
IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 900 of 1442

13

l3-20

13.6.6.1

13.6.6.2

13.6.6.3

const Componentld TAG_DCE_SEC_MECH = 103; II Security Service

TAG_ORB_TYPE Component

it is often useful in the real world to be able to identify the particular kind of ORB an

object reference is coming from, to work around problems with that particular ORB, or

exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of type unsigned long,

encoded as a CDR encapsulation, designating an ORB type 1D allocated by the OMG

for the ORB type of the originating ORB. Anyone may register any ORB types by

submitting a short (one-paragraph) description of the ORB type to the OMG, and will

receive a new ORB type 1D in return. A list of ORB type descriptions and values will
be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any IOR profile. For

profiles supporting HOP l.l or greater, it is optionally present.

TAG_ALTERNA TE_1I0P_ADDRESS Component

In cases where the same object key is used for more than one intemet location, the

following standard IOR Component is defined for support in llOP version 1.2.

The TAG_ALTERNATE_||0P__ADDRESS component has an associated value of
WP?

struct {

string HostlD,
unsigned short Port

};

encoded as a CDR encapsulation.

Zero or more instances of the TAG_ALTERNATE_||OP_ADDRESS component type

may be included in a version 1.2 TAG_|NTERNET_lOP Profile. Each of these

alternative addresses may be used by the client orb, in addition to the host and port

address expressed in the body of the Profile. in cases where one or more

TAG_ALTERNATE__||OP_ADDRESS components are present in a

TAG_|NTERNET_|OP Profile, no order of use is prescribed by Version 1.2 of llOP.

Other Components

The following standard components are specified in various OMG specifications:

' TAG_CODE__SETS - See Section l3.lO.2.4, “CodeSet Component of IOR Multi-
Component Profile” on page 1342.

° TAG_POLlClES - See CORBA Messaging - chapter 22.

° TAG_SEC_NAME - See the Security Service specification, Mechanism Tags
section. '

Common Object Request Broker A rch ileclure (CORB/1), V2. 6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 900 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 901 of 1442

I3

' TAG_ASSOClAT|ON_OPTlONS - See the Security Service specification, Tag

Association Options section.

° TAG_SSL_SEC_TRANS - See the Security Service specification, Mechanism

Tags section.

° TAG_GENER|C_SEC_MECH and all other tags with names in the form

TAG_*_SEC_MECH - See the Security Service specification, Mechanism Tags
section.

° TAG_F|REWALL_SEC — See the Firewall specification (orbos/98-O5-04).

' TAG_SCCP_CONTACT_|NFO - See the CORBA/1N lnterworking specification

(telecom/98-10-03).

° TAG_JAVA_CODEBASE - See the Java to IDL Language Mapping specification

(formal/99-07-59), Codebase Transmission section.

° TAG_TRANSACT|ON_POL|CY - See the Object Transaction Service specification

(formal/00-06-28).

° TAG_MESSAGE_ROUTERS - See CORBA Messaging (chapter 22).

' TAG_OTS_POL|CY - See the Object Transaction Service specification
(formal/00-06-28).

' TAG_|NV_POL|CY - See the Object Transaction Service specification
(formal/00-06-28).

' TAG_|NET_SEC_TRANS - See the Security Service specification

(forrnal/O0-O6-25).

' TAG_COMPLETE_OBJECT_KEY (See Section 16.5.4, “Complete Object Key

Component” on page 16-19).

' TAG_ENDPO|NT_|D_POS|T|ON (See Section 16.5.5, “Endpoint 1D Position
Component” on page 16-20).

° TAG_LOCAT|ON_POL|CY (See Section 16.5.6, “Location Policy Component” on
page 16-20).

' TAG_DCE_STR|NG_B|ND|NG (See Section 16.5.1, “DCE-CIOP String Binding

Component” on page 16-17).

' TAG_DCE_B|ND|NG__NAME (See Section 16.5.2, “DCE-C101’ Binding Name

Component” on page 16-18).

' TAG_DCE_NO_P|PES (See Section 16.5.3, “DCE-C101’ No Pipes Component” on
page 16-19).

13.6.7 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not

depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

December 2001 CORBA, v2.6: An Information Mndelfor Object References 13-21

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 901 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 902 of 1442

I3

13-22

3. Information used to drive multiple inter-ORB protocols may coexist within a single

profile, possibly with some information (e.g., components) shared between the

protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profiles

with the same profile tag may be included in an lOR.

5. Unless otherwise specified in the definition of a particular component, multiple

components with the same component tag may be part of a given profile within an
10R.

6. A TAG_MULT|PLE_COMPONENTS profile may hold components shared

between multiple protocols. Multiple such profiles may exist in an 10R.

7. The definition of each protocol using a TAG_MULTlPLE_COMPONENTS profile

must specify which components it uses, and how it uses them.

8. Profile and component definitions can be either public or private. Public definitions

are those whose tag and data format is specified in OMG documents. For private
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for use by

protocols other than the one(s) for which they were originally defined, and

dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tags.

Neither allocation nor registration indicates any “standard” status, only that the tag will

not be confused with other tags. Requests -to allocate tags should be sent to

tag_request@omg.org.

_13. 6.8 IOR Creation and Scope

lORs are created from object references when required to cross some kind of

referencing domain boundary. ORBS will implement object references in whatever

form they find appropriate, including possibly using the lOR,structure. Bridges will

normally use lORs to mediate transfers where that standard is appropriate.

13.6.9 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the

ORB::object_to_string operation, and then “destringified” (turned back into a

programming environment’s object reference representation) using the

0RB::string_to_object operation.

There can be a variety of reasons why being able to parse this string form might not

help make an invocation on the original object reference:

' ldentifiers embedded in the string form can belong to a different domain than the

ORB attempting to destringify the object reference.

° The ORBS in question might not share a network protocol, or be connected.

° Security constraints may be placed on object reference destringification.

Common Object Request Broker Arch itecrure (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 902 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 903 of 1442

December 2001

(1)

(2)

(3)

(4)

(5) i

(5)

(7)

(3)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

13

Nonetheless, there is utility in having a defined way for ORBS to generate and parse

stringified lORs, so that in some cases an object reference stringified by one ORB

could be destringified by another.

To allow a stringified object reference to be internalized by what may be a different

ORB, a stringified 10R representation is specified. This representation instead

establishes that ORBs could parse stringified object references using that format. This

helps address the problem of bootstrapping, allowing programs to obtain and use
object references, even from different ORBs.

The following is the representation of the stringified (extemalized) IOR:

<oref>

<prefix>

<hex_Octets>

<hex_Octet>

<prefix> <hex_Octets>
<i><o><r>“:”

<hex_Octet> {<hex_Octet>}*

<hexDigit> <hexDigit>

<hexDigit> = <digit>|<a> | | <c>|<d>|<e> | <f>

<digit> . = "D" | "1" | “2" | "3" | "4" | "5" |

| "6" | "7" | "8" | “9"
<a> = "3" "A"

 = "b" 1 "3"

<c> "= “c" I “C”

<d> ..= uvdu I uDn
= "e" “E"

<f> "= “f" | “F"

<i> .. ___ uin I III”

<o> :: = "o" | “O”

<r> :: = "r” | "R"

Note - The case for characters in a stringified lOR is not significant.

The hexadecimal strings are generated by first turning an object reference into an 10R,

and then encapsulating the lOR using the encoding rules of CDR, as specified in GIOP
1.0.-(See Section 15.3, “CDR Transfer Syntax” on page 15-4 for more information.)

The content of the encapsulated lOR is then turned into hexadecimal digit pairs,

starting with the first octet in the encapsulation and going until the end. The high four
bits of each octet are encoded as a hexadecimal digit, then the low four bits.

13.6.10 Object URLs

To address the problem of bootstrapping and allow for more convenient exchange of

human-readable object references, 0RB::string_to_object allows URLs in the

corbaloc and corbaname formats to be converted into object references.

lf conversion fails, string_to_object raises a BAD_PARAM exception with one of

following standard minor codes, as appropriate:

' 7 - string_to_object conversion failed due to bad scheme name

CORBA, v2. 6: An Information Modelfnr Object References 13-23

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 903 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 904 of 1442

I3

° 8 - string_to_object conversion failed due to bad address

‘ .9 - string_to_object conversion failed due to bad bad schema specific part

' 10 - string_to_object conversion failed due to non specific reason

13.6.10.1 corbaloc URL

The corbaloc URL scheme provides stringified object references that are more

easily manipulated by users than IOR URLs. Currently, corbaloc URLs denote

objects that can be contacted by HOP or reso|ve_initia|_references. Other transport

protocols can be explicitly specified when they become available. Examples of 1101’
and reso|ve_initiaI_references (rirz) based corbaloc URLs are:

corbaloc::555xyz.com/ProdI'l'radingservice

corba|oc:iiop:1.1 @555xyz.comIProdITradingservice

corbaloc::555xyz.com,:556xyz.com:80lDevlNameService
corbaloc:rir:/Tradingservice
corbaloczrirz/Nameservice

A corbaloc URL contains one or more:

° protocol identifiers

' protocol specific components such as address and protocol version information

When the rir protocol is used, no other protocols are allowed.

After the addressing information, a corbaloc URL ends with a single object key.

The full syntax is:

<corba|oc> = “corba|oc:"<obj_addr_list>["l"<key_string>]

<obj_addr_|ist> = [<obj_addr> ",”]* <obj_addr>

<obj_addr> = <prot_addr> | <future_prot_addr>

<prot_addr> = <rir_prot_addr> | <iiop_prot_addr>

<rir_prot_addr> = <rir_prot_token>":"
<rir_prot_token> = “rir"

<iiop_prot_addr> = <iiop_id><iiop_addr>

<iiop_id> = “:" | <iiop_prot_token>":"
<iiop_prot_token> = "iiop"

' <iiop_addr> = [<version> <host> [“:" <port>]]

<host> = DNS_style_Host_Name | ip_address

<version> = <major> ".” <minor> "@" | empty_string
<port> = number

<major> = number
<minor> = number

<future_prot_addr> =<future_prot_id><future_prot__addr>
<future_prot_id> = <future_prot_token>":"

<future__prot_token> = possible examples: “atm" | "dce"
<future_prot_addr> = protocol specific address

13-24 Cnmmnn Object Request Broker/lrchitecmre (CORBA), v2.6 December-2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 904 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 905 of 1442

13

December 200]

13.6.10.2

<key_string> = <string> | empty_string

Where:

obj_addr_list: comma-separated list of protocol id, version, and address information.

This list is used in an implementation-defined manner to address the object An object

may be contacted by any of the addresses and protocols.

Note — If the rir protocol is used, no other protocols are allowed.

obj_addr: A protocol identifier, versiontag, and a protocol specific address. The

comma ‘,’ and ‘/’ characters are specifically prohibited in this component of the URL.

rir_prot_addr: reso|ve_initia|_references protocol identifier. This protocol does

not have a version tag or address. See Section l3.6.10.2, “corbaloc : rir URL”.

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DN S-

style host name or IP address. See Section l3.6.lO.3, “corbaloc : iiop URL”” for

the iiop specific definitions.

future_prot_addr: a placeholder for future corbaloc protocols.
L6,!)

future_prot_id: token representing a protocol terminated with a . .

future_prot_token: token representing a protocol. Currently only “iiop” and "rir" are
defined.

future_prot_addr: a protocol specific address and possibly protocol version

information. An example of this for iiop is “1.1@555xyz.com”.

key_string: a stringified object key.

The key_string corresponds to the octet sequence in the object_key member of a

GIOP Request or LocateRequest header as defined in section 15.4 of CORBA 2.3.

The key_string uses the escape conventions described in RFC 2396 to map away

from octet values that cannot directly be part of a URL. US-ASCll alphanumeric

characters are not escaped. Characters outside this range are escaped, except for the

following:

“_15 | “/17 l 4:,” | L59”
1

u,” I ££@” 1 u&” I “:1: | 54+” ' “$17 |

u n | 4: n | u n I up: | “~33 | u*n | uns R “(H ‘ Ar)”
, _ .

The key_string is not NUL-terminated.

c0rbaloc.'rir URL

The corbaloczrir URL is defined to allow access to the ORB’s configured initial
references through a URL.

The protocol address syntax is:

<rir_prot_addr>

<rir_prot_token>
= <rir_prot_token>":"
= llriril

CORBA. V2.6: An Information Modelfnr Object References I3-25

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 905 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 906 of 1442

I3

13-26

13.6.10.3

Where:

rir_prot_addr: reso|ve__initia|_references protocol identifier. There is no version
or address information when rir is used.

rir_prot_token: The token “rir” identifies this protocol..

For a corbaloczrir URL, the <key_string> is used as the argument to

reso|ve_initia|_references. An empty <key_string> is interpreted as the default
“Nameservice”.

The rir protocol can not be used with any other protocol in a URL.

corbaZoc.'z'iop URL

The corbaloc:iiop URL is defined for use in TCP/lP- and DNS-centric environments

The full protocol address syntax is:

<iiop_prot_addr> = <iiop_id><iiop_addr>

<iiop_id> = <iiop_defau|t> | <iiop_prot_token>":"
<iiop_default> = "1"
<iiop_prot_token> = "iiop”

<iiop_addr> = [<version> <host> [":” <port>]]

<host> = DNS_sty|e_Host_Name | ip_address
<version> = <major> ".” <minor> “@" | empty_string

<port> _ = number
<major> = number
<minor> = number

Where:

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-

style host name or lP address.

iiop_id: tokens recognized to indicate an iiop protocol corbaloc.

iiop_default: default token indicating iiop protocol, “:".

iiop_prot_tokcn: iiop protocol token, “iiop”

iiop_addrcss: a single address

host: DN S-style host name or IP address. if not present, the local host is assumed.

version: a major and minor version number, separated by ‘.’ and followed by ‘@’. If
the version is absent, 1.0 is assumed.

ip_address: numeric IP address (dotted decimal notation)

port: port number the agent is listening on (see below). Default is 2809.

Common Object Request Broker A rch itecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 906 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 907 of 1442

13

December 2001

13.6104

13.6.10.5

13.6.10.6

13.6.10.7

corbaloc Server Implementation

The only requirements on an object advertised by a corbaloc URL are that there

must be a software agent listening on the host and port specified by the URL. This

agent must be capable of handling GIOP Request and LocateRequest messages

targeted at the object key specified in the URL.

A normal CORBA server meets these criteria. It is also possible to implement

lightweight object location forwarding agents that respond to GIOP Request

messages with Reply messages with a LOCATlON_FORWARD status, and respond

to GIOP LocateRequest messages with LocateRep|y messages.

corbaname URL

The corbaname URL scheme is described in the Naming Service specification. lt

extends the capabilities of the corbaloc scheme to allow URLs to denote entries in a

Naming Service. Resolving corbaname URLs does not require a Naming Service

implementation in the ORB core. Some examples are:

corbaname: : 555objs.com#a/stringlpathltolobj

This URL specifies that at host 555objs.com, a object of type Namingcontext

(with an object key of NameService) can be found, or alternatively, that an agent is

running at that location which will return a reference to a Namingcontext. The

(stringified) name a/string/path/tolobj is then used as the argument to a resolve

operation on that Namingcont ext. The URL denotes the object reference that

results from that lookup.

corbaname:rir:#aI|ocal/obj

This URL specifies that the stringified name a/local/obj is to be resolved relative to

the naming context returned by resoIve_initial_references("Nameservice").

Future corbaloc URL Protocols

This specification only defines use of iiop with corbaloc. New protocols can be added

to corbaloc as required. Each new protocol must implement the <future_prot_addr>

component of the URL and define a described in Section l3.6.l0.l, “corbaloc

URL” on page 13-24.”_

A possible example of a future corbaloc URL that incorporates an ATM address is:

corbaloc;iiop:xyz.com,atm:E.1 64:358.400.1234567IdevItestIobjectX

Future URL Schemes

Several currently defined non-CORBA URL scheme names are reserved.

lmplementations may choose to provide these or other URL schemes to support

additional ways of denoting objects with URLs.

CORBA, v2. 6: An Information Modelfor Object References 13-27

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 907 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 908 of 1442

13

13.7 Service Context

13-28

Table 13-1 lists the required and some optional formats.

Table 13-1 URL formats

file://

Emerging specifications for Object Services occasionally require service-specific

context information to be passed implicitly with requests and replies. The

Interoperability specifications define a mechanism for identifying and passing this

service-specific context information as “hidden" parameters. The specification makes

the following assumptions:

%Description

Standard stringified IOR format

Simple object reference. rir: must be supported.

CosNarne URL

Specifies a file containing a URL/lOR

Specifies a file containing a URL/lOR that is

accessible via ftp protocol.

 Specifies an HTTP URL that returns an object
URL/IOR.

° Object Service specifications that need additional context passed will completely
specify that context as an OMG IDL data type.

' ORB APls will be provided that will allow services to supply and consume context

information at appropriate points in the process of sending and receiving requests

and replies.

° it is an ORB’s responsibility to determine when to send service-specific context

information, and what to do with such information in incoming messages. It may be

possible, for example, for a server receiving a request to be unable to de-

encapsulate and use a certain element of service-specific context, but nevertheless

still be able to successfully reply to the message.

As shown in the following OMG lDL specification, the IOP module provides the

mechanism for passing Object Service—specific information. It does not describe any

service-specific information. it only describes a mechanism for transmitting it in the

most general way possible. The mechanism is currently used by the DCE ESIOP and

could also be used by the Internet lnter-ORB protocol (llOP) General lnter_ORB

Protocol (GIOP).

Each Object Service requiring implicit service-specific context to be passed through

GIOP will be allocated a unique service context ID value by OMG. Service context ID

values are of type unsigned long. Object service specifications are responsible for

describing their context information as single OMG IDL data types, one data type
associated with each service context 1D.

The marshaling of Object Service data is described by the following OMG IDL:

Common Object Request Broker Architecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 908 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 909 of 1442

13

December 200]

module |OP{ /I IDL

typedef unsigned long Serviceld;

struct ServiceContext{
Serviceld context_id;

sequence <octet> context_data;

};

typedef sequence <ServiceContext>ServiceContextList;

};

The context data for a particular service will be encoded as specified for its service-

specific OMG IDL definition, and that encoded representation will be encapsulated in
the context_data member of lOP::ServiceContext. (See Section 15.3.3,

“Encapsulation” on page 15-14). The context_id member contains the service ID

value identifying the service and data format. Context data is encapsulated in octet

sequences to pem1itORBs to handle context data without unmarshaling, and to handle

unknown context data types.

During request and reply marshaling, ORBs will collect all service context data

associated with the Request or Reply in a ServiceContextList, and include it in the

generated messages. No ordering is specified for service context data within the list.

The list is placed at the beginning of those messages to support security policies that

may need to apply to the majority of the data in a request (including the message
headers).

Each Object Service requiring implicit service—specific context to be passed through

GlOP will be allocated a unique service context ID value by the OMG. Service context

lD values are of type unsigned long. Object service specifications are responsible for

describing their context information as single OMG lDL data types, one data type
associated with each service context ID.

The high-order 20 bits of service-context ID contain a 20-bit vendor service context

codeset lD (VSCID); the low-order 12 bits contain the rest of the service context ID. A

vendor (or group of vendors) who wish to define a specific set of service context lDs

should obtain a unique VSCID from the OMG, and then define a specific set of service

context lDs using the VSCID for the high—order bits.

The VSCID of zero is reserved for use for OMG-defined standard service context lDs

(i.e., service context lDs in the range O-4095 are reserved as OMG standard service
contexts).

13. 7.1 Standard Service Contexts

module |OP{ II IDL
const Serviceld Transactionservice = 0;

const Serviceld Codesets = 1;

const Serviceld ChainBypassCheck = 2;

const Serviceld Chainfiypasslnfo = 3;
const Serviceld LogicalThreadld = 4;
const Serviceld B|_D|R_||0P = 5;

CORBA, v2.6: Service Context 13-29

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 909 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 910 of 1442

13

const Serviceld SendingContextRunTime = 6;
const Serviceld |NVOCATlON_POL|ClES = 7;

const Serviceld FORWARDED__|DENT|TY = 8;

const Serviceld UnknownExceptionlnfo = 9;

const Serviceld RTCorbaPriority = 10;

const Serviceld RTCorbaPriorityRange = 11;

const Serviceld ExceptionDetailMessage = 14;

};

The standard Servicelds currently defined are:

° Transactionservice identifies a CDR encapsulation of the

CosTransactions::PropogationContext defined in the Object Transaction

Service specification (formal/00-06-28).

° CodeSets identifies a CDR encapsulation of the

CONV_FRAME::CodeSetContext defined in Section l3.l0.2.5, “GIOP Code Set

Service Context” on page 13-43.

° DCOM-CORBA lnterworking uses three service contexts as defined in "DCOM-

CORBA lnterworking" in the “Interoperability with non-CORBA Systems"chapter.

They are:

- ChainBypassCheck, which carries a CDR encapsulation of the struct

CosBridging::ChainBypassCheck. This is carried only in a Request

message as described in Section 20.9.1, “CORBA Chain Bypass” on page 20-19.

- ChainBypass|nfo, which carries a CDR encapsulation of the struct

CosBridging::ChainBypasslnfo. This is carried only in a Reply message as

described in Section 20.9.1, “CORBA Chain Bypass” on page 20-19.

- Logica|Threadld, which carries a CDR encapsulation of the struct

CosBridging::LogicalThreadld as described in Section 20.10, “Thread

ldentification” on page 20-21.

' Bl_D|R_llOP identifies a CDR encapsulation of the
IIOP::BiDirl|0PServiceContext defined in Section 15.8, “Bi-Directional GIOP”

on page 15-55.

° SendingContextRunTime identifies a CDR encapsulation of the IOR of the

SendingContext::RunTime object (see Section 5.6, “Access to the Sending

Context Run Time” on page 5-18).

° For information on |NVOCATl0N_POLlClES refer to CORBA Messaging

(chapter 22).

' For information on FORWARDED_|DENT|TY refer to the Firewall specification

(orbos/98-05-O4).

° UnknownExceptionlnfo identifies a CDR encapsulation of a maishaled instance
of a java.|ang.throwab|e or one of its subclasses as described in Java to lDL

Language Mapping, “Mapping of Unknownfixceptionlnfo Service Context,"
section.

' For information on RTCorbaPriority refer to the Real-time CORBA (chapter 24).

13 -3 0 Common Object Request Broker Architecture (CORB/1). v2. 6 December 200]

|PR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 910 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 911 of 1442

13

' For information on RTCorbaPriorityRange refer to the Real-time CORBA

(chapter 24).

° ExceptionDetai|Message identifies a CDR encapsulation of a wstring, encoded

using GIOP l.2 with a TCS-W of UTF-16. This service context may be sent on

Reply messages with a reply_status of SYSTEM_EXCEPT|ON or
USER_EXCEPT|ON. The usage of this service context is defined by language

mappings.

13.7.2 Service Context Processing Rules

Service context lDs are associated with a specific version of GIOP, but will always be

allocated in the OMG service context range. This allows any ORB to recognize when

it is receiving a standard service context, even if it has been defined in a version of

GIOP that it does not support.

The following are the rules for processing a received service context:

' The service context is in the OMG defined range:

0 If it is valid for the supported GIOP version, then it must be processed correctly

according to the rules associated with it for that GIOP version level.

- lf it is not valid for the GIOP version, then it may be ignored by the receiving

ORB, however it must be passed on through a bridge and must be made available

to interceptors. No exception shall be raised.

‘ The service context is not in the OMG-defined range:

- The receiving ORB may choose to ignore it, or process it if it “understands” it,

however the service context must be passed on through a bridge and must made

available to interceptors.

13.8 Coder/Decoder Interfaces

The formats of lOR components and service context data used by ORB services are

often defined as CDR encapsulations encoding instances of IDL defined data types.

The Codec provides a mechanism to transfer these components between their IDL

data types and their CDR encapsulation representations.

A Codec is obtained from the CodecFactory. The CodecFactory_ is obtained
through a call to ORB::resolve_initiai_references ("CodecFactory").

13.8.1 Codec Interface

module IOP {

local interface Codec{

exception Inva|idTypeForEncoding O;
exception FormatMismatch {};

exception TypeMismatch {};

CORBA::OctetSeq encode (in any data)

Decembfif 2001 CORBA. V2.6: Coder/Decoder Interfaces 13-3]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 911 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 912 of 1442

13

13-32

13.8.1.1

13.8.1.2

raises (InvalidTypeForEncoding);

any decode (in CORBA::OctetSeq data)

raises (FormatMismatch);
CORBA::OctetSeq encode_va|ue (in any data)

raises (InvalidTypeForEncoding);

any decode_value (
in CORBA::OctetSeq data,

in CORBA::TypeCode tc)

raises (FormatMismatch, TypeMismatch);

};
}:

Exceptions

InvaIt'dTypeForEncoding

This exception is raised by encode or encode_va|ue when the type is invalid for the

encoding. For example, this exception is raised if the encoding is
ENCOD|NG_CDR_ENCAPS version 1.0 and a type that does not exist in that

version, such as wstring, is passed to the operation.

FormatMismatch

This exception is raised by decode or decode_value when the data in the octet

sequence cannot be decoded into an any.

TypeMismatch

This exception is raised by decode_value when the given TypeCode does not match

the given octet sequence.

Operations

encode

Convert the given any into an octet sequence based on the encoding format effective
for this Codes.

This operation may raise |nva|idTypeForEncoding.

Parameter

data The data, in the form of an any, to be encoded into an octet
sequence.

Return Value

An octet sequence containing the encoded any. This octet

sequence contains both the Typecode and the data of the type.

Common Object Request Broker A rchitecture (CORBA). v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 912 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 913 of 1442

13

decode

Decode the given octet sequence into an any based on the encoding format etfective
for this Codec. ‘

This operation raises FormatMismatch if the octet sequence carmot be decoded into
an any.

Parameter

data The data, in the form of an octet sequence, to be decoded into an
any.

Return Value

An any containing the data from the decoded octet sequence.

encode_vaIue

Convert the given any into an octet sequence based on the encoding format effective

for this Codec. Only the data from the any is encoded, not the Typecode.

This operation may raise |nva|idTypeForEncoding.

Parameter

data The data, in the form of an any, to be encoded into an octet
sequence.

Return Value

An octet sequence containing the data from the encoded any.

decode_value

Decode the given octet sequence into an any based on the given Typecode and the
encoding format effective for this Codec.

This operation raises FormatMismatch if the octet sequence‘ cannot be decoded into
an any.

Parameter

data The data, in the form of an octet sequence, to be decoded into an
any.

tc ' The TypeCode to be used to decode the data.

Return Value

An any containing the data from the decoded octet sequence.

13.8.2 Codec Factory

module IOP (

typedef short EncodingFormat;

const EncodingFormat ENCODING_CDR_ENCAPS = 0;

Dficembfif 2001 CORBA. v2. 6: Coder/Decoder Interfaces 13-33

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 913 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 914 of 1442

13

struct Encoding {

EncodingFormat format;

octet major_version;
octet minor_version;

};

local "interface CodecFactory {

exception UnknownEncoding {);
Codec create_codec (in Encoding enc)

raises (UnknownEncoding);

};

13.8.2.1 Encoding Structure

The Encoding structure defines the encoding format of a Codec. It details the

encoding format, such as CDR Encapsulation encoding, and the major and minor
versions of that format.

The encodings which shall be supported are:

' ENCOD|NG_CDR_ENCAPS, version 1.0;

° ENCODlNG_CDR_ENCAPS, version 1.1;

' ENCOD|NG__CDR_ENCAPS, version 1.2;

' ENCOD|NG_CDR_ENCAPS for all future versions of GIOP as they arise.

Vendors are free to support additional encodings.

13.8.2.2 C0decFact0ry Interface

create_codec

Create a Codec of the given encoding.

This operation raises UnknownEncoding if this factory cannot create a Codec of
the given encoding.

Parameter

enc The Encoding for which to create a Codec.

Return Value

A Codec obtained with the given encoding.

13-34 Common Object Request Broker/irchitecture (CORBA), V2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 914 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 915 of 1442

I3

13.9 Feature Support and GIOP Versions

December 2001

The association of service contexts with GIOP versions, (along with some other

supported features tied to GIOP minor version), is shown in Table 13-2..

Table 13-2 Feature Support Tied to Minor GIOP Version Number

es yesY

CodeSets Service Context

DCOM Bridging Service Contexts:

ChainBypassCheck

ChainBypasslnfo
Logica1Threadld

Object by Value Service Context:

SendingContextRunTime

Bi-Directional 1101’ Service Context:

Bl_DlR_llOP

Asynch Messaging Service Context

lNVOCATlON_POLlClES

Firewall Service Context

FORWARDED_lDENTlTY

Java Language Throwable_ Service
Context:

Unknownlixceptionlnfo

Realtime CORBA Service Contexts

RTCorbaPriority

RTCorbaPriorityRange

yes

yes

yes

optionals

optionals

yes

optional

(Realtime

CORBA only)

optional

es

es es

€S CS<s
U}

CS

es es

yes yes

yes yes

yes

yes

CORBA. V2. 6: Feature Suppnrt and GIOP Versions 13-35

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 915 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 916 of 1442

13

Table 13-2 Feature Support Tied to Minor GIOP Version Number (Continued)

TAG_FlREWALL_TRANS optionals

TAG_SCCP__CONTAC’I‘_lNl-‘O

TAG_TRANSACTlON_POl.lCY

TAG_MESSAGE_ROUTERS

'l‘AG_OTS_POLlCY

TAG_lNV_POLlCY

TAG_lNET_SEC_TRANS

optionals

optionals

optionals

optionals

optional‘

optionals

Extended IDL data types yes es
Bi-Directional GIOP Features es

Value types and Abstract lnterfaces yes

Note — 5 All features that have been added after CORBA 2.3 have been marked as

optional in GIOP 1.2. These features cannot be compulsory in GIOP l.2 since there is

no way to incorporate them in deployed implementations of 1.2. However, in order to

have the additional features of CORBA 2.4 work properly these optional features must

be supported by the GIOP 1.2 implementation connecting CORBA 2.4 ORBs.

13.10 Code Set Conversion

13.1 0.1 Character Processing Terminology

This section introduces a few terms and explains a few concepts to help understand the

character processing portions of this document.

13.10.1.1 Character Set

A finite set of different characters used for the representation, organization, or control

of data. In this specification, the term “character set” is used without any relationship

to code representation or associated encoding. Examples of character sets are the

English alphabet, Kanji or sets of ideographic characters, corporate character sets

(commonly used in Japan), and the characters needed to write certain European

languages.

13.10.1.2 Coded Character Set, or Code Set

A set of unambiguous rules that establishes a character set and the one-to-one

relationship between each character of the set and its bit representation or numeric
value. In this specification, the term “code set” is used as an abbreviation for the term

13-36 Common Object Request Broker/trchileclure (CORBA), v2.6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 916 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 917 of 1442

13

December 200]

13.10.1.3

Orientation

byte -oriented

non-byte-
oriented

13.10.1.4

“coded character set.” Examples include ASCII, ISO 8859-1, JIS X0208 (which

includes Roman characters, Japanese hiragana, Greek characters, Japanese kanji, etc.)
and Unicode.

Code Set Classifications

Some language environments distinguish between byte-oriented and “wide characters."

The byte-oriented characters are encoded in one or more 8-bit bytes. A typical single-

byte encoding is ASCII as used for western European languages like English. A typical

multi-byte encoding which uses from one to three 8-bit bytes for each character is

eucJP (Extended UNIX Code - Japan, packed format) as used for Japanese
workstations.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chinese,

Japanese, etc., where the number of combinations offered by 8 bits is insufficient and a

fixed-width encoding is needed. A typical example is Unicode (a “universal” character

set defined by the The Unicode Consortium, which uses an encoding scheme identical

to ISO 10646 UCS-2, or 2-byte Universal Character Set encoding). An extended

encoding scheme for Unicode characters is UTF-I6 (UCS Transformation Format, 16-

bit representations).

The C language has data types char for byte—oriented characters and wchar_t for

wide characters. The language definition for C states that the sizes for these characters

are implementation-dependent. Some environments do not distinguish between byte-

oriented and wide characters (e.g., Ada and Smalltalk). Here again, the size of a
character is implementation-dependent. The following table illustrates code set
classifications as used in this document.

Table 13-3 Code Set Classification

Code Element

Encoding

Code Set Examples C Data Type

ASCII, ISO 8859-1 (Latin-I), char

EBCDIC,

UTF-8, eucJP, Shift-JIS, JIS, Big5,

ISO IO646 UCS-2 (Unicode), ISO

10646 UCS-4, UTF-I6,

single-byte

multi-byte char[]

fixed-length wchar_t

Narrow and Wide Characters

Some language environments distinguish between “narrow” and “wide" characters.

Typically the narrow characters are considered to be 8-bit long and are used for

western European languages like English, while the wide characters are 16-bit or 32-

bit long and are used for languages like Chinese, Japanese, etc., where the number of

combinations offered by 8 bits are insufficient. However, as noted above there are

common encoding schemes in which Asian characters are encoded using multi-byte
code sets and it is incorrect to assume that Asian characters are always encoded as
“wide" characters.

CORBA. v2.6: Code Set Conversion 13-37

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 917 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 918 of 1442

I3

13-38

13.10.1.5

13.10.1.6

13.10.1.7

13.10.1.8

13.I0.1.9

13.10.1.10

Within this specification, the general terms “narrow character” and “wide character"

are only used in discussing OMG IDL.

Char Data and Wchar Data

The phrase “char data” in this specification refers to data whose lDL types have been

specified as char or string. Likewise “wchar data” refers to data whose IDL types

have been specified as wchar or wstring.

Byte—0riented Code Set

An encoding of characters where the numeric code corresponding to a character code

element can occupy one or more bytes. A byte as used in this specification is

synonymous with octet, which occupies 8 bits.

Multi-Byte Character Strings

A character string represented in a byte-oriented encoding where each character can

occupy one or more bytes is called a multi-byte character string. Typically, wide

characters are converted to this form from a (fixed-width) process code set before

transmitting the characters outside the process (see below about process code sets).

Care must be taken to correctly process the component bytes of a character’s multi-

byte representation.

Non-Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character code
element can occupy fixed 16 or 32 bits.

Char and Wchar Transmission Code Set (TCS-C and TCS-W)

These two terms refer to code sets that are used for fiansmission between ORBs after

negotiation is completed. ’As the names imply, the first one is used for char data and

the second one for wchar data. Each TCS can be byte-oriented or non-byte oriented.

Process Code Set and File Code Set

Processes generally represent international characters in an internal fixed-width format

which allows for efiicient representation and manipulation. This internal format is

called a “process code set.” The process code set is irrelevant outside the process, and

hence to the interoperation between CORBA clients and servers through their

respective ORBs.

When a process needs to write international character information out to a file, or

communicate with another process (possibly over a network), it typically uses a

different encoding called a “file code set.” In this specification, unless otherwise

Common Object Request Broker A re}: itecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 918 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 919 of 1442

I3

I3.10.1.11

13.10.1.12

indicated, all references to a prograrn’s code set refer to the file code set, not the

process code set. Even when a client and server are located physically on the same

machine, it is possible for them to use different file code sets.

Native Code Set

A native code set is the code set which a client or a sewer uses to communicate with

its ORB. There might be separate native code sets for char and wchar data.

Transmission Code Set

A transmission code set is the commonly agreed upon encoding used for character data
transfer between a client’s ORB and a server’s ORB. There are two transmission code

sets established per session between a client and its server, one for char data (TCS-C)
and the other for wchar data (TCS-W). Figure 13-6 illustrates these relationships:

_ native transmission native
client process <——> ORB ORB <——:> server processcode sets

code set code set

December 2001

I3.10.1.13

13.10.2.I

Figure 13-6 Transmission Code Sets

The intent is for TCS-C to be byte-oriented and TCS-W to be non-byte-oriented.

However, this specification does allow both types of characters to be transmitted using
the same transmission code set. That is, the selection of a transmission code set is

orthogonal to the wideness or narrowness of the characters, although a given code set

may be better suited for either narrow or wide characters.

Conversion Code Set (CCS)

With respect to a particular ORB’s native code set, the set of other or target code sets

for which an ORB can convert all code points or character encodings between the

native code set and that target code set. For each code set in this CCS, the ORB

maintains appropriate translation or conversion procedures and advertises the ability to
use that code set for transmitted data in addition to the native code set.

13.10.2 Code Set Conversion Framework

Requirements

The file code set that an application uses is often determined by the platfonn on which

it runs. In Japan, for example, Japanese EUC is used on Unix systems, while Shift-JlS

is used on PCs. Code set conversion is therefore required to enable interoperability
across these platforms. This proposal defines a framework for the automatic conversion

of code sets in such situations. The requirements of this framework are:

CORBA. V2.6: Code Set Conversion 13-39

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 919 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 920 of 1442

13

1. Backward compatibility. In previous CORBA specifications, IDL type char was
limited to ISO 8859-1. The conversion framework should be compatible with

existing clients and servers that use ISO 8859-] as the code set for char.

Ix) Automatic code set conversion. To facilitate development of CORBA clients and

servers, the ORB should perform any necessary code set conversions automatically

and efficiently. The IDL type octet can be used if necessary to prevent conversions.

3. Locale support. An internationalized application determines the code set in use by

examining the LOCALE string (usually found in the LANG environment variable),

which may be changed dynamically at run time by the user. Example LOCALE

strings are fr_FR.lSO8859-l (French, used in France with the ISO 8859-1 code set)

and ja_.lP.ujis (Japanese, used in Japan with the EUC code set and XI 1R5

conventions for LOCALE). The conversion framework should allow applications to

use the LOCALE mechanism to indicate supported code sets, and thus select the

correct code set from the registry.

4. CMIR and SMIR support. The conversion framework should be flexible enough to

allow conversion to be performed either on the client or server side. For example, if

a client is running in a memory-constrained environment, then it is desirable for
code set converters to reside in the server and for a Server Makes It Right (SMIR)

conversion method to be used. On the other hand, if many servers are executed on

one server machine, then converters should be placed in each client to reduce the

load on the server machine. In this case, the conversion method used is Client

Makes It Right (CMIR).

13.10.2.2 Overview ofthe Conversion Framework

Both the client and server indicate a native code set indirectly by specifying a locale.

The exact method for doing this is language-specific, such as the XPG4 C/C++
function setlocale. The client and server use their native code set to communicate

with their ORB. (Note that these native code sets are in general different from process

code sets and hence conversions may be required at the client and server ends.)

The conversion framework is illustrated in Figure 13-7. The server-side ORB stores a

server’s code set information in a component of the IOR multiple-component‘profile

structure (see Section 13.6.2, “Interoperable Object References: lORs" on page

13-14)‘. The code sets actually used for transmission are carried in the service context
field of an IOP (Inter-ORB Protocol) request header (see Section 13.7, “Service

Context” on page 13-28 and Section l3.l0.2.5, “GIOP Code Set Service Context” on

page 13-43). Recall that there are two code sets (TCS-C and TCS-W) negotiated for
each session.

1. Version 1.1 of the HOP profile body can also be used to specify the server’s code set infor-
mation, as this version introduces an extra field that is a sequence of tagged components.

1340 Common Object Request Broker/lrchitecrure (CORBA). V2.6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 920 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 921 of 1442

December 2001

13.I0.2.3

13

Server

Server‘: native
code set

Client

IOP service context
indicates transmission
code sets information

Client's native
code set

ORB

IOR multi-component
profile structure indicatesserver's native code set information

Figure 13-7 Code Set Conversion Framework Overview

If the native code sets used by a client and server are the same, then no conversion is

performed. 1f the native code sets are different and the client-side ORB has an

appropriate converter, then the CMIR conversion method is used. ln this case, the
server’s native code set is used as the transmission code set. If the native code sets are

different and the client-side ORB does not have an appropriate converter but the

server-side ORB does have one, then the SMIR conversion method is used. In this

case, the client’s native code set is used as the transmission code set.

The conversion framework allows clients and servers to specify a native char code set

and a native wchar code set, which determine the local encodings of IDL types char

and wchar, respectively. The conversion process outlined above is executed

independently for the char code set and the wchar code set. ln other words, the

algorithm that is used to select a transmission code set is run twice, once for char data
and once for wchar data.

The rationale for selecting two transmission code sets rather than one (which is

typically inferred from the locale of a process) is to allow efficient data transmission

without any conversions when the client and server have identical representations for

char and/or wchar data. For example, when a Windows NT client talks to a Windows

NT server and they both use Unicode for wide character data, it becomes possible to

transmit wide character data from one to the other without any conversions. Of course,

this becomes possible only for those wide character representations that are well-

defined, not for any proprietary ones. If a single transmission code set was mandated,

it might require unnecessary conversions. (For example, choosing Unicode as the

transmission code set would force conversion of all byte-oriented character data to

Unicode.)

ORB Databases and Code Set Converters

The conversion framework requires an ORB to be able to determine the native code set

for a locale and to convert between code sets as necessary. While the details of exactly

how these tasks are accomplished are implementation-dependent, the following

databases and code set converters might be used:

CORBA. V2.6: Code Set Conversion 13.41

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 921 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 922 of 1442

13

' Locale database. This database defines a native code set for a process. This code set

could be byte-oriented or non-byte-oriented and could be changed programmatically

while the process is running. However, for a given session between a client and a
server, it is fixed once the code set information is negotiated at the session’s setup
time.

° Environment variables or configuration files. Since the locale database can only
indicate one code set while the ORB needs to know two code sets, one for char

data and one for wchar data, an implementation can use environment variables or

configuration files to contain this information on native code sets.

' Converter database. This database defines, for each code set, the code sets to which

it can be converted. From this database, a set of “conversion code sets" (CCS) can

be determined for a client and server. For example, if a server’s native code set is

eucJP, and if the server-side ORB has eucJP-to-JlS and eucJP-to-SJIS bilateral

converters, then the server’s conversion code sets are JIS and SJIS.

' Code set converters. The ORB has converters which are registered in the converter
database.

13. 10.2. 4 C0deSet Component ofIOR Multi-Component Profile

The code set component of the 10R multi-component profile structure contains:

’ server’s native char code set and conversion code sets, and

‘ server’s native wchar code set and conversion code sets.

Both char and wchar conversion code sets are listed in order of preference. The code

set component is identified by the following tag:

const |OP::ComponentlD TAG_CODE_SETS = 1;

This tag has been assigned by OMG (See Section 13.6.6, “Standard IOR Components”

on page 13-19.). The following IDL structure defines the representation of code set

information within the component:

module CONV_FRAME{ ll IDL
typedef unsigned long Codesetld;

struct CodeSetComponent(
Codesetld native_code_set;

sequence<CodeSet|d> conversion__code_sets;

V };
struct Codesetcomponentlnfo {

Codesetcomponent ForCharData;

Codesetcomponent ForWcharData;
}:

}:

Code sets are identified by a 32-bit integer id from the OSF Character and Code Set

Registry (See Section l3.lO.5.l, “Character and Code Set Registry” on page 13-49 for

further infonnation). Data within the code set component is represented as a structure

13-42 Common Object Request Broker A rch itecture (CORBA). v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 922 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 923 of 1442

December 2001

13.10.2.5

13

of type Codesetcomponentlnfo, and is encoded as a CDR encapsulation. In other
words, the char code set information comes first, then the wchar information,

represented as structures of type Codesetcomponent.

A null value should be used in the native_code_set field if the server desires to

indicate no native code set (possibly with the identification of suitable conversion code
sets).

If the code set component is not present in a mu1ti—component profile structure, then

the default char code set is ISO 8859-] for backward compatibility. However, there is

no default wchar code set. If a server supports interfaces that use wide character data

but does not specify the wchar code sets that it supports, client-side ORBs will raise

exception |NV_OBJ REF, with standard minor code 1.

lf a client application invokes an operation which results in an attempt by the client

ORB to marshall wchar or wstring data for an in parameter (or to unmarshal

wchar or wstring data for an in/out parameter, out parameter or the return value),

and the associated Object Reference does not include a codeset component, then the

client ORB shall raise the |NV_OBJ REF standard system exception with standard

minor code 2 as a response to the operation invocation.

GIOP Code Set Service Context

The code set GIOP service context contains:

' char transmission code set, and

° wchar transmission code set

in the form of a code set service. This service is identified by:

const l0P::Service|D Codesets = 1;

The following lDL structure defines the representation of code set service information:

module CONV_'FRAME{ /I IDL

typedef unsigned long Codesetld;
struct Codesetcontext {

Codesetld

Codesetld
cha r_data;

wchar_data;

}:
};

Code sets are identified by a 32-bit integer id from the OSF Character and Code Set

Registry (See Section l3.lO.5. l, “Character and Code Set Registry” on page 13-49 for

further information).

Note — A server’s char and wchar Code set components are usually different, but

under some special circumstances they can be the same. That is, one could use the
same code set for both char data and wchar data. Likewise the Codesetlds in the
service context don’t have to be different.

CORBA, v2.6: Code Set Conversion 13.43

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 923 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 924 of 1442

13

13. 10.2. 6 Code Set Negotiation

The client-side ORB determines a server’s native and conversion code sets from the

code set component in an IOR multi-component profile structure, and it determines a
client’s native and conversion code sets from the locale setting (and/or envirorunent

variables/configuration files) and the converters that are available on the client. From
this information, the client-side ORB chooses char and wchar transmission code sets

(TCS-C and TCS-W). For both requests and replies, the char TCS-C determines the

encoding of char and string data, and the wchar TCS-W determines the encoding of
wchar and wstring data.

Code set negotiation is not performed on a per-request basis, but only when a client

initially connects to a server. All text data communicated on a connection are encoded

as defined by the TCSs selected when the connection is established.

Figure 13-8 illustrates, there are two channels for character data flowing between the
client and the server. The first, TCS-C, is used for char data and the second, TCS-W,

is used for wchar data. Also note that two native code sets, one for each type of data,

could be used by the client and server to talk to their respective ORBS (as noted earlier,

the selection of the particular native code set used at any particular point is done via

setlocale or some other implementation-dependent method).

C|ienl'S na1lVe Transmission code set gager‘i§,uz:a,
code set for char _ for char (1'cs.c)

Server ‘ .Side -

Transmission code set

Client's native for wchar (TCS-W) Servers "awe
code set for wchar °°de Se‘ f°' wchar

Figure 13-8 Transmission Code Set Use

Let us look at an example. Assume that the code set information for a client and server

is as shown in the table below. (Note that this example concerns only char code sets

and is applicable only for data described as chars in the IDL.)

—
5115

Conversion code eucll’, JlS S.llS, .115
sets:

The client-side ORB first compares the native code sets of the client and server. If they
are identical, then the transmission and native code sets are the same and no conversion

is required. ln this example, they are different, so code set conversion is necessary.
Next, the client-side ORB checks to see if the server’s native code set, eucJP, is one of

the conversion code sets supported by the client. It is, so eucJP is selected as the

l3-44 Common Object Request Broker Architecture (CORE/1). v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 924 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 925 of 1442

I3

December 2001

transmission code set, with the client (i.e., its ORB) performing conversion to and from

its native code set, SJIS, to eucJP. Note that the client may first have to convert all its

data described as chars (and possibly wchar_ts).from process codes to SJIS first.

Now let us look at the general algorithm for determining a transmission code set and

where conversions are performed. First, we introduce the following abbreviations:

° CNCS - Client Native Code Set;

' CCCS - Client Conversion Code Sets;

' SNCS - Server Native Code Set;

' SCCS - Server Conversion Code Sets; and

° TCS - Transmission Code Set.

The algorithm is as follows:

if (CNCS==SNCS)
TCS = CNCS; II no conversion required

else {

if (e|ementOf(SNCS,CCCS))
TCS = SNCS; /I client converts to server’s native code set

else if (e|ementOf(CNCS,SCCS))
TCS = CNCS; // server converts from client's native code set

else if (intersection(CCCS,SCCS) l= emptyset) {
TCS = oneOf(intersection(CCCS,SCCS));

/I client chooses TCS, from intersection(CCCS,SCCS), that is

/I most preferable to sewer;
ll client converts from CNCS to TCS and server
/I from TCS to SNCS

else if (compatible(CNCS,SNCS))

TCS = fallbackCS; /I fallbacks are UTF-8 (for char data) and

II UTF-16 (for wchar data)
else -

raise CODESET_lNCOMPATlBLE exception;

}

The algorithm first checks to see if the client and server native code sets are the same.

If they are, then the native code set is used for transmission and no conversion is

required. if the native code sets are not the -same, then the conversion code sets are
examined to see if

1. the client can convert from its native code set to the server’s native code set,

2. the server can convert from the client’s native code set to its native code set, or

3. transmission through an intermediate conversion code set is possible.

If the third option is selected and there is more than one possible intennediate
conversion code set (i.e., the intersection of CCCS and SCCS contains more than one

code set), then the one most preferable to the server is selected.2

CORBA. v2.6: Code Set Conversion 13.45

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 925 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 926 of 1442

I3

l3-46

If none of these conversions is possible, then the fallback code set (UTF-8 for char
data and UTF-16 for wchar data— see below) is used. However, before selecting the

fallback code set, a compatibility test is performed. This test looks at the character sets

encoded by the client and server native code sets. If they are different (e.g., Korean and

French), then meaningful communication between the client and server is not possible

and a CODESETJNCOMPATIBLE exception is raised. This test is similar to the

DCE compatibility test and is intended to catch those cases where conversion from the
client native code set to the fallback, and the fallback to the server native code set

would result in massive data loss. (See Section 13.105, “Relevant OSFM Registry

Interfaces” on page 13-49 for the relevant OSF registry interfaces that could be used
for determining compatibility.)

A DATA_CONVERS|ON exception is raised when a client or server attempts to

transmit a character that does not map into the negotiated transmission code set. For

example, not all characters in Taiwan Chinese map into Unicode. When an attempt is

made to transmit one of these characters via Unicode, an ORB is required to raise a

DATA_CONVE RSION exception, with standard minor code 1.

ln summary, the fallback code set is UTF-8 for char data (identified in the Registry as

0x05010001, “X/Open UTF-8; UCS Transformation Format 8 (UTF-8)"), and UTF-I6

for wchar data (identified in the Registry as 0x00010109, "ISO/lEC 10646-l:l993;

UTF-16, UCS Transformation Format 16-bit form"). As mentioned above the fallback

code set is meaningful my when the client and server character sets are compatible,

and the fallback code set is distinguished from a default code set used for backward

compatibility.

If a server’s native char code set is not specified in the lOR multi-component profile,

then it is considered to be ISO 8859-] for backward compatibility. However, a server

that supports interfaces that use wide character data is required to specify its native

wchar code set; if one is not specified, then the client-side ORB raises exception

_|NV_OBJREF, with standard minor code set to 1.

Similarly, if no char transmission code set is specified in the code set service context,
then the char transmission code set is considered to be ISO 8859-1 for backward

compatibility. If a client transmits wide character data and does not specify its wchar
transmission code set in the service context, then the server-side ORB raises exception

BAD_PARAM, with standard minor code set to 23.

To guarantee “out-of-the-box" interoperability, clients and servers must be able to
convert between their native char code set and UTF-8 and their native wchar code set

(if specified) and Unicode. Note that this does not require that all server native code

sets be mappable to Unicode, but only those that are exported as native in the lOR. The

server may have other native code sets that aren’t mappable to Unicode and those can

2.Recall that sewer conversion code sets are listed in order of preference.

Common Object Request Broker A rch iteclure (CORB/1), V2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 926 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 927 of 1442

I3

December 2001

be exported as SCCSs (but not SNCSS). This is done to guarantee out-of-the-box

interoperability and to reduce the number of code set converters that a CORBA-

compliant ORB must provide.

ORB implementations are strongly encouraged to use widely—used code sets for each

regional market. For example, in the Japanese marketplace, all ORB implementations

should support Japanese EUC, JIS and Shift JIS to be compatible with existing

business practices.

13.10.3 Mapping to Generic Character Environments

Certain language environments do not distinguish between byte-oriented and wide
characters. In such environments both char and wchar are mapped to the same

“generic” character representation of the language. String and wstring are likewise

mapped to generic strings in such environments. Examples of language environments

that provide generic character support are Smalltalk and Ada.

Even while using languages that do distinguish between wide and byte-oriented

characters (e.g., C and C++), it is possible to mimic some generic behavior by the use

of suitable macros and support libraries. For example, developers of Windows NT and

Windows 95 applications can write portable code between NT (which uses Unicode

strings) and Windows 95 (which uses byte-oriented character strings) by using a set of

macros for declaring and manipulating characters and character strings. Appendix A in

this chapter shows how to map wide and byte-oriented characters to these generic
macros.

Another way to achieve generic manipulation of characters and strings is by treating
them as abstract data types (ADTs). For example, if strings were treated as abstract

data types and the programmers are required to create, destroy, and manipulate strings

only through the operations in the ADT interface, then it becomes possible to write

code‘ that is representation-independent. This approach has an advantage over the

macro-based approach in that it provides portability between byte-oriented and wide

character environments even without recompilation (at runtime the string function calls
are bound to the appropriate byte-oriented/wide library). Another way of looking at it

is that the macro-based genericity gives compile-time flexibility, while ADT-based

genericity gives runtime flexibility.

Yet another way to achieve generic manipulation of character data is through the ANS]
C++ Strings library defined as a template that can be parameterized by char,

wchar_t, or other integer types.

Given that there can be several ways of treating characters and character strings in a

generic way, this standard cannot, and therefore does not, specify the mapping of char,
wchar, string, and wstring to all of them. It only specifies the following normative

requirements which are applicable to generic character environments:

° wchar must be mapped to the generic character type in a generic character
environment.

° wstring must be mapped to a string of such generic characters in a generic
character environment.

CORBA, v2. 6: Code Se! Conversion 13.47

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 927 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 928 of 1442

I3

l3-48

13.I0.3.1

13.]0.3.2

' The language binding flles (i.e., stubs) generated for these generic environments

must ensure that the generic type representation is converted to the appropriate code

sets (i.e., CNCS on the client side and SNCS on the server side) before character

data is given to the ORB runtime for transmission.

Describing Generic Interfaces

To describe generic interfaces in lDL we recommend using wchar and wstring.

These can be mapped to generic character types in environments where they do exist

and to wide characters where they do not. Either way interoperation between generic

and non-generic character type environments is achieved because of the code set
conversion framework.

Interoperation

Let us consider an example to see how a generic environment can interoperate with a

non-generic environment. Let us say there is an lDL interface with both char and

wchar parameters on the operations, and let us say the client of the interface is in a

generic environment while the server is in a non-generic environment (for example the
client is written in Smalltalk and the server is written in C++).

Assume that the server’s (byte-oriented) native char code set (SNCS) is well’ and the
client’s native char code set (CNCS) is SJlS. Further assume that the code set

negotiation led to the decision to use eucJP as the char TCS-C and Unicode as the
wchar TCS-W.

As per the above normative requirements for mapping to a generic environment, the
client’s Smalltalk stubs are responsible for converting all char data (however they are

represented inside Smalltalk) to SJlS and all wchar data to the client’s wchar code set

before passing the data to the client-side ORB. Note that this conversion could be an

identity mapping if the internal representation of narrow and wide characters is the
same as that of the native code set(s). The client-side ORB now converts all char data
from SJlS to we]? and all wchar data from the client’s wchar code set to Unicode,
and then transmits to the server side.

The server side ORB and stubs convert the euc.lP data and Unicode data into C++’s

internal representation for chars and wchars as dictated by the IDL operation

signatures. Notice that when the data arrives at the server side it does not look any

different from data arriving from a non-generic environment (e.g., that is just like the

server itself). ln other words, the mappings to generic character environments do not
affect the code set conversion framework.

13.10.4 Example of Generic Environment Mapping

This section shows how char, wchar, string, and wchar can be mapped to the

generic C/C++ macros of the Windows environment. This is merely to illustrate one

possibility. This section is not normative and is applicable only in generic

environments. See Section l3.l0.3, “Mapping to Generic Character Environments" on
page l3-47.

Common Object Request Broker A rchilecture (CORB/1), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 928 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 929 of 1442

I3

December 2001

13.10.4.1

13.10.!/.2

13.10.5.1

Generic Mappings

Char and string are mapped to C/C++ char and char* as per the standard C/C++

mappings. wchar is mapped to the TCI-IAR macro which expands to either char or

wchar_t depending on whether _U'NICoDE is defined. wstring is mapped to
pointers to TCHAR as well as to the string class CORBA: :Wstring_var. Literal

strings in IDL are mapped to the _TEx'1‘ macro as in _'1‘Ex'r(<1:i.teral>).

Interoperation and Generic Mappings

We now illustrate how the interoperation works with the above generic mapping.

Consider an IDL interface operation with a wstring parameter, a client for the

operation which is compiled and run on a Windows 95 machine, and a server for the

operation which is compiled and run on a Windows NT machine. Assume that the

locale (and/or the environment variables for CNCS for wchar representation) on the
Windows 95 client indicates the client’s native code set to be SJIS, and that the

corresponding server’s native code set is Unicode. The code set negotiation in this case

will probably choose Unicode as the TCS-W.

Both the client and server sides will be compiled with _UNICODE defined. The IDL

type wstring will be represented as a string of wchar-__t on the client. However, since
the client’s locale or environment indicates that the CNCS for wide characters is SJIS,

the client side ORB will get the wstring parameter encoded as a SJIS multi-byte

string (since that is the client’_s native code set), which it will then convert to Unicode
before transmitting to the server. On the server side the ORB has no conversions to do
since the TCS-W matches the server’s native code set for wide characters.

We therefore notice that the code set conversion framework handles the necessary

translations between byte-oriented and wide forms. ’

13.10.5 Relevant OSFM Registry Interfaces

Character and Code Set Registry

The OSF character and code set registry is defined in OSF Character and Code Set

Registry (see References in the Preface) and current registry contents may be obtained

directly from the Open Software Foundation (obtain via anonymous ftp to

ftp.opengroup.org:/pub/code_set_registry). This registry contains two parts: character

sets and code sets. For each listed code set, the set of character sets encoded by this
code set is shown.

Each 32-bit code set value consists of a high-order l6-bit organization number and a

16-bit identification of the code set within that organization. As the numbering of

organizations starts with ()xOOOl , a code set null value (OXOOOOOOOO) may be used to
indicate an unknown code set.

When associating character sets and code sets, OSF uses the concept of “fuzzy
equality," meaning that a code set is shown as encoding a particular character set if the
code set can encode “most” of the characters.

CORBA, v2.6: Code Se! Conversion 13.49

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 929 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 930 of 1442

13

13-50

13.10.5.2

“Compatibility” is determined with respect to two code sets by examining their entries

in the registry, paying special attention to the character sets encoded by each code set.

For each of the two code sets, an attempt is made to see if there is at least one (fuzzy-
defined) character set in common, and if such a character set is found, then the

assumption is made that these code sets are “compatible." Obviously, applications

which exploit parts of a character set not properly encoded in this scheme will suffer

information loss when communicating with another application in this “fuzzy” scheme.

The ORB is responsible for accessing the OSF registry and determining

“compatibility” based on the information returned.

OSF members and other organizations can request additions to both the character set

and code set registries by email to cs-registry@opengroup.org; in particular, one range

of the code set registry (0xf5000000 through Oxffffffff) is reserved for

organizations to use in identifying sets which are not registered with the OSF (although

such use would not facilitate interoperability without registration).

Access Routines

The following routines are for accessing the OSF character and code set registry. These

routines map a code set string name to code set id and vice versa. They also help in

determining character set compatibility. These routine interfaces, their semantics and

their actual implementation are not normative (i.e., ORB vendors do not have to bundle

the OSF registry implementation with their products for compliance).

The following routines are adopted from RPC Runtime Support For 118N Characters -

Functional Specification (see References in the Preface).

dce_cs_l0c_to_rgy

Maps a local system-specific string name for a code set to a numeric code set value

specified in the code set registry.

Synopsis

void dce_cs_1oc_to_rgy(

id1_char *1oca1__code_set_na.me,

unsigned32 *rgy_code_set_va1ue,

unsigned16 *rgy_ch.ar__sets_number,

unsigned16 **rgy_char_sets_va1ue,

error_status_t *status);

Parameters

Input

|ocal_code_set_name - A string that specifies the name that the local host's locale

environment uses to refer to the code set. The string is a maximum of 32 bytes: 31 data

bytes plus a terminating NULL character.

Output

rgy_code_set_va|ue 0 - The registeredinteger value that uniquely identifies the

code set specified by local_codc_set_name.

Common Object Request Broker Architecture (CORBA), v2. 6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 930 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 931 of 1442

December 2001

13

rgy_char_sets_number - The number of character sets that the specified code set

encodes. Specifying NULL prevents this routine from returning this parameter.

rgy_char_sets_value - A pointer to an array of registered integer values that
uniquely identify the character set(s) that the specified code set encodes. Specifying

NULL prevents this routine from returning this parameter. The routine dynamically
allocates this value.

status - Returns the status code from this routine. This status code indicates whether

the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

° dce_cs_c_ok - Code set registry access operation succeeded.

° dce_cs_c_cannot_allocate_memory — Cannot allocate memory for code set info.

° dce_cs_c_unknown — No code set value was not found in the registry which

corresponds to the code set name specified.

' dce_cs_c_notfound — No local code set name was found in the registry which

corresponds to the name specified.

Description

The dce_cs_loc_to_rgy() routine maps operating system-specific names for

character/code set encodings to their unique identifiers in the code set registry.

The dce_cs__loc_to_rgy() routine takes as input a string that holds the host-specific

“local name” of a code set and returns the corresponding integer value that uniquely

identifies that code set, as registered in the host's code set registry. If the integer value

does not exist in the registry, the routine returns the status dce_cs_c_unknown.

The routine also returns the number of character sets that the code set encodes and the

registered integer values that uniquely identify those character sets. Specifying NULL

in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the

routine from performing the additional search for these values. Applications that want
only to obtain a code set value from the code set registry can specify NULL for these

parameters in order to improve the routine's performance. If the value is returned from

the routine, application developers should free the array after it is used, since the array

is dynamically allocated.

dce_cs_rgy_I0_Ioc

Maps a numeric code set value contained in the code set registry to the local system-

specific name for a code set.

Symymb

void dce_cs_rgy_to_1oc(
unaigned32 'rgy_code_set_va1ue,

id1_char **1oca1_code_set_name,

unsignedlé *rgy_char_sets_number,

unsigned16 '*rgy_char_sets_va1ue,
error_status_t *status);

CORBA, v2.6: Code Se! Crmversirm 13-51

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 931 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 932 of 1442

I3

13-S2

Parameters

Input

rgy_code_set_va|ue - The registered hexadecimal value that uniquely identifies the
code set.

Output

loca|_code_set_name - A string that specifies the name that the local host's locale

environment uses to refer to the code set. The string is a maximum of 32 bytes: 31 data

bytes and a terminating NULL character.

rgy_char__sets_number - The number of character sets that the specified code set
encodes. Specifying NULL in this parameter prevents the routine from returning this
value.

rgy_char_sets_va|ue - A pointer to an array of registered integer values that

uniquely identify the character set(s) that the specified code set encodes. Specifying

NULL in this parameter prevents the routine from returning this value. The routine

dynamically allocates this value.

status - Returns the status code from this routine. This status code indicates whether

the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

' dce_cs_c_ok — Code set registry access operation succeeded.

' dce_cs_c_cannot_allocate_memory — Cannot allocate memory for code set info.

' dce__cs_c_unknown — The requested code set value was not found in the code set

registry.

' dce_cs_c_notfound — No local code set name was found in the registry which

corresponds to the specific code set registry ID value. This implies that the code set

is not supported in the local system environment.

Description

The dce_cs_rgy_to_loc() routine maps a unique identifier for a code set in the code set
registry to the operating system-specific string name for the code set, if it exists in the

code set registry.

The dcc_cs_rgy_to_loc() routine takes as input a registered integer value of a code set

and returns a string that holds the operating system-specific, or local name, of the code
set.

If the code set identifier does not exist in the registry, the routine returns the status

dce__cs_c_unknown and returns an undefined string.

The routine also returns the number of character sets that the code set encodes and the

registered integer values that uniquely identify those character sets. Specifying NULL

in the rgy_char_sets_number and rgy_char__sets_value[] parameters prevents the

routine from performing the additional search for these values. Applications that want

only to obtain a local code set name from the code set registry can specify NULL for

Comman Object Request Broker Architecture (CORBA). v2. 6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 932 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 933 of 1442

13

13-53

these parameters in order to improve the routine's performance. If the value is retumed

from the routine, application developers should free the rgy_char_sets_value array
after it is used.

rpc_cs__char_set_c0mpat_check

Evaluates character set compatibility between a client and a server.

Synopsis

void rpc_cs_char_set:_compat_check(
unsigned32 c1ient:_rgy_code__set__va1ue,
unsigned32 server_rgy_code_set_va1ue,

error.-_stat:us_t *status);

Parameters

Input

client_rgy_code_set_va|ue - The registered hexadecimal value that uniquely

identifies the code set that the client is using as its local code set.

server_rgy_code_set_va|ue - The registered hexadecimal value that uniquely

identifies the code set that the server is using as its local code set.

Output

status - Returns the status code from‘ this routine. This status code indicates whether

the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

° rpc_s_ol< — Successful status.

' rpc_s_ss_no_compat__charsets — No compatible code set found. The client and

server do not have a common encoding that both could recognize and convert.

' The routine can also return status codes from the dce_cs_rgy_to_loc()'routine.

Description

The rpc_cs_char_set_compat_cheek() routine provides a method for determining

character set compatibility between a client and a server; if the server's character set is
incompatible with that of the client, then connecting to that server is most likely not

acceptable, since massive data loss would result from such a connection.

The routine takes the registered integer values that represent the code sets that the

client and server are currently using and calls the code set registry to obtain the

registered values that represent the character set(s) that the specified code sets support.

lf both client and server support just one character set, the routine compares client and
server registered character set values to determine whether or not the sets are

compatible. If they are not, the routine returns the status message
rpc_s_sS_no_compat_charsets.

Common Object Request Broker A rchilecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 933 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 934 of 1442

I3

l3-54

If the client and sewer support multiple character sets, the routine determines whether

at least two of the sets are compatible. If two or more sets match, the routine considers

the character sets compatible, and returns a success status code to the caller.

_ rpc_rgy_get_max_bytes

Gets the maximum number of bytes that a code set uses to encode one character from

the code set registry on a host

Synopsis

void rpc_rgy_get_max_bytes(
uns igned3 2 rgy_code_s et__va1ue ,

uns igned16 *rgy_max_bytes ,

error_status_t *stat:us) ;

Parameters

Input

rgy_code_set_va|ue - The registered hexadecimal value that uniquely identifies the
code set.

Output

rgy_max_ bytes - The registered decimal value that indicates the number of bytes this
code set uses to encode one character.

status - Returns the status code from this routine. This status code indicates whether

the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

’ rpc_s_ok — Operation succeeded.

° dce_cs_c_cannot_allocate_memory — Cannot allocate memory for code set info.

° dce_cs_c_unknown - No code set value was not found in the registry which

corresponds to the code set value specified.

° dce_cs_c_notfound — No local code set name was found in the registry which

corresponds to the value specified.

Description

The rpc_rgy_gct_max_bytes() routine reads the code set registry on the local host. lt

takes the specified registered code set value, uses it as an index into the registry, and

returns the decimal value that indicates the number of bytes that the code set uses to
encode one character.

This information can be used for buffer sizing as part of the procedure to determine

whether additional storage needs to be allocated for conversion between local and
network code sets.

Cnmmnn Object Request BmkerArclu'1ecture (CORBA), V2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 934 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 935 of 1442

13

13-55 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 935 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 936 of 1442

13

13-56 _ Common Object Request BmkerArchi1ecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 936 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 937 of 1442

TheDCEESIOP 16

This chapter specifies an Environment-Specific lnter-ORB Protocol (ESIOP) for the
OSF DCE environment, the DCE Common lnter-ORB Protocol (DCE-CIOP).

Contents

This chapter contains the following sections.

i

T

“DCE ClOP Ob_]6Ct Location” 16-21

“OMG IDL for the DCE CIOP Module 16-25

“References for this Chapter" 16-26

16.] Goals ofthe DCE Common Inter-ORB Protocol

December 2001

DCE CIOP was designed to meet the following goals:

° Support multi-vendor, mission-critical, enterprise-wide, ORB-based applications.

° Leverage services provided by DCE wherever appropriate.

' Allow efficient and straightforward implementation using public DCE APls.

' Preserve ORB implementation freedom.

Common Object Request Broker A rchiteclure (CORBA), v2. 6 16-1

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 937 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 938 of 1442

16

DCE CIOP achieves these goals by using DCE-RPC to provide message transport,

while leaving the ORB responsible for message formatting, data marshaling, and

operation dispatch.

16.2 DCE Common Inter-ORB Protocol Overview

16-2

The DCE Common lnter-ORB Protocol uses the wire format and RPC packet formats

defined by DCE-RPC to enable independently implemented ORBs to communicate. lt

defines the message formats that are exchanged using DCE-RPC, and specifies how

information in object references is used to establish communication between client and
server processes.

The full OMG IDL for the DCE ESIOP specification is shown in Section 16.7, “OMG

IDL for the DCE CIOP Module,” on page 16-25. Fragments are used throughout this

chapter as necessary.

16.2.1 DCE-CIOP RPC

DCE-CIOP requires an RPC, which is interoperable with the DCE connection-oriented

and/or connectionless protocols as specified in the X/Open CAE Specification C309

and the OSF AES/Distributed Computing RPC Volume. Some of the features of the
DCE-RPC are as follows:

' Defines connection-oriented and connectionless protocols for establishing the

communication between a client and server.

' Supports multiple underlying transport protocols including TCP/lP.

' Supports multiple outstanding requests to multiple CORBA objects over the same
connection.

' Supports fragmentation of messages. This provides for buffer management by

ORBs of CORBA requests, which contain a large amount of marshaled data.

All interactions between ORBS take the form of remote procedure calls on one of two

well-known DCE-RPC interfaces. Two DCE operations are provided in each interface:

' invoke - for invoking CORBA operation requests, and

' locate - for locating server processes.

Each DCE operation is a synchronous remote procedure callm, consisting of a request
message being transmitted from the client to the server, followed by a response
message being transmitted from the server to the client.

1.DCE maybe operation semantics cannot be used for CORBA (meway operations because
they are idempotent as opposed to at-most-once.

2. The deferred synchronous Dll API can be implemented on top of synchronous RPCs by
using threads.

Common Object Request Broker/irchilecture (CORBA), v2. 6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,

Ex. 1102, ’p. 938 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 939 of 1442

16

December 2001

Using one of the DCE-RPC interfaces, the messages are transmitted as pipes of

uninterpreted bytes. By transmitting messages via DCE pipes, the following
characteristics are achieved:

' Large amounts of data can be transmitted efficiently.

' Buffering of complete messages is not required.

' Marshaling and demarshaling can take place concurrently with message
transmission.

' Encoding of messages and marshaling of data is completely under the control of the
ORB.

° DCE client and sewer stubs can be used to implement DCE-CIOP.

Using the other DCE-RPC interface, the messages are transmitted as conforrnant arrays

of uninterpreted bytes. This interface does not offer all the advantages of the pipe-

based interface, but is provided to enable interoperability with ORBS using DCE-RPC

implementations that do not adequately support pipes.

16.2.2 DCE-CIOP Data Representation

DCE-CIOP messages represent OMG lDL types by using the CDR transfer syntax,

which is defined in Section 15.2.1, “Common Data Representation (CDR),” on

page 15-3. DCE-CIOP message headers and bodies are specified as OMG IDL types.

These are encoded using CDR, and the resulting messages are passed between client

and server processes via DCE-RPC pipes or conforrnant arrays. A

NDR is the transfer syntax used by DCE-RPC for operations defined in DCE lDL.

CDR, used to represent messages defined in OMG IDL on top of DCE RPCS,

represents the OMG lDL primitive types identically to the NDR representation of

corresponding DCE lDL primitive types.

The corresponding OMG IDL and DCE IDL primitive types are shown in Table 16-].

Table 16-1 Relationship between CDR and NDR primitive data types

DCE IDL type with NDR representation equivalent to

CDR representation of OMG IDL type

wchar byte, unsigned short, or unsigned long, depending on
transmission code set

unsigned long unsigned long

OMG IDL type

CORBA, v2.6: DCE Common Inter-0RBPm1ncnl Overview 16-3

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 939 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 940 of 1442

16

Table 16-] Relationship between CDR and NDR primitive data types

CDR representation of OMG IDL type

1. Restricted to IEEE format.

2. Restricted to IEEE format.

3. Restricted to IEEE format.

4. Values restficted to 0 and 1.

The CDR representation of OMG 1DL constructed types and pseudo-object types does

not correspond to the NDR representation of types describable in DCE IDL.

A wide string is encoded as a unidimensional conforrnant array of octets in DCE 1.1

NDR. This consists of an unsigned long of four octets, specifying the number of octets

in the array, followed by that number of octets, with no null terminator.

The NDR representation of OMG 1DL fixed-point type, fixed, will be proposed as an

addition to the set of DCE IDL types.

As new data types are added to OMG lDL, NDR can be used as a model for their CDR

representations.

16.2.3 DCE-CIOP Messages

The following request and response messages are exchanged between ORB clients and
servers via the invoke and locate RPCS:

° Invoke Request identifies the target object and the operation and contains the

principal, the operation context, a Servicecontext, and the in and inout

parameter values.

' Invoke Response indicates whether the operation succeeded, failed, or needs to be

reinvokcd at another location, and returns a Servicecontext. 1f the operation

succeeded, the result and the out and inout parameter values are returned. If it

failed. an exception is returned. If the object is at another location, new RPC

binding information is returned.

16-4 Common Object Request Broker Arch iteclure (CORBA)_ v2,6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 940 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 941 of 1442

I6

' Locate Request identifies the target object and the operation.

‘ Locate Response indicates whether the location is in the current process, is

elsewhere, or is unknown. If the object is at another location, new RPC binding
information is returned.

All message formats begin with a field that indicates the byte order used in the CDR

encoding of the remainder of the message. The CDR byte order of a message is

required to match the NDR byte order used by DCE-RPC to transmit the message.

16.2.4 Interoperable Object Refererzce (IOR)

For DCE-CIOP to be used to invoke operations on an object, the information necessary

to reference an object via DCE-CIOP must be included in an IOR. This information

can coexist with the information needed for other protocols such as ll0P. DCE-CIOP

information is stored in an IOR as a set of components in a profile identified by either

TAG_|NTERNET_|0P or TAG_MULT|PLE_COMPONENTS. Components are

defined for the following purposes:

' To identify a server process via a DCE string binding, which can be either fully or

partially bound. This process may be a server process implementing the object, or it

may be an agent capable of locating the object implementation.

° To identify a server process via a name that can be resolved using a DCE

nameservice. Again, this process may implement the object or may be an agent
capable of locating it.

‘ ln the TAG_MULT|PLE_COMPONENTS profile, to identify the target object

when request messages are sent to the server. ln the TAG_|NTENET_|OP profile,

the object__key profile member is used instead.

' To enable a l)CE-ClOP client to recognize objects that share an endpoint.

° To indicate whether a DCE-CIOP client should send a locate message or an invoke
message.

' To indicate ifthc pipe-based DCE-RPC interface is not available.

The IOR is created by the server ORB to provide the information necessary to

reference the CORBA object.

I 6. 3 DCE— CIOP Message Transport

December 2001

DCE-CIOP defines two DCE-RPC interfaces for the transport of messages between

client ORBs and server ORBS3. One interface uses pipes to convey the messages, while
the other uses conformant arrays.

The pipe-based interface is the preferred interface, since it allows messages to be

transmitted without precomputing the message length. But not all DCE-RPC

implementations adequately support pipes, so this interface is optional. All client and

server ORBS implementing DCE-CIOP must support the array-based interface4.

CORBA, v2.6: DCE-CIOP Message Transport 15-5

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 941 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 942 of 1442

16

While server ORBS may provide both interfaces or just the array-based interface, it is

up to the client ORB to decide which to use for an invocation. lf a client ORB tries to

use the pipe-based interface and receives an rpc_s_unknown_if error, it should fall
back to the array-based interface.

16.3.1 Pipe-based Interface

The dce_ciop_pipe interface is defined by the DCE lDL specification shown
below:

[/* DCE IDL */

uuid(d7d99£66-97ee-llcf-b1a0-O800090b5d3e)./* 2nd revision

~/
version(1.O)

]

interface dce_ciop_pipe

{
typedef pipe byte message_type;

void invoke ([in] hand1e_t binding_hand1e,

[in] message_type *request_message,

[out] message_type *response_measage);

void locate ([in] hand1e_t binding_hand1e,

‘ [in] message_type *request_message,

[out] message_type *responae_message);

}

ORBS can implement the dce__ciop__pipe interface by using DCE stubs generated
from this lDL specification, or by using lower-level APls provided by a particular

DCE-RPC implementation.

The dce_ciop_p ipe interface is identified by the UUID and version number shown.

To provide maximal performance, all server ORBS and location agents implementing

DCE-CIOP should listen for and handle requests made to this interface. To maximize

the chances of interoperating with any DCE-CIOP client, servers should listen for

requests arriving via all available DCE protocol sequences.

Client ORBS can invoke OMG lDL operations over DCE-CIOP by perfonning DCE

RPCs on the dce_ciop_pipe interface. The dce_ciop_pipe interface is made up

of two DCE-RPC operations, invoke and locate. The first parameter of each of

these RPCs is a DCE binding handle, which identifies the server process on which to

3. Previous DCE-CIOP revisions used different DCE RPC interface UUlDs and had

incompatible message formats. These previous revisions are deprecated, but
implementations can continue to support them in conjunction with the current interface
UUlDs and message fonnats.

4. A future DCE-CIOP revision may eliminate the array—based interface and require support of
the pipe-based interface.

Common Object Request BrokerArchitecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 942 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 943 of 1442

16

perform the RPC. See “DCE-C1OP String Binding Component" on page 16-17, “DCE-

C1OP Binding Name Component” on page 16-18, and “DCE-C1OP Object Location”

on page 16-21 for discussion of how these binding handles are obtained. The

remaining parameters of the dce_c iop_p ipe RPCs are pipes of uninterpreted bytes.

These pipes are used to convey messages encoded using CDR. The

requesl:_message input parameters send a request message from the client to the
server, while the response__message output parameters retum a response message
from the server to the client.

Figure 16-1 illustrates the layering of DCE-C1OP messages on the DCE-RPC protocol

as NDR pipes:

DCE-CIOP

Message

NDR Stream

DCE-RPC PDU

Figure 16-1 Pipe-based Interface Protocol Layering

The DCE-RPC protocol data unit (PDU) bodies, after any appropriate authentication is

performed, are concatenated by the DCE-RPC run-time to form an NDR stream. This

stream is then interpreted as the NDR representation of a DCE lDL pipe.

A pipe is made up of chunks, where each chunk consists of a chunk length and chunk

data. The chunk length is an unsigned long indicating the number of pipe elements that

make up the chunk data. The pipe elements are DCE lDL bytes, which are

uninterpreted by NDR. A pipe is terminated by a chunk length of zero. The pipe

chunks are concatenated to form a DCE-C101’ message.

December 2001 CORBA. V2.6: DCE-CIOP Message Transport 16-7

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 943 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 944 of 1442

16

16-8

16.3.1.1

16.3.1.2

Invoke

The invoke RPC is used by a DCE-ClOP client process to attempt to invoke a

CORBA operation in the server process identified by the binding_handle

parameter. The request__message pipe transmits a DCE-CIOP invoke request

message, encoded using CDR, from the client to the server. See Section 16.4.1,

“DCE_ClOP lnvoke Request Message," on page 16-11 for a description of its format.

The response_message pipe transmits a DCE-CIOP invoke response message, also

encoded using CDR, from the server to the client. See Section 16.4.2, “DCE-ClOP

lnvoke Response Message," on page 16-12 for a description of the response format.

Locate

The locate RPC is used by a DCE-CIOP client process to query the server process

identified by the binding_handle parameter for the location of the server process

where requests should be sent. The request_message and response_message

parameters are used similarly to the parameters of the invoke RPC. See
Section 16.4.3, “DCE-C101’ Locate Request Message,” on page 16-14 and

Section 16.4.4, “DCE-C101’ Locate Response Message,” on page 16-15 for

descriptions of their formats. Use of the locate RPC is described in detail in
Section 16.6, “DCE-CIOP Object Location,” on page 16-2].

16.3.2 Array—based Interface

The dce_ciop_array interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */

uuid(09f9f:EbB-97ef-llcf-9c96-0800090b5d3e)1/* 2nd revision
=~/
version (1 . 0)

1

interface dce_ciop_array

{

typedef struct { .
unsigned long length;

[size_is(length),ptr] byte *data;

} message_type;

void invoke ([in] handle_t binding_handle,

[in] message__type *request_messa.ge,

[out] message_type *response_meaaage);

void locate ([in] handle_t binding_handle,

[in] message_type *requeet_measage.

[out] messa.ge_type *response_meaaage)7

Common Object Requext Broker Architecture (CORBA). v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 944 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 945 of 1442

16

December 2001

ORBS can implement the dce_c:'Lop_array interface, identified by the UUlD and
version number shown, by using DCE stubs generated from this lDL specification, or

by using lower-level APls provided by a particular DCE-RPC implementation.

All server ORBS and location agents implementing DCE-CIOP must listen for and

handle requests made to the dce_ciop_array interface, and to maximize

interoperability, should listen for requests arriving via all available DCE protocol
sequences.

Client ORBs can invoke OMG lDL operations over DCE-CIOP by performing

locate and invoke RPCs on the dce_ciop_array interface.

As with the dc e_ciop__p ipe interface, the first parameter of each

dce_ciop_array RPC is a DCE binding handle that identifies the server process on

which_ to perform the RPC. The remaining parameters are structures containing CDR-
encoded messages. The request:_message input parameters send a request message

from the client to the server, while the response_message output parameters return

a response message from the server to the client.

The message_type structure used to convey messages is made up of a length
member and a data member:

° length - This member indicates the number of bytes in the message.

' data - This member is a full pointer to the first byte of the conformant array

containing the message. '

CORB/1. v2. 6: DCE—CIOP Message Transport 16-9

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 945 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 946 of 1442

16

DCE-CIOP

Message

NDR Steam

DCE-RPC

l6-l0

DCE-CJOP

zr

4
/

16121

_, /.

The layering of DCE-CIOP messages on DCE-RPC using NDR arrays is illustrated in

Figure 16-2:

DCE-ClOP Body

PDU PDU Body -uth

Figure 16-2 Array-based Interface Protocol Layering

The NDR stream, formed by concatenating the PDU bodies, is interpreted as the NDR

representation of the DCE lDL message_ty'pe structure. The length member is

encoded first, followed by the data member. The data member is a full pointer,

which is represented in NDR as a referent 1D. In this case, this non-NULL pointer is

the first (and only) pointer to the referent, so the referent ID is l and it is followed by

the representation of the referent. The referent is a conformant array of bytes, which is

represented in NDR as an unsigned long indicating the length, followed by that number

of bytes. The bytes form the DCE-CIOP message.

Ihvoke

The invoke RPC is used by a DCE-CJOP client process to attempt to invoke a

CORBA operation in the server process identified by the binding_hand1e

parameter. The request:_measage input parameter contains a DCE-CIOP invoke

request message. The response_measage output parameter returns a DCE-CIOP

invoke response message from the sewer to the client.

Common Object Request Broker A rchirecture (CORBA). v2. 6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 946 ‘of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 947 of 1442

16

16.3.2.2 Locate

The locate RPC is used by a DCE—ClOP client process to query the server process

identified by the binding_hand1e parameter for the location of the server process

where requests should be sent. The request_measage and response_message

parameters are used similarly to the parameters of the invoke RPC.

1 6. 4 DCE-C1OP Message Formats

December 2001

This section defines the message formats used by DCE-CIOP. These message formats

are specified in OMG IDL, are encoded using CDR, and are transmitted over DCE-

RPC as either pipes or arrays of bytes as described in Section 16.3, “DCE-CIOP

Message Transport,” on page 16-5.

16.4.1 DCE__CIOP Invoke Request Message

16.4.1.1

DCE-CIOP invoke request messages encode CORBA object requests, including

attribute accessor operations and CORBA: : obj ect operations such as

get:_interface and get_imp1ementation. Invoke requests are passed from

client to server as the request_message parameter of an invoke RPC.

A DCE-CIOP invoke request message is made up of a header and a body. The header

has a fixed format, while the format of the body is determined by the operation’s IDL
definition. '

Invoke request header

DCE-CIOP request headers have the following structure:

module DCE_C|OP{ // IDL
struct |nvokeRequestHeader{

boolean byte_order;
|OP::ServiceContextList service__context;

sequence <octet> object_key;
string operation;

CORBA::Principa| principal;

// in and inout parameters follow

};

}:

The members have the following definitions:

' byte_.order indicates the byte ordering used in the representation of the remainder

of the message. A value of FALSE indicates big-endian byte ordering, and TRUE

indicates little-endian byte ordering.

' service_context contains an ORB service data that needs to be sent from theY
client to the server.

CORBA, v2. 6: ‘DCE-CIOP Message Formats 15-11

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 947 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 948 of 1442

16

16-12

' object_key contains opaque data used to identify the object that is the target of the
operations. lts value is obtained from the object_key field of the
TAG_|NTERNET_|OP profile or the TAG_COMPLETE_OBJECT_KEY

component of the TAG_MULT|PLE_COMPONENTS profile.

operation contains the name of the CORBA operation being invoked. The case of

the operation name must match the case of the operation name specified in the
OMG lDL source for the interface being used.

Attribute accessors have names as follows:

- Attribute selector: operation name is “_get_<attribute>"

- Attribute mutator: operation name is “_set_<attribut_e>”

CORBA::Object pseudo-operations have operation names as follows:

- get_interface — operation name is “_interface”

- getjmplementation — operation name is “_implementation"
- is_a — operation name is “_is_a”

- non_existent - operation name is “_non_existent”

Principal contains a value identifying the requesting principal. No particular

meaning or semantics are associated with this value. lt is provided to support the

BOA: : get:_principa1 operation.

16.4.1.2 Invoke request body

"The invoke request body contains the following items encoded in this order:

' All in and inout parameters, in the order in which they are specified in the

operation’s OMG lDL definition, from left to right.

An optional Context pseudo object, encoded as described in Section 15.3.5.4,

“Context,” on page 15-296. This item is only included if the operation’s OMG IDL
definition includes a context expression, and only includes context members as

defined in that expression.

16.4.2 DCE-CIOP Invoke Response Message

Invoke response messages are returned from servers to clients as the

response_message parameter of an invoke RPC.

5.Previous revisions of DCE—ClOP included an endpoint_id member, obtained from an
optional 'I'AG_ENDPOlNT_ID component, as part of the object identity. The endpoint ID,
if used, is now contained within the object key, and its position is specified by the optional
TAG_ENDPOlNT_l D_POSlTlON component.

6. Previous revisions of DCE-CIOP encoded the Context in the lnvokeRequestHeader. It has
been moved to the body for consistency with GIOP.

Common Object Request Broker A re}: itecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 948 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 949 of 1442

16

Like invoke request messages, an invoke response message is made up of a header and

a body. The header has a fixed format, while the format of the body depends on the

operation’s OMG IDL definition and the outcome of the invocation.

16.4.2.1 Invoke response header

DCE-CIOP invoke response headers have the following structure:

module DCE_Cl0P{ ll IDL
enum InvokeResponseStatus(

lNVOKE_NO_EXCEPT|ON,

lNVOKE_USER;EXCEPTl0N,

lNVOKE_SYSTEM_EXCEPTlON,

lNVOKE_LOCAT|ON_FORWARD,

lNVOKE_TRY_AGAlN

};

struct InvokeResponseHeader{

boolean byte_order;
l0P::ServiceContextList service_context;

|nvokeResponseStatus status;

ll if status = lNVOKE_N0_EXCEPTl0N,
II result then inouts and outs follow

ll if status = lNVOKE_USER_EXCEPTlON or

II lNVOKE_SYSTEM_EXCEPT|ON, an exception follows

/I if status = lNVOKE_LOCATlON_FORWARD, an
/I lOP::|OR follows

}:
}:

The members have the following definitions:

° byte_order indicates the byte ordering used in the representation of the remainder

of the message. A value of FALSE indicates big-endian byte ordering, and TRUE

indicates little-endian byte ordering.

° service_context-contains any ORB service data that needs to be sent from the
client to the server.

‘ status indicates the completion status of the associated request, and also

determines the contents of the body.

1 6.4.2.2 Invoke Response Body

The contents of the invoke response body depends on the value of the status
member of the invoke response header, as well as the OMG IDL definition of the

operation being invoked. Its format is one of the following:

D€C€mb€|' 2001 CORBA. V2. 6: DCE-CIOP Message Format: 16-13

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 949 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 950 of 1442

16

16-14

° If the status value is lNVOKE_NO_EXCEPT|ON, then the body contains the

operation result value (if any), followed by all inout and out parameters, in the order
in which they appear in the operation signature, from left to right.

° If the status value is |NVOKE_USER_EXCEPT|ON or

|NVOKE_SYSTEM_EXCEPTlON, then the body contains the exception, encoded
as in GIOP.

° lf the status value is |NVOKE_LOCAT|ON_FORWARD, then the body contains

a new lOR containing a TAG_|NTERNET_|OP or

TAG_MULT|PLE_COMPONENTS profile whose components can be used to

communicate with the object specified in the invoke request message7. This profile
must provide at least one new DCE-ClOP binding component. The client ORB is

responsible for resending the request to the server identified by the new profile. This

operation should be transparent to the client program making the request. See

“DCE-CIOP Object Location” on page 16-21 for more details.

' lf the status value is lNVOKE_TRY_AGA|N, then the body is empty and the

client should reissue the invoke RPC, possibly after a short delays.

16.4.3 DCE-CIOP Locate Request Message

16.4.3.1

Locate request messages may be sent from a client to a server, as the

request_message parameter of a locate RPC, to determine the following
regarding a specified object reference:

’ Whether the object reference is valid.

° Whether the current server is capable of directly receiving requests for the object
reference.

° lf not capable, to solicit an address to which requests for the object reference should
be sent.

For details on the usage of the locate RPC, see Section 16.6, “DCE-CIOP Object

Location,” on page l6-21.

Locate request messages contain a fixed-format header, but no body.

Locate Request Header

DCE-CIOP locate request headers have the following format:

module DCE_C|OP{ I/ IDL

struct LocateRequestHeader(

boolean byte_order;

7. Previous revisions of DCE-CIOP returned a MultipleComponentProfile structure. An IOR
is now returned to allow either a TAG_[NTERNET_IOP or a

TAG_MULTlPLE_COMPONENTS profile to be used.

8. An exponential back-off algorithm is recommended, but not required.

Common Object Request Broker Architecture (CORBA). v2.6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 950 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 951 of 1442

16

sequence <octet> object_key;

string operation;

// no body follows

};

};

The members have the following definitions:

° byte_order indicates the byte ordering used in the representation of the remainder

of the message. A value of FALSE indicates big-endian byte ordering, and TRUE

indicates little-endian byte ordering.

° object_key contains opaque data used to identify the object that is the target of the

operation. Its value is obtained from the object_key field of the

TAG_lNTERNET_lOP profile or the TAG_COMPLETE_OBJECT_KEY

component of the TAG_MULT|PLE_COMPONENTS profile.

° operation contains the name of the CORBA operation being invoked. It is encoded

as in the invoke request header.

16.4.4 DCE-CIOP Locate Response Message

Locate response messages are sent from servers to clients as the

response_message parameter of a locate RPC. They consist of a fixed-format
header, and a body whose format depends on information in the header.

1 6. 4. 4. 1 Locate Response Header

DCE-CIOP locate response headers have the following format:

module DCE_C|OP{ II IDL
enum LocateResponseStatus{

LOCATE_UNKNOWN_OBJECT,

LOCATE_OBJECT_HERE,
LOCATE_LOCATl0N_FORWARD,

_ LOCATE_TRY_AGAlN
};

struct LocateResponseHeader{
boolean byte_order;

LocateResponseStatus status;

// if status = LOCATE_LOCAT|ON_FORWARD, an
/I |0P::|OR follows

};
}:

The members have the following definitions:

' byte_order indicates the byte ordering used in the representation of the remainder

of the message. A value of FALSE indicates big-endian byte ordering, and TRUE
indicates little-endian byte ordering.

Decembel’ 2001 CORBA, v2. 6: DCE—Cl0P Message Formats 16-15

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 951 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 952 of 1442

16

° status indicates whether the object is valid and whether it is located in this sewer.

lt determines the contents of the body.

16.4.4.2 Locate Response Body

The contents of the locate response body depends on the value of the status member

of the locate response header. lts format is one of the following:

° lf the status value is LOCATE_UNKNOWN_OBJECT, then the object specified

in the corresponding locate request message is unknown to the server. The locate

reply body is empty in this case.

' If the status value is LOCATE_OBJECT_l-IERE, then this server (the originator

of the locate response message) can directly receive requests for the specified

object. The locate response body is also empty in this case.

' lf the status value is l.OCATE_LOCATlON_FORWARD, then the locate

response body contains a new lOR containing a TAG_lNTERNET_|OP or

TAG_MULTlPLE_COMPONENTS profile whose components can be used to

communicate with the object specified in the locate request message. This profile

must provide at least one new DCE-ClOP binding component.

' If the status value is l.OCATE_TRY_AGAlN, the locate response body is empty and

the client should reissue the locate RPC, possibly after a short delay‘).

I 6. 5 DCE-CIOP Object References

l6—l6

The information necessary to invoke operations on objects using DCE-ClOP ‘is

encoded in an lOR in a profile identified either by TAG_|NTERNET_|OP or by

TAG_MULT|PLE_COMPONENTS. The profile_data for the

TAG_|NTERNET_l0P profile is a CDR encapsulation of the

|lOP::ProfileBody_1_1 type, described in Section 15.7.2, “llOP lOR Profiles,” on

page 15-51. The profi|e_data for the TAG_MULTlPLE_COMPONENTS profile is a

CDR encapsulation of the Mu|tipleComponentProfi|e type, which is a sequence of

Taggedcomponent structures, described in Section 13.6, “An lnfoxmation Model for

Object References," on page 13-14.

DCE-ClOP defines a number of lOR components that can be included in either profile.

Each is identified by a unique tag, and the encoding and semantics of the associated

component_data are specified.

Either lOR profile can contain components for other protocols in addition to DCE-

CIOP, and can contain components used by other kinds of ORB services. For example,

an ORB vendor can define its own private components within this profile to support the

vendor’s native protocol. Several of the components defined for DCE-ClOP may be of

use to other protocols as well. The following component descriptions will note whether

9. An exponential back-ofi’ algorithm is recommended, but not required.

Common Object Request BmkerArchitec1ure (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 952 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 953 of 1442

16

December 2001

the component is intended solely for DCE-ClOP or can be used by other protocols,

whether the component is required or optional for DCE-CIOP, and whether more than

one instance of the component can be included in a profile.

A conforming implementation of DCE-CIOP is only required to generate and

recognize the components defined here. Unrecognized components should be preserved

but ignored. lmplementations should also be prepared to encounter profiles identified

by TAG_|NTERNET_lOP or by TAG_MULTIPLE_COMPONENTS that do not

support DCE-CIOP.

16.5.1 DCE-CIOP String Binding Component

A DCE-CIOP string binding component, identified by
TAG_DCE_STR|NG_B|ND|NG, contains a fully or partially bound string binding. A

string binding provides the information necessary for DCE-RPC to establish

communication with a server process that can either service the client’s requests itself,

or provide the location of another process that can. The DCE APl routine

rpc_binding_from_string_binding can be used to convert a string binding to

the DCE binding handle required to communicate with a server as described in
Section 16.3, “DCE-ClOP Message Transport,” on page 16-5.

This component is intended to be used only by DCE-ClOP. At least one string binding

or binding name component must be present for an lOR profile to support DCE-ClOP.

Multiple string binding components can be included in a profile to define endpoints for

different DCE protocols, or to identify multiple servers or agents capable of servicing

the request.

The string binding component is defined as follows:

module DCE_C|OP{ \\ IDL

const |0P::Componentld TAG_DCE_STRlN_G_B|NDING = 100;
};

A Taggedcomponent structure is built for the string binding component by setting

the tag member to TAG_DCE_STR|NG_B|ND|NG and setting the
component_data member to the value of a DCE string binding. The string is

represented directly in the sequence of octets, including the terminating NUL, without

further encoding.

The format of a string binding is defined in Chapter 3 of the OSF AES/Distributed

Computing RPC Volume. The DCE API function

rpc_binding_from_st:ring_binding converts a string binding into a binding

handle that can be used by a client ORB as the first parameter to the invoke and

locate R_PCs.

A string binding contains:

‘ A protocol sequence

' A network address

' An optional endpoint

CORBA. v2.6: DCE-CIOP Object References l6-17

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 953 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 954 of 1442

16

l6-l8

’ An optional object UUlD

DCE object UUlDs are used to identify server process endpoints, which can each

support any number of CORBA objects. DCE object UUlDs do not necessarily
correspond to individual CORBA objects.

A partially bound string binding does not contain an endpoint. Since the DCE-RPC

run-time uses an endpoint mapper to complete a partial binding, and multiple ORB

servers might be located on the same host, partially bound string bindings must contain

object UUlDs to distinguish different endpoints at the same network address.

16.5.2 DCE-CIOP Binding Name Component

16.5.2.1

A DCE-ClOP binding name component is identified by
TAG_DCE_BlND|NG_NAME. lt contains a name that can be used with a DCE

nameservice such as CD8 or GDS to obtain the binding handle needed to communicate

with a server process.

This component is intended for use only by DCE-CIOP. Multiple binding name

components can be included to identify multiple servers or agents capable of handling

a request. At least one binding name or string binding component must be present for

a profile to support DCE-CIOP.

The binding name component is defined by the following OMG lDL:

module DCE_C|0P{ // IDL
const lOP::Componentld TAG_DCE_B|ND|NG_NAME = 101;

struct BindingNameComponent (

unsigned long entry_name_syntax;

string entry_name;
string object_uuid;

};
};

A TaggedComponent structure is built for the binding name component by setting

the tag member to TAG_DCE_B|ND|NG_NAME and setting the component_data
member to a CDR encapsulation of a BindingNameComponent structure.

BindingNameComponent

The BindingNameComponent structure contains the information necessary to query

a DCE nameservice such as CDS. A client ORB can use the entry_name_syntax,

entry_name, and object_uuid members of the BindingName structure with the

rpc_ns_‘binding_import_* or rpc__ns_bind:i.ng_1ookup_* families of DCE
AP] routines to obtain binding handles to communicate with a server. If the

object__uuid member is an empty string, a nil object UUID should be passed to
these DCE API routines.

Common 0bjeclReques1Br0kerArchi1eclure (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 954 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 955 of 1442

16

16.5.3 DCE—CIOP No Pipes Component

The optional component identified by TAG_DCE_NO_PlPES indicates to an ORB

client that the server does not support the dce_ciop_pipe DCE-RPC interface. It is

only a hint, and can be safely ignored. As described in Section 16.3, “DCE-CIOP

Message Transport,” on page 16-5, the client must fall back to the array—based interface

if the pipe-based interface is not available in the server.

module DCE_Cl0P{

const |0P::Component|d TAG_DCE_NO_PlPES = 102;

};

A Taggedcomponent structure with a tag member of TAG_DCE_NO_PlPES
must have an empty component_data member.

This component is intended for use only by DCE-CIOP, and a profile should not
contain more than one component with this tag.

16.5.4 Complete Object Key Component

An IOR profile supporting DCE-CIOP must include an object key that identifies the

object the IOR represents. The object key is an opaque sequence of octets used as the

object_key member in invoke and locate request message headers. In a

TAG_lNTERNET_|OP profile, the object_key member of the

||OP::Profi|eBody_1_1 structure is used. In a TAG_MULT|PLE__COMPONENTS

profile supporting DCE-ClOP1°, a single TAG_COMPLETE_OBJECT_KEY
component must be included to identify the object.

The TAG_COMPLETE_OBJ ECT_KEY component is available for use by all

protocols that use the TAG_MULT|PLE_COMPONENTS profile. By sharing this

component, protocols can avoid duplicating object identity information. This

component should never be included in a TAG_|NTERNET_|OP profile.

module lOP{ /I IDL

const Componentld TAG_COMPLETE_OBJECT_KEY = 5;
};

The sequence of octets comprising the component_data of this component is not

interpreted by the client process. its format only needs to be understood by the server

process and any location agent that it uses.

10. Previous DCE-CIOP revisions used a difierent component.

December 2001 CORBA, v2. 6: DCE»CIOP Object References ' 15-19

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 955 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 956 of 1442

16

16.5.5 Endpoint ID Position Component

An optional endpoint ID position component can be included in lOR profiles to enable
client ORBs to minimize resource utilization and to avoid redundant locate messages.

It can be used by other protocols as well as by DCE-CIOP. No more than one endpoint

ID position component can be included in a profile.

module lOP{ ll IDL

const Componentld TAG_ENDPOlNT_lD_POSlTlON = 6;

struct EndpointldPositioncomponent{

unsigned shortbegin;

unsigned short end;
};

};

An endpoint ID position component, identified by TAG_ENDPO|NT_|D_POS|T|0N,

indicates the portion of the profile’s object key that identifies the endpoint at which

operations on an object can be invoked. The component_data is a CDR

encapsulation of an EndpointldPositionComponent structure. The begin member

of this structure specifies the index in the object key of the first octet of the endpoint

ID. The end member specifies the index of the last octet of the endpoint ID. An index

value of zero specifies the first octet of the object key. The value of end must be

greater than the value of begin, but less than the total number of octets in the object

key. The endpoint ID is made up of the octets located between these two indices

inclusively.

The endpoint lD should be unique within the domain of interoperability. A binary or
stringified UUID is recommended.

If multiple objects have the same endpoint lD, they can be messaged to at a single

endpoint, avoiding the need to locate each object individually. DCE-CIOP clients can

use a single binding handle to invoke requests on all of the objects with a common

endpoint ID. See Section 16.6.4, “Use of the Location Policy and the Endpoint ID,'’ on
page 16-24.

16.5.6 Location Policy Component

An optional location policy component can be included in IOR profiles to specify
when a DCE-ClOP client ORB should perform a locate RPC before attempting to

perform an invoke RPC. No more than one location policy component should be

included in a profile, and it can be used by other protocols that have location

algorithms similar to DCE-CIOP.

module lOP{ II IDL

const Componentld TAG_LOCATl0N_POL|CY = 12;

II IDL does not support octet constants
#define LOCATE_NEVER = 0

#define LOCATE_OBJECT = 1

16-20 Common Object Request Broker/drchitecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 956 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 957 of 1442

16

#define LOCATE_0PERAT|ON = 2
#define LOCATE_ALWAYS = 3

};

A Taggedcomponenl structure for a location policy component is built by setting

the tag member to TAG_LOCAT|ON_POL|CY and setting the component_data

member to a sequence containing a single octet, whose value is LOCATE_NEVER,
LOCATE_OBJECT, LOCATE_OPERATlON, or LOCATE_ALWAYS.

If a location policy component is not present in a profile, the client should assume a

location policy of LOCATE_OBJECT.

A client should interpret the location policy as follows:

- LOCATE_NEVER - Perform only the invoke RPC. No locate RPC is
necessary.

- LOCATE_OBJECT - Perform a locate RPC once per object. The operation

member of the locate request message will be ignored.

- LOCATE_OPERATlON - Perform a separate locate RPC for each distinct

operation on the object. This policy can be used when different methods of an
object are located in different processes.

- LOCATE_ALWAYS - Perform a separate locate RPC for each invocation on

the object. This ‘policy can be used to support server-per-method activation.

The location policy is a hint that enables a client to avoid unnecessary locate RPCs
and to avoid invoke RPCs that return |NVOKE_LOCAT|ON_FORWARD status. lt

is not needed to provide correct semantics, and can be ignored. Even when this hint is

utilized, an invoke RPC might result in an |NVOKE_LOCAT|ON_FORWARD

response. See Section 16.6, “DCE-ClOP Object Location,” on page 16-21 for more
details.

A client does not need to implement all location policies to make use of this hint. A

location policy with a higher value can be substituted for one with a lower value. For

instance, a client might treat LOCATE_0PERAT|ON as LOCATE_ALWAYS to avoid

having to keep track of binding information for each operation on an object.

When combined with an endpoint lD component, a location policy of .
LOCATE_OBJECT indicates that the client should perform a locate RPC for the

first object with a particular endpoint 1D, and then just perform an invoke RPC for

other objects with the same endpoint lD. When a location policy of LOCATE__NEVER

is combined with an endpoint ID component, only invoke RPCS need be performed.

The LOCATE_ALWAYS and LOCATE_OPERAT|ON policies should not be

combined with an endpoint lD component in a profile.

16.6 DCE-CIOP Object Location

This section describes how DCE-CIOP client ORBS locate the server ORBS that can

perform operations on an object via the invoke RPC.

December 2001 CORBA. v2. 6: DCE—CIOP Object Location 15-21

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 957 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 958 of 1442

16

16.6.] Location Mechanism Overview

DCE-ClOP is defined to support object migration and location services without

dictating the existence of specific ORB architectures or features. The protocol features
are based on the following observations:

' A given transport address does not necessarily correspond to any specific ORB

architectural component (such as an object adapter, server process, ORB process,

locator, etc.). it merely implies the existence of some agent to which requests may
be sent.

’ The “agent” (receiver of an RPC) may have one of the following roles with respect

to a particular object reference:

- The agent may be able to accept object requests directly for the object and return

replies. The agent may or may not own the actual object implementation; it may
be a gateway that transforms the request and passes it on to another process or
ORB. From DCE-ClOP’s perspective, it is only important that invoke request

messages can be sent directly to the agent.

- The agent may not be able to accept direct requests for any objects, but acts
instead as a location service. Any invoke request messages sent to the agent

would result in either exceptions or replies with

|NVOKE_LOCAT|ON_FORWARD status, providing new addresses to which

requests may be sent. Such agents would also respond to locate request messages

with appropriate locate response messages.

- The agent may directly respond to some requests (for certain objects) and provide
forwarding locations for other objects.

- The agent may directly respond to requests for a particular object at one point in

time, and provide a forwarding location at a later time.

’ Server ORBs are not required to implement location forwarding mechanisms. An

ORB can be implemented with the policy that servers either support direct access to

an object, or return exceptions. Such a server ORB would always return locate

response messages with either LOCATE_OBJECT_HERE or
LOCATE_UNKNOWN_OBJECT status, and never

LOCATE_LOCAT|ON_FORWARD status. It would also never return invoke

response messages with |NVOKE_LOCATlON_FORWARD status.

' Client ORBs must, however, be able to accept and process invoke response

messages with |NVOKE_LOCATl0N_FORWARD status, since any server ORB

may choose to implement a location service. Whether a client ORB chooses to send

locate request messages is at the discretion of the client.

' Client ORBs that send locate request messages can use the location policy

component found in DCE-CIOP JOR profiles to decide whether to send a locate

request message before sending an invoke request message. See Section 16.5.6,

“Location Policy Component,” on page 16-20. This hint can be safely ignored by a
client ORB.

16-22 Common Object Request Broker Architecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 958 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 959 of 1442

I6

' A client should not make any assumptions about the longevity of addresses returned

by location forwarding mechanisms. If a binding handle based on location

forwarding information is used successfully, but then fails, subsequent attempts to

send requests to the same object should start with the original address specified in
the object reference. ‘

ln general, the use of location forwarding mechanisms is at the discretion of ORBs,

available to be used for optimization and to support flexible object location and

migration behaviors.

I 6. 6.2 Activation

Activation of ORB servers is transparent to ORB clients using DCE-CIOP. Unless an

IOR refers to a transient object, the agent addressed by the 10R profile should either be

permanently active, or should be activated on demand by DCE’s endpoint mapper.

The current DCE endpoint mapper, rpcd, does not provide activation. In ORB server

environments using rpcd, the agent addressed by an lOR must not only be capable of

locating the object, it must also be able to activate it if necessary. A future DCE

endpoint mapper may provide automatic activation, but client ORB implementations
do not need to be aware of this distinction.

16.6.3 Basic Location Algorithm

ORB clients can use the following algorithm to locate the server capable of handling

the invoke RPC for a particular operation:

1. Pick a profile with TAG__lNTERNET_|OP or TAG_MULT|PLE_COMPONENTS
from the IOR. Make this the original profile and the current profile. If no profiles

with either tag are available, operations cannot be invoked using DCE-ClOP with
this lOR.

Ix) . Get a binding handle to try from the current profile. See Section 16.5.1, “DCE-

CIOP String Binding Component," on page 16-17 and Section 16.5.2, “DCE-ClOP

Binding Name Component," on page 16-18. If no binding handles can be obtained,
the server cannot be located using the current profile, so go to step 1.

3. Perform either a locate or invoke RPC using the object key from the current

profile.

'- lfthe RPC fails, go to step 2 to try a different binding handle.

- 1f the RFC returns |NVOKE_TRY_AGA|N or LOCATE_TRY_AGA|N, try the

same RPC again, possibly after a delay.

' lfthe RPC returns either |NVOKE_LOCAT|ON_FORWARD or

LOCATE_LOCAT|ON_FORWARD, make the new lOR profile returned in the

response message body the current profile and go to step 2.

- lf the RFC returns LOCATE_UNKNOWN_OBJECT, and the original profile

was used, the object no longer exists.

0 Otherwise, the server has been successfully located.

December 2001 CORBA, v2.6: DCE-C101’ Object Location 15-23

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 959 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 960 of 1442

16

l6-24

Any invoke RPC might return |NVOKE_LOCAT|ON_FORWARD, in which case
the client ORB should make the returned profile the current profile, and re-enter the

location algorithm at step 2.

lf an RPC on a binding handle fails after it has been used successfully, the client ORB
should start over at step 1.

16.6.4 Use of the Location Policy and the Endpoint ID

16.6.4.1

16.6.4.2

16.6.4.3

The algorithm above will allow a client ORB to successfully locate a server ORB, if

possible, so that operations can be invoked using DCE-CIOP. But unnecessary

locate RPCS may be performed, and invoke RPCS may be performed when
locate RPCs would be more efficient. The optional location policy and endpoint ID

position components can be used by the client ORB, if present in the lOR profile, to
optimize this algorithm.

Current location policy

The client ORB can decide whether to perform a locate RPC or an invoke RPC in

step 3 based on the location policy of the current lOR profile. lf the current profile has
a TAG_LOCAT|ON_POL|CY component with a value of LOCATE_NEVER, the

client should perform an invoke RPC. Otherwise, it should perform a locate RPC.

Original location policy

The client ORB can use the location policy of the original lOR profile as follows to

determine whether it is necessary to perform the location algorithm for a particular
invocation:

' LOCATE_OBJECT or LOCATE_NEVER - A binding handle previously used

successfully to invoke an operation on an object can be reused for all operations on

the same object. The client only needs to perform the location algorithm once per

object.

° LOCATE_OPERAT|ON - A binding handle previously used successfully to invoke

an operation on an object can be reused for that same operation on the same object.

The client only needs to perform the location algorithm once per operation.

° LOCATE_ALWAYS - Binding handles should not be reused. The client needs to

perform the location algorithm once per invocation.

Original Endpoint ID

If a component with TAG_ENDPOlNT_|D_POS|T|ON is present in the original lOR

profile, the client ORB can reuse a binding handle that was successfully used to

perform an operation on another object with the same endpoint ID. The client only

needs to perform the location algorithm once per endpoint.

An endpoint ID position component should never be combined in the same profile with

a location policy of LOCATE_OPERAT|ON or LOCATE_ALWAYS.

Common Object Request Broker A rch itecture (CORBA), v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 960 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 961 of 1442

I6

I 6. 7 OMG IDLfor the DCE CIOP Module

This section shows the DCE_ClOP module and DCE_C|OP additions to the IOP
module.

module DCE_C|0P{
struct lnvokeRequestHeader{

boolean byte_order;
lOP::ServiceContextList service_context;

sequence <octet> object_key;

string operation;

CORBA::Principa| principal;

II in and inout parameters follow

};

enum lnvokeResponseStatus{
|NVOKE_NO_EXCEPTlON,

lNVOKE_USER_EXCEPT|ON,

INVOKE_SYSTEM_EXCEPT|ON,
lNVOKE_LOCAT|ON_FORWARD,

lNVOKE_TRY_AGA|N

};
struct lnvokeResponseHeader{

boolean byte_order;
lOP::ServiceContextList service_context;

|nvokeResponseStatus status;

II if status = |NVOKE_NO_EXCEPTlON,
ll result then inouts and outs follow

ll if status = lNVOKE_USER_EXCEPT|ON or

// |NVOKE_SYSTEM_EXCEPTlON, an exception follows

/I if status = |NVOKE_LOCATlON_FORWARD, an
ll lOP::|OR follows

};

struct LocateRequestHeader{

boolean byte_order;

sequence <octet> object_key;

string operation;

II no body follows

}:

enum LocateResponseStatus(
LOCATE_UNKNOWN_0BJECT,

LOCATE_OBJECT_HERE,

LOCATE_LOCAT|ON_ FORWARD,

LOCATE_TRY_AGA|N

Deccmbef 2001 CORBA, v2. 6: OMG IDLf0r the DCE CIOP Module 16-25

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 961 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 962 of 1442

I6

};

struct LocateResponseHeader{
boolean byte_order;

LocateResponseStatus status;

ll if status = LOCATE_LOCATlON_FORWARD, an
ll lOP::l0R follows

};

const lOP::Componentld TAG_DCE_STRlNG_BlNDING = 100;

const l0P::Componentld TAG_DCE_B|NDlNG_NAME = 101;

struct BindingNameComponent{

unsigned long entry_name_syntax;
string entry_name;

string object_uuid;

};

const lOP::ComponentId TAG_DCE_NO_PlPES =102;

}:

module IOP {

const Componentld TAG_COMPLETE_OBJECT_KEY = 5;

const Componentld TAG_ENDPOlNT_lD_POSlTl0N = 6;

struct EndpointldPositionComponent{

unsigned short begin;

unsigned short end;

1:

const Componentld TAG_LOCATlON_POLlCY = 12;‘

II IDL does not support octet constants
#define LOCATE_NEVER 0
#define LOCATE_OBJECT 1

#define LOCATE_OPERATlON 2

#define LOCATE_ALWAYS 3

}: ‘

16.8 Referencesfor this Chapter

AES/Distributed Computing RPC Volume, P T R Prentice Hall, Englewood Cliffs, New

16-26

Jersey, 1994

CAE Specification C309 X/Open DCE: Remote Pmcedure Call, X/Open Company

Limited, Reading, UK

Common Object Request Broker Architecture (CORBA), v2.6

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 962 of 1442

December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 963 of 1442

Mapping: COMand CORBA 18

This chapter describes the data type and interface mapping between COM and

CORBA. The mappings are described in the context of both Win16 and Win32 COM
due to the differences between the versions of COM and between the automated tools

available to COM developers under these environments. The mapping is designed to be

fully implemented by automated interworking tools.

Contents

This chapter contains the following sections.

Section Title

° ’
“Data Type Mapping” M
“CORBA to COM Data Type Mapping"
“COM to CORBA Data Type Mapping” 18-33 .

18.1 Data Jjzpe Mapping

December 2001

The data type model used in this mapping for Win32 COM is derived from MIDL (a

derivative of DCE lDl.). COM interfaces using “custom marshaling” must be hand-

coded and require special treatment to interoperate with CORBA using automated
tools. This specification does not address interworking between CORBA and custom-
marshaled COM interfaces.

The data type model used in this mapping for Win16 COM is derived from ODL since

Microsoft RPC and the Microsoft MIDL compiler are not available for Win16. The

ODL data type model was chosen since it is the only standard, high-level

representation available to COM object developers on Win16.

Cammnn Object Request Broker A rch itecture (CORBA), v2.6 18-]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 963 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 964 of 1442

18

Note that although the MIDL and ODL data type models are used as the reference for

the data model mapping, there is no requirement that either MIDL or ODL be used to

implement a COM/CORBA interworking solution.

ln many cases, there is a one-to-one mapping between COM and CORBA data types.
However, in cases without exact mappings, run-time conversion errors may occur.

Conversion errors will be discussed in Mapping for Exception Types under

Section 18.2.10, “Interface Mapping,” on page 18-1 l.

18.2 CORBA to COMData Type Mapping

l8-2

18.2.1 Mappingfor Basic Data Types

The basic data types available in OMG lDL map to the corresponding data types
available in Microsoft IDL as shown in Table 18-1.

Table 18-1 OMG IDL to MIDL Intrinsic Data Type Mappings

OMGIDL Microsortm Miorosortom

ohoo soon
M

unsigned short
unsigned long unsigned long
floor floor
oooolo

char char char 8-bit quantity limited to the ISO Latin-l
character set

WCHAR WCHAR
boolean 8-bit quantity that is limited to l and O ‘

byte unsigned char 8-bit opaque data type, guaranteed to not

unsigned short

undergo any conversion during transfer between

systems.
Note — midl and mktyplib disagree about the size of boolean when used in an ODL

specification. To avoid this ambiguity, we make the mapping explicit and use the

VARIANT BOOL type instead of the built—in boolean type.

18.2.2 Mappingfor Constants

The mapping of the OMG IDL keyword const to Microsoft IDL and ODL is almost

exactly the same. The following are the OMG IDL definitions for constants:

Common Object Request Broker A rch itecture (CORBA), v2. 6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 964 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 965 of 1442

18

December 2001

ll OMG IDL

const short 5 =

const long L =

const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;

const char C = ...;
const boolean B = ...;

const string STR = "...";

that map to the following Microsoft IDL and ODL definitions for constants:

// Microsoft IDL and ODL
const short S = ...;

const long L = ...;

const unsigned short US

const unsigned long UL
const float F = ...;

const char C = ...;

const boolean B = ...;

const string STR = “...”;

a
nun,

ll ...;

18.2.3 Mappingfor Enumerators

CORBA has enumerators that are not explicitly tagged with values. Microsoft IDL and

ODL support enumerators that are explicitly tagged with values. The constraint is that

any language mapping that permits two enumerators to be compared or defines

successor or predecessor functions on enumcrators must conform to the ordering of the
enumerators as specified in the OMG IDL.

ll OMG IDL

interface My|nft{

enum A_or_B_or_C {A, B, C};

};

CORBA enumerators are mapped to COM enumerations directly according to CORBA

C language binding. The Microsoft IDL keyword v1_enu.m is required in order for an
enumeration to be transmitted as 32-bit values. Microsoft recommends that this

keyword be used on 32-bit platforms, since it increases the efficiency of marshalling

and unmarshalling data when such an enurnerator is embedded in a structure or union.

// Microsoft IDL and ODL

uuid(. . .) ,

interface IMyIntf {

typedef [v1_enuml

enum tag)-\ or a or c {MyIm:£ A = o,
Mylnft B,

MyIntf c }

CORBA, v2.6: CORBA to COM Data Tjvpe Mapping 18.3

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 965 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 966 of 1442

18

18-4

MyIntf A or B or C;

};

A maximum of 232 identifiers may be specified in an enumeration in CORBA.

Enumerators in Microsoft IDL and ODL will only support 216 identifiers, and
therefore, truncation may result.

18.2.4 Mappingfor String Types

CORBA currently defines the data type string to represent strings that consist of

8-bit quantities, which are NULL-terminated.

Microsoft lDL and ODL define a number of different data types, which are used to _

represent both 8-bit character strings and strings containing wide characters based on
Unicode.

Table 18-2 illustrates how to map the string data types in OMG lDL to their

corresponding data types in both Microsoft lDL and ODL.

Table 18-2 OMG IDL to Microsoft IDL/ODL‘String Mappings

omc IDL Microsoft IDL Microsoft om.

 string LPSTR LPSTR Null-terminated 8-bit character string
[string,unique]
char *

wstring LPWSTR LPWSTR Null-terminated Unicode string

[string,unique]
wchar t *

OMG lDL supports two different types of strings: bounded and unbounded. Bounded

strings are defined as strings that have a maximum. length specified; whereas, v

unbounded strings do not have a maximum length specified.

18.2.4.1 Mappingfor Unbounded String Types

The definition of an unbounded string limited to 8-bit quantities in OMG lDL

II OMG IDL

typedef string UNBOUNDED_STR|NG;

is mapped to the following syntax in Microsoft IDL and ODL, which denotes the type

of a “stringified unique pointer to character."

// Microsoft IDL and ODL

typedef (string, unique] char * UNBOU'NDED__S'1'RING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to a
one-dimensional null-terminated character array whose extent and number of valid
elements can vary at run-timc.

' Cmnmon Object Request Br0kerArchitecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 966 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 967 of 1442

18

December 2001

18.2.4.2 Mappingfor Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microsoft

lDL and ODL. The following OMG IDL definition for a bounded string:

II OMG IDL

const long N = ...;

typedef string<N> BOUNDED_STR|NG;

maps to the following syntax in Microsoft IDL and ODL for a “stringified non-

conformant array.”

// Microsoft IDL and ODL

const long N = ;

typedef Estring, unique] char (* BOUNDED_S'I‘RING) [N];

In other words, the encoding for a value of type BOUNDED_S'I'RING is that of a null-
terminated array of characters whose extent is known at compile time, and the number

of valid characters can vary at run-time.

18.2.5 Mappingfor Struct Types

OMG lDL uses the keyword struct to define a record type, consisting of an ordered set

of name—value pairs representing the member types and names. A structure defined in

OMG IDL maps bidirectionally to Microsoft IDL and ODL structures. Each member

of the structure is mapped according to the mapping rules for that data type.

An OMG IDL struct type with members of types TO, Tl, T2, and so on

ll OMG IDL

typedef T0

typedef T1;

typedef T2;

typedef Tn;
struct STRUCTURE

{
‘ T0 m0;

' T1 ml;

T2 m2;

Tn mN;

};

has an encoding equivalent to a Microsoft lDL and ODL structure definition, as
follows. ‘

// Microsoft IDL and ODL
typedef . . . T0;

typedef . . . T1;
typedef . . . T2;

CORBA, v2.6: CORBA to COM Data Type Mapping 18-5

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 967 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 968 of 1442

18

typedef Tn;

typedef struct

{
T0 m0;

T1 ml;

‘I2 1112:

TN mN;

} srnucruns;

Se1f—referential data types are expanded in the same manner. For example,

struct A { ll OMG IDL

sequence<A> v1;

};

is mapped as

typedef struct A {

struct { // MIDL
unsigned long cbMaxSize;

unsigned long cbLengthUsed;

[size_is(cbMaxSize) , 1ength_is(cbLengthUsed) , unique]
struct A * pvalue;

} V1;

} A:

18.2.6 Mappingfor Union Types

OMG IDL defines unions to be encapsulated discriminated unions: the discriminator

itself must be encapsulated within the union.

in addition, the OMG IDL union discriminants must be constant expressions. The

discriminator tag must be a previously defined long, short, unsigned long,

unsigned short, char, boolean, or enum constant. The default case can appear

at most once in the definition of a discriminated union, and case labels must match or

be automatically castable to thc defined type of the discriminator.

18-6 Common Object Request BrokerArch1'1ecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 968 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 969 of 1442

December 200!

The following definition for a discriminated union in OMG IDL

ll OMG IDL

enum UNION_DlSCR|M|NATOR

{
dChar=0,

dShort,

dLong,
dF|oat,
dDoub|e

};

union UNION_OF_CHAR_AND_AR|THMETIC

switch(UN|0N_DlSCRlMINATOR)

{
case dChar: char c;

case dShort: short s;

case dLong: long I;
case dF|oat: float f;

case dDoubIe: double d;

default: octet v[;8];

}:

is mapped into encapsulated unions in Microsoft IDL as follows:

// Microsoft IDL

typedef enum [V1 enum]

{
dchar=0,

dshort,

dLong,
dFloat,
dDoub1e

} UNION_DISCRIMINA'.I.‘OR;

typedef union switch (UNION_DISCRIMINATOR DCE_d)
{
case dChar: char c;

case dshort: short 5;

case dLong: long 1;
case dFloat: float f;

case dnouble: double d;

default: byte v[8];

}UNION_OF_CHAR_AND_ARITH

CORBA. v2.6: CORBA to COM Data Type Mapping

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex.1102,p.969of1442

I8

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 970 of 1442

18

18-8

18.2. 7 Mappingfor Sequence Types

18.2.7.1

18.2.7.2

OMG IDL defines the keyword sequence to be a one-dimensional array with two

characteristics: an optional maximum size that is fixed at compile time, and a length
that is determined at run-time. Like the definition of strings, OMG IDL allows

sequences to be defined in one of two ways: bounded and unbounded. A sequence is

bounded if a maximum size is specified, else it is considered unbounded.

Mappingfor Unbounded Sequence Types

The mapping of the following OMG IDL syntax for the unbounded sequence of type T

ll OMG IDL for T

typedef T;

typedef sequence<T> UNBOUNDED_SEQUENCE;

maps to the following Microsoft IDL and ODL syntax:

// Microsoft IDL or ODL

typedef . . . U;

typedef struct

{
unsigned long cbMaxSize;

unsigned long cbLengthUsed; _

[size_is(cbMaxSize) , 1ength_is(cbLengthUsed) , unique]

U * pVa1ue;

} UNBOU'NDED_SEQUENCE;

The encoding for an unbounded OMG IDL sequence of type T is that of a Microsoft

IDL or ODL struct containing a unique pointer to a conformant array of type U, where

U is the Microsoft IDL or ODL mapping of T. The enclosing struct in the Microsofi

lDL/ODL mapping is necessary to provide a scope in which extent and data bounds
can be defined. -

Mappingfor Bounded Sequence Types

The mapping for the following OMG IDL syntax for the bounded sequence of type T

that can grow to be N size:

ll OMG IDL for T

const long N = ...;

typedef ...T;

typedef sequence<T,N> BOUNDED_SEQUENCE_OF_N;

maps to the following Microsoft IDL or ODL syntax:

// Microsoft IDL or ODL

const long N = ...;
typedef . . .U;

Common Object Request Broker/irchilecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 970 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 971 of 1442

December 2001

18

typedef atruct

{
unsigned long reserved;

unsigned long cbnengthtlsed;

[1ength_is (cbLengthUaed)] U Value [N] ;

} BOUNDED_SEQUENCE_OF_N;

Note — The maximum size of the bounded sequence is declared in the declaration of

the array and therefore a [size is ()] attribute is not needed.

18.2.8 Mappingfor Array Types

OMG lDL arrays are fixed length multidimensional arrays. Both Microsoft lDL and

ODL also support fixed length multidimensional arrays. Arrays defined in OMG IDL

map bidirectionally to COM fixed length arrays. The type of the array elements is

mapped according to the data type mapping rules.

The mapping for an OMG IDL array of some type T is that of an array of the type U
as defined in Microsoft IDL and ODL, where U is the result of mapping the OMG IDL
T into Microsoft IDL or ODL.

// OMG IDL for T

const long N = ...;

typedef T;

typedef T ARRAY_OF_T[N];

// Microsoft IDL or ODL for '1'

const long N = ...;

typedef . . . U;

typedef U ARRAY_OF_U[N]:

In Microsoft IDL and ODL, the name ARRZ-\Y_OF_U denotes the type of a “one-
dimensional nonconforrnant and nonvarying array of U." The value N can be of any

integral type, and const means (as in OMG IDL) that the value ofN is fixed and known

at IDL compilation time. The generalization to multidimensional arrays follows the

obvious mapping of syntax.

Note that if the ellipsis were octet in the OMG IDL, then the ellipsis would have to

be byte in Microsoft IDL or ODL. That is why the types of the array elements have
different names in the two texts.

18.2.9 Mappingfor the any Type

The CORBA any type permits the specification of values that can express any OMG

IDL data type. There is no direct or simple mapping of this type into COM, thus we

map it to the following interface definition:

// Microsoft IDL

typedef [v1_enum] enum CORBAAnyDa.taTagEnu.m {

CORBA. v2. 6: CORE/1 to COM Data Zvpc Mapping 18-9

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 971 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 972 of 1442

I8

18-10

anySimp1eVa1Tag.

anyAnyVa1Tag,

anySeqVa1Tag:

anyStructVa1Tag,

anyUnionVa1Tag

} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion switch(CORBAAnyDataTag

whichOne){
case anyAnyValTag:

I CORBA_Any * anyval ;
case anySeqVa1Tag:

case anyStructVa1Tag:

struct {
lstring, unique] char * repositoryId;
unsigned long cbmaxsize;

unsigned long cbLengthUsed;

[size_is(cbMaxSize), 1ength_is(cbLengthUsed),
unique]

union CORBAAnyDataUnion *pVa1;

} multival;
case anyUnionVa1Tag:

struct {
[string, unique] char * repositoryld;

long disc;

union CORBAAnyDataUnion *va1ue;

} unionval;
case anyObjectVa1Tag:

struct {
' [string, unique] char * repositoryld;

VARIANT Va 1 ;

} objectval; . .
case anySimp1eVa1Tag: // All other types

VARIANT simpleval;

} CORBAAnyData;

...{ uuid(74105F50—3C68-1lcf-9588-AAO0O4004AO9) 1

interface ICORBA_Any: IUnknown

{

HRESULT _get_va1ue([out] VARIANT * val);

HRESULT _put_va1ue([in] VARIANT val);

HRESULT _get_CORBAAnyData([out] CORBAAnyData* val);

HRESULT _put_CORBAAnyData([in] CORBAAnyData val):
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc);

}

ln most cases, a COM client can use the _get_value () or _put_va1ue ()
method to set and get the value of a CORBA any. However, the data types supported

by a VARIANT are too restrictive to support all values representable in an any, such

as structs and unions. ln cases where the data types can be represented in a VARIANT,

they will be; in other cases, they will optionally be returned as an IS tream pointer

Cnmmmz Object Request Broker A rchitecture (CORBA). v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex.1102,p.972of1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 973 of 1442

December 2001

18

in the VARIANT. An implementation may choose not to represent these types as an
IS tream, in which case an SCODE value of E_DATA_CONVERSlON is returned

when the VARJANT is requested.

18.2.10 Interface Mapping

18.2.10.1 Mappingfor interface identifiers

lnterface identifiers are used in both CORBA and COM to uniquely identify interfaces.

These allow the client code to retrieve information about, or to inquire about, other

interfaces of an object.

CORBA identifies interfaces using the Repositoryld. The Repositoryld is a unique

identifier for, among other things, an interface. COM identifies interfaces using a
structure similar to the DCE UUID (in fact, identical to a DCE UUID on Win32)

known as an llD. As with CORBA, COM specifies that the textual names of interfaces

are only for convenience and need not be globally unique.

The CORBA Repositoryld is mapped, bidirectionally, to the COM llD. The algorithm

for creating the mapping is detailed in Section 17.5.4, “Mapping Interface Identity,” on

page 17-16.

"18.2. 10.2 Mappingfor exception types

The CORBA object model uses the concept of exceptions to report error information.

Additional, exception-specification information may accompany the exception. The

exception-specific information is a specialized form of a record. Because it is defined '
as a record, the additional information may consist of any of the basic data types or a

complex data type constructed from one or more basic data types. Exceptions are

classified into two types: System (Standard) Exceptions and User Exceptions.

COM provides error information to clients only if an operation uses a return result of

type HRESULT. A COM HRESULT with a value of zero indicates success. The
HRESULT then can be converted into an SCODE (the SCODE is explicitly specified

as being the same as the HRESULT on Win32 platforms). The SCODE can then be
examined to determine whether the call succeeded or failed. The error or success code,

also contained within the SCODE, is composed ofa “facility” major code (13 bits on
Win32 and 4 bits on Win16) and a 16-bit minor code.

Unlike CORBA, COM provides no standard way to return user-defined exception data

to the client. Also, there is no standard mechanism in COM to specify the completion

status of an invocation. In addition, it is not possible to predeterrnine what set of errors

a COM interface might return based on the definition of the interface as specified in

Microsoft IDL, ODL, or in a type library. Although the set of status codes that can be

returned from a COM operation must be fixed when the operation is defined, there is

currently no machine-readable way to discover the set of valid codes.

CORBA. V2.6: CORBA to COM Data Zvpe Mapping l8—ll

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 973 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 974 of 1442

I8

18-I2

Since the CORBA exception model is significantly richer than the COM exception

model, mapping CORBA exceptions to COM requires an additional protocol to be
defined for COM. However, this protocol does not violate backwards compatibility, nor

does it require any changes to COM. To return the User Exception data to a COM

client, an optional parameter is added to the end of a COM operation signature when

mapping CORBA operations, which raise User Exceptions. System exception
information is returned in a standard OLE Error Object.

Mappingfor System Exceptions

System exceptions are standard exception types, which are defined by the CORBA

specification and are used by the Object Request Broker (ORB) and object adapters

(OA). Standard exceptions may be returned as a result of any operation invocation,

regardless of the interface on which the requested operation was attempted.

There are two aspects to the mapping of System Exceptions. One aspect is generating

an appropriate l-IRESULT for the operation to return. The other aspect is conveying

System Exception information via a standard OLE Error Object.

The following table shows the HRESULT, which must be returned by the COM View
when a CORBA System Exception is raised. Each of the CORBA System Exceptions

is assigned a 16-bit numerical ID starting at 0x200 to be used as the code (lower 16

bits) of the HRESULT. Because these errors are interface-specific, the COM facility
code FAClLlTY_lTF is used as the facility code in the HRESULT.

Bits 12-13 of the l-IRESULT contain a bit mask, which indicates the completion status

of the CORBA request. The bit value 00 indicates that the operation did not complete,

a bit value of 01 indicates that the operation did complete, and a bit value of 02

indicates that the operation may have completed. Table 18-3 lists the HRESULT
constants and their values.

Table 18-3 Standard Exception to SCODE Mapping

lTl-‘_E_UNl<.NOWN_NO
lTl-‘_E_UNl(NOWN_YES
lTl-‘_E_UNl(NOWN_MAYBE
lTF_E_BAD_PARAM_NO
lTF_E_BAD_PARAM_YES '
lTF_E_BAD_PARAM_MAYBE
lTF_E_NO_MEMORY_NO
lTF_E_NO_MEMORY_YES
lTF_E_NO_MEMORY_MAYBE
lTl~‘_E_lMP_LlMlT_NO

Common Object Request Broker A rchiteeture (CORBA). v2. 6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 974 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 975 of 1442

I8

December 2001

Table 18-3 Standard Exception to SCODE Mapping (Continued)

CORBA. v2.6: CORBA to COM Data Tjvpe Mapping 18-13

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 975 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 976 of 1442

I8

Table 18-3 Standard Exception to SCODE Mapping (Continued)

lTF_E_FREE_MEM_MAYBE 0x422l2

18-14 Common Object Request BrakerArchi1ecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 976 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 977 of 1442

December 200]

E’EN ‘~< ?°Lu ‘.4’ ca.53:2. (T1 ><O 0-c::O:: ..o (/20OCU1 3W-c'2::0:: §0
3323 =N

Q‘;

lTF_E_BAD_CONTEXT_MAYBE 0x422 l 6

lTF_E_OBJ_ADAPTER_NO 0x402 l 7

lTF_E_OBJ_ADAPTER__YES Ox4l2l7

lTF_E_OBJ_ADAPTER_MAYBE 0x422 l 7

lTF_E_DATA_CON VERSlON_NO 0x402} 8

lTF_E_DATA_CONVERSlON_YES 0x4l2l8

lTF_E_DATA__CONVERSlON_MAYBE Ox422l8

lTF_E_OBJ__NOT_EXlST_NO OX402l9

lTF_E_OBJ__NOT_EXlST_MAYBE 0X4] 219

lTF_E__OBJ_NOT_EXlST_YES 0X422 1 9

lTF_E_TRAN SACTlON_REQUlRED_NO 0x40220

lTF_E_TRANSACTlON_REQUlRED_MAYBE Ox4l22O

lTF_E__TRANSACTlON_REQUlRED_YES 0x42220

lTF_E__TRAN SACTlON_ROLLEDBACK_NO Ox40221

lTF__E_TRANSACTlON_ROLLEDBACK_MAYBE Ox4l22l

lTF_E_TRANSACTlON_ROLLEDBACK_YES 0x4222l

lTF_E_lNVAI..lD_TRANSACTlON_NO Ox40222

lTF_E_lNVALlD_TRANSACTlON_MAYBE 0x41 222

lTF_E_lNVALlD_TRAN SACTlON_YES 0x42222

18

It is not possible to map a System Exception’s minor code and Repositoryld into the

HRESULT. Therefore, OLE Error Objects may be used to convey these data. Writing

the exception information to an OLE Error Object is optional. However, if the Error

Object is used for this purpose, it must be done according to the following

specifications.

' The COM View must implement the standard COM interface lSupportErrorlnfo

such that the View can respond affirmatively to an inquiry from the client as to

whether Error Objects are supported by the View Interface.

' The COM View must call SetErrorlnfo with a NULL value for the lErrorlnfo

pointer parameter when the mapped CORBA operation is completed without an

exception being raised. Calling SetErrorInfo in this fashion assures that the

Error Object on that thread is thoroughly destroyed.

CORBA. V2.6.‘ CORBA to COM Data Tjlpe Mapping

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 977 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 978 of 1442

18

18-16

The properties of the OLE Error Object must be set according to Table 18-4.

Table 18-4 Error Object Usage for CORBA System Exceptions

bstrSource <interface name>.<operation narne>

where the interface and operation names are those of the

CORBA interface that this Automation View is representing.

 bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<rr1inor code>][<completion status>]

where the <exception repository id> and <minor code> are

those of the CORBA system exception. <comp1etion status>

is “YES,” “NO,” or “MAYBE” based upon the value of the

system exception’s CORBA completion status. Spaces and

square brackets are literals and must be included in the string.

bstrl-lelpFile Unspecified

dwl-lelpContext Unspecified

GUID The llD of the COM View Interface

A COM View supporting error objects would have code, which approximates the

following C++ example. i

SetErrorInfo(OL,NULL); // Initialize the thread-local error

object
trY

{ A .
// Call the CORBA operation

}
catch(...)

{

CreateErrorInfo(&pICreateErrorIn£o);
pICreateErrorInfo—>SetSource(...);

pICreateErrorInfo->SetDescription(...);
pICreateErrorInfo->SetGUID(...);
pICreateErrorInfo

->QueryInterface(IID_IErrorIn£o,&pIErrorInfo);
pICreateErrorIn£o->SetErrorIn£o(OL,pIErrorInfo);

pIErrorIn£o—>Re1ease();

pICreateErrorInfo—>Re1ease();

}

A client to a COM View would access the OLE Error Object with code approximating

the following.

Common Object Request Broker Architecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 978 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 979 of 1442

I8

December 2001

// After obtaining a pointer to an interface on
// the COM View, the

// client does the following one time

pIMyMappedInterface - >Que17Interface (I ID_ISupportErrorInfo,
&pISupportErrorInfo) ;

hr = pISupportErrorInfo
->InterfaceSupportsError-

Info(IID_MyMappedInterface);
BOOL bSupportsErrorInfo = (hr == NOERROR ? TRUE : FALSE):

// Call to the COM operation...

HRESULT hroperation = pIMyMappedInterface->...

if (bSupportsErrorInfo)

{
HRESULT hr = GetErrorInfo(O,&pIErrorInfo);

// S_FALSE means that error data is not available,
NO___ERROR

// means it is

if (hr == NO_ERROR)

{
pIErrorInfo->GetSource(...);

// Has repository id & minor code. hroperation
(above)

// has the completion status encoded into it.

pIErrorInfo->GetDescription(..-l7

}

}

Mappingfor User Exception Types

User exceptions are defined by users in OMG ml. and used by the methods in an

object server to report operation-specific errors. The definition of a User Exception is
identified in an OMG lDL file with the keyword exception. The body of a User

Exception is described using the syntax for describing a structure in OMG IDL.

When CORBA User Exceptions are mapped into COM, a structure is used to describe

various information about the exception — hereafter called an Exception suucture. The

structure contains members, which indicate the type of the CORBA exception, the

identifier of the exception definition in a CORBA lnterface Repository, and interface

pointers to User Exceptions. If an interface raises a user exception, a structure is
constructed whose name is the interface name [fully scoped] followed by “Exceptions.”

For example, if an operation in MyModule: :MyInterface raises a user

exception, then there will be a structure created named

MyModu1e_MyInterfaceExceptions.

A template illustrating this naming convention is as follows.

CORBA. v2.6: CORBA to COM Data Ulpe Mapping l8-17

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 979 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 980 of 1442

I8

// Microsoft IDL and ODL

typedef enum { NO_EXCEP'I‘ION, usER_Exc2p1'IoN)
Exceptiontrype; '

typedef struot

{
ExceptionType type;
LPTSTR repositoryld;

I<Modu1eName_InterfaceName>Us erfixception
*piUserException;

} <Modu1eName_InterfaceName>Exoeptions7

The Exceptions structure is specified as an output parameter, which appears as the last

parameter of any operation mapped from OMG lDL to Microsoft lDL, which raises a

User Exception. The Exceptions structure is always passed by indirect reference.
Because of the memory management rules of COM, passing the Exceptions structure

as an output parameter by indirect reference allows the parameter to be treated as

optional by the calleel. The following example illustrates this point.

// Microsoft IDL
interface IBANKAccount

{
HRESULT Withdraw([in] float fl-mount, .

[out] float pfNewBa1a.nce,

[out] BANk_AcoountExceptions
** plzxception);

};

The caller can indicate that no exception information should be returned, if an

exception occurs, by specifying NULL as the value for the Exceptions parameter of the

operation. lf the caller expects to receive exception information, it must pass the

address of a pointer to the memory in which the exception information is to be placed.

COM’s memory management rules state that it is the responsibility of the caller to

release this memory when it is no longer required.

If the caller provides a non-NULL value for the Exceptions parameter and the callee is

to return exception information, the callee is responsible for allocating any memory

used to hold the exception information being returned. lf no exception is to be
returned, the callee need do nothing with the parameter value.

If a CORBA exception is not raised, then S__Ol(must be returned as the value of the

HRESULT to the callee, indicating the operation succeeded. The value of the
l-{RESULT returned to the callee when a CORBA exception has been raised depends

upon the type of exception being raised and whether an Exception structure was

specified by the caller.

1. Vendors that map the MIDL defmition directly to OH should map the exception struct
parameter as defaulting to a NULL pointer.

18-] 8 Common Object Request Brrflcer/trcliitecture (CORBA). v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 980 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 981 of 1442

I8

The following OMG IDL statements show the definition of the format used to

represent User Exceptions.

II OMG IDL

module BANK

{

eirception |nsufFunds { float balance };
exception lnva|idAmount { float amount};

interface Account

{

exception NotAuthorized { };
float Deposit(in float Amount)

raises(|nva|idAmount);

float Withdraw(in float Amount)
raises(|nvalidAmount, NotAuthorized);

};

}:

and map to the following statements in Microsoft lDL and ODL.

// Microsoft IDL and ODL

struct Bank_Insu£Funds

{
float balance;

};

s truct Bank_Inva1idA.mount

{
float amount;

};

s truct BANK_Account_NotZ-mthorized

{

};

interface IBANK_AccountUserfixceptions : Iflnknown

{

HRESULT _get_InsufFunds([out] BANK_InsufFunds
* exceptionnody);

HRESULT _get_Inva1idAmount([out] BANK_Inva1idAmount
* exceptionfiody);

KRESULT _get_NotAuthorized([out]
BANK_Account_NotAuthorized

* exceptionnody);

typedef struct

{

December 2001 CORBA. v2.6: CORBA to COM Data Type Mapping 18-19

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 981 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 982 of 1442

18

18-20

ExceptionType type;
LPTSTR repositoryld;

IBANK_AccountUserlixceptions * piUserException;

} BANK_AccountExceptions;

User exceptions are mapped to a COM interface and a structure that describes the body
of information to be returned for the User Exception. A COM interface is defined for

each CORBA interface containing an operation that raises a User Exception. The name

of the interface defined for accessing User Exception information is constructed from

the fully scoped name of the CORBA interface on which the exception is raised. A
structure is defined for each User Exception, which contains the body of information to

be returned as part of that exception. The name of the structure follows the naming
conventions used to map CORBA structure definitions.

Each User Exception that can be raised by an operation defined for a CORBA interface

is mapped into an operation on the Exception interface. The name of the operation is

constructed by prefixing the name of the exception with the string “_get_”. Each

accessor operation defined takes one output parameter in which to return the body of
information defined for the User Exception. The data type of the output parameter is a

structure that is defined for the exception. The operation is defined to return an
HRESULT value.

If a CORBA User Exception is to be raised, the value of the HRESULT returned to the
caller is E_FAlL.

If the caller specified a non-NULL value for the Exceptions structure parameter, the-
callee must allocate the memory to hold the exception information and fill in the

Exceptions structure as in Table 18-5.

Table 18-5 User Exceptions Structure

type lndicates the type of CORBA exception that is being raised.

Must be USER_EXCEPTlON.

repositoryld lndicates the repository identifier for the exception
definition.

piUserException Points to an interface with which to obtain information

about the User Exception raised.

When data conversion errors occur while mapping the data types between object

models (during a call from a COM client to a CORBA server), an HRESULT with the
code E_DATA_CONVERSlON and the facility value FAClLlTY_NULL is returned to
the client.

Mapping User Exceptions: A Special Case

lfa CORBA operation raises only one (COM_ERROR or CCM_ERROREX)
user exception (defined under Section 183.102, “Mapping for COM Errors," on

page 18-44), then the mapped COM operation should not have the additional parameter

Common Object Request BmkerArchitecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 982 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 983 of 1442

I8

for exceptions. This proviso enables a CORBA implementation of a preexisting COM

interface to be mapped back to COM without altering the COM operation’s original
signature.

COM_ERROR (and COM_ERROREX) is defined as part of the CORBA to

COM mapping. However, this special rule in effect means that a COM_ERROR
raises clause can be added to an operation specifically to indicate that the operation

was originally defined as a COM operation.

18. 2. 10. 3 Mappingfor Nested Types

OMG IDL and Microsoft MIDL/ODL do not agree on the scoping level of types

declared within interfaces. Microsoft, for example, considers all types in a MIDL or

ODL file to be declared at global scope. OMG IDL considers a type to be scoped

within its enclosing module or interface. This means that to prevent accidental name -

collisions, types declared within OMG IDL modules and OMG IDL interfaces must be

fully qualified in Microsoft lDL or ODL.

The OMG IDL construct:

Module BANK{

interface ATM {

enum type {CHECKS, CASH};
Struct DepositRecord {

string account;
float amount;

type kind;

l;

void deposit (in DepositRecord val);

};

Must be mapped in Microsoft MlDL as:

[uuid(.--). object]

interface IBANK ATM : Iunknown {
typedef [V1 enum] enum

{BANK ATM CHECKS,

BANK ATM CASH} BANK ATM type;
typedef struct {

LPSTR account;

BANK ATM type kind;

} BANK ATM DepositRecord;
HRESULT deposit (in BANK ATM DepositRecord *va1);

};

and to Microsoft ODL as:

[uuid (. , .) 1

library BANK {

[uuid(. . .) , object]

December 2001 CORBA, v2.6: CORBA to COM Data zype Mapping 18-21

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex.1102,p.983of1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 984 of 1442

I8

18-22

interface IBANK ATM : IUnknown {

typedef enum { BANK ATM cascxs,
{BANK ATM case} BANK ATM type;

typedef struct {
LPSTR struct;

float amount;

BANK ATM type kind;

} BANK ATM Depositkecord;
HRESULT deposit (in BANK ATM DepositRecord *val);

};

18.2. 10. 4 Mappingfor Operations

Operations defined for an interface are defined in OMG lDL within interface
definitions. The definition of an operation constitutes the operations signature. An

operation signature consists of the operation’s name, parameters (if any), and return

value. Optionally, OMG lDL allows the operation definition to indicate exceptions that

can be raised, and the context to be passed to the object as implicit arguments, both of

which are considered part of the operation.

OMG IDL parameter directional attributes in, out, inout map directly to Microsoft

IDL and ODL parameter direction attributes [in] , [out] , [in, out] . Operation

request parameters are represented as the values of in or inout parameters in OMG

lDL, and operation response parameters are represented as the values of inout oryout

parameters. An operation return result can be any type that can be defined in OMG
IDL, or void if a result is not returned.

The OMG lDL sample (shown below) illustrates the definition of two operations on the

Bank interface.VThe names of the operations are bolded to make them stand out.

Operations can return various types of data as results, including nothing at all. The

operation Bank::Transfer is an example of an operation that does not return a value.

The operation Bank::0pen Account returns an object as a result of the operation.

/I OMG IDL

#pragma |D::BANK::Bank”|DL:BANKIBank:1,2"
interface Bank

{

Account 0penAccount(in float StartingBalance,
in AccountTypes Account(Type);

void Transfer(in Account Account1,
in Account Account2,

in float Account)

raises(|nSufFunds);

l;

The operations defined in the preceding OMG IDL code’ are mapped to the following
lines of Microsoft IDL code:

// Microsoft IDL

[object, uuid(682d22£b-78ac-0000-0c03-4d00OOO00000).

pointer_defa.u1t(unique)]

Common Object Request Broker A rchitecture (CORE/1). v2. 6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 984 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 985 of 1442

December 2001

18

interface IBANK Teller: Iunknown

{
HRESULT OpenAccount(

[in] float Startingsalance,

[in] BANK_AccountTypes AccountType,

[out] IBANK_Account ** ppiNewAccount);
HRESULT Transfer(

[in] IBANK_Account * Accountl,

[in] IBANK_Account * Account2,
[in] float Amount,

[out] BANK_Te11erExceptions
** ppException);

};

and to the following statements in Microsoft ODL

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d00OO000O0O) odl 1

interface IBANK__Te11er: Iunknown

{
HRESULT OpenAccount(

[in] float Startingfialance,

[in] BANK_AccountTypes AccountType,

[out, retvall IBANK_Account
** ppiNewAccount);

HRESULT Transfer(

[in] IBANK_Account * Accountl,

[in] IBANK_Account * Accountz,
[in] float Amount,

[out]BANK_Te11erExceptions
** ppException);

};

The ordering and names of parameters in the Microsoft IDL and ODL mapping is

identical to the order in which parameters are specified in the text of the operation

definition in OMG lDL. The COM mapping of all CORBA operations must obey the

COM memory ownership and allocation rules specified.

lt is important to note that the signature of the operation as written in OMG lDL is

different from the signature of the same operation in Microsoft lDL or ODL. In

particular, the result value returned by an operation defined in OMG lDL will be

mapped as an output argument at the end of the signature when specified in Microsoft

lDL or ODL. This allows the signature of the operation to be natural to the COM

developer. When a result value is mapped as an output argument, the result value

becomes an l-IRESULT. Without an HRESULT return value, there would be no way for

COM to signal errors to clients when the client and server are not collocated. The

value ofthc HRESULT is determined based on a mapping of the CORBA exception, if
any, that was raised.

CORBA. V2.6: CORBA to COM Data Type Mapping 18-23

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 985 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 986 of 1442

I8

It is also important to note that if any user’s exception information is defined for the

operation, an additional parameter is added as the last argument of the operation

signature. The user exception parameter follows the return value parameter, if both

exist. See Section l8.2.lO.2, “Mapping for exception types,” on page 18-11 for further
details.

18.2. 10.5 Mappingfor Oneway Operations

OMG lDL allows an operation’s definition to indicate the invocation semantics the

communication service must provide for an operation. This indication is done through

the use of an operation attribute. Currently, the only operation attribute defined by
CORBA is the oneway attribute.

The oneway attribute specifies that the invocation semantics are best-effort, which does

not guarantee delivery of the request. Best-effort implies that the operation will be

invoked, at most, once. Along with the invocation semantics, the use of the oneway

operation attribute restricts an operation from having output parameters, must have no

result value returned, and cannot raise any user-defined exceptions.

It may seem that the Microsoft lDL maybe operation attribute provides a closer
match since the caller of an operation does not expect any response. However,

Microsoft RPC maybe does not guarantee at most once semantics, and therefore is not

sufficient. Because of this, the mapping of an operation defined in OMG IDL with the

oneway operation attribute maps the same as an operation that has no output
arguments.

18. 2. 10. 6 Mappingfor Attributes

OMG IDL allows the definition of attributes for an interface. Attributes are essentially

a short-hand for a pair of accessor functions to an object’s data; one to retrieve the

value and possibly one to set the value of the attribute. The definition of an attribute
must be contained within an interface definition and can indicate whether the value of

the attribute can be modified or just read. In the example OMG IDL next, the attribute

Profile is defined for the Customer interface and the read-only attribute is Balance-

defined for the Account interface. The keyword attribute is used by OMG IDL to

indicate that the statement is defining an attribute of an interface.

The definition of attributes in OMG lDl. are restricted from raising any user-defined

exceptions. Because of this, the implementation of an attribute’s accessor function is

limited to only raising system exceptions. The value of the HRESULT is determined

based on a mapping of the CORBA exception, if any, that was raised.

ll OMG IDL

struct CustomerData

{
Customerld ld;

string Name;
string SurName;

};

18-24 Common Object Request I3r0ker/trchitecture (CORBA), v2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 986 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 987 of 1442

18

December 2001

#pragma |D::BANK::Account "|DL:BANKlAccount:3.1"

interface Account

{

readonly attribute float Balance;

float Deposit(in float amount) raises(lnvalidAmount);

float Withdrawal(in float amount) raises(lnsufFunds, lnvalidAmount);
float Close();

};

#pragma ID::BANK::Customer "IDL:BANKlCustomer:1.2"

interface Customer

{
attribute CustomerData Profile;

};

When mapping attribute statements in OMG IDL to Microsoft IDL or ODL, the name

of the get accessor is the same as the name of the attribute prefixed with _get_ in

Microsoft IDL and contains the operation attribute [propget] in Microsoft ODL.

The name of the put accessor is the same as the name of the attribute prefixed with

put in Microsoft IDL and contains the operation attribute [propput] in Microsoft
ODL.

Mappingfor Read- Write Attributes

ln OMG IDL, attributes are defined as supporting a pair of accessor functions: one to
retrieve the value and one to set the value of the attribute, unless the keyword readonly

precedes the attribute keyword. In the preceding example, the attribute Profile is

mapped to the following statements in Microsoft IDL.

// Microsoft IDL

[object, uuid(682d22fb-78ac-0O0O—0c03—4dO000000000),

pointer_defau1t:(unique)]
interface Icustomer : IUnknown

{

HRESULT _get_Profi1e([out] Customernata * Profile);
HRESULT _put_Profi1e([in] Customernata * Profile);

};

Profile is mapped to these statements in Microsoft ODL.

// Microsoft ODL
[uuid(682d22fb-78ac-0000-OCO3-4dO0O0O00000) 1

interface IBANK_Customer : IUnknown

{
[propget] HRESULT Profi1e(

[out] BANK_CustomerData * val);
[propput] HRESULT Profile(

[in] BANK_CustomerData * val);
};

CORBA. V2.6: CORBA to COM Data Type Mapping 18-25

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 987 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 988 of 1442

18

l8-26

Note — The attribute is actually mapped as two different operations in both Microsoft

IDL and ODL. The IBANK_Customer: :get_profi1e operation (in Microsoft
IDL) and the [propge t] Profile operation (in Microsoft ODL) are used to retrieve

the value of the attribute. The IBANK_Customer: :put_profile operation is
used to set the value of the attribute.

Mappingfor Read-Only A (tributes

ln OMG IDL, an attribute preceded by the keyword readonly is interpreted as only

supporting a single accessor function used to retrieve the value of the attribute. 1n the

previous example, the mapping of the attribute Balance is mapped to the following
statements in Microsoft IDL.

// Microsoft IDL
[object. uuid(682d22fb-78ac-0000-0c03-4dO000000000) 1
interface IAccount: IUnknown

{

HRESULT __get_Ba1ance([out] float Balance);

)7

and the following statements in Microsoft ODL.

// Microsoft OD-L - g _
[uuid(682d22fb-78ac-0000-0:203-4d000OO000O0)]
interface IAc<:ount: IUnknow'n

{
[propgetl HRESULT Ba1ance([out] float *va1);
};

Note that only a single operation was defined since the attribute was defined to be

read-only.

18.2.10. 7 indirection Levelsfor Operation Parameters

' For integral types (such as long, enum, char,...) these are passed by value as [in]

parameters and by reference as out parameters. ‘

° string/wstring parameters are passed as LPSTR/LPWSTR as an in parameter and

LPSTR*/LPWSTR* as an out parameter.

composite types (such as unions, structures, exceptions) are passed by reference for

both [in] and [out] parameters.

optional parameters are passed using double indirection (e.g., lntfException ‘"‘ val).

18.2.11 Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the

models for inheritance and multiple interfaces are different.

Common Object Request Broker Architecture (CORBA), v2.6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 988 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 989 of 1442

18

December 2001

In CORBA, an interface can singly or multiply inherit from other interfaces. In

language bindings supporting typed object references, widening and narrowing support

convert object references as allowed by the true type of that object.

However, there is no built-in mechanism in CORBA to access interfaces without an

inheritance relationship. The run-time interfaces of an object, as defined in CORBA

(for example, CORBA: :Obj ect: :is_a, CORBA: :Obj ect: :get_interfa.ce)

use a description of the object’s principle type, which is defined in OMG IDL. CORBA

allows many ways in which implementations of interfaces can be structured, including

using implementation inheritance.

ln COM V2.0, interfaces can have single inheritance. However, as opposed to CORBA,

there is a standard mechanism by which an object can have multiple interfaces

(without an inheritance relationship between those interfaces) and by which clients can

query for these at run-time. (lt defines no common way to determine if two interface
references refer to the same object, or to enumerate all the interfaces supported by an

entity.)

An observation about COM is that some COM objects have a required minimum set of

interfaces, which they must support. This type of statically defined interface relation is

conceptually equivalent to multiple inheritance; however, discovering this relationship

is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation. C++

style implementation inheritance is not possible.

The mapping for CORBA interfaces into COM is more complicated than COM.
interfaces into CORBA, since CORBA interfaces might be multiply-inherited and

COM does not support multiple interface inheritance.

If a CORBA interface is singly inherited, this maps directly to single inheritance of
interfaces in COM. The base interface for all CORBA inheritance trees is lUnknown.

Note that the Object interface is not surfaced in COM. For single inheritance, although

the most derived interface can be queried using Iunknown: :QueryInterface,

each individual interface in the inheritance hierarchy can also be queried separately.

The following rules apply to mapping CORBA to COM inheritance.

' Each OMG IDL interface that does not have a parent is mapped to an MIDL

interface deriving from lUnknown.

' Each OMG lDL interface that inherits from a single parent interface is mapped to

an MlDL interface that derives from the mapping for the parent interface.

° Each OMG JDL interface that inherits from multiple parent interfaces is mapped to

an MIDL interface deriving from lUnknown.

' For each CORBA interface, the mapping for operations precede the mapping for
attributes.

' Operations are sorted in ascending order based upon the ISO Latin-l encoding

values of the respective operation names.

CORBA. V2.6: CORBA 1!) COM Data Type Mapping 18-27

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 989 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 990 of 1442

18

' The resulting mapping of attributes within an interface are ordered based upon the
attribute name. The attributes are similarly sorted in ascending order based upon the

ISO-Latin-l encoding values of the respective attribute names. If the attribute is not

readonly, the get_<attribute name> method immediately precedes the set_<attribute
name> method.

CORBA Interface Inheritance COM Interface Inheritance

@@
++
@@@@@

ééééé

Figure 18-1 CORBA Interface Inheritance to COM Interface Inheritance Mapping

IIOMG IDL

ll

interface A {
void opA();

attribute long val;

}:

interface B : A{
void opB();

};

interface C : A{

void opC();

};

interface D: B, C (

' void opD();

h

interface E {

void opE();

h

interface F : D, E{

void opF();

}//Microsoft MIDL
//

Iobject. uuid(b97267fa-7855-e044—71fb-12fa8a4c516f)I

interface IA: IUnknown{
HRESULT opA() .-

18-23 Common Object Request Br0kerArchilecture (CORBA), v2.6 December 200]

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 990 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 991 of 1442

V _ ,.£.\,, 19p'g,7,,."_ul{u,;'.- ‘ “yr M W W: W. »!_»,~vgF1:y'V' 1 W W

K C?‘ ‘ t‘ ‘ xi‘ . ‘Q‘ J, 1»
,.

'4!

"':i
(A.

, f __
‘ . " ‘ ' * ‘T

J‘

I

*1’

‘1

4

Ivzw‘
J

«

. ,.

»
4\

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, ‘. ., V j
Ex. 1102, 991 of 1442 ‘ . , a ' .‘y,w1

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 992 of 1442

I8

December 2001

V } ;

HRESULT get_va1([out] long * val);

HRESULT set_va1([in] long val) ,-

[object, uuid(fa245-2c3—88ed-1c0d—f4d2-fcf91ac4c8c6)1
interface IB: IA {

HRESULT opB();

}:
[object,uuid(dc3a6c32-f5a8—d1f8—f8e2-64566f815ed7)]

interface IC: IA {
HRESULT opc();

};
(object, uuid(b718adec-73e0—4ce3—fc72-0dd11a06a308)1

interface ID: Itlnknown {
HRESULT opD();

};
Eobject, uuid(d2cb7bbc—0d23-f34c-7255-d9240'76e902f)I

interface IE: IUnknown{
I-IRESULT open;

}I '
iobject. uuid(de6ee2b5—d856-295a-fd4d—5e363lfbfb93)1

interface IF: Iunknown {
HRESULT opF() ;

};

Note that the co - class statement in Microsoft ODL allows the definition of an

object class that allows Querylnterface between a set of interfaces.

Also note that when the interface defined in OMG lDL is mapped to its corresponding

statements in Microsoft lDL, the name of the interface is proceeded by the letter 1 to

indicate that the name represents the name of an interface. This also makes the

mapping more natural to the COM programmer, since the naming conventions used

follow those suggested by Microsoft.

18.2.12 Mappingfor Pseudo-Objects

18.2.I2.1

CORBA defines a number of different kinds of pseudo-objects. Pseudo-objects differ

from other objects in that they cannot be invoked with the Dynamic Invocation

lnterface (D11) and do not have object references. Most pseudo-objects cannot be used

as general arguments. Currently, only the TypeCode and Principal pseudo-objects can

be used as general arguments to a request in CORBA.

The CORBA Namedvalue and NVList are not mapped into COM as arguments to

COM operation signatures.

Mappingfor TypeC0de pseudo-object

CORBA TypcCodes represent the types of arguments or attributes and are typically

retrieved from the interface repository. The mapping of the CORBA TypeCode

interface follows the same rules as mapping any other CORBA interface to COM. The

result of this mapping is as follows.

CORBA. v2.6: CORBA to COM Data Tjvpe Mapping 18-29

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 992 of 1442

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex. 1102, p. 993 of 1442

I8

// Microsoft IDL or ODL

typedef struct { } TypeCodeBounds;

typedef struct { } '1‘ypeCodeBadKind;

[uuid(9556EA20—3889-llcf-9586-AA0004004A09)I object,
pointer_defau1t(unique)]

interface ICORBA_TypeCodeUserExceptione : Iunknown
{

HRESULT _get_Bounds([out] TypeCodeBounds *pExceptionBody);
HRESULT _get_BadKind([out] TypeCodeBadKind * pExceptionBody);

};

typedef struct

{
ExceptionType type;
LPTSTR repositoryld;

long minorcode;
Completionstatus completionstatus;

ICORBA_SystemException * psystemsxception;
ICORBA_TypeCodeExceptions * puserkxception;

} CORBATypeCodeExceptions;

typedef LPTSTR Repositoryld;
typedef LPTSTR Identifier;

typedef [v1_enum]
enum tagTCKind { tk_nu11 = 0, tk_yoid, tk_short,

tk_1ong, tk_uehort, tk_u1ong,
tk_f1oat, tk_doub1e, tk_octet,
tk_any, tk_TypeCode,
tk_principa1, tk_objreE,
tk_struct, tk_union, tk_enum,
tk_string, tk_sequence,
tk_array, tk_a1ias, tk_except

) CORBA_'1‘CI(ind;

[uuid(9556EA2l-3889-llcf-9586-AAO004004A09), object,

pointer_defau1t(unique)]

interface ICORBA_TypeCode : IUnknown
‘ {

HRESULT equal(

[in] ICoRBA_TypeCode * piTc,
[out] boolean * pbRetVa1,

[out] COREA_TypeCodeExceptions‘* ppuserkxceptions);
HRESULT kind(

[out] TCKind * pRetVa1,

[out] CoRBA_TypeCodeExceptions ** ppueersxceptions);
HRESULT id(

[out] RepoeitoryId * pszketval,

[out] CORBA_TypeCodeExceptions *' ppueerfixceptione);
HRESULT name(

[out] Identifier ' pszRetVa1,

l8-30 Common Object Request BmkerArchitecture (CORBA). V2.6 December 2001

IPR2016-00726 -ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR,
Ex.1102,p.993of1442

