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l. INTRODUCTION 

In a computer network, a routing method is required in 
order that the nodes can communicate messages to each 
other. Normally this is provided by a routing table of size 
O(N) at each node, where N is the number of nodes in the 
network. The table shows the link(s) to be traversed for 
each destination node. Santoro & Khatiba have shown 
that routing can be achieved without the need for any 
routing tables at all, provided the nodes of the network 
are suitably labelled and the routing is restricted to a 
spanning tree. The technique has subsequently been 
extended by van Leeuwen and Tan5 to obtain a method 
that utilizes every link of the network but requires tables 
of size O(d), where dis the degree of a node. 

In this paper we consider the intricate question of 
generating optimum or near-optimum routing schemes 
of this kind, and the impact of utilizing any such scheme 
on the message complexity of common distributed 
network problems. 

Basically the idea presented in Ref. 5 is to label the 
nodes and the edges of the graph (network) by labels from 
a linearly ordered set, say {i0 , i1, ... , iN~ 1 }, in a suitable 
manner. The labels i0 to iN~I are cyclically ordered. 

An interval labelling scheme (ILS) for a connected 
N-node network G is a scheme for labelling the nodes and 
links such that (i) all nodes get different labels and (ii) at 
every node each link receives a distinct label. The labels 
assigned to the links at node i are stored in a table at node 
i. To send a message m from node i to node j we use a 
'recursive' routine SEND (i, j, m) where at each 
intermediate node k, starting with node i, node k will look 
up its table and find link r:x8 such that the interval [r:x8 , 

r:xs+ 1) contains}. Node k then sends message m down the 
link labelled r:x8 , and the whole process is repeated until 
message m does arrive at node j, if ever. The routine can 
be described simply as follows: 
procedure SEND (i,j, m); 
begin 

if i = j then process m 
else 
begin 
.find label r:x8 in the labelling at node i such that 
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end. 

r:x8 ~ j < 01:8 +1; i: = the neighbour of i reached over 
link r:x8 ; SEND (i,j, m) 
end 

One cannot just pick an arbitrary scheme and hope that 
it will route a message correctly, as the message may never 
reach its destination due to a cycle in the route. An ILS 
is valid if all messages sent from any source node arrive 
at their destinations. Most ILS are in fact not valid. In 
Ref. 5 it was shown that there is an O(N2) algorithm to 
determine whether an ILS is valid or not. The main result 
of Ref. 5 is the following. 

Theorem 1.1 

For every network G there exists a valid interval labelling 
scheme. 

In this paper we study various techniques for 
generating valid ILS that are optimum, or othe~~ise 
sufficiently flexible to allow for, for example, the additiOn 
of nodes or the joining of networks in an easy manner. We 
also study the effect of having a valid ILS available in a 
network on the design and the complexity of distributed 
control problems. 

We briefly digress and describe the particular ILS th~t 
was used in Ref. 5 to prove Theorem I. I. The scheme IS 

generated by an algorithm that traverses G and assigns 
labels oc(u) to the nodes u that are visited. The algorithm 
is based on the technique of depth-first search,4 and 
works as follows. 

Start at an arbitrary node and number it 0, pick an 
outgoing link and label it I (by which we mean that ~he 
corresponding exit at node 0 is labelled I), follow the hnk 
to the next node and number it I. Continue numbering 
nodes and links consecutively. If a link is encountered 
that reaches back to a node w that has been numbered 
previously (a link of this type is call~d a. frond), it is 
labelled by oc(w) instead and another hnk IS selected. If 
a node is reached that admits no forward link any more 
(a node of this type is either a leaf or otherwise 'fully.' 
explored) and i is the largest node-number assig~ed until 
this moment, we backtrack and label every hnk over 
which we backtrack by (i + I) mod N until we can proceed 
forward on another link again. There is a slight twist to 
the labelling of links in this phase in case one backtracks 
from a node v that has a frond that reaches back to 0. 
The frond will have label 0 at v, and just 
when i happens to be N- I the same label would be 
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INTERVAL ROUTING 

assigned to the link from v to (say) u over which one 
backtracks. The conflict is resolved by assigning the label 
a(u) to the link instead. In order to do this right, the 
algorithm marks a node as soon as it finds that it has a 
frond to 0. (It should be intuitive now that the ILS so 
constructed does its routing over the depth-first search 
spanning tree, with additional shortcuts over the fronds.) 
The following procedure makes the algorithm precise. 
Comments contain additional explanation. 

{N is the number of nodes, and i a global variable 
ranging over 0 .. N- 1 which denotes the next node­
number or edge-label that is to be assigned. The variable 
i is initially set to 0. For convenience we use a boolean 
array MARK to keep track of the node(s) that have a frond 
back to 0. MARK is initially set to false. The procedure 
starts out at an arbitrary node x of the network, and is 
called as LABEL (x, x).} 
procedure LABEL (u, v); 
{u and v are nodes, u is the father of v in the depth-first 
search tree being constructed, and vis being visited.) 

begin 
{assign number i to v} 
a(v): = i; 
i: = (i+l) mod N; 
for each node w on the adjacency list of v do 

begin 
if w is not numbered then 

begin 
{proceed forward and add the link v, w to the 
depth-first search spanning tree} 
label/ink v, w at v by i; 
LABEL (v, w) 

end 
else 

begin 
{link v, w is a frond unless w = u. Mark v if 
the frond reaches back to 0} 
if w i= u then 

begin 
label/ink v, w at v by a(w); 

end 
end 

end; 

if a(w) = 0 then MARK[v]: =true 

{backtrack over the link v, u unless v = x} 
if vi= x then 

begin 
if i = 0 mod N & MARK[v] = true then 

label/ink v, u at v by a(u) 
else 

label/ink v, u at v by i 
end 

{end of the procedure} 
end; 
We shall refer to the ILS obtained by applying the 
procedure LABEL as the DFS scheme, because it is 
generated during a depth-first search. Recall that 
depth-first search visits the entire network, that the links 
over which the algorithm moves 'forward' (and back­
tracks again at a later stage) together form a rooted 
tree spanning the network, and that fronds always point 
from a node to an ancestor of the node in this tree. 4 In 
Ref. 5 it was proved that the DFS scheme is indeed a valid 
scheme for the purposes of routing. 

We note that the DFS scheme is in fact valid when the 

labels are chosen from any linearly ordered set {i0 , i 1 , ... , 

iN_1}. Any general ILS will have an equivalent form using 
labels from {0, ... , N -1} by the natural correspondence 
between {i0 , ••. , iN_1} and {0, ... , N-1}. An ILS 
is called normal if the set of labels is indeed the set 
{0, ... , N-1}. 

In this paper we further explore the theory of general 
interval labelling schemes and its various implications for 
network problems, and apply it to solve some common 
distributed problems. In Section 2 we look at optimum 
schemes for some common networks such as rings and 
grids. Various concepts of 'near optimality' are 
introduced. In Section 3 several insertion and joining 
techniques are given to form a larger network that still 
preserve some desirable properties of a given ILS. Section 
4 contains applications of ILS to solve for, for example, 
the leader-finding problem and the spanning-tree prob­
lem in substantially fewer message-exchanges than are 
required in general networks such as rings without the 
effect of a valid ILS. The results are intriguing from the 
point of view of distributed algorithms, as they show that 
implicit information can severely affect (lower) the 
message complexity of distributed problems. Finally 
some open problems are stated in Section 5. 

2. OPTIMUM SCHEMES AND RELATED 
CONCEPTS 

Ideally we would like an ILS not only to be valid but 
also able to deliver messages over the shortest possible 
routes. We call such a scheme optimum. The DFS scheme 
as discussed in Section 1 is a valid scheme, but it is far 
from optimum. For instance, a DFS scheme will not label 
a ring with more than four nodes optimally. 

In the following, we list some common types of 
network and present optimum schemes for them. For the 
sake of simplicity we assume all ILS to be normal 
throughout this section. 

(i) Trees. A DFS scheme gives an optimum scheme 
here. Santoro & Khatib3 use a similar depth-first search 
of the tree, but with a different ordering of labels. 

(ii) Complete graphs. A DFS scheme again suffices 
here, since all links are either direct links or fronds and 
will deliver messages in one hop. 

(iii) Rings. An optimum scheme is given in van 
Leeuwen & Tan.5 Basically the idea there is to orient the 
ring in one direction and label the nodes consecutively 
from 0 toN- 1. Then for each node i, label the left link by 
(i+ 1) mode Nand the right link by (fN/2l+i) mod N. 

(iv) Complete bipartite graphs. Let the set of nodes of 
the graph be separated into two parts, A and B. Label the 
nodes consecutively from 0 to N- 1 in any order. Label 
the links by the node numbers they are connected to. For 
instance, if there is a link connecting node i and node j, 
label the link at node i by j and that at node j by i. Thus, 
by construction, there exists a direct hop from each node 
in one partition to all the nodes in the other partition. If 
nodes i and j are in the same partition and need to 
communicate then, by the circular nature of the interval 
order, there must be a link that carries the message to the 
opposite partition. From there it only takes one more 
hop to reach node j. So only one hop is needed to go 
across the partitions and two hops within the same 
partition, and this is optimum. 

(v) Grids. we consider several grid configurations. 

THE COMPUTER JOURNAL, VOL. 30, NO.4, 1987 299 

IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1031, p.  2 of 10

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


1. VAN LEEUWEN AND R. B. TAN 

(va) Grids with no wrap-around. Let G be a rectangular 
grid of M rows and N columns. Label the nodes 
consecutively by rows from left to right, so that the first 
row will be labelled 0 to N- I, the second row N to 
2N- I, and so forth. Informally each link in the four 
directions (if there is any) will be labelled as follows. 
The up link is labelled 0 and the down link is labelled 
with the node number of the leftmost element of the next 
row. The left link is labelled by the node number of the 
leftmost element on the current row and the right link by 
the next consecutive element on the right. More precisely, 
for each node i, if there exist the appropriate links, label 
the up link by 0, the down link by N + N .[if Nj, the left 
link by N .[if Nj and the right link by i +I. Note that the 
up link for all nodes is 0, all the down links for each 
row are identical, and so are the left links for each row. 
Thus we have the interval structure as shown in Fig. I, 
where r0 is N .[if Nj and (r+ 1)0 = N .[if NJ+N. 

0 up 

down (r + 1)0 r0 left 

i + I right 
Figure 1. 

We now show that the scheme is optimum by referring 
to the interval structure of Fig. 1. Suppose node i needs 
to send a message to node}. Assume first that i and} are 
on the same row of the grid, i.e. r 0 ~ j < (r + 1 )0 . If i < j 
then} E [i +I, (r + 1)0) so the message is passed to the right 
and kept on passing to the right until node j is reached 
because j must belong to one of the successive intervals 
[i+2, (r+ 1)0 ), ••• , [(r+ 1}0 -1, (r+ 1)0 ). Similarly, ifi > j 
then j belongs to interval [r0, i+ 1) and the message is 
passed to the left until it arrives at j. If i and j are not on 
the same row then jE[O, r0] or }E[(r+i)0, 0) so the 
message is passed up or down to the next row respec­
tively. After the next row is reached and ifjis on that row, 
the previous process is applied and j is reached. If j is not 
on that row the message must be passed on to the next 
row in the same direction, i.e. once the message is passed 
up the link it cannot at any point be passed downward 
again and vice versa. This is because each r0 keeps on 
decreasing for each row and (r+ 1)0 keeps on increasing 
and the intervals [0, r0 ) and [(r+ 1)0 , 0) are disjoint. Thus 
eventually the message will arrive on the row on which 
j is located by vertical travels, and from then on by 
horizontal hops to node}. The route the message travelled 
is not the only shortest one possible, but it is optimum. 

(v b) Grids with column-wrap-around. G is a rectangular 
grid of M rows and N columns, but each column is 
extended so as to be a ring also. The nodes are labelled 
consecutively as in case (va). The left and right links for 
each node remain identical as in (va). Label the first 
column using the optimum scheme for a ring, then copy 
the up and down links of the first column to remainder 
columns. Precisely, the left link is N .[if Nj, the right link 
is i + 1, the down link is (N + N .[if Nj) mod (M. N) and 
the up link is (N. [M f21 + N .[if Nj) mod (M. N). The 

forbidding appearances of the vertical links are harmless. 
They are just straightforward translations of the ring with 
M elements. Recall the formulae there are (i + 1) mod M 
and (fMf2l+i)modM. Now [ifNj plays the role of i, 
and since there are N columns, multiplying both 
equations by N yields the desired links. For a message to 
reach node j from node i, assuming they are on the same 
row, the message will travel by horizontal hops to its 
destination as before. If i and} are not on the same row 
the message must go round the ring until the correct row 
containing} is reached. This can be seen by applying the 
proof for optimum ring networks, where i now stands for 
the ith row, so that the row containing} is found in the 
most optimum way. Then the message is delivered by 
horizontal hops. 

Unfortunately the same technique does not work for 
grids with row and column wrap-around. This is because 
we lose the circular ordered effect of the ring interval on 
a row. So the question of an optimum scheme for row 
and column wrap-around remains open. 

One way to salvage the above situation is to introduce 
multiple labels on a link. 

Figure 2. 

Definition 

A k-labelled ILS is an ILS where (i) each link may receive 
up to k distinct labels and (ii) at every node all the 
link-labels must be distinct. 

Thus the usual ILS is simply a 1-labelled ILS. We now 
show how this concept can be applied. 

(vc) Grids with row and column wrap-around. Let G be 
a grid of M rows and N columns with each row and 
column extended to be a ring. The idea is to label the 
nodes as before, then label each column as a ring as in 
case (vb), following the first column, and finally to label 
each row also as a ring. However, this naive approach 
does not give us even a valid scheme. For instance on a 
5 x 5 wrap-around grid, the optimum ring on the third 
row is as shown in Fig. 2. 

It is not possible for node 13 to send a message to node 
I 0 via the usual circular route. The message has to go up 
and come down again, forming a cycle. This is solved 
by labelling link (13, 14) by both 14 and 10. The label­
ling scheme is then as follows. Label the nodes 
consecutively by rows. Label the up link by 
([Mf21. N +lifNj. N)mod (M. N), the down link 
by (N+N.[ifNj)mod(M.N), the left link by 
([Nf2l+i)modN+N.lifNj and the right link by 
(i+ l)modN+N]ifNj. Now, for each row r, r = 0, ... , 
M- I, check each element i, i =1= rN. If the horizontal 
links do not contain rN as a label, pick the horizontal 
link with the highest label and add label rN to it. We thus 
have a two-labelled scheme. Note that the previous two 
grids of cases (va) and (vh) all have r. N =[if Nj. N as 
their left links, so that we have no such problem. By 
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INTERVAL ROUTING 

construction, for every row r = 0, ... , M- 1, and for 
every node ion that row r, node i has a link-label rN and 
also (r + 1 )N mod (MN). Furthermore, all the horizontal 
link-labels are within this interval. Thus when a message 
travels from node i to node}, it first reaches the correct 
row r, such that j is on that row. Then it reaches j by 
horizontal hops. The scheme is optimum. 

We have only given optimum schemes for a few types 
of common graphs. In general it is not clear how one 
would construct an optimum scheme for an arbitrary 
graph, if such a scheme is possible. However, it can be 
quite easy to do this for multiple-labelled schemes. 

Proposition 2.1 

For any graph with N nodes, there exists an (N- 1 )­
labelled ILS that is optimum. 

Proof 

Label the nodes somehow from 0 to N- 1. For each node 
i, pick a node j E [0, N- I]. Find a path to j that is 
optimum, say via link (i, p). Then label link (i, p) by j. 
Do this for allj,j of. i. A maximum of N- !labels suffices. 

D 
Note that the above (N- 1 )-labelled ILS is nothing but 

the traditional routing table in disguise, with one label 
for each node. Thus the multiple-labelled ILS is just a 
generalization and simplification of the traditional 
routing table. We are trying to achieve the same goal 
with fewer labels! 

In the following we introduce a few concepts that are 
related to optimum schemes, though they are strictly 
weaker than optimality. Observe that in a DFS scheme 
a node may not necessarily send a message addressed to 
its neighbour directly in one hop. 

4 3 

0 

3 

0 
2 0 

Figure 3. 

Definition 

An ILS is a neighbourly scheme if it is valid and all 
messages for a neighbour are delivered directly in one 
hop. 

An optimum scheme of course is a neighbourly scheme. 
The converse is false, as shown by the following example 
in Fig. 3. The scheme is neighbourly, but not optimum, 
since SEND (0, 4, m) traverses the path 0---> 2---> 3---> 4 
instead of the shorter route 0 ---> 1 ---> 4. 

Lemma 2.2 

The only nodes in a DFS scheme that do not necessarily 
deliver messages to neighbours in one hop are those 
nodes k that have fronds to nodes i with i of. 0, i < k. 

Proof 

If j and k are neighbours and link (}, k) is a frond in 
the spanning tree of DFS, then by construction link (}, 
k) is labelled k and link (k, J) is labelled j, so messages 
are delivered in one hop. So assume j and k are 
neighbours but link(}, k) is not a frond. If}< k then the 
label of link (}, k) must be k (by the labelling procedure 
of DFS), so messages get there in one hop from j to k. 
Thus we only have to consider SEND (k, j, m). If there 
are no fronds coming down from k to i where i < j link 
(k, j) labelled b is a backtrack edge. Also there must be 
a link labelled k + I emanating from k (by the labelling 
procedure of DFS). Thus j E [b, k +I), and the message 
gets routed to j via link (k,j) labelled b. If there is a frond 
coming down from k to i, but i = 0, then by the labelling 
procedure of DFS, link (k,J) must be labelled by j, so that 
message gets to j in one hop. The remaining case is when 
k has a frond coming down to i and no i = 0. Let the 
backtrack link be (k, j) with label b. Then}¢ [b, i) since 
i < j < b or b = 0, so j ¢: [0, i). Thus the message cannot 
come down from k to j via link (k, }). It has to be routed 
via one of the fronds, link (k, i). D 

We use a multiple-label scheme to salvage the above 
situation. 

Theorem 2.3 

There exists a two-labelled neighbourly scheme for any 
arbitrary graph. 

Proof 

We first do a DFS scheme on the graph G. By Lemma 
2.2, the only concern are those nodes k that have fronds 
going down to i with i < k but no i = 0. For each such 
k and its neighbour j via the backtrack link labelled b, 
we double-label link (k, j) by b and j. We thus have a 
two-labelled scheme that is neighbourly. To show that 
the resulting scheme is valid, we only have to be 
concerned with those special k-nodes. Let i be the 
maximum frond node in the above situation. Then 
normally messages to any node t E [i, k + 1) will travel via 
link i. With the introduction of the new label j, with 
i <j < k, those messages to tE[j, k+ 1) get transferred 
to node j first. So we only have to make sure that any 
message from k to IE[}, k+ I) is routed correctly. Now 
j "'( t < k, so it is not possible for the message to return 
to node k again via link (}, k) labelled k. Furthermore, 
since t ?: }, the message will be routed to the subtree of 
the DFS spanning tree rooted at}. The message will never 
encounter the situation of Lemma 2.2 again on the way 
as it will be an upward climb. As the DFS scheme is valid, 
the message will eventually reach t. D 

Another way to salvage the situation in Lemma 2.2 is 
to restrict the way the DFS labelling algorithm proceeds 
in generating the spanning tree. We would like the 
depth-first search to proceed in an orderly manner, 
exploring all the sub-branches as much as possible before 
encountering a 'backward' frond. 

Definition 

A DFS scheme is orderly if, whenever there is a 
'backward' frond from node k to node i and x > k, either 
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1. VAN LEEUWEN AND R. B. TAN 

x must belong to the subtree of the DFS tree with k as 
a root or x does not belong to the subtree with i as a root 
in the DFS tree. This means that if xis explored after k, 
x must be further 'up' the tree from k or further 'down' 
the tree from i. 

Lemma 2.4 

In an orderly DFS scheme, if there is a backward frond 
from node k to node i and the backtrack link at k is 
labelled b, the backtrack link at i is also labelled b. 

Proof" 

Since b is the label for the backtrack link, b does not 
belong to the subtree with k as a root, which implies that 
b does not belong to the subtree with i as a root also. Thus 
every backtrack link from ito k must be labelled b. D 

Theorem 2.5 

There exists a neighbourly interval-labelling scheme for 
every graph that has an orderly DFS scheme. 

Proof 

We first relabel the given orderly DFS scheme. For each 
node k that has a backward frond to some nodes i, we 
relabel two links. First the label on the backtrack link is 
changed from b to j, the father of k in the spanning tree. 
Secondly, we find the smallest frond link i and relabel it 
from i to b at k. 

Claim (i). The scheme is neighbourly. 
By Lemma 2.2, we only have to examine nodes k that 

have a backward frond. Let i, j, k and b be defined as 
above. SEND (k,j, m) now delivers message m tojin one 
hop. SEND (k, i, m) used to deliver messages to i via the 
frond link in one hop also, but now we have changed the 
link to b. Suppose there are frond links to i 1, i2 , ••• , is 
with i = i1 < i2 < ... < i8 . Now iE[b, i2] or iE[b, J] 
depending on how many fronds there are. In either 
case, the message to i gets there in one hop. The rest 
of the links are unchanged, so the scheme remains 
neighbourly. 

Claim (ii). The scheme is valid. 
Any message sent to x will arrive properly if it does not 

pass through a node k with a backward frond, since the 
DFS scheme is valid. Therefore we only need to consider 
SEND (k, x, m). Only two links have been relabelled at 
k. Messages for most nodes x still follow the same link 
and lie in the same interval, with the exception of those 
in the intervals [j, k) and [b, i1). Messages for those nodes 
in [j, k) used to follow the frond link is (or i, if there is 
only one frond) down to node i8 (i1) and then 'up' the 
tree to their destinations. Now they only have to take one 
hop tojand go from there. Thus the new scheme bypasses 
the intermediary, and cuts down on the actual distance. 
Messages for the other nodes in interval [b, i 1) used to 
climb' down' the tree from node k to node i1 first and then 
go to their destinations. Now they take one hop to i1 and 
go to their destination from there. So the actual distance 

gets smaller once again. Note also that after a message 
traverses down the two links it cannot go back up the link 
in the next hop. Thus after reaching node k, the message 
still follows the path of the DFS scheme, and in some 
cases it even shortens the path. D 

Corollary 2.6 

There exists a neighbourly scheme for any Hamiltonian 
graph. 

Proof 

Apply the DFS labelling algorithm to the Hamiltonian 
graph G following a 'hamiltonian traversal'. The 
resulting DFS scheme is orderly. The result now follows 
from Theorem 2.5. D 

Finally, we introduce another concept that measures 
the effectiveness of an ILS. Ideally, if a node blindly sends 
out a message to itself it should receive the message back 
in minimum time. The number of hops the message takes 
is the index of the node. The index of an ILS is the 
maximum of indices of all nodes. Clearly, the smallest 
possible index is 2. Both optimum schemes and 
neighbourly schemes necessarily satisfy the 'index 2' 
condition. The converse is not true. 

Proposition 2.7 

A D FS scheme is of index 2. 

Proof 

Suppose node i wants to send a message to itself. If the 
link that it traverses is a frond link to node j, then by 
the construction of DFS link (j, i) is labelled by i, so the 
message immediately returns to i. Suppose the link is not 
a frond. Then it cannot be a forward link in the spanning 
tree generated by the depth-first search algorithm, since 
all forward links have labels}> i. Thus the link must be 
a backward link to node k. This means that k has been 
numbered before i, so i > k and thus link (k, i) must 
be labelled by i, and the message returns to i again. D 

A DFS scheme also has the property that each node 
i has a link labelled (i + 1) mod N. Such an ILS is called 
sequential. All the optimum schemes presented earlier are 
sequential, with the exception of the ILS for the complete 
bipartite graph. Thus an optimum scheme need not be 
sequential. 

3. INSERTION AND CONNECTION OF 
SCHEMES 

Consider the practical situation in which a network 
expands and grows by incremental insertion of nodes 
or by connection to other networks. In this section we 
study how a network with a given ILS can 'grow' by 
incremental insertion of a node or by connection to 
another network with a given ILS so that the combined 
network still has an ILS of some desired form. 

Central to the insertion and connection problem is the 
concept of cyclically shifting a node number until it 
reaches a desired value. We again assume all ILS to be 
normal. 
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