IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 5, MAY 1980

711

The New Routing Algorithm for the ARPANET

JOHN M. McQUILLAN, MEMBER, IEee, IRA RICHER, MeMBER. IEEE. AND ERIC C. ROSEN

Abstract—The new ARPANET routing algorithm is an improvement
over the old procedure in that it uses fewer network resources, operates on
more realistic estimates of network conditions, reacts faster to important
network changes, and does not suffer from long-term loops or oscillations.
In the new procedure, each node in the network maintains a database
describing the complete network topology and the delays on all lines, and
uses the database describing the network to generate a tree representing the
minimum delay paths from a given root node to every other network node.
Because the traffic in the network can be quite variable, each node
periodically measures the delays along its outgoing lines and forwards this
information to all other nodes. The delay information propagates quickly
through the network so that all nodes can update their datab and
continue to route traffic in a consistent and efficient manner.

An extensive series of tests were conducted on the ARPANET, showing
that line overhead and CPU overhead are both less than two percent, most
nodes learn of an update within 100 ms, and the algorithm detects
congestion and routes packets around congested areas.

I. INTRODUCTION

HE last decade has seen the design, irri’plcmentation, and

operation of several routing algorithms for distributed net-
works of computers. The first such algorithm, the original
routing algorithm for the ARPANET, has served remarkably
well considering how long ago (in the history of packet switch-
ing) it was conceived. This paper describes the new routing
algorithm we installed recently in the ARPANET. Readers not
familiar with our earlier activities may consult [1] for a survey
of the ARPANET design decisions, including the previous
routing algorithm; readers interested in a survey of routing al-
gorithms for other computer networks and current research in
the area may consult [2].

A distributed, adaptive routing scheme typically has a
number of separate components, including: 1) a measurement
process for determining pertinent network characteristics,
2) a protocol for disseminating information about these
characteristics, and 3) a calculation to determine how traffic
should be routed. A routing “algorithm” or “procedure” is
not specified until all these components are defined. In the
present paper, we discuss these components of the new
ARPANET algorithm. We begin with a brief outline of the
shortcomings of the original algorithm; then, followingan over-
view of the new procedure, we provide some greater detail on
the individual comporients. The new algorithm has undergone
extensive testing in the ARPANET under operational condi-
tions, and the final section of the paper gives a summary of the

Paper approved by the Editor for Computer Communication of the
IEEE Communications Society for publication without oral presentation.
Manuscript received May 11, 1979; revised October 5, 1979. This work
was supported by the Defense Advanced Research Projects Agency
under ARPA Order 3941, and by the Defense Communications Agency
(DoD) under Contract MDA903-78-C-0129, monitored by DSSW.

The authors are with Bolt Beranek and Newman Inc., Cambridge,
MA 02138.

test results. This paper is a summary of our conclusions only;
for more complete descriptions of our research findings, see
our internal reports on this project [3]-[5].

11. PROBLEMS WITH THE ORIGINAL ALGORITHM

The original ARPANET routing algorithm and the new ver-
sion both attempt to route packets along paths of least delay.
The total path is not determined in advance; rather, each node
decides which line to use in forwarding the packet to the next
node. In the original approach, each node maintained a table
of estimated delay to each other node, and sent its table to all
adjacent nodes every 128 ms. When node J received the table
from adjacent node J, it would first measure the delay from it-
self to J. (We will shortly discuss the procedure used for meas-
uring the delay.) Then it would compute its delay via J to all
other nodes by adding to each entry inJ’s table its own delay
to J. Once a table was received from all adjacent nodes, node J
could easily determine which adjacent node would result in
the shortest delay to each destination node in the network.

In recent years, we began to observe a number of problems
with the original ARPANET routing algorithm [7] and came
to the conclusion that a complete redesign was the only way
to solve some of them. In particular, we decided that a new
algorithm was necessary to solve the following problems.

1) Although the exchange of routing tables consumed only
a small fraction of line bandwidth, the packets containing the
tables were long, and the periodic transmission and processing
of such long, high-priority packets can adversely affect the
flow of network traffic. Moreover, as the ARPANET grows to
100 or more nodes, the routing packets would become cor-
respondingly larger (or more frequent), exacerbating the
problem.

2) The route calculation is performed in a distributed man-
ner, with each node basing its calculation on local information
together with calculations made at every other node. With
such a scheme, it is difficult to ensure that routes used by dif-
ferent nodes are consistent.

3) The rate of exchange of routing tables and the distributed
nature of the calculations causes a dilemma: the network is
too slow in adapting to congestion and to important topology
changes, yet it can respond too quickly (and, perhaps, inac-
curately) to minor changes.

The delay measurement procedure of the old ARPANET
routing algorithm is quite simple. Periodically, an IMP counts
the number of packets queued for transmission on its lines and
adds a constant to these counts; the resulting number is the
“length’ of the line for purposes of routing. This delay meas-
urement procedure has three serious defects.

1) If two lines have different speeds, or different propaga-
tion delays, then the fact that the same number of packets is

0090-6778/80/0500-0711800.75 © 1980 IEEE

Ex. 1007

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.



dkumar
Typewritten Text
Ex. 1007

dkumar
Typewritten Text

dkumar
Typewritten Text

https://www.docketalarm.com/

712

queued for each line does not imply that packets can expect
equal delays over the two lines. Even if two lines have the
same speed and propagation delay, a difference in the size
of the packets which are queued for each line may cause dif-
ferent delays on the two lines,

2) In the ARPANET, where the queues are constrained to
have a (short) maximum length, queue length is a poor indi-
cator of delay. The constraints on queue length are imposed
by the software in order to fairly resolve contention for a limited
amount of resources. There are a number of such resources
which must be obtained before a packet can even be queued
for an output line. If a packet must wait a significant amount
of time to get these resources, it may experience a long delay,
even though the queue for its output line is quite short.

3) An instantaneous measurement of queue length does not
accurately predict average delay because there is a significant
real-time fluctuation in queue lengths at any traffic level. Our
measurements show that under a high constant offered load,
the average delay is high, but many individual packets show
low delays, and the queue length often falls to zero! This
variation may be due to variation in the utilization of the CPU,
or to other bottlenecks, the presence of which is notaccurately
reflected by measuring queue lengths.

These three defects are all reflections of a single point,
namely, that the length of an output queue is only one of
many factors that affect a packet’s delay. A measurement pro-
cedure that takes into account only one such factor cannot
give accurate results.

The new routing algorithm is an improvement over the old
one in that it uses fewer network resources, operates on more
realistic estimates of network conditions, reacts faster to im-
portant network changes, and does not suffer from long-term
loops or oscillations.

1II. OVERVIEW OF THE NEW ROUTING PROCEDURE

The routing procedure we have developed contains several
basic components. Each node in the network maintains a data-
base describing the network topology and the line delays.
Using this database, each node independently calculates the
best paths to all other nodes, routing outgoing packets accor-
dingly. Because the traffic in the'network can be quite variable,
each node periodically measures the delays along its outgoing
lines and forwards this information (as a “routing update’) to
all other nodes. A routing update generated by a particular
node contains information only about the delays on the lines
emanating from that node. Hence, an update packet is quite
small (176 bits on the average), and its size is independent of
the number of nodes in the network. An update generated by
.a particular node travels unchanged to all nodes in the network
(not just to the immediate neighbors of the originating node,
as in many other routing algorithms). Since the updates need
not be processed before being forwarded because they are
small, and since they are handled with the highest priority,
they propagate very quickly through the network, so that all
nodes can update their databases rapidly and continue to route
traffic in a consistent and efficient manner.

Many algorithms have been devised for finding the shortest
path through a network. Several of these are based on the con-

DOCKET

_ ARM

IEEE TR&NSAC'I_']ONS ON COMMUNICATIONS, VOL. COM-28, NO. 5, MAY 1980

given node, the root of the tree. A recent article [9] dis-
cusses some of these algorithms and references several survey
articles. The algorithm we have implemented is based on one
attributed to Dijkstra [10]; because of its search rule, we call
it the shortest-path-first (SPF) algorithm.

The basic SPF algorithm uses a database describing the net-
work to.generate a tree representing the minimum delay paths
from a given root node to every other network node. Fig. 1
shows a simplified flowchart of the algorithm. The database
specifies which nodes are directly connected to which other
nodes, and what the average delay per packet is on each net-
work line. (Both types of data are updated dynamically, based
on real-time measurements.) The tree initially consists of just
the root node. The tree is then augmented to contain the node
that is closest (in delay) to the root and t}_xét is adjacent to a
node already on the tree. The process continues by repetition
of this last step. LisT denotes a data structure containing
nodes that have not yet been placed on the tree but are
neighbors of nodes that are on the tree. The tree is built up
shortest-paths-first—hence, the name of the algorithm. Event-
ually, the furthest node from the root is added to the tree, and
the algorithm terminates. We have made important additions
to this basic algorithm so that changes in network topology or
characteristics require only an incremental calculation rather
than a complete recalculation of all shortest paths.

Fig. 2 shows a six-node network and the corresponding
shortest path tree for node 1. The figure also shows the rout-
ing directory which is produced by the algorithm and which
would be used by node 1 to dispatch traffic. For example,
traffic for node 4 is routed via node 2. Only the routing direc-
tory is used in forwarding packets; the tree is used only in
creating the directory.

The two other important components of the routing
procedure are the mechanism for measuring delay and the
scheme for propagating information. The routing algorithm
must have some way of measuring the delay of a packet at
each hop. This aspect of the routing algorithm is quite crucial;
an algorithm with poor delay measurement facilities will per-
form poorly, no matter how sophisticated its other features
are.

Each node measures the actual delay of each packet flowing
over each of its outgoing lines, and calculates the average delay
every 10 s. If this delay is significantly different from the
previous delay, it is reported to all other nodes. The choice of
10 s as the measurement period represents a significant depar-
ture from the old routing algorithm. Since it takes 10 s_to
produce a measurement, the delay estimate for a given line
cannot change more often than once every 10 s. The old rout-
ing algorithm, on the other hand, would allow the delay esti-
mate to change as often as once every 128 ms. We now believe,
however, that there is no point in changing the estimate so
often, since it is not possible to obtain an accurate estimate
of delay in the ARPANET in less than several seconds. (See
Section IV-B.)

The updating procedure for propagating delay information
is of critical importance because it must ensure that each
update is actually received at all nodes so that identical data-
bases of routing information are maintained at all nodes. Each

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

McQUILLAN et al.: ROUTING ALGORITHM FOR THE ARPANET

MARK ALL NODES
NOT ON LIST

B

PUT ROOT (SELF)

ON LIST

!

REMOVE NODE CLOSEST
TO ROOT FROM LIST:
PUT NODE ON TREE

!

FOR ALL NEIGHBORS OF NODE:
IF ON TREE, DO NOTHING
IF ON LIST, UPDATE DISTANCE
ELSE PUT ON LIST

NONE
[ DONE

]

'Fig. 1.

e

(a)

DESTINATION
NODE

|
ROUTE TRAFFIC I
VIA NODE 222212

(c)

(b)

Fig. 2. (a) Example network (line lengths indicated by the numbers
beside the arrowheads). (b) Shortest path tree. (c) Routing directory.

method of transmitting it on all lines. When a node receives an
update, it first checks to see if it has processed that update
before. If so, the update is discarded. If not, it is immediately
forwarded to all adjacent nodes. In this way, the update flows
quickly (within 100 ms) to all other nodes. The fact that an
update flows once in each direction over each network line is
the basis for a reliable transmission procedure for the updates.
Because the updates are short and are generated infrequently,
this procedure uses little line or node bandwidth (less than two
percent). We have augmented this basic procedure with a
mechanism to ensure that databases at nodes are correctly
updated when a new node or line is installed, or when a whole
set of previously disconnected nodes joins the network. This is
' discussed in more detail in Section IV-C.

Since all nodes perform the same calculation on an identical

database, there are no permanent routing loops. Of course,

DOCKET

_ ARM

713

(2)
© ©

(a) (b)

Fig. 3. (a) Shortest path tree for network of Fig. 2(a) after the length
of the line 2 —+ 4 increase to 6. (b) Modified tree after the length of
line — 5 decrease to 2.

transient loops may form for a few packets when a change is
being processed, but that is quite acceptable, since it has no
significant impact on the average delay in the network.

IV. DETAILED DESCRIPTION OF THE NEW
ROUTING PROCEDURES

A. Routing Calculation—The SPF Algorithm

We now describe the additions to the basic algorithm of
Fig. 1 which we have developed to handle various possible
changes in network status without having to recalculate the
whole tree. For each change described below, we assume that
the shortest path tree rooted at node [ prior to the change is
known.

First, consider the case where the delay of the line AB from
node A to node B increases. Clearly, if the line is not in the
tree (i.e., not in the shortest path from that node to any other
node), nothing need be done because if the line were not part
of any shortest path prior to the change, then it will certainly
not be used when its delay increases. If the line is in the tree,
then the delay to B increases, as does the delay to each node
whose route from I passes through B. Thus, the nodes in the
subtree whose root is B are candidates for changed positions in
the tree. Conversely, nodes not in this subtree will not be
repositioned.

The first two steps for handling an increase of X in the de-
lay from A to B are as follows.

1) Identify nodes in B’s subtree and increase their delays
from I by X,

2) For each subtree node §, examine S§’s neighbors which
are not in the subtree to see if there is a shorter path from /
to § via those neighbors. If such a path is found, put node S
on LIST.

At the conclusion of these steps, LisT either will be empty
or will contain some subtree nodes for which better paths have
been found. In order to find the best paths to the nodes on
LIST, a slightly modified version of SPF can be invoked. This
will also find better paths, if any exist, for other subtree nodes.
Fig. 3(a) shows the modification to the tree of Fig. 2 that
results when the delay of the line from node 2 to node 4
increases to 6.

Now consider the case where the delay on 4B decreases by
X. If this line is in the tree, then paths to the nodes of the sub-
tree which have B as its root will be unchanged because the
subtree nodes were already at minimum delay, and hence
the decreased delay will only shorten their distances from
I. Moreover, any node whose delay from [ is less than or

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

114

equal to B’s new distance from / will not be repositioned, since
the node’s path must reach B first in order to take advantage
of the improved line. However, nodes which are not in the sub-
tree and which are farther from / than B may have a shorter
distance via one of the subtree nodes.

The algorithm must thus first perform the following steps.

1) Identify the nodes in the subtree and decrease their dis-
tances from / by X.

2) Try to find a shorter distance for each node K that is not
in the subtree but is adjacent to a subtree node by identifying
a path to K via an adjacent node which is in the subtree. If
such a path is found, put node K on LIST.

At the conclusion of these steps, LiST will contain some
(possibly zero) subtree adjacent nodes that have been re-
positioned. Nodes adjacent to these that are not in the sub-
tree are also candidates for improved paths, and starting with
the Li1ST generated in step 2) above, the basic SPF algorithm
(with minor modifications) can be used to restructure the rest
of the tree. Fig. 3(b) shows how the tree of Fig. 3(a) changes
when the length of the link from node 2 to node 5 decreases
to 2, while the length of the link from node 2 to 4 remains
at 6.

If the delay on line AB improved, but AB was not originally
in the shortest path tree, the algorithm first determines whether
B can take advantage of this improvement. Since the delay
from I to A cannot be improved, the delay to B using the line
AB will be equal to the original distance to A plus the new
delay of AB. If the new delay is greater than or equal to the
former delay from / to node B, then the improved line does
not help and no changes are made to the tree or to the routing
table. If, on the other hand, the updated delay is less than the
original delay, then the best route to B now includes AB. The
first change to the shortest path tree is, therefore, to relocate
B (and its subtree), attaching it to node A4 via line AB. Now
the situation is identical to that of the previous paragraph in
which the line from A4 to B was in the tree in the first place
and its delay decreased.

Finally, a change in the status of a node—namely, the
addition of a new node, the removal of a node, a node failure,
or its recovery from a failure—is implicitly recognized by the
change in the status of its lines. For example, if a node fails, its
neighbors determine that the lines to that node have failed,
and when other nodes receive this information, they calculate
that the failed node is unreachable. (Of course, nodes can be-
come unreachable even if their lines do not fail.) Thus, the
algorithm need explicitly consider only line changes.

The basic SPF calculation and all of the above incremental
cases are consolidated into the semiformal version of the algo-
rithm given in the Appendix.

B. Delay Measurement

Measuring the delay of an individual packet is a simple
matter. When the packet arrives at the IMP, it is time-stamped
with its arrival time. When the first bit of the packet is trans-
mitted to the next IMP, the packet is stamped with its “sent
time.” If the packet is retransmitted, the original sent time is
overwritten with the new sent time. When the acknowledg-
ment for the packet is received. the arrival time is subtracted

DOCKET

_ ARM

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 5, MAY 1980

tion delay of the line (a constant for each line)and the packet’s
transmission delay (found by looking it up in a table indexed
by packet length and line speed). The result is the packet’s
total delay at that hop—the time it took the packet to get
from one IMP to the next.

Every 10 s the average delay of all packets which have tra-
versed a line in the previous 10 s is computed. Our measure-
ments show that when we take an average over a period of
less than 10 s, the average shows too much variation from
measurement period to measurement period, even when the
offered load is constant. There is a tradeoff here: a longer
measurement period means less adaptive routing if condi-
tions actually change; a shorter period means less optimal
routing because of inaccurate measurements.

Another important aspect of the measurement technique is
that the measurement periods are not synchronized across the
network. Rather, the measurement periods in the different
IMP’s are randomly phased. This is an important property be-
cause synchronized measurement periods could, in theory,
lead to instabilities [4], [11].

The new routing algorithm does not necessarily generate
and transmit an update at the end of each measurement period;
it does so only if the average delay just measured is “signifi-
cantly” different from the average delay reported in the last
update that was sent (which may or may not be the same as
the delay measured in the previous measurement period). The
delay is considered to have changed “by a significant amount”
whenever the absolute value of the change exceeds a certain
threshold. The threshold is not a constant but is a decreasing
function of time because whenever there is a large change in
delay, it is desirable to report the new delay as soon as pos-
sible, so that routing can adapt quickly; but when the delay
changes by only a small amount, it is not important to report
it quickly, since it is not likely to result in important routing
changes. However, whenever a change in delay is long lasting,
it is important that it be reported eventually, even if it is small;
otherwise, additive effects can introduce large inaccuracies
into routing. What is needed, then, is a scheme which reacts
to large changes quickly and small changes slowly. A threshold
value which is initially high but which decreases to zero over
a period of time has this effect. In the scheme we have imple-
mented, the threshold is initially set to 64 ms. After each
measurement period, the newly measured average delay is
compared with the previously reported delay. If the difference
does not exceed the threshold, the threshold is decreased by
12.8 ms. Whenever a change in average delay equals or exceeds
the threshold, an update is generated, and the threshold is
reset to 64 ms. Since the threshold will eventually decay to
zero, an update will always be sent after a minute, even if
there is no change in delay. (This feature is needed to ensure
reliability of the updating protocol under certain conditions.
See Section 1V-C.) It should be pointed out that when a line
goes down or comes up, an update reporting that fact is
generated immediately.

C. Updating Policy

We next discuss the policy for propagating the delay in-
formation needed in SPF calculations which reauire identical

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

McQUILLAN eral.: ROUTING ALGORITHM FOR THE ARPANET
meet two basic criteria, high efficiency (i.e., low utilization of
line and CPU bandwidth) and high reliability. Efficiency is im-
portant both under normal conditions and when a change is
detected that requires immediate updating. Reliability means
that updates must be processed in sequence, handled without
loss during equipment failures, and treated correctly after
failure recovery.

Rather than having separate updates for each line, each up-
date contains information about all the lines at a particular
IMP. That is, each update from a given node specifies all the
neighbors of that node, as well as the delay on the direct line
to each of the neighbors. This results in more efficiency (ie.,
less overhead), and the simplicity of only one single serial
number per node. The latter makes sequencing and other
bookkeeping easier.

We considered different approaches for distributing the up-
dates [8] and decided on “flooding,” in which each node sends
each new update it receives on all its lines except the line on
which the update was received. An important advantage of
flooding is that the node sends the same message on all its
lines, as opposed to creating separate messages on the dif-
ferent lines. These messages are short (no addressing informa-
tion is required), so that the total overhead due to routing up-
dates is much less than one percent. A final consideration
which favors flooding is that it is independent of the routing
algorithm. This makes it a safe, reliable scheme.

We considered several different ways of augmenting the
basic flooding scheme to ensure reliable transmission [4]. An
important feature of all the schemes is that updates which
need to be retransmitted can be reconstructed from the topol-
ogy tables in each IMP. The protocol we have adopted uses an
explicit acknowledgment which is a natural extension of the
basic flooding scheme. Using flooding, there is no need to
transmit an update back over the line on which it was received
since the neighbor on that line already has the update. In our
protocol, however, the updates are transmitted over all lines,
including the input line. The “echo’ over the input line serves
as an acknowledgment to the sender; if the echo is not received
in a given amount of time (measured by a retransmission timer
for each line), the update is retransmitted. In order to cover
the case of a missed echo, the retransmitted update is specially
marked (with a “Retry” bit) to force an echo even if the up-
date has been seen before. Note that acknowledging an update
at each hop ensures that the update will be received by all
nodes which have a path to the source.

One difficult problem in maintaining duplicate databases at
all nodes is that some nodes may become disconnected from
each other due to a network partition. For some period of
time, certain nodes are unable to receive routing updates from
certain other nodes. When the partition ends, the nodes in one
segment of the network may remember the serial numbers of
the last updates they received from nodes in the other segment.
However, if the partition lasted a long enough time, the serial
numbers used by the disconnected nodes may have wrapped
around one or more times. If there has been wrap-around, it is
meaningless to compare the serial numbers of new updates
with the serial numbers of old updates. Some method must be
developed to force all nodes to discard the prepartition up-
dates in favor of the postpartition ones. The obvious approach

DOCKET

_ ARM

715

of ignoring updates from unreachable nodes is not workable,
since the SPF databases may temporarily be inconsistent, and
different nodes may ignore different updates.

This problem is resolved by having the update packets carry
around some indication of their age. There is a k-bit field in
each packet, and each node has a clock which ticks once every
¢t seconds. When an update is first generated, the *‘age field” is
2k — 1. When an update is received, its age field is decremented
once each tick of the clock. An update is considered *“too old”
when its age field has been decremented to zero. This scheme
ensures that the age of an update as seen by a given node is
determined by the time it has been held in the given node,
plus the time it was held in any nodes from which it was re-
transmitted. The use of a time-out scheme like the one just
described places several constraints on the parameters used
by the routing scheme.

1) It should be impossible for the serial numbers of updates
generated by any one node to wrap around (i.e., to get half-
way through the sequence number space) before the time-out
period expires.

2) The time-out period should be somewhat longer than the
maximum period between updates from a single node. This
means that good, recent updates from reachable nodes will not
time out.

3) It should be impossible for anode tostop and be restarted
within the time-out interval. This ensures that all of the node’s
old updates will time out before any new updates are sent.

There is one other important facet to the updating proto-
col. When a network line which has been down is determined
to be in good operating condition, it is placed in a special
“waiting” state for a period of one minute. The line is not
“officially’ considered to be up until the waiting period is
over. While a line is in the waiting state, therefore, no data can
be routed over it. However, routing updates are transmitted
over lines in the waiting state. As we indicated in Section IV-B,
each node is required to generate at least one update per minute,
even if there is no change in delay. This means that while a
line is in the waiting state, an update from every node in the
network will traverse it; the line cannot come up until enough
time has elapsed so that recent updates from all nodes have
been transmitted over it. This feature is needed for three
reasons.

1) In order to properly perform the routing computation, a
node must have a copy of the network database which is
identical to the copies in all the other nodes. Recall that the
database specifies the topology of the network (i.e., which
nodes are direct neighbors of which other nodes), as well as
the delay on each network line. When a new node is ready to
join the network, it has none of this information. It must some-
how obtain the information before it can be permitted to join.
Note, however, that the procedure described above ensures
that a node cannot come up (because its lines cannot come
up) until it has received an update from each other node. Since
an update from a given node specifies the neighbors of that
node, as well as the delay on the line to each neighbor, it fol-
lows that a node cannot come up until it has received enough
information to construct a complete and up-to-date copy of
the network database.

2) When the network is partitioned, the partition must not

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE




