
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 841 of 1442

Contents

16.4.2 DCE-CIOP Invoke Response Message 16-12

16.4.2.1 Invoke response header 16-13
16.4.2.2 Invoke Response Body 16-13

16.4.3 DCE-CIOP Locate Request Message 16-14

16.4.3.1 Locate Request Header 16-14
16.4.4 DCE-CIOP Locate Response Message 16-15

16.4.4.1 Locate Response Header 16-15
16.4.4.2 Locate Response Body 16-16

16.5 DCE-CIOP Object References . 16-16

16.5.1 DCE-CIOP String Binding Component 16-17

16.5.2 DCE-CIOP Binding Name Component 16-18

16.5.2.1 BindingNameComponent 16-18
16.5.3 DCE-CIOP No Pipes Component 16-19

16.5.4 Complete Object Key Component 16-19

16.5.5 Endpoint ID Position Component. 16-20

16.5.6 Location Policy Component 16-20

16.6 DCE-CIOP Object Location . 16-21
16.6.1 Location Mechanism Overview 16-22

16.6.2 Activation . 16-23

16.6.3 Basic Location Algorithm 16-23

16.6.4 Use of the Location Policy and the Endpoint 1D . 16-24

16.6.4.1 Current location policy 16-24
16.6.4.2 Original location policy 16-24
16.6.4.3 Original Endpoint ID 16-24

16.7 OMG IDL for the DCE CIOP Module 16-25

16.8 References for this Chapter . 16-26

17. Interworking Architecture . 17-1

17.1 Purpose of the Interworking Architecture 17-2

17.1.1 Comparing COM Objects to CORBA Objects . . 17-2

17.2 Interworking Object Model . 17-3

' 17.2.1 Relationship to CORBA Object Model 17-3

17.2.2 Relationship to the OLE/COM Model_ 17-4

17.2.3 Basic Description of the lnterworking Model . . . 17-4

17.3 Interworking Mapping Issues . 17-8

17.4 Interface Mapping . 17-8
17.4.1 CORBA/COM . 17-9

17.4.2 CORBA/Automation . 17-9

17.4.3 COM/CORBA . 17-10

17.4.4 Automation/CORBA . 17-10

17.5 Interface Composition Mappings . 17-11
17.5.1 CORBA/COM . 17-11

17.5.1.1 COM/CORBA 17-12
17.5.1.2 CORBA/Automation 17-12
17.5.1.3 Automation/CORBA 17-13

xxii

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 841 of 1442

Common Object Request Broker/lrchitecture (CORBA), v2.6

17.5.2 Detailed Mapping Rules . 17-13

17.5.2.1 Ordering Rules for the CORBA->M1DL

December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 842 of 1442

Contents

Transfonnation . 17-13

17.5.2.2 Ordering Rules for the
CORBA->Automation Transformation . 17-13

17.5.3 Example of Applying Ordering Rules 17-14

17.5.4 Mapping Interface Identity 17-16
17.5.4.1 Mapping Interface Repository IDs to

COM 11Ds . 17-17

17.5.4.2 Mapping COM IlDs to CORBA
1nterface1Ds . 17-18

17.6 Object Identity, Binding, and Life Cycle 17-18

17.6.1 Object Identity Issues . 17-19

17.6.1.1 CORBA Object Identity and Reference
Properties . 17-19

17.6.1.2 COM Object Identity and Reference
Properties . 17-19

17.6.2 Binding and Life Cycle . 17-20

17.6.2.1 Lifetime Comparison 17-20
17.6.2.2 Binding Existing CORBA Objects to

COM Views . 17-21

17.6.2.3 Binding COM Objects to CORBA Views 17-22
17.6.2.4 COM View of CORBA Life Cycle 17-22
17.6.2.5 CORBA View of COM/Automation

Life Cycle . 17-23

17.7 Interworking Interfaces . 17-23

17.7.1 Simp1eFa'ctory Interface . 17-23
17.7.2 IMonikerProvider Interface and Moniker Use . . 17-23

17.7.3 ICORBAFactory Interface 17-24

17.7.4 lForeignObject Interface. ._. 17-26

17.7.5 lCORBAObject Interface 17-27

17.7.6 ICORBAObject2 . 17-28

17.7.7 IORBObject Interface . 17-28

17.7.8 Naming Conventions for View Components 17-30

17.7.8.1 Naming the COM View interface '. 17-30
17.7.8.2 Tag for the Automation Interface 1d . . . 17-30
17.7.8.3 Naming the Automation View Dispatch

Interface . l7-30

17.7.8.4 Naming the Automation View Dual
Interface . 17-31

17.7.8.5 Naming the Program Id for the COM
Class . 17-31

17.7.8.6 Naming the Class id for the COM
Class . 17-32

17.8 Distribution .- . . . 17-32

17.8.] Bridge Locality . 17-32
17.8.2 Distribution Architecture 17-33

17.9 Interworking Targets . 17-34

17.10 Compliance to COM/CORBA Interworking 17-34

I7.10.1 Products Subject to Compliance 17-34
l7.l0.1.1 Interworking solutions 17-34
17.10.1.2 Mapping solutions 17-35

December 2001 Common Object RequestBroker/trchilecture (CORBA), V2.6 xxiii

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 842 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 843 of 1442

Contents

17.10.1.3 Mapped components 17-35
l7.l0.2 Compliance Points . 17-36

18. Mapping: COM and CORBA . 18-1

18.1 Data Type Mapping . 18-1

18.2 CORBA to COM Data Type Mapping 18-2

18.2.1 Mapping for Basic Data Types 18-2

18.2.2 Mapping for Constants . 18-2

18.2.3 Mapping for Enumerators 18-3

18.2.4 Mapping for String Types 18-4

18.2.4.1 Mapping for Unbounded String Types . 18-4
18.2.4.2 Mapping for Bounded String Types . . . 18-5

18.2.5 Mapping for Struct Types 18-5

18.2.6 Mapping for Union Types 18-6

18.2.7 Mapping for Sequence Types 18-8

18.2.7.1 Mapping for Unbounded Sequence Types 18-8
18.2.7.2 Mapping for Bounded Sequence Types 18-8

18.2.8 Mapping for Array Types 18-9

18.2.9 Mapping for the any Type 18-9

18.2.10 lnterface Mapping . 18-11
18.2.l0.l Mapping for interface identifiers 18-11
18.2._10.2 Mapping for exception types 18-11
18.2.10.3 Mapping for Nested Types 18-21
l8.2.10.4 Mapping for Operations 18-22
18.2.10.5 Mapping for Oneway Operations 18-24
18.2.10.6 Mapping for Attributes 18-24
18.2.10.7 lndirection Levels for Operation

Parameters . 18-26

18.2.11 Inheritance Mapping . 18-26

18.2.12 Mapping for Pseudo-Objects 18-29
l8.2.12.1 Mapping for TypeCode pseudo-object 18-29
18.2.12.2 Mapping for context pseudo-object . . . 18-31
l8.2.l2.3 Mapping for principal pseudo-object . 18-32

18.2.13 lnterface Repository Mapping 18-32

18.3 COM to CORBA Data Type Mapping 18-33

18.3.] Mapping for Basic Data Types 18-33

18.3.2 Mapping for Constants . 18-34

18.3.3 Mapping for Enumerators 18-34

18.3.4 Mapping for String Types 18-35

18.3.4.1 Mapping for unbounded string types . . . 18-35
18.3.4.2 Mapping for bounded string types 18-36
18.3.4.3 Mapping for Unicode Unbounded

String Types . 18-36
18.3.4.4 Mapping for unicode bound string types 18-37

18.3.5 Mapping for Structure Types 18-37

18.3.6 Mapping for Union Types 18-38

18.3.6.1 Mapping for Encapsuiated Unions 18-38
18.3.6.2 Mapping for nonencapsulated unions . . 18-39

18.3.7 Mapping for Array Types 18-40
18.3.7.1 Mapping for nonfixed arrays 18-40

xxiv

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 843 of 1442

Common Object Request Broker Architecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 844 of 1442

Contents

18.3.7.2 Mapping for SAFEARRAY 18-40

18.3.8 Mapping for VARIANT . 18-41

18.3.9 Mapping for Pointers . 18-43

18.3.10 lnterface Mapping . 18-44

18.3.10.1 Mapping for Interface ldentifiers 18-44
18.3.10.2 Mapping for COM Errors 18-44
18.3.10.3 Mapping of Nested Data Types 18-47
18.3.10.4 Mapping of Names 18-47
18.3.10.5 Mapping for Operations 18-47
18.3.10.6 Mapping for Properties 18-48

18.3.11 Mapping for Read-Only Attributes 18-49

18.3.12 Mapping for Read-Write Attributes 18-49

l8.3.12.1 lnheritance Mapping -18-50
18.3.12.2 Type Library Mapping 18-52

19. Mapping: Automation and CORBA . 19-1

19.1 Mapping CORBA Objects to Automation 19-2
19.1.1 Architectural Overview . 19-2

19.1.2 Main Features of the Mapping 19-3

19.2 Mapping for Interfaces . 19-3

19.2.1 Mapping for Attributes and Operations 19-4

19.2.2 Mapping for OMG 1DL Single lnheritance 19-5

19.2.3 Mapping of OMG IDL Multiple lnheritance. . . . 19-6

19.3 Mapping for Basic Data Types . '19-9

19.3.1 Basic Automation Types . 19-9

19.3.2 Special Cases of Basic Data Type Mapping 19-10
19.3.2.1 Converting Automation long to

CORBA unsigned long 19-10
19.3.2.2 Demoting CORBA unsigned long to

Automation long 19-11

19.3.2.3 Demoting Automation long to CORBA
unsigned short . 19-11

19.3.2.4 Converting Automation boolean to CORBA
boolean and CORBA boolean to Automation
boolean . 19-11

19.3.3 Mapping for Strings . 19-11

19.4 IDL to ODL Mapping . 19-12

19.4.1 A Complete 1DL to ODL Mapping for ‘the Basic

Data Types .. 19-12

19.5 Mapping for Object References . 19-15

19.5.1 Type Mapping .. 19-15

19.5.2 Object Reference Parameters and

_ lForeign0bject . 19-16

19.6 Mapping for Enumerated Types . 19-17

19.7 Mapping for Arrays and Sequences 19-18

19.8 Mapping for CORBA Complex Types 19-19

19.8.] Mapping for Structure Types 19-20

19.8.2 Mapping for Union Types 19-21

December 2001 Common Object Request Brnker/irchiiecture (CORBA). V2.6 xxv

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 844 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 845 of 1442

Contents

xxvi

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 845 of 1442

19.8.3 Mapping for TypeCodes . 19-22

19.8.4 Mapping for anys . 19-24

19.8.5 Mapping for Typedefs . 19-25

19.8.6 Mapping for Constants . 19-25

19.8.7 Getting Initial CORBA Object References 19-26

19.8.8 Creating Initial in Parameters for Complex Types19-27

19.8.8.1 1TypeFactory Interface 19-29
19.8.8.2 D10bjectlnfo Interface 19-29

19.8.9 Mapping CORBA Exceptions to Automation

Exceptions . 19-30
19.8.9.1 Overview of Automation Exception

Handling . 19-30
19.8.9.2 CORBA Exceptions 19-30
19.8.9.3 CORBA User Exceptions 19-31
19.8.9.4 Operations that Raise User Exceptions . 19-32

19.8.9.5 CORBA System Exceptions 19-33
19.8.9.6 Operations that raise system exceptions 19-34

19.8.10 Conventions for Naming Components of the
Automation View . 19-36

19.8.11 Naming Conventions for Pseudo-Structs, Pseudo-

Unions, and Pseudo-Exceptions 19-36

19.8.12 Automation View Interface as a Dispatch

Interface (Nondual) . 19-36

19.8.13 Aggregation of Automation Views 19-38
19.8.14 D11 and DSI . 19-38

19.9 Mapping Automation Objects as CORBA Objects 19-38
19.9.1 Architectural Overview . 19-38

19.9.2 Main Features of the Mapping 19-39 '

19.9.3 Getting Initial Object References 19-40

19.9.4 Mapping for Interfaces . 19-40

19.9.5 Mapping for Inheritance . 19-40

19.9.6 Mapping for ODL Properties and Methods. 19-41

19.9.7 Mapping for Automation Basic Data Types. 19-42
19.9.7.1 Basic automation types 19-42

19.9.8 Conversion Errors . 19-43

19.9.9 Special Cases of Data Type Conversion 19-43
19.9.9.1 Translating COM::Currency to

Automation CURRENCY 19-43

19.9.9.2 Translating CORBA double to
Automation DATE 19-43

19.9.9.3 Translating CORBA boolean to
Automation boolean and Automation
boolean to CORBA boolean 19-43

19.9.10 A Complete OMG IDL to ODL Mapping for the Basic

Data Types .. 19-44

19.9.11 Mapping for Object References 19-46

19.9.12 Mapping for Enumeratcd Types 19-47

19.9.13 Mapping for SafeArrays . 19-48
19.9.l3.1 Multidimensional SafeArrays 19-48

19.9.14 Mapping for Typedefs . 19-48

Common Object Request Brokerxtrchitecture (CORBA). V2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 846 of 1442

Contents

19.9.15 Mapping for VARlANTs . 19-48

19.9.16 Mapping Automation Exceptions to CORBA . . . 19-49

19.10 Older Automation Controllers . 19-49

19.10.l Mapping for OMG IDL Arrays and Sequences
' to Collections .. 19-49

19.11 Example Mappings1 . 19-51
19.11.1 Mapping the OMG Naming Service to

Automation . 19-51

l9.11.2 Mapping a COM Service to OMG IDL 19-51

19.11.3 Mapping an OMG Object Service to Automation 19-55

20. Interoperability with non-CORBA Systems 20-1

20.1 Introduction . 20-1

20.1.1 COM/CORBA Part A . 20-2

20.2 Conformance Issues . 20-2

20.2.1 Performance Issues . 20-3

20.2.2 Scalability Issues . 20-3
20.2.3 CORBA Clients for DCOM Servers 20-3

20.3 Locality of the Bridge . 20-4

20.4 Extent Definition . 20-5

20.4.1 Marshaling Constraints . 20-6

20.4.2 Marshaling Key. 20-6
20.4.3 Extent Format . 20-7

20.4.3.1 DVO_EXTENT 20-8
20.4.3.2 DVO_1FACE . 20-8
20.4.3.3 DVO_lMPLDATA 20-8
20.4.3.4 DVO'_BLOB . 20-8

20.5 Request/Reply Extent Semantics . 20-8

20.6 Consistency 20-9

20.6.1 1ValueObject . 20-10

20.6.2 [Synchronize and Dlsynchronize 20-11

20.6.2.1 Mode Property . 20-ll
20.6.2.2 SyncNow Method 20-ll
20.6.2.3 ReCopy Method 20-11

20.7 DCOM Value Objects . 20-11

I 20.7.1 Passing Automation Compound Types as DCOM
Value Objects . 20-11

20.7.2 Passing CORBA-Defined Pseudo-Objects as
DCOM Value Objects . 20-12

20.7.3 1ForeignObject . 20-12

20.7.4 DlForeignComp|ex'Iype . 20-12

20.7.5 DlForeignException . 20-12

20.7.6 D1SystemException . 20-12

20.7.7 DlCORBAUserException 20-13
20.7.8 DlCORBAStruct . 20-13

20.7.9 DlCORBAUnion . 20-13

December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 846 of 1442

Common Object Request Broker Architecture (CORBA), v2.6 xxvii

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 847 of 1442

Contents

xxviii

20.7.10 DICORBATypeCode and ICORBA'IypeCode . . . 20-13

20.7.11 DICORBAAny . 20-14

20.7.12 lCORBAAny . 20-15

20.7.13 User Exceptions In COM 20-15

20.8 Chain Avoidance . 20-16

‘ 20.8.1 CORBA Chain Avoidance 20-16

20.8.2 COM Chain Avoidance . 20-17

20.9 Chain Bypass . 20-19

20.9.1 CORBA Chain Bypass . 20-19

20.9.2 COM Chain Bypass_ 20-20

20.10 Thread Identification . 20-21

21. Portable Interceptors . 21-1

21.1 Introduction . 21-1

21.1.1 Object Creation . 21-2

21.1.2 Client Sends Request . 21-3

21.1.3 Server Receives Request . 21-4

21.1.4 Server Sends Reply . 21-4

21.1.5 Client Receives Reply . 21-5

21.2 Interceptor Interface . 21-5

21.3 Request Interceptors . 21-6

21.3.1 Design Principles . 21-6
21.3.2 General Flow Rules . 21-7

21.3.3 The Flow Stack Visual Model 21-8

21.3.4 The Request Interceptor Points 21-8

21.3.5 Client-Side Interceptor . 21-9

21.3.6 Client-Side Interception Points 21-9

21.3.6.1 send_request . 21-9
21.3.6.2 send_po11 . 21-9
21.3.6.3 receive_reply . 21-10
21.3.6.4 receive__exception 21-10
21.3.6.5 receive_other ._ 21-11

21.3.7 Client-Side Interception Point Flow 21-11
21.3.7.1 Client-side Flow Rules 21-11
21.3.7.2 Additional Client-side Details 21-12

21.3.7.3 Client-side Flow Examples 21-12

21.3.8 Server-Side Interceptor . 21-14

21.3.9 Server-Side Interception Points 21-14

21.3.9.1 receive_request_service_contexts 21-14
21.3.9.2 receive_request 21-15
21.3.9.3 send_reply .. 21-15
21.3.9.4 send_exception 21-16
21.3.9.5 send_other .. 21-16

21.3.10 Server-Side Interception Point Flow 21-I7
21.3.10.l Server-side Flow Rules 21-17
21.3.10.2 Additional Server-side Details 21-17

21.3.10.3 Server-side Flow Examples 21-18

21.3.11 Request Information . 21-20

Common Object Request Broker/irchilecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 847 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 848 of 1442

Contents

21.3.12 Requestlnfo Interface .. 21-21
21.3.12.1 request_id . 21-21
21.3.12.2 operation . 21-21
2l.3.12.3 arguments .. 21-21
21.3.12.4 exceptions . 21-22
21.3.l2.5 contexts . 21-22

21.3.12.6 operation_context 21-22
21.3.12.7 result .. 21-22

21.3.12.8 response_expected 21-23
2l.3.12.9 sync_scope . 21-23
21.3.12.10reply_status . 21-23
21.3.12.l1 forward_reference 21-24

2l.3.l2.l2 get_slot .. 21-24
21.3.12.l3 get_request_service_context 21-25
21.3.12.14 get_rep1y_service_context 21-25

21.3.13 Clientkequestlnfo Interface 21-25

21.3.13.1 target .. 1-27
2l.3.13.2 effective_target 21-27
21.3.13.3 effective_profile 21-27
21.3.13.4 received_exception 21-27
21.3.13.5 received_exception_id 21-27
21.3.13.6 get_effective_component 21-27
21.3.13.7 get_effective__components 21-28
21.3.13.8 get_request__po1icy 21-28
21.3.13.9 add_request_service_context 2]-28

21.3.14 ServerRequestlnfo Interface 21-29
21.3.14.1 sending_exception 21-30
2l.3.14.2 object_id . 21-30
21.3.14.3 adapter_id . 21-31
21.3.l4.4 target_most_derived_interface 21-31
21.3.l4.5 get_server_policy 21-31
2l.3.14.6 set_slot .. 21-31

21.3.14.7target_is_a . 21-31
21 .3.14.8 add_reply_service_context 21-32

21.3.15 Forwardkequest Exception 21-32

21.4 Portable Interceptor Current . 21-33
21.4.1 Overview . 21-33

21.4.2 Obtaining the Portable Interceptor Current. . . . 21-33

21.4.3 Portable Interceptor Current Interface 21-33

21.4.3.1 get_slot . 21-34
21.4.3.2 set_slot . 21-34

21.4.4 Use of Portable Interceptor Current 21-34
21.4.4.1 Client-side use of PlCurrent 21-34

21.4.4.2 Example of P1Current to Handle
Client-side Recursion L . . . 21-35

21.4.4.3 Server-side use of P1Current 21-36

21.4.4.4 Request Scope vs Thread Scope 21-37
21.4.4.5 Flow of P1Current between Scopes 21-37
21.4.4.6 Notes on P1Current and Scopes 21-39

21.5 IOR Interceptor .21-39
21.5.1 Overview. 21-39

21.5.2 IORInterceptor Interface 21-39

21.5.2.1 estab1ish_components 21-40

December 2001 Common Object Request Broker/frchilecture (CORBA). V2.6 xxix

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 848 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 849 of 1442

Contents

21.5.3 10R1nfo lnterface . 21-40

21.5.3.1 get_effective_po1icy 21-40
21.5.3.2 add_ior_component 21-41
21.5.3.3 add_ior_component_to_profl1e 21-41

21.6 Po1icyFactory . 21-42

21.6.1 PolicyFactory Interface . 21-42
21.6.1.1 create_policy . 21-42

21.7 Registering Interceptors . 21-42
21.7.1 0RB1nitia1izer1nterface . 21-43

21.7.1.1 pre_init .. 21-43
21.7.1.2 post_init .. 21-43

21.7.2 0RB1nit1nfo lnterface . 21-43

21.7.2.1 Dup1icateNarne Exception 21-44
21.7.2.2 1nva1idNarne Exception 21-44
21.7.2.3 arguments . 21-45
21.7.2.4 orb_id . 21-45

21.7.2.5 codec_factory . 21-45
21.7.2.6 register_initia1_reference 21-45
21.7.2.7 reso1ve_initia1_references 21-45

21.7.2.8 add_client_request_interceptor 21-45
21.7.2.9 add_server_request_interceptor 21-46
21.7.2. 10 add_ior_interceptor 21-46
21.7.2.11 al1ocate_s1ot_id 21-46

21.7.2.12 register_po1icy_factory 21-46

21.7.3 register_orb_initia1izer Operation 21-47

21.7.3.1 Mappings of register_orb_initializer . . . 21-47
21.7.4 Notes about Registering Interceptors 21-49

21.8 Dynamic Initial References . 21-49

21.8.1 register_initia1_reference 21-49

21.9 Module Dynamic . 21-50

21.9.1 N VList PIDL Represented by
ParameterList 1DL . 21-50

21.9.2 ContextList P1DL Represented by
ContextList IDL . 21-50

21.9.3 Exception1..ist 1’1DL Represented by

ExceptionList 1DL . 21-51

21.9.4 Context P1DL Represented by

RequestContext 1DL . 21-51

21.10 Portable Interceptor IDL . 21-51

22. CORBA Messaging . 22-1

22.1 Section 1- Introduction . 22-2

22.2 Messaging Quality of Service . 22-2

22.2.1 Rebind Support . 22-5

22.2.1.1 typedef short RebindMode 22-5
22.2.1.2 interface RebindPo1icy 22-5

22.2.2 Synchronization Scope . 22-6

22.2.2.1 typedef short Syncscope 22-6
22.2.2.2 interface SyncScopePolicy 22-7

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 849 of 1442

Common 0hjectReques1 Broker/trchilecture (CORBA), v2_6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 850 of 1442

Contents

21.5.3 lORlnfo Interface . 21-40

21.5.3.1 get_effective_po1icy 21-40
21.5.3.2 add_ior_component 21-41
21.5.3.3 add_ior_component_to_profl1e 21-41

21.6 Po1icyFactory . 21-42

21.6.1 Po1icyFactory Interface .. 21-42

21.6.1.1 create_policy . 21-42

21.7 Registering Interceptors . 21-42
21.7.1 ORBInitia1izer Interface . 21-43

21.7.1.1 pre_init .. 21-43
21.7.1.2 post_init .. 21-43

21.7.2 0RBlnit1nfo Interface . 21-43

21.7.2.1 Dupli<_:ateName Exception 21-44
21.7.2.2 1nva1idName Exception 21-44
21.7.2.3 arguments . 21-45
21.7.2.4 orb_id . 21-45

21.7.2.5 codec_factory . 21-45
21.7.2.6 register_initia1_reference 21-45
21.7.2.7 reso1ve_ir1itia1_references 21-45

21.7.2.8 add_c1ient_request_interceptor 21-45
21.7.2.9 add_server_request_interceptor 21-46
21.7.2.lO add_ior_interceptor 21-46
21.7.2.11 a11ocate_s1ot_id 21-46

21.7.2.12 register_po1icy_factory 21-46
21.7.3 register_orb_initia1izer Operation ,21-47

21.7.3.1 Mappings of register_orb__initializer . . . 21-47
21.7.4 Notes about Registering Interceptors 21-49

21.8 Dynamic Initial References . 21-49

21.8.1 register_initia|_reference 21-49

21.9 Module Dynamic . 21-50

21.9.1 NVList PIDL Represented by

ParameterList IDL . 21-50‘

21.9.2 ContextListI’1DL Represented by
ContcxtList IDL . 21-50

21.9.3 ExceptionList PIDL Represented by

Exception1_.ist IDL . 21-5]

21.9.4 Context PIDL Represented by

RequestContext IDL . 21-51

21.10 Portable Interceptor IDL . 21-51

22. CORBA Messaging . 22-1

22.1 Section 1 - Introduction . 22-2

22.2 Messaging Quality of Service . 22-2

22.2.1 Rebind Support . 22-5

22.2.1.1 typedef short RebindMode 22-5
22.2.1.2 interface RebindPo1icy 22-5

22.2.2 Synchronization Scope . 22-6

22.2.2.1 typedef short SyncScope 22-6
22.2.2.2 interface SyncScopePo1icy 22-7

XXX

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 850 of 1442

Common Object Request Broker Arch ttecture (CORBA), V2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 851 of 1442

22.3

22.4

22.5

22.6

22.7

22.8

22.9

December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 851 of 1442

Common Object Request BrokerArchiIecture (CORBA), v2.6

Contents

22.2.3 Request and Reply Priority 22-7
22.2.3.1 struct PriorityRange 22-7
22.2.3.2 interface RequestPriorityPo1icy 22-7
22.2.3.3 interface Rep1yPriorityPolicy 22-8

22.2.4 Request and Reply Timeout 22-8
22.2.4.1 interface RequestStartTimePo1icy 22-8
22.2.4.2 interface RequestEndTimePo1icy 22-9
22.2.4.3 interface ReplyStartTimePo1icy 22-9
22.2.4.4 interface ReplyEndTimePo1icy 22-9
22.2.4.5 interface RelativeRequestTimeoutPo1icy 22-9
22.2.4.6 interface Re1ativeRoundtrip'l'imeout

Policy . 22-10

22.2.5 Routing . 22-10

22.2.5.1 typedef short RoutingType 22-10
22.2.5.2 struct RoutingTypeRange 22-10
22.2.5.3 interface RoutingPolicy 22-11
22.2.5.4 interface MaxHopsPo1icy 22-11

22.2.6 Queue Ordering . 22-11

22.2.6.1 typedef short Ordering 22-11
22.2.6.2 interface QueueOrderPo1icy 22-12

Propagation of Messaging QoS . 22-12
22.3.1 Structures . 22-12

22.3.2 Messaging QoS Profile Component 22-13

22.3.3 Messaging QoS Service Context 22-13

Section II - Introduction . 22-13

Running Example . 22-15

Async Operation Mapping . 22-16

22.6.1 Callback Model Signatures (sendc) 22-16

22.6.1.1 lmplied-1DL for Operations 22-16
22.6.1.2 lmplied-1DL for Attributes 22-17
22.6.1.3 Example .. 22-17

22.6.2 Polling Model Signatures (sendp) 22-18

22.6.2.1 1mplied—1DL for Operations 22-18
22.6.2.2 lmplied-1DL for Attributes 22-19
22.6.2.3 Example . 22-19

Exception Delivery in the Callback Model 22-20

22.7.1 Generic Exceptionflolder Value 22-20

22.7.2 Type-Specific Exceptionliolder Mapping 22-21

22.7.3 Example . 22-21

Type-Specific ReplyHandler Mapping 22-22

22.8.] Replyllandler Operations for

l\‘O_EXCEPTl0N Replies 22-23

22.8.2 Replylvlandler«Operations for Exceptional .

Replies . 22-24

22.8.3 Example . 22-24

Generic Poller Value . 22-25

22.9.1 operation_target. 22-26

22.9.2 operation_name . 22-26

22.9.3 associated_handler. . . .' . 22-26

xxxi

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 852 of 1442

Contents

xxxfi

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 852 of 1442

22.9.4 is_from_poller . 22-26

22.10 Type-Specific Poller Mapping . 22-26

22.10.1 Basic Type-Specific Poller 22-27
22.10. I .1 Poller operations for Interface

operations . 22-27
22.10. 1 .2 Poller operations for Interface

attributes . 22-28

22.10.2 Persistent Type-Specific Poller 22-29

22.10.3 Example . 22-29

22.11 Example Programmer Usage . 22-30

22.11.l Example Programmer Usage (Examples

Mapped to C++) . 22-30

22.l1.2 Client-Side C++ Example for the Asynchronous

Method Signatures . 22-31

22.l1.3 Client-Side C++ Example of the Callback Model 22-32

22.ll.4

22.1 1.3.1 C++ Example of Generated
Exceptionl-Iolder 22-32

22.1 1.3.2 C++ Example of Generated
ReplyHa.ndler 22-32

22.1 1.3.3 C++ Example of User-Implemented

Replyflandler 22-34
22.1 1.3.4 C++ Example of Callback Client

Program . 22-38

Client-Side C++ Example of the Polling Model. . 22-39

22.1 1.4.] C++ Example of Generated Poller . . . 22-39
22.1 1.4.2 C++ Example of Polling Client

Program . 22-40
22.1 1.4.3 C++ Example of Using Pol1ableSet

in a Client Program' 22-42
22.11.5 Server Side . 22-44

22.12 Section III - Introduction . 22-45

22.13 Routing Object References , 22-46

22.14 Message Routing .22-47
22.14.] Structures . 22-49

22.14.l.l MessageBody 22-49
22.l4.l.2 RequestMessage 22-49
22.l4.l.3 Rep1yDestination,. 22-50
22.l4.l.4 Requestlnfo . 22-50

22.l4.2 Interfaces . 22-51

22.l4.2.l Replyflandler . 22-51
22.14.2.2 Router . 22-51

22.l4.2.3 send_request . 22-51
22.l4.2.4 send_multiple_requests 22-51
22.14.2.5 UntypedReplyHandler 22-51
22.14.2.6 reply . 22-51
22. 14.2.7 PersistentRequest 22-52
22.14.2.8 readonly attribute reply_availab1e 22-52
22.l4.2.9 get_reply . 22-52
22. 14.2.10 attribute associated_handler 22-52

22. 14.2.11 PersistentRequestRouter 22-53
22.14.2.l2 create_persistent_request 22-53

Common Object Request Broker/trchitecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 853 of 1442

 « Contents

22.l4.3 Routing Protocol .. 22-53
22.14.3.1 Invoking Client 22-54
22.14.3.2 Initial Request Router 22-55
22.14.3.3 Request Routing Algorithm 22-55
22.I4.3.4 Intermediate Request Router 22-56
22.14.3.5 Target Router . 22-56
22. 14.3.6 Replying to a Type-specific

Replyliandler 22-58
22.l4.3.7 Replying to an UntypedReply1-Iandler 22-58
22.I4.3.8 Handling of Service Contexts 22-58
22.14.3.9 Handling LOCAT1ON_FORWARD

Replies .. 22-59
22.14.3.1O Routing of Replies 22-59
22.14.3.1l UntypedRep1yHandIer 22-59

22.15 Router Administration . 22-60

22.15.] Constants . 22-63

22.I5.l.I typedef short Registrationstate 22-63
22.l5.2 Exceptions . 22-64

22.I5.2.1 exception Invalidstate 22-64
22.l5.3 Valuetypes . 22-64

22.15.3.1 RetryPo1icy . 22-64
22.15.3.2 lmmediatesuspend 22-64
22.15.3.3 Un1imitedPing 22-64
22.15.3.4 LimitedPing . 22-64
22.I5.3.5 DecayPolicy . 22-65
22.15.3.6 ResumePolicy 22-65

22.l5.4 Interfaces . ._ .. 22-65
22.15.4.1'RouterAdmin 22-65

22.l5.4.2 register_destination 22-65
22.15.4.3 suspend_destination 22-65
22.15.4.4 resume_destination 22-65

22.I5.4.5 unregister_destination 22-66

23. MinimumCORBA . 23-1

23.1 Introduction . 23-2

23.2 IDL . 23-2

23.3 CORBA Omitted Features . 23-2

23.4 ORB Interface Omissions . 23-3

23.4.1 ORB . 23-3

23.4.2 Object . 23-4

23.4.3 ConstructionPoIicy . 23-4

23.5 Dynamic Invocation Interface . 23-5

23.6 Dynamic Skeleton Interface . 23-5

23.7 Dynamic Any . 23-5

23.8 Interface Repository . 23-5

' 23.8.1 TypcCodc . 23-5

23.9 Portable Object Adapter . 23-6
23.9.1 Interfaces . 23-6

23.9.1.1 POA .. 23-6

December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 853 of 1442

Common Object Request Broker Architecture (CORBA), v2.6 xxxiii

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 854 of 1442

Contents

23.9.1.2 Current . 23-6

23.9.1.3 Policy interfaces 23-7
23.9.1.4 POAManager . 23-7
23.9.1.5 AdapterActivator 23-7
23.9.1.6 ServantManagers 23-7

23.9.2 Policies . 23-7

23.9.2.1 ThreadPo1icy . 23-7
23.9.2.2 LifespanPolicy . 23-8
23.9.2.3 ObjectldUniquenessPolicy 23-8
23.9.2.4 ldAssignmentPolicy 23-8
23.9.2.5 ServantRetentionPolicy 23-8
23.9.2.6 RequestProcessingPo1icy 23-8
23.9.2.7 lmp1icitActivationPolicy 23-9

23.10 Interoperability . 23-9

23.10.] DCE lnteroperability . 23-9

23.11 COM/CORBA Interworking .23-10

23.12 Interceptors . 23-10

23.13 Langiage Mappings .23-10

23.13.1 C++ Mapping Specific lssues 23-10

23.13.2 Java Mapping Specific lssues 23-10

23.14 minimumCORBA OMG IDL . 23-ll

23.14.l ORB lnterface . 23-ll

23.14.2 Dynamic lnvocation Interface. 23-14

23.14.3 Dynamic Skeleton lnterface 23-14

23.14.4 Dynamic Management of Any Values 23-14

‘23.14.5 Interface Repository .. 23-14

23.l4.6 Portable Object Adapter . 23-22

23.l4.7 Interceptors . 23-29

24. Real-Time CORBA . 24-1

24.1 Goals of the Specification . 24-2

24.2 Extending CORBA .'. 24-3

24.3 Approach to Real-Time CORBA . 24-3
24.3.1 The Nature of Real—Time . 24-3

24.3.2 Meeting Real-Time Requirements 24-4
24.3.3 activities . 24-4

24.3.4 End-to-End Predictability 24-5

24.3.5 Management of Resources 24-6

24.4 Compatibility . 24-6

24.4.1 Interoperability . 24-6

24.4.2 Portability . 24-7

24.4.3 CORBA - Real-Time CORBA lnterworking 24-7

24.5 Real-Time CORBA Architectural Overview 24-7

24.5.1 Real-Time CORBA Modules 24-8

24.5.2 Real-Time ORB . 24-8

24.5.3 Thread Scheduling . 24-9

xxxiv Common Object Request BrokerArclu'tecmre (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 854 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 855 of 1442

Contents

24.5.4 Real-Time CORBA Priority 24-9

24.5.5 Native Priority and PriorityMappings 24-9
24.5.6 Real-Time CORBA Current 24-9

24.5.7 Priority Models . 24-10

24.5.8 Real-Time CORBA Mutexes and Priority lnheritance
.24-10

24.5.9 Threadpools . 24-10

24.5.10 Priority Banded Connections 24-ll

24.5.11 Non-Multiplexed Connections 24-11
24.5.12 Invocation Timeouts . 24-11

24.5.13 Client and Server Protocol Configuration 24-ll

24.5.14 Real-Time CORBA Configuration 24-ll

24.5.15 Scheduling Service . 24-12

24.6 Real-Time ORB .24-12

24.6.1 Real-Time ORB Initialization 24-13

24.6.2 Real-Time CORBA System Exceptions 24-13

24.7 Real-Time POA . 24-14

24.8 Native Thread Priorities . 24-15

24.9 CORBA Priority . 24-16

24.10 CORBA Priority Mappings . 24-16

24.10.1 C Language binding for PriorityMapping 24-17

24.l0.2 C++ Language binding for PriorityMapping . . . 24-17

24.10.3 Ada Language binding for PriorityMapping. . . . 24-18

24.10.4 Java Language binding for PriorityMapping . . . 24-18
24.10.5 Semantics . 24-18

24.11 Real-Time Current . 24-19

24.12 Real-Time CORBA Priority Models 24-20

24.12.] l’riorityModelPolicy . 24-20

24.12.2 Scope of PriorityModelPolicy 24-21

24.12.3 Client Propagated Priority Model 24-22

24.1_2.4 Server Declared Priority Model 24-23

24.12.5 Setting Server Priority on a per-Object
Reference Basis .. 24-23

24.13 Priority Transforms .24-25

24.13.] C Language Binding for PriorityTransform 24-26

24.l3.2 C++ Language Binding for PriorityTransform . . 24-26

24.l3.3 Ada Language binding for PriorityTransform . . 24-27

24.l3.4 Java Language binding for PriorityTransform . . 24-27
24.l3.5 Semantics . 24-27

24.14 Mutex Interface .24-28

24.15 Threadpools ..24-29
24.l5.l Creation of Threadpool without Lanes 24-31

24.l5.2 Creation of Threadpool with Lanes 24-32
24.l5.3 Request Buffering .. 24-32

December 2001 Common Object Request Broker Architecture (CORBA), V2.6 xxxv

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 855 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 856 of 1442

Contents

24.15.4 Scope of ThreadpoolPolicy 24-33

24.16 Implicit and Explicit Binding . 24-33

24.17 Priority Banded Connections . 24-34

24.17.l Scope of PriorityBandedConnectionPolicy 24-35

24.l7.2 Binding of Priority Banded Connection 24-36

24.18 PrivateConnectionPo1icy . 24-37

24.19 Invocation Timeout .24-38

24.20 Protocol Configuration . 24-38
24.20.l ServerProtoco1Po1icy . 24-39

24.20.2 Scope of ServerProtoeolPo1icy 24-41

24.20.3 C1ientProtoeolPolicy . 24-41

24.20.4 Scope of ClientProtocolPolicy 24-42

24.20.5 Protocol Configuration Semantics 24-42

24.21 Consolidated IDL .24-43

24.22 Introduction . 24-48

24.23 IDL . 24-49

24.24 Semantics . 24-50

24.25 Example . 24-51

24.25.1 Server C++ Example Code 24-51

24.25.2 Client C++ Example Code 24-52

24.25.3 Explanation of Example . 24-53

25. Fault Tolerant CORBA . 25-1

25._1 ‘Fault Tolerant CORBA . 25-1
25.1.1 Fault Tolerance for Diverse Applications 25-1

25.1.2 Objectives . 25-2

25.1.3 Basic Concepts . 25-3

25.1.3.1 Replication and Object Groups 25-3
25.1.3.2 Fault Tolerance Domains 25-3

25.1.3.3 Fault Tolerance Properties 25-3
25.1.3.4 Strong Replica Consistency 25-4

25.1.4 Architectural Overview . 25-4

25.1.4.1 Fault Tolerance Property Management . 25-6
25.1.4.2 Replication Management' 25-6
25.1.4.3 Fault Detection and Notification 25-7

25.1.4.4 Logging and Recovery 25-7

25.1.5 Requirements . 25-8
25.1.6 Limitations . 25-11

25.2 Basic Fault Tolerance Mechanisms 25-12

' 25.2.1 Overview . 25-12

25.2.2 lnteroperable Object Group References 25-13

25.2.2.1 TAG_FT_GROU1’ Component 25-14
25.2.2.2 TAG_FT_PR1MARY Component 25-16

25.2.3 Interoperable Object Group Reference

Operations . 25-16

xxxvi

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 856 of 1442

Common Object Request BrnkerArchilecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 857 of 1442

 Contents

25.2.3.1 get_interface . 25-17
25.2.3.2 is_a .. 25-17

25.2.3.3 is_nil .. 25-17
25.2.3.4 non_existent . 25-17

25.2.3.5 is_equivalent . 25-17
25.2.3.6 hash .. 25-18

25.2.3.7 create_request . 25-18
25.2.3.8 get_policy . 25-18
25.2.3.9 get_domain_managers 25-18
25.2.3.10 set_po1icy_overrides 25-18

25.2.4 Modes of Profile Addressing 25-18

25.2.4.1 Profiles That Address Object Group
Members . 25-18

25.2.4.2 Profiles That Address Gateways 25-19
25.2.4.3 Choice of Profile Addressing Mode . . . 25-19

25.2.5 Accessing Server Object Groups 25-19
25.2.5.1 Access via 1lOP Directly to the

Primary Member 25-20
25.2.5.2 Access via l1OP and a Gateway 25-20
25.2.5.3 Access via a Multicast Group

Communication Protocol 25-20

25.2.6 Extensions to CORBA Failover Semantics 25-21

25.2.7 Most Recent Object Group Reference 25-22
25.2.7.1 FT_GROUP_VERS1ON Service Context 25-22

25.2.8 Transparent Reinvocation 25-23

25.2.8.1 FT_REQUEST Service Context 25-24
25.2.8.2 Request Duration Policy 25-26
25.2.8.3 Fault Handling for GlOP Messages . . . 25-26

25.2.9 Transport Heartbeats . 25-27
25.2.9.1 TAG_FT_HEARTBEAT_ENABLED

Component . 25-28
25.2.9.2 Heartbeat Policy 25-28
25.2.9.3 Heartbeat Enabled Policy 25-30

25.3 Replication Management .25-31
25.3.1 Overview . 25-31

25.3.2 Fault Tolerance Properties 25-32

25.3.2.1 Replicationstyle 25-32
25.3.2.2 Membershipstyle 25-33
25.3.2.3 Consistencystyle 25-34
25.3.2.4 FaultMonitoringStyle 25-35
25.3.2.5 FaultMonitoringGranularity 25-35
25.3.2.6 Factories . 25-36

25.3.2.7 1nitia1NumberRep1icas 25-36
25.3.2.8 MinimumNumberReplicas 25-36

25.3.3 FaultMonitoring1ntervalAndTimeout 25-37

25.3.4 Checkpointlnterval . 25-37

25.3.5 Common Types . 25-38
25.3.5.1 ldentifiers . 25-40

25.3.5.2 Exceptions . 25-42

25.3.6 Replication Manager . 25-44

25.3.6.1 Operations . 25-44
25.3.7 PropertyManager . 25-45

25.3.7.1 Operations . 25-46

December 2001 Common Object Request BmkerArchiIecture (CORBA), v2.6 xxxvii

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 857 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 858 of 1442

Contents

xxxviii

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 858 of 1442

25.3.7.2 get_properties , 25-49

25.3.8 ObjectGroupManager . 25-49

25.3.8.1 Operations . 25-50
25.3.9 GenericFactory . 25-56

25.3.9.1 identifiers . 25-59

25.3.9.2 Operations . 25-59
25.3.10 Obtaining the Reference for the

Replication Manager .. 25-61
25.3.11 Use Cases . 25-61

25.3 .1 1.1 infrastructure-Controlled Membership
Style . 25-6]

25.3.1 1.2 Application-Controlled Membership
Style . 25-63

25.3.1 1.3 Unreplicated Object Creation and
Deletion .. 25-65

25.4 Fault Management . 25-66
25.4.] Overview . 25-66

25.4.2 Architecture . 25-67
25.4.2.1 Fault Detection 25-68
25.4.2.2 Fault Notification 25-68

25.4.2.3 Fault Analysis . 25-68
25.4.2.4 Scalability . 25-68
25.4.2.5 Deployment ofFault Detectors 25-69

25.4.3 Connecting Fault Detectors to Applications 25-70

25.4.4 Pull-Based Monitoring . .'. 25-71

25.4.4.1 PULL Fault Monitoring Style 25-71
25.4.4.2 Pu11Monitorab1e Interface 25-71

25.4.5 Fault Event Types . 25-72
25.4.5.1 ObjectCrashFault 25-72

25.4.6 Fault Notifier . 25-73

25.4.6.1 identifiers . ._ . 25-75
25.4.6.2 Operations . 25-75
25.4.6.3 Filtering . 25-77
25.4.6.4 Mapping of the Fault Notifier to

the CosNotification Service 25-78

25.4.7 Use Cases . 25-79
25.4.7.1 The Fault Detector as a Fault

Notification Supplier 25-7.9
25.4.7.2 The Replication Manager as a Fault

Notification Consumer Z 25-80

25.5 Logging & Recovery Management 25-81
25.5.1 Overview . 25-81

25.5.2 Logging Mechanism. 25-81

25.5.3 Recovery Mechanism . 25-82

25.5.4 Checkpointable and Updateable Interfaces. 25-84
25.5.4.1 Identifiers . 25-85

25.5.4.2 Exceptions . 25-85
25.5.4.3 Operations . 25-86
25.5.4.4 set_update . 25-87

25.5.5 Use Case . 25-87

25.5.5.1 Infrastructure-Controlled .

Consistency Style 25-87

Common Object Request Broker Architecture (CORBA), V2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 859 of 1442

Contents

26. Secure Interoperability . 26-1

26.1 Overview . 26-2

26.1.1 Assumptions . 26-3

26.2 Protocol Message Definitions . 26-4

26.2.1 The Security Attribute Service Context Element 26-4

26.2.2 SAS context_data Message Body Types 26-5
26.2.2.1 Estab1ishContext Message Format 26-5
26.2.2.2 Contextfirror Message Format 26-7
26.2.2.3 Comp1eteEstab1ishContext Message

Format . 26-7

26.2.2.4 Message1nContext Message Format . . . 26-9
26.2.3 Authorization Token Format 26-10

26.2.3.1 Extensions of the IETF AC Profile for
CS1v2 . 26-ll

26.2.4 Client Authentication Token Format 26-ll

26.2.4.1 Usemame Password GSS Mechanism

(GSSUP) .. 26-12
26.2.5 ldentity Token Format. .. 26-14

26.2.6 Principal Names and Distinguished Names 26-15

26.3 Security Attribute Service Protocol 26-16

26.3.1 Compound Mechanisms . 26-16
26.3.1.1 Context Validation 26-17

26.3.1.2 Legend for Request Principal
Interpretations . 26-18

26.3.1.3 Anonymous ldentity Assertion 26-19
26.3.1.4 Presumed Trust 26-19
26.3.1.5 Failed Trust Evaluations 26-19

26.3.1.6 Request Principal lnterpretations 26-20
26.3.2 Session Semantics . 26-21

26.3.2.1 Negotiation of Statefulness 26-21
26.3.2.2 Stateful/Reusable Contexts 26-22

26.3.3 TSS State Machine .. 26-23

26.3.3.1 TSS State Machine Actions 26-25
26.3.4 CSS State Machine .. 26-27

26.3.4.1 CSS State Machine Actions 26-30

26.3.5 ContextError Values and Exceptions' 26-30

26.4 Transport Security Mechanisms . 26-31

26.4.1 Transport Layer Interoperability 26-31

26.4.2 Transport Mechanism Configuration 26-31

26.4.2.1 Recommended SSL/'1'LS Ciphersuites . 26-31

26.5 Interoperable Object References . 26-32

26.5.1 Target Security Configuration 26-32

26.5.1.1 Associationoptions Type 26-33
26.5.1.2 Transport Address 26-35
26.5.1.3 TAG_TLS_SEC_TRANS 26-35
26.5.1.4 TAG_SEC1OP_SEC_TRANS 26-37
26.5.1.5 TAG_CS1_SEC_MECH_LlST 26-38
26.5.1.6 TAG_NULL_TAG 26-43

26.5.2 Client-side Mechanism Selection 26-43

26.5.3 Client-Side Requirements and Location Binding 26-44

December 2001 Commmi Object Request BrokerArchi!ecture (CORBA), V2.6 xxxix

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 859 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 860 of 1442

Contents

26.5.3.1 Comments on Establishing Trust in Client 26-45

26.6 Conformance Levels .- 26-45

26.6.1 Conformance Level 0 . 26-45

26.6.1.1 Transport-Layer Requirements 26-45
26.6.1.2 Service Context Protocol Requirements 26-46
26.6.1.3 lnteroperable Object References (lORs) 26-47

26.6.2 Conformance Levell . 26-47
26.6.2.1 Authorization Tokens 26-47

26.6.3 Conformance Level 2 . 26-47

26.6.3.1 Authonzation-Token-Based Delegation 26-47
26.6.4 Stateful Conformance . 26-48

26.7 Sample Message Flows and Scenarios 26-48

26.7.1 Confidentiality, Trust in Server, and Trust in Client
Established in the Connection 26-49

26.7.1.1 Sample lOR Configuration 26-50
26.7.2 Confidentiality and Trust in‘Server Established in the

Connection - Stateless Trust in Client Established in

Service Context .. 26-51

26.7.2.1 Sample lOR Configuration 26-52
26.7.3 Confidentiality, Trust in Server, and Trust in Client

Established in the Connection - Stateless Trust

Association Established in Service Context. 26-53

26.7.3.1 Sample 10R Configuration 26-54
26.7.3-.2 Validating the Trusted Server 26-54
26.7.3.3 Presuming the Security ofthe

Connection . 26-55

26.7.4 Confidentiality, Trust in Server, and Trust in Client
‘ Established in the Connection - Stateless Forward Trust

Association Established in Service Context. 26-56

26.7.4.1 Sample 10R Configuration 26-57

26.8 References for this Chapter . 26-57

26.9 IDL . 26-58

26.9.1 Module l0P . 26-58

26.9.1.1 New Types Defined for CSIV2 26-58
26.9.2 Module GSSUP - Username/Password GSSAPI

Token Formats 26-58

26.9.3 Module CS1 - Common Secure Interoperability . 26-59

26.9.4 Module CSIIOP - CSlv2 10R Component

Tag Definitions . 26-63

Appendix A - OMG IDL Tags . A-1

Glossary . 1

Index . 1

x1 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 860 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 861 of 1442

About This Document

Preface

Under the terms of the collaboration between OMG and X/Open Co Ltd., this

document is a candidate for endorsement by X/Open, initially as a Preliminary

Specification and later as a full CAE Specification. The collaboration between OMG

and X/Open Co’ Ltd. ensures joint review and cohesive support for emerging object-
based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at

X/Open before publication and are inherently stable specifications. Upgrade to full

CAE Specification, after a reasonable interval, takes place following further review by

X/Open. This further review considers the implementation experience of members and

the full implications of conformance and branding.

Object Management Group

December 2001

The Object Management Group, Inc. (OMG) is an international organization supported

by over 800 members, including information system vendors, software developers and

users. Founded in 1989, the OMG promotes the theory and practice of object-oriented

technology in software development. The organization's charter includes the

establishment of industry guidelines and object management specifications to provide a

common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous

environments. Conformance to these specifications will make it possible to develop a

heterogeneous applications environment across all major hardware platforms and

operating systems.

OMG's objectives are to foster the growth of object technology and influence its

direction by establishing the Object Management Architecture (OMA). The OMA

provides the conceptual infrastructure upon which all OMG specifications are based.

Common Object Request Broker Architecture (CORBA), V2.6 xxxvii

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 861 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 862 of 1442

X/Open

IntendedAudience

Context ofCORBA

xxxviii

X/Open is an independent, worldwide, open systems organization supported by most of

the world's largest infonnation system suppliers, user organizations and software

companies. Its mission is to bring to users greater value from computing, through the

practical implementation of open systems. X/Open’s strategy for achieving its mission
is to combine existing and emerging standards into a comprehensive, integrated

systems environment called the Common Applications Environment (CAE).

The components of the CAE are defined in X/Open CAE specifications. These contain,

among other things, an evolving portfolio of practical application programming

interfaces (APls), which significantly enhance portability of application programs at

the source code level. The APls also enhance the interoperability of applications by

providing definitions of, and references to, protocols and protocol profiles.

The X/Open specifications are also supported by an extensive set of conformance tests

and by the X/Open trademark (XPG brand), which is licensed by X/Open and is

carried only on products that comply with the CAE specifications.

The architecture and specifications described in this manual are aimed at software

designers and developers who want to produce applications that comply with OMG

standards for the Object Request Broker (ORB). The benefit of compliance is, in

general, to be able to produce interoperable applications that are based on distributed,

interoperating objects. As defined by the Object Management Group (OMG) in the

Object Management Architecture Guide,’ the ORB provides the mechanisms by which

objects transparently make requests and receive responses. Hence, the ORB provides

interoperability between applications on different machines in heterogeneous

distributed environments and seamlessly interconnects multiple object systems.

The key to understanding the structure of the CORBA architecture is the Reference

Model, whichconsists of the following components:

- Object Request Broker, which enables objects to transparently make and receive

requests and responses in a distributed environment. lt is the foundation for

building applications from distributed objects and for interoperability between

applications in hetero- and homogeneous environments. The architecture and

specifications of the Object Request Broker are described in this manual.

- Object Services, a collection of services (interfaces and objects) that support

basic functions for using and implementing objects. Services are necessary to

construct any distributed application and are always independent of application

domains. For example, the Life Cycle Service defines conventions for creating,

deleting, copying, and moving objects; it does not dictate how the objects are

implemented in an application. Specifications for Object Services are contained in

CORBAservices: Common Object Services Specification.

Common Object Request Broker Architecture (CORB/1). V2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 862 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 863 of 1442

Associated Documents

December 2001

- Common Facilities, a collection of services that many applications may share,

but which are not as fundamental as the Object Services. For instance, a system

management or electronic mail facility could be classified as a common facility.
information about Common Facilities will be contained in CORBAfacilities:
Common Facilities Architecture.

0 Application Objects, which are products of a single vendor on in-house

development group that controls their interfaces. Application Objects correspond

to the traditional notion of applications, so they are not standardized by OMG.

Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model. it is like a

telephone exchange, providing the basic mechanism for making and receiving calls.

Combined with the Object Services, it ensures meaningful communication between

CORBA—compliant applications.

The CORBA documentation set includes the following books:

- Object Management Architecture Guide defines the OMG’s technical objectives

and terminology and describes the conceptual models upon which OMG

standards are based. It also provides information about the policies and

procedures of OMG, such as how standards are proposed, evaluated, and

accepted.

- CORBA: Common Object Request Broker Architecture and Specification contains

the architecture and specifications for the Object Request Broker.

- CORE/lservices: Common Object Services Specification contains specifications

for the Object Services.

° CORBAfacilities: Common Facilities Architecture contains the architecture for
Common Facilities.

OMG collects information for each book in the documentation set by issuing Requests

for information, Requests for Proposals, and Requests for Comment and, with its

membership, evaluating the responses. Specifications are adopted as standards only

when representatives of the OMG membership accept them as such by vote.

To obtain books in the documentation set, or other OMG publications, refer to the

enclosed subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

CORBA. v2.6: Associated Documents xxxjx

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 863 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 864 of 1442

Definition ofCORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the

specifications in CORBA Core and one mapping. Each additional language mapping is

a separate, optional compliance point. Optional means users aren't required to

implement these points if they are unnecessary at their site, but if implemented, they
must adhere to the CORBA specifications to be called CORBA-compliant. For instance,

if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding

specified in the C++ Language Mapping Specification.

Interoperability and lnterworking are separate compliance points. For detailed
information about lnterworking compliance, refer to “Compliance to COM/CORBA

lnterworking” on page 17-34.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and

components. Likewise, the body of CORBA specifications is divided into core and

component-like specifications. The structure of this manual reflects that division.

The CORBA core specifications are categorized as follows:

CORBA Core, as specified in Chapters 1-11

CORBA lnteroperability, as specified in Chapters 12-16

CORBA lnterworking, as specified in Chapters 17-21

CORBA Quality of Service, as specified in Chapters 22-26

Note -— The CORBA Language Mappings have been separated from the CORBA Core

and each language mapping is its own separate book. Refer to CORBA Language
Mappings at the OMG Formal Document web area for this information.

Structure ofThis Manual

This manual is divided into the categories of Core, lnteroperability, and lnterworking.

These divisions reflect the compliance points of CORBA. ln addition to this preface,

CORBA: Common Object Request Broker Architecture and Specification contains the

following chapters:

Core

Chapter 1 - The Object Model describes.the computation model that underlies the
CORBA architecture.

Chapter 2 - CORBA Overview contains the overall structure of the ORB architecture

and includes information about CORBA interfaces and implementations.

Cnmman Object Request Broker/1 rch (‘lecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 864 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 865 of 1442

December 2001

Chapter 3 - OMG IDL Syntax and Semantics details the OMG interface definition

language (OMG IDL), which is the language used to describe the interfaces that client

objects call and object implementations provide.

Chapter 4 - ORB Interface defines the interface to the ORB functions that do not

depend on object adapters: these operations are the same for all ORBs and object
implementations.

Chapter 5 - Value Type Semantics describes the semantics of passing an object by

value, which is similar to that of standard programming languages.

Chapter 6 - Abstract Interface Semantics explains an IDL abstract interface, which

provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime.

Chapter 7 - The Dynamic Invocation Interface details the DU, the client’s side of

the interface that allows dynamic creation and invocation of request to objects.

Chapter 8 -- The Dynamic Skeleton Interface describes the DSI, the server’s-side

interface that can deliver requests from an ORB to an object implementation that does

not have compile-time knowledge of the type of the object it is implementing. DSI is

the server’s analogue of the client’s Dynamic Invocation Interface (Dll).

Chapter 9 - Dynamic Management of Any Values details the interface for the

Dynamic Any type. This interface allows statically-typed programming languages such

as C and Java to create or receive values of type Any without compile-tirne knowledge

that the typer contained in the Any.

Chapter 10 - Interface Repository explains the component of the ORB that manages

and provides access to a collection of object definitions.

Chapter 11 - Portable Object Adapter defines a group of IDL interfaces than an

implementation uses to access ORB functions.

Interoperability

Chapter 12 - Interoperability Overview describes the interoperability architecture

and introduces the subjects pertaining to interoperability: inter-ORB bridges; general

and Internet inter-ORB protocols (GIOP and IIOP); and environment-specific, inter-

ORB protocols (ESlOPs).

Chapter I3 - ORB Interoperability Architecture introduces the framework of ORB

interoperability, including information about domains; approaches to inter-ORB

bridges; what it means to be compliant with ORB interoperability; and ORB Services

and Requests.

Chapter 14 - Building Inter-ORB Bridges explains how to build bridges for an

implementation of interoperating ORBS.

Chapter 15 - General Inter-ORB Protocol describes the general inter-ORB protocol

(GIOP) and includes information about the GlOP’s goals, syntax, format, transport,

and object location. This chapter also includes information about the lntemet inter-

ORB protocol (IIOP).

CORBA, v2.6: Structure ofThi.t Manual xli

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 865 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 866 of 1442

xlii

Chapter 16 - DCE ESIOP - Environment-Specific lnter-ORB Protocol (ESIOP)

details a protocol for the OSF DCE environment. The protocol is called the DCE
Environment lnter-ORB Protocol (DCE ESIOP).

Interworking

Chapter 17 - lnterworking Architecture describes the architecture for
communication between two object management systems: Microsoft’s COM (including

OLE) and the OMG’s CORBA.

Chapter 18 - Mapping: COM and CORBA explains the data type and interface

mapping between COM and CORBA. The mappings are described in the context of
both Win16 and Win32 COM.

Chapter 19 - Mapping: OLE Automation and CORBA details the two-way mapping

between OLE Automation (in ODL) and CORBA (in OMG IDL).

Note: Chapter 19 also includes an appendix describing solutions that vendors might

implement to support existing and older OLE Automation controllers and an appendix

that provides an example of how the Naming Service could be mapped to an OLE

Automation interface according to the lnterworking specification.

Chapter 20 - Interoperability with non-CORBA Systems describes the effective

access to CORBA servers through DCOM and the reverse.

Chapter 21 - Portable lnterceptors defines ORB operations that allow services such

as security to be inserted in the invocation path.

Quality of Service (QoS)

Chapter 22 - CORBA Messaging includes three general topics: Quality of Service,

Asynchronous Method lnvocations (to include Time-Independent or “Persistent”

Requests), andthe specification of interoperable Routing interfaces to support the

transport of requests asynchronously from the handling of their replies.

Chapter 23 - Minimum CORBA describes minimumCORBA, a subset of CORBA

designed for systems with limited resources.

Chapter 24 — Real-Time CORBA defines an optional set of extensions to CORBA

tailored to equip ORBs to be used as a component of a Real-Time system.

Chapter 25 - Fault Tolerant CORBA describes Fault Tolerant systems, basic fault

tolerance mechanisms, replication management, and logging and recovery -
management.

Chapter 26 - Common Secure lnteroperability defines the CORBA Security

Attribute Service (SAS) protocol and its use within the CSlv2 architecture to address

the requirements of CORBA security for interoperable authentication, delegation, and

privileges.

Common Object Requext Broker Architecture (CORBA). V2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 866 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 867 of 1442

Typographical Conventions

Acknowledgements

December 2001

The type styles shown below are used in this document to distinguish programming

statements from ordinary English. However, these conventions are not used in tables or

section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the

name of a document, specification, or other publication.

The following companies submitted and/or supported parts of the specifications that

were approved by the Object Management Group to become CORBA:

- Adiron, LLC

- Alcatel

- BEA Systems, Inc.

- BNR Europe Ltd.

° Borland International, Inc.

0 Compaq Computer Corporation

0 Concept Five Technologies

- Cooperative Research Centre for Distributed Systems Technology (DSTC)

0 Defense Information Systems Agency

- Digital Equipment Corporation
0 Ericsson

° Eternal Systems, Inc.

- Expersoft Corporation
- France Telecom

- FUJITSU LIMITED

° Genesis Development Corporation

° Gensym Corporation

° Hewlett-Packard Company

- HighComm

- Highlander Communications, L.C.

- Humboldt-University

- HyperDesk Corporation

° ICL, Plc.

- lnprise Corporation

- International Business Machines Corporation

- International Computers, Inc.

CORBA. v2. 6: Zvpngraphical Conventions xliii

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 867 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 868 of 1442

References

xliv

IONA Technologies, Plc.

Lockheed Martin Federal Systems, Inc.

Lucent Technologies, lnc.
Micro Focus Limited

MITRE Corporation

Motorola, lnc.

NCR Corporation

NEC Corporation

Netscape Communications Corporation
Nortel Networks

Northern Telecom Corporation

Novell, lnc.

Object Design, Inc.

Objective lnterface Systems, lnc.

Object-Oriented Concepts, lnc.

OC Systems, Inc.

Open Group - Open Software Foundation

Oracle Corporation

PeerLogic, lnc.

Persistence Software, Inc.

Promia, lnc.

Siemens Nixdorf lnformationssysteme AG

SPAWAR Systems Center

Sun Microsystems, lnc.

SunSoft, lnc.

Sybase, lnc.

Telefonica lnvestigacion y Desarrollo S.A. Unipersonal

TlBCO, lnc.

Tivoli Systems, lnc.

Tri-Pacific Software, lnc.

University of California, Santa Barbara

University of Rhode Island

Visual Edge Software, Ltd.

Washington University

ln addition to the preceding contributors, the OMG would like to acknowledge Mark

Linton at Silicon Graphics and Doug Lea at the State University of New York at

Oswego for their work on the C++ mapping.

IDL Type Extensions RFP, March 1995. OMG TC Document 95-l-35.

Common Object Request Broker Architecture (CORBA), V2.6

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 868 of 1442

December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 869 of 1442

December 2001

The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

COBOL Language Mapping REP, December 1995. OMG TC document 95-12-10.

COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.

IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-I985.

XDR: External Data Representation Standard, RFCI832, R. Srinivasan, Sun Micro-

systems, August 1995. ‘

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.

(Martin) O’Donne11, June 1994.

RPC Runtime Support For II8N Characters — Functional Specification, OSF DCE

SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, I995.

CORBA, v2. 6: References xlv

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 869 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 870 of 1442

w ‘

xlvi Common Object Request lirnker/irchilecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, ‘
EX. 1102, p. 870 of 1442 ' ~) ."‘.m.

1,31,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 871 of 1442

Interoperabilfly Overview 12

Contents

This chapter contains the following sections.

“Elements of lnteroperability”
“Relationship to Previous Versions of CORBA”

“Examples of lnteroperability Solutions” 12-5

“Interoperability Design Goals”

ORB interoperability specifies a comprehensive, flexible approach to supporting

networks of objects that are distributed across and managed by multiple, heterogeneous

CORBA-compliant ORBs. The approach to “inter0RBabi1ity” is universal, because its

elements can be combined in many ways to satisfy a very broad range of needs.

12.] Elements ofInteroperability

December 2001

The elements of interoperability are as follows:

' ORB interoperability architecture

' lnter-ORB bridge support

' General and lntemet inter-ORB Protocols (GlOPs and llOPs)

In addition, the architecture accommodates environment-specific inter-ORB protocols

(ESIOPS) that are optimized for particular environments such as DCE.

Comman Object Request Broker Arch ilecture (CORBA), v2. 6 l2-l

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 871 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 872 of 1442

I2

12.1.1 ORB Interoperability Architecture

The ORB lnteroperability Architecture provides a conceptual framework for defining

the elements of interoperability and for identifying its compliance points. It also

characterizes new mechanisms and specifies conventions necessary to achieve

interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated

bridging of ORB domains. The lntemet lnter-ORB Protocol (llOP) forms the common

basis for broad-scope mediated bridging. The inter-ORB bridge support can be used to

implement both immediate bridges and to build “half-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBS can interoperate without knowing any details of

that ORB’s implementation, such as what particular lPC or protocols (such as ESlOPs)

are used to implement the CORBA specification.

The llOP may be used in bridging two or more ORBS by implementing “half bridges”

that communicate using the HOP. This approach works for both stand-alone ORBS, and
networked ones that use an ESIOP.

The llOP may also be used to implement an ORB’s internal messaging, if desired.

Since ORBS are not required to use the HOP internally, the goal of not requiring prior

knowledge of each others’ implementation is fully satisfied.

12.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of

domains for ORB-specific information. Such domains can include object reference

domains, type domains, security domains (e.g., the scope of a Principal identifier), a
transaction domain, and more.

Where two ORBS are in the same domain, they can communicate directly. In many

cases, this is the preferable approach. This is not always true, however, since

organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse

a bridge. The role of a bridge is to ensure that content and semantics are mapped from

the form appropriate to one ORB to that of another, so that users of any given ORB

only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB Al’ls and conventions to enable

the easy construction of interoperability bridges between ORB domains. Such bridge

products could be developed by ORB vendors, Sieves, system integrators, or other

third-parties.

Because the extensions required to support lnter-ORB Bridges are largely general in

nature, do not impact other ORB operation. and can be used for many other purposes

besides building bridges, they are appropriate for all ORBS to support. Other

applications include debugging, interposing of objects, implementing objects with

interpreters and scripting languages, and dynamically generating implementations.

12 -2 Common Object Request Broker A rch ("lecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 872 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 873 of 1442

12

The inter-ORB bridge support can also be used to provide interoperability with non-

CORBA systems, such as Microsoft’s Component Object Model (COM). The ease of

doing this will depend on the extent to which those systems conform to the CORBA

Object Model.

12.1.3 General Inter-ORB Protocol (GIOP)

The General lnter-ORB Protocol (GlOP) element specifies a standard transfer syntax

(low-level data representation) and a set of message formats for communications

between ORBs. The GlOP is specifically built for ORB to ORB interactions and is

designed to work directly over any connection-oriented transport protocol that meets a
minimal set of assumptions. lt does not require or rely on the use of higher level RPC

mechanisms. The protocol is simple, scalable and relatively easy to implement. It is

designed to allow portable implementations with small memory footprints and

reasonable performance, with minimal dependencies on supporting software other than

the underlying transport layer.

While versions of the GlOP running on different transports would not be directly

interoperable, their commonality would allow easy and efficient bridging between such

networking domains.

12.1.4 Internet Inter-ORB Protocol (HOP)

The lntemet lnter-ORB Protocol (llOP) element specifies how GlOP messages are
exchanged using TCP/1P connections. The llOP specifies a standardized

interoperability protocol for the lntemet, providing “out of the box” interoperation

with other compatible ORBS based on the most popular product- and vendor-neutral

transport layer. lt can also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to

interoperate in lnternet Protocol domains unless an alternative protocol is necessitated

by the specific design center or intended operating environment of the ORB. 1n that

sense it represents the basic inter-ORB protocol for TCP/lP environments, a most

pervasive transport layer.

The llOP’s relationship to the GlOP is similar to that of a specific language mapping

to OMG IDL; the GlOP may be mapped onto a number of different transports, and

specifies the protocol elements that are common to all such mappings. The.GlOP by

itself, however, does not provide complete interoperability, just as IDL cannot be used

to build complete programs. The llOP and other similar mappings to different

transports, are concrete realizations of the abstract GlOP definitions, as shown in

Figure l2-l on page l2-4.

December 2001 CORBA, v2. 6: Elements ofInteroperability 12-3

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 873 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 874 of 1442

I2

Mandatoryfor CORBA
CORBA/IDL

 ESIOPS I

Figure 12-1 Inter-ORB Protocol Relationships.

12.1.5 Environment-Specific Inter-ORB Protocols (ESIOPS)

This specification also makes provision for an open-ended set of Environment-Specific

Inter-ORB Protocols (ESlOPs). Such protocols would be used for “out of the box”

interoperation at user sites where a particular networking or distributing computing
infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific

environment, ESlOPs might support "specialized capabilities such asithose relating to
security and administration.

While ESlOPs may be optimized for particular environments, all ESIOP specifications

will be expected to conform to the general ORB interoperability architecture

conventions to enable easy bridging. The inter-ORB bridge support enables bridges to

be built between ORB domains that use the 110? and ORB domains that use a
particular ESIOP. _ '

12._2 Relationship to Previous Versions ofCORBA

The ORB interoperability Architecture builds on Common Object Request Broker

Architecture by adding the notion of ORB Services and their domains. (ORB Services

are described in Section 13.2, “ORBS and ORB Services,” on page 13-3). The

architecture defines the problem of ORB interoperability in terms of bridging between

those domains, and defines several ways in which those bridges can be constructed.

The bridges can be intemal (in-line) and external (request-level) to ORBs.

APls included in the interoperability specifications include compatible extensions to

previous versions of CORBA to support request-level bridging:

' A Dynamic Skeleton interface (DSI) is the basic support needed for building

request-level bridges. It is the server-side analogue of the Dynamic Invocation

Interface and in the same way it has general applicability beyond bridging. For

information about the Dynamic Skeleton lnterface, refer to the Dynamic Skeleton

lntcrfacc chapter.

Common Object Request Broker/irchileclure (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 874 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 875 of 1442

12

' APls for managing object references have been defined, building on the support

identified for the Relationship Service. The APls are defined in Object Reference

Operations in the ORB Interface chapter of this book. The Relationship Service is

described in the Relationship Service specification; refer to the CosObject1dentity

Module section of that specification.

12.3 Examples ofInteroperability Solutions

The elements of interoperability (lnter-ORB Bridges, General and lntemet lnter-ORB

Protocols, Environment-Specific lnter-ORB Protocols) can be combined in a variety of

ways to satisfy particular product and customer needs. This section provides some

examples.

12.3.1 Example.1

ORB product A is designed to support objects distributed across a network and provide

“out of the box" interoperability with compatible ORBS from other vendors. In

addition it allows bridges to be built between it and other ORBS that use environment-

specific or proprietary protocols. To accomplish this, ORB A uses the HOP and

provides inter-ORB bridge support.

12.3.2 Example 2

ORB product B is designed to provide highly optimized, very high-speed support for

objects located on a single machine. For example, to support thousands of Fresco GUI

objects operated on at near function-call speeds. ln addition, some of the objects will
need to be accessible from other machines and objects on other machines will need to

be infrequently accessed. To accomplish this, ORB A provides a half-bridge to support
the lntemet IOP for communication with other “distributed” ORBS.

12.3.3 Example 3

ORB product C is’ optimized to work in a particular operating environment. It uses a

particular environment-specific protocol based on distributed computing services that

are commonly available at the target customer sites. In addition, ORB C is expected to

intcroperate with other arbitrary ORBS from other vendors. To accomplish this, ORB C

provides inter-ORB bridge support and a companion half-bridge product (supplied by

the ORB vendor or some third-party) provides the connection to other ORBS. The half-

bridge uses the HOP to enable interoperability with other compatible ORBS.

12.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliant when it meets the following

requirements:

December 2001 CORBA, v2.6: Examples ofInteroperability Solutions - l2-S

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 875 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 876 of 1442

I2

12-6

' In the CORBA Core part of this specification, standard APIs are provided by an

ORB to enable the construction of request-level inter-ORB bridges. APIs are

defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, and

by the object identity operations described in the Interface Repository chapter of
this book.

° An Internet Inter—ORB Protocol (IIOP) (explained in the Building Inter-ORB

Brdiges chapter) defines a transfer syntax and message formats (described

independently as the General Inter-ORB Protocol), and defines how to transfer

messages via TCP/IP connections. The IIOP can be supported natively or via a half-
bridge.

Support for additional ESIOPS and other proprietary protocols is optional in an

interoperability-compliant system. However, any implementation that chooses to use

the other protocols defined by the CORBA interoperability specifications must adhere

to those specifications to be compliant with CORBA interoperability.

Figure 12-2 on page 12-7 shows examples of interoperable ORB domains that are

CORBA-compliant.

These compliance points support a range of interoperability solutions. For example, the

standard APIs may be used to construct “half bridges” to the IIOP, relying on another

“half bridge” to connect to another ORB. The standard APIs also support construction

of “full bridges," without using the Internet IOP to mediate between separated bridge

components. ORBs may also use the lntemet IOP internally. In addition, ORBS may
use GIOP messages to communicate over other network protocol families (such as

Novell or OSI), and provide transport-level bridges to the IIOP.

The GIOP is described separately from the IIOP to allow future specifications to treat

it as an independent compliance point.

Comm rm Object Request Broker Architecture (CORBA). v2. 6 December 200l

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 876 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 877 of 1442

I2

ORB Domains ORB Domains

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

IIOP

CORBA V2.0 Interoperable

'e.g. Proprietary protocol or
GIOP OSI mapping

Figure 12-2 Examples of CORBA Interoperability Compliance

December 2001 CORBA. v2. 6: Examples ofInteroperability Solutions 12-7

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 877 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 878 of 1442

12

12.4 Motivating Factors

12-8

This section explains the factors that motivated the creation of interoperability

specifications.

12.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user needs. A

large diversity of implementation techniques is evident. For example, the time for a

request ranges over at least 5 orders of magnitude, from a few microseconds to several

seconds. The scope ranges from a single application to enterprise networks. Some

ORBs have high levels of security, others are more open. Some ORBs are layered on a

particular widely used protocol, others use highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object

systems are able to be applied to more kinds of computing. From application

integration to process control, from loosely coupled operating systems to the

information superhighway, CORBA-based object systems can be the common
infrastructure.

12.4.2 ORB Boundaries

Even when it is not required by implementation differences, there are other reasons to

partition an environment into different ORBs.

For security reasons, it may be important to know that it is not generally possible to

access objects in one domain from another. For example, an “internet ORB” may make

public information widely available, but a “company ORB” will want to restrict what

information can get out. Even if they used the same ORB implementation, these two

ORBS would be separate, so that the company could allow access to public objects

from inside the company without allowing access to private objects from outside. Even

though individual objects should protect themselves, prudent system administrators

will want to avoid exposing sensitive objects to attacks from outside the company.

Supporting multiple ORBs also helps handle the diflicult problem of testing and

upgrading the object system. It would be unwise to test new infrastructure without

limiting the set of objects that might be damaged by bugs, and it may be impractical to

replace “the ORB” everywhere simultaneously. A new ORB might be tested and

deployed in the same environment, interoperating with the existing ORB until either a

complete switch is made or it incrementally displaces the existing one.

Management issues may also motivate partitioning an ORB. Just as networks are
subdivided into domains to allow decentralized control of databases, configurations,

resources, management of the state in an ORB (object reference location and

translation information, interface repositories, per-object data) might also be done by

creating sub-ORBs.

Common Object Request Broker A rich ilecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 878 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 879 of 1442

I2

12.4.3 0RBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are reasons

why some of the objects an application might use would be in one ORB, and others in

another ORB. Some objects and services are accessed over long distances, with more

global visibility, longer delays, and less reliable communication. Other objects are

nearby, are not accessed from elsewhere, and provide higher quality service. By

deciding which ORB to use, an implementer sets expectations for the clients of the

objects.

One ORB might be used to retain links to information that is expected to accumulate

over decades, such as library archives. Another ORB might be used to manage a

distributed chess program in which the objects should all be destroyed when the game

is over. Although while it is running, it makes sense for “chess ORB” objects to access

the “archives ORB," we would not expect the archives to try to keep a reference to the

current board position.

12.5 Interoperability Design Goals

December 2001

Because of the diversity in ORB implementations, multiple approaches to

interoperability are required. Options identified in previous versions of CORBA
include:

° Protocol Translation, where a gateway residing somewhere in the system maps

requests from the format used by one ORB to that used by another.

' Reference Embedding, where invocation using a native object reference delegates to

a special object whose job is to forward that invocation to another ORB.

’ Alternative 0RBs, where ORB implementations agree to coexist in the same address

space so easily that a client or implementation can uansparently use any of them,

and pass object references created by one ORB to another ORB without losing

functionality.

ln general, there is no single protocol that can meet everyone's needs, and there is no

single means to interoperate between two different protocols. There are many

environments in which multiple protocols exist, and there are ways to bridge between

environments that share no protocols. ‘

This specification adopts a flexible architecture that allows a wide variety of ORB

implementations to interoperate and that includes both bridging and common protocol
elements.

The following goals guided the creation of interoperability specifications:

' The architecture and specifications should allow high-performance, small footprint,

lightweight interoperability solutions.

The design should scale, should not be unduly difficult to implement, and should

not unnecessarily restrict implementation choices.

CORBA, v2.6: Interoperability Design Goals 12-9

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 879 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 880 of 1442

I2

° lnteroperability solutions should be able to work with any vendors’ existing ORB

implementations with respect to their CORBA-compliant core feature set; those

implementations are diverse.

° All operations implied by the CORBA object model (i.e., the stringify and

destringify operations defined on the CORBA:ORB pseudo-object and all the

operations on CORBA:Object) as well as type management (e.g., narrowing, as

needed by the C++ mapping) should be supported.

12.5.1 Non-Goals

The following were taken into account, but were not goals:

' Support for security

° Support for future ORB Services

12-l0 Common Objecr Request BmkerArchiteclure (CORBA). V2.6 December 200l

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 880 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 881 of 1442

ORB Inter0perabz'lityArchitecture 13

Contents

This chapter contains the following sections.

“Overview” I 13-1

“ORBS and ORB Services” 13-3

“Domains” 13-5

“lnteroperability Between ORBS" 13-7

“Object Addressing” 13-11

“An lnformation Model for Object References” 13-14

“Service Context’? 13-28

“Coder/Decoder 1nterfaces” 13-31

“Feature Support and G1OP Versions” 13-35

“Code Set Conversion” 13-36

13.] Overview

The original lnteroperability RFP defines interoperability as the ability for a client on

ORB A to invoke an OMG lDL-defined operation on an object on ORB B, where ORB

A and ORB B are independently developed. 1t further identifies general requirements

including in particular:

° Ability for two vendors’ ORBs to interoperate without prior knowledge of each

other’s implementation.

December 2001 Common Object Request Broker/irchileclure (CORE/1), v2. 6 13-1

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 881 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 882 of 1442

13

' Support of all ORB functionality.

‘ Preservation of content and semantics of ORB-specific information across ORB

boundaries (for example, security).

ln effect, the requirement is for invocations between client and server objects to be

independent of whether they are on the same or different ORBs, andgnot to mandate

fundamental modifications to existing ORB products.

13.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must be

supported within a single ORB environment, such as location transparency. Elements
of ORB functionality often correspond directly to such transparencies. Interoperability

can be viewed as extending transparencies to span multiple ORBs.

ln this architecture a domain is a distinct scope, within which certain common
characteristics are exhibited and common rules are observed over which a disuibution

transparency is preserved. Thus, interoperability is fundamentally involved with

transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not

correspond to the boundaries of an ORB installation. Administrative domains include

naming domains, trust groups, resource management domains and other “run-time”

characteristics of a system. Technology domains identify common protocols, syntaxes

and similar “build-time” characteristics. ln many cases, the need for technology

domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the ORB

itself: common object references, network addresses, security mechanisms, and more.

However, it is possible for there to be multiple domains of the same type supported by

a given ORB: internal representation on different machine types, or security domains.

Conversely, a domain may span several ORBs: similar network ‘addresses may be used
by different ORBs, type identifiers may be shared.

13.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of thetranslation

required when an object request traverses domain boundaries. Conceptually, a mapping

or bridging mechanism ‘resides at the boundary between the domains, transforming

requests expressed in terms of one domain’s model into the model of the destination
domain.

The concrete architecture identifies two approaches to inter-ORB bridging:

' At application level, allowing flexibility and portability.

' At ORB level, built into the ORB itself.

13 -2 Common Object Request Broker Architecture (CORBA). v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 882 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 883 of 1442

13

I 3.2 ORBs and ORB Services

December 2001

The ORB Core is that part of the ORB which provides the basic representation of

objects and the communication of requests. The ORB Core therefore supports the

minimum functionality to enable a client to invoke an operation on a server object,

with (some of) the distribution transparencies required by CORBA.

An object request may have implicit attributes which affect the way in which it is

communicated - though not the way in which a client makes the request. These

attributes include security, transactional capabilities, recovery, and replication. These

features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into an ORB’s

core. it is an aim of this specification to allow for new ORB Services to be defined in

the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be

implemented and (implicitly) invoked in a private manner. For interoperability between

ORBS, the ORB services used in the ORBs, and the correspondence between them,
must be identified.

13.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions.

ORB Services range from fundamental mechanisms such as reference resolution and

message encoding to advanced features such as support for security, transactions, or

replication.

An ORB Service is often related to a particular transparency. For example, message

encoding — the marshaling and unmarshaling of the components of a request into and

out of message buffers — provides transparency of the representation of the request.

Similarly, reference resolution supports location transparency. Some transparencies,

such as security, are supported by a combination of ORB Services and Object Services

while others, such as replication, may involve interactions between ORB Services
themselves.

ORB Services differ from Object Services in that they are positioned below the"
application and are invoked transparently to the application code. However, many ORB

Services include components which correspond to conventional Object Services in that

they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Service

components, the ORB components being those associated with transparently

authenticating messages and controlling access to objects while the necessary

administration and management functions resemble conventional Object Services.

13.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies and

other request attributes to span multiple ORBS. This requires the establishment of
relationships between supporting ORB Services in the different ORBS.

CORBA, v2. 6: 0RB.t and ORB Services 13-3

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 883 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 884 of 1442

I3

13-4

ln order to discuss how the relationships between ORB Services are established, it is

necessary to describe an abstract view of how an operation invocation is communicated

from client to server object.

1. The client generates an operation request, using a reference to the server object,

explicit parameters, and an implicit invocation context. This is processed by certain

ORB Services on the client path.

2. On the server side, corresponding ORB Services process the incoming request,

transforming it into a form directly suitable for invoking the operation on the server

object.

3. The server object performs the requested operation.

4. Any result of the operation is returned to the client in a similar manner.

The correspondence between client-side and server-side ORB Services need not be

one-to-one and in some circumstances may be far more complex. For example, if a

client application requests an operation on a replicated server, there may be multiple

server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may interact

with Object Services such as authentication servers.

13.2.3 Selection of ORB Services

The ORB Services used are determined by:

' Static properties‘ of both client and server objects; for example, whether a server is

replicated.

' Dynamic attributes detennined by a particular invocation context; for example,

whether a request is transactional.

' Administrative policies (e.g., security).

Within a single ORB, private mechanisms (and optimizations) can be used to establish

which ORB Services are required and how they are provided. Service selection might

in general require negotiation to select protocols or protocol options. The same is true

between different ORBS: it is necessary to agree which ORB Services are used, and

how each transforms the request. Ultimately, these choices become manifest as one or

more protocols between the ORBs or as transformations of requests.

ln principle, agreement on the use of each ORB Service can be independent of the

others and, in appropriately constructed ORBs, services could be layered in any order

or in any grouping. This potentially allows applications to specify selective

transparencies according to their requirements, although at this time CORBA provides

no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Services must be used in order to

invoke operations on a server object. Correspondingly, where a client requires dynamic

attributes to be associated with specific invocations, or administrative policies dictate,

it must be possible to cause the appropriate ORB Services to be used on client and

Common Object Request Br0kerArchi'Iecture (CORBA). V2.6 December 200|

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 884 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 885 of 1442

I3

13.3 Domains

server sides of the invocation path. Where this is not possible - because, for example,

one ORB does not support the full set of services required - either the interaction

cannot proceed or it can only do so with reduced facilities or transparencies.

From a computational viewpoint, the OMG Object Model identifies various

distribution transparencies which ensure that client and server objects are presented

with a uniform View of a heterogeneous distributed system. From an engineering

viewpoint, however, the system is not wholly uniform. There may be distinctions of

location and possibly many others such as processor architecture, networking

mechanisms and data representations. Even when a single ORB implementation is used

throughout the system, local instances may represent distinct, possibly optimized

scopes for some aspects of ORB functionality.

Representation Representation

Networking

Securit__:.j_ __._

Figure 13-] Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the

scopes associated with each ORB. To describe both the requirements for

interoperability and some of the solutions, this architecture introduces the concept of

domains to describe the scopes and their implications.

lnformally, a domain is a set of objects sharing a common characteristic or abiding by

common rules. It is a powerful modelling concept which can simplify the. analysis and

description of complex systems. There may be many types of domains (e.g.,

management domains, naming domains, language domains, and technology domains).

13.3.1 Definition ofa Domain

December 2001

Domains allow partitioning of Systems into collections of components which have

some characteristic in common. In this architecture a domain is a scope in which a

collection of objects, said to be members of the domain, is associated with some

common characteristic; any object for which the association does not exist, or is

undefined, is not a member ofthe domain. A domain can be modeled as an object and

may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them

which characterize a domain. This information is disjoint between domains. However,

an object may be a member of several domains, of similar kinds as well as of different

kinds, and so the sets of members of domains may overlap.

CORBA, v2. 6: Domains 13-5

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 885 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 886 of 1442

13

13-6

The concept of a domain boundary is defined as the limit of the scope in which a
particular characteristic is valid or meaningful. When a characteristic in one domain is

translated to an equivalent in another domain, it is convenient to consider it as

traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples of
domains related to ORB interoperability issues are:

° Referencing domain — the scope of an object reference

' Representation domain — the scope of a message transfer syntax and protocol

° Network addressing domain — the scope of a network address

' Network connectivity domain — the potential scope of a network message

' Security domain — the extent of a particular security policy

‘. Type domain — the scope of a particular type identifier

‘ Transaction domain — the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained within

another domain, and federation, where two domains are joined in a manner agreed to

and set up by their administrators.

13.3.2 Mapping Between Domains: Bridging

lnteroperability between domains is only possible if there is a well-defined mapping
between the behaviors of the domains being joined. Conceptually, a mapping

mechanism or bridge resides at the boundary between the domains, transforming

requests expressed in terms of one domain’s model into the model of the destination
domain. Note that the use of the term “bridge" in this context is conceptual and refers

only to the functionality, which performs the required mappings between distinct

domains. There are several implementation options for such bridges and these are
discussed elsewhere.

For full interoperability, it is essential that all the concepts used in one domain are

transformable into concepts in other domains with which interoperability is required,

or that if the bridge mechanism filters such a concept out, nothing is lost as far as the

supported objects are concerned. In other words, one domain may support a superior

service to others, but such a superior functionality will not be available to an

application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to

be compatible. This specification assumes that both domains are strictly compliant

with the CORBA Object Model and the CORBA specifications. This includes the use of

OMG lDL when defining interfaces, the use of the CORBA Core lnterface Repository,
and other modifications that were made to CORBA. Variances from this model could

easily compromise some aspects of interoperability.

Common Object Request Broker/lrchileclure (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 886 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 887 of 1442

I3

13.4 Interoperability Between ORBS

December 2001

An ORB “provides the mechanisms by which objects transparently make and receive

requests and responses. ln so doing, the ORB provides interoperability between

applications on different machines in heterogeneous distributed environments...” ORB

interoperability extends this definition to cases in which client and server objects on

different ORBs “transparently make and receive requests.”

Note that a direct consequence of this transparency requirement is that bridging must

be bidirectional: that is, it must work as effectively for object references passed as

parameters as for the target of an object invocation. Were bridging unidirectional (e.g.,

if one ORB could only be a client to another) then transparency would not have been

provided, because object references passed as parameters would not work correctly:

ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only one

direction. This is purely to simplify discussions, and does not imply that unidirectional

connectivity satisfies basic interoperability requirements.

13.4.1 ORB Services and Domains

ln this architecture, different aspects of ORB functionality - ORB Services - can be

considered independently and associated with different domain types. The architecture

does not, however, prescribe any particular decomposition of ORB functionality and

interoperability into ORB Services and corresponding domain types. There is a range

of possibilities for such a decomposition:

l. The simplest model, for interoperability, is to treat all objects supported by one

ORB (or, alternatively, all ORBs of a given type) as comprising one domain.

Interoperability between any pair of different domains (or domain types) is then

achieved by a specific all-encompassing bridge between the domains. (This is all

CORBA implies.)

2. More detailed decompositions would identify particular domain types - such as

referencing, representation, security, and networking. A core set of domain types

would be pre-determined and allowance made for additional domain types to be
defined as future requirements dictate (e.g., for new ORB Services).

13.4.2 ORBS and Domains

ln many respects, issues of interoperability between ORBs are similar to those which

can arise with a single type of ORB (e.g., a product). For example:

' Two installations of the ORB may be installed in different security domains, with

different Principal identifiers. Requests crossing those security domain boundaries

will need to establish locally meaningful Principals for the caller identity, and for

any Principals passed as parameters.

° Different installations might assign different type identifiers for equivalent types,
and so requests crossing type domain boundaries would need to establish locally

meaningful type identifiers (and perhaps more).

CORBA. v2.6: Interoperability Between 0RBs 13-7

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 887 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 888 of 1442

13

13-8

Conversely, not all of these problems need to appear when connecting two ORBS of a

different type (e.g., two different products). Examples include:

° They could be administered to share user visible naming domains, so that naming
domains do not need bridging.

‘ They might reuse the same networking infrastructure, so that messages could be

sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBS of different types. In particular, they may

support different concepts or models, between which there are no direct or natural

mappings. CORBA only specifies the application level view of object interactions, and

requires that distribution transparencies conceal a whole range of lower level issues. It

follows that within any particular ORB, the mechanisms for supporting transparencies

are not visible at the application-level and are entirely a matter of implementation

choice. So there is no guarantee that any two ORBs support similar internal models or

that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse or

superficial to allow detailed analysis of interoperability issues between ORBs. Indeed,
it becomes clear that an ORB instance is an elusive notion: it can perhaps best be
characterized as the intersection or coincidence of ORB Service domains.

13.4.3 Interoperability Approaches _

13.4.3.1

When an interaction takes place across a domain boundary, a mapping mechanism, or

bridge, is required to transform relevant elements of the interaction as they traverse the

boundary. There are essentially two approaches to achieving this: mediated bridging

and immediate bridging. These approaches are described in the following subsections."

Domain DomainDomainDomain

Mediated Bridging Immediate Bridging

Figure 13-2 Two bridging techniques, different uses of an intermediate form agreed on between
the two domains.

Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are

transformed, at the boundary of each domain, between the internal form of that domain

and an agreed, common form.

Observations on mediated bridging are as follows:

° The scope of agreement of a common form can range from a private agreement

between two particular ORB/domain implementations to a universal standard.

Common Object Request BmkerArchitecIure (CORBA). V2.6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 888 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 889 of 1442

13

' There can be more than one common form, each oriented or optimized for a

different purpose.

' If there is more than one possible common form, then which is used can be static

(e.g., administrative policy agreed between ORB vendors, or between system

administrators) or dynamic (e.g., established separately for each object, or on each

invocation).

' Engineering of this approach can range from in-line specifically compiled (compare

to stubs) or generic library code (such as encryption routines), to intermediate

bridges to the common form.

13.4.3.2 Immediate Bridging '

With immediate bridging, elements of the interaction relevant to the domain are

transformed, at the boundary of each domain, directly between the internal form of one
domain and the internal form of the other.

Observations on immediate bridging are as follows:

' This approach has the potential to be optimal (in that the interaction is not mediated

via a third party, and can be specifically engineered for each pair of domains) but

sacrifices flexibility and generality of interoperability to achieve this.

' This approach is often applicable when crossing domain boundaries which are

purely administrative (i.e., there is no change of technology). For example, when

crossing security administration domains between similar ORBs, it is not necessary
to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishable

when private mechanisms are used between ORB/domain implementations.

13.4.3.3 Location oflnter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the

mediated or immediate bridging approach is used. However, domains can span ORB

boundaries and ORBs can span machine and system boundaries; conversely, a machine

may support, or a process may have access to more than one ORB (or domain of a

given type). From an engineering viewpoint, this means that the components of an

inter-domain bridge may be dispersed or co-located, with respect to ORBs or systems.

It also means that the ‘distinction between an ORB and a bridge can be a matter of

perspective: there is a duality between viewing inter-system messaging as belonging to

ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domain

bridge could be implemented wholly within the ORB and thus be invisible as far as

ORB interoperability is concerned. A similar situation arises when a bridge between

two ORBs or domains is implemented wholly within a process or system which has

access to both. ln such cases, the engineering issues of inter-domain bridging are

December 2001 CORBA. V2.6: Interoperability Between ORBs 13-9

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 889 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 890 of 1442

13

13-10

13.4.3.4

confined, possibly to a single system or process. If it were practical to implement all

bridging in this way, then interactions between systems or processes would be solely
within a single domain or ORB.

Bridging Level

As noted at the start of this section, bridges may be implemented both internally to an

ORB and as layers above it. These are called respectively “in-line” and “request-level”

bridges.

Request-level bridges use the CORBA APls, including the Dynamic Skeleton

Interface, to receive and issue requests. However, there is an emerging class of

“implicit context” which may be associated with some invocations, holding ORB
Service information such as transaction and security context information, which is not

at this time exposed through general purpose public APls. (Those APls expose only

OMG IDL-de fined operation parameters, not implicit ones.) Rather, the precedent set

with the Transaction Service is that special purpose APls are defined to allow bridging

of each kind of context. This means that request-level bridges must be built to

specifically understand the implications of bridging such ORB Service domains, and to
make the appropriate API calls.

13.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of domain

boundaries should be transparent to requests: that the goal of interoperability is to hide

such boundaries. However, if this were always the goal, then there would be no real

need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing

differences in organizational policies or goals. Bridging the domains will in such cases

require policy mediation. That is, inter-domain traffic will need to be constrained,

controlled, or monitored; fully transparent bridging may be highly undesirable.

Resource management policies may even need to be applied, restricting some kinds of

traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to

audit external access, or to provide domain-based access control. Only a very few

objects, types of objects, or classifications of data might be externally accessible

through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something about the traffic

being bridged. it could in general be an application-specific policy, and many policy-

mcdiated bridges could be parts of applications. Those might be organization-specific,

off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APls, easily support the addition of

policy mediation components, without loss of access to any other system infrastructure

that may be needed to identify or enforce the appropriate policies.

Common Object Request Broker/lrchilecture (CORBA). V2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 890 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 891 of 1442

 13

13.4.5 Configurations ofBridges in Networks

ln the case of network-aware ORBs, we anticipate that some ORB protocols will be

more frequently bridged to than others, and so will begin to serve the role of

“backbone ORBS.” (This is a role that the HOP is specifically expected to serve.) This

use of “backbone topology” is true both on a large scale and a small scale. While a

large scale public data network provider could define its own backbone ORB, on a

smaller scale, any given institution will probably designate one commercially available
ORB as its backbone.

Backbone ORB
Figure 13-3 An ORB chosen as a backbone will connect other ORBS through bridges, both full-

bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for

managing networks. It has the consequence of minimizing the number of bridges
needed, while at the same time making the ORB topology match typical network

organizations. (That is, it allows the number of bridges to be proportional to the

number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn’t

even add any new “hops" to network routes, because the bridges naturally fit in

locations where connectivity was already indirect, and augment or supplant the

existing network firewalls.

13.5 ObjectAddressing

December 200]

The Object Model (see Chapter 1, Requests) defines an object reference as an object

name that reliably denotes a particular object. An object reference identifies the same

object each time the reference is used in a request, and an object may be denoted by

multiple, distinct references.

CORB/1 . v2. 6: Object A ddressing 13 -] 1

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 891 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 892 of 1442

13

The fundamental ORB interoperability requirement is to allow clients to use such

object names to invoke operations on objects in other ORBs. Clients do not need to

distinguish between references to objects in a local ORB or in a remote one. Providing

this transparency can be quite involved, and naming models are fundamental to it.

This section discusses models for naming entities in multiple domains, and

transformations of such names as they cross the domain boundaries. That is, it presents

transformations of object reference information as it passes through networks of inter-

ORB bridges. it uses the word “ORB” as synonymous with referencing domain; this is

purely to simplify the discussion. in other contexts, “ORB” can usefully denote other
kinds of domain.

13.5.1 D0main—relative Object Referencing

Since CORBA does not require ORBS to understand object references from other
ORBs, when discussing object references from multiple ORBS one must always

associate the object reference’s domain (ORB) with the object reference. We use the

notation D0.R0 to denote an object reference R0 from domain D0; this is itself an

object reference. This.is called “domain-relative” referencing (or addressing) and need

not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only

important at an inter-ORB boundary; that is, inside a bridge. This is simple, since the

bridge knows from which ORB each request (or response) came, including any object
references embedded in it.

13.5.2 Handling ofReferencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form

understood by that ORB: the object reference must be in the recipient ORB’s native

format. Also, in cases where that object originated from some other ORB, the bridge

must associate each newly created “proxy” object reference with (what it sees as) the
original object reference.

Several basic schemes to solve these two problems exist. These all have advantages in

some circumstances; all can be used, and in arbitrary combination with each other,

since CORBA object references are opaque to applications. The ramifications of each

scheme merits attention, with respect to scaling and administration. The schemes
include:

1. Object Reference Translation Reference Embedding: The bridge can store the

original object reference itself, and pass an entirely different proxy reference into

the new domain. The bridge must then manage state on behalf of each bridged

object reference, map these references from one ORB ‘s format to the other’s, and
vice versa.

13-12 Common Object Request Broker/1rchitecture (CORBA). v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 892 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 893 of 1442

13

2. Reference Encapsulation: The bridge can avoid holding any state at all by

conceptually concatenating a domain identifier to the object name. Thus if a

reference D0.R, originating in domain D0, traversed domains D1 D4 it could be

identified in D4 as proxy reference d3.d2.d1.a'0.R, where dn is the address of Dn
relative to Dn +1.

Figure 13-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme holds

some state in the bridge. However, it supports sharing that state between multiple

object references by adding a domain-based route identifier to the proxy (which still

holds the original reference, as in the reference encapsulation scheme). it achieves

this by providing encoded domain route information each time a domain boundary

is traversed; thus if a reference D0.R, originating in domain D0, traversed domains

D1...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (d1,x1).R, and so

on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair (dn-1,

xn-1).

Figure 13-5 Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalizalion: This scheme is like domain reference translation,

except that the proxy uses a “well-known” (e.g., global) domain identifier rather

than an encoded path. Thus a reference R, originating in domain D0 would be

identified inother domains as D0.R.

Observations about these approaches to inter-domain reference handling are as follows:

° Naive application of reference encapsulation could lead to arbitrarily large

references. A “topology service” could optimize cycles within any given

encapsulated reference and eliminate the appearance of references to local objects
as alien references.

A topology service could also optimize the chains of routes used in the domain

reference translation scheme. Since the links in such chains are re-used by any path

traversing the same sequence of domains, such optimization has particularly high

leverage.

December 2001 CORBA, v2.6: 0bjectAddres.s'ing 13-13

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 893 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 894 of 1442

I3

° With the general purpose APls defined in CORBA, object reference translation can

be supported even by ORBs not specifically intended to support efficicnt bridging,

but this approach involves the most state in intermediate bridges. As with reference

encapsulation, a topology service could optimize individual object references. (APls

are defined by the Dynamic Skeleton Interface and Dynamic lnvocation Interface)

' The chain of addressing links established with both object and domain reference

translation schemes must be represented as state within the network of bridges.

There are issues associated with managing this state.

' Reference canonicalization can also be performed with managed hierarchical name

spaces such as those now in use on the Internet and X.500 naming.

13.6 An Information Modelfor Object References

13-14

This section provides a simple, powerful information model for the information found

in an object reference. That model is intended to be used directly by developers of

bridging technology, and is used in that role by the HOP, described in the General

Inter-ORB Protocol chapter, Object References section.

13. 6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as

critical for use in bridging technologies:

' Is it null? Nulls only need to be transmitted and never support operation invocation.

' What type is it? Many ORBs require knowledge of an object’s type in order to

efficiently preserve the integrity of their type systems.

' What protocols are supported? Some ORBs support objrefs that in effect live in

multiple referencing domains, to allow clients the choice of the most efficicnt
communications facilities available.

° What ORB Services are available? As noted in Section 13.2.3, “Selection of ORB

Services” on page 13-4, several different ORB Services might be involved in an

invocation. Providing information about those services in a standardized way could

in many cases reduce or eliminate negotiation overhead in selecting them.

13.6.2 Interoperable Object References: IORs

To provide the infonnation above, an “lnteroperab1e Object Reference,” (IOR) data

structure has been provided. This data structure need not be used internally to any

given ORB, and is not intended to be visible to application-level ORB programmers. It

should be used only when crossing object reference domain boundaries, within

bridges.

This data structure is designed to bc efficicnt in typical single-protocol configurations,

while not penalizing multiprotocol ones.

Cnmmrm Object Request Broker/irchitecture (CORBA), V2.6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 894 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 895 of 1442

I3

December 2001

module |OP{ II IDL

// Standard Protocol Profile tag values

typedef unsigned long Profileld;

struct TaggedProfi|e {
Profileld tag;

sequence <octet> profile_data;

};

ll an Interoperable Object Reference is a sequence of
II object-specific protocol profiles, plus a type ID.

struct IOR {

string type_id;

sequence <TaggedProfi|e> profiles;

}:

II Standard way of representing multicomponent profiles.

/I This would be encapsulated in a TaggedProfile.

typedef unsigned long Componentld;

struct TaggedComponent{
Componentld tag;

sequence <octet> component_data;
};

typedef sequence<TaggedComponent> Taggedcomponentseq;
}:

13.6.3 IOR Profiles

Object references have at least one tagged profile. Each profile supports one or more

protocols and encapsulates all the basic information the protocols it supports need to

identify an object. Any single profile holds enough information to drive a complete

invocation using any of the protocols it supports; the content and structure of those

profile entries are wholly specified by these protocols.

When a specific protocol is used to convey an object reference passed as a parameter

in an IDL operation invocation (or reply), an IOR which reflects, in its contained

profiles, the full protocol understanding of the operation client (or server in case of

reply) may be sent. A receiving ORB which operates (based on topology and policy

information available to it) on profiles rather than the received IOR as a whole, to

create a derived reference for use in its own domain of reference, is placing itself as a

bridge between reference domains. Interoperability inhibiting situations can arise

when an orb sends an IOR with multiple profiles (using one of its supported protocols)

CORBA. v2. 6: An Information Modelfor Object References 13-15

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 895 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 896 of 1442

I3

13-16

to a receiving orb, and that receiving orb later returns a derived reference to that object,

which has had profiles or profile component data removed or transformed from the

original lOR contents.

To assist in classifying behavior of ORBS in such bridging roles, two classes of lOR

conformance may be associated with the conformance requirements for a given ORB

interoperability protocol:

' Full lOR conformance requires that an orb which receives an lOR for an object

passed to it through that ORB interoperability protocol, shall recover the original

lOR, in its entirety, for passing as a reference to that object from that orb through

that same protocol

° Limited-Profile lOR conformance requires that an orb which receives an lOR

passed to it through a given ORB interoperability protocol, shall recover all of the

standard information contained in the lOR profile for that protocol, whenever

passing a reference to that object, using that same protocol, to another ORB.

Note — Conformance to llOP versions l.O, l.l and 1.2 only requires support of limited-

Profile lOR conformance, specifically for the HOP lOR profile. However, due to

interoperability problems induced by Limited-Profile lOR conformance, it is now

deprecated by the CORBA 2.4 specification for an orb to not support Full lOR

conformance. Some future llOP versions could require Full lOR conformance.

An ORB may be unable to use any of the profiles provided in an lOR for various

reasons which may be broadly categorized as transient ones like temporary network

outage, and non-transient ones like unavailability of appropriate protocol software in

the ORB. The decision about the category of outage that causes an ORB to be unable

to use any profile from an lOR is left up to the ORB. At an appropriate point, when an

ORB discovers that it is unable to use any profile in an lOR, depending on whether it
considers the reason transient or non-transient, it should raise the standard system

exception TRANSIENT with standard minor code 2, or |MP_L|M|T with the
standard minor code 1.

Each profile has a unique numeric tag, assigned by the OMG. The ones defined here

are for the HOP (see Section 15.7.3, “llOP lOR Profile Components” on page l5-54)

and for use in “multiple component profiles.” Profile tags in the range 0x80000000

through Oxffffffff are reserved for future use, and are not currently available for

assignment.

Null object references are indicated by an empty set of profiles, and by a “Null” type

ID (a string which contains only a single terminating character). Type lDs may only be

“Null" in any message, requiring the client to use existing knowledge or to consult the

object, to determine interface types supported. The type ID is a Repository lD

identifying the interface type, and is provided to allow ORBS to preserve strong typing.

This identifier is agreed on within the bridge and, for reasons outside the scope of this

interoperability specification, needs to have a much broader scope to address various

problems in system evolution and maintenance. Type lDs support detection of type

equivalence, and in conjunction with an Interface Repository, allow processes to reason

about the relationship of the type of the object referred to and any other type.

Common Object Request Broker A rch ilecture (CORB/1), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 896 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 897 of 1442

December 2001

13

The type ID, if provided by the server, indicates the most derived type that the server

wishes to publish, at the time the reference is generated. The object’s actual most

derived type may later change to a more derived type. Therefore, the type 1D in the

10R can only be interpreted by the client as a hint that the object supports at least the

indicated interface. The client can succeed in narrowing the reference to the indicated

interface, or to one of its base interfaces, based solely on the type ID in the IOR, but

must not fail to narrow the reference without consulting the object via the “_is_a” or

“_get_interface” pseudo-operations.

ORBs claiming to support the Full-IOR conformance are required to preserve all the

semantic content of any IOR (including the ordering of each profile and its

components), and may only apply uansforrnations which preserve semantics (e.g.,

changing Byte order for encapsulation).

For example, consider an echo operation for object references:

interface Echoer {Object echo(in Object 0);};

Assume that the method body implementing this “echo” operation simply returns, its

argument. When a client application invokes the echo operation and passes an

arbitrary object reference, if both the client and server ORBS claim support to Full IOR

conformance, the reference returned by the operation is guaranteed to have not been

semantically altered by either client or server ORB. That is, all its profiles will remain

intact and in the same order as they were present when the reference was sent. This

requirement for ORBs which claim support for Full-IOR conformance, ensures that,

for example, a client can safely store an object reference in a naming service and get

that reference back again later without losing information inside the reference.

13.6.4 Standard IOR Profiles

13.6.4.1

module IOP {
const Profileld TAG_lNTERNET_lOP = 0;

const Profileld TAG_MULTlPLE_COMPONENTS = 1;

const Profileld TAG_SCCP_|OP = 2; -

typedef sequence <TaggedComponent> Multip|eComponentProfile;
};

The TAG_INTERNET__IOP Profile

The TAG_|NTERNET_lOP tag identifies profiles that support the lntemet lnter-ORB

Protocol. The ProfileBody of this profile, described in detail in Section l5'.7.2, “llOP

IOR Profiles” on page 15-51, contains a CDR encapsulation of a structure containing

addressing and object identification information used by llOP. Version l.l of the

TAG_lNTERNET_lOP profile also includes a sequence<'l'aggedComponent> that

can contain additional information supporting optional llOP features, ORB services

such as security, and future protocol extensions.

CORBA, v2. 6: An Information Modelfor Object References 13-17

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 897 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 898 of 1442

13

13.6.4.2

13.6.4.3

Protocols other than llOP (such as ESlOPs and other GlOPs) can share profile

information (such as object identity or security information) with UOP by encoding

their additional profile information as components in the TAG_|NTERNET_|OP

profile. All TAG_|NTERNET_|OP profiles support llOP, regardless of whether they

also support additional protocols. lnteroperable ORBs are not required to create or

understand any other profile, nor are they required to create or understand any of the

components defined for other protocols that might share the TAG_|NTERNET_|OP

profile with llOP.

The profi|e_data for the TAG_|NTERNET__|OP profile is a CDR encapsulation of

the ||OP::ProfileBody_1_1 type, described in Section l5.7.2, “llOP lOR Profiles” on

page 15-51.

The TAG_MULTIPLE_COMPONENTS Profile

The TAG_MULT|PLE_COMPONENTS tag indicates that the value encapsulated is of

type MultipleComponentProfile. In this case, the profile consists of a list of

protocol components, the use of which must be specified by the protocol using this

profile. This profile may be used to carry lOR components, as specified in Section

13.6.5, “lOR Components” on page 13-18.

The profi|e_data for the TAG_MULT|PLE_COMPONENTS profile is a CDR

encapsulation of the Mu|tip|eComponentProfi|e type shown above.

The TAG__SCCP_IOP Profile

See the CORBA/IN lnterworking specification (dtc/2000-02-02).

13.6.5 IOR Components

Taggedcomponents contained in TAG_lNTERNET_l0P and

TAG_MULT|PLE_COMPONENTS profiles are identified by unique numeric tags

using a namespace distinct form that is used for profile tags. Component tags are

assigned by the OMG.

Specifications of components must include the following information:

' Component ID: The compound tag that is obtained from OMG.

° Structure and encoding: The syntax of the component data and the encoding rules.

If the component value is encoded as a CDR encapsulation, the IDL type that is

encapsulated and the GlOP version which is used for encoding the value, if different

than GIOP 1.0, must be specified as part of the component definition.

’ Semantics.‘ l-low the component data is intended to be used.

' Protocols: The protocol for which the component is defined, and whether it is

intended that the component be usable by other protocols.

At most once: whether more than one instance of this component can be included in
a profile.

Common Object Request BrokerArchitecture (CORBA). v2.6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 898 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 899 of 1442

I3

Specifications of protocols must describe how the components affect the protocol. ln

addition, a protocol definition must specify, for each TaggedComponent, whether

inclusion of the component in profiles supporting the protocol is required

(MANDATORY PRESENCE) or not required (OPTIONAL PRESENCE). An ORB

claiming to support Full-lOR conformance shall not drop optional components, once

they have been added to a profile.

13.6.6 Standard IOR Components

The following are standard IOR components that can be included in
TAG_lNTERNET_IOP and TAG_MULT|PLE_COMPONENTS profiles, and may

apply to llOP, other GlOPs, ESlOPs, or other protocols. An ORB must not drop these

components from an existing IOR.

module |OP(

};

const Componentld

const Componentld
const Componentld

const Componentld

const Componentld

const Componentld

const Componentld
const Componentld

const Componentld
const Componentld

const Componentld

const Componentld

const Componentld
const Componentld

const Componentld
const Componentld

const Componentld
const Componentld

const Componentld

const Componentld

const Componentld

const Componentld

TAG_ORB_TYPE = O;

TAG__CODE_SETS = 1;

TAG_POL|C|ES = 2;

TAG_ALTERNATE_||0P_ADDRESS = 3;

TAG_ASSOCIAT|ON_OPTl0NS = 13;

TAG_SEC_NAME = 14;

TAG_SPKM_1_SEC_MECH = 15;
TAG_SPKM_2_SEC_MECH = 16:

TAG_KerberosV5_SEC_MECH = 17;

TAG_CS|_ECMA_Secret_SEC_pMECH = 18;
TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;
TAG_SSL_SEC_TRANS = 20;

TAG_CSl_ECMA_Pub|ic_SEC_MECH = 21;

TAG_ GENER|C_SEC_MECH = 22;

TAG_F|REWALL_TRANS = 23;

TAG_SCCP_CONTACT_lNFO = 24;
TAG_JAVA_CODEBASE = 25;

TAG_TRANSACTlON_POL|CY = 26;

TAG_MESSAGE_ROUTERS = 30;

TAG_0TS_POL|CY = 31;

TAG_|NV_POL|CY = 32;

TAG_|NET_SEC_TRANS = 123;

The following additional components that can be used by other protocols are specified

in the DCF. ESIOI’ chapter of this document and CORBAServices, Security Service, in

the Security Service for DCE ESIOP section:

consthcomponentld
const Componentld

const Componentld
const Componentld

const Componentld
const Componentld

TAG_COMPLETE_OBJECT_KEY = 5;

TAG_ENDPOlNT_|D_POS|TlON = 6;

TAG_LOCAT|ON_POL|CY = 12;

TAG_DCE_STR|NG_B|NDlNG = 100;

TAG_DCE_B|NDlNG_NAME =101;

TAG_DCE_NO_P|PES = 102;

December 2001 CORBA. v2. 6: An Information Madelfnr Object References B-1 9

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 899 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 900 of 1442

13

l3-20

13.6.6.1

13.6.6.2

13.6.6.3

const Componentld TAG_DCE_SEC_MECH = 103; II Security Service

TAG_ORB_TYPE Component

it is often useful in the real world to be able to identify the particular kind of ORB an

object reference is coming from, to work around problems with that particular ORB, or

exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of type unsigned long,

encoded as a CDR encapsulation, designating an ORB type 1D allocated by the OMG

for the ORB type of the originating ORB. Anyone may register any ORB types by

submitting a short (one-paragraph) description of the ORB type to the OMG, and will

receive a new ORB type 1D in return. A list of ORB type descriptions and values will
be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any IOR profile. For

profiles supporting HOP l.l or greater, it is optionally present.

TAG_ALTERNA TE_1I0P_ADDRESS Component

In cases where the same object key is used for more than one intemet location, the

following standard IOR Component is defined for support in llOP version 1.2.

The TAG_ALTERNATE_||0P__ADDRESS component has an associated value of
WP?

struct {

string HostlD,
unsigned short Port

};

encoded as a CDR encapsulation.

Zero or more instances of the TAG_ALTERNATE_||OP_ADDRESS component type

may be included in a version 1.2 TAG_|NTERNET_lOP Profile. Each of these

alternative addresses may be used by the client orb, in addition to the host and port

address expressed in the body of the Profile. in cases where one or more

TAG_ALTERNATE__||OP_ADDRESS components are present in a

TAG_|NTERNET_|OP Profile, no order of use is prescribed by Version 1.2 of llOP.

Other Components

The following standard components are specified in various OMG specifications:

' TAG_CODE__SETS - See Section l3.lO.2.4, “CodeSet Component of IOR Multi-
Component Profile” on page 1342.

° TAG_POLlClES - See CORBA Messaging - chapter 22.

° TAG_SEC_NAME - See the Security Service specification, Mechanism Tags
section. '

Common Object Request Broker A rch ileclure (CORB/1), V2. 6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 900 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 901 of 1442

I3

' TAG_ASSOClAT|ON_OPTlONS - See the Security Service specification, Tag

Association Options section.

° TAG_SSL_SEC_TRANS - See the Security Service specification, Mechanism

Tags section.

° TAG_GENER|C_SEC_MECH and all other tags with names in the form

TAG_*_SEC_MECH - See the Security Service specification, Mechanism Tags
section.

° TAG_F|REWALL_SEC — See the Firewall specification (orbos/98-O5-04).

' TAG_SCCP_CONTACT_|NFO - See the CORBA/1N lnterworking specification

(telecom/98-10-03).

° TAG_JAVA_CODEBASE - See the Java to IDL Language Mapping specification

(formal/99-07-59), Codebase Transmission section.

° TAG_TRANSACT|ON_POL|CY - See the Object Transaction Service specification

(formal/00-06-28).

° TAG_MESSAGE_ROUTERS - See CORBA Messaging (chapter 22).

' TAG_OTS_POL|CY - See the Object Transaction Service specification
(formal/00-06-28).

' TAG_|NV_POL|CY - See the Object Transaction Service specification
(formal/00-06-28).

' TAG_|NET_SEC_TRANS - See the Security Service specification

(forrnal/O0-O6-25).

' TAG_COMPLETE_OBJECT_KEY (See Section 16.5.4, “Complete Object Key

Component” on page 16-19).

' TAG_ENDPO|NT_|D_POS|T|ON (See Section 16.5.5, “Endpoint 1D Position
Component” on page 16-20).

° TAG_LOCAT|ON_POL|CY (See Section 16.5.6, “Location Policy Component” on
page 16-20).

' TAG_DCE_STR|NG_B|ND|NG (See Section 16.5.1, “DCE-CIOP String Binding

Component” on page 16-17).

' TAG_DCE_B|ND|NG__NAME (See Section 16.5.2, “DCE-C101’ Binding Name

Component” on page 16-18).

' TAG_DCE_NO_P|PES (See Section 16.5.3, “DCE-C101’ No Pipes Component” on
page 16-19).

13.6.7 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not

depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

December 2001 CORBA, v2.6: An Information Mndelfor Object References 13-21

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 901 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 902 of 1442

I3

13-22

3. Information used to drive multiple inter-ORB protocols may coexist within a single

profile, possibly with some information (e.g., components) shared between the

protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profiles

with the same profile tag may be included in an lOR.

5. Unless otherwise specified in the definition of a particular component, multiple

components with the same component tag may be part of a given profile within an
10R.

6. A TAG_MULT|PLE_COMPONENTS profile may hold components shared

between multiple protocols. Multiple such profiles may exist in an 10R.

7. The definition of each protocol using a TAG_MULTlPLE_COMPONENTS profile

must specify which components it uses, and how it uses them.

8. Profile and component definitions can be either public or private. Public definitions

are those whose tag and data format is specified in OMG documents. For private
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for use by

protocols other than the one(s) for which they were originally defined, and

dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tags.

Neither allocation nor registration indicates any “standard” status, only that the tag will

not be confused with other tags. Requests -to allocate tags should be sent to

tag_request@omg.org.

_13. 6.8 IOR Creation and Scope

lORs are created from object references when required to cross some kind of

referencing domain boundary. ORBS will implement object references in whatever

form they find appropriate, including possibly using the lOR,structure. Bridges will

normally use lORs to mediate transfers where that standard is appropriate.

13.6.9 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the

ORB::object_to_string operation, and then “destringified” (turned back into a

programming environment’s object reference representation) using the

0RB::string_to_object operation.

There can be a variety of reasons why being able to parse this string form might not

help make an invocation on the original object reference:

' ldentifiers embedded in the string form can belong to a different domain than the

ORB attempting to destringify the object reference.

° The ORBS in question might not share a network protocol, or be connected.

° Security constraints may be placed on object reference destringification.

Common Object Request Broker Arch itecrure (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 902 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 903 of 1442

December 2001

(1)

(2)

(3)

(4)

(5) i

(5)

(7)

(3)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

13

Nonetheless, there is utility in having a defined way for ORBS to generate and parse

stringified lORs, so that in some cases an object reference stringified by one ORB

could be destringified by another.

To allow a stringified object reference to be internalized by what may be a different

ORB, a stringified 10R representation is specified. This representation instead

establishes that ORBs could parse stringified object references using that format. This

helps address the problem of bootstrapping, allowing programs to obtain and use
object references, even from different ORBs.

The following is the representation of the stringified (extemalized) IOR:

<oref>

<prefix>

<hex_Octets>

<hex_Octet>

<prefix> <hex_Octets>
<i><o><r>“:”

<hex_Octet> {<hex_Octet>}*

<hexDigit> <hexDigit>

<hexDigit> = <digit>|<a> | | <c>|<d>|<e> | <f>

<digit> . = "D" | "1" | “2" | "3" | "4" | "5" |

| "6" | "7" | "8" | “9"
<a> = "3" "A"

 = "b" 1 "3"

<c> "= “c" I “C”

<d> ..= uvdu I uDn
= "e" “E"

<f> "= “f" | “F"

<i> .. ___ uin I III”

<o> :: = "o" | “O”

<r> :: = "r” | "R"

Note - The case for characters in a stringified lOR is not significant.

The hexadecimal strings are generated by first turning an object reference into an 10R,

and then encapsulating the lOR using the encoding rules of CDR, as specified in GIOP
1.0.-(See Section 15.3, “CDR Transfer Syntax” on page 15-4 for more information.)

The content of the encapsulated lOR is then turned into hexadecimal digit pairs,

starting with the first octet in the encapsulation and going until the end. The high four
bits of each octet are encoded as a hexadecimal digit, then the low four bits.

13.6.10 Object URLs

To address the problem of bootstrapping and allow for more convenient exchange of

human-readable object references, 0RB::string_to_object allows URLs in the

corbaloc and corbaname formats to be converted into object references.

lf conversion fails, string_to_object raises a BAD_PARAM exception with one of

following standard minor codes, as appropriate:

' 7 - string_to_object conversion failed due to bad scheme name

CORBA, v2. 6: An Information Modelfnr Object References 13-23

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 903 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 904 of 1442

I3

° 8 - string_to_object conversion failed due to bad address

‘ .9 - string_to_object conversion failed due to bad bad schema specific part

' 10 - string_to_object conversion failed due to non specific reason

13.6.10.1 corbaloc URL

The corbaloc URL scheme provides stringified object references that are more

easily manipulated by users than IOR URLs. Currently, corbaloc URLs denote

objects that can be contacted by HOP or reso|ve_initia|_references. Other transport

protocols can be explicitly specified when they become available. Examples of 1101’
and reso|ve_initiaI_references (rirz) based corbaloc URLs are:

corbaloc::555xyz.com/ProdI'l'radingservice

corba|oc:iiop:1.1 @555xyz.comIProdITradingservice

corbaloc::555xyz.com,:556xyz.com:80lDevlNameService
corbaloc:rir:/Tradingservice
corbaloczrirz/Nameservice

A corbaloc URL contains one or more:

° protocol identifiers

' protocol specific components such as address and protocol version information

When the rir protocol is used, no other protocols are allowed.

After the addressing information, a corbaloc URL ends with a single object key.

The full syntax is:

<corba|oc> = “corba|oc:"<obj_addr_list>["l"<key_string>]

<obj_addr_|ist> = [<obj_addr> ",”]* <obj_addr>

<obj_addr> = <prot_addr> | <future_prot_addr>

<prot_addr> = <rir_prot_addr> | <iiop_prot_addr>

<rir_prot_addr> = <rir_prot_token>":"
<rir_prot_token> = “rir"

<iiop_prot_addr> = <iiop_id><iiop_addr>

<iiop_id> = “:" | <iiop_prot_token>":"
<iiop_prot_token> = "iiop"

' <iiop_addr> = [<version> <host> [“:" <port>]]

<host> = DNS_style_Host_Name | ip_address

<version> = <major> ".” <minor> "@" | empty_string
<port> = number

<major> = number
<minor> = number

<future_prot_addr> =<future_prot_id><future_prot__addr>
<future_prot_id> = <future_prot_token>":"

<future__prot_token> = possible examples: “atm" | "dce"
<future_prot_addr> = protocol specific address

13-24 Cnmmnn Object Request Broker/lrchitecmre (CORBA), v2.6 December-2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 904 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 905 of 1442

13

December 200]

13.6.10.2

<key_string> = <string> | empty_string

Where:

obj_addr_list: comma-separated list of protocol id, version, and address information.

This list is used in an implementation-defined manner to address the object An object

may be contacted by any of the addresses and protocols.

Note — If the rir protocol is used, no other protocols are allowed.

obj_addr: A protocol identifier, versiontag, and a protocol specific address. The

comma ‘,’ and ‘/’ characters are specifically prohibited in this component of the URL.

rir_prot_addr: reso|ve_initia|_references protocol identifier. This protocol does

not have a version tag or address. See Section l3.6.10.2, “corbaloc : rir URL”.

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DN S-

style host name or IP address. See Section l3.6.lO.3, “corbaloc : iiop URL”” for

the iiop specific definitions.

future_prot_addr: a placeholder for future corbaloc protocols.
L6,!)

future_prot_id: token representing a protocol terminated with a . .

future_prot_token: token representing a protocol. Currently only “iiop” and "rir" are
defined.

future_prot_addr: a protocol specific address and possibly protocol version

information. An example of this for iiop is “1.1@555xyz.com”.

key_string: a stringified object key.

The key_string corresponds to the octet sequence in the object_key member of a

GIOP Request or LocateRequest header as defined in section 15.4 of CORBA 2.3.

The key_string uses the escape conventions described in RFC 2396 to map away

from octet values that cannot directly be part of a URL. US-ASCll alphanumeric

characters are not escaped. Characters outside this range are escaped, except for the

following:

“_15 | “/17 l 4:,” | L59”
1

u,” I ££@” 1 u&” I “:1: | 54+” ' “$17 |

u n | 4: n | u n I up: | “~33 | u*n | uns R “(H ‘ Ar)”
, _ .

The key_string is not NUL-terminated.

c0rbaloc.'rir URL

The corbaloczrir URL is defined to allow access to the ORB’s configured initial
references through a URL.

The protocol address syntax is:

<rir_prot_addr>

<rir_prot_token>
= <rir_prot_token>":"
= llriril

CORBA. V2.6: An Information Modelfnr Object References I3-25

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 905 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 906 of 1442

I3

13-26

13.6.10.3

Where:

rir_prot_addr: reso|ve__initia|_references protocol identifier. There is no version
or address information when rir is used.

rir_prot_token: The token “rir” identifies this protocol..

For a corbaloczrir URL, the <key_string> is used as the argument to

reso|ve_initia|_references. An empty <key_string> is interpreted as the default
“Nameservice”.

The rir protocol can not be used with any other protocol in a URL.

corbaZoc.'z'iop URL

The corbaloc:iiop URL is defined for use in TCP/lP- and DNS-centric environments

The full protocol address syntax is:

<iiop_prot_addr> = <iiop_id><iiop_addr>

<iiop_id> = <iiop_defau|t> | <iiop_prot_token>":"
<iiop_default> = "1"
<iiop_prot_token> = "iiop”

<iiop_addr> = [<version> <host> [":” <port>]]

<host> = DNS_sty|e_Host_Name | ip_address
<version> = <major> ".” <minor> “@" | empty_string

<port> _ = number
<major> = number
<minor> = number

Where:

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-

style host name or lP address.

iiop_id: tokens recognized to indicate an iiop protocol corbaloc.

iiop_default: default token indicating iiop protocol, “:".

iiop_prot_tokcn: iiop protocol token, “iiop”

iiop_addrcss: a single address

host: DN S-style host name or IP address. if not present, the local host is assumed.

version: a major and minor version number, separated by ‘.’ and followed by ‘@’. If
the version is absent, 1.0 is assumed.

ip_address: numeric IP address (dotted decimal notation)

port: port number the agent is listening on (see below). Default is 2809.

Common Object Request Broker A rch itecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 906 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 907 of 1442

13

December 2001

13.6104

13.6.10.5

13.6.10.6

13.6.10.7

corbaloc Server Implementation

The only requirements on an object advertised by a corbaloc URL are that there

must be a software agent listening on the host and port specified by the URL. This

agent must be capable of handling GIOP Request and LocateRequest messages

targeted at the object key specified in the URL.

A normal CORBA server meets these criteria. It is also possible to implement

lightweight object location forwarding agents that respond to GIOP Request

messages with Reply messages with a LOCATlON_FORWARD status, and respond

to GIOP LocateRequest messages with LocateRep|y messages.

corbaname URL

The corbaname URL scheme is described in the Naming Service specification. lt

extends the capabilities of the corbaloc scheme to allow URLs to denote entries in a

Naming Service. Resolving corbaname URLs does not require a Naming Service

implementation in the ORB core. Some examples are:

corbaname: : 555objs.com#a/stringlpathltolobj

This URL specifies that at host 555objs.com, a object of type Namingcontext

(with an object key of NameService) can be found, or alternatively, that an agent is

running at that location which will return a reference to a Namingcontext. The

(stringified) name a/string/path/tolobj is then used as the argument to a resolve

operation on that Namingcont ext. The URL denotes the object reference that

results from that lookup.

corbaname:rir:#aI|ocal/obj

This URL specifies that the stringified name a/local/obj is to be resolved relative to

the naming context returned by resoIve_initial_references("Nameservice").

Future corbaloc URL Protocols

This specification only defines use of iiop with corbaloc. New protocols can be added

to corbaloc as required. Each new protocol must implement the <future_prot_addr>

component of the URL and define a described in Section l3.6.l0.l, “corbaloc

URL” on page 13-24.”_

A possible example of a future corbaloc URL that incorporates an ATM address is:

corbaloc;iiop:xyz.com,atm:E.1 64:358.400.1234567IdevItestIobjectX

Future URL Schemes

Several currently defined non-CORBA URL scheme names are reserved.

lmplementations may choose to provide these or other URL schemes to support

additional ways of denoting objects with URLs.

CORBA, v2. 6: An Information Modelfor Object References 13-27

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 907 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 908 of 1442

13

13.7 Service Context

13-28

Table 13-1 lists the required and some optional formats.

Table 13-1 URL formats

file://

Emerging specifications for Object Services occasionally require service-specific

context information to be passed implicitly with requests and replies. The

Interoperability specifications define a mechanism for identifying and passing this

service-specific context information as “hidden" parameters. The specification makes

the following assumptions:

%Description

Standard stringified IOR format

Simple object reference. rir: must be supported.

CosNarne URL

Specifies a file containing a URL/lOR

Specifies a file containing a URL/lOR that is

accessible via ftp protocol.

 Specifies an HTTP URL that returns an object
URL/IOR.

° Object Service specifications that need additional context passed will completely
specify that context as an OMG IDL data type.

' ORB APls will be provided that will allow services to supply and consume context

information at appropriate points in the process of sending and receiving requests

and replies.

° it is an ORB’s responsibility to determine when to send service-specific context

information, and what to do with such information in incoming messages. It may be

possible, for example, for a server receiving a request to be unable to de-

encapsulate and use a certain element of service-specific context, but nevertheless

still be able to successfully reply to the message.

As shown in the following OMG lDL specification, the IOP module provides the

mechanism for passing Object Service—specific information. It does not describe any

service-specific information. it only describes a mechanism for transmitting it in the

most general way possible. The mechanism is currently used by the DCE ESIOP and

could also be used by the Internet lnter-ORB protocol (llOP) General lnter_ORB

Protocol (GIOP).

Each Object Service requiring implicit service-specific context to be passed through

GIOP will be allocated a unique service context ID value by OMG. Service context ID

values are of type unsigned long. Object service specifications are responsible for

describing their context information as single OMG IDL data types, one data type
associated with each service context 1D.

The marshaling of Object Service data is described by the following OMG IDL:

Common Object Request Broker Architecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 908 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 909 of 1442

13

December 200]

module |OP{ /I IDL

typedef unsigned long Serviceld;

struct ServiceContext{
Serviceld context_id;

sequence <octet> context_data;

};

typedef sequence <ServiceContext>ServiceContextList;

};

The context data for a particular service will be encoded as specified for its service-

specific OMG IDL definition, and that encoded representation will be encapsulated in
the context_data member of lOP::ServiceContext. (See Section 15.3.3,

“Encapsulation” on page 15-14). The context_id member contains the service ID

value identifying the service and data format. Context data is encapsulated in octet

sequences to pem1itORBs to handle context data without unmarshaling, and to handle

unknown context data types.

During request and reply marshaling, ORBs will collect all service context data

associated with the Request or Reply in a ServiceContextList, and include it in the

generated messages. No ordering is specified for service context data within the list.

The list is placed at the beginning of those messages to support security policies that

may need to apply to the majority of the data in a request (including the message
headers).

Each Object Service requiring implicit service—specific context to be passed through

GlOP will be allocated a unique service context ID value by the OMG. Service context

lD values are of type unsigned long. Object service specifications are responsible for

describing their context information as single OMG lDL data types, one data type
associated with each service context ID.

The high-order 20 bits of service-context ID contain a 20-bit vendor service context

codeset lD (VSCID); the low-order 12 bits contain the rest of the service context ID. A

vendor (or group of vendors) who wish to define a specific set of service context lDs

should obtain a unique VSCID from the OMG, and then define a specific set of service

context lDs using the VSCID for the high—order bits.

The VSCID of zero is reserved for use for OMG-defined standard service context lDs

(i.e., service context lDs in the range O-4095 are reserved as OMG standard service
contexts).

13. 7.1 Standard Service Contexts

module |OP{ II IDL
const Serviceld Transactionservice = 0;

const Serviceld Codesets = 1;

const Serviceld ChainBypassCheck = 2;

const Serviceld Chainfiypasslnfo = 3;
const Serviceld LogicalThreadld = 4;
const Serviceld B|_D|R_||0P = 5;

CORBA, v2.6: Service Context 13-29

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 909 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 910 of 1442

13

const Serviceld SendingContextRunTime = 6;
const Serviceld |NVOCATlON_POL|ClES = 7;

const Serviceld FORWARDED__|DENT|TY = 8;

const Serviceld UnknownExceptionlnfo = 9;

const Serviceld RTCorbaPriority = 10;

const Serviceld RTCorbaPriorityRange = 11;

const Serviceld ExceptionDetailMessage = 14;

};

The standard Servicelds currently defined are:

° Transactionservice identifies a CDR encapsulation of the

CosTransactions::PropogationContext defined in the Object Transaction

Service specification (formal/00-06-28).

° CodeSets identifies a CDR encapsulation of the

CONV_FRAME::CodeSetContext defined in Section l3.l0.2.5, “GIOP Code Set

Service Context” on page 13-43.

° DCOM-CORBA lnterworking uses three service contexts as defined in "DCOM-

CORBA lnterworking" in the “Interoperability with non-CORBA Systems"chapter.

They are:

- ChainBypassCheck, which carries a CDR encapsulation of the struct

CosBridging::ChainBypassCheck. This is carried only in a Request

message as described in Section 20.9.1, “CORBA Chain Bypass” on page 20-19.

- ChainBypass|nfo, which carries a CDR encapsulation of the struct

CosBridging::ChainBypasslnfo. This is carried only in a Reply message as

described in Section 20.9.1, “CORBA Chain Bypass” on page 20-19.

- Logica|Threadld, which carries a CDR encapsulation of the struct

CosBridging::LogicalThreadld as described in Section 20.10, “Thread

ldentification” on page 20-21.

' Bl_D|R_llOP identifies a CDR encapsulation of the
IIOP::BiDirl|0PServiceContext defined in Section 15.8, “Bi-Directional GIOP”

on page 15-55.

° SendingContextRunTime identifies a CDR encapsulation of the IOR of the

SendingContext::RunTime object (see Section 5.6, “Access to the Sending

Context Run Time” on page 5-18).

° For information on |NVOCATl0N_POLlClES refer to CORBA Messaging

(chapter 22).

' For information on FORWARDED_|DENT|TY refer to the Firewall specification

(orbos/98-05-O4).

° UnknownExceptionlnfo identifies a CDR encapsulation of a maishaled instance
of a java.|ang.throwab|e or one of its subclasses as described in Java to lDL

Language Mapping, “Mapping of Unknownfixceptionlnfo Service Context,"
section.

' For information on RTCorbaPriority refer to the Real-time CORBA (chapter 24).

13 -3 0 Common Object Request Broker Architecture (CORB/1). v2. 6 December 200]

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 910 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 911 of 1442

13

' For information on RTCorbaPriorityRange refer to the Real-time CORBA

(chapter 24).

° ExceptionDetai|Message identifies a CDR encapsulation of a wstring, encoded

using GIOP l.2 with a TCS-W of UTF-16. This service context may be sent on

Reply messages with a reply_status of SYSTEM_EXCEPT|ON or
USER_EXCEPT|ON. The usage of this service context is defined by language

mappings.

13.7.2 Service Context Processing Rules

Service context lDs are associated with a specific version of GIOP, but will always be

allocated in the OMG service context range. This allows any ORB to recognize when

it is receiving a standard service context, even if it has been defined in a version of

GIOP that it does not support.

The following are the rules for processing a received service context:

' The service context is in the OMG defined range:

0 If it is valid for the supported GIOP version, then it must be processed correctly

according to the rules associated with it for that GIOP version level.

- lf it is not valid for the GIOP version, then it may be ignored by the receiving

ORB, however it must be passed on through a bridge and must be made available

to interceptors. No exception shall be raised.

‘ The service context is not in the OMG-defined range:

- The receiving ORB may choose to ignore it, or process it if it “understands” it,

however the service context must be passed on through a bridge and must made

available to interceptors.

13.8 Coder/Decoder Interfaces

The formats of lOR components and service context data used by ORB services are

often defined as CDR encapsulations encoding instances of IDL defined data types.

The Codec provides a mechanism to transfer these components between their IDL

data types and their CDR encapsulation representations.

A Codec is obtained from the CodecFactory. The CodecFactory_ is obtained
through a call to ORB::resolve_initiai_references ("CodecFactory").

13.8.1 Codec Interface

module IOP {

local interface Codec{

exception Inva|idTypeForEncoding O;
exception FormatMismatch {};

exception TypeMismatch {};

CORBA::OctetSeq encode (in any data)

Decembfif 2001 CORBA. V2.6: Coder/Decoder Interfaces 13-3]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 911 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 912 of 1442

13

13-32

13.8.1.1

13.8.1.2

raises (InvalidTypeForEncoding);

any decode (in CORBA::OctetSeq data)

raises (FormatMismatch);
CORBA::OctetSeq encode_va|ue (in any data)

raises (InvalidTypeForEncoding);

any decode_value (
in CORBA::OctetSeq data,

in CORBA::TypeCode tc)

raises (FormatMismatch, TypeMismatch);

};
}:

Exceptions

InvaIt'dTypeForEncoding

This exception is raised by encode or encode_va|ue when the type is invalid for the

encoding. For example, this exception is raised if the encoding is
ENCOD|NG_CDR_ENCAPS version 1.0 and a type that does not exist in that

version, such as wstring, is passed to the operation.

FormatMismatch

This exception is raised by decode or decode_value when the data in the octet

sequence cannot be decoded into an any.

TypeMismatch

This exception is raised by decode_value when the given TypeCode does not match

the given octet sequence.

Operations

encode

Convert the given any into an octet sequence based on the encoding format effective
for this Codes.

This operation may raise |nva|idTypeForEncoding.

Parameter

data The data, in the form of an any, to be encoded into an octet
sequence.

Return Value

An octet sequence containing the encoded any. This octet

sequence contains both the Typecode and the data of the type.

Common Object Request Broker A rchitecture (CORBA). v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 912 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 913 of 1442

13

decode

Decode the given octet sequence into an any based on the encoding format etfective
for this Codec. ‘

This operation raises FormatMismatch if the octet sequence carmot be decoded into
an any.

Parameter

data The data, in the form of an octet sequence, to be decoded into an
any.

Return Value

An any containing the data from the decoded octet sequence.

encode_vaIue

Convert the given any into an octet sequence based on the encoding format effective

for this Codec. Only the data from the any is encoded, not the Typecode.

This operation may raise |nva|idTypeForEncoding.

Parameter

data The data, in the form of an any, to be encoded into an octet
sequence.

Return Value

An octet sequence containing the data from the encoded any.

decode_value

Decode the given octet sequence into an any based on the given Typecode and the
encoding format effective for this Codec.

This operation raises FormatMismatch if the octet sequence‘ cannot be decoded into
an any.

Parameter

data The data, in the form of an octet sequence, to be decoded into an
any.

tc ' The TypeCode to be used to decode the data.

Return Value

An any containing the data from the decoded octet sequence.

13.8.2 Codec Factory

module IOP (

typedef short EncodingFormat;

const EncodingFormat ENCODING_CDR_ENCAPS = 0;

Dficembfif 2001 CORBA. v2. 6: Coder/Decoder Interfaces 13-33

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 913 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 914 of 1442

13

struct Encoding {

EncodingFormat format;

octet major_version;
octet minor_version;

};

local "interface CodecFactory {

exception UnknownEncoding {);
Codec create_codec (in Encoding enc)

raises (UnknownEncoding);

};

13.8.2.1 Encoding Structure

The Encoding structure defines the encoding format of a Codec. It details the

encoding format, such as CDR Encapsulation encoding, and the major and minor
versions of that format.

The encodings which shall be supported are:

' ENCOD|NG_CDR_ENCAPS, version 1.0;

° ENCODlNG_CDR_ENCAPS, version 1.1;

' ENCOD|NG__CDR_ENCAPS, version 1.2;

' ENCOD|NG_CDR_ENCAPS for all future versions of GIOP as they arise.

Vendors are free to support additional encodings.

13.8.2.2 C0decFact0ry Interface

create_codec

Create a Codec of the given encoding.

This operation raises UnknownEncoding if this factory cannot create a Codec of
the given encoding.

Parameter

enc The Encoding for which to create a Codec.

Return Value

A Codec obtained with the given encoding.

13-34 Common Object Request Broker/irchitecture (CORBA), V2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 914 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 915 of 1442

I3

13.9 Feature Support and GIOP Versions

December 2001

The association of service contexts with GIOP versions, (along with some other

supported features tied to GIOP minor version), is shown in Table 13-2..

Table 13-2 Feature Support Tied to Minor GIOP Version Number

es yesY

CodeSets Service Context

DCOM Bridging Service Contexts:

ChainBypassCheck

ChainBypasslnfo
Logica1Threadld

Object by Value Service Context:

SendingContextRunTime

Bi-Directional 1101’ Service Context:

Bl_DlR_llOP

Asynch Messaging Service Context

lNVOCATlON_POLlClES

Firewall Service Context

FORWARDED_lDENTlTY

Java Language Throwable_ Service
Context:

Unknownlixceptionlnfo

Realtime CORBA Service Contexts

RTCorbaPriority

RTCorbaPriorityRange

yes

yes

yes

optionals

optionals

yes

optional

(Realtime

CORBA only)

optional

es

es es

€S CS<s
U}

CS

es es

yes yes

yes yes

yes

yes

CORBA. V2. 6: Feature Suppnrt and GIOP Versions 13-35

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 915 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 916 of 1442

13

Table 13-2 Feature Support Tied to Minor GIOP Version Number (Continued)

TAG_FlREWALL_TRANS optionals

TAG_SCCP__CONTAC’I‘_lNl-‘O

TAG_TRANSACTlON_POl.lCY

TAG_MESSAGE_ROUTERS

'l‘AG_OTS_POLlCY

TAG_lNV_POLlCY

TAG_lNET_SEC_TRANS

optionals

optionals

optionals

optionals

optional‘

optionals

Extended IDL data types yes es
Bi-Directional GIOP Features es

Value types and Abstract lnterfaces yes

Note — 5 All features that have been added after CORBA 2.3 have been marked as

optional in GIOP 1.2. These features cannot be compulsory in GIOP l.2 since there is

no way to incorporate them in deployed implementations of 1.2. However, in order to

have the additional features of CORBA 2.4 work properly these optional features must

be supported by the GIOP 1.2 implementation connecting CORBA 2.4 ORBs.

13.10 Code Set Conversion

13.1 0.1 Character Processing Terminology

This section introduces a few terms and explains a few concepts to help understand the

character processing portions of this document.

13.10.1.1 Character Set

A finite set of different characters used for the representation, organization, or control

of data. In this specification, the term “character set” is used without any relationship

to code representation or associated encoding. Examples of character sets are the

English alphabet, Kanji or sets of ideographic characters, corporate character sets

(commonly used in Japan), and the characters needed to write certain European

languages.

13.10.1.2 Coded Character Set, or Code Set

A set of unambiguous rules that establishes a character set and the one-to-one

relationship between each character of the set and its bit representation or numeric
value. In this specification, the term “code set” is used as an abbreviation for the term

13-36 Common Object Request Broker/trchileclure (CORBA), v2.6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 916 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 917 of 1442

13

December 200]

13.10.1.3

Orientation

byte -oriented

non-byte-
oriented

13.10.1.4

“coded character set.” Examples include ASCII, ISO 8859-1, JIS X0208 (which

includes Roman characters, Japanese hiragana, Greek characters, Japanese kanji, etc.)
and Unicode.

Code Set Classifications

Some language environments distinguish between byte-oriented and “wide characters."

The byte-oriented characters are encoded in one or more 8-bit bytes. A typical single-

byte encoding is ASCII as used for western European languages like English. A typical

multi-byte encoding which uses from one to three 8-bit bytes for each character is

eucJP (Extended UNIX Code - Japan, packed format) as used for Japanese
workstations.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chinese,

Japanese, etc., where the number of combinations offered by 8 bits is insufficient and a

fixed-width encoding is needed. A typical example is Unicode (a “universal” character

set defined by the The Unicode Consortium, which uses an encoding scheme identical

to ISO 10646 UCS-2, or 2-byte Universal Character Set encoding). An extended

encoding scheme for Unicode characters is UTF-I6 (UCS Transformation Format, 16-

bit representations).

The C language has data types char for byte—oriented characters and wchar_t for

wide characters. The language definition for C states that the sizes for these characters

are implementation-dependent. Some environments do not distinguish between byte-

oriented and wide characters (e.g., Ada and Smalltalk). Here again, the size of a
character is implementation-dependent. The following table illustrates code set
classifications as used in this document.

Table 13-3 Code Set Classification

Code Element

Encoding

Code Set Examples C Data Type

ASCII, ISO 8859-1 (Latin-I), char

EBCDIC,

UTF-8, eucJP, Shift-JIS, JIS, Big5,

ISO IO646 UCS-2 (Unicode), ISO

10646 UCS-4, UTF-I6,

single-byte

multi-byte char[]

fixed-length wchar_t

Narrow and Wide Characters

Some language environments distinguish between “narrow” and “wide" characters.

Typically the narrow characters are considered to be 8-bit long and are used for

western European languages like English, while the wide characters are 16-bit or 32-

bit long and are used for languages like Chinese, Japanese, etc., where the number of

combinations offered by 8 bits are insufficient. However, as noted above there are

common encoding schemes in which Asian characters are encoded using multi-byte
code sets and it is incorrect to assume that Asian characters are always encoded as
“wide" characters.

CORBA. v2.6: Code Set Conversion 13-37

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 917 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 918 of 1442

I3

13-38

13.10.1.5

13.10.1.6

13.10.1.7

13.10.1.8

13.I0.1.9

13.10.1.10

Within this specification, the general terms “narrow character” and “wide character"

are only used in discussing OMG IDL.

Char Data and Wchar Data

The phrase “char data” in this specification refers to data whose lDL types have been

specified as char or string. Likewise “wchar data” refers to data whose IDL types

have been specified as wchar or wstring.

Byte—0riented Code Set

An encoding of characters where the numeric code corresponding to a character code

element can occupy one or more bytes. A byte as used in this specification is

synonymous with octet, which occupies 8 bits.

Multi-Byte Character Strings

A character string represented in a byte-oriented encoding where each character can

occupy one or more bytes is called a multi-byte character string. Typically, wide

characters are converted to this form from a (fixed-width) process code set before

transmitting the characters outside the process (see below about process code sets).

Care must be taken to correctly process the component bytes of a character’s multi-

byte representation.

Non-Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character code
element can occupy fixed 16 or 32 bits.

Char and Wchar Transmission Code Set (TCS-C and TCS-W)

These two terms refer to code sets that are used for fiansmission between ORBs after

negotiation is completed. ’As the names imply, the first one is used for char data and

the second one for wchar data. Each TCS can be byte-oriented or non-byte oriented.

Process Code Set and File Code Set

Processes generally represent international characters in an internal fixed-width format

which allows for efiicient representation and manipulation. This internal format is

called a “process code set.” The process code set is irrelevant outside the process, and

hence to the interoperation between CORBA clients and servers through their

respective ORBs.

When a process needs to write international character information out to a file, or

communicate with another process (possibly over a network), it typically uses a

different encoding called a “file code set.” In this specification, unless otherwise

Common Object Request Broker A re}: itecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 918 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 919 of 1442

I3

I3.10.1.11

13.10.1.12

indicated, all references to a prograrn’s code set refer to the file code set, not the

process code set. Even when a client and server are located physically on the same

machine, it is possible for them to use different file code sets.

Native Code Set

A native code set is the code set which a client or a sewer uses to communicate with

its ORB. There might be separate native code sets for char and wchar data.

Transmission Code Set

A transmission code set is the commonly agreed upon encoding used for character data
transfer between a client’s ORB and a server’s ORB. There are two transmission code

sets established per session between a client and its server, one for char data (TCS-C)
and the other for wchar data (TCS-W). Figure 13-6 illustrates these relationships:

_ native transmission native
client process <——> ORB ORB <——:> server processcode sets

code set code set

December 2001

I3.10.1.13

13.10.2.I

Figure 13-6 Transmission Code Sets

The intent is for TCS-C to be byte-oriented and TCS-W to be non-byte-oriented.

However, this specification does allow both types of characters to be transmitted using
the same transmission code set. That is, the selection of a transmission code set is

orthogonal to the wideness or narrowness of the characters, although a given code set

may be better suited for either narrow or wide characters.

Conversion Code Set (CCS)

With respect to a particular ORB’s native code set, the set of other or target code sets

for which an ORB can convert all code points or character encodings between the

native code set and that target code set. For each code set in this CCS, the ORB

maintains appropriate translation or conversion procedures and advertises the ability to
use that code set for transmitted data in addition to the native code set.

13.10.2 Code Set Conversion Framework

Requirements

The file code set that an application uses is often determined by the platfonn on which

it runs. In Japan, for example, Japanese EUC is used on Unix systems, while Shift-JlS

is used on PCs. Code set conversion is therefore required to enable interoperability
across these platforms. This proposal defines a framework for the automatic conversion

of code sets in such situations. The requirements of this framework are:

CORBA. V2.6: Code Set Conversion 13-39

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 919 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 920 of 1442

13

1. Backward compatibility. In previous CORBA specifications, IDL type char was
limited to ISO 8859-1. The conversion framework should be compatible with

existing clients and servers that use ISO 8859-] as the code set for char.

Ix) Automatic code set conversion. To facilitate development of CORBA clients and

servers, the ORB should perform any necessary code set conversions automatically

and efficiently. The IDL type octet can be used if necessary to prevent conversions.

3. Locale support. An internationalized application determines the code set in use by

examining the LOCALE string (usually found in the LANG environment variable),

which may be changed dynamically at run time by the user. Example LOCALE

strings are fr_FR.lSO8859-l (French, used in France with the ISO 8859-1 code set)

and ja_.lP.ujis (Japanese, used in Japan with the EUC code set and XI 1R5

conventions for LOCALE). The conversion framework should allow applications to

use the LOCALE mechanism to indicate supported code sets, and thus select the

correct code set from the registry.

4. CMIR and SMIR support. The conversion framework should be flexible enough to

allow conversion to be performed either on the client or server side. For example, if

a client is running in a memory-constrained environment, then it is desirable for
code set converters to reside in the server and for a Server Makes It Right (SMIR)

conversion method to be used. On the other hand, if many servers are executed on

one server machine, then converters should be placed in each client to reduce the

load on the server machine. In this case, the conversion method used is Client

Makes It Right (CMIR).

13.10.2.2 Overview ofthe Conversion Framework

Both the client and server indicate a native code set indirectly by specifying a locale.

The exact method for doing this is language-specific, such as the XPG4 C/C++
function setlocale. The client and server use their native code set to communicate

with their ORB. (Note that these native code sets are in general different from process

code sets and hence conversions may be required at the client and server ends.)

The conversion framework is illustrated in Figure 13-7. The server-side ORB stores a

server’s code set information in a component of the IOR multiple-component‘profile

structure (see Section 13.6.2, “Interoperable Object References: lORs" on page

13-14)‘. The code sets actually used for transmission are carried in the service context
field of an IOP (Inter-ORB Protocol) request header (see Section 13.7, “Service

Context” on page 13-28 and Section l3.l0.2.5, “GIOP Code Set Service Context” on

page 13-43). Recall that there are two code sets (TCS-C and TCS-W) negotiated for
each session.

1. Version 1.1 of the HOP profile body can also be used to specify the server’s code set infor-
mation, as this version introduces an extra field that is a sequence of tagged components.

1340 Common Object Request Broker/lrchitecrure (CORBA). V2.6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 920 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 921 of 1442

December 2001

13.I0.2.3

13

Server

Server‘: native
code set

Client

IOP service context
indicates transmission
code sets information

Client's native
code set

ORB

IOR multi-component
profile structure indicatesserver's native code set information

Figure 13-7 Code Set Conversion Framework Overview

If the native code sets used by a client and server are the same, then no conversion is

performed. 1f the native code sets are different and the client-side ORB has an

appropriate converter, then the CMIR conversion method is used. ln this case, the
server’s native code set is used as the transmission code set. If the native code sets are

different and the client-side ORB does not have an appropriate converter but the

server-side ORB does have one, then the SMIR conversion method is used. In this

case, the client’s native code set is used as the transmission code set.

The conversion framework allows clients and servers to specify a native char code set

and a native wchar code set, which determine the local encodings of IDL types char

and wchar, respectively. The conversion process outlined above is executed

independently for the char code set and the wchar code set. ln other words, the

algorithm that is used to select a transmission code set is run twice, once for char data
and once for wchar data.

The rationale for selecting two transmission code sets rather than one (which is

typically inferred from the locale of a process) is to allow efficient data transmission

without any conversions when the client and server have identical representations for

char and/or wchar data. For example, when a Windows NT client talks to a Windows

NT server and they both use Unicode for wide character data, it becomes possible to

transmit wide character data from one to the other without any conversions. Of course,

this becomes possible only for those wide character representations that are well-

defined, not for any proprietary ones. If a single transmission code set was mandated,

it might require unnecessary conversions. (For example, choosing Unicode as the

transmission code set would force conversion of all byte-oriented character data to

Unicode.)

ORB Databases and Code Set Converters

The conversion framework requires an ORB to be able to determine the native code set

for a locale and to convert between code sets as necessary. While the details of exactly

how these tasks are accomplished are implementation-dependent, the following

databases and code set converters might be used:

CORBA. V2.6: Code Set Conversion 13.41

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 921 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 922 of 1442

13

' Locale database. This database defines a native code set for a process. This code set

could be byte-oriented or non-byte-oriented and could be changed programmatically

while the process is running. However, for a given session between a client and a
server, it is fixed once the code set information is negotiated at the session’s setup
time.

° Environment variables or configuration files. Since the locale database can only
indicate one code set while the ORB needs to know two code sets, one for char

data and one for wchar data, an implementation can use environment variables or

configuration files to contain this information on native code sets.

' Converter database. This database defines, for each code set, the code sets to which

it can be converted. From this database, a set of “conversion code sets" (CCS) can

be determined for a client and server. For example, if a server’s native code set is

eucJP, and if the server-side ORB has eucJP-to-JlS and eucJP-to-SJIS bilateral

converters, then the server’s conversion code sets are JIS and SJIS.

' Code set converters. The ORB has converters which are registered in the converter
database.

13. 10.2. 4 C0deSet Component ofIOR Multi-Component Profile

The code set component of the 10R multi-component profile structure contains:

’ server’s native char code set and conversion code sets, and

‘ server’s native wchar code set and conversion code sets.

Both char and wchar conversion code sets are listed in order of preference. The code

set component is identified by the following tag:

const |OP::ComponentlD TAG_CODE_SETS = 1;

This tag has been assigned by OMG (See Section 13.6.6, “Standard IOR Components”

on page 13-19.). The following IDL structure defines the representation of code set

information within the component:

module CONV_FRAME{ ll IDL
typedef unsigned long Codesetld;

struct CodeSetComponent(
Codesetld native_code_set;

sequence<CodeSet|d> conversion__code_sets;

V };
struct Codesetcomponentlnfo {

Codesetcomponent ForCharData;

Codesetcomponent ForWcharData;
}:

}:

Code sets are identified by a 32-bit integer id from the OSF Character and Code Set

Registry (See Section l3.lO.5.l, “Character and Code Set Registry” on page 13-49 for

further infonnation). Data within the code set component is represented as a structure

13-42 Common Object Request Broker A rch itecture (CORBA). v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 922 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 923 of 1442

December 2001

13.10.2.5

13

of type Codesetcomponentlnfo, and is encoded as a CDR encapsulation. In other
words, the char code set information comes first, then the wchar information,

represented as structures of type Codesetcomponent.

A null value should be used in the native_code_set field if the server desires to

indicate no native code set (possibly with the identification of suitable conversion code
sets).

If the code set component is not present in a mu1ti—component profile structure, then

the default char code set is ISO 8859-] for backward compatibility. However, there is

no default wchar code set. If a server supports interfaces that use wide character data

but does not specify the wchar code sets that it supports, client-side ORBs will raise

exception |NV_OBJ REF, with standard minor code 1.

lf a client application invokes an operation which results in an attempt by the client

ORB to marshall wchar or wstring data for an in parameter (or to unmarshal

wchar or wstring data for an in/out parameter, out parameter or the return value),

and the associated Object Reference does not include a codeset component, then the

client ORB shall raise the |NV_OBJ REF standard system exception with standard

minor code 2 as a response to the operation invocation.

GIOP Code Set Service Context

The code set GIOP service context contains:

' char transmission code set, and

° wchar transmission code set

in the form of a code set service. This service is identified by:

const l0P::Service|D Codesets = 1;

The following lDL structure defines the representation of code set service information:

module CONV_'FRAME{ /I IDL

typedef unsigned long Codesetld;
struct Codesetcontext {

Codesetld

Codesetld
cha r_data;

wchar_data;

}:
};

Code sets are identified by a 32-bit integer id from the OSF Character and Code Set

Registry (See Section l3.lO.5. l, “Character and Code Set Registry” on page 13-49 for

further information).

Note — A server’s char and wchar Code set components are usually different, but

under some special circumstances they can be the same. That is, one could use the
same code set for both char data and wchar data. Likewise the Codesetlds in the
service context don’t have to be different.

CORBA, v2.6: Code Set Conversion 13.43

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 923 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 924 of 1442

13

13. 10.2. 6 Code Set Negotiation

The client-side ORB determines a server’s native and conversion code sets from the

code set component in an IOR multi-component profile structure, and it determines a
client’s native and conversion code sets from the locale setting (and/or envirorunent

variables/configuration files) and the converters that are available on the client. From
this information, the client-side ORB chooses char and wchar transmission code sets

(TCS-C and TCS-W). For both requests and replies, the char TCS-C determines the

encoding of char and string data, and the wchar TCS-W determines the encoding of
wchar and wstring data.

Code set negotiation is not performed on a per-request basis, but only when a client

initially connects to a server. All text data communicated on a connection are encoded

as defined by the TCSs selected when the connection is established.

Figure 13-8 illustrates, there are two channels for character data flowing between the
client and the server. The first, TCS-C, is used for char data and the second, TCS-W,

is used for wchar data. Also note that two native code sets, one for each type of data,

could be used by the client and server to talk to their respective ORBS (as noted earlier,

the selection of the particular native code set used at any particular point is done via

setlocale or some other implementation-dependent method).

C|ienl'S na1lVe Transmission code set gager‘i§,uz:a,
code set for char _ for char (1'cs.c)

Server ‘ .Side -

Transmission code set

Client's native for wchar (TCS-W) Servers "awe
code set for wchar °°de Se‘ f°' wchar

Figure 13-8 Transmission Code Set Use

Let us look at an example. Assume that the code set information for a client and server

is as shown in the table below. (Note that this example concerns only char code sets

and is applicable only for data described as chars in the IDL.)

—
5115

Conversion code eucll’, JlS S.llS, .115
sets:

The client-side ORB first compares the native code sets of the client and server. If they
are identical, then the transmission and native code sets are the same and no conversion

is required. ln this example, they are different, so code set conversion is necessary.
Next, the client-side ORB checks to see if the server’s native code set, eucJP, is one of

the conversion code sets supported by the client. It is, so eucJP is selected as the

l3-44 Common Object Request Broker Architecture (CORE/1). v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 924 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 925 of 1442

I3

December 2001

transmission code set, with the client (i.e., its ORB) performing conversion to and from

its native code set, SJIS, to eucJP. Note that the client may first have to convert all its

data described as chars (and possibly wchar_ts).from process codes to SJIS first.

Now let us look at the general algorithm for determining a transmission code set and

where conversions are performed. First, we introduce the following abbreviations:

° CNCS - Client Native Code Set;

' CCCS - Client Conversion Code Sets;

' SNCS - Server Native Code Set;

' SCCS - Server Conversion Code Sets; and

° TCS - Transmission Code Set.

The algorithm is as follows:

if (CNCS==SNCS)
TCS = CNCS; II no conversion required

else {

if (e|ementOf(SNCS,CCCS))
TCS = SNCS; /I client converts to server’s native code set

else if (e|ementOf(CNCS,SCCS))
TCS = CNCS; // server converts from client's native code set

else if (intersection(CCCS,SCCS) l= emptyset) {
TCS = oneOf(intersection(CCCS,SCCS));

/I client chooses TCS, from intersection(CCCS,SCCS), that is

/I most preferable to sewer;
ll client converts from CNCS to TCS and server
/I from TCS to SNCS

else if (compatible(CNCS,SNCS))

TCS = fallbackCS; /I fallbacks are UTF-8 (for char data) and

II UTF-16 (for wchar data)
else -

raise CODESET_lNCOMPATlBLE exception;

}

The algorithm first checks to see if the client and server native code sets are the same.

If they are, then the native code set is used for transmission and no conversion is

required. if the native code sets are not the -same, then the conversion code sets are
examined to see if

1. the client can convert from its native code set to the server’s native code set,

2. the server can convert from the client’s native code set to its native code set, or

3. transmission through an intermediate conversion code set is possible.

If the third option is selected and there is more than one possible intennediate
conversion code set (i.e., the intersection of CCCS and SCCS contains more than one

code set), then the one most preferable to the server is selected.2

CORBA. v2.6: Code Set Conversion 13.45

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 925 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 926 of 1442

I3

l3-46

If none of these conversions is possible, then the fallback code set (UTF-8 for char
data and UTF-16 for wchar data— see below) is used. However, before selecting the

fallback code set, a compatibility test is performed. This test looks at the character sets

encoded by the client and server native code sets. If they are different (e.g., Korean and

French), then meaningful communication between the client and server is not possible

and a CODESETJNCOMPATIBLE exception is raised. This test is similar to the

DCE compatibility test and is intended to catch those cases where conversion from the
client native code set to the fallback, and the fallback to the server native code set

would result in massive data loss. (See Section 13.105, “Relevant OSFM Registry

Interfaces” on page 13-49 for the relevant OSF registry interfaces that could be used
for determining compatibility.)

A DATA_CONVERS|ON exception is raised when a client or server attempts to

transmit a character that does not map into the negotiated transmission code set. For

example, not all characters in Taiwan Chinese map into Unicode. When an attempt is

made to transmit one of these characters via Unicode, an ORB is required to raise a

DATA_CONVE RSION exception, with standard minor code 1.

ln summary, the fallback code set is UTF-8 for char data (identified in the Registry as

0x05010001, “X/Open UTF-8; UCS Transformation Format 8 (UTF-8)"), and UTF-I6

for wchar data (identified in the Registry as 0x00010109, "ISO/lEC 10646-l:l993;

UTF-16, UCS Transformation Format 16-bit form"). As mentioned above the fallback

code set is meaningful my when the client and server character sets are compatible,

and the fallback code set is distinguished from a default code set used for backward

compatibility.

If a server’s native char code set is not specified in the lOR multi-component profile,

then it is considered to be ISO 8859-] for backward compatibility. However, a server

that supports interfaces that use wide character data is required to specify its native

wchar code set; if one is not specified, then the client-side ORB raises exception

_|NV_OBJREF, with standard minor code set to 1.

Similarly, if no char transmission code set is specified in the code set service context,
then the char transmission code set is considered to be ISO 8859-1 for backward

compatibility. If a client transmits wide character data and does not specify its wchar
transmission code set in the service context, then the server-side ORB raises exception

BAD_PARAM, with standard minor code set to 23.

To guarantee “out-of-the-box" interoperability, clients and servers must be able to
convert between their native char code set and UTF-8 and their native wchar code set

(if specified) and Unicode. Note that this does not require that all server native code

sets be mappable to Unicode, but only those that are exported as native in the lOR. The

server may have other native code sets that aren’t mappable to Unicode and those can

2.Recall that sewer conversion code sets are listed in order of preference.

Common Object Request Broker A rch iteclure (CORB/1), V2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 926 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 927 of 1442

I3

December 2001

be exported as SCCSs (but not SNCSS). This is done to guarantee out-of-the-box

interoperability and to reduce the number of code set converters that a CORBA-

compliant ORB must provide.

ORB implementations are strongly encouraged to use widely—used code sets for each

regional market. For example, in the Japanese marketplace, all ORB implementations

should support Japanese EUC, JIS and Shift JIS to be compatible with existing

business practices.

13.10.3 Mapping to Generic Character Environments

Certain language environments do not distinguish between byte-oriented and wide
characters. In such environments both char and wchar are mapped to the same

“generic” character representation of the language. String and wstring are likewise

mapped to generic strings in such environments. Examples of language environments

that provide generic character support are Smalltalk and Ada.

Even while using languages that do distinguish between wide and byte-oriented

characters (e.g., C and C++), it is possible to mimic some generic behavior by the use

of suitable macros and support libraries. For example, developers of Windows NT and

Windows 95 applications can write portable code between NT (which uses Unicode

strings) and Windows 95 (which uses byte-oriented character strings) by using a set of

macros for declaring and manipulating characters and character strings. Appendix A in

this chapter shows how to map wide and byte-oriented characters to these generic
macros.

Another way to achieve generic manipulation of characters and strings is by treating
them as abstract data types (ADTs). For example, if strings were treated as abstract

data types and the programmers are required to create, destroy, and manipulate strings

only through the operations in the ADT interface, then it becomes possible to write

code‘ that is representation-independent. This approach has an advantage over the

macro-based approach in that it provides portability between byte-oriented and wide

character environments even without recompilation (at runtime the string function calls
are bound to the appropriate byte-oriented/wide library). Another way of looking at it

is that the macro-based genericity gives compile-time flexibility, while ADT-based

genericity gives runtime flexibility.

Yet another way to achieve generic manipulation of character data is through the ANS]
C++ Strings library defined as a template that can be parameterized by char,

wchar_t, or other integer types.

Given that there can be several ways of treating characters and character strings in a

generic way, this standard cannot, and therefore does not, specify the mapping of char,
wchar, string, and wstring to all of them. It only specifies the following normative

requirements which are applicable to generic character environments:

° wchar must be mapped to the generic character type in a generic character
environment.

° wstring must be mapped to a string of such generic characters in a generic
character environment.

CORBA, v2. 6: Code Se! Conversion 13.47

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 927 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 928 of 1442

I3

l3-48

13.I0.3.1

13.]0.3.2

' The language binding flles (i.e., stubs) generated for these generic environments

must ensure that the generic type representation is converted to the appropriate code

sets (i.e., CNCS on the client side and SNCS on the server side) before character

data is given to the ORB runtime for transmission.

Describing Generic Interfaces

To describe generic interfaces in lDL we recommend using wchar and wstring.

These can be mapped to generic character types in environments where they do exist

and to wide characters where they do not. Either way interoperation between generic

and non-generic character type environments is achieved because of the code set
conversion framework.

Interoperation

Let us consider an example to see how a generic environment can interoperate with a

non-generic environment. Let us say there is an lDL interface with both char and

wchar parameters on the operations, and let us say the client of the interface is in a

generic environment while the server is in a non-generic environment (for example the
client is written in Smalltalk and the server is written in C++).

Assume that the server’s (byte-oriented) native char code set (SNCS) is well’ and the
client’s native char code set (CNCS) is SJlS. Further assume that the code set

negotiation led to the decision to use eucJP as the char TCS-C and Unicode as the
wchar TCS-W.

As per the above normative requirements for mapping to a generic environment, the
client’s Smalltalk stubs are responsible for converting all char data (however they are

represented inside Smalltalk) to SJlS and all wchar data to the client’s wchar code set

before passing the data to the client-side ORB. Note that this conversion could be an

identity mapping if the internal representation of narrow and wide characters is the
same as that of the native code set(s). The client-side ORB now converts all char data
from SJlS to we]? and all wchar data from the client’s wchar code set to Unicode,
and then transmits to the server side.

The server side ORB and stubs convert the euc.lP data and Unicode data into C++’s

internal representation for chars and wchars as dictated by the IDL operation

signatures. Notice that when the data arrives at the server side it does not look any

different from data arriving from a non-generic environment (e.g., that is just like the

server itself). ln other words, the mappings to generic character environments do not
affect the code set conversion framework.

13.10.4 Example of Generic Environment Mapping

This section shows how char, wchar, string, and wchar can be mapped to the

generic C/C++ macros of the Windows environment. This is merely to illustrate one

possibility. This section is not normative and is applicable only in generic

environments. See Section l3.l0.3, “Mapping to Generic Character Environments" on
page l3-47.

Common Object Request Broker A rchilecture (CORB/1), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 928 of 1442

