
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1305 of 1442

A Reliable Dissemination Protocol for

Interactive Collaborative Applications

Rajendra Yavatkar, James Griffioen, and Madhu Sudan

Department of Computer Science

University of Kentucky

Lexington, KY 40506

{raj,griff,madhu}@dcs.uky.edu
(606) 257-3961

ABSTRACT

The widespread availability of networked multimedia
workstations and PCs has caused a significant interest
in the use of collaborative multimedia applications. Ex-

amples of such applications include distributed shared

whiteboards, group editors, and distributed games or
simulations. Such applications often involve many par-

ticipants and typically require a specific form of mul-
ticast communication called dissemination in which a

single sender must reliably transmit data to multiple
receivers in a timely fashion. This paper describes

the design and implementation of a reliable multicast

transport protocol called TMTP (Tree-based Multicast
Transport Protocol). TMTP exploits the efficient best-
effort delivery mechanism of IP multicast for packet

routing and delivery. However, for the purpose of scal-
able flow and error control, it dynamically organizes the

participants into a hierarchical control tree. The control
tree hierarchy employs restricted nooks with suppression

and an expanding ring search to distribute the functions

of state management and error recovery among many
members, thereby allowing scalability to large numbers
of receivers. An Mbone—based implementation of TMTP

spanning the United States and Europe has been tested
and experimental results are presented.

KEYWORDS

Reliable Multicast, Transport Protocols, Mbone, In-

teractive Multipoint Services, Collaboration

INTRODUCTION

Widespread availability of IP multicast [6, 2] has sub-
stantially increased the geographic span and portability
of collaborative multimedia applications. Example ap-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1305 of 1442

plications include distributed shared Whiteboards [15],

group editors [7 , 14], and distributed games or simula-
tions. Such applications often involve a large number of

participants and are interactive in nature with partici-

pants dynamically joining and leaving the applications.

For example, a large-scale conferencing application (e.g.,
an IETF presentation) may involve hundreds of people
who listen for a short time and then leave the conference.

These applications typically require a specific form of
multicast delivery called dissemination. Dissemination

involves 1xN communication in which a single sender

must reliably multicast a significant amount of data to

multiple receivers. IP multicast provides scalable and

efficient routing and delivery of IP packets to multiple
receivers. However, it does not provide the reliability
needed by these types of collaborative applications.

Our goal is to exploit the highly eflicient best-effort
delivery mechanisms of IP multicast to construct a seal-

able and efficient protocol for reliable dissemination.
Reliable dissemination on the scale of tens or hundreds

of participants scattered across the Internet requires

carefully designed flow and error control algorithms that
avoid the many potential bottlenecks. Potential bottle-

necks include host processing capacity [18] and network
resources. Host processing capacity becomes a bottle-
neck when the sender must maintain state information

and process incoming acknowledgements and retrans-

mission requests from a large number of receivers. Net-
work resources become a bottleneck unless the frequency

and scope of retransmissions is limited. For instance,

loss of packets due to congestion in a small portion of
the IP multicast tree should notlead to retransmission

of packets to all the receivers. Frequent multicast re-
transmissions of packets also wastes valuable network
bandwidth.

This paper describes the design and implementation

of a reliable dissemination protocol called TMTP (Tree-
based Multicast Transport Protocol) that includes the

following features:

1. TMTP takes advantage of IP multicast for efficient

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1306 of 1442

packet routing and delivery.

2. TMTP uses an ezpanding ring search to dynam-

ically organize the dissemination group members
into a hierarchical control tree as members join and

leave a group.

3. TMTP achieves scalable reliable dissemination via

the hierarchical control tree used for flow and er-

ror control. The control tree takes the flow and

error control duties normally placed at the sender
and distributes them across several nodes. This

distribution of control also allows error recovery to

proceed independently and concurrently in different

portions of the network.

4. Error recovery is primarily driven by receivers who
use a combination of restricted negative acknowl-

edgements with nack suppression and periodic posi-

tive acknowledgements. In addition, the tree struc-
ture is exploited to restrict the scope of retransmis-

sions to the region where packet loss occurs; thereby

insulating the rest of the network from additional
traffic.

We have completed a user-level implementation of

TMTP based on IP/UDP multicast and have used it
for a systematic performance evaluation of reliable dis-
semination across the current Internet Mbone. Our ex-

periments involved as many as thirty group members
located at several sites in the US and Europe. The re-

sults are impressive; TMTP meets our objective of scal-

ability by significantly reducing the sender’s processing
load, the total number of retransmissions that occur,

and the end-to-end latency as the number of receivers is
increased.

Background

A considerable amount of research has been reported

in the area of group communication. Several systems

such as the ISIS system [1], the V kernel [4], Amoeba,

the Psynch protocol [17], and various others have pro-
posed group communication primitives for constructing
distributed applications. However, all of these systems

support a general group communication model (NxN
communication) designed to provide reliable delivery
with support for atomicity and/or causality or to sim-

ply support an unreliable, unordered multicast delivery.

Similarly, transport protocols specifically designed to

support group communication have also been designed

before [13, 5, 3, 19, 9]. These protocols mainly concen-
trated on providing reliable broadcast over local area
networks or broadcast links. Flow and error control

mechanisms employed in networks with physical layer

multicast capability are simple and do not necessarily
scale well to a wide area network with unreliable packet

delivery.

Earlier multicast protocols used conventional flow
and error control mechanisms based on a sender-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1306 of 1442

initiated approach in which the sender disseminates

packets and uses either a Go-Baclc—N or a selective repeat

mechanism for error recovery. If used for reliable dissem-

ination of information to a large number of receivers,
this approach has several limitations. First, the sender

must maintain and process a large amount of state in-
formation associated with each receiver. Second, the

approach can lead to a packet implosion problem where

a large number of ACKs or NACKs must be received and
processed by the sender over a short interval. Overall,

this can lead to severe bottlenecks at a sender resulting

in an overall decrease in throughput [18].
An alternate approach based on receiver-initiated

methods [19, 15] shifts the burden of reliable delivery to
the receivers. Each receiver maintains state information

and explicitly requests retransmission of lost packets by

sending negative acknowledgements (NACKS). Under
this approach, the receiver uses two kinds of timers. The
first timer is used to detect lost packets when no new
data is received for some time. The second timer is used

to delay transmission of NACKS in the hope that some

other receiver might generate a NACK (called nack sup-

pression).

It has been shown that the receiver-initiated ap-

proach reduces the bottleneck at the sender and pro-

vides substantially better performance [18]. However,
the receiver-initiated approach has some major draw-

backs. First, the sender does not receive positive confir-
mation of reception of data from all the receivers and,

therefore, must continue to buffer data for long periods
of time. The second and most important drawback is

that the end-to-end delay in delivery can be arbitrarily

large as error recovery solely depends on the timeouts at
the receiver unless the sender periodically polls the re-

ceivers to detect errors [19]. If the sender sends a train of
packets and if the last few packets in the train are lost,
reoeivers take a long time to recover causing unneces-
sary increases in end-to-end delay. Periodic polling of
all receivers is not an efficient and practical solution in

a wide area network. Third, the approach requires that
a NACK must be multicast to all the receivers to allow

suppression of NACKs at other receivers and, similarly,
all the retransmissions must be multicast to all the re-

ceivers. However, this can result in unnecessary propa-

gation of multicast traffic over a large geographic area
even if the packet losses and recovery problems are re-

stricted to a distant but small geographic area‘. Thus,
the approach may unnecessarily waste valuable band-
width.

In this paper we present an altemative approach that

achieves scalable reliable dissemination by reducing the

processing bottlenecks of sender-initiated approaches

‘Assume that only a distant portion of the Internet is congested
resulting in packetloss in the area. One or more receivers in this
region may multicast repeated NACKS that must be processed
by all the receivers and the resulting retransmissions must also be
forwarded to and processed by all the receivers.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1307 of 1442

and avoiding the long recovery times of receiver-initiated
approaches.

OVERVIEW OF OUR APPROACH

Under the TMTP dissemination model, a single
sender multicasts a stream of information to a dissem-

ination group. A dissemination group consists of pro-

cesses scattered throughout the Internet, all interested

in receiving the same data feed. A session directory ser-

vice (similar to the session directory sd from LBL [12])
advertizes all active dissemination groups.

Before a transmitting process can begin to send its
stream of information, the process must create a dissem-

ination group. Once the dissemination group has been
formed, interested processes can dynamically join the

group to receive the data feed. The dissemination pro-
tocol does not provide any mechanism to insure that all

receivers are present and listening before transmission

begins. Although such a mechanism may be applicable
in certain situations, we envision a highly dynamic dis-

semination system in which receiver processes usually

join a data feed already in progress and /or leave a data
feed prior to its termination. Consequently, the protocol
makes no effort to coordinate the sender and receivers,

and an application must rely on an external synchro-
nization method when such coordination is necessary.

For the purposes of flow and error control, TMTP or-

ganizes the group participants into a hierarchy of sub-
nets or domains. Typically, all the group members in

the same subnet belongto a domain and a single do-
main manger acts as a representative on behalf of the
domain for that particular group. The domain manager

is responsible for recovering from errors and handling 10-
cal retransmissions if one or more of the group members
within its domain do not receive some packets.

In addition to handling error recovery for the local
domain, each domain manager may also provide error

recovery for other domain managers in its vicinity. For
this purpose, the domain managers are organized into

a control tree as shown in Figure 1. The sender in a

dissemination group serves as the root of the tree and
has at most K domain managers as children. Similarly,

each domain manager will accept at most K other do-
main managers as children, resulting in a tree with max-

imum degree K. The value of K is chosen at the time of

group creation and registration and does not include lo-

cal group members in a domain (or subnet). The degree
of the tree (K) limits the processing load on the sender
and the internal nodes of the control tree. Consequently,

the protocol overhead grows slowly, proportional to the
LogK(Number_Of_Receivers).

Packet transmission in TMTP proceeds as follows.

When a sender wishes to send data, TMTP uses IP

multicast to transmit packets to the entire group. The

transmission rate is controlled using a sliding window
based protocol described later. The control tree en-

sures reliable delivery to each member. Each node of

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1307 of 1442

Figure 1: An example control tree with the maximum
degree of each node restricted to K. Local group mem-
bers within a domain are indicated by GM. There is no

restriction on the number of local group members within
a domain.

the control tree (including the root) is only responsi-
ble for handling the errors that arise in its immediate
K children. Likewise, children only send periodic, posi-

tive acknowledgments to their immediate parent. When
a child detects a missing packet, the child multicasts a
NACK in combination with nack suppression. On the

receipt of the NACK, its parent in the control tree mul-

ticasts the missing packet. To limit the scope of the mul-
ticast NACK and the ensuing multicast retransmission,

TMTP uses the Time- To-Live (TTL) field to restrict the
transmission radius of the message. As a result, error
recovery is completely localized. Thus, a dissemination

application such as a world-wide IETF conference would

organize each geographic domain (e.g., the receivers in
California vs. all the receivers in Australia) into sep-

arate subtrees so that error recovery in a region can

proceed independently without causing additional traf-

fic in other regions. TMTP’s hierarchical structure also
reduces the end-to-end delay because the retransmission

requests need not propagate all the way back to the orig-
inal sender. In addition, locally retransmitted packets

will be received quickly by the affected receivers-

The control tree is self-organizing and does not rely
on any centralized coordinator, being built dynamically

as members join and leave the group. A new domain

manager attaches to the control tree after discovering
the closest node in the tree using an expanded ring
search. Note that the control tree is built solely at the

transport layer and thus does not require any explicit
support from, or modification to, the IP multicast in-

frastructure inside the routers.

The following sections describe the details of the
TMTP protocol.

GROUP MANAGEMENT

The session directory provides the following group

management primitives:

CreateGroup(GName,Comm'I‘ype): A sender cre-

ates a new group (with identifier GName) using the
CreateGroup routine. Comm Type specifies the type
of communication pattern desired and may be ei-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1308 of 1442

ther dissemination or cancastz. If successful, Cre-

ateGroup returns an IP multicast address and a

port number to use when transmitting the data.

JoinGroup(Gname): Processes that want to receive
the data feed represented by GName call JoinGroup
to become a member of the group. Join returns the

transport level address (IP multicast address and

port number) for the group which the new process
uses to listen to the data feed.

LeaveGroup(Gname): Removes the caller from the
dissemination group GName.

DeleteGroup(GName): When the transmission is
complete, the sending process issues a DeleteGroup
request to remove the group GName from the sys-
tem. DeleteGroup also informs all participants, and

domain managers that the group is no longer active.

CONTROL TREE MANAGEMENT

Each dissemination group has an associated control

tree consisting of domain managers. Over the lifetime
of the dissemination group, the control tree grows and
shrinks dynamically in response to additions and dele-
tions to and from the dissemination group membership.

Specifically, the tree grows whenever the first process
in a domain joins the group (i.e., a domain manager is

created) and shrinks whenever the last process left in a
domain leaves the group (i.e., adomain manager termi-

nates).
There are only two operations associated with con-

trol tree management: Join Tree and LeaveTree. When a
new domain manager is created, it executes the Join'I\‘ee

protocol to become a member of the control tree. Like-
wise, domain managers that no longer have any local

processes to support may choose to execute the Leave-
Tree protocol.

Figures 2 and 3 outline the protocols for joining

and leaving the control tree. The join algorithm em-

ploys an expanding ring search to locate potential con-
nection points into the control tree. A new domain

manager begins an expanding ring search by mul-

ticasting a SEARCH_FOR_PARENT request message
with a small time-to-live value (TTL). The small TTL

value restricts the scope of the search to nearby con-

trol nodes by limiting the propagation of the multi-
cast message. If the manager does not receive a re-

sponse within some fixed timeout period, the man-

ager resends the SEARCH_FOR_PARENT message us-

ing a larger TTL value. This process repeats until the
manager receives a WILLING_TO_BE_PAR.ENT mes-

sage from one or more domain managers in the con-
trol tree. All existing domain managers that receive the
SEARCH_FOR,_PARENT message will respond with a

“Although this paper focuses on dissemination, TMTP also
supports efficient concast style communication[10].

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex.1102,p.1308of1442

Hhile (NotDone) {

Hulticast a SEARCH_FOR_PARENT msg
Collect responses
If (no responses)

Increment TTL /* try again #/
Else

Select closest respondent as parent
Send JOIN_REQUEST to parent
Wait for JOIN_CONFIRH reply
If (JOIN_CONFIRM received)

Notbone = False

Else /t try again #/

(A) New Domain Manger Algorithm

Receive request nmssage ‘

If (request is SE.ARCE_I-‘0R_PAREN'l')
If (MAX_CHILDREN not exceeded)

Send HILLING_T0_BE_PARl':‘.N'l' msg
Else

/# Do not respond #/
Else If (request is JOIN_R£QUEST)

Add child to the tree

Send JOIN_ClJNFIRl'l rnsg

(B) Existing Domain Manger Algorithm

Figure 2: The protocol used by domain managers to
join the control tree. A new domain manager performs
algorithm (A) while all other existing managers execute

algorithm (B).

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1309 of 1442

If (I_am_a_1eaf_manager)
Send LEAVE_TREE request
to parent

Receive LEAVE_CONFIRH
Terminate

Else /# I am an internal manager t/
Fulfill all pending obligations
Send FIND_NEH_PAR£NT message to children
Receive FIND_NEH_PAR£NT reply from all children
Send LEAVE_TREE request to parent
Receive LE1lVE_CONl-'IB.H
Terminate

Figure 3: The algorithm used to leave the control tree
after the last local group member terminates.

WILLIl\'G.TO_BE_PARENT message unless they al-

ready support the maximum number of children. The
new domain manager then selects the closest domain

manager (based on the TTL values) and directly con-
tacts the selected manager to become its child. For each

domain, its manager maintains a multicast radius for
the domain, which is the TTL distance to the farthest
child Within the domain. The domain manager keeps
the children informed of the current multicast radius.

As described later in the description of the error control

part of TMTP, both parent and its children in a domain
use the current multicast radius to restrict the scope of
their multicast transmissions.

Before describing the Leave'Iree protocol, note that

a domain manager typically has two types of children.
First, a domain manager supports the group members
that reside within its local domain. Second, a domain

manager may also act as a parent to one or more children

domain managers. We say a manager is an internal
manager of the tree if it has other domain managers as

children. We say a manager is a leaf manager if it only
supports group members from its local domain.

A domain manager may only leave the tree after its

last local member leaves the group. At this point, the

domain manager begins executing the LeaveTree proto-

col shown in Figure 3. The algorithm for leaf managers
is straightforward. However, the algorithm for inter-

nal managers is complicated by the fact that internal
managers are a crucial link in the control tree, contin-

uously servicing flow and error control messages from
other managers, even when there are no local domain
members left. In short, a departing internal node must
discontinue service at some point and possibly coordi-
nate children with the rest of the tree to allow seam-

less reintegration of children into the tree. Several al-

ternative algorithms can be devised to determine when
and how service will be cutoff and children reintegrated.

The level of service provided by these algorithms could

range from “unrecoverable interrupted service” to “tem-

porarily interrupted service” to “uninterrupted service”.

Our current implementation provides “probably unin-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1309 of 1442

terrupted service” which means children of the depart-

ing manager continue to receive the feed while they rein-
tegrate themselves into the tree. However, errors that

arise during the brief reintegration time might not be
correctable. We are still investigating alternatives to
this approach.

After a departing manager has fulfilled all obliga-
tions to its children and parent, the departing manager
instructs its children to find a new parent. The chil-

dren then begin the process of joining the tree all over

again. Although we investigated several other possible

algorithms, we chose the above algorithm for its sim-
plicity. Other, more static algorithms, such as requiring
orphaned children to attach themselves to their grand-

parents, often result in poorly constructed control trees.

Forcing the children to restart the join procedure en-
sures that children will select the closest possible con-

nection point. Other more complex dynamic methods
can be used to speed up the selection of the closest con-

nection point but, in our experience, the performance of

our simple algorithm has been acceptable.

DELIVERY MANAGEMENT

TMTP couples its packet transmission strategy with

a unique tree-based error and flow control protocol to
provide efficient and reliable dissemination. Conven-

tional flow and error control algorithms employ a sender-

or receiver-initiated approach. However, using the con-

trol tree, TMTP is able to combine the advantages of
each approach while avoiding their disadvantages. Log-

ically, TMTP’s delivery management protocol can be
partitioned into three components: data transmission,

error handling, and flow control. The following sections
address each of these aspects.
The Transmission Protocol

The basic transmission protocol is quite simple and is
best described via a simple example. Assume a sender

process S has established a dissemination group X and

wants to multicast data to group X. S begins by multi-

casting data to the (IP-multicast.addr, port-no) repre-
senting group X. The multicast packets travel directly

to all group members via standard IP multicast. In ad-
dition, all the domain managers in the control tree listen
and receive the packets directly.

As in the sender-initiated approach, the root S ex-
pects to receive positive acknowledgments in order to

reclaim buffer space and implement flow control. How-

ever, to avoid the ac]: implosion problem of the sender
initiated approach, the sender does not receive acknowl-

edgments directly from all the group members and, in-
stead, receives ACKS only from its K immediate chil-

dren. Once a domain manager receives a multicast

packet from the sender, it can send an acknowledgment

for the packet to its parent because the branch of the

tree the manager represents has successfully received the
packet (even though the individual members may not

have received the packet). That is, a domain manager

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1310 of 1442

does not need to wait for ACKs from its children in or-

der to send an ACK to the parent. In addition, each

domain manager only periodically sends such ACKs to

its parent. This feature substantially reduces ACK pro-

cessing at the sender (and each domain manager).
Error Control

Before describing the details of TMTP’s error control
mechanism we must define an important concept called

limited scope multicast messages. A limited scope multi-
cast restricts the scope of a multicast message by setting
the TTL value in the IP header to some small value

which we call the multicast radius. The appropriate

multicast radius to use is obtained from the expanding

ring search that domain managers use to join the tree.
Limited scope multicast messages prevent messages tar-

geted to a particular region of the tree from propagating
throughout the entire Internet.

TMTP employs error control techniques from both
sender and receiver initiated approaches. Like the

sender initiated approach, a TMTP traffic source

(sender) requires periodic (unicas_t) positive acknowl-
edgements and uses timeouts and (limited scope mul-
ticast) retransmissions to ensure reliable delivery to all
its immediate children (domain managers). However, in
addition to the sender, the domain managers in the con-

trol tree are also responsible for error control after they

receive pa.ckets from the sender. Although the sender

initially multicasts packets to the entire group, it is the

domain manager's responsibility to ensure reliable deliv-
ery. Each domain manager also relies on periodic posi-
tive ACKs (from its immediate children), timeouts, and
retransmissions to ensure reliable delivery to its chil-
dren. When a retransmission timeout occurs, the sender

(or domain manager) assumes the packet was lost and

retransmits it using IP multicast (with a small TTL
equal to the multicast radius for the local domain so

that it only goes to its children).
In addition to the sender initiated approach, TMTP

uses restricted NACKs with NACK suppression to re-

spond quickly to packet losses. When a receiver notices

a missing packet, the receiver generates a negative ac-

knowledgment that is multicast to the parent and sib-
lings using a restricted (small) TTL value. To avoid mul-
tiple receivers generating a NACK for the same packet,
each receiver delays a random amount of time before

transmitting its NACK. If the receiver hears a NACK
from another sibling during the delay period, it sup-
presses its own NACK. This technique substantially re-
duces the load imposed by NACKs. When a domain

manager receives a NACK, it immediately responds by
multicasting the missing packet to the local domain us- '

ing a limited scope multicast message.
Flow Control

TMTP achieves flow control by using a combination
of rate-based and window-based techniques. The rate-

based component of the protocol prohibits senders from

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1310 of 1442

transmitting data faster than some predefined maxi-
mum transmission rate. The maximum rate is set when

the group is created and never changes. Despite its
static nature, a fixed rate helps avoid congestion aris-

ing from bursty traffic and packet loss at rate—dependent

receivers while still providing the necessary quality-of-
service without excessive overhead.

TMTP’s primary means of flow control consists of
a window-based approach used for both dissemination
from the sender and retransmission from domain man-

agers. Within a window, senders transmit at a fixed
rate.

TMTP’s window-based flow control differs slightly

from conventional point-to-point window-based flow
control. Note that retransmissions are very expensive

because they are multicast. In addition, transient traf-

fic conditions or congestion in one part of the network
can put backpressure on the sender causing it to slow
the data flow. To oversimplify, TMTP avoids both of

these problems by partitioning the window and delay-

ing retransmissions as long as possible. This increases
the chance of a positive acknowledgement being received
and it also allows domain managers to rectify transient

behavior before it begins to cause backpressure.
TMTP uses two different timers to control the win-

dow size and the rate at which the window advances.

T,e,,,,,,, defines a timeout period that begins when the

first packet in a window is sent. Since the transfer rate

is fixed, T,e¢,,,,,,, also definesthe window size. _ A sec-
ond timer, Tack, defines the periodic interval at which
each receiver is expected to unicast a positive ACK to
its parent.

The sender specifies the value of TM, based on the
RTT to its farthest child. Tm,,,,., is chosen such that

T,m.,,,, = n. x Tack, where n is an integer, n 2 2. Both

T,,,;,a,,, and Tack are fixed at the beginning of transmis-
sion and do not change. A sender must allocate enough

buffer space to hold packets that are transmitted over
the Tretrans period-

Figure 4 illustrates the windowing algorithm graphi-
cally. The sender starts a timer and begins transmitting

data (at a fixed rate). Consider the packets transmit-
ted during the first Tack interval. Although the sender
should see a positive ACK at time Tack, the sender does

not require one until time T,¢,,a,,,. Instead, the sender

continues to send packets during the second and third
interval. After T,ma,,, amount of time, the timer ex-

pires. At this point, the sender retransmits all unACK’d

packets that were sent during the first Tad, interval. Re-
transmissions continue until all packets in the T,,,_.,, in-

terval are acknowledged at which point the window is

advanced by Tack. On the receiving end, packets con-
tinue to arrive without being acknowledged until Tack

amount of time has expired3.

3However, a receiver may generate a restricted NA CK as soon
as it detects a missing packet.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1311 of 1442

Time

Tack Tack Tack Tack ack.. ...,....¢. .-..:°---s.-p-o..n- . -_-..¢.-u..-.._
E .= i 2 3

me,=
Is)
-1

'1»

Three retransmission Intervals where T_ren-ans - 3 ' T__ack

At the end of the first interval, packets sent during
the first T_ack period are retransmitted. At the end
of the second interval. packets sent during the
second T_ack period are retransmitted. At the end
of the third interval. packets sent during the third
T_ack period are retransmitted.

Figure 4: Different Stages in Sending Data

A domain manager must continue to hold packets
in its buffer until all of its children have acknowledged

them. If the children fail to acknowledge packets, the do-

main ma.nager’s window will not advance and its buffers
will eventually fill up. As a result, the domain manager

will drop and not acknowledge any new data from the

sender, thereby causing backpressure to propagate up
the tree which ultimately slows the flow of data.

There are three reasons for using multiple Tack inter-
vals during a retransmission timeout interval (Tm,,,,,,,).

’ First, by requiring more than one positive ACK-during
the retransmission interval, TMTP protects itself from

spurious retransmissions arising from lost ACKs. First,

by requiring more than one positive ACK during the
retransmission interval, TMTP protects itself from spu-

rious retransmissions arising from lost ACKs. Second,

a larger retransmission interval gives receivers sufficient
time to recover missing packets using receiver-initiated

recovery when only one (or a few) packets in a window
are lost. This avoids unnecessary multicast retransmis-

sions of a window full of data. Third, multiple Tack in-

tervals during the retransmission interval provide suffi-
cient opportunity for a domain manager to recover from

transient network load in its part of the subtree without

unnecessarily applying backpressure to the sender.

We have chosen the value of the multiplying factor
n to be 3 based on empirical evidence; the appropri-

ate value depends on several factors including expected

error rates, variance in RTT, and expected length of
the intervals with transient, localized congestion. Fur-

ther study is necessary to determine whether value of

n should be chosen dynamically using an adaptive algo-
rithm.

RESULTS

The Test Environment

Figure 5a illustrates the environment in which the ex-

periments were run. Our tests involved seven geograph-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1311 of 1442

(5b) The Control '_I1-ee

Figure 5: Figure.5a shows the test environment consist-
ing of seven geographically distant sites connected by

the Mbone. Figure 5b shows the corresponding control

tree configuration used in the experiments.

ically distinct Internet Mbone sites across the United

States and Europe: Washington University in St. Louis,
Purdue University, the International Computer Science
Institute at Berkeley, Rutgers University, the University

of Delaware, University College at London, and the Uni-
versity of Mannheim in Germany. All of our experiments

were conducted using standard IP multicast across the
Internet Mbone and thus experienced real Internet de-

lays, congestion, and packet loss.

As a point of comparison, we implemented a standard
sender-initiated reliable multicast transport protocol

both with and without window-base flow control (called

WIN_BASEP and BURST_BASEP respectively). Un-
der both protocols, the sender maintains state informa-

tion for all receivers, expects positive ACKs from each

receiver, and uses timeouts and global multicast retrans-

missions to recover from missing acknowledgments. The

two BASEP protocols illustrate the performance bot-
tlenecks related to processor load and end-to-end la-

tency. All three protocols used the same packet size (1
Kbytes). TMTP and WIN-BASEP used a window size

of 5. TMTP uses a transmission rate of 10 packets per

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1312 of 1442

second, while both BASEP protocols transmit packets

as fast as possible (up to the window size in the case of

WIN_BASEP). Both BASEP protocols set the retrans-

mission timeout period to be twice the RTT to the far-
thest site (approx. 2 seconds in our tests). TMTP uses
a retransmission period of T,,,,,,,,,, = N x Tack. Tad, is

dynamically set based on the RTT to the farthest group

member (approximately 1.1 seconds for our tests). After
some preliminary evaluation of different setting for N,

our empirical results indicated that N = 3 provides suffi-
cient time for local domains to recover without delaying

acks unnecessarily or consuming too much buffer space.
Consequently, T,e,,,,,,, was approximately 3.3 seconds

in our tests. The following sections describe the perfor-
mance measures used and detail the actual experiments

performed.
Performance Measures

To evaluate the performance of our protocol, we iden-

tified two important measures of performance: end-to-
end delay and processing load. In addition, we moni-
tored the total number of retransmissions to estimate

the amount of network traffic generated by TMTP.
From the application’s perspective, the primary con-

cern is the delay in reliably delivering the entire data

feed (e.g., video, audio, or file data) to the multiple re-
cipients of the group. To measure the end-to-end delay,
we required that each receiving application send back

a single positive acknowledgment (a GOT_IT message)

to the sending application when the_entire data trans-
mission was complete.‘ The sending application then
calculated the end-to-end delay as the time between the

beginning of the transmission and the time at which the
last group member’s final GOT_IT message is received.

F‘r0m the network's perspective, the primary concern

is network load and scalability of the algorithm. If the

protocol provides low end-to-end delay but consumes

large amounts of network resources, the protocol will not
scale well, congesting the Internet by consuming shared
resources required by other Internet users. There are

two aspects to network load: processing load and band-
width consumption. To measure the processing load at
the sender, receivers, and domain managers, we moni-

tored the following processing activities:

9 receiving and processing a selective positive ac-
knowledgment

0 receiving and processing a negative acknowledg-
ment

o handling a timer event (such as a retransmission
timeout)

o performing a retransmission

Because it is hard to measure the amount of process-

ing time needed for each of the events listed above (and
highly dependent on the operating system and architec-
ture), we have chosen to simply count the total number

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1312 of 1442

of such events at the sender to estimate the processing

load generated by a protocol.

The second important measure of network load is

bandwidth consumption. The precise amount of band-
width consumed by each protocol is much harder to

quantify since we were unable to collect traces of traf-
fic across the Mbone to determine the number of links
traversed and the amount of bandwidth consumed over

each link. However, our results indicate that TMTP

generated far fewer retransmissions than the BASEP
protocols, and most TMTP retransmissions are local to

a particular domain. For example, under the BASEP

protocols most timeouts/retransmissions occurred as a
result of dropped ACKs. TMTP’s hierarchy substan-

tially reduced the number of lost ACKs, experiencing
only 6 local retransmissions totaled across all domain

managers (four occurring concurrently) as opposed to 9

global retransmission for BURST_BASEP (out of thirty
1K messages).

Experiments Performed

Each of our experiments measured the performance

of a single dissemination group consisting of many pro-
cesses evenly distributed across the seven sites pictured

in Figure 5a. The total number of processes acting as
receivers was varied between five and thirty processes.

The five process case used only five domains while all
other cases used seven domains. In each experiment, a

sending process created a dissemination group, waited
for the receiving processes to join the group and organize
their domains into a control tree. Multiple tree config-

urations are possible depending on when, and in what
order, domain mangers join the tree. However to ensure
consistency across tests, we held the tree configuration

constant across all tests (see Figure 5b). After all re-

ceivers joined the group, the sender disseminated a data

file to the group, and then waited for the final GOT_IT
message from all receivers. The values reported for each
test are averaged over at least five runs taken during

weekdays at roughly the same time so that the observed
Internet traffic conditions remain similar across tests.

To gauge the scalability of the protocol, we monitored
the changes in processing load at the senders, receivers,

and managers. To measure the effective throughput, we
measured the changes in end-tcrend delay as perceived

by the sender. Both processing load and end-to-end

delay were recorded under a variety of workloads. In
the first set of tests, the sender transmitted a 30 Kbyte

file to a varying number of receivers. The dissemination
was considered complete when all the receivers correctly
receive the entire file. In the second set of tests, the

number of processes was fixed at 30 and we incremen-

tally increased the file size from 3K to 30 Kbytes. The
end-to-end delay is measured as the time between the

beginning of the file transfer and the time at which the
last group member’s final GOT_IT message is received.

To measure the processing load, we counted the total

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1313 of 1442

Processing Load vs File Size

EndtoEndDeiay(seconds)PmcesslngLoad(NumbaatEvans)
File Size (KB)

Figure 6: (a) Effect of the amount of data transmit-
ted on the processing load. (b) Effect of the amount
of data transmitted on the end-to-end delay. Figure b

shows the time for the file transfer to complete at all the
receivers. All measurements were taken with a dissemi-

nation group of size 30.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1313 of 1442

Processing Laud VI Numbev of Rneeiven

7:‘

S
isD
E5
E3
8_I

§it
.....c.._............._.........._._........_._.._.._....,..._.........

5 10 15 20 5 30
Number 0! Receiver:

End to End Ddayvs Numbernf Rcedvua

1?

3.

E
2‘UCin

5 10 15 20 E 30
Number :1 Receivers

Figure 7: (a) Impact of group size (no. of receivers) on

the processing load. (b) Impact of group size (no. of

receivers) on the end-to-end delay. Figure b shows the
time for the file transfer to complete at all the receivers.
All measurements were taken for a dissemination of a

30 KB file.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1314 of 1442

number of events at the sender that contribute to the

processing load. Similarly, we recorded the number of

events at each domain manager. Figure 6 only shows
the number of events processed at the sender. However,
the balanced nature of our control tree meant the event

processing load was spread equally among the sender

and all domain managers. Consequently, the number
of events processed at each domain manager is approx-

imately the same as the number of events processed at
the sender. Variations occurred based on the number of
NACKS received.

Figures 6 and 7 show the results for each of the ex-
periments performed. From these results we draw the

following observations:

Impact of the Data Size

Figures 6a and 6b show how the file size affects

the processing load and end-to-end delay. As the file
size increases, the number of packets transmitted in-

creases, thereby increasing the number of events (such

as ACK/NACK processing or timer events) that affect
the processing load at the sender (or a domain man-

ager). Similarly, end-to-end delay is likely to increase
due to time needed to deliver all the packets and due to

increased probability of packet loss.

As the plots show, both the versions of the BASEP

benchmark protocol show a significant increase in the

processing load at the sender and the end-to-end delay.
Note that the delay for WI.\I_BASEP (with flow con-

trol) is actually higher than BL'RST_BASEP (no flow
control). This occurs because the WDLBASEP sender

expects acknowledgments from all its receivers before

advancing the flow control window.
In the case of TMTP, the processing load shows

only a small increase because the work is distributed

among many nodes in the control tree. Consequently,
the sender does not have to process acknowledgments or
retransmission requests from all the receivers. TMTP’s

end-to-end delay is substantially lower than that of the
BASEP protocols for all file sizes. Although all three

protocols experience an increase in end-to-end delay re-

sulting from larger data transmissions, packet losses,
and retransmissions, TMTP’s end-to-end delay rises at

a significantly lower rate than that of the BASEP pro-
tocols. This occurs because error recovery in TMTP

proceeds concurrently in different parts of the control

tree rather than sequentially as in the BASEP cases.

Impact of the Group Size

Figures 7a and 7b show how the number of receivers

(group size) affects the processing load and end-to-end
delay.

Again, as the plots show, two versions of BASEP pro-
tocol show sharp increases in processing load with in-
crease in number of receivers because the sender solely

shoulders the responsibility for processing acknowledg-
ments and retransmission requests (or timeouts) from

each receiver. In the case of TMTP, the processing load

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1314 of 1442

at the sender (and each domain manger) is limited by
the maximum number of immediate children in the con-

trol tree and, therefore, shows almost no increase as the
number of receivers is increased. This results £rom the
fact that the number of domains remains at seven for

more than seven receivers. An increase in the number of

domains participating in the dissemination group would

cause a slight load increase on domain managers who
adopt the new children.

Figure 7a shows that the end-to-end delay of both

BASEP protocols is significantly higher than that of
TMTP. The primary reason for this difference stems
from TMTP’s receiver-initiated capabilities that re-

spond to and correct errors quickly. In contrast, the

BASEP protocols will not correct an error until a re-
transmission timeout occurs.

In the case of TMTP end-to-end delays increases

gradually because error recovery proceeds concurrently
and independently in different parts of the control tree

as explained earlier. Figure 7b shows that the end-to-
end delay stabilizes to almost a constant value beyond
a point. That is, to a small extent, an artifact of our

tests in which we did not add any new domains to the

control tree, but rather only added new processes to the

existing tree. However, in other experiments involving
varying number of domains, we have observed a simi-

lar trend of gradual increase in end-to-end delays with

increasing number of receivers ,at additional domains.

IRELATED W0_RK

A considerable amount of work has been reported

in the literature regarding reliable multicast [13, 5, 3,
18, 12, 1, 4, 19, 15, 8, 11, 16]. Most of the ear-
lier approaches achieve reliable delivery using a sender-

initiated approach which is not suitable for large-scale,
delay-sensitive, reliable dissemination.

Pingali and others[18] recently analyzed and com-
pared both sender- and receiver-initiated approaches to

demonstrate the limitations of the sender-initiated ap-

proach for large-scale dissemination. Our work is also
motivated by similar observations, but combines the ele-

ments of both the approaches to achieve fast, local error
recovery.

The reliable multicast protocol used in LBL’s white-

board tool (wb) [15, 8] and the log-based reliable mul-

ticast protocol [11] are two recent examples of the
receiver-initiated approach for reliable delivery. Un-
like TMTP, these protocols do not combine sender-

initiated with receiver-initiated approaches and differ

significantly in flow control mechanisms and buffering
mechanisms. Our work is related to the wb work in that

the wb protocol also uses a NAC'Ks with NA CK suppres-

sion mechanism. The wb protocol reduces state manage-

ment overhead and achieves high degree of fault toler-

ance by relying solely on the receiver to recover from a
packet loss. However, the protocol incurs the overhead

of global (sometimes redundant) multicasts; a receiver

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1315 of 1442

multicasts a repair request to the entire group and one or

more receivers in the group who have missing data (irre-
spective of. their proximity to the complaining receiver)

will multicast the missing packet(s) to the entire group
even though the loss (or congestion) is restricted to a

small region of the group topology. TMTP restricts the
scope of multicast NACKs and retransmissions to the

local domain to avoid generating redundant multicast

transmissions over a wider region. Similar to TMTP,

receivers using the wb protocol delay their NACKs to
suppress duplicate NACKs in case another receiver mul-
ticasts a NACK. However, in the wb protocol, each re-

ceiver delays its NACK (and the response) by a ran-

dom amount that depends on the RTT to the original

sender. This can result in higher latency in recovering

from packet losses. TMTP, on the other hand, uses 10-
calized recovery and, thus, the amount of random delay

is bounded by the largest RTT between the local do-
main manager and one of the receivers in the domain.
In addition, TMTP allows recovery from different errors

to proceed concurrently in different domains to allow
faster and efficient recovery.

Cheriton et. al.[8] have recently proposed a collec-
tion of strategies (called log-based receiver-reliable mul-

ticast or LRBM) for achieving large-scale, reliable mul-
ticast delivery. Some elements of LRBM are similar to
TMTP’s mechanisms to some extent. LRBM uses a hi-

erarchy of logging servers with a primary log server re-.
sponsible for sending positive acknowledgments tothe}
multicast source. The primary log server stores the

packets as long as an application desires and the re-
ceivers must recover from errors by contacting a logging

server. A secondary server at each site may log received

packets and satisfy local retransmission requests to re-
duce load on the primary server. Deployment of LRBM
in the Internet is necessary to evaluate its performance

in achieving reliable delivery in a wide area network en-
vironment.

Recently Paul et. al. [16] have proposed and are ex-
amining three multicast alternatives with features sim-
ilar to those of TMTP. In contrast to these protocols,
TMTP uses a multi-level hierarchical control tree and a

dynamic group management protocol, as opposed to a
static two-level hierarchy, to evenly distribute the proto-

col processing load and allow finer grained independent
and concurrent error recovery. TMTP targets a best-
effort multicast system such as IP multicast rather than
an ATM-like network with allocated resources. TMTP

imposes no additional load on network-level routers and
requires no modification to the network-level routers,

but yet incorporates both local retransmissions and

combined acknowledgments. Furthermore, TMTP em-

ploys receiver-initiated recovery techniques (restricted
negative acknowledgments with nack suppression com-

bined with periodic positive acknowledgments) and a
unique flow control mechanism that can provide quick

recovery from transient congestion and lost acknowledg-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1315 of 1442

ments.

CONCLUSION

Based on our experimental results, we believe that

TMTP can scale well to provide reliable delivery on a

large scale without sacrificing end-to-end latency. Under
TMTP, the network processing load increases very grad-

ually, indicating that the protocol will scale well as the
number of receivers increases. Moreover, TMTP pro-

vides significantly better application-level throughput

because of the concurrency resulting from local retrans-
missions as shown by the end-to-end measurements.

References

[1] Ken Birman and Thomas Joseph. Reliable commu-
nication in the presence of failures. ACM Transac-

tions on Computer Systems, 5(1):47—76, Feb 1987.

[2] S. Casner and S. Deering. First IETF Internet Au-
diocast. ACM Computer Communication Review,

22(3):92—97, July 1992.

[3] J. Chang and l\'. Maxemchuck. Reliable Broadcast
Protocols. ACM Transactions on Computer Sys-

tems, 2(3):25l—273, August 1984.

[4] David. R. Cheriton and W. Zwaenepoel. Dis-
tributed process groups in the V kernel. AGM

Transactions on Computer‘Systems, 3(2):77—107,
May 1985. ~ ' ‘ 4

r

[5] J. Crowcroft and K. Paliwoda. A Multicast Trans-
port Protocol. In Proceedings of ACM SIGCOMM
’88, pages 247-256, August 1988.

[6] Stephen E. Deering and David R. Cheriton. Mul-
ticast routing in datagram internetworks and ex-
tended lans. ACM Transactions on Computer Sys-

tems, 8(2):85—110, May 1990.

[7] Prasun Dewan. A Guide to Suite: Version 1.0.
Technical Report SERC-TR-60-P, Software Engi-

neering Research Center, Purdue University, West
Lafayette, IN, February 1990.

[8] S. Floyd, V. Jacobsen, S. McCanne, C-G Liu, and
L. Zhang. A Reliable Multicast Framework for
Light-weight Sessions and Application Level Fram-
ing. In sigcomm.95, 1995. to appear.

[9] I. Gopal and J. Jaffe. Point-to-multipoint Commu-
nication over Broadcast Links. IEEE Transactions

on Communications, 32, September 1984.

[10] James Griffioen and Rajendra Yavatkar. Clique: A
Toolkit for Group Communication using IP Multi-
cast. In Proceedings of the Workshop on Services
in Distributed and Networked Environments, June
1994.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1316 of 1442

[11] H.W. Holbrook, S.K. Singhal, and D.R. Cheri-

ton. Log-Based Receiver—Reliable Multicast for
Distributed Interactive Simulation. In sigcomm95,

1995. to appear.

[12] Van Jacobson. SD: Session Directory. Lawrence
Berkeley Laboratory, March 1993.

[13] M Frans Kaashoek, A.S. Tanenbaum, S.F. Hum-
mel, and H.E. Bal. An Efficient Reliable Broadcast

Protocol. ACM Operating Systems Review, 23(4),
October 1989.

[14] Amit Mathur and Atul Prakash. Protocols for inte-
grated audio and shared windows in collaborative
systems. In Proceedings of ACM Multimedia 294,
October 1994.

[15] Steven McCanne. A Distributed Whiteboard for
Network Conferencing. Technical report, Real
Time Systems Group, Lawrence Berkeley Labora-

tory, Berkeley, CA, September 1992. unpublished
report.

[16] S. Paul, K. Sabnani, and D. Kristol. Multicast
Transport Protocols for High Speed Networks. In
IEEE Int. Conf. on Network Protocols, 1994 Oct.

[17] L. Peterson, N. Buchholz, and R.D. Schlichting.
Preserving and using context information in in-

terprocess communication. ACM Transactions on
Computer Systems, 7(3):217-246, August 1989.

[18] Sridhar Pingali, Don Towsley, and James F.
Kurose. A comparision of sender-initiated and
receiver-initiated reliable multicast protocols. In

Proceddings of ACM SIGMETRICS ’.94, volume 14,

pages 221-230, 1994.

[19] S. Ramakrishnan and B.N. Jain. A Negative Ac-
knowledgement Protocol with Periodic Polling Pro-
tocol for Multicast over Lans. In Proceedings of

IEEE INFOCOMM ’87, pages 502-511, March-

April 1987.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1316 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1317 of 1442

Routing Strategies for Fast Networks

Yossi Azar ' Joseph Naor Raphael Rom
DEC - Systems Research Center Department of Computer Science Sun Microsystems

130 Lytton Ave. Technion Mountain View, CA
PaloAlto, CA 94301

Abstract

Modern fast packet switching networks forced to rethink the
routing schemes that are used in more traditional networks.
The reexamination is necessitated because in these fast net-

works switcha on the m&age's route can afford to make
only minimal and simple operation. For example, examin-
ing a table of a size proportional to the network size is out
of the question.

ln this paper we examine routing strategies for such net-
works based on flooding and predefined routes. Our con-
cern is to get both efficient routing and an even (balanced)
use of network raources. We present efficient algorithms for
assigning weights to edges in a controlled flooding scheme
but show that the flooding scheme is not likely to yield a
balanced use of the resources. We then present efficient sl-
gorithms for choosing routes along: (i) breadth-first search
trees; and (ii) shortat paths. We show that in both cases a
balanced use of network resources can be guaranteed.

1 Introduction

Traditional computer networks were designed on the
premise of fast procc-sing capability and relatively slow
communications channels. This manifested itself by bur-

dening network nodes with frequent network management
decisions such as flow control and routing [1, 2, 3]. ln a typ-
ical packet-switching network the routing decision at every
node is based on the packet's destination and on routing in-
formation stored locally. This routing information may be-
come quite voluminous, increasing the per-packet processirig
time.

Changes in teclmology, applications, and network sizes have
forced to rethink these strategies. Modern fast packet
switching networks [4, 5] relegate most of the routing com-

This work was done while the author was in the dcpartrncnt of
Computer Science, Stanford Univerlity. CA 94305-2140. and was sup-
ported by I W'eiunann Fellowship and contract ONR N00O|4-88-K-0166

Most of this work was done while the author was a postdoctoral
fellow at the Computer Science Deptartrnentfstanford University and
supported by contract ONR N000“-88-K-0166.

Haifa 32000, lsrael and
Technion, Haifa Israel

putation to the end-nodes leaving all but the minimal com-
putation to the intermediate node once the packet is on
its way. This paper considers and compares aeveral rout-
ing strategies for such fast networks. We assume that links
are of high capacity so that message length is,of no great
concern. Computation capability in intermediate nodes is
usumed limited so that all decisions made enroute should

be simple and could not rely, for example, on generating
random numbers or on tables that grow with the size of the
network.

The first to encounter similar problems were the designers
of parallel computers. Their solution, in the form of an in-
terconnection network, typically derives the route directly
from the destination address This approach, however,
is limited to specific types of network topology and a atruc- -
tured layout which cannot be assumed~for a general network.
Furthermore, deriving the route from the address in general
conflicts with alternate routing approach. '

Flow-based techniquw, used in many existing networks
[7, 8], are also inadequate for our environment. These rout-
ing strategies are destination based (typically require ‘a table
entry per destination) but more importantly, result in bifur-
catcd routing necessitating intermediate nodes to generate
random numbers.

Two strategies are considered in this paper - controlled
flooding and fixed routing. Flooding in a routing strategy
that guarantees fast arrivals with minimal enroute computa-
tion at the expense of excessive bandwidth use. The scheme
we use here, first proposed in [9], limits the extent to which
a message is flooded through the network. Essentially. each
link is assigned a cost for traversing it, thereby limiting the»
extent of the flood. The problem is to assign the link costs
so as to achieve best performance. We show two methods
of computing optimal weights that are drawn from a poly-
nomial range (as opposed to the exponential range proposed
in However, we do show that the assignment does not
result in a routing scheme that uses network resources in a
balanced way.

In the fixed routing scheme the route of the message is de-
termined at the source node and is included in the message.

No further routing decision are done enroute. The prob-
lem is therefore to find a set of routes, one for each pair of
nodes, such that all the network's links will be used in a

2A.4.l

0170 CH3133—6/92/00000170 $3.00 © 1992 IEEE_ INFOCOM '92

_ .

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1317 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1318 of 1442

balanced manner. We propose two methods to achieve this.
In the first one. we force the messages to be routed along a

(topological) breadth first search tree. The problem can be
formulated as finding a set of rooted BPS trees such that
the maximum load on'a link is minimized. Notice that no
link in the network remains unused. We provide polynomial

algorithms to generate such a set of balanced routes.

In the second method, routing is done along paths that do
not necessarily form trees. One of ‘the shortest paths be-
tween every pair of nodes is designated as the path along
which these two nodes exchange masages. We prove that
a set of paths can be chosen that yields a balanced load.
We define the notion of a balanced load with respect to ran-
domized choices of paths, i.e., every pair chooses uniformly
in random one of the shortest paths connecting them. We
first show that with high probability the load on every edge
will be close to its expected value. We then show how to
construct deterministically in polynomial time such a set of
balanced paths via the method of conditional probabilities.

2 Routing Along Trees

In this section we consider the option of roiiting along fixed
BPS trees. Routing along trees can be viewed in two ways:
(I) the tree rooted at a node specifies the routes used by_
the root when acting as a source of messages, or (2) the tree
rooted at the node specifies the routes used by the other
nodes with the root serving as the destination. From a de-

sign standpoint those are identical and in both we strive to
balance the load on the links as much as possible.

As before we consider the network as a graph G = (V, E)
with |V| = n and = in. ln addition we single out a
vertex r called the root. The graph is divided into layers
relative to root r by conducting a breadth-first search on G
from r (i.e.. we construct a tree of the shortest paths from 1-
to all the other nodes in the graph). ln this division, layer 1',

0 s i 5 n — I. contains all the vertices whose distance from
r is i. The corresponding resultant tree is denoted 7).. Note

that for a given G and r, the layers are defined uniquely
but the BFS tree is not. Also note that given a BFS tree.

the edges of the original graph connect vcrtices only from
adjacent layers or in the same layer.

Let u E V be some vertex in layer 1' (for some 1 5 i 5 n— I).
Define r!,', as the number of neighbors of u at layer 1' — 1 in
graph G rooted at r; by convention d: = 0. The following
proposition establishes relations which we shall use later on.

Proposition 2.1 For any graph G

l. The number 0] diflcncnl BFS trees from mot r is

I-luEG-r drl

2. For any r, 296‘, 1!: 3 m

Proof:

l. All the BFS trees can be constructed by having each
vertex v E G - r choose independently a parent out
of its neighbors in the previous layer, and each such
construction corresponds to a legal and different Bl-‘S
tree rooted at r. Hence the claim follows.

2. Each edge contributes unity to the sum if its two end-
point vertices are not in the same layer, and zero oth-
erwise. Thus, this sum is exactly equal to the number
of edges connecting vertices ofdifferent (and therefore
adjacent) layers.

2.1 Homogeneous Sources

In this section we assume that each node sends (or receives)
the same amount of data to every other node, and our aim,
as we indicated, is to use the resources evenly. To that end
we define the load on an edge u follows. Assume that for
every vertex r in the graph we are given a single BFS tree
rooted at that vertex (thus determining node's r routing).
The load on an edge is defined (relative to this set of trees)
as the number of trees which contain this edge. Formally.

we are given a set (T, }..5v containing a single T, for every
1' E V and we define the load of an edge as

‘(Cl = llr E Vlc E Trllt

Note that l(e) 5 n and 2£EEl(e) = n(n - 1), since there
are n BFS trees with n — 1 edges in each and each edge in
a BFS tree contributes a unity to the sum. The capacity of
an edge e, denoted c(e), is defined as the maximum number
of BFS trees that may contain it.

Our goal is to choose a set {T,-}rgV such that the maximum
load of the edges is minimized. We do this by solving a more
general problem in. which edges have limited capacities that
are not necmarily equal. Assume that we are given the edge
capacity c(e) for each edge e E B. We are seeking a feasible
solution that is, a. set (T}.),Ey such that l(e) 5 c(e) for all e.
A solution for the capacitated problem can be easily used to
solve the problem of minimizing the maximum load (in the
uncapacitated problem). We just let‘c(e) = c for all e and
perform a binary sea.rch on 1 3 c 3 n, thereby increasing
the complexity by a factor of log n.

2A.4.2

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR

Ex.1102, p. 1318 of1442 '

0171

....\.-r‘.\, .

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1319 of 1442

In order to solve the capacitated problem we define the fol-
lowing bipartite graph H = (A U B, F). Side A consists of
n(u — l) vertice denoted by pairs (r, v) for all v.r E V,
u ;t r (this pair will subsequently be interpreted as a root r
and some vertex v in G). Side 8 consists of m verticm, each
corresponding to (and denoted by) an edge e for all e E E.
Each vertex (r, u) 6 A is connected to a vertex e G 8 ill’
3T, (i.e., a tree rooted at r) in which e 6 E connects u to a
vertex from the previous level.

Note that the degree of vertex (r, u) is df, as per the def-
inition of d:. Also, from proposition 2.l IFI = ,,_,df, 5
2, m = nm.

The key observation is that in order to solve our problem
we need to find n(n- 1) edges in the graph H such that the
degree of eacli vertex in A is exactly I (matching), and the
degree of vertex c E B is at most c(e). These edges define
the n BFS trees in G. Specifically, the edges of T, are the
vcrticcs in B which are adjacent to the vertices (r, v) for all
u 6 C-1‘. We present two algorithms for finding these trea.

Algorithm 1. Each vertex e E B with all its incident edges
is duplicated c(e) tints, generating an “exploded” graph.
Now, it is clear that solving the problem is equivalent to
finding a perfect matching for side A into side 8. The num-
ber of vertices in the exploded graph is n(n— l)-l-Z‘ c(e) <
n’ + nm and the number of edges is at most n|F| 5 n’m.
The complexity of computing a maximum matching in a
bipartite graph is 0(|E|‘/|V|) = 0(m3/77:‘/7) [ll].

The latter complexity can be improved by the next algo-
rithm. »

Algoritluu 2. Add to the graph I! = (A U B, F) a source
node s and sink 1. Add directed edga from s to all the
vertices in .4. each with capacity l, and directed edges from
each vertex e E B to t, each with capacity c(e). Finally,
direct all the edges from A to B and assign each the capacity
1 (any caparity greater than I will also do).

Consider an integer flow problem with source a and desti-
nation I obeying the specified capacities. It is clear that
any such legal flow starts with some edges from s to A with
llow 1. Then, each vertex in A that has an incoming edge
with one unit of flow also has one outgoing edge with one
unit flow to a vertex in B. Finally, all the flow reaching B
continues to 1. Thus we conclude that there is a feasible so-
lution to our problem ill’ the maximum flow between s and
1 is exactly n(n -1).

We will use Dinic's algorithm for finding the max-flow [12].
A careful analysis of the algorithm for our case yields a bet-
ter complexity than more recent max-flow algorithms that
perform better on general graphs. We first give a short
review of Dinic's algorithm. The algorithm has 0(]VI)
phases: at each phase only augmenting paths of length i,
l 5 i 5 IV], are considered. '1‘he invariant maintained at

phase i is that there are no augmenting paths of length less
than i. The complexity ofeach phase is 0(|El|V|) in general
graphs and 0(|B|) in 0-1 networks.

We first convert our graph into a 0-l network. Each edge
of capacity c(e) is duplicated into c(e) unity capacity edges
which yields a 0-1 network. Since c(e) 5 n for every edge e,
the total number of new edges is at most um and thus the
number of edges remains 0(nm). As mentioned before, the
complexity of Dinic‘a algorithm for 0-1 network is 0(IEIIVl)
which in our case becomes

0([n’ + m][n' + mn + mn]) = O(n7 - mn) = O(mn’)

ln fact, the running time can be reduced to 0(mn'). In our
graph, there are no edges between vertices in A and also
none between vertices in B, and there will not be such in

any of the residual graphs. ln fact, the residual graph will
always start with s, end with t, have only vertices of A in
the other even numbered layers and only vertices of B in the
other odd-numberedlayers. Moreover, the vertices of A will
always have, in any residual graph, at most one incoming
edge. Let us run the first in — 1 phases of Dinic’s algorithm
(where each phase takes time 0(|F|) = O(nm)). In phase u
there will be at least n layers of A (unless we have already
finished), one of them having at most n(n — l)/n = n — I
vertices. The incoming edges into this layer of A,_define a cut
separating a from 1 whose capacity is at most n - 1. Thus,
Dinic's algorithm will terminate after at most additional
n - 1 phases, which gives the desired time bound.

2.2 Ileterogeneous Sources

The situation at hand in this section is similar to that of

the previous subsection except that we no longer assume
homogeneous traflic but rather that each node generates
a different amount of traffic. Translated into our model,
this results in a problem with weighted trees. Formally,
let the relative traflic intensity associated with node r be
w(r) (assumed to be an integer). This means that the tree
associated with r (where r is the root) has a weight of w(r)
and we seek aaet of BFS trees (T,},£v with load l(e) 5 c(e)
for all e, where the load l(e) is defined in the natural way,
i.e.,

l(e) = {Z w(r)|e e 7;}r

The Capacitated Problem of the previous subsection is the

special case ofrour problem with .w(r) = 1 for all r 6 V.
While the Capacitated Problem in the homogeneous case
has an eflicient solution, we prove that in the heterogeneous
case this problem is NP-complete (it is clear that the prob-
lem belongs to clue NP). We base our proof on a reduction
from the “knapsack” problem which is known to be NP-
complete [13], defined as follows.

2A.4.3

0172

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1319 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1320 of 1442

The Knapsnck Problexn: Given are integers :3 ...z,. and
5. Are there u.- 6 (0,1). l 5 i 5 n_ such that 20.1; = 5?

The Reduction: Consider a graph whose vcrtices are

v;....u..,u._n-_-,1. Connect In to u,- for l 5 i5 n, j = 1,2
and connect u. and u; to 1. Let the weight of the sources be

w(v.-) = 1:; for all i, w(u;) = w(uq) = w(t) = 0. Finally, let
the capacities of the cdga be c(u;l) = s, c(ugt) = Z; 2; -5,
and infinite (or big enough) for all the rest. It is clear that
each BPS tree from 0;, l 5 i 5 11, contains exactly one of
the edges in! or ugt. Since c(u,t)+c(u;t) = E‘. z.-, there is
a solution ill’ there is a subset of the integers :r.- that sums
up to 5.

Note that it is possible to eliminate the zero weights (and
have the proof still hold) by assigning w(u,) = w(u;) =
w(l) = I and also adding 2 to the capacities of the edges
11.! and ugt.

2.3 Randomized Capacity Bounds

In this section we develop upper bounds on the capacities
that are needed for the edges in the Capacitated Problem
of the homogeneous case (section 2.1) in order to achieve
"good" load balancing. Our reference is a rundown tree rout-
ing scheme in \vhich every node, whenever it needs to send
a masage, randomly and uniformly chooses a BFS tree in
which it is :1 root, and routes according to this tree. In-
tnitively, such a routing scheme is likely to achieve a good
balancing.

We start by calculating P,’ — the probability that an edge e.
participates in a. randomly and uniformly chosen BPS tree
rooted at 1'. Let 2': be an indicator random variable indi-
cating wliether edge :3 belongs to the BFS tree rooted at r.
By our definition

I(e) = Z 2:.rev

Consider an edge e = (z, y). If both 2: and y are in the same
layer (i.e., equidistant from r). then P; = 0. Otherwise,
they belong to adjacent layers (without loss of generality let
1 be the vertex that is further away from r), and P: = 71,-.

Let l(e) be the expected load of 2. Clearly Elxf] = P,’ andalso

l(e) = E :4 = Z E[z:] = Z P,’re V r£ |’ r€V

2%» 22¢:65 r€V¢€E

:23]:-d;=Z1z-i=n(rx—l).r 1-gr

Since ZeEEl(c) : n(n- l) and also Z‘€El(e) = n(n -
I). we cannot expect to find a set of BFS trees in which

l(e) _<_ l(e) for every edge e (l(e) is not necessarily an integer
for instance). However, we can find a set which is almost
as good. We show that there always exists a set of BFS
tres {T,}..gv such that the load on any edge satisfies the
following:

l(e) 5 l(e) + 2‘/l(e) log n.
We will prove the claim via the probabilistic method; one
can easily find such a set by applying the algorithm from
section 2.1 as we are guaranteed that a solution exists.

To prove the bound on the load, we show that for each edge
e, the probability that l(e) exceeds the claimed bound is
less than Hence, there is a positive probability that the
claim holds for all edges in the'network. From Chemofl"s
bounds it can be shown that for all a\ _>_ 0.

E[c.\l(¢)]
Prob[l(e) > (1 + 7)l(e)] 5 mm

and it can be shown [14] that there exists a choice of A such

that H
Elfi (:)l < c-7’i(¢)/2.

¢(l+7)x'(‘) _

Assigning 7 = 2 ?(5¢)3, results in

Prob[l(e) > l(¢) + 2,/7(a) log 1!] 5 5 <'~2_‘,;
which finally yields

Prob[\/e, l(e) _<_ l(e) + 2 l(e) log 11] >:;—
meaning that a solution exists with a high probability.

3 Routing Along Shortest Paths

in this section we consider a different option of routing

namely, routing along paths that do not necessarily form
trees. One of the shortest paths between every pair of nodes
is designated as the path along which thae two node ex-
change messaga. We prove that a set of paths can be chosen
that yields a balanced load.

The proof we present follows the exact same lines of the
proofin section 2.3 and we adopt the sar_n_c notation. Again,
our reference for a good load balancing is the mndorn path
routing scheme

We first evaluate P¢“"—the probability that an edge e par-
ticipates in a randomly and uniformly chosen shortest path
connecting vertics u and 0. (We will denote this event by
the indicator variable 2:"). To compute this probability.
we must count the shortest paths oonnecting u and u that
contain edge e. Let M,(u,v) denote the number of paths of

2A.4.4

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR

Ex. 1102, p. 1320 of 1442 i

0173

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1321 of 1442

length [1 between the vertiees u and u. The number of short-
est paths between 1.4 and It can be computed in polynomial
time by the following recursive formula. Let the vertices
adjacent to u be o;,...,a4 and let p be the length of the
shortst path from u to u, then

I

M,.(u,v) = Z M,_,(a.-. 1;).i=1

We consider a pair of nods u and u and an edge e = (z,y)
(assume without loss of generality that vertex 1: is closer to
it than vertex y). Denote by p... the distance between the
vertices u and u, by p,,, the distance between is to z, and by
p,. the distance between u and y. Define if = p... —p.., — 1.
If p,., > p’, then P,“" = 0; otherwise,

Mr" ('1: 1) ‘ (um. (U. V)P"" :
‘ M,.__(n, 1:)

Similar to the derivation in section 2.3 the expected load on

an edge e is l(e) = Eu_'E,_. Pf” and thus we cannot expect
to fund a set of shortest paths in which l(e) 5 i(e) for every
edge e. llowever, again, we can find a set which is almost
as good, namely, a set of shortest paths such that the load
on any edge satisfies

l(e) S + 2‘[i(e) log n.

An edge whose load does not satisfy the above condition is
called an overloaded edge. If there are no overloaded edges,
then the set of paths is called a good set. We will prove that
a good set of paths exists via the probabilistic method and
then show how to find such a set of paths deterministically.

Let every pair of vertices choose its path uniformly in ran-
dom (among the shortest paths between them). We show
that with high probability, the set of paths chosen is good.
The random variable l(e) is a sum of indicator variables
.r‘,". These variables are independent because each pair of
vertices chooses its path independently of the other pairs.
If we show that the probability that edge e is overloaded is

l& than then with high probability the claim holds for
all edges in the network. As stated in Section 2.3, it can be
shown that for all A 2 0,

E[eAl(¢)]
PI‘OlJ(f(C) > + S 576

furthermore, there exists a choice of A [14] such that
Ml) - .

_Bl¢ (C--,'r(¢;/2¢tl+1)»\lt¢) ’

552, results in
Similar to Section 2.3. assigning 1 = 2 [M

Prob[l(e) >7(£i42 I(e)logn] 5 5'; < %

which finally yields

Prob[Ve,l(e) 3 7(2) + 2 l(e) log n) > g
as was claimed.

Having established that there exists a good set of paths
we now show how to find this good set deterministioally in
polynomial time by the method of conditional probabilities
[l5],[l5]. This method was introduced by Spencer [15] with
the intention of converting probabilistic proofs of existence
of combinatorial structures into etlicient deterministic algo
rithms for actually constructing these structures. The idea
is to perform a binary search of the sample space associated
with the random variables so as to find a good set. At each
step of the binary search, the current sample space is split
into two halves and the conditional probability of obtaining
a good set is computed for each half. The search is then re-
stricted to the half having a higher conditional probability.
The search terminates when only one sample point remains
in the subspace, which must belong to a good set.

To apply this method to our case for finding a good set
of paths, we will consider the indicator variable one-by-
one. In a typical step of the algorithm, the value of some
of the indicator variables has already been set, one variable
is currently being considered, and the rest are chosen in
random. (By choosing in random we mean thaL_for the pair
of vertices which is now being considered, the remainder of
the path is chosen uniformly in random.) At each step we
will compute the (conditional) probability of finding a good
set if the variable considered is set to 0 and if it is set to 1.

We denote by the probability of finding a Lag set of
paths after the variableconsidercd at step j has already
been assigned a value and by P,-" the probability of obtaining
a had set of paths by asigning the value i, for i = 0,1, to
the variable considered at step 1'. Initially, it follows from
the existence proof that the probability of choosing a good
set of paths is positive; we inductively maintain that < l
for j 2 1, and hence, either P,«° < l or P,-' < 1.

For the sake of simplicity, assume the following on the order '
in which the variables are considered:

0 For a pair of vertices u and v, for all edges e, the
variables 1}” are considered consecutively.

o For a pair of vertices u and u, the edges are considered
according to their distance from u. (Ties are broken
arbitrarily).

I’

For example, suppose that we are considering the variable
2',” where e = (a,b) and assume that vertex a is closer to u
than b. Notice that by assigning a value to 2:”,

o The probability P,"" may change for edges I for which
1:?‘ has not been determined yet. (These changes

2A.4.5

0174

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1321 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1322 of 1442

in the probabilities can be computed in polynomial
time.)

o 'I‘l1e value of a:‘,"'_ for other edges I may also be deter-
mined. e.g., if :1” = I, then for all edges I adjacent
to u. :7“ =

It major stumbling block i11 applying the method of condi-
tional probabilities is always the computation of the con-
ditio11al probabilities. In our case, we do not compute the
exact probability that there exists an overloaded edge (even
initially). but rather only estimate it. Consequently, if the
estimator is not chosen judiciously, it may happen that when
a variable is considererl, according to the estimator, no value
assigiied to it can lead to a good solution. To overcome
this difficulty, following ltagliavaii [16], the notion of a pes-
simistic estimator is introduced. We call P; a pessiiriisiic
cslimalm'ol' the co11ditio11al probability if it satisfies the
|’ollo\\-ing conditions:

1. Po <1.

2. For any partial assignment. of the first j variables,
'3' 5 P1“

3. min {P-,9, 3 [554 where is the estimator ol’PJ-‘i
for i = 0. l.

4. The pessimistic esl.imators can be computed i11 poly-
nomial time.

lt is not very hard to see that such a pessimistic esti1na-
tor can equally well he used iii the 1netl1od of conditional
prol)abilil.ies instead of the exact conditional probabilities
which are hard to compute i11 general. We now show that
the pessimistic estimator that we will choose indeed satisfies
the above conditions. We have earlier proved that initially,

)3 l’rob[I(f) > (1 + 1,171/)1IEE
Prob [set is bad] 5

E[¢M'(I)]————=—— < 1

65 ,u+u1x,«</1
5

Notice that)1, a11d 7, depend 011 the edge f. We deli11e

P _ Epmun
° ' [GE ,u+u1Afl(I)

The estimator at Step j is defined to be

E[¢-‘I';'(l))p.= ______
’ Z¢(l+7:)I(IWIEE

where. I,-(f) is a random variable denoting the load on edge
I at the end of Step j. For example, suppose that (U) =
:r:. + 2;-_u + :3 + :4 and at the end of Step 1', :1 = 0 and

z. = 1. Then. 1,-(1) = 1 + z. +z,. (Tu), 7, and .1, retain
their original values).

Condition (4) holds since the changes in the probabilities at
each step can be computed in polynomial time as mentioned

- earlier. (Notice that the random variable I,- (I) is the sum of
independent random variables). Condition (2) holds since

P; s ‘;ProI>1I,-(I)>u+n)7(n1[GE

2 [§[¢4\/':‘(1)]- = P-.

E ¢(l+‘I[)"l’(/)' J .;_° 5

Let us show that condition (3) holds as well. Suppose that
at Step j+l variable z‘,“’ is being considered. By definition,

Z E[¢*/'.'(!)] pew . 2 E[5M';(/)|,,\:v = 1]IE3 [E15

+ 11- P:") - 2 r:1eW"1z':" = 01Ice

where the probability of choosing edge e as part of the path
from u to v is P,“ (given the asignments of the previous j
steps). Now,

P:‘i+I = E
E[¢"Jli(/) lzgv = 1]

1“: ¢(|+1/)7(l)*I
. E[¢M'ill)|,,-W = 0)o _ .

P1“ ‘ 1:4; ,(1+m7(;)A1
Hence, . _ _

Pi=PeW'Pji+1+(l‘P¢W)'Pjo+1

and clearly, min{P,§+,, P’-i+1)'5 Isj. The value of 2:" is set
to the value for which l:“’5+, is minimized, for i = 0,1.

4 Assigning Weights for Can-
trolled Flooding

ln this section we consider a more dynamic approach of

routing—that of oontrolled flooding. Flooding is a routing
strategy that guarantees fast arrivals with minimal enroute
computation at the expense of excessive bandwidth use. To
limit the extent of flooding we adopt the controlled flooding
scheme first proposed in Considei a network in which
each link is assigned a weight (sometimes referred to as car!)
for traversing it and every message carries with it a wealth.
A message arriving at an intermediate node will be dupli-
cated and forwarded along all outgoing links (except the one
it came from) whose cost is lower than the message wealth.
The cost of the link is then deducted [mm the duplicated-
message wealth. Consider for example the network in figure
1 depicting a message with a wealth of 10 arriving at node 2.

2A.4.6

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR

Ex. 1102, p. 1322 of 1442 i

0175

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1323 of 1442

Figure 1: Example of controlled flooding

The link to node 3 has a cost oft‘) associated with it resulting
in a copy of the message with wealth 4 to be transmitted
along that link. Similarly. a copy of the message with a
wealth of 0 will arrive at node 4. Nodes 5 and 6 will not

receive a copy of the mewage.

Since the controlled flooding scheme is a derivative of a
flooding algorithm. it is impo§ihle to assure that a message
always arrives only at the nodes it is intended to. In partic-
ular. when used for point-to-point routing it is evident that
more nodes than necessary might receive a message. In the
above example, if the original message had arrived at node
2 with a wealth of I3 node 4 would have received two copies.
Note also that there is no way for node 1 to send a message
to node 4 without node 3 also receiving it. Clearly. different
weight assignments may change the pattern of flooding.

The problem is to assign the link costs so as to achieve best
performance. To that end a figure of Inerit is defined which
is proportional to the (average) number of nodes that will

'receive every mssage. An optimal weight assignment is one
that minimizes the figure of merit. To formalize our discus-
sion let the network he represented by the graph G(V. E)
with |V| : n and |E| = m, let the length of a path in the
network be defined as the sum of the weights of the edges
of the path. and let. the shortest path between two nodes be
the path with minimal length. Then, it is shown in [9] that
for an assignment to be optimal, the following requirements
(referred to as optimality requirements) must hold for every
vertex (node) 1-:

o For every vertex v E V, the shortest path from r to v
is unique.

0 For any two vertices u. v E V. the length of the short-
est path from r to u is different from the length of the

shortest path from r to u.

Assignments that satisfy the above requirements are called
good. An assignment is good with respect to r if allshortat
paths from r satisfy the above requirements. Let us assume
without loss of generality that the weights assigned are all
positive integers. ‘

Let |l . ..R] denote the range of numbers from which weights
are drawn and let n denote the number of nodes in the net-

work. If R = 2'5‘. it is easy to find a good assignment
[9]. For example, assigning 2‘ as the weight of edge e; as-
sures that any two different paths will have different lengths.
However, because the length of the path is carried by every
message it is desirable to reduce R as much as possible.

We present two methods for constructing good assignments
such that R is polynomial in n. In the first method the com-
munication is restricted to a spanning tree T of the graph.
This is done by assigning infinite weight to edges that are
not in the tree. Denoting the tree edges by C], . . .e.- . . ., the
algorithm is recursively defined as follows. Let in be a leaf
of T. let u; be its neighbor in the tree, and let eg be the edge
connecting in and w.

1. Compute (recursively) a good assignment for the tree
T - U] .

2. Extend the good assignment from T — II] to T.

We assume inductively that a good assignment was com-
puted in Step 1. Step 2 can be implemented by checking all
the values in the range 1 .. .R and finding one that satisfies
the requirements for a good assignment. Obviously, a good
value for e; exists if R is large enough. The next lemma
bounds the value of R.

Lemma 4.1 If R 2 117, than there exist: a good assign-
meut.

Proof: Since a good assignment was computed for T — u.
at Step 1, any value assigned to e; will complete a good
assignment with respect to vi. The number ofdiatinct values
that e; cannot assume is at most (1) — l)(n -— 2): for each‘
vertex r E T—w. the distance from r to in should be different
from the distance from r to any other vertex. and thus. there
can be at most It — 2 forbidden values (with respect to r),
and the claim follows. 0

The complexity of the weight afiignment algorithm is O(n°)
since each step can be implemented in O(n') time. For each
vertex 1/.‘ E V, a table of all its distances to the other vertices
is maintained and for each node all the forbidden values

in the range [1 ...n’] are marked. One of the unmarked
numbers is chosen arbitrarily for-er. Then, the tables of all
other noda are updated.

2A.4.7
0176

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex.1102, p. 1323 of 1442

n ::..t .-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1324 of 1442

The above amignment, being tree based, makes no use of
many of the networl: links. The second assignment, which
we present next. has the property that the whole network
participates in the communication. We prment two algo-
rithms; the first is a«-randomized one that lends itself to
distributed computation because the weight for each edge
is chosen independently of the other edges. This algorithm
generates a good assignment with high probability. The sec-
ond algorithm is deterministic, and the weights are chosen
from a smaller range than in the randomized algorithm.

Our main tool in the randomized case is the Isolating Lemma
ofMulmu|ey, Vazirani and Vazirani [10]. A set system (S. F)
consists of a finite set S of elements, 5 = (:1.2"). and
a family F of subsets of S, F = (S.,...,Sg). Let a weight
in; be assigned to each element of S. The weight of a subset
is defined to be the sum of the weights of its elements.

Lemma 4.2 (Isolating Lemma) Lrl R Z n and let
(S. F) be a set system whose _elcnienfs are assigned integer
weights rlzarru uniformly and inrfepemfenfly from the range
(l...Il]. Tlrrn, Prob[There is a unique minimum (maxi-
mum) weight set in F] 2 I —

(Note: the lemma in its original form in [10] was proven for
R = 2n but actually holds for all R 2 1:). Cl

We start by proving tlint the following randomized process
will generate a good assignment with high probability. Let
a weight for each edge be chosen randomly and uniformly
from the range [1 . .

Lemnu-\ 4.3 For It 3 11‘ the probability that an assignment
is good is al feast

Proof: Let A.-,- be the event the shancst path between
nodes 0; and v,- is not unique. Then A = U;_,‘/lg,‘ is the
event indicating the existence of at least one pair of nodes
with non-unique shortest path between them. For each pair
of nodes is; and 1-; let the set system F be the set of all
paths connecting them. From the isolating lemma we have
that the shortest path between them will be unique with
probability at least 1 —- 5,5, or, Pl'0l)(A.'j) 5 llence,
Prob[.-1) _<_ Z.-J. Prob[.-15,-] S -

Let B.-,-. represent the event that nodes u.-, of. and 01,- form
a bad triplet. namely that the length of the shortest path
between rt; and 0;. equals that between I), and II),-. B =
U.~,-1-B,-,1. then represents the existence of at least one bad
triplet in the network. ln a way similar to the above we get
Prob(B] 3 -

Finally. /I U D is the event indicating that the requirements
are E met. and thus

Prob[_r/oorf assignment] 2 I — Prob[A) — Prob[l3]

Z _ n’(n — l)YR

n'(n — l)(n — 2)
6R .

For R 3 n‘. the right handside exceeds D

The last lemma providm us with a randomized distributed
algorithm for constructing a good asignment. The proba-
bility of failure can be made arbitrarily small by increasing
the value of R.

Notice that this method does not ensure that every edge

participates in at least one shortat path. This can be fixed
by forcing the weight assignment so that the BFS tree re-
sulting from the weight assignment is also a EFS tree in
the underlying graph without weights. To that end assign
weights to the edges according to any of the above described
algorithms and then add the value 11-}? to each weight. Now
every edge takes part in at least one shortest path. '

Next we show how a good assignment can be constructed
deterministically. One way would be to derandomize the
above randomized process. Notice that the proof of Lemma
4.1 actually implies that every partial assignment that does
not violate the optimality requirements can be completed
to a good assignment. We can thus assign weights to the
edgs one-by-one ensuring at every step that {tone of the
requirements is violated.

A better way of doing this is by the following algorithm that
constructs a good assignment with R = n’ (compared with
11‘). Initially, every edge e.- is assigned weight n‘ - 2‘. The
weights of the edges are then changed one-by-one to fit into
the range [1 while maintaining the goodness of the
assignment. At each step, the weight of the heaviest edge is
changed.

Lemma 4.4 If R 2 n3, :1 good assignment can be con-
structed. ‘

Proof: The invariant which is maintained at the end of
each step is that the assignment remains good. This is true
initially. Let we be the new weight assigned to edge er at
step i, where e.- connects vertices 1: and y. We prove that
to; can be fitted into the range (1.. .R] by bounding the
number of forbidden values for w.- and showing that at least

one permitted number exists. Let f... denote the value of
the shortest distance between vcrtex..u. and vertex u when

edge e; is removed from the graph (1.... might be infinite).

To maintain goodness we must accommodate both optimal-
ity requirement. We first show how to maintain the unique-
ness of the shortest path between every pair of vertica. Let
r and u be a pair of vertices, and assume without loss of
generality that 1,, < I..,,. (They cannot be equal by the
invariant). If the removal of edge c.- from the graph leaves

2A.4.8

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR

Ex. 1102, p. 1324 of 1442 i

0177

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1325 of 1442

vertica r and u in different connected components. then any
value can be chosen for w; with rapect to r and v. Assume
this is not the case. Since edge e.- had the largat weight
in the graph (i.e.. n‘ - 2‘), the shortest path from r to 1:
cannot contain edge c.- and l,., is the value of the shortest
distance from r to 11.. Hence. to maintain the _uniqueness of
the shortest path requirement. it is enough that

Irv # lrx 'l" wi + lync-

(Noticc that the shortest path will remain unique even if it
contains edge e.-, because of the uniqueness of the shortest
paths from r to 2 and from y to 0). This condition generates
at most in - 1 forbidden values for ID; with respect to every
vertex 1' in the graph, or n(n- l) forbidden values altogether.

Let us now show how the second requirement of optimality
is maintained. Let r. u and ll be a triplet of vertices. Again,
notice that if the removal of edge 2; from the graph leaves
vertex r in one connected component. and vertices u and
u in a different connected component. then any value can
be chosen for In; with respect to r, u and v. The same
holds if the removal of e.- leaves y separated from r, u. and
1:. Assume this is not the case. lt follows from the above
discussion that the shortst distance from r to u is either

1,... or I.., + uv.~ +1’... Similarly. the shortest distance from
r to u is either 1,... or In + w.- + l,.,.

By the invariant.

I..., # l,., and l,., + m.- +1," ;6 In + w; + 1,...
Hence. to maintain the second requirement of optimality, it
is enough that

lrv ¢ Ir: + WI" + lyu
and

lru ¢ lrx 'l" Wu‘ + ‘yu-

These two conditions add at most 2 - (";') forbidden values
for III,‘ with respect to every vertex 1' in the graph, for a total

of‘2n . ('-;*).

Altogether. the number of forbidden values for ‘w; is n(n —
l)(n + l) < via. and the lemma follows. 0

Note that the initial assignment (e.- = ti‘ ~2‘) is chosen to
ensure that every edge is treated exactly once, and when it
is treated it does not participate in any shortest path unless
it is a bridge.

The complexity of the algorithm is O(u3m) since each step
can be implemented in 0015) time. Every vertex v.- E V
maintains a table with all its shortest distances to the other
vertices; it then marks all the forbidden values in the range
[I .. .113]. One of the unmarked numbers is chosen arbitrarily
for c.-. Then, the. tables of all other vertices are updated.

The reason why the range can be made smaller in the deter-
ministic case is that it is enough to ensure at each step that

there is one good value, whereas in the randomized case.
one has toensure success with high probability.

A desirable property of a routing scheme is having the traffic
be evenly distributed among the edga. Unfortunately, this
is the drawback of routing with random weights. The follow-
ing example shows that with high probability this scheme
does not yield a balanced load.

Let the load on an edge be defined as the number of short-
est paths that contain it, and consider a graph made of
two cliques of size k that are interconnected by two edges,
e. and e;. The weight for each edge is chosen uniformly
and independently from the range [1 . . .R]. ln each clique.
the distribution of the weights is uniform and thus. if the
weights of e; and C2 are not close to one another, most of
the traffic between the two cliques would go through the
edge with smaller weight. Since this event will happen with
high probability, the communication would not be balanced
with high probability.

5 Conclusion

In this paper we examined several routing strategies for fast
modern packet switching networks. The relevant charac-
teristic of these networks is the inability to make elaborate
routing decisions while packets are being switched. At the
switching speeds being considered, looking up a table whose
size is proportional to the number of network nodes is con-
sidered too costly.

These requirements limit the number of applicable routing
strategies. The simplest and most natural strategy is to
use fixed routing schemes in which the route between every
pair of source-destination nodes is fixed in advance. The
problem would then be to find a set of routes so that net-
work resources are utilized as evenly as possible. Two such
strategies are analysed in this paper: routing along trees
and routing along paths. For both cases polynomial algo-
rithms are devised. we show that in both cases no network
link remains unused but that routing along paths is likely
to be a better strategy from load balancing standpoint.

Deviating from the fixed routing sdieme we analyze a con-
trolled flooding scheme in which every message essentially
floods the networks but the extent of its flooding can be
controlled by link weights. We provide a polynomial algo-
rithm to compute thse weights but show that the scheme
cannot guarantee a good balance of load.

2A.4.9

0178

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1325 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1326 of 1442

Acknowledgement

W- would like to l.h:\nk Noga Alon for many helpful discus-
sions on this paper and in particular for his help in analyzing
the algorithm of Section 2.1.

References

[l] A. F.phtcmidcs, "Flie routing problem in computer net-
works," in Cannnunications and Networks (l. Blake and
II. Poor, cds.). pp. 299-324, New York: Springer Ver-
lng, 1986.

[2] M. Schwartz and '1‘. Stern, “flouting techniques used
in computer communication networks," IEEE Trans.
on C-'arnmunimtions, \'ol..COl\‘l-28, pp. 539-555, April
I980.

[3] I’. Green, “Computer communications: Milestones and
prophecies." IEEE Communications, pp. 49-63, 1984.

[4] l. Cidon and l. Gopnl, “Paris: An approach to in-
tegratcd high-speed private Iietworks," lirtenratiarial
Journal of Digital and Analog Cabled Systems, vol. 1,
pp. 77-86. April-Jun:-. W88.

[5] J. Turner, “Design ofa broadcast. packet switching net-
work." IEEE Trans. on Comuumicatious, vol. COM-
-'lG. pp. 734-743. June 1988.

[(5] ll. Sicgcl, Inlercomiectian Networks for Lnrye-Scale
Pamllcl Processing: Theory and Case Studies. Lex-
ington. MA: Lexington Books. 1984.

[T] L. l"ral.ta, M. Gcrla, and L. l\'|cinrock, “The flow devi-
ation method: An approach to store and forward com-
munication network design," NetmorL'.s, vol. 3, no. 2,
pp. 97-133, I973.

[8] R. Gallager. “A minimum delay routing a.lgoritlnn us-
ing distributed computation," IEEE Trans. on Cam-
muuimtious, vol. COM-25, pp. 73-85, January 1977.

[9] O. Lesser and R. Rom, “Routing by controlled flooding
in communication networks," in Proceedings of IEEE

In/ncnm '90, (San Francisco, California), pp. 910-917,
IEEE, June 1990.

[I0] l\'. Mnlmnlcy. U. Vazirani, and V. Vazirani, “Matching
is as easy as iiiatrix inversion,” Combinatorica, vol. 7,
no. I‘, pp. 105-H3. 1987.

[ll] J. llopcroft and It. harp, “An :15” algorithm for max-
imum nmtching in bipartite graphs,” Siam J. Comput-
ing, vol. 2, pp. 225-23], 1973.

[I2] S. Even, Graph Algorithuu. New York: Computer Sci-
ence Press, 1979.

[13] M. Carey and D. Johnson, Computers and Intructa6il-
ity. San Francisco: W.ll. Freeman and Company, 1979.

[14] D. Angluin and,L. G. Valiant, “Fast probabilistic algo
rithms for hamiltonian circuits and matching,‘ Jour-

nal of Computer and System Sciences, vol. 18, pp. 155-
l93, 1979.

[15] 1. Spencer, Ten Lectures on the Probabilistic Method.
Philadelphia, Pennsylvania: SIAM, I987.

[16] P. Raghavan, “Probabilistic construction of determin-
istic algorithms: Approximating packing intcger pro
grams,” Journal of Computer and System Sciences,
vol. 37, pp. l30-l43,0ctobcr 1988.

2A.4.l0

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR

Ex. 1102, p. 1326 of 1442 i

0179

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1327 of 1442

imp://proquest.umi.convpqdweb7rs=1os2s...2&nrp=1&Did=oooooo14o2s2s3 l&Mtd=l &Fm0-« '- ‘Q "nu

e
Bus(;vsW?re
Re Global Leader in :\"eu.': l)i-rlribulitm

Boeing and Panthesis Complete SWAN Transaction
Business Wire; New York; Jul 22, 2002; Business Editors & Aerospace Writers;

NAICS:336411 NAICS:3364l3 NAICS:336414 Duns:00-92_5-6819

Start Page: 1

Companies: Boeing Co Ticker:BA Duns:00-925-6819 NAICS:336411 NAICS.'336413
NAICS:336414

Abstract:

IRVINE, Ca/if.—-(BUSINESS WIRE)--July 22, 2002--The Boeing Co. and Panthesis Inc., today
announced that they have completed a transaction that gives Boeing an equity stake in Panthesis

and provides Panthesis with an exclusive right to commercialize Boeing's Small- world Wide Area
Networking (SWAN) technology.

Based in Bellevue, Wash., Panthesis, was established in 2001 to develop and commercialize

innovative software technology. Its co- founders, current Chief Development Officer Dr. Fred Holt

and Chief Technology Officer Virgil Bourassa, are both former employees of The Boeing Co., where

they co-invented SWAN technology while working in the Mathematics and Computing Technology
unit of the Boeing Phantom Works R&D division. '

Full Text:

Copyright Business Wire Jul 22, 2002

IRVINE, Calif.--(BUSINESS WIRE)--July 22, 2002--The Boeing Co. and Panthesis Inc., today
announced that they have completed a transaction that gives Boeing an equity stake in Panthesis and

provides Panthesis with an exclusive right to commercialize Boeing's Small-world Wide Area
Networking (SWAN) technology.

SWAN technology was originally developed by Boeing to allow multiple geographically dispersed

people to conduct collaborative meetings and engineering design reviews in real time. ‘ ‘

"SWAN is a revolutionary technology that can be used to enhance numerous computing, networking and
communications functions," said Linda Magnotti, CEO of Panthesis. "The sophisticated mathematics and
software architecture underlying SWAN technology can provide reliable server—less communication for

communities anywhere in the world."

Magnotti added that Panthesis is currently focusing its development efforts on providing the bandwidth
multiplication needed for use in massive multi-player online games, real-time online auctions, content

distribution and other large—scale, unlimited online collaborations.

Based in Bellevue, Wash., Panthesis, was established in 2001 to develop and commercialize innovative

software technology. Its co- founders, current Chief Development Officer Dr. Fred Holt and Chief

Technology Officer Virgil Bourassa, are both former employees of The Boeing Co., where they

co-invented SWAN technology while working in the Mathematics and Computing Technology unit of
the Boeing Phantom Works R&D division.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1327 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1328 of 1442

Dgcumem http://proquest.umi.com/pqdweb?TS= 1 0528...2&Dtp= l &Did=0000OO 1 4028253 I &Mtd= 1 &Fm

"Because Panthesis clearly has the expertise for adapting SWAN technology to a broad range of potential

applications, we were confident in giving them the exclusive right to commercialize this technology in
the global marketplace," explained Gene Partlow, vice president of Boeing's Intellectual Property
Business.

The potential for this agreement was created through Boeing's Chairman's Innovation Initiative, which

promotes the development of new business ventures based on entrepreneurial ideas from employees.
While some ideas are developed into spin-off companies, others are spun into Boeing business units for

further development or, like SWAN, into the Intellectual Property Business for other types of business
transactions.

Panthesis is currently seeking investment capital to support company expansion and market penetration,

and is engaged in developing relationships with key customers in the online auction and gaming markets.

The Boeing Co., with headquarters in Chicago, is the world's leading aerospace company and the No. 1

U.S. exporter. It is the largest manufacturer of satellites, commercial jetliners and military aircraft, and it

provides a full range of lifecycle support for these and other products. The company is also a global
market leader in missile defense, human space flight and launch services. Boeing capabilities also

include financial services and advanced information and communications systems.

Reproduced with permission of the copyright owner. Further reproduction or distribution is prohibited without permission.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1328 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1329 of 1442

-‘.!t_)cument

-2.

http://proquesLumi.com’pqdweb'!TS= l 0528...2&Dtp= l &Did=00000002899 l 200&Mtd= l &.Fm\‘ -

Microsoft Boosts Accessibility to Internet Gaming Zone With Latest Release
PR Newswire; New York; Apr 27, 1998;

Start Page: 1

Dateline: Washington

Companies: Microsoft Corp
Abstract:

REDMOND, Wash., April 27 /PRNewswire/ -- Microsoft Corp. (Nasdaq: MSI-T) today released its

latest update for the Microsoft(R) Internet Gaming Zone (http://www.zone.com/), featuring
support for Netscape 4.0 and the latest versions of Microsoft Internet Explorer. The new version
makes the Zone accessible to the majority of Internet users. With this new version, the Zone also

introduced the new Zone Rating System, which allows game players to determine how they fare

against other players. Chess and Age of Empires(R) will be the first games with the Zone Rating
System, and new games are scheduled to be added to the system in the coming weeks.

The Zone is a collective place for gamers to play today's best games against others for free. Players

have a wide variety of games to choose from -- including parlor games like Hearts and Chess, and

action and strategy games like Jedi Knight: Dark Forces II, Age of Empires and the Fighter Ace(TM)

online multiplayer game, the site's first premium game designed specifically for massive multiplayer

gaming via the Internet. Furthermore, visitors can navigate through the site before downloading
the Zone software required for game play.

Full Text:

Copyright PR Newswire - NY Apr 27, 1998

Industry: COMPUTER/ELECTRONICS; INTERNET MULTHVIEDIA ONLINE

Netscape Support and Player Rating System Featured in Newest Version

Of the Leading Internet Gaming Site

REDMOND, Wash., April 27 /PRNewswire/ -- Microsoft Corp. (Nasdaq: MSFT) today released its

latest update for the Microsofi(R) Internet Gaming Zone (http:llwww.zone.con1/), featuring support for

Netscape 4.0 and the latest versions of Microsoft Internet Explorer. The new version makes the Zone
accessible to the majority of Internet users. With this new version, the Zone also introduced the new

Zone Rating System, which allows game players to determine how they fare against other players. Chess

and Age of Empires(R) will be the first games with the Zone Rating System, and new games are
scheduled to be added to the system in the coming weeks.

"We believe online gaming is all about social interaction with a large and active community," said Ed

Fries, general manager of the games group at Microsoft. "So we're very pleased that this new version of
the Zone provides access for virtually everyone online."

Already home to nearly 1.5 million online gamers, the Zone has more than 7,500 simultaneous users at
peak times -- and is gaining new registered members at the rate of one every 20 seconds.

The Zone is a collective place for gamers to play today's best games against others for free. Players have

a wide variety of games to choose from -- including parlor games like Hearts and Chess, and action and

strategy games like Jedi Knight: Dark Forces II, Age of Empires and the Fighter Ace(TM) online

multiplayer game, the site's first premium game designed specifically for massive multiplayer gaming
via the Internet. Furthennore, visitors can navigate through the site before downloading the Zone

software required for game play.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1329 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1330 of 1442

oscumem _ , http://proquest.umi.com/pqdweb?TS=l0528...2&Dtp=l&Did=00000002899l200&Mtd=l&Fm,_~' "

In addition to Netscape 4.0 support and the Zone Rating System, the newest version of the Zone also
features a new, streamlined interface, which reduces download times and makes getting into a game

even easier. The Zone further assists its members with improved help and chat features.

Variety and Popularity of Games Drive Growth

The Zone offers a popular variety of classic card and board games such as Spades, Bridge and

Backgammon. In fact, Spades has grown to become the most popular game on the Zone with peak usage
of more than 2,000 players. In the past year, the Zone's lineup of CD-ROM games with free

matchmaking has expanded rapidly with the addition of such popular Microsoft games as Age of

Empires and Flight Simulator 98, and other top titles such as Jedi Knight: Dark Forces H from LucasArts
Entertainment Co., Quake H from id Software and Scrabble from Hasbro Interactive, a unit of Hasbro

Inc. These additions have brought the total number of games available for play on the Zone to 32. The

Zone also recently announced support for upcoming Tom Clancy titles Rainbow Six and Dominant

Species from Red Storm Entertainment.

The Internet Gaming Zone has served Internet gamers since October 1995. In May 1996, Microsoft

acquired Electric Gravity Inc., the original designer of the Internet Gaming Zone. The Internet Gaming
Zone offers free membership with three components: free classic card and board games, free

matchmaking for retail games, and access to premium games designed exclusively for the Zone

(connect-time charges may apply). Most recently, Microsofi launched Fighter Ace, a World War H aerial

combat premium game designed specifically for the Internet in which more than 100 players can

dogfight in a single flight arena.

Founded in 1975, Microsofi is the worldwide leader in sofiware for personal computers. The company

offers a wide range of products and services for business and personal use, each designed with the

mission of making it easier and more enjoyable for people to take advantage of the full power of

personal computing every day.

For online product infonnation:

Microsoft Web site: http://www.microsofl.com/

Microsoft Internet Gaming Zone Web site: http://www.zone.com/

NOTE: Microsofi, Age of Empires and Fighter Ace are either registered trademarks or trademarks of

Microsoft Corp. in the United States and/or other countries. Other product and company names herein

may be trademarks of their respective owners. SOURCE Microsoft Corp.

Reproduced with pemiission of the copyright owner. Further reproduction or distribution is prohibited without permission.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1330 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1331 of 1442

;','._;},,,,e,,. _. http:/lproquest.umi.com/pqdweb?TS=l0S28...2&Dtp=l&Did=00000002973l679&Mtd=l&_Fm" Q .-

" Microsoft Announces Launch Date for UltraCorps, Its Second Premium Title For

The Internet Gaming Zone
PR Newswire; New York; May 27, 1998;

Start Page: 1

Dateline: Washington

Companies: Microsoft Corp
Abstract:

REDMOND, Wash., May 27 /PRNewswire/ -- Microsoft Corp. (Nasdaq: MSI-T) today announced plans
to launch UltraCorps, its second premium online-only game for the Microsoft(R) Internet Gaming
Zone (http://www.zone.com/), on June 25. The game is currently in open beta testing. Players
can join the free beta by going to the Zone and proceeding tothe UltraCorps link in the Strategy
Games section. More than 3,500 players have participated in the beta so far. Microsoft also plans to

spotlight two additional premium online-only titles for the Zone, plus the latest Fighter Ace(TM)
online multiplayer game upgrade, at the Electronics Entertainment Expo (E3) trade show, May
28-30 in Atlanta (Booth 4420 in West Hall, Georgia Congress Center).

UltraCorps, developed by VR-1 Inc., is a turn-based strategy game that pits thousands of players
against each other for domination of the universe. Players command one of 14 alien races, develop
new technologies and weapons, dispatch fleets to colonize other planets, and manage resources to
maintain their growing empires. Social interaction is a key component of the game as players form
alliances, draw up treaties or taunt their enemies. As a turn-based game, it is well-suited to
Internet play because it can challenge thousands of players without latency issues.

"U/traCorps is a galactic game of chess that forces gamers to outthink their opponents each day
when they go online,'' said Adam Waalkes, product unit manager for the Zone team at Microsoft.
"The Zone is the perfect platform to deliver UltraCorps to gamers because the size and scope of the
game is a great match for our large community of players. "

Full Text: .

Copyright PR Newswire - NY May 27, 1998

Industry: COMPUTER/ELECTRONICS; INTERNET MULTIMEDIA ONLINE

‘Oblivion,’ Asheron's Call and Fighter Ace Upgrade Among Other Premium Titles

To Be Showcased at 1998 Electronics Entertaimnent Expo

REDMOND, Wash., May 27 /PRNewswire/ -- Microsoft Corp. (Nasdaq: MSFT) today armounced plans

to launch UltraCorps, its second premium online-only game for the Microsofi(R) Internet Gaming Zone (
http://www.zone.corn/), on June 25. The game is currently in open beta testing. Players can join the free
beta by going to the Zone and proceeding to the UltraCorps link in the Strategy Games section. More
than 3,500 players have participated in the beta so far. Microsofi also plans to spotlight two additional
premium online-only titles for the Zone, plus the latest Fighter Ace(TM) online multiplayer game
upgrade, at the Electronics Entertainment Expo (E3) trade show, May 28-30 in Atlanta (Booth 4420 in
West Hall, Georgia Congress Center).

UltraCorps, developed by VR-1 Inc., is a turn-based strategy game that pits thousands of players against
each other for domination of the universe. Players command one of 14 alien races, develop new

technologies and weapons, dispatch fleets to colonize other planets, and manage resources to maintain
their growing empires. Social interaction is a key component of the game as players fonn alliances, draw
up treaties or taunt their enemies. As a turn-based game, it is well-suited to Internet play because it can
challenge thousands of players without latency issues.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1331 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1332 of 1442

Dc.-_~umem « http://proquest.umi.com/pqdweb?TS= l 0528...2&Dtp= l &Did=00000002973 l 679&Mtd= 1 &Fm

"UltraCorps is a galactic game of chess that forces gamers to outthink their opponents each day when

they go online,'' said Adam Waalkes, product unit manager for the Zone team at Microsoft. "The Zone is

the perfect platform to deliver UltraCorps to gamers because the size and scope of the game is a great

match for our large community of players."

The arrival of Microsoft's second premium game on the Zone will cap its latest string of 1998

milestones, including the recent addition of support for Netscape Communicator 4.0, surpassing 1.5

million registered members, and its recent mark of more than 8,600 simultaneous users.

"Oblivion" Will Let Gamers Blow Opponents to Smithereens on the Zone

"Oblivion," current code name for a space-action premium game that is scheduled to arrive on the Zone

late in 1998, combines detailed 3-D accelerated graphics, fluid motion and rich sound with the

intellectual challenge of a strategy game. Players can engage hundreds of others online in territorial team

wars, amid endless permutations of roles, missions and challenges. "Oblivion" is being developed by
Microsofi Research.

More than 30 unique user-controlled spacecraft and space stations are modeled with lifelike textured

exteriors and articulated parts. A panorama of cosmic phenomena includes planets, stars, black holes and

wom1holes rendered in graphic detail, accompanied by unearthly stereo sounds ranging from the din of

asteroid impacts to the scream of failing force fields.

Asheron's Call: An Epic Online Adventure

Asheron's Call(TM) online multiplayer game, which is scheduled to arrive on the Zone in early 1999,

draws together thousands of players within a dynamic, 3-D online world. Players can create truly unique

characters, with varied combinations of visual appearance, attributes and skill sets. The setting for the

game is a 24-by-24-mile island with all types of terrain, including mountain glaciers, desert wastelands,

swamps and subterranean dungeons. The game immerses players in an intense fantasy role-playing

environment where they must choose to compete against or cooperate with thousands of other real

players. An extensive system of allegiance and influence greatly enhances social interaction. The story
line in Asheron's Call evolves dynamically over time based on the decisions and actions of the Asheron's

Call community. The game is being developed by Turbine Entertainment Software.

Fighter Ace Upgrade Set to Take Flight

Fighter Ace, a premium World War II aerial combat game that allows hundreds of players to dogfight

simultaneously in a single arena, is scheduled to get new features later this summer. These include new

terrain with greater geographic diversity; a new layout featuring airfields grouped farther apart -so gamers

can group and coordinate attacks; heavy bombers for flying missions against enemy installations;

military, industrial and civilian ground targets; support for force-feedback joysticks; and improved

anti-aircraft weapons.

Free Classic Games, Retail Matchmaking Continue

The Zone also offers free software and matchmaking for a variety of popular classic card and board

games such as Spades, Bridge and Backgammon. In fact, Spades has grown to become the most popular

game on the Zone, with concurrent usage at peak times of more than 2,100 players. In the past year, the

Zone's lineup of CD-ROM games with free matchmaking has expanded rapidly with the addition of new

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1332 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1333 of 1442

)g"c,_,mcm -~ http://proquestumi.com/pqdweb?'l'S=l 0528...2&Dvl&Did=00000002973 l679&Mtd=l &Fm

~ Microsofi games such as Outwars(TM) and Monster Truck Madness(R) 2 racing simulation, and other
new titles such as Star Wars(R) Rebellion from LucasArts Entertainment Co., Quake II from id Sofiware

and SORRY! from Hasbro Interactive, a unit of Hasbro Inc. The lineup will continue to expand as

Microsofi has recently announced relationships with Red Storm Entertainment and MicroProse Inc. to

bring some of their new titles to the Zone..

Evolution of the Zone Continues

The Internet Gaming Zone has served Internet gamers since October 1995. In May 1996, Microsofi

acquired Electric Gravity Inc., the original designer of the Internet Gaming Zone. The Internet Gaming
Zone offers free membership with three components: free classic card and board games, free

matchmaking for retail games, and access to premium games designed exclusively for the Zone

(connect-time charges may apply).

Founded in 1975, Microsoft is the worldwide leader in software for personal computers. The company

offers a wide range of products and services for business and personal use, each designed with the

mission of making it easier and more enjoyable for people to take advantage of the full power of

personal computing every day.

NOTE: Microsoft, Fighter Ace, Asheron's Call and Monster Truck Madness are either registered

trademarks or trademarks of Microsoft Corp. in the United States and/or other countries. Star Wars is a

registered trademark ofLucasf11m Ltd. Outwars is a trademark of Singletrac Studio, a GT Interactive

Company. Other product and company names herein may be trademarks of their respective owners.

For online product information:

Microsofi Games Web site: http://www.microsoft.corr1/games/ SOURCE Microsoft Corp.

Reproduced with permission of the copyright owner. Further reproduction or distribution is prohibited without permission.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1333 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1334 of 1442

DISTRIBUTED ALGORITHMS FOR SHORTEST-PATH, DEADLOCK-FREE
ROUTING AND BROADCASTING IN ARBITRARILY FAULTY HYPERCUBES

Michael Peercy Prithviraj Banerjee

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

ABSTRACT

We presmt a distributed table-filling algorithm for point to
point routing in a degraded hypercube system. This algorithm
finds the shortut la-tgth existing path Erorn each source to each
destination in the faulty hypercube and fills the routing tabla so
that musages are routed along these paths. We continue with a
distributed algorithm to fill tables used for broadcasting in a
faulty hypercube. A novel scheme for broadcast touting with
tables is proposed, and the algorithm required to fill the lxoadcast
tables given the point to point routing tables is presented. In
addition. we give the modifications necessary to make these algo-
rithms ensure deadlock-free touting. We conclude with a quanti-
tative and qualitative comparison of previously proposed reroute
strategies with table routing. where the tables are filled with our
algorithms.

1. INTRODUCTION

Message—passing multiprocessor: such as hypercubes [1]
consist of many processing nodes that interact by sending mes-
sages ova cormnunication channels between the nodes. How-
ever. the existence of a large number of components in such sys-
tems makes them vulnerable to failures. It is therefore extranely
important to have schanes for message passing in such systems
that can route messages efficiently in the presence of failures in
nodes and links. This papa deals with message routing in hyper-
cube networks.

Hyperarbs today generally route messages using the :-
cube routing algorithm [1]. This algorithm raolves the bit differ-
ences between the source 3 and the destination «I from the lowest

dimension to the highest and ensures the minimum length path.
Numaous rxoposals and investigations have been made regard-
ing routing and broadcasting in faulty hypercube [2.3.4.5.6.7].
Also. routing schemes which are designed to avoid network
congation can provide fault tolerant rerouting [8].

Previous schemes for routing in lrypercubes have the fol-
lowing drawbacks. First. many of them are nonoptimal algo-
rithms. i.e.. they route massages through nonshcrtest paths. or fail
to route messages even what paths exist Also. algorithms that
are close to optimal require vay wmplicated algorithms whose
hardware rcquirematts are much greater than the ¢-cube routing
hardware; really complicated algorithms might require micropro-
yamrned control. Besides. the cost of the routing algorithm

' Thiarcaearehwumpportedinpunbytksblohmovuive
SaasceandTechnologyOt‘EceandmnugedbytheOffieeol'Naval
RerearehmderCmtru:N(1X)l4-88-K-l£2AandinpanbytheJcint
Servirx: Electronic: Program undercontr-an NGIJM-K)-I-I270.

CH 2377-9/sovoooo/o21a¢$o1.oo -1990lEEE 2”

IPR2016-00726 -ACT|V|S|_0N, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1334 of 1442

appears every time a message is routed.

In this paper we investigate reroute strategies based on
routing tables [9, 10]. It should be noted that while routing tables
have been proposed for loosely coupled distributed systems. they
have not conventionally been used for hypercubes. The trimary
reason is that fior fault-free hypacubu. the routing algorithrm are
so simple that nrmsagea can be routed optimally using minimal
hardware. Howeva. in the presence of faults. the routing algo-
rithms bcocrne complex. and thus it is appropriate to reconsider
table routing.

In distributed table routing. eaeh node's communication
coprocessor contains is own routing table. Let T, be the routing
table located atnodep. 7', consists ofN locations. whereN is
the number of processors (N =2‘ in an rt-dimataional hyper-
cube). Location d of T,. represented as T,[d]. contains the
dimension! foramessagebeingroutedtod totakefiomp. In
this way at-nessagemovs from its sources to its destinationd
along a path (5 d) daived frornroutirtg tables ineaeh intaruedi-
ate node. Ideally the path (s d) a mssage takes should succeed
if at all possible and should be of minimum feasible length.

Note that PI is the dimension of the hypacube of size
N=2‘. We are not suggesting table routing for massively parallel
programming. so the N by logN size of the table should cause no
concern. Forinstance.inathousand1xocessorhypert:ube.the
required RAMis lKby l2(usingonebittoindicatesnunreach-
able or faulty node). Fast RAMs of this size are Vay inexpensive
relative to the other hardware or microcode options provided by
altaznstive fault-tolaant routing schanes. Also note that the time
required for routing with tables is small and constant: the time to
compute the outgoing link is the time of one memory read. Some
serialization is possible among the input ports as they try to
access theRAM. but. again.the RAM is fastcompuedtoother
transmissiondelaycomponents. lfthissequentialaccesstothe
RAM is of concern. multiple oopis of the routing table. or inter-
leaving a singlepopy. are possible modifications. '

The routing tables must be filled by some algorithm.
Ideally. this algorithm would be designed to find the optimal pos-
sible paths in creating the routing tables. This algorithm needs to
bentrrortlywhertdteeonfigttntiortlaofthesystanhschartged.
Researchers [11, 12. 13. 14] have prsarted algoritluns whidr
incrementally modify the routing tables in general networks what
achange inthetopologyisrecognizedby the
change. Recaitly. Kim and Reed [15] investigated routing with
tablesproducedbyacenkalnodeuaingirtforrnationdelivaed
fiomlocalnodes. Irtthispapa.weconcetttrateoriglobally
dr-signed distributed algorithms. specifically taking advantage of
the hyperuibe topology. which attirely refill the tables afta a
fault or repair. Subsequently. the routing tables work

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1335 of 1442

independently. routing messages along the shortest pails unti.l the
configuration changes again and the system needs to rim the
table-filling algorithm once more.

In this paper we propose a distributed table-filling algo-
rithm (FFA) whichdeterrnines therouting table foreachnodes
at node 3 itself. This was developed from a centralized TFA in
which the systa-n host finds shortest paths using Dijkstra‘: algo-
rithm [16]. In our distributed algorithm each node gathers infor-
mation about the hypercube configuration F exclusively through
communication with its nearest neighbors. After presenting the
distributed table-filling algorithm. we txopose a broadcasting
technique which utilizes tables. In this sclterne'.‘ir lxoadcast mes-
sagewouldcarryinitshudathefactthatitisabroadcastand
the original source of the broadcast. Each node s along the
broadcast paths would then lookup in a broadcast routing table on
which links the broadcast should be routed from s. We give
mother distributed algorithm which fills the broadcast routing
tables from the original routing tables. Next we provide a
method to ensure that the paths found by our table-filling algo-
rithms are deadlock-free. By splitting linlts in dependency cycles
into twovirtuallinks.wecanrouteuponthelinkssothatno
cycles exist in the new configuration. and thus avoid deadlock.
Wepresentanalgorithrntornodifythetablesproduoedbythe
distributed table-filling algorithm to that the routes are free of the
possibility of deadlock.

2. DISTRIBUTED TABLE-FILLING ALGORITHM

21. Distributed Algorithm

The key to a distributed table-filling algorithm (TFA) is
that the shortestpathfromanodes toanoded istheextension
of the shortest path found by one of the neighbors of s. In our
TFA, each node cycles through its n neighbors. exchanging ten-
tative routing tables. until these tables cease to change. The dis-
tributed TFAD is given below.

ALGORl'l'HMD(.t)(inpantllelonallnodes:)

Let thecurrentdimertsionl be n-1
Repeat until table unmodified in n consecutive dirrtmsions

Exchange routing tabla with neighbor along dimension I
For each destination in own table

If path through neighbor shorter than presently recorded path
Or dimension I lower than dimmsion of presently

recorded path
Place new path. idmtified as dimension I and length. in table

Fndif
Endfor
Decrernent (mod rt) dimension I

Enduntil
For next ll dimensions

Inform neighbor along dimension I that own table is done
Deerement (mod n) dimension 1

Endfor

To facilitate the proof of the operation of this algorithm.
we a sweep. as one set of oomeaitive iterations fromdimension n—-l throughdimension 0. That is. a sweep consists of
one iteration in each dimension.

13:1-zotum 2.1: Algorithm D terminus with the shortest paths.

PROOF of shortest paths: By

ZIO

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1335 of 1442

BASE CASE: All paths of latgth 1 (all paths to nearest neighbors)
are shortest paths and are discovered in the first sweep.

ASSUME: After i sweets every node 5 ha all shortest path: of
length k that it sources.

1141-N: Because every subpath of a shortest path is itself a shor-
testpath,ashor1estpathoflengthk+lfromanodes tosorne
destination d inclttds a shortest path of length I: from a neighbor
of: to destination :1. In sweep k+l everynode .t receivs the
length I: path information from each of its neighbors. Therefore.
every shortest path of length k+l sourced by each node sis
determined by appending the appropriate dimension onto the
shortest path of length k sourced by a neighboring node. After
k+l sweeps evay node 3 has all shortest paths of length k+l thatit sources.

PROOF of tarnination: To see that algorithm D does not ta-
minatetmtilalIshom=tpathsarefotmd.eonsiderthepath
sourcedbynode: that wouldbethe lastdisooveredbyalgorithm
D;saythatthispa.thP isoflengthL. P nec:ssarilycontainsL
ditTaen1paths.todiffcrattdestit1ations.allsourt:'ngats. lnfau,
thaeisexactlyonepathofeachlengthfi'omltoLwhic.hisa
(shortest)subpathofthe(shortest)pathP. By the induction step
above. itisclearthateachaweq) advance themaximum length
ofthe discovered shortest paths by 1. Thaefort. in each sweep a
new shortest path. which happens to be a subpath of P. is
discoveredby.r.andalgorithmD doesnottertnirtatetmtilthe
lastpathl’ is fottnd. The termination condition given in algo-
rithmD follows what we reoognizethatthe phase oftltesweep
doesnotmatter.

AlgorithrnD canfindmorethanonelinkofapathineach
sweep. Thus the ratrnber of sweeps actually required to find all
the shortmt paths is a configuration-dependent value between 1
and N-1. The former value is for a fault-free arbe and the latter
value is an upper bound for a worst-case completely connected
cube whae the maximum length ahortat path is N-1 linlts long.
Thus the algorithm has a time complexity of 0(N’logN). How-
ever, the possibility of so poor a perfonnance is minimal. and
‘most faulty configurations will give a time complexity much
closer to thatin aperfectcube: 0(NlogN).

D isoonstructedtouselocal information only.andbuilds
itspathsonthenearend. Byaddinglinksoflowestpossible
dimensiontothesouroeendofiLsctnrentpaths.D ensurese-
cube-like routing in a fault-free hypacube. In algorithm D we
start with the highest dimension 01-1) and move down through
the dimensions; aftu dimension 0 we move to dimension n-l
again. Thereasonwedecrementthroughdirnensionsirtb as
opposedtoauyotha'ordaoftakingdirnensi<msisthatinnitera-
tiona. tltatis. ll exchanges of irtforrrtatigg. all nodes in a fault-free
hypercobefilltltéirroutingtableswitlttltee-eulzepaths. ltisan
'terestingresultthatwithonlyonetableeJtchartgeirteach
dimension. evay node irt a fault-free cube fills its routing table
perfectly. This makes the cost of implementing tablerrouting
very small as far as filling tables in perfect cubes. However. in
general faulty hypercube configurations. the tables are filled in
fewmoreitaations. ‘

Ftgure1showsacubewithafailureinnode5.andFigtne
2showsthela.st4ofthe6stepsrequiredtofilltheroutingtables

Aftertl'tefirstthroesteps.everypath
whiehisane-eubepathhasbeatidmtifiednhissetofe-cube
pathsisshowninl-'igure2(a). V!/enovvnotetwopointsirtl-*tgtrre
2: how the shortst path is selected and how the increasing-irn

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1336 of 1442

Figure 1. 3~cube with Fault in Node 5

dimension path is selected. By the third iu:'at.ion. we have not
yet filled T417] (row 4. oolurnn7inlhe routing matrix). Initern-
tionfour,TFAD placesa2intlm|ocation. Thepathfromnode
4tonode7whichthemauixafterita’aIionfoxn'dicu.tesis[40l
37].|length4path. Bu1wecanseeinFigurelIha1Ilength2
pathexists: n:mely[-467]. Thisi:correctedirtiteral5onfive.n.s
we:wapalongdirnensionlandnode4leurnsfromnode6ofa
shorterpathtonodel Theotherpoimtonoteisexanplifiedbry
Tdl]. the [int stepcn|distance3 path. Afterthree iterations.
thislocationistmfilled. lnead\subsequentiteru:ion.alowerfirst
dimmsian ofthepathisfound. Thus dgoriLhmD finds thepath
withthelowestfirstdimension outof the set of shoxtcstpuhs.

2.2.. Extension to Partial Fnllures

The above duaiption of Algorithm D handles link
failures and total node failures. However. in the case of partial
node failures. i.e.. loss of the main processor but continuing
operation of the widowed cornmunicalion coprocessor. the TFA
D so far does not operate ideally. In fat. 1: given above. D
would be unable to use the routing table in a functioning. but
widowed. coprocessor. and would view such a node as totally
faulty when routing paths. Minor modifications to algorithm D
correct this deficiency.

If a coprocasork table is independently receivable from
neighboring nodes. then another node can run Algorithm D for a
widowed coprocessor. We modify Algorithm D to allow the
claiming of n widowed coprocessor w by an active processor v .
Ifthereisnvinblcpnhfmmv tow,andw isasyetunclaimcd.
Ihenv claimsw. SinceD forceslynehronizationbyits very
nautre.ut|nymeu'rnew iaappmochedonlyononedimension.
sotheuniquenssofv isassurcd. Aftav clairruw.v thenexe-
cut.sD as though it werebcingexccutcdonw (call thisD(w)).
starting with the next dimension in the iterations of me algoritlun.
Of course. since v must alsoexecute its own vasion ofD. the
time it ukes for v to prfotm each step is doubled. The claiming
of widowed ccprocssors can be recursive, i.e.. v may need to
clnirnn’ whidxliesondwotlta tideofw fromv. That. inexc-
cutingD(u’).v mustcornmunicatethroughw.

Thereasons therouting table mustbewritable fromother
mdauetwofold. First. messages whicharesenttonclairnedw 2(d): Complete routing table (afterdi.m.0)
muttbefoolcdintogoinglov. 'lhItiAtoclaimw.v mustwrite
npathtoilselfintothelocaticnw inT.[w]. Second. when the
algorithrn iscomplete Iridlllroutirtgtables are finalized. v must Figure 2. AlgcrithmD on3-cube with FaultinNode5
wriu:intoT. theroutingtnhleitdete:minednmningD(w). .

220

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1336 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1337 of 1442

3. BROADCASTING WITH TABLES

We now propose table routing methods for one-to-all
broadcast. To implement lroadcast. our routing table requires an
additional n+l bits of information pa word. Let us ducribe
these additional bits per word as a separate table U,, with loca-
tion!) representedby U,[b]. Thebroadcast algorithr-ntousethis
table is as follows: a 1 inbitl of U,[b] means that. if: receives
a txoadcast message which originates at b. it should copy that
mmage and send it along dimension 1. Therefore. an adequate
heada for a lxoadcast message would be an indicator that it is a
broadcast and the addrss of the original source of the broadcast.
AnalgorithrnisrequiredtofillthetableU ineachnode. This
algorithm executes after D and determines broadcast paths Erom
the optimal length paths found by D. We call this txoadcast
table-filling algorithm (BTFA) D’. Before giving t.he algorithm.
we introduce the conceptof the link partition.

Foranoder. given anoriginal broadcntsourceb anda
list of desdnation nodes M, [b]. we define the liltkpanirion of the
set of destinations M,[b). M,[b] is the union ofthe disjoint sets
Milblo. M.[bli. " ' . M.[bl.-1.‘ Mllbllv when
M.[b].=|d:deM,[b]ANDT,[d]d I. M,[b]; is that set of
destinations in M.[b] for which the first dimension of the paths
from: tothosedestinatiomsisl. M,[b]. containsthexing1ee1e-
merit .r. the an-rent node. The partition M.[bL is determined
from the routing table T,. In fact. M, [:14 is the inverse ofT,[d];
theformermapsl tod.andthelatte-rmapsd tot.

For example, given as row 3 iii Figure 7.(d). we have the
routing table fornode3irra3-cubewithafaultynode5:
Tg=[0 l 030.02].where3--n siyiifiesthecurrentnodeandthe
period tiytifiea an unreachable node. Using this routing table.
Msl3]:=l3l- M:l3]2=l7l. Mt[3lr={1l. I11dMt[3lo=l0.2.4.5l-

M.[b] ineadtnodes is the set ofdestinationsto which:
is expected to forward a broadcast message from b. and the link
partitiongives thcsetofdestinations eachneighbor of: is
expected to forward. 'lhc table U,[b] willhave a l in every bit I
for which M.(b]: is nonempty. Node 5 would then forward a
broadcast by (1) recognizing the original source of the lroadctst
b. and (2) forwarding it along each and cvay link I for which
U,[b](= l.

AIDORITHM D'(s) (for evay nodes)

M. [.\']4— all viable destinations

[(-1 +33]. l
Endwhile

Tlimkfld 3.1: The tabla filled by algorithm D‘ will broadcast
using shortest paths.

PROOF: Broadcast paths are exactly those shortest paths found by
algorithm D.

For simplicity of prsentation. our BTFA D‘ shows the
broadcast table bits U,[b], modified with each iteration I. We
could write all of U,[b] once the partition of M,[b] is done.
U,[bl.=l if and only if M,[b]n¢Z. We use the rt‘ partition set
and the rt‘ bit of the broadcast table as a convatimce to imply
that my broadcast rntssage forwarded by node 3 should be
received and absorbedby node .1’ as well. Note also that. in sub-
sequent steps of the algorithm. the determination of the linkparti-
tion of newly received sets can be computed for each I from the
initial linkpartition asM.[j]i =M,[j] nM.[.r]..

BTFA D‘ (s) is very efficiait. The amount of work
involved in the send. receive. and partition stqas is proportional
to the length of the lists. The algorithrn's complexity is
o(N=iosN). but as with algorithm D. thisorder is reached only
at degenerate worst cases. On a perfect who the algorithm ntns
intime0(NlogN). only executingoneiteration foreachdimerr
sion.

Figure 3 shows an example of the operation of this algo-
rithm on node 0 of a fault-free 3-cube. Each lnrizontal blodt in
Figure 3(a) is one iteration of BTFA D‘ . The first block is the .
initial state. with all destinations reachable from node 0 parti-
tionedbythefirstlirtksirttheirrespectivepaths. Ineachitaation
k.node0sen<Lsalonglinkl=krnodnthelistsofalldestirtan'orts
thepathstowhichnode0routesonlinkl. Thmthecun'uttpar-
titionsaremoditiedtoshowtheranovalofthejust-sa-ttlists.artd
newly received lists are partitioned and included as current.
Whenthelistofriodesinautrrcntpartitionbincludsonlynode
0.signifyingthatallothernodeshavebetmtakaicareof.tl1cnthe
par-titionisrernovedfromfurthercrmsideration.

We also give an example of D‘ exeatting on a faulty
atbe. Recall the single-fault hypacube of Figure 1; in this 3-
cube.nodeSisfaulty. Row3ofFigure2(d)isT3.thetahleused

Figure4ahowst:heopcra-
tiononD' fromtheviewpointofnode3andthelroadcasting
tableatnode3whichresult.s. Toilhtstratethebasicrulebchind
the operation of D‘. we desaibe what when node 3
receives (6. (1,3)). This information tells D‘ that node 6I(—[.|‘}

Detern1ir|elir1kpaxtitionofM,[:)= expects its broadcasts to reach nodes 1 and 3 through node 3.
M,[.r]., M,[:],. - ~ -, M,[.r]__,,M,[;]_ Node3 thendeterrnines how irreaches nods l and 3. heard: to

11-0 nodel.acccrdingtotheroutingtable.t5ingdimmsionl.'lhus
Whilelv-Zorthaeareviableaoureear hasnotheardfrorn

Send(t'.M,[t');). foralliel andM,[t'],$Q.alonglinkl
Foralliel artdM,[t'];¢G

U,[t']u—1
M-[U0-M-[5]-Mililr
ifM,[i]==M,[t'].. then U,[t'].4—l:lt—l-(1')

thealgorithrnwaitsuruildinremiorilisdictatedbyexectniort,
If|dfi¢|'ldS(6. (1J).lellingthencighber~alorigdirne.nsionltha_t
node6expectstocornmunicatewithnodclthroughthatneigh-
bor. Node6expectstocomrnunicatealsowithnode3 through
l'I>d¢3.bt1lthalpathistrivialaridnofttrt‘hercomptttationis
necessary.

Endfor Eucufin . .. ~. . . y 3 an all-to-all broadcast. in which each node r- ===
§::rl:j_gjM.u]).formJeJ (forsomesetJ).alon8ltnkl sertt}i1stlttesarnerfnessagetoevayothernode.cottldbea:com- ‘

De___ pltsedrnoneo twoways.Themessagescouldbeta-oadcastmmme lmk Pm'"’°" °f M'[/ 1 independently and asynchronously. mutually contending for lim-
M'U]5MlUll- ' ' 'oMJU]a—l.

I,fMulil==M.U]. then U,[j}.(--1; .,H—U,Endfor
I¢—IUJ

22!

ited link resources. or the message: could be ta-oadcast synchro-

nously. Spedfically for the synchronous case. when an all-to~all
broadcast is required, the nodes could executea variant of algo-
rithm D'. Every node would thus cornrnunicate along the same

|PR2016-00726 -ACTIVISION, EA, TAKE-1'\N0 2K ROCKSTAR

Ex.1102, p. 1337 of1442 ' ’ ’

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1338 of 1442

receive cmruu partirims Mali)1

j Mclil i I-31:2!-l I-=0

0 (13.5.7)
1 (0.7-.4.6l

0 (L6)
1 (7.6)

2 (0,4)
3 (0.41

(4)
(41
(4)
l4)

2, .
2 .O0

Ahblsbb ‘bot

I0) \lQ|.hhb3l~l-O\-SKI-‘O--O OOOOOOOOOOOO
3(a): Operation ofD5 atnode O in 3-cube

bmadcasl routing table U “[17 l,
b I =3 1 =2 I -l I =0

l l l I

30:): Broadcast routing table for node 0

Figure 3. Example of Algorithm D‘ on Fault-Free 3-cube

dimeruion at the same time a composite message of individual
txoadcasts. Since in fact algorithm D‘ is an all-to-all broadcast
of dynamic messages (the destination lists), a synchronous all-
to-all broadcast would take exactly as many steps as D‘. The
txoadcast routing tables filled by D‘ would serve either the syn-
chronous or asynchronous all-to-all broadcast

4. DEADLOCK AVOIDANCE

The standard routing algorithm e-cube is the primary algo-
rithm for routing messages in hyperuibcs today. Three principal
reasons explain this preference for e-cube: (1) it is easy to imple-
ment, (2) it spreads messages evenly throughout the network. and
(3) it prevents deadlock. The prevention of deadlock can be
assured ifand only if there are no cycles in the channel depen-
dency graph [17]. The reason that no cycles exist in the ¢-cube
algorithm is that every channel is dependent only on channels of
higher dimension No dqaendency can go backwards in dimen-
sion. Thus deadlock is impossible in e-cube.

However. in a hypercttbe containing faulty links (chan-
nels). extra precautions must be taken to ensure deadlock-free
routing. We adapt the method given in [17] to avoid deadlock.
Essditially this method consists of dfining virtual channels
along the physical links. Each virtual channel is distinguished

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR

Ex. 1102, p. 1338 of 1442 ’

222

um-entpanitiontuglil,
i I-3 I-:2 l=I (=0

4(a): Operation of D‘ at node 3 in 3-cube with faulty node 5

broadastrotrtiiigtablellglbl,

I-3 [=2 (=1 (=0

~IO\v«buIN--O9' a-...°.—.—.—-..-.- oooo...-.-.-.-
4(b): Broadcast routing table for node 3

Figure 4. Example of Algorithm D‘ on Single-Fault 3-cube

from the others on one link by a unique addrcss and its own
queue. The virtual channels can be time multiplexed on the phy-
sical links with the use of these queues. By maintaining a strict
ordering of these virtual channels. we can show that the new
channel dependency graph is free of cycles. and thus the network
is free of deadlock.

As an example of the configuring of virtual channels to
avoid deadlock. we show Figures 5 and 6. Figure 5 gives a
configuration of a hypautbe with directed links (one each way
between processors) which has a possible deadlock configtnation.
The links which may cause deadlock are extracted firom Figure 4
and given with explicit unidirectionality in Figure 6(a). We call
suchasetoflinksinahypentubealoop. Aloopoontainstwo
cycles. one in each direction on the loop.

We represent the possibility of deadlock with the channel
dependency graph of Figure 6(b). The vertioes of this graph are
the links from Figure 6(a); the edges represent the (nontransitive)
dependencies. The various are labeled with a unique link label.
Eachlinkisidentifiedbyanorderedpai.r(s.l). wheres isthe

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1339 of 1442

Figure 5. Faulty Configuration of 3-aibe Inducing Cycles 6“): Loop cxumwd {mm fully “be

nodesourcingthelinkandlisthedimensionofthelink. For
example. the link Eromnode0tonode2isrepresentedinthe ® @
right cycle of Figure 60:) by the vertut (0.1). _

To pevent deadlock. we split each of the links in a cycle @ @ @ @
into two virtual links which share the same physical communica-
tion line but have different queue (Figure 6(c)). 111:1 we -.
address the virtual links in the cycle with labels of the form xyl.
whu'exe(0.l).y increases around the cycle,a.ndz is aunique ® ® @ ®
cycle identifier. ‘mus we can break the cycle by pamitring
dependu1ciesonlyinmcreas'ingorderofthe virwltllink @ ®
addresses (Figure 6(d)). To force the dependencies to be acyclic. '

' each ‘ wba
:f£':.°..m.s 'vrma‘°'1mxs"°3§zm.:°.§c:l§am§ri§br§i fié follo:I$; 60°): Ch"m°' devmdmcv smvh °fcv°1=.s
message routing rule at each source or intermediate node: if the
current node label is less than the destination node label. route
along the higher addressed link; if the current node label is
greater than the destination node label, route along the lower
addressed link. Note that. in our example. links 15a and 15b are
not used.

In genaal. after running a TFA we have routing tables for
which the dependency graph contains cycles. The problem fac-
ing us is that these routing tables are distributed among thenodes.
and it would be very inefficient to detect cycles from the local
tables. However. we can globally broadcast all the routing tables
so that each processor has the complete routing matrix. This
could be a large amount of communication. but the following
theoranandoorollaryallowsuatoreduceit.

THEOREM 4.1: For any path found by TFA D for configuration F.
all subpathx of that path are the:-nselves paths found by TFA D .
PROOF: Follows from the way paths are determined during rout-
ing.

'l‘ltEOtu=.M 4.2: The dependence graph for a routing matrix found
by TFA D can be constructed with information on paths of
length 2 only.

PROOF: Since every path (i.e., evay string of channel dependen-
cies) is composed of paths of length 2. the paths of length 2 cap-
ture all the consecutive depatdencies. The transitive dqamduv
cies can be iytored in finding cycles.

VVeonlyncedtocommtmicalethepathsoflength2
throughout the network to provide full channel dependency infor-
mation. Paths of length 2 can be derived from an abridged rout-
irtgmauixwhichoontainssotnce-destirlationpairsrtomoretltart
distance2fromeachother. Thuseanhnodeneedonlyoornrrttmi-
cate its table for distance 1 and distance 2 destinations. ‘here are

figure 6. Example of Breaking Cycles in Faulty 3-cube

223

IPR2016-00726 -ACTIVISION; EA, TAKE-TWO, 2K, RCCKSTAR
Ex. 1102, p. 1339 of 1442 ’

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1340 of 1442

Cf + C: of these in each node. where Cr denotes the number of
ways to choose k items from n itans.

Once each node has complete information of the total
routing matrix. it can construct the channel dqaertdertcy graph
and End all cycles. An algorithm such as that given in [16] is
used to End the cycles. Evay node has the same information‘ each limb the same cycls.

routing tables so that. given amodify their
link to reach that destination without thecare the correct virtual

possibility of deadlock.
We have not yet considered the impact of our cycle remo-

val schemes on paths which deviate from the cycles. For exam-
ple.inFigure5node2routestonodeS along two linksofthe
counterclockwise cycle included in the path [2 0 l 5]. We need
to correctly identify which link (higher or lower) we should take
toreacheachdestination. 'l'heoorrectlinkwillbedepatdm1on
thelastintermediatertodeinthccyclethat tlrepathroutes
through to reach its ddtination. Fmrn information of paths of
length 2. we cannot construct each longer path. we cannot deter-
tninethelastnode foreaehpathintheintersectionofpathand
cycle. and we therefore cart not tell front paths of length 2
whethertorouteeachpalh alongthehighaorthelowervirtual
link irt a cycle. We can correct this problan by passing complete
routing tables along cycles. so that every source knows exactly
lmw far along the cycle evay path goes. The cycle addrss of the
last node in the pathcycle intasection dean-mines whetha the
higher or lower link is taken along the cycle.

Below is Algorithm DEADLOCKJ-‘REE. which modifies
the routing tables found by D to ensure the avoidance of
deadlock in path sclecfion. The hardware and encoding in the
rottting architecntreatcachnodes tnustbealteredtoperrnitthe
addressing of multiple virtual links per physical link. In the
presentation of DEADLOCK_FREE below. we simply show the
routing table getting the virtual link address. i.c.. T,[d]¢—x2.
(We suppress the y front our notation :97 because the y impli-
citly refers to the curratt node r .)

ALGORITHM DEADLOCK_FREE (in each node .r l

Run algorithm D
Run algorithm D‘
Do all-to-all broadcast of routing table contents for distance

1 and 2
Construct channel depenwtey graph
Find all cycles using cycle deteaion algorithm
For eadt cycle 1 found which includm an outgoing link of .r

Create two virtual channels 0: and 11 to replace instance of
link in 1

Allocate and address one queue for each outgoing virtual channel
Exchange complete routing tables around each cycle to determine

oornpletc paths along each cycle
For each destination d with path (.r d)

[fT,[d] is insomecycles
Choose a cycle 1 which intersects (.r d) along the gangs:

help" bethelastnodeirttheintersectionofthepathandz
lfthelabelofp incyclez islestharttltatofs

(denoted y in tau)
T, [:1 14-01

Else

|PR2016-00726 -ACTIVISION, EA, TAKE-1'\N0 2K ROCKSTAR

Ex.1102, p. 1340 of1442 ' ’ ’

224

T. [d](—l2
Endif

Endif
Fmdfor

Two questioru which arise are the following. Do we need
to alter the broadest routing tables? Will any part of algorithm
DEADLOCK,_FREE induce deadlock before the avoidance tech-
niques are in place? The answer to both these questions is found
in the single statematt: deadlock cannot involve a single-link
path. Deadlock involves a path acquiring one link and holding it
while it awaits another. l.n single-link paths. once the first link is
acquired. no waiting need be done: the path is complete, the
messageis sent. and the link is freed. Both algoritluns D and D‘
operate synchronously on single-link paths. Broadcast. also, gen-
erally occurs in sirtgle~link paths. If we wished to allow broad-
casts to opaate on multiple-length paths. we could simply rerun
D‘ aftu DEADUJCILFREE. this time the destina-
tions, and the broadcast table. among the virtual links; the rest of
the algorithm D‘ is unchanged.

5. PERFORMANCE 01-‘ TABLE ROUTING
We now compare ihe performance of table-routing wider

TFA D with another proposed reroute scheme. the adaptive
scheme of Oren artd Shin [2]. Their raoute method. which we
willhererefer to asadaptive. finds apathfrom sourcetodestina-
tionbystartingane-cubepath. thenalteringitasnecessarywhut
itis blockedhy afault. Aug isusedtornarkblockedandextra
dimertsions to prevent oscillation.

We compare these with two measures of perfonnance
applicable to reconfigured networks [18]. The reconfiguration
strategy we use is that of process adoption [I9]: an adjacent pro-
cessor adopts the task running on aprocessor after it fails. The

links (group:-dbydimensim) Linka.(gtoupedby dimensim)

7(a): Dilation 70:): Congestion

Figure 7. Comparison of Dilation and Congestion

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1341 of 1442

first measure. called dilation. gives length in links of the logical
replaoanent of a previously physical link. ‘mat is. a path
between two adjacent processes in a faull~fi'oe cube may be
tnapped to a multiple-link path due to fault subsequent
reconfiguration. 111: second measure is called congestion This
measures the number of logical links which use each fault-free
physical link in the faulty configuration.

Our example configuration F is one with four faulty nodes:
node 0. node 5. node 6. and node 15. The process from node 0 is
mappedtonode4,1xocesSismappedtonode13.process6to
node 3. and procss 15 to node 10. The results are shown in Fig-ure 7. .

Both the dilation and congestion measuranents are a con-
stant 1 across all linb in a fault-free hypercube; every logical
link is on exactly one physical link and every physical link car-
ries exactly one logical link. However. in our faulty hypercube
example. with node 4 very far from other nodes irt the network.
the dilation and congestion measurematts are quite high. The
areas of the dilation and congstion histograms are equal; this
area is essentially the number of physical links all the logical
links me. The area for this four~fault hypaqtbe is 104 with the
routes deten-nined by algorithm D and 112 with the adaptive
routing scheme. demomtrating the reduced system communica-
tion load due to the shorter paths of table muting.

6. CONCLUSIONS

We have introduced table routing in faulty hypercubcs.
demonstrating the power and ease of such a routing method Our
distributed algorithms have shown table routing to be not only
possible. but preferable in faulty hypqcubes. Our distributed
table-filling algorithm D executes in 0 (N’1ogN) time in the very
rare worst case. Generally. performance of D is of the order of
N’1og,N . We have also poposed the use of tables for lxoadcast
in faulty hypacubes. The broadcast table-filling algorithm runs
in 0 (N’l.oyV) worst case time. with a genaal performance
around N log,N .

We have shown the superior dilation and congestion meas-
ures of the shortest paths generated by D in faulty hypercubes
and the minimal extra hardware and cornmunicafion delay of
table routing. Also we have presented a deadlock prevention
schane applied to distributed routing tabla. To our knowledge.
this is the first routing sdteme that has been poposod for faulty
hypezcubes that is shortest-path and deadlock-free.

REFERENCES

H. Sullivan and T. R. Bashkow, "A large scale
homogeneous fully distributed parallel machine." Proc.

4t9h Syntp. Computer Architecture. pp. 105-117. Mar.1 77.

[ll

[2] M. S. Chen and K. G. Shim “Message routing in an
injured hypercube." Proc. 3rd Cory’. Hypercube
Concurrent Computers and Applications. pp. 312-317.
Jan. 1988.

[3] T. C. Lee and I. P. Hayes. "Routing and broadcasting in
faulty hypercube computers." Proc. 3rd Can]: Hypercube

~ fontclugrsrgrtt Computers and Applications. pp. 346-354.an. .

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex.1102, p. 1341 of 1442

225

[4]

[5]

[6]

17]

[8]

[91

110]

I11]

[12]

[13]

[141

[15]

[161

117]

[18]

[19]

J. M. Gordon and Q. F. Stout. “Hypercube message
routing in the presence of faults." Proc. 3rd Cant’.
Hypacube Concurrent Computers and Applications. pp.
318-327. Jan. 1988.

M. S. Chen and K. 0. Shin. “Routing in the presence of
an arbitrary number of faults in hypercube
multicomputers.“ 40: Con]. Hypercube Concurrent
Computers and Applications. Mar. 1989.
Kuhn. et al.. “Distributed fault tolaant routing in
hypercuba." 4th Corgf. Hypercube Concurrent
Computers and Applications. Mar. 1989.
Al—Dhelaan and Bose. "Efficient fault-tolerant
broadcasting algorithm for the hypercube." 4!}! Cory’.
Hypacube Concurrent Computer: and Applications. Mar.
1989.

E. Chow. H. Madan. 1. Peterson. D. Gnmwald. and D.
Reod. “Hyperswitch network for the hypercube
computa.‘ ' Proc. 15:): Int. Symp. Computer Architecture.
pp. 90-99. May 1988.
D. A. Reed and R. M. Fujimoto. Multicomputer
Network‘: Message-Faxing Parallel Processing.
Cambridge. MA: MIT Press. 1987.

A. S. Tanenbaum. Computer Networks. Englewoods
Cliffs. NJ: Prentice-Hail. Inc.. 1981 . '

W. D. Tajibnapis. "A correctness proof of a topology
information maintenance protocol for a distributed
computer network." Commun. of the ACM. vol. 20. pp.
477-485. July 1977.

Gallager R. G. "A minimu.rn delay routing algorithm
using distributed'computaa'on." IEEE Traruactions on
Communicarioru, voL COM-25. pp. 73-85. Jan. 1977.

Segall A.. "Advances in verifiable fail-safe routing
procedures." IEEE Traruactioru on Communicatiorts.
voL COM-29. pp. 491-497. Apr. 1981.
E. M. Gafni and D. P. Bensekas. "Distributed algorithms
for generating loop-free routes in networks with
frequently changing topo1ogy."»IEEE Transactions on
Communication, vol. COM-_29. pp. 11-18. Ian. 1981.
C. Kim and D. A. Reed. "Adaptive packet routing in a
hypercube." Proc. 3rd Cort’. Hypercube Concurrent
Computers and Applications. pp. 625-629. Jan. 1988.

N. Deo. Graph Theory with Applications to Engineering
and Computer Science. Englewoods Cliffs. NJ: Prentice-
Hall. Inc.. 1974 .

W. 1. Daily and C. L. Seitz. “Deadlock-free message
routing in multiprocessor interconnection networ ."
IEEE Transactions on Computers. vol. C-36. pp. 547-
553. May 1987.

J. Hastad. T. Leighton. and M. Newman. "Reconfigun'ng
a hypacube in the presence of faults." Proc. I9th ACM
Syrnp. Theory ofComputing. pp. 274-284. 1987.

P. Banajee "Reoonfiguring a hypercube in the presence
of faults." Proc. 4!}: Con}: llypercube Concwrgpu
Computers and Applicatioou. Mar. 1989. -

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1342 of 1442

'1 IEEE Xplore Search Results Page 1 Of 6

u IEEE HOME I semen IEEE I snow 1 was ACCOUNT I conmcneee

-Membership ~Publications/Services Standards Conferences Car'eersIJobs

» Search Re:
 2°19." ”"“-'1 . .

Your search matched 46 of 972916 documents.

A maximum of 46 results are displayed, 25 to a page, sorted by Relevance in descending order.

0- what can

I Access? You may refine your search by editing the current search expression or entering a new one the text box.

O_ Log_0ut Then click Search Again. _ " g _ V _>
4. (13996: or broadcast’) <n¢.ar/_§3.:99£.i0.9§.n<!. (£n.vv¢.r.< 9 S€é'°“.TiA'9a‘"’".iP

"Tables of Contents -‘ "' '”‘""""'”'“"" ' W" " '

O. Joufna|s Results: _
3, Magazines Journal or Magazine = JNL Conference = CNF Standard = STD

Conlerence
Pf0G°8d||195 1 Distributed algorithms for shortest-path, deadlock-free routing and

O‘ Slfifldafds broadcasting in arbitrarily faulty hypercubes

Peercy, M. ; Banerjee, P. ;

Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th International

Symposium , 26-28 June 1990

Page(s): 218 -225

 O- Advanced

Member services “ ‘
|Abstract] |PDF Full-Text (652 KBH IEEE CNF

0 Join IEEE

0' E3‘3h"5" ‘E55 2 Multi-level hypercube network
Web Account

Aboe/aze, M.A.;

O-Access the Parallel Processing Symposium, 1991. Proceedings., Fifth International , 30 April-2

IEEE Member May 1991
Digital Library

Page(s): 475 -480
aprintsormai

I’

[Abstract| IPDF Full-Text (428 KB)| IEEE CNF

3 Cross-cube: a new fault tolerant hypercube-based network

Haq, E.;

Parallel Processing Symposium, 1991. Proceedings., Fifth International , 30 April—2

May 1991

Page(s): 471 -474

|Abstract| IPDF Full-Text (280 KBH IEEE CNF

4 Distributed algorithms for shortest-path, deadlock-free routing and

broadcasting in Fibonacci cubes

|P|h2016-00é26¢fiC'Eg§|ON, Ee, 'E%léE-Tlg0,@K,(flpCKSTAR, C e ch (3 ch ge fe C e
Ex. 1102, p. 1342 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1343 of 1442

I

I

A DISTRIBUTED RESTORATION ALGORITHM FOR MULTIPLE-LINK AND
NODE FAEURES OF TRANSPORT NETWORKS

Hiroaki Komine, Takafumi Chujo, Takao Ogura, Keiji Miyazaki, and Tetsuo Soejirna

Fujitsu Laboratories, Ltd.
1015 Kamikodanaka, Nakahara-ku, Kawasaki, 211, Japan

Abstract ‘

Broadband opricalfiber networks will requirefast restoration

from multiple-link and node failures as well as single-link
failures. This paper describes a new distributed restoration
algorithm based on message flooding. The algorithm is an
extension of our previously proposed algorithm for single-link
failure. It restores the network from multiple-link and node
failures, using multi-destination flooding and path route
rrtonitoring. We evaluated the algorithm by computer simulation,
and verified that it canfind alternate paths within 0.5s whenever
the message processing delay at a node is Sms.

1. Introduction

‘There is an increasing dependency on today's communication
networks to implement strategic corporate functions. User
demands for high-speed and economical communications
services lead to the rapid deployment of high-capacity optical
fibers in the transport networks. At the same time, the demands
for high-reliability services raise a network survivability
problem. For example, if the network is disabled for one hour, up
to $6,000,000 loss of revenue can occur in the trading and

investment banking industries [1]. As the capacity of the
transmission link grows, a link cut results in more loss of services.
Therefore, rapid restoration from failures is becorrring more
critical for network operations and management.

There have been many algorithms developed to restore
networks, including centralized control [1] and distributed
algorithms [2-4]. In centralized control. the network is controlled
and managed from a central office. ln distributed control. the
processing load is distributed among the nodes and restoration is
thus faster. However, more computation capability and high
speed control data channels are required. Recently it has been
possible to provide high perfomtance microprocessors fordigital
cross-connect system (DCS). High capacity optical fibers enable
high speed data transmission for OAM through overhead bytes,
which is under study by CCITT.
The distributed algorithms proposed so far [2-4] are based on

simple flooding [5]. When a node detects failure, it broadcasts a
restoration message to adjacent nodes to find an alternate route.
In the algorithm [2], a restoration message requests a spare DS-
3 or STS-l path and is sent through the path overhead of each
spare path. To avoid congestion of the messages in this algorithm,
a message in both the algorithms [3,4] requests a bundle of spare

paths and is sent through the section overhead of each link.
Algorithm [3] finds the maximum capacity along an alternate
route, and our algorithm [4] finds the shortest alternate route. As
described in [4]. our algorithm was faster. However these
algorithms are designed to handle single-lirtk failures, they
cannot handle multiple-link or node failures. '

In this paper, we first discuss the major issues that must be
addressed in order to handle multiple-link and node failures in
Section 2. Based on these consideration, we propose a new
restoration algorithm using multi-destination flooding and path
route monitoring. These are described in Section 3. For a node
failure, the node which detected the failure sends a restoration

message to the last N-consecutive nodes each logicalpath passed
through. An alternate path is made between the message sender
node and one of the multiple nodes specified in the message. Each
node collects the identifier of these nodes, using a path route
monitoring technique. The algorithm was evaluated by computer
simulation for multiple-link failure as well as for node failure.
The results will be described in Section 4.

2. Limitations of simple flooding
In this section, we review simple flooding and discuss its

limitations to handle multiple-link and node failures. In principle,
the distributed algorithms [2-4] basedon simple flooding work as
follows. When a link fails, the two nodes connected to the link

detect the failure and try to restore the path. One node becomes
the sender and the other becomes the chooser (Fig. 1). The sender
broadcasts restoration messages to all links with spare capacity.
Every node except the sender and the chooser respond by re-
broadcasting the message. When the restoration message reaches
the chooser, the chooser returns an acknowledgement to the
sender. In this way, alternate paths are found. Message conges-
tion caused by routing messages far away is avoided by limiting
the number of hops.

These algorithms based on simple flooding [2-4] usually as-
sume a single-link failure, but in reality, some links which go
different nodes may be in the same conduit. Therefore. if the
conduit is cut, many links fail at the same time [3]. ‘Ibis is thecase
of multiple-link failure. Fire or earthquakes can also damage a
large number of nodes, so the restoration algorithm must be able
to handle these situations.

Simple flooding can not handle multiple-link or node failures
because of following problems.

403.4.l

CH2827-4/90/0000-0459 $1.00 © 1990 IEEE 0459

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1343 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1344 of 1442

Acknowledgment message

Fig. l Distributed restoration based on simple flooding

- Contention ofspare capacity
In case of multiple-link failure, restoration messages coming

from different nodes might contend for spare capacity on the
same link. For example, if capacity is assigned to arriving
messages in turn. the first message reserves the capacity.
Whether or not the reserved capacity is later used for an
alternate path. the reserved capacity is not released and
therefore can not be assigned to another restoration message.
Thus. the restoration ratio decreases.

- Fault location

Because the algorithms assume link failure. one of the two
nodes connected to the failed link becomes the sender and the
other becomes the chooser. However, for a node failure. there

is a chooser and sender for each affected path. They are
neighbors of the failed node and depend on the route of the
paths. Each node detects failure by the loss of the signal on the
link, and cannot distinguish between link or node failure.

The flrst problem could be alleviated by simple message
cancelling. Spare capacity is assigned to restoration messages on
a first-come. first-served basis. Assignment is cancelled when the"
message can not go forward due to hop limits or lack ofcapacity.
During message flooding, cancel messages are sent to inform a
node that a restoration message. which reserves spare capacity on
a specific link, did not reach its destination and the served
capacity of this link can be released for other restoration
messages. Restoration messages are canceled immediately after
reception if they are identical to messages already received. if the
hop limit is reached. or if there is no more capacity at the node.
in these cases, the unused capacity can be assigned to another
restoration message.

Solving the second problem requires more sophisticated
techniques and we propose a new distributed restoration
algorithm in the following section.

3. Multi-destination flooding
To solve the fault location problemdescrihed above. we propose

a new multi-destination flooding technique. We also propose
path route monitoring which is essential to achieve multi-
dcstination flooding.

3.1 Principle of multi-destination flooding
Simple flooding methods assume just one chooser. We

extended this to allow multiple choosers as message destinations.
When a node detects the loss of a signal from a link. the node can
not tell whether the link or the node at the other end has failed. It
sends a restoration message directed to the node which is the
chooser in a link failure as well those that are choosers in a node

failure. In Fig.2. for example. the link between nodes 8 and C

fails. node B is the chooser for all affected paths. and nodes A and
D are possible choosers for paths P1 and P2. Ifnode B fails. nodes
A and D become choosers for paths Pl and P2. The restoration
message contains all choosers and the required capacity for each
sender-chooser pair. The node which received the restoration

message checks the destination field of the message. and if it is a
chooser candidate. it returns an acknowledgment to the sender.

Thus. by extending simple flooding into muld-destination
flooding, link or node failures do not have to be distinguished
because there is always at least one chooser. Different messages
are sent to the chooser candidates, but the same restoration
message listing all candidates is sent towards all candidates. The

number of restoration messages decreases and congestion isreduced.

Restoration processing consists of a broadcast phase. an
acknowledgment phase. and a confirmation phase. To handle
multiple failures. cancel processing is perfomted during the
broadcast and acknowledgment phases.
The node states are sender. chooser. reserved tandem. and fixed

tandem. The sender is the node which detected the failure. The

chooser is the destination node of a restoration message. Chooser
candidates set by the sender become choosers when they receive

Restoration message

P2 &fbe'cm |D rsBmi:;wt‘>;
D Chooser

Restoration
message

Fig. 2 Multi-destination flooding

403.42
0460

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1344 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1345 of 1442

a restoration message. The reserved tandem is a candidate node
for alternate paths reserved by the restoration message. A
received conftrrnation message of the sender turns a reserved
tandem node into a fixed tandem node.

a) Broadcast phase

In the broadcast phase, the sender broadcasts restoration
messages which reserve spare capacity in the network toward
chooser candidates. A failure occurring on a link or node is
detected by the next node on the path below the failure. This node
becomes the sender. The sender looks up the chooser candidates
and their capacities for the failed paths which were determined
before by the path route monitoring described in the following
section. The restoration message is then broadcast.
The restoration message contains the following information.

1) Message type : restoration, acknowledgment, confirma-
tion. cancel

2) Message index
3) Sender ID

4) Chooser IDs (Multiple destination)
5) Required capacity of each sender-chooser pair
6) Reserved capacity
7) Hop count

The message index is set by the sender. lt represents the number
of flooding waves broadcast. The combination of the message
index. the sender ID and chooser IDs is the Message ID. The

required capacity is the capacity required between the sender and
the various choosers. The reserved capacity is the capacity of the
route taken by the restoration message.
The sender broadcasts the restoration message to all connected

links except failed links and then waits for an acknowledgment
from one of the choosers. Each node in the network except the
sender and chooser receives a restoration message, and examines
the hop count and the Message ID. If the hop count reaches the
limit set by the sender, or arnessage with the same ID has arrived
before. the node returns a cancel message to the link originating

5 Reserved tandem

Restoration
message
Cancel
message

.—>

Chooser

Fig. 3 Broadcast phase

the restoration message. Otherwise. the state of the node is set to
reserved tandem. If spare capacity is available. a restoration
message is broadcast. If the spare capacity ofalinlt is insufficient.
the reserved capacity is set to the spare capacity of the link. A
node that finds its own node ID among the chooser IDs in the
restoration message becomes the chooser. Figure 3 shows the

broadcast phase when a failure has occurred at node B.

b) Acknowledgment phase
In -the acknowledgment phase. the chooser sends an

acknowledgment message to the sender. By the entries in the
acknowledgment message. the sender is informed which chooser
the acknowledgement message is from. If another restoration
message with the same message ID arrives at the chooser. it is
canceled.

A reserved tandem node which receives an acknowledgment

message passes it back to the source of the corresponding
restoration message. All other reserved spare capacity of this
restoration message is canceled. Message flow during an
acknowledgment phase is shown in Fig. 4.

5 Reserved tandem

Restoration
message

_, Cancelmessage

_. Acknowledgmentmessage

Fig. 4 Acknowledgment phase

c) Cortfimtarion phase
When the acknowledgment message reaches the sender, a

confirmation message is sent to the chooser. The reserved spares
are switched over to alternate paths. If the sender received
acknowledgment or canceled messages from all links it sent
restoration messages to. and if the restoration of the failure is not
completed, the sender increments the message index and
attempts restoration from the broadcast phase again.

The reserved tandem node which received a confirmation

message changes its status to fixed tandem and connects the
reserved spares. In Fig. 5, node F has become fixed tandem. and
the failed path between node D and node C is rerouted through the
nodes D. F, and C. The other path which failed between node A
and node C are also rerouted.

403.43

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1345 of 1442

0461

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1346 of 1442

We also simulated the algorithm for single-link failure. The result
is shown in Fig. 7.

Figure 8 shows the cumulative restoration ratio in a multiple-
link failure. There are many link combinations. but only one is
shown. Failures between node N8 and N13. and one of the other
links, occured simultaneously on two links. The results indicate

Fixed tandem

_> Acknowledgment

a::.%~°-mnatton

‘message \-I-Iiljljl-I
 Alternatopath—I—l—l—l—lZIII—I

Fig. 5 Confirmation phase

3.2 Path route monitoring
For multi-destination flooding, each node must have route

information on the paths passing through the node. One approach
is to have the central office distribute such routc information to all

nodes. However. the routes are changing dynamically under

customer control and nodes might receive inconsistent route pig. 6 Network model
information because updating route data takes time. We propose
a path route monitoring method in which each node collects route
information in real time.

The route information required at every node an: the lD's of the
last two consecutive nodes in every path before the node. This
information is collected as follows. Node ID’s are sent through
assigned space in the path overhead. For every path going through
a node. the data in the ID area is shifted and the ID of the node it

is going through is written in. In this way, every node receives
continuous and real-time route information.

.4; 33

 oo0

O)O
SingIe~Iink failure

""""Node lailureRestorationratio(%)(ratioofrestoredtotailedpaths) MJ‘-OO

4. Simulation

4.] Simulation tool and conditions

We evaluated the ability of the algorithm to restore multiple-
link and node failures using an event-driven network simulator

[4,6] which works on the SUN3 workstation. We used the mesh }:;g_ 7 Simulation results on Sing]e_]ink and
network model shown in Fig. 6. This network consists of25 nodes node failure
and 40 links. Each link length was generated at random. and the

average link length is 184 km. Every link has 35 working paths.
We assumed a transmission speed of64 kb/s. Messages were 16

bytes long. and the hop limit was 9. in a SONET frame structure,
64 kb/s for transmission speed means that one byte of overhead
is used for message communications between nodes. The
processing delay time from the arrival of a message to the end of
the processing depends on the architecture of the DCS hardware.
We assumed a 5 ms delay. This simulation does not include
failure detection or crossconnection times.

0.1 0.2 0.3 0.4 0.5

Restoration time (5)

-«L CO

(D O

J>0Restorationratto(%)(ratioolrestoredtotailedpaths) MO)oo
4.2 Simulation results

Figure 7 shows a cumulative restoration ratio of node failure. 0'1 0'2 0'3 0'4 0'5

‘Die restoration ratio of the network is the ratio of restored to lost Resloralion time (5)
paths. For node failure. paths tenninating at the failed node are
not counted as lost paths because it is impossible to restore them. Fig‘ 8 Simulation result on mumple'“"k failure

403.4.4
0462

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1346 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1347 of 1442

- that the proposed algorithm can handle multiple-link and node
failure as well as single-link failure. All restorations are
completed within 0.55 with message processing delay at the
nodes being Sms.

5. Conclusion

We pointed out problems associated with adapting _a restoration
algorithm based on flooding to recover from multiple-link and
node failures. The main problem is to position the chooser nodes
correctly. We proposed multi-destination flooding and path route
monitoring. We simulated the algorithm with a mesh network and
verified that the algorithm can handle multiple-link and node
failures as well as single-link failures.
The message delay within a node depends on the architecture of

the DCS and the processing load. The next step will be to analyze
these delays and to include restoration time.

Acknowledgment
The authors thank Dr. Takanashi, Dr. Murano. and Mr.

Yarnaguchi of Fujitsu Laboratories Ltd., and Mr. Tokimasa of
Fujitsu Ltd. for their encouragement and advice.

References

[I] W. Falconer, “Services Assurance in Modern
Telecommunications Networks," IEEE Communications

Magazine, Vol. 28. No. 6, pp. 32-39. June 1990.

[2] W. D. Grover. “The Selfhealing- Network: A FAST
DISTRIBUTED RESTORATION TECHNIQUE FOR
NETWORKS USING DIGITAL CROSSCONNECI‘

MACHINES", Globecom'87, pp. 28.2.1-28.2.6. Nov.
I987. .

[3] C. H. Yang and S. Hascgawa, “FITNESS: Failure Immuni-
zation Technology for Network Service Survivability",
Globecom'88. pp. 47.3.1-47.3.6. Dec. 1988.

[4] T. Chujo, T. Soejima, H. Komine. K. Miyazaki. and T.
Ogura. “The Design and Simulation ofan Intelligent Trans-
port Network with Disuibuted Control", NOMS'90. pp.
11.4-1 - 11.4-12, Feb. 1990.

[S] A. S. Tanenbaum. “Computer Networks", pp. 298-299.
Prentice-Hall International, 1988.

[6] T. Chujo, T. Soejima, H. Komine, K. Miyazald, and T.
Ogura, “The Modeling and Simulation of an Intelligent
Transport Network with Distributed Control". ITU-
COM'89, VII.l, pp. 343 - 347, Oct. 1989.

4031.5

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1347 of 1442
LE

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1348 of 1442

| _’ Search Abstract

. IEEE HOME l SEARCHIEEE I SHOP I WEB ACCOUNT I CONTACT IEEE

Page 1 of 2

®IEEE

Membership

0 IEEE Xp/ores

Tables of Contents

Journals
0 & Magazines
C} Conference

Proceedings

0- Standards

O- Advanced
Member Services

0 Join IEEE

0- Establish IEEE
Web Account

O- Access the
IEEE Member

Digital Library

Publicationslservices Standards Conferences CareerslJobs

Welcome
United States Patent and Trademark Office

RELEASE 1.6

» Search Absl

A distributed restoration algorithm for multiple-link and

node failures of transport networks
Komine H. Chuio, T. Ogura, T. Mivazaki, K. Soelima, T.

Fujitsu Lab. Ltd., Kawasaki, Japan ;
This paper appears in: Global Telecommunications Conference, 1990, and
Exhibition. ‘Communications: Connecting the Future‘, GLOBECOM '90., IEEE

Meeting Date: 12/02/1990 - 12/05/1990
Publication Date: 2-5 Dec. 1990

Location: San Diego, CA USA

On page(s): 459 — 463 vol.1
Reference Cited: 6

Inspec Accession Number: 3976310

Abstract:

Fast restoration of broadband optical fiber networks from multiple-link and node failu

as well as single—link failures, is addressed. A distributed restoration algorithm b
on message flooding is described. The algorithm is an extension of a previously prop

algorithm for single-link failure. It restores the network from multiple-link and node
failures, using multidestination flooding and path route monitoring. Computer simula
of the algorithm verified that it can find alternate paths within 0.5 s, whenever the
message processing delay at a node is 5 ms

Index Terms:

broadband networks optical links broadband optical fiber networks distributed restoration

algorithm message flooding message processing delay multidestination flooding multiple-Ii
failures node failures path route monitoring single-link failures transport networks '

Documents that cite this document

Select link to view other documents in the database that cite this one.

NEXTSearch Results JPDF FULL-TEXT 364 KB] PREV DOWNLOAD CITATION

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this
week | OPAC Linking Information | Your Feedback [Technical Support | Email Alerting] No Robots Please | Release Notes | IEEE Online Publications | Help |

fit I¢errn:sl B__._ackto Top.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,

Ex“ 102, p.e¢§4-8 of 1%-Zeee gech chb c be cc eeecf

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1349 of 1442

’_ seaych Abstract Page 2 °f2

. Copyright © 2004 IEEE — All rights reserved

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,

Ex.'1102, p. 1349 of 1442 ._ - - -1. -1. L .. L... /\ A I\r\t\r\ (3

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1350 of 1442

On Four-Connecting a Triconnected Graph‘
(Extended Abstract)

Tsan-sheng Hsu

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712-1188
tshsu@cs.ute1:as.edu

Abstract

We consider the problem offinding a smallest set
of edges whose addition four-connects a triconnected
graph. This is a fundamental graph-theoretic problem
that has applications in designing reliable networks.

We present an O(na(m,n) + m) time sequential
algorithm for four-connecting an undirected graph G
that is triconnected by adding the smallest number of
edges, where n and rn are the number of uertices and
edges in C, respectively, and a(m,n) is the inverse
Aclcermann’s function.

In deriving our algorithm, we present a new lower
bound for the number of edges needed to four-connect
a triconnected graph. The form of this lower bound is
diflerent from the form of the lower bound known for
biconnectiuity augmentation and triconnectivity aug-
mentation. Our new lower bound applies for arbitrary
k, and gives a tighter lower bound than the one known
earlier for the number of edges needed to k-connect a
(I: - 1)-connected gmph. For k = 4, we show that this
lower bound is tight by giving an eflicient algorithm
for finding a set of edges with the required size whose
addition four-connects a triconnected graph.

1 Introduction

The problem of augmenting a graph to reach a cer-
tain connectivity requirement by adding edges has im-
portant applications in network reliability [6, 14, 28]
and fault-tolerant computing. One version of the aug-
mentation problem is to augment the input graph to
reach a given connectivity requirement by adding a
smallest set of edges. We refer to this problem as the

‘This work was supported in part by NSF Grant CCR-90-23059.

0-818629!»-M2 33.1!) 0 I992 EBB

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1350 of 1442

smallest augmentation problem.

Vertex-Connectivity Augrnentations
The following results are known for solving the small-
est augmentation problem on an undirected graph to
satisfy a vertex-connectivity requirement.

For finding a smallest hiconnectivity augmentation,
Eswai-an la 'I‘arjan [3] gave a lower bound on the small-
est number of edges for biconnectivity augmentation
and proved that the lower bound can be achieved.
Rosenthal 8: Goldner [26] developed a linear time se
quential algorithm for finding a smallest augmenta-
tion to biconnect a graph; however, the algorithm in

[26] contains an error. Hsu be Ramachandrsn [11]
gave a corrected linear time sequential algorithm. An
0(log2 n} time parallel algorithm on an EREW PRAM

' using a linear number of processors for finding a small-

70

est augmentation to biconnect an undirected graph
was also given in Hsu be Ramachandran [11], where
n is the number of vertices in the input graph. (For
more on the PRAM model and PRAM algorithms, see
[211-)

For finding a smallest triconnectivity augmenta-
tion, Watanabe & Nakamura [33, 35] gave an O(n(n+
m)') time sequential algorithm for a graph with n ver-
tices and m edges. Hsu & Ramachandran [10, 12]
developed a linear time algorithm and an 0(log7 n)
time BREW parallel algorithm using a linear num-
ber of processors for this problem. We have been in-
formed that independently, Jordan [15] gave a linear
time algorithm for optimally triconnecting a bicen-
nected graph.

For finding a smallest lc-connectivity augmentation,
for an arbitrary 1:, there is no polynomial time algo-
rithm known for finding a smallest augmentation to
h-connect a graph, for k > 3. There is also no efii-
cient parallel algorithm known for finding a smallest
augmentation to k-connect any nontrivial graph, for
I: > 3.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1351 of 1442

The above results are for augmenting undirected

graphs. For augmenting directed graphfi. MMHMWB.
Hagihara «ls Tolrura [23] gave an optimal-time sequen-
tial algorithm for finding a smallest augmentation to
I:-connect a rooted directed tree. for an arbitrary k.
We are unaware of any results for finding a small-
est augmentation to E-connect any nontrivial directed
graph other than is rooted directed tree, for k > 1.

Other related results on finding smallest vertex-

connectivity augrnentations are stated in [4, 19].

Edge-Connectivity Augrnentations
For the prohlern of finding a smallest augmentation for
a graph to reach a given edge connectivity property,
several polynomial time algorithms and efficient paral-
lel algorithm are known. These results can be found
in [1, 3, 4, 5, 8, 9, 13. 15. 19. 24, 27, 30. 31, 34, 37].

Augmenting a Weighted Graph
Another version of the problem is to augment a graph,
with a weight assigned to each edge, to meet a connec-
tivity requirement using a set of edges with a minimum
total cost. Several related problems have been proved
to be NP-complete. These results can be found in
[3, 5, 7, 20. 22. 32, 33. 36].
Our Result

In this paper, we describe a sequential algorithm for
optimally four-connecting a triconnected graph. We
first present a lower bound for the number of edges
that must be added in order to reach four-connectivity.
Note that lower bounds different from the one we give
here are known for the number of edges needed to bi-
connect a connected graph [3] and to triconnect a bi-
connected graph [10]. It turns out that in both these
cases, we can always augment the graph using ex-
actly the number of edges specified in this above lower
bound [3, 10]. However, an extension of this type of
lower bound for four-connecting a triconnected graph
does not always give us the exact number of edges

' needed [15, 17]. (For details and examples, see Sec-
tion 3.)

We present a new type of lower bound that equals
the exact number of edges needed to four-connect a tri-
connected graph. By using our new lower bound, we
derive an 0(na(m, n) + m) time sequential algorithm
for finding a smallest set of edges whose addition four-
connects a triconnected graph with n vertices and m

edges, where a(m. n) is the inverse Acl:ermann's func-
tion. Our new lower bound applies for arbitrary k,

and gives a tighter lower bound than the one known
earlier for the number of edges needed to k-connect a

(k — 1)-connected graph. The new lower bound and
the algorithm described here may lead to a better un-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1351 of 1442

7|

derstanding of the problem of optimally k-connecting
a (k — 1)-connected graph, for an arbitrary k.

2 Definitions

We give definitions used in this paper.

Vertex-Connectivity

A graph‘ G with at least k+ l verticm is k-connected,
k 2 2, if and only if G is a complete graph with I: + 1
vertices or the removal of any set of vertices of cardi-
nality less than k does not disconnect G. The vertex-
connectivity of G is k if G is I:-connected, but not
(k + l)-connected. Let U be a minimal set of ver-
tices such that the resulting graph obtained from G
by removing U is not connected. The set of vertices
ll is a separating I:-set. If W] = 3, it is a separating
triplet. The degree of a separating I:-set S, d(S). in a
E-connected graph G is the number of connected com-
ponents in the graph obtained from G by removing 8.
Note that the degree of any separating I:-set is 2 2.

Wheel and Flower

A set of separating triplets with one common vertex c
is called a wheel in [18]. A wheel can be represented
by the set of vertices {c} U {so,s1,...,s,_1} which
satisfies the following conditions: (1') q > 2; (ii) Vi st
1', {c, u,s,} is a separating triplet except in the case
that j = ((i + 1) mod q) and (s.-,s,-) is an edge in G;
(iii) c is adjacent to a vertex in each of the connected
components created by removing any of the separating
triplets in the wheel; (iv) Vj ;£ (i+1) mod q, {c,‘s,, s,-}
is a degree-2 separating triplet. The vertex c is the
center of the wheel [18]. For more details, see [18].

The degnee ofawheel W = {c}U {so, 51, . . . ,s,-1},
d(W), is the number of connected components in
G — {c,sg, . . . , s,-,} plus the number of degre&3 ver-
tices in {sg,s;, . ..,s,-;} that are adjacent to c. The
degree of a wheel must be at least 3. Note that
the number of degree-3 vertices in [sg,s1, ...,s,_;}
that are adjacent to c is equal to the number of sep-
arating triplets in {(e,u.a,(.-+2) mod ,) | 0 5 1' <
q, such that s(,-.,,;) ,,,.d , is degree 3 in G}. An ex-
ample is shown in Figure l.

A separating triplet with degree > 2. or not in a
wheel is called a flower in [18]. Note that it is possible
that two flowers of degre¢.~2 fl = {am | 1 g g‘ 3 3}
and f; = {G2_.' I 1 _<_ is 3} have the property that Va’,
1 5 i 5 3, either a1_,- = a-,»_.- or (a;_.-, a;.,-) is an edge
in G. We denote ffkfg if f, and [3 satisfy the above

‘Graphs refer to undirected graphs throughout this paper
unlus specified otherwise. ‘

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1352 of 1442

Figure 1: Illustrating a wheel {7} U {l,2,3,4,5,6}.
The degree of this wheel is 5, i.e. the number of com-
ponents we got after removing the wheel is 4 and there
is one vertex (vertex 5) in the wheel with degree 3.

condition. For each flower f, the flower cluster 7-"; for
f is the set of flowers (fa. . . . ,f.} (including f) such
that f'Rf;, V1‘, 1 5 i 5 2.

Each of the separating triplets in a triconnected
graph G is either represented by a flower or is in a
wheel. We can construct an O(n)-space representation
for all separating triplets (i.e. flowers and wheels) in
a triconnected graph with n vertices and m edges in
0(na(m, n) + m) time [18].
K-Block

Let G = (V, E) be a graph with vertex-connectivity
k - 1. A I.--black in G is either (i) a minimal set of
vertices Bin a separating (k -1)-set with exactly k -1
neighbors in V\B (these are special k-blocks) or (ii) a
maximal set of vertices B such that there are at least

k vertex-disjoint paths in G between any two vertices
in 8 (these are non-special I:-blocks). Note that a set
consisting of a single vertex of degree k - 1 in G is a k-
block. A I:-black leafin G is a k-block B; with exactly
k — 1 neighbors in V\B;. Note also that every special
I:-block is a b-block leaf. If there is any special 4-block
in a separating triplet S, d(S) 5 3. Given a non-
special k-bloclr 8 leaf, the vertice in B that are not
in the flower cluster that separates B are demanding
verticeo. We let every vertex in a special 4-block leaf
be a demanding vertex.

Claim 1 Every non-special I:-block leaf contains at
least one demanding vertex. , El

Using procedures in [18], we can find all of the 4-block
leave in a triconnected graph with n vertice and m
edges in 0(na(m, n) + m) time.
Four-Block '11-ee

From [18] we know that we can decompose vertices in
a triconnected graph into the following 3 type: (1')
4-blocks; (ii) wheels; (iii) separating triplets that are

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1352 of 1442

72

Figure 2: Illustrating a triconnected graph and its 4-
blk(G). We use rectangle, circle and two concen-
tric circle to represent R-vertice, F‘-vertice and W-
vertice, respectively. The vertex-numbers beide each
vertex in 4-blE(G) repreent the set of vertices corre-
sponding to this vertex.

not in a wheel. We modify the decomposition tree

in [18] to derive the four-block tree 4-bIl:(G) for a
triconnected graph G as follows. We create an R-
vertcx for each 4-block that is not special (i.e. not
in a separating set or in the center of a wheel), an
F-vertex for each separating triplet that is not in a
wheel, and a W-vertex for each wheel. For each wheel
W = {c} U {so,s;,...,s,_1}, we also create the fol-
lowing vertices. An F-vertex is created for each sep-
arating triplet of the form {c,s;,s(;+;) mod ,} in W.
An R-vertex is created for every degree-3 vertex s in

{so,s;, . . ., s,-;] that is adjacent to c and an F-vertex
is created for the three vertices that are adiacent to
0. There is an edge between m F-vertex f and an R-
vertex r if each vertex in the separating triplet corre-
sponding to f is either in the 4-block H. correpond-
ing to r or adjacent to a vertex in H... There is an
edge between an F-vertex f and a W-vertex to if the
the wheel correponding to :1: contains the separat-
ing triplet corresponding to f. A dummy R-vertex is
created and acliacent to each pair of flowers fl and
f; with the properties that fl and f; are not already
connected and either fl 6 T1,, 1'; 6 .7), (i.e. their
flower clusters contain each other) or their correspond-
ing separating triplets are overlapped. An example of
a 4-block tree is shown in Figure 2.

Note that a degreel R-vertex in 4-bIk(G) corre-
sponds to a 4-block leaf, but the reverse is not nec-
esarily true, since we do not represent some special
4-block leave and all degree-3 vertices that are cen-
ters of wheels in 4-blk(G). A special 4-block leaf {:2},
where u is a vertex, is represented by an R-vertex in
4-blk(G) if v is not the center of a wheel to and it is in
one of separating triplets of w. The degree of a flower
F in G is the degree of its corresponding vertex in
4-bIk(G). Note also that the degree of a wheel W in

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1353 of 1442

G is equal to the number of components in 4-bUr(G)
by removing its corresponding W-vertex w and all F-
vertiees that are adjacent to w. A wheel W in G is
a star wheel if d(W) equals the number of leaves in
4—blIc(G) and every special 4-block leaf in W is either
adjacent to or equal to the center. A star wheel W
with the center c has the property that every 4-block
leaf in G (not including {c} if it is a 4-block leaf) can
be separated from G by a separating triplet containing
the center c. if G contains a star wheel W, then W
is the only wheel in G. Note also that the degree of a
wheel is less than or equal to the degree of its center
in G.

K-connectivity Augmentation Number
The I:-connectivity augmentation number for a graph
G is the smallest number of edges that must be added
to G in order to E-connect G.

3 A Lower Bound for the Four-

Connectivity Augmentation Num-
ber

In this section, we first give a simple lower bound
for the four-connectivity augmentation number that
is similar to the ones for biconnectivity augmentation

[3] and triconnectivity augmentation [10]. We show
that this above lower bound is not always equal to
the tour-connectivity augmentation number [15, 17].
We then give a modified lower bound. This new lower
bound turns out to be the exact number of edges that
we must add to reach four-connectivity (see proofs in

Section 4). Finally, we show relations between the two
lower bounds.

3.1 A Simple Lower Bound

Given a graph G with vertex-connectivity k — 1, it
is well known that max{ ,d — 1} is a lower bound
for the k-connectivity augmentation number where lg
is the number of E-block leave in G and d is the maxi-

mum degree among all separating (k -1)-sets in G
It is also well known that for k = 2 and 3, this lower
bound equals the k-connectivity augmentation num-

ber [3, 10]. For E = 4, however, several researchers
[15, 17] have observed that this value is not always
equal to the tour-connectivity augmentation number.
Examples are given in Figure 3. Figure 3.(1) is from
[15] and Figure 3.(2) is from Note that if we ap-
ply the above lower bound in each of the three graphs
in Figure 3, the values we obtain for Figures 3.(1),

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR

Ex. 1102, p. 1353 of 1442 ’

73

ll) (1) (3)

Figure 3: Illustrating three graphs where in end:
case the value derived by applying a simple lower
bound does not equal its four-connectivity augmen-
tation number.

3.(2) and 3(3) are 3, 3 and 2, respectively, while we
need one more edge in each graph to four-connect it.

3.2 A Better Lower Bound

Notice that in the previous lower bound, for every

separating triplet S in the triconnected graph G =
{V, E}, we must add at least d(S) — 1 edges between
vertices in V \S to four-connect G, where d($) is the
degree of S (i.e. the number of connected components
in G — 8); otherwise, S remains a separating triplet.
Let the set of edges added be A15. We also notice
that we must add at least one edge into every 4-block
leaf 8 to four-connect G; otherwise, B remains a 4-
block leaf. Since it is possible that S contains some
4-block leaves, we need to know the minimum number
of edges needed to eliminate all 4-block leaves inside
5. Let the set of edges added be A13. We know that

A1,: 0 A2,: = 9. The previous lower bound giva a
bound on the cardinality of .415, but not that of .Ag_5.
In the following paragraph, we define a quantity to
measure the cardinality of A15.

Let Q; be the set of special 4-block leaves that are
in the separating triplet S of a triconnected graph G.
Two 4-block leave 31 and B; are adjacent if there is

an edge in G between every demanding vertex in B1
and every demanding vertex in 81. We create an aug-
menting graph for 8, 9(8), as follows. For each special
4-block leaf in Q5, we create a vertex in 9(8). There

is an edge between two vertices U1 and V3 in GL5) if
their corresponding 4-blocks are adjacent. Let 9(5)
be the complement graph of G(S). The seven types of
augmenting graphs and their complement graphs are
illustrated in Figure 4.

Definition 1 The augmenting number a(S) for a

separating tripIetS in a triconnected graph i.s_tIIinum-
ber of edges in a maximum matching M afg($) plus
the number of vertices that have no edges in M inci.
dent on them.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1354 of 1442

-an-MN . 0 0 0--0 0 0 We now give a better lower bound on the 4-
"“ . connectivity augmentation number for a triconnected

graph.

emu-nun 0 °-—° 0 0 ‘T’ Lemma 1 We need at least max(lc(G), dc(G),
°""" we(G)} edges to four-connect a triconuected graph G.

3:“? 1 1 2 2 P311 Let A be a set of edges such that G’ = GUA is
m Q m M four-connected. For each 4-block leaf B in G, we need

one new incoming edge to a vertex in B; otherwise
B is still a 4-block leaf in G’. This gives the first
component of the lower bound.

T. For cad: separating triplet S in G, G — 5 contains:,"§',',,"‘""° .\~o . .\°/O d(S) connected components. We need to add at least
d(S) — 1 edges between vertices in G — 8, otherwise 5
is still a separating triplet in G’. In addition to that,

._7. o—-——-0 9 . ° we need to add at least a(S) edges such that at least
3,3?“ ° one of the two end points of each new edge is in 5;

otherwise S contains a special 4-block leaf. This gives

W 2 3 3 the second term of the lower bound.
(5? "l ‘7’ Given the star wheel W with the center e, 4-blIc(G)

Figure 4: Illustrating the seven types of augment-
ing graphs, their complement graphs and augmenting
numbers that one can get for a separating triplet in a
triconnected graph.

The augmenting numbers for the seven typa of aug-
menting graphs are shown in Figure 4. Note that in a
triconnected graph, each special 4-block leaf must re
eeive at least one new incoming edge in order to four-
connect the input graph. The augmenting number
a(S) is exactly the minimum number of edges needed
in the separating triplet S in order to four-connect the
input graph. The augmenting number of a separating
set that does not contain any special 4-block leaf is 0.
Note also that we can define the augmenting number

a(C) for a set C that consists of the center of a wheel
using a similar approach. Note that o(C) 5 1.

We need the following definition.

Definition 2 Let G be a triconnected graph with I 4-

block leaves. The leaf constraint of G, Ic(G), a. [9,
The degree constraint of a separating triplet S in
G, dc($), is d(S) - l + a(S), where d(S) is the de-
gree ofS and a(S) is the augmenting number of S.
The degree constraint of G, dc(G), is the maximum
degree constmint among all separating triplets in G.
The wheel constraint of a star wheel W with center

c in G, wc(W), is f5‘-lg-1] +a({c}), when d(W) is the
degree ofW and a({c}) is the augmenting number of
{c}. The wheel constraint of G, wc(G), is 0 if then is
no star wheel in G; otherwise it is the wheel constraint
of the star wheel in G.

74

contains exactly d(W) degree-1 R-vertica. Thus we
need to add at least 5‘-“Q edges between vertices in2

G—{c}; otherwise, G’ contains some 4-block leaves. In

addition to that, we need to add a({c}) nodn-self-loo};edges such that at least one of the two en points 0
each new edge is in {e}; otherwise {c} is still a special
4-block leaf. This gives the third term of the lower

bound. _ D

3.8 A Comparison of the Two Lower
Bounds

We first observe the following relation between the
wheel constraint and the leaf constraint. Note that if

there exists a star wheel W with degree d(W), there
are exactly d(W) _4-block leaves in G if the center is
not degree-3. If the center of the star wheel is degree-
3, then there are exactly d(W) + 1 4-block leaves in
G. Thus the wheel constraint is greater than the leaf
constraint if and only if the star wheel has a degree-3_
center. We know that the degree of any wheel is less
than or equal to the degree of its center. Thus the
value of the above lower bound equals 3.

We state the following claims for the relations be
tween the degree constraint of a separating triplet and
the leaf constraint.

Claim 2 Let S be a separating triplet with degree d(5)
and h special 4-block leaves. Then there are at least
h + d(S) 4-block leaves in G. D

Claim 3 Let {a;,a;,a3} be a separating triplet in a
triconnected graph G. Then a.-, 1 5 i S 3, is in-
cident on a vertex in every connected component in
G-{a1,ag,a3}. . U

’ IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1354 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1355 of 1442

Corollary 1 The degree of a separating triplet S is
no more than the largest degree among all vertices in
S. D

From Corollary 1, we know that it is not possible that
a triconnected graph has type (6) or type (7) of the
augmenting graphs as shown in Figure 4, since the
degree of their underling separating triplet is 1. We
also know that the degree of a separating triplet with
a special 4-block leaf is at most 3 and at least 2. Thus
dc(S) is greater than d(S) — 1 if dc(S) equals either 3
or 4. Thus we have the following lemma.

Lemma 2 Let low1(G) be the lower bound given in
Section 3.1 for a triconnected graph G and let low2(G)
be the lower bound given in Lemma 1 in Section 3.2.

(i) Iow1(G) = Iow2(G) if Iow2(G) at {3.4}- (ii)
low2(G) — low1(G) E {0. 1}. C1

Thus the simple lower bound extended from biconnec—
tivity and triconnectivity is in fact a good approxima-
tion for the four-connectivity augmentation number.

4 Finding a Smallest Four-
Connectivity Augmentation for a

Triconnected Graph

We first explore properties of the 4-block tree that
we will use in this section to develop an algorithm for

finding a smallest 4-connectivity augmentation. Then
we describe our algorithm. Graphs discussed in this
section are triconnected unless specified otherwise.

4.1 Properties of the Four-Block Tree

Massive Vertex, Critical Vertex and Balanced
Graph
A separating triplet S in a graph G is massive if
dc(S) > Ic(G). A separating triplet S in a graph G
is critical if dc(S) = lc(G). A graph G is balanced if
there is no massive separating triplet in G. If G is bal-
anced, then its 4-bll:(G) is also balanced. The following
lemma and corollary state the number of massive and
critical vertica in 4-blk(G).

Lemma 3 Let 5,, S3 and 53 be any three separating
triplets in G such that there is no special 4-block in

S,-n5,-,1gi<j5 3. E?=1dc(S;) S l+l, wherel
is the number of 4-block leaves in G.
Proof: G is triconnected. We can modify 4-bll.-(G)
in the following way such that the number of leaves in
the resulting tree equals l and the degree of an F-node
f equals its degree constraint plus 1 if f corresponds

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1355 of 1442

75

to S.-, 1 5 i 5 3. For each W-vertex iv with adegree-3
center c, we create an R-vertex r‘ for c. an F-vertex I.
for the three vertices that are adjacent to c in G. We
add edges (w,f,) and (f.,r.,). Thus r, is a leaf. For
each F-vertex whose corraponding separating triplet
8 contains h special 4-block leaves, we attach a(S)
subtrees with a total number of It leaves with the com

straint that any special 4-block that is in more than
one separating triplet will be added only once (to the
F-node corresponding to S.-, 1 g i 3 3, if possible).
From Figure (we know that the number of special
4-block leaves in any separating triplet is greater than
or equal to its augmenting number. Thus the above
addition of subtrees can be done. Let 4-bll:(G)’ be
the resulting graph. Thus the number of leaves in 4-

bll.'(Cv')' is I. Let f be an F-node in 4-bllc(G)’ whose
corresponding separating triplet is S. We know that
the degree off equals dc(S)+1 ifS 6 {S.' I l 3 is 3}.
It is easy to verify that the sum of degrees of any three
internal vertices in a tree is less than or equal to 4 plus
the number of leaves in a tree. D

Corollary 2 Let G be a graph with more than two
non-special 4-block leaves. (i) Then: is at most one
massive F-vertex in I-blk(G). (ii) If there is a mas-
sive F-vertez, there is no criticalF-vertex. (iii) There
are at most two critical F~vertices in 4'-blle(G). 0

Updating the Four-Block ‘IX-ee
Let v.- be a demanding vertex or a vertex in a special
4-block leaf, i E {l, 2}. Let B.- be the 4-block leaf that
contains v,~, ie {1,2}. Let b.-, i 6 {L2}, be the vertex
in 4-bll:(G) such that if v; is a demanding vertex, then
b.- is an R-vertex whose corresponding 4-block contains
12,-; if u.- is in a special 4-block leaf in a flower, then b.-
is the F-vertex whose corresponding separating triplet
contains u,-; if v.- is the center of a wheel to, b; is the F'-

vertex that is closet to b(,- ma 3).” and is adjacent to
w. The vertex b.- is the implied vertex for B.-, i 6 {1, 2}.-
The implied path P between B; and B; is the path in 4-
blk(G) between b1 and b3. Given 4-blk(G) and an edge
(vhvg) not in G, we can obtain 4-bll.'(G'U {(u1,v;)})
by performing local updating operations on P. For
details, see [18].

In summary, all 4-blocks corresponding to R-
vertices in P are collapsed into a single 4-block. Edges
in P are deleted. F-vertices in P are connected to the

new R—vertex created. We crack wheels in a way that
is similar to the cracking of a polygon for updating
3-block graphs (see [2, 10] for details). We say that
P is non-adjacent on a wheel W, if the cracking of
W creates two new wheels. Note that it is possible
that a separating triplet S in the original graph is no

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1356 of 1442

longer a separating triplet in the resulting graph by
adding an edge. Thus some special leaves in the orig-
inal graph are no longer special, in which case they
must be added to 4-blk(G).

Reducing the Degree Constraint of a Separat-
ing Iriplet
We know that the degree constraint of a separating
triplet can be reduced by at most 1 by adding a new
edge. From results in [18], we know that we can re-
duce the degree constraint of a separating triplet S
by adding an edge between two non-special 4-block
leaves 8; and B: such that the path in 4-blk(G) be
tween the two vertices corresponding to B; and 82
passes through the vertex corresponding to S. We
also notice the following corollary from the definitions
of 4-bllc(G) and the degree constraint.
Corollary 3 Let 5 be a separating triplet that con-
tains a special 4—blocl: leaf. We can reduce dc(S) by
1 by adding an edge between two special J-block leaves
8; and B; in S such that 31 and B2 are not adjacent.

(ii) If we add an edge between a special J-block leaf
in S and a .{-block leafB not in S, the degree con-
straint of every separating triplet cornesponding to an
internal vertex in the path of4-blk(G) between vertices
corresponding to S and B is reduced by 1. 0

Reducing the Number of Four-Block Leaves
We now consider the conditions under which the

adding of an edge reduces the leaf constraint lc(G)
by 1. Let real degree of an F-node in 4-blk(G) be 1
plus the degree constraint of its corresponding sepa-
rating triplet. The real degree of a W-node with a
degrec~3 center in G is 1 plus its degree in 4-bII:(G).
The real degree of any other node is equal to its degree
in 4-bl}.-(G).

Definition 3 (The Leaf-Connecting Condition)
Let B; and 83 be two non-adjacent 4-block leaves in
G. Let P be the implied path between B; and B3 in {-
blIc(G). Two 4-block leaves 81 and B3 satisfy the leaf-
connecting condition ifat least one ofthe following
conditions is true. There are at least two vertices
of real degree at least 3 in P. (ii) There is at least
one R-vertex of degree at least 4 in P. (iii) The path
P is non-adjacent on a W-vertex in P. (iv) There is
an internal vertex of real degree at least 3 in P and at
least one of the .{-block leaves in {B1, B2} is special.
(U) B; and B3 are both special and they do not share
the same set of neighbors.
Lemma 4 Let B; and B; be two 4-block leaves in
G that satisfy the leaf-connecting condition. We can
find vertices v.- in B.-, i 6 {1,2}, such that lc(GU
{(u;,v3)}) .: lc(G) — 1, iflc(G') 2 2. D

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1356 of 1442

76

4.2 The Algorithm

We now describe an algorithm for finding a smallest
augmentation to four-connect a triconnected graph.
Let 6 = dc(G) — lc(G). The algorithm first adds 26
edges to the graph such that the resulting graph is
balanced and the lower bound is reduced by 26. If

lc(G) g6 2 or wc(G) at 3, there is no star wheel with
a degree-3 center. We add an edge such that the de-
gree constraint dc(G) is reduced by 1 and the number
of 4-block leaves is reduced by 2. Since there is no
star wheel with a degree-3 center, wc(G) is also re-
duced by 1 if wc(G) = lc(G). The resulting graph
stays balanced each time we add an edge and the
lower bound given in Lemma 1 is reduced by 1. If
lc(G) = 2 and wc(G) = 3, then there exists a star
wheel with a degree-3 center. We reduce wc(G) by 1
by adding an edge between the degree-3 center and a
demanding vertex of a 4-block leaf. Since lc(G) : 2
and wc(G) = 3, dc(G) is at most 2. Thus the lower
bound can be reduced by 1 by adding an edge. We
keep adding an edge at a time such that the lower
bound given in Lemma 1 is reduced by 1. Thus we
can find a smallest augmentation to four-connect a
triconnected graph. We now describe our algorithm.

The Input Graph is not Balanced
We use an approach that is similar to the one used
in biconnectivity and triconnectivity augmentations to
balance the input graph [10, 11, 26]. Given a tree T
and a vertex v in T, a v-chain [26] is a component
in T - {:2} without any vertex of degree more than
2. The leaf of T in each v-chain is a v-chain leaf[26].
Let 6 = dc(G) -— lc(G) for a unbalanced graph G and
let 4-bll:(G)’ be the modified 4—block tree given in the
proof of Lemma 3. Let f be a massive F—vertex. We
can show that either there are at least 26+ 2 f-chains

in 4-blk(G)’ (i.e. f is the only massive F-vertex) or
we can eliminate all massive F-vertica by adding an
edge. Let A; be a demanding vertex in the ith f-chain
leaf. We add the set ofedges {(1\;,¢\.'+1) | 1 3 i _<_ 26].
It is also easy to show that the lower bound given in
Lemma 1 is reduced by 26 and the graph is balanced.

The Input Graph is Balanced
We first describe the algorithm. Then we give its proof
of correctness. In the description, we need the follow-

ing definition. Let B be a 4-block leaf whose implied
vertex in 4-blk(G) is b and let 3' be a 4-block leaf
whose implied vertex in 4-bll:(G) is b’. B’ is a nearest
4-block leaf of B if there is no other 4—block leaf whose

implied vertex has a distance to b that is shorter than
the distance between b and b’.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1357 of 1442

In G is triconnected with 2 5 vertices; the algorithm finds 7. let u; and u; be two non-special 4-block leaves such
a srnallst four-connectivity augmentation. c} that the implied path between them is
graph function aug3to4(g1-aph G); non-adjacent on v
{t The algorithmic notation used is from Tarjan [29]. 0} I 3 only one vertex v in T with real degree 2 3 —~

T := 4-blk(G); root T at an arbitrary vertex; {o T is a star with the center v. a}
let l he the number of degree-1 R-vertices in T; 8. find a nearest vertex :0 of u that contains a 4-blodr
do 3 a 4—hlock leaf in G - leaf 01;

if 3 a degree; center c -- let m’ be a nearest vertex of w containing a 4-block
1. if lc(G) = 2 and wc(G) = 3 —o leaf non-adjacent to vi:

{a Vertex c is the center of the star wheel 1». 0) find two 4-bloclr leaves an and in whose implied
u; := the 4-bloclr leaf {c}; path passes through to. 10' and v '
let u; be a a non-special 4—hlock leaf {o The above step can always be done, since T is a

I 3 another degree-3 center c’ non-adjacent to c -- star. t}
let u; be the 4-block leaf {c'} In Note that T is path for all the cases below. o}

I 3 a special 4-block leaf b non-adjacent to In - I 3 two non-adjacent special 4-block leaves in one
let u, := b separating triplet S -o

I ll (degree-3 center or special 4-block leaf) 9. let cu and u; be two non-adjacent special 4—block
non—adjacent to U] -0 leaves in 5

let ll: be a a 4-block leaf such that 3 an internal I 3 a special 4~bloclr leaf in —~

vertex with real degree 2 3 in their implies path 10. find a nearest non-adjacent 4-block leaf in
fl I l = 2 —o

I lc(G') ¢ 2 or wc(G) gt 3 —~ let u; and u; be thetwo 4-block leaves
ifl-> 2 and 3 2 critical F-vertices f; and fa — corresponding to the two degree! R-vertices in T

2. find two non-special 4-block leaves u; and In such ii
that the implied path between them passes through fl;
f; and [3 let ya. i E (1, 2}, be a demanding vertex in u.- such that

I l > 2 and 3 only one critical F-vertex I; —- (y.,y;) is not an edge in the current G;
if3 two non-adjacent special 4-block leaves in the G := G U {(y1,y;)};
separating triplet 51 corresponding to /'1 —v update T, l-, lc(G), wc(G) and dc(G')

3. let In and u; be two non-adjacent 4-blod: leaves od; ' ‘
in S. return 0

I E two non-adjacent special 4-block leaves in the end aug3to4;
separating triplet 8; corresponding to I; -3

1- let 0 be a vertex with the largest real degree Before we show the correctness of algorithm
among all vertices in T besides fr; aug3to4, we need the following claim and corollaries.
if real degree of v in T 2 3 —~ _ _

find we nomspedal 4_bl°Ck leaves “I and "2 Cllann 4 [26] If 4-blk(G) contains two critical ver-
wch an‘ the implied Pam between them trees [1 and fa, then every leafis either in an fl-chain _
pm” thmngh fl and U or in an fa-chain and the degree of any other vertez

n in 4-bllc(G) is at most 2. 0
Th h h d f i T 3 will , , , ,

£2 ha:d:;ei:s::pt8_e‘}e8“e O 0 m < Corollary 4 If]-bIl:(G) contains two cntxcal vertices
fl fl and f; and the corresponding separating triplet 5;,

i 6 {1,2}, of f.- contains a special 4-block leaf, then
I 3 two ye"-Ices U‘ and W with real degree 2 3 -. its augmenting number equals the number of special

5. find two non-special 4-block leaves u. and ug such ‘ block I . .1 D
that the implied path between them passes aw“ in i '
‘l“°\13l* "1 Md "2 Corollary 5 Let f; and f; be two critical F-vertices

l 3 3“ R"’°“°x V 0‘ degree 2 4 -' in J-bll'(G'). If the number of degree-1 R-uertices in
5- find “V0 11°“°8P€ClB1 4-bl°Cl‘ 18”” "1 ind 0: “Ch 4-bll:(G') > 2 and the corresponding separating triplet

‘hat ll“! implied Pill‘ bclweefl ‘hem P8385 off.-, 1' 6 {L2}, contains a 4-block leafB.-, we can add
‘l“’°“8h ” an edge between a vertex in B1 and a vertex in B2 to

l 3 5 W'V="€X V 0‘ d°8l’¢€ Z 4 -' reduce the lower bound given in Lemma 1 by 1. C!

77

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1357 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1358 of 1442

Thaoreml Algorithm augfiol adds the smallest
number of edges to four-connect a triconnected graph.0

We now describe an eflicient way of implementing

algorithm aug3to4. The 4-block tree can be computed
in O(na(m, n) + m) time for a graph with n verticea
and m edges [18]. We know that the leaf constraint,
the degree constraint of any separating triplet and the
wheel constraint of any wheel in G can only be de-
creased by adding an edge. We also know that lc(G),
the sum of degree constraints of all separating triplets
and the sum of wheel constraints of all wheels are all

0(n). Thus we can use the technique in [26] to main-
tain the current leaf constraint, the degree constraint

for any separating triplet and the wheel constraint for
any wheel in O(n) time for the entire execution of the
algorithm. We also visit each vertex and each edge
in the 4-block tree a constant number of times before

deciding to collapse them. There are 0(n) 4-block
leaves and O(n) vertices and edges in 4-bll:(G). In
each vertex. we need to use a set-union-find algorithm
to maintain the identities of vertiees after collapsing.
Hence the overall time for updating the 4-block tree
is 0(na(n, We have the following claim.
Claim 5 Algorithm aag3toJ can be implemented in
O(na(m,n)+m) time when n and m are the number
of uertices and edges in the input graph, respectively
and a(m, n) is the inverse Acl:ermann's function. 0

5 Conclusion

We have given a sequential algorithm {or find-
ing a smallest set of edges whose addition four-
connects a triconnected graph. The algorithm runs

in O(na(m, n) + m) time using 0(n + m) space. The
following approach was used in developing our algo-
rithm. We first gave a 4-block tree data structure for
a triconnected graph that is similar to the one given in
[18]. We then described a lower bound on the small-
est number of edges that must be added based on the
4-block tree of the input graph. We further showed
that it is possible to decrease this lower bound by 1
by adding an appropriate edge.

The lower bound that we gave here is different from
the ones that we have for biconnecting a connected

graph [3] and for triconnecting a biconnected graph
[10]. We also showed relations between thee two
lower bounds. This new lower bound applim for arbi-

trary 1:, and gives a tighter lower bound than the one
known earlier for the number of edges needed to k-
connect a (k - 1)-connected graph. It is likely that

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1358 of 1442

78

techniques presented in this paper may be used in
finding the h-connectivity augmentation number of a
(E - 1)-connected graph, for an arbitrary E.

Acknowledgment

We would like to thank Vijaya Ramachandran for

helpful discussions and comments. We also thank Ti-
bor Jordan, Arkady Kanevsky and Roberto Tarnassia
for useful information.

References

[1] G.-R. Cai and Y.-G. Sun. The minimum augmenta-
tion of any graph to a k-edge-connected graph. Net-
works, 19:151-172, 1989.

G. Di Battista and R. 'l\masaia. On-line graph al-
gorithms with spqr-trees. In Proc. 17th Int’! Conf.
on Automata, Language and Pnogrumming, volume
LNCS # 443. Pages 598-611. Springer-Verlag, 1990.

[2]

K. P. Eswaran and R. E. Thrjan. Augmentation prob
lems. SIAM J. Comput., 5(4):653-665, 1976.

[3]

D. Ferntndez-Baca and M. A. Augmen-
tation prohlems on hierarchically defined graphs. In
1989 Workshop on Algorithms and Data Structures,
volume LNCS # 382. pages 563-576. Springer-Verlag,
1989.

A. Frank. Augmenting graphs to meet edge-
connectivity requirements. In Proc. 81th Annual
IEEE Symp. on Foundation: of Camp. Sco'., pages
708-718, 1990.

[5]

R. Frank and W. Chou. Connectivity considerations
in the design of survivable networks. IEEE Trans. on
Circuit Theory, CT-lT(4):486—490. December 1970.

[5]

[1] G. N. Fredericlrson and J. Ja‘Ja'. Approximation al-
gorithms for several graph augmentation prohlerns.
SIAM J. Comput., 10(2):270—283, May 1981.

[8] H. N. Gabow. Applications of a poaet representation
to edge connectivity and graph rigidity. In Proe. 82th
Annual IEEE Symp. on Foundations of Comp. Sci.,
pages 812-821, 1991.

[9] D. Gnsfield. Optimal mixed graph augmentation.
SIAM J. Comput., l6(4):599-612, August 1987.

[10] T.-s. Han and V. Ramachandran. A linear time algo-
rithm for trioonnectivity augmentation. In Proc. .9201
Annual IEBE Sump. on Foundations of Comp. Sci.,
pages 548-559, 1991.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1359 of 1442

[11] T.-s. Han and V. Ramachandran. On finding a small-
est augmentation to hiconnect a graph. In Proceed-
ings of the Second Annual Int’l Symp. on Algorithms.
volume LNCS #557. pages 326435. Springer-Verlag,
1991. SIAM J. Comput.. to appear.

[12] T.-s. Hsu and V. Ramachandrau. An efficient
parallel algorithm for triconnectivity augmentation.
Manuscript, 1992.

[13] T.-s. Hsu and V. Ramachandran. Threeedge connec-
tivity augmentatione. Manuscript. 1992.

[14] S. P. Jain and K. Gopal. On network augmentation.
IEEE Tluru. on Reliability. R-35(5):541-543, 1986.

[15] T. Jordan. February 1992. Private communications.

[16] Y. Kajitani and S. Ueno. The minimum augmenta-
tion of a directed tree to a E-edge-connected directed
graph. Networh, 16:181-197. 1986.

[17] A. Kanevsky and R. Tamassia, October 1991. Privatecommunications.

[18] A. Kauevsky, R. Tamaasia, G. Di Battista, and
J. Chen. On-line maintenance of the four-connected
components of a graph. In Proc. 32th Annual IEEE
Symp. on Foundation: of Comp. Sci., pages 793-801.1991.

[19] G. Kant. Linear planar augmentation algorithms for
outexplanar graphs. Tech. Rep. RUU-CS-91-67, Dept.
of Computer Science. Utrecht University, the Nether-
lands. 1991.

G. Kant and H. L. Bodlaender. Planar graph aug-
mentation problems. In Proc. 2nd Workohop on
Data Structure: and Algorithms. volume LNCS #519,
pages 286-298. Springer-Verlag, 1991.

[20]

R. M. Karp and V. Ramachandran. Parallel al-
gorithms for shared-memory machines. In J. van
Leeuwen, editor. Handbook of Theoretical Computer
Science. pages 869-941. North Holland. 1990.

[21]

S. Khuller and R. Thurimella. Approximation al-

gorithms for graph augmentation. In Proc. 19th
Int’l Conf. on Automata, Language and Program-
ming, 1992. to appear.

[23]

T. Maauzawa. K. Hagihara. and N. Tokura. An opti-
mal time algorithm for the k-vertex-connectivity un-
weighted augmentation problem for rooted directed
trees. Discrete Applied Mathematics. pages 67-105,
1987.

D. Naor, D. Gusfield, and C. Martel. A fast algo-
rithm for optimally increasing the edgeconnectivity.
In Proc. 81th Annual IEEE Symp. on Foundations o]
Comp. ScI'., pages 698-701. 1990.

[23]

[24]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex.1102, p. 1359 of 1442

79

[25] V. Ramachandran. Parallel open ear decomposition
with applications to graph hiconnectivity and tricon-
nectivity. In J. H. Reif. editor, Synthesis of Parallel
Algorithms. Morgan-Kautmann, 1992. to appear.

A. Roscnthal and A. Goldner. Smallest augmen-
tation: to hiconnect a graph. SIAM J. Comput.
6(1):55-66, March 1977.

[25]

D. Soroker. I-‘ut parallel strong orientation of mixed
graphs and related augmentation problems. Journal
of Algorithms, 9:205—223, 1988.

[28] K. Steiglitz. P. Weiner. and D. J. Kleitman. The
design of minimum-cost survivable networks. IEEE
Tlvnna. on Circuit Theory, CT-16(4):455—460. 1969.

[29] R. E. ’I‘a.rjan. Data Structure: and Network Algo-
rithrru. SIAM Press, Philadelphia, PA, 1983.

[30] S. Ueno, Y. Kajitani. and H. Wada. Minimum aug-
mentation of a tree to a k-edgeconnected graph. Net-
works. 18:19-25, 1988.

[31] T. Watanabe. An efficient way for edge-connectivity
augmentation. Tech. Rep. ACT-76-UILU-ENG-87-
2221. Coordinated Science lab., University of Illinois,
Urbana. IL, 1987.

T. Watanabe. Y. Higaahi, and A. Nalramura. Graph
augmentation problems for a specified set of vertices.
In Proceedings of the {int Annual Int’l Symp. on Algo-
rithma, volurne LNCS #450, pages 378-387. Springer-
Verlag. 1990. Earlier version in Proc. 1990 Int’! Symp.
on Circuits and Systems, pages 2861-2864.

[27]

[33]

[33] T. Watanabe and A. Nakamura. On a smallest aug-
mentation to triconnect a graph. Tech. Rep. C-18,
Department of Applied Mathematim, faculty of En-
gineering, Hiroshima University, Higashi-Hiroshima.
724, Japan. 1983. revised 1987.

[34] T. Watanahe and A. Nalramura. Edgeconnectivity
augmentation problems. J. Comp. System Sc:'.,
35:96-144, 1987.

[35] T. Watanabe and A. Nahmura. 3—connectivity aug-
mentation problems. In Proc. of 1988 JEEE Int’l
Symp. on Circuits and Systems. pages 1847-1850,
1988.

T. Watanabe. T. Narita. and A. Nahamura. 3-edge-
connectivity augmentation problems. In Proe. o]1989
JEEE Int’l Symp. on Circuits and Swtema. pages
335-338, 1989.

T. Watanabe. M. Yamalmdo, and K. Onaga. A linear
time augmenting algorithm for 3—edg¢.-connectivity
augmentation problems. In Proc. of 1991 JEEE Int’l
Symp. on Circuits and Systems. pages 1168-1171,
1991.

I35!

[37]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1360 of 1442

~.

IEEE HOME I SEARCH IEEE

search Abstract

Membership

,IEEE Xplore:

Conlerence
Proceedings

O- Standards

O- Advanced

Member Services

0- Join IEEE

0- Establish IEEE
Web Account

O- Access the
IEEE Member

Digital Library

PubIicationslServlces

Page 1 of 2

I SHOP l WEB ACCOUNT I CONTACT IEEE ®lEEE

Standards Conferences Careers/Jobs

Welcome

United States Patent and Trademark Office
RELEASE 1.6

» Search Abst

DOWNLOAD CITATION

On four-connecting a triconnected graph
Hsu T.

Dept. of Comput. Sci., Texas Univ., Austin, TX , USA;
This paper appears in: Foundations of Computer Science, 1992. Proceedings.,
Annual Symposium on

Meeting Date: 10/24/1992 - 10/27/1992
Publication Date: 24-27 Oct. 1992

Location: Pittsburgh, PA USA

On page(s): 70 — 79
Reference Cited: 37

Inspec Accession Number: 4488295:—

Abstract:

The author considers the problem of finding a smallest set of edges whose addition f~
connects a triconnected graph. This is a fundamental graph-theoretic problem that h
applications in designing reliable networks. He presents an O(na(m,n)+m) time
sequential algorithm for four-connecting an undirected graph G that is triconnected l:
adding the smallest number of edges, where n and m are the number of vertices anc
edges in G, respectively, and o(m, n) is the inverse Ackermann function. He presents
new lower bound for the number of edges needed to four-connect a triconnected gra

The form of this lower bound is different from the form of the lower bound known for

biconnectivity augmentation and triconnectivity augmentation. The new lower bound
applies for arbitrary k, and gives a tighter lower bound than the one known earlier fc
number of edges needed to k-connect a (k-1)-connect graph. For k=4, he shows th
this lower bound is tight by giving an efficient algorithm for finding a set edges with '
required size whose addition four-connects a triconnected graph

Index Terms: .

computational complexity computational geometg four-connecting graph theogy graph-tmh_e_q

problem inverse Ackermann function reliable networks triconnected graph computational

complexity computational geometry four-connecting graph theory graph-theoretic problem
inverse Ackermann function reliable networks triconnected graph

Documents that cite this document

There are no citing documents available in IEEE Xplore at this time.

lPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,

EX-llvl93~/l‘te1=.§§?r9Fn‘r4é‘3eee.nr2/search/srchabstract.isp?amumber=2678 1 7&k2dockev=26781 7@ieeecnfs&q 1/2/04

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1361 of 1442

. ‘ sea_rch Abstract Page 2 of 2

Search Results IPDF FULL-TEXT 776 KB] PREV LIQI DOWNLOAD CITATION

ijgmg | Log-out [Journals | gonference Proceeding§| Standards | Search b Author |§ I .3,d_\I§g<:_e_<'l___S_e4a_r_(;l_i | Join IEEE |Wgb Agggunt | New this
week | OPAC Linking Information | Your Feedback | Technical Suggort | Email Alerting| No Robots Please | Release Notes | IEEE Online Publications | Helg |

FAQ| Terms 1 §_a_ck to_Igp_

Copyright © 2004 IEEE — All rights reserved

lPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,

Ex-l4i‘R?-flie‘e?é9:8lAf'é.2i eee.org/search/srchabstract.iso?arnumber=2678 1 7&k2dockey=2678 1 7(aD,ieeecnfs&q . .. 1/2/O4

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1362 of 1442

A Flexible Architecture for Multi-Hop Optical Networks‘

A. Jaekel, S. Bandyopadhyay

School of Computer Science,

University of Windsor,

Windsor, Ontario N9B 3P4, CANADA

Abstract

It is desirable to have low diameter logical topologies
for multihop liglttwave networks. Researchers have
investigated regular topologies for such ttetworks. Only a
few of these (e.g.. GEMNET I81) are scalable to allow the
addition of new nodes to an existing network. Adding new
nodes to such networks requires a major change in routing
scheme. For example, in a nrultistar irnplementation, a large
number of reruning of transmitters and receivers and/or
renumbering nodes are needed for [8]. In this paper. we
present a scalable logical topology which is not regular but
it has a low diameter. This topology is interesting since it
allows the network to be expanded indefinitely and new
nodes can be added with a relatively small change to the
network. In this paper we have presented the new topology.
an algorithm to add nodes to the network and two routing
schemes.

Keywords: optical networks. multihop networks. scalable
logical topology. low diameter networks.

1. Introduction

Optical networks [I] are interconnections of high-speed
broadband fibers using lightpaths. Each lightpath provides
traverses one or more fibers and uses one wavelength

division multiplexed (WDM) channel per fiber. In a
multihop network. each node has a small number of
lightpaths to a few other nodes in the network. The physical
topology of the network determines how the lightpaths get
defined. For a multistar implementation of the physical

topology, a lightpath u -> v is established when node u
broadcasts to a passive optical couplerat a particular
wavelength and the node v picks up the optical signal by
tuning its receiver to the same wavelength. For a wavelength

routed network, a lightpath u -) v might be established
through one or several fibers interconnected by router
nodes. The lightpath definition between the nodes in an
optical network is usually represented by a directed graph

(or digraph) G = (V, E) (where V is the set of nodes and E
is the set of the edges) with each node of G representing a

0-8186-9014-3/98 $10.00 0 1998 IEEE

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1362 of 1442

and A. Sengupta

472

Department of Computer Science

University of South Carolina

Columbia, SC 29208

node of the network and each edge (denoted by u —) v)
representing a lightpath from u to v. G is usually called the

logical topology of the network. When the lightpath u —-) v
does not exist. the communication from a node n to a node v

occurs by using a (graph-theoretic) path (denoted by

u-—)xl ->x2—) —)xk_l—)v) in G using k hops

through the intcrtnediate nodes x1, x2, ..., xk_ 1 . The
information is buffered at intermediate nodes and. to reduce

the communication delay. the number of hops should be
small. If a shortest graph-theoretic path is used to establish a
communication from u to v, the maximum hop distance is
the diameter of G. Clearly, the lightpaths need to be defined
such that G has a small diameter and low average hop
distance. The indegree and outdegree of each node should be
low to reduce the network cost. However, a reduction of the

degree usually implies an increase in the diameter of the
digraph. that is. larger communication delays. The design of
the logical topology of a network turns out to be a difficult
problem in view of these contradictory requirements.
Several different logical topologies have been proposed in
the literature. An excellent review of multihop networks is
presented in [l].

Both regular and irregular structures have been studied
for multihop structures [2]. [3], [4], [S], [6], [7]. All the
proposed regular topologies(e.g., shuffle nets, de Bnrijn

graphs. tOr}I_§‘>..“hyperc_ulges) enjoy the property of simple
routing algorithms. thereby avoiding the need of «complex
routing tables. Since the diameter of a digraph with n nodes
and maximum outdegree d is of 0(logd n), most of the

topologies attempt to reduce the diameter to 0(logdn). One

common property of these network topologies is the number
of nodes in the network must be given by some well-defined
fonnula involving network parameters. This makes the
topology non-scalable. In short. addition of a node to an
existing network is virtually impossible. In [8]. the principle
of shuffle interconnection between nodes in a shufflenet [4]

is generalized (the generalized version can have any number
of nodes in each column) to obtain a scalable network

topology called GEMNET. A similar idea of generalizing

