
Interval Routing

J. VAN LEEUWEN AND R. B. TANt
Department of Computer Science, University of Utrecht, P.O. Box 80.012, 3508 T A Utrecht, the Netherlands

An interval routing scheme is a general method of routing messages in a distributive network using compact routing
tables. In this paper, concepts related to optimal interval routing schemes are introduced and explored. Several
problems concerning the insertion of nodes and joining of separate networks by a new link to form larger ones are
considered. Various applications to distributed computing are given. In particular, leader-finding and generation of
spanning trees in arbitrary networks are shown to require at most O(N +E) messages when a suitable interval routing
scheme is available.

Received November 1985

l. INTRODUCTION

In a computer network, a routing method is required in
order that the nodes can communicate messages to each
other. Normally this is provided by a routing table of size
O(N) at each node, where N is the number of nodes in the
network. The table shows the link(s) to be traversed for
each destination node. Santoro & Khatiba have shown
that routing can be achieved without the need for any
routing tables at all, provided the nodes of the network
are suitably labelled and the routing is restricted to a
spanning tree. The technique has subsequently been
extended by van Leeuwen and Tan5 to obtain a method
that utilizes every link of the network but requires tables
of size O(d), where dis the degree of a node.

In this paper we consider the intricate question of
generating optimum or near-optimum routing schemes
of this kind, and the impact of utilizing any such scheme
on the message complexity of common distributed
network problems.

Basically the idea presented in Ref. 5 is to label the
nodes and the edges of the graph (network) by labels from
a linearly ordered set, say {i0 , i1, ... , iN~ 1 }, in a suitable
manner. The labels i0 to iN~I are cyclically ordered.

An interval labelling scheme (ILS) for a connected
N-node network G is a scheme for labelling the nodes and
links such that (i) all nodes get different labels and (ii) at
every node each link receives a distinct label. The labels
assigned to the links at node i are stored in a table at node
i. To send a message m from node i to node j we use a
'recursive' routine SEND (i, j, m) where at each
intermediate node k, starting with node i, node k will look
up its table and find link r:x8 such that the interval [r:x8 ,

r:xs+ 1) contains}. Node k then sends message m down the
link labelled r:x8 , and the whole process is repeated until
message m does arrive at node j, if ever. The routine can
be described simply as follows:
procedure SEND (i,j, m);
begin

if i = j then process m
else
begin
.find label r:x8 in the labelling at node i such that

* This work was carried out while the second author visited the
University of Utrecht, supported by a grant of the Netherlands
Organization for the Advancement of Pure Research (ZWO).

t Address: Department of Computer Science, University of Sciences
and Arts of Oklahoma, Chickasha, OK 73018, U.S.A.

end.

r:x8 ~ j < 01:8 +1; i: = the neighbour of i reached over
link r:x8 ; SEND (i,j, m)
end

One cannot just pick an arbitrary scheme and hope that
it will route a message correctly, as the message may never
reach its destination due to a cycle in the route. An ILS
is valid if all messages sent from any source node arrive
at their destinations. Most ILS are in fact not valid. In
Ref. 5 it was shown that there is an O(N2) algorithm to
determine whether an ILS is valid or not. The main result
of Ref. 5 is the following.

Theorem 1.1

For every network G there exists a valid interval labelling
scheme.

In this paper we study various techniques for
generating valid ILS that are optimum, or othe~~ise
sufficiently flexible to allow for, for example, the additiOn
of nodes or the joining of networks in an easy manner. We
also study the effect of having a valid ILS available in a
network on the design and the complexity of distributed
control problems.

We briefly digress and describe the particular ILS th~t
was used in Ref. 5 to prove Theorem I. I. The scheme IS

generated by an algorithm that traverses G and assigns
labels oc(u) to the nodes u that are visited. The algorithm
is based on the technique of depth-first search,4 and
works as follows.

Start at an arbitrary node and number it 0, pick an
outgoing link and label it I (by which we mean that ~he
corresponding exit at node 0 is labelled I), follow the hnk
to the next node and number it I. Continue numbering
nodes and links consecutively. If a link is encountered
that reaches back to a node w that has been numbered
previously (a link of this type is call~d a. frond), it is
labelled by oc(w) instead and another hnk IS selected. If
a node is reached that admits no forward link any more
(a node of this type is either a leaf or otherwise 'fully.'
explored) and i is the largest node-number assig~ed until
this moment, we backtrack and label every hnk over
which we backtrack by (i + I) mod N until we can proceed
forward on another link again. There is a slight twist to
the labelling of links in this phase in case one backtracks
from a node v that has a frond that reaches back to 0.
The frond will have label 0 at v, and just
when i happens to be N- I the same label would be

298 THE COMPUTER JOURNAL, VOL. 30, NO.4, 1987

IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1031, p. 1 of 10

f

Find authenticated court documents without watermarks at docketalarm.com.

dkumar
Typewritten Text
Ex. 1031

dkumar
Typewritten Text

dkumar
Typewritten Text

https://www.docketalarm.com/

INTERVAL ROUTING

assigned to the link from v to (say) u over which one
backtracks. The conflict is resolved by assigning the label
a(u) to the link instead. In order to do this right, the
algorithm marks a node as soon as it finds that it has a
frond to 0. (It should be intuitive now that the ILS so
constructed does its routing over the depth-first search
spanning tree, with additional shortcuts over the fronds.)
The following procedure makes the algorithm precise.
Comments contain additional explanation.

{N is the number of nodes, and i a global variable
ranging over 0 .. N- 1 which denotes the next node
number or edge-label that is to be assigned. The variable
i is initially set to 0. For convenience we use a boolean
array MARK to keep track of the node(s) that have a frond
back to 0. MARK is initially set to false. The procedure
starts out at an arbitrary node x of the network, and is
called as LABEL (x, x).}
procedure LABEL (u, v);
{u and v are nodes, u is the father of v in the depth-first
search tree being constructed, and vis being visited.)

begin
{assign number i to v}
a(v): = i;
i: = (i+l) mod N;
for each node w on the adjacency list of v do

begin
if w is not numbered then

begin
{proceed forward and add the link v, w to the
depth-first search spanning tree}
label/ink v, w at v by i;
LABEL (v, w)

end
else

begin
{link v, w is a frond unless w = u. Mark v if
the frond reaches back to 0}
if w i= u then

begin
label/ink v, w at v by a(w);

end
end

end;

if a(w) = 0 then MARK[v]: =true

{backtrack over the link v, u unless v = x}
if vi= x then

begin
if i = 0 mod N & MARK[v] = true then

label/ink v, u at v by a(u)
else

label/ink v, u at v by i
end

{end of the procedure}
end;
We shall refer to the ILS obtained by applying the
procedure LABEL as the DFS scheme, because it is
generated during a depth-first search. Recall that
depth-first search visits the entire network, that the links
over which the algorithm moves 'forward' (and back
tracks again at a later stage) together form a rooted
tree spanning the network, and that fronds always point
from a node to an ancestor of the node in this tree. 4 In
Ref. 5 it was proved that the DFS scheme is indeed a valid
scheme for the purposes of routing.

We note that the DFS scheme is in fact valid when the

labels are chosen from any linearly ordered set {i0 , i 1 , ... ,

iN_1}. Any general ILS will have an equivalent form using
labels from {0, ... , N -1} by the natural correspondence
between {i0 , ••. , iN_1} and {0, ... , N-1}. An ILS
is called normal if the set of labels is indeed the set
{0, ... , N-1}.

In this paper we further explore the theory of general
interval labelling schemes and its various implications for
network problems, and apply it to solve some common
distributed problems. In Section 2 we look at optimum
schemes for some common networks such as rings and
grids. Various concepts of 'near optimality' are
introduced. In Section 3 several insertion and joining
techniques are given to form a larger network that still
preserve some desirable properties of a given ILS. Section
4 contains applications of ILS to solve for, for example,
the leader-finding problem and the spanning-tree prob
lem in substantially fewer message-exchanges than are
required in general networks such as rings without the
effect of a valid ILS. The results are intriguing from the
point of view of distributed algorithms, as they show that
implicit information can severely affect (lower) the
message complexity of distributed problems. Finally
some open problems are stated in Section 5.

2. OPTIMUM SCHEMES AND RELATED
CONCEPTS

Ideally we would like an ILS not only to be valid but
also able to deliver messages over the shortest possible
routes. We call such a scheme optimum. The DFS scheme
as discussed in Section 1 is a valid scheme, but it is far
from optimum. For instance, a DFS scheme will not label
a ring with more than four nodes optimally.

In the following, we list some common types of
network and present optimum schemes for them. For the
sake of simplicity we assume all ILS to be normal
throughout this section.

(i) Trees. A DFS scheme gives an optimum scheme
here. Santoro & Khatib3 use a similar depth-first search
of the tree, but with a different ordering of labels.

(ii) Complete graphs. A DFS scheme again suffices
here, since all links are either direct links or fronds and
will deliver messages in one hop.

(iii) Rings. An optimum scheme is given in van
Leeuwen & Tan.5 Basically the idea there is to orient the
ring in one direction and label the nodes consecutively
from 0 toN- 1. Then for each node i, label the left link by
(i+ 1) mode Nand the right link by (fN/2l+i) mod N.

(iv) Complete bipartite graphs. Let the set of nodes of
the graph be separated into two parts, A and B. Label the
nodes consecutively from 0 to N- 1 in any order. Label
the links by the node numbers they are connected to. For
instance, if there is a link connecting node i and node j,
label the link at node i by j and that at node j by i. Thus,
by construction, there exists a direct hop from each node
in one partition to all the nodes in the other partition. If
nodes i and j are in the same partition and need to
communicate then, by the circular nature of the interval
order, there must be a link that carries the message to the
opposite partition. From there it only takes one more
hop to reach node j. So only one hop is needed to go
across the partitions and two hops within the same
partition, and this is optimum.

(v) Grids. we consider several grid configurations.

THE COMPUTER JOURNAL, VOL. 30, NO.4, 1987 299

IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1031, p. 2 of 10

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1. VAN LEEUWEN AND R. B. TAN

(va) Grids with no wrap-around. Let G be a rectangular
grid of M rows and N columns. Label the nodes
consecutively by rows from left to right, so that the first
row will be labelled 0 to N- I, the second row N to
2N- I, and so forth. Informally each link in the four
directions (if there is any) will be labelled as follows.
The up link is labelled 0 and the down link is labelled
with the node number of the leftmost element of the next
row. The left link is labelled by the node number of the
leftmost element on the current row and the right link by
the next consecutive element on the right. More precisely,
for each node i, if there exist the appropriate links, label
the up link by 0, the down link by N + N .[if Nj, the left
link by N .[if Nj and the right link by i +I. Note that the
up link for all nodes is 0, all the down links for each
row are identical, and so are the left links for each row.
Thus we have the interval structure as shown in Fig. I,
where r0 is N .[if Nj and (r+ 1)0 = N .[if NJ+N.

0 up

down (r + 1)0 r0 left

i + I right
Figure 1.

We now show that the scheme is optimum by referring
to the interval structure of Fig. 1. Suppose node i needs
to send a message to node}. Assume first that i and} are
on the same row of the grid, i.e. r 0 ~ j < (r + 1)0 . If i < j
then} E [i +I, (r + 1)0) so the message is passed to the right
and kept on passing to the right until node j is reached
because j must belong to one of the successive intervals
[i+2, (r+ 1)0), ••• , [(r+ 1}0 -1, (r+ 1)0). Similarly, ifi > j
then j belongs to interval [r0, i+ 1) and the message is
passed to the left until it arrives at j. If i and j are not on
the same row then jE[O, r0] or }E[(r+i)0, 0) so the
message is passed up or down to the next row respec
tively. After the next row is reached and ifjis on that row,
the previous process is applied and j is reached. If j is not
on that row the message must be passed on to the next
row in the same direction, i.e. once the message is passed
up the link it cannot at any point be passed downward
again and vice versa. This is because each r0 keeps on
decreasing for each row and (r+ 1)0 keeps on increasing
and the intervals [0, r0) and [(r+ 1)0 , 0) are disjoint. Thus
eventually the message will arrive on the row on which
j is located by vertical travels, and from then on by
horizontal hops to node}. The route the message travelled
is not the only shortest one possible, but it is optimum.

(v b) Grids with column-wrap-around. G is a rectangular
grid of M rows and N columns, but each column is
extended so as to be a ring also. The nodes are labelled
consecutively as in case (va). The left and right links for
each node remain identical as in (va). Label the first
column using the optimum scheme for a ring, then copy
the up and down links of the first column to remainder
columns. Precisely, the left link is N .[if Nj, the right link
is i + 1, the down link is (N + N .[if Nj) mod (M. N) and
the up link is (N. [M f21 + N .[if Nj) mod (M. N). The

forbidding appearances of the vertical links are harmless.
They are just straightforward translations of the ring with
M elements. Recall the formulae there are (i + 1) mod M
and (fMf2l+i)modM. Now [ifNj plays the role of i,
and since there are N columns, multiplying both
equations by N yields the desired links. For a message to
reach node j from node i, assuming they are on the same
row, the message will travel by horizontal hops to its
destination as before. If i and} are not on the same row
the message must go round the ring until the correct row
containing} is reached. This can be seen by applying the
proof for optimum ring networks, where i now stands for
the ith row, so that the row containing} is found in the
most optimum way. Then the message is delivered by
horizontal hops.

Unfortunately the same technique does not work for
grids with row and column wrap-around. This is because
we lose the circular ordered effect of the ring interval on
a row. So the question of an optimum scheme for row
and column wrap-around remains open.

One way to salvage the above situation is to introduce
multiple labels on a link.

Figure 2.

Definition

A k-labelled ILS is an ILS where (i) each link may receive
up to k distinct labels and (ii) at every node all the
link-labels must be distinct.

Thus the usual ILS is simply a 1-labelled ILS. We now
show how this concept can be applied.

(vc) Grids with row and column wrap-around. Let G be
a grid of M rows and N columns with each row and
column extended to be a ring. The idea is to label the
nodes as before, then label each column as a ring as in
case (vb), following the first column, and finally to label
each row also as a ring. However, this naive approach
does not give us even a valid scheme. For instance on a
5 x 5 wrap-around grid, the optimum ring on the third
row is as shown in Fig. 2.

It is not possible for node 13 to send a message to node
I 0 via the usual circular route. The message has to go up
and come down again, forming a cycle. This is solved
by labelling link (13, 14) by both 14 and 10. The label
ling scheme is then as follows. Label the nodes
consecutively by rows. Label the up link by
([Mf21. N +lifNj. N)mod (M. N), the down link
by (N+N.[ifNj)mod(M.N), the left link by
([Nf2l+i)modN+N.lifNj and the right link by
(i+ l)modN+N]ifNj. Now, for each row r, r = 0, ... ,
M- I, check each element i, i =1= rN. If the horizontal
links do not contain rN as a label, pick the horizontal
link with the highest label and add label rN to it. We thus
have a two-labelled scheme. Note that the previous two
grids of cases (va) and (vh) all have r. N =[if Nj. N as
their left links, so that we have no such problem. By

300 THE COMPUTER JOURNAL, VOL. 30, NO.4, 1987

IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1031, p. 3 of 10

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

INTERVAL ROUTING

construction, for every row r = 0, ... , M- 1, and for
every node ion that row r, node i has a link-label rN and
also (r + 1)N mod (MN). Furthermore, all the horizontal
link-labels are within this interval. Thus when a message
travels from node i to node}, it first reaches the correct
row r, such that j is on that row. Then it reaches j by
horizontal hops. The scheme is optimum.

We have only given optimum schemes for a few types
of common graphs. In general it is not clear how one
would construct an optimum scheme for an arbitrary
graph, if such a scheme is possible. However, it can be
quite easy to do this for multiple-labelled schemes.

Proposition 2.1

For any graph with N nodes, there exists an (N- 1)
labelled ILS that is optimum.

Proof

Label the nodes somehow from 0 to N- 1. For each node
i, pick a node j E [0, N- I]. Find a path to j that is
optimum, say via link (i, p). Then label link (i, p) by j.
Do this for allj,j of. i. A maximum of N- !labels suffices.

D
Note that the above (N- 1)-labelled ILS is nothing but

the traditional routing table in disguise, with one label
for each node. Thus the multiple-labelled ILS is just a
generalization and simplification of the traditional
routing table. We are trying to achieve the same goal
with fewer labels!

In the following we introduce a few concepts that are
related to optimum schemes, though they are strictly
weaker than optimality. Observe that in a DFS scheme
a node may not necessarily send a message addressed to
its neighbour directly in one hop.

4 3

0

3

0
2 0

Figure 3.

Definition

An ILS is a neighbourly scheme if it is valid and all
messages for a neighbour are delivered directly in one
hop.

An optimum scheme of course is a neighbourly scheme.
The converse is false, as shown by the following example
in Fig. 3. The scheme is neighbourly, but not optimum,
since SEND (0, 4, m) traverses the path 0---> 2---> 3---> 4
instead of the shorter route 0 ---> 1 ---> 4.

Lemma 2.2

The only nodes in a DFS scheme that do not necessarily
deliver messages to neighbours in one hop are those
nodes k that have fronds to nodes i with i of. 0, i < k.

Proof

If j and k are neighbours and link (}, k) is a frond in
the spanning tree of DFS, then by construction link (},
k) is labelled k and link (k, J) is labelled j, so messages
are delivered in one hop. So assume j and k are
neighbours but link(}, k) is not a frond. If}< k then the
label of link (}, k) must be k (by the labelling procedure
of DFS), so messages get there in one hop from j to k.
Thus we only have to consider SEND (k, j, m). If there
are no fronds coming down from k to i where i < j link
(k, j) labelled b is a backtrack edge. Also there must be
a link labelled k + I emanating from k (by the labelling
procedure of DFS). Thus j E [b, k +I), and the message
gets routed to j via link (k,j) labelled b. If there is a frond
coming down from k to i, but i = 0, then by the labelling
procedure of DFS, link (k,J) must be labelled by j, so that
message gets to j in one hop. The remaining case is when
k has a frond coming down to i and no i = 0. Let the
backtrack link be (k, j) with label b. Then}¢ [b, i) since
i < j < b or b = 0, so j ¢: [0, i). Thus the message cannot
come down from k to j via link (k, }). It has to be routed
via one of the fronds, link (k, i). D

We use a multiple-label scheme to salvage the above
situation.

Theorem 2.3

There exists a two-labelled neighbourly scheme for any
arbitrary graph.

Proof

We first do a DFS scheme on the graph G. By Lemma
2.2, the only concern are those nodes k that have fronds
going down to i with i < k but no i = 0. For each such
k and its neighbour j via the backtrack link labelled b,
we double-label link (k, j) by b and j. We thus have a
two-labelled scheme that is neighbourly. To show that
the resulting scheme is valid, we only have to be
concerned with those special k-nodes. Let i be the
maximum frond node in the above situation. Then
normally messages to any node t E [i, k + 1) will travel via
link i. With the introduction of the new label j, with
i <j < k, those messages to tE[j, k+ 1) get transferred
to node j first. So we only have to make sure that any
message from k to IE[}, k+ I) is routed correctly. Now
j "'(t < k, so it is not possible for the message to return
to node k again via link (}, k) labelled k. Furthermore,
since t ?: }, the message will be routed to the subtree of
the DFS spanning tree rooted at}. The message will never
encounter the situation of Lemma 2.2 again on the way
as it will be an upward climb. As the DFS scheme is valid,
the message will eventually reach t. D

Another way to salvage the situation in Lemma 2.2 is
to restrict the way the DFS labelling algorithm proceeds
in generating the spanning tree. We would like the
depth-first search to proceed in an orderly manner,
exploring all the sub-branches as much as possible before
encountering a 'backward' frond.

Definition

A DFS scheme is orderly if, whenever there is a
'backward' frond from node k to node i and x > k, either

THE COMPUTER JOURNAL, VOL. 30, NO.4, 1987 301

IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1031, p. 4 of 10

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1. VAN LEEUWEN AND R. B. TAN

x must belong to the subtree of the DFS tree with k as
a root or x does not belong to the subtree with i as a root
in the DFS tree. This means that if xis explored after k,
x must be further 'up' the tree from k or further 'down'
the tree from i.

Lemma 2.4

In an orderly DFS scheme, if there is a backward frond
from node k to node i and the backtrack link at k is
labelled b, the backtrack link at i is also labelled b.

Proof"

Since b is the label for the backtrack link, b does not
belong to the subtree with k as a root, which implies that
b does not belong to the subtree with i as a root also. Thus
every backtrack link from ito k must be labelled b. D

Theorem 2.5

There exists a neighbourly interval-labelling scheme for
every graph that has an orderly DFS scheme.

Proof

We first relabel the given orderly DFS scheme. For each
node k that has a backward frond to some nodes i, we
relabel two links. First the label on the backtrack link is
changed from b to j, the father of k in the spanning tree.
Secondly, we find the smallest frond link i and relabel it
from i to b at k.

Claim (i). The scheme is neighbourly.
By Lemma 2.2, we only have to examine nodes k that

have a backward frond. Let i, j, k and b be defined as
above. SEND (k,j, m) now delivers message m tojin one
hop. SEND (k, i, m) used to deliver messages to i via the
frond link in one hop also, but now we have changed the
link to b. Suppose there are frond links to i 1, i2 , ••• , is
with i = i1 < i2 < ... < i8 . Now iE[b, i2] or iE[b, J]
depending on how many fronds there are. In either
case, the message to i gets there in one hop. The rest
of the links are unchanged, so the scheme remains
neighbourly.

Claim (ii). The scheme is valid.
Any message sent to x will arrive properly if it does not

pass through a node k with a backward frond, since the
DFS scheme is valid. Therefore we only need to consider
SEND (k, x, m). Only two links have been relabelled at
k. Messages for most nodes x still follow the same link
and lie in the same interval, with the exception of those
in the intervals [j, k) and [b, i1). Messages for those nodes
in [j, k) used to follow the frond link is (or i, if there is
only one frond) down to node i8 (i1) and then 'up' the
tree to their destinations. Now they only have to take one
hop tojand go from there. Thus the new scheme bypasses
the intermediary, and cuts down on the actual distance.
Messages for the other nodes in interval [b, i 1) used to
climb' down' the tree from node k to node i1 first and then
go to their destinations. Now they take one hop to i1 and
go to their destination from there. So the actual distance

gets smaller once again. Note also that after a message
traverses down the two links it cannot go back up the link
in the next hop. Thus after reaching node k, the message
still follows the path of the DFS scheme, and in some
cases it even shortens the path. D

Corollary 2.6

There exists a neighbourly scheme for any Hamiltonian
graph.

Proof

Apply the DFS labelling algorithm to the Hamiltonian
graph G following a 'hamiltonian traversal'. The
resulting DFS scheme is orderly. The result now follows
from Theorem 2.5. D

Finally, we introduce another concept that measures
the effectiveness of an ILS. Ideally, if a node blindly sends
out a message to itself it should receive the message back
in minimum time. The number of hops the message takes
is the index of the node. The index of an ILS is the
maximum of indices of all nodes. Clearly, the smallest
possible index is 2. Both optimum schemes and
neighbourly schemes necessarily satisfy the 'index 2'
condition. The converse is not true.

Proposition 2.7

A D FS scheme is of index 2.

Proof

Suppose node i wants to send a message to itself. If the
link that it traverses is a frond link to node j, then by
the construction of DFS link (j, i) is labelled by i, so the
message immediately returns to i. Suppose the link is not
a frond. Then it cannot be a forward link in the spanning
tree generated by the depth-first search algorithm, since
all forward links have labels}> i. Thus the link must be
a backward link to node k. This means that k has been
numbered before i, so i > k and thus link (k, i) must
be labelled by i, and the message returns to i again. D

A DFS scheme also has the property that each node
i has a link labelled (i + 1) mod N. Such an ILS is called
sequential. All the optimum schemes presented earlier are
sequential, with the exception of the ILS for the complete
bipartite graph. Thus an optimum scheme need not be
sequential.

3. INSERTION AND CONNECTION OF
SCHEMES

Consider the practical situation in which a network
expands and grows by incremental insertion of nodes
or by connection to other networks. In this section we
study how a network with a given ILS can 'grow' by
incremental insertion of a node or by connection to
another network with a given ILS so that the combined
network still has an ILS of some desired form.

Central to the insertion and connection problem is the
concept of cyclically shifting a node number until it
reaches a desired value. We again assume all ILS to be
normal.

302 THE COMPUTER JOURNAL, VOL. 30, NO.4, 1987

IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1031, p. 5 of 10

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

