmicafions systems rely on a multicasting

network protocol or a graph of point-to-point network protocols. Such peer-to-peer

middleware is provided by the T.l2O Internet standard, which is used in such products as

Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-peer middleware

systems rely upon a user to assemble a point-to-point graph of the connections used for

to sharing the information. Thus, it is neither suitable nor desirable to use peer-to-peer

middleware systems when more than a small number of participants is desired. In addition,

the underlying architecture of the T.l2O Internet standard is a tree structure, which relies on

the root node of the tree for reliability of the entire network. That is, each message must pass

through the root node in order to be received by all part1'cipants.

15 It would be desirable to have a reliable communications network that is

suitable for the simultaneous sharing of information among a large number of the processes

that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a

20 broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast

charmel.

Figures 3A and 3B illustrate the process of connecting a new computer Z to the

broadcast channel.

25 Figure 4A illustrates the broadcast channel of Figure 1 with an added

computer.

Figure 4B illustrates the broadcast channel of Figure 4A with an added

computer.

Figure 4C also illustrates the broadcast channel of Figure 4A with an added

30 computer.

[03004-8004/SL003733. I00] -3- 7,31,“,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 615 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 616 of 1442

Figure 5A illustrates the disconnecting of a computer fiom the broadcast

channel in a planned manner.

Figure 5B illustrates the disconnecting of a computer fiom the broadcast

channel in an unplanned manner.

5 Figure 5C illustrates the neighbors with empty ports condition.

Figure 5D illustrates two computers that are not neighbors who now have

empty ports.

Figure 5E illustrates the neighbors with empty ports condition in the small

regime.

10 Figure 5F illustrates the situation of Figure 5E when in the large regime.

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast‘ channel.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment.

15 Figure 8 is a flow diagram illustrating the processing of the connect routine in

one embodiment.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment.

Figure 10 is a flow diagram illustrating the processing of the contact process

20 routine in one embodiment.

Figure 11 is a flow diagram illustrating the processing of the connect request

routine in one embodiment.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment.

25 Figure 13 is a flow diagram of the processing of the achieve connection routine

in one embodiment.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
30 connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment.

[03004-8004/SLOO3'B3.l00] .4- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 616 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 617 of 1442

Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment.

5 Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

10 one embodiment. ,

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment.

15 Figure 24 is a flow diagram illustrating the processing of the distribute

broadcast message routine in one embodiment.

Figure 26 is a flow diagram illustrating the processing of the handle connection

port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of the court neighbor

20 routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the handle connection

edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment.

25 Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition

30 check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment.

[o3uo4.soo4/sr.oo3733.roo] .5. -,,-,,,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 617 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 618 of 1442

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlays a point-to-point

5 communications network is provided. The broadcasting of a message over the broadcast

channel is effectively a multicast to those computers of the network that are currently

connected to the broadcast channel. In one embodiment, the broadcast technique provides a

logical broadcast channel to which host computers through their executing processes can be

connected. Each computer that is connected to the broadcast channel can broadcast

10 messages onto and receive messages ofi‘ of the broadcast channel. Each computer that is

connected to the broadcast channel receives all messages that are broadcast while it is

connected. The logical broadcast charmel is implemented using an underlying network

system (e.g., the Internet) that allows each computer connected to the underlying network

system to send messages to each other connected computer using each computer’s address.

15 Thus, the broadcast technique efiectively provides a broadcast channel using an underlying

network system that sends messages on a point-to-point basis.

The broadcast technique overlays the underlying network system with a graph

of point-to-point connections (i. e., edges) between host computers (i. e., nodes) through

which the broadcast channel is implemented. In one embodiment, each computer is

20 connected to four other computers, referred to as neighbors. (Actually, a process executing

on a computer is connected to four other processes executing on this or four other

computers.) To broadcast a message, the originating computer sends the message to each of

its neighbors using its point-to-point connections. Each computer that receives the message

then sends the message to its three other neighbors using the point-to-point connections. In

25 this way, the message is propagated to each computer using the underlying network to effect

the broadcasting of the message to each computer over a logical broadcast channel. A graph

in which each node is connected to four other nodes is referred to as a 4-regular graph. The

use of a 4-regular graph means that a computer would become disconnected from the

broadcast channel only if all four of the connections to its neighbors fail. The graph used by

30 the broadcast technique also has the property that it would take a failure of four computers to

(03004-8004/SID03733. I00] -6- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 618 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 619 of 1442

divide the graph into disjoint sub-graphs, that is two separate broadcast channels. This

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-

connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents

5 the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to

the broadcast channel, and each of the edges represents an “edge” connection between two

computers of the broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connections between the

computers and the nmnber of connections between the originating computer and each other

10 computer on the broadcast channel. The minimum number of connections that a message

would need to traverse between each pair of computers is the “distance” between the

computers (i.e., the shortest path between the two nodes of the graph). For example, the

distance between computers A and F is one because computerA is directly connected to

computer F. The distance between computers A and B is two because there is no direct

15 connection between computers A and B, but computer F is directly connected to computer B.

Thus, a message originating at computer A would be sent directly to computer F, and then

sent from computer F to computer B. The maximum of the distances between the computers

is the “diameter” of broadcast channel. The diameter of the broadcast channel represented

by Figure 1 is two. That is, a message sent by any computer would traverse no more than

20 two connections to reach every other computer. Figure 2 illustrates a graph representing 20

computers connected to a broadcast charmel. The diameter of this broadcast channel is 4. In

particular, the shortest path between computers 1 and 3 contains four connections (1-12, 12-

15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of computers to the

25 broadcast channel (i. e., composing the graph), (2) the broadcasting of messages over the

broadcast channel (i.e., broadcasting through the graph), and (3) the disconnecting of

computers from the broadcast channel (i. e., decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking the connection first

30 locates a computer that is currently fully connected to the broadcast channel and then

(03004-8004/SL003733. 100] -7- 731,00

IPR2016-00726 -ACT|V|S|_0N, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 619 of 1442 '

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 620 of 1442

establishes a connection with four of the computers that are already connected to the

broadcast channel. (This assumes that there are at least four computers already connected to

the broadcast channel. When there are fewer than five computers connected, the broadcast

channel carmot be a 4-regular graph. In such a case, the broadcast channel is considered to

5 be in a “small regime.” The broadcast technique for the small regime is described below in

detail. When five or more computers are connected, the broadcast channel is considered to

be in the “large regime.” This description assumes that the broadcast channel is in the large

regime, unless specified otherwise.) Thus, the process of connecting to the broadcast

channel includes locating die broadcast channel, identifying the neighbors for the connecting

10 computer, and then connecting to each identified neighbor. Each computer is aware of one

or more “portal computers” through which that computer may locate the broadcast channel.

A seeking computer locates the broadcast channel by contacting the portal computers until it

finds one that is currently fiilly connected to the broadcast channel. The found portal

computer then directs the identifying of four computers (i. e., to be the seeking computer’s

15 neighbors) to which the seeking computer is to connect. Each of these four computers then

cooperates with the seeking computer to effect the connecting of the seeking computer to the

broadcast channel. A computer that has started the process of locating a portal computer, but

does not yet have a neighbor, is in the “seeking connection state.” A computer that is

connected to at least one neighbor, but not yet four neighbors, is in the “partially connected

20 state.” A computer that is currently, or has been, previously connected to four neighbors is

in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified

computers is already connected to four computers. Thus, some connections between

computers need to be broken so that the seeking computer can connect to four computers. In

25 one embodiment, the broadcast technique identifies two pairs of computers that are currently

connected to each other. Each of these pairs of computers breaks the connection between

them, and then each of the four computers (two from each pair) connects to the seeking

computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the

broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is

30 connected. The pairs of computers B and E and computers C and D are the two pairs that are

» identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

[o3oo4-sooa/snoo3'/33.100) -8- -,,3,,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 620 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 621 of 1442

is established as indicated by Figure 3B. The process of breaking the connection between

two neighbors and reconnecting each of the former neighbors to another computer is referred

to as “edge pinning” as the edge between two nodes may be considered to be stretched and

pinned to a new node.

5 Each computer connected to the broadcast channel allocates five

communications ports for communicating with other computers. Four of the ports are

referred to as “intem ” ports because they are the ports through which the messages of the

broadcast channels are sent. The connections between internal ports of neighbors are

referred to as “intemal” connections. Thus, the internal connections of the broadcast channel

10 form the 4-regular and 4-connected graph. The fifih port is referred to as an “extemal” port

because it is used for sending non-broadcast messages between two computers. Neighbors

can send non-broadcast messages either through their internal ports of their connection or

through their external ports. A seeking computer uses external ports when locating a portal

computer.

15 * In one embodiment, the broadcast technique establishes the computer

connections using the TCP/IP communications protocol, which is a point-to-point protocol,

as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery

of messages between computers. The TCP/IP protocol provides each computer with a “port

space” that is shared among all the processes that may execute on that computer. The ports

20 are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific

applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports

that are available to any process. In one embodiment, a set of port numbers can be reserved

for use by the computer connected to the broadcast channel. In an alternative embodiment,

the port numbers used are dynamically identified by each computer. Each computer

25 dynamically identifies an available port to be used as its call-in port. This call-in port is used

to establish connections with the external port and the internal ports. Each computer that is

connected to the broadcast channel can receive non-broadcast messages through its external

port. A seeking computer tries “dialing” the port numbers of the portal computers until a

portal computer “answers," a call on its call-in port. A portal computer answers when it is

30 connected to or attempting to connect to the broadcast channel and its call-in port is dialed.

(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to another port. Thus, the

[o3oo4-8004/sLco3733.1oo] -9- 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 621 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 622 of 1442

seeking computer actually communicates through that nansfer-to port, which is the extemal

port. The call is transferred so that other computers can place calls to that computer via the

call-in port. The seeking computer then communicates via that external port to request the

portal computer to assist in connecting the seeking computer to the broadcast channel. The

5 seeking computer could identify the call-in port number of a portal computer by successively

dialing each port in port number order. As discussed below in detail, the broadcast technique

uses a hashing algorithm to select the port number order, which may result in improved

perfonnance.

A seeking computer could connect to the broadcast charmel by connecting to

10 computers either directly connected to the found portal computer or directly connected to one

of its neighbors. A possible problem with such a scheme for identifying the neighbors for

the seeking computer is that the diameter of the broadcast channel may increase when each

seeking computer uses the same found portal computer and establishes a connection to the

broadcast charmel directly through that found portal computer. Conceptually, the graph

15 becomes elongated in the direction of where the new nodes are added. Figures 4A-4C

illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with

an added computer. Computer J was connected to the broadcast charmel by edge pinning

edges C-D and E-H to computer J. The diameter of this broadcast channel is still two.

Figure 4B illustrates the broadcast charmel of Figure 4A with an added computer.

20 Computer K was connected to the broadcast channel ‘by edge pirming edges E-J and B-C to

computer K. The diameter of this broadcast charmel is three, because the shortest path from

computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates

the broadcast charmel of Figure 4A with an added computer. Computer K was connected to

the broadcast channel by edge pinning edges D-G and E-J to computer K. The diameter of

25 this broadcast charmel is, however, still two. Thus, the selection of neighbors impacts the

diameter of the broadcast charmel. To help minimize the diameter, the broadcast technique

uses a random selection technique to identify the four neighbors of a computer in the seeking
connection state. The random selection technique tends to distribute the connections to new

seeking computers throughout the computers of the broadcast charmel which may result in
30 smaller overall diameters.

[03004—8004/SLO03733. I00] -10- 7/31/90

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 622 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 623 of 1442

Broadcasting Througl_1 the Graph

As described above, each computer that is connected to the broadcast channel

can broadcast messages onto the broadcast channel and does receive all messages that are

broadcast on the broadcast channel. The computer that originates a message to be broadcast

5 sends that message to each of its four neighbors using the internal connections. When a

computer receives a broadcast message from a neighbor, it sends the message to its three

other neighbors. Each computer on the broadcast channel, except the originating computer,

will thus receive a copy of each broadcast message from each of its four neighbors. Each

computer, however, only sends the first copy of the message that it receives to its neighbors

10 and disregards subsequently received copies. Thus, the total number of copies of a message

that is sent between the computers is 3l\l+1, where N is the number of computers connected

to the broadcast charmel. Each computer sends three copies of the message, except for the

originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability

is of the broadcast channel. Since each computer has four connections to the broadcast

charmel, if one computer fails during the broadcast of aimessage, its neighbors have three

other connections through which they will receive copies of the broadcast message. Also, if

the internal connection between two computers is slow, each computer has three other

connections through which it may receive a copy of each message sooner.

20 Each computer that originates a message numbers its_ own messages

sequentially. Because of the dynamic nature of the broadcast channel and because there are

many possible connection pat:hs between computers, the messages may be received out of

order. For example, the distance between an originating computer and a certain receiving
computer may be four. After sending the first message, the originating computer -and

25 receiving computer may become neighbors and thus the distance between them changes to

one. The first message may have to travel a distance of four to reach the receiving computer.

The second message only has to travel a distance of one. Thus, it is possible for the second

message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i. e., no computers connecting

30 or disconnecting from the broadcast channel), out-of-order messages are not a problem

because each computer will eventually receive both messages and can queue messages until
all earlier ordered messages are received. If, however, the broadcast channel is not in a

[o3oo4-8004/sLoo3733. I00] -1 1- 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 623 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 624 of 1442

steady state, then problems can occur. In particular, a computer may connect to the

broadcast channel after the second message has already been received and forwarded on by

its new neighbors. When a new neighbor eventually receives the first message, it sends the

message to the newly connected computer. Thus, the newly connected computer will receive

5 the first message, but will not receive the second message. If the newly connected computer

needs to process the messages in order, it would wait indefinitely for the second message.

One solution to this problem is to have each computer queue all the messages

that it receives until it can send them in their proper order to its neighbors. This solution,

however, may tend to slow down the propagation of messages through the computers of the

10 broadcast charmel. Another solution that may have less impact on the propagation speed is

to queue messages only at computers who are neighbors of the newly connected computers.

Each already connected neighbor would forward messages as it receives them to its other

neighbors who are not newly connected, but not to the newly connected neighbor. The

already connected neighbor would only forward messages from each originating computer to

15 the newly connected computer when it can ensure that no gaps in the messages from that

originating computer will occur. In one embodiment, the already connected neighbor may

track the highest sequence number of the messages already received and forwarded on from

each originating computer. The already connected computer will send only higher numbered

messages from the originating computers to the newly connected computer. Once all lower

20 numbered messages have been received from all originating computers, then the already

connected computer can treat the newly connected computer as its other neighbors and

simply forward each message as it is received. In another embodiment, each computer may

queue messages and only forwards to the newly connected computer those messages as the

gaps are filled in. For example, a computer might receive messages 4 and 5 and then receive

25 message 3. In such a case, the already connected computer would forward queue messages 4

and 5. When message 3 is finally received, the already connected computer will send

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the

newly connected computer before message 3, then the newly connected computer would

process messages 4 and 5 and disregard message 3. Because the already connected computer

30 queues messages 4 and 5, the newly connected computer will be able to process message 3.

It is possible that a newly connected computer will receive a set of messages from an

‘originating computer through one neighbor and then receive another set of message from the

(03004-8004lSl..003733.l00] -12- mi/oo

|PR20_16-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 624 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 625 of 1442

same originating computer through another neighbor. Ifthe second set of messages contains

a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

5 Decomposing the Graph

A connected computer disconnects from the broadcast channel either in a

plarmed or unplanned manner. When a computer disconnects in a planned manner, it sends a

disconnect message to each of its four neighbors. The disconnect message includes a list that

identifies the four neighbors of the disconnecting computer. When a neighbor receives the

10 disconnect message, it tries to "connect to one of the computers on the list. In one

embodiment, the first computer in the list will try to connect to the second computer in the

list, and the third computer in the list will try to connect to the fourth computer in the list. If

a computer cannot connect (e.g., the first and second computers are already connected), then

the computers may try connecting in various other combinations. If connections carmot be

15 established, each computer broadcasts a message that it needs to establish a connection with

another computer. When a computer with an available internal port receives the message, it

can then establish a connection with the computer that broadcast the message. Figures 5A-

SD illustrate the disconnecting of a computer from the broadcast channel. Figure 5A

illustrates the disconnecting of a computer from the broadcast channel in a planned manner.

20 When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors

(computers A, E, F and I) and then disconnects from each of its neighbors. When

computers A and I receive the message they establish a connection between them as

indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplarmed manner, such as resulting from

25 a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next message to the now disconnected

computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i.e., it has a hole or empty port). When a connected computer detects that one of

its neighbors is now disconnected, it broadcasts a port connection request on the broadcast

30 channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

(03004-8004ISUJ03733.l00] - I 3- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 625 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 626 of 1442

computer that is also short a connection receives the connection request, it communicates

with the requesting computer through its external port to establish a connection between the

two computers. Figure 5B illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner. In this illustration, computer H has disconnected in an

5 unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the

disconnection, each neighbor broadcasts a port connection request indicating that it needs to

fill an empty port. As shown by the dashed lines, computers F and I and computers A and E

respond to each other’s requests and establish a connection. '

It is possible that a planned or unplanned disconnection may result in two

10 neighbors each having an empty internal port. In such a case, since they are neighbors, they

are already connected and cannot fill their empty ports by connecting to each other. Such a

condition is referred to as the “neighbors with empty ports” condition. Each neighbor

broadcasts a port connection request when it detects that it has an empty port as described

above. When a neighbor receives the port connection request from the other neighbor, it will

15 recognize the condition that its neighbor also has an empty port. Such a condition may also

occur when the broadcast charmel is in the small regime. The condition can only be

corrected when in the large regime. When in the small regime, each computer will have less

than four neighbors. To detect this condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the

20 condition and sends a condition check message to the other neighbor. The condition check

message includes a list of the neighbors of the sending computer. When the receiving

computer receives the list, it compares the list to its own list of neighbors. If the lists are

different, then this condition has occurred in the large regime and repair is needed. To repair

this condition, the receiving computer will send a condition repair request to one of the

25 neighbors of the sending computer which is not already a neighbor of the receiving

computer. When the computer receives the condition repair request, it disconnects from one

of its neighbors (other than the neighbor that is involved with the condition) and connects to

the computer that sent the condition repair request. Thus, one of the original neighbors

involved in the condition will have had a port filled. However, two computers are still in

30 need of a connection, the other original neighbor and the computer that is now disconnected

from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to

[03004-8004/Sl.D03733.l00] -14. 7,3,“,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 626 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 627 of 1442

each other when they receive the requests. If, however, the two computers are neighbors,

then they repeat the condition repair process until two non-neighbors are in need of

connections.

It is possible that the two original neighbors with the condition may have the

5 same set of neighbors. When the neighbor that receives the condition check message

determines that the sets ofneighbors are the same, it sends a condition double check message

to one of its neighbors other than the neighbor who also has the condition. When the

computer receives the condition double check message, it determines whether it has the same

set of neighbors as the sending computer. If so, the broadcast channel is in the small regime

10 and the condition is not a problem. If the set of neighbors are difierent, then the computer

that received the condition double check message sends a condition check message to the

original neighbors with the condition. The computer that receives that condition check

message directs one of it neighbors to connect to one of the original neighbors with the

condition by sending a condition repair message. Thus, one of the original neighbors with

15 the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this

illustration, computer H disconnected in an unplarmed marmer, but computers F and I

responded to the port connection request of the other and are now connected together. The

other former neighbors of computer H, computers A and E, are already neighbors, which

20 gives rise to the neighbors with empty ports condition. In this example, computer E received

the port connection request fi'om computerA, recognized the possible condition, and sent

(since they are neighbors via the internal connection) a condition check message with a list

of its neighbors to computer A. When computer A received the list, it recognized that

computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).

25 Computer A selected computer D, which is a neighbor of computer E and sent it a condition

repair request. When computer D received the condition repair request, it disconnected from

one of its neighbors (other than computer E), which is computer G in this example.

Computer D then connected to computer A. Figure 5D illustrates two computers that are not

neighbors who now have empty ports. Computers E and G now have empty ports and are

30 not currently neighbors. Therefore, computers E and G can connect to each other.

Figures 5E and SF further illustrate the neighbors with empty ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this
[03004—8004/811303731100] .15. ,,-_”,oo

_|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 627 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 628 of 1442

example, if computer E disconnected in an unplanned manner, then each computer

broadcasts a port connection request when it detects the disconnect. When computer A

receives the port connection request form computer B, it detects the neighbors with empty

ports condition and sends a condition check message to computer B. Computer B recognizes

5 that it has the same set of neighbors (computer C and D) as computer A and then sends a

condition double check message to computer C. Computer C recognizes that the broadcast

channel is in the small regime because is also has the same set of neighbors as computers A

\ and B, computer C may then broadcast a message indicating that the broadcast channel is in

the small regime.

10 Figure 5F illustrates the situation of Figure 5E when in the large regime. As

discussed above, computer C receives the condition double check message fiom computer B.

In this case, computer C recognizes that the broadcast channel is in the large regime because

it has a set of neighbors that is different from computer B. The edges extending up from

computer C and D indicate connections to other computers. Computer C then sends a

15 condition check message to computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C, and tries to connect to computer B and the neighbor from which it

4 disconnected tries to connect to computer A.

20 Port Selection

As described above, the TCP/IP protocol designates ports above number 2056

as user ports. The broadcast technique uses five user port numbers on each computer: one

external port and four internal ports. Generally, user ports cannot be statically allocated to

an application program because other applications programs executing on the same computer

25 may use conflicting port numbers. As a result, in one embodiment, the computers connected

to the broadcast channel dynamically allocate their port numbers. Each computer could

simply try to locate the lowest number unused port on that computer and use that port as the

call-in port. A seeking computer, however, does not know in advance the call-in port

number of the portal computers when the port numbers are dynamically allocated. Thus, a

30 seeking computer needs to dial ports of a portal computer starting with the lowest port

number when locating the call-in port of a portal computer. If the portal computer is

[03004-8004/SUJ03733.l00] -l6- 7/3}/oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 628 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 629 of 1442

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

i would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application

program on a computer tried to allocate low-ordered port numbers, then a portal computer

5 may end up with a high-nurnbered port for its call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a

relatively slow process, it would take the seeking computer a long time to locate the call-in

port of a portal computer. To miriirriize this time, the broadcast technique uses a port

ordering algorithm to identify the port number order that a portal computer should use when

10 finding an available port for its call-in port. In one embodiment, the broadcast technique

uses a hashing algorithm to identify the ‘port order. The algorithm preferably distributes the

ordering of the port numbers randomly through out the user port number space and only

selects each port number once. In addition, every time the algorithm is executed on any

computer for a given charmel type and channel instance, it generates the same port ordering.

15 As described below, it is possible for a computer to be connected to multiple broadcast

channels that are uniquely identified by channel type and channel instance. The algorithm

may be “seeded” with charmel type and charmel instance in order to generate a unique

ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the

ports of a portal computer in the same order as the portal computer used when allocating its

20 call-in port.

If many computers are at the same time seeking connection to a broadcast

channel through a single portal computer, then the ports of the portal computer may be busy

when called by seeking computers. The seeking computers would typically need to keep on

redialing a busy port. The process of locating a call-in port may be significantly slowed by

25 such redialing. In one embodiment, each seeking computer may each reorder the first few

port numbers generated by the hashing algorithm. For example, each seeking computer

could randomly reorder the first eight port numbers generated by the hashing algorithm. The

random ordering could also be weighted where the first port number generated by the

hashing algorithm would have a 50% chance of being first in the reordering, the second port

30 number would have a 25% chance of being first in the reordering, and so on. Because the

seeking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is
[D3004-8004ISLOO3733.l0O] - l 7- 7/3 uoo

|P_R2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 629 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 630 of 1442

possible that eight seeking computers could be simultaneously dialing ports in different

sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channel has a list of one or

5 more portal computers through which it can connect to the broadcast charmel. In one

embodiment, each computer has the same set of portal computers. A seeking computer

locates a portal computer that is connected to the broadcast channel by successively dialing

the ports of each portal computer in the order specified by an algorithm. A seeking computer

could select the first portal computer and then dial all its ports until a call-in port of a

to computer that is fully connected to the broadcast channel is found. If no call-in port is

found, then the seeking computer would select the next portal computer and repeat the

process until a portal computer with such a call-in port is found. A problem with such a

seeking technique is that all user ports of each portal computer are dialed until a portal

computer fully connected to the broadcast charmel is found. In an alternate embodiment, the

15 seeking computer selects a port number according to the algorithm and then dials each portal

computer at that port number. Ifno acceptable call-in port to the broadcast charmel is found,

then the seeking computer selects the next port number andprepeats the process. Since the

call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first

dials the port numbers that are most likely to be call-in ports of the broadcast charmel. The

20 seeking computers may have a maximum search depth, that is the number of ports that it will

dial when seeking a portal computer that is fully connected. If the seeking computer

exhausts its search depth, then either the broadcast charmel has not yet been established or, if

the seeking computer is also a portal computer, it can then establish the broadcast channel

with itself as the first fully connected computer.

25 When a seeking computer locates a portal computer that is itself not fully

connected, the two computers do not connect when they first locate each other because the

broadcast channel may already be established and accessible through a higher-ordered port

number on another portal computer. If the two seeking computers were to connect to each

other, then two disjoint broadcast charmels would be formed. Each seeking computer can

30 share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seeking computer has searched all the portal computers to a depth of eight,

[03004-B004/SL003733.l00] -18- 731,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 630 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 631 of 1442

then the one seeking computer can share that it has searched to a depth of eight with another

seeking computer. If that other seeking computer has searched to a depth of, for example,

only four, it can skip searching through depths five through eight and that other seeking

computer can advance its searching to a depth of nine.

5 In one embodiment, each computer may have a difierent set of portal

computers and a difierent maximum search depth. In such a situation, it may be possible that

two disjoint broadcast channels are formed because a seeking computer cannot locate a fully

connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast channels would be formed.

10 Identiflg Neigl_1bors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are

preferably selected randomly from the set of currently connected computers. One advantage

of the broadcast channel, however, is that no computer has global knowledge of the

broadcast charmel. Rather, each computer has local knowledge of itself and its neighbors.

15 This limited local knowledge has the advantage that all the connected computers are peers

(as far as the broadcasting is concerned) and the failure of any one computer (actually any

three computers when in the 4-regular and 4-connect form) will not cause the broadcast

channel to fail. This local knowledge makes it difficult for a portal computer to randomly

select four neighbors for a seeking computer.

20 To select the four computers, a portal computer sends an edge connection

request message through one of its internal connections that is randomly selected. The

receiving computer again sends the edge connection request message through one of its

internal connections that is randomly selected. This sending of the message corresponds to a

random walk through the graph that represents the broadcast channel. Eventually, a

25 receiving computer will decide that the message has traveled far enough to represent a

randomly selected computer. That receiving computer will offer the internal connection

upon which it received the edge connection request message to the seeking computer for

edge pinning. Of course, if either of the computers at the end of the ofi'ered internal

connection are already neighbors of the seeking computer, then the seeking computer cannot

30 connect through that intemal connection. The computer that decided that the message has

[03004-8004ISL003733.l00] -1 9- 7,3,“,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 631 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 632 of 1442

traveled far enough will detect this condition of already being a neighbor and send the

message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximately twice the estimated

5 diameter of the broadcast channel. The message includes an indication of the distance that it

is to travel. Each receiving computer decrements that distance to travel before sending the

message on. The computer that receives a message with a distance to travel that is zero is

considered to be the randomly selected computer. If that randomly selected computer cannot

connect to the seeking computer (e.g., because it is already connected to it), then that

10 randomly selected computer forwards the edge connection request to one of its neighbors

with a new distance to travel. In one embodiment, the forwarding computer toggles the new

distance to travel between zero and one to help prevent two computers from sending the

message back and forth between each other.

Because of the local nature of the information maintained by each computer

15 connected to the broadcast channel, the computers need not generally be aware of the

diameter of the broadcast charmel. In one embodiment, each message sent through the
broadcast channel has a distance traveled field. Each computer that forwards a message

increments the distance traveled field. Each computer also maintains an estimated diameter

of the broadcast channel. When a computer receives a message that has traveled a distance

20 that indicates that the estimated diameter is too small, it updates its estimated diameter and

broadcasts an estimated diameter message. When a computer receives an estimated diameter

message that indicates a diameter that is larger than its own estimated diameter, it updates its

own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

25 External Data Representation

The computers connected to the broadcast charmel may internally store their

data in different formats. For example, one computer may use 32-bit integers, and another

computer may use 64-bit integers. As another example, one computer may use ASCII to

represent text and another computer may use Unicode. To allow communications between

30 heterogeneous computers, the messages sent over the broadcast channel may use the XDR

(“eXtemal Data Representation”) format.

[oaooa-aoo4/suoommroo) -20- 7m/no

I.PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 632 of 1442 ‘

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 633 of 1442

The underlying peer-to-peer communications protocol may send multiple

messages in a single message stream. The traditional technique for retrieving messages from

a stream has been to repeatedly invoke an operating system routine to ret:rieve the next

message in the stream. The retrieval of each message may require two calls to the operating

5 system: one to retrieve the size of the next message and the other to retrieve the number of

bytes indicated by the retrieved size. Such calls to the operating system can, however, be

very slow in comparison to the invocations of local routines. To overcome the inefiiciencies

of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the

message boundaries in a stream of messages. The broadcast technique may request the

10 operating system to provide the next, for example, 1,024 bytes from the stream. The

broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages

and use the success or failure of each invocation to determine whether another block of 1,024

bytes needs to be retrieved from the operating system. The invocation of XDR routines do

not involve system calls and are thus more efficient than repeated system calls.

15 M-Regular

In the‘ embodiment described above, each fully connected computer has four

internal connections. The broadcast technique can be used with other numbers of internal

connections. For example, each computer could have 6, 8, or any even number of internal

connections. As the number of internal connections increase, the diameter of the broadcast

20 channel tends to decrease, and thus propagation time for a message tends to decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,

increase as the ninnber of internal connections increases. When the number of internal

connectors is even, then the broadcast charmel can be maintained as m-regular and

m-connected (in the steady state). If the number of internal connections is odd, then when

25 the broadcast channel has an odd number of computers connected, one of the computers will

have less than that odd number of internal connections. In such a situation, the broadcast

network is neither m-regular nor m-connected. When the next computer connects to the

broadcast charmel, it can again become m-regular and m-connected. Thus, with an odd

number of internal connections, the broadcast channel toggles between being and not being
30 m-regular and m-connected.

[03004-8004/SLO03733.l00] -21- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 633 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 634 of 1442

Commnents

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was

only one broadcast channel and that each computer had only one connection to that broadcast

5 channel. More generally, a network of computers may have multiple broadcast channels,

each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast channel. The broadcast channel is well

suited for computer processes (e.g., application programs) that execute collaboratively, such

as network meeting programs. Each computer process can connect to one or more broadcast

10 charmels. The broadcast channels can be identified by channel type (e.g., application

program name) and channel instance that represents separate broadcast channels for that

charmel type. When a process attempts to connect to a broadcast channel, it seeks a process

currently connected to that broadcast channel that is executing on a portal computer. The

seeking process identifies the broadcast channel by channel type and charmel instance.

15 Computer 600 includes multiple application programs 601 executing as

separate processes. Each application progra.m interfaces with a broadcaster component 602

for each broadcast channel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of the application

program. Alternatively, the broadcaster component may execute as a separate process or

20 thread from the application program. In one embodiment, the broadcaster component

provides functions (e.g., methods of class) that can be invoked by the application programs.

The primary fimctions provided may include a connect function that an application program

invokes passing an indication of the broadcast charmel to which the application program

wants to connect. The application program may provide a callback routine that the

25 broadcaster component invokes to notify the application program that the connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message ftmction that the application program can

invoke to reuieve the next message that is broadcast on the broadcast channel. Alternatively,

the application program may provide a callback routine (which may be a virtual function

so provided by the application program) that the broadcaster component invokes to notify the

application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

[o3oo4.aoo4/swom3.1oo1 -22- 731,90

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 634 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 635 of 1442

the call-in port, they are transferred to other ports that serve as the external and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

5 (e.g., display devices), and storage devices (e.g., disk drives). The memory and storage

devices are computer-readable medium that may contain computer instructions that

implement the broadcaster component. In addition, the data structures and message

structures may be stored or transmitted via a signal transmitted on a computer-readable

media, such as a communications link.

10 Figure 7 is a block diagram illustrating the sub-components _of the broadcaster

component in one embodiment. The broadcaster component includes a connect component

701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an

acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response component 711 that

15 are invoked by the broadcaster component. The application program invokes the connect

component to establish a connection to a designated broadcast channel. The connect

component identifies the external port and installs the external dispatcher for handling

messages that are received on the external port. The connect component invokes the seek

portal computer component 705 to identify a portal computer that is connected to the

20 broadcast channel and invokes the connect request component 706 to ask the portal computer

(if fully connected) to select neighbor processes for the newly connecting process. The

external dispatcher receives external messages, identifies the type of message, and invokes

the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

25 received broadcast messages are stored in the broadcast message queue 709. The acquire

message component is invoked to retrieve messages from the broadcast queue. The

broadcast component is invoked by the application program to broadcast messages in the
broadcast channel.

The following tables list messages sent by the broadcaster components.

[D3004-8004/SLOO3733.l00] .23- .,,,,,w

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 635 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 636 of 1442

EXTERNAL MESSAGES

Message Type
seeking_connection_call Indicates that a seeking process would like to know whether the

receiving process is fully connected to the broadcast charmel

connection_request_ca1l Indicates that the sending process would like the receiving
process to initiate a connection of the sending process to the
broadcast channel

Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast

channel (i. e., edge pinning)

 edge_proposal_call

 Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcast
channel

Indicates that the sending process is connected to the broadcast
channel

Indicates that the receiving process should disconnect from one

of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition

port_connection_cal1

connected_stmt .

condition_repair_stmt

INTERNAL MESSAGES

Message Type Description

broadcast_stmt Indicates a message that is being broadcast through the
broadcast channel for the application programs

connection__port_search_stmt Indicates that the designated process is looking for a port
through which it can connect to the broadcast channel

connection_edge_search_call Indicates that the requesting process is looking for an edge
through which it can connect to the broadcast channel

connection_edge_search_resp Indicates whether the edge between this process and the
sending neighbor has been accepted by the requesting
P33)’

diameter_estimate_stmt Indicates an estimated diameter of the broadcast channel

diameter_reset_stmt Indicates to reset the estimated diameter to indicated
diameter

disconnect_strnt Indicates that the sending neighbor is disconnecting fi'om
the broadcast channel

Indicates that neighbors with empty port condition have

[D3004-8004lSI.003733.l0O] -24.. 7,3,,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 636 of 1442

