ttachment 3a: Copy of Document 1 from the

niversity of Illinois at Urbana-Champaign Library

A Tool for Massively Replicating Internet Archives:
Design, Implementation, and Experience

Katia Obraczka
University of Southern California
Information Science Institute
4676 Admiralty Way
Marina del Rey, CA 90292, USA
katia@isi.edu

Abstract

This paper reports the design, implementation, and per-
formance of a scalable and efficient tool to replicate In-
ternet information services. Our tool targets replication
degrees of tens of thousands of weakly-consistent repli-
cas scattered throughout the Internet’s thousands of au-
tonomously administered domains. The main goal of our
replication tool is to make existing replication algorithms
scale in today’s exponentially-growing, autonomously-
managed internetworks.

1. Introduction

Internet services provide large, rapidly evolving, highly
accessed, autonomously managed information spaces. To
achieve adequate performance, services such as WWW [1]
will have to replicate their data in thousands of autonomous
networks. As an example of a highly replicated service,
take Internet news [5]. Although it manages a dynamic,
flat, gigabyte database, it responds to queries in seconds. In
contrast, popular WWW and FTP servers are constantly too
overloaded to provide reasonable response time to users. As
WWW, FTP and other Internet information services become
more popular, their databases must be highly replicated for
performance.

Existing replication mechanisms will not scale in today’s
exponentially growing, autonomously managed internets.
We implemented a tool for efficient replication of Internet

This research was funded in part by ARPA contract number
DABT63-93-C-0052, AFOSR award number F49620-93-1-0082,
NSF NYI award NCR-9457518, and NSF small-scale infrastructure
grant number CDA-9216321. Katia Obraczka is currently supported
by ARPA contract number J-FBI-95-204.

1063-6927/96 $5.00 © 1996 IEEE

DOCKET

_ ARM

657

Peter Danzig, Dante DeLucia, Erh-Yuan Tsai

University of Southern California
Computer Science Department
Los Angeles, CA 90089-0781

{danzig, dante, erhyuant} @usc.edu

information services. We target replication degrees of thou-
sands or even tens of thousands of weakly consistent repli-
cas scattered throughout the Internet’s thousands of admin-
istrative domains.

Our tool consists of two components, mirror-d and flood-
d. Mirror-d propagates updates according to the logical
topologies computed by flood-d. Flood-d aggregates repli-
cas into multiple replication groups analogous to the way
the Internet partitions itself into autonomous routing do-
mains. Having multiple replication groups preserves auton-
omy, since administrative decisions of one group, such as
its connectivity or when it should be split in two, do not af-
fect other groups. Also, it insulates groups from topological
rearrangements of their neighboring groups and from most
of the network traffic associated with group membership.

For each replication group, flood-d automatically
builds the logical topology over which updates travel. Un-
like Lampson’s Global Name Service (GNS) [6], flood-d’s
logical update topologies are not restricted to a Hamiltonian
cycle. By automating the process of building update topolo-
gies among replicas of a service, flood-d offloads system
administrators from having to make logical topology deci-
sions.

We argue that efficient replication algorithms flood data
between replicas. Note that the flooding scheme that we
propose differs from network-level flooding as used by rout-
ing algorithms: flooding at the network level simply follows
the network’s physical topology and flood updates through-
out all physical links of the network. Instead, the replicas
flood data to their logical neighbor or peer replicas. Al-
though the word “flooding” sounds inefficient, we claim
that the application-level flooding scheme that we propose
does use network bandwidth efficiently.

Flood-d employs a network topology estimator and a
logical topology calculator. Every group member measures
available bandwidth and propagation delay to the other

Ex. 1009

Find authenticated court documents without watermarks at docketalarm.com.

dkumar
Typewritten Text
Ex. 1009

https://www.docketalarm.com/

ttachment 3a:

Copy of Document 1 from the

niversity of Illinois at Urbana-Champaign Librar

group members. Based on these estimates, the logical topol-
ogy calculator builds topologies for the group that are -
connected for resilience, have low total edge-cost for effi-
cient use of the underlying network, and low diameter to
limit update propagation delays.

Figure 1 illustrates the relationship between logical
topologies and the underlying physical network. The left-
hand figure shows three overlapping replication groups and
their logical update topologies. The right-hand figure shows
the physical network topology and the logical update topol-
ogy built on top of it for the three replication groups in the
left-hand figure.

1.1. What Current Algorithms Lack

As existing naming services and distributed file systems
have demonstrated, the problem of replicating data that can
be partitioned into autonomously managed subspaces has
well-known solutions. Naming services such as the Do-
main Name Service (DNS) [8] and Grapevine organize their
name space hierarchically according to well-defined admin-
istrative boundaries. They also use these administrative
boundaries to partition their name space into several do-
mains, which only need to be replicated in a handful of
servers to meet adequate performance. In fact, according
to the results we report in [3], over 85% of second level
domains in the DNS hierarchy are replicated at most three
times, while 100% of these domains use at most 7 replicas.
The same study also shows that more than 90% of DNS’s
second-level domains store less than 1,000 entries. Because
of the limited domain sizes and small number of replicas,
DNS’s primary-copy replication scheme performs quite ad-
equately.

Similarly, distributed file systems organize their file
space hierarchically, where intermediate nodes are directo-
ries and leaf nodes are files. Like LOCUS [11], Andrew-
AFS ! [4], and Coda [12], distributed file systems use lo-
cality of reference to partition their file space into directory
subtrees. File servers replicate a subset of files in a direc-
tory subtree. Both LOCUS and Andrew provide read-only
file replication, while Coda uses distributed updates to keep
its writable replicas weakly consistent.

Because layered network protocols hide the network
topology from application programs, replicas themselves
cannot select their flooding peers to optimize use of the net-
work. Both Grapevine and its commercial successor, the
Clearinghouse [10] ignore network and update topology.
GNS assumes the existence of a single administrator who
hand-configures the topology over which updates travel.
The GNS administrator places replicas in a Hamiltonian cy-

1 Andrew is the name of the research project at Carnegie-Mellon
University. AFS is based on Andrew, and has become a product
marketed and supported by Transarc Corporation.

DOCKET

_ ARM

cle, and reconfigures the ring when replicas are added or re-
moved. As the number of replicas grows and replicas spread
beyond single administrative boundaries, frequently recon-
figuring the ring gets prohibitively expensive.

Netnews employs flooding to distribute updates among
its thousands of replicas. Like GNS, NNTP site administra-
tors hand-configure their logical flooding topology. Since
obtaining current physical topology information is difficult
in today’s Internet, system administrators frequently con-
fer with one another to plan changes in the logical flooding
topology. They try to keep up with the dynamics of the un-
derlying physical topology, specially as the Internet’s scale
and complexity increase.

The main contribution of the replication tool we built is
to make GNS-like services scale in today’s exponentially
growing, autonomously managed internetworks. In this
paper, we describe our experience designing, implement-
ing, deploying and measuring our replication tool’s perfor-
mance.

2. Design

The Harvest resource discovery system [2] has been de-
signed and implemented to solve the scalability and effi-
ciency problems of early resource discovery services. For
availability and response time, Harvest relies on massive
replication of its servers. In particular, Harvest’s directory,
which stores information about all available servers, is ex-
pected to be highly accessed and must be massively repli-
cated for adequate performance.

Although flood-d was designed to support Harvest
servers’ replication, it was built as an independent service
to allow its use by other applications. Indeed, several ex-
isting Internet information services such as Network News,
FTP archives, and WWW servers could use flood-d to prop-
agate their updates more efficiently and timely, yet reducing
the burden on system administrators.

The replication tool we implemented consists of two sep-
arate services: flood-d and mirror-d, whose name expresses
its reliance on the well-known FTP-mirror package [7].
Flood-d estimates the underlying physical network load by
measuring available bandwidth and round-trip time (RTT)
between members of a replication group. Based on these es-
timates, flood-d computes a fault-tolerant, low-cost, low-
diameter logical update topology for the group. Mirror-d, a
weakly-consistent, replicated file archiver uses these logical
topologies to propagate updates timely and efficiently.

To simplify replicating Harvest brokers, mirror-d uses
a master copy replication scheme. All updates are per-
formed at the master site, with replicas being read-only
copies. Each replica has a version number that determines
if a replica needs to be updated. Replicas pull data from
neighbors rather than having a neighbor push data. This

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ttachment 3a: Copy of Document 1 from the
niversity of Illinois at Urbana-Champaign Library

D
A

Logical TopCloQY e

Physical Topology

@ Group 1 member Group 2 member § Group 3 member @ Corner member QO Non-group member

Figure 1. Replication groups showing logical versus physical topologies.

avoids the problem of multiple concurrent updates.

‘When a replica completes an update, it sends out a notifi-
cation to its neighbors with the new version number. When
a neighbor receives a notification it checks if its local ver-
sion is out of date. If so, it then invokes mirror-d to update
its local copy. Since it is relatively cheap to send out up-
date notifications, mirror-ds can request them periodically
to ensure that their local copies are up to date. This works
well when replicas crash and lose update notifications, or
are interrupted midway in an update process.

Another design decision was the use anonymous-FTP as
the file propagation mechanism. While this complicates the
installation of mirror-d, it has the advantage that most sys-
tem administrators are familiar with anonymous-FTP. Ad-
ditionally, anonymous-FTP is widely supported, and much
work has been done to eliminate its security holes.

2.1. Consistency Between Groups

Consistency between replication groups is maintained as
easily as it is between members of a group. Representa-
tive individual replicas, or corner replicas belong to multi-
ple groups. Since replicas flood updates to neighbors in the
logical topology, updates in one group make their way to all
groups.

Although network node and link failures may result in
network partitions and permanent node failures and group
membership changes may introduce temporary inconsisten-
cies, they are eventually resolved as long as flood-d topolo-
gies keep the nodes connected.

2.2. Updating Logical Topologies

Network nodes and links may fail temporarily, or may be
permanently removed from service. Replicas may also join

OCKET

LARM

and leave a flooding group. The group membership proto-
col and physical topology estimation will eventually detect
these changes, which will be reflected in the new topology
graph computed for the group.

Our replication tool uses flooding to propagate topology
updates to all members of a replication group. Topology
update messages carry a sequence number corresponding to
the topology identifier, which replicas use to order topology
updates, and detect duplicates. Topology update messages
also contain the new group membership. When a replica
receives a topology update, it floods the new topology ac-
cording to the current topology before committing the new
topology.

The topology update process generates additional traffic
associated with propagating topology update messages to
the participating replicas. The resulting overhead in terms
of the total number of messages generated is proportional
to the number of participating replicas, and the frequency
with which topology updates occur. In a highly replicated
service whose copies are spread throughout large internets,
the topology update overhead may become prohibitively ex-
pensive. As the number of replicas increases, the overhead
associated with maintaining group membership informa-
tion, and estimating communication costs becomes exces-
sive. Our hierarchical approach helps limit this overhead.
Grouping replicas located physically close to one another
restricts the scope of the changes of topology updates. It
also limits the scope of the resulting topology updates to
the local group, and therefore restricts topology update traf-
fic on the more expensive, long-haul physical links.

The aggregate cost of topology estimation grows as
O(n?) where n is the size of the group. On one hand, the
more estimates collected, the more adaptive to network and
server load changes the group is. On the other hand, the

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ttachment 3a:

Copy of Document 1 from the

niversity of Illinois at Urbana-Champaign Library

higher the estimation frequency, the greater the impact on
network utilization. Section 5 presents estimation traffic

measurements collected from replication groups of differ-
ent sizes.

3. The Flood Daemon

A flood-d replica computes bandwidth and RTT esti-
mates to other replicas in its group. A single designated
site, the group master, generates topologies for the group.
Flood-d handles group membership of one or more replica-
tion groups.

The first topology the group master generates after a new
member joins will not be very good since the new member
has not had time to perform bandwidth and RTT estimates
between group members. The topology will get better as
estimates improve.

Flood-d was written to be fast and robust. Consequently
it is written as a Unix daemon that does not fork, but instead
uses non-blocking I/O for all communication. The interface
to flood-d is via an interface that can be queried with either

‘telnet’ or more conveniently with a WWW browser that
speaks HTTP [1].

3.1. Membership and Multiple Groups

When a new site joins a group, it sends a join request to
an existing group member. As soon as a replica receives a
Join request from a site, it adds the new site to the list of
known sites and starts collecting network estimates for that
site. The replica that receives the join request also floods
it out to all replicas in the group. A site is not part of the
the group until the master distributes a new topology that
contains the site. This naturally gives the master control
over group membership.

There is no protocol for leaving the group. Sites leave a
replication group silently; after a pre-determined period of
time, if a site has not been heard from, it is simply dropped
from the group. This silence period is configurable and is
currently set to 1 hour. Setting the silence period should
take into account other group parameters such as the RTT
time and bandwidth estimation periods, as well as the esti-
mate reporting period.

A flood-d replica can be a member of more than one
group. This is the case of Figure’s 1’s replica N,

3.2. Estimate Collection

A flood-d replica periodically performs RTT and band-
width estimation between itself and other members of the
group. To avoid synchronous group behavior, we add a ran-
dom offset to the estimation frequency. Over time, a site

[A)OCKET

LARM

builds estimates of RTT and available bandwidth to all other
members of the group.

For RTT estimates, a replica sends a UDP packet con-
taining a timestamp to a randomly-selected group member.
When a flood-d receives such a packet it simply sends the
packet back to the originator. The returned packet is then
used to estimate the RTT between flood-ds. Similarly to
RTT estimation, a flood-d replica estimates bandwidth by
periodically choosing a random site and sending a block of

data to that site. The default block size is 32 KBytes. Avail-
able bandwidth is defined as the

bandwidth = bytes_sent/(timejqq byte —HiMefirg pyte)

The times at which the destination replica received
the first and last bytes are given by timeyirst_pyte and
timeast_pyte Tespectively. In order to build up a base of
statistics more quickly, bandwidth is measured both when
data is sent or received. Bandwidth estimation is performed
whenever the data transfer meets or exceeds the bandwidth
block size. While these means of collecting statistics are
admittedly not very precise, they serve our purposes well
enough. In Section 5, we report available bandwidth esti-
mates using different data block sizes.

When computing the actual estimates to report to the
group master, previous history is taken into account. This

prevents adapting to transient changes. The damping effect
is computed as follows:

new_estimate =

a * old_estimate + (1 — @) * current_estimate

where old_estimate is the previously reported estimate,
and current_estimate is the estimate Jjust measured. The
damping rate « is set according to how much weight is
given to past history. Currently we set o to 0.90.

To build up group estimates as quickly as possible, the
periodic estimation algorithm “fast-starts” by performing
more frequent estimates when flood-d first starts. Over time,
the estimation process slows down to reduce the impact of
bandwidth and RTT estimates on network utilization.

There is an obvious tradeoff between the ability of the
system to adapt to network conditions and the amount of
overhead incurred by bandwidth and RTT estimation. Large
groups will need to perform more estimation than small
groups. This difference is not linear since a n
performs O(n?) estimates.

The end-to-end bandwidth and RTT estimates take into
account the actual load on the servers involved. Measure-
ments done at the network level mi ght be more accurate in
terms of the actual network statistics, but they do not reflect
the actual delay and bandwidth seen by the application. For
instance, the fact that a server tends to be heavily loaded is

-replica group

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ttachment 3a:

just as important as network congestion as far as applica-
tions are concerned.

The master collects estimates reported by group mem-
bers into a cost matrix for the group, which is then used to
compute the group’s current logical update topology. Each
entry C;j in the cost matrix corresponds to the communica-
tion cost between nodes i and 7, which is given by B;j/D;j,
where B;j and D;j are the estimated bandwidth and RTT
between 7 and j, respectively.

3.3. Topology Calculation

Flood-d generates logical update topologies by invoking
a topology generator. The current topology generator uses
as input the estimated cost matrix and the connectivity re-
quirement k. It computes a minimum cost spanning tree
with extra edges to provide redundancy in the event of link
failure and to decrease the graph’s diameter. The algorithm
first computes a minimum spanning tree connecting all the
nodes, and then, for each node whose degree d is less than
the required connectivity k, adds the current cheapest edge
until d = k. We are currently using k = 2.

The original topology generator [9] produced low-cost,
low-diameter, k-connected topologies for a group using
simulated annealing as its optimization technique. Our ex-
periments demonstrated that this sophisticated algorithm
only produced moderate reductions in total edge cost. Con-
sequently, in practice we use a simpler, faster, less optimal
algorithm.

Because the simulated annealing algorithm tries to lower
both total edge cost and diameter, it may select more ex-
pensive links over cheaper ones. For instance, our testing
environment contained several 28K PPP links. Frequently,
areplica would attempt to replicate across a slow link, when
there was another replica available via a local ethernet. We
do not notice such phenomenon in the topologies generated
by the minimum spanning tree algorithm.

4. The Mirror Daemon

A mirror-d replicated archive consists of a master copy
and read-only replicas. Each replica contains the file system
hierarchy being replicated and an associated version num-
ber. When the master site is updated, it issues a command
to its mirror-d, which creates a new version number. It then
sends out update notifications to neighbors according to the
logical topology flood-d generates.

An update notification contains a version number, the
name of the host on which the replica sending the update
resides, information required to access the archive via FTP,
and a template containing parameters to be used by the FTP-
mirror package.

DOCKET

_ ARM

Copy of Document 1 from the
niversity of Illinois at Urbana-Champaign Library

[alaly]

A read-only replica’s mirror-d is responsible for deter-
mining if the replica’s local copy is out of date. When a
replica receives an update notification, it checks if the up-
date’s version is more recent than the local version. If it is,
it places the notification in a notification set. After receiv-
ing several notifications, mirror-d selects from the notifica-
tion set the update notification that came from the neighbor
with the best bandwidth/delay metric according to the lo-
cal flood-d. Using this update notification, mirror-d builds
an FTP-mirror configuration file from the FTP-mirror tem-
plate, and then starts an FTP-mirror process. If the mirror
process succeeds, the local version is updated and and any
redundant notifications are purged from the notification set.
If the update fails, mirror-d selects another notification, and
the FTP-mirror process repeats.

A mirror-d determines its neighbors by querying the lo-
cal flood-d, and extracting a list of all neighbors and their
corresponding logical link cost metrics. The fact that these
neighbors might be in different replication groups is trans-
parent to mirror-d. The mirror-d applications know noth-
ing about the existing replication groups. Indeed, mirror-
d could be easily hand-configured with pre-defined neigh-
bors. One would lose the elegance of automatic topology
calculation, but for some applications it might be useful that
mirror-d be independent of flood-d.

Since a mirror-d will have several neighbors, it is often
the case that it will receive update notifications from sev-
eral of them. The mirror-d implementation never acts im-
mediately on update notifications, but instead waits at least
aminute to allow time for multiple update notification to ar-
rive. It then orders the update notifications with the highest
bandwidth, lowest delay neighbor first. This avoids the sit-
uation where a mirror-d will mirror over a 28K link, when
it could do it over a local ethernet,

5. Performance Measurements

We have conducted preliminary performance measure-
ment experiments with our replication tool. The goal of the
first set of experiments is to evaluate the overhead flood-d
generates, while the second experiment tries to assess the
impact of the message size on the estimated available band-
width,

b.1. Flood-d Overhead

Recall that replicas in a group periodically estimate RTT
and available bandwidth to the other group members. For
this experiment, the time between RTT and bandwidth es-
timation was set to 15 minutes and 1 hour, respectively.
From time to time, replicas report their estimates, which
the group master uses to compute a new logical topology

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

