
 

 

 

―Evolution‖ by vertex of even-order regular graphs  

Tamás Dénes 

 

In graph theory circles, it is generally interesting to examine a structurally similar problem, but 

from a different point of view, to see alternate forms of graphs under certain transformations.  

For example, Γn, the n-vertex complete graph, can be constructed from Γn-1, the complete graph 

on n-1 vertices, by adding a vertex and connecting it to each vertex of Γn-1. The same transformation on 

any other regular graph of other degree does not achieve the goal.  al  rd s and  lfr d   nyi addressed 

graph evolution in [3] from another perspective.  

In the present work we are only concerned with undirected, even-order regular graphs.  

In the first section of this paper we define the evolutionary transformation and prove several 

related theorems. The second and third sections concern graphs for which the transformation cannot be 

applied.  

 

Definition 1. Let Γ = ( ,E) be an n-vertex simple graph and pi ∈P, pj ∈P be neighboring vertices, and p 

be a vertex which is a neighbor to neither pi nor pj . (P and E represent the sets of vertices and edges of the 

graph Γ.) 

We take the EC transformation on vertex p to be the following:  

(1)           EC: E → E’  

where    E’ =  E \ {(pipj)}  {(ppi), (ppj)}  

Herein we designate the set of all even regular graphs using as PR and the sets of all 2, 4, ..., k  

(k even) order regular graphs as PR2, PR4, ..., PRk.  Then the following must be the case:  

1. PR = PR2   PR4    ...  PRk     ...   

2. ∀i  j, (i, j even), PRi  ∩ PRj  =    

3. ∀Γn,k ∈ PRk, ∃! PRk:  Γn,k ∈ PRk ; that is, the set PR has a classification.  

Definition 2. Let Γn,k ∈ PRk be an n­vertex, k­regular graph.  Further suppose Γn,k = (P,E) and Γn+1 =  

(P   {p}, E’), where p  P.   

 

We take the ET transformation on vertex p to be the k/2 EC transformation on vertex p, that is, let (p1p2), 

(p3p4), ..., (pk-1pk) be edges in Γn,k , then  

 

(2)  ET:  Γn,k  → Γn  
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where E’ = E  \  { (p1p2), (p3p4), ... , (pk-1pk) }  { (pp1),(pp2), ... , (ppk) } 

 

Theorem 1.  Let k be an even number. The ET transformation can be used for every Γn,k ∈ PRk .  

 

  OOF. It is sufficient if we observe that in every Γn,k there exist k/2 independent edges. For the proof 

we use the following theorem from G. A. Dirac [2]:  

 

―If in a simple graph every vertex has degree of at least r (r > 1), then there exists a cycle in the 

graph of length at least r + 1.‖  
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If we take K to be a cycle of length k+1 in Γn,k (one certainly exists on the basis of the theorem cited), 

then using the method illustrated in figure 1 to select the edges (p1p2), (p3p4), ... , (pk-1pk) we get a set of 

exactly k/2 unconnected edges.  

 

 

 
                  Figure 1 

 

Definition 3.  Let Γn,k = (P,E)   PRk, p   P, and we take the vertex pairs p1p2, p3p4, ..., pk-1pk to be 

neighbors of p but pairwise not neighbors. Then we take the ET transformation to be:  

 

(3) ET
-1
: Γn,k → Γn-1 = ( ’, E’),   ’ = P \ {p}  

               E’ = E \ { (pp1), (pp2), …, (ppk)   { (p1p2),(p3p4), …,(pk-1pk) } 

 

Definition 4. Let Γn,k  = (P, E) be a graph on n vertices, p   P, and q1, q2, ... , qr be neighbors of p in Γn. 

Then we take the subgraph of Γn generated by p (designate this Gp = ( ’, E’) ), and it turns out this is the 

subgraph where  ’ = {q1, q2, ..., qr} and (qi, qj)   E′  ⇔  (qi, qj)   E .  

 

Definition 5. Let Γn   PR and p   Γn . Then the vertex p is T­characterized if the complement of the 

subgraph on Γn generated by it contains a 1-factor.  

 

Theorem 2. The ET
-1

 transformation can be applied to a graph Γn,k = (P,K)   PRk if and only if there 

exists a T-characterized vertex p   Γn,k . 

 

PROOF. Necessity: From the definition of ET
-1

 it follows that there exists p∈ Γn,k from which we can 

select neighbors p1p2, p3p4, ... , pk-1pk which are pairwise not neighbors. In the complement of the 

subgraph on Γn constructed on p1, p2, ... , pk they will be neighbors, and they comprise a 1­factor, as any 

two vertex pairs have no common vertex. This is precisely what it means for the vertex p to be 

T­characterized.  

 

Sufficiency: The proof in this direction is the exactly the reverse of the above necessity proof.  

 

Theorem 3. For every even k ≥ 4 there is a graph Γn,k   PRk which has no vertex p which is 

T­characterized. 

 

Equivalent formulation: For every even k ≥ 4 there exists a graph Γn,k   PRk for which no graph  

Γn-1,k ∈ PRk can be constructed with the ET transformation.  

 
  OOF. Let k be an arbitrary even number, k ≥ 4. Let us examine two complete graphs on k+1 vertices  

Γ
1

k+1,k = (P1, E2) and Γ
2
k+1,k = (P2, E2). Let (pi1, pj1)   E1 and (pi2, pj2)   E. Then we construct the following 
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graph Γn,k = (P , E)  
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(4)  P = P1    P2  
(5)  E = E1    E2 \ { (pi1, pj1), (pi2, pj2) }    { (pi1, pi2), (pj1, pj2) }}  

 

The graph Γn,k where for k = 4 is illustrated in figure 2.  

 

 

 
Figure 2 

 
We will demonstrate that Γn,k constructed in this way has does not have a T­characterized vertex.  

 s every graph Γn,k constructed in this way is symmetric, for the proof it is enough to 

demonstrate for each vertex of the subgraph (for example Γ
1

k+1,k). Here we can differentiate between two 

cases of selected pairs of vertices:  

 

a) pi1, pj1  

b) any other pair  

 
For the case in a), we take G1  = (A1, B1) to be the subgraph constructed on neighbors of p i1. Then: 
 

(6) A1 = P1   {pi2} \ {pi1} 

(7) B1 = E1 \ { (pi2pr)  | ∀ pr ∈ P1 \ {pi1} }  

 

So the complement  ̅1 = ( ’1, B’1) is therefore the following:  

 

(8) A’1 = A1  

(9) B’1 = E1  \ { (pi2ps)  |  ∀ps ∈ P1  \{pi1} } 

 

So  ̅1 does not contain a 1­factor, that is, p is not T­characterized (and similarly pi2, pj1, … , pj2). For the 

case in b), let p ∈P1, p  pi1  pj1, and G2 = (A2, B2) be the subgraph constructed on the neighbors of p:  

 

(10)   A2 =  P1  \ {p}  

(11)   B2 = E2  \ { ( pi1pj1), (ppr) | ∀ pr ∈ P1  \ { p } } 

 

Then  ̅2 = ( ’, B’) will be the following:  

 

(12)   ’2  = A2  

(13)  B’2 = { ( pi1pj1 ) }  

 

So  ̅2 does not contain a 1­factor, that is, no vertex in case b) is T­characterized. And so the 2 theorem is 

proved. 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In figure 3/a­d the graphs G1,  ̅1, G2,  ̅2 are illustrated for k = 4. (The bolded edges and vertices  

belong to the corresponding graphs.)  

 

 
Figure 3 

 

6. Definition. We define a Vertex Prime (VP) graph as a graph in PR which contains T­characterized 

vertex.  

 

Then Theorem 3 can be formulated as follows: Each of the classes of graphs PR4, PR6, ... , PRk, ... 

contains a VP graph.  

 

In the following we examine the cases under which a vertex is not T­characterized. We take advantage of 

the following well-known result [1].  
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Lemma 1.   complete graph Γn (where n is even) can be expanded into n­1 one-degree factors.   

 

Theorem 4.  Let Γn,k ∈ PRk and p ∈ Γn,k = (P, E) . If p is not T­characterized, then there exist at least 

k­1 cycles of length 3 which contain p.  

PROOF. If p is not T-characterized, then the complement of the subgraph of Γn,k generated by it (G = 

(A,B)) does not contain 1­factor. By Lemma 1,  ̅  ontains n­1 edge­independent 1­factors, and in G from 

these factors an edge must exist such that in  ̅ they are not a 1­factor. So the number of edges in G is at 

least k­1. As it is the case in G that every edge endpoint is a neighbor of p, a 3­cycle containing p is thus 

constructed. And hence the theorem is proved.  

 

For k = 4, the following illustrations in figure 4/a­h depict cases where the vertex p is not T­characterized 

(bold edges indicate  ̅ ).  

 

Lemma 2. Let Γn be an n­vertex complete graph (n an even number) and we denote the number of all 

1-factors of Γn as F. Then  

 

(14) Fn =  
(
 
 
)(
   
 
) (

 
 
)

(
 
 
) 

 

 

PROOF. It is easy to see that the assertion is true for the case n = 2. Suppose it also holds for any  
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k   n – 2, that is: 

 

(15) Fk = 
(
 
 
)(
   
 
) (

 
 
)

(
 
 
) 
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Figure 4 
 

Then Γ
k 

has two vertices beyond which k+1 new vertex pairs can be selected (we don’t take note of the 

ordering of the two points), each of which has an F
k
 numbered 1­factor which each share exactly one 

edge, so  

 

(16)  F
k+2 

= ( k + 1 ) ∙ F k  

 

Recalling that 

 

(17)  
(
   
 
)

   

 

  =    
  (   ) 

     (   )
   = k + 1 

 

So thus 

 

(18)  Fk+2  =  
(
   
 
)

   

 

  * 
(
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) (

 
 
)

 

 
 

  =   
(
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) (

 
 
)

   

 
 

 

 

This concludes the proof of the theorem.  

 
Corollary.  

4. In the context of (16) we can write Fn recursively as follows:  

 

(19)  Fn = (n - 1) ∙ Fn-2  
 

2. The proof of Lemma 2 shows that if e is an edge contained in an E 1­factor of Γn, then exactly Fn-2 such 
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