
UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

June 29, 2015

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF TillS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 091629,577

FILING DATE: July 31, 2000

PATENT NUMBER: 6,732,147

ISSUE DATE: May 04, 2004

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

M. TARVER

Certifying Officer

PART (I{) OF (j,) PART(S)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 960 of 1657

dkumar
Typewritten Text
Ex. 1002Volume 4

dkumar
Typewritten Text

dkumar
Typewritten Text

The underlying peer-to-peer communications protocol send multiple

messages in a single message stream. The traditional technique for retrie · g messages from

a stream has been to repeatedly invoke an operating system routine to etrieve the next

message in the stream. The retrieval of each message may require two call to the operating

s system: one to retrieve the size of the next message and the other to retrie e the number of

bytes indicated by the retrieved· size. Such calls to the operating system an, however, be

very slow in comparison to the invocations of local routines. To overcome the inefficiencies

of such repeated calls, the broadcast technique in one embodiment, uses R to identify the

message boundaries in a stream of messages. The broadcast technique may request the

to operating system to provide the next, for example, 1,024 bytes from e stream. The

broadcast technique can then repeatedly invoke the XDR routines to· retri ve the messages

and use the success or failure of each invocation to determine whether ano er block of 1,024

bytes needs to be retrieved from the operating system. The invocation of R routines do

not involve system calls and are thus more efficient than repeated system c

15 M-Resular

In the. embodiment described above, each fully connected c mputer has four

internal connections. The broadcast technique can be used with other n bers of internal

connections. For example, each computer could have 6, 8, or any even n ber of internal

connections. As the number of internal connections increase, the diamete of the broadcast

20 channel tends to decrease, and thus propagation time for a message tends o decrease. The

time that it takes to connect a seeking computer to the broadcast chann 1 may, however,

increase as the number of internal connections increases. When the n ber of internal

connectors is even, then the broadcast channel can be maintained m-regular and

m-connected (in the steady state). If the number of internal connections i odd, then when

25 the broadcast channel has an odd number of ~omputers connected, one of e computers will

have less than that odd number of internal connections. In such a situati n, the broadcast

network is neither m-regular nor m-connected. When the next comput

broadcast channel, it can again become m-regular and m-connected. us, with an odd

number of internal connections, the broadcast channel toggles between be· g and not being

30 m-regular and m-connected.

[03004-8001lSL003733.107] -21- 7/lllOO

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 961 of 1657

Components

Figure 6 is a block diagram illustrating components of a omputer that is

connected to a broadcast channel. The above description generally assum d that there. was

only one broadcast channel and that each computer had only one connectio to that broadcast

5 channeL More generally, a network of computers may have multiple br adcast channels,

each computer may be .connected to more than one broadcast channel, d· each computer

can have multiple connections to the same broadcast channel. The broadca t channel is well

suited for computer processes (e.g., application programs) that execute col boratively, such

as network meeting programs. Each computer process can connect to one r more broadcast

10 channels. The broadcast channels can be identified by channel type e.g., application

program name) and channel instance that represents separate broadcast hannels for that

channel type. When a process attempts to connect to a broadcast channel, t seeks a process

currently connected to that broadcast channel that is executing on a po computer. The

seeking process identifies the broadcast. channel by channel type and chann

15 Computer 600 includes multiple application programs 1 executing as

separate· processes. · Each application program interfaces with a broadcaste component 602

for each broadcast channel to ·which it is connected The broadcaster co ponent may be

implement as an object that is instantiated within · the process space o the application

program. Alternatively, the broadcaster component· may execute as a se arate process or

20 thread from the application program. In one embodiment. the broad ster component

provides functions (e.g., methods of class) that can be invoked by the app cation programs.

The primary functions provided may include a connect fWiction that an ap Iicari on program

invokes passing an indication of the broadcast channel to which the ap lication program

wants to connect. The application program may provide a callback routine that the

25 broadcaster component invokes to notify the application program that th connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message function that the applica ·on program can

invoke to retrieve the next message that is broadcast on the broadcast chann l. Alternatively,

the application program may provide a callback routine (which may be virtual function

30 provided by the application program) that the broadcaster component inv kes to notify the

application program that a broadcast message has been received. ach broadcaster

component allocates a call-in port using the hashing algorithm. When call are answered at
[03004-IIOOJISL003733.101] -22- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 962 of 1657

the call-in port, they are transferred to other ports that serve as the exte 1 and internal

ports.

The computers connecting to the broadcast channel may ·

processing unit, memory, input devices (e.g., keyboard and pointing devic , output devices

5 (e.g., display devices), and storage devices (e;g., disk drives). The m ory and storage

devices are computer-readable medium that may contain computer tructions that

implement the broadcaster component. In addition, the data struc s and message

structures may be stored or transmitted via a signal transmitted on a c mputer-readable

media, such as a communications link.

10 Figure 7 is a block diagram illustrating the sub-components

component in one embodiment. The broadcaster component includes a co ect component

701, an external dispatcher 702, an internal dispatcher 703 for each intern connection, an

acquire message component 704 and a broadcast component 712. The ap lication program

may provide a connect callback component 710 and a receive response co ponent 711 that

15 are invoked by the broadcaster component. The application program inv kes the connect

component to establish a connection to a designated broadcast chann ~ The connect

component identifies the external port and installs the external dispatc er for handling

messages that are received on the external port. The connect component · vokes the seek

portal computer component 705 to identify a portal computer that is onnected to the

20 broadcast channel and invokes the connect request component 706 to ask th portal computer

(if fully connected) to select neighbor processes for the newly connec · g process. The

external dispatcher receives external messages, identifies the type of mess ge, and invokes

the appropriate handling routine 707. The internal dispatcher receives the · ternal messages,

identifies the type of message, and invokes the appropriate handling r tine 708. The

25 received broadcast messages are stored in the broadcast message queue 7 9. The acquire

message component is invoked to retrieve messages from the broadc st queue. The

broadcast component is invoked by the application program to broadcast messages in the

broadcast channel.

A Distributed Game Environment

30 In one embodiment, a game environment is implemented usmg broadcast

channels. The game environment is provided by a game application pro executing on

[03004-800 l/SL003733.1 07) -23- 7/31100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 963 of 1657

each player's computer that interacts with a broadcaster component. Ea h player joins a

game (e.g., a first person shooter game) by connecting to the broadcast c el on which the

game is played. Each time a player takes an action in the game a message representing that

action is broadcast on the game's broadcast channel. In addition, a layer may send

s messages (e.g., strategy information) to one or mo~ other players b broadcasting a

message. When the game application program receives an indication of an action, either

received on the broadcast channel or generated by the player at this comp ter, it updates its

current state of the game. The game may terminate when one of the players reaches a certain

score, defeats all other players, all players leave the game, and so on.

10 To facilitate the creation of games· for the game environme t, an application

programming interface ("API") is prqvided to assist game developers. The I may provide

high-level· game functions that would be used by most types of first perso

For example, the. API may include functions for indicating that a player ha

position, for shooting in a certain direction, for reporting a score, for anno

15 and departure of players, for sending a message to another player, and so o

The game environment may provide a game web site throu which players

can view the state of current games and register new games. The game eb server would

include a mapping between each game and the broadcast channel on which e game is to be

played. When joining a game, the user would download the broadcaster c mponent and the

20 game application program from the web server. The user would al download the

description of the game, which may include the graphics for the game~

would also provide the channel type and channel instance associated with e game and the

identification of the portal computers for the game. The game environmen

game monitor computer that connects to each game, monitors the activity of the game, and

25 reports the activity to the web server. With this activity information, th web server can

provide information on the current state (e.g., number of players) of each g

The game environment may also be used for games other than first person

shooter games. For example, a variation of a society simulation game can be played where

players sign up for different roles. If a role is unfulfilled or a player ·

30 playing, then an automated player can take over the role.

The following tables list messages sent by the broadcaster co

(03004-800 11Sl.003733 .1 07] -24- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 964 of 1657

EXTERNAL MESSAGES

Message Type Description

seeking_ colUlection _call Indicates that a seekingprocess would like.to kn ow whether the
receiving process is fully colUlectedto the broauJ ~ast channel

connection _request_ call Indicates that the sending process would like the recetvmg
process to initiate a connection of the sending p ocess to the
broadcast·channel

edge _proposal_ call Indicates that the sending process is proposing.a ~ edge tlrrough
which the receiving process can connect to the t oadcast
channel (i.e., edge pinning)

port_connection~call Indicates.thatthe sending process is proposing a port through
which the receiving process can connect to the t lroadcast
channel

connected_ stmt Indicates that the sending process is connected t the broadcast
channel

condition_ repair_ stmt Indicates that the receiving process should disco ~ect from one
of its neighbors and connect to one of the procel ses involved in
the neighbors with empty port condition

INTERNAL MESSAGES

Message Type Description

broadcast_ stmt Indicates a message that is being broadcast jthrough the
broadcast channel for the application progr !Jms

connection _port _search_ stmt Indicates that the designated process is lool Ptig for a port
through which it can connect to the broadc. ~tchannel

connection_ edge_ search_ call Indicates that the requesting process is lool ing for an edge
through which it can connect to the broadc ~tchannel

connection_edge_search_resp Indicates whether the edge between this pn ~Cess and the
sending neighbor has been accepted by the equesting
party

diameter_ estimate_ stmt Indicates an estimated diameter of the broa icast channel

diameter _reset_stmt Indicates to reset the estimated diameter to indicated
diameter

disconnect_ stmt Indicates that the sending neighbor is disco nnecting from
the broadcast channel

condition_ check_ stmt Indicates that neighbors with empty port c<: ndition have

(03004-800 l/SL003733.1 01) -25- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 965 of 1657

been detected

condition_ double_ check _stmt Indicates that the neighbors with empty po have the
same set of neighbors

shutdown_stmt Indicates that the broadcast channel is bein shutdown

Flow Diagrams

Figures 8-34 are flow diagrams illustrating the processing o the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the ocessing of the

5 connect routine in one embodiment. This routine is passed a channel type e.g., application

name) and channel instance (e.g., session identifier), that identifies the bro dcast channel to

which this process wants to connect. The routine is also passed auxiliary information that

includes the list of portal computers and a connection callback routine. Wh the connection

is established, the connection callback routine is invoked to notify the app ication program.

10 When this process invokes this routine, it is in the seeking connection stat When a portal

computer is located that is connected and this routine connects to at least o e neighbor, this

process enters the partially connected state, and when the process eventually connects to four

neighbors, it enters the fully connected state~ When in the small regime,

process may have less than four neighbors. In block 801, the routine open the call-in port

15 through which the process is to communicate with other processes when es lishing external

and internal connections. The port is selected as the first available port

algorithm described above. In block 802, the ·routine sets the connect · e to the current

time. The connect time is used to identify the instance of the process t is connected

through this external port. One ·process may connect to a broadcast ch el of a certain

20 channel type and channel instance using one call-in port and then disconn cts, and another

process may then connect to that same broadcast channel using the same •in port. Before

the other process becomes fully connected, another process may try to co unicate with it

thinking it is the fully connected old process. In such a case, the connect · e can be used to

identify this situation. In block 803, the routine invokes the seek portal omputer routine

25 passing the channel type and channel instance. The seek portal computer ro tine attempts to

locate a portal computer through which this process can connect to the broa cast channel for

the passed type and instance. In decision block 804, if the seek portal co puter routine is

[03004-80Dl/SL003733.107) -26- 7/ll/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 966 of 1657

successful in locating a fully connected process on that portal computer, then the routine

continues at block 805, else the routine returns an unsuccessful indication. decision block

805, if no portal computer other than the portal computer on which the pro ess is executing

was located, then this is the first process to fully connect to broadcast channel and the

5 routine continues at block 806, else the routine continues at block 808. block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

connected. In block 807, the routine installs the external dispatcher for pro essing messages

received through this process' external· port for the passed channel type· and hannel instance.

When a message is received through that external port, the external dispa cher is invoked.

10 The routine then returns. In block 808, the routine installs an external dis atcher. In block

. 809, the routine. invokes. the connect request routine to initiate the . proce s of identifying

neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the channel e and channel

15 instance of the broadcast channel to which this. process wishes to connect. This. routine, for

each search depth (e.g., port number), checks the portal computers at that s arch depth. If a

portal computer is located at that search depth with a process that is fully connected to the

broadcast channel, then the routine returns an indication of success. In bl ks 902-911, the

routine loops selecting each search depth until a process is located. In bloc 902, the routine

20 selects the next search depth using a port number ordering algorithm. In de ision block 903,

if al1 the search depths have already been selected during this execution o the loop, that is

for the currently selected depth, then the routine returns a failure indicatio else the routine

continues at block 904. In blocks 904-911, the routine loops selecting eac

and determining whether a process of that portal computer is connected to or attempting to

25 connect to) the broadcast· channel with the passed channel type and ch el instance. In

block 904, the routine selects the next portal computer. In decision blo 905, if all the

portal computers have already been selected, then the routine loops to block 902 to select the

next search depth, else the routine continues at block 906. In block 906, th routine dials the

selected portal computer through the port represented by the search depth. decision block

30 907, if the dialing was successful, then the routine continues at block 908 else the routine

loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call-in port of the broadcast channel of the passed channel e and channel

[03004-8001/Sl.D03733.107] -27- 713 1100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 967 of 1657

instance of a process executing on that portal computer. In block 908, the outine invokes a

contact process routine, which contacts the answering process of the portal omputer through

the dialed port and determines whether that process is fully connected to the broadcast

channel. In block 909, the routine hangs up on the selected portal comp ter. In decision

s block 910, if the answering process is fully connected to the broadcast hannel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processes that call.

loops to block 904 to select the next portal computer.

e routine then

10 Figure 10 is a flow diagram illustrating the processing of th contact process·

routine in one embodiment This routine detennines whether the proce of the selected

portal computer that answered the call-in to the selected port is fully

broadcast channel. In block 1001, the routine sends an exte

seeking_ connection_ call) to the answering process indicating that a seeking process wants to

15 know whether the answering process is fully connected to the broadcast c eL In block

1002, the routine receives the external response message from the answ · g process. In

decision block 1003, if the external response message is successful} received (i.e.,

seeking_connection_resp), then the routine. continues at block 1004, else

Wherever the broadcast component requests to receive an external message, it sets a time out

20 period. If the external message is not received within that time out perio the broadcaster

component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a d adlock situation.

The broadcaster component may repeat the receive request several times. If the expected

message is not received, then the broadcaster component handles the error s appropriate. In

25 decision block 1004, if the answering process indicates in its response mes ge that it is fully

connected to the broadcast channel, then the routine continues at block 100 , else the routine

continues at block 1006. In block I 005, the routine adds the selected p al computer to a

list of connected portal computers and then returns. In block 1006, the routine adds the

answering process to a list of fellow seeking processes and then returns.

30 Figure 11 is a flow diagram illustrating the processing of th connect request

routine in one embodiment. This routine requests a process of a portal c mputer that was

identified as being fully connected to the broadcast channel to initiate the nnection of this

[030[)4.8001/SL003733.107J -28- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 968 of 1657

process to the broadcast channel In decision block 1101, if at least one p ocess of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A pro ess of the portal

computer may no longer be in the list if it recently disconnected from the b oadcast channel.

5 In one embodiment, a seeking computer may always search its entire se h depth and find

multiple portal computers through which it can connect to the broadcast

1102, the routine restarts the process of connecting to the broadcast chann I and returns. In

block 1103, the routine dials the process of one of the found portal com ters through the

call-in port. In decision block 1104, if the dialing is successful, then the ro tine continues at

10 block 1105, else the routine continues at block 1113. The dialing may be successfulif, for

example, the dialed process recently disconnected from the broadcast c annel. In block

1105, the routine· sends an external message to the. dialed process requestin a connection to

the broadcast channel (i.e., connection_request_call). In block 1106, thero tine receives the

response message (i.e., connection.;_request_resp}. In decision block 110 , if the response·

15 message is successfully received,· then the routine continues at block 110 , else the routine.

continues at block. 1113. In block 1108, the routine sets the expected n er of holes (i.e.,

empty internal connections) for this process based on the received respo e. When in the

large regime, the expected number of holes is zero. When in the small re e, the expected

nuinber of holes varies from one to three. In block 1109, the routine s ts the estimated

20 diameter of the broadcast channel based on the received response. In decis on block 1111, if

the dialed process is ready to connect to this process· as indicated by the r sponse message,

then the routine continues at block 1112, else the routine continues at bloc 1113. In block

1112, the routine invokes the add neighbor routine to add the answe g process as a

neighbor to this process. This adding of the answering process typically occurs when the

25 broadcast channel is in the small regime. When in the large regime, the r dom walk search

for a neighbor is performed. In block 1113, the routine hangs up the ex emal connection

with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking

30 process is attempting to establish a connection to the broadcast channel thr ugh this process.

In block 1201. the routine attempts to answer a call on the call-in port. decision block

1202, if the answer is successful then the routine continues at block 120 , else the routine

j03004-8001/SL003733.107) -29- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 969 of 1657

returns. In block 1203, the routine receives the external message from the xternal port. In

decision block 1204, if the type of the message indicates that a seeking rocess is calling

(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine

returns. In block 1205, the routine sends an external message (i.e., seeking onnection_resp)

5 to the other seeking process indicating that this process is also is seeking connection. In

decision block 1206, if the sending of the external message is successful, then the routine

continues at block 1207, else the routine returns. In block 1207, the rou · e adds the other

seeking process to a list of fellow seeking processes and then returns. This list may be used

if this process can find no process that is fully connected to the broadcast c annel. In which

10 case, this process may check to see if any fellow seeking process w re successful in

connecting to the broadcast channel For example; a fellow seeking proces may become the

first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve c nnection routine

in one embodiment This routine sets the state of this process to fully onnected to the

IS broadcast channel and invokes a callback routine to notify the application program that the

process is now fully connected to the requested broadcast channel. In block 130 I, the

routine sets the connection state of this process to fully connected. In block 1302, the

routine notifies fellow seeking processes that it is fully connected by sen · g a connected

external message to them (i.e., connected_stmt). In block 1303, the ro tine invokes the

20 connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment. This routine is invoked when e external port

receives a message. This routine retrieves the message, identifies the exte al message type,

and invokes the appropriate routine to handle that message. This routine loops processing

25 each message until all the received messages have been handled. In block 1401, the routine

answers (e.g., picks up) the external port and retrieves an external mess ge. In decision

block 1402, if a message was retrieved, then the routine continues at bl k 1403, else the

routine hangs up on the external port in block 1415 and returns. In decisi n block 1403, if

the message type is for a process seeking a connection (i.e., seeking_ conn ction _call), then

30 the routine invokes the handle seeking connection call routine in block 140 , else the routine

continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i.e., connection_request_call), then the routine invokes the dle connection
{03004-8001/SLOOJ733.107} -3 0- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 970 of 1657

request call routine in block 1406, else the routine continues at block 14 7. In decision

block 1407, if the message type is edge proposal call (i.e., edge _propos _call), then the

routine invokes the handle edge proposal call routine in block 1408, lse the routine

continues at block 1409. In decision block 1409, if the message type is art connect call

s (i.e., port_connect_call), then the routine invokes the handle port connecti n call routine in

block 1410, else the routine continues at block 1411. In decision block 141 , if the message

type is a connected statement (i.e., connected_stmt), the routine inv kes the handle

connected statement in block 1112, else the . routine continues at block 1 12. In· decision

block 1412, ifthe message type is a condition repair statement (i.e., condi on_repair_stmt),

10 then the routine invokes the handle condition repair routine in block 1413 else the routine

loops to block 1414 to process the next message. After each handling rou · e is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the xternal port and

continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of th handle seeking

15 connection call.routine in one embodiment. This routine is invoked when seeking process

is calling to identify a portal computer through which it can connect to the oadcast channel.

In decision block 1501, if this process is currently fully connected to the oadcast channel

identified in the message, then the routine continues at block 1502, else the outine continues

at block 1503. In block 1502, the routine sets a message to indicate that thi process is fully

20 connected to the broadcast channel and continues at block 1505. In block 503, the routine

sets a message to indicate that this process is not fully connected. In block 504, the routine

adds the identification of the seeking process to a list of fellow seeking p ocesses. If this

process is not fully connected, then it is attempting to connect to the broa cast channel. In

block 1505, the routine sends the external message response (i.e., seeking onnection_resp)

25 to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the h

request call routine in one embodiment. This routine is invoked when th calling process

wants this process to initiate the connection of the process to the broad t channel. This

routine either allows the calling process to establish an intemal connection ·th this process

30 (e.g., if in the small regime) or starts the process of identifying a process to hich the calling

process can connect. In decision block 1601, if this process is currently

the broadcast channel, then the routine continues at block 1603, else the ro tine hangs up on

[03004-80011SL003733.107J -31- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 971 of 1657

the external port in block 1602 and returns, In block 1603, the routines the number of

holes that the calling process should expect in the response message. block 1604, the

routine sets the estimated diameter in the response message. In block 605, the routine

indicates whether this process is ready to connect to the calling process. This process is

5 ready to connect when the number of its holes is greater than zero and the alling process is

not a neighbor of this process. In block 1606, the routine sends to the· c ling process an

external message that is responsive to the connection req est call (i.e.,

connection_request_resp). In block 1607, the routine notes the nwnber f holes that the

calling process needs to fill as indicated in the request message. In decisi n block 1608, if

to this process is ready to connect to the calling process, then the routine c ntinues at block

1609, else the routine continues at block 1611. In block 1609, the routin invokes the add

neighbor routine to add the calling process as a neighbor. In block 610, the routine

decrements the number of holes that the calling process needs to fill and c ntinues at block

1611. In block 1611, the routine hangs up on the external port. In decisi n block 1612, if

15 this process has no holes or the estimated diameter is greater than one i.e., in the large

regime), then the routine continues at block 161:3, else the routine continu sat block 1616,

In blocks 1613-1615, the routine loops forwarding a request for an edge ough which to

connect to the calling process to the broadcast channel. One request is fo ded for each

pair of holes of the calling process that needs to be filled. In decision bock 1613, if the

20 number of holes of the calling process to be filled is greater than or eq to two, then the

routine continues at block 1614, else the routine continues at block 1616. block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

to an indication of the calling process and the random walk distance. In on embodiment, the

distance is twice in the estimated diameter of the broadcast channel. block 1614, the

25 routine decrements the holes left to fill by two and loops to block 1613. decision block

1616, if there is still a hole to fill, then the routine continues at block 161 , else the routine

returns. In block 1617, the routine invokes the fill hole routine passing th identification of

the calling process. The fill hole routine broadcasts a connection port sear h statement (i.e.,

connection_port_search_strnt) for a hole of a connected process through

30 process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of e add neighbor

routine in one embodiment. This routine adds the process calling on the

[03004-800 l!SL003733 .107) -32- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 972 of 1657

neighbor to this process. In block 1701, the routine identifies the callin process on the

external port. In block 1702, the routine sets a flag to indicate that the nei bor has not yet

received the broadcast messages from this process. This flag is used to ens e that there are

no gaps in the messages initially sent to the new neighbor. The external ort becomes the

5 internal port for this connection. In decision block 1703, if this process s in the seeking

connection state, then this process is connecting to its first neighbor and the routine

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of this process to partially connected. In block 705, the routine

adds the calling process to the list of neighbors of this process. In block 706, the routine

10 installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when

a message is received from that new neighbor through the internal port of

In decision block 1707, if this process buffered up messages while not full

the routine continues at block 1708, else the routine continues at bloc

embodiment, a process that is partially connected may buffer ·the messag

t new neighbor.

connected, then

1709. In one

that it receives

15 through an internal connection so that it can send these messages as it onnects to new

neighbors. In block 1708, the routine .sends the buffered messages to e new neighbor

through the internal port. ht decision block 1709, if the number of hole of this process

equals the expected number of holes, then this process is fully connecte

continues at block 1710, else the. routine continues at block 1711. In block 710, the routine

20 invokes the achieve connected routine to indicate that this process is ful connected. In

decision block 1711, if the number of holes for this process is zero, en the routine

continues at block 1712, else the routine returns. In block 1712, the ro tine deletes any

pending edges and then returns. A pending edge is an edge that has been proposed to this

process for edge pinning, which in this case is no longer needed.

25 Figure 18 is a flow diagram illustrating the processing of. the forward

30

connection edge search routine in one embodiment. This routine is respo sible for passing

along a request to connect a requesting process to a randomly selected neighbor of this

process through the internal port of the selected neighbor, that is part of t:Qe andom walk. In

decision block 1801, if the forwarding distance remaining is greater th

routine continues at block 1804, else the routine continues at block 1802.

1802, if the number of neighbors of this process is greater than one,

zero, then the

decision block

en the routine

continues at block 1804, else this broadcast channel is in the small regim and the routine

[03004-8001/SL003733.107] -33- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 973 of 1657

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

this process, then the routine returns, else the routine continues at block 804. In blocks

1804~ 1807, the routine loops attempting to send a connection edge se ch · call internal

message (i.e., connection_edge_search_call) to a randomly selected neighbo . In block 1804,

s the routine randomly selects a neighbor of this process. In decision bloc 1805, if all the

neighbors of this process have already been selected, then the routine c ot forward the

message and the routine returns, else the routine continues at block 1806. block 1806, the

routine sends a connection edge search call internal message to the selec ed neighbor. In

decision block 1807~ if the sending of the message is successful, then the ro tine. continues at

10 block 1808, else the routine loops to block 1804 to select the next nei bor. When the

sending of an internal message is unsuccessful, then. the neighbor may h ve disconnected

from the broadcast channel in an unplanned manner. Whenever such a si ation is detected

by the· broadcaster component, it attempts to find another neighbor by invo · g the fill holes

routine to fill a single hole or the forward connecting edge search routine to 111 two holes. In

15 block 1808, the routine notes that the recently sent connection edge searc call has not yet

been acknowledged and indicates that the edge to this neighbor is reserve if the remaining

forwarding distance is less than or equal to one; It is reserved because the elected neighbor

may offer this edge to the requesting process for edge pinning. The routine en retmns.

Figure 19 is a flow diagram illustrating the processing of e handle edge

20 proposal call routine. This routine is invoked when a message is received

process. that proposes to connect an edge· between the proposing proces

neighbors to this process for edge pinning. Tn decision block 1901, if then

this process minus the number of pending edges is greater than or equal o one, then this

process still has holes to be filled and the routine continues at block 1902 else the routine

25 continues at block 1911. In decision block 1902, if the proposing process o its neighbor is a

neighbor of this process, then the routine continues at block 1911, else the outine continues

at block 1903. In block 1903, the routine indicates that the edge is pen g between this

process and the proposing process. In decision block 1904, if a proposed n · ghbor is already

pending as a proposed neighbor, then the routine continues at block 1911 else the routine

30 continues at block 1907. In block 1907, the routine sends an edge propos response as an

external message to the proposing process (i.e., edge _proposal_resp) in ·eating that the

proposed edge is accepted. In decision block 1908, if the sending of e message was

[03004-8001/St.D03733.107J -34- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 974 of 1657

successful. then the routine continues at block 1909, else the routine re . In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add

neighbor routine to add the proposing process on the external port as a nei or. The routine

then returns. In block 1911, the routine sends an external message (i.e., edg _j)roposal_resp)

s indicating that this proposed edge is not accepted. In decision block 1912, if the number of

holes is odd, then the routine continues at block 1913, else the routine r turns. In block

1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked

10 message is received then indicates that the sending process wants to conne to one hole of

this process. In decision block 200 l, if the number of holes of this proce s is greater than

zero, then the routine continues at block 2002, else the routine continues a block 2003. In

decision block 2002, if the sending process is not a neighbor, then the ro · e continues at

block 2004, else the routine continues to block 2003. In block 2003~ the ro tine sends a port

IS connection response external message (i.e., port_connection_resp) to these

indicates that it is not okay· to connect. to this process. The routine then

2004, the routine sends a port connection response external message to th sending process

that indicates that is okay to connect this process. In decision block 2005, · the sending of

the message was successful, then the routine continues at block 2006, else the routine

20 continues at block 2007. In block 2006, the routine invokes the add neighb r routine to add

25

the sending process as a neighbor of this process and then returns. In block

hangs up the external connection. In block 2008, the routine invokes th connect request

routine to request that a process connect to one of the holes of this process. The routine then

returns.

Figure 21 is a flow diagram illustrating the processing of the hole routine in

one embodiment. This routine is passed an indication of the requesting process. If this

process is requesting to fill a hole, then this routine sends an internal essage to other

processes. If another process is requesting to fill a hole, then this routine in okes the routine

to handle a connection port search request. In block 2101, the rou · e initializes a

30 connection port search statement internal message (i.e .• connection_j)ort_ earch_stmt). In

decision block 2102, if this process is the requesting process, then the ro · e continues at

block 2103, else the routine continues at block 2104. In block 2103, the r utine distributes

[03004·1lOOliSL003733.!07) -35- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 975 of 1657

the message to the neighbors of this process through the internal ports and then returns. In

block 2104, the routine invokes the handle connection port search routine

Figure 22 is a flow diagram illustrating the processing of the · temal dispatcher

routine in one embodiment. This routine is passed an indication of the nei bor who sent the

s internal message. In block 2201, the routine ·receives the internal messa e. This routine

identifies the message type and invokes the appropriate routine to handle e message. In

block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. In decision bl k 2203, if this

process is the originating process of the message or the message has alrea y been received

10 (i.e., a duplicate), then the routine ignores the message and continues at blo k 2208, else the

routine continues. at block 2203A. In decision block 2203A, if the pr cess is partially

connected, then the routine continues at block 2203B, else the routine c tinues at block

2204. In block 2203B; the routine adds the. message to the pending conn ction buffer and

continues at block 2204. In decision blocks 2204-2207, the routine dec des the message

IS type and invokes the appropriate routine to handle the message. For ex pie, in decision

block 2204, if the type of the message is broadcast statement (i.e., broadc _stmt), then the

routine invokes the handle broadcast message routine in block 2205. er invoking the

appropriate handling routine, the routine continues at block 2208. In decisi n block 2208, if·

the partially connected buffer is full, then the routine continues at bloc 2209, else the

20 routine continues at block 2210. The broadcaster component collect

messages in a buffer while partially connected so that . it can forward th messages as it

connects to new neighbors. If, however, that buffer becomes full, then the process assumes

that it is now fully connected and that the expected number of connectio s was too high,

because the broadcast channel is now in the small regime. In block 2209, th routine invokes

25 the achieve connection routine and then continues in block 2210. In decisi n block 2210, if

the application program message queue is empty, then the routine returns, else the routine

continues at block 2212. In· block 2212, the routine invokes the receive esponse routine

passing the acquired message and then returns. The received response ro · e is a callback

routine of the application program.

30 Figure 23 is a flow diagram illustrating the processing of the dle broadcast

message routine in one embodiment. This routine is passed an indication f the originating

process, an indication of the neighbor who sent the broadcast message, d the broadcast

f03004-8001/SL003733.107J -36- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 976 of 1657

message itself. In block 2301, the routine performs the out of order pr cessing for this

message. The broadcaster component queues messages from each origina · g process until it

can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the message to the

5 neighbors of this process. In decision block 2303, if a newly connected ne ghbor is waiting

to receive messages, then the routine continues at block 2304, else the ro tine returns. In

block 2304, the routine sends the messages in the correct order if p ssible for each

originating process and then returns.

Figure 24 is a flow diagram illustrating the processing f the distribute

10 broadcast message routine in one embodiment. This routine sends the bro cast message to

each of the neighbors of this process, except for the neighbor who sent th message to this

process. In block 2401, the routine selects. the next neighbor other than e neighbor who

sent the message. In decision block 2402, if all such neighbors have alre y been selected,

then the routine returns. In block 2403, the routine sends the messag to the selected

15 neighbor and then loops to block 2401 to select the next neighbor.

Figure 26 is a flow diagram illustrating the processing of the die connection

port search statement routine in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the message itself. In block 260 I, the ro tine invokes the

distribute internal message which sends the message to each of its neighb other than the

20 sending neighbor. In decision block 2602, if the number of holes of this rocess is ·greater

than zero, then the routine continues at block 2603, else the routine re s. In decision

block 2603, if the requesting process is a neighbor, then the routine continu s at block 2605,

else the routine continues at block 2604. In block 2604, the routine · vokes the court

neighbor routine and then returns. The court neighbor routine connects · s process to the

25 requesting process if possible. In block 2605, if this process has one hole, en the neighbors

with empty ports condition exists and the routine continues at block 2606

returns. In block 2606, the routine generates a condition chec

condition_check) that includes a list of this process' neighbors. In block

sends the message to the requesting neighbor.

30 Figure 27 is a flow diagram illustrating the processing of

else the routine

message (i.e.,

607, the routine

court neighbor

routine in one embodiment. This routine is passed an indication of the pro pective neighbor

for this process. If this process can cmmect to the prospective neighbor, th n it sends a port

[03004-800 I/SL003733.1 07) -3 7- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 977 of 1657

connection call external message to the prospective neighbor and add the prospective

neighbor as a neighbor. In decision block 2701, if the prospective nei bor is already a

neighbor, then the routine returns, else the routine continues at block 270 . In block 2702,

the routine dials the prospective neighbor. In decision block 2703, if then her of holes of

5 this process is greater than zero, then the routine continues at block 2704 else the routine

continues at block 2706. In block 2704, the routine sends a port connec ·on call external

message (i.e., port_connection_call) to the prospective neighbor and rec ives its response

(i.e., port_connection_resp). Assuming the response is successfully receiv d, in block 2705,

the routine· adds the prospective neighbor as a neighbor of this process by invoking the add

10 neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.

Figure 28 is a flow diagram illustrating the processing of the andle connection

edge search call routine in one embodiment. This routine is passed a. · dication of the

neighbor who sent the message and the message itself. This routine ei er forwards the

message to a neighbor or proposes· the edge between this process and the se ding neighbor to

15 the requesting process for edge pinning. In decision block 2801, if this ocess is not the

requesting process. or the number. of holes of the requesting process is sti I greater than or

equal to two, then the routine continues at block 2802, else the routine c ntinues at block

2813. In decision block 2802, if the. forwarding distance is greater th zero, then the

random walk is not complete and the routine continues at block 2803, else the routine

20 continues at block 2804. In block 2803, the routine invokes the forward connection· edge

search routine passing the identification of the requesting process and the decremented

forwarding distance. The routine then continues at block 2815. In decisi n block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, then the routine

25 continues at block 2805, else the routine continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication f the requesting

party and a toggle indicator that alternatively indicates to continue the ran om walk for one

or two more computers. The routine then continues at block 2815. In block 2806, the

routine dials the requesting process via the call-in port. In block 2807, th routine sends an

30 edge proposal call external message (i.e., edge _proposal_ call) and receives e response (i.e.,

edge _proposal_resp). Assuming that the response is successfully rece ved, the routine

continues at block 2808. In decision block 2808, if the response indicate that the edge is

[03004-800l/SL003733.107J -38- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 978 of 1657

acceptable to the requesting process, then the routine continues at bloc 2809, else the

routine continues at block 2812. In block 2809: the routine reserves the e ge between this

process and the sending neighbor. In block 2810, the routine adds the req esting process as

a neighbor by invoking the add neighbor routine. In block 2811, the ro 'ne removes the

s sending neighbor as a neighbor. In block2812, the routine hangs up the xternal port and

continues at block 2815, In decision block 2813, if this process is the reque ting process and

the nmnber of holes of this process equals one, then the routine continues a block 2814, else

the routine continues at block 2815. In block 2814~ the routine invokes the fill hole routine.

In block 2815, the routine sends an connection edge search respons message (i.e.,

10 connection_edge_search_response) to the sending neighbor indicating ackn wledgement and

then returns. The graphs are sensitive to parity. That is, all possible pa s starting from a

node and ending at that node will have an even length unless the graph h. s a cycle whose

-length is odd. The .. broadcaster component uses a toggle indicator to·vary e random walk

distance between even and odd distances.

15 Figure 29 is a flow diagram illustrating the processing of the andle connection

edge search response routine in one embodiment. This routine is passed as indication of the

requesting process, the sending neighbor,·and the message. In block2901, the routine notes

that the connection edge search response (i.e., connection_edge_searc resp) has been

received and if the forwarding distarice is less than or equal to one unr serves the edge

20 between this process and the sending neighbor. In decision block 2902, if the requesting

process indicates that the edge is acceptable as indicated in the message, then the routine

continues at block 2903, else the routine returns. In block 2903, the routine eserves the edge

between this process and the sending neighbor. In block 2904, the ro · e removes the

sending neighbor as a neighbor. In block 2905, the routine invokes th court neighbor

25 routine to connect to the requesting process. In decision block 2906, if th invoked routine

was unsuccessful, then the routine continues at block 2907, else the ro tine retwns. In

decision block 2907, if the nmnber of holes of this process is greater th zero, then the

routine continues at block 2908, else the routine retums. In block 2908, th routine invokes

the fill hole routine and then returns.

30 Figure 30 is a flow diagram illustrating the processing of the roadcast routine

in one embodiment. This routine is invoked by the application pro to broadcast a
message on the broadcast channel. This routine is passed the message to e broadcast. In
(03004-8001/SLOOJ733.107] -39- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 979 of 1657

decision block 3001, if this process has at least one neighbor, then the ro · e continues at

block 3002, else the routine returns since it is the only process connecte . to be broadcast

channel. In block 3002, the routine generates an internal message of the br adcast statement

type (i.e., broadcast _stm.t). In block 3003, the routine sets the sequenc number of the

s message. In . block 3004, the routine invokes the distribute internal m sage routine to

broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment. The acquire message routine may be invoked

program or by a callback routine provided by the application program. This routine returns a

10 message. In block 3101, the routine pops the message from the mess e queue of the

broadcast channel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else the routine returns· indication of failure.

Figures 32-34 are flow diagrams illustrating the process' g of messages

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram

15 illustrating processing of the handle condition check message in one e od.iment. This

message is sent by a neighbor process that has one hole and has received a 11 quest to connect

to a hole of this process. In decision block 3201, if the number of holes f this process is

equal to one, then the routine continues at block 3202, else the neighbors 'th empty ports

condition does not exist any more and the routine returns. In decision b ck 3202, if the

20 sending neighbor and this process have the same set of neighbors, the rou · e continues at

block 3203, else the routine continues at block 3205. In block 3203, the ro tine initializes a

condition double check message (i.e., condition_double_check) with the lis of neighbors of

this process. In block 3204, the routine sends the message internally to a ne ghbor other than

sending neighbor. The routine then returns. In block 3205, the routine sele ts a neighbor of

25 the sending process ·that is not also a neighbor of this process. In block 206, the routine

sends a condition repair message (i.e., condition_repair_stmt) extemall to the selected

process. In block 3207, the routine invokes the add neighbor routine to add the selected

neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the

30 repair statement routine in one embodiment. This routine removes an exis g neighbor and

connects to the process that sent the message. In decision block 3301, if s process has no

holes, then the routine continues at block 3302, else the routine continues a block 3304. In
[03004-8001181.003733.107] -40- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 980 of 1657

block 3302~ the routine selects a neighbor that is not involved in the nei

ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now has at 1 ast one hole. In

block 3304, the routine invokes the add neighbor routine to add the pro ess that sent the

5 message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine. This routine detennines whether the neighbors · th empty ports

condition really is a problem or whether the broadcast channel is in the all regime. In

decision block 3401, if this process has one hole, then the routine continu s at block 3402,

10 else the routine continues at block 3403. If this process does not have one ole, then the set

ofneighbors·ofthis process is not the same as the set of neighbors· of these ding process. In

decision block 3402, if this process and the sending process have the same set of neighbors,

then the broadcast channel is not in the.small regime and the routine contin es at block.3403,

else the routine continues at block 3406. In decision block 3403, if this pro ess has no holes,

15 then the routine returns, else the routine continues at block 3404. In block 3404, the routine

sets the estimated diameter for this process to one. In block 3405, the ro tine broadcasts a

diameter reset internal message (i.e., diameter_reset) indicating that the es · ated diameter is

one and then returns. In block 3406, the routine creates a list of neighbors this process. In

block 3407, the. routine sends the condition check message (i.e., condition heck_stmt) with

20 the list of neighbors to the neighbor who sent the condition double check essage and then

returns.

From the above description, it will be appreciated that

embodiments of the technology have been described, various rnodificati may be made

without deviating from the spirit and scope of the invention. F r example, the

25 communications on the broadcast channel may be encrypted. Also, the c annel instance or

session identifier may be a vezy large number (e.g., 128 bits) to help prev an unauthorized

user to maliciously tap into a broadcast channel. The portal computer ay also enforce

security and not allow an unauthorized user to connect to the br adcast channel.

Accordingly, the invention is not limited except by the claims.

[03004-800 11SL003133.107) -41- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 981 of 1657

CLAIMS

1. A computer network for providing a game environment for a plurality of

2 participants, each participant having connections to at least three nei or participants,

3 wherein an originating participant sends data to the other participants by sending the data

4 through each of its connections to its neighbor participants and wherein each participant

5 sends data that it receives from a neighbor participant to its other neighbor p · cipants.

2. The computer network of claim 1 wherein each partici ant is connected

2 to 4 other participants.

3. The computer network of claim 1 wherein each partici ant is connected

2 to an even number of other participants.

4. The computer network of claim 1 wherein the netw rk is m-regular,

2 where m is the number of neighbor participants of each participant.

5. The computer network of claim 1 wherein the networ is m-connected,

2 where m is the number of neighbor participants of each participant.

6. The computer network of claim J wherein the networ is m-regular and

2 m-connected, where m is the number of neighbor participants of each partie pant.

7. The computer network of claim 1 wherein all the partie pants are peers.

8. The computer network of claim 1 wherein the connec ·ons are peer-to-

2 peer connections.

[03004-8001lSL003733.J07] -42- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 982 of 1657

9. The computer network of claim 1 wherein the connec ·ons are TCPIIP

2 connections.

10. The computer network of claim 1 wherein each partici ant is a process

2 executing on a computer.

11. The computer network of claim 1 wherein a computer hosts more than

2 one participant.

12. The computer network of claim 1 wherein each particip t sends to each

2 of its neighbors only one copy of the data.

13. The computer network of claim 1 wherein the

2 participants fonn a broadcast channel for a game of interest.

2

3 game;

4

5

14.

15.

A distributed game system comprising:

a plurality of broadcast channels, each broadcast ch el for playing . a

means for identifying a broadcast channel for a game o interest; and

means for connecting to the identified broadcast chann l.

The distributed game system of claim 14 wherein me s for identifying

2 a game of interest includes accessing a web server that maps games o corresponding

3 broadcast channel.

16. The distributed game system of claim 14 wherein a br dcast channel is

2 fonned by player computers that are each interconnected to at least three o er computers.

[03004-800 JISL003733.1 07] -43- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 983 of 1657

>I . .. ·-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 984 of 1657

...
e

N

e
~ ['l

t:.P -LL.
0\
~

CIO N
~ ~

too- tf)
~ ~

"' ~ ~ an
~

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 985 of 1657

u

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 986 of 1657

\ .·•:

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 987 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 988 of 1657

.\

-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 989 of 1657

Q

\j_j

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 990 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 991 of 1657

c

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 992 of 1657

h

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 993 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 994 of 1657

~ l'\ ·.u I. lflcf ()
~

~
Cl

~
\)0

r.J

~1
",li_

0 ii • - -
~ , ... ~ """" CJtJ t!l

~ 1
!""'"'\

0 cJ J.:i 5 Jo~ 0
i- I~ ~ -; -;,

I.. ~ - c: ~

·- c: II:' -- ~ 5 ~~ ~ ~ d
c::.. \.) tJ a..~-

~u ~~v

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 995 of 1657

'"·' '

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 996 of 1657

(-r~T~,
. -~&w~.

_ t •"" nt! J--/Tv..x J:' 11 fz,)

~--+• A~ ll..vf:

a .. ~ .. ~.
~ta.v.\:3)

Ccnnect\~

c7

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 997 of 1657

I
I

I
I
!

l
I
I
!
I

I

~ Uf ~e (""J;
~rtn\r'D~ ,_ 7"

II to

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 998 of 1657

os

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 999 of 1657

,----t----_::::0 7
sJ J..O.-.abc
-f-r-~~

ell~)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1000 of 1657

Aid at'Nu- ei..S
1e-no u-~ ~ f' -4! k.Q.("

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1001 of 1657

~ (

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1002 of 1657

OJ
) I y

CJ

(O

1'3

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1003 of 1657

seJ -.a..oo~ to r rwL•cdJ:i.. . •
c

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1004 of 1657

0

set ~c:.aVv..-., ~
\\o l e s.- tz, -'fc

-· . i

ror~l .II I
>f---Jl c onnflr..;'&YI e"'~,f'

I~ I<-· -·

hoi~ -to~· II-= 2f-J
I

i'

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1005 of 1657

----'----,o I

I.
I .

'

tlJ

I~

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1006 of 1657

•f'e. ~ .

~·l~~ f«!~N',._&

y

,l

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1007 of 1657

1/

~-\\~\e..

~mt~~o~
o.J"f'V\~SSCI's e.

.•

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1008 of 1657

\
I

r., 1f)
Y\ L

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1009 of 1657

~L~' r \ {;

H~J. \E. ~t~-E•ch
?t) .c t Sk-tc..\,....

o>

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1010 of 1657

Ass~ss 1
Oic:l.~..s:t.r

lt.

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1011 of 1657

f7/

oz..

0

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1012 of 1657

"2.0

Of

\
s ~ .J,;,J .. ._/)

~.,e..

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1013 of 1657

\~

t..l

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1014 of 1657

t-"('-- '#J ~t\\ ~tf'l
fi\ e C.$~ &.e.

~~ve~~
0~

·I\)
>---or--·· . ·- -

0
JlJ.& tJe..\'b'tJDor(~

~ ,,
n~
· rJ~s~bw ...J

I(

o\

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1015 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1016 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1017 of 1657

,...... _ __..:... __ __,:!) (

i .

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1018 of 1657

/V;

y

i "
I.

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1019 of 1657

AJ 4_ LO Li i h bDV-, 0 '1
i

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1020 of 1657

·r~.tti(' ~
f),.· a ~tth!r- n:, !.

u(

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1021 of 1657

U.S. Patent Application No. 09/629,024

5

10

15

EXPRES~ MAlL ID. EI:A04Q35279U
j ..

DISTRIBUTED CONFERENCING SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS I
This application is related to U.S. Patent Application No. i ,

entitled "BROADCASTING NETWORK," filed on July 31, 2000 (kttorney Docket

No. 030048001 US); U.S. Patent Application No. enti~ed "JOINING A
I

BROADCAST CHANNEL," filed on July 31, .2000 (Attorney Docket No.j 030048002 US);

U.S. Patent Application No. , "LEAVING A BROADC~T CHANNEL,"

filed on July 31, 2000 (Attorney Docket No. 030048003 US); U.S. P~tent Application

No. entitled "BROADCASTING ON A BROADCAST dHANNEL," filed

on July 31, 2000 (Attorney Docket No. 030048004 US); U.S .. PP*e enntt. Application

No. , entitled "CONTACTING A BROADCAST cHAJ\mEL," filed on

July 31,2000 (Attorney Docket No. 030048005 US); U.S. Pa+nt Application

No. , entitled "DISTRIBUTED AUCTION SYSTEM," filed on
I

July 31, 2000 (Attorney Docket No. 030048006 US); U.S. Pa~nt Application

No. entitled "AN INFORMATION DELIVERY SER CE," filed on

July 31, 2000 (Attorney Docket No. 030048007 US); U.S. Pa nt Application

No. entitled "DISTRIBUTED CONFERENCING SY TEM," filed on

July 31, 2000 (Attorney Docket No. 030048008 US); and U.S. P ent Application

No. entitled "DISTRIBUTED GAME ENVIRO NT," filed on

20 July 31, 2000 (Attorney Docket No. 030048009 US), the of which are

25

incorporated herein by reference. ·
I
I
I TECHNICAL FIELD
I

The described technology relates generally to a computer n~twork and more

particularly, to a broadcast channel for a subset of a computers of an underltmg network.

I BACKGROUND
I

There are a wide variety of computer network communicatio~ techniques such

as point-to-point network protocols, client/server middleware, mul,casting network

(0300~/SL003733.106)

gvu?{
-1-

I

7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1022 of 1657

5

I
I
I

protocols, and peer-to-peer middleware. Each of these communications ~echniques have

their advantages and disadvantages, but none is particularly well suited to ~e simultaneous
i

sharing of information among computers that are widely distributed. I For example,

collaborative processing applications, such as a network meeting programsi have a ne.ed to

distribute information in a timely manner to all participants who may b geographically

distributed.

The point-to-point network protocols, such as UNIX pipes, T PIIP, and UDP,

allow processes on different computers to communicate via point-to-point c nnections. The

interconnection of all participants using point·to-point connections, w · e theoretically

10 possible, does not scale well as a number of participants grows. example, each

participating process would need to manage its direct connections to all o er participating

processes. Programmers, however, find it very difficult to manage single onnections, and

management of multiple connections is much more complex. In additibn, participating
I

processes may be limited to the number of direct connections that they c$ support. This

15 limits the number of possible participants in the sharing ofinfonnation.
I
I

The client/server middleware systems provide a server that coordinates. the

communications between. the various clients who are sharing the informa on. The server

functions as a central authority for controlling access to shared resource . Examples of

client/server middleware systems include remote procedure calls ("RPC"), atabase servers,

20 and the common object request broker architecture ("CORBA"). Client/s er middleware
I

systems . are not particularly well suited to sharing of information among m y participants.

In particular, when a client stores information to be shared at the server,

would need to poll the server to determine that new information is b · shared. Such

polling places a very high overhead on the communications network. Al ematively, each

25 client may register a callback with the server, which the server then inJokes when new

information is available to be shared. Such a callback technique presen a performance

bottleneck because a single server needs to call back to each client whenever new

information is to be shared. In addition, the reliability of the entire sh · of infonnation

depends upon the reliability of the single server. Thus, a failure at a singl computer (i.e.,

30 the server) would prevent communications between any of the clients. ,

The multicasting network protocols allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such mul~casting network

[03004-80011SL003733.106] ~2- I 7131/00

! . c

I'·· .--

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1023 of 1657

5

10

15

i

protocols tend to place an unacceptable overhead on the underlying network For example,
I

UDP multicasting would swamp the Internet when trying to locate all poss~ble participants.
I

IP multicasting has other problems that include needing special-purpose infrastructure (e.g.,

routers) to support the sharing of information efficiently. j

The peer-to-peer middleware communications systems rely ~n a multicasting

network protocol or a graph of point-to-point network protocols. st' ch peer-to-peer

middleware is provided by the T.120 Internet standard, which is used in uch products as

Data Connection's D.C.-share and Microsoft's NetMeeting. These peer-to eer middleware

systems rely upon a user to assemble a point-to-point graph of the co~ections used for

sharing the information. Thus, it is neither suitable nor desirable to ~se peer-to-peer

middleware systems when more than a small number of participants is des*ed. In addition,
I

the underlying architecture of the T.120 Internet standard is a tree structure~ which relies on

the root node of the tree for reliability of the entire network. That is, each mjessage must pass

through the root node in order to be received by all participants. I
It would be desirable to have a reliable communications 'network that is

suitable for the simultaneous sharing of information among a large number! of the processes

that are widely distributed.
1

i
I

BRIEF DESCRIPTION OF THE DRAWINGS
i

Figure 1 illustrates a graph that is 4-regular and 4-connected 1nch represents a

20 broadcast channel. '

25

Figure 2 illustrates a graph representing 20 computers connect~d to a broadcast
!

channel.

Figures 3A and 3B illustrate the process of connecting a new 1'omputer Z to the

broadcast channel.

Figure 4A illustrates the broadcast channel of Figure 1 with an added

computer. I
Figure 4B illustrates the broadcast channel of Figure 4A I with an added

·computer.

Figure 4C also illustrates the broadcast channel of Figure 4A with an added

30 computer.

[03004-8001/SL003733.106] -3- 7131/00

I

'·

, ..
i

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1024 of 1657

I

i
I
I

Figure SA illustrates the disconnecting of a computer fro* the broadcast

channel in a planned manner.

Figure SB illustrates the disconnecting of a computer froJ11 the broadcast

channel in an unplanned manner.

s Figure SC illustrates the neighbors with empty ports condition.

10

15

20

25

30

Figure SD illustrates two computers that are not neighbors who now have

empty ports.

Figure SE illustrates the neighbors with empty ports condidon in the small
! regime.
i
I

Figure SF illustrates the situation of Figure SE when in the lar~e regime.

Figure 6 is a block diagram illustrating components of a 4omputer that is

connected to a broadcast channel. l ·
Figure 7 is a block diagram illustrating the sub-components or the broadcaster

component in one embodiment. 1

Figure 8 is a flow diagram illustrating the processing of the c~nnect routine in

one embodiment. i
l

Figure 9 is a flow diagram illustrating the processing of !the seek portal
:

computer routine in one embodiment. i
I

Figure 10 is a flow diagram illustrating the processing of thej contact process
!

routine in one embodiment.
I

Figure 11 is a flow diagram illustrating the processing of thej connect request
i routine in one embodiment. 1
I
I

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. !
i

Figure 13 is a flow diagram of the processing of the achieve c1nnection routine

in one embodiment. I

Figure 14 ts a flow diagram illustrating the processing ~f the external

dispatcher routine in one embodiment. ;

Figure 1S is a flow diagram illustrating the processing of thd handle seeking

connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the h~dle connection

request call routine in one embodiment.

[03004-800 l/SL003733.1 06) -4- 71311110

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1025 of 1657

I
i
I
I

Figure 17 is a flow diagram illustrating the processing of tp.e add neighbor

routine in one embodiment. I
Figure 18 is a flow diagram illustrating the processing lof the forward

connection edge search routine in one embodiment.

5 Figure 19 is a flow diagram illustrating the processing of ~e handle edge

proposal call routine.

Figure 20 is a flow diagram illustrating the processing of I the handle port

connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

10 one embodiment.

Figure 22 is a flow diagram illustrating the processing of the itttemal dispatcher

routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the bandle broadcast

message routine in one embodiment.

15 Figure 24 is a flow diagram illustrating the processmg qf the distribute
I

broadcast message routine in one embodiment. ;

Figure 26 is a flow diagram·illustrating the processing of the h~dle connection
i

' port search statement routine in one embodiment. ,

Figure 27 is a flow diagram illustrating the processing of th~ court neighbor

20 routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the ~dle connection

edge search call routine in one embodiment

Figure 29 is a flow diagram illustrating the processing of the hlmdle connection

edge search response routine in one embodiment.

25 Figure 30 is a flow diagram illustrating the processing of the l>roadcast routine

in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the j acquire message

routine in one embodiment. i
i

Figure 32 is a flow diagram illustrating processing of the ftandle condition
I

30 check message in one embodiment. l
. i

F1gnre 33 is a flow diagram illustrating processing of the pandle condition

repair statement routine in one embodiment. i

{03004-800 I/SL003733.1 06) -5- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1026 of 1657

'

Figure 34 is a flow diagram illustrating the processing of the ~andle condition

double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlay~ a point-to-point

s communications network is provided. The broadcasting of a message o~er the broadcast

channel is effectively a multicast to those computers of the network ~t are currently

connected to the broadcast channel. In one embodiment, the broadcast teclUrique provides a
!

logical broadcast channel to which host computers through their executing processes can be

connected. Each cOmputer that is connected to the broadcast chann~l can broadcast
I

. I

10 messages onto and receive messages off of the broadcast channel. Each !computer that is

connected to the broadcast channel receives all messages that are bro~cast while it is

connected. The logical broadcast channel is implemented using an un~erlying network

system (e.g., the Internet) that allows each computer connected to the underlying network

system to send messages to each other connected computer using each co~puter's address.

15 Thus, the broadcast technique effectively provides a broadcast channel us~g an underlying

network system that sends messages on a point-to'-point basis. i

The broadcast technique overlays the underlying· network sys~em with a graph

of point-to-point connections (i.e., edges) between host computers (i.e.,i nodes) through

which the broadcast channel is implemented. fu one embodiment, e+ch computer is

20 connected to four. other computers, referred to as neighbors. (Actually, a ~rocess executing

on a computer is connected to four other processes executing on thiis or four other

computers.) To broadcast a message, the originating computer sends the m'ssage to each of

its neighbors using its point-to-point connections. Each computer that rece~ves the message

25

30

I

then sends the message to its three other neighbors using the point-to-poin~ connections. In
I

this way, the message is propagated to each computer using the underlying petwork to effect

the broadcasting of the message to each computer over a logical broadcast ~hannel. A graph

in which each node is connected to four other nodes is referred to as a 4-rePtar graph. The

use of a 4-regular graph means that a computer would become disconbected from the

broadcast channel only if all four of the connections to its neighbors fail. ~e graph used by

the broadcast technique also has the property that it would take a failure of +ur computers to

J

l
[03004-800l/SL003733.106J -6- i 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1027 of 1657

' I

divide the graph into disjoint sub-graphs, that is two separate broadcast! channels. This

property is referred to as being 4-connected. Thus, the graph is both ~-regular and 4-

connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected jWhich represents

s the broadcast channel. Each of the nine nodes A-I represents a computer th~t is connected to

the broadcast channel, and each of the edges represents an "'edge" connec1!ion between two

computers of the ·broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connec~ons between the

computers and the number of connections between the originating comput~r and· each other

10 computer on the broadcast channel. The minimum number of connectio$ that a message

would need to traverse between each pair of computers is the .. distanfe" between the

computers (i.e., the shortest path between the two nodes of the graph). tor example, the

distance between computers A and F is one because computer A is diredtly connected to

computer F. The distance· between computers A and B ·is two because *ere is no direct
I

15 connection between computers A and B, but computer F is directly connect~d to computer B.

Thus, a message originating at computer A would be sent directly to com~uter· F, and then

sent from computer F to computer B. The maximum of the distances betwefn the computers

is the "diameter" of broadcast channel. The diameter of the broadcast ch~el represented
I

by Figure 1 is two. That is, a message sent by any computer would traverse no more than

20 two connections to reach every. other computer. Figure 2 illustrates a grap* representing 20

computers connected to a broadcast channel The diameter of this broadcas. channel is 4. In

particular, the shortest path between computers 1 and 3 contains four conn~ctions (1-12, 12-

15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of cbmputers to the

25 broadcast channel (i.e., composing the graph), (2) the broadcasting of m~ssages over the

broadcast channel (i.e., broadcasting through the graph), and (3) the ~sconnecting of
i

computers from the broadcast channel (i.e., decomposing the graph) composp.g the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking th~ connection first

30 locates a computer that is currently fully connected to the broadcast c~annel and then

[03004-8001/SL003733 .106] -7- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1028 of 1657

i
establishes a connection with four of the computers that are already monnected to the

broadcast channel. (This assumes that there are at least four computers alrejady connected to
I

the broadcast channel. When there are fewer than five computers connec!Fd, the broadcast

channel cannot be a 4-regular graph. In such a case, the broadcast channe~ is considered to

5 be in a "small regime." The broadcast technique for the small regime is d~scribed below in

detail. When five or more computers are connected, the broadcast channet is considered to

be in the "large regime." This description assumes that the broadcast cha4e1 is in the large

regime, unless specified otherwise.) . Thus, the process of connecting ~o the broadcast

channel includes locating the broadcast channel, identifying the neighbors fpr the connecting
i

10 computer, and then connecting to each identified neighbor. Each computet is aware of one

or more "portal computers" through which that computer may locate the btoadcast channel.

A seek.i.Ilg computer locates the broadcast channel by contacting the portal ~omputers untilit

finds one that is currently fully connected to the broadcast channel. the found portal

computer then directs the identifYing of four computers (i.e., to be the se¢king computer's
'

15 neighbors) to which the seeking computer is to connect. Each of these fo •. computers then

cooperates with the seeking computer to effect the connecting of the seekin~ computer to the

broadcast channel. A computer that has started the process of locating a pot computer, but

does not yet have a neighbor, is in the "seeking connection state." A , omputer that is

connected to at least one neighbor, but not yet four neighbors, is in the "p~ally connected

20 state." A computer that is currently, or has been, previously connected to four neighbors is

in the .. fully connected state."

Since the broadcast channel is a 4-regular graph, each ef the identified

computers is already connected to four computers. Thus, some conuections between

computers need to be broken so that the seeking computer can connect to fotur computers. In

25 one embodiment, the broadcast technique identifies two pairs of computers that are currently

connected to each other. Each of these pairs of computers breaks the coljmection between

them, and then each of the four computers (two from each pair) connects to the seeking

computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the

broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is

30 connected. The pairs of computers B and E and computers C and D are the two pairs that are

identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of compute~s B, C, D, and E

[03004-800 IISL003733.1 06] -8- 7/31100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1029 of 1657

5

is established as indicated by Figure 3B. The process of breaking the co~ecrion between
I

two neighbors and reconnecting each of the former neighbors to another cotpputer is referred

to as "edge pinning" as the edge between two nodes may be considered to! be stretched and

pinned to a new node.

Each computer connected to the broadcast channeli allocates five

communications ports for communicating with other computers. Four !of the ports are

referred to. as ••internal" ports because they are the ports through which th~ messages of the
I

broadcast channels are sent. The connections between internal ports bf neighbors are

referred to as "internal" connections. Thus, the internal connections of the ~roadcast channel

10 form the 4-regular and 4-connected graph. The fifth port is referred to as an "external" port

because it is used for sending non-broadcast messages between two computers. Neighbors

can send non-broadcast messages either. through their internal ports of th~ir connection or

through their external ports. A seeking computer uses external ports whe111locating a portal

computer.

15 In one embodiment, the broadcast technique establishcjs the computer

connections using the TCPIIP communications protocol, which is a point-to-point protocol,

as the underlying network. The TCP/IP protocol provides for reliable andi ordered delivery

of messages between computers. The TCPIIP protocol provides each computer with a "port

space" that is shared among all the processes that may execute on that computer. The ports

20 are identified by numbers from 0 to 65,535. The first 2056ports are reserved for specific

applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports

that are available to any process. In one embodiment, a set of port numbers can be reserved

for use by the computer connected to the broadcast channel. In an alternative embodiment,

the port numbers used are dynamically identified by each computer. Each computer

25 dynamically identifies an available port to be used as its call-in port. This c~ll-in port is used

to establish connections with the external port and the internal ports. Eac~ computer that is

connected to the broadcast channel can receive non-broadcast messages thtough its external

port. A seeking computer tries "dialing" the port numbers of the portal ~tomputers until a

portal computer "answers," a call on its call-in port. A portal computer am.swers when it is

30 connected to or attempting to connect to the broadcast channel and its call~in port is dialed.

(In this description, a telephone metaphor is used to describe the conne~tions.) When a

computer receives a call on its call-in port, it transfers the call to anothe~ port. Thus, the
I

[03004-800l/SL003733.106) -9- I 7131/00

!

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1030 of 1657

seeking computer actually communicates through that transfer-to port, whi~h is the external

port. The call is transferred so that other computers can place calls to that !computer via the
I

call-in port. The seeking computer then communicates via that external Pfrt to request the

portal computer to assist in connecting the seeking computer to the broadcfst channel. The

5 seeking computer could identify the call-in port number of a portal computer by successively

dialing each port in port number order. As discussed below in detail, the br~adcast technique

uses a hashing algorithm to select the port number order, which may result in improved

performance.

A seeking computer could connect to the broadcast channel by connecting to

10 computers either directly connected to the found portal computer or directly !connected to one

of its neighbors. A possible problem with such a scheme for identifying the neighbors for

the. seeking computer is that the diameter of the broadcast channel may inqrease when each

seeking computer uses the same found portal computer and establishes a connection to the

broadcast channel directly through that found portal computer. Conceptually, the graph

15 becomes. elongated in the direction of where the new nodes are added. Figures 4A-4C

illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with

an added computer. Computer J was connected to the broadcast channel·by edge pinning

edges C-D and E-H to computer J. The diameter of this broadcast ch8J!U1el is still two.

Figure 4B illustrates the broadcast channel of Figure 4A with an ~dded computer.

20 Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to

computer K. The diameter of this broadcast channel is three, because the· shortest path from

computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates

the broadcast channel of Figure 4A with an added computer. Computer K was connected to

the broadcast channel by edge pinning edges D-G and E-J to computer K. The diameter of

25 this broadcast channel is, however, still two. Thus, the selection of neigl:ibors impacts the

diameter of the broadcast channel. To help minimize the diameter, the br~adcast technique

uses a random selection technique to identify the four neighbors of a computer in the seeking
I

connection state. The random selection technique tends to distribute the co~ections to new

seeking computers throughout the computers of the broadcast channel whl,ch may result in

30 smaller overall diameters.

[03004-800 l/SL003733.1 06] -10- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1031 of 1657

Broadcasting Through the Graph

As described above, each computer that is colUlected to the ~roadcast chalUlel

can broadcast messages onto the broadcast channel and does receive all Q:tessages that are

broadcast on the broadcast chalUlel. The computer that originates a messag..e to be broadcast

5 sends that message to each of its four neighbors using the internal conn~tions. When a

computer receives a broadcast message from a neighbor, it sends the me~sage to its three

other neighbors. Each computer on the broadcast chalUlel, except the origilnating computer,

will thus receive a copy of each broadcast message from each of its four neighbors. Each

computer, however, only sends the flrst copy of the message that it receive~ to its neighbors

10 and disregards subse.quently received copies. Thus, the total number of copies of a message

that is sent between the computers is 3N+l, where N is.the number of co~puters connected

to the· broadcast. chaiUlel. Each computer sends three copies of the message, except for the

originating computer, which· sends. four copies of the message.

The redundancy of the message sending helps to . ensure the overall reliability

15 of the broadcast channel. Since each computer has four connections to the broadcast

channel, if one computer fails during the broadcast of a message, its nei~bors have three

other connections through which they will receive copies of the broadcast ~essage. Also, if

the internal colUlection between two computers is slow, each computer; has three other

connections through which it may receive a copy of each message sooner.

20 Each computer that originates a message numbers its own messages

sequentially. Because of the dynamic nature of the broadcast channel and because there are

many possible colUlection paths between computers, the messages may be received out of

order. For example, the distance between an originating computer and a certain receiving

computer may be four. After sending the fust message, the origina~ computer and

25 receiving computer may become neighbors and thus the distance between :them changes to

one. The first message may have to travel a distance of four to reach the re~iving computer.

The second message only has to travel a distance of one. Thus, it is possible for the second

message to reach the receiving computer before the fust message.

When the broadcast channel is in a steady state {i.e., no computers connecting

30 or disconnecting from the broadcast channel), out-of-order messages are not a problem

because each computer will eventually receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a

[03004-8001/SL003733.106] -11- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1032 of 1657

steady state, then problems can occur. In particular, a computer mayr coDil.ect to the

broadcast channel after the second message has already been received and ~orwarded on by

its new neighbors. When a new neighbor eventually receives the first mes,age, it sends the

message to the newly connected computer. Thus, the newly connected comwuter will receive

5 the first message, but will not receive the second message. If the newly cotptected computer

needs to process the messages in order, it would wait indefinitely for the secfmd message.
I

One solution to this problem is to have each computer queue!all the messages

that it receives until it can send them in their proper order to its neighbor~. This solution,

however, may tend to slow down the propagation of messages through the ~omputers of the

10 broadcast channel. Another solution that may have less impact on the pro~agation speed is

to queue messages only at computers who are neighbors of the newly connected computers.

Each already connected neighbor would forward messages as it receives them to its other

neighbors who are not newly connected; but not to the newly coDil.ected neighbor. The

already connected neighbor would only forward messages from each originating computer to

15 the newly connected computer when it can ensure that no gaps in the messages from that

originating computer will occur. In one embodiment, the already connect¢d neighbor may

track the highest sequence number of the messages already received and fotwarded on from

each originating computer. The already connected computer will send only [b.igher numbered

messages from the originating computers to the newly connected computerJ Once all lower

20 numbered messages have been received from all originating computers, Uten the already

connected computer can treat the newly connected computer as its othc:r neighbors and

simply forward each message as it is received. In another embodiment, ea~h computer may

queue messages and only forwards to the newly connected computer thosei messages as the

gaps are filled in. For example, a computer might receive messages 4 and 51 and then receive

25 message 3. In such a case, the already connected computer would forward queue messages 4

and 5. When message 3 is fmally received, the already connected computer will send

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the

newly connected computer before message 3, then the newly connected ~computer would

process messages 4 and 5 and disregard message 3. Because the already coi)D.ected computer

JO queues messages 4 and 5, the newly connected computer will be able to prpcess message 3.

It is possible that a newly connected computer will receive a set of messages from an

originating computer through one neighbor and then receive another set of ~essage from the

[03004-8001/SL003733.106) -12- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1033 of 1657

same originating computer through another neighbor. If the second set of messages contains

a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

5 Decomposing the Graph

A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a

disconnect message to each of its four neighbors. . The disconnect message includes a list that

identifies the four neighbors of the disconnecting computer. When a neighbor receives the

10 disconnect message, it tries to cmmect to one of the computers on the list. In one

embodiment, the first computer in the list will try to connect to the second computer in the

list, and the third computer in the list will try to connect to the fourth computer in the list. If

a computer cannot connect (e. g., the first and second computers are already connected), then

the computers may try connecting in various other combinations. If connections cannot be

15 established, each computer broadcasts a message that it needs to· establish a connection with

another computer. When a computer with an available internal port receives the message, it

can then establish a connection with the computer that broadcast the message. Figures 5A-

5D illustrate the disconnecting of a computer from the broadcast chmmel. Figure 5A

illustrates the disconnecting of a computer from the broadcast channel in a planned manner.

20 When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors

(computers A, E, F and I) and then disconnects from each of its neighbors. When

computers A and I receive the message they establish a connection between them as

indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from

25 a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next message to the now disconnected

computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i.e., it has a hole or empty port). When a connected computer detects that one of

its neighbors is now disconnected, it broadcasts a port connection request on the broadcast

30 channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

[03004-KOO l/SL003733.1 06] -13- 7/31/(1()

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1034 of 1657

computer that is also short a connection receives the connection request, !it communicates

with the requesting computer through its external port to establish a conne9tion between the

two computers. Figure 5B illustrates the disconnecting of a computer fr1m the broadcast

channel in an unplanned manner. In this illustration, computer H has di~connected in an

s unplanned manner. When each of its neighbors, computers A, E, F, and[, recognizes the

disconnection, each neighbor broadcasts a port connection request indicating that it needs to

fill an empty port. As shown by the dashed lines, computers F and I and computers A and E

respond to each other's requests and establish a connection.
I

It is possible that a planned or unplanned disconnection may result in two

10 neighbors each having an empty internal port. In such a case, since they are neighbors, they

are already connected and cannot fill their empty ports by connecting to each other. Such a

condition is referred to as the "neighbors with empty ports" condition. Each neighbor

broadcasts a port connection request when it detects that it has an empty port as described

above. When a neighbor receives the port connection request from the other neighbor, it will

IS recognize the condition that its neighbor also has an empty port. Such a condition may also

occur when the broadcast channel is in the small regime. The condition can only be

corrected when in the large regime. When in the small regime, each computer will have less

than four neighbors. To detect this condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the

20 condition and sends a condition check message to the other neighbor. The condition check

message includes a list of the neighbors of the sending computer. When the receiving

computer receives the list, it compares the list to its own list of neighbors~ If the lists are

different, then this condition has occurred in the large regime and repair is needed. To repair

this condition, the receiving computet will send a condition repair request to one of the

25 neighbors of the sending computer which is not already a neighbor of the receiving

computer. When the computer receives the condition repair request, it disccpnnects from one

of its neighbors (other than the neighbor that is involved with the condition) and connects to

the computer that sent the condition repair request. Thus, one of the oii.ginal neighbors

involved in the condition will have had a port filled. However, two computers are still in

30 need of a connection, the other original neighbor and the computer that is now disconnected

from the computer that received the condition repair request. Those two cotnputers send out

port connection requests. If those two computers are not neighbors, then the~ will connect to

[03004-800l/SL003733.106] -14- 7131i00

I
! .

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1035 of 1657

each other when they receive the requests. If, however, the two computers are neighbors,

then they repeat the condition repair process until two non-neighbors are in need of

cmmections.

It is possible that the two original neighbors with the condition may have the

5 same set of neighbors. When the neighbor that receives the condition check message

determines that the sets of neighbors are the same, it sends a condition double check message

to one of its neighbors other than the neighbor who also has the condition. When the

computer receives the condition double check message, it determines whether it has the same

set of neighbors as the sending computer. If so, the broadcast channel is in. the small regime

10 and the condition is not a problem. If the set of neighbors are different, then the computer

that received the condition double check message sends a condition check message to the

original neighbors with the condition. The computer that receives that condition check

message directs one of it neighbors to connect to one of the original neighbors with the

condition by sending a condition repair message. Thus, one of the original neighbors Wllth

15 the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this

illustration, computer H disconnected in an unplanned manner, but computers F and I

responded to the port connection request of the other and are now connect¢d together. Tb.e

other. former neighbors of computer H, computers A and E, are already neighbors, which

20 gives rise to the neighbors with empty ports condition. In this example, computer E received

the port connection request from computer A, recognized the possible condition, and sent

(since they are neighbors via the internal connection) a condition check message with a list

of its neighbors to computer A. When computer A received the list, it recognized that

computer E has a different set of neighbor (i.e., the broadcast channel is in tlhe large regim1:).

25 Computer A selected computer D, which is a neighbor of computer E and sent it a conditil)n

repair request. When computer D received the condition repair request, it disconnected fmm

one of its neighbors (other than computer E), which is computer G in this examp:te.

Computer D then connected to computer A. Figure 50 illustrates two computers that are not

neighbors who now have empty ports. Computers E and G now have empty ports and are

30 not currently neighbors. Therefore, computers E and G can connect to each other.

Figures 5E and 5F further illustrate the neighbors with empty ports condition.

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In tll~s

[03004-8001/SL003733.106] -15- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1036 of 1657

example, if computer E disconnected in an unplanned manner, then each computer

broadcasts a port connection request when it detects the disconnect. When computer A

receives the port connection request form computer B, it detects the neighbors with empty

ports condition and sends a condition check message to computer B. Computer B recognizes

s that it has the same set of neighbors (computer C and D) as computer A and then sends a

condition double check message ·to computer C. Computer C recognizes that the broadcast

channel is in the small regime because is also has the same set of neighbors as computers A

and B, computer C may then broadcast a message indicating that the broadcast channel is in

the small regime.

10 Figure SF illustrates the situation of Figure SE when in the large regime. As

discussed above, computer C receives the condition double check message from computer B.

In.this case, computer C recognizes that the broadcast channel is in the large regime because

it has a set of neighbors that is different from computer B. The edges extending up from

computer C and D indicate connections to other computers. Computer C then sends a

IS condition check message to computer B. When computer B receives the condition check

message, it sends a condition repair message to. one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C,. and tries to connect to computer B and the neighbor from which it

disconnected tries to connect to computer A.

20 Port Selection

As described above, the TCPIIP protocol designates ports above number 2056

as user ports. The broadcast technique uses five user port numbers on each computer: one

external port and four internal ports. Generally, user ports cannot be statically allocated to

an application program because other applications programs executing on the same computer

25 may use conflicting port numbers. As a result, in one embodiment, the computers connected

to the broadcast channel dynamically allocate their port numbers. Each computer could

simply try to locate the lowest number unused port on that computer and use that port as the

call-in port. A seeking computer, however, does not know in advance the call-in port

number of the portal computers when the port numbers are dynamically allocated. Thus, a

30 seeking computer needs to dial ports of a portal computer starting with the lowest port

number when locating the call-in port of a portal computer. If the portal computer is

[03004-8001/SL003733.106) -16- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1037 of 1657

connected to (or attempting to connect to) the broadcast channel, then the seeking computer

would eventually find the call-in port. If the portal computer is not connected, then the

seeking computer would eventually dial every user port. In addition, if each application

program on a computer tried to allocate low-ordered port numbers, then a portal computer

5 may end up with a high-numbered port for its call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a

relatively slow process, it would take the seeking computer a long time to locate the call-in

port of a portal computer. To mini.nrize this time, the broadcast technique uses a port

ordering algorithm to identify the port number order that a portal computer should use when

w finding an available port for its call-in port. In one embodiment, the broadcast technique

uses a hashing algorithm to identify the port order. The algorithm preferably distributes the

ordering of the port munbers randomly through out the user port number space and only

selects each port number once. In addition, every time the algorithm is executed on any

computer for a· given channel type and channel instance, it generates the same port ordering.

15 As described below, it is· possible for a computer to be connected to multiple broadcast

channels that are uniquely identified by channel type and channel instance. The algorithm

may be "seeded" with channel type and channel instance in order to generate a unique

ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the

ports of a portal computer in the same order as the portal computer used when allocating its

20 call-in port.

If many computers are at the same time seeking connection to a broadcast

channel through a single portal computer, then the ports of the portal computer may be busy

when called by seeking computers. The seeking computers would typically need to keep on

redialing a busy port. The process of locating a call-in port may be significantly slowed by

25 such redialing. In one embodiment, each seeking computer may each reorder the first few

port numbers generated by the hashing algorithm. For example, each seeking computer

could randomly reorder the first eight port numbers generated by the hashing algorithm. The

random ordering could also be weighted where the first port number generated by the

hashing algorithm would have a 50% chance of being first in the reordering, the second port

30 number would have a 25% chance of being first in the reordering, and so on. Because the

seeking computers would use different orderings, the likelihood of finding a busy port is

reduced. For example, if the first eight port numbers are randomly selected, then it is

[03004-800l/SL003733.106] -17 • 7!3 J/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1038 of 1657

possible that eight seeking computers could be simultaneously dialing ports in different

sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channel has a list of one or

s more portal computers through which it can connect to the broadcast channel. In one

embodiment, each computer has the same set of portal computers. A seeking computer

locates a portal computer that is connected to the broadcast channel by successively dialing

the ports of each portal computer in the order specified by an algorithm. A seeking computer

could select. the first portal computer and then dial all its ports until a call-in port of a

10 computer that is fully connected to the broadcast channel is found. If no call-in port is

found, then the seeking computer would select the next portal computer and repeat the

process until a portal computer with such a call-in port is found. . A problem with such a

seeking technique is that all user ports of each portal· computer are dialed until a portal

computer fully connected to the broadcast channel is found. In an alternate embodiment, the

15 seeking computer selects a port number according to the algorithm and then. dials each portal

computer at that port number. If no acceptable call-in port to the broadcast channel is found,

then· the seeking. computer selects the next port. number and repeats the process. Since the

call-in· ports are likely allocated at lower-ordered port numbers, the seeking computer first

dials the port numbers that are most likely to be call-in ports of the broadcast channel. The

20 seeking computers may have a maximum search depth, that is the number of ports that it will

dial when seeking a portal computer that is fully connected. If the seeking computer

exhausts its search depth, then either the broadcast channel has not yet been-established or, if

the seeking computer is also a portal computer, it can then establish the broadcast channel

with itself as the first fully connected computer.

25 When a seeking computer locates a portal computer that is itself not fully

connected, the two computers do not connect when they first locate each other because the

broadcast channel may already be established and accessible through a higher-ordered port

number on another portal computer. If the two seeking computers were to connect to each

other, then two disjoint broadcast channels would be formed. Each seeking computer can

30 share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seeking computer has searched all the portal computers to a depth of eight,

[03004-8001/SL003733.106] -18- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1039 of 1657

s

then the one seeking computer can share that it has searched to a depth of eight with another

seeking computer. If that other seeking computer has searched to a depth of, for example,

only four, it can skip searching through depths five through eight and .that other seeking

computer can advance its searching to a depth of nine.

In one embodiment, each computer may have a different set of portal

computers and a different maximum search depth. In such a situation, it may be possible that

two disjoint broadcast channels are formed because a seeking computer cannot locate a fully

connected port computer at a higher depth. Similarly, if·the set of portal computers are

disjoint, then two separate broadcast channels would be formed.

10 Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are

prefembly selected randomly from the set of currently connected computers. One advantage

of the broadcast channel, however, is that no computer has global knowledge of the

broadcast·channel. Rather, each computer has .local knowledge of itself and its neighbors.

15 This limited local knowledge has the advantage that all the connected computers are peers

(as far as the broadcasting is concerned) and the failure of any.one computer (actually any

three computers when in the 4-regular and 4-connect form) will not cause the broadcast

channel to fail. This local knowledge makes it difficult for a portal computer to randomly

select four neighbors for a seeking computer.

20 To select the four computers, a portal computer sends an edge connection

request message through one of. its internal connections that is randomly selected. The

receiving computer again sends the edge connection request message through one of its

internal connections that is randomly selected. This sending of the message corresponds to a

random walk through the graph that represents the broadcast channel. Eventually, a

25 receiving computer will decide that the message has traveled far enough to represent a

randomly selected computer. That receiving computer will offer the internal connection

upon which it received the edge connection request message to the seeking computer for

edge pinning. Of course, if either of the computers at the end of the offered internal

connection are already neighbors of the seeking computer, then the seeking computer cannot

30 connect through that internal connection. The computer that decided that the message has

[03004-800l/SL003733.106] -19- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1040 of 1657

traveled far enough will detect this condition of already being a neighbor and send the

message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection request message

travels is established by the portal computer to be approximately twice the estimated

s diameter of the broadcaSt channel. The message includes an indication of the distance that it

is to travel. Each receiving computer decrements that distance to travel before sending the

message on. The computer that receives a message with a distance to travel that is zero is

considered to be the randomly sele.cted computer. If that randomly selected computer cannot

connect to the seeking computer (e.g., because it is already connected to it), then that

10 randomly selected computer forwards the edge connection request to one of its· neighbors

with a new distance to travel. In one embodiment, the forwarding computer toggles the new

distance to travel between zero and one to help prevent two computers from sending the

message back and forth between each other.

Because of the local nature of the information maintained by each computer

15 connected to the broadcast channel, the computers need not generally be aware of the

diameter of the broadcast channel. In one embodiment, each message sent through the

broadcast channel has a distance traveled field. Each computer that forwards a message

increments the distance traveled field. Each computer also maintains an estimated diameter

of the broadcast channel. When a computer receives· a message that has traveled a distance

20 that indicates that the estimated diameter is . too small, it updates its estimated· diameter and

broadcasts an. estimated diameter message .. When a computer receives an estimated diameter

message that indicates a diameter that is larger than· its own estimated diameter, it updates its

own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

25 External Data Representation

The computers connected to the broadcast channel may internally store their

data in different formats. For example, one computer may use 32-bit integers, and another

computer may use 64-bit integers. As another example, one computer may use ASCII to

represent text and another computer may use Unicode. To allow communications between

Jo heterogeneous computers, the messages sent over the broadcast channel may use the XDR

("eXternal Data Representation") format.

[03004-800 IISL003733 .I 06J -20- 7131/00

I'
I

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1041 of 1657

The underlying peer-to-peer communications protocol may send multiple

messages in a single message stream. The traditional technique for retrieving messages from

a stream has been to repeatedly invoke an operating system routine to retrieve the next

message in the stream. The retrieval of each message may require two calls to the operating

s system: one to retrieve the size of the next message and the other to retrieve the number of

bytes indicated by the retrieved size. Such calls to the operating system can, however, be

very slow in comparison to the invocations of local routines. To overcome the inefficiencies

of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the

message boundaries in a stream of messages. The broadcast technique may request the

10 operating system to provide the next, for example, 1,024 bytes from the stream. The

broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages

and use the success or failure of each invocation to determine whether another block of 1,024

bytes needs to be retrieved from the operating system. The invocation of XDR routines do

not involve system calls and are thus more efficient than repeated system calls.

15 M-Regular

In the embodiment described above, each fully connected computer has four

internal connections. The broadcast technique can be used with other numbers of internal

connections. For example, each computer could have 6, 8, or any even number of internal

connections. As the number of internal connections increase, the diameter of the broadcast

20 channeltends to decrease, and thus propagation time for a message tends to decrease. The

time that it takes to connect a seeking computer to the broadcast channel may, however,

increase as· the number of internal connections increases; When the number of internal

connectors is even, then the broadcast channel can be maintained as m-regular and

m-connected (in the steady state). If the number of internal connections is odd, then when

25 the broadcast channel has an odd number of computers connected, one of the computers will

have less than that odd number of internal connections. In such a situation, the broadca'it

network is neither m-regular nor m-connected. When the next computer connects to tb.e

broadcast channel, it can again become m-regular and m-connected. Thus, with an odd

number of internal connections, the broadcast channel toggles between being and not being

30 m-regular and m-connected.

[03004-800 1/Sl..003733.1 06] -21- 7131/011

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1042 of 1657

Components

Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumccd that there was

only one broadcast channel and that each computer had only one connection: to thatbroadcast

5 channel. More generally, a network of computers may have multiple broadcast channels,

each computer may be connected to more than one broadcast channel, and each computer

can have multiple connections to the same broadcast channel. The. broadcast channel is well

suited for computer processes (e.g., application programs) that execute collaboratively, such

as network meeting programs. Each computer process can connect to one or more broadcast

10 channels. The broadcast channels can be identified by channel type (e.g., application

program name) and channel instance that represents separate broadcast channels for that

channel type. When a process attempts to connect to a broadcast chatinel, it seeks a process

currently connected to that broadcast channel that is executing on a portal computer. The

seeking process identifies the broadcast channel by channel type and channel instance.

15 Computer 600 includes multiple . application programs 601 executing as

separate processes. Each application program interfaces with a broadcaster component 602

for each broadcast channel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of the application

program. A1tematively, the broadcaster component may execute as a separate process or

20 thread from the ·application program. In one embodiment, the broadcaster component

provides functions (e.g., methods of class) that can be invoked by the application programs.

The primary functions provided may include a connect function that an application program

invokes passing an indication of the broadcast channel to which the application program

wants to connect. The application program may provide a callback routine that the

25 broadcaster component invokes to notify the application program that the connection has

been completed, that is the process enters the fully connected state. The broadcaster

component may also provide an acquire message function that the application program can

invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,

the application program may provide a callback routine (which may be a virtual function

30 provided by the application program) that the broadcaster component invokes to notify the

application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

[03004-800l/SL003733.106] -22- 7/Jl/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1043 of 1657

the call-in port, they are transferred to other ports that serve as the external and internal

ports.

The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

5 (e.g., display devices), and storage devices (e.g., disk drives). The memory and storage

devices are computer~readable medium that may contain computer instructions that

implement the broadcaster component. In addition, the data structures and message

structures may be stored or transmitted via a signal transmitted on a computer-readable

media, such as a communications link.

10 Figure 7 is a·block diagram illustrating the sub-components of the broadcaster

component in one embodiment The broadcaster component includes a connect component

701, an external dispatcher 702, an internal dispatcher 703 for each internal connectio~ an

acquire message component 704 and a broadcast component 712. The application program

may provide a connect callback component 710 and a receive response component 711 that

15 are invoked . by the broadcaster component. The application program invokes the connect

component to establish a connection to a designated broadcast channel. The connect

component identifies the external port and installs the external dispatcher for handling

messages that are received on the external port. The connect component invokes the seek

portal computer component 705 to identify a portal computer that is connected to the

20 broadcast channel and invokes the connect request component 706 to ask the portal computer

(if fully connected) to select neighbor processes for the newly connecting process. The

external dispatcher receives external messages, identifies the type of message, and invokes

the appropriate handling routine 707. The internal dispatcher receives the internal messages,

identifies the type of message, and invokes the appropriate handling routine 708. The

25 received broadcast messages are stored in the broadcast message queue 709. The acquire

message component is invoked to retrieve messages from the broadcast queue. The

broadcast component is invoked by the application program to broadcast messages in the

broadcast channel.

A Distributed Conferencing System

30 In one embodiment, a conferencing system is implemented using the broadcast

channel. Each participant in a conference connects to the conference's broadcast channe~

[03004-8001/SL003733.106] ~23- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1044 of 1657

and a participant is designated as the speaker. The conferencing application program may

include a speaker component and an attendee component. The speaker component

broadcasts the conference events on the broadcast channel. Each attendee component

receives the conference events and displays the results of the conference events. For

5 example, the speaker may present slides at the conference along with a description ofeach

slide. Each attendee may receive an electronic copy of the slides in advance of the

conference. At the scheduled time for the conference, the speaker and each attendee joins

the conference by connecting to the broadcast channel of the conference. The speaker

component allows the speaker to indicate when to display which slide. When a new slide is

10 displayed, the speaker component broadcasts a new slide message. When the attendee

component receives the new slide message, it displays the new slide to the participant. Also,

the speaker component may allow the speaker to draw on a slide using a stylus or other

pointing device. The speaker component then broadcasts draw messages on the broadcast

channel so the attendee component can display the drawing to · the attendees. The

15 conferencing system may also use speech-to-text and text-to-speech to distribute the

speaker's comments to all attendees.

The conferencing . system may provide a directory web site where

participants can locate and sign up for a conference of interest. The directory may provide a

hierarchical categorization of scheduled conferences. When a user decides to sign up for a

20 conference, the web server may download the broadcaster component and the conferencing

application program to the attendee's computer, if not already stored on the attendee's

computer. The web server will also download the channel type and channel instance

associated with the broadcast channel for the conference along with the identification of the

portal computers for the broadcast channel. The web server may also download the slides or

25 other content to be displayed to the attendees during the conference.

The conferencing system may allow an entity to schedule conferences

using the web site. For example, a software company may want to schedule a conference to

announce a new product. The creation of the conference would entail the generation of a

channel type and channel instance. the specification of a security level (e.g., encrypted

30 messages), the specification of attendee qualifications, the providing of a description and

scheduled time of the conference, the specification of the content to be distributed to the

attendees, and so on. The speaker at a conference may not want to publicize the actual

[03004-80011SL003733.106J -24- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1045 of 1657

content (e.g., slides) in advance. In such a situation, the content can be encrypted when

distributed· to the attendees, and a key to decrypt the content can be distributed by the

speaker during the conference. For example, each slide for the software company's

announcement can be encrypted with a different key,. and the appropriate key can be

s broadcast with each new slide message.

The conferencing system may allow attendees to broadcast comments

on the broadcast channel. The times when an attendee can broadcast comments may be

controlled by the speaker. For example, the speaker component may broadcast a comments

allowed message and a comments not allowed message to delimit the times when comments

10 wilJ be allowed. Comments·broadcast outside those times may be· ignored. Alternatively, the

attendees may be allowed to broadcast comments at any time, but the other attendees ignore

those comments until the speaker broadcasts an approval message indicating that the· attendee

component can display a certain comment

The conferencing system may allow each attendee to connect to and

15 disconnect from the conference broadcast channel as this wish during the conference. In

addition, the conferencing system may allow multiple speakers to share the "podium." The

speakers can pass a speakers token between them to indicate who is currently speaking and

thus in control of the conference. An attendee who joins the conference late may be able to

synchronize with the conference by accessing a conference monitoring web server. The

20 monitoring web server may be connected to the conference broadcast ch~el and monitor

the current state of the conference. When an attendee joins late, the monitPring web server

can provide the attendee with the current state of the conference. From then on, the attendee

can listen on the broadcast channel to follow the progress of the conference. In addition, the

attendee component may allow the attendee to view parts of the presentation other than that

25 which is currently being presented. In this way, an attendee can refer back to or ahead to

other portions of the presentation.

The following tables list messages sent by the broadcaster components.

EXTERNAL MESSAGES

Message Type Description

seeking_ connection_ call Indicates that a seeking process would like to know whether the
receiving process is fully connected to the broadcast channel

[03004-8001/SL003733.l06) -25- 7f3l/OO

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1046 of 1657

connection _request_ call Indicates that the sending process would like the receiving I
process to initiate a connection of the sending process to the I
broadcast channel I

I

edge _proposal_ call Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
channel (i.e., edge pinning)

port_connection_call Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcast
channel

connected stmt Indicates that the sending process is connected to the broadcast
channel

condition _repair_ stmt Indicates that the receiving process should disconnect from one
of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition

INTERNAL MESSAGES

Message Type Description

broadcast stmt Indicates a message that is being broadcast through the
broadcast channel for the application programs

connection _port_ search_ stmt Indicates that the designated process is looking for a port
through which it can connect to the broadcast channel

connection_ edge_ search_ call Indicates that the requesting process is looking for an edge
through which it can connect to the broadcast channel

connection_ edge_ search _resp Indicates whether the edge between this process and the
sending neighbor has been accepted by the requesting
party

diameter_ estimate.:._ stmt Indicates an estimated diameter of the broadcast channel

diameter reset stmt Indicates to reset the estimated diameter to indicated - -
diameter

disconnect stmt Indicates that the sending neighbor is disconnecting from -
the broadcast channel

condition check stmt Indicates that neighbors with empty port condition have - -
been detected

condition_ double_ check_ stmt Indicates that the neighbors with empty ports have the
same set of neighbors

shutdown stmt Indicates that the broadcast channel is being shutdown

[03004-800 l/SL003733.106) -26- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1047 of 1657

Flow Diagrams

Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment. This routine is passed a channel type (e.g., application

5 name) and channel instance (e.g., session identifier), that identifies the broadcast channel to

which this process wants to connect. The routine is also passed auxiliary infonnation that

includes the list of portal computers and a connection callback routine. When the connection

is established, the connection callback routine is invoked to notify the application program.

When this process invokes this routine, it is in the seeking connection state. When a portal

10 computer is located that is connected and this routine connects to at least one neighbor, this

process enters the partially connected state, and when the process.eventually connects to four

neighbors, it enters the fully connected state. When in the smallregime, a fully connected

process may have less than four neighbors. In. block 801, the routine opens the call-in port

through which the process is to communicate with other processes when establishing external

15 and internal connections. The port is selected as the first available port using the hashing

algorithm described above. In block 802, the routine sets the connect time to the current

time. The connect time is used to identify the instance of the process that is connected

through this external port. One process. may connect to a broadcast channel of a certain

channel type and channel instance using one call-in port and then disconnects, and another

20 process may then connect to that same broadcast channel using the same call-in port. Before

the other process becomes fully connected, another process may try to communicate with it

thinking it is the fully connected old process. In. such a case, the cmmect time can be used to

identify this situation. In. block 803, the routine invokes the seek portal computer routine

passing the channel type and channel instance. The seek portal computer routine attempts to

25 locate a portal computer through which this process can connect to the broadcast channel for

the passed type and instance. In decision block 804, if the seek portal computer routine is

successful in locating a fully connected process on that portal computer, then the routine

continues at block 805, else the routine returns an unsuccessful indication. In decision block

805, if no portal computer other than the porta] computer on which the process is executing

30 was located, then this is the first process to fully connect to broadcast channel and the

routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

[03004-800l/SL003733.106] ·27· 7131/00

I
I.

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1048 of 1657

connected. In block 807, the routine installs the external dispatcher for processing messages

received through this process' external port for the passed channel type and channel instance.

When a message is received through that external port, the external dispatcher is invoked.

The routine then returns. In block 808, the routine installs an external dispatcher. In block

5 809, the routine invokes the connect request routine to initiate the process of identifying

neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow ·diagram illustrating the processing of the seek portal

computer routine in one embodiment. This routine is passed the channel type and channel

instance of the broadcast channel to which this process wishes to connect. This routine, for

10 each search depth (e.g., port number), checks the portal computers at that search depth. If a

portal computer is located at that search depth with a process that is fully connected to the

broadcast channel, then the routine returns an indication of success. In blocks 902-911, the

routine loops selecting each search depth until a process is located, In block 902, the routine

selects the next search depth using a port number ordering algorithm. In decision block 903,

15 if all the search depths have already been selected during this execution of the loop, that is

for the currently selected depth, then the routine returns a failure indication. else the· routine

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer

and determining whether a process of that portal computer is connected to (or attempting to

connect to) the broadcast channel with the passed channel type and channel instance. In

20 block 904, the routine selects the next portal computer. In decision block 905, if all the

portal computers have already been selected, then the routine.Ioops to block 902 to. select the

next search depth, else the routine continues at block 906. In block 906, the routine dials the

selected portal computer through the port represented by the search depth. In decision block

907, if the dialing was successful, then the routine continues at block 908, else the routine

25 loops to block 904 to select the next portal computer. The dialing will be successful if the

dialed port is the call-in port of the broadcast channel of the passed channel type and channel

instance of a process executing on that portal computer. In block 908, the routine invokes a

contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that process is fully connected to the broadcast

30 channel. In block 909, the routine hangs up on the selected portal computer. In decision

block 910, if the answering process is fully connected to the broadcast channel, then the

routine returns a success indicator, else the routine continues at block 911. In block 911, the

[03004-ll001/SL003733.106] -28- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1049 of 1657

routine invokes the check for external call routine to determine whether an external call has

been made to this process as a portal computer and processes that call The routine then

loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process

5 routine in one embodiment. This routine determines whether the process of the selected

portal computer that answered the call-in to the selected port is fully connected to the

broadcast channel. In block 1001, the routine sends an external message (Le.,

seeking_ connection_ call) to the answering process indicating that a seeking. process wants to

know whether the answering process is fully connected to the broadcast channel fu block

10 1002, the routine receives the external response message from the answering process. fu

decision block 1003, if the external response message is successfully received (i.e.,

seeking_connection_resp), then the routine continues at block 1004, else the routine returns.

Wherever the broadcast component requests to receive an external message~ it sets a time out·

period. If the external message is not received within that time out period, the broadcaster

15 component checks its own call-in port to see if another process is calling it. In particular, the

dialed process may be calling the dialing process, which may result in a deadlock· situation.

The broadcaster component may repeat the receive request several times. If the expected.

message is not received, then the broadcaster component handles the error as appropriate. In

decision block 1004, if the answering process indicates in its response message that it is fully

20 connected to the broadcast channel, then the routine continues at block 1005, else the routine

continues at block 1006. In block 1005, the routine adds the selected portal computer to a

list of connected portal computers and then returns.. In block 1006, the routine adds the

answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request

25 routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this

process to the broadcast channel. In decision block I 101, if at least one process of a portal

computer was located that is fully connected to the broadcast channel, then the routine

continues at block 1103, else the routine continues at block 1102. A process of the portal

30 computer may no longer be in the list if it recently disconnected from the broadcast channel.

In one embodiment, a seeking computer may always search its entire search depth and find

multiple portal computers through which it can connect to the broadcast channel. In block

[OJ004-8001/SL003733.106) -29- 7131/00

'
!·.-.

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1050 of 1657

1102, the routine restarts the process of connecting to the broadcast channel and returns. In

block 1103, the routine dials the process of one of the found portal computers through the

call-in port. In decision block 1104, if the dialing is successful, then the routine continues at

block 1105, else the routine continues at block 1113. The dialing may be unsucc.essful if, for

5 example, the dialed process recently disconnected from the broadcast channel. In block

1105, the routine sends an external message to the dialed process requesting a connection to

the broadcast channel (i.e., connection_request_call). In block 1106, the routine receives the

response message (i.e., connection_request_resp). In decision block 1107, if the response

message is successfully received, then the routine continues at block 1108, else the routine

10 continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,

empty internal connections) for this process based on the received response. When in the

large regime, the expected number of holes is zero. When in the small regime, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated

diameter of the broadcast channel based on the received response. In decision block 1111, if

15 the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at block 1113. In block

1112, the routine invokes the add neighbor routine to add the answering process as a

neighbor to this process. This adding of the answering process typically occurs when the

broadcast channel is in the small regime. When in the large regime, the random walk search

20 for a neighbor is performed. In block 1113, the routine hangs up the external connection

with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking

process is attempting to establish a connection to the broadcast channel through this process.

25 In block 1201, the routine attempts to answer a call on the call-in port. In decision block

1202, if the answer is successful, then the routine continues at block 1203, else the routine

returns. In block 1203, the routine receives the external message. from the external port. In

decision block 1204, if the type of the message indicates that a seeking process is calling

(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine

30 returns. In block 1205, the routine sends an external message (i.e., seeking_connection_resp)

to the other seeking process indicating that this process is also. is seeking a connection. In

decision block 1206, if the sending of the external message is successful, then the routine

(03004-8001/SL003733.106] -J Q. 7131/00

I .'
!

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1051 of 1657

continues at block 1207, else the routine returns. In block 1207, the routine adds the other

seeking process to a list of fellow seeking processes and then returns. This list may be used

if this process can fmd no process that is fully connected to the broadcast channel. In which ·

case, this process may check to see if any fellow seeking process were successful in

s connecting to the broadcast channel. For example, a fellow seeking process may become the

frrst process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve coimection routine

in one embodiment. This routine sets the state of this process to fully coimected to the

broadcast channel and invokes a callback routine to notify the application program that the

10 process is now fully connected to the requested broadcast channel. In block 1301, the

routine sets the connection state of this process to fully connected. In block 1302, the

routine notifies fellow seeking processes that it is fully connected by sending a connected

external message to them (i.e., coimected_stmt). In block 1303, the routine invokes the

connect callback routine to notify the application program and then returns.

15 Figure 14 is a flow diagram illustrating the processing :of the external

dispatcher routine in ·one embodiment. · This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the extet1lal message type,

and invokes the appropriate routine to handle that message. This routine ~oops processing

each message until all the received messages have been handled. In block 1401, the routine

20 answers (e.g., picks up) the external port and retrieves an external mess$ge. In decision

block 1402, if a message was retrieved, then the routine continues at block 1403, else the

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if

the message type is for a process seeking a connection (i.e., seeking_connection_call), then

the routine invokes the handle seeking connection call routine in block 1404, else the routine

25 continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i.e., connection_request_call), then the routine invokes the handle coimection

request call routine in block 1406, else the routine continues at block 1407. In decision

block 1407, if the message type is edge proposal call (i.e., edge_proposal_call), then the

routine invokes the handle edge proposal call routine in block 1408, else the routine

30 continues at block 1409. In decision block 1409, if the message type is port connect call

(i.e., port_connect_call), then the routine invokes the handle port connection call routine in

block 1410, else the routine continues at block 1411. In decision block 1411, if the message

[03004-800l/SL003733.106] -31- 7131/00

i

I

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1052 of 1657

type is a connected statement (i.e., connected_stmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt),

then the routine invokes the handle condition repairroutine in block 1413, else the routine

5 loops to block 1414 to process the next message. After each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the external port and

continues at block 140 1 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking

connection call routine in one embodiment. This routine is invoked when a seeking process

10 is calling to identify a portal computer through which it can connect to the broadcast channel.

In decision block 1501, if this process is currently fully connected to the broadcast channel

identified in the message, then the routine continues at block 1502, else the routine continues

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully

connected to the broadcast channel and continues at block 1505. In block 1503, the routine

15 sets a message to indicate that this process is not fully connected; In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this

process is not fully connected, then it is attempting to connect to the broadcast channel. In

block 1505, the routine sends the external message response (i.e., seeking_connection_resp)

to the seeking process and then returns.

20 Figure 16 is a flow diagram illustrating processing of the handle connection

request call routine in one embodiment This routine is invoked when the calling process

wants this process to initiate the. connection of the process to the broadcast channel. This

routine either allows the calling process to establish an internal connection with this process

(e.g., if in the small regime) or starts the process of identifying a process to which the calling

25 process can connect. In decision block 1601, if this process is currently fully connected to

the broadcast channel, then the routine continues at block 1603, else the routine hangs up on

the external port in block 1602 and returns. In block 1603, the routine sets the number of

holes that the calling process should expect in the response message. In block 1604, the

routine sets the estimated diameter in the response message. In block 1605, the routine

30 indicates whether this process is ready to connect to the calling process. This process is

ready to connect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an

[OJ004..8001/SL003733.106J -32- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1053 of 1657

external message that ts responsive to the connection request call (i.e.,

connection_request_resp). In block 1607, the routine notes the number of holes that the

calling process needs to fill as indicated in the request message. In decision block 1608, if

this process is ready to connect to the calling process, then the routine continues at bloc.k

s 1609, else the routine continues at block 1611. In block 1609, the routine invokes the add

neighbor routine to add the calling process as a neighbor. In block 1610, the routine

decrements the number of holes that the calling process needs to fill and continues at block

1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if

this process has no holes or the estimated diameter is greater than one (i.e., .in the large

10 regime), then the routine continues·at block 1613, else the routine continues at block 1616.

In blocks 1613-1615, the routine loops f01warding a request for an edge through which to

connect to the calling process to the broadcast channel. One request is forwarded for each

pair of holes of the calling process that needs to be filled. In decision block 1613, if the

number of holes of the calling process to be filled is greater than or equal to two, then the

IS routine continues at block 1614, else the routine continues at block 1616. In block 1614, the

routine invokes the forward connection edge search routine. The invoked routine is passed

to an indication of the calling process and the random walk distance. In one embodiment, the

distance is twice in the estimated diameter of the broadcast channel. In block 1614, the

routine decrements the holes left to fill by two and loops to block 1613. In decision bloc:k

20 1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine

returns. In block 1617, the routine invokes the fill hole routine passing the identification c)f

the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,

connection_port_search_stmt) for a hole of a connected process through which the calling

process can connect to the broadcast channel. The routine then returns.

25 Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment. This routine adds the process calling on the external port as a

neighbor to this process. In block 1701, the routine identifies the calling process on the

external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet

received the broadcast messages from this process. This flag is used to ensure that there are

30 no gaps in the messages initially sent to the new neighbor. The external port becomes the

internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

[03004-8001/SL003733.106J ·33- 7131/0<J

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1054 of 1657

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine

sets the connection state of this process to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this process. In block 1706, the routine

installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when

5 a message is received from that new neighbor through the internal port of that new neighbor.

In decision block 1707, if this process buffered up messages while not fully connected, then

the routine continues at block 1708, else the routine continues at block 1709. In one

embodiment, a process that is partially connected may buffer the messages that it receives

through an internal connection so that it can send these messages as it connects to new

10 neighbors. In block 1708, the routine sends the buffered messages to the new neighbor

through the internal port, In decision block 1709, if the number of holes of this process

equals the expected number of holes, then this process is fully connected and the routine

continues at block 1710, else the routine continues at block 1711. In block 1710, the routine

invokes the achieve connected routine to indicate that this process is fully connected. In

15 decision block 1711, if the number of holes for this process is zero, 1lhen the routine

continues at block 1712, else the routine returns. In block 1712, the routine deletes any

pending edges and· then returns. A pending edge is an edge that has been proposed to this

process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward

20 connection edge search routine in one embodiment. This routine is responsible for passing

along a request to· connect a requesting process to a randomly selected neighbor of this

process through the internal port of the se1ected neighbor, that is part of the random walk. In

decision block 1801, if the forwarding distance remaining is greater than zero, then the

routine continues at block 1804, else the routine continues at block 1802. In decision block

25 1802, if the number of neighbors of this process is greater than one, then the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of

this process, then the routine returns, else the routine continues at block 1804. In blocks

1804-1807, the routine loops attempting to send a connection edge search call internal

30 message (i.e., connection_edge_search_call) to a randomly selected neighbor. In block 1804,

the routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

{03004-800]/SL003733.106] -34- 7131100

>'
''.

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1055 of 1657

message and the routine returns, else the routine continues at block 1806. In block 1806, the

routine sends a connection edge search call internal message to the selecred neighbor. In

decision block 1807, if the sending of the message is successful, then the routine continues at

block 1808, else the routine loops to block 1804 to select the next neighbor. When the

s sending of an internal message is unsuccessful, then the neighbor may have disconnected

from the broadcast channel in an unplanned manner. Whenever such a situation is detected

by the broadcaster component, it attempts to fmd another neighbor by invoking the fill holes

routine to fill a sn1.gle hole or the forward· connecting edge search- routine to fill two holes. In

block 1808, the routine notes that the recently sent connection edge search call has not yet

10 been acknowledged and indicates that the edge to this neighbor is reserved if the remaining

forwarding distance is less than or equal to one. lt is reserved because the selected neighbor

may offer this edge to the requesting process for edge pinning. The routine then returns.

Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine. This routine is invoked when a message is received from a proposing

15 process that proposes to connect an edge between the proposing process and one of its

neighbors to this process for edge pinning. In decision block 1901, if the number ofholes.of

this process minus the number of pending edges is greater than or equal to one, then this

process still has holes to be filled and the routine continues at block 1902, else the routine

continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a

20 neighbor of this process, then the routine continues at block 1911, else the routine continues

at block 1903. In block 1903, the routine indicates that the edge is pending between this

process and the proposing process. In decision block 1904, if a proposed neighbor is already

pending as a proposed neighbor, then the routine continues at block 1911, else the routine

continues at block 1907. In block 1907, the routine sends an edge proposal response as an

25 external message to the proposing process (i.e., edge _proposal_resp) indicating that the

proposed edge is accepted. ln decision block 1908, if the sending of the message was

successful, then the routine continues at block 1909, else the routine returns. In block 1909,

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add

neighbor routine to add the proposing process on the external port as a neighbor. The routine

30 then returns. In block 1911, the routine sends an external message (i.e., edge_proposal_resp)

indicating that this proposed edge is not accepted. In decision block 1912, if the number of

[03004-800 I/Sl003733.1 06] -35- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1056 of 1657

holes is odd, thenthe routine continues at block 1913, else the routine returns. In block

1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port

connection call routine in one embodiment. This routine is invoked when an external

· s message is received then indicates that the sending process wants to connect to one hole of

this process. In decision block 200 1, if the number of holes of this process is greater than

zero, then the routine continues· at block 2002, else the routine continues at block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port

10 connection response external message (i.e., port_ connection _resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then retums. In block

2004, the routine sends a port connection response external message to the sending process

that indicates that is okay to connect this process. In decision block 2005, if the sending of

the message was successful, then the routine continues at block 2006, else the routine

15 continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add

the sending process as a neighbor of this process and then returns. In block 2007, the routine

hangs up the external connection. In block 2008, the routine invokes the connect request

routine to request that a process connect to one of the holes of this process. The routine then

returns.

20 Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

one embodiment. This routine is passed an indication of the requesting process. If this

process is requesting to fill a hole, then this routine sends an internal message to other

processes. If another process is requesting to fill a hole, then this routine invokes the routine

to handle a connection port search request. In block 2101, the routine initializes a

25 connection port search statement internal message (i.e., connection_port_search_stmt). In

decision block 2102, if this process is the requesting process, then the routine continues at

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes

the message to the neighbors of this process through the internal ports and then returns. In

block 2104, the routine invokes the handle connection port search routine and then returns.

Jo Figure 22 is a flow diagram illustrating the processing of the internal dispatcher

routine in one embodiment. This routine is passed an indication of the neighbor who sent the

internal message. In block 2201, the routine receives the internal message. This routine

[03004-8001/SL003733.106J -36- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1057 of 1657

identifies the message type and invokes the appropriate routine to handle the message. In

block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. fu decision block 2203, if this

process is the originating process of the message or the message has already been received ,

5 (i.e., a duplicate), then the routine ignores the message and continues at block 2208, else the

routine continues at block 2203A. In decision block 2203A, if the process is partially

connected, then the routine continues at block 22038, else the routine continues at block

2204. fu block 2203B, the routine adds the message to the pending connection buffer and

continues at block 2204. In decision blocks 2204-2207, the routine decodes the message

10 type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement (i.e., broadcast_ stmt), then the

routine invokes the handle broadcast message routine in block 2205. After invoking· the

appropriate handling routine, the routine continues at block 2208. In decision block 2208, if

the partially connect~d buffer is full, then the routine continues at block 2209, else the

15 routine continues at block 2210. The broadcaster component collects all its internal

messages in a buffer while partially connected so that it can forward the messages as it

connects to new neighbors. If, however, that buffer becomes full, then the process assumes

that it is now fully connected and that the expected number of connections was too high,

because the broadcast channel is now in the small regime. In block 2209, the routine invokes

20 the achieve connection routine and then continues in block 2210. In decision block 2210, if

the application program message queue is empty, then the routine returns, else the routine

continues at block 2212. In block 2212, the routine invokes the receive response routine

passing the acquired message and then returns. The received response routine is a callback

routine of the application program.

25 Figure 23 is a flow diagram illustrating the processing of the handle broadcast

message routine in one embodiment. This routine is passed an indication of the originating

process, an indication of the neighbor who sent the broadcast message, and the broadcast

message itself. In block 2301, the routine performs the out of order processing for this

message. The broadcaster component queues messages from each originating process until it

30 can send them in sequence number order to the application program. In block 2302, the

routine invokes the distribute broadcast message routine to forward the message to the

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting

(03004-8001/SL003733.106] -37- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1058 of 1657

to receive messages, then the routine continues at block 2304, else the routine: returns. In

block 2304, the routine sends the messages in the correct order if possible for each

originating process and then returns.

Figure 24 is a flow diagram illustrating the processing of the distribute

5 broadcast message routine in one embodiment. This routine sends the broadcast message to

each of the neighbors of this process, except for the neighbor who sent the message to this

process. In block 2401, the routine selects the next neighbor other than the neighbor who

sent the message; In. decision block 2402, if all such neighbors have already been selected,

then the routine returns. In block 2403, the routine sends the message to the selected

10 neighbor and then loops to block 2401 to select the next neighbor.

Figure26.is a flow diagram illustrating the processing of the handle·connection

port search statement routine in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the message itself. In block 2601, the routine invokes the

distribute. internal message which sends· the message to each of its neighbors other than the

15 sending neighbor. In decision block 2602, if the number of holes of this process is greater

than zero, then the routine continues at block 2603, else the routine returns. In decision

block 2603, if the requesting process is a·neighbor, then the routine continues at block 2605.,

else the routine continues at block 2604.· In block 2604, the routine invokes the court

neighbor routine and then returns. The court neighbor routine connects this process to the

20 requesting process if possible. In block 2605, if this process has one hole, tben the neighbors

with empty ports condition exists and the routine continues at block 2606, else the routine

returns. In block 2606, the routine generates a condition check message (i.e.,

condition_check) that includes a list of this process' neighbors. In block 2607, the routine

sends the message to the requesting neighbor.

25 Figure 27 is a flow diagram illustrating the processing of the court neighbor

routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port

connection call external message to the prospective neighbor and adds the prospective

neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a

Jo neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,

the routine dials the prospective neighbor. In. decision block 2703, if the number of holes of

this process is greater than zero, then the routine continues at block 2704, else the routine

(03004-8001/SL003733.106) -38- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1059 of 1657

continues at block 2706. In block 2704, the routine sends a port connection call external

message (i.e., port_connection_ca11) to the prospective neighbor and receives its response

(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,

the routine adds the prospective neighbor as a neighbor of this process by invoking the add .

5 neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.

Figure 28.is a flow diagram illustrating the processing of the handle connection

edge search call routine in one embodiment. This routine is passed a indication of the

neighbor who sent the message and the message itself. This routine either forwards the

message to a neighbor or proposes the edge between this process and the sending neighbor to

10 the requesting process for edge pinning. In decision block 2801, if this process is not the

requesting process or the number of holes of the requesting process is still greater than or

equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater than zero, then the

random walk is not complete and the routine continues at. block 2803, else the. routine

15 continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented

· forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process and the sending

neighbor is reserved because it has already been offered to a process, then the routine

20 continues at block 2805, else the routine continues at block 2806. In block 2805, the routine

invokes the forward connection edge search routine passing an indication of the requesting

party and a toggle indicator that alternatively indicates to continue the random walk for one

or two more computers. The routine then continues at block 2815. In block 2806, the

routine dials the requesting process via the call-in port. In block 2807, the routine sends an

25 edge proposal call external message (i.e., edge _proposal_ call) and receives the response (i.e.,

edge _proposal_resp). Assuming that the response is successfully received, the routine

continues at block 2808. In decision block 2808, if the response indicates that the edge is

acceptable to the requesting process, then the routine continues at block 2809, else the

routine continues at block 2812. In block 2809, the routine reserves the edge between this

30 process and the sending neighbor. In block 2810, the routine adds the requesting process as

a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the

sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

{03004-8001/SL003733.106) -39- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1060 of 1657

continues at block 2815. In decision block 2813, ifthis process is the requesting process and

the number of holes of this process equals one, then the routine continues at block 2814, else

the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.

In block 2815, the routine sends an connection edge search response message (i.e.,

5 connection_ edge_ search _response) to the sending neighbor indicating acknowledgement and

then returns. The graphs are sensitive to parity. That is, all possible paths starting from a

node and ending at that node will have an even length unless the graph has a cycle whose

length is odd. The broadcaster component uses a toggle indicator to vary the random walk

distance between even and odd distances.

10 Figure 29 is a flow diagram illustrating the processing of the handle connection

edge search response routine in one embodiment. This routine is passed as indication of the

requesting process, the sending neighbor, and the message. In block 2901, the routine notes

that the connection edge search response (i.e., connection_ edge_ search _resp} has been

received and if the forwarding distance is less than or equal to one unreserves the edge

15 between this process and the sending neighbor. In decision block 2902, if the requesting

process indicates that the edge is acceptable as indicated in the message, then the routine

continues at block 2903, else the routine returns. ln block 2903, the routine reserves the edge

between this process and the sending neighbor. In block 2904, the routine removes the

sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor

20 routine to connect to the requesting process. In decision block 2906, if the invoked routine

was unsuccessful, then the routine continues at block 2907, else the routine returns. In

decision block 2907, if the number of holes of this process is greater than zero, then the

routine continues at block 2908, else the routine returns. In block 2908, the routine invokes

the fill hole routine and then returns.

25 Figure 3 0 is a flow diagram illustrating the processing of the broadcast routine

in one embodiment. This routine is invoked by the application program to broadcast a

message on the broadcast channel. This routine is passed the message to be broadcast. In

decision block 3001, if this process has at least one neighbor, then the routine continues at

block 3002, else the routine returns since it is the only process connected to be broadcast

30 channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the

[03004-800 I/SL003733.1 06) -40- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1061 of 1657

message. In block 3004, the routine invokes the distribute internal message routine to

broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message

routine in one embodiment. The acquire message routine may be invoked by the application

5 program or by a callback routine provided by the application program. This routine returns a

message. In block 3101, the routine pops the message from the message queue of the

broadcast charmel. In decision block 3102, if a message was retrieved, then the routine

returns an indication of success, else.the routine returns indication offailure.

Figures 32-34 are flow diagrams illustrating the processing of messages

10 associated with the neighbors with empty ports condition. Figure 32 is a flow diagram

illustrating processing of the handle condition check message in one embodiment. This

message is sent by a neighbor process that has one hole and has received a request to connect

to a hole of this process. In decision block 3201, if the number of holes of this process is

equal to one, then the routine continues at block 3202, else the neighbors with empty ports

15 condition does not exist any more and the routine returns. In decision block 3202, if the

sending neighbor and this process have the same set of neighbors, the routine continues at

block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a

condition double check message (i.e., condition_ double_ check) with the list of neighbors of

this process. In block 3204, the routine sends the message internally to a neighbor other than

20 sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of

· the sending. process that is not also a neighbor of this process. In block 3206, the routine

sends a condition repair message (i.e., condition _repair_ stmt) externally to the selected

process. In block 3207, the routine invokes the add neighbor routine to add the selected

neighbor as a neighbor of this process and then returns.

25 Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment. This routine removes an existing neighbor and

connects to the process that sent the message. In decision block 3301, if this process has no

holes, then the routine continues at block 3302, else the routine continues at block 3304. In

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty

30 ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of

this process. Thus, this process that is executing the routine now has at least one ho1e. In

[03004-800 I/SL003733.1 06] -41- 7fJI/OO

i .
'·

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1062 of 1657

block 3304, the routine invokes the add neighbor routine to add the process that sent the

message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handle condition

double check routine. This routine determines whether the neighbors with empty ports

5 condition really is a problem or whether the broadcast channel is in the small regime. In

decision block 3401, if this process has one hole, then the routine continues at block 3402,

else the routine continues atblock 3403. If this process does not have one hole,then the set

of neighbors of this process is not the same as the set of neighbors of the sending process. In

decision block 3402, if this process and the sending process have the same set of neighbors,

10 then the broadcast channel is not in the small regime and the routine continues at block 3403,

else the routine continues at block 3406. In decision block 3403, if this process has no holes,

then the routine returns, else the routine continues at block3404. In block 3404~ the routine

sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a

diameter reset internal message {i.e., diameter_reset) indicating that the estimated diameter is

15 one and then returns. In block 3406, the routine creates a list of neighbors of this process. In

block 3407, the routine sends the condition check message (i.e., condition_check_stmt) with

the list of neighbors to the neighbor who sent the condition double check message and then

returns.

From the above description, it will be appreciated that although specific

20 embodiments of the technology have been described, various modifications may be made

without deviating from the spirit and scope· of the invention. For example, the

communications on the broadcast channel may be encrypted. Also, the channel instance or

session identifier may be a very large number (e.g., 128 bits) to help prevent an unauthorized

user to maliciously tap into. a broadcast channel The portal computer may also enforce

25 security and ·not allow an unauthorized user to connect to the broadcast channel.

Accordingly, the invention is not limited except by the claims.

[03004-800 l/SL003733.106] -42- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1063 of 1657

CLAIMS

1 1. A computer network for providing a conferencing system for a plurality

2 of participants, each participant having c01mections to at least three neighbor participants,

3 wherein an originating participant sends data to the other participants by sending the data

4 through each of its connections to its neighbor participants and wherein each participant

5 sends data that it receives from a neighbor participant to its other neighbor participants.

6 2. The computer network of claim 1 wherein each participant is connected

7 to 4 other participants.

8 3. The computer network of claim 1 wherein each participant is connected

9 to an even number of other participants.

10 4. The computer network of claim 1 wherein the network is m-regular,

11 where m is the number of neighbor participants of each participant.

12 5. The computer network of claim 1 wherein the network is m-connected,

13 where m is the number of neighbor participants of each participant.

14 6. The computer network of claim 1 wherein the network is m-regular and

15 m-connected, where m is the number of neighbor participants of each participant.

16 7. The computer network of claim 1 wherein all the participants are peers.

17 8. The computer network of claim I wherein the connections are peer-to-

18 peer connections.

103004-800 I/SL003733.106] -43- 7131/00

.. ~6T_"\. _,,

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1064 of 1657

19 9. The computer network of claim 1 wherein the connections are TCPIIP

20 connections.

21 10. The computer network of claim 1 wherein each participant is a process

22 executing on a computer.

23 11. The computer network of claim 1 wherein a computer hosts more than

24 one participant.

25 12. The computer network of claim 1 wherein each participant sends to each

26 of its neighbors only one copy of the data.

27 13. The computer network of claim 1 wherein the interconnections of

28 participants form a broadcast channel for a topic of interest.

29 14. A distributed conferencing system comprising:

30 a plurality of broadcast channels, each broadcast channel for conducting

31 a conference;

32 means for identifying a broadcast channel for a conference of interest;

33 and

34 means for connecting to the identified broadcast chmmel.

35 15. The distributed conferencing system of claim 14 wherein means for

36 identifying a conference of interest includes accessing a web server that maps conferences to

37 corresponding broadcast channel.

38 . 16. The distributed conferencing system of claim 14 wherein a broadcast

39 channel is formed by attendee computers and a speaker computer that are each

40 interconnected to at least three other computers.

(03004-800 J/Sl.003733.1 06] -44- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1065 of 1657

.I

I

~
I ltO

lL lL

I

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1066 of 1657

~

e
N

e
= Ni 1"""4

00 -LL
Q\ 1""4
1"""4 ~

QC) N
,-..4 1""4

t-- ('1'2
~ 1"""4

"" ~
1"""4 an 1"""4

1"""4

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1067 of 1657

u

'' '

j''

I' ','
,,

u

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1068 of 1657

I
I

-·

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1069 of 1657

\~
I, ..

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1070 of 1657

.\

--

-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1071 of 1657

Q

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1072 of 1657

(j
IL ~

<t.
0o

L1:

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1073 of 1657

c

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1074 of 1657

h

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1075 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1076 of 1657

'Li

0

... -

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1077 of 1657

9 r-J C::·l ('['\ ~
I -

0 J.} tJ
C~:t".f

0 ;-~·---,

~~~ ! 

1 ""1.~ ' 
I ;~ I 

' ' l Q...~, 
~0 < -'? ~ -i( ·"! 

I~ 4 ' 1-\..0 
L . ......___j 

\'-

Co ~ ~ 
r~ ~n 

tt 

J~ '-L 

~i] 
0 

"a\ 
7"-~ 

11 
!VlVl s 
~~ 

Vir:£ 
~ 

~ 

1 ~ ~t .. ~[ill I.,J 
""'':S .. u 

'~;:,. ·H c c:'\)1 0 
I) ~ 

.... 
. '-.) <::0 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1078 of 1657



( r~ \ "iYfP, 
_ -~&r"'"~tc.·~. 

0.3 

_ Lt~tYu"'t!~~x.r:,. fa) 

i 
ioc, 

a7 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1079 of 1657



• 

II 

r---~---0 7.. 
.:::.e\~ct~+
cl e p f\"'-. _-

..... _ 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1080 of 1657



'1 

(~;~) 
f o I 

s--J f:.<.t~..,c1 
tr .e.~.:;o ?e.. 

Q e c. e. C J e.. €:. -,.:t ... rt-~ 
lpl' ""$'$ 0 ~€.. 

. _J 

i 
:o ~ 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1081 of 1657



rJ 

0}) 
.---~--, 

s~~~+- .ILL~. P.o i~..s 
I ~c-vv- ""~~ 

07 ,.-----+----, 
SLJ~a~ 
+r~ ~t:/'II"WCf 

ell~) 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1082 of 1657



Cl£ctiU.-....Je.E.f..t~o/ 
rY\e .s.so & Q 

Aid a~ r;:_s. 
. -fe. I) OuJ ~~.e \c..o.r 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1083 of 1657



03 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1084 of 1657



' I y 

' ! 
! ' 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1085 of 1657



seJ -.....ao~ 
fo f NLt'cdl:i. · ' 

c 

.S~EICf~41 
i"'r\:e.ss~~. e. 

0..3 

' 

'' 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1086 of 1657



0 

se.t-~c~~~ 
~ole!.-i"D-"' 

. .. ·. ,. 

I~ ·, ,..-. 
hol-es io~·ll - = 2J--l 

I 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1087 of 1657



GrJI\l.-~ ~ "'3 
1~;~ 

O/ 

' 6 c_j 

D· 

(() 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1088 of 1657



•f"L ~ 
rk·~i-~ '(~~~-~ 

l 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1089 of 1657



1/ 

c~) 

~m~u:o~ 
t)j(V\ .. SSO~ ~ 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1090 of 1657



.IJ ~~r";t. 
1--------------,-------------~ 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1091 of 1657



Ho..v-d le. ~i\ech• 
?o .c t SRc;..,c.J.,.... 

o} 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1092 of 1657



J () ?, 

Assess 1 
Oicx.~..sv-

IE. 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1093 of 1657



\(..... 

0 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1094 of 1657



IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1095 of 1657



\~ 

·.-- .. '· ,..- "· ~. 

<....I 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1096 of 1657



Z\ 

. •,: 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1097 of 1657



·rz~ · rv~s kbw .-) 
!( 

t-'t"'-' ~ ,Ab'f.. ~u-1 
fl\ e.c.s.o. ~ 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1098 of 1657



("~~Jy 
D f .C n: ......... iU,a..t. '-:> 

o4 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1099 of 1657



IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1100 of 1657



r---:,__ _ ____,;{) ( 

(~) 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1101 of 1657



/'(.7 

y 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1102 of 1657



i-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1103 of 1657



l1 

C Te.cJ.e ( t'S f. t:1 f.-
4~~HS, -~. 

'" ol 't~.ei(l ~ 
~·o..fWII-~· h:)-!.. 

/ 
u) 

1·-·--.. --' ··--··-.------'------

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1104 of 1657



. Patent Application NO. 09/&29,043 
EXPRESS MAIL ID. EIA04935305US 

AN'INFORMATION DELIVERY SERVICE 

CROSS-REFERENCE TO RELATED APPLICATIONS 

This application is related to U.S. Patent Application No. ______ , 

entitled "BROADCASTING NETWORK," filed on July 31, 2000 , (Attorney Docket 

s No. 030048001 US); U.S. Patent Application No. , entitled "JOINING A 

BROADCAST CHANNEL," filed on July 31, 2000 (Attorney Docket No. 030048002 US); 

U.S. Patent Application No. , "LEAVING A BROADCAST CHANNEL," 

filed on July 31, 2000 (Attorney Docket No. 030048003 US); U.S. Patent Application 

No. , entitled "BROADCASTING ON A BROADCAST CHANNEL," filed 

10 on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent Application 

No. , entitled "CONTACTING A BROADCAST CHANNEL," filed on 

July 31, 2000 (Attorney Docket No. 030048005 US); U.S. Patent Application 

No. , entitled "DISTRIBUTED AUCTION SYSTEM," filed on 

July 31, 2000 (Attorney Docket No. 030048006 US); U.S. Patent Application 

IS No. , entitled "AN INFORMATION DELIVERY SERVICE,"' filed on 

July 31, 2000 (Attorney Docket No. 030048007 US); U.S. Patent Application 

No. , entitled "DISTRIBUTED CONFERENCINO SYSTEM," filed on 

July 31, 2000 (Attorney Docket No. 030048008 US); and U.S. Patent Application 

No. entitled "DISTRIBUTED GAME ENVIRONMENT,'\ filed on 

20 July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of ,whi~h are 

incorporated herein by reference. 

TECHNICAL FIELD 

The described technology relates generally to a computer network and more 

particularly, to a broadcast channel for a subset of a computers of an Wlderlying network. 

25 BACKGROUND 

There are a wide variety of computer network communications techniques such 

as point-to-point network protocols, ·client/server middleware, multicasting network 

~-cl 
[03004-~SI..003733.10SJ -1- 7/31/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1105 of 1657



protocols, and peer-to-peer middleware. Each of these communications techniques have 

their advantages and disadvantages, but none is particularly well suited to the simultaneous 

sharing of information among computers that are widely distributed. For example, 

collaborative processing applications, such as a network meeting programs, have a need to 

s distribute information in a timely manner to all participants who may be geographically 

distributed. 

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP, 

allow processes on different computers to communicate via point-to-point connections. The 

interconnection of all participants using point-to-point connections, while theoretically 

10 possible, does not scale well as a number of participants grows. For example, each 

participating process would need to manage its direct connections to all other· participating 

processes. Programmers, however, fmd it vecy difficult to manage single connections, and 

management of multiple connections is much more complex.. In addition, participating 

processes may be limited to the number of direct connections that they can support. This 

15 limits the number of possible participants in the sharing of information. 

The client/server middleware systems provide a server that coordinates the 

communications between the various clients who· are sharing the information. The server 

functions as a central authority for controlling access to shared resources. Examples of 

client/server middleware systems include remote procedure calls ("RPC"), database servers, 

20 and the common object request broker architecture ("CORBA"). Client/server middleware 

systems are not particularly well suited to sharing of information among many participants. 

In particular, when a client stores information to be shared at the server, each other client 

would need to poll the server to determine that new information is being shared. Such 

polling places a very high overhead on the communications network. Alternatively, each 

25 client may register a callback with the server, which the server then invokes when new 

information is available to be shared. Such a callback teclmique presents a performance 

bottleneck because a single server needs to call back to each client whenever new 

information is to be shared. In addition, the reliability of the entire sharing of infonnation 

depends upon the reliability of the single server. Thus, a failure at a single computer (i.e., 

30 the server) would prevent communications between any of the clients. 

The multicasting network protocols allow the sending of broadcast messages to 

multiple recipients of a network. The current implementations of such multicasting network 

(03004-800 l/SL003733.!05) -2- 7/31/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1106 of 1657



protocols tend to place an unacceptable overhead on the underlying network. For example, 

UDP multicasting would swamp the Internet when trying to locate all possible participants. 

IP multicasting has other problems that include needing special-purpose infrastructure (e.g., 

routers}to support the sharing of information efficiently. 

5 The peer-to-peer middleware communications systems rely on a multicasting 

network protocol or a graph of point-to-point network protocols. Such peer-to-peer 

middleware is provided by the T.l20 Internet standard, which is used in such products as 

Data Connection's D.C.-share and Microsoft's NetMeeting. These peer-to-peer middleware 

systems rely upon a user to assemble a point-to-point graph of the connections used for 

10 sharing the information. Thus, it is neither suitable nor desirable to use peer-to-peer 

middleware systems when more than a sman·number of participants is desired. In addition, 

the underlying architecture of the T.l20 Internet standard is a tree structure, which relies on 

the root node of the tree for reliability of the entire network. That is, each message must pass 

through the root node in order to be received by all·participants; 

15 It would be desirable to have a reliable communications network that is 

suitable for the simultaneous sharing of information among a large number of the processes 

that are widely distributed. 

BRIEF DESCRIPTION OF THE DRAWINGS . 

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a 

20 broadcast channel. 

25 

Figure 2 illustrates a graph representing 20 computers connected to a broadcast 

channel. 

Figures 3A and 3B illustrate the process of connecting a new computer Z to the 

broadcast channel. 

Figure 4A illustrates the broadcast channel of Figure 1 with an added 

computer. 

Figure 4B illustrates the broadcast channel of Figure 4A with an added 

computer. 

Figure 4C also illustrates the broadcast channel of Figure 4A with an added 

30 computer. 

[03004-800 l/SLD03733.1 05) -3- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1107 of 1657



5 

lO 

Figure SA illustrates the disconnecting of a computer from the broadcast 

channel in a planned manner. 

Figure SB illustrates the disconnecting of a computer from the broadcast 

channel in an unplanned manner. 

Figure SC illustrates the neighbors with empty ports condition. 

Figure SD illustrates two computers· that are not neighbors who now have 

empty ports. 

Figure SE illustrates the neighbors with empty ports condition in the small 

regune. 

Figure SF illustrates the situation of Figure SE when in the large regime. 

Figure 6 is a block diagram illustrating components of a computer that is 

connected to a broadcast channel. 

Figure 7 is a block diagram illustrating the sub-components of the broadcaster 

component in one embodiment. 

15 Figure 8 is a flow diagram illustrating the processing of the connect·routine in 

one embodiment. 

Figure 9 is a flow diagram illustrating the processing of the seek portal 

computer routine in one embodiment. 

Figure 10 is a flow diagram illustrating the processing of the contact process 

20 routine in one embodiment. 

25 

Figure 11 is a flow diagram illustrating the processing of the connect request 

routine in one embodiment. 

Figure 12 is a flow diagram of the processing of the check for external call 

routine in one embodiment. 

Figure 13 is a flow diagram of the processing of the achieve connection routine 

in one embodiment. 

Figure 14 ts a flow diagram illustrating the processing of the external 

dispatcher routine in one embodiment. 

Figure 15 is a flow diagram illustrating the processing of the handle seeking 

30 connection call routine in one embodiment. 

Figure 16 is a flow diagram illustrating processing of the handle connection 

request call routine in one embodiment. 

[03004-800 I /SL003733.1 05] -4- 7/31100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1108 of 1657



Figure 17 is a flow diagram illustrating the processing of the add neighbor 

routine in one embodiment. 

Figure 18 is a flow diagram illustrating the processing of the forward 

connection edge search routine in one embodiment. 

5 Figure 19 is a flow diagram illustrating the processing of the handle edge 

proposal call routine. 

Figure 20 is a flow diagram illustrating the processing of the handle port 

connection call routine in one embodiment. 

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in 

w one embodiment. 

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher 

routine in one embodiment. 

Figure 23 is a flow diagram illustrating the processing of the handle broadcast 

message routine in one embodiment. 

15 Figure 24 is a flow diagram illustrating the processmg of the distribute 

broadcast message routine in one embodiment. 

Figure 26 is a flow diagram illustrating the processing of the handle connection 

port search statement routine in one embodiment. 

Figure 27 is a flow diagram illustrating the processing of the court neighbor 

20 routine in one embodiment. 

Figure 28 is a flow diagram illustrating the processing of the handle connection 

edge search call routine in one embodiment. 

Figure 29 is a flow diagram illustrating the processing of the handle connection 

edge search response routine in one embodiment. 

25 Figure 30 is a flow diagram illustrating the processing of the broadcast routine 

in one embodiment. 

Figure 31 is a flow diagram illustrating the processing of the acquire message 

routine in one embodiment. 

Figure 32 is a flow diagram illustrating processing of the handle condition 

30 check message in one embodiment. 

Figure 33 is a flow diagram illustrating processing of the handle condition 

repair statement routine in one embodiment. 

[03004-8001/SL003733.10SJ -5- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1109 of 1657



Figure 34 is a flow diagram illustrating the processing of the handle condition 

double check routine. 

DETAILED DESCRIPTION 

A broadcast technique in which a broadcast channel overlays a point-to-point 

5 communications network is provided. The broadcasting. of a message over the broadcast 

channel is effectively a multicast to those computers of the network that are currently 

connected to the broadcast channel. In one embodiment, the broadcast technique provides a 

logical broadcast channel to which host computers through their executing processes can be 

connected. Each computer that is connected to the broadcast channel can broadcast 

10 messages onto and receive messages off of the broadcast channel Each computer that is 

connected to the broadcast channel receives all messages that are broadcast while it· is 

connected. The logical broadcast channel is implemented using an underlying network 

system (e.g., the Internet) that allows each computer connected to the underlying network 

system to send messages to each other connected computer using each computer's address. 

15 Thus, the broadcast technique effectively provides a broadcast channel using an underlying 

network system that sends messages on a point-to-point basis. 

The broadcast technique overlays the underlying network system with a graph 

of point-to-point connections (i.e., edges) between host computers (i.e., nodes) through 

which the broadcast channel is implemented. In one embod.iinent, each computer is 

20 connected to fol.J.r other computers, referred to as neighbors. (Actually, a process executing 

on a computer is connected to four other processes executing on this or four other 

computers.) To broadcast a message, the originating computer sends the message to each of 

its neighbors using its point-to-point connections. Each computer that receives the message 

then sends the message to its three other neighbors using the point-to-point connections. In 

25 this way, the message is propagated to each computer using the underlying network to effect 

the broadcasting of the message to each computer over a logical broadcast channel. A graph 

in which each node is connected to four other nodes is referred to as a 4-regular graph. The 

use of a 4-regular graph means that a computer would become disconnected from the 

broadcast channel only if all four of the connections to its neighbors fail. The graph used by 

30 the broadcast technique also has the property that it would take a failure of four computers to 

(03004-8001/SL003733.1 OS) 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1110 of 1657



divide the graph into disjoint sub-graphs, that is two separate broadcast channels. This 

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-

connected. 

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents 

5 the broadcast channel. Each of the nine nodes A-1 represents a computer that is connected to 

the broadcast channel, and each of the edges represents an "edge" connection between two 

computers of the broadcast channel. The time it takes to broadcast. a message to each 

computer on the broadcast channel depends on the speed of the connections between the 

computers and the number of connections between the originating computer and each other 

10 computer on the broadcast channel. The minimum number of connections that a message 

would need to traverse between each pair of computers is the "distance" between the 

computers (i.e., the shortest path between the two nodes of the graph). For example, the 

distance between computers A and F is one because computer A is directly connected to 

computer F. The distance between computers A and B is two because there is no direct 

15 connection between computers A and B, but computer F is directly connected to computer B. 

Thus, a message originating at computer A would be sent directly to computer F, and then 

sent from computer F to computer B. The maximum of the distances between the computers 

is the "diameter" of broadcast channel. The diameter of the broadcast channel represented 

by Figure 1 is two. That is, a message sent by any computer would traverse no more than 

20 two connections to reach every other computer. Figure 2 illustrates a graph representing 20 

computers connected to a broadcast channel. The diameter of this broadcast channel is 4. In 

particular, the shortest path between computers 1 and 3 contains four connections (I -12, 12-

15, 15-18, and 18-3). 

The broadcast technique includes ( 1) the connecting of computers to the 

25 broadcast channel (i.e., composing the graph), (2) the broadcasting of messages over the 

broadcast channel (i.e., broadcasting through the graph), and (3) the disconnecting of 

computers from the broadcast channel (i.e., decomposing the graph) composing the graph. 

Composing the Graph 

To connect to the broadcast channel, the computer seeking the connection flrst 

30 locates a computer that is currently fully connected to the broadcast channel and then 

(03004-800 I/SL003733.103] -7- 7131/00 

(' 

r .· 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1111 of 1657



establishes a connection with four of the computers that are already connected to the 

broadcast channel. (This assumes that there are at least four computers already connected to 

the broadcast channel. When there are fewer than five computers connected, the broadcast 

channel cannot be a 4-regular graph. In such a case, the broadcast channel is considered to 

5 be in a "small regime." The broadcast technique for the small regime is described below in 

detail. When five or more computers are connected, the broadcast channel is considered to 

be in the "large regime." This description assumes that the broadcast channel is in the large 

regime, unless specified otherwise.) Thus, the process of connecting to the broadcast 

channel includes locating the broadcast channel, identifying the neighbors for the connecting 

10 computer, and then connecting to each identified neighbor. Each computer is aware of one 

or more "portal computers" through which that computer may locate the broadcast channel. 

A seeking computer locates the broadcast channel by contacting the portal computers until it 

fmds one that is currently fully connected to the broadcast channel. The found portal 

computer then directs the identifying of four computers (i.e., to be the seeking computer's 

15 neighbors) to which the seeking computer is to connect. Each of these four computers then 

cooperates with the seeking computer to effect the connecting of the seeking computer to the 

broadcast channel. A computer that has started the process of locating a portal computer, but 

does not yet have a neighbor, is in the "seeking connection state." A computer that is 

connected to at least one neighbor, but not yet four neighbors, is in the "partially connected 

20 state." A computer that is currently, or has been, previously connected to four neighbors is 

in the "fully connected state." 

Since the broadcast channel is a 4-regular graph, each of the identified 

computers is already connected to four computers. Thus, some connections between 

computers need to be broken so that the seeking computer can connect to four computers. In 

25 one embodiment, the broadcast technique identifies two pairs of computers that are currently 

connected to each other. Each of these pairs of computers breaks the connection between 

them, and then each of the four computers (two from each pair} connects to the seeking 

computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the 

broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is 

30 connected. The pairs of computers B and E and computers C and D are the two pairs that are 

identified as the neighbors for the new computer Z. The connections between each of these 

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E 

[03004-8001/SL003733.10S] -8- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1112 of 1657



5 

is established as indicated by Figure 3B. The process of breaking the connection between 

two neighbors and reconnecting each of the former neighbors to another computer is referred 

to as "edge pinning" as the edge between two nodes may be considered to be stretched and 

pinned to a new node. 

Each computer connected to the broadcast channel allocates five 

conununications ports for communicating with other computers. Four of the ports are 

referred to as "internal" ports because they are the ports through which the messages of the 

broadcast channels are sent. The connections between internal ports of neighbors are 

referred to as "internal" connections. Thus, the internal connections of the broadcast channel 

10 form the 4:..regular and 4-connected graph. The fifth port is referred to as an "external" port 

15 

because it is used for sending non-broadcast messages between two computers. Neighbors 

can send non-broadcast messages either through their internal ports of their connection or 

through their external ports. A seeking computer uses external ports when locating a portal 

computer. 

In one embodiment, the . broadcast technique establishes the computer 

connections using the TCPIIP communications protocol, which is a point-to-point protocol; 

as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery 

of messages between computers. The TCPIIP protocol provides each computer with a "port 

space" that is shared among all the processes that may execute on that computer. The ports 

20 are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific 

applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports 

that are available to any process. In one embodiment, a set of port numbers can be reserved 

for use by the computer connected to the broadcast channel. In an alternative embodiment, 

the port numbers used are dynamically identified by each computer. Each computer 

25 dynamically identifies an available port to be used as its call-in port. Tbis call-in port is used 

to establish connections with the external port and the internal ports. Each computer that is 

connected to the broadcast channel can receive non-broadcast messages through its external 

port. A seeking computer tries "dialing" the port numbers of the portal computers until a 

portal computer "answers," a call on its call-in port. A portal computer answers when it is 

Jo connected to or attempting to connect to the broadcast channel and its call-in port is dialed. 

(In this description, a telephone metaphor is used to describe the connections.) When a 

computer receives a call on its call-in port, it transfers the call to another poi1. Thus, the 

[03004-800l/SUJ03733.10S) -9- 7131/0D 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1113 of 1657



seeking computer actually communicates through that transfer-to port, which is the external 

port. The call is transferred so that other computers can place calls to that computer via the 

call-in port. The seeking computer then communicates via that external port to request the 

portal computer to assist in connecting the seeking computer to the broadcast channel. The 

5 seeking computer could identify the call-in port number of a portal computer by successively 

dialing each port in port number order. As discussed below in detail, the broadcast technique 

uses a hashing algorithm to select the port number order, which may result in improved 

performance. 

A seeking computer could connect to the broadcast channel by connecting to 

10 computers either directly connected to the found portal computer or directly connected to one 

of its neighbors. A possible problem with such a scheme for identifying the neighbors for 

the seeking computer is that the diameter of the broadcast channel may increase when each 

seeking computer uses the same found portal computer and establishes a connection to the 

broadcast channel directly through that found portal computer. Conceptually, the graph 

15 becomes elongated in the direction of where the new nodes are added. Figures 4A-4C 

illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with 

an added computer. Computer J was connected to the broadcast channel by edge pinning 

edges C-D and E-H to computer J. The diameter of this broadcast channel is still two. 

Figure 4B illustrates the broadcast channel of Figure 4A with an added computer. 

20 Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to 

computer K. The diameter of this broadcast channel is three, because the shortest path from 

computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates 

the broadcast channel of Figure 4A with an added computer. Computer K was connected to 

the broadcast channel by edge pinning edges D-G and E-J to computer K. The diameter of 

25 this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the 

diameter of the broadcast channel. To help minimize the diameter, the broadcast technique 

uses a random selection technique to identify the four neighbors of a computer in the seeking 

connection state. The random selection technique tends to distribute the connections to new 

seeking computers throughout the computers of the broadcast channel which may result in 

30 smaller overall diameters. 

(03004-8001/SL003733.10S) -10- 7131/00 

: 
l 
[·-':.--··· 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1114 of 1657



Broadcasting Through the Graph 

As described above, each computer that is connected to the broadcast channel 

can broadcast messages onto the broadcast channel and does receive all messages that are 

broadcast on the broadcast channel. The computer that originates a message to be broadcast 

5 sends that message to each ofits four neighbors using the internal connections. When a 

computer receives a broadcast message from a neighbor, it sends the message to its three 

other neighbors. Each computer on the broadcast channel, except the originating computer, 

will thus receive a copy of each broadcast message from each of its four neighbors. Each 

computer, however, only sends the first copy of the message that it receives to its neighbors 

10 and disregards subsequently received copies. Thus, the total number of copies of a message 

that is sent between the computers is 3N+ 1, where N is the number of computers connected 

to the broadcast channel. Each computer sends three copies of the message, except for the 

originating computer, which sends four copies of the message. 

The redundancy of the message sending helps to ensure the overall reliability 

15 of the broadcast channeL Since each computer has four connections to the broadcast 

channel, if one computer fails during the broadcast of a message,. its neighbors have three 

other connections through which they will receive copies of the broadcast message. Also, if 

the internal connection between two computers is slow, each computer has three other 

connections through which it may receive a copy of each message sooner. 

20 Each computer that originates a message numbers its own messages 

sequentially. Because of the dynamic nature of the broadcast channel and because there are 

many possible connection paths between computers, the messages may be received out of 

order. For example, the distance between an originating computer and a certain receiving 

computer may be four. After sending the first message, the originating computer and 

25 receiving computer may become neighbors and thus the distance between them changes to 

one. The frrst message may have to travel a distance of four to reach the receiving computer. 

The second message only has to travel a distance of one. Thus, it is possible for the second 

message to reach the receiving computer before the first message. 

When the broadcast channel is in a steady state (i.e., no computers connecting 

30 or disconnecting from the broadcast channel), out-of-order messages are not a problem 

because each computer will eventually receive both messages and can queue messages until 

all earlier ordered messages are received. If, however, the broadcast channel is not in a 

[03004-8001/SL003733.105] -}]- 7131100 

i 
I' 
! 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1115 of 1657



steady state, then problems can occur. In particular, a computer may connect to the 

broadcast channel after the second message has already been received and forwarded on by 

its new neighbors. When a new neighbor eventually receives the first message, it sends the 

message to the newly connected computer. Thus, the newly connected computer will receive 

5 the first message, but will not receive the second message. If the newly connected computer 

needs to process the messages in order, it would wait indefinitely for the second message. 

One solution to this problem is to have each computer queue all the messages 

that it receives Wl.til it can send them in their proper order to its neighbors. This solution, 

however, may tend to slow down the propagation of messages through the computers of the 

10 broadcast channel. Another solution that inay have less impact on the propagation speed is 

to queue messages only at computers who are neighbors of the newly connected computers. 

Each already connected neighbor would forward messages as it receives them to its other 

neighbors who are not newly connected, but not to the newly connected neighbor. The 

already connected neighbor would only forward messages from each originating. computer to 

IS the newly connected computer when it can ensure that no gaps in the messages from that 

originating computer will occur. In one embodiment, the already connected neighbor may 

track the highest sequence number of the messages already received and forwarded on from 

each originating computer. The already connected computer will send only higher numbered 

messages from the originating computers to the newly connected computer. Once all lower 

20 numbered messages have been received from all originating computers, then the already 

connected computer can treat the newly· connected computer as its other neighbors and 

simply forward each message as it is received. In another embodiment, each computer may 

queue messages and only forwards to the newly connected computer those messages as the 

gaps are filled in. For example, a computer might receive messages 4 and 5 and then receive 

25 message 3. In such a case, the already connected computer would forward queue messages 4 

and 5. When message 3 is fmally received, the already connected computer will send 

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the 

newly connected computer before message 3, then the newly connected computer would 

process messages 4 and 5 and disregard message 3. Because the already connected computer 

30 queues messages 4 and 5, the newly connected computer will be able to process message 3. 

It is possible that a newly connected computer will receive a set of messages from an 

originating computer through one neighbor and then receive another set of message from the 

(03004-800J/SLOOJ733.10S] ~ 12- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1116 of 1657



same originating computer through another neighbor. If the second set of messages contains 

a message that is ordered earlier than the messages of the first set received, then the newly 

connected computer may ignore that earlier ordered message if the computer already 

processed those later ordered messages. 

5 Decomposing the Graph 

A connected computer disconnects from the broadcast channel either in a 

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a 

disconnect message to each of its four neighbors. The disconnect message includes a list that 

identifies the four neighbors of the disconnecting computer. When a neighbor receives the 

10 disconnect message, . it tries to connect to one of the computers on the list. In one 

embodiment, the first computer in the list will try to connect to the second computer in the 

list, and the third computer in the list will try to connect to the fourth computer in the list. If 

a computer cannot connect (e.g., the first and second computers are already connected), then 

the computers may try connecting in various other combinations. If connections cannot be 

15 established, each computer broadcasts a message that it needs to establish a connection with 

another computer. When a computer with an available internal port receives the message, it 

can then establish a connection with the computer that broadcast the message. Figures 5A-

5D illustrate the disconnecting of a computer from the broadcast channel. Figure 5A 

illustrates the disconnecting of a computer from the broadcast channel in a planned manner. 

20 When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors 

(computers A, E, F and I) and then disconnects from each of its neighbors. When 

computers A and I receive the message they establish a coiUlection between them as 

indicated by the dashed line, and similarly for computers E and F. 

When a computer disconnects in an unplanned manner, such as resulting from 

25 a power failure, the neighbors connected to the disconnected computer recognize the 

disconnection when each attempts to send its next message to the now disconnected 

computer. Each former neighbor of the disconnected computer recognizes that it is short one 

connection (i.e., it has a hole or empty port). When a connected computer detects that one of 

its neighbors is now disconnected, it broadcasts a port connection request on the broadcast 

30 channel, which indicates that it has one internal port that needs a connection. The port 

connection request identifies the call-in port of the requesting computer. When a connected 

[03004-8001/SL003733.105] -13- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1117 of 1657



computer that is also short a connection receives the connection request, it communicates 

with the requesting computer through its external port to establish a connection between the 

two computers. Figure SB illustrates the disconnecting of a computer from the broadcast 

channel in an unplanned manner. In this illustration, computer H has disconnected in an 

s unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the 

disconnection, each neighbor broadcasts a port connection request indicating that it needs to 

fill an empty port, As shown by the dashed lines, computers F and I and computers A and E 

respond to each other's requests and establish a connection. 

It is possible that a planned or unplanned disconnection may result in two 

to neighbors each having an empty internal port. In such a case, since they are neighbors, they 

are already connected and cannot fill their empty ports by connecting to each other. Such a 

condition is referred to as the "neighbors with empty ports" condition. Each neighbor 

broadcasts a port connection request when it detects that it has an empty port as described 

above. When a neighbor receives the port connection request from the other neighbor, it will 

15 recognize the condition that its neighbor also has an empty port. Such a condition may also 

occur when the broadcast channel is in the small regime. The condition can only be 

corrected when in the large regime. When in the small regime, each computer will have less 

than four neighbors. To detect this condition in the large regime, which would be a problem 

if not repaired, the first neighbor to receive the port connection request recognizes the 

20 condition and sends a condition check message to the other neighbor. The condition check 

message includes a list of the neighbors of the sending computer. When the receiving 

computer receives the list, it compares the list to its own list of neighbors. If the lists are 

different, then this condition has occurred in the large regime and repair is needed. To repair 

this condition, the receiving computer will send a condition repair request to one of the 

25 neighbors of the sending computer which is not already a neighbor of the receiving 

computer. When the computer receives the condition repair request, it disconnects from one 

of its neighbors (other than the neighbor that is involved with the condition) and connects to 

the computer that sent the condition repair request. Thus, one of the original neighbors 

involved in the condition will have had a port filled. However, two computers are still in 

Jo need of a connection, the other original neighbor and the computer that is now disconnected 

from the computer that received the condition repair request. Those two computers send out 

port connection requests. If those two computers are not neighbors, then they will connect to 

[03004-8001/SL003733.10SJ -14- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1118 of 1657



each other when they receive the requests. If, however, the two computers are neighbors, 

then they repeat the condition repair process wttil two non-neighbors are in need of 

connections. 

It is possible that the two original neighbors with the condition may have the 

5 same set of neighbors. When the neighbor that receives the condition check message 

detennines that the sets of neighbors are the same, it sends a condition double check message 

to one of its neighbors other than the neighbor who also has the condition. · When the 

computer receives the condition double check message, it detennines whether it has the same 

set of neighbors as the sending computer. If so, the broadcast channel is in the small regime 

10 and. the condition is not a problem. If the set of neighbors are different, then the computer 

that received the condition double check message sends a condition check message to the 

original neighbors with the condition. The computer that receives that condition check 

message directs one of it neighbors to connect to one of the original neighbors with the 

condition by sending a condition repair message. Thus, one of the original neighbors with 

15 the condition will have its port filled. 

Figure 5C illustrates the neighbors with empty ports condition. In this 

illustration, computer H disconnected in an unplanned manner, but computers F and I 

responded to the port connection request of the other and are now connected together. The 

other former neighbors of computer H, computers A and E, are already neighbors, which 

20 gives rise to the neighbors with empty ports condition. In this example, computer E received 

the port connection request from computer A, recognized the possible condition, and sent 

(since they are neighbors via the internal connection) a condition check message with a list 

of its neighbors to computer A. When computer A received the list, it recognized that 

computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime). 

25 Computer A selected computer D, whic~ is a neighbor of computer E and sent it a condition 

repair request. When computer D received the condition repair request, it disconnected from 

one of its neighbors (other than computer E), which is computer G in this example. 

Computer D then connected to computer A. Figure 5D illustrates two computers that are not 

neighbors who now have empty ports. Computers E and G now have empty ports and are 

30 not currently neighbors. Therefore, computers E and G can connect to each other. 

Figmes 5E and 5F further illustrate the neighbors with empty ports condition. 

Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this 

[03004-800!/SL003733.!0S] -15- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1119 of 1657



example, if computer E discomtected in an unplanned manner, then each computer 

broadcasts a port connection request when it detects the discomtect. When computer A 

receives the port connection request form computer B, it detects the neighbors with empty 

ports condition and sends a condition check message to computer B. Computer B recognizes 

5 that it has the same set of neighbors (computer C and D) as computer A and then sends a 

condition double check message to computer C. Computer C recognizes that the broadcast 

channel is in the small regime because is also has the same set of neighbors as computers A 

and B, computer C may then broadcast a message indicating that the broadcast channel is in 

the small regime. 

10 Figure 5F illustrates the situation of Figure 5E when in·the large regime. As 

discussed above, computer C receives the condition double check message from computer B. 

In this case, computer C recognizes that the broadcast channel is in the large regime because 

it has a set of neighbors that is different from computer B. The edges extending up from 

computer C and D indicate connections to other computers. Computer C then sends a 

15 condition check message to computer B. When computer B receives the condition check 

message, it sends a condition repair message to one of the neighbors of computer C. The 

computer that receives the condition repair message disconnects from one of its neighbors, 

other than computer C, and tries to comtect to computer B and the neighbor from which it 

discomtected tries to connect to computer A 

20 Port Selection 

As described above, the TCP/IP protocol designates ports above number 2056 

as user ports. The broadcast technique mes five user port numbers on each computer: one 

external port and four internal ports. Generally, user ports camtot be statically allocated to 

an application program because other applications programs executing on the same computer 

25 may use conflicting port numbers. As a result, in one embodiment, the computers connected 

to the broadcast channel dynamically allocate their port numbers. Each computer could 

simply try to locate the lowest number unused port on that computer and use that port as the 

call-in port A seeking computer, however, does not know in advance the call-in port 

number of the portal computers when the port numbers are dynamically allocated. Thus, a 

30 seeking computer needs to dial ports of a portal computer starting with the lowest port 

number when locating the call-in port of a portal computer. If the portal computer is 

[03004·800 I/SL003733.1 O'J -16- 7/3l!OO 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1120 of 1657



connected to (or attempting to connect to) the broadcast channel, then the seeking computer 

would eventually fmd the call-in port. If the portal computer is not connected, then the 

seeking computer would eventually dial every user port. In addition, if each application 

program on a computer tried to allocate low-ordered port numbers, then a portal computer 

5 may end up with a high-numbered port for its call-in port because many of the low-ordered 

port numbers would be used by other application programs. Since the dialing of a port is a 

relatively slow process, it would take the seeking computer a long time to locate the call-in 

port of a portal computer. To minimize this time, the broadcast technique uses a port 

ordering algorithm to identify the port number order that a portal computer should use when 

10 fmding an available port for its call-in port. In one embodiment, the broadcast technique 

uses a hashing. algQrithm to identify the port order. The algorithm preferably distributes the 

ordering of the port numbers . randomly through out the user port number space and only 

selects each port number once. In addition, every time the algorithm is executed on any 

computer for a given channel type and channel instance, it generates the same port ordering. 

15 As described below, it is possible for a computer to be connected to multiple broadcast 

channels that are uniquely identified by channel type and channel instance. The algorithm 

may be "seeded" with channel type and channel instaitce in order to generate a unique 

ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the 

ports of a portal computer in the same order as the portal computer used when allocating its 

20 call-in port. 

If many computers are at the same time seeking connection to a broadcast 

channel through a single portal computer, then the ports of the portal computer may be busy 

when called by seeking computers. The seeking computers would typically need to keep on 

redialing a busy port. The process of locating a call-in port may be significantly slowed by 

25 such redialing. In one embodiment, each seeking computer may each reorder the first few 

port numbers generated by the hashing algorithm. For example, each seeking computer 

could randomly reorder the first eight port numbers generated by the hashing algorithm. The 

random ordering could also be weighted where the first port number generated by the 

hashing algorithm would have a 50% chance of being first in the reordering, the second port 

30 number would have a 25% chance of being first in the reordering, and so on. Because the 

seeking computers would use different orderings, the likelihood of finding a busy port is 

reduced. For example, if the first eight port numbers are randomly selected, then it is 

[03004-8001/SLD03733.105) -17- 7/31100 

I 
i 
1 •• 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1121 of 1657



possible that eight seeking computers could be simultaneously dialing ports in different 

sequences which would reduce the chances of dialing a busy port. 

Locating a Portal Computer 

Each computer that can connect to the broadcast channel has a list of one· or 

s more portal computers through which it can connect to the broadcast channel. In one 

embodiment, each computer has the same set of portal computers. A seeking computer 

locates a portal computer that is connected to the broadcast channel by successively dialing 

the ports of each portal computer in the order specified by an algorithm. A seeking computer 

could select the first portal computer and then dial all its ports until a call-in port of a 

10 computer that is fully connected to the broadcast channel is fowtd. If no call-in port is 

fowtd, then the seeking computer would select the next portal computer and repeat the 

process until a portal computer with such a call~in port is found. A problem with such a 

seeking technique is that all user ports of each portal computer are dialed until a portal 

computer fully connected to the broadcast channel is found. In an alternate embodiment, the 

15 seeking computer selects a port number according to the algorithm and then dials each portal 

computer at that port number, If no acceptable call-in port to the broadcast channel is fowtd, 

the_n the seeking computer selects the next port number and repeats the process. Since the 

call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first 

dials the port numbers that are most likely to be call-in ports of the broadcast channel. The 

20 seeking computers may have a maximum search depth, that is the number of ports that it will 

dial when seeking a portal computer that is fully connected. If the seeking computer 

exhausts its search depth, then either the broadcast channel has not yet been established or, if 

the seeking computer is also a portal computer, it can then establish the broadcast channel 

with itself as the first fully connected computer. 

25 When a seeking computer locates a portal computer that is itself not fully 

connected, the two computers do not connect when they first locate each other because the 

broadcast channel may already be established and accessible through a higher-ordered port 

number on another portal computer. If the two seeking computers were to connect to each 

other, then two disjoint broadcast channels would be formed. Each seeking computer can 

30 share its experience in trying to locate a portal computer with the other seeking computer. In 

particular, if one seeking computer has searched all the portal computers to a depth of eight, 

[03004-800I/SLIJ03733.10.5J -18- 7131100 

i . 

I 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1122 of 1657



5 

then the one seeking computer can share that it has searched to a depth of eight with another 

seeking computer. If that other seeking computer has searched to a depth of, for example, 

only four, it can skip searching through depths five through eight and that other seeking 

computer can advance its searching to a depth of nine. 

In one embodiment, each computer may have a different set of portal 

computers and a different maximum search depth. In such a situation, it may be possible that 

two disjoint broadcast channels are formed because a seeking computer cannot locate a fully 

connected port computer at a higher depth. Similarly, if the set of portal computers are 

disjoint, then two separate broadcast channels would be formed. 

10 Identifying Neighbors for a Seeking Computer 

As described above, the neighbors of a newly connecting computer are 

preferably selected randomly from the set of currently connected computers. One advantage 

of the broadcast channel, however, is that no computer has global knowledge of the 

broadcast channel. Rather, each computer has local knowledge of itself and its neighbors. 

15 This limited local knowledge has the advantage that all the connected computers are peers 

(as far as the broadcasting is concerned) and the failure of any one computer (actually any 

three computers when in the 4-regular and 4-connect form) will not cause the broadcast 

channel to fail This local knowledge makes it difficult for a portal computer to randomly 

select four neighbors for a seeking computer. 

20 To select the four computers, a portal computer sends an edge connection 

request message through one of its internal connections that is randomly selected. The 

receiving computer again sends the edge connection request message through one of its 

internal connections that is randomly selected. This sending of the message corresponds to a 

random walk through the graph that represents the broadcast channel. Eventually, a 

25 receiving computer will decide that the message has traveled far enough to represent a 

randomly selected computer. That receiving computer will offer the internal connection 

upon which it received the edge connection request message to the seeking computer for 

edge pinning. Of course, if either of the computers at the end of the offered internal 

connection are already neighbors of the seeking computer, then the seeking computer cannot 

30 cmmect through that internal connection. The computer that decided that the message has 

(03004-800 !/SL003733.105] -19- 7131/00 

~ ·. . " ... 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1123 of 1657



traveled far enough will detect this condition of already being a neighbor and send the 

message to a randomly selected neighbor. 

In one embodiment, the distance that the edge connection request message 

travels is established by the portal computer to be approximately twice the estimated 

5 diameter of the broadcast channel. The message includes an indication of the distance that it 

is to travel. Each receiving computer decrements that distance to travel before sending the 

message on. The computer that receives a message with a distance to travel that is zero is 

considered to be the randomly selected computer. If that randomly selected computer cannot 

connect to the seeking computer (e.g., because it is. already connected to it), then that 

10 . randomly selected computer forwards the edge connection request to one of its neighbors 

with a new distance to travel. In one embodiment, the forwarding computer toggles the new 

distance to travel between zero and one to help prevent. two computers from· sending the 

message back and forth between each other. 

Because of the local nature of the information maintained by each . computer 

15 connected to the broadcast channel, the computers need not generally be aware of the 

diameter of the broadcast channel. In one . embodiment, each message sent through the 

broadcast channel has a distance traveled field. Each computer that forwards a message 

increments the distance traveled field. Each computer also maintains an estimated diameter 

of the broadcast channel. When a computer receives a message that has traveled a distance 

20 that indicates that the estimated diameter is too small, it updates its estimated diameter and 

broadcasts an estimated diameter message. When a computer receives an estimated diameter 

message that indicates a diameter that is larger than its own estimated diameter, it updates its 

own estimated diameter. This estimated diameter is used to establish the distance that an 

edge connection request message should travel. 

25 External Data Representation 

The computers connected to the broadcast channel may internally store their 

data in different fonnats. For example, one computer may use 32-bit integers, and another 

computer may use 64-bit integers. As another example, one computer may use ASCII to 

represent text and another computer may use Unicode. To allow communications between 

30 heterogeneous computers, the messages sent over the broadcast channel may use the XDR 

("eXternal Data Representation") fonnat. 

(03004-800 l/SlllD3733.1 05] -20- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1124 of 1657



The underlying peer-to-peer communications protocol may send multiple 

messages in a single message stream. The traditional technique for retrieving messages from 

a stream has been to repeatedly invoke an operating system routine to retrieve the next 

message in the stream. The retrieval of each message may require two calls to the operating 

5 system: one to retrieve the size of the next message and the other to retrieve the number of 

bytes indicated by the retrieved size. Such calls to the operating system can, however, be 

very slow in comparison to the invocations oflocal routines. To overcome the inefficiencies 

of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the 

message boundaries in a stream of messages. The broadcast technique may request the 

10 operating system to provide the next, for example, 1,024 bytes from the stream. The 

broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages 

and use the success or failure of each invocation to determine whether another block of 1,024 

bytes needs to be retrieved from the operating system. The invocation of XDR routines do 

not involve system calls and are thus more efficient than repeated system calls. 

15 M-Regular 

In the embodiment described above, each fully connected computer has four 

internal connections. The broadcast technique can be used with other numbers of internal 

connections. For example, each computer could have 6, 8, or any even number of internal 

connections. As the number of internal connections increase, the diameter of the broadcast 

20 channel tends to decrease, and thus propagation time for a message tends to decrease. The 

time that it takes to connect a seeking computer to the broadcast channel may, however, 

increase as the number of internal connections increases. When the number of internal 

connectors is even, then the broadcast channel . can be maintained as m-regular and 

m-connected (in the steady state). If the number of internal connections is odd, then when 

25 the broadcast channel has an odd number of computers connected, one of the computers will 

have less than that odd number of internal connections. In such a situation, the broadcast 

network is neither m-regular nor m-connected. When the next computer connects to the 

broadcast channel, it can again become m-regular and m-connected. Thus, with an odd 

number of internal connections, the broadcast channel toggles between being and not being 

30 m-regular and m-connected. 

[03004-8001/SL003733.10~] -21- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1125 of 1657



Components 

Figure 6 is a block diagram illustrating components of a computer that is 

connected to a broadcast channel. The above description generally assumed that there was 

only one broadcast channel and that each computer had only one connection to that broadcast 

5 channel. More generally, a network of· computers may have multiple broadcast channels, 

each computer may be connected to more than one broadcast channel, and each computer 

can have multiple connections to the same broadcast channel. The broadcast channel is well 

suited for computer processes (e.g., application programs) that execute collaboratively, such 

. as network meeting programs. Each computer process can connect to one or more broadcast 

10 channels. The broadcast channels can be identified by channel type (e.g., application 

program name) and channel instance that represents separate broadcast chaxmels for that 

channel type. When a process attempts to connect to a broadcast channel, it seeks a process 

currently connected to that broadcast channel that is executing on a portal computer. The 

seeking process identifies the broadcast channel by channel type and channel instance. 

15 Computer 600 includes multiple application programs 601 executing as 

separate processes. Each application program interfaces with a broadcaster component 602 

for each broadcast channel to which it is connected. The broadcaster component may be 

implement as an object that is instantiated within the process space of the application 

program. Alternatively, the broadcaster component may execute as a separate process or 

20 thread from the application program. In one embodiment, the broadcaster component 

provides functions (e.g., methods of class) that can be invoked by the application programs. 

The primacy functions provided may include a connect function that an application program 

invokes passing an indication of the broadcast channel to which the application program 

wants· to connect. The application program may provide a callback routine that the 

25 broadcaster component invokes to notify the application program that the connection has 

been completed, that is the process enters the fully connected state. The broadcaster 

component may also provide an acquire message function that the application program can 

invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively, 

the application program may provide a callback routine (which may be a virtual function 

30 provided by the application program) that the broadcaster component invokes to notify the 

application program that a broadcast message has been received. Each broadcaster 

component allocates a call-in port using the hashing algorithm. When calls are answered at 

[03004-8001/SL003733.10~] -22- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1126 of 1657



the call-in port, they are transferred to other ports that serve as the external and internal 

ports. 

The computers connecting to the broadcast channel may include a central 

processing writ, memory, input devices (e.g., keyboard and pointing device), output devices 

s (e.g., display devices), and storage devices (e.g., disk drives). The memory and storage 

devices are computer-readable medium that may contain computer instructions that 

implement the broadcaster component. In addition, the data structures and message 

structures may be stored or transmitted via a signal transmitted on a computer-readable 

media, such as a communications link. 

10 Figure 7 is a block diagram illustrating the sub-components of the broadcaster 

component in one embodiment. The broadcaster component includes a connect component 

701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an 

acquire message component 704 and a broadcast component 712. The application program 

may provide a connect callback component 710 and a receive response component 711 that 

15 are invoked by the broadcaster component. The application program invokes the connect 

component to establish a connection to a designated broadcast channel. The connect 

component identifies the external port and installs the external dispatcher for handling 

messages that are received on the external port. The connect component invokes the seek 

portal computer component 705 to identify a portal computer that is connected to the 

20 broadcast channel and invokes the connect request component 706 to ask the portal computer 

(if fully connected) to select neighbor processes for the newly connecting process. The 

external dispatcher receives external messages, identifies the type of message, and invokes 

the appropriate handling routine 707. The internal dispatcher receives the internal messages, 

identifies the type of message, and invokes the appropriate handling routine 708. The 

25 received broadcast messages are stored in the broadcast message queue 709. The acquire 

message component is invoked to retrieve messages from the broadcast queue. The 

broadcast component is invoked by the application program to broadcast messages in the 

broadcast channel. 

An Information Delivery Service 

30 In one embodiment, an information delivery service application is 

implemented using the broadcast channel. The infonnation delivery service allows 

[03004-800 IISL003733.1 OS] -23- 7/31/00 

,. 
' ' 

'-

i 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1127 of 1657



participants to monitor messages as they are broadcast on the broadcast channel. Each 

participant may function as a producer of information, as a consumer of information, or both. 

The producers broadcast messages on the broadcast channel, and consumers receive the 

broadcast messages. For example, a sports broadcast channel may be used to disseminate the 

s results of sporting events. Certain organizations, such as the National Football League, may 

be authorized to broadcast results of sporting events on the broadcast channel. The operators 

of the broadcast channel may sell subscriptions to the broadcast channel to sports enthusiasts. 

The information delivety service may be used to distribute a broad range of content including 

news articles, stock prices, weather alerts, medical alerts, traffic reports, and so on. 

10 The information delivety service may provide a directoty web site 

where consumers can locate and subscribe to broadcast channels of interest. The directoty 

may provide a hierarchical organization of topics of the various broadcast channels. When a 

user decides to subscribe to a broadcast channel, the· broadcaster component and information 

delivety service application program may be downloaded to the user's computer if not 

15 already available on the user's computer. Also, the channel type and channel instance 

associated with that broadcast channel and the identification of the portal computers for that 

broadcast channel may be downloaded to the subscriber's computer. The information 

delivery service may also provide a subscriber identifier that may be used by a portal 

computer to authorize access to or track who has connect~d to the broadcast channel. 

20 The information delivety service web site may also allow an entity to 

create new broadcast channels. For example, the NFL may want a broadcast channel 

dedicated to the dissemination of information under its control. In which case, the entity 

would interact with the web site to create the broadcast channel. The creation of the 

broadcast channel would entail the generation of a channel type and channel instance, the 

25 specification of security level (e.g., encrypted messages), the specification of subscriber 

qualifications, and so on. 

A user may subscribe to a broadcast channel for an individual topic, 

which corresponds to a leaf node in the hierarchy, or a user may subscribe to a categoty of 

topics, which corresponds to a non·leaf node in the hierarchy. For example, a user may 

30 subscribe to a category of spc:>rts scores or subscribe to the topic of NFL scores. In one 

embodiment, each topic would have its own broadcast channel. As a result, the subscribing 

to a category of topics would mean subscribing to multiple broadcast channels. 

[03004-8001/SL003733.lOS] -24- 7131100 

.. ,·.-,:· 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1128 of 1657



Alternatively, a category of topics may have a single broadcast channel. If a user subscribes 

to just one topic in the category, the infonnation delivery service application program 

executing at the subscriber's computer would simply disregard messages not related to the 

topic. 

s Many different fee structures can be used by the infonnation delivery 

service. A subscriber may be charged a fixed fee per month for subscribing to a topic. 

Alternatively, a subscriber may be charged based on time actually connected. For example, 

when a subscriber's computer is connected, it might broadcast an identification message 

every hour or so. A billing computer could monitor the broadcast and record the connect 

10 time . based on the identification messages. If the billing computer does not receive an 

identification message for a certain time period, it assumes that the subscriber's computer has 

disconnected. Also, the operator of the broadcast channel may derive revenue from 

advertisements broadcast over the broadcast channel. The fee for advertising on a broadcast 

channel may vary based on the number of subscribers connected to the broadcast channel at 

15 the time the advertisement is broadcast. 

The following tables list messages sent by the broadcaster components. 

EXTERNAL MESSAGES. 

Message Type Description 

I seeking_connection_call Indicates that a seeking process would like to know whether the 

I receiving process is fully connected to the broadcast channel 

l connection _request_ call Indicates.that the sending process would like the receiving 
process to initiate a connection of the sending process to the 
broadcast channel 

edge _proposal_ call Indicates that the sending process is proposing an edge through 
which the receiving process can connect to the broadcast 
channel (i.e., edge pinning) · 

port_connection_call Indicates that the sending process is proposing a port through 
which the receiving process can connect to the broadcast 
channel 

connected stmt Indicates that the sending process is connected to the broadcast 
channel 

condition _repair_ stmt Indicates that the receiving process should disconnect from one 
of its neighbors and connect to one of the processes involved in . 

(03004-800 l/SL003733.10S] -25- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1129 of 1657



j the neighbors with empty port condition 

Message Type 

broadcast sttnt 

j connection _port_ search_ stmt 

' connection_ edge,._ search_ call 

connection_edge_search_resp 

diameter_ estimate_ stmt 

diameter _reset_ stmt 

INTERNAL MESSAGES 

Description 

Indicates a message that is being broadcast through the 
broadcast channel for the application programs 

Indicates that the designated process is looking for a port 
through which it can connect to the broadcast channel 

Indicates that the requesting process is looking for an edge 
through which it can connect to the broadcast channel 

Indicates whether the edge between this process and the 
sending neighbor has been accepted by the requesting 
party 

Indicates an estimated diameter of the broadcast channel 

Indicates to reset the estimated diameter to indicated 
diameter 

disconnect stmt Indicates that the sending neighbor is disconnecting from 
the broadcast channel 

condition_check_stmt Indicates that neighbors with empty port condition have 
been detected 

condition_double_check_stmt Indicates that the neighbors with empty ports have the 
same set of neighbors 

shutdown stmt Indicates that the broadcast channel is being shutdown 

Flow Diagrams 

Figures 8-34 are flow diagrams illustrating the processing of the broadcaster 

5 component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the 

connect routine in one embodiment. This routine is passed a channel type (e.g., application 

name) and channel instance (e.g., session identifier), that identifies the broadcast channel to 

which this process wants to connect The routine is also passed auxiliary information that 

includes the list of portal computers and a connection callback routine. When the connection 

10 is established, the connection callback routine is invoked to· notifY the application program. 

When this process invokes this routine, it is in the seeking connection state. When a portal 

computer is located that is connected and this routine connects to at least one neighbor, this 

[03004-80011SL003733.l0'} -26- 7131/00 

i 
!-·· 

' 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1130 of 1657



process enters the partially connected state, and when the process eventually connects to four 

neighbors, it enters the fully connected state. When in the small regime, a fully connected 

process may have less than four neighbors. In block 801, the routine opens the call-in port 

through which the process is to communicate with other processes when establishing external 

5 and internal connections. The port is selected as the first available port using the hashing 

algorithm described above. In block 802, the routine sets the connect time to the current 

time. The connect time is used to identify the instance of the process that is connected 

through this external port. One process may connect to a broadcast channel of a certain 

channel type and channel instance using one call-in port and then disconnects, and another 

10 process may then connect to that same broadcast channel using the same call-in port. Before 

the other process becomes fully connected, another process may try to communicate with it 

thinking it is the fully connected old process. In such a case, the connect time can be used to 

identify this situation. ·1n block 803, the routine invokes the seek portal computer routine 

passing the channel type and channel instance; The seek portal computer routine attempts to 

15 locate a portal computer through which this process can connect to the broadcast channel for 

the passed type and instance. In decision block 804, if the seek portal computer routine is 

successful in locating a fully connected process on that portal computer, then the routine 

continues at block 805, else the routine returns an unsuccessful indication. In decision block 

805, if no portal computer other than the portal computer on which the process is executing 

20 was located, then this is the first process to fully connect to broadcast channel and the 

routine continues at block 806, else the routine continues at block 808. In block 806, the 

routine invokes the achieve connection routine to change the state of this process to fully 

connected. In block 807, the routine installs the external dispatcher for processing messages 

received through this process' external port for the passed channel type and channel instance. 

25 When a message is received through that external port, the external dispatcher is invoked. 

The routine then returns. In block 808, the routine installs an external dispatcher. In block 

809, the routine invokes the connect request routine to initiate the process of identifying 

neighbors for the seeking computer. The routine then returns. 

Figure 9 is a flow diagram illustrating the processing of the seek portal 

30 computer routine in one embodiment. This routine is passed the channel type and channel 

instance of the broadcast channel to which this process wishes to c01mect. Tills routine, for 

each search depth (e.g., port number), checks the portal computers at that search depth. If a 

[03004-800l/SL003733.!05] -27- 7131/00 

I_ 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1131 of 1657



portal computer is located at that search depth with a process that is fully connected to the 

broadcast channel, then the routine returns an indication of success. In blocks 902-911, the 

routine loops selecting each search depth until a process is located. In block 902, the routine 

selects the next search depth using a port number ordering algorithm. In decision block 903, 

5 if all the search depths have already been selected during this execution of the loop, that is 

for the currently selected depth, then the routine returns a failure indication, else the routine 

continues at block 904. In blocks 904-911, the routine loops selecting each portal computer 

and determining whether a process of that portal computer is connected to (or attempting to 

connect to) the broadcast channel with the passed channel type and channel instance. In 

10 block 904, the routine selects the next portal computer. In decision block 905, if all the 

portal computers have already been selected, then the routine loops to block 902 to select the 

next search depth, else the routine continues at block 906. In block 906, the routine dials the 

selected portal computer through the port represented by the search depth. In decision block 

907, if the dialing was successful, then the routine continues at block 908, else the routine 

15 loops to block 904 to select the next portal computer. The dialing will be successful ·if the 

dialed port is the call-in port of the broadcast channel of the passed channel type and channel 

instance of a process executing on that portal computer. In·block 908, the routine invokes a 

contact process routine, which contacts the answering process of the portal computer through 

the dialed port and determines whether that process is fully connected to the broadcast 

20 channel. In block 909, the routine hangs up on the selected portal computer. In decision 

block 910, if the answering process is fully connected to the broadcast channel, then the 

routine returns a success indicator, else the routine continues at block 911. In block 911, the 

routine invokes the check for external call routine to determine whether an external call has 

been made to this process as a portal computer and processes that call. The routine then 

25 loops to block 904 to select the next portal computer. 

Figure 10 is a flow diagram illustrating the processing of the contact process 

routine in one embodiment. This routine determines whether the process of the selected 

portal computer that answered the call-in to the selected port is fully connected to the 

broadcast chaml.el. In block 1001, the routine sends an external message (i.e., 

30 seeking_ connection_ call) to the answering process indicating that a seeking process wants to 

know whether the answering process is fully connected to the broadcast channel. In block 

1002, the routine receives the external response message from the answering process. In 

[03004-800!/SL003733.105] -28- 7/31/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1132 of 1657



decision block 1003, if the external response message is successfully received (i.e., 

seeking_connection_resp), then the routine continues at block 1004, else the routine returns. 

Wherever the broadcast component requests to receive an external message, it sets a time out 

period. If the external message is not received within that time out period, the broadcaster 

5 component checks its own call-in port to see if another process is calling it. In particular, the 

dialed process may be calling the dialing process, which may result in a deadlock situation. 

The broadcaster component may repeat the receive request several times. If the expected 

message is not received, then the broadcaster component handles the error as appropriate. In 

decision block 1004, if the answering process indicates in its response message that it is fully 

10 connected to the broadcast channel, then the routine continues at block 1005, else the routine 

continues at block 1006. In block 1005, the routine adds the selected portal c~omputer to a 

list of connected portal computers and. then returns. In block 1006, the routine adds the 

answering process to a list of fellow seeking processes and then returns. 

Figure 11 is a flow diagram illustrating· the processing of the connect request 

15 routine in one embodiment. This routine requests a process of a portal computer that was 

identified as being fully connected to the broadcast channel to initiate the connection of this 

process to the broadcast channel. In decision block 110 1, if at least one process of a portal 

computer was located that is fully connected to the broadcast channel, then the routine 

continues at block 1103, else the routine continues at block 1102. A process of the portal 

20 computer may no longer be in the list if it recently disconnected from the broadcast channel. 

In one embodiment, a seeking computer may always search its entire search depth and find 

multiple portal computers through which it can connect to the broadcast channel In block 

1102, the routine restarts the process of connecting to the broadcast channel and returns. In 

block 1103, the routine dials the process of one of the fmmd portal computers through the 

25 call-in port. In decision block 1104, if the dialing is successful, then the routine continues at 

block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for 

example, the dialed process recently disconnected from the broadcast channel In· block 

1105, the routine sends an external message to the dialed process requesting a connection to 

the broadcast channel {i.e., connection_request_call). In block 1106, the routine receives the 

30 response message (i.e., connection_request_resp). In decision block 1107, if the response 

message is successfully received, then the routine continues at block 1108, else the routine 

continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e., 

[03004-800l/SL003733.105J -29- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1133 of 1657



empty internal connections) for this process based on the received response. When in the 

large regime, the expected number of holes is zero. When in the small regime, the expected 

number of holes varies from one to three. In block 1109, the routine sets tile estimated 

diameter of the broadcast channel based on the received response. In decision block 1111, if 

s the dialed process is ready to connect to this. process as· indicated by the response message, 

then the routine continues at block 1112, else the routine continues at block 1113; In block 

1112, the routine invokes the add neighbor routine to add the answering process · as a 

neighbor to this process. This adding of the answering process typically occurs when the 

broadcast channel is in the small regime. When in the large regime, the random walk search 

10 for a neighbor is performed. In block 1113, the routine hangs up the external connection 

with the answering process computer and then returns. 

Figure 12 is a flow diagram of the processing of the check for external call 

routine in one embodiment. This routine is invoked to identify whether a fellow seeking 

process is attempting to establish a connection to the broadcast channel through this process. 

15 In block 1201, the routine attempts to answer a call on the call-in port. In decision block 

1202, if the answer is successful, then the routine continues at block 1203, els·e the routine 

returns. In block 1203, the routine receives the external message from the external port. In 

decision block 1204, if the type of the message indicates that a seeking process is calling 

(i.e., seeking_connection.;...call), then the routine continues at block 1205, else the routine 

20 returns. In block 1205, the routine sends an external message (i.e., seeking.:...connection_resp) 

to the other seeking process indicating that this process is also is seeking a connection. In 

decision block 1206, if the sending of the external message is successful, then the routine 

continues at block 1207, else the routine returns. In block 1207, the routine adds the other 

seeking process to a list of fellow seeking processes and then returns. This list may be used 

25 if this process can find no process that is fully connected to the broadcast channel. In which 

case, this process may check to see if any fellow seeking process were successful in 

connecting to the broadcast channel. For example, a fellow seeking process may become the 

first process fully connected to the broadcast channel. 

Figure 13 is a flow diagram of the processing of the achieve connection routine 

30 in one embodiment. This routine sets the state of this process to fully connected to the 

broadcast channel and invokes a callback routine to notify the application program that the 

process is now fully connected to the requested broadcast channel. In bloc:k 1301, the 

[03004-8001/SL003733.10j] -30- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1134 of 1657



routine sets the connection state of this process to fully connected. In bloc:k 1302, the 

routine notifies fellow seeking processes that it is fully connected by sending a connected 

external message to them (i.e., connected_stmt). In block 1303, the routine invokes the 

connect callback routine to notify the application program and then returns. 

s Figure 14 is a flow diagram illustrating the processing of the external 

dispatcher routine in one embodiment. This routine is invoked when the external port 

receives a message. This routine retrieves the message, identifies the external message type, 

and invokes the appropriate routine to handle that message .. This routine loops processing 

each message until all the received messages have been handled. In block 1401, the routine 

10 answers (e.g., picks up) the external port and retrieves an external message. In decision 

block 1402, if a message was retrieved, then the routine continues at block 1403, else the 

routine hangs up on the external port in block 1415 and returns. In decision block 1403, if 

the message type is for a process seeking a connection (i.e., seeking_ connection_ call), tlten 

the routine invokes the handle seeking connection call routine in block 1404, else the routine 

IS continues at block 1405. In decision block 1405, if the message type is for a connection 

request call (i.e., connection_request_call), then the routine invokes the handle connection 

request call routine in block 1406, else the routine continues at block 1407. In decis:ton 

block 1407, if the message type is edge proposal call (i.e., edge_3lroposal_call), then ·the 

routine invokes the handle edge proposal call routine in block 1408, else the routine 

20 continues at block 1409. In decision block 1409, if the message type is port connect c:all 

(i.e., port_ connect_ call), then the routine invokes the handle port connection call routine in 

block 1410, else the routine continues at block 1411. In decision block 1411, if the message 

type is a connected statement (i.e., connected_stmt), the routine invokes the handle 

connected statement in block 1112, else the routine continues at block 1212. In decision 

25 block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt), 

then the routine invokes the handle condition repair routine in block 1413, else the routine 

loops to block 1414 to process the next message. After each handling routine is invoked, ·the 

routine loops to block 1414. In block 1414, the routine hangs up on the external port a:nd 

continues at block 1401 to receive the next message. 

30 Figure 15 is a flow diagram illustrating the processing of the handle seekmg 

connection call routine in one embodiment. This routine is invoked when a seeking process 

is calling to identify a portal computer through which it can connect to the broadcast channeL 

[03004-8001/SL003733.10'J -31- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1135 of 1657



In decision block 1501, if this process is currently fully connected to the broadcast channel 

identified in the message, then the routine continues at block 1502, else the routine continues 

at block 1503. In block 1502, the routine sets a message to indicate that this process is fully 

connected to the broadcast channel and continues at block 1505. In block 1503, the routine 

5 sets a message to indicate that this process is not fully connected. In block 1504, the routine 

adds the identification of the seeking process to a list of fellow seeking processes. If this 

process is not fully connected, then it is attempting to connect to the broadcast channel. In 

block 1505, the routine sends the external message response (i.e., seeking_connection_resp) 

to the seeking process and then returns. 

10 Figure 16 is a flow diagram illustrating processing of the handle. connection 

request call routine in one embodiment. This routine is invoked when the calling process 

wants this process to initiate the connection of the process to the broadcast channel This 

routine either allows the calling process to establish an internal connection with this process 

(e. g., if in the small regime). or starts the process of identifying a process to which the calling 

15 process can connect. ln decision block 1601, if this process is currently fully connected to 

the broadcast channel. then the routine continues at block 1603, else the routine hangs up on 

the external port in block 1602 and returns. In block 1603, the routine sets the number of 

holes that the calling process should expect in the response message. In block 1604, the 

routine sets the estimated diameter in the response message. In block 1605, the routine 

20 indicates whether this process is ready to connect to the calling process. This process is 

ready to connect when the number of its holes is greater than zero and the calling process is 

not a neighbor of this process. In block 1606, the routine sends to the calling process an 

external message that is responsive to the connection request call (i.e., 

connection_request_resp). In block 1607, the routine notes the number of holes that the 

25 calling process needs to fill as indicated in the request message. In decision block 1608, if 

this process is ready to connect to the calling process, then the routine continues at block 

1609, else the routine continues at block 1611. In block 1609, the routine invokes the add 

neighbor routine to add the calling process as a neighbor. In block 1610, the routine 

decrements the number of holes that the calling process needs to fill and continues at block 

30 1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if 

this process has no holes or the estimated diameter is greater than one (i.e., in the large 

regime), then the routine continues at block 1613, else the routine continues at block 1616. 

(03004-8001/SL003733.10S] -32- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1136 of 1657



In blocks 1613-1615, the routine loops forwarding a request for an edge through which to 

connect to the calling process to the broadcast channel. One request is forwarded for each 

pair of holes of the calling process that needs to be filled. In decision block 1613, if the 

number of holes of the calling process to be filled is greater than or equal to two, then the 

s routine continues at block 1614, else the routine continues at block 1616. In block 1614, the 

routine invokes the forward connection edge search routine. The invoked routine is passed 

to an indication of the calling process and the random walk distance. In one embodiment. the 

distance is twice in the estimated diameter of the broadcast channel In block 1614, the 

routine decrements the holes left to fill by two and loops to block 1613. In decision block 

10 1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine 

returns. In block 1617, the routine invokes the fill hole routine passing the identification of 

the calling process. The fill hole routine broadcasts a connection port search statement (i.e., 

connection_port_search_stmt) for a hole of a connected process throughwhich the calling 

process can connect to the broadcast channel. The routine then returns. 

rs Figure 17 is a flow diagram illustrating the processing of the add neighbor 

routine in one embodiment. This routine adds the process calling on the external port as a 

neighbor to this process. In block 1701, the routine identifies the calling process on the 

external port. ln block _1702, the routine sets a flag to indicate that the neighbor has not yet 

received the broadcast messages from this process. This flag is used to ensure that there are 

20 no gaps in the messages initially sent to the new neighbor. The external port becomes the 

internal port for this connection. In decision block 1703, if this process is in the seeking 

connection state, then this process is connecting to its first neighbor and the routine 

continues at block 1704, else the routine continues at block 1705. In block 1704, the routine 

sets the connection state of this process to partially connected. In block 1705, the routine 

25 adds the calling process to the list of neighbors of this process. In block I 706, the routine 

installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when 

a message is received from that new neighbor through the internal port of that new neighbor. 

In decision block 1707, if this process buffered up messages while not fully connected, then 

the routine continues at block 1708, else the routine continues at block 1709. In one 

30 embodiment. a process that is partially connected may buffer the messages that it receives 

through an internal connection so that it can send these messages as it connects to new 

neighbors. In block 1708, the routine sends the buffered messages to the new neighbor 

[03004-800l/SLOD3733.10S] -33- 7131/00 

... ," ~ .. ' ' . 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1137 of 1657



through the internal port. In decision block 1709, if the number of holes of this process 

equals the expected number of holes, then this process is fully connected and the routine 

continues at block 1710, else the routine continues at block 1711. In block 1710, the routine 

invokes the achieve connected routine to indicate that this process is fully connected. In 

s decision block 1711, if the number of holes for this process is zero, then the routine 

continues at block 1712, else the routine returns. In block 1712, the routine deletes any 

pending edges and then returns. A pending edge is an edge that has been proposed to this 

process for edge pinning, which in this case is no longer needed. 

Figure 18 is a . flow diagram illustrating the processing of the forward 

10 connection edge search routine in one embodiment This routine is r~sponsible for passing 

along a request to connect a requesting process to a randomly selected neighbor of this 

process through the internal port ofthe selected neighbor, that ispart.oftherandom walk. In 

decision block 1801,. if the forwarding distance remaining is greater than zero, then the 

routine continues at block 1804, else the routine continues at block 1802. In decision block 

Is 1802, if the number of neighbors of this process is greater than one.. then the routine 

continues at block 1804, else this broadcast channel is in the small regime and the routine 

continues at block 1803. In decision block 1803, if the requesting process is a neighbor of 

this .process, then the routine returns, else the routine continues at block 1804. In blocks 

1804-1807, the routine loops attempting to send a connection edge search call internal 

20 message (i, e., connection_ edge_ search_ call) to a randomly selected neighbor. In block 1804, 

the routine randomly selects a neighbor of this process. In decision block 1805, if all the 

neighbors of this process have already been selected, then the routine cannot forward the 

message and the routine returns, else the routine continues at block 1806. In block 1806, the 

routine sends a connection edge search call internal message to the selected neighbor. In 

25 decision block 1807, if the sending of the message is successful, then the routine continues at 

block 1808, else the routine loops to block 1804 to select the next neighbor. When the 

sending of an internal message is unsuccessful, then the neighbor may have disconnected 

from the broadcast channel in an unplanned manner. Whenever such a situation is detected 

by the broadcaster component, it attempts to fmd another neighbor by invoking the fill holes 

30 routine to fill a single hole or the forward connecting edge search routine to fill two holes. In 

block 1808, the routine notes that the recently sent connection edge search call has not yet 

been acknowledged and indicates that the edge to this neighbor is reserved if the remaining 

(03004-8001/SL003733.10S) -34- 7/31/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1138 of 1657



fmwarding distance is less than or equal to one. It is reserved because the selected neighbor 

may offer this edge to the requesting process for edge pinning. The routine then returns. 

Figure 19 is a flow diagram illustrating the processing of the handle edge 

proposal call routine. This routine is invoked when a message is received from a proposing 

5 process that proposes to connect an edge between the proposing process and one of its 

neighbors to this process for edge pinning. In decision block 1901, if the number of holes of 

this process minus the num~er of pending edges is greater than or equal to one, then this 

process still has holes to be filled and the routine continues at block 1902, else the routine 

continues at block 1911. In decision block 1902, if the proposing process or its neighboris a 

w · neighbor of this process, then the routine continues at block 1911, else the routine continues 

at block 1903. In block 1903, .the routine indicates that the edge is pending between this 

process and the proposing process. In decision block 1904, if a proposed neighbor is already 

pending as a proposed neighbor, then the routine continues at block 1911, else the routine 

continues at block 1907. In block 1907, the routine sends an edge proposal response as an 

15 external message to the proposing process {i.e., edge_proposal_resp) indicating that the 

proposed edge is accepted. In decision block 1908, if the sending of the message was 

successful, then the routine continues at block 1909, else the routine returns. In block 1909, 

the routine adds the edge as a pending edge. In block 1910, the routine invokes the add 

neighbor routine to add the proposing process on the external port as a neighbor. The routine 

20 then returns. In block 1911, the routine sends an external message (i.e., edge_proposal_resp) 

indicating that this proposed edge is not accepted. In decision block 1912, if the number of 

holes is odd, then the routine continues at block 1913, else the routine returns. In block 

1913, the routine invokes the fill hole routine and then returns. 

Figure 20 is a flow diagram illustrating the processing of the handle port 

25 connection call routine in one embodiment. This routine is invoked when an external 

message is received then indicates that the sending process wants to connect to one hole of 

this process .. In decision block 2001, if the number of holes of this process is greater than 

zero, then the routine continues at block 2002, else the routine continues at block 2003. In 

decision block 2002, if the sending process is not a neighbor, then the routine continues at 

30 block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port 

connection response external message (i.e., port_connection_resp) to the sending process that 

indicates that it is not okay to connect to this process. The routine then returns. In block 

[OJ004-8001/SL003733.10S] -35- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1139 of 1657



2004, the routine sends a port connection response external message to the sending process 

that indicates that is okay to connect this process. In decision block 2005, if the sending of 

the message was successful, then the routine continues at block 2006, else the routine 

continues at block 2007. In block 2006, the routine invokes the add neighbor routine to add 

5 the sending process as a neighbor of this process and then returns. In block 2007, the routine 

hangs up the external connection. In block 2008, the routine invokes the connect request 

routine to request that a process connect to one of the holes of this process. The routine then 

returns. 

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in 

10 one embodiment. This routine is passed an indication of the requesting proc-ess. If this 

process is requesting to fill a hole, then this routine sends an internal message to other 

processes. If another process is requesting to fill a hole, then this routine invokes the routine 

to handle a connection port search request. In block 2101, the routine initializes a 

connection port search statement internal message (i.e., connection_port_search_stmt). In 

15 decision block 2102, if this process is the requesting process, then the routine continues at 

block 2103, else the routine continues at block 2104. In block 2103, the routine distributes 

the message to the neighbors of this process through the internal ports and then returns. In 

block 2104, the routine invokes the handle connection port search routine·and then returns. 

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher 

20 routine in one embodiment. This routine is passed an indication of the neighbor who sent the 

internal message. In block 2201, the routine receives the internal message. This routine 

identifies the message type and invokes the appropriate routine to handle the message. In 

block 2202, the routine assesses whether to change the estimated diameter of th.e broadcast 

channel based on. the information in the received message. In decision block 2203, if this 

25 process is the originating process of the message or the message has already been received 

(i.e., a duplicate), then the routine ignores the message and continues at block 2208, else the 

routine continues at block 2203A. In decision block 2203A, if the process is partially 

connected, then the routine continues at block 2203B, else the routine continues at block 

2204. In block 2203B, the routine adds the message to the pending connection buffer and 

JO continues at block 2204. In decision blocks 2204-2207, the routine decodes the message 

type and invokes the appropriate routine to handle the message. For example, in decision 

block 2204, if the type of the message is broadcast statement (i.e., broadcast_ stmt), then the 

[03004-8001/SL003733.10S] -36- 7131/00 

,, .. _ 

! 
1.; 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1140 of 1657



routine invokes the handle broadcast message routine in block 2205. After invoking the 

appropriate handling routine, the routine continues at block 2208. In decision block 2208, if 

the partially connected buffer is full, then the routine continues at block 2209, else the 

routine continues at block 2210. The broadcaster component collects all its internal 

s messages in a buffer while partially connected so that it can forward the messages as it 

connects to new neighbors. If, however, that buffer becomes full, then the process. assumes 

that it is now fully connected and that the expected number of connections was too high, 

because the broadcast channel is now in the small regime. In black 2209, the routine invokes 

the achieve connection routine and then continues in block 2210. In decision block 2210, if 

10 the application program message queue is empty. then the routine returns, else the routine 

continues at block 2212. In block 2212, the routine invokes the receive response routine 

passing the acquired message and then returns. The received response routine is a callback 

routine of the application program. 

Figure 23 is a flow diagram illustrating the processing of the hanclle broadcast 

15 message routine in one embodiment. This routine is passed an indication of the originating 

process, an indication of the neighbor who sent the broadcast message, and the broadcast 

message itself. In block 2301, the routine performs the out of order processing for this 

message. The broadcaster component queues messages from each originating process until it 

can send them in sequence number order to the application program. In block 2302, the 

20 routine invokes the distribute broadcast message routine to forward the message to the 

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting 

to receive messages, then the routine continues at block 2304, else the routine returns. In 

block 2304, the routine sends the messages in the correct order if possible for each 

originating process and then returns. 

25 Figure 24 is a flow diagram illustrating the processing of the distribute 

broadcast message routine in one embodiment. This routine sends the broadcast message to 

each of the neighbors of this process, except for the neighbor who sent the message to this 

process. In block 240 l, the routine selects the next neighbor other than the neighbor who 

sent the message. In decision block 2402, if all such neighbors have already been selected, 

30 then the routine returns. In block 2403, the routine sends the message to the selected 

neighbor and then loops to block 240 I to select the next neighbor. 

[03004-800 1/SL003733.1 OS] -37- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1141 of 1657



Figure 26 is a flow diagram illustrating the processing of the handle connection 

port search statement routine in one embodiment. This routine is passed an indication of the 

neighbor that sent the message and the message itself. I:iJ. block 2601, the routine invokes the 

distribute internal message which sends the message to each of its neighbors other than the 

s sending neighbor. In decision block 2602, if the number of holes of this process is greater 

than zero, then the routine continues at block 2603, else the routine returns. In decision 

block 2603, if the requesting process is a neighbor, then the routine co:ntinues at block 2605, 

else the routine continues at block 2604. In block 2604, the routine invokes the court 

neighbor. routine and then returns. The court neighbor routine connects this process to the 

10 requesting process if possible. In block 2605, if this process has one hole, then the neighbors 

with empty ports condition exists and the routine continues at block 2606, else the routine 

returns. In block 2606, the routine generates a condition check message (i.e., 

condition_ check) that includes a list of this process' neighbors. In block 2607, the routine 

sends the message to the requesting neighbor. 

15 Figure 27 is a flow diagram illustrating the processing of the court neighbor 

routine in one embodiment. This routine is passed an indication of the prospective neighbor 

for this process. If this process can connect to the prospective neighbor, then it sends a port 

connection call external message to the prospective neighbor· and adds the prospective 

neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a 

20 neighbor, then the routine returns, else the routine continues at block 2702. In block 2702, 

the routine dials the prospective neighbor. In decision block 2703, if the numbt:r ofholes of 

this process is greater than zero, then the routine continues at block 2704, else the routine 

continues at block 2706. In block 2704, the routine sends a port connection call external 

message (i.e., port_connection_call) to the prospective neighbor and receives its response 

25 (i.e., port_connection_resp). Asswning the response is successfully received, in block 2705, 

the routine adds the prospective neighbor as a neighbor of this process by invoking the add 

neighbor routine. In block 2706, the routine hangs up with the prospect and then returns. 

Figure 28 is a flow diagram illustrating the processing of the handle connection 

edge search call routine in one embodiment. This routine is passed a indication of the 

JO neighbor who sent the message and the message itself. Thjs routine either forwards the 

message to a neighbor or proposes the edge between this process and the sending neighbor to 

the requesting process for edge pinning. In decision block 2801, if this process is not the 

(03004-800l/SL003733.105J -38- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1142 of 1657



requesting process or the number of holes of the requesting process is still greater than or 

equal to two, then the routine continues at block 2802, else the routine continues at block 

2813. In decision block 2802, if the forwarding distance is greater than zero, then the 

random walk is not complete and the routine continues at block 2803, else the routine 

5 continues at block 2804. In block 2803, the routine invokes the forward connection edge 

search routine passing the identification of the requesting process and the decremented 

forwarding distance. The routine then continues at block 2815. In decision block 2804, if 

the requesting process is a neighbor or the edge between this process and the sending 

neighbor is reserved because it has already been offered to a process, then the routine 

10 continues at block 2805, else the routine continues at block 2806. In block 2805, the routine 

invokes the forward connection edge search routine passing an indication of the requesting 

party and a toggle indicator that alternatively indicates to continue the random walk for one 

or two more computers. The routine then continues at block 2815. In block 2806, the 

routine dials the requesting process via the call-in port. In block 2807, the routine sends an 

15 edge proposal call external message (i.e., edge _proposal_ call) and receives the response (i.e., 

edge_proposal_resp). Assuming that the response is successfully received, the routine 

continues at block 2808. In decision block 2808, if the response indicates that the edge is 

acceptable to the requesting process, then the routine continues at block 2809, else the 

routine continues at block 2812. In block 2809, the routine reserves the edge between this 

20 process and the sending neighbor. In block 2810, the routine adds the requesting process as 

a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the 

sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and 

continues at block 2815. In decision block 2813, if this process is the requesting process and 

the number of holes of this process equals one, then the routine continues at block 2814, else 

25 the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine. 

In block 2815, the routine sends an connection edge search response message (i.e., 

connection_ edge_ search _response) to the sending neighbor indicating acknowledgement and 

then returns. The graphs are sensitive to parity. That is, all possible paths starting from a 

node and ending at that node will have an even length unless the graph has a cycle whose 

30 length is odd. The broadcaster component uses a toggle indicator to vary the random walk 

distance between even and odd distances. 

[03004-800 l/SL003733.1 OS) -39- 7131/00 

L'' 

I. 
i 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1143 of 1657



Figure 29 is a flow diagram illustrating the processing of the handle connection 

edge search response routine in one embodiment. Tills routine is passed as indication of the 

requesting process, the sending neighbor, and the message. In block 2901, the routine notes 

that the connection edge search response (i.e., connection_edge_seai:ch_resp) has been 

s received and if the forwarding distance is less than or equal to one unreserves the edge 

between this process and the sending neighbor. In decision block 2902, if the requesting 

process indicates that the edge is acceptable as indicated in the message, then the routine 

continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge 

between this process and the sending neighbor. fu block 2904, the routine removes the 

10 sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor 

routine to connect to the requesting process. In decision block 2906, if the invoked routine 

was unsuccessful, then the routine continues at block 2907, else the routine returns. In 

decision block 2907, if the number of holes of this process is greater than zero, then the 

routine continues at block 2908, else the routine returns. In block 2908, the.routine invokes 

15 the fill hole routine and then returns. 

Figure 3 0 is a flow diagram illustrating the processing of the broadcast routine 

in one emoodiment This routine is invoked by the application program to broadcast a 

message on the broadcast channel. This routine is passed the message to be broadcast fu 

decision block 3001, if this process has at least one neighbor, then the routine continues at 

20 block 3002, else the routine returns since it is the only process connected to be broadcast 

channel In block 3002, the routine generates an internal message of the broadcast statement 

type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the 

message. In block 3004, the routine invokes the distribute internal message routine to 

broadcast the message on the broadcast channel. The routine returns. 

25 Figure 31 is a flow diagram illustrating the processing of the acquire message 

routine in one embodiment The acquire message routine may be invoked by the application 

program or by a callback routine provided by the application program. Tills routine returns a 

message. In block 3101, the routine pops the message from the message queue of the 

broadcast channel. In decision block 3102, if a message was retrieved, then the routine 

30 returns an indication of success, else the routine returns indication of failure. 

Figures 32-34 are flow diagrams illustrating the processing of messages 

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram 

[03004-800l/SL003733.JOS) -40- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1144 of 1657



illustrating processing of the handle condition check message in one embodiment. This 

message is sent by a neighbor process that has one hole and has received a request to connect 

to a hole of this process. In decision block 320 1, if the number of holes of this process is 

equal to one, then the routine continues at block 3202, else the neighbors with empty ports 

s condition does not exist any more and the routine returns. In decision block 3202, if the 

sending neighbor and this process have the same set of neighbors, the routine continues at 

block 3203, else the routine continues at block 3205. In block 3203, the routine initializes a 

condition double check message (i.e., condition_double_check) with the list of neighbors of 

this process. In block 3204, the routine sends the message internally to a neighbor other than 

10 sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of 

the sending process that is not also a neighbor of this process. In block 3206, the routine 

sends a condition repair message (i.e., condition_repair_stmt) externally to the selected 

process. In block 3207, the routine invokes the add neighbor routine to add the selected 

neighbor as a neighborof this process and then returns. · 

15 Figure 33 Is a flow diagram illustrating processing of the handle condition 

repair statement routine in one embodiment. This routine removes an existing neighbor and 

connects to the process that sent the message. In decision block3301, if this process has no 

holes, then the routine continues at block 3302, else the routine continues at block 3304. In 

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty 

20 ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of 

this process. Thus, this process that is executing the routine now has at least one hole. In 

block 3304, the routine invokes the add neighbor routine to add the process that sent the 

message as a neighbor of this process. The routine then returns. 

Figure 34 is a flow diagram illustrating the processing of the handle condition 

25 double check routine. This routine detennines whether the neighbors with empty ports 

condition really is a problem or whether the broadcast channel is in the small regime. In 

decision block 3401, if this process has one hole, then the routine continues at block 3402, 

else the routine continues at block 3403. If this process does not have one hole, then the set 

of neighbors ofthis process is not the same as the set of neighbors of the sending process. In 

30 decision block 3402, if this process and the sending process have the same set of neighbors, 

then the broadcast channel is not in the small regime and the routine continues at block 3403, 

else the routine continues at block 3406. In decision block 3403, if this process has no holes, 

[03004-8001/SL003733.10S) -41- 7/31/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1145 of 1657



then the routine returns, else the routine continues at block 3404. In block 3404, the routine 

sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a 

diameter reset internal message (i.e., diameter _reset) indicating that the estimated diameter is 

one and then returns. In block 3406, the routine creates a list of neighbors of this process. In 

5 block 3407, the routine sends the condition check message (i.e., condition_check_stmt) with 

the list of neighbors to the neighbor who sent the condition double check message and then 

returns. 

From the above description, it will be appreciated that although specific 

embodiments of the technology have been described, various modifications may be made 

10 without deviating from the spirit and scope of the invention. For example, the 

communications on the broadcast channel may be encrypted. Also, the· channel instance or 

session identifier may be a very large number (e.g., 128 bits) to help prevent an tmauthorized 

user to maliciously tap into a broadcast channel. The portal computer may also enforce 

security and not allow an unauthorized user to connect to the broadcast channel. 

15 Accordingly, the invention is not limited except by the claims. 

[03004-800 l/SL003733.1 OS I -42- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1146 of 1657



CLAIMS 

1. A computer network for providing an information delivery service for a 

2 plurality of participants, each participant having connections to at least three neighbor 

3 participants, wherein an originating participant sends data to the other participants by 

4 sending the data. through each of its connections to its neighbor participants and wherein 

s each participant sends data that it receives from a neighbor participant to its other neighbor 

6, participants. 

2. The computer network of claim 1 wherein each participant is connected 

2 to 4 other participants. 

3. The computer network of claim 1 wherein each participant is connected 

2 to an even number of other participants. 

4. The computer network of claim 1 wherein the network is m-regular, 

2 where m is the number of neighbor participants of each participant. 

5. The computer network of claim 1 wherein the network is m-connected, 

2 where m is the number of neighbor participants of each participant. 

6. The computer network of claim 1 wherein the network is m.-regular and 

2 m-connected, where m is the number of neighbor participants of each participant. 

7. The computer network of claim 1 wherein all the participants are peers. 

8. The computer network of claim 1 wherein the connections are peer-to-

2 peer connections. 

[03004-800l/SL003733.105] -43- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1147 of 1657



9. The computer network of claim 1 wherein the connections are TCPIIP 

2 connections. 

10. The computer network of claim 1 wherein each participant is a process 

2 executing on a computer. 

11. The computer network of claim 1 wherein a computer hosts more than 

2 one participant. 

12. The computer network of claim 1 wherein each participant sends to each 

2 of its neighbors only one copy of the data. 

13. The computer network of claim 1 wherein the intercmmections of 

2 participants form a broadcast channel for a topic of interest. 

14. A information delivery service comprising: 

2 a plurality of broadcast channels, each broadcast channel for distributing 

3 information relating to a topic; 

4 means for identifying a broadcast channel for a topic of interest; and 

5 means for connecting to the identified broadcast channel. 

15. The information delivery service of claim 14 wherein means for 

2 identifying a topic of interest includes accessing a web server that maps topics to 

3 corresponding broadcast channel. 

16. The information deliver service of claim 14 wherein a broadcast channel 

2 ts formed by subscriber computers that are each interconnected to at least three other 

3 subscriber computers. 

(03004-8001/SL003733.105] -44- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1148 of 1657



;\' ,. 

'. 

D. 

·' 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1149 of 1657



1111:1" 

e 
N 

e 
= N ,.-,4 

00 -LL 
Q\ ,.-,4 ,.... ,.-,4 

QC N 
,.-,4 '1""'1 

t-- ~ 
'1""'1 ,.-,4 

"' -.:t 
'1""'1 Ill ,.-,4 ,.... 

r····•: 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1150 of 1657



u 

u 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1151 of 1657



.---

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1152 of 1657



\_ 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1153 of 1657



-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1154 of 1657



Q 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1155 of 1657



C) 
! 

lL ~ 
~ 

0o 

L:: 

:·: .· 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1156 of 1657



,_, 
( 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1157 of 1657



IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1158 of 1657



IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1159 of 1657



~ 1 
.......... 

D ('l ~~ ~ _}-t 0 i- /~ ~7~ 
I.J ~ ~ ... - ..... c; ~ 

·- c r -~ ~ J - ~ ~ ~-" 
c:... '-' <;.) Q..-~ 

~'-' <I::~ f.) 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1160 of 1657



Q 
~ ~ a {'('\ 

OJ{ C) 

Jl~ 
0 !ci~--i 

' 
i ;-:s I 

' .. ! Q...:;,-1 
~ ·-

! """"·"' "UO < .IIJ 
1"""1 ;;q ! 1-\ .a 

L. -~ 

\"-

" 1a ~ 

"'-;1. 
0.0 

~ Q ,, 
~rl 

~ 
r- -~ 

1~ 
~\I) lL te_ 
::t:~ 

~[;1] 
() 

a\ 
7~~ 

11 
E"' V1 ,. 
c0SE. 

V)c:£ 
~ 

~ 

t ~ ~t ... 

1ill " ~ ... a 

' 
~- H c ~ ~ 0 

a c~ ..... 
. '-.) l-_8 c:!) 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1161 of 1657



(-r~T~, 
_ -~&IA!:.t~. 

_ t._,Y\,~~fr.Axr,.. fCJ) 

oz.. 

03 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1162 of 1657



rr====ZL-~0 '-

~lJp~e{~ 
i'orto.\t?J,.., .A- 7" 

II to 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1163 of 1657



0~ 

0;~J 
r · o, 

s~ 1?.¥-t~./J 
'(I' e.~:;-o "l e... 

Qec.e.ue..t:1-t .... ~ 
f-1'..,. $"1H~ ~.€_. 

- j 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1164 of 1657



..---+------,0 7 
s.J~o..~ 

.f-re--~~ 

(2~) 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1165 of 1657



Qe.c.e.Ne.E.~;.1.J~tt-to o/ 
1"1\e .s.so & Q 

AI~ t:a~ te~ 
.feJ\ow Sf'-4! ".Qr 

l . 
! 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1166 of 1657



IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1167 of 1657



p1 
I 'I 

IS 

CJ 

to 

y 

13 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1168 of 1657



.S~EICt~.J 
f'r\a:. s~\c e.. 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1169 of 1657



0 

se.t-~caYv.....ar~ 
~0 ,~~-1-z,-~ 

.s~·~ 
~.Q...shWe-
\I\ 1 es ft!:rt'~ 

os 
.s,d- r<o~ 
1" Y.li!Sf'~ 

For~l n I 
..>4---tl c.ot~f\f>~"'-' eDif,_P 

I~ ·, ,...-. 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1170 of 1657



('\ 

!. ' 

y 

c~~) 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1171 of 1657



,I 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1172 of 1657



1/ 

' 
i 

c~) 

,; •. J'f\t S.J;O ~ 
OJ" (Y\~S SD~ e. 

.~ 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1173 of 1657



\ 

r.l 1fJ 
\'"" \ L 

I ...... 

I': 

I. 
I. 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1174 of 1657



)Ho,.,.J. \.e.~r~erchi 
Po.ct.S~c-t~ 

o> 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1175 of 1657



j (J '2, 

Assess J 
Oio.~.sr.r 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1176 of 1657



,-z... 

0 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1177 of 1657



Of 

\ 
s ~ .L .J..-.-.-,1 
-~.QO¥-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1178 of 1657



L.l 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1179 of 1657



Z.\ f>(os~ 

0'2.... 

I 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1180 of 1657



~XPRESS MAIL NO. EL404935319US 

I 
U.S. Patent Application No. 09/629,023 

I 

DISTRIBUTED AUCTION SYSTEM 

CROSS-REFERENCE TO RELATED APPLICATIONS · 

This application is related to U.S. Patent Application No. ______ , 

entitled "BROADCASTING NETWORK," filed on July 31, 2000 (Attorney Docket No. 

5 030048001 US); U.S. Patent Application No. , entitled "JOINING A 

BROADCAST CHANNEL," filed on July 31, 2000 (Attorney Docket No. 030048002 

US); U.S. Patent Application No. , "LEAVING A BROADCAST 

CHANNEL," filed on July 31, 2000 (Attorney Docket No. 030048003 US); U.S. Patent 

Application No. , entitled "BROADCASTING ON A BROADCAST 

10 CHANNEL," filed on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent 

Application No. entitled "CONTACTING A BROADCAST 

CHANNEL," filed on July 31, 2000 (Attorney Docket No. 030048005 US); U.S. Patent 

Application No. , entitled "DISTRIBUTED AUCTION SYSTEM," filed 

on July 31, 2000 (Attorney Docket No. 030048006 US); U.S. Patent Application 

15 No. , entitled "AN INFORMATION DELIVERY SERVICE," filed on 

July 31, 2000 (Attorney Docket No. 030048007 US); U.S. Patent Application 

No. , entitled "DISTRIBUTED CONFERENCING SYSTEM," ,filed on 
\ 

July 31, 2000 (Attorney Docket No. 030048008 US); and U.S. Patent Application 

No. , entitled "DISTRIBUTED GAME ENVIRONMENT," filed on 

20 July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of which are 

incorporated herein by reference. 

TECHNICAL FIELD 

The described system relates generally to a computer system for conducting 

an auction, and more particularly to conducting auctions in a distributed environment. 

[03004-800610ocument2) -1-

f ' 

i 
I 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1181 of 1657



BACKGROUND 

Because it facilitates electronic communications between vendors and 

purchasers, the Internet is increasingly being used to conduct "electronic commerce." 

The Internet comprises a vast number of computers and computer networks that are 

5 interconnected through communication channels. Electronic commerce refers generally 

to commercial transactions that are at least partially conducted using the computer 

systems of the parties to the transactions. For ~xample, a purchaser can use a personal 

computer to connect via the Internet to a vendor's computer. The purchaser can then 
. I 

interact with the vendor's computer to conduct the transaction. Although many of the 

10 commercial transactions that are performed today could be performed via electronic 

commerce, the acceptance and wide-spread use of electronic commerce depends, in large 

part, upon the ease-of-use of conducting such electronic commerce. If electronic 

commerce can be easily conducted, then even the novice computer user will choose to 

engage in electronic commerce. Therefore, it is important that techniques be developed 

15 to facilitate conducting electronic commerce. 

The Internet is also being used to conduct other types of commercial 

transactions. For example, some server computer systems have.' been developed to 

support the conducting of auctions electronically. To conduct an auction electr~nically, 

the seller of an item provides a definition of the auction via web pages to a server 
I 

20 computer system. The definition includes a description of the item, an auction time 

period, and optionally a minimum bid. The server computer system then conducts the 

auction during the specified time period. Potential buyers can search the server computer 

system for an auction of interest. When such an auction is found, the potential buyer can 

view the bidding history for the auction and enter a bid for the item. When the auction is 

25 closed, the server computer system notifies the winning bidder and the seller (e.g., via 

electronic mail) so that they can complete the transaction. 

Although such auction servers facilitate the conducting of auctions 

electronically, the conducting of such auctions has several di~advantages. First, the 

reliability of the auction system depends upon the reliability of the auction server itself. 

[03004-8006iDocumentl] -2-

J!. .. 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1182 of 1657



If the auction server were to fail, then the auctions could not be conducted. Thus, one 

failure can bring the entire auction system down. Second, the auctions conducted by the 

auction servers to do not closely model traditional non-computer auctions: In particular, , 

the electronic auctions typically close at a fixed time whereas· a non-computer auction 

5 typically closes when an auctioneer determines that no further bidding is likely. For 

example, an electronic auction may advertise that it will close at 5 p.m. on a certain day. 

Bidders can place bids up to that time. Traditional auctions, however, may have a set 

starting time, but their. closing depends on bidding activity. Also, these electronic 

auctions, especially when web-base<4 do not provide for real-time notification of bidding 

10 activity. A bidder only finds out about being outbid in a couple of ways. The bidder may 

find out by periodically accessing the auction web page to see the current high bid. Such 

repeated accessing of the auction web page is cumbersome. Some auction servers may 

send out electronic mail messages when someone is outbid. Such electronic mail 

messages may not, however, arrive soon enough for the bidder to place a new bid. 

15 It would be desirable to have an electronic auction system that would avoid 

these disadvantages of current server-based auction systems and more closely model 

traditional non-computer auctions. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Figure 1 is a block diagram illustrating components of the auction system in 

20 one embodiment. 

25 

Figure 2 is a block diagram illustrating the components of a participant's 

computer in one embodiment. 

Figure 3 is a block diagram illustrating a display of current auctions. 

Window 300 is displayed by the display status routine. 

Figure 4 is a diagram illustrating the display all the auction-specific 

window. 

Figure 5 is a flow diagram of routine to request the current state of the 

auctions. 

(03004-8006/Documentl] -3-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1183 of 1657



5 

Figure 6 is the flow diagram ofroutine thatreceives a current state request 

message. 

Figure 7 IS a flow diagram of routine that receives the current state 

message. 

Figure 8 is a flow diagram illustrating the processing of the submit bid 

routine in one embodiment. 

Figure 9 is a flow diagram illustrating the processing of the receive bid 

message routine. in one embodiment. 

Figure 10 is a flow diagram illustrating a routine that processes the 

10 expiration of the going timer. 

Figure 11 is a flow diagram illustrating a routine that processes a received 

gomg message. 

Figure 12 is a flow diagram illustrating a routine that processes the 

expiration of the gone timer. 

I5 Figure 13 is a block diagram illustrating a routine that processes a received 

20 

on message. 

Figure 14 Is a flow diagram illustrating and auction agent m one 

embodiment. 

DETAILED DESCRIPTION 

A method and system for conducting electronic auctions with a distributed 

auctioneer is provided. In one embodiment, each participant's computer includes an 

auctioneer component for opening auctions, for accepting bids, and for closing auctions. 

Thus, the auction system does not depend on a central auction server for coordinating the 

bidding at an auction. The auction system is, in a sense, server-less. The auction system 

25 uses a broadcast channel to communicate between the participants of an auction. Each 

participant's computer is connected to the broadcast channel and executes an auction 

participant program. The auction participant program allows a participant to place a bid 

on the item being auctioned, to receive and display bids of other participants, and to 

(03004-8006/Documentl J -4-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1184 of 1657



coordinate the closing of the auction. When a participant places a bid on the item being 

auctioned, the auction participant program broadcasts a bid message on the broadcast 

channel. Each auction participant program connected to the broadcast channel receives 

the bid message and displays the current high bid to its participant. The auction 

s participant program whose participant submitted the high bid coordinates the closing of 

the auction in accordance with closing rules. For example, when the auction participant 

program determines that its participant has not been outbid for a certain time period, then 

the auction participant program may broadcast a "going" message. The going message 

corresponds to an auctioneer who warns participants that the auction is abQut to close. If 

10 the auction participant program determines that its participant has not been outbid for 

certain time period after sending the going message, then the auction-participant program 

may broadcast a "gone" message. When the auction participant programs receive the 

gone message, they notify their participants that the auction is closed. The auction 

participant program whose participant placed the winning bid then communicates with an 

15 auction listing server to complete the transaction. Because the participants are connected 

through a broadcast channel, each participant receives notification of each bid as it is 

placed. In addition, the auction system's reliability is not dependent on a central auction 

server. If any one of the participant's computer fails, then the other participants can 

continue on with the auction. In one embodiment, the auction system is implemented 

20 using the broadcast channel as described in U.S. Patent Application No. , entitled 

"A Broadcasting Network," which is being filed concurrently and which is hereby 

incorporated by reference. One skilled in the ·art will, however, appreciate that the 

auction system can be used with other underlying communication networks. 

The auction system may include an auction listing server computer, an 

25 auction monitor computer, and participants' computers. The auction listing server 

computer may proVide a web site through which sellers can list their items to be 

aucti~ned. When an item is listed, the seller can provide a picture of the item to be 

auctioned (if appropriate), the minimum bid for the item, and a start time for the auction. 

Potential bidders can access web pages of the auction listing server to view the listed 

[03004-8006/Documentl] -5-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1185 of 1657



auctions. Potential bidders may also download the auction participant program from the 

auction listing server to their computers. When a user wants to participate in a certain 

auction, the participant runs the auction participant program which may provide a list of 

the current auctions being conducted along with the status of each auction. The 

5 participant can select a certain auction and place a bid at that auction. Because the two 

participants may place a bid for the same amount for an item at approximately the same 

time, the auction participant program awards the bid to the participant based on a random 

number generated by the bidder's auction participant program. When a bid is placed, the 

auction participant program automatically generates and includes a random number with 

10 a bid message as it is broadcast. Whenever an auction participant program receives a bid 

for the same amount as the current high bid, the auction participant program awards the 

bid to·the participant with the·highest randomly generated number. The auction monitor 

computer may also be connected to the broadcast channel. The auction monitor tracks 

the status of the auction by monitoring the bids placed at the auction. The auction 

15 monitor may provide the status of the auctions to the auction listing server and to auction 

participant programs as they join the auction. 

Figure 1 is a block diagram illustrating components of the auction system in 

one embodiment. The auction system includes an auction listing server 101, participant 

computers 102, and an auction monitor 103. Each computer may include a central 

20 processing unit, memory, input devices (e.g., a keyboard and pointing device), output 

devices (e.g., display devices), and storage devices (e.g., disk drives). The memory and 

storage devices are computer-readable media that may contain computer instructions that 

implement the auction system. The computer-readable media may also include computer 

data transmission media, such as wire-based or wireless communications mechanisms. 

25 The participant computers may include a browser for accessing web pages provided by 

the auction listing server. The participant computers and the auction monitor are 

COill1:ected to the broadcast channel 105. The participant computers, the auction monitor 

computer, and the auction listing server are interconnected via the Internet 104. The 

participant computers may use a browser to access auction information provided by the 

[03004-8006/Documentl) -6-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1186 of 1657



auction listing server. The auction listing server may include a web engine 106, a. create 

auction component 107, a close auction component 108, and auction database 109. The 

create auction component is used by a seller to create an auction for an item. The close 

auction component is used by a winning bidder to affect payment for the item being 

5 purchased. The auction listing server may also include a component for registering 

participants and a participant database. The auction database defines the auctions and · 

may contain the current state of the auction as provided by the auction monitor. One 

skilled in the art will appreciate that various different communication mechanisms may be 

used by the auction system. For example, the· broadcast channel may actually be 

10 implemented using the Internet itself. In addition, multiple auctions may be· conducted 

simultaneously on the broadcast channel. In such cases, each message that is broadcast 

will include an auction identifier. Alternatively, each auction may have its own broadcast 

channel. The auction listing server may provide broadcast channel information 

(e.g., application and session identifier) to each auction participant program. The 

15 messages may be encrypted, or otherwise secured, to ensure that only an authorized 

auction participant program participates in an auction. 

Figure 2 is a block diagram illustrating the components of a participant's 

computer in one embodiment The participant computer includes a broadcaster 

component 201, auction participant program 202, and an auction database 203. The 

20 broadcaster component controls the connection to, broadcasting message on to, and 

receiving messages off of the broadcast channeL The auction participant program 

controls the participating in an auction by sending messages on to and receiving messages 

off of the broadcast channel using the broadcaster component The functions of the 

broadcaster component and the broadcast channel are described in the U.S. Patent 

25 Application No. , entitled "A Broadcasting Network," which is 

hereby incorporated by reference. The auction database contains current state 

information for the auctions. The auction participant program includes a monitor sub

component 105, a message handlers 106, a display state sub-component 107, and a 

subunit bid sub-component 108. The monitor sub-component monitors the messages sent 

(03004-80061Documentll -7-

, .. 
I 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1187 of 1657



on the broadcast channel and invokes the appropriate message handler routine. The 

display state sub-component displays the current state of the auctions. The submit bid 

sub-component is invoked when a participant wants to submit a bid at an auction. 

Figure 3 is a block diagram illustrating a display of currently defined 

5 auctions. Window 300 is displayed by a display state routine. The window includes a 

sub-window 301 for each auction. Each sub-window may include infonnation describing 

the auction. When a user selects a sub-window, then the display state routine displays an 

auction-specific window. Figure 4 is a diagram illustrating the display of an auction

specific window. Window 400 includes an item picture 401, an item description area 

10 402, an auction description area 403, and a place bid button 404. The item picture area 

may contain the picture of the item being auction~d. The item description area includes a 

description of the item being auction. The auction description area contains infonnation 

describing the current status of the auction. For example, the actual auction state may be 

the start time of the auction, an· indication that the auction is in progress,. an indication 

15 that the auction is "going,'' and an indication that the auction is closed. The auction 

description area may also· include the minimum bid, the current bid, and a suggested bid 

amount which may be overridden. When the participant selects the place bid button, the 

auction participant program submits the bid amount. 

Figures 5-14 are flow diagrams illustrating the processing of the auction 

20 participant program. The processing in these flow diagrams is illustrated in reference to a 

single auction. One skilled in the art would appreciate that the processing could be 

modified to accommodate. multiple simultaneous auctions. Figure 5 is a flow diagram of 

a routine to request the current state of the auction. This routine may be invoked when 

the auction participant program first starts executing. When the auction participant 

25 program starts, it may contact the auction listing server to retrieve the current state of the 

auction. Alternatively, as shown in block 501, the request current state routine may 

broa~cast a current state request message on the broadcast channel. The auction 

participant program will receive an indication of the current state of the auction in 

response. The auction participant program stores that state infonnation in its auction 

[03004-8006/Documentl) -8-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1188 of 1657



database. Figure 6 is the flow diagram of routine that receives and processes a current 

state request message. Each auction participant program may ignore this request if the 

auction monitor is configured to respond to the request. Alternatively, the auction 

participant program with the current high bid at the auction may respond by broadcasting 

5 a message that includes the current state of the auction. In decision block 601, if this 

participant has the current high bid, then the routine continues at block 602, else the 

routine returns. In block 602, the routine broadcasts the state of the auction and then 

returns. Figure 7 is a flow diagram of a routine that receives the current state message. 

In block 701, the routine updates the auction state in the auction database and returns. 

lO Figure 8 is a flow diagram illustrating the processing of the submit bid 

routine in one embodiment. This routine validates the bid amount and then broadcasts 

that bid. The routine also sets a rimer to indicate when a going message should be 

broadcast to notify the other participants that the auction will end if no participant places 

a higher bid. In decision block 801, if the bid is valid, then the routine continues at block 

15 802, else the routine returns. The routine determines whether a bid is valid by ensuring 

that the bid is greater than the current high bid. The routine may also check whether the 

auction is still open. The auction may have closed since the rime the participant selected 

the place bid button. In block 802, the routine generates a random number that is to be 

included in the bid message. This random number is used by the receiving participants in 

20 case two bids of the same amount are received by those participants. If so, the 

participants award the bid to the bidder with the highest random number. In block 803, 

the routine creates a bid message that includes the identification of the participant, the bid 

amount, and the random number. In the situation where messages for multiple auctions 

are being broadcast on the broadcast channel, the bid message may also include the 

25 auction identifier. In block 804, the routine broadcasts the bid message on the broadcast 

channel. In block 805, the routine starts a rimer for sending the going message. The 

routine then returns. 

Figure 9 is a flow diagram illustrating the processing of the receive bid 

message routine in one embodiment. This routine is invoked when the auction participant 

{03004-8006/Documentl J -9-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1189 of 1657



program receives a bid message from the broadcast channel. This routine validates the 

bid, updates the auction state, and clears any timers. In decision block 901, if the auction 

is currently open, the routine continues at block 902, else the routine returns. In decision 

block 902, if the received bid is greater than or equal to the current high bid, then the 

5 routine continues at block 903, else the received bid has already been outbid and the 

routine returns. In decision block 903, if received bid equals the current high bid, then 

two participants have bid the same amount and the routine continues at block 904, else 

the routine continues at block 905. In decision block 904, if the random number included 

in the received bid message is greater than the random number that was included with the 

10 bid message with the current high bid, then the bid will be awarded to the participant who 

sent the bid message and the routine continues at block 905, else the routine returns. In 

block 905, the routine replaces the current high bid in the auction database and may 

update the display. In block 906, the routine clears any timers that may have been set to 

indicate the end of the auction. The routine then returns. 

15 Figure 10 is a flow diagram illustrating a routine that processes the 

expiration of the going timer. In block 1001, the routine broadcasts a going message. 

The going message may identify the participant and the current high bid. In block 1002, 

the routine sets a timer for the sending of the gone message, which indicates the auction 

is now closed. The routine then returns. Figure 11 is a flow diagram illustrating a 

20 routine that processes a received going message. In decision block 1101, if the going 

message corresponds to a bid that has already been superseded, then the routine returns, 

else the routine continues at block 1102. In block 1102, the routine updates the state of 

the auction, which may include updating the display. The routine then returns. 

Figure 12 is a flow diagram illustrating a routine that processes the 

25 expiration of the gone timer. In block 1201, the routine broadcasts a gone message, 

which may identify the participant who is sending the message along with the bid 

arno~nt. In block 1202, the routine updates the status of the auction to indicate that it is 

closed. Figure 13 is a block diagram illustrating a routine that processes a received gone 

message. In block 1301, the routine updates the state of the auction to indicate that it is 

[ 03 004-8006/Document I) 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1190 of 1657



closed. In one embodiment, the auction participant program may also broadcast a 

suppress message prior to broadcasting the gone message. When a participant receives a 

suppress message, it can no longer submit a bid at that auction. If the participant· who 

broadcasted the suppress message receives no bid message from another participant for 

5 certain period of time, it then broadcasts the ·gone message. If, however, a participant 

after receiving the suppress message does not receive a gone message within the certain 

period of time, it can assume that the auction is still open. 

Figure 14 is a flow diagram illustrating an auction agent m one 

embodiment. The· auction agent is a program that allows a participant to specify a 

. 10 maximum bid that they want a place for an item. The auction agent will automatically 

monitor the auction and place bids on behalf of the participant up to the maximum bid. 

The auction agent may use various techniques to disguise from the other participants that 

it is an automated agent. For example, the auction agent may delay the placing of a new 

bid when being outbid. The delay may be a randomly selected time period or specified in 

15 rules provided by the participant. In addition, the auction agent may wait until it receives 

a going message to place the new bid. In block 1401, the routine retrieves the current 

high bid from the auction database. In decision block 1402, if the current high bid is 

already greater than the maximum bid that is authorized for this agent, then the routine 

continues at block 1403, else the routine continues at block 1404. In block 1403, the 

20 routine notifies the participant that the participant has been outbid at the auction and then 

returns. In block 1404, the routine submits a bid that is the current bid plus the minimum 

bid increment The submitted bid is broadcast on the broadcast channel. ·In block 1405, 

the routine waits for a message to be broadcast for the auction. This auction participant 

program will also broadcast going and gone messages as appropriate. In decision block 

25 1406, if the message indicates that a new bid has been placed that is higher than the 

current bid, then the routine continues at block 1407, else the routine continues at block 

140~ because this auction participant program has broadcast a gone message. In block 

1407, the routine optionally delays and then loops to block 1402 to submit a new bid. In 

{ 03004-8006/Docurnent I) -11-

; . 

i 
I 
' 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1191 of 1657



block 1408, the routine notifies the participant that the auction has been won and then 

returns. 

Based on the description, it will be appreciated that although specific 

embodiments of the invention have been described for purposes of illustration, various 

5 modifications may be made without deviating from the spirit and scope of the invention. 

Accordingly, the invention is not limited except by the appended claims. 

[03004-80061DocumentlJ -12-

i. 

' 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1192 of 1657



CLAIMS 

I. An auction system comprising: 

2 an auction listing server through which an auction for an item can be defmed 

3 and information about defined auctions can be retrieved; and 

4 an auction participant program that executes at each participant's computer, 

s that receives bid messages that are broadcast on a broadcast channel, that broadcasts bid 

6 messages when the participant submits a bid, and that, when the participant has submitted the 

7 highest bid,. determines when the auction ends. 

2. The auction system of claim 1 wherein a participant computer 1s 

2 connected to at least three other participant comput~rs. 

3. The auction system of claim 1 including: 

2 an auction monitor computer that monitors the state of the auction based on 

3 messages sent on the broadcast channel. 

4. The auction system of claim 1 wherein multiple auctions are conducted 

2 simultaneously on the broadcast channel. 

5. The auction system of claim 1 wherein each auction is conducted on a. 

2 separate broadcast channel. 

6. The auction system of claim 1 wherein each broadcast bid message 

2 includes a randomly generated number for use in awarding bids when two or more 

3 participants bid the same amount. 

7. The auction system of claim 1 wherein the auction participant program 

2 broadcasts a going message when it decides that the auction is about to end. 

[03004-8006/Documentl) -13-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1193 of 1657



8. The auction system of claim 7 wherein the going message is sent by the 

2 auction participant program that has submitted the current high bid. 

9. An auction system comprising a plurality of computer systems, each 

2 computer system capable of sending a message to each other computer system, each 

3 computer system including a component that receives bid messages from other computer 

4 systems, that sends bid messages to other computer systems, that sets a current high bid 

s based on the bid messages, and that determines when to close an auction when the computer 

6 system has submitted the current high bid. 

10. The auction system of claim 9 wherein the computer systems are 

2 connected via a broadcast chatmel. 

11. The auction system of claim 9 wherein the computer systems are 

2 interconnected to form an m-regular graph, where m is 4 or larger. 

12. The auction system of claim 9 wherein a computer system determines to 

2 close an auction after it has sent a going message to the other computer systems. 

13. The auction system of claim 12 wherein the determination is made a 

2 certain time period after sending the going message. 

14. The auction system of claim 12 including sending a gone message when 

2 the computer system.determines to close an auction. 

15. The auction system of claim 9 wherein each computer system resolves 

2 bids of equal amount based on a random number included with a bid message. 

16. A method in a computer system for resolving equal bids at an auction, 

2 the method comprising: 

3 receiving a first bid and a frrst tiebreaker; 

[03004-8006/Documentl] 14 7/31100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1194 of 1657



4 indicating that the first bid is the current high bid at the auction; 

5 receiving a second bid and a second tiebreaker; and 

6 when the first bid and the second bid are equal, 

7 comparing the first tiebreaker to the second tiebreaker; and 

8 indicating that the second bid is the current high bid at the auction based 

9 on the comparison. 

17. The method of claim 16 wherein the first tiebreaker and the second 

2 tiebreaker are randomly generated numbers. 

18. The method of claim 16 wherein the computer system is connected to a 

2 broadcast channel. 

19. The method of claim 16 wherein the auction has no central auction 

2 server. 

20. The method of claim 16 wherein each participant in the auction is a peer 

2 computer system. 

21. The method of claim 16 wherein the second bid is indicated as the 

2 current high bid when the second tiebreaker is larger than the first tiebreaker. 

22. The method of claim 16 wherein computer systems participating in the 

2 auction are interconnected in am-regular graph, where m is 4 or greater. 

[03004-8006/Document I) 15 7/31/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1195 of 1657



,. 
, .. 
[,_ 

i '. 

! -~ ' 

I. 

- .. ... 

~----..,___ 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1196 of 1657



\ 

~ 

~ 
'i\::) i -r~~ -~ ~ 

~J~ ,\) -·~ .. r ~l · ~co Uo a. I~-- -I u.. t 

~[]\r ~~-ti 
... -~ 

A -1! ~ 
.:.:s -

.1 J e 
~ c"' ---

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1197 of 1657



oD 

C)/ 

# 
, .. 

"' 
. 

~ 

" 

O) 8 l Of 

A v ~""' ~~LA • • - Au.e-ht-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1198 of 1657



01 __ _ 

$\tA~(/1.-s~: r.--. ~c-~~s. 
fY\' "i fi.ov..""'- b.-& .' ~ I o o 

C..u ~"'~ bl(:l ... .t ., ~G) ( tr\.f. s~itl-) 
Bi d. AN\o~ '. $ 1 s.S 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1199 of 1657



&/ 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1200 of 1657



't o;, 

I. 
i 
' 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1201 of 1657



I . 
i 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1202 of 1657



r . 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1203 of 1657



1-

.. ---··---~-. ----·------~--·- .. _. ___ -·--- ---·-·--·--

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1204 of 1657



BroaJ.Qus r 

1.5~ Gof\qs 
\\·N\.C2.1""" . 

0/ 

.· .. ,·.;',•.' 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1205 of 1657



' .. 
. ·. 

i· ;· . 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1206 of 1657



IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1207 of 1657



-
C lo.se. ~~tl\. tJ I 

I 

I c /lLhM-) . 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1208 of 1657



~roces.s 
t....o.se-r 

y 

y 

IDp~ oe.\or 

o7 

i ,, . -. 
I.. . 

I . . : . 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1209 of 1657



U.S. PatenE Application No. 09/629,572 
EXPRBSS ~·TL NO. EL404935340US 

I 

I ' . I 

' CONTACTING A BROADCAST CHANNEL. 

CROSS-REFERENCE TO RELATED APPLICATIONS 

This application is related to U.S. Patent Application No. """'-:----

entitled "BROADCASTING NETWORK," filed on July 31, 2000 .. (~ttorney Docket 

5 No. 030048001 US); U.S. Patent Application No. , enti4ed .. JOINING A 

BROADCAST CHANNEL," filed on July 31, 2000 (Attorney Docket No. io30048002 US); 
I 

U.S. Patent Application No. , "LEAVING A BROADCA~T CHANNEL," 

filed on July 31, 2000 (Attorney Docket No.' 030048003 US); U.S. Pa~ent Application 
. I 

No. , entitled "BROADCASTING ON A BROADCAST CfANNEL," filed 

10 on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent Application 

No. , entitled "CONTACTING A BROADCAST cJIANNEL," filed on 

July 31, 2000 (Attorney Docket No. 030048005 US); U.S. Pat~nt Application 

No. , entitled "DISTRIBUTED AUCTION SYST M," filed on 

July 31, 2000 (Attorney Docket No. 030048006 US); U.S. Pat nt Application 

15 No. entitled "AN INFORMATION DELIVERY SER CE,'' filed on 

July 31, 2000 (Attorney Docket No. 030048007 US); U.S. PatJnt Application 
I 

No. , entitled "DISTRIBUTED CONFERENCING SYSfEM," ftled on 

July 31, 2000 (Attorney Docket No. . 030048008 US); and ds. Pa~ent Application 

No. entitled "DISTRIBUTED GAME ENVIRONMif_NT,:.\ filed on 

20 July 31, 2000 (Attorney Docket No. 030048009 US), the disclosure, of, whlch are 

incorporated herein by reference. ! 

TECHNICAL FIELD 
i 
' 

The described technology relates generally to a computer n~twork and more 

particularly, to a broadcast channel for a subset of a computers of an underl~g network. 

I 
25 BACKGROUND I 

' I 

There are a wide variety of computer network communication~ techniques such 

as point-to-point network protocols, client/server middleware, nmltirsting network 

[03004.800S/SL003733.101) ·1- I 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1210 of 1657



i 
protocols, and peer-to-peer middleware. Each of these communications !techniques have 

' 
their advantages and disadvantages, but none is particularly well suited to fite simultaneous 

sharing of information among computers that are widely distributed. J For example, 

collaborative processing applications, such as a network meeting program~. have a need to 

5 distribute information in a timely manner to all participants who may b~ geographically 

distributed. 

10 

15 

20 

25 

The point-to-point network protocols, such as UNIX pipes, T¢PIIP, and UDP, 

allow processes on different computers to communicate via point-to-point ~onnections. The 
I 

interconnection of all participants using point-to-point connections, wtPle theoretically 
i 

possible, does not scale well as a number of participants grows. Fot example, each 

participating process would need to manage its direct connections to all ofuer participating 
. I 

processes. Programmers, however, find it very difficult to manage single Fonnections, and 

management of multiple connections is much more complex. In addi~on, participating 

processes may be limited to the number of direct connections that. they cr1 support. This 

limits the number of possible participants in the sharing ofinformation. · . 
I 

The client/server middleware systems provide a server that coordinates the 
I 

communications between the various clients who are sharing the informafon. The server 

functions as a central authority for controlling access to shared resourcef. Examples of 

client/server middleware systems include remote procedure calls ("RPC"}£tabase servers, 

and the common object request broker architecture ("CORBA"). Client/s er middleware 

systems are not particularly well suited to sharing of information among any participants. 
. l 

In particular, when a client stores infonnation to be shared at the server, bach other client 

would need to poll the server to determine that new information is be~g shared. Such 

polling places a very high overhead ·on the communications network. 4tematively, each 

client may register a callback with the server, which the server then invokes when new 

information is available to be shared. Such a callback technique presen~ a performance 

bottleneck because a single server needs to call back to each clienJ whenever new 

information is to be shared. In addition, the reliability of the entire s~g of information 

depends upon the reliability of the single server. Thus, a failure at a sing\e computer (i.e., 
I 

30 the server) would prevent communications between any of the clients. 

The multicasting network protocols allow the sending of broa4cast messages to 

multiple recipients of a network. The current implementations of such mulhcasting network 
I 

[03004-800S/SL003733.101) -2- 7131100 

i -. 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1211 of 1657



5 

IO 

15 

20 

25 

protocols tend to place an unacceptable overhead on the underlying network. For example, 

UDP multicasting would swamp the Internet when trying to locate all possfble participants. 

IP multicasting has other problems that include needing special-purpose ~astructure (e.g., 

routers) to support the sharing ofinfonnation efficiently. 

The peer-to-peer middleware communications systems rely ® a multicasting 

network protocol or a graph of point-to-point network protocols. SJ!lch peer-to-peer 

middleware is provided by the T.l20 Internet standard, which is used in ~uch products as 
I 

Data Connection's D. C.-share and Microsoft's NetMeeting. These peer-to-peer middleware 
I 

systems rely upon a user to assemble a point-to-point graph of the cotmFctions used for. 
i 

sharing the information. Thus, it is neither suitable nor desirable to Use peer-to-peer 
i 

middleware systems when more than a small number of participants is desited. In addition, 
' ! 

the underlying architecture of the T .120 Internet standard is a tree structure~ which relies on 
I 

the root node of the tree for reliability of the entire network. That is, each ~ssage must pass 

through the root node in order to be received by all participants. 
i 

It would be desirable to have a reliable communications !network that is 
I 

suitable for the simultaneous sharing of lnformation among a large number! of the processes 
I 

that are widely distributed. i 
I 

' 
I 

BRIEF DESCRIPTION OF THE DRAWINGS I 
I 

I 

Figure 1 illustrates a graph that is 4-regular and 4-connected Jnch represents a 
I 

broadcast channel. r 

channel. 

Figure 2 illustrates a graph representing 20 computers connecfd to a broadcast 

I 
i 

Figures 3A and 3B illustrate the process of connecting a new 1omputer Z to the 

broadcast channel. 
1 

· 

! 
Figure 4A illustrates the broadcast channel of Figure 1 i with · an added 

computer. 

computer. 

l 

Figure 4B illustrates the broadcast channel of Figure 4A I with an added 

I 
. I 

Figure 4C also illustrates the broadcast channel of Figure 4,! with an added 
I 

30 computer. 

f03004-800S/SL003733.101] 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1212 of 1657



5 

10 

15 

20 

Figure SA illustrates the disconnecting of a computer fro~ the broadcast 

channel in a planned manner. 

Figure 5B illustrates the disconnecting of a computer from the broadcast 
: 

channel in an unplanned manner. 

Figure 5C illustrates the neighbors with empty ports condition. 1 

I 

Figure 50 illustrates two computers that are not neighbors j who now have 

empty ports. / 

Figure 5E illustrates the neighbors with empty ports conditi;on in the small 

regune. ' j 

I 

Figure SF illustrates the situation of Figure 5E when in the large regime. 
i 

Figure 6 is a block diagram illustrating components of a Qomputer that is 
i 

connected to a broadcast channel. I 
Figure 7 is a block diagram illustrating the sub-components of the broadcaster 

. b dim I component m one em o ent. I 
Figure 8 is a flow diagram illustrating the processing of the c~nnect routine in 

one embodiment. I 
Figure 9 is a flow diagram illustrating the processing of lthe seek portal 

I 

computer routine in one embodiment. 

Figure 10 is a flow diagram illustrating the processing of th4 contact process 

routine in one embodiment. 
i 

Figure 11 is a flow diagram illustrating the processing of the! connect· request 

routine in one embodiment. I 
. Figure 12 is a flow diagram of the processing of the check ~or external call 

routine in one embodiment. . ; 

25 Figure 13 is a flow.diagram of the processing of the achieve c~nnection routine 

in one embodiment. 

Figure 14 1s a flow diagram illustrating the processing ~f the external 

dispatcher routine in one embodiment. 

Figure 15 is a flow diagram illustrating the processing of th~ handle seeking 

30 connection call routine in one embodiment. 

Figure 16 is a flow diagram illustrating processing of the handle connection 
i 

request call routine in one embodiment. 

(03004-8005/SL003733.101] -4- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1213 of 1657



5 

10 

15 

' 
Figure 17 is a flow diagram illustrating the processing of the add neighbor 

routine in one embodiment. 

Figure 18 is a flow diagram illustrating the processing pf the forward 

connection edge search routine in one embodiment. , 
I 

Figure 19 is a flow diagram illustrating the processing of the handle edge 

proposal call routine. 

Figure 20 is a flow diagram illustrating the processing of /the handle port 
I 
i connection call routine in one embodiment. i 

Figure 21 is a flow diagram illustrating the processing of the fi~l hole routine in 

one embodiment. 
f 

Figure 22 is a flow diagram illustrating the processing of the in!temal dispatcher 

routine in one embodiment. 

Figure 23 is a flow diagram illustrating the processing of the pan.dle broadcast 
! 

message routine in one embodiment. : 

Figure 24 is a flow diagram illustrating the processing df the distribute 
! 
: 

broadcast message routine in one embodiment. 

Figure 26 is a flow diagram illustrating the processing of the hhndle connection 

port search statement routine in one embodiment. 

Figure 27 is a flow diagram illustrating the processing of th~ court neighbor 

20 routine in one embodiment. 

25 

30 

Figure 28 is a flow diagram illustrating the processing of the hfindle connection 

edge search call routine in one embodiment. 

Figure 29 is a flow diagram illustrating the processing of the h~dle connection 

edge search response routine in one embodiment. 

Figure 30 is a flow diagram illustrating the processing of the ~roadcast routine 

in one embodiment. i 

Figure 31 is a flow diagram illustrating the processing of the I acquire message 

routine in one embodiment. i 
Figure 32 is a flow diagram illustrating processing of the ~le condition 

check message in one embodiment. l 
. Figure .33 ~s a flow di~gram illustrating processing of the randle condition 

reparr statement routme m one embodiment. i 

[03004-800~/SL003733.1 0 I] -5- I 7131/00 

I 

! 

I 
! . 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1214 of 1657



Figure 34 is a flow diagram illustrating the processing of the ~andle condition 

double check routine. 

DETAILED DESCRIPTION 

A broadcast technique in which a broadcast channel overlays I a point-to-point 

5 communications network is provided. The broadcasting of a message ovbr the broadcast 
I 

channel is effectively a multicast to those computers of the network th/at are currently 

connected to the broadcast channel. In one embodiment, the broadcast techhique provides a 
I 

logical broadcast channel to which host computers through their executing processes can be 
I 

connected. Each computer that is connected to the broadcast channel can broadcast 

10 messages onto and receive messages off of the broadcast channel. Each fomputer that is 

connected to the broadcast channel receives all messages that are broa4cast while it is 
I 

connected. The logical broadcast channel is implemented using an un~erlying network 

system (e.g., the Internet) that allows each computer connected to the un~erlying network 

system to send messages to each other connected computer using each conjlputer's address. 
i 

15 Thus, the broadcast technique effectively provides a broadcast channel usU,g an underlying 

network system that sends messages on a point-to-point basis. 

The broadcast technique overlays the underlying network sys*m with a graph 

of point-to-point connections (i.e., edges) between host computers (i.e., i nodes) through 

which the broadcast channel is implemented. In one embodiment, e~ch computer is 

20 connected to four other computers, referred to as neighbors. (Actually, a process executing 

on a computer is connected to four other processes executing on thi~ or four other 

computers.) To broadcast a message, the originating computer sends the m~ssage to each of 

its neighbors using its point-to-point connections. Each computer that rece~ves the message 

then sends the message to its three other neighbors using the point-to-point I connections. In 

25 this way, the message is propagated to each computer using the underlying +etwork to effect 

the broadcasting of the message to each computer over a logical broadcast dhannel. A -graph 
I 

in which each node is connected to four other nodes is referred to as a 4-re~ar graph. The 

use of a 4-regular graph means that a computer would become disco~ected from the 

broadcast channel only if all four of the connections to its neighbors fail. T~e graph used by 

30 the broadcast technique also has the property that it would take a failure of f?ur computers to 

[03004-800S/SL003733.101] -6- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1215 of 1657



divide the graph into disjoint sub-graphs, that is two separate broadcast !channels. This 

property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-

connected.· 

Figure 1 illustrates a graph that is 4-regular and 4-connected ~hich represents 

5 the broadcast channel. Each of the nine nodes A-I represents a computer tha:t is connected to 

the broadcast channel, and each of the edges represents an "edge" connec~on between two 

computers of the broadcast channel. The time it takes to broadcast a tp.essage to each 

computer on the broadcast channel depends on the speed of the connecti~ns between the 

computers and the number of connections between the originating computet and each other 
I 

10 computer on the broadcast channel. The minimum number of connectio~ that a message 
I 

would need to traverse between each pair of computers is the "distan4e" between the 
I 

computers (i.e., the shortest path between the two nodes of the graph). ~or example, the 

distance between computers A and F is one because computer A is direc~y connected to 

computer F. The distance between computers A and B is two because tllere is no direct 
I 

15 connection between computers A and B, but computer F is directly connecte~ to computer B. 

Thus, a message originating at computer A would be sent directly to com~ter F, and then 

sent from computer F to computer B. The maximum of the distances betwe~n the computers 
I 

is the "diameter" of broadcast channel. The diameter of the broadcast chapnel represented 

by Figure 1 is two. That is, a message sent by any computer would trave~~e no more than 
I 

20 two connections to reach every other computer. ·Figure 2 illustrates a grap~ representing 20 

computers connected to a broadcast channel. The diameter of this broadcast! channel is 4. In 
: 

particular, the shortest path between computers 1 and 3 contains four conneptions (1-12, 12-

15, 15-18, and 18-3). 

The broadcast technique includes ( 1) the connecting of cpmputers to the 

25 broadcast channel (i.e., composing the graph), (2) the broadcasting of m~ssages over the 

broadcast channel (i.e., broadcasting through the graph), and (3) the ~sconnecting of 

computers from the broadcast channel (i.e., decomposing the graph) compos~g the graph. 

30 

Composing the Graph 

To connect to the broadcast channel, the computer seeking th~ connection first 

locates a computer that is currently fully connected to the broadcast ctannel and then 

[03004-800S/SL003733.101] -7-

I 
I 

7131100 

j,'' 
! . 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1216 of 1657



5 

I 

establishes a connection with four of the computers that are already cpnnected to the 

broadcast channel. (This assumes that there are at least four computers alreidy connected to 
i 

the broadcast channel. When there are fewer than five computers connect¢d, the broadcast 
I 

channel cannot be a 4-regular graph. ln such a case, the broadcast channell is considered to 

be in a "small regime." The broadcast technique for the small regime is de~cribed below in 
I 

detail. When five or more computers are connected, the broadcast channeli is considered to 

be in the "large regime." This description assumes that the broadcast c~el is in the large 
I 

regime, unless specified otherwise.) Thus, the process of connecting .o the broadcast 
I 

channel includes locating the broadcast channel, identifying the neighbors f~r the connecting 

10 computer, and then connecting to each identified neighbor. Each compute~ is aware of one 

or more "portal computers" through which that computer may locate the bi10adcast channel. 

A seeking computer locates the broadcast channel by contacting the portal ~omputers until it 

fmds one that is currently fully connected to the broadcast channel. '!the found portal 

computer then directs the identifying of four computers (i.e., to be the se~king computer's 

15 neighbors) to which the seeking computer is to connect. Each of these fouf computers then 

cooperates with the seeking computer to effect the connecting of the seekin~ computer to the 

broadcast channel. A computer that has started the process of locating a po¥ computer, but 

does not yet have a neighbor, is in the "seeking connection state." A ~omputer that is 

connected to at least one neighbor, but not yet four neighbors, is in the "paftially connected 

20 state." A computer that is currently, oi: has been, previously connected to tour neighbors is 

in the "fully connected state." 

25 

Since the broadcast channel is a 4-regular graph, each ~f the identified 

computers is already connected to four computers. Thus, some con$ctions between 
I 

computers need to be broken so that the seeking computer can connect to fot computers. In 

one embodiment, the broadcast technique identifies two pairs of computers at are currently 
I 

connected to each other. Each of these pairs of computers breaks the cot¥tection between 

them, and then each of the four computers (two from each pair) connec's to the seeking 

computer. Figures 3A and 3B illustrate the process of a new computer Z 4onnecting to the 

broadcast channel. Figure 3A illustrates the broadcast channel beforel computer Z is 
I 

30 connected. The pairs of computers B and E and computers C and D are the two pairs that are 

identified as the neighbors for the new computer Z. The connections betw~en each of these 
pairs is broken, and a connection between computer Z and each of compute~s B, C, D, and E 

[03004-800S/SLOCI3733.101) -8- 7131/00 

i 
I 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1217 of 1657



is established as indicated by Figure 3B. The process of breaking the connection between 

two neighbors and reconnecting each of the fanner neighbors to another. co11;1puter is referred 

to as "edge pinning" as the edge between two nodes may be considered to lbe stretched and 

pinned to a new node. 

5 Each computer connected to the broadcast channel I allocates five 

10 

15 

I 

communications ports for communicating with other computers. Fow- pf the ports are 
I 

referred to as "internal" ports because they are the ports through which thej messages of the 

broadcast channels are sent. The connections between internal ports qf neighbors are 

. referred to as "internal" connections. Thus, the internal connections of the ~oadcast channel 

form the 4-regular and 4-connected graph. The fifth port is referred to as ak ''external" port 

because it is used for sending non-broadcast messages between two compf.ers. Neighbors 

can send non·broadcast messages either through their internal ports of thiir connection or 

through their external ports. A seeking computer uses external ports when !locating a portal 

computer. 
I 
I 

l 

In one embodiment. the broadcast technique establishe$ the computer 
I 

connections using the TCPIIP communications protocol, which is a point-tP..point protocol, 
I 

as the underlying network. The TCPIIP protocol provides for reliable and !ordered delivery 
I 

of messages between computers. The TCPIIP protocol provides each com:tfter with a "port 

space" that is shared among all the processes that may execute on that computer. The ports 

20 are identified by numbers from 0 to 65,535. The first 2056 ports are res~ed for specific 

applications (e.g .• port 80 for HTTP messages). The remainder of the po~ are user ports 
I 

that are available to any process. In one embodiment, a set of port number$ can be reserved 
I 

for use by the computer connected to the broadcast channel. In an alternative embodiment, 
I 

the port numbers used are dynamically identified by each computer. j Each computer 

25 dynamically identifies an available port to be used as its call-in port. This cfn·in port is used 

to establish connections with the external port and the internal ports. Eachi computer that is 

connected to the broadcast channel can receive non-broadcast messages tlufough its external 
~ 

port. A seeking computer tries "dialing" the port numbers of the portal ~omputers until a 

portal computer "answers,'' a call on its call-in port. A portal computer 8Ilswers when it is 

30 connected to or attempting to connect to the broadcast channel and its call+in port is dialed. 

(In this description, a telephone metaphor is used to describe the connections.) When a 

computer receives a call on its call-in port, it transfers the call to another port. Thus, the 

[03004-800~/SL003733.101] -9- 7131/00 

i 
I . 
i ' ' . 

I : 

I 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1218 of 1657



5 

10 

15 

seeking computer actually communicates through that transfer-to port, whidh is the external 
! 

port. The call is transferred so that other computers can place calls to that ~omputer via the 

call-in port. The seeking computer then communicates via that external p~rt to request the 
; 

portal computer to assist in connecting the seeking computer to the broadc~t channel. The 

seeking computer could idenfiiy the call-in port number of a portal computet by successively 
I 

dialing each port in port nmnber order. As discussed below in detail, the br~adcast technique 

uses a hashing algorithm to select the port number order, which may re~ult in improved 

performance. . J 

I 

A seeking computer could connect to the broadcast channel ~y connecting to 
I 

computers either directly connected to the found portal computer or directly ronnected to one 

of its neighbors. A possible problem with such a scheme for identifying te neighbors for 

the seeking computer is that the diameter of the broadcast channel may infease when. each 

seeking computer uses the same found portal computer and establishes a connection to the 

broadcast channel directly through that found portal computer. Concep~ally, the graph 

becomes elongated in the direction of where the new nodes are added./ . Figures 4A-4C 

illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with 

an added computer. Computer J was connected to the broadcast channel by edge pinning 

edges C-D and E-H to computer J .. The diameter of.this broadcast ch el is still two. 

Figure 4B illustrates the broadcast channel of Figure 4A with an ded computer. 

20 Computer K was connected to the broadcast channel by edge pinning edge~ E-J · and B-C to 

computer K. The diameter of this broadcast channel is three, because the ~ortest path from 

computer G to computer K is through edges G-A, A-E, and E-K. Figure 4~ also illustrates 

the broadcast channel of Figure 4A with an added computer. Computer K ~as connected to 

the broadcast channel by edge pinning edges D-G and E-J to computer K. l The diameter of 

25 this broadcast channel is, however, still two. Thus, the selection of nei~bors impacts the 

diameter of the broadcast channel. To help minimize the diameter, the br4adcast technique 
I 

uses a random selection technique to identify the four neighbors of a comp±·er in the seeking 

connection state. The random selection technique tends to distribute the co ections to .new 

seeking computers throughout the computers of the broadcast channel w ch may result in 

30 smaller overall diameters. 

(03004-S005/SL003733.1 01 J -10- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1219 of 1657



Broadcasting Through the Graph 
I 

As described above, each computer that is cormected to the br~Dadcast channel 
I 

can broadcast messages onto the broadcast channel and does receive all IO,tssages that are 
! 

broadcast on the broadcast channel. The computer that originates a messag~ to be broadcast 

5 sends that message to each of its four neighbors using the internal corme~tions. When a 

computer receives a broadcast message from a neighbor, it sends the mes~age to its three 

other neighbors. Each computer on the broadcast channel, except the origil)ating computer, 

10 

15 

20 

25 

will thus receive a copy of each broadcast message from each of its four ~eighbors. Each 

computer, however, only sends the first copy of the message that it receiveslto its neighbors 

and disregards subsequently received copies. Thus, the total number of cop~es of a message 

that is sent between the computers is 3N+ 1, where N is the number of computers connected 

to the broadcast channel. Each computer sends three copies of the messag~, except for the 
' 

originating computer, which sends four copies of the message. 

The redWldancy of the message sending helps to ensure the 'ferall reliability 

of the broadcast channel. Since each computer has four connections tp the broadcast 

channel, if one computer fails during the broadcast of a message, its nei~bors have three 

other connections through which they will receive copies of the broadcast mfssage. Also, if 

the internal connection between two computers is slow, each computer !has three other 

connections through which it may receive a copy of each message sooner. ) 

. Each computer that originates a message numbers itsj own messages 

sequentially. Because ofthe dynamic nature of the broadcast channel and ecause there are 

many possible connection paths between computers, the messages may be received out of 

order. For example, the distance between an originating computer and a ~ertain receiving 

computer may be four. After sending the first message, the originatin computer and 

receiving computer may become neighbors and thus the distance between em changes to 

one. The first message may have to travel a distance of four to reach the rec iving computer. 

The second message only has to travel a distance of one. Thus, it is possib e for the second 

message to reach the receiving computer before the first message. 

When the broadcast channel is in a steady state (i.e., no comtters connecting 

30 or disconnecting from the broadcast channel), out-of-order messages ar not a problem 

because each computer will eventually receive both messages and can queu messages until 

all earlier ordered messages are received. If, however, the broadcast chtel is not in a 

(03004-8005/SL003733.101) -11- . 7/31/00 

I ·--

1 
; 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1220 of 1657



steady state, then problems can occur. 1n particular, a computer may i connect to the 

broadcast channel after the second message has already been received and forwarded on by 
I 

its new neighbors. When a new neighbor eventually receives the first mess~ge, it sends the 
I 

message to the newly connected computer. Thus, the newly connected computer will receive 
! 

s the first message, but will not receive the second message. If the newly connected computer 
i 

needs to process the messages in order, it would wait indefinitely for the second message. 

One solution to this problem is to have each computer queue ~1 the messages 

that it receives until it can send them in their proper order to its neighbors[ This solution, 

however, may tend to slow down the propagation of messages through the Jomputers of the 

10 broadcast channel. Another solution that may have less impact on the pro~agation speed is 

to queue messages only at computers who are neighbors of the newly conn~cted computers. 

Each already connected neighbor would forward messages as it receives them to its other 
! 

15 

20 

25 

neighbors who are not newly connected, but not to the newly connected' neighbor. The 

already connected neighbor would only forward messages from each origina · g. computer to 

the newly connected computer when it can ensure that no gaps in the me sages from that 

originating computer will occur. In one embodiment, the already connect d neighbor may 

track the highest sequence number of the messages already received and fotarded on from 

each originating computer. The already connected computer will send only r· gher numbered 

messages from the originating computers to the newly connected computer. Once all lower 

numbered messages have been received from all originating computers, en the already 

connected computer can treat the newly connected computer as its othet neighbors and 

simply forward each message as it is received. 1n another embodiment, ea~ computer may 
. I . 

queue messages and only forwards to the newly connected computer those !messages as the 

gaps are filled in. For example, a computer might receive messages 4 and 5 jand then receive 

message 3. In such a case, the already connected computer would forward q eue messages 4 

and 5. When message 3 is fmally received, the already connected co puter will send 

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the 

newly connected computer before message 3, then the newly connected omputer would 

process messages 4 and 5 and disregard message 3. Because the already co ected computer 

30 queues messages 4 and 5, the newly connected computer will be able to pr cess message 3. 

It is possible that a newly connected computer will receive a set of m ssages from an 

originating computer through one neighbor and then receive another set of DJlessage from the 

(03004-800SISL003733.l0lj -12- I 7131100 

I 

i 1·-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1221 of 1657



f 
i . 

same originating computer through another neighbor .. If the second set o ~ssages contams 
I 

a message that is ordered earlier than the· messages of the first set receive~ then the newly 
i 

cormected computer may ignore that earlier ordered message if the ccpmputer already 

processed those later ordered messages. 

5 Decomposing the Graph i 

A connected computer disconnects from the broadcast chaimel either in a 

planned or unplanned manner. When a computer disconnects in a planned Janner, it sends a 

disconnect message to each of its four neighbors. The disconnect message ~eludes a list that 

identifies the four neighbors of the disconnecting computer. When a nei~bor receives the 

I o disconnect message, it tries to connect to one of the computers on tije list. In one 
i 

15 

20 

25 

30 

embodiment, the first computer in the list will try to connect to the second! computer in the 

list, and the third computer in the list will try to connect to the fourth comp~ter in the list. If 
I 

a computer cannot connect (e.g., the first and second computers are already fonnected), then 

the computers may try connecting in various other combinations. If conn~tions cannot be 

established, each computer broadcasts a message that it needs to establish at connection with 

another computer. When a computer with an available internal port receiver the message, it 

can then establish a connection with the computer that broadcast the messfe. Figures 5A-

5D illustrate the disconnecting of a computer from the broadcast chanlnel. Figure SA 

illustrates the disconnecting of a computer from the broadcast channel in a lanned manner. 

When computer H decides to disconnect, it sends its list of neighbors to eac of its neighbors 

·(computers A, E, F and I) and then disconnects from each of its ne ghbors. When 

computers A and I receive the message they establish a connection b~tween them as 

indicated by the dashed line, and similarly for computers E and F. 1 
When a computer disconnects in an unplanned manner, such rs resulting from 

a power failure, the neighbors connected to the disconnected comput,r recognize the 

disconnection when each attempts to send its next message to the nJw discormected 

computer. Each former neighbor of the disconnected computer recognizes ~at it is short one 

connection (i.e., it has a hole or empty port). When a connected computer dfiects that one of 

its neighbors is now disconnected, it broadcasts a port connection request pn the broadcast 

channel, which indicates that it has one internal port that needs a conn+tion. The port 

connection request identifies the call-in port of the requesting computer. "fhen a connected 
I 

i 

[03004-800.5/Sl..003733.1 0 I] -13- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1222 of 1657



computer that is also short a connection receives the connection request, 't communicates 

with the requesting computer through its external port to establish a connec#on between the 

two computers. Figure SB illustrates the disconnecting of a computer fro~ the broadcast 
I 

channel in an unplanned manner. In this illustration, computer H has dis(:onnected in an 
I 

5 unplanned manner. When each of its neighbors, computers A, E, F, and ~ recognizes the 

disconnection, each neighbor broadcasts a port connection request indicatin~ that it needs to 
I 

fill an empty port. As shown by the dashed lines, computers F and I and c01jnputers A and E 

respond to each other's requests and establish a connection. 

It is possible that a planned or unplanned disconnection m4y result in two 

10 neighbors each having an empty internal port. In such a case, since they ar~ neighbors, they 

are already connected and cannot fill their empty ports by connecting to ea~h other. Such a 

15 

20 

25 

; 

condition is referred to as the "neighbors with empty ports" condition. : Each neighbor 

broadcasts a port connection request when it detects that it has an empty ~ort as described 

above. When a neighbor receives the port connection request from the otherlneighbor, it will 
I 

recognize the condition that its neighbor also has an empty port. Such a co*dition may also 

occur when the broadcast channel is in the small regime. The conditibn can only be 

corrected when in the large regime. When in the small regime, each compu~r will have less 

than four neighbors. To detect this condition in the large regime, which wo~d be a problem 

if not repaired, the first neighbor to receive the port connection request recognizes the 

condition and sends a condition check message to the other neighbor. Thelcondition check 
I 

message includes a list of the neighbors of the sending computer. Whfn the receiving 

computer receives the list, it compares the list to its own list of neighbors~ If the lists are 

different, then this condition has occurred in the large regime and repair is nieded. To repair 

this condition,. the receiving computer will send a condition repair requert to one of the 

neighbors of the sending computer which is not already a neighbor <Pf the receiving 

computer. When the computer receives the condition repair request, it disc~nnects from one 

of its neighbors (other than the neighbor that is involved with the conditionj and connects to 
I 

the computer that sent the condition repair request. Thus, one of the 01jiginal neighbors 

involved in the condition will have had a port filled. However, two com~uters are still in 
! 

30 need of a connection, the other original neighbor and the computer that is npw disconnected 

from the computer that received the condition repair request. Those two co~puters send out 

port connection requests. If those two computers are not neighbors, then th+ will connect to 

[03004-80051SL003733.101] -14- : 7131100 

j; 
i 

;·:: 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1223 of 1657



.5 

10 

15 

20 

25 

30 

I 

each other when they receive the requests. It. however, the two compute~s are neighbors, 

then they repeat the condition repair process until two non-neighbors j are in need of 

connections. 

It is possible that the two original neighbors with the conditi~n may have the 
' 

same set of neighbors. When the neighbor that receives the condition! check message 
I 

determines that the sets of neighbors are the same, it sends a condition doub~ check message 

to one of its neighbors other than the neighbor who . also has the condi(ion. When the 
! 

computer receives the condition double check message, it determines whethqr it has the same 
i 

set of neighbors as the sending computer. If so, the broadcast channel is in ~e small regime 

and the condition is not a problem. If the set of neighbors are different, ~en the computer 

that received the condition double check message sends a condition chec~ message to the 
i 

original neighbors with the condition. The computer that receives that !condition check 

message directs one of it neighbors to connect to one of the original neighbors with the 

condition by sending a condition repair message. Thus, one of the origin~ neighbors with 

the condition will have its port filled. 

Figure 5C illustrates the neighbors with empty ports conlution. In this 

illustration, computer H disc~nnected in an unplanned manner, but cof.puters F and I 

responded to the port connection request of the other and are now connect,d together. The 

other former neighbors of computer H, computers A and E, are already tl.eighbors, which 
I 

gives rise to the neighbors with empty ports condition. In this example, co,puter E received 

the port connection request from computer A, recognized the possible co4dition, and sent 

(since they are neighbors via the internal connection) a condition check m~ssage with a list 

of its neighbors to computer A. When computer A received the list, it I recognized that 

computer E has a different set of neighbor (i.e., the broadcast channel is in ~e large regime). 
I 

Computer A selected computer D, which is a neighbor of computer E and s~nt it a condition 
I 

repair request. When computer D received the condition repair request, it lsconnected from 

one of its neighbors (other than computer E), which is computer G · this example. 

Computer D then connected to computer A. Figure 5D illustrates two comp ters that are not 

.neighbors who now have empty ports. Computers E and G now have em~ty·ports and are 

not currently neighbors. Therefore, computers E and G can connect to each bther. 

Figures 5E and 5F further illustrate the neighbors with emp~ ports condition. 

Figure 5E illustrates the neighbors with empty ports condition in the small\ regime. In this 
I 

(03004-80051SL003733.101] -15- ' 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1224 of 1657



example, if computer E disconnected in an unplanned manner, then Jeach computer 
I 

broadcasts a port connection request when it detects the disconnect. ~en computer A 

receives the port connection request form computer B, it detects the neigh~ors with empty 
! 

ports condition and sends a condition check message to computer B. Computer B recognizes 
I 

5 that it has the same set of neighbors (computer C and D) as computer A and then sends a 
I 

condition double check message to computer C. Computer C recognizes t:bftt the broadcast 

channel is in the small regime because is also has the same set of neighbors! as computers A 

and B, computer C may then broadcast a message indicating that the broadc~st channel is in 

the small regime. 

1 o Figure 5F illustrates the situation of Figure 5E when in the l~ge regime. As 

discussed above, computer C receives the condition double check message frpm computer B. 

In this case, computer C recognizes that the broadcast channel is in the large! regime because 

it has a set of neighbors that is different from computer B. The edges ex~ending up from 

computer C and D indicate connections to other computers. Computer ~ then sends a 

15 condition check message to computer B. When computer B receives the !Condition check 

message, it sends a condition repair message to one of the neighbors of cdmputer C. The 
I 

computer that receives the condition repair message disconnects from one ?f its neighbors, 

other than computer C, and tries to connect to computer B and the neighbqr from which it 

disconnected tries to connect to computer A. 

20 Port Selection 

As described above, the TCPIIP protocol designates ports abo~e number 2056 

as user ports. The broadcast technique uses five user port numbers on eac~ computer: one 

external port and four inte~al ports. Generally, user ports cannot be static~ly allocated to 
I 

an application program because other applications programs executing on th9 san1e computer 

25 may use conflicting port numbers. As a result, in one embodiment, the com~uters connected 

to the broadcast channel dynamically allocate their port numbers. Each !computer could 
I 

simply try to locate the lowest number unused port on that computer and usf that port as the 

call-in port. A seeking computer, however, does not know in advance I the call-in port 
I 

number of the portal computers when the port numbers are dynamically anpcated. Thus, a 

30 seeking computer needs to dial ports of a portal computer starting with I the lo~est port 

number when locating the call-in port of a portal computer. If the pofal computer is 
I 

[03004-800SiSL003733.!01) -16- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1225 of 1657



connected to (or attempting to connect to) the broadcast channel, then the s~eking computer 

would eventually find the call-in port. If the portal computer is not conlnected, then the 

seeking computer would eventually dial every user port. 1n addition, if bach application 
I 

program on a computer tried to allocate low-ordered port numbers, then aj portal computer 

5 may end up with a high-numbered port for its call-in port because many o~ the low-ordered 
. I 

I 

port numbers would be used by other application programs. Since the di~ of a port is a 

relatively slow process, it would t8ke the seeking computer a long time to focate the call-in 

port of a portal computer. To minimize this time, the broadcast tec~que uses a port 

ordering algorithm to identify the port number order that a portal computer ~hould use when 
I 

10 fmding an available port for its call-in port. 1n one embodiment, the brol'tdcast technique 
! 

uses a hashing algorithm to identify the port order. The algorithm preferabJy distributes the 

ordering of the port numbers randomly through out the user port numberi space and only 

selects each port number once. In addition, every time the algorithm is ~xecuted on any 

computer for a given channel type and channel instance, itgenerates the smpe port ordering. 

IS As described below, it is possible for a computer to be connected to mpltiple broadcast 
; 

channels that are uniquely identified by channel type and channel instancef The algorithm 

may be .. seeded" with channel type and channel instance in order to g~nerate a unique 
I 

ordering of port numbers for each broadcast channel. Thus, a seeking com~fter will dial the 

ports of a portal computer in the same order as the portal computer used w~en allocating its 

20 call-in port. ; 

If many computers are at the same time seeking connectio~ to a broadcast 
i 

channel through a single portal computer, then the ports of the portal comp,ter may be busy 

when called· by seeking computers. The seeking computers would typicall~ need to keep on 

redialing a busy port. The process of locating a call-in port may be signi:fi antly. slowed by 

25 such redialing. In one embodiment, each seeking computer may each reo der the first few 

port numbers generated by the hashing algorithm. For example, each s eking computer 

could randomly reorder the ftrst eight port numbers generated by the hashin algorithm. The 

random ordering could also be weighted where the frrst port number enerated by the 
I 

hashing algorithm would have a 50% chance of being first in the reorderin.f!i the second port 

30 number would have a 25% chance of being first in the reordering, and so pn. Because the 

seeking computers would use different orderings, the likelihood of findin~ a busy port is 

reduced. For example, if the frrst eight port numbers are randomly se~cted, then it is 

[03004-800SISLD03733.101] -17- 7131/00 

!-. 
i 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1226 of 1657



5 

10 

15 

possible that eight seeking computers could be simultaneously dialing p~rts in different 

sequences which would reduce the chances of dialing a busy port. 

Locating a Portal Computer 

Each computer that can connect to the broadcast channel hasi a list of one or 

more portal computers through which it can connect to the broadcast channeL In one 

embodiment, each computer has the same set of portal computers. A s~eking computer 

locates a portal computer that is connected to the broadcast channel by suc~essively dialing 
I 

the ports of each portal computer in the order specified by an algorithm. A s~eking computer 
l 

could select the first portal computer and then dial all its ports until a dall-in port of a 
I 

computer that is fully connected to the broadcast channel is found. If nb call-in port is 

found, then the seeking computer would select the next portal compute~ and repeat the 

process until a portal computer .with such a call-in port is found. A probj.em with such a 

seeking technique is that all user ports of each portal computer are dial d until a portal 
I 

computer fully connected to the broadcast channel is found. In an alternate fmbodiment. the 

seeking computer selects a port number according to the algorithm and then flials each portal 

computer at that port number. If no acceptable call-in port to the broadcast ~hannel is found, 

then the seeking computer selects the next port number and repeats the pr~cess. Since the 

call-in ports are likely allocated at lower-ordered port numbers, the seekin~ computer first 

dials the port numbers that are most likely to be call-in ports of the broadc~st channel. The 

20 seeking computers may have a maximum search depth, that is the number of:ports that it will 

25 

dial when seeking a portal computer that is fully connected. If the seeking computer 

exhausts its search depth, then either the broadcast channel has not yet been Fstablished or, if 

the seeking computer is also a portal computer, it can then establish the btoadcast channel 

with itself as the first fully connected computer. 

When a seeking computer locates a portal computer that is itself not fully 

connected, the two computers do not connect when they first locate each opter because the 

broadcast channel may already be established and accessible through a higjher-ordered port 

number on another portal computer. If the two seeking computers were to! connect to each 

other, then two disjoint broadcast channels would be formed. Each see~g computer can 

30 share its experience in trying to locate a portal computer with the other see*g computer. In 

particular, if one seeking computer has searched all the portal computers to~ depth of eight, 
' 

{03004-800.5/81..003 733.10 I] . -1 8~ 7/31100 

I 
! . 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1227 of 1657



then the one seeking computer can share that it has searched to a depth of e~ght with another 

seeking computer. If that other seeking computer has searched to a depthiof, for example, 
I 

only four, it can skip searching through depths five through eight and tliat other seeking 

computer can advance its searching to a depth of nine. 

5 In one embodiment, each computer may have a di:ffere~t set of portal 

computers and a different maximum search depth. In such a situation, it mar be possible that 

two disjoint broadcast channels are formed because a seeking computer canPot locate a fully 
I 

connected port computer at a higher depth. Similarly. if the set of port8l computers are 

disjoint, then two separate broadcast channels would be formed. 

10 Identifying Neighbors for a Seeking Computer 

As described above, the neighbors of a newly connec~ computer are 
• I 

preferably selected randomly from the set of currently connected computers~ One advantage 

of the broadcast channel, however, is that no computer has global ~owledge of the 

broadcast channel. Rather, each computer has .local lmowledge of itself ahd its neighbors. 

15 This limited local knowledge has the advantage that all the connected co~puters ·are peers 

(as far as the broadcasting is concerned) and the failure of any one comp~ter (actually any 

three computers when in the 4·regular and 4-connect form) will not cadse the broadcast 
I 

20 

25 

30 

channel to fail. This local knowledge makes it difficult for a portal comp~ter to randomly 

select four neighbors for a seeking computer. 

To select the four computers, a portal computer sends an !edge connection 

request message through one of its internal connections that is randomir selected. The 

receiving computer again sends the edge connection request message wtough one of its 
! 

internal connections that is randomly selected. Tiris sending of the message! corresponds to a 
! 

random walk through the graph that represents the broadcast channel.! Eventually, a 
! 

receiving computer will decide that the message has traveled far enousr. to represent a 

randomly selected computer. That receiving computer will offer the infmal connection 

upon which it received the edge connection request message to the seeldng computer for 

edge pinning. Of course, if either of the computers at the end of the offered internal 

connection are already neighbors of the seeking computer, then the seeking computer cannot 

connect through that internal connection. The computer that decided that the message has 

(03004-800SISLOOJ733.1 0 I I -19- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1228 of 1657



5 

10 

15 

20 

25 

i 
traveled far enough will detect this condition of already being a neigh~or and send the 

message to a randomly selected neighbor. 
l 

' 
In one embodiment, the distance that the edge connection trequest message 

travels is established by the portal computer to be approximately twi~e the estimated 

diameter of the broadcast channel. The message includes an indication of ilie distance that it 

is to travel. Each receiving computer decrements that distance to travel b~fore sending the 
I 

message on. The computer that receives a message with a distance to tra~el that is zero is 

considered to be the randomly selected computer. If that randomly selected!computer cannot 

connect to the seeking computer (e.g., because· it is already connected jto it), then that 

randomly selected computer forwards the edge connection request to onel of its neighbors 

with a new distance to travel. In one embodiment, the forwarding computet toggles the new 
l 

distance to travel between zero and one to help prevent two computers ·tom sending the 

message back and forth between each other. 
\ 

I 

Because of the local nature of the information maintained bt each computer 

connected to the broadcast channel, the computers need not generally e aware of the 

diameter of the broadcast channel. In one embodiment, each message ent through the 

broadcast channel has a distance traveled field. Each computer that fo+ards a message 

increments the distance traveled field. Each computer also maintains an esr;ated diameter 

of the broadcast channel. When a computer receives a message that has tr'veled a distance 

that indicates that the estimated diameter is too small, it updates its estimated diameter and 

broadcasts an estimated diameter message. When a computer receives an e~ated diameter 

message that indicates a diameter that is larger than its own estimated diam~ter, it updates· its 

own estimated diameter. This estimated diameter is used to establish thej distance that an 
I 

edge connection request message should travel. 

External Data Representation I 
The computers connected to the broadcast channel may inte y store their 

data in different formats. For example, one computer may use 32-bit inte ers, and another 

computer may use 64-bit integers. . As another example, one computer m y use ASCD to 

represent text and another computer may use Unicode. To allow comm 

30 heterogeneous computers, the messages sent over the broadcast channel y use the XDR 

("eXternal Data Representation'') format. 

{03004-800S/SL003733.101] -20- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1229 of 1657



The underlying peer-to-peer communications protocol may send multiple 

messages in a single message stream. The traditional technique for retrieving messages from 
I 
I 

a stream has been to repeatedly invoke an operating system routine to retrieve the next 
I 

message in the stream. The retrieval of each message may require two calls! to the operating 

5 system: one to retrieve the size of the next message and the other to retrie~e the number of 
I 

bytes indicated by the retrieved size. Such calls to the operating system ~an, however, be 

very slow in comparison to the invocations of local routines. To overcome ~e inefficiencies 

of such repeated calls, the broadcast technique in one embodiment, uses XD~ to ident:iiY the 

message boundaries in a stream of. messages. The broadcast technique fn.ay request the 
I 

10 operating system to provide the next, for example, 1,024 bytes from tile stream. The 
i 

broadcast technique can then repeatedly invoke the XDR routines to retriefe the messages 

and use the success or failure of each invocation to detennine whether anoth~r block of 1,024 

bytes needs to be retrieved from the operating system. The invocation of :h>R routines do 
l 

not involve system calls and are thus more efficient than repeated system calls. 

15 M-Regular 

In the embodiment described above, each fully connected ~puter has four 
I 

internal connections. Thebroadcast.technique can be used with other n~bers of internal 

connections. For example, each computer could have 6, 8, or any even n~ber of internal 

connections. As the number of internal connections increase, the diameter i of the broadcast 

20 channel tends to decrease, and thus propagation time for a message tends tp decrease. The 

time that it takes to connect a seeking computer to the broadcast channei may, however, 

increase as the number of internal connections increases. When the ntiftber of internal 

connectors is even, then the broadcast channel can be maintained a~ m-regular and 

m-connected (in the steady state). If the number of internal connections is odd, then when 

25 the broadcast channel has an odd number of computers connected, one of thje computers will 

have less than that odd number of internal connections. In such a situatiqn, the broadcast 

network is neither m-regular nor m-connected. When the next computer! connects to the 

broadcast channel, it can again become m-regular and m-connected. ~s. with an odd 
I 

number of internal connections, the broadcast channel toggles between be~g and not being 

30 m-regular and m-connected. 

(03004·800.:5/8L003733.101J -21- 7131/0() 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1230 of 1657



5 

10 

15 

20 

25 

30 

Components ; 

Figure 6 is a block diagram illustrating components of a ~omputer that is 

connected to a broadcast channel. The above description generally assumekl that there was 
I 

only one broadcast channel and that each computer had only one connection ~o that broadcast 

channel. More generally, a network of computers may have multiple bro~dcast channels, 

each computer may be connected to more than one broadcast channel, an~ each computer 

can have multiple connections to the same broadcast channeL The broadcasf channel is well 

suited for computer processes (e.g., application programs) that execute coll,boratively, such 

as network meeting programs. Each computer process can.· connect to one ot more broadcast 

channels. The broadcast channels can be identified by channel type (f. g., application 

pro~am name) and channel instance tliat represents separate broadcast c~annels for that 

channel type. When a process attempts to connect to a broadcast channel, it seeks a process 

currently connected to that broadcast channel that is executing on a portal! computer. The 

seeking process identifies the broadcast channel by channel type and channe~ instance. 

Computer 600 includes multiple application programs 6Ql executing as 

separate processes. Each application program interfaces with a broadcast~ component 602 

for each broadcast channel to which it is connected. The broadcaster co~ponent may be 

implement as an object that is instantiated within the process space o~ the application 
. I 

program. Alternatively, the broadcaster component may execute as a se~arate process or 

thread from the application program. In one embodiment, the broadc.ster component 
l 

provides functions (e.g., methods of class) that can be invoked by the applifation programs. 

The primary functions provided may include a connect function that an app~ication program 

invokes passing an indication of the broadcast channel to which the apprcation program 

wants to connect. The application program may provide a callback tontine that the 

broadcaster component invokes to notify the application program that th9 connection has 

been completed, that is the process enters the fully connected state. [he broadcaster 
! 

component may also provide an acquire message function that· the applica~on program can 

invoke to retrieve the next message that is broadcast on the broadcast chann~l. Alternatively, 

the application program may provide· a callback routine (which may be aj virtual function 

provided by the application program) that the broadcaster component invo~es to notify the 

application program that a broadcast message has been received. Each broadcaster 

component allocates a call-in port using the hashing algorithm. When calld are answered at 
(03004-800S/SL003733.101) -22- -, 7131/00 

I 
l 

I 
! 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1231 of 1657



the call-in port, they are transfeiTed to other ports that serve as the external and internal 

ports. 

The computers connecting to the broadcast channel may include a central 

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices 
I 

5 (e.g., display devices), and storage devices (e.g., disk drives). The menfry and storage 

devices are computer-readable medium that may contain computer ihstructions that 
l 

implement the broadcaster component. In addition, the data structur~s and message 

structures may be stored or transmitted via a signal transmitted on a cdmputer-readable 

media, such as a communications link. 

10 Figure 7 is a block diagram illustrating the sub-components o~ the broadcaster 

component in one embodiment. The broadcaster component includes a co+ect component 

701, an external dispatcher 702, an internal dispatcher 703 for each intemall connection, an 
i 

acquire message component 704 and a broadcast component 712. The app~cation program 

may provide a connect callback component 710 and a receive response cort1-ponent 711 that 

15 are invoked by the broadcaster component. The application program invdkes the connect 
I 

component to establish a connection to a designated broadcast channel!. The connect 

component identifies the external port and installs the external dispatc~er for handling 
I 

messages that are received on the external port. The connect component ijnvokes the seek 

portal computer component 705 to identify a portal computer that is cpnnected to the 

20 broadcast channel and invokes the connect request component 706 to ask thej portal computer 

(if fully connected) to select neighbor processes for the newly connectin~ process. The 

external dispatcher receives external messages, identifies the type of mess4ge, and invokes 

the appropriate handling routine 707. The internal dispatcher receives the inlternal messages, 

identifies the type of message, and invokes the appropriate handling rol)ltine 708. The 

25 received broadcast messages are stored in the broadcast message queue 709. The acquire 

message component is invoked to retrieve messages from the broadca~t queue. The 

broadcast component is invoked by the application program to broadcast ptessages in the 

broadcast channel. 

The following tables list messages sent by the broadcaster com~onents. 
I 

[03004-8005/SL003733.1 0 I J -23- 7/31/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1232 of 1657



EXTERNAL MESSAGES 

Message Type Description 

I seeking_connection_call Indicates that a seeking process would like to kn~w whether the 
I receiving process is fully connected to the broadcast channel 
l 

j connection _request_ call Indicates that the sending process would like thd receiving 
' process to initiate a connection of the sending ptlocess to the 
' I broadcast channel 

edge _proposal_ call Indicates that the sending process is proposing 1$ edge through 
which the receiving process can connect to the l:toadcast 
channel (i.e., edge pinning) 

port_ connection_ call Indicates that the sending process is proposing a1port through 
which the receiving process can connect to the ~oadcast 
channel 

connected_ stmt Indicates that the sending process is connected to the broadcast 
channel 

condition _repair _stmt Indicates that the receiving process should discopnect from one 
of its neighbors and connect to one of the proce~ses involved in 
the neighbors with empty port condition 

INTERNAL MESSAGES 

Message Type Description 

broadcast_ stmt Indicates a message that is being broadcast !through the 
I 

broadcast channel for the application progrf1ns 

connection _port_ search_ stmt Indicates that the designated process is loafing for a port 
through which it can connect to the broadc st channel 

connection_ edge_ search_ call Indicates that the requesting process is loo~ ing for an edge 
through which it can connect to the broadc !St channel 

connection_edge_search_resp Indicates whether the edge between this pre cess and the 
sending neighbor has been accepted by the equesting 
party ' 

diameter_ estimate_ stmt Indicates an estimated diameter of the broa~cast channel 

diameter reset stmt Indicates to reset the estimated diameter to ptdicated - -
diameter ! 

disconnect stmt Indicates that the sending neighbor is disco+necting from 
the broadcast channel : 

condition_ check _stmt Indicates that neighbors with empty port co~dition have 

(03004-800S/SL003733.1 0 IJ .,-24- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1233 of 1657



been detected 
I 

condition_ double_ check_ stmt Indicates that the neighbors with empty ports have the 
same set of neighbors 

i 

shutdown stmt Indicates that the broadcast channel is bein~ shutdown 

Flow Diagrams 

Figures 8-34 are flow diagrams illustrating the processing o( the broadcaster 

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the 

s connect routine in one embodiment. This routine is passed a channel type {e.g .• application 

name) and channel instance (e.g., session identifier), that identifies the bro4dcast channel to 

which this process wants to connect The routine is also passed auxiliary !information that 

includes the list of portal computers and a connection callback routine. Wh~n the connection 
l 

is established, the connection callback routine is invoked to notify the app~ication program. 

10 When this process invokes this routine, it is in the seeking connection state~ When a portal 
I 

computer is located that is connected and this routine connects to at least ore neighbor,. this 

process enters the partially connected state, and when the process eventually! connects to four 

neighbo~s, it enters the fully connected state. When in the small regime, ~fully connected 

process may have less than four neighbors. In block 801, the routine open~ the call-in port 

15 through which the process is to communicate with other processes when estaPlishing external 
I 

and internal connections. The port is selected as the first available port u~ing the hashing 
! 

algorithm described above. ·In block 802, the routine sets the connect t:in:)e to the current 
I 

time. The connect time is used to identify the instance of the process ~at is connected 

through this ·external port. One process may. connect to a broadcast ch~el of a certain 

20 channel type and channel instance using one call-in port and then disconn cts, and another 

process may then connect to that same broadcast channel using the same cal,-in port. Before 
I 

the other process becomes fully connected, another process may try to comptunicate with it 

thinking it is the fully connected old process. In such a case, the connect tmte can be used to 

identify this situation. In block 803, the routine invokes the seek portal ~mputer routine 
I 

25 passing the channel type and channel instance .. The seek portal computer rohtine attempts to 
. . I 

locate a portal computer through which this process can connect to the broadcast channel for 
I 

the passed type and instance. In decision block 804, if the seek portal cmf1puter routine is 

[03004-800S/SL003733.101J -25- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1234 of 1657



successful in locating a fully connected process on that portal computer, ithen the routine 
! 

continues at block 805, else the routine returns an unsuccessful indication. ~ decision block 

805, if no portal computer other than the ponal computer on which the pro~ess is executing 
I 

was located, then this is the first process to fully connect to broadcast !channel and the 

5 routine continues at block 806, else the routine continues at block 808. Ih block 806, the 
! 

10 

15 

routine invokes the achieve connection routine to change the state of this i process to fully 
I 

connected. In block 807, the routine installs the external dispatcher for pro~essing messages 

received through this process' external port for the passed channel type and ~hannel instance. 

When a message is received through that external port, the external disp~cher is invoked. 
! 

The routine then returns. In block 808, the routine installs an external disJf.tcher. In block 

809, ·the 'routine invokes the connect request routine to initiate the proce~s of identifying 

neighbors for the seeking computer. The routine then returns. 

Figure 9 is a flow diagram illustrating the processing of I the seek portal 
I 

computer routine in one embodiment This routine is passed the channel o/Pe and channel 

instance of the broadcast channel to which this process wishes to connect. !This routine, for 
! 

each search depth (e.g., port number), ·checks the portal computers at that s~arch depth. If a 

portal computer is located at that search depth with a process that is fully ponnected to the 
I 

broadcast channel, then the routine returns an indication of success. In blopks 902-911, the 

routine loops selecting each search depth until a process is located. In bloc~ 902, the routine 

20 selects the next search depth using a port number ordering algorithm. In de4ision block 903, 

if all the search depths have already been selected during this execution oflthe loop, that is 

for the currently selected depth, then the routine returns a failure indicationJ else the routine 

continues at block 904. In blocks 904-911, the routine loops selecting each[portal computer 

and determining whether a process of that portal computer is connected to (or attempting to 

25 connect to) the broadcast channel with the passed channel type and chanitel instance. In 

block 904, the routine selects the next portal computer. In decision block 905, if all the· 

· portal computers have already been selected, then the routine loops to block ~02 to select the 

next search depth, else the routine continues at block 906. In block 906, the1routine dials the 

selected portal computer through the port represented by the search depth. ~ decision block 

30 907, if the dialing was successful, then the routine continues at block 908,; else the routine 

loops to block 904 to select the next portal computer. The dialing will be ~uccessful if the 
I 

dialed port is the call-in port of the broadcast channel of the passed channeltjype and channel 

[Q3004-IQ05/SL003733.1QJ] w26w 7/31/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1235 of 1657



5 

10 

instance of a process executing on that portal computer. In block 908, the tontine invokes a 
. i 

contact process routine, which contacts the answering process of the portal ~omputer through 

the dialed port and detennines whether that process is fully connected ~o the broadcast 

channel. In block 909, the routine hangs up on the selected portal computer. In decision 

block 910, if the answering process is fully connected to the broadcast ~hannel, then the 

routine returns a success indicator, else the routine continues at block 911. ~block 911, the 

routine invokes the check for external call routine to detemrine whether an I external call has 
I 

been made to this process as a portal computer and processes that call. !fhe routine then 

loops to block 904 to select the next portal computer. 

Figure 10 is a flow diagram illustrating the processing of th~ contact process 

routine in one embodiment. This routine determines ~hether the proces~ of the selected 
! 

portal computer that answered the call-in to the selected port is fully ¢onnected to the 

broadcast channel. In block 1001, the routine sends an external message (i.e., 

seeking_ connection_ call) to the answering process indicating that a seeking1process wants to 

15 know whether the answering process is fully connected to the broadcast channel. In block 

1 002, the routine receives the external response message from the answeting process. In 

decision block 1003, if the external response message is successfully received (i.e., 

seeking_cormection_resp), then the routine continues at block 1004, else th~ routine returns. 

Wherever the broadcast component requests to receive an external message,jit sets a time out 

20 period. If the external message is not received within that time out perio the broadcaster 

component checks its own call-in port to see if another process is calling it. In particular, the 

dialed process may be calling the dialing process, which may result in a d adlock situation. 

The broadcaster component may repeat. the receive request several times. If the expected 

message is not received, then the broadcaster component handles the error s appropriate. In 

25 decision block 1004, if the answering process indicates in its response mess ge that it is fully 

connected to the broadcast channel, then the routine continues at block I 00~, else the routine 

continues at block 1006. In block 1005, the routine adds the selected poryal computer to a 

list of cormected portal computers and then returns. In block 1006, the I routine adds the 

answering process to a list of fellow seeking processes and then returns. ! 

30 Figure 11 is a flow diagram illustrating the processing of th~ connect request 

routine in one embodiment. This routine requests a process of a portal c~mputer that was 

identified as being fully connected to the broadcast channel to initiate the qormection of this 

[03004-800S/SL003733.101] -27- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1236 of 1657



process to the broadcast channel. In decision block 1101, if at least one process of a portal 

computer was located that is fully connected to the broadcast channel, I then the routine 
! 

continues at block 1103 else the routine continues at block 1102. A prod:ess of the portal 
' i 

computer may no longer be in the list if it recently disconnected from the broadcast channel. 
; 

5 In one embodiment, a seeking computer may always search its entire searqh depth and fmd 

multiple portal computers through which it can connect to the broadcast cp.annel. In block 

1102, the routine restarts the process of connecting to the broadcast chanmil and returns. In 

block 1103, the routine dials the process of one of the found portal comp~ters through the 
I 

call·in port. In decision block 1104, if the dialing is successful, then the ro*tine continues at 

10 block 1105, else the routine continues at block 1113. The dialing may be u4successful it: for 

example, the dialed process recently disconnected from the broadcast c~annel. In block 

1105, the routine sends an external message to the dialed process requestin~ a connection to 

the broadcast channel (i.e., connection_request_call). In block 1106, the ro~tine receives the 
I 

response -message (i.e., connection_request_resp). In decision block not if the response 

15 message is successfully received, then the routine continues at block 1108~ else the routine 

continues at block 1113. In block 1108. the routine sets the expected nwnrer of holes (i.e., 

empty internal connections) for this process based on the received respon~e. ·When in the 
I 

large regime, the expected number of holes is zero. When in the small regipte. the expected 

number of holes varies from one to three. In block 1109, the routine s~ts the estimated 

20 diameter of the broadcast channel based on the received response. In decisipn block 1111, if 
. I 

the dialed process is ready to connect to this process as indicate~ by the r'sponse message, 

then the routine continues at block 1112, else the routine continues at block 1113. In block 

1112, the routine invokes the add neighbor routine to add the answe+g process as a 

neighbor to this process. This adding of the answering process typicall~occurs when the 

25 broadcast channel is in the small regime.. When in the large regime, the r om walk search 

for a neighbor is performed. In block 1113, the routine hangs up the emal connection 

with the answering process computer and then returns. . 
I 

Figure 12 is a flow diagram of the processing of the check lfor external call 

routine in one embodiment. · This routine is invoked to identify whether ~ fellow seeking 
i 

30 process is attempting to establish a connection to the broadcast channel thr~gh this process. 

In block 1201, the routine attempts to answer a call on the call-in port. .Iln decision block 
I 

1202, if the answer is successful, then the routine continues at block 1203~ else the routine 

[03004-800S/SLOD3733.10l) -28- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1237 of 1657



returns. In block 1203, the routine receives the external message from the ~xternal port. In 

decision block 1204, if the type of the message indicates that a seeking ~rocess is calling 
I 

(i.e., seeking_connection_call), then the routine continues at block 1205,i else the routine 

returns. In block 1205, the routine sends an external message (i.e., seekingyonnection_resp) 

5 to the other seeking process indicating that this process is also is seeking ~ connection. In 

decision block 1206, if the sending of the external message is successful,! then the routine 

continues at block 1207, else the routine returns. In block 1207, the routine adds the other 
! 

10 

15 

seeking process to a list of fellow seeking processes and then returns. This !list may be used 

if this process can find no process that is fully connected to the broadcast c~annel. In which 

case, this process may check to see if any fellow seeking process were successful in 
I 

connecting to the broadcast channel. For example, a fellow seeking proces~ may become the 

first process fully connected to the broadcast channel. 

Figure 13 is a flow diagram of the processing of the achieve c~nnection routine 
I 

in one embodiment. This routine sets the state of this process to fully fOimected to the 

broadcast channel and invokes a callback routine to notify the application Jprogram that the 

process is now fully connected to the requested broadcast channel. In block 1301, the 

routine sets the connection state of this process to fully connected. In block 1302, the 

routine notifies fellow seeking processes that it is fully connected by sen · g a connected 

external message to them (i.e., connected_stmt). In block 1303, the ro tine invokes the 

20 connect callback routine to notify the application program and then returns. 

Figure 14 is a flow diagram illustrating the processing lof the external 

dispatcher routine in one embodiment. This routine is invoked when ~e external port 

receives a message .. This routine retrieves the message, identifies the exter4al message type, 
i 

and invokes the appropriate routine to handle that message. This routine !loops processing 
! 

25 each message until all the received messages have been handled. In block ~ 401, the routine 

answers (e.g., picks up) the external port and retrieves an external mess.ge. In decision 

block 1402, if a message was retrieved, then the routine continues at blodk 1403, else the 

routine hangs up on the external port in block 1415 and returns. In decisi~n block 1403, if 

the message type is for a process seeking a connection (i.e., seeking_conn¢ction_call), then 

30 the routine invokes the handle seeking connection call routine in block 1404, else the routine 

continues at block 1405. In decision block 1405, if the message type is for a connection 

request call (i.e., connection_request_call), then the routine invokes the handle connection 

[03004-800S/SL003733.101] -29- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1238 of 1657



request call routine in block 1406, else the routine continues at block 1107. In decision 

block 1407, if the messag~ type is edge proposal call (i.e., edge_propos~_call), then the 

routine invokes the handle edge proposal call routine in block 1408, !else the routine 

continues at block 1409. In decision block 1409, if the message type is port connect call 

s (i.e., port_connect_call), then the routine invokes the handle port connecticlm call routine in 

block 1410, else the routine continues at block 1411. In decision block 14111, if the message 

type is a connected statement (i.e., connected_stmt), the routine invpkes the handle 
I 

connected statement in block 1112, else the routine continues at block lt 12. In decision 
I 

block 1412, if the message type is a condition repair statement {i.e., condiq.on_repair_stmt), 
I 

10 then the routine.invokes ~e handle condition repair routine in block 1413t else the routine 

loops to block 1414 to process the next message. After each handling rou~e is invoked, the 

routine loops to block 1414. In block 1414, the routine hangs up on the ~xternal port and 
i 

continues at block 1401 to receive the next message. . 
i 

Figure 15 is a flow diagram illustrating the processing of thF handle seeking 

15 connection call routine in one embodiment. This routine is invoked when ' seeking process 
I 

is calling to identify a portal computer through which it can connect to the btoadcast channel. 

In decision· block 1501, ·if this process is currently fully connected to the ~roadcast channel 

identified in the message, then the routine continues at block 1502, else th~rutine continues 

at block 1503. In block 1502, the routine sets a message to indicate that · process is fully 

20 connected to the broadcast channel and continues at block 1505. In block ~503, the routine 

sets a message to indicate that this process is not fully connected. In block 11504, the routine 
I 

adds the identification of the seeking process to a list of fellow seeking Jtocesses. If this 

process is not fully connected, then it is attempting to connect to the broa4cast channel. In 
I 

block 1505, the routine sends the external message response (i.e., seeking_}onnection_resp) 

25 to the seeking process and then returns. 

Figure 16 is a flow diagram illustrating processing of the hFdle connection 

request call routine in one embodiment. This routine is invoked when th~ calling process 
' 

wants this process to initiate the connection of the process to the broadc~t channel. This 

routine either allows the calling process to establish an internal connection !with this process 

30 (e.g., if in the small regime) or starts the process of identifying a process to ~hich the calling 

process can connect. In decision block 1601, if this process is currently ¥ly connected to 

the broadcast channel, then the routine continues at block 1603, else the TO\ftine hangs up on 
I 

[03004-8005/SL003733.101} -30- i 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1239 of 1657



the external port in block 1602 and returns. In block 1603, the routine sets the number of 

holes that the calling process should expect in the response message. Ini block 1604, the 

routine sets the estimated diameter in the response message. In block li605, the routine 

indicates whether this process is ready to connect to the calling process. ~ This process is 

5 ready to connect when the number of its holes is greater than zero and the ¢ailing process is 

not a neighbor of this process. In block 1606, the routine sends to the calling process an 

external message that is responsive to the connection req~rest call (i.e., 

connection_request_resp). In block 1607, the routine notes the number «j)f holes that the 

calling process needs to fill as indicated in the request message. In decisiqn block 1608, if 

10 this process is ready to connect to the calling process, then the routine cqntinues at block 

1609, else the routine continues at block 1611. In block 1609, the routine! invokes the add 

neighbor routine to add the calling process as a neighbor. In block * 10, the routine 
i 

decrements the number of holes that the calling process needs to fill and ctntinues at block 

1611. In block 1611, the routine hangs up on the external port. In decisiqn block 1612, if 

15 this process has no holes or the estimated diameter is .greater than one (~.e., in the large 
I 

regime), then the routine continues at block 1613, else the routine continu~s at block 1616. 

In blocks 1613-1615, the routine loops forwarding a request for an edge tin'ough which to 

connect to the calling process to the broadcast channel One request is fokarded for each 

pair of holes of the calling process that needs to be filled. In decision bock 1613, if the 

20 number of holes of the calling process to be filled is greater than or equal to two, then the 

routine continues at block 1614, else the routine continues at block 1616. block 1614, the 
I 

routine invokes the· forward connection edge search routine. The invoked tontine is passed 
I 

to an indication of the calling process and the random walk distance. In one !embodiment, the 
I 

distance is twice in the estimated diameter of the broadcast channel. In I block 1614, the 
! 

25 routine decrements the holes left to fill by two and loops to block 1613. JP decision block 

1616, if there is still a hole to fill, then the routine continues at block 1617~ else the routine 

returns. In block 1617, the routine invokes the fill hole routine passing thei identification of 
I 

the calling process. The fill hole routine broadcasts a connection port searc~ statement (i.e., 

connection_port_search_stmt) for a hole of a connected process through ~hich the calling 

30 process can connect to the broadcast channel. The routine then returns. 

Figure 17 is a flow diagram illustrating the processing of tpe add neighbor 

routine in one embodiment. This routine adds the process calling on the e~temal port as a 

f03004-8005/SL003733.101] -3]- 7/31/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1240 of 1657



5 

10 

15 

neighbor to this process. In block 1701, the routine identifies the callin~ process on the 

external port. In block 1702, the routine sets a flag to indicate that the nei~bor has not yet 

received the broadcast messages from this process. This flag is used to ens~e that there are 
i 

no gaps in the messages initially sent to the new neighbor. The external port becomes the 

internal port for this connection. In decision block 1703, if this process is in the seeking 

connection state, then this process is connecting to its first neighbor land the routine 

continues at block 1704, else the routine continues at block 1705. In block po4, the routine 
i 

sets. the connection state of this process to partially connected. In block l705, the routine 
I 

adds the calling process to the list of neighbors of this process. In block .706, the routine 

installs an· internal dispatcher for the new neighbor. The internal dispatcher lis invoked when 

a message is received from that new neighbor through the internal port of th~t new neighbor. 

In decision block 1707, if this process buffered up messages while not full~ connected, then 

the routine continues at block 1708, else the routine continues at bloc~ 1709. In one 

embodiment, a process that is partially connected may buffer the message$ that it receives 
I 

through an internal connection so that it can send these messages as it ~onnects to new 

neighbors. In block 1708, the routine sends the buffered messages to tl{e ·new neighbor 

through the internal port. In decision block 1709, if the number of hole~ of this process 

equals the expected number of holes, then this process is fully connected! and the routine 

continues at block 1710, else the routine continues at block 1711. In block l710, the routine 

20 invokes the achieve connected routine to indicate that this process is runt connected. In 

decision block 1711, if the number of holes for this process is zero, ~en the routine 

continues at block 1712, else the routine returns. In block 1712, the ro~tine deletes any 

pending edges and then returns. A pending edge is an edge that has . been jproposed to this 

process for edge pinning, which in this' case is no longer needed. 

25 Figure 18 is a flow diagram illustrating the processing lof the forward 

connection edge search routine in one embodiment. This routine is respo~ible for passing 

along a request to connect a requesting process to a randomly selected l1eighbor of this 

process through the internal port of the selected neighbor, that is part of the ~andom walk. In 

decision block 180 1, if the forwarding distance remaining is greater tha4 zero, then the 

30 routine continues at block 1804, else the routine continues at block 1802. 1ft decision block 

1802, if the number of neighbors of this process is greater than one, ~en the routine 

continues at block 1804, else this broadcast channel is in the small regime! and the routine 
I 

(03004-80051SL003733.101] -32- . 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1241 of 1657



continues at block 1803. In decision block 1803, if the requesting process lis a neighbor of 
I 

this process, then the routine returns, else the routine continues at block ~804. In blocks 

1804-1807, the routine loops attempting to send a connection edge se8fch call internal 

message (i.e., connection_edge_search_call) to a randomly selected neighbot. In block 1804, 
i 

5 the routine randomly selects a neighbor of this process. In decision block! 1805, if all the 
. I 

neighbors of this process have already been selected, then the routine ca4not forward the 

message and the routine returns, else the routine continues at block 1806. I:Q. block 1806, the 
! 

routine sends a connection edge search call internal message to the selec*d neighbor. In 

decision block 1807, if the sending of the message is successful, then the ro~tine continues at 

10 block 1808, else the routine loops to block 1804 to select the next nei~bor. When the 
I 

sending of an internal message is unsuccessful, then the neighbor may have disconnected 
I 

from the broadcast channel in an unplanned manner. Whenever such a sitdatiou is detected 
I 

by the broadcaster component, it attempts to find another neighbor by invo~g the fill holes 

routine to fill a single hole or the forward connecting edge search routine to hn two holes. In 
I 

15 block 1808, the routine notes that the recently sent connection edge searc~ call has not yet 
i 

been acknowledged and indicates that the edge to this neighbor is reserved I if the remaining 
j 

forwarding distance is less than or equal to one. It is reserved because the ~elected neighbor 

may offer this edge to the requesting process for edge pinning. The routine then returns. 

Figure 19 is a flow diagram illustrating . the processing of· ~e handle edge 

20 proposal call routine .. · This routine. is invoked when a message is received tom a proposing 

process that proposes to connect an edge between the proposing proces$ and one of its 

neighbors to this process for edge pinning. In decision block 1901, if the n$lber of holes of 

this process minus the number of pending edges is greater· than or equal to one, then this 

process still has boles to be filled and the routine continues at block 1902~ else the routine 

25 continues at block 1911. In decision block 1902, if the proposing process o~ its neighbor is a 

neighbor of this process, then the routine continues at block 1911, else the ~outine continues 

at block 1903. In block 1903, the routine indicates that the edge is pendf.g between this 

process and the proposing process. In decision block 1904, if a proposed ne~ghbor is already 

· pending as a proposed neighbor, then the routine continues at block 1911~ else the routine 

30 continues at block 1907. In block 1907, the routine sends an edge propos~ response as an 

external message to the proposing process (i.e., edge _proposal _resp) in~cating that the 
I 

proposed edge is accepted. In decision block 1908, if the sending of tpe message was 

[0300+BOOSISL003733.101) -33- ! 7131/00 
! 

I 

i 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1242 of 1657



successful, then the routine continues at block 1909, else the routine returns. In block 1909, 

the routine adds the edge as a pending edge. In block 1910, the routineiinvokes the add 
I 

neighbor routine to add the proposing process on the external port as a neigh~or. The routine 

then returns. In block 1911, the routine sends an external message (i.e .• edg~_j)roposal_resp) 
s indicating that this proposed edge is not accepted. In decision block 1912, iif the number of 

10 

15 

20 

25 

' 
holes is odd, then the routine continues at block 1913, else the routine r~tums. In block 

1913, the routine invokes the fill hole routine and then returns. 
i 

Figure 20 is a flow diagram illustrating the processing of 1 the handle port 

connection call ro~tine in one embodiment. This routine is invoked v{hen an external 

message is received then indicates that the sending process wants to conne~t to one hole of 
I 

this process. In decision block 2001, if the number of holes of this proce.s is greater than 
i 

zero, then the routine continues at block 2002, else the routine continues at block 2003. In 

decision block 2002, if the sending process is not a neighbor, then the roujtine continues at 

block 2004, else the routine continues to block 2003. In block 2003, the ro~tine sends a port 

connection response external message (i.e., port_connection_resp) to the sen~g process that 

indicates that it is not okay to connect to this process. The routine then r~tums. In block 

2004, the routine sends a port connection response external message to the! sending process 

that indicates that is okay to connect this process. In decision block 2005, ~fthe sending of 

the message was successful, then the routine continues at block 2006, Ieise the routine 

continues at block 2007. In block 2006, the routine invokes the add neighb~r routine to add 

the sending process as a neighbor of this process and then returns. In block ~007, the routine 
i 

hangs up the external connection. In block 2008, the routine invokes thej connect· request 

routine to request that a process connect to one of the holes of this process. !The routine then 

returns. 

Figure 21 is a flow diagram illustrating the processing of the fiill hole routine in 

one embodiment. This routine is passed an indication of the requesting [process. If this 

process is requesting to fill a hole, then this routine sends an internal ~essage to other 

processes. If another process is requesting to fill a hole, then this routine invokes the routine 

to handle a connection port search request. In block 210 1, the routline initializes a 

30 connection port search statement internal message (i.e., connection_port_~earch_stmt). In 

decision block 2102, if this process is the requesting process, then the routine continues at 

block 2103, else the routine continues at block 2104·. In block 2103, the routine distributes 

[03004-8005/SL003733.101] -34- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1243 of 1657



the message to the neighbors of this process through the internal ports and !then retwns. In 

block 2104, the routine invokes the handle connection port search routine an~ then returns. 

Figure 22 is a flow diagram illustrating the processing of the iJemal dispatcher 

routine in one embodiment. This routine is passed an indication of the neighbor who sent the 
I 

s internal message. In block 2201, the routine receives the internal message. This routine 

identifies the message type and invokes the appropriate routine to handle hte message. In 
. I 

block 2202, the routine assesses whether to change the estimated diameter !of the broadcast 

channel based on the information in the received message. In decision bl~ck 2203, if this 
! 

process is the originating process of the message or the message has alrea4y been received 

10 (i.e., a duplicate), then the routine ignores the message and continues at bto6k 2208, else the 
I 

routine continues at block 2203A In decision block 2203~ if the pr~ess is partially 

connected, then the routine continues at block 2203B, else the routine 4tinues at block 

2204. In block 2203B, the routine adds the message to the pending conn9ction buffer and 

continues at block 2204. In decision blocks 2204-2207, the routine deco~es the message 

15 type and invokes the appropriate routine to handle the message. For exaqtple, in decision 
I 

block 2204, if the type ofthe message is broadcast statement (i.e., broadca~t_stmt), then the 

routine . invokes the handle broadcast message routine in block 2205. ~er invoking the 

appropriate handling routine, the routine· continues at block 2208. In decisi~n block 2208, if 

the partially connected buffer is full, then the routine continues at . bloc~ 2209, else the 
! 

20 routine continues at block 2210. The broadcaster component collects I• all its internal 
' I 

messages in a· buffer while partially connected so that it can forward thf messages as it 

connects to new neighbors. If, however, that buffer becomes full, then the jprocess assumes 

that it is now fully connected and that the expected number of connectio*s was too high. 

because the broadcast channel is now in the small regime. In block 2209, th+ routine invokes 

25 the achieve connection routine and then conti.D.ues in block 2210. In decisi~n block 2210, if 

the application program message queue is empty, then the routine returns,j else the routine 

continues at block 2212. In block 2212, the routine invokes the receive response routine 

passing the acquired message and then returns. The received response rou~e is a callback 
I 

routine of the application program. 

30 Figure 23 is a flow diagram illustrating the processing of the pandle broadcast 
. I 

message routine in one embodiment. This routine is passed an indication ~f the originating 

process, an indication of the neighbor who sent the broadcast message, ~d the broadcast 

[03004-800S/SL003733.101) -35- i 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1244 of 1657



j 

message itself. In block 2301, the routine performs the out of order prqcessing for this 
! 

message. The broadcaster component queues messages from each originating process until it 
I 

can send them in sequence number order to the application program. In ~lock 2302, the 

routine invokes the distribute broadcast message routine to forward the lmessage to the 
I 
I 

5 neighbors of this process. In decision block 2303, if a newly connected ne~bor is waiting 

to receive messages, then the routine continues at block 2304, else the ro~tine returns. In 
I 

block 2304, the routine sends the messages in the correct order if p~ssible for each 
; 

originating process and then returns. 

Figure 24 is a flow diagram illustrating the processmg qf the distribute 

10 broadcast message routine in one embodiment. This routine sends the broa~cast message to 

each of the neighbors of this process, except for the neighbor who sent thet message to this 

process. In block 2401, the routine selects the next neighbor other than t4e neighbor who 

sent the message. In decision block 2402, if all such neighbors have alrea4y been selected, 

then the routine returns. In block 2403, the routine sends the message[ to the selected 

15 neighbor and then loops to block 2401 to select the next neighbor. 

Figure 26 is a flow diagram illustrating the processing of the hfndle connection 

port search statement routine in one embodiment. This routine is passed an Fdication of the 

neighbor that sent the message and the message itself. In block 2601, the ro~tine invokes the 

distribute internal message which sends the message to each of its neighbots other than the 

20 sending neighbor. In decision block 2602, if the number of holes of this Jtocess is greater 

than zero, then the routine continues at block 2603, else the routine renutns. In decision 

block 2603, if the requesting process is a neighbor, then the routine continu's at block 2605, 

else the routine continues at block 2604. In block 2604, the routine ~vokes the court 
; 

neighbor routine and then returns. The court neighbor routine connects tNs process to the 

25 requesting process if possible. In block 2605, ifthis process has one hole, tlten the neighbors 

with empty ports condition exists and the routine continues at block 2606,: else the routine 

returns. In block 2606, the routine generates a condition check message (i.e., 

condition_check) that includes a list of this process' neighbors. In block 4607, the routine 

sends the message to the requesting neighbor. 

30 Figure 27 is a flow diagram illustrating the processing of the court neighbor 

routine in one embodiment. This routine is passed an indication of the prospective neighbor 

for this process. If this process can connect to the prospective neighbor, then it sends a port 

[03004-800S/SL003733.101] -36- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1245 of 1657



connection call external message to the prospective neighbor and adds I the prospective 
I 

neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a 
! 

neighbor, then the routine returns, else the routine continues at block 2702J In block 2702, 
. I 

the routine dials the prospective neighbor. In decision block 2703, if the n$lber of holes of 

s this process is greater than zero, then the routine continues at block 2704,! else the routine 

continues at block 2706. In block 2704, the routine sends a port connec~on call external 
\ 

message (i.e., port_connection_call) to the prospective neighbor and receives its response 

(i.e., port_ connection _resp ). Assuming the response is successfully receive~ in block 2705, 

the routine adds the prospective neighbor as a neighbor of this process by ~voking the add 

10 neighbor routine. In block 2706, the routine hangs up with the prospect and ~en returns. 

Figure 28 is a flow diagram illustrating the processing of the hFdle connection 

edge search call routine in one embodiment. This routine is passed a jpdication of the 

neighbor who sent the message and the message itself. This routine ei14er forwards the 
' 

message to a neighbor or proposes the edge between this process and the seqding neighbor to 

ts the requesting process for edge pinning. In decision block 2801, if this ptocess is not the 
' 

requesting process or the number of holes of the requesting process is stilf greater than or 

equal to two, then the routine continues at block 2802, else the routine c9ntinues at block 

2813. In decision block 2802, if the forwarding distance is greater th1 zero, then the 

random walk is not complete and the routine continues at block 2803, else the routine 

20 continues at block 2804. In block 2803, the routine invokes the f01ward ~onnection edge 

search routine passing ·the identification of the requesting pr. ocess and ~.e decremented 

forwarding distance. The routine then continues at block 2815. In decisicf block 2804, if 

the requesting process is a neighbor or the edge between this process ~d the sending 

neighbor is reserved because it has already been offered to a process, ~en the routine 

25 continues at block 2805, else the routine continues at block 2806. In block ~805, the routine 

invokes the forward connection edge search routine passing an indication Of the requesting 

party and a toggle indicator that alternatively indicates to continue the rand9m walk for one 

or two more computers. The routine then continues at block 2815. In iblock 2806, the 

routine dials the requesting process via the call-in port. In block 2807, the routine sends an 

30 edge proposal call external message (i.e., edge _proposal_ call) and receives ~e response (i.e., 

edge _proposal _resp ). Assuming that the response is successfully receiyed, the routine 

continues at block 2808. In decision block 2808, if the response indicates I that the edge is 

[03004-800SISL003733.101] -37- i 7131/00 

' 

I 

I. 
j 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1246 of 1657



acceptable to the requesting process, then the routine continues at bloc¥ 2809, else the 

routine continues at block 2812. In block 2809, the routine reserves the epge between this 

process and the sending neighbor. In block 2810, the routine adds the requesting process as 

a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the 

s sending neighbor as a neighbor. In block 2812, the routine hangs up the t:xtemal port and 

continues at block 2815. In decision block 2813, if this process is the reque~ting process and 

the number of holes of this process equals one, then the routine continues a1i block 2814, else 

. the routine continues at block 2815. In block 2814, the routine invokes the! fill hole routine. 

In block 2815, the routine sends an connection edge search response message {i.e., 
I 

10 connection..:.edge_search_response) to the sending neighbor indicating ackn~wledgement and 

then returns. The graphs are sensitive to parity. That is, all possible pa~s starting from a 
I 

node and ending at that node will have an even length unless the graph 11fs a cycle whose 

length is odd. The broadcaster component uses a toggle indicator to vary ~e random walk 

distance between even and odd distances. ! 

15 Figure 29 is a flow diagram illustrating the processing of the h[andle connection 

edge search response routine in one embodiment. This routine is passed as I indication of the 

requesting process, the sending neighbor, and the message. In block 2901, !fue routine notes 
' 

that the connection edge search response (i.e., connection_edge_searchlresp) has been 

received and if the forwarding distance is less than or equal to one ~serves the edge 

20 between this process and the sending neighbor. In decision block 2902, ~f the requesting 
! 

process indicates that the edge is acceptable as indicated in the message, t then the routine 

continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge 

between this process and the sending neighbor. In block 2904, the rou~e removes the 

sending neighbor as a neighbor. In block 2905, the routine invokes tht court neighbor 

25 routine to connect to the requesting process. In decision block 2906, if th9 invoked routine 

was unsuccessful, then the routine continues at block 2907, else the ro~ne returns. In 

decision block 2907, if the number of holes of this process is greater th~ zero, then the 

routine continues at block 2908, else the routine returns. In block 2908, ·~routine invokes 

the fill hole routine and then returns. 

30 Figure 30 is a flow diagram illustrating the processing of the ~roadcast routine 

in one embodiment. This routine is invoked by the application progralljl to broadcast a 

message on the broadcast channel. This routine is passed the message to ~e broadcast. In 

f03004-800S/SL003733.101] -38- 7/Jl/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1247 of 1657



decision block 3001, if this process has at least one neighbor, then the routine continues at 

block 3002, else the routine returns since it is the only process connected! to be broadcast 

channel. In block 3002, the routine generates an internal message of the brqadcast statement 

type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the 

5 message. In block 3004, the routine invokes the distribute internal me~sage routine to 

broadcast the message on the broadcast channel. The routine returns. 

lO 

15 

20 

25 

30 

Figure 31 is a flow diagram illustrating the processing of the acquire message 

routine in one embodiment. The acquire message routine may be invoked by the application 

program or by a callback routine provided by the application program. This iroutine returns a 

message. In block 3101, the routine pops the message from the messare queue of the 

broadcast channel. In decision block 3102, if a message was retrieved, k:hen the routine 
1 

returns an indication of success, else the routine returns indication of failure. i 
I 

Figures 32-34 are flow diagrams illustrating the process~g of messages 

associated with the neighbors with empty ports condition. Figure 32 is I a flow diagram 

illustrating processing of the handle condition check .message in one em~odiment This 
i 

message is sent by a neighbor process that has .one hole and has received a request to connect 
I . 

to a hole of this process. In decision block 3201, if the number of holes qf this process is 

equal to one, then the routine continues at block 3202, else the neighbors ~th empty ports 
I 

condition does not exist any more and the routine returns. In decision bl~ck 3202, if the 

sending neighbor and this process have the same set of neighbors, the routme continues at 

block 3203, else the routine continues at block 3205. In block 3203, the ro.tine initializes a 

condition double check message (i.e., condition_double_check) with the lisJ of neighbors of 

this process. In block 3204, the routine sends the message internally to a ne~bor other than 

sending neighbor. The routine then returns. In block 3205, the routine sele~ts a neighbor of 

the sending process that is not also a neighbor of this process. In block ~206, the routine 

sends a condition repair message (i.e., condition_repair_stmt) extemallyj to the selected 

process. In block 3207, the routine invokes the add neighbor routine to ~dd the selected 

neighbor as a neighbor of this process and then returns. 
I 

Figure 33 is a flow diagram illustrating processing of the ~die condition 

repair statement routine in one embodiment. This routine removes an exis~ng neighbor and 

connects to the process that sent the message. In decision block 3301, if~ process has no 

holes, then the routine continues at block 3302, else the routine continues at block 3304. In 
. I 

[03004-BOOS/SL003733.101] -39- i 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1248 of 1657



block 3302, the routine selects a neighbor that is not involved in the neigh~ors with empty 

ports condition. In block 3303, the routine removes the selected neighbor .sa neighbor of 
I 

this process. Thus, this process that is executing the routine now has at le,st one hole. In 

block 3304, the routine invokes the add neighbor routine to add the process that sent the. 

5 message as a neighbor of this process. The routine then returns. 

Figure 34 is a flow diagram illustrating the processing of the litandle condition 
I 

double check routine. This routine determines whether the neighbors ~th empty pons 
I 

condition really is a problem or whether the broadcast channel is in the s~all regime. In 

decision block 3401, if this process has one hole, then the routine continue~ at block 3402, 

10 else the routine continues at block 3403. If this process does not have one ~ole, then the set 

of neighbors of this process is not the same as the set of neighbors of the sen~ing process. In 
I 

decision block 3402, if this process and the sending process have the same ~et of neighbors, 
i 

then the broadcast channel is not in the small regime and the routine continu~s at block 3403, 
. ! 

else the routine continues at block 3406. In decision block 3403, if this proc~ss has no holes, 
I 

15 then the routine returns, else the routine continues at block 3404. In block ~404, the routine 

sets the estimated diameter for this process to one. In block 3405, the rou~e broadcasts a 

diameter reset internal message (i.e., diameter _reset) indicating that the es~ated diameter is 

one and then returns. In block 3406, the routine creates a list of neighbors ot1 this process. In 

block 3407, the routine sends the condition check message (i.e., condition_dheck_stmt) with 

20 the list of neighbors to the neighbor who sent the condition double check nl.essage and then 
' 

returns. 

From the above description, it will be appreciated .that ~though specific 

embodiments of the teclmology have been described, various modificatio~ may be made 
I 

without deviating from the spirit and scope of .the invention. Fot example, the 

25 communications on the broadcast channel may be encrypted. Also, the chfmel instance or 

session i.denti.fier may be a very large number( e.g., 128 bits) to help preventan unauthorized 

user to maliciously tap into a broadcast channel. The portal computer y also enforce 

security and not allow an unauthorized user to connect to the bro dcast channel. 
I 

Accordingly, the invention is not limited except by the claims. · 

{03004-800,/SL003733.1 011 -40- 7131/00 

i ' 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1249 of 1657



2 

3 

4 

6 

7 

8 

9 

10 

II 

CLAIMS 

1. A method in a computer for locating a computer tqrough which to 

connect to a network, the method comprising: 

providing an identification of a portal computer, the jportal computer 
I 

having communications ports with one of the communications ports b~ing enabled for 

communications when the portal computer is in a state to coordinate the j connection of a 

seeking computer to the network; 

repeatedly selecting a communications port of the po~al computer and 
! 

attempting to communicate with the selected communications port until the!communications 

with the selected communications pon is successful; and 
l 

using the selected communications port to request that the portal 

computer coordinate the connecting of the computer to the network. 

' 
2. The method of claim 1 wherein the communications po1s are selected in 

2 an order that is the same as used by the portal computer when it selected a !communications 

3 port. 

I 

3. The method of claim 1 wherein the communications ~orts are selected 

2 based on a hashing algorithm ordering. 

4. The method of claim 3 wherein the hashing algorithm drdering provides 
I 

2 an ordering ·in which each communications pon is selected without re-selecting a 

3 communications port. 

5. The method of claim 3 wherein the hashing algoripun ordering is 

2 modified to reduce conflicts with other seeking computer that use th~ same hashing 

3 algorithm. 

[03004-KOOSISI,ll03733.1 011 -41- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1250 of 1657



6. The method of claim 5 wherein a number of the first ~ommunications 

2 ports ordered by the hashing algorithm are reordered. 

7. The method of claim I wherein the identification of a p~urality of portal 
I 

2 computers is provided and when a communications port is selecte<4 attempting to 

3 communicate with each of the identified portal computers through the selected 

4 communications port before selecting the next communications port. 

8. The method of claim I wherein the communications ports are TCPIIP 

2 ports. 

9. A method in a computer system for locating a co~unications port, 

2 each communications port having a port number, the method comprising: 

3 providing an ordering of the communications ports ~at is not port 

.4 number sequential; and 

s until a communications port through which a co*ection can be 

6 established is found, 

7 selecting the next communications port iin the provided 

s order; and 

9 detennining whether a connection can: be established 

10 through the selected communications port. 

10. The method of claim 9 wherein the ordering is provi~ed by a hashing 

2 algorithm. 

11. 

2 port. 

The method of claim 9 wherein the communications torts are TCPIIP 

12. The method of claim 9 wherein the communications ~arts are ports of 

2 another computer. 

(03004-800S/SL003733.10 I] -42- 7/31/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1251 of 1657



13. The method of claim 12 wherein the other computer uses the same 

2 provided ordering of communications ports when selecting its conunwricatiohs port. 

2 

1 

2 

3 

4 

2 

I 

I 

14. The method of claim 9 including reordering some iportions of the 

provided ordering of the communications ports. I 
I 

15. A data structure transmitted on a communications c~el comprising a 
i 

sequence of messages, each message in the sequence identifying a comm~cations port of a 

computer system, whereby a hashing algorithm is used to order the iddtification of the 

communications ports in the sequence of messages. I 
I 

I 
i 

16. The data structure of claim 15 wherein each mesFage requests a 

connection to a receiving computer via the identified communications port. ! 

17. The data structure of claim 15 wherein the messa~es are TCPIIP 

2 messages. 

18. The data structure of claim 15 wherein the communic~tions channel is 

2 the Internet. 

i 
19. The data structure of claim 15 wherein the sequence offnessages is used 

2 to locate a portal. computer through which a sending computer can request ~ connection to a 

3 broadcast channel. 

! 

20. A computer network having a plurality of participants, leach participant 
I 

2 having connections to neighbor participants, wherein a participant locates a !communications 

3 port of a portal computer by repeatedly selecting a communications p~rt of the portal 

4 computer and attempting to communicate with the selected communicatio~s port until the 

s communications with the selected communications port is successful. 

[030Q4..800~/SL003733.101 I -43- 7131{00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1252 of 1657



21. The computer network of claim 20 wherein the selecting of the 

2 communications ports is ordered according to a function. 

22. The computer network of claim 21 wherein the portal c~mputer uses the 

2 same function to order its selection of a communications port. 

23. The computer network of claim 20 wherein an originating participant 

2 sends data to the other participants by sending the data through each of its cbnnections to its 

3 neighbor participants, wherein when each participant sends data that it receives from a 

4 neighbor participant to its other neighbor participants. 

i 
24. The computer network of claim 20 wherein eacllt participant is 

2 connected to 4 other participants. 

25. The computer network of claim 20 wherein eac' participant 1s 

2 connected to an even number of other participants. 

1 26 The computer network of claim 20 wherein the netwqrk is m-regular, 

2 where m is the number of neighbor participants of each participant. 
I 

I 
27. The computer network of claim 26 wherein the networ~ is m-connected, 

I 

2 where m is the number of neighbor participants of each participant. [ 
I 

I 
28. The computer network of claim 20 wherein the netwprk is· m-regular 

2 and m-connected, where m is the number of neighbor participants of each p~cipant. 

29. 

30. 

2 peer coiUtections. 

[03004-80051SL003733.10lj 

I 
i 

I 

l 
The computer network of claim 20 wherein all the partifipants are peers. 

I 
The computer network of claim 20 wherein the connec~ons are peer-to-

-44- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1253 of 1657



31. The computer network of claim 20 wherein the conn~ctions between 

2 neighbor computers are point-to-point. 

32. The computer network of claim 20 wherein the connectlions are TCP/IP 

2 connections. 

3 3. A component in a computer system for locating a colDlhunications port 

2 of a portal computer, comprising: 

3 means for identifying the portal computer, the portal coptputer having a 

4 dynamically selected communications port for communicating with other co,puters; and 

5 means for identifying the communications port of the ~dentifted portal 

6 computer by repeatedly trying to establish a connection with the identified jportal computer 

1 through communications ports until a connection is successfully established. · 

34. The component of claim 3 3 wherein the communic4ttions ports are 

2 trying in an order that is the same as used by the portal computer when it d~amically selects 

3 a communications· port. 

2 

2 

3 

2 

2 

35. The component·of claim 33 wherein the communicatio*s ports·are tried 

based on a hashing algorithm ordering. 

' 
36. The component of claim 35 wherein the hashing al~orithm ordering 

provides an ordering in which each communications port is tried wiarout re-trying a 

communications port. I 
; 
j 
i 
t 

37. The component of claim 35 wherein the hashing algo+thm ordering is 

modified to reduce conflicts with other computers that use the same hashing ~gorithm. 

38. The component of claim 37 wherein a numbek- of the fast 

communications ports ordered by the hashlng algorithm are reordered. 

[03004-IIOOS/SL003733.101) -45- 7131/00 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1254 of 1657



39. The component of claim 33 including: 

2 means for identifying a plurality of portal computers; an~ 

3 means for trying to establish a connection with each ~f the identified 
' 

4 portal computers through a certain communications port before tljying the next 

s communications port. 

1 40. The component of claim 33 wherein the communications ports are 

2 TCPIIP ports. 

I . 
I . 

[ 03004-8003/SL003733.1 0 I] -46- 7131100 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1255 of 1657



i 

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1256 of 1657




