Distributed MST Algorithms 71

new node can proceed with MST construction only at the begining of a
phase. This restriction may impose some delay before a new node can
proceed with MST construction. We feel that this delay is worth the

simplicity of the phase synchronizing scheme.

Next, consider how new edges can be added to the network. If these
new edges came from at least one new node, then it will be introduced
into a new computation phase at the same time by both the nodes at
either end, as we have just seen. Let us now examine how an edge that
once had an infinite cost now has a finite cost, i.e. it can be used for
communication again. Note that the nodes on either end are not new and
have been participating in computation phases, treating this edge as if
it did not exist. Either or both the nodes will discover that the edge
is available for communication and establish interprocess communication
channels between them. The difficult part is introducing this edge with
a new finite cost into the‘same computation phase for both nodes. If we
assume that such edges come into existence only during the
reinitialization process for both nodes, then either one of them could
initiate vreestablishment of the edge cost and the edge would be
introduced in the new computation phase for both nodes at the same time.
This assumption is necessary for the same reason that edges and nodes
cannot go down during a computation phase, or that edge costs can not be
changed during a computatioh phase. That is, the algorithm assumes a
fixed topology during a computation phase and any change would cause the

state Information at various nodes to be inconsistent.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



TODowd
Sticky Note
None set by TODowd

TODowd
Sticky Note
MigrationNone set by TODowd

TODowd
Sticky Note
Unmarked set by TODowd

https://www.docketalarm.com/

Distributed MST Algorithms 72

The assumption that no changes 1in topology can occur during a
computation phase, and only during the reinitialization period is not
unreasonable. The adaptive algorithm will be typically used in an
environment where an MST is constructed, and used for a certain period
of time and then reconstructed. Therefore each node will be in the
reinitialization process for a longish period of time, deciding what the
local topology should be 1like for the next phase. Nodes could be
programmed to wait for a certain period of time when they have
reinitialized themselves and found out that they are leaves. Hence, one
can imagine that the nodes construct the MST, then spend some time
reinitializing. Upon reinitialization the leaves of the MST could wait
for some time before starting the new phase. Once they have started the
phase, nodes that become leaves perform their usual functions. This
does not require clocks in different nodes to be synchronized or even

have the same period.

2.6.6 The Packet Radio Network Environment

We now describe how the algorithm can be used in the Packet Radio
Network [Kahn75, Frank75] which uses centralized routing. Packets are
forwarded from a source repeater along the branches of a tree to the
station where they get routed either to a host connected to' another
network for which the station acts like a gateway, or to a user
connected to a destination repeater. The tree élong which packets are
forwarded 1s rooted at the station and could be a minimum height tree.

If a minimum spanning tree connecting the repeaters and station is

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



TODowd
Sticky Note
None set by TODowd

TODowd
Sticky Note
MigrationNone set by TODowd

TODowd
Sticky Note
Unmarked set by TODowd

https://www.docketalarm.com/

Distributed MST Algorithms 73

equally satisfactory, then this algorithm can be used to construct the
MST when the repeaters are dropped from an airplane and the station is
already on the ground. The repeaters and station all have the same
algorithm executing in them. The algorithm adaptively recomputes the
MST as more repeaters land and discover other repeaters. We assume that
repeaters do not go down and edge costs do not become infinite (unless
., repeaters are in the reinitialization érocessl). We must, however,
permit new edges to be introduced into the network at all times and not
only during reinitialization. This can easily be done, as we shall see.
Notice that the assumptions for the adaptive algorithm to work have not

been violated in this real 1life application!

Aséume that an edge (A,B) can go from infinite cost to a finite
cost at any time. Either A or B, or both will discover that this edge
is available for communication and establish interprocess communication
channels between them. Assume now that A enters its reinitialization
code because it gets a “done’ signal. A attempts to reestablish the
cost of this edge. If B is also in its reinitialization code, then all
is fine and the edge will enter the new computation phase, as we have
seen in section 2.6.5. However, it is possible that B may alternatively

be in one of the two following states:

(1) B may just have reinitialized itself and proceeded with the new
phase (A and B could not communicate when B got its ‘done’ signal

since edge (A,B) did not exist at that time).

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



TODowd
Sticky Note
None set by TODowd

TODowd
Sticky Note
MigrationNone set by TODowd

TODowd
Sticky Note
Unmarked set by TODowd

https://www.docketalarm.com/

Distributed MST Algorithms 74
(11) B may not have yet got the “done’ sigﬁal.

A and B must synchronize their actions so that (A,B) has the same cost
as seen by both of them for all phases. Let us see how this 1is
achieved. A will be told by B that it is not in the reinitialization
process and to wailt for the response. A can not, however, wait
indefinitely because B may have been in a state described in (i) above.
A must treat this edge specially. A assumes that B 1is in state (ii)
above and waits for a certain amount of time. If B responds in that
time with establishment of the edge cost, all is again fine. If B does
not reépond, then A aborts this reestablishment and assumes that B was
in state (1) and therefore treats the edge as though it had an infinite
cost. A’s assumption may have been wroﬁg in that it just didn’t wait
long enough. 1In that case the situation and process B goes through upon
getting its “done” signal is symmetrical to what we just described.
Hence, if timings are not right, then it is likely that A and B will not
introduce this new edge into the network for a number of phases. We
believe that nodes will be in the reinitialization process for a longish
beriod of time, and that there are stochastic delays and so this
synchronization will eventually come about. This synchronization
mechanism is very much in the same spirit as the .-one used by the
Internet Transmission Control Program when it sets up an interprocess
communication channel across a very unreliable subnet [Cerf74a,

Tomlinson74, Dalal74, Dalal75, Sunshine75].

As repeaters land they will discover the world around them. They

dn not wait for all reneaters in their naefchhorhood to 1and since fhev

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



TODowd
Sticky Note
None set by TODowd

TODowd
Sticky Note
MigrationNone set by TODowd

TODowd
Sticky Note
Unmarked set by TODowd

https://www.docketalarm.com/

Distributed MST Algorithms 75

PN

do not know how many there will be. A repeater decides that it has
enough neighbors and then considers itself initialized and proceeds to
construct the MST. It is possible that a small MST will be constructed
in the first phase, and this will become larger as new nodes are added
in subseduent phases. It is also possible that a number of small MSTs
will be constructed, but as more nodes land or the existence of new
edges are discovered the smallk MSTs will connect themselves to one

another producing a final MST.

2.6.7 Analysis of the Algorithm

The adaptive algorithm is relatively simple once a new computation
phase has been properly initiated. In terms of the abstract parallel
algorithm, leaf nodes decide to connect the new fragment they have
information about to another fragment by the minimum cost edge. Since
all N nodes eventually become leaves and there are only N-1
old-branches, one and only one node determines-:that the computation
phase has terminated. This node informs the others by broadcasting a

‘done” signal, along the branches of the MST just constructed.

The reinitialization process that a node undergoes upon realizing
that the current computation phase 1is over 1is ver& important. The
properties of the protocol by which edge costs are established have been
described in sections 2.,6.3, 2.6.4, and 2.6.5. The algorithm assumes
that certain changes in topology, i.e. edges or nodes going down, only
occur during reinitialization, 1in order to keep the topology from

changing during a computation phase, and to guarantee that a computation

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



TODowd
Sticky Note
None set by TODowd

TODowd
Sticky Note
MigrationNone set by TODowd

TODowd
Sticky Note
Unmarked set by TODowd

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE




