
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1079 of 1442

. http://www.dcs.warwick.ac.u... 01/29/2002--page 2

f umC 3Xi5
0 1 2 3 4 5 6 7 8 9 10

"WW processing —— idle & tranxferingdatanow

And so our problem is how to transfer data such that Producer and Consumer are never idle

unnecessarily.

First pass at solving the problem

Any solution to this problem must first remove the obstacle of one computer having to wait for

the other before it can send/receive. We do this by introducing a temporary storage area termed a

bufler where Producer can send it's data until such time as Consumer is ready to receive it.

send to receive from
buffer buffer

———)-~ ———-3—
pointa to tell us arrows to tell us

the current state which direction
d the buffer pointer moves

datum stored

. in buffer

Now Producer and Consumer can each follow their own algorithm (i.e. sequence of steps) as
follows, and quite independently of each other.

Note how we make good use of the buffer's spaces by recycling each one once its contents have

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1079 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1080 of 1442

http://www.dcs.warwick.ae.u... Ol/29/2002--page 3

3 been received by Consumer. Well, I guess that might seem like the end of the story.
Unfortunately the fact that Producer and Consumer can now operate independently of each other

raises a difficulty often found in distributed systems. If two computers operate independently

could they accidentally step on each other's toes ?

Second pass at solving the problem

One potential problem with our solution so far is that Producer might try to send a datum when

the buffer is already full of data still waiting to be received by Consumer. Similarly, Consumer

might be trying to receive data from an empty buffer, that is, when all the data sent so far by

Producer has already been received. We have to find a way to prevent Producer sending to a full

buffer, and of Consumer receiving from an empty buffer. We do this by insisting that Producer

(resp. Consumer) pause for a moment whenever the buffer is full (resp. empty), which will

hopefully give time for Consumer (resp. Producer) a chance to make space (resp. make a

deposit) in the buffer. By adding this extra refinement to the algorithms for Producer and

Consumer we get the following.

Final pass at solving the problem

But, how do we know when the buffer is full, and when it is empty. This we really do have to

know in order to prevent the buffer from becoming corrupted. A simple answer would be to keep

a tally of the number of unread data items currently in the buffer. Starting at zero, the tally is

incremented by one every time a send is made, and decrcmented by one every time a receive is

made. Whenever this number is zero the buffer must be empty, and so receiving is not allowed.

When the number equals the overall number of spaces in the buffer then the latter must be full,

and so sending is not allowed.

And finally,

This completes the design of our solution, and so it just reamins to code it up in an appropriate

programming language. If you want to see how that's done come to Warwick and be student in

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1080 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1081 of 1442

«—o
http://www.dcs.warwick.ac.u... O1/29/2002-—pagc 4

3 computer science.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,

Ex. 1102, p. 1081 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1082 of 1442

27 U.S. Patent Application No. 09/629.042 AuEXPRE‘.‘5.° “IAIL DD. 04935282US

DISTRIBUTED GAME ENVIRONMENT
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. Patent Application No. ,

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket

5 No. 030048001 US); U.S. Patent Application No. , entitled “JOINING A

_BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002 US);

U.S. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”

filed on July 31, 2000 (Attorney Docket No. 030048003 US); U.S. Patent Application

No. , entitled “BROADCASTING ON A BROADCAST C L,” filed

10 on July 31, 2000 (Attorney Docket No. 030048004 US); US. Palent Application

No. , entitled “CONTACTING A BROADCAST CHANNEL,” filed on

July 31, 2000 (Attorney Docket No. 030048005 US); U.S. Pat nt Application

No. , entifled “DISTRIBUTED AUCTION SYSTEM,” ‘filed on
July 31, 2000 (Attorney Docket No. 030048006 US); U.S. Patent Application

15 No. entitled “AN INFORMATION DELIVERY SERVICE,” filed on

July 31, 2000 (Attorney Docket No. 030048007 US); U.S. Patlznt Application
No. entitled “DISTRIBUTED CONFERENCING SYSITEM,” filed on

July 31,2000 (Attorney Docket No. 030048008 US); and U.S. gent Application

No. , entitled “DISTRIBUTED GAME ENVIRON NT,” filed on

20 July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer network and more

particularly, to a broadcast channel for a subset of a computers of an underlyling network.
25 BACKGROUND

There are a wide variety of computer network communicatio techniques such

as point-to-point network protocols, client/server rniddleware, multi asting network

[o3oo4—3eo’r/suoo3'n3.1o7] -1- 7mm
. 3’0°‘1 T

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1082 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1083 of 1442

protocols, and peer-to-peer middleware. Each of these communications techniques have

their advantages and disadvantages, but none is particularly well suited to e simultaneous

sharing of information among computers that are widely distributed. For example,

collaborative processing applications, such as a network meeting programs, have a need to

5 distribute information in a timely manner to all participants who may be geographically

distributed. _
The point-to-point network protocols, such as UND(pipes, TEP/IP, and UDP,

allow processes on different computers to communicate via point-to-point connections. The
interconnection of all participants using point-to-point connections, while theoretically

10 possible, does not scale well as a number of participants grows. Fol‘ example, each

participating process would need to manage its direct connections to all otter participating
processes. Programmers, however, find it very difficult to manage single onnections, and

management of multiple connections is much more complex. In addition, participating

processes may be limited to the number of direct connections that they can support. This
15 limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server that! coordinates the

communications between the various clients who are sharing the informalion. The server

frmctions as a central authority for controlling access to shared resources. Examples of
client/server middleware systems include remote procedure calls (“RPC”), database servers,

20 and the common object request broker architecture (“CORBA”). Client/sdrver middleware

systems are not particularly well suited to sharing of information among rriany participants.
In particular, when a client stores information to be shared at the server, each other client

would need to poll the server to determine that new information is beirig shared. Such

polling places a very high overhead on the communications network. Alltematively, each
25 client may register a callback with the server, which the server then invokes when new

infonnation is available to be shared. Such a callback technique presen s a performance

bottleneck because a single server needs to call back to each clien whenever new

30 the server) would prevent communications between any of the clients.

|03004-8001/SL003733. I07) -2-
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, '
Ex. 1102, p. 1083 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1084 of 1442

protocols tend to place an imacceptable overhead on the underlying netwo . For example,

UDP multicasting would swamp the Internet when trying to locate all pos ible participants.

IP multicasting has other problems that include needing special-purpose ' tructure (e.g.,

routers) to support the sharing of information efliciently.

5 The peer-to-peer middleware communications systems rely n a multicasting

network protocol or a graph of point-to-point network protocols. S ch peer-to-peer

tniddleware is provided by the T. 120 Internet standard, which is used in uch products as

Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-t peer rniddleware

systems rely upon a user to assemble a point-to-point graph of the co ections used for

10 sharing the information. Thus, it is neither suitable nor desirable to se peer-to-peer

middleware systems when more than a small number of participants is des' ed. In addition,

the underlying architecture of the T. 120 lntemet standard is a tree stmctur , which relies on

the root node of the tree "for reliability of the entire network. That is, each essage must pass

through the root node in order to be received by all participants.

15 It would be desirable to have a reliable communications network that is

suitable for the simultaneous sharing of information among a large numbe of the processes

that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected hich represents a

20 broadcast channel.

Figure 2 illustrates a graph representing 20 computers connec d to a broadcast

charmel.

Figures 3A and 3B illustrate the process of connecting a new omputer Z to the

broadcast channel.

25 Figure 4A illustrates the broadcast charmel of Figure 1 with an added

computer.

Figure 4B illustrates the broadcast charmel of Figure 4A with an added

computer.

Figure 4C also illustrates the broadcast channel of Figure 4 with an added

30 computer.

[osooa-soon/su)o3733.1o7) -3- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1084 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1085 of 1442

Figure 5A illustrates the disconnecting of a computer fr m the broadcast

channel in a planned manner.

Figure 5B illustrates the disconnecting of a computer fr 111 the broadcast

channel in an unplanned manner.

5 V Figure 5C illustrates the neighbors with empty ports conditio .

Figure 5D illustrates two computers that are not neighbor who now have

empty ports.

Figure 5E illustrates the neighbors with empty ports condi 'on in the small

regime.

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast charmel.

Figure 7 is a block diagram illustrating the sub-components f the broadcaster

component in one embodiment.

15 Figure 8 is a flow diagram illustrating the processing of the onnect routine in
one embodiment.

Figure 9 is a flow diagram illustrating the processing 0 the seek portal

computer routine in one embodiment.

Figure 10 is a flow diagram illustrating the processing of th contact process
20 routine in one embodiment.

Figure 11 is a flow diagram illustrating the processing of th ‘coimect request
routine in one embodiment.

Figure 12 is a flow diagram of the processing‘ of the check for external call

routine in one embodiment.

25 Figure 13 is a flow diagram of the processing of the achieve c nnection routine
in one embodiment.

Figure 14 is a flow diagram illustrating the processing of the external
dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of

30 connection call routine in one embodiment.

request call routine in one embodiment.

(03004-soon/swo3733.ro7] -4- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1085 of 1442

handle seeking ’

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1086 of 1442

Figure 17 is a flow diagram illustrating the processing of ihe add neighbor
routine in one embodiment.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment.

5 Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine.

Figure 20 is a flow diagram illustrating the processing 0 the handle port

connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the 11 hole routine in

10 one embodiment.

Figure 22 is a flow diagram illustrating the processing of the ' temal dispatcher

routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment.

15 Figure 24 is a flow diagram illustrating the processing f the distribute

broadcast message routine in one embodiment.

Figure 26 is a flow diagram illustrating the processing of the andle connection

port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of e court neighbor

20 routine in one embodiment. A

Figure 28 is a flow diagram illustrating the processing of the andle connection

edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the andle connection

edge search response routine in one embodiment.

25 Figure 30 is a flow diagram illustrating the processing of the roadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the andle condition
30 check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the andle condition
repair statement routine in one embodiment.

[osoouooi/si.oo3733.1o71 -5- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1086 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1087 of 1442

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check roufine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlay a point-to-point

5 communications network is provided. The broadcasting of a message 0 er the broadcast

channel is eflectively a multicast to those computers of the network at are currently

connected to the broadcast channel. In one embodiment, the broadcast tec 'que provides a

logical broadcast charmel to which host computers through their executing processes can be

connected. Each computer that is connected to the broadcast chann 1 can broadcast

10 messages onto and receive messages off of the broadcast charmel. Each computer that is

connected to the broadcast charmel receives all messages that are broa ast while it is

connected. The logical broadcast charmel is implemented using an un erlying network

system (e.g., the lntemet) that allows each computer connected to the un erlying network

system to send messages to‘ each other connected computer using each co puter’s address.

15 Thus, the broadcast technique eflectively provides a broadcast channel us’ g an underlying

network system that sends messages on a point-to-point basis.

The broadcast technique overlays the underlying network sys em with a graph

of point-to-point connections (i. e.,‘ edges) between host computers (i. e. nodes) through

which the broadcast channel is implemented. In one embodiment, e ch computer is

20 connected to four other computers, referred to as neighbors. (Actually, a rocess executing

s or four other

on a computer is connected to four other processes executing on

computers.) To broadcast a message, the originating computer sends the m ssage to each of

its neighbors using its point-to-point connections. Each computer that rec ives the message

then sends the message to its three other neighbors using the point-to-poin connections. In

25 this way, the message is propagated to each computer using the underlying etwork to effect

the broadcasting of the message to each computer over a logical broadcast hannel. A graph

in which each node is connected to four other nodes is referred to as a 4-re ar graph. The

[o3oo4-soot/swo3733.|o71 -5-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1087 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1088 of 1442

divide the graph into disjoint sub-graphs, that is two separate broadcas charmels. This

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-

connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents

5 the broadcast channel. Each of the nine nodes A-I represents a computer

the broadcast channel, and each of the edges represents an “edge” connec ‘on between two

computers of the broadcast charmel. The time it takes to broadcast a message to each

computer on the broadcast charmel depends on the speed of the connec ons between the

computers and the number of connections between the originating comput r and each other

10 computer on the broadcast channel. The miniminn number of connectio s that a message

would need to traverse between each pair of computers is the “dis ee” between the

computers (i.e., the shortest path between the two nodes of the graph). or example, the

distance between computers A and F is one because computer A is dire tly connected to

computer F. The distance between computers A and B is two because ere is no direct

15 connection between computers A and B, but computer F is directly connect d to computer B.

Thus, a message originating at computer A would be sent directly to com uter F, and then

sent from computer F to computer B. The maximum of the distances betw en the computers

20
particular, the shortest path between computers 1 and 3 contains four conn ctions (1-12, 12-

15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of omputers to the

25 broadcast channel (i.e., composing the graph), (2) the broadcasting of essages over the

broadcast channel (i.e., broadcasting through the graph), and (3) the disconnecting of

computers from the broadcast charmel (i. e., decomposing the graph) compo ing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking connection first

30 locates a computer that is currently fully connected to the broadcast hannel and then

[o3oo4—soo1/stno3733.1o7] .7. -,,-_.,,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1088 of 1442 '

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1089 of 1442

establishes a connection with four of the computers that are already onnected to the

broadcast channel. (This assumes that there are at least four computers alre dy connected to

the broadcast channel. When there are fewer than five computers connect d, the broadcast

channel carmot be a 4-regular graph. In such a case, the broadcast charme is considered to

5 be in a “small regime.” The broadcast technique for the small regime is d scribed below in

detail. When five or more computers are connected, the broadcast channe is considered to

be in the “large regime.” This description assumes that the broadcast ch el is in the large

regime, unless specified otherwise.) Thus, the process of connecting o the broadcast

charmel includes locating the broadcast channel, identifying the neighbors f r the connecting

10 computer, and then connecting to each identified neighbor. Each compute is aware of one

or more “portal computers” through which that computer may locate the b oadcast channel.

A seeking computer locates the broadcast channel by contacting the portal omputers until it

e found portal

computer then directs the identifying of four computers (i.e., to be the s king computer-’s

finds one that is currently fully connected to the broadcast channel.

15 neighbors) to which the seeking computer is to connect. Each of these fo computers then

cooperates with the seeking computer to effect the connecting of the seekin computer to the

broadcast channel. A computer that has started the process of locating a po al computer, but

does not yet have a neighbor, is in the “seeking connection state.” A

connected to at least one neighbor, but not yet four neighbors, is in the “p ‘ally connected

20 state.” A computer that is currently, or has been, previously connected to our neighbors is

in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each f the identified

computers is already connected to four computers. Thus, some co ections between

computers need to be broken so that the seeking computer can connect to f computers. In

25 one embodiment, the broadcast technique identifies two pairs of computers at are currently

connected to each other. Each of these pairs of computers breaks the co ection between

them, and then each of the four computers (two from each pair) come 5 to the seeking

computer. Figures 3A and 3B illustrate the process of a new computer 2 onnecting to the

broadcast channel. Figure 3A illustrates the broadcast channel befor computer Z is

30 connected. The pairs of computers B and E and computers C and D are the 0 pairs that are

identified as the neighbors for the new computer Z. The connections betw en each of these

pairs is broken, and a connection between computer Z and each of compute s B, C, D, and E

[O3004-8001/SU)03733.l07] -8- 1/3 1/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1089 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1090 of 1442

is established as indicated by Figure 3B. The process of breaking the cofmection between
two neighbors and reconnecting each of the former neighbors to another co puter is referred

to as “edge pinning” as the edge between two nodes may be considered t be stretched and

pinned to a new node.

5 Each computer connected to the broadcast channel allocates five

communications ports for communicating with other computers. Four of the ports are

referred to as “intemal” ports because they are the ports through which th messages of the

broadcast channels are sent. The connections between internal ports f neighbors are

referred to as “internal” connections. Thus, the internal connections of the roadcast channel

10 form the 4-regular and 4-connected graph. The fifth port is referred to as “extemal” port

because it is used for sending non-broadcast messages between two comp ters. Neighbors

can send non-broadcast messages either through their internal ports of th ir connection or

through their external ports. A seeking computer uses external ports wh locating a portal

computer.

15 In one embodiment, the broadcast technique establish s the computer

space" that is shared among all the processes that may execute on that conTputer. The ports
20 are identified by numbers from 0 to 65,535. The first 2056 ports are res rved for specific

applications (e.g., port 80 for HTTP messages). The remainder of the p

that are available to any process. In one embodiment, a set of port numbe can be reserved

for use by the computer connected to the broadcast charmel. In an altem ’ve embodiment,

the port numbers used are dynamically identified by each computer. Each computer

25 dynamically identifies an available port to be used as its call-in port. This c l-in port is used

to establish connections with the external port and the internal ports. Eac computer that is

connected to the broadcast channel can receive non-broadcast messages ough its external

port. A seeking computer tries “dialing” the port numbers of the portal omputers until a

portal computer “answers,” a call on its call-in port. A portal computer swers when it is

30 connected to or attempting to connect to the broadcast channel and its call in port is dialed.

(In this description, a telephone metaphor is used to describe the come tions.) When a

computer receives a call on its call-in port, it transfers the call to anothe port. Thus, the

[03004-8001/Sl.003733.lO7] -9- 7mm

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1090 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1091 of 1442

seeking computer actually communicates through that transfer-to port, whi h is the external

port. The call is transferred so that other computers can place calls to that computer via the

call-in port. The seeking computer then communicates via that external p rt to request the

portal computer to assist in connecting the seeking computer to the broadc st channel. The

s seeking computer could identify the call-in port number of a portal comput by successively

dialing each port in port number order. As discussed below in detail, the b adcast technique

uses a hashing algorithm to select the port number order, which may r ult in improved

performance.

A seeking computer could connect to the broadcast channel y connecting to

10 computers either directly connected to the found portal computer or directly connected to one

of its neighbors. A possible problem with such a scheme for identifying e neighbors for

the seeking computer is that the diameter of the broadcast channel may in rease when each

seeking computer uses the same found portal computer and establishes a onnection to the

broadcast charmel directly through that found portal computer. Concep

15 becomes elongated in the direction of where the new nodes are added. Figures 4A-4C

illustrate that possible problem. Figure 4A illustrates the broadcast channe of Figure 1 with

an added computer. Computer J was connected to the broadcast channel by edge pinning

edges C-D and E-H to computer J. The diameter of this broadcast ch el is still two.

Figure 4B illustrates the broadcast channel of Figure 4A with an dded computer.

20 Computer K was connected to the broadcast charmel by edge pinning edge E-J and B-C to

computer K. The diameter of this broadcast channel is three, because the s oitest path from

computer G to computer K is through edges G-A, A-E, and E-K. Figure C also illustrates

25 this broadcast charmel is, however, still two. Thus, the selection of nei

30 smaller overall diameters.

[03004-800!/SlD03733.l07] -10- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1091 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1092 of 1442

20

25

30

Broadcastin 'I'hrou the Gra h

As described above, each computer that is connected to the roadcast channel

can broadcast messages onto the broadcast channel and does receive all essages that are

broadcast on the broadcast charmel. The computer that originates a messa e to be broadcast

sends that message to each of its four neighbors using the internal conn ctions. When a

computer receives a broadcast message from a neighbor, it sends the m sage to its three

other neighbors. Each computer on the broadcast channel, except the ori ‘ ating computer,

will thus receive a copy of each broadcast message from each of its four neighbors. Each

computer, however, only sends the first copy of the message that it receiv s to its neighbors

and disregards subsequently received copies. Thus, the total number of co ies of a message

that is sent between the computers is 3N+l, where N is the number of co puters connected

to the broadcast channel. Each computer sends three copies of the messa e, except for the

originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability

of the broadcast channel. Since each computer has four connections to the broadcast

[03004-8001/SU)03733.I0'l] -1 1-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1092 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1093 of 1442

steady state, then problems can occur. In particular, a computer ma connect to the

broadcast channel after the second message has already been received and forwarded on by

its new neighbors. When a new neighbor eventually receives the first mes age, it sends the

message to the newly connected computer. Thus, the newly connected com uter will receive

5 the first message, but will not receive the second message. If the newly co ected computer

needs to process the messages in order, it would wait indefinitely for the se ond message.

One solution to this problem is to have each computer queue all the messages

This solution,B-3 :: F3(125W FL :: E U!(D-.:aa. %B E. S-GV:
'9.

O-2: TD*1 9:2.-‘-3 Ko =.V) ::(U
“Ec-O"1

however, may tend to slow down the propagation of messages through the computers of the

10 broadcast channel. Another solution that may have less impact on the pro agation speed is

to queue messages only at computers who are neighbors of the newly co ected computers.

already connected neighbor would only forward messages from each origin ting computer

15 the newly connected computer when it can ensure that no gaps in the m ssages from that

originating computer will occur. In one embodiment, the already connec d neighbor may
track the highest sequence number of the messages already received and f arded on from

each originating computer. The already connected computer will send only higher numbered

messages from the originating computers to the newly connected computer Once all lower

20 numbered messages have been received from all originating computers, then the already

connected computer can treat the newly connected computer as its 0th r neighbors and

simply forward each message as it is received. In another embodiment, ea h computer may

queue messages and only forwards to the newly connected computer thos messages as the

gaps are filled in. For example, a computer might receive messages 4 and and then receive

25 message 3. In such a case, the already connected computer would forward ueue messages 4

30 queues messages 4 and 5, the newly connected computer will be able to p cess message 3.

103004-soon/su>o3733.|o71 -1 2-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1093 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1094 of 1442

same originating computer through another neighbor. If the second set of essages contains

a message that is ordered earlier than the messages of the first set receive then the newly

connected computer may ignore that earlier ordered message if the c mputer already

processed those later ordered messages.

5 Decomposing the Graph

A connected computer disconnects from the broadcast ch el either in a

planned or unplanned manner. When a computer disconnects in a planned anner, it sends a

disconnect message to each of its four neighbors. The disconnect message i eludes a list that

identifies the four neighbors of the disconnecting computer. When a nei

10 disconnect message, it tries to connect to one of the computers on

a computer carmot connect (e.g., the first and second computers are already connected), then

the computers may try connecting in various other combinations. If conn ctions carmot be

is established, each computer broadcasts a message that it needs to establish a connection with

another computer. When a computer with an available intemal port receivds the message, it

can then establish a connection with the computer that broadcast the messdge. Figures 5A-
5D illustrate the disconnecting of a computer fi'om the broadcast ch el. Figure 5A

aaltlarmed manner.illustrates the disconnecting of a computer from the broadcast channel in

20 When computer H decides to disconnect, it sends its list of neighbors to eac of its neighbors

(computers A, E, F and I) and then disconnects from each of its ne ghbors. When

computers A and I receive the message they establish a connection b tween them as

 indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such resulting from

25 a power failure, the neighbors connected to the disconnected comput r recognize the

disconnection when each attempts to send its next message to the n w disconnected

computer. Each former neighbor of the disconnected computer recognizes at it is short one

connection (i. e., it has a hole or empty port). When a connected computer d tects that one of

its neighbors is now disconnected, it broadcasts a port connection request It the broadcast

30 channel, which indicates that it has one internal port that needs a come tion. The port
(D5 an 0§(D9.no:1.connection request identifies the call-in port of the requesting computer.

|o3oo4-soot/swo3733.io71 -13 - -,,-“/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1094 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1095 of 1442

computer that is also short a connection receives the connection request, it communicates

with the requesting computer through its external port to establish a come tion between the

two computers. Figure 5B illustrates the disconnecting of a computer fr m the broadcast

charmel in an unplanned manner. In this illustration, computerH has di connected in an

5 unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the

disconnection, each neighbor broadcasts a port connection request indica ' g that it needs to

fill an empty port. As shown by the dashed lines, computers F and I and c mputers A and E

respond to each other’s requests and establish a connection.

ay result in two

neighbors, they

are already connected and cannot fill their empty ports by connecting to e h other. Such a

Each neighbor

broadcasts a port connection request when it detects that it has an empty on as described

It is possible that a planned or unplarmed disconnection

10 neighbors each having an empty internal port. In such a case, since they _

condition is referred to as the “neighbors with empty ports” condition.

above. When a neighbor receives the port connection request from the 0th neighbor, it will

15 recognize the condition that its neighbor also has an empty port. Such a c ndition may also

occur when the broadcast channel is in the small regime. The condi on can only be

corrected when in the large regime. When in the small regime, each comp er will have less

‘than four neighbors. To detect this condition the large regime, which wo d be a problem

if not repaired, the first neighbor to receive the port connection reque t recognizes the

20 condition and sends a condition check message to the other neighbor. Th condition check

message includes a list of the neighbors of the sending computer. en the receiving

computer receives the list, it compares the list to its own list of neighbor . If the lists are

different, then this condition has occurred in the large regime and repair is

30 need of a connection, the other original neighbor and the computer that is ow disconnected

[03004-800!/Sb003733. lO7] .14. 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1095 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1096 of 1442

each other when they receive the requests. If, however, the two comput s are neighbors,

then they repeat the condition repair process until two non-neighbors are in need of

connections.

It is possible that the two original neighbors with the condition may have the

5 same set of neighbors. When the neighbor that receives the conditio check message

determines that the sets of neighbors are the same, it sends a condition dou e check message

to one of its neighbors other than the neighbor who also has the con tion. When the

computer receives the condition double check message, it detemtines wheth r it has the same

set of neighbors as the sending computer. If so, the broadcast channel is in the small regime

10 and the condition is not a problem. If the set of neighbors are different, tiuen the computer
that received the condition double check message sends a condition chec+< message to the
original neighbors with the condition. The computer that receives that condition check

ciighbors with the
condition by sending a condition repair message. Thus, one of the originiil neighbors with

15 the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports coridition. In this
illustration, computer H disconnected in an unplanned manner, but co puters F and I

message directs one of it neighbors to connect to one of the original n

responded to the port connection request of the other and are now connect d together. The

other former neighbors of computer H, computers A and E, are already eighbors, which

20 gives rise to the neighbors with empty ports condition. In this example, co puter E received

the port connection request from computer A, recognized the possible co dition, and sent

(since they are neighbors via the internal connection) a condition check in ssage with a list

of its neighbors to computer A. When computer A received the list, i recognized that

computer E has a different set of neighbor (i.e., the broadcast channel is in e large regime).

25 Computer A selected computer D, which is a neighbor of computer E and s nt it a condition

repair request. When computer D received the condition repair request, it sconnected from

one of its neighbors (other than computer E), which is computer G this example.

Computer D then connected to computer A. Figure 5D illustrates two com ters that are not

neighbors who now have empty ports. Computers E and G now have em ty ports and are

30 not currently neighbors. Therefore, computers E and G can connect to each other.

Figures SE and SF further illustrate the neighbors with emp ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the smal regime. In this
|03004-8001/SI.DO3733.l07] -1 5- 7,3 "00

IPR2016-00726 -ACT|_\I|S|0N, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1096 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1097 of 1442

example, if computer E disconnected in an unplanned manner, then each computer

broadcasts a port connection request when it detects the disconnect. en computer A

receives the port connection request form computer B, it detects the nei bors with empty

ports condition and sends a condition check message to computer B. Comp ter B recognizes

5 that it has the same set of neighbors (computer C and D) as computer A d then sends a

condition double check message to computer C. Computer C recognizes at the broadcast

channel is in the small regime because is also has the same set of neighbor as computers A

and B, computer C may then broadcast a message indicating that the broad ast channel is in

the small regime. T

10 Figure 5F illustrates the situation of Figure 5E when in the lfrge regime. As
discussed above, computer C receives the condition double check message om computer B.

In this case, computer C recognizes that the broadcast charmel is in the largxfi regime becauseit has a set of neighbors that is different from computer B. The edges e ending up fiom

computer C and D indicate connections to other computers. Computer C then sends a

15 condition check message to computer B. When computer B receives the condition check

message, it sends a condition repair message to one of the neighbors of c mputer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C, and tries to connect to computer B and the neighb r fi'om which it

disconnected tries to connect to computer A.

20 Port Selection

As described above, the TCP/IP protocol designates ports ab ve number 2056

as user ports. The broadcast technique uses five user port numbers on ea h computer: one

external port and four internal ports. Generally, user ports cannot be stati ally allocated to

an application program because other applications programs executing on same computer

25 may use conflicting port numbers. As a result, in one embodiment, the co uters connected

to the broadcast channel dynamically allocate their port numbers. Each computer could

simply try to locate the lowest number unused port on that computer and u that port as the

call—in port. A seeking computer, however, does not know in advance the call-in port

number of the portal computers when the port numbers are dynamically al ocated. Thus, a

30 seeking computer needs to dial ports of a portal computer starting with the lowest port

number when locating the call-in port of a portal computer. If the po computer is

|03004-8001/Sb0O3733. 107] -15- 7,, W,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1097 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1098 of 1442

connected to (or attempting to connect to) the broadcast channel, then the eeking computer

would eventually find the call-in port. If the portal computer is not co ected, then the

seeking computer would eventually dial every user port. In addition, if each application

program on a computer tried to allocate low-ordered port numbers, then portal computer

5 may end up with a high-nurnbered port for its call-in port because many 0 the low-ordered

port numbers would be used by other application programs. Since the dial g of a port is a

locate the call-in

que uses a port

relatively slow process, it would take the seeking computer a long time to

port of a portal computer. To minimize this time, the broadcast tec

ordering algorithm to identify the port number order that a portal computer should use when

10 finding an available port for its call-in port. In one embodiment, the br adcast technique

uses a hashing algorithm to identify the port order. The algorithm prefera ly distributes the

ordering of the port numbers randomly through out the user port numb space and only

selects each port number once. In addition, every time the algorithm is executed on any

tiple broadcast

The algorithm

may be “seeded” with charmel type and charmel instance in order to g nerate a unique

15 As described below, it is possible for a computer to be connected to

channels that are uniquely identified by channel type and channel instanc .

ordering of port numbers for each broadcast charmel. Thus, a seeking com uter will dial the

ports of a portal computer in the same order as the portal computer used w en allocating its

20 call-in port.

If many computers are at the same time seeking connectio to a broadcast

charmel through a single portal computer, then the ports of the portal comp ter may be busy

when called by seeking computers. The seeking computers would typicall need to keep on

redialing a busy port. The process of locating a call-in port may be signifi antly slowed by

25 such redialing. In one embodiment, each seeking computer may each reo der the first few

port numbers generated by the hashing algorithm. For example, each eeking computer

could randomly reorder the first eight port numbers generated by the hashin algorithm. The

random ordering could also be weighted where the first port number enerated by the

hashing algorithm would have a 50% chance of being first in the reorderin , the second port

30 number would have a 25% chance of being first in the reordering, and so 11. Because the

seeking computers would use different orderings, the likelihood of fin ' a busy port is

reduced. For example, if the first eight port numbers are randomly se ected, then it is

[o3oo4-soon/suoo3733.|o71 -17- 7/31/00

IPR2016-00726 -ACT|V|S|0_N, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1098 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1099 of 1442

possible that eight seeking computers could be simultaneously dialing orts in different

sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast cha.nnel ha a list of one or

5 more poital computers through which it can connect to the broadcast hannel. In one

embodiment, each computer has the same set of portal computers. A eking computer

locates a portal computer that is connected to the broadcast channel by su cessively dialing

the ports of each portal computer in the order specified by an algorithm. A eeking computer

could select the first portal computer and then dial all its ports until a all-in port of a

10 computer that is fully connected to the broadcast charmel is found. If 0 call-in port is

found, then the seeking computer would select the next portal compute and repeat the

process until a portal computer with such a call-in port is found. A pro lem with such a

seeking technique is that all user ports of each portal computer are dial d until a portal

computer fully connected to the broadcast channel is found. In an alternate embodiment, the

15 seeking computer selects a port number according to the algorithm and then dials each portal

computer at that port number. If no acceptable call-in port to the broadcast hannel is found,

then the seeking computer selects the next port number and repeats the pr cess. Since the

call-in ports are likely allocated at lower-ordered port numbers, the see '

dials the port numbers that are most likely to be call-in ports of the broadc t charmel. The

20 seeking computers may have a maximum search depth, that is the number 0 ports that it will

dial when seeking a portal computer that is fully connected. If the s eking computer

exhausts its search depth, then either the broadcast channel has not yet been established or, if

the seeking computer is also a portal computer, it can then establish the oadcast channel

with itself as the first fully connected computer.

itself not fully

connected, the two computers do not connect when they first locate each ther because the

broadcast charmel may already be established and accessible through a hi er-ordered port

30 share its experience in trying to locate a portal computer with the other see

particular, if one seeking computer has searched all the portal computers to a depth of eight,

[03004-800lISUJ03733.l07] -18- -,,,,,oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1099 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1100 of 1442

then the one seeking computer can share that it has searched to a depth of e ght with another

seeking computer. If that other seeking computer has searched to a depth. of, for example,

only four, it can skip searching through depths five through eight and at other seeking

computer can advance its searching to a depth of nine.

5 In one embodiment, each computer may have a differeiixt set of portal
computers and a different maximum search depth. In such a situation, it ma be possible that

two disjoint broadcast channels are formed because a seeking computer carilot locate a fully
connected port computer at a higher depth. Similarly, if the set of por1Tl computers are
disjoint, then two separate broadcast channels would be formed.

10 Identiflg Neigl_1bors for a Seeking Computer

As described above, the neighbors of a newly connectirig computer are

preferably selected randomly from the set of currently connected computers One advantage

of the broadcast channel, however, is that no computer has global owledge of the

broadcast channel. Rather, each computer has local knowledge of itself d its neighbors.

15 This limited local knowledge has the advantage that all the connected co puters are peers

(as far as the broadcasting is concerned) and the failure of any one comp ter (actually any

three computers when in the 4-regular and 4-connect fonn) will not ea c the broadcast

charmel to fail. This local knowledge makes it difiicult for a portal comp ter to randomly

select four neighbors for a seeking computer.

20 To select the four computers, a portal computer sends an edge connection

request message through one of its internal connections that is randornl selected. The

receiving computer again sends the edge connection request message ough one of its

internal connections that is randomly selected. This sending of the message corresponds to a

random walk through the graph that represents the broadcast channel. Eventually, a

25 receiving computer will decide that the message has traveled far enou to represent a

randomly selected computer. That receiving computer will offer the in ma] connection

upon which it received the edge connection request message to the see ' g computer for

edge pinning. Of course, if either of the computers at the end of the ofiered internal

connection are already neighbors of the seeking computer, then the seeking computer carmot

30 connect through that internal connection. The computer that decided that the message has

[D3004-8001/SLO03733. non - 1 9- 7,3 We

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1100 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1101 of 1442

traveled far enough will detect this condition of already being a neigh or and send the

message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximately twi e the estimated

5 diameter of the broadcast channel. The message includes an indication of e distance that it

is to travel. Each receiving computer decrements that distance to travel b fore sending the

message on. The computer that receives a message with a distance to tra el that is zero is

considered to be the randomly selected computer. If that randomly selected computer cannot

connect to the seeking computer (e.g., because it is already connected to it), then that

10 randomly selected computer forwards the edge connection request to one of its neighbors

with a new distance to travel. In one embodiment, the forwarding compute toggles the new

distance to navel between zero and one to help prevent two computers om sending the

message back and forth between each other.

Because of the local nature of the information maintained each computer

15 connected to the broadcast channel, the computers need not generally e aware of the

diameter of the broadcast charmel. In one embodiment, each message sent through the

broadcast channel has a distance traveled field. Each computer that fo ards a message

increments the distance traveled field. Each computer also maintains an e timated diameter

of the broadcast charmel. When a computer receives a message that has tr veled a distance

20 that indicates that the estimated diameter is too small, it updates its estim ed diameter and

broadcasts an estimated diameter message. When a computer receives an e timated diameter

Iter, it updates its
own estimated diameter. This estimated diameter is used to establish th distance that an

message that indicates a diameter that is larger than its own estimated diam

edge connection request message should travel.

25 External Data Representation

The computers connected to the broadcast charmel may int ally store their

data in different formats. For example, one computer may use 32-bit inte ers, and another

computer may use 64-bit integers. As another example, one computer ay use ASCII to

represent text and another computer may use Unicode. To allow comm cations between

30 heterogeneous computers, the messages sent over the broadcast channel ay use the XDR

(“extemal Data Representation”) format.

[O3004-8001/SL003733. I07) -20- 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1101 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1102 of 1442

The underlying peer-to-peer communications protocol send multiple

messages in a single message stream. The traditional technique for retrieving messages from

a stream has been to repeatedly invoke an operating system routine to retrieve the next

message in the stream. The retrieval of each message may require two calls to the operating

5 system: one to retrieve the size of the next message and the other to retrieve the number of

bytes indicated by the retrieved size. Such calls to the operating system an, however, be

very slow in comparison to the invocations of local routines. To overcome e inefiiciencies

of such repeated calls, the broadcast technique in one embodiment, uses XIfR to identify the
ue may request themessage boundaries in a stream of messages. The broadcast techniq

10 operating system to provide the next, for example, 1,024 bytes from c stream. The

broadcast technique can then repeatedly invoke the XDR routines to retri ve the messages

and use the success or failure of each invocation to determine whether ano er block of 1,024

bytes needs to be retrieved from the operating system. The invocation of R routines do

not involve system calls and are thus more efiicient than repeated system c ls.

15 M-Regglar

In the embodiment described above, each fully connected c mputer has four

internal connections. The broadcast technique can be used with other 11 bers of internal

connections. For example, each computer could have 6, 8, or any even n ber of internal

connections. As the number of internal connections increase, the diamete of the broadcast

20 charmel tends to decrease, and thus propagation time for a message tends 0 decrease. The

time that it takes to connect a seeking computer to the broadcast chann 1 may, however,

increase as the number of internal connections increases. When the n ber of internal

connectors is even, then the broadcast channel can be maintained m-regular and

m-connected (in the steady state). If the number of internal connections i odd, then when

25 the broadcast channel has an odd number of computers connected, one of e computers will

have less than that odd number of internal connections. In such a situati n, the broadcast

network is neither m-regular nor m-connected. When the next comput connects to the

broadcast charmel, it can again become m-regular and m-connected. us, with an odd

number of internal connections, the broadcast channel toggles between he g and not being
30 m-regular and m-connected.

[03004-8001/SLOO3733.lO7] -21-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1102 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1103 of 1442

Components

Figure 6 is a block diagram illustrating components of a omputer that is

connected to a broadcast charmel. The above description generally assum d that there was

only one broadcast channel and that each computer had only one connectio to that broadcast

5 channel. More generally, a network of computers may have multiple br adcast channels,

each computer may be connected to more than one broadcast channel, d each computer

can have multiple connections to the same broadcast channel. The broadc t channel is well

suited for computer processes (e.g., application programs) that execute col boratively, such

as network meeting programs. Each computer process can connect to one r more broadcast

10 channels. The broadcast charmels can be identified by channel type e.g., application
program name) and channel instance that represents separate broadcast hannels for that

charmel type. When a process attempts to connect tova broadcast charmel, t seeks a process

computer. The

seeking process identifies the broadcast channel by channel type and charm instance.

15 Computer 600 includes multiple application programs 6 l executing as

separate processes. Each application program interfaces with a broadcaste component 602

for each broadcast channel to which it is connected. The broadcaster co ponent may be

implement as an object that is instantiated within the process space oi the application
program. Alternatively, the broadcaster component may execute as a se arate process or

20 thread from the application program. In one embodiment, the broad ster component

provides functions (e.g., methods of class) that can be invoked by the app cation programs.

The primary functions provided may include a connect function that an ap lication program

invokes passing an indication of the broadcast channel to which the ap lication program

wants to connect. The application program may provide a callback routine that the

25 broadcaster component invokes to notify the application program that th connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message function that the applica 'on program can

invoke to retrieve the next message that is broadcast on the broadcastgcharm 1. Alternatively,
the application program may provide a callback routine (which may be virtual ftmction

30 provided by the application program) that the broadcaster component inv kes to notify the

application program that a broadcast message has been received. ach broadcaster

component allocates a call-in port using the hashing algorithm. When call are answered at

[O3004-8001/SLO03733.|07] -22- -,,,,,¢,o

IPR2016-00726 -ACT|V|S|_0N, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1103 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1104 of 1442

the call-in port they are transferred to other ports that serve as the exte l and internal

ports. _

The computers connecting to the broadcast channel may ' clude a central

processing unit, memory, input devices (e.g., keyboard and pointing devic , output devices

5 (e.g., display devices), and storage devices (e.g., disk drives). The in cry and storage

devices are computer-readable medium that may contain computer tructions that

implement the broadcaster component. In addition, the data stmc s and message

structures may be stored or transmitted via a signal transmitted on a c mputer-readable

media, such as a communications link.

10 Figure 7 is a block diagram illustrating the sub-components the broadcaster

component in one embodiment. The broadcaster component includes a co ect component

701, an external dispatcher 702, an internal dispatcher 703 for each intern connection, an

acquire message component 704 and a broadcast component 712. The ap lication program

may provide a connect callback component 710 and a receive response co ponent 711 that

15 are invoked by the broadcaster component. The application program inv kes the connect

component to establish a connection to a designated broadcast chann . The connect

component identifies the external port and installs the external dispatc‘ er for handling
messages that are received on the external port. The connect component '

vokes the seek

portal computer component 705 to identify a portal computer that is nnected to the

20 broadcast channel and invokes the connect request component 706 to ask th portal computer

(if fully connected) to select neighbor processes for the newly connec' g process. The

external dispatcher receives external messages, identifies the type of mess ge,'and invokes

the appropriate handling routine 707. The internal dispatcher receives the ' temal messages,

identifies the type of message, and invokes the appropriate handling r tine 708. The

25 received broadcast messages are stored in the broadcast message queue 7 9. The acquire

message component is invoked to retrieve messages from the broadc st queue. The

broadcast component is invoked by the‘ application program to broadcast messages in the
broadcast channel.

A Distributed Game Enviromnent

30 In one embodiment, a game environment is implemented using broadcast

charmels. The game environment is provided by a game application pro executing on

[D3004-8001/SLOO3733.lO7] -23- 7mm

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1104 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1105 of 1442

each player’s computer that interacts with a broadcaster component. Ea h player joins a

game (e.g., a first person shooter game) by connecting to the broadcast c el on which the

game is played. Each time a player takes an action in the game a message representing that

action is broadcast on the game’s broadcast charmel. In addition, a layer may send

5 messages (e.g., strategy information) to one or more other players bi broadcasting a

message. When the game application program receives an indication oflan action, either
received on the broadcast channel or generated by the player at this comp er, it updates its

current state of the game. The game may terminate when one of the players reaches a certain

score, defeats all other players, all players leave the game, and so on.

10 To facilitate the creation of games for the game environme t, an application

programming interface (“API”) is provided to assist game developers. The I may provide

high-level game functions that would be used by most types of first perso shooter games.

For example, the API may include functions for indicating that a player ha moved to a new

position, for shooting in a certain direction, for reporting a score, for anno cing the arrival

15 and departure ofplayers, for sending a message to another player, and so on

The game environment may provide a game web site throu which players

can view the state of current games and register new games. The game eb server would

include a mapping between each game and the broadcast channel on which e game is to be

played. When joining a game, the user would download the broadcaster c mponent and the

20 game application program from the web server. The user would al 0 download the

description of the game, which may include the graphics for the game. The web server

would also provide the channel type and channel instance associated with e game and the

identification of the portal computers for the game. The game environment may also have a

game monitor computer that connects to each game, monitors the activity of the game, and

b 25 reports the activity to the web server. With this activity information, th web server can

provide information on the current state (e.g., number of players) of each g e.

The game environment may also be used for games other an first person

shooter games. For example, a variation of a society simulation game can be played where

players sign up for different roles. If a role is unfulfilled or a player ' that role is not

30 playing, then an automated player can take over the role.

The following tables list messages sent by the broadcaster co ponents.

[03004-8001/SLO03733.l07] -24- ' -mmo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1105 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1106 of 1442

EXTERNAL MESSAGES

Message Type _
seeking_connection_call Indicates that a seeking process would like to a W Whether fhé

receiving process is fully connected to the broa ast channel

Indicates that the sending process would like th receiving

process to initiate a connection of the sending p ocess to the
broadcast charmel

connection_request_call

 Indicates that the sending process is proposing = edge through

which the receiving process can connect to the n oadcast

channel (i.e., edge pinning)

edge_proposal_cal1

 Indicates that the sending process is proposing a port through
which the receiving process can connect to the b oadcast
charmel

connected__stmt Indicates that the sending process is connected «» the broadcast
channel

condition_repair_stmt Indicates that the receiving process should disco ect fiom one

of its neighbors and connect to one of the proceses involved in
the neighbors with empty port condition

port__connection_call

INTERNAL MESSAGES

Message me -
broadcast_stmt Indicates a message that is being broadcast ough the

broadcast charmel for the application pro 2 5

Indicates that the designated process is 1ool'p'ng for a port

 through which it can connect to the broadcast charmel

connection_edge_search_call Indicates that the requesting process is loo ' g for an edge
through which it can connect to the broadc t charmel

 connection edge search resp Indicates whether the edge between this pr «- cess and the
equesfingsending neighbor has been accepted by the

Pan)’

diameter_estimate_stmt Indicates an estimated diameter of the broa cast charmel

diameter_reset_stmt Indicates to reset the estimated diameter to '
diameter

disconnect_stmt Indicates that the sending neighbor is disco ecting from
the broadcast channel

condition_check_stmt Indicates that neighbors with empty port c-
[03004-800l/SU)03733.l07| -2 5-

7/3|lO0

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1106 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1107 of 1442

 _been de“=°*ed

condition_double_check_snnt Indicates that the neighbors with empty po s have the
same set of neighbors

Indicates that the broadcast charmel isbein

Flow»Diag;arns

Figures 8-34 are flow diagrams illustrating the processing 0

the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the rocessing of the

5 connect routine in one embodiment. This routine is passed a channel type e.g., application

name) and channel instance (e.g., session identifier), that identifies the bro dcast channel to

which this process wants to connect. The routine is also passed auxiliary information that

includes the list of portal computers and a connection callback routine. Whn the connection

is established, the connection callback routine is invoked to notify the app ication program.

10 When this process invokes this routine, it is in the seeking connection state When a portal

Le neighbor, this

process enters the partially connected state, and when the process eventually] connects to four

computer is located that is connected and this routine connects to at least 0

neighbors, it enters the fully connected state. When in the small regime, frilly connected

process may have less than four neighbors. In block 801, the routine opcnh the call-in port

15 through which the process is to communicate with other processes when esliilishing external
ing the hashingand internal connections. The port is selected as the first available port

algorithm described above. In block 802, the routine sets the connect '

time. The connect time is used to identify the instance of the process

«E3. 5
In (D3PL '6

o:1 O53
'9.

o83 E
‘<

OoBCD9. 8 tn 3'o9:a.OQE 0=r

20 channel type and charmel instance using one call-in port and then disconn cts, and another

process may then connect to that same broadcast charmel using the same

53.0 §.9the other process becomes fully connected, another process may try to co

thinking it is the fully connected old process. In such a case, the connect '

25 passing the channel type and channel instance. The seek portal computer to tine attempts to

[o3oo4-soon/smo3m.ro71 -26-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1107 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1108 of 1442

successful in locating a fully connected process on that portal computer, then the routine

continues at block 805, else the routine returns an unsuccessful indication. decision block

805, if no portal computer other than the portal computer on which the pro ss is executing

was located, then this is the first process to fully connect to broadcast channel and the

5 routine continues at block 806, else the routine continues at block 808. block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

connected. In block 807, the routine installs the external dispatcher for pro essing messages

received through this process’ external port for the passed charmel type and harmel instance.

When a message is received through that external port, the external dispafcher is invoked.
10 The routine then returns. In block 808, the routine installs an external dis atcher. In block

809, the routine invokes the connect request routine to initiate the proce s of identifying

neighbors for the seeking computer. The routine then returns.

' Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the charmel e and charmel

15 instance of the broadcast channel to which this process wishes to connect. This routine, for

each search depth (e.g., port number), checks the portal computers at that s arch depth. If a

portal computer is located at that search depth with a process that is fully connected to the

broadcast channel, then the routine returns an indication of success. In bl ks 902-911, the

routine loops selecting each search depth until a process is located. In bloc 902, the routine

20 selects the next search depth using a port number ordering algorithm. In de ision block 903,

and determining whether a process of that portal computer is connected to or attempting to

25 connect to) the broadcast charmel with the passed charmel type and ch el instance. In

905, if all the

portal computers have already been selected, then the routine loops to block 902 to select the

next search depth, else the routine continues at block 906. In block 906, th routine dials the

selected portal computer through the port represented by the search depth.

30 907, if the dialing was successful, then the routine continues at block 908 else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call-in port of the broadcast channel of the passed channel
[03004-8001/SLOO3733. 107] -27-

block 904, the routine selects the next portal computer. In decision blo

decision block

IPR2016-00726 -A§T|V|S|0N, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1108 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1109 of 1442

instance of a process executing on that portal computer. In block 908, the outine invokes a

contact process routine, which contacts the answering process of the portal omputer through

the dialed port and determines whether that process is fully connected to the broadcast

channel. In block 909, the routine hangs up on the selected portal cornp ter. In decision

5 block 910, if the answering process is fully connected to the broadcast hannel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processes that call. e routine then

loops to block 904 to select the next portal computer.

to Figure 10 is a flow diagram illustrating the processing of th contact process

routine in one embodiment. This routine determines whether the proces of the selected

portal computer that answered the call-in to the selected port is fully onnected to the

broadcast charmel. In block 1001, the routine sends an extema message (i.e.,

seeking_connection_call) to the answering process indicating that a seeking process wants to

el. In block

' g process. In

:2

§E‘39$
S

5%eaO§-‘-1"n»% H8%2230wego:
'6

«>33",0asamas "13:'8‘<:30isSo{£2‘£3“£8 3%90‘3-3“'3gr)«.3
1'0

£0
received (i. e. ,

routine returns.

decision block 1003, if the external response message is successful]

seeking_connection_resp), then the routine continues at block 1004, else

Wherever the broadcast component requests to receive an external message, it sets a time out

20 period. If the external message is not received within that time out perio the broadcaster

component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a d adlock situation.

The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error 5 appropriate. In

25 decision block 1004, if the answering process indicates in its response mes ge that it is fully

connected to the broadcast channel, then the routine continues at block 100 , else the routine

continues at block 1006. In block 1005, the routine adds the selected po al computer to a

list of connected portal computers and then returns. In block 1006, the routine adds the

answering process to a list of fellow seeking processes and then returns.

30 Figure 11 is a flow diagram illustrating the processing of th connect request

routine in one embodiment. This routine requests a process of a portal c mputer that was
identified as being fully connected to the broadcast charmel to initiate the

[osaouzooi/suoo3733.io7| -28-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1109 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1110 of 1442

process to the broadcast channel. In decision block 1101, if at least one p ocess of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A pro ess of the portal

computer may no longer be in the list if it recently disconnected from the b oadcast channel.

5 In one embodiment, a seeking computer may always search its entire sear h depth and find

armel. In block

1102, the routine restarts the process of connecting to the broadcast charm I and returns. In

block 1103, the routine dials the process of one of the found portal com ters through the

call-in port. In decision block 1104, if the dialing is successful, then the ro tine continues at

to block 1105, else the routine continues at block 1113. The dialing may be

multiple portal computers through which it can connect to the broadcast

successful if, for

example, the dialed process recently disconnected from the broadcast c armel. In block

1105, the routine sends an external message to the dialed process reques ' a connection to

the broadcast channel (i. e., connection__request_call). ln block I 106, the ro tine receives the

response message (i.e., connection_request_resp). In decision block 110 , if the response

15 message is successfully received, then the routine continues at block 110 , else the routine

continues at block 1113. In block 1108, the routine sets the expected n er of holes (i. e.,

empty internal connections) for this process based on the received respo c. When in the

large regime, the expected number of holes is zero. When in the small re e, the expected

number of holes varies from one to three. In block ll09, the routine s ts the estimated

20 diameter of the broadcast channel based on the received response. In decis on block 1111, if

the dialed process is ready to connect to this process as indicated by the r sponse message,

then the routine continues at block lll2, else the routine continues at bloc 1113. In block

5''‘ III‘ Ii _N c? ‘'1Eo B5;G U! 9‘0 tn:2.o. :15.’."€-Cr9. 3§0 F.‘o ca0.o. 5"to U1Q(3
g process as a

neighbor to this process. This adding of the answering process typically occurs when the

25 broadcast channel is in the small regime. When in the large regime, the r dom walk search

for a neighbor is performed. In block 1113, the routine hangs up the ex emal connection

with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking

30 process is attempting to establish a connection to the broadcast charmel thr ugh this process.

In block 1201, the routine attempts to answer a call on the call-in port.

1202, if the answer is successful, then the routine continues at block 120

[0300-1-8001!SL003733.l07] .29.

decision block

, else the routine

‘YB [/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1110 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1111 of 1442

returns. In block 1203, the routine receives the external message fi’om the |extemal port. In

decision block 1204, if the type of the message indicates that a seeking process is calling
(i.e., seeking_connection_ca1l), then the routine continues at block 1205, else the routine

returns. In block 1205, the routine sends an external message (i.e., seeking_i:onnection_resp)
to the other seeking process indicating that this process is also is seeking connection. In

decision block 1206, if the sending of the external message is successful, then the routine

continues at block 1207, else the routine returns. In block 1207, the rou ' e adds the other

seeking process to a list of fellow seeking processes and then returns. This list may be used

if this process can find no process that is fully connected to the broadcast channel. In which

case, this process may check to see if any fellow seeking process

connecting to the broadcast channel. For example, a fellow seeking proces

first process fiilly connected to the broadcast charmel.

wjre successful in
may become the

Figure 13 is a flow diagram of the processing of the achieve cpnnection routine
in one embodiment. This routine sets the state of this process to fully

broadcast channel and invokes a callback routine to notify the application

In

routine sets the connection state of this process to fully connected. In

process is now fully connected to the requested broadcast channel.

ponnected to the
program that the

block 1301, the

block 1302, the

routine notifies fellow seeking processes that it is fully connected by seniling a connected

external message to them (i.e., connected_stmt). In block 1303, the IOITILIDC invokes the
20 connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing
Lpf the externaldispatcher routine in one embodiment. This routine is invoked when e external port

receives a message. This routine retrieves the message, identifies the exte al message type,

and invokes the appropriate routine to handle that message. This routine loops processing

25 each message until all the received messages have been handled. In block 1401, the routine

answers (e.g., picks up) the external port and retrieves an external mess ge. In decision

block 1402, if a message was retrieved, then the routine continues at blo k I403, else the

routine hangs up on the external port in block 1415 and returns. In decisi n block 1403, if

ction_call), then

the routine invokes the handle seeking connection call routine in block 140 , else the routine

continues at block 1405. In decision block 1405, if the message type is for a connection
the message type is for a process seeking a connection (i.e., seeking__conn

30

request call (i.e., connection_request_caIl), then the routine invokes the

-30-

dle connection

[03004-800 llSL003733. I 07] 7/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1111 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1112 of 1442

request call routine in block 1406, else the routine continues at block l4b7. In decision

block 1407, if the message type is edge proposal call (i. e., edge_proposail_call), then the
roufine invokes the handle edge proposal call routine in block 1408, else the routine

continues at block 1409. In decision block 1409, if the message type is port connect call

5 (i. e., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 141ll, if the message
type is a connected statement (i. e., connected_stmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement (i. e., condition__repair_stmt),

10 then the routine invokes the handle condition repair routine in block 1413, else the routine

loops to block 1414 to process the next message. After each handling rou ' e is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

15 connection call routine in one embodiment. This routine is invoked when d seeking process

is calling to identify a portal computer through which it can connect to the broadcast charmel.

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the ‘message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully

20 connected to the broadcast channel and continues at block 1505. In block I503, the routine

sets a message to indicate that this process is not fully connected. In block '1504, the routine

adds the identification of the seeking process to a list of fellow seeking piocesses. If this

process is not fully connected, then it is attempting to connect to the broadcast channel. In

block 1505, the routine sends the external message response (i. e., seeking onnection_resp)

25 to the seeking process and then retums.

Figure 16 is a flow diagram illustrating processing of the h dle connection

request call routine in one embodiment. This routine is invoked when th calling process

wants this process to initiate the connection of the process to the broadca t channel. This

routine either allows the calling process to establish an internal connection 'th this process

30 (e.g., if in the small regime) or starts the process of identifying a process to hich the calling

process can connect. In decision block 1601, if this process is currently lly connected to

the broadcast charmel, then the routine continues at block 1603, else the ro tine hangs up on
(03004-soot/sLoo3733.1o7| -3 1- 7,, W0

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1112 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1113 of 1442

the external port in block 1602 and returns. In block 1603, the routine s the number of

block 1604, theholes that the calling process should expect in the response message.

routine sets the estimated diameter in the response message. In block 605, the routine

indicates whether this process is ready to connect to the calling process. This process is

5 ready to connect when the number of its holes is greater than zero and the alling process is

not a neighbor of this process. In block 1606, the routine sends to the c ling process an

external message that is responsive to the connection req est call (i.e.,

connection_request_resp). In block 1607, the routine notes the number f holes that the

calling process needs to fill as indicated in the request message. In decisi n block 1608, if

10 this process is ready to connect to the calling process, then the routine _c ntinues at block

1609, else the routine continues at block 1611. In block 1609, the routin invokes the add

neighbor routine to add the calling process as a neighbor. In block 1610, the routine

decrements the number of holes that the calling process needs to fill and c ntinues at block

1611. In block 1611, the routine hangs up on the external port. In decisi 1) block 1612, if

15 this process has no holes or the estimated diameter is greater than one i.e., in the large

regime), then the routine continues at block 1613, else the routine continu s at block 1616.

In blocks 1613-1615, the routine loops forwarding a request for an edge

connect to the calling process to the broadcast channel. One request is fo arded for each

pair of holes of the calling process that needs to be filled. ln decision b ock 1613, if the

20 number of holes of the calling process to be filled is greater than or eq to two, then the

block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

routine continues at block 1614, else the routine continues at block 1616.

to an indication of the calling process and the random walk distance. In on embodiment, the

block 1614, the

n decision block

distance is twice in the estimated diameter of the broadcast channel.

25 routine decrements the holes left to fill by two and loops to block 1613.

1616, if there is still a hole to fill, then the routine continues at block 161 , else theroutine

returns. In block 1617, the routine invokes the fill hole routine passing th identification of

the calling process. The fill hole routine broadcasts a connection port sear h statement (i.e.,

connection_J)Ol't_SCaI‘Ch_SUnt) for a hole of a connected process through hich the calling

30 process can connect to the broadcast charmel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of e add neighbor

routine in one embodiment. This routine adds the process calling on the xtemal port as a

[03004-800lISl.n03733.l07] -32- 731,00

|PR2_016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1113 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1114 of 1442

neighbor to this process. In block 1701, the routine identifies the callin process on the

external port. In block 1702, the routine sets a flag to indicate that the nei

received the broadcast messages from this process. This flag is used to ens e that there are

no gaps in the messages initially sent to the new neighbor. The external ort becomes the

5 internal port for this connection. In decision block 1703, if this process 5 in the seeking

connection state, then this process is connecting to its first neighbor and the routine

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of.this process to partially connected. In block 705, the routine

c‘o"1 U‘3 :3oF. ‘<Q

adds the calling process to the list of neighbors of this process. In block 706, the routine

10 installs an intemal dispatcher for the new neighbor. The internal dispatcher is invoked when

a message is received from that new neighbor through the internal port of at new neighbor.

In decision block 1707, if this process buffered up messages while not full connected, then

1709. In one

embodiment, a process that is partially connected may buffer the messag that it receives

the routine continues at block 1708, else the routine continues at bloc

15 through an internal connection so that it can send these messages as it onnects to new

neighbors. In block 1708, the routine sends the bufiered messages to e new neighbor

through the internal port. In decision block 1709, if the number of hole of this process

equals the expected number of holes, then this process is fully connecte and the routine

continues at block l7l0, else the routine continues at block 1711. In block 710, the routine

20 invokes the achieve connected routine to indicate that this process is ful connected. In

decision block 1711, if the number of holes for this process is zero, en the routine

continues at block 1712, else the routine returns. In block 1712, the ro tine deletes any

pending edges and then returns. A pending edge is an edge that has been proposed to this

process for edge pinning, which in this case is no longer needed.

25 Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment. This routine is respo sible for passing

along a request to connect a requesting process to a randomly selected neighbor of this

process through the intemal port of the selected neighbor, that is part of the andom walk. In

decision block 1801, if the forwarding distance remaining is greater th zero, then the

30 routine continues at block 1804, else the routine continues at block 1802. decision block

1802, if the number of neighbors of this process is greater than one, en the routine

continues at block 1804, else this broadcast channel is in the small regim- and the routine
[03004-8001/SlD03733.l07] -33 - -"3100

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1114 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1115 of 1442

20

25

30

804. In blocks

ch call intemal

continues at block 1803. In decision block 1803, if the requesting processLis a neighbor ofthis process, then the routine returns, else the routine continues at block

1804-1807, the routine loops attempting to send a connection edge se

message (i. e., connection_edge_search_call) to a randomly selected neighbo . In block 1804,

the routine randomly selects a neighbor of this process. In decision blocli 1805, if all the

neighbors of this process have already been selected, then the routine c ot forward the

message and the routine returns, else the routine continues at block 1806. block 1806, the

routine sends a connection edge search call internal message to the selec ed neighbor. In

decision block 1807, if the sending of the message is successful, then the roiltine continues at

block 1808, else the routine loops to block 1804 to select the next nei bor. When the

sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast charmel in an unplanned manner. Whenever such a situation is detected

by the broadcaster component, it attempts to find another neighbor by invo ' g the fill holes

routine to fill a single hole or the forward connecting edge search routine to‘Fil1l two holes. In
block 1808, the routine notes that the recently sent connection edge search call has not yet

been acknowledged and indicates that the edge to this neighbor is reserved if the remaining

forwarding distance is less than or equal to one. It is reserved because the selected neighbor

may offer this edge to the requesting process for edge pinning. The routine tlhen returns.
Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine. This routine is invoked when a message is received from a proposing

process that proposes to connect an edge between the proposing proces and one of its

neighbors to this process for edge pinning. In decision block 1901, if the it her of holes of

this process minus the number of pending edges is greater than or equal to one, then this

process still has holes to be filled and the routine continues at block 19021 else the routine
continues at block 1911. In decision block 1902, if the proposing process 0 its neighbor is a

neighbor of this process, then the routine continues at block 1911, else the 1
at block 1903. In block 1903, the routine indicates that the edge is pen g between this

process and the proposing process. In decision block 1904, if a proposed 11 'ghbor is already

outine continues

pending as a proposed neighbor, then the routine continues at block 1911 else the routine

continues at block 1907. In block 1907, the routine sends an edge propos response as an

extemal message to the proposing process (i. e., edgeJ)roposal__resp) in eating that the

proposed edge is accepted. In decision block 1908, if the sending of e message was
[o3oo4—sooi/sI.oo3733.Io7] -34- 7,3,“,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1115 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1116 of 1442

successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add

neighbor routine to add the proposing process on the external port as a neighbor. The routine

then returns. In block 1911, the routine sends an external message (i. e., edge_proposal_resp)

5 indicating that this proposed edge is not accepted. In decision block 1912, if the number of

holes is odd, then the routine continues at block 1913, else the routine r turns. In block

1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked hen an external

to message is received then indicates that the sending process wants to conne t to one hole of

this process. In decision block 2001, if the number of holes of this proce s is greater than

zero, then the routine continues at block 2002, else the routine continues a block 2003. In

indicates that it is not okay to connect to this process. The routine then turns. In block

2004, the routine sends a port connection response external message to th sending process

that indicates that is okay to connect this process. In decision block 2005, 'f the sending of

the message was successful, then the routine continues at block 2006, else the routine

20 continues at block 2007. In block 2006, the routine invokes the add neighb r routine to add

the sending process as a neighbor of this process and then returns. In block 007, the routine

hangs up the external connection. In block 2008, the routine invokes th connect request

routine to request that a process connect to one of the holes of this process. The routine then
returns.

25 Figure 21 is a flow diagram illustrating the processing of the 11 hole routine in '

one embodiment. This routine is passed an indication of the requesting process. If this

process is requesting to fill a hole, then this routine sends an internal essage to other

processes. If another process is requesting to fill a hole, then this routine in okes the routine

to handle a connection port search request. In block 2101, the rou' e initializes a

30 connection port search statement internal message (i.e., connection_port_ earch_strnt). In

[03004-8001/SU)0J733. 1071 -35-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1116 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1117 of 1442

the message to the neighbors of this process through the internal ports and then returns. In

block 2104, the routine invokes the handle connection port search routine then returns.

Figure 22 is a flow diagram illustrating the processing of the ' temal dispatcher

routine in one embodiment. This routine is passed an indication of the nei bor who sent the

5 internal message. In block 2201, the routine receives the internal mess e. This routine

 identifies the message type and invokes the appropriate routine to handle e message. In

block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. In decision bl k 2203, if this

process is the originating process of the message or the message has alrea y been received

10 (i. e., a duplicate), then the routine ignores the message and continues at blo R 2208, else the

routine continues at block 2203A. In decision block 2203A, if the pr cess is partially

connected, then the routine continues at block 2203B, else the routine c ntinues at block

2204. In block 2203B, the routine adds the message to the pending conn _ction buffer and

continues at block 2204. In decision blocks 2204-2207, the routine deccides the message

15 type and invokes the appropriate routine to handle the message. For exa+p1e, in decision
block 2204, if the type of the message is broadcast statement (i.e., broadca t_strnt), then the

routine invokes the handle broadcast message routine in block 2205. Alter invoking the
appropriate handling routine, the routine continues at block 2208. In decisiim block 2208, if

the partially connected bufler is full, then the routine continues at bloc 2209, else the

20 routine continues at block 2210. The broadcaster component collects all its internal

messages in a buffer while partially connected so that it can forward tl+ messages as it
connects to new neighbors. If, however, that buffer becomes full, then the process assumes

is was too high,
routine invokes

25 the achieve connection routine and then continues in block 2210. In decisi n block 2210, if

routine of the application program.

30 Figure 23 is a flow diagram illustrating the processing of the

process, an indication of the neighbor who sent the broadcast message,
[03004—800l/SL003733.l07] -36-

d the broadcast

1/31/00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1117 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1118 of 1442

message. The broadcaster component queues messages from each origina ' g process until it

can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the message to the

5 neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting
to receive messages, then the routine continues at block 2304, else the to tine returns. In

block 2304, the routine sends the messages in the correct order if ss1ble for each

message itself. In block 2301, the routine performs the out of order %cesstng for this
originating process and then returns.

Figure 24 is a flow diagram illustrating the processing f the distribute

10 broadcast message routine in one embodiment. This routine sends the bro cast message to

each of the neighbors of this process, except for the neighbor who sent th message to this

process. In block 2401, the routine selects the next neighbor other than e neighbor who

sent the message. In decision block 2402, if all such neighbors have alrea y been selected,

then the routine returns. In block 2403, the routine sends the messag to the selected

15 neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the tile connection

port search statement routine in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the message itself. In block 2601, the ro tine invokes the

distribute internal message which sends the message to each of its neighb 5 other than the

20 sending neighbor. In decision block 2602, if the number of holes of this rocess is greater

5. In decision

than zero, then the routine continues at block 2603, else the routine re

block 2603, if the requesting process is a neighbor, then the routine continu s at block 2605,

else the routine continues at block 2604. In block 2604, the routine ' vokes the court

neighbor routine and then returns. The court neighbor routine connects '5 process to the

25 requesting process if possible. In block 2605, if this process has one hole, en the neighbors

with empty ports condition exists and the routine continues at block 2606 else the routine

sends the message to the requesting neighbor.

30 Figure 27 is a flow diagram illustrating the processing of

[03004-8001/SLO03731107] -3 7-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1118 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1119 of 1442

connection call external message to the prospective neighbor and ad the prospective

neighbor as a neighbor. In decision block 2701, if the prospective nei bor is already a

neighbor, then the routine returns, else the routine continues at block 270 . In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if the n ber of holes of

5 this process is greater than zero, then the routine continues at block 2704 else the routine

continues at block 2706. In block 2704, the routine sends a port connec 'on call external

message (i.e., port__connection_call) to the prospective neighbor and rec ives its response

(i.e., pon_connection_resp). Assuming the response is successfully receiv d, in block 2705,

the routine adds the prospective neighbor as a neighbor of this process by invoking the add

10 neighbor routine. In block 2706, the routine hangs up with the prospect and then retums.

Figure 28 is a flow diagram illustrating the processing of the Iiandleconnection
edge search call routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine ei er forwards the

message to a neighbor or proposes the edge between this process and the se ding neighbor to

IS the requesting process for edge pinning. In decision block 2801, if this rocess is not the

requesting process or the number of holes of the requesting process is sti l greater than or

equal to two, then the routine continues at block 2802, else the routine c ntinues at block

2813. In decision block 2802, if the forwarding distance is greater th zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

20 continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented

forwarding distance. The routine then continues at block 2815. In decisi n block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, then the routine

25 continues at block 2805, else the routine continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication of the requesting
party and a toggle indicator that alternatively indicates to confinue the ran om walk for one

or two more computers. The routine then continues at block 2815. In block 2806, the

routine dials the requesting process via the call-in port. In block 2807, th routine sends an

30 edge proposal call external message (i. e., edge_proposal_call) and receives e response (i.e.,

cdgeJ)roposal_resp). Assuming that the response is successfully rece ved, the routine

continues at block 2808. In decision block 2808, if the response indicate that the edge is
[D3004-800!/SL003733.l07] -3 8- 701,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1119 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1120 of 1442

acceptable to the requesting process, then the routine continues at bloc 2809, else the

routine continues at block 2812. In block 2809, the routine reserves the e ge between this

process and the sending neighbor. In block 2810, the routine adds the req esting process as

a neighbor by invoking the add neighbor routine. In block 2811, the ro 'ne removes the

5 sending neighbor as a neighbor. In block 2812, the routine hangs up the xtemal port and

continues at block 2815. In decision block 2813, if this process is the reque ting process and

the number of holes of this process equals one, then the routine continues a block 2814, else

the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.

In block 2815, the roufinc sends an connection edge search respons message (i. e.,

10 connection_edge_search_response) to the sending neighbor indicating ackn wledgement and

then returns. The graphs are sensitive to parity. That is, all possible pa 5 starting from a

node and ending at that node will have an even length unless the graph h s a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary

distance between even and odd distances.

15 Figure 29 is a flow diagram illustrating the processing» of the andle connection

edge search response routine in one embodiment. This routine is passed as indication of the

requesting process, the sending neighbor, and the message. In block 2901, the routine notes

that the connection edge search response (i. e., connection_edge_searc resp) has been

. received and if the forwarding distance is less than or equal to one unr serves the edge

20 between this process and the sending neighbor. In decision block 2902, if the requesting

process indicates that the edge is acceptable as indicated in the message, then the routine

continues at block 2903, else the routine returns. In block 2903, the routine eserves the edge

between this process and the sending neighbor. In block 2904, the to

sending neighbor as a neighbor. In block 2905, the routine invokes th court neighbor

' e removes the

25 routine to connect to the requesting process. In decision block 2906, if th invoked routine

was unsuccessful, then the routine continues at block 2907, else the ro tine returns. In

decision block 2907, if the number of holes of this process is greater th zero, then the

routine continues at block 2908, else the routine retums. In block 2908, th routine invokes

the fill hole routine and then returns.

30 Figure 30 is a flow diagram illustrating the processing of the roadcast routine

in one embodiment. This routine is invoked by the application pro to broadcast a

message on the broadcast channel. This routine is passed the message to e broadcast. In

[D3004-8001/Sl.D03733.lO7] .3 9. 7,3,”,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1120 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1121 of 1442

20

decision block 3001, if this process has at least one neighbor, then the roultine continues at
block 3002, else the routine returns since it is the only process connected to be broadcast

channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the

message. In block 3004, the routine invokes the distribute intemal mTsage routine tobroadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment. The acquire message routine may be invoked the application

program or by a callback routine provided by the application program. This routine returns a

message. In block 3101, the routine pops the message from the mess e queue of the

broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine retums indication of failure.

Figures 32-34 are flow diagrams illustrating the process’ g of messages

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram

[03004-8001/SLD03733. 107] .40-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1121 of1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1122 of 1442

block 3302, the routine selects a neighbor that is not involved in the nei bors with empty

ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now has at llast one hole. In
block 3304, the routine invokes the add neighbor routine to add the pro ess that sent the

5 message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine. This routine determines whether the neighbors 'th empty ports

condition really is a problem or whether the broadcast channel is in the mall regime. In

decision block 3401, if this process has one hole, then the routine continu s at block 3402,

10 else the routine continues at block 3403. If this process does not have one ole, then the set

of neighbors of this process is not the same as the set of neighbors of the se ding process. In

decision block 3402, if this process and the sending process have the same set of neighbors,

then the broadcast channel is not in the small regime and the routine contin es at block 3403,

else the routine continues at block 3406. In decision block 3403, if this pro ess has no holes,

15 then the routine retums, else the routine continues at block 3404. In block 3404, the routine

sets the estimated diameter for this process to one. In block 3405, the ro tine broadcasts a

diameter reset internal message (i.e., diameter_reset) indicating that the es ° ated diameter is

one and then returns. In block 3406, the routine creates a list of neighbors this process. In

block 3407, the routine sends the condition check message (i. e., condition heck__stInt) with

20 the list of neighbors to the neighbor who sent the condition double check essage and then
returns.

From the above description, it will be appreciated that though specific

embodiments of the technology have been described, various modiflcati s may be made

without deviating from the spirit and scope of the invention. F r example, the

25 communications on the broadcast channel may be encrypted. Also, the c armel instance or

session identifier may be a very large number (e.g., 128 bits) to help preve an unauthorized

user to maliciously tap into a broadcast chaimel. The portal computer ay also enforce

security and not allow an tmauthorized user to connect to the br adcast channel.

Accordingly, the invention is not limited except by the claims.

[o3oo4.sooi/sLoo3733.io7] -41- 751,00

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1122 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1123 of 1442

CLAIMS

1 1. A computer network for providing a game environment for a plurality of

2 participants, each participant having connections to at least three nei or participants,

3 wherein an originating participant sends data to the other participants by sending the data

4 through each of its connections to its neighbor participants and wherein each participant

5 sends data that it receives from a neighbor participant to its other neighbor p 'cipants.

1 2. The computer network of claim 1 wherein each partici ant is connected

2 to 4 other participants.

1 ' 3. The computernetwork of claim 1 wherein each partici ant is connected

2 to an even number of other participants.

1 4. The computer network of claim 1 wherein the netw rk is m-regular,

2 where m is the number of neighbor participants of each participant.

1 5. The computer network of claim I wherein the networ is m-connected,

2 where m is the number of neighbor participants of each participant.

1 6. The computer network of claim 1 wherein the network is m-regular and

2 m-connected, where m is the number of neighbor participants of each partic pant.

1 7. The computer network of claim 1 wherein all the partic pants are peers.

1 8. The computer network of claim 1 wherein the connec ions are peer-to-

2 peer connections.

103004-sao1:s1.oo3733.1o7) -42- muoo

|P'R2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1123 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1124 of 1442

1 9. The computer network of claim 1 wherein the connec "cm are TCP/IP

2 connections.

1 10. The computer network of claim 1 wherein each partici ant is a process

2 executing on a computer.

1 11. The computer network of claim 1 wherein a computer hosts more than

2 one participant.

1 12. The computer network of claim 1 wherein each particip‘ 1 sends to each

2 of its neighbors only one copy of the data.

1 13. The computer network of claim 1 wherein the int rconnections of

2 participants form a broadcast channel for a game of interest.

1 14. A distributed game system comprising: I

2 a plurality of broadcast charmels, each broadcast ch el for playing a

3 game;

4 means for identifying a broadcast channel for a game 0 interest; and

5 means for connecting to the identified broadcast chann l.

1 15. The distributed game system of claim 14 wherein mea.+s for identifying
2 a game of interest includes accessing a web server that maps games 0 corresponding

3 broadcast channel.

1 16. The distributed game system of claim 14 wherein a br dcast channel is

2 formed by player computers that are each interconnected to at least three 0 er computers.

(osooa-soon/s1,oo3733.|o71 .43. 7,3,“

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1124 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1125 of 1442

Boos/—= 800? as oo

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1126 of 1442
IPR2016-00726 -ACT|V|S|0l1l, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1126 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1127 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1127 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1128 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1129 of 1442

/I
:..II/,

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1130 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1131 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1132 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1132 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1133 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1134 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1135 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1135 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1136 of 1442

.©_v$+w..~wcgdsuif_U.:.IUQ?,§__§

|PR2‘016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1136 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1137 of 1442

4.93_.46+:!>...cU

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1137 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1138 of 1442

Lsmzl eats;-.-:0

Oi5pJd-4r

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1138 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1139 of 1442

P H‘ x(Ch:-vmfil "T194

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1139 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1140 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1140 of 1442

Q€C€\"JL5v~T-¢\—v-5

1»-=3-so ge.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1141 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex.1102, p. 1141 of1442 -

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1142 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1142 of 1442

M3 ohm «.5

-fiaflow sceknr

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1143 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1143 of 1442

S Q ='

corxn¢¢‘rea\

n0‘h’$\'3 ~pe\lquJ
— ‘ ,_ . I’

Fm \/93

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1144 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1144 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1145 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1145 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1146 of 1442
|PR2.016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1146 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1147 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1147 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1148 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,

Ex."1102, p. 1148 of 1442

 -rat...-alvr _
dds be-c2 T9 V*°“'V\"§

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1149 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1149 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1150 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1150 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1151 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex.1102, p. 1151 of1442 V

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1152 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1152 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1153 of 1442

 Dvski

Bron cos

W7%4Q ~.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1153 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1154 of 1442

DI'31‘t§ ha-«J
Broao

'€

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1154 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1155 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1155 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1156 of 1442
|PR_2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1156 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1157 of 1442

oz’

Co u

F’ ‘

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1157 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1158 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,

Ex. 1102: p. 1158 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1159 of 1442

 %3:*%r,":::°6=. 5’;

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1159 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1160 of 1442
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1160 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1161 of 1442
|PR2016'-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1161 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1162 of 1442

cre_aJ'¢ 1651- of-
~:s<‘:_bé*s -

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1162 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1163 of 1442

http://www.openp2p.corn/lpt/ 01/29/2002--page 1

_
COL?DFUSION$

, G%¢”t'%:i2i~ré‘ 'tastat:'=;w::te ‘lass T-

ouble printing code examp

Gnutella: Alive, Well, and Changing Fast

01/25/2001

Gnutella, an open peer-to-peer search system primarily used for file R°'at°d A"“°'°53

sharing, was released in March. Within four months, developer

activity had substantially diminished, although usage continued to

surge due to Napster-driven media attention on peer-to-peer file-

sharing systems. Afier five months, the strain of an increasing

number of users on a weak technical infrastructure resulted in a Mo-,0 Nation Resgonds
quasi-collapse of the Gnutella network. Late irithe year, however, a
second wave of more sophisticated development began to emerge,

informed by experience. Defying reports of its demise, Gnutella is

evolving and usage is growing in response, although significant

In Praise of Freeloaders

EZEDir_es:10I¥BesiAvoilobleCopy

. . I 1

technical challenges remain. Reguresen, me e
I_e.<_:.hn.<.>.!99.i.9a.,l.n_n_gy§ti9n

What problems have been overcome and how? What problems Remaking the Peer-to—Peer

e Gnutella network and closely followed related Mm. .-M, cipmpzgacan, 5

application development. Here, we cover some representative issues
to provide insight into Gnutella's evolution.

The origins and technical significance of Gnutella have been described elsewhere. Some notable

points:

a Gnutella's creators released an executable application and published neither its source code

nor the communications protocol. Extant protocol publications made by third parties trace

their primary sources to reverse-engineerings of the original application.

0 It is generally acknowledged that Gnutella was not designed to support an unlimited user

A population, but instead a few hundred to perhaps a few thousand users.

0 The Gnutella protocol defines five message types, the data carried by each type, the

transmission rules for each type and the mechanics of connection between hosts.

0 Pings and queries used to discover hosts and files, respectively, are broadcast; other

message types, including responses, are routed. Messages are supposed to be dropped after

a predefined number of relays.

0 Gnutella is not a file-transfer protocol. The protocol is designed for finding hosts and their

files. File transfer is handled directly between serving and requesting hosts via HTTP.

Gnutella applications that serve files contain mini Web servers.

0 The protocol does not specify how many connections a given host may initiate, accept or

simultaneously maintain. It does not dictate conditions under which a host should maintain

or drop a given connection.

a Many independent developers have produced a number of Gnutella-speaking applications.

lt is not hard to imagine from the foregoing that Gnutella is susceptible to a number of problems.

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1163 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1164 of 1442

/V.
http://www.openp2p.com/lpt/ 01/29/2002--page 2

l Non-compliance

Non-compliant implementations are problematic not just for their users, who may not be able to

effectively communicate with others, but they are also trouble for the network at large. Because

Gnutella messages are relayed from host to host, the impact of a non-compliant application can

easily extend beyond its installed base and be magnified out of proportion.

But, what does "non-compliant" mean for a protocol without a blessed standard? In the open
world of Gnutella, free from central authority, compliance means being able to effectively

communicate with the bulk of the installed base. It is not unlike the situation with languages such

as English that have no formal codification. Protocol specification documents in this

environment then become analogous to dictionaries that reflect popular usage instead of dictating
usage.

Of course, non-compliance can arise out of the purposeful invention of new words or simply out

of poor grammar and pronunciation. Among the many ways an application can go wrong on the

latter front: It can malform messages it originates, it can corrupt messages it forwards and it can

improperly route messages. Proper handling of the routed message types by creating and

maintaining a routing table is a feature that, when short-shrifted by a developer, results in

substantial costs to users, including increased traffic and lost responses. The low barriers to entry

to Gnutella programming have encouraged less experienced developers to try their hands, often

exacerbating matters.

Non-compliant implementations have been kept in check by, among other things, the availability

of quality protocol specification documents, and the strict filtering implemented in popular

applications in order to not propagate deviant messages. They represent a continued problem.

Connectivity

Connectivity was a big headache for users. Just as a Web browser needs a start page, a Gnutella

application needs a start host. Unfortunately, early programs did not come preset with one

because host addresses generally have short shelf lives. This sent users searching across Web

sites, message boards and chat rooms for active host addresses. Developer Bob Schmidt came to

the rescue with gnuCache, an open-source application that automatically began doling out

addresses from several enthusiast-run servers. Not long after, Clip2 began reliably serving lists

of well connected, verified active hosts through a service that could be accessed at

Gnutellahosts.com via Gnutella and the Web. By fall, developers had begun providing an "auto—

connect" feature in Gnutella applications that relied upon host list services for start hosts,

relieving users of the need to bother with this matter. Technically, these services are sufficiently

uniform in the way they operate so as to be interchangeable to the developer, although the

quality of addresses returned varies. The connectivity problem has thus been addressed in a

manner that is not susceptible to a single point of failure.

Lack of Search Results

A lack of search results was a substantial issue following the quasi-collapse of the network in

August. As the traffic carried by an average host grew, it eventually exceeded the capacity of

hosts on the slowest physical links -- dial—up modems. These hosts became bottlenecks in the

network, effectively severing communication lines running through them. Fragmentation into

smaller sub-networks effectively resulted, with the upshot that users saw fewer search results.

Responses to the issue followed a common theme: move users on slower connections to the edge
of the network.

In October, Clip2 introduced the _l1e_fl,e_cto_r, a special Gnutella server designed to run on a high-

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 1164 of 1442

