TO AL TO WHOMTHESE; PRESENTS,; SHATL, COMI:S

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

June 29, 2015

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE
RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS
OF: '

APPLICATION NUMBER: 09/629,577
FILING DATE: July 31, 2000
PATENT NUMBER: 6,732,147

ISSUE DATE: May 04, 2004

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United States Patent and Trademark Office

Ex. 1002

M. TARVER Volume 4

Certifying Officer
PART (4) OF (¢) PART(S)

W 3 S AL

R
T U ORI RE R R

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 960 of 1657

dkumar
Typewritten Text
Ex. 1002
Volume 4

dkumar
Typewritten Text

dkumar
Typewritten Text

10

15

20

25

30

The underlying peer-to-peer communications protocol may send muitiple
messages in a single message stream. The traditional technique for retrieving messages from
a stfcam has been to rcpeatedly invoke an operating system routine to fretrieve the next
message in the stream. The retrieval of each message may require two callk to the operating
system: one to retrieve the size of the next message and the other to retrieve the number of
bytes indicated by the retrieved size. Such calls to the operating system can, howevcr,' be
very slow in comparison to the invocations of local routines. To overcome /the inefficiencies
of such repeated calls, the broadcast technique in one embbdinient, uses XIDR to identify the
message boundaries in a stream of messages. The broadcast technique may request the
operating system to providé the next, for example, 1,024 ﬁy‘tes from the stream. The

broadcast technique can then repeatedly invoke the XDR routines to retriéve the messages
and use the success or failure of each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system The invocation of [XDR routines do
not involve system calls and are thus more efficient than repeated system calls. -
M-Reggja: ’ |
In the embodiment described above, each fully connected computer has four
internal connections. The broadcast technique can be used with other numbers of internal
connections. For example, each computer could have 6, 8, or any even number of internal

connections. As the number of internal connections increase, the diameter of the broadcast

channel tends to decrease, and thus propagation time for a message tends

increase as the number of internal connections increases. When the n

connectors is even, then the broadcast channel can be maintained

broadcast channel, it can again become m-regular and m-connected.
number of internal connections, the broadcast channel toggles between bei

m-regular and m-connected.

{03004-8001/8L003733.107] -21- 3L00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 961 of 1657

10

15

20

25

30

Components
" Figure 6 is a block diagram illustrating components of a fomputer that is

connected to a broadcast channel. The above description generally assumed that there was
only one broadcast channel and that each computer had only one connection; to that broadcast

channel. More generally, a network of computers may have multiple broadcast channels,
each computer may be connected to more than one broadcast cha;mel, d each computer

can have multiple connections to the same broadcast channel. The broadca 5t channel is well
boratively, such

suited for computer processes (e.g., application programs) that execute col
as network meeting programs. Each computer process can connect to one gr more broadcast
channels. The broadcast channels can be identified by channel type {e.g., application
program name) and channel instance that represents sepa:rate ‘broadcast ¢hannels for that
channel type. When a process attempts to connect to-a broadcast chanhel, t seeks a process
currently connected to that broadcast channel that is cxecuting on a portal computer. The
seeking process identifies the broadcast.channel by channel type alid chann instaxice.
Computer 600 includes multiple application programsk 1 executing as
separate processes. Each application program iﬁterféceé with a broadcaste compdnent 602
for each broadcast channel to which it is connected. The broadcaster component may be
implement as an object that is instantiated within' the process space of the application
program. Alternatively, the broadcaster component -may execute as a separate process or
thread from the application program. In one embodiment, the broadcaster component
provides functions (e.g., methods of class) that can be invoked by the application programs.
The primary functions provided may include a connect function that an application program
invokes passing an indication of the broadcast channel to which the ap lication program
wants to connect. The application program may provide a callback routine that the
broadcaster component invokes to notify the application program that th¢ connection has
The broadcaster
component may also provide an acquire message function that the application program can
invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,
virtual function
provided by the application program) that the broadcaster component invokes to notify the
application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at
[03004-2001/5L.003733.167) ~22~ 3100

been completed, that is the process enters the fully comnected state.

the application program may provide a callback routine (which may be

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 962 of 1657

10

15

20

25

30

the call-in port, they are transferred to other ports that serve as the external and internal
ports. _

The computers connecting to the broadcast channel may include a central
processing unit, memory, input devices (e.g., keyboard and pointing device)), output devices
(e.g., display devices), and storage devices (e.g., disk drives). The memory and storage
devices are computer-readable medium that may contain computer instructions that
implement the broadcaster component. In addition, the data structures and message
structures may be stored or transmitted via a signal transmitted on a computer-readable

media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster
component in one embodiment. The broadcaster component includes a connect component
701, an external dispatcher 702, an internal dispatcher 703 for each intern v'connection, an
acquire message compdnént 704 and a broadcast component 712. The application program
may provide a connect callback componént 710 and a receive response corhponent 711 that
are invoked by the broadcaster component. The application program invpkes the connect
component to establish a connection to a designated broadcast channel. The connect
component identifies the external port and installs the external dispatchér for handling
messages that are received on the external port. The connect component nvokes the seek

portal computer component 705 to identify a portal computer that is ¢onnected to the

broadcast channel and invokes the connect request component 706 to ask the portal computer
(if fully connected) to. select neighbor processes for the newly connecting process. The
external dispatcher receives external messages, identifies the type of message, and invokes
the appropriate handling routine 707. The internal dispatcher receives the internal messages,
identifies the type of message, and invokes the appropriate handling routine 708. The
received broadcast messages are stored in the broadcast message queue 709. The acquire
message component is invoked to retrieve messages from the broadcast queue. The
broadcast component is invoked by the application program to broadcast| messages in the

broadcast channel.

A Distributed Game Environment

In one embodiment, 2 game environment is implemented | using broadcast

channels. The game environment is provided by a game application program executing on

[03004-8001/5L003733.107] -23- 73100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 963 of 1657

10

each player’s computer that interacts with a broadcaster component. Eth player joins a

game (e.g., a first person shooter game) by connecting to the broadcast ¢
game is played. Each time a player takes an action in the game a message

el on which the
representing that

action is broadcast on the game’s broadcast channel. In. addition, a

layer may send

messages (e.g., strategy information) to one or more other players b broadcasting a

message. When the game application program receives an indication of |an action, either

received on the broadcast channel or generated by the player at this comp
current state of the game. The game may terminate when one of the players
score, defeats all other players, all players leave the game, and so on.

ter, it updates its
reaches a certain

To facilitate the creation of games for the game environment, an application

programming 'interface (“API") is provided to assist game developers. The

API may provide

high-level game functions that would be used by most types of first persop shooter games.
For example, the API may includey functions for indicating that a player has moved to a new

position, for shooting in a certain direction, for reporting a score, for announcing the arrival

15

20

25

30

and departure of players, for sending a message to another player, and so on

The game environment may provide a game web sitethrou‘fh

can view the state of current games and register new games. The game

which players

eb server would

include a mapping between each game and the broadcast channel on which the' game is to be:

played. When joining a game, the user would download the broadcaster ¢
game application program from the web server.

mponent and the

The user would aldo download the

description of the game, which may include the graphics for the game. | The web server

“would also provide the channel type and channel instance associated with the game and the

identification of the portal computers for the game. The game environment may also have a
game monitor computer that connects to each game, monitors the activity jof the game, and
reports the activity to the web server. With this activity information, the web server can

provide information on the current state (e.g., number of players) of each g
The game environment may also be used for games other

shooter games. For example, a variation of a society simulation game can

€.
than first person
be played where

players sign up for different roles. If a role is unfulfilled or a player if that role is not

playing, then an automated player can take over the role.

The following tables list messages sent by the broadcaster components.

[03004-8001/SL003733.107] -24-

7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 964 of 1657

EXTERNAL MESSAGES

Message Type , Description

seeking_conmection_call | Indicates that a seeking process would like to lzndﬁw whether the
receiving process is fully connected to the broadcast channel

connection_request_call | Indicates that the sending process would like the receiving
: ' process to initiate a connection of the sending process to the
broadcast channel

edge_proposal_call Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
channel (i.c., edge pinning) ‘

port_connection_call Indicates that the sending process is proposing a|port through

‘ which the receiving process can connect to the broadcast

channel

connected_stmt Indicates that the sendmg process is connected to the broadcast

' ' channel T

condition_repair_stmt Indicates that the receiving process shonld dlscojmect from one
of its neighbors and connect to one of the processes involved in

the neighbors with empty port condition

INTERNAL MESSAGES
Message Type Description ,
broadcast_stmt Indicates a message that is being broadcast through the

broadcast channel for the application programs

connection_port_search_stmt | Indicates that the designated process is looking for a port
through which it can connect to the broadcast channel

connection_edge_search_call | Indicates that the requesting process is looliisng for an edge
through which it can connect to the broadcast channel

connection_edge_search_resp | Indicates whether the edge between this process and the
sending neighbor has been accepted by the requesting
party

diameter_estimate_stmt Indicates an estimated diameter of the broadcast channel

diameter_reset_stmt Indicates to reset the estimated diameter to findicated
diameter

disconnect_stmt Indicates that the sending neighbor is disconnecting from
the broadcast channel

condition_check stmt Indicates that neighbors with empty port condition have

{03004-8001/SL003733.107] -25- 73100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 965 of 1657

10

15

20

25

been detected -

condition double check stmt |Indicates that the neighbors with empty ports have the
same set of neighbors

shutdown_stmt Indicates that the broadcast channel is being shutdown

Flow Diagrams , ; |
Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the

" connect routine in one embodiment. This routine is passed a channel type (e.g., application

name) and channel instance (e.g., session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also passed. auxiliary |information that
inctudes the list of portal computers and a connection callback routine. When the connection
is established, the connection callback routine is invoked to notify the application 'program;
When this process invokes this routine, it is in the secking connection state, When a portal
computer is located that is connected ‘and this routine connects to at least one neigthr, this

process enters the partially connected state, and when the process eventually| connects to four

neighbors, it enters the fully connected state: When in the small regime, a fully connected

process may have less than four neighbors. In block 801, the routine opens the call-in port

algorithm described above. In block 802, the routine sets the connect ti
time. The connect time is used to identify the instance of the process
through this external port. One process may connect to a broadcast ch

process may then connect to that same broadcast channel using the same
the other process becomes fully connected, another process may try to co:
thinking it is the fully connected old process. In such a case, the connect time can be used to
identify this situation. In block 803, the routine invokes the seek portal ¢omputer routine
passing the channel type and channel instance. The seek portal computer roptine attempts to
locate a portal computer through which this process can connect to the bmmLl

the passed type and instance. In decision block 804, if the seek portal computer routine is

cast channel for

[03004-8001/5L003733.107) -26- 7731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 966 of 1657

10

15

20

25

30

successful in locating a fully connected process on that portal compuiet,
continues at block 805, else the routine returns an unsuccessful indication.

805, if no portal computer other than the portal computer on which the pro
was located, then this is the first process to fully connect to broadcast
routine continues at block 806, else the routine continues at block 808. I

routine invokes the achieve connection routine to change the state of this

then the routine
n decision block
cess is executing
channel and the
n block 806, the
process to fully

connected. In block 807, the routine installs the external dispatcher for pro

essing messages

received through this process’ external port for the pa;ssed‘ Channel type and hannel instance.

When a message is received through that external port, the external dispatcher is invoked.
The routine then returns. In block 808, the routine installs an external dispatcher. In block

809, the routine invokes. the comnect request routine to initiate the proce

neighbors for the seekmg computer. The routme then returns.

Figure 9 is a flow diagram 1llustraung the processing of
computer routine in one embodiment. This routine is passed the channel t
instance of the broadcast channel to which this process wishes to connect.
each search depth (é.g., port number), checks the portal computers at that s

s of identifying

the seek portal
ype and channel
This routine, for
arch depth. Ifa

portal computer is located at that search depth with a process. that is fully connected to the
broadcast channel, then the routine returns an indication of success. In blocks 902-911, the

routine loops selecting each search depth until a process is located. In bloc
selects the next search depth using a port number ordering algorithm. In de
if all the search depths have already been selected during this execution of

for the currently selected depth, then the routine returns a failure indication

continues at block 904. In blocks 904-911, the routine loops selecting each
and determining whether a process of that portal computer is connected to

1902, the routine
cision block 903,
the loop, that is
else the routine
portal computer
(or attempting to

connect to) the broadcast channel with the passed channel type and chmIcl instance. In

block 904, the routine selects the next portal computer. In decision blo

portal computers have already been selected, then the routine loops to block
next search depth, else the routine continues at block 906. In block 906, the
selected portal computer through the port represented by the search depth. |
907, if the dialing was successful, then the routine continues at block 908|
loops to block 904 to select the next portal computer. The dialing will be
dialed port is the call-in port of the broadcast channel of the passed channel

[03004-8001/SL003733.,107] -27-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 967 of 1657

905, if all the
902 to select the
routine dials the
In decision block

else the routine
successful if the
type and channel

73100

10

15

20

x5

30

instance of a process executing on that portal computer. In block 908, the

routine invokes a

contact process routine, which contacts the answering process of the portal computer through

the dialed port and determines whether that. process is fully connected
channel. In block 909, the routine hangs up on the selected portal compt
block 910, if the ansvéexing process is fully connected to the broadcast ¢
routine returns a successkindicator, else the routine continues at block 911.
routine invokes the check for external call routine to determine whether an
been made to this process as a portal computer and processes that call.
loops to block 904 to select the next portal computer.

to the broadcast
iter. In decision
thannel, then the
In block 911, the
‘exterrnal call has
The routine then

Figure 10 is a flow diagram illustraﬁng the processing of ﬂi

routine in one embodiment. This routine determines whether the proce
portal computer that answered the call-in to the seleéted port is fully
broadcast chanmel. In block 1001, the routine sends an externa]
seeking connection_call) to the answering process indicaﬁng that a seeking
know whether the answering 'procéss is fully connected to the broadcast ¢
1002, the routine receives the external response message from the answe

decision block 1003, if the external response message is successfull

contact process-
of the selected
sonnected to the
‘message (i.e.,
process wants to
hannel. In block
ring process. In

y received (ie.,

seeking_connection_resp), then the routine continues at block 1004, else the routine returns.

Wherever the broadcast component requests to receive an external message,
period. If the external message is not received within that time out period
component checks its own call-in port to see if another process is calling it.

it sets a time out
|, the broadcaster
In particular, the

dialed process may be calling the dialing process, which may result in a deadlock situation.

The broadcaster component may repeat the receive request several times.

If the expected

message is not received, then the broadcaster component handles the error 515 appropriate. In

decision block 1004, if the answering process indicates in its response mes
connected to the broadcast channel, then the routine continues at block 1004
continues at block 1006. In block 1005, the routine adds the selected porf
list of connected portal computers and then returns. In block 1006, the

answering process to a list of fellow seeking processes and then refurns.

Figure 11 is a flow diagram illustrating the processing of the

ge that it is fully
}, else the routine

al computer to a
routine adds the

connect request

routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the connection of this

{03004-8001/5L003733.107] -28-

7731400

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, V

ol. 4, p. 968 of 1657

10

15

20

25

30

process to the broadcast channel. In decision block 1101, if at least one process of a portal
computer was located that is fully connected to the broadcast (;hannel, then the routine
continues at block 1103, else the routine continues at block 1102. A progess of the portal
computer may no longer be in the list if it recently disconnected from the broadcast channel.

In one embodiment, a seeking computer may always search its entire se:
multiple portal computers through which it can connect to the broadcast !
1102, the routine restarts the process of connecting to the broadcast channel and returns. In
block 1103, the routine dials the process of one of the found poftal computers through the
call-in port. In decision block 1104, if the dialing is successful, then the rolitine continues at

block 1105, else the routine continues at block 1113. The dialing may be

successful if, for

example, the dialéd process recently disconnected from the broadcast channel. In block

1105, the routine sends an external message to the dialed process requestin
the broadcast channel (i.e., connection_request_call). In block 1106, the ro
response message (i.e., connection. request_resp). In decision block 1107
message is successfully received, then the routine continues at block 110
continues at block 1113. In block 1108, the routine sets the expected n
empty internal connections) for this processl based on the received respo
large regime, the expected number of holes is zero. When in the small re

' a connection to
tine receives the

/, if the response -

e. When in the
e, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated-
diameter of the broadcast channel based on the received response. In decision block 1111, if

the dialed process is ready to connect to this process as indicated by the response message,

then the routine continues at block 1112, else the routine continues at bloc
1112, the routine invokes the add neighbor routine to add the amswer]
neighbor to this process. This adding of the answering process typically

1113. In block
ing process as a

occurs when the

broadcast channel is in the small regime. When in the large regime, the random walk search

for a neighbor is performed. In block 1113, the routine hangs up the ex
with the answering process computer and then returns.
Figure 12 is a flow diagram of the processing of the check

routine in one embodiment. This routine is invoked to identify whether

ternal connection

for external call
a fellow seeking

process is attempting to establish a connection to the broadcast channel thr&ugh this process.
In decision block

1202, if the answer is successful, then the routine continues at block 1203, else the routine
-29.

In block 1201, the routine attempts to answer a call on the call-in port.

[03004-8001/5L.003733.107] 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 969 of 1657

10

15

20

25

30

returns. In block 1203, the routine receives the external message from the external port. In
decision block 1204, if the type of the message indicates that a seeking process is calling -
(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message (i.e., seeking_gonnection_resp)
to the other seeking process indicating that this process is also is seeking a connection. In
decision block 1206, if the sending of the external message is successful,| then the r'out‘ineV
continues at block 1207, else the routine returns. In block 1207, ihe routine adds the other

seeking process to a list of fellow seeking processes and then returns. This|list may be used
if this process can find no process that is fully connected to the broadcést channel. In which
case, this process may check to see if any fellow seeking process were successful in
connecting to the broadcast channel: For example; a fellow seeking process may become the:
first process fully connected to the broadcast channel. B | '

Figure 13 is a flow dia'g:ram of the processing of the achieve ¢<;nnécﬁon routine

~ in one embodiment. This routine sets the state of this process to fully connected to the

broadcast channel and invokes a callback routine to notify the application jprogram that the
process is now fully connected to the requested broadcast channel. In|block 1301, the
block 1302, the

routine notifies fellow seeking processes that it is fully connected by sending a connected

roufine sets the connection state of this process to fully connected. In

external message to them (i.e., connected_stmt). In block 1303, the roytine invokes the
connect callback routine to notify the application program and thén returns.

Figure 14 is a flow diagram illustrating the processing
dispatcher routine in one embodiment.

of the external

This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine to handle that message. This routine

each message until all the received messages have been handled. In block

loops processing
1401, the routine

answers (e.g., picks up) the external port and retrieves an external mess

ge. In decision

block 1402, if a message was retrieved, then the routine continues at blogck 1403, else the
routine hangs up on the external port in block 1415 and returns. In decision block 1403, if

the message type is for a process seeking a connection (i.e., seeking_conn

ction_call), then

the routine invokes the handle seeking connection call routine in block 1404, else the routine

continues at block 1405. In decision block 1405, if the message type is

for a connection

request call (i.e., connection_request_call), then the routine invokes the handle connection

[03004-8001/SL003733.107] -30-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vo

7/31/00

l. 4, p. 970 of 1657

10

15

20

25

30

request call routine in block 1406, else the routine continues at block 1407. In decision
block 1407, if the message type is edge proposal call (i.e., edge_proposal_call), then the
routine invokes the handle edge proposal call routine in block 1408, glse the routine
continues at block 1409. In decision block 1409, if the message type is port connect call
(i.e., port_connect_call), then the routine invokes the handle port'cennecﬁjn call routine in
bldck 1410, else the routine continues at block 1411. In decision block 141 1, if the message
type is a connected statement (z e., connected_stmt), the routine invokes the handle

connected statement in block 1112, else the routine continues at block 1212. In decision

block 1412, if the message type is a condition repair- statement (i.e., condition repair_stmt),
then the routine invokes the handle condition repair routine in block 1413 else the routine
loops to block 1414 to process the next message. After each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the xternal port and .

continues at block 1401 to receive the next message.
, Figure 15 1s a flow diagram illustrating the processing of thi handle seeking
connection call routine in one embodtment This routine is invoked when seeking process.
is calling to identify a portal computer through which it can connect to the broadcast channel.

In decision block 1501, if this process is currently fully connected to the broadcast channel
identified in the message, then the routine continues at block 1502, else the
at block 1503. In block 1502, the routine sets a message to indicate that this process is fully

connected to the broadcast channel and continues at block 1505, In block 503, the routine

outine continues

sets a message to indicate that this process is not fully connected. In block 1504, the routine
adds the identification of the seeking process to a list of fellow seeking processes. If this
process is not fully comlected, then it is attempting to connect to the broadcast channel. In
block 1505, the routine sends the external message response (i.e., seeking_connection_resp)
to the secking process and then returns.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment. This routine is invoked when the calling process
wants this process to initiate the connection of the process to the broad
routine either allows the calling process to establish an internal connection (with this process
(e.g, if in the small regime) or starts the process of identifying a process to which the calling
process can connect. In decision block 1601, if this process is currently fully connected to
the broadcast channel, then the routine continues at block 1603, else the roytine hangs up on

[03004-8001/SL003733,107] -31- 7731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 971 of 1657

10

15

20

25

30

the external port in block 1602 and returns. In block 1603, the routine se
holes that the calling process.should expect in the response message. In]
routine sets the estimated diameter in the response message. In block }
indicates whether this process is ready to connect to the calling process.
ready to connect when the number of its holes is greater than zero and the
not a neighbor of this process. In block 1606, the routine sends to the ¢
external message that is responsive to the connection req
connection_request_resp). In block 1607, the routine notes the number

calling process needs to fill as indicated in the request message. In decisig

ts the number of
block 1604, the

605, the routine
This process is -

.L,alling process is

ling process an
est call (ie,
pf holes that the
on block 1608, if

this process is ready to connect to the calling process, then the routine continues at block

1609, else the routine continues at block 1611. In block 1609, the routine

invokes the add

neighbor:routine to add the calling process as a neighbor. In block 1610, the routine -

decrements the number of holes that the calling process needs to fill and ¢

pntinues at block

1611. In block 1611, the routine hangs up on the external port. In decisi
this procesé has no holes or the estimated diameter is greater than one

regime), then the routine continues at block 1613, else the routine continu
In blocks 1613-1615, the routine loops forwarding a request for an edge
connect to the calling process to the broadcast channel. One request is fo
pair of holes of the calling process that needs to be filled. In decision b
number of holes of the calling process to be filled is greater than or eq
routine continues at block 1614, else the routine continues at block 1616.
routine invokes the forward connection edge search routine. The invoked
to an indication of the calling process and the random walk distance. In on
distance is twice in the estimated diameter of the broadcast channel.
routine decrements the holes left to fill by two and loops to block 1613.
1616, if there is still a hole to fill, then the routine continues at block 161
returns. In block 1617, the routine invokes the fill hole routine passing th
the calling process. The fill hole routine broadcasts a connection port sear
connection_port_search_stmt) for a hole of a connected process through

process can connect to the broadcast channel. The routine then returns.

n block 1612, xf
ie., in the large
s at block 1616.

ock 1613, if the
to two, then the
block 1614, the
routine is passed
embodiment, the
block 1614, the
decision block
, else the routine
identification of
h statement (i.e.,
hich the calling

Figure 17 is a flow diagram illustrating the processing of the add meighbor

routine in one embodiment. This routine adds the process calling on the external port as a

[03004-8001/5L003733,107] -32-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 972 of 1657

7731100

10.

15

20

25

30

neighbor to this process. In block 1701, the routine identifies the calling process on the
external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet
received the broadcast méssages from this process. This flag is used to ensure that there are
no gaps in the messages initially sent to the new neighbor. The external port becomes the
internal port for this connection. In decision block 1703, if this process fs in the seeking
connection state, then this process is connecting to its first meighbor \and the routine
continues at block 1704, else the routine continues at block 1705. In block [1'704, the routine
sets the connection state of this process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this process. In block {706, the routine
installs an internal dispatcher for the new neighbor. The internal dispatcheris invoked when'
a message is received from that new neighbor through the internal port of that new neighbor.
In decision block 1707, if this process bufferedﬂup messages while not fully connected, then
the routine continues at block 1708,’ else the routine continues at block 1709. In one ,
embodiment, a prdceé,s that is partially connected may buffer the messages that it receives
through an internal connection so that it can send these messages as it connects to new
neighbors. In block 1708, the routine sends the buffered messages to the new neighbor
through the internal port. In decision block 1709, if the number of holes of this process
equals the expected number of holes, then this process is fully connected and the routine
continues at block 1710, else the routine continues at block 1711. In block [171C, the routine
invokes the achieve connected routine to indicate that this process is fully connected. In
decision block 1711, if the number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block 1712, the routine deletes any
pending edges and then returns. A pending edge is an edge that has been| proposed to this
process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing (of the forward
connection edge search routine in one embodiment. This routine is responsible for passing
along a request to connect a requesting process to a randomly selected |neighbor of this
process through the internal port of the selected neighbof, that is part of the random walk. In
decision block 1801, if the forwarding distance remaining is greater tham zero, then the
routine continues at block 1804, else the routine continues at block 1802. decision block
1802, if the number of neighbors of this process is greater than one, tthen the routine

continues at block 1804, else this broadcast channel is in the small regime and the routine
[03004-8001/SL0O03733.107) -33- 731400

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 973 of 1657

10

15

20

25

30

continues at block 1803. In decision block 1803, if the requesting process
this process, then the routine returns, else the routine continues at block

1804-1807, the routine loops attempting to send a connection edge se
message (i.e., connection_edge_search_call) to a randomly selected neighbor.

is a neighbor of

1804. In blocks

ch call internal
In block 1804,

the routine randomly selects a neighbor of this process. In decision bloc 1805 if all the

neighbors of this process have already been sclected, then the routine ¢

ot forward the
- message and the routine returns, else the routine continues at block 1806. In block 1806, the
routine sends a connection edge search call internal message to the selected neighbor.

decision block 1807, if the sending of the message is successful, then the routine continues at

block 1808, else the routine loops to block 1804 to select the next neighbor. When the

sendmg of an internal message is unsuccessful, then the nexghbor may have disconnected
from the broadcast channel in an unplanned manner. -Whenever such a sityation is detected
by ‘thebrqadcﬁaster component, it attempts to find another neighbor by invoking the fill holes

routine to fill a single hole or the forward connecting edge search routine to fill two holes. In

- block 1808, the routine notes that the recently sent connection edge search call has not yet

been acknowledged and indicates that the edge to this neighbor is reserved if the remaining
forwarding distance is less than or equal to one. Itis reseived‘ because the selected neighbor

may offer this edge to the requesting process for edge pinning. The routine then returns.
Figure 19 is a flow diagram : tllustrating the processing of the handle edge
proposal call routine. This routine is invoked when a message is received from a proposing
process that proposes to connect an edge between the proposing process and one of its
neighbors to this process for edge pinning. In decision block 1901, if the number of holes of
to one, then this

else the routine

this process minus the number of pending edges is greater than or equal
process still has holes to be filled and the routine continues at block 1902
continues at block 1911. In decision block 1902, if the proposing process of its neighbor is a
neighbor of this process, then the routine continues at block 1911, else the routine continues
at block 1903. In block 1903, the routine indicates that the edge is pending between this
process and the proposing process. In decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues at block 1911, else the routine

continues at biock 1907. In block 1907, the routine sends an edge proposzlx Tesponse as an

external message to the proposing process (i.e., edge_proposal_resp) indicating that the
proposed edge is accepted. In decision block 1908, if the sending of the message was
{03004-8001/S1.003733.107) -34- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 974 of 1657

10

15

20

25

30

. the sending process as a neighbor of this process and then returns. In block

successful, then the routine continues at block 1909, else the routine returns,
the routine adds the edge as a pending edge. In block 1910, the routine

In block 1909,

mvokes the add

neighbor routine to add the proposing process on the external port as a neighbor. The routine
then returns. In-block 1911, the routine sends an external message (i.e., edge_proposal_resp)

indicating that this proposed edge is not accepted. In decision block 1912,

if the number of

holes is odd, then the routine continues at block 1913, else the routine returns. In block

1913, the routine invokes the fill hole routine and then returns.
Figure 20 is a flow diagram illustrating the processing of

the handle port

“connection call routine in one embodiment. This routine is invoked when an external

message is received then indicates that the sending process wants to connegt to one hole of
this process. In decision block 2001, if the number of holes of this process is gfeater than

zero, then the routine continues at block 2002, else the routine continues at block 2003. In
decision block 2002, if the sending process is not a neighbor, then the routine continues at.
block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port

connection response external message (i.e., port_connection_resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then returns. In block

2004, the routine sends a port connection response external message to the

sending process

that indicates that is okay to connect this process. In decision block 2003, if the Sending of

the message was successful, then the routine continues at block 2006,

else the routine

contmues at block 2007. In block 2006, the routine invokes the add neighbpr routine to add

hangs up the external connection. In block 2008, the routine invokes the
routine to request that a process connect to one of the holes of this process.
returns.

2007, the routine

connect request

The routine then

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in

one embodiment. This routine is passed an indication of the requesting

process.

If this

process is requesting to fill a hole, then this routine sends an internal message to other

processes. If another process is requesting to fill a hole, then this routine invokes the routine

to handle a connection port search request.

In block 2101, the routi

e initializes a

connection port search statement internal message (i.e., connection _port_gearch_stmt). In
decision block 2102, if this process is the requesting process, then the routine continues at
block 2103, else the routine continues at block 2104. In block 2103, the routine distributes

{03604-8001/81.003733.107] -35-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 975 of 1657

731700

the message to the neighbors of this process through the internal ports and|then returns. In
block 2104, the routine invokes the handle connection port search routine and then returns.
Figure 22 is a flow diagram illustrating the processing of the injternal dispatcher

routine in one embodiment. This routine is passed an indication of the neighbor who sent the

internal message. In block 2201, the routine receives the internal message. This routine
identifies the message type and invokes the appropriate routine to handle the message. In
block 2202‘, the Toutine assesses whether to change the estimated diameter|of the broadcast
channel based on the information in the received message. In decision blpck 2203, if this
process is the originating process of the message or the message has alreag been received
(i.e., a duplicate), then the routine ignores the message and continues at blogk 2208, else the
routine continues. at block 2203A. In decision block 22034, if the process is partially
connected, then the routine continues at block 2203B, else. the routine ¢ \tinues at block
2204, “In block 22038; the toutine adds thé,me'ssageto the pending connection buffer and
continues at block 2204. In decision blocks 2204-2207, the routine decodes the message

type and invokes the appropriate routine to handle the message. For example. in' decision

block 2204, if the type of the message is broadcast statement (i.e., broadcast_stmt), then the
routine invokes the handle broadcast message routine in block 2205. Ah:er invoking the
appropriate handling routine, the routine continues at block 2208. In decisipn block 2208, if
the partially connected buffer is full, then th’e‘ routine continues at bloc '2209, else the

routine continues at block 2210. The broadcaster component collects| all its internal
messages in a buffer while partially connected so that it can forward the messages as it
connects to new neighbors. If, however, that buffer becomes full, then the |process assumes
that it is now fully connected and that the expected number of connections was too high,
because the broadcast channel is now in the small regime. In block 2209, the routine invokes
the achieve connection routine and then continues in block 2210, In decision block 2210, if
the application program message queue is empty, then the routine returns,| else the routine
continues at block 2212. In block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The received response routine is a callback
routine of the application program.

Figufe 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment. This routine is passed an indication of the originating

process, an indication of the neighbor who sent the broadcast message, and the broadcast
[03004-8001/5L003733.107} -36- 713100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 976 of 1657

10

15

20

25

30

message itself. In block 2301, the routine performs the out of order processing for this
message. The broadcaster component queues messages from each originating process until it
can send them in sequence number order to the application program. In|block 2302, the
routine invokes the distribute broadcast message routine to forward the message to the
nelghbors of this process. In decision block 2303, if a newly connected nejghbor is waiting
to receive messages, then the routine continues at block 2304, else the 10 tine returns. In

block 2304, the routine sends the messages in the correct ‘order if possible for each
oﬁginaﬁng process and then returns. o
, Figure 24 is a flow diagram illustrating the processihg f the distribute
broadcast message routine in one embodiment. This routine sends the broadcast message to
each of the neighbors of this procéss, except for the neighbor who sent the message to this
process. In block 2401, the routine selects the next neighbor other than the neighbor who
sent the message. In decision block 2402, if all such neighborshas}'e alre ’y been selected,
then the routine returns. In block 2403, the rouﬁne sends the messagg to the selected
neighbor and then loops to block 2401 to select the next neighbor.
Figure 26 is a flow d:agram illustrating the processing of the hLmdle connection
port search statement routine in one embodiment. This routine is passed an|indication of the
neighbor that sent the message and the message itself, In block 2601, the routine invokes the
distribute internal message which sends the message to each of its neighbors other than the
sending neighbor. In decision block 2602, if the number of holes of this process is greater
than zero, then the routine continues at block 2603, else the routine returns. In decision
block 2603, if the requesting process is a neighbor, then the routine continugs at block 26035,
else the routine continues at block 2604. In block 2604, the routine imvokes the court
neighbor routine and then returns. The court neighbor routine connects this process to the

requesting process if possible. In block 2605, if this process has one hole, then the neighbors
with empty ports condition exists and the foutine continues at block 2606] else the routine
returns. In block 2606, the routine generates a condition check message (ie.,
condition_check) that includes a list of this process’ neighbors. In block 2607, the routine
sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment. This routine is passed an indication of the pro pective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port

[03004-8001/SL003733.107) -37- 731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 977 of 1657

10

15

20

25

30

connection call external message to the prospective neighbor and adds the prospective
neighbor as a neighbor. In decision block 2701, if the prospective neiglbor is already a
neighbor, then the rouﬁne returns, else the routine continues at block 2702. In block 2702,
the routine dials the prospective neighbor. In decision block 2703, if the nymber of holes of
this process is greater than zero, then the roubtiner continues at block 2704, else the routine
continues at bldck 2706. In block 2704, the routine sends a port connection call external
message (i.e., port_connection_call) to the prospective neighbor and receives its reépoﬁse

(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,

the routine 'raydds the prospective neighbor as a neighbor of this process by |invoking the add

neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.
Figure 28 is a flow diagram illustrating the processing of the ljxandle connection

edge search call routine in one embodiment. This routine is passed a indickationkof' the
neighbor who sent the message and the message itself. T}us rouﬁne either forwards the
message to a neighbor or pfoposcs»the gdgt; between this process and the sending neighbor to
the requesting process for edge pinning. In decision block 2801, if this process is not the
requesting process or the number of holes of the requesting process is still greater than or
equal to two, then the routine continues at block 2802, else the i‘outine continues at block

2813. In decision block 2802, if the forwarding distance is greater th
random walk is not complete and the routine continues at block 2803,
continues at block 2804. In block 2803, the routine invokes the forward

search routine passing the identification of the requesting process and

zero, then the
else the routine
connection edge
the decremented

forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process
neighbor is reserved because it has already been offered to a process,
continues at block 2805, else the routine continues at block 2806. In block
invokes the forward connection edge search routine passing an indication
party and a toggle indicator that alternatively indicates to continue the rand
or two more computers. The routine then continues at block 2815. In
routine dials the requesting process via the call-in port. In block 2807, the
edge proposal call external message (i.e., edge_proposal_call) and receives 1
edge_proposal resp). Assuming that the response is successfully rece
continues at block 2808. In decision block 2808, if the response indicate:

[03004-8001/SL003733.107] -38-

and the sending
then the routine
2805, the routine
of the requesting
lom walk for one
block 2806, the
routine sends an
the response (i.e.,
ved, the routine
 that the edge is

7731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 978 of 1657

10

15

20

25

30

~ length is odd. The broadcaster component uses a toggle indicator to vary

acceptable to the requesting process, then the routine continues at block 2809, else the
routine continues at block 2812. In block 2809, the routine reserves the efige between this
process and the sending neighbor. In block 2810, the routine adds the requsting process as

a neighbor by invoking the add neighbor routine. In block 2811, the ro
sending neighbor as a neighbor. In block 2812, the routine hangs up the

ine removes the

xternal port and

continues at block 2815. In decision block 2813, if thlS process is the requesting process and

the number of holes of this process equals one, then the routine continues at
the routine continues at block 2815. In block 2814, the routine invokes the
In block 2815, the routine sends an connection edge search respons

block 2814, else
fill hole routine.

message (i.e.,

connection_edge search_response) to the sending neighbor indicating acknowledgement and

then returns. The graphs are sensitive to parity. That is, all possible paths starting from a

node and endmg at that node will have an even length unless the graph has a cycle whose

distance between even and odd dlstances

the random walk ;

Flgure 29 is a flow dxagram illustrating the processing of the handle connection

edge search response routine in one embodiment. Thls,rounne is passed as
requesting process, the sending neighbor, and the message. In block 2901,
that the connection edge search response (i.c.,
received and if the forwarding distance is less than or equal to one unr
In decision block 2902,
process indicates that the edge is acceptable as indicated in the message,

between this process and the sending neighbor.

connection_edge search)

indication of the
the routine notes
resp) has been
eserves the edge
if the requesting
then the routine

continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge

between this process and the sending neighbor.

In block 2904, the routine removes the

sending neighbor as a neighbor. In block 2905, the routine invokes th

court neighbor

routine to connect to the requesting process. In decision block 2906, if the invoked routine

was unsuccessful, then the routine continues at block 2907, else the routine returns. In

decision block 2907, if the number of holes of this process is greater th
routine continues at block 2908, else the routine returns. In block 2908, th
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the |
in one embodiment. This routine is invoked by the application progran
message on the broadcast channel. This routine is passed the message to

{03004-8001/SL003733.107] -39-

zero, then the

routine invokes

broadcast routine
n to broadcast a
be broadcast. In

731400

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 979 of 1657

10

15

20

25

30

decision block 3001, if this process has at least one neighbor, then the routine continues at
block 3002, else the routine returns since it is the only process connected to be broadcast
channel. In block 3002, the routine generates an internal message of the broadcast statement
type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence numbcr of the
message. In block 3004, the routine invokes the distribute internal message routine to
broadcast the mes‘s’age on the broadcast channel. The routine returns. 7
' Figure 31 is a flow diagram illustrating the processing of the |acquire message
routine in one embodiment. The acquire meésage routine may be invoked by the application
program or by a callback routine provided by the application program. This|routine returns a
message. In blocls‘:,3101,k the routine pops the message ﬁ'om"the messagc queue of the
broadcast channel. In decision block 3102, if a message was retrieved, [then the routine
returns an' indication of success, else the routine ﬁn@s*indicaﬁon of failure. ;
Figures 32-34 are flow (V]iagrams’ inlustrating Atheybprocesstlg' of messages .

associated with the neighbors with empty ports condition. Figure 32 is a flow diagram
| ’ bodiment. This

message is sent by a neighbor process that has one hole and has received a r quest to connect

illustrating processing of the handle condition check message in one e

to a hole of this process. In decision block 3201, if the number of holes of this process is
equal to one, then the routine continues at block 3202, else the neighb'ors i
condition does not exist any more and the routine returns. In decision block 3202, if the
sending neighbor and this process have the same set of neighbors, the routine continues at
block 3203, else the routine continues at block 3205. In block 3203, the ro
condition double check message (i.e., conditioh_double_check) with the list of neighbors of
this process. In block 3204, the routine sends the message intemally to a nc..ghbor other than
sending neighbor. The routine then returns. In block 3205, the routine selegts a neighbor of
the sending process that is not also a neighbor of this process. In block 3206, the routine

sends a condition repair message (i.e., condition_repair_stmt) externally to the selected

tine initializes a

process. In block 3207, the routine invokes the add neighbor routine to jadd the selected
neighbor as a neighbor of this process and then returns. |

Figure 33 is a flow diagram illustrating processing of the handle condition
Tepair statement routine in one embodiment. This routine removes an existing neighbor and
connects to the process that sent the message. In decision block 3301, if this process has no
holes, then the routine continues at block 3302, else the routine continues at block 3304. In

[03004-8001/5L.003733.107] -40- 731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 980 of 1657

i0

15

20

25

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty
ports condition. In block 3303, the routine removes the selected neighbor|as a neighbor of
this process. Thus, this process that is executing the routine now has at I¢ ast one hole. In
block 3304, the routine invokes the add neighbor routine to add the progess that sent the
message as a neighbor of this process. The routine then returns.

'Figure 34 is a flow diagram illustrating the processiilg of the handle condition
double check routine. This routine determines whether the neighbors with empty ports
condition really isa problem or whether the broadcast channel is in the small regime. In
decision block 3401, if this process has one hole, then the routine continues at block 3402,
else the routine continues at block 3403. If this process does not have one hole, then the set

of neighbors of this prdcess is not the same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process have the same|set of neighbors,
then the broadcast channel is not in the small regime and the routine coﬁtin es at block 3403,
else the routine continues at block 3406. In decision block 3403, if this prc\l

then the routine returns, else the routine continues at block 3404 ’In block (3404, the routine
sets the estimated diameter for this process to one. In blo;:k' 3405, the routine broadcasts a

ess has no holes,

diameter reset internal message (i.e., diameter_reset) indicating that the estimated diameter is
one and then returns. In block 3406, the routine creates a list of néighbors of this process. In
block 3407, the routine sends the ccmiition check message (i.e., condition_check_stmt) with
the list of neighbors to the neighbor who sent the condition double check message and then
returns.

From the above description, it will be appreciated that although specific
embodiments of the technology have been described, various modifications may be made
without deviating from the spirit and scope of the invention. For example, the
communications on the broadcast channel may be encrypted. Also, the channel instance or

 session identifier may be a very large number (e.g., 128 bits) to help prevent an unauthorized

user to maliciously tap into a broadcast channel. The portal computer may also enforce
security and not allow an unauthorized user to connect to the brpadcast chanmel.

Accordingly, the invention is not limited except by the claims.

[03004-8001/SL003733.107) 41 /31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 981 of 1657

CLAIMS

L. A computer network for providing a game environment

participants, each participant having connections to at least three nei

for a plurality of
or participants,

b
wherein an originating participant sends data to the other participants bflending the data

through each of its connections to its neighbor participants and wherein

each participant

sends data that it receives from a neighbor participant to its other neighbor participants.

2. The computer network of claim 1 wherein each participant is connected
to 4 other participants. ‘
3. The computer network of claim 1 wherein each participant is connected

to an even number of other participants.

4.
where m is the number of neighbor participants of each participant.

5.
where m is the number of neighbor participants of each participant.

The computer network of claim 1 wherein the network

6.

m-connected, where m is the number of neighbor participants of each partici

The computer network of claim .1 wherein the network

7. The computer network of claim 1 wherein all the partic

8.

peer connections.

The computer network of claim 1 wherein the connec

[03004-8001/SL603733.107]} -42-

The computer network of claim 1 wherein the .nethrkA is m-regular,

. is m-connected,

1s m-regular and
pant.

Ipants are peers.

tions are peer-to-

73100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002,

Vol. 4, p. 982 of 1657

9. The computer network of claim 1 wherein the connections are TCP/IP

connections.

10. The computer network of claim 1 wherein each participant is a process

executing on a computer.

11. The computer network of claim 1 wherein a computer| hosts more than

one participant.

12. The computer network of claim 1 wherein each participant sends to each
of its neighbors only one copy of the data. ‘

13. The computer network of claim 1 wherein the interconnections of

participants form a broadcast channel for a game of interest.

14. A distributed game system comprising:
a plurality of broadcast channels, each broadcast chanpel for playing a
game; :

means for identifying a broadcast channel for a game of interest; and

[

means for connecting to the identified broadcast channe

15. The distributed game system of claim 14 wherein meaI.s for identifying
a game of interest includes accessing a web server that maps games to corresponding

broadcast channel.

16. The distributed game system of claim 14 wherein a bt:ladcast channel is

formed by player computers that are each interconnected to at least three other computers.

[03004-8001/SL003733.107) -43- : 31100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 983 of 1657

o0¥ - §g009 (S 00

3

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 984 of 1657

6 O
8 S I
AEL2XT
L xh\ "‘,;A»/f €1
7/ 4 i..l’? A\
/ 7 N\ N
V Y
i\ i) s
\ yr
// kw\\\\:
\ — 74
CIAN'SS
Z == 81
@ o O

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 985 of 1657

Fig 3P

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 986 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 987 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 988 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 989 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 990 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 991 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 992 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 993 of 1657

/
FrgSF

Fig SE

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 994 of 1657

_my.&*?u. {PVwWn D

?5_. _\wccaﬁw

\N;.SS..K@(

ke

#«Y\N—Msm CLLLr Y)

.\5+ﬂ »o if. _u‘g iuu

| - Pl L Sl

o 20 | |o

Qe

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 995 of 1657

<0

R

—— »ppdag |

[

erydsia

—

Cn

2|

%G«B‘.a

oy

u*uvccnﬁ

Aot

lm..vw: vo v

Q¢

rsdery

ey

)

é_uuﬂ
o
:Tuc:aU

Ql

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 996 of 1657

- (("W Tw;
¥ e Lachirce

o) _Conne&‘ﬁ"kxfnfz:)
Lc«ﬂowuk Por’('!

H
]

neck. + e -
conneck Fis ®

=Ia|
chan :
| Um.mne\l:asfuce:

| Coanectiean
o7
T rstull Ectaped
Tastedl Ectapeed) Oispebdharm
D;spm&cl\er' _
o9
Com\ed“ R.?TA“J{'
e s, 22\
CTauwe)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 997 of 1657

e, R0) Chawehty

Qv channe \ IA&*’M

Nows. tlp selat
por{'nlmm'puka. v

C_\\edl G- w < d'd.
crelco
extzond ooy]

QM

{ cwrrece)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 998 of 1657

Coatuck |
Sard E&fm.,ﬂ
r»assoc‘?e_, F\' 8, fO

o/l

-

o2

RecelJe tctarnd
pesE0 ?&

4

oS | 0
Pddac ruradad rddes fellow]
WM‘”‘W ' se-eh:m~%'

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 999 of 1657

Saad €t svead }
m@ “ ‘:.Qu

ma;.cn»«ﬂ 0k

»
B

‘NN
Q) Succis.s V

-~

\(Y ok

Sot 2 ased holeg
é.fvw-- f"f\"M

T
£ o Py

-

12
/-\M nghbov“ u

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1000 of 1657

| Check
L, E x'i'&(—h:

ol

y| 7

Rdd q'hw;- 65
e llow geelear

)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1001 of 1657

_— Aebue

W e Ackieve
22 . CO“ned\

Co(\t\eea\\m— '
S Yode =

connecte

i

rw’n*(*_ﬁ {'g\to'
b -= k .

Ry

2

272

032

jnuoke
onn
copnt

Bhe

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1002 of 1657

(:if; \%

) x

[Prch e '
e inm hamg “P. J

Frg <

| Herdle ﬂ_
PBposalcall ,

{o

Ra~da PO
Connech o~Ca | l

i 2

| Hedie

S rwor Sl

I3

Hewl le Codlihen”
Ragedr §]

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1003 of 1657

(7

Sek wrao)
*Ol'ndé‘c' .

Messegce | 2 5

/

R e

Fog 15

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1004 of 1657

fo e —_—
sel wawcover s

Woles-fo-%gpat
8 eddionate
c23psls
1
sel reoa :
1A Ves Ponag
| ol
o9 f—\ Sowr echand
o nococonse S LT &
w‘as'b-&‘é — o CSP 0 cI
Add
nb\‘gwwr
1O
Tatee e el -—
|
|
Fé’érﬁﬂl\w&ﬂ&p‘
p S
|\ Ly
holes tolill -= 4—
19
L[il
(veques)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1005 of 1657

- A : (nad i)

ol

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1006 of 1657

e .a.lo*z/r'
djs toweo te MN\“&

Fie)€

Culd

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1007 of 1657

" P2
F‘\\W)‘e— [3‘ 127
5 rdd 'U.Li%kbo(‘:ﬂ
(2 e~ [

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1008 of 1657

R eauest

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1009 of 1657

B Zl “:i\\HU\Q >

‘H d le Connech: Diche:
Po. t Secvehn D‘iﬂéﬁwgas_,
{

L

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1010 of 1657

Tadapmal
T S eke) (reighbon)

2/

o
m‘ﬂ . Fc‘ % Z/D

rw.a-aasre.
1 o2

Hard le Groedreg
| Msg ,l

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1011 of 1657

& \:gt;:“oicea st

Dishivuty

ot An
-C,wf- red bbos
wessaé/

¢f

nga,i
oz

of
i Afecal

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1012 of 1657

— e}
Distri bad e
Broadessi W

Howe Nﬂ-t%kbw
N 0’
Selech next '
nfi‘g\\';no.r F_';_, ZL"

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1013 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1014 of 1657

= hol-e.(s:lf%

S“Jw
esgo

{ron Weu h—nécgg

(b))

Re s o8yl edEL

B a), Cro»-.h)&i{

L

[&u VeighberC)ﬂ

3

1T

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1015 of 1657

@ri? n
{l,-mUMc\kbaf
2 messace

ez B,
8{‘ 'c(‘wﬂ:g‘d\f

o4

A o !
oo e ghbor

o5

COu w‘\"ﬂﬁglbﬂf‘

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1016 of 1657

- -

J Diskrb-te |

Takaral Mecsegi

o

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1017 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1018 of 1657

' élj up mesSage
[wurk lighe & o 50t eny ‘neihbor
° oY | ol
Sod abrod Send Extserol
J’V\eSSQ &Q_ :egffcjﬂ n*zshm
, 174

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1019 of 1657

22

de{; (GHDO
i&&fﬂ:ﬁff'

22

) N
?ifx‘;&é
84

ﬂ AL aighbon| °7

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1020 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1021 of 1657

U.S. Patent Application No. 09/629,024

10

15

20

25

EXPRESY MAIL NO. EL404935279U:

|
i
1

DISTRIBUTED CONFERENCING SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS.

This application is related to U.S. Patent Application No.

3

entitled. “BROADCASTING NETWORK,” filed on July 31, 2000 (]
No. 030048001 US); U.S. Patent Application No. , entit
BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No.
U.S. Patent Application No. , “LEAVING A BROADCA]

No. , entitled “BROADCASTING ON A BROADCAST (CHANNEL,” filed -
on July 31, 2000 (Attorney Docket No.- 030048004 Us); US. Pa!tent Application
No. , entitled “CONTACTING A BROADCAST CHANNEL,” filed on
July 31,2000 (Attorney. Docket No. 030048005 US), U.S. Patent Application
No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed on

led “JOINING A
030048002 US);
ST CHANNEL,”

filed on July 31, 2000 (Attormney Docket No. 030048003 US); U.S. Patent Application

July 31,2000 (Attorney Docket No. 030048006 US); U.S. Patent Application

No. , entitled “AN INFORMATION DELIVERY SER

VICE,” filed on

July 31,2000 (Attorney Docket No. 030048007 US); U.S. Patent Application

No. _ entitled “DISTRIBUTED CONFERENCING SYS

No. , entitted “DISTRIBUTED GAME ENVIRO

TEM,” filed on

NT,” filed on

July 31, 2000 (Attorney Docket No. 030048008 US);, and U.S. P%cnt Application

July 31, 2000 (Attorney Docket No. 030048009 US), the disclosure

TECHNICAL FIELD

of which are

incorporated herein by reference. }
%
|

The described technology relates generally to a computer ntt:rork and more

particularly, to a broadcast channel for a subset of a computers of an underlyi

g network.

BACKGROUND l

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multi

[03004-80¢1/5L003733.106] -1-
500¥

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1022 of 1657

casting network

7/31/00

Attorney Docket

10

15

20

25

30

protocols, and peer-to-peer middleware. Each of these communications techniques have
their advantages and disadvantages, but none is particularly well suited to the simultaneous
sharing of information among computers that are widely distributed. | For example,
collaborative processing applications, such as a network meeting programs| have a need to
distribute information in a timely manner to all participants who may be geographically
distributed. '

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,

allow processes on different computers to communicate via point-to-point connections. The

interconnection of all participants using point-to-point connections, while theoretically
possible, does not scale well as a number of participants grows. For example, each
participating process would need to manage its direct connections to all other participating
processes. Programmexs, however, find it very difficult to .mahage single gonnections, and
management of mulﬁplc connections is much more complex. In additiim, participating
processes may- be limited to the number of direct connections that they'ca;n support. This
limits the number of possible participants in the sharing of information. |

The client/server middleware systems provide a server that|coordinates. the

communications between. the various clients who are sharing the information. The server

~ functions as a central authority for controlling access to shared resources. Examples of

client/server middleware systems include remote procedure calls (“RPC™), database servers,
and the common object request broker architecture (“CORBA”). Cliént/s I er middleware
systems are not particularly well suited to sharing of information among many participants.
In particular, when a client stores information to be shared at the server, ¢ach other client
would need to poll the server to determine that new information is being shared. Such
polling places .a very high overhead on the communications network. Alternatively; each
client may register a callback with the server, which the server then invokes when new

information is available to be shared. Such a callback technique presentL; a performance

- bottleneck because a single server needs to call back to each client| whenever new

information is to be shared. In addition, the reliability of the entire sharing of information
depends upon the reliability of the ’single server. Thus, a failure at a single computer (i.e.,
the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such multicasting network

[03004-8001/81.003733.106] -2- 1 7731700

‘IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1023 of 1657

10

15

20

25

30

|

protocols tend to place an unacceptable overhead on the underlying networik For eiample
UDP multicasting would swamp the Internet when trying to locate all posshblc participants.
IP multicasting has other problems that include needing special-purpose infrastructure (eg.,
routers) to support the sharing of information efficiently. |

The peer-to-peer middleware communications systems rely Jn a multicasting
network protocol or a graph of point-to-point network protocols. Such peer-to-peer
middleware is provided by the T.120 Internet standard, which is used in such products as
Data Connection’s D.C.-share aﬁd Microsoft’s NetMeeﬁlig. -These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph of the connections used for
sharing the information. Thus, it is neither suitable nor desirable to mse peer-to-peer
middle_vare systems when more than a small number of participants is desired. In addition,
the underlying architecture of the T.120 Internet standard is a tree structure| which relies on
the root node of the tree for rehabxhty of the entire network That is, each miessage must pass
through the root. node in order to be received by all participants.

It would be desirable to have a.reliable communications |network that is
suitable for the simultaneous sharing of information among a large number|of the processes
that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a

broadcast channel.

Figure 2 illustrates a graph representing 20 computers connectied to a broadcast

channel. .

Figures 3A and 3B illustrate the process of connecting a new computer Z to the
broadcast channel.

Figure 4A illustrates the broadcast channel of Figure 1 |with an added
computer,

Figure 4B illustrates the broadcast channel of Figure 4A |with an added
-computer. '

Figure 4C also illustrates the broadcast channel of Figure 4}\ with an added
computer. ;
[03004-8001/5L003733.106] -3- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1024 of 1657

10

15

20

25

30

Figure 5A illustrates the disconnecting of a computer from the broadcast
channel in a planned manner. ,

Figure 5B illustrates the disconnecting of a computer from the broadcast
channel in an unplanned manner. I

Figure 5C illustrates the neighbors with empty ports condition.

Figure 5D illustrates two computers that are riot neighbors| who now have
empty ports. | |

Figure 5E illustrates the neighbors with empty ports condition in the small
regime. ;
Figure 5F illustrates the situation of Figure SE when in the larg‘e regime.
Figure 6 is a block diagram illustrating components of a computer that is
connected toa broadcast channel. -

Figure 7 is a block dxagram illustrating the sub-components of the broadcaster
component in one embodunent. |

Figure 8 is a flow diagram illustrating the processing of the connect routine in
one embodiment.

Figure 9 is a flow diagram illustrating the processing of |the seek portal
computer routine in one embodiment.

Figure 10 is a flow diagram illustrating the processing of the| contact process
routine in one embodiment. | | ,

Figure 11 is a flow diagram illustrating the processing of the| connect request
routine in one embodiment. | A

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment, :

Figure 13 is a flow diagram of rhc processing of the achieve cqnnecnon routine
in one embodiment.

Figure 14 is a flow diagram illustrating the processing lnf the external
dispatcher routine in one embodiment. !

Figure 15 is a flow diagram illustrating the processing of the} handle seeking
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment.

[03004-8001/SLO03732.106) -4- : 731700

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1025 of 1657

10

15

20

25

30

%
Figure 17 is a flow diagram illustrating the processing of the add neighbor

routine in one embodiment.
Figure 18 is a flow diagram illustrating the processing |of the forward

connection edge search routine in one embodiment.

- Figure 19 is a flow diagram illustrating the processing of the handle edge

proposal call routine. i

Figure 20 is a flow diagram illustrating the processing of | the handle port
connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment. ‘ '

- Figure 23 is a flow diagram 111ustraung the processing of the handle broadcast
message routine in one embodiment.

Figure 24 is a flow diagram illustrating the processing ¢f the distribute
broadcast message routine in one embodlment

Figure 26 is a flow dlagram illustrating the processing of the hbndle connection
port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of thk, court neighbor
routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the h}mdle connection
edge search response routine in one embodiment. - '

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of thelacqulre message
routine in one embodiment. ;

Figure 32 is a flow diagram illustrating processing of the handle condition
check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the bandle condition

repair statement routine in one embodiment. |

[03004-8001/5L003733.106] -5 ’ 3100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1026 of 1657

10

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the !handle condition

double check routine.

i
!

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlay% a point-to-point
communications network is provided. The broadcasting of a message over the broadcast
channel is effectively a multicast to those computers of the network ﬂftat are currently
connected to the broadcast channel. In one embodiment, the broadcast tecﬂ;nique provides a
logical broadcast channel to which host computers through their executing tpmcesses can be
connected, Each computcr that is connected to the broadcast charmél can broadcast

messages onto and receive messages off of the broadcast channel. Each Icomputer that is

~connected to the broadcast' channel receives all messages that are broadcast while it is

connected. . The logical broadcast channel is implemented using an underlying network
system (e.g., the Internet) that allows each computer connected to the underlying network
system to send messages to each other connected COmpufer using each computer’s address.
Thus, the broadcast technique effectively provides a broadcast channel using an underlying

network system that sends messages on a point-to-point basis. -

The broadcast technique overlays the underlying network. sysi em with a graph
of point-to-point connections (i.e., edges) between host computers (i.e. ,; nodes) thrdugh
which the broadcast chanmel is implemented. In one embodiment, eéch computer is
connected to four other computers, referred to as neighbors. (Actually, a ﬂrocess executmg :
on a computer is connected to four other processes executing on thJJs or four other
computers.) To broadcast a message, the originating computer sends the m?ssage to each of
its neighbors using its point-to-point connections. Each computer that recezﬁves the message
then sends the message to its three other neighbors using the pomt-ta-pointl connections. In
this way, the message is propagated to each computer using the underlying network to effect
the broadcasting of the message to each computer over a logical broadcast channel. A graph

in which each node is connected to four other nodes is referred to as a 4-regular graph. The

use of a 4-regular graph means that a computer would become disconnected from the
broadcast channel only if all four of the connections to its neighbors fail. The graph used by
the broadcast technique also has the property that it would take a failure of four computers to

{03004-8001/SLO03733.106] ~6- 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1027 of 1657

10

15

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcastf channels. This
property is referred to as being 4-comnected. Thus, the graph is both l4-regu1ar and 4-
connected.

Figure 1 illustrates a graph that is 4-regular and 4-connected iwhich represents
the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to
the broadcast channel, and each of the edges represents an “edge” conneclimn between two
computers of the broadcast channel. The time it takes to broadcast a i:rxessage to each
computer on the broadcast channel depends on the speed of the conncctions between the
computers and the number of connections between the originating computf;br and each other
computer on the broadcast channel. The minimum number of cénnectionép that a message
would need to traverse between each pair of computers is the “distance” between the
computers (i.e., the shortest path between the two nodes of the graph). For example, the
distance between computers A and F is one because computer A is diredﬂy connected to
computer F. The distance between computers A and B is two because there is no direct
connection between computers A and B, but computer F is directly connecte%d to computer B.
Thus, a message originating at computer A would be sent diréctly to comﬁuterF, and then
sent from computer F to computer B. The maximum of the distances betwe en the computers
is the “diameter” of broadcast channel. The diameter of the broadcast chdnnel represented
by Figure 1 is two. That is, a message sent by any computer would traverse no more than
two connections to reach every other computer. Figure 2 illustrates a graph representing 20

computers connected to a broadcast channel. The diameter of this broadcast{ channel is 4. In
particular, the shortest path between computers 1 and 3 contains four com&cﬁons (1-12, 12-
15, 15-18, and 18-3). i '
The broadcast technique includes (1) the connecting of computers to the
broadcast channel (i.e., composing the graph), (2) the broadcasting of mfpssages over the
broadcast channel (i.e., broadcasting through the graph), and (3) the ﬁiscamecﬁng of
computers from the broadcast channel (i.e., decomposing the graph) compos$ng the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking thé connection first
locates a computer that is currently fully connected to the broadcast channel and then

[03004-8001/8L003733.106) ' 7- ’ 73100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1028 of 1657

10

15

20

25

30

establishes a connection with four of the computers that are already :j:onnected to the
broadcast channel. (This assumes that there are at least four computers akéady connected to
the broadcast channel. When there are fewer than five computers COnnect%pd, the broadcast
channel cannot be a 4-regular graph. In such a case, the broadcast channei is considered to
be in a “small regime.” The broadcast technique for the small regime is dei&scribcd below in
detail. When five or more computers are connected, the broadcast channci is considered to
be in the “large regime.” This descriptiori assumes that the broadcast chamipcl is in the large
regime, unless specified otherwise.) . Thus, the process of comnecting ito‘ the broadcast
channel includes locating the broadcast channel, identifying the neighbors fjpr the connecting
computer, and then connecting to each identified neighbor. Each computei is aware of one
or more “portal computers” through which that computer may locate the bfoadcmt channel.
A seeking computer locates thebrOadcast channel by contacting the poitalté:omputers until it
finds one that is currently fully connected to the broadcaét channel. The found portal
computer then directs the identifying of four éomputers (i.e., to be the seeking computer’s
neighbors) to which the seel:ing computer is to connect. Each of these fouf;r, computers then
cooperates with the seeking computer to effect the connecting of the seekiné computer to the
broadcast channel. A computer that has started the process of locating a portal computer, but
does not yet have a neighbor, is in the “seeking connection state.”’ Atlmputer that is
connected to at least one neighbor, but not yet four neighbors, is in the “qurtial]y connected
state.” A computer that is currently, or has been, previously connected to ?four neighbors is
in the “fully connected state.” ,

Since the broadcast channel is a 4-regular graph, each of the identified
computers is already connected to four computers. Thus, some connections between
computers need to be broken so that the seeking computer can connect to four computers. In
one embodiment, the broadcast technique identifies two pairs of computers that are currently
connected to each other. Each of these pairs of computers breaks the connection between
them, and then each of the four computers (two from each pair) connects to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z éonnecting to the
broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is
connected. The pairs of computers B and E and computers C and D are the two pairs that are
identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

{03004-8001/SL003733.106) -8- 3Li00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1029 of 1657

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the co%xnecﬁon between
two neighbors and reconnecting each of the former neighbors to another computer is referred
to as “edge pinning” as the edge between two nodes may be considered to|be stretched and
pinned to a new node.
Each computer connected to the broadcast channelg allocates five
communications ports for communicating with other computers. Four Eof the ports are
referred to as “internal” ports because they are the ports through which thé messages of the
broadcast channels are sent. The connections between internal ports bf neighbors are
referred to as “internal” connections. Thus, the internal connections of the fbroadcast channel
form the 4-regular and 4-connected graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages between two computers. Neighbors
can send non-brbadcast mcssages either through their internal ports of th§ir.connection or
through their external ports. A seeking computer uses external ports whenj locating a portal
coinputer. ' | _

In one embodiment, the broadcast technique establishes the computer
connections using the TCP/IP communications protocol, which is a point-to-point protocol,
as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery
of messages between computefs. The TCP/IP protocol provides each computer with a “port
space” that is shared among all the processes that may execute on that computer. The ports
are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific
applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports
that are available to any process. In one embodiment, a set of port numbers can be reserved
for use by the computer connected to the broadcést channel, In an alternative embodiment,
the port numbers used are dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its call-in port. This call-in port is used
to establish connections with the external port and the internal ports. Each computer that is
connected to the broadcast channel can receive non-broadcast messages thfough its external
port. A seeking computer tries “dialing” the port numbers of the portal computers until a
portal computer “answers,” a call on its call-in port. A portal computer aﬁswers when it is
connected to or attempting to connect to the broadcast channel and its calliin port is dialed.
(In this description, a telephone metaphor is used to describe the connegtions.) When a
computer receives a call on its call-in port, it transfers the call to another port. Thus, the

[03004-8001/SL003733.106]) Q. 7/31/00

|
|
|

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1030 of 1657

10

15

20

25

30

seeking computer actually communicates through that transfer-to port, whi¢h is th¢ external
port. The call is transferred so that other computers can place calls to that icomputer via the
call-in port. The seeking computer then communicates via that external p%rt to request the
portal computer to assist in connecting the seeking computer to the broadcast channel. The
seeking computer could identify the call-in port number of a portal computcir by successively
dialing each port in port number order. As discussed below in detail, the brcipadcast technique
uses a hashing algorithm to select the port number order, which may re;sult in improved
performance. ‘
A seeking computer could connect to the broadcast channel [by connecting to
computers either directly connected to the found portal computer or directly iconnected to one
of its neighbors. A possible problem with such a scheme for identifying t:h:: neighbors for
the seeking computer is that the diameter of the broadcast channel may indrease when each
seeking. computer uses the same found portal computer and establishes a éomecﬁon to the
broadcast channel directly thrdug’h- that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes are added.. Figures 4A-4C
illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with
an added computer. Computer] was connected to the broadcast channel by edge pinning
edges C-D and E-H to computer J. The diameter of this broadcast channel is- still two.
Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.
Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to
computer K. The diameter of this broadcast channel is three, because the shortest path from
computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates
the broadcast channel of Figure 4A with an added computer. Computer K was connected to
the broadcast channel by edge pinning edges D-G and E-J to computer K. ' The diameter of
this broadcast channel is, however, still two. Thus, the selection of neigﬂbors impacts the
diameter of the broadcast channel. To help minimize the diameter, the brciadcast technique
uses a random selection technique to identify the four neighbors of a compu;ter in the seeking
connection state. The random selection technique tends to distribute the connections to new
seeking computers throughout the computers of the broadcast channel which may resuit in

smaller overall diameters.

{03004-8001/SL.003733.106] -10- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1031 of 1657

10

15

20

25

30

Broadcasting Through the Graph

As described above, each computer that is connected to the broadcast channel
can broadcast messages onto the broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that ongmates a message to be broadcast
sends that message to each of its four neighbors using the internal connectlons. When a
computer .receives a broadcast message from a neighbor, it sends the message to its three
other neighbors. Each computer on the broadcast channel, except the origﬂnating computer,
will thus receive a copy of each broadcast message from each of its four neighbors. Each
computer, however, only sends the first copy of the message that it recewes to its neighbors
and disregards subsequently received copies. Thus, the total number of copxes of a message
that is sent between the computers is 3N+1, where N is the number of computers connected
to the broadcast channel. Each computer sends three copies of the message except for the
originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability
of the broadcast channel. Since each computer has four cennections,fto the broadcast
channel, if one computer fails during the broadcast of a message, its neigp'nbors have three
other connections through which they will receive copies of the broadcast message. Also, if
the internal connection between two computers is slow, ‘each computer: has three other
connections through which it may receive a copy of each message sooner.

~ Each computer that originates a message numbers its own messages
sequentially. Because of the dynamic nature of the broadcast channel and because there are
many possible connection paths between computers, the messages may be received out of
order. For example, the distance between an originating computer and a certain receiving
computer may be four. After sending the first message, the originating computer and
receiving computer may become neighbors and thus the distance between ithem changes to
one. The first message may have to travel a distance of four to reach the receiving computer.
The second message only has to travel a distance of one. Thus, it is possible for the second
message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i.e., no computers connecting
or disconnecting from the broadcast channel), out-of-order messages are not a problem
because each computer will eventually receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channe] is not in a

{03004-28001/5L003733.106] -11- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1032 of 1657

10

15

20

25

30

steady state, then problems can occur. In particular, a computer may connect to the

broadcast channel after the second message has already been vreceived and iforwarded on by

its new neighbors. When a new neighbor eventually receives the first message, it sends the

message to the newly connected computer. Thus, the newly connected computer will receive
the first message, but will not receive the second message. If the newly corinected computer

needs to process the messages in order, it would wait indefinitely for the second message.

One solution to this problem is to have each computer queue|all the messages
that it receives until it can send them in their proper order to its neighbor#. This solution,
however, may tend to slow down the propagation of messages through the ik:omputers of the
broadcast channel. Another solution that may have less impact on the proli)agation speed is
to queue mesSages only at computers who are neighbors of the newly comkctcd computers.
Each already connected neighbor would forward méssages as it teceives them to its other
neighbors who are not newly connected, but not to the newly connected neighbor. The
already connected neighbor would only forward messages from each originating computer to
the newly connected computer when it can ensure that no gaps in the messages from that
originating computer will occur. In one embodiment, the already connected neighbor may
track the highest sequence number of the messages already received and fo:rwarded on from
each originating computer. The already connected computer will send only illigher numbered
messages from the originating computers to the newly connected computer; Once all lower
numbered messages have been received from all originating computers, then the already
connected computer can treat the newly connected computer as its other neighbors and
simply forward each message as it is received. In another embodiment, each compufer may
queue messages and only forwards to the newly connected computer thosei messages as the
gaps are filled in. For example, a computer might receive messages 4 and 5l and then receive
message 3. In such a case, the already connected computer would forward Ciueue messages 4
and 5. When message 3 is finally received, the already connected coﬁxputer will send
messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the
newly connected computer before message 3, then the newly connected :computer would
process messages 4 and 5 and disregard message 3. Because the already connected computer
queues messages 4 and 5, the newly connected computer will be able to prbcess message 3.
It is possible that a newly connected computer will receive a set of messages from an
originating computer through one neighbor and then receive another set of frnessage from the

{03004-8001/SL.003733.106] -12- : 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1033 of 1657

10

15

20

25

30 -

same originating computer through another neighbor. If the second set of messages contains
a message that is ordered earlier than the messages of the first set received, then the newly

connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Decomposing the Graph
A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The disconnect message includes a list that
identifies the four neighbors of the disconnecting computer. When a neighbor receives the
disconnect message, it tries to connect to one of the computers on the list. In one
embodiment, the first computer in the list will try to connect to the second computer in the
list, and the third computer in the list will try to comnect to the fourth computer in the list. If
a computer cannot connect (e.g., the first and second computers are already connected), then
the computers may try connecting in various other combinations. If connections cannot be
established, each computer broadcasts a message that it needs to establish a connection with
another computer. When a computer with an available internal port receives the message, it
can then establish a connection with the computer that broadcast the message. Figures SA-
5D illustrate the disconnecting of a computer from the broadcast chamnel. Figure SA
illustrates the disconnecting of a computer from the broadcast channel in a planned manner.
When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors
(computers A, E, F and I) and then disconnects from each of its neighbors. When
computers A and I receive the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from

a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next message to the now disconnected

computer. Each former neighbor of the disconnected computer recognizes that it is short one
connection (i.e., it has a hole or empty port). When a connected computer detects that one of
its neighbors is now disconnected, it broadcasts a port connection request on the broadcast
channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

{03004-8001/SL003733.106} -13- 73140

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1034 of 1657

10

15

20

25

30

computer that is also short a connection receives the connection request, lit communicates.
with the requesting computer through its external port to establish a conneq:tion between the
two computers. Figure 5B illustrates the disconnecting of a computer ﬁqim the broadcast
channel in an unplanned manner. In this illustration, computer H has diéconnected in-an
unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the
disconnection, each neighbor broadcasts a port connection request indicating that it needs to
fill an empty port. As shown by the dashed lines, computers F and I and computers A and E
respond to each other’s requests and establish a connection.

It is possible that a planned or unplanned disconnection may result in two
neighbors each having an empty internal port. In such a case, since they are neighbors, they
are already connected and cannot fill their empty ports by connecting to each other. Such a
condition is referred to as the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects that it has an empty port as described
above. When a neighbor receives the port connection request from the other neighbor, it will
recognize the condition that its 11eighbor also has an empty port. Such a condition may also
occur when the broadcast channel is in the small regime. The condition can only be
corrected when in the large regime. When in the small regime, each computer will have less
than four neighbors. To detect this condition in the large regime, which would be a problem
if not repaired, the first neighbor to receive the port connection request recognizes the
condition and sends a condition check message to the other neighbor.‘ The condition check
message includes a list of the neighbors of the sending computer. When the receiving
computer receives the list, it compares the list to its own list of neighbors. If the lists are
different, then this condition has occurred in the large regime and repair is ngeded. To repair
this condition, the receiving computer will send a condition repair request to one of the
neighbors of the sending computer which is not already a neighbor of the receiving
computer. When the computer receives the condition repair request, it disconnects from one
of its neighbors (other than the neighbor that is involved with the condiﬁon} and connects to
the computer that sent the condition repair request. Thus, one of the oﬁginﬂ neighbors
involved in the condition will have had a port filled. However, two computers are still in
need of a connection, the other original neighbor and the computer that is now disconnected
from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to

(03004-8001/SL003733. 106} -14- 7131400

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1035 of 1657

10

15

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,

then they repeat the condition repair process until two non-neighbors are in need of
connections,

It is possible that the two original neighbors with the condition may have the
same set of neighbors. When the neighbor that receives the condition check message
determines that the sets of neighbors are the same, it sends a condition double check message
to one of its neighbors other than the neighbor who also has the condition. When"the
computer receives the condition double check message, it determines whether it has the same
set of neighbors as the sending computer. If so, the broadcast channel is in the small regime
and the condition is not a problem. If the set of neighbors are different, then the computer
that received the condition double check message sends a condition check message to the
original neighbors with the condition. The computer that receives that condition check
message directs one of it neighbors to connect to one of the original nedghbbrs- with the
condition by sending a condition repair message. Thus, one of the original neighbors with
the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this
illustration, computer H disconnected in an unplanned manner, but computers F and I
respohded to the port connection request of the other and are now connected together. The
other.former neighbors of computer H, computers A and E, are already neighbors, which
gives rise to the neighbors with empty ports condition. In this example, computer E received
the port connection request from computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a condition check message with a list
of its neighbors to computer A. When computer A received the list, it recognized that
computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).
Computer A selected computer D, which is a neighbor of computer E and sent it a condition
repair request. When computer D received the condition repair request, it disconnected from
one of its neighbors (other than computer E), which is computer G in this example.
Computer D then connected to computer A. Figure 5D illustrates two computers that are not
neighbors who now have émpty ports. Computers E and G now have empty ports and are
not currently neighbors. Therefore, computers E and G can connect to each other.

Figures SE and SF further illustrate the neighbors with empty ports condition.
Figure SE illustrates the neighbors with empty ports condition in the small regime. In this

[03004-8001/SL0D3733.106] -15- 7A1/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1036 of 1657

16

15

20

25

36

example, if computer E disconnected in an unplanned manner, then each computer
broadcasts a port connection request when it detects the disconnect. When computer A
receives the port connection request form computer B, it detects the neighbors with empty
ports condition and sends a condition check message to computer B. Computer B recognizes
that it has the same set of neighbors (computer C and D) as computer A and then sends a
condition double check message to computer C. Computer C recognizes that the broadcast
channel is in the small regime because is also has the same set of neighbors as computérs A
and B, computer C may then broadcast a message indicating that the broadcast channel is in
the small regime. | '

Figure 5F illustrates the situation of Figure SE when in the large regime. As
discussed above, computer C receives the condition double check message from computer B,
In this case, éomputcr C recognizes that the broadcast channel is in the large regime because
it has a set of neighbors that is different from computer B. The edges extending up from
computer C and D mdicate connections to other compufers. Computer C then sends a
condition check message to computer B.. When computer B receives the condition check
message, it sends a condition.repair message to one of the neighbors of computer C. The
computer that receives the condition repair message disconnects from one of its neighbors,
other than computer C, and tries to connect to computer B and the neighbor from which it
disconnected tries to connect to computer A. |

Port Selection

As described above, the TCP/IP protocol dcsignates ports above number 2056
as user ports. The broadcast technique uses five user port numbers on each computer: one
external port and four internal ports. Generally, user ports cannot be statically allocated to
an application program because other applications programs executing on the same computer
may use conflicting port numbers. As a result, in one embodiment, the computers connected
to the broadcast channel dynamically allocate their port numbers. Each computer could
simply try to locate the lowest number unused port on that computer and use that port as the
call-in port. A seeking computer, however, does not know in advance the call-in port
number of the portal computers when the port numbers are dynamically allocated. Thus, a
seeking computer needs to dial ports of a portal computer starting with the lowest port
number when locating the call-in port of a portal computer. If the portal computer is

[03004-8001/81.003733.106]) -16- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1037 of 1657

10

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer
would eventually find the call-in port. If the portal computer is not connected, then the
seeking computer would eventually dial every user port. In addition, if each application

program on a computer tried to allocate low-ordered port numbers, then a portal computer

may end up with a high-numbered port for its call-in port because many of the low-ordered

port numbers would be used by other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer a long time to locate the call-in
port of a portal computer. To minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a portal computer should use when
finding an available port for its call-in port. In one embodiment, the broadcast technique

uses a hashing algorithm to identify the port order. ‘The algorithm preferably distributes the

ordering of the port numbers randomly through out the user port number space and only

selects each port number once. In addition, every time the algorithm is.executed on any -

computer for a given channel type and channel instance, it generates the same port ordering.
As described below, it is possible for a computer to be connected to multiple broadcast

channels that are uniquely identified by channel type and channel instance. The algorithm

may be “seeded” with channel type and channel instance in order to generate a unique

ordening of port numbers for each broadcast channel. Thus, a seeking computer will dial the
poris of a portal computet in the same order as the portal computer used when allocating its
call-in port. ‘

If many computers are at the same time seeking connection to a broadcast
channel through a single portal computer, then the ports of the portal computer may be busy
when called by seeking computers. The seeking computers would typically need to keep on
redialing a busy port. The process of locating a call-in port may be significantly slowed by
such redialing. In one embodiment, each seeking computer may each reorder the first few
port numbers generated by the hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers generated by the hashing algorithm. The
random ordering could also be weighted where the first port number generated by the
hashing algorithm would have a 50% chance of being first in the reordering, the second port
number would have a 25% chance of being first in the reordering, and so on. Because the
seeking computers would use different orderings, the likelihood of finding a busy port is
reduced. For example, if the first eight port numbers are randomly selected, then it is

[03004-8001/SL003733.106] -17- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1038 of 1657

10

135

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different
sequences which would reduce the chances of dialing a busy port.

Locating a Portal Computer
Each computer that can connect to the broadcast channel has a list of one or

more portal computers through which it can connect to the broadcast channel. In one
embodiment, each computer has the same set of | portal corﬁputers. A seeking computer
locates a portal computer that is connected to the broadcast channel by successively dialing
the ports of each portal computer in the order specified by an algorithm. A seeking computer
could select.the first portal computer and then dial all its ports until a call-in port of a
computer that is fully connected to the broadcaét channel is found. If no call-in port is
found, then the seeking computer would select the next portal computer and repeat the
process until a pottal compﬁtef with such a call-in port is found. A problem with such a
seeking technique is that all user ports of each portal computer are dialed until a portal
computer fully connected to the broadcast channerl’ is found. In an alternate embodiment, the
seeking computer selects a port number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to the broadcast channel is found,
then the seeking computer selects the next port number and repeats the process. Since the
call-in ports are likely allocated at lower-ordered port numbers, the seeking computer first
dials the port numbers that are most likeiy to be call-in ports of the broadcast channel. The
seeking computers may have a maximum search depth, that is the number of ports that it will
dial when seeking a portal computer that is fully connected. If the seeking computer
exhausts its search depth, then either the broadcast channel has not yet been established or, if
the seeking computer is also a portal computer, it can then establish the broadcast channel
with itself as the first fully connected computer.

‘ When a seeking computer locates a portal computer that is itself not fully
connected, the two computers do not connect when they first locate each other because the
broadcast channel may already be established and accessible through a higher-ordered port
number on another portal computer. If the two seeking computers were to connect to each
other, then two disjoint broadcast channels would be formed. Each seeking computer can
share its experience in trying to locate a portal computer with the other seeking computer. In
particular, if one seeking computer has searched all the portal computers to a depth of eight,

{03004-8001/5L.003733.106) -18- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1039 of 1657

10

15

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another
seeking computer. If that other seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through eight and that other seeking
computer can advance its searching to a depth of nine.

In one embodiment, each computer may have a different set of portal
computers and a different maximum search depth. In such a situation, it may be possible that
two disjoint broadcast channels are formed because a seeking computer cannot locate a fully
connected port computer at a higher depth. Similarly, if the set of portal computers are
disjoint, then two separate broadcast channels would be formed.

Identifying Neighbors rfor a Secking Computer

As described above, the neighbors of a newly connecting computer are
preferably selected randomly from the set of currently connected computers. One advantage
of the broadcast channel, howévcr, 1s_that no comput'er has global knowledge of the
broadcast channel. Rather, each computer has local kimwledge of itself and its neighbors.
This limited local knowledge has the advantage that all the connected computers are peers
(as far as the broadcasting is concerned) and the failure of any.one computer (actually any
three computers when in the 4-regular and 4-connect form) will not cause the broadcast
channel to fail. This local knowledge makes it difficult for a portal computer to randomly

select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an edge connection
request message through one of its internal connections that is randomly selected. The -
receiving computer again sends the edge connection request message through one of its
internal connections that is randomly selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast channel. Eventually, a
receiving computer will decide that the message has traveled far enough to represent a
randomly selected computer. That receiving computer will offer the internal connection
upon which it received the edge connection request message to the seeking computer for
edge pinning. Of course, if either of the computers at the end of the offered internal
connection are already neighbors of the seeking computer, then the seeking computer cannot

connect through that internal connection. The computer that decided that the message has

{03004-8001/SL003733.106} -19- 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1040 of 1657

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the
message to a randomly selected neighbor. |

" Inone embodiment, the distance that the edge connection request message
travels is established by the portal computer to be approximately twice the estimated
diameter of the broadcast channel. The message includes an indication of the distance that 1t
is to travel. Each receiving computer decrements that distance to travel before sending the
message on. The computer that receives a message with a distance to travel that is zero is
considered to be the randomly selected computer. If that randomly selected computer cannot
connect to the seeking computer (e.g., because it is ali‘eady connected to it), then that
randomly selected computer forwards the edge connection request to one of its neighbors
with a new distance to travel. In one embodiment, the forwarding cémputcr toggles the new
distance to travel between zero and one to he]p’kprevent two cdmputers from ‘sendix'xg the
message back and forth between each other.

Because of the local nature of the information maintained by each computer
connected to the broadcast channel, the computers need not generally be aware of the
diameter of the broadcast channel; In one embodiment, each message sent through the
broadcast channel has a distance traveled field. Each computer that forwards a message
increments the distance traveled field. Each computer also maintains an estimated diameter
of the broadcast channel. When a computer receives a message that has traveled a distance
that indicates that the estimated diameter is too small, it updates its estimated diameter and
broadcasts an estimated diameter message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own estimated diameter, it updates its
own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

External Data Representation
The computers connected to the broadcast channel may internally store their
data in different formats. For example, one computer may use 32-bit integers, and another
computer may use 64-bit integers. As another example, one computer may use ASCII to
represent text and another computer may use Unicode. To allow communications between
heterogeneous computers, the messages sent over the broadcast channel may use the XDR

(“eXternal Data Representation™) format.

{03004-8001/SL003733.106] -20- 300

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1041 of 1657

10

i5

20

23

30

The underlying peer-to-peer communications protocol may send multiple
messages in a single message stream. The traditional technique for retrieving messages from
a stream has been to repeatedly invoke an operating system routine to retrieve the next
message in the stream. The retrieval of each message may require two calls to the operating
system: one to rei:zieve the size of the next message and the other to retrieve the number of
bytes indicated by the retrieved size. Such calls to the operating system can, ,hoWever, be
very slow in comparison to the invocations of local routines. To overcome the inefficiencies
of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the
message' boundaries 1n a stream of messages. The broadcast technique may request the
operating system to provide the next, for example, 1,024 bytes from the stream. The
broadcast technique can thcn repeatedly invoke the XDR routines to retrieve the messages

and use the success or failure of each invocation to determine whether another block of 1,024

~ bytes needs to be retrieved from the operating system. The invocation of XDR routines do

not involve system calls and are thus more efficient than repeated system calls.

M-Reggl_ar

In the embodiment described above, each fully connected computer has four
internal connections. The broadcast technique can be used with other numbers of internal
connections. For example, each computer could have 6, 8, or ariy even mImber of internal
connections. As the nmbér of internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a message tends to decrease. The
time that it takes to connect a seeking computer to the broadcast channel may, however,
increase as the number of internal connections increases. When the number of internal
connectors is even, then the broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal connections is odd, then when
the broadcast channel has an odd number of computers connected, one of the computers will
have less than that odd number of internal connections. In such a situation, the broadcast
network is neither m-regular nor m-connected. When the next computer connects to the
broadcast channel, it can again become m-regular and m-connected. Thus, with an odd
number of internal connections, the broadcast channel toggles between being and not being

m-regular and m-connected.

{03004-8001/5L003733.106) -21- . 731700

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1042 of 1657

10

15

20

25

30

Components ~
Figure 6 is a block diagram illustrating components of a computer that is.

connected to a broadcast channel. The above description generally assumed that there was
only one broadcast channel and that each computer had only one connection:to that broadcast
channel. More generally, a network of computers may have multiple broadcast channels,
each computer may be connected to more than one broadcast channel, and each computer
can have multiple- connections to the same broadcast channel. The broadcast channel is well
suited for c;omputei' processes (e.g., application programs) that execute collaboratively, such
as network meeting programs. Each computer process can connect to one or more broadcast
channels. The broadcast channels can be identified by channel type (e.g., application
program name) and channel instance that represents separate broadcast channmels for that
channel type. When a process attempts to connect to a broadcast channel, it seeks a process
currently connected to that broadcast channel that is executing on a portal computer. The
seeking process identifies the broadcast channel by channel type and channel instance. |

- Computer 600 includes multiple. application programs 601 executing as
separate prdccsses. ‘Each application program interfaces with a broadcaster component 602
for each broadcast channel to which it is connected. The broadcaster component may be
implement as an object that is instantiated within the process space of the application
program. Alternatively, the broadcaster component may execute as a separate process or
thread from the -application program. In one embodiment;' the broadcaster component
provides functions (e.g., methods of class) that can be invoked by the application programs.
The primary functions provided may include a connect function that an appiication program
invokes passing an indication of the broadcast channel to which the application program
wants to connect. The application program may provide a callback routine that the
broadcaster component invokes to notify the application program that the connection has
been completed, that is the process enters the fully connected state. The broadcaster
component may also provide an acquire message function that the application program can
invoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,
the application program may provide a callback routine (which may be a virtual function
provided by the application program) that the broadcaster component invokes to notify the
application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

[03004-8001/$1.003733.106] 22 773100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1043 of 1657

10

15

20

25

30

the call-in port, they are transferred to other ports that serve as the external and internal

ports.
The computers connecting to the broadcast channel may include a central

processing unit, memory, input devices (e.g., keyboard and pointing device), output devices

" (e.g., display devices), and storage devices (e.g., disk drives). The memory and storage

devices are computer-readable medium that may contain computer instructions that
implement the Broadcaster component. In addition, the data structures and message
structures may be stored or transmitted via a signal transmitted on a computer-readable
media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster

component in one embodiment. The broadcaster component includes a connect component

701, an cxternal dispatcher 702, an internal dispatcher 703 for each internal connection, an

acquire message component 704 and a broadcast component 712. The application program
may provide a connect callback component 710 and a receive response component 711 that
are invokcdb‘by the broadcaster component. The application program invokes the connect
component to establish a connection to a designated broadcast channel. The connect
component identifies the external port and installs the external dispatcher for handling
messages that are received on the external port. The connect component invokes the seek
portal computer component 705 to identify a portal computer that is connected to the
broadcast channel and invokes the connect request component 706 to ask the portal computer
(af fully connected) to select neighbor processes for the newly connecting process. The
external dispatcher receives external messages, identifies the type of message, and invokes
the appropriate handling routine 707. The internal dispatcher receives the internal messages,
identifies the type of message, and invokes the appropriate handling routine 708. The
received broadcast messages are stored in the broadcast message queue 709. The acquire
message component is invoked to retrieve messages from the broadcast quene. The
broadcast component is invoked by the application program to broadcast messages in the

broadcast channel.

A Distributed Conferencing System

In one embodiment, a conferencing system is implemented using the broadcast

channel. Each participant in a conference connects to the conference’s broadcast channel,

103004-8001/5L.003733.106] -23. 131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1044 of 1657

10

20

25

30

and a participant is designated as the speaker. The conferencing application program may
include a speaker component and an attendee component. The speaker component
broadcasts the conference events on the broadcast channel. Each attendee component
receives the conference events and displays the results of the conference events. For
example, the speaker may present slides at the conference aléng with a description of each
slide. Each attendee may receive an electronic ccpy of the slides in advance of the
conference. At the scheduled time for the conference, the speaker and each attendee joins
the conference by connécﬁng to the broadcast channel of the conference. The speaker
component aﬂows the speaker to indicate when to display which slide. When a new slide is
displayed, the speaker component broadcasts a new slide message. When the attendee
component receives the new slide message, it displays the new slide to the participant. Also,
the speaker component may allow the speaker to draw on a sﬁde using a stylus or other
pointing device. The speaker component then broadcasts draw messages on the broadcast
channel so the attendee component can display the drawing to the attendees. The
conferencing system may also use speech-to-text and text-to,-spéech to distribute the
speaker’s comments to all attendees.

The conferencing system may provide a directory web site where
participants can locate and sign up for a conference of interest. The directory may provide a
hierarchical categorization of scheduled conferences. When a user decides to sign up for a
conference, the web server may download the broadcaster component and the conferencing
application program to the attendee’s computer, if not already stored on the attendee’s
computer. The web server will also download the channel type and channel ihstance
associated with the broadcast channel for the conference along with the identification of the
portal computers for the broadcast channel. The web server may also download the slides or
other content to be displayed to the attendees during the confefence.

The conferencing system may allow an entity to schedule conferences
using the web site. For example, a software company may want to schedule a conference to
announce a new product. The creation of the conference would entail the generation of a
channel type and channel instance, the specification of a security level (e.g., encrypted
messages), the specification of attendee qualifications, the providing of a description and
scheduled time of the conference, the specification of the content to be distributed to the

attendees, and so on. The speakef at a conference may not want to publicize the actual

{03004-8001/SL0O03733.106) -24- 3100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1045 of 1657

10

15

20

25

content (e.g,, slides) in advance. In such a situation, the content can be encrypted when
distributed to the attendees, and a key to decrypt the content can be distributed by the
speaker dunng the conference. For example, each slide for the software company’s
announcement can be encryj;ted with a different key, and the appropriate key can be
broadcast with each new slide message.

The conferencing system may allow attendees to broadcast comments
on the broadcast channel. The times when an attendee can broadcast comments may be
controlled by the speaker. For example, the speaker component may broadcast a comments
allowed message and a comments not allowed message to delimit the times when comments
will be allowed. Comments broadcast outside those times may be ignored. Alternatively, the
attendees may be allowed to broadcast comments at any time, but the other attendees ignore
those comments until the speaker broadcasts an approval message indicim'ng that the attendee
component can display a certain comment. ' .

The conferencing system may allow each attendee to connect to and
disconnect from the conference broadcast channel as this wish during the conference. In
addition, the conferencing system may allow multiple speakers to share the “podium.” The
speakers can pass a speakers token between them to indicate who is currently speaking and
thus in control of the conference. An attendee who joins the conference late may be able to
synchronize with the conference by accessing a conference monitoring web server. The
monitoring web server may be cbnnccted to the conference broadcast chaniincl and monitor
the current state of the conference. When an attendee joins late, the monitoring web server
can provide the attendee with the current state of the conferexice. From then on, the attendee
can listen on the broadcast channel to follow the progress of the conference. In addition, the
attendee component may allow the attendee to view parts of the presentation other than that
which is currently being presented. In this way, an attendee can refer Vback to or ahead to
other portions of the presentation.

The following tables list messages sent by the broadcaster components.

EXTERNAL MESSAGES

Message Type Description

seeking_connection_call | Indicates that a seeking process would like to know whether the
receiving process is fully connected to the broadcast channel

[03004-8001/SL003733.106] -25- 31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1046 of 1657

connection_request_call

Indicates that the sending process would like the receiving
process to initiate a connection of the sending process to the
broadcast channel

edge_proposal_call

Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
channel (i.e., edge pinning)

port_connection_call

Indicates that the sending process is pfoposing a port through
which the receiving process can connect to the broadcast
channel ' :

connected_stmt

Indicates that the sending process is connected to the broadcast
channel

condition_repair_stmt.

Indicates that the receiving process should disconnect from one
of its neighbors and connect to one of the processes involved in
the neighbors with empty port condition

| INTERNAL MESSAGES

Message Type

Description

broadcast_stmt

Indicates a message that is being broadcast through the |
broadcast channel for the application programs

connection_port_search_stmt | Indicates that the designated process is looking for a port

through which it can connect to the broadcast channel

connection_edge_search_call | Indicates that the requesting process is looking for an edge

through which it can connect to the broadcast channel

connection_edge_search_resp | Indicates whether the edge between this process and the

sending neighbor has been accepted by the requesting
party

diameter_estimate stmt

Indicates an estimated diameter of the broadcast channel

diameter_reset_stmt

Indicates to reset the estimated diameter to indicated
diameter

disconnect_stmt

Indicates that the sending neighbor is disconnecting from
the broadcast channel

condition_check_stmt

Indicates that neighbors with empty port condition have
been detected

condition_double_check_stmt | Indicates that the neighbors with empty ports have the

same set of neighbors

shutdown_stmt

Indicates that the broadcast channel is being shutdown

{03004-8001/8L.003733.106}]

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1047 of 1657

-26- 73100

10

15

20

25

30

Flow Diagrams
Figures 8-34 are flow diagrams illustrating the processing of the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the
connect routine in one embodiment. This routine is passed a channel type (e.g., application
name) and channel instance (e.g., session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also passed auxiliary information that
includes the list of portal computers and a connection callback routine. When the connection
is established, the connection callback routine is invoked to notify the application program.
When this process invokes this routine, it is in the seeking connection state. When a portal
computer is located that is connected and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the process eventually connects to four
neighbors, it enters the fully connected state. When in the small regime, a fully connected
process may have less than four neighbcrs. In blbt:k 801; the routine opexis the call-in port
through which the process is to conunuhi;ate with other processes when establishing external
and internal connections. The port is selected as the first available port using the hashing
algorithm described above. In block 802, the routine sets the connect time to the current
time. The connect time is used to identify the instance of the process that is connected
through this external port. One process may connect to a broadcast channel of a certain
channel type and channel instance using one call-in port and then disconnects, and another
process may then connect to that same broadcast channel usiﬁg the same Vcall-in port. Before
the other process becomes fully connected, another process may try to communicate With it
thinking it is the fully connected old process. In such a case, the connect ﬁxne, can be used to
identify this situation. In block 803, the routine invokes the seek portai computer routine
passing the channel type and channel instance. The seek portal computer routine attempts to
locate a portal computer through which this process can connect to the broadcast channel for
the passed type and instance. In decision block 804, if the seek portal computer routine is
successful in locating a fully connected process on that portal computer, then the routine
continues at block 805, else the routine returns an unsuccessful indication. In decision block
805, if no portal computer other than the portal computer on which the process is executing
was located, then this is the first process to fully connect to broadcast channel and the
routine continues at block 806, else the routine continues at block 808. In block 806, the

routine invokes the achieve connection routine to change the state of this process to fully

[03004-8001/SLO03733.106) -27- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1048 of 1657

10

15

20

25

30

connected. In block 807, the routine installs the external dispatcher for processing messages
received through this process’ external poit for the passed channel type and channel in§tance.
When a message is received through that external port, the external dispatcher is invoked.
The routine then returns. In block 808, the routine installs an external dispatcher. In block
809, the routine invokes the connect request routine to initiate the process of identifying
neighbors for the seeking computer; The routine then returns. ’

Figure 9 is a flow diagram illustrating the processing of the seek portal
coniputer routine in one embodiment. This routine is passed the channel type and channel
instance of the broadcast channel to which this process wishes to connect. This routine, for
each search depth (e.g., port number), checks the pbrtal computers at that search depth. If a
portal computer is located at that search depth with a process that is fully connected to the
broadcast channel, then the routine returns an indication of success. In blocks 902-911, the
routine loops selecting each search depth until a process is located. In block 902, the routine
selects the next search depth using a port number ordering algorithm. In decision block 903,
if all the search depths have already been selected during this execution of the loop, that is
for the currently selected depth, then the routine returns 2 failure indication, else the routine
continues at block 904. In blocks 904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer is connected to (or attempting to
connect to) the broadcast channel with the passed channel type and channel instance. In
block 904, the routine selects the next portal computer. In decision block 905, if all the
portal computers have already been selected, then the routine loops to block 902 to select the
next search depth, else the routine continues at block 906. In block 906, the routine dials the
selected portal computer through the poft represented by the search depth. In decision block.
907, if the dialing was successful, then the routine continues at block 908, else the routine
loops to block 904 to select the next portal computer. The dialing will be successful if the
dialed port is the call-in port of the broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In block 908, the routine invokes a
contact process routine, which contacts the answering process of the portal computer through
the dialed port and determines whether that process is fully connected to the broadcast
channel. In block 909, the routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the broadcast channel, then the
routine returns a success indicator, else the routine continues at block 911. In block 91 1, the

[03004-8001/8L.003733.106] -28- 3100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1049 of 1657

10

15

20

25

30

routine invokes ﬂle check for external call routine to determine whether an external call has
been made to this process as a portal computer and processes that call. The routine then
loops to block 904 to select the next portal computer. '

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment. This routine determines whether the process of the selected
portal computer that answered the call-in to the selected port is fully connected to the
broadcast channel. In block 1001, the routine sends an external message (ie.,
seeking_connection_call) to the answering process indicating that a seeking process wants to
know whether the aﬁswen'ng process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message from the answering process. In
decision block 1003, if the external response message is successfully received (ie.,
seekinfg__connection;_resp), then the routine continues at block 1004, else the routine returns.
Wherever the broadcast component requests to receive an external messége; it sets a time out’
period. If the external message is not received within that time out period, the broadcaster
component checks its own call-in port to see if another process is calling it. In'particular, the
dialed process may be calling the dialing process, which may result in a deadlock situation.
The broadcaster component may repeat the receive request several times. If the expected.
message is not received, then the broadcaster compbnent handles the érror as apprcpriate. In
decision block 1004, if the answering process indicates in its response message that it is fully
connected to the broadcast channel, then the routine continues at block 1005, else the routine
continues at block 1006. In block 1005, the routine adds the selected portal computer to a
list of connected portal computers and then returns. In block 1006, the routine adds the
answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment. This routine requests a process of a portal computer that was
identified as being fully connected to the broadcast channel to initiate the connection of this
process to the broadcast channel. In decision block 1101, if at least one process of a portal
computer was located that is fully comnected to the broadcast channel, then the routine
continues at block 1103, else the routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently disconnected from the broadcast channel.
In one embodiment, a seeking computer may always search its entire search depth and find

multiple portal computers through which it can connect to the broadcast channel. In block
[03004-8001/SLO03733. 106] ~29- 731400

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1050 of 1657

10

15

20

25

30

1102, the routine restarts the process of connecting to the broadcast channel and returns. In
block 1103, the routine dials the process of one of the found portal computers through the
call-in port. In decision block 1104, if the dialing is successful, then the routine continues at
block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for
example, the dialed process recently disconnected from the broadcast channel. In block
1105, the routine sends an external message to the dialed process requesting a connection to
the broadcast channel (i.e., connection_request_call). In block 1106, the routine receives the
response message (i.e., connection_request resp). In decision block 1107, if the response .
message is sucéessfully received, then the routine continues at block 1108, else the routine
continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,
empty mnternal conneétions) for this process based on the received response. When m the
large regime, the expected number of holes is zero. When in the small regime, the expected
number of holes_ varies from one to three. In block 1109, the rouﬁne sets the estimated
diameter of the broadcast channel based on the received rcsponse.‘ In decision block 1111, if
the dialed process is ready to connect to this process as indicated by the response message,
then the routine continues at block 1112, else the routine continues at block 1113. In block
1112, the routine invokes the add neighbor routine to add the answering process as a
neighbor to this process. This adding of the answering process typically occurs when the
broadcast channel is in the small regime. When in the large regime, the random walk search
for a neighbor is performed. In block 1113, the routine hangs up the external connection
with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call
routine in one embodiment. This routine is invoked to identify whether a fellow seeking
process is attempting to establish a connection to the broadcast channel through this process.
In block 1201, the routine attempts to answer a call on the call-in port. In decision block
1202, if the answer is successful, then the routine continues at block 1203, else the routine
returns. In block 1203, the routine receives the external message. from the external port. In
decision block 1204, if the type of the message indicates that a seeking process is calling.
(i.e., seeking connection_call), then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message (i.e., seeking_connection_resp)
to the other seeking process indicating that this process is also is seeking a connection, In

decision block 1206, if the sending of the external message is successful, then the routine

{03004-8001/SL003733.106) -30- 131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1051 of 1657

10

15

20

25

30

continues at block 1207, else the routine returns. In block 1207, the routine adds the other
seeking process to a list of fellow séeking processes and then returns. This list may be used
if this process can find no process that is fully connected to the broadcast channel. In which
case, this process may check to see if any fellow seeking process were successful in
connecting to the broadcast channel. For example, a fellow seeking process may become the
first process fully connected to the broadcast channel. |
Figure 13 is a flow diagram of the processing of the achieve connection routine
in one embodiment. This routine sets the state of this process to fully connected to the
broadcast channel and invokes a callback routine to notify the application program that the
process is now fully connected to the requested broadcast chanmel. In block 1301, the
routine sets the connection state of this process to fully connected. In block 1302, the
routine notifies fellow seeking processes that it is fully connected by sending a connected
external message to them (i.e., connectedﬁstmt). In block 1303, the routine invokes the

 connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagram illustrating the processing :of the external
dispatcher routine in one embodiment. - This routine is invoked when the external'vport
reccii'es a message. This routine retrieves the message, identifies the extcmal message type,
and invokes the appropriate routine to handle that message. This routine ;ﬂoops p:rocessing‘
each message until all the received messages have been handled. In block 8401, the routine
answers (e.g., picks up) the external port and retrieves an external message. In decision
block 1402, if a message was retrieved, then the routine continues at block 1403, else the
routine hangs up on the external port in block 1415 and returns. In decision block 1403, if
the message type is for a process seeking a connection (i.e., seeking_connection_call), then
the routine invokes the handle seeking connection call routine in block 1404, else the routine
continues at block 1405. In decision block 14035, if the message type is for a connection
request call (i.e., connection_request_call), then the routine invokes the handle connection
request call routine in block 1406, else the routine continues at block 1407. In decision
block 1407, if the message type is edge proposal call (i.e., edge_proposal call), then the
routine invokes the handle edge proposal call routine in block 1408, else the routine
continues at block 1409. In decision block 1409, if the message type is port connect call
(i.e., port_connect_call), then the routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In decision block 1411, if the message

[03004-8001/8L003733.106] -31- 31100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1052 of 1657

10

15

20

25

30

type is a connected statement (i.e., connected stmt), the routine invokes the handle
connected statement in block 1112, else the routine continues at block 1212, In decision
block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt),
then the routiﬁe invokes the handle condition repair routine in block 1413, else the routine
loops to block 1414 to process the next message. After each handling routine is invoked, the
routine loops to block 1414. In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment. This routine is invoked when a seeking process
is calling to identify a portal computer through which it can connect to the broadcast channel.
In decision block 1501, if this process is currently fully connected to the broadcast channel
identified in the message, then the routine conﬁnues at block' 1502, else the routine conﬁnues
at block 1503. In block 1502, the routine sets a message to indicate that this p’focess is fullyV
connected to the broadcast channel and continues at block 1505. In block 1503, the routine
sets a meésage to indicate that this proccss is not fully connected. In block 1504, the routine :

~ adds the identification of the seeking process to a list of fellow seeking processes. If this

process is not fully connected, then it is attempting to connect to the broadcast channel. In
block 1505, the routine sends the external message response (i.e., seeking_connection_resp)
to the seeking process and then returns. ,

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment. This routine is invoked when the calling process
wants this process to initiate the connection of the process to the broadcast channel. This
routine either allows the calling process to establish an internal connection with this process
(e.g, if in the small regime) or starts the process of identifying a process to which the calling
process can connect. In decision block 1601, if this process is currently fully connected to
the broadcast channel, then the routine continues at block 1603, else the routine hangs up on
the external port in block 1602 and returns. In block 1603, the routine sets the number of
holes that the calling process should expect in the response message. In block 1604, the
routine sets the estimated diamefer in the response message. In block 1605, the routine
indicates whether this process is ready to connect to the calling process. This process is
ready to conmect when the number of its holes is greater than zero and the calling process is

not a neighbor of this process. In block 1606, the routine sends to the calling process an

[03004-8001/SL.003733.106] -32- M3L/0)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1053 of 1657

10

i5

20

25

30

external message that is responsive to the connection request call (ie.,
connection_request_tesp). In block 1607, the routine notes the number of holes that the
calling process needs to fill as indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then the routine continues at block
1609, else the routine continues at block 1611. In block 1609, the routine invokes the add

- neighbor routine to add the calling process as a neighbor. In block 1610, the routine

decrements the number of holes that the calling process needs to fill and continues at block -
1611. In block 1611, the routine hangs up on the external port. In decision block 1612, if
this process has no holes or the estimated diameter is greater than one (i.e, in the large
regime), then the routine continues -at block 1613, else the routine continues at block 1616.
In blocks 1613-1615, the routine loops forwarding a request for an edge through which o
connect to the calling process to the broadcast channel. One request is forwarded for each
pair of holes of the calling vpmccss that needs to be filled. In decision ‘block716,13, if the
number of holes of the calling process to be filled is greater than or equal to two, then the
routine continues at block 1614, else the routine continues at block 1616. In block 1614, the
routine invokes the forward connection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk distance. In one embodiment, the
distance is twice in the estimated diameter of the broadcast channel. In block 1614, the
routine decrements the holes left to fill by two and loops to block 1613. In decision block
1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine
returns. In block 1617, the routine invokes the fill hole routine passing the identification of
the calling process. The fill hole routine broadcasts a connection port search statement (i.e.,
connection_port_search_stmt) for a hole of a connected process through which the calling
process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment. This routine adds the process calling on the external port as a
neighbor to this process. In block 1701, the routine identifies the calling process on the
external port. In block 1702, the routine sets a flag to indicate that the neighbor has not yet
received the broadcast messages from this process. This flag is used to ensure that there are
no gaps in the messages initially sent to the new neighbor. The external port becomes the
internal port for this connection. In decision block 1703, if this process is in the seeking

connection state, then this process is connecting to its first neighbor and the routine

[03004-8001/SL003733.106] -33- 3i0a

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1054 of 1657

10

15

20

25

30

continues at block 1704, else th‘c routine continues at block 1705, In block 1704, the routine
sets the connection state of this process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this process. In block 1706, the routine
installs an internal dispatcher for the new neighbor. The internal dispatcher is invoked when
a message is received from that new neighbor through the internal port of that new nclghbor
In decision block 1707, if this process buffered up messages while not fully connected, then
the routine continues at block 1708, else the routine continues at block 1709. In one
embodiment, a process that is partially connected may buffer the messages that it receives
through an internal connection so that it can send these messages as it connects to new
neighbors, In block 1708, the routine sends the buffered messages to the new neighbor -
through the internal port. In decision block 1709, if the number of holes of this process
equals the exﬁected number of hbles, then this process is fully connected and the routine -
continmues at block 1710, -else the routine continues at block 1’711. In block 1710, the routine -

invokes the achieve connected routine to indicate that this process is fully connected. In

decision block 1711, if the number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block 1712, the routine deletes any
pending edges and then returns, A pending edge is an edge that has been proposed to this
process for edge pinning, which in this case is no longer needed. N
Figure 18 is a flow diagram illustrating the proccssmg of the forward
connection edge search routine in one embodiment. This routine is responsible for passing
along a request to- connect a requesting process to a randomly selected neighbor of this
process through the internal port of the selected neighbor, that is part of the random walk. In
decision block 1801, if the forwarding distance remaining is greater than zero, then the
routine continues at block 1804, else the routine continues at block 1802. In decision block
1802, if the number of neighbors of this process is greater than one, then the routine
continues at block 1804, else this broadcast channel is in the small regime and the routine
continues at block 1803. In decision block 1803, if the requesting process is a neighbor of
this process, then the routine returns, else the routine continues at block 1804. In blocks
1804-1807, the routine loops attempting to send a commection edge search call internal
message (i.e., connection_edge_search_call) to a randomly selected neighbor. In block 1804,
the routine randomly selects a neighbor of this process. In decision block 1805, if all the

neighbors of this process have already been selected, then the routine cannot forward the

{03004-8001/SL003733.106) -34- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1055 of 1657

10

15

20

25

30

message and the routine returns, else the routine continues at block 1806. In block 1806, the
routine sends a connection edge search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is successful, then the routine continues at
block 1808, else the routine loops to block 1804 to select the next neighbor. When the
sending of an internal message is unsuccessful, then the neighbor may have disconnected
from the broadcast channel in an unplanned manner. Whenever such a situation is detected
by the broadcaster component, it attempts to find another neighbor by invoking the fill holes
routine to fill a single hole or the forward connecting edge search routine to fill two holes. In
block 1808, the routine notes that the recently sent connection edge search call has not yet
been acknowledged and indicates that the edge to this neighbor is reserved if the remaining
forwarding distance is less than or equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge pinning. The routine then returns.
Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. This routine is invoked when a message is received from a proposing
process. that proposes to connect an edge between the proposing process and one of its
neighbors to this process for edge pinning. In decision block 1901, if the number of holes of
this process minus the number of pending edges is greater than or equal to one, then this
process still has holes to be filled and the routine continues at block 1902, else the routine
continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a
neighbor of this process, then the routine continues at block 1911, else the routine continues
at block 1903. In block 1903, the routine indicates that the edge is pending between this
process and the proposing process. In decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues at block 1911, else the routine
continues at block 1907. In block 1907, the routine sends an edge proposal response as an
external message to the proposing process (i.e., edge proposal resp) indicating that the
proposed edge is accepted. In decision block 1908, if the sending of the message was
successful, then the routine continues at block 1909, else the routine returns. In block 1909,
the routine adds the edge as a pending edge. In block 1910, the routine invokes the add
neighbor routine to add the proposing process on the external port as a neighbor. The routine
then returns. In block 1911, the routine sends an external message (i.e., edge_proposal_resp)
indicating that this proposed edge is not accepted. In decision block 1912, if the number of

[03004-8001/SL003733.106] -35- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1056 of 1657

10

15

20

25

30

holes is odd, then the routine continues at block 1913, else the routine returns. In block

- 1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment. This routine is invoked when an external
message is received then indicates that the sending process waunts to connect to one hole of
this process.‘ In decision block 2001, if the number of holeé of this process is greater than
zero, then the routine continues at block 2002, else the routine continues at block 2003. In
decision block 2002, if the sending process is not a neighbor, then the routine continues at
block 2004’,_ élse the routine continues to block 2003. In block 2003, the routine sends a port
connection response external message (i.e., port_connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The routine then retumns. In block
2004, the routine sends a port connection response eﬁctcrnal message to the sending process
that indicates ‘that' is okay to connect this process. In decision block 2005, if the sending of
the message was successﬁxl,. then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006; the routine invokes the addneighbor routine to add
the sending process as a neighb‘of of this process and then returns. In block 2007, the routine
hangs up the external connection. In block 2008, the routine invokes the connect request
routine to request that a process connect to one of the holes of this process. The routine then
returns.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. This routine is passed an indication of the requesting process. I this
process is requesting to fill a hole, then this routine sends an internal message to other
processes. If another process is requesting to fill a hole, then this routine invokes the routine
to handle a connection port search request. In block 2101, the routine initializes a
connection port search statement internal message (i.e., connection_port_search_stmt). In
decision block 2102, if this process is the requesting process, then the routine continues at
block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
the message to the neighbors of this process through the internal ports and then returns. In
block 2104, the routine invokes the handle connection port search routine and then returns.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment. This routine is passed an indication of the neighbor who sent the

internal message. In block 2201, the routine receives the internal message. This routine

[03004-8001/31003733.106) -36- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1057 of 1657

i0

15 .

20

25

30

identifies the message type and invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the estimated diameter of the broadcast

channel based on the information in the received message. In decision block 2203, if this

process is the originating process of the message or the message has already been received |
(i.e., a duplicate), then the routine ignores the message and continues at block 2208, else the
rbuﬁne continues at block 2203A. In decision block 2203A; if the process is partially
connected, then the routine continues at block 2203B, else the routine continues at block
2204. In block 2203B, the routine adds the message to the pending connection buffer and
continues at block 2204. In decision blocks 2204-2207, the routine decodes the message
type and invokes the appropriate routine to handle the message. For example, in decision
block 2204, if the type of the messége is broadcast statement (i.e., broadcast_stmt), then the
routine invokes the handle broadcast message routine in block 2205, After invdkinga the
appropriate handling routine, the routine continues at block 2208. In decision block 2208, if
the partially connected buffer is full,‘«'then the routine continues at block 2209, else the
Toutine continues at block 2210. The broadcaster component collects all its internal
messages in a buffer while partially connected so that it can forward the messages as it
connects to nev? neighbofs, If,‘howcve;, that buffer becomes full, then the process assumes
that it is nbw fully connected and that the expected number of connections was too high,
because the broadcast channel is now in the small regime. In block 2209, the routine invdkes
the achievc connection routine and then continues in block 2210. In decision block 2210, if
the application program message queue is empty, then the routine retumns, else the routine
continues at block 2212, In block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The received response routine is a callback
routine of the application program.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment. This routine is passed an indication of the originating
process, an indication of the neighbor who sent the broadcast message, and the broadcast
message itself. In block 2301, the routine performs the out of order processing for this
message. The broadcaster component queues messages from each originating process until it
can send them in sequence number order to the application program. In block 2302, the
routine invokes the distribute broadcast message routine to forward the message to the

neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting

[03004-8001/81.003733.106] ~37- 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1058 of 1657

10

15

20

25

30

to receive messages, then the routine continues at block 2304, else the routine returns. In
block 2304, the routine sends the messages in the correct order if possible for each
originating process and then returns. |
Figure 24 is a flow diagram illustrating the processing of the distribute
broadcast message routine in one embodiment. This routine sends the broadcast message to
each of the neighbors of this process, except for the neighbor who sent the message to this
process. In block 2401, the routine selects the next neighbor other than the neighbor who
sent the message: In-decision block 2402, if all such neighbors have already been selected,
then the routine returns. In block 2403, the routine sends the message to the selected
hcighbor and then loops to block 2401 to select the next neighbor,
- Figure 26 is a flow diagram illustrating the processing of the handle connection
port search statement :outiticv in one embodiment. This routine is passed an indication of the

neighbor that sent the message and the message itself. In block 2601, the routine invokes the

- distribute internal message' which sends the message to each of its neighbors other than the

‘sendmg ﬁeighbor. In decision block 2602, if the number of holes of this process is greater

than zero, then the routine continues at block 2603, else the routine returns. In decision
block 2603, if the requesting proi:ess 1s a neighbor, then the routine continues at block 2605;
else the routine contirvmesk at block 2604.. In block 2604, the routine invokes the courtb
neighbor routine and then returns. The court neighbor routine connects this process to the
requesting process if possible. In block 2605, if this process has one hole, then the neighbors
with empty ports condition exists and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generatés a condition check message (ie.,
condition_check) that includes a list of this process’ neighbors. In block 2607, the routine
sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment. This routine is paésed an indication of the prospective neighbor
for this process. If this process can connect to the prospective neighbor, then it sends a port
connection call external message to the prospective neighbor and adds the prospective
neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a
neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,
the routine dials the prospective neighbor. In decision block 2703, if the number of holes of

this process is greater than zero, then the routine continues at block 2704, else the routine
{03004-8001/5L003733.106) -38- 31400

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1059 of 1657

16

15

20

25

30

continues at block 2706. In block 2704, the routine sends a port connection call external
message (i.e., port_connection_call) to the prospective neighbor and receives its response
(ie., port_connection_resp). Assuming the response is successfully received, in block 27035,
the routine adds the prospective neighbor as a neighbor of this process by invoking the add -
neighbor routine. In block 2706, the routine hangs up with the prospect and then returns.

o Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment. This routine is passed a indication of the
neighbor who sént the message and the message itself. This routine either forwards the
message to a neighbor or proposes the edge between this process and the sending neighbor to
the requesting process for edge pinning. In decision block 2801, if this process is not the
requesting process or the number of holes of the réquesting prdcess is still greater than or
equal to two, then the routine continues at'block-2802', else the routine continues at block
2813. In decision block 2802‘, if the forwarding distance is greater than zero, then the

-random walk is not complete and the routine continues at block 2803, else the. routine

continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented

' forwardingrdiétance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process and the sending
neighbor is reserved because it has already been offered to a process, then the routine
continues at block 28035, else the routine continues at block 2806. In block 2805, the routine
invokes the forward connection edge search routine passing an indication of the requesting
party and a toggle indicator that alternatively indicates to continue the random walk for one
or two more computers. The routine then continues at block 2815. In block 2806, the
routine dials the requesting process via the call-in port. In block 2807, the routine sends an
edge proposal call external message (i.e., edge_proposal_call) and receives the response (i.e.,
edge_proposal_resp). Assuming that the response is successfully received, the routine
continues at block 2808. In decision block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine continues at block 2809, else the
routine continues at block 2812. In block 2809, the routine reserves the edge between this
process and the sending neighbor. In block 2810, the routine adds the requesting process as
a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the
sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and

{03004-8001/8L003733.106] : -39 31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1060 of 1657

10

15

20

25

30

continues at block 2815. In decision block 2813, if this process is the requesting process and
the number of holes of this process equals one, then the routine continues at block 2814, else
the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.
In block 2815, the routine sends an comnection edge search response message (i.e.,
connection_edge_search_response) to the sending neighbor indicating acknowledgement and
then returns. The graphs are sensitive to parity. That is, all possible paths starting from a
node and ending at that node will have an even length unless the graph has a cycle whose
length is odd. - The broadcaster component uses a toggle indicator to vary the random walk
distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message. In block 2901, the routine notes
that the connéction edge search response (ie., connection edge search resp) has been
received and if fhe forwarding distance is less than or equal to one unreserves the edge
between this process and the sending neighbor. In decision block 2902, if the requesting
process indicates that the edge is acceptable as indicated in the message, then the routine
continues at block 2903; else the routine returns. In block 2903, the routine reserves thé edge
between this process and the sending neighbor. In block 2904, the routine removes the
sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor
routine to connect to the requesting process. In decision block 2906, if the invoked routine
was unsuccessful, then the routine continues at block 2907, else the routine returns. In
decision block 2907, if the number of holes of this process is greater than zero, then the
routine continues at block 2908, else the routine returns. In block 2908, the routine invokes
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment. This routine is invoked by the application program to broadcast a
message on the broadcast channel. This routine is passed the message to be broadcast. In
decision block 3001, if this process has at least one neighbor, then the routine continues at
block 3002, else the routine returns since it is the only process connected to be broadcast
channel. In block 3002, the routine generates an internal message of the broadcast statement

type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the

{03004-8001/SL003733.106] -40- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1061 of 1657

10

15

20

25

30

message. In block 3004, the routine invokes the distribute internal message routine to
broadcast the message on the broadcast channel. The routine returns. ‘

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment. The acquire message routine may be invoked by the application
program or by a callback routine provided by the épplicaticn program. This routine returns a
méssage‘ In block 3101, the routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was retrieved, then the routine
ret‘um'sA an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages
associated with the neighbors with empty ports condition. Figure 32 is a flow diagram
ilhistrating processing of the handle condition check message in one embodiment. This

message is sent by a neighbor process that has one hole and has received a request to connect

to a hole of this process. In decision block 3201, if the number of holes of this process is
equal to bne; then the routine continues at block 3202, else the neighbors with empty ports
condition does not exist any more and the routine returns. In decision block 3202, if the
sending neighbor and this process have the saime set of neighbors, the routine continues at
block 3203, else the routine continues at block 3205. In block 3203, the routiné initializes a
condition double check message (i.e., condition_double_check) with the list of neighbors of
this process. In block 3204, the routine sends the message internally to a neighbor other than -
sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of

" the sending process that is not also a neighbor of this process. In block 3206, the routine

sends a condition repair message (ie., condition repair_stmt) externally to the selected
process. In block 3207, the routine invokes the add neighbor routine to add the selected
neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the handle condition
repair statement routine in one embodiment. This routine removes an existing neighbor and
connects to the process that sent the message. In decision block 3301, if this process has no
holes, then the routine continues at block 3302, else the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not involved in the neighbors with empty
ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of
this process. Thus, this process that is executing the routine now has at least one hole. In

{03004.8001/SL003733.106] -41- /31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1062 of 1657

10

15

20

25

block 3304, the routine invokes the add neighbor routine to add the process that sent the
message as a neighbor of this process. The routine then returns.

Figure 34 is a flow diagram illustrating the processing of the handie condition
double check routine. This routine determines whether the neighbors with empty ports
condition really is a problem or whether the broadcast channel is in the small regime. In
decision block 3401, if this process has one hole, then the routine continues at block 3402,

else the routine continues at block 3403. If this process does not have one hole, then the set

 of neighbors of this précess 1s not the same as the set of neighbors of the sending process. In

decision block 3402, if this process and the sending process have the same set of neighbors,
thcn the broadcast channel is not in the small regime and the routine continues at block 3403,
else the routine continues at blo}::k 3406, In decision block 3403, if this process has no holes,
then the routine returns, else the routine continues at block 3404. In block 3404, the routine
sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a
diameter reset internal message (i.e., ,diameter_réset) indicating that the estimated diameter is
one and then returns. In block 3406, the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message (i.e., condition_check_stmt) with
the list of neighbors to the neighbor who sent the condition double check message and then
returns. V |

From the above description, it will be appreciated that although specific
embodiments of the technology have been described, various modifications may be made
without deviating from the spirit and scope of the invention. For example, the
communications on the broadcast channel may be encrypted. Also, the channel instance or
session identifier may be a very large number (e.g., 128 bits) to help prevent an unauthorized
user to maliciously tap into a broadcast channel. The portal computer may also enforce
security and not allow an unauthorized user to comnect to the broadcast channel.
Accordingly, the invention is not limited except by the claims.

{03004-8001/SL.003733.106} -42- ' 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1063 of 1657

10

11

12

13

14
15

16

17

18

CLAIMS

1. A computer network for providing a conferencing system for a plurality
of participants, each participant having connections to at least three neighbor participants,
wherein an originating participant sends data to the other participants by sending the data
through each of its connections to its neighbor participants and wherein each participant
sends data that it receives from a neighbor participant to its other neighbor participants.

2. The computer network of claim 1 wherein each participant is connected

to 4 other participants.

3. The computer network of claim 1 wherein each participant is connected

to an even number of other participants.

4. The computer. network of claim 1 wherein the network is m-regular,

where m is the number of neighbor participants of each participant.

5. The computer network of claim 1 wherein the network is m-connected,

where m is the number of neighbor participants of each participant.

6. The computer network of claim 1 wherein the network is m-regular and

m-connected, where m is the number of neighbor participants of each participant.
7. The computer network of claim 1 wherein all the participants are peers.

8. The computer network of claim 1 wherein the connections are peer-to-

peer connections.

[03004-8001/5L003733.106] -43- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1064 of 1657

e

19

20

21

22

23

24

25
26

27
28

29

30

31

32
33

34

35
36

37

38

39

40

9. The computer network of claim 1 wherein the connections are TCP/IP

connections.

10. The computer network of claim 1 wherein each participant is a process

executing on a computer.

11. The computer network of claim 1 wherein a computer hosts more than

one participant.

12. The computer network of claim 1 wherein each participant sends to each

of its neighbors only one copy of the data.

13. The computer network of claim 1 wherein the interconnections of
participants form a broadcast channel for a topic of interest. |
14. A distributed conferencing system comprising:
a plurality of broadcast channels, each broadcast channel for conducting
a conference;
means for identifying a broadcast channel for a conference of interest;
and

means for connecting to the identified broadcast channel.

15. The distributed conferencing system of claim 14 wherein means for
identifying a conference of interest includes accessing a web server that maps conferences to

corresponding broadcast channel.
16. The distributed conferencing system of claim 14 wherein a broadcast

channel is formed by attendee computers and a speaker computer that are each

interconnected to at least three other computers.

{03004-8001/5L003733.106] -44- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1065 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1066 of 1657

FX%Z/_..

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1067 of 1657

Fig 3P

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1068 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1069 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1070 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1071 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1072 of 1657

J
; ‘W

9 L7 |7
-)
) e
/ . Do
e -
* & X e -

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1073 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1074 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1075 of 1657

L
\n
:
Q@
O«
\u
A
5

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1076 of 1657

co

?S+w.¢..~. | PRy

?rf. _dc;d,_o.w

-2)Kdu__mn:‘\

| O

e)
_ ~§E.

20

eV

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1077 of 1657

¢ 0

—— prpdsiq |
ot]

v . e &

»

orypdsiq

.\.M\

21

Qd

oy

HNa7Y

()

Yo
o
..*.UEEU

Qal

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1078 of 1657

? m . W&IAS{-M

o, .CemneltfruxDato)
| |
I'DPM Po(f—

c,o-rxf\eci‘- + e, F(é E(

o3

'5&&\2 pa f"‘rd-ﬁ

‘ CC)l\ahf\ew‘
i' Cramnel Insh«ce

—

O b

{ Cam\e.c(\}cv\ i
o7
T rstuld Extapecd
Tnstedl € baveal) Oispebcham
Disp«kc}&r
o9
CO\'\(\PQ*'O&T‘AJ‘

Nehar—,
LTaue)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1079 of 1657

P ls((%%ﬂ ; J Cka\md Tl
QW™ chan nel Tastoren

pr*‘as*'
[]
' 06
Nowg Upseiatal]
Porbﬁtorud.u_ v
| '
C,hec,fz_ (50N B
extzmge i

Q
({ currece)) :

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1080 of 1657

o Contud—
Pf%
[ol
ressoce F ¢ O
. - i

o
Qeceweéﬁ‘ramd]
W"ssage.

" —d

oS~
MM(MJ pdd as 'E:Cudk)]
wh&cgﬁ% | seekine conpdi|

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1081 of 1657

P

rj\ L Le

l YTy c:r.tsmﬂ Ol
M s CA? 2

Q. Succis.s—

rd

\(\/ o
So¥ 22 asek holeg
&:L,ﬂw .r-wbe

o9
Set duoalas-
o s Perncy

ira

Add ¥ ﬁg\\ bov

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1082 of 1657

FV% [.Z‘/

Add o‘h\n;r' as
dellowgeelcar

oS

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1083 of 1657

___ Acdue
(SRR Ackieve
272 Connech

o I
Co;\r\?nk\m.. ' | |
Stede = {1»01
CO!\{\%.Q.Y?A
22

not by fellow

bealrio: - ,
. —-‘ 3
2 {/;-; \9
invoke
copneed o

D ‘ -

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1084 of 1657

Fvg I“}

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1085 of 1657

| Hond Y

ed
Peg'posa.\ ce

[O

Ha-de POt

Conwnech Ce | l T

Hed le Cedlhen.
Qap:...\» s

T —

mﬁssqg'e 25

Fg 15

»

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1086 of 1657

e s (G

\t\,alcs-h: %(Q:H

| | X%
o7 (\ Sowrectand

mn..ar_s ™. 220
ahn}ra“smdc &1\ \ L o9
Ad
M«\‘gv\ o v
0
'ifu'\’é?ﬁf%“ -

1M
Fco;nned\w QJSP I
Seerrin '

L\ .I y
holes tolill —:4—

i 1ol H
(Mc,ufs W)

L

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1087 of 1657

- Qa\ (Add h)ndglbr)

ol

e W

|

-z
o g Pa-dit
Peolzes 3 J

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1088 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1089 of 1657

i

File

o)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1090 of 1657

0%
Savel &xf‘w '
PIeY-Y:
po I\i‘,—

res £ =X

. ‘ ﬁae*iﬂff;§
S&A'fo.’tawe ' ‘

fas

1
h %

— Success
AN v oF¥ ‘
hﬁh~%u13 \\\S\S\v///%///

\ Add Mexgﬁbo rJ

Gopsit
!

‘

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1091 of 1657

o 3
”HM& le Conneh: Diciri bk :
vo.-ctSacvedn -ﬂmﬁgﬁg l

I T

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1092 of 1657

(:L& ~0 |)
7 D.':;):\}OW CI‘ e‘s\"‘oar)

' I’}

L
g’ff&w-ﬁ . F._ 3 ZV

WWC!S.Q
1 o2

Assess
Dia Ve

°§

‘ Hand le Greoe droﬂ_ﬂ_
Msg

Acdhieve i

c m\ned\v\.

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1093 of 1657

- z e ot A n
\ l\jﬁ'ﬁask g:wf. neich bov

messe %

(;‘:;ccss b/
o ‘%?{é&f’ t‘ﬂ F,‘ % ZE
(D-‘s“i |~V o}] o
BrooJCasf
maeage
of
a'vJ o?‘
Q’a‘fc&fm I\Nb ‘

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1094 of 1657

T «© Dis‘tﬁ»i M?

B’(‘O&JGOS‘* Mbw
> of
Seleck nest | i
V\&g\\'::gr ’ /: e ZL"

& \\ t\@i%\«

bo
‘se.{'?J'J

l\ SM i’dawﬂﬂ

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1095 of 1657

o \ > (a~c}“~€) : hbov
(%bri&:o.c plri:;g::} °

D's{"»«i J fig 2lo

[Whaseel

2|

Cbu-r{ ngkb()‘

=

 E—————

Cmob' h“vah“E
Vs Sace vuvuu‘sbor
o)
cod babrmdd

o
message

(Lo

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1096 of 1657

Add Wﬁikbm

e

ok

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1097 of 1657

=1 hole.(sd'?)

—_—

g

fSSo

{roe Wea

b Acl)

()

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1098 of 1657

- S’ H’éﬁ“n‘e . Sricin
f 0| Mmessace

y 03
(eane B
ot ‘Crcmmﬁd‘g“ﬂf
o4

gf;;c\rtjeu gﬁs o

o

Cou c*‘ﬂﬁisibr

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1099 of 1657

Dis{*‘;\w;tl- ll

l‘ﬁhﬂ—*‘t‘l N\PSSoS(

(e)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1100 of 1657

me.ss&%_ﬁ

\J\l

Po p messa

Qufu

N Reho—
Folse

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1101 of 1657

03 W
‘514 wp mes&ase S a ”‘-‘ﬁ'h bor

y Y of so-dive proc e
wll\?]z\(rtkl f"_ai' Kot \’?ﬂghba -
° DLI ol
)’V\CSSO&Q ‘ sgiwjg(v\dﬁkboz
4

|

=)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1102 of 1657

4 A ! ' ' 3‘- .
> (BaE™™ e
o

/-\J'Lﬂ)bl'%hbwl
1

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1103 of 1657

03
ho[c.f:":’ =0 > >
cresbe (stof |
:4\%%5?‘04‘5:. - ‘ /J 'S”f
! ol ‘tesela o
SQ“AIQ*MJ ﬁ\a Wdﬁ? 1) -J-
messog e —
2 e Y o>
St Didiaenel
h\essagg .

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1104 of 1657

. Patent Application NO. 09/629,043

10

15

20

25

EXPRESS MATL. NO. EL404935305US

AN INFORMATION DELIVERY SERVICE

CROSS-REFERENCE TO RELATED APPLICATIONS

This apph'éaﬁon 1s related to U.S. Patent Applic_ation No. '
entitled “BROADCASTING NETWORK,” filed on July 31, 2000 ‘(Aftomey Docket
No. 030048001 US); U.S. Patent Application No. , entitled “JOINING A
BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002 US);
U.S. Patent Application No. , “LEAVING A BROADCAST CHANNEL,”
filed on July 31, 2000 (Attorney Docket No. 030048003 US); U.S. Patent Application
No. , entitled “BROADCASTING ON A BROADCAST CHANNEL,” filed
on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent Application
No. , entitled “CONTACTING A BROADCAST CHANNEL,” filed on
July 31, 2000 (Attorney Docket No. 030048005 US); U.S. Patent Application
No. , entitted “DISTRIBUTED AUCTION SYSTEM,” filed on
July 31,2000 (Attomey Docket No. 030048006 US); U.S. Patent Application
No. , entitled “AN INFORMATION DELIVERY SERVICE,” filed on
July 31,2000 (Attorney Docket No. 030048007 US); U.S. Patent Application
No. , entitted “DISTRIBUTED CONFERENCING SYSTEM,” filed on
July 31,2000 (Attorney Docket No. 030048008 US); and U.S. Patent Application
No. , entitled “DISTRIBUTED GAME ENVIRONMENT,’;@, filed on
July 31, 2000 (Attorney Docket No. 030048009 US), the disclosures of ,whjich are

incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer network and more

particularly, to a broadcast channel for a subset of a computers of an underlying network.
BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, ‘client/server middleware, multicasting network

w

[03004-80Y/SL003733.105) -1- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1105 of 1657

10

15

20

25

30

protocols, and peer-to-peer middleware. Each of these communications techniques have
their advantages and disadvantages, but none is particularly well suited to the simultaneous
sharing of information among computers that are widely distributed. For example,
collaborative processing applications, such as a network meeting programs, have a need to
distribute information in a timely manner to all participants who may be geographically
distributed. A '

The point-to-point network protocols, such as UNIX pipes, TCP/IP, and UDP,
allow processes on different computers to communicate via point-to-point connections. The
interconnection of all participants using point-to-point connections, while theoretically
possible, does not scale well as a number of participants grows. For example, each
participating process would need to manage its direct connections to all other participating
processes. Programmers, however, find it very difficult to manage'singlc connections, and
management of multiple connections is much more complex. In addition, participating
processes may be limited to the number of direct connections that they can suppbrt. This
limits the number of possible participants in the sharing of information.

The client/server middleware systems provide a server that coordinates the
communications between the various clients who are sharing the information. The server
functions as a central authority for controlling access to shared resources. Examples of
client/server middleware systems include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture (“CORBA”). Client/server middleware
systems are not particularly well suited to sharing of information among many participants.
In particular, when a client stores information to be shared at the server, each other client
would need to poll the server to determine that new information is being shared. Such
polling places a very high overhead on the communications network. Altematively, each
client may register a callback with the server, which the server then invokes when new
information is available to be shared. Such a callback technique presents a performance
bottleneck because a single server meeds to call back to each client whenever new
information is to be shared. In addition, the reliability of the entire sharing of information
depends upon the reliability of the single server. Thus, a failure at a single computer (i.e.,
the server) would prevent communications between any of the clients.

The multicasting network protocols allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such multicasting network

[03004-8001/81.003733. 105] -2~ 13100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1106 of 1657

10

15

20

25

30

protocols tend to place an unacceptable overhead on the underlying network. For example,
UDP multicasting would swamp the Internet when trying to locate all possible participants.
IP multicasting has other problems that include needing special-purpose infrastructure (e.g.,
routers) to snpport the sharing of information efficiently.

The peer-to-peer middleware communications systems rely on a multicasting
network protocol or a graph of point-to-point network protocols. Such peer-to-peer
middleware is provided by the T.120 Internet standard, which is used in such products as
Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph of the connections used for
sharing the information. Thus, it is neither suitable nor desirable to use peer-to-peer
middleware systems when more than a small number of participants is desired. In addition,
the underlying architecture of the T.120 Internet standard is a tree structure, which relies on
the root node of the tree for reliability of the entire network. That is, each message must pass
through the root node in order to be received by all participants.

It would be desirable to have a reliable communications network that is
suitable for the simultaneous sharing of information among a large number of the processes
that are widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a graph that is 4-regular and 4-connected which represents a
broadcast channel.

Figure 2 illustrates a graph representing 20 computers connected to a broadcast
channel. '

Figures 3A and 3B illustrate the process of connecting a new computer Z to the
broadcast channel.

Figure 4A illustrates the broadcast channel of Figure 1 with an added

computer.

Figure 4B illusirates the broadcast channel of Figure 4A with an added
computer.

Figure 4C also illustrates the broadcast channel of Figure 4A with an added
computer.
[03004-8001/8L003733.105] -3- 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1107 of 1657

10

15

20

25

30

Figure SA illustrates the disconnecting of a computer from the broadcast
channel in a planned manner. ‘

Figure 5B illustrates the disconnecting of a computer from the broadcast
channel in an unplanned manner.

Figure 5C illustrates the neighbors with empty ports condition.

Figure 5D illustrates two computers that are not neighbérs who now have
empty ports. ' '

Figure 5E illustrates the neighbors with empty ports condition in the small
regime.

Figure 5F illustrates the situation of Figure 5E when in the large regime.

Figure 6 is a block diagram illustrating components of a computer that is
connected to a broadcést channel.

Figure 7 is a block diagram illustrating the sub-components of the broadcaster
component in one embodiment.

Figure 8 is a flow diagram illustrating the processing of the connect routine in -
one embodiment. V

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment.

‘ Figure 10 is a flow diagram illustrating the processing of the contact process

routine in one embodiment. ,

Figure 11 is a flow diagram illustrating the processing of the connect request
routine in one embodiment.

Figure 12 is a flow diagram of the processing of the check for external call
routine in one embodiment.

Figure 13 is a flow diagram of the processing of the achieve connection routine
in one embodiment.

Figure 14 is a flow diagram illustrating the processing of the external
dispatcher routine in one embodiment.

Figure 15 is a flow diagram illustrating the processing of the handle seekhé
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment.

{03004-8001/SLO03733.105] -4 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1108 of 1657

10

15

20

25

30

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment.

Figure 18 is a flow diagram illustrating the processing of the forward
connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine.

Figure 20 is a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment.

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment.

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment. | |

Figure 24 is a flow diagram illustrating the rprocessing -of the distribute
broadcast message routine in one embodiment. ,

Figure 26 is a flow diagram illustrating the processing of the handle connection
port search statement routine in one embodiment. |

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment. ‘

Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment. V

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment.

Figure 32 is a flow diagram illustrating processing of the handle condition
check message in one embodiment.

Figure 33 is a flow diagram illustrating processing of the handle condition
repair statement routine in one embodiment.

[03004-8001/51003733.105] -5- 7731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1109 of 1657

10

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlays a point-to-point
communications network is provided. The broadcasting. of a message over the broadcast
channel is effectively a multicast to those computers of the network that are currently
connected to the broadcast channel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through their executing processes ¢an be
connected. Each computer that is connected to the broadcast channel can broadcast
messages onto and receive messages off of the broadcast channel. Each computer that is
connected to the broadcast channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented using an underlying network
system (e.g., the Iﬁtcmet) that allows each computer connected to the underlying network
system to send messages to each other connected computer using each computer’s address.
Thus, the broadcast technique effectively provides a broadcast channel using an underlying
network system that sends messages on a point-to-point basis.

The broadcast technique overlays the underlying network system with a graph
of point-to-point connections (i.e., edges) between host computers (i.e., nodes) through
which the broadcast channel is implemented. In one embodiment, each computer is
connected to four other computers, referred to as neighbors. (Actually, a process executing
on a computer is connected to four other processes executing on this or four other
computers.) To broadcast a message, the originating computer sends the message to each of
its neighbors using its point-to-point connections. Each computer that receives the message
then sends the message to its three other neighbors using the point-to-point connections. In
this way, the message is propagated to each computer using the underlying network to effect
the broadcasting of the message to each computer over a logical broadcast channel. A graph
in which each node is connected to four other nodes is referred to as a 4-regular graph. The
use of a 4-regular graph means that a computer would become disconnected from the
broadcast channel only if all four of the connections to its neighbors fail. The graph used by
the broadcast technique also has the property that it would take a failure of four computers to

{03004-8001/581.003733.105}] -6- 731700

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1110 of 1657

10

15

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcast channels. This
property is referred to as being 4-connected. Thus, the graph is both 4-regular and 4-
connected. '
Figure 1 illustrates a graph that is 4-regular and 4-connected which represents
the broadcast channel. Each of the nine nodes A-I represents a computer that is connected to
the broadcast channel, and each of the edges represents an “edge” connection between two

computers of the broadcast channel. The time it takes to broadcast a message to each

computer on the broadcast channel depends on the speed of the connections between the

computers and the number of connections between the originating computer and each other
computer on the broadcast channel. The minimum number of connections that 2 message
would need to traverse between each pair of computers is the “distance” between the
computers (i.e., the shortest path between the two nodes of the graph). For example, the
distance between computers A and F is one because computer A is directly connected to
computer F. The distance between computers A and B is two because there is no direct
connection between computers A and B, but computer F is directly connected to computer B.
Thus, a message originating at computer A would be sent directly to computer F, and then
sent from computer F to computer B. The maximum of the distances between the computers
is the “diameter” of broadcast channel. The diameter of the broadcast channel represented
by Figure 1 is two. That is, a message sent by any computer would traverse no more than
two connections to reach every other computer. Figure 2 illustrates é graph representing 20
computers connected to a broadcast channel. The diameter of this broadcast channel is 4. In
particular, the shortest path between computers 1 and 3 contains four connections (1-12, 12-
15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of computers to the
broadcast channel (i.e., composing the graph), (2) the broadcasting of messages over the
broadcast channel (1 e., broadcasting through the graph), and (3) the disconnecting of
computers from the broadcast channel (i.e., decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking the connection first

locates a computer that is currently fully connected to the broadcast channel and then

[03004-8001/5L.003733.105] -7- 7731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1111 of 1657

10

15

20

25

30

establishes a conmnection with four of the computers that are already connected to the
broadcast channel. (This assumes that there are at least four computers already connected to
the broadcast channel. When there are fewer than five computers connected, the broadcast
channel cannot be a 4-regular graph. In such a case, the broadcast channel is considered to
be in a “small regime.” The broadcast technique for the small regime is described below in
detail. When five or more computers are connected, the broadcast channel is considered to
be in the “large regime.” This description assumes that the broadcast channel is in the large
regime, unless specified otherwise.) Thus, the process of connecting to the broadcast
channel includes locating the broadcast channel, identifying the neighbors for the connecting
computer, and then connecting to each identified neighbor. Each computer is aware of one
or more “portal computers” through which that computer may locate the broadcast channel.
A seeking computer locates the broadcast channel by contacting the portal computers until it
finds one that is currently fully connected to the broadcast channel. The found portal
computer then directs the identifying of four computers (i.e., to be the seeking computer’s
neighbors) to which the seeking computer is to connect. Each of these four computers then
cooperates with the seeking computer to effect the connecting of the seeking computer to the
broadcast channel. A computer that has started the process of locating a portal computer, but
does not yet have a neighbor, is in the “seeking connection state.” A computer that is
connected to at least one neighbor, but not yet four neighbors, is in the “partially connected
state.” A computer that is currently, or has been, previously connected to four neighbors is
m the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each of the identified
computers is already connected to four computers. Thus, some connections between
computers need to be broken so that the seeking computer can connect to four computers. In
one embodiment, the broadcast technique identifies two pairs of computers that are currently
connected to each other. Each of these pairs of computers breaks the connection between
them, and then each of the four computers (two from each pair) connects to the seeking
computer. Figures 3A and 3B illustrate the process of a new computer Z connecting to the
broadcast channel. Figure 3A illustrates the broadcast channel before computer Z is
connected. The pairs of computers B and E and computers C and D are the two pairs that are
identified as the neighbors for the new computer Z. The connections between each of these

pairs is broken, and a connection between computer Z and each of computers B, C, D, and E

[03004-8001/SL.003733.105] -8- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1112 of 1657

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the connection between
two neighbors and reconnecting each of the former neighbors to another computer is referred
to as “edge pinning” as the edge between two nodes may be considered to be stretched and
pinned to a new node. '

Each computer connected to the broadcast channel allocates five
communications ports for communicating with other computers. Four of the ports are
referred to as “internal” ports because they are the ports through which the messages of the
broadcast channels are sent. The connections between internal ports of neighbors are
referred to as “internal” connections. Thus, the internal connections of the broadcast channel
form the 4-regular and 4-connected graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages between two computers. Neighbors
can send non-broadcast messages either through their internal ports of their connection or
through their external ports. A seeking computer uses external ports when locating a portal
computer.

In one embodiment, the broadcast technique establishes the computer
connections using the TCP/IP communications protocol, which is a point-to-point protocol,
as the underlying network. The TCP/IP protocol provides for reliable and ordered delivery
of messages between computers. The TCP/IP protocol provides each computer with a “port
space” that is shared among all the processes that may execute on that computer. The ports
are identified by numbers from 0 to 65,535. The first 2056 ports are reserved for specific
applications (e.g., port 80 for HTTP messages). The remainder of the ports are user ports
that are available to any process. In one embodiment, a set of port numbers can be reserved
for use by the computer connected to the broadcast channel. In an alternative embodiment,
the port numbers used are dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its call-in port. This call-in port is used
to establish connections with the external port and the internal ports. Each computer that is
connected to the broadcast channel can receive non-broadcast messages through its external
port. A seeking computer tries “dialing” the port numbers of the portal computers until a
portal computer “answers,” a call on its call-in port. A portal computer answers when it is
connected to or attempting to connect to the broadcast channel and its call-in port is dialed.
(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to another port. Thus, the

[03004-8001/5L.003733.105} -9 731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1113 of 1657

10

15

20

25

30

seeking computer actually communicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place calls to that computer via the
call-in port. The seeking computer then communicates via that external port to request the
portal computer to assist in connecting the seeking computer to the broadcast channel. The
seeking computer could identify the call-in port number of a portal computer by successively
dialing each port in port number order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order, which may result in improved
performance.

A seeking computer could connect to the broadcast channel by connecting to
computers either directly connected to the found portal computer or directly connected to one
of its neigﬁbors. A possible problem with such a scheme for identifying the neighbors for
the seeking computer is that the diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and establishes a connection to the
broadcast channel directly through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes are added. Figures 4A-4C
illustrate that possible problem. Figure 4A illustrates the broadcast channel of Figure 1 with
an added computer. Computer J was connected to the broadcast channel by edge pinning
edges C-D and E-H to computer J. The diameter of this broadcast channel is still two.
Figure 4B illustrates the broadcast chanmel of Figure 4A with an added computer.
Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to
computer K. The diameter of this broadcast channel is three, because the shortest path from
computer G to computer K is through edges G-A, A-E, and E-K. Figure 4C also illustrates
the broadcast channel of Figure 4A with an added computer. Computer K was connected to
the broadcast channel by edge pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the selection of neighbors impacts the
diameter of the broadcast channel. To help minimize the diameter, the broadcast technique
uses a random selection technique to identify the four neighbors of a computer in the seeking
connection state. The random selection technique tends to distribute the connections to new

seeking computers throughout the computers of the broadcast channel which may result in
smaller overall diameters.

[03004-8001/51003733.105} -10- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1114 of 1657

10

15

20

25

30

Broadcasting Through the Graph

As described above, each computer that is connected to the broadcast channel
can broadcast messages onto the broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that originates a message to be broadcast
sends that mcssage to each of its four neighbors using the internal connections. When a
compliter receives a broadcast message from a neighbor, it sends the message to its three
other neighbors. Each computer on the broadcast channel, except the originating computer,
will thus receive a copy of each broadcast message from each of its four neighbors. Each
computer, however, only sends the first copy of the message that it receives to its neighbors
and disregards subsequently received copies. Thus, the total number of copies of a message

that is sent between the computers is 3N+1, where N is the number of computers connected

to the broadcast channel. . Each computer sends three copies of the message, except for the

originating computer, which sends four copies of the message.

The redundancy of the message sending helps to ensure the overall reliability
of the broadcast channel. Since each computer has four connections to the broadcast
channel, if one computer fails during the broadcast of a m‘esssge,, its neighbors have three
other connections through which they will receive copies of the broadcast message. Also, if
the internal connection between two computers is slow, each computer has three other
connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its own messages
sequentially. Because of the dynamic nature of the broadcast channel and because there are
many possible connection paths between computers, the messages may be received out of
order. For example, the distance between an originating computer and a certain receiving
computer may be four. After sending the first message, the originating computer and
receiving computer may become neighbors and thus the distance between them changes to
one. The first message may have to trave! a distance of four to reach the receiving computer.
The second message only has to travel a distance of one. Thus, it is possible for the second
message to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (7.e., no computers connecting
or disconnecting from the broadcast channel), out-of-order messages are not a problem
because each computer will evenmally receive both messages and can queue messages until

all earlier ordered messages are received. If, however, the broadcast channel is not in a

[63004-8001/SL003733.105] -11- 7731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1115 of 1657

10

15

20

25

30

steady state, then problems can occur. In particular, a computer may connect to the
broadcast channel after the second message has already been received and forwarded on by
its new neighbors. When a new neighbor eventually receives the first message, it sends the
message to the newly connected Computer. Thus, the newly connected computer will receive
the first message, but will not receive the second message. If the newly connected computer
needs to process the messages in order, it would wait indefinitely for the second messagé.
One solution to this problem is to have each computer queue all the messages
that it receives until it can send them in their proper order to its neighbors. This solution,
however, may tend to slow down the propagation of messages through the computers of the
broadcast channel. Another solution that may have less impact on the propagation speed is
to queue messages only at computers who are neighbors of the newly connected computers.
Each already connected ncighbor would forWaxd messages as it receives them to its other
neighbors who- are not ricwly' connected, but not to the newly connected neighbor. The
already connected neighbor would only forward messages from each originating,computef to
the newly connected computer when it can ensure that no gaps in the messages from that
originating computer will occur. In one embodiment, the already connected neighbor may
track the highest sequence number of the messages already received and forwarded on from
each originating computer. The already connected computer will send only higher numbered
messages from the originating computers to the newly connected computer. Once all lower
numbered messages have been received from- all originating computers, then the already
connected computer can treat the newly connected computer as its other neighbors and
simply forward each message as it is received. In another embodiment, each computer may
queue messages and only forwards to the newly connected computer those messages as the
gaps are filled in. For example, a computer might receive messages 4 and 5 and then receive
message 3. In such a case, the already connected computer would forward queue messages 4
and 5. When message 3 is finally received, the already connected computer will send
messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5 were sent to the
newly connected computer before message 3, then the newly connected computer would
process messages 4 and 5 and disregard message 3. Because the already connected computer
queues messages 4 and 5, the newly connected computer will be able to process message 3.
It is possible that a newly connected computer will receive a set of messages from an
originating computer through one neighbor and then receive another set of message from the

{03004-8001/8L003733.105] -12- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1116 of 1657

10

15

20

25

30

same originating computer through another neighbor. If the second set of messages contains
a message that is ordered earlier than the messages of the first set received, then the newly
connected computer may ignore that earlier ordered message if the computer already

processed those later ordered messages.

Decomposing the Graph
A connected computer disconnects from the broadcast channel either in a

planned or unplanned manner. When a computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The disconnect message includes a list that
identifies the four neighbors of the disconnecting computer. When a neighbor receives the
disconnect message, it tries to connect to one of the computers on the list. In ome
embodiment, the first computer in the list will try to connect to the second computer in the
list, and the thn'd computer in the list will try to connect to the fourth'computer in the hist. If
a computer canﬁot connect (e.g., the first and second computers are already connected), then
the computers may try connecting in various other combinations. If connections cannot be
established, each computer broadcasts a message that it needs to establish a connection with
another computer. When a computer with an available internal port receives the message, it

can then establish a connection with the computer that broadcast the message. - Figures 5A-

5D illustrate the disconnecting of a computer from the broadcast channel. Figure 5A

illustrates the disconnecting'of a computer from the broadcast channel in a planned manner.
When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors
(computers A, E, F and I) and then disconnects from each of its neighbors. When
computers A and I receive the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E and F.

‘When a computer disconmects in an unplanned manner, such as resulting from
a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next message to the now disconnected

- computer. Each former neighbor of the disconnected computer recognizes that it is short one

connection (i.e., it has a hole or empty port). When a connected computer detects that one of
its neighbors is now disconnected, it broadcasts a port connection request on the broadcast
channel, which indicates that it has one internal port that needs a connection. The port

connection request identifies the call-in port of the requesting computer. When a connected

[03004-8001/81.003733.105] -13- 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1117 of 1657

10

15

20

25

30

computer that is also short a connection receives the connection request, it communicates

with the requesting computer through its external port to establish a connection between the

~two computers. Figure 5B illustrates the disconnecting of a computer from the broadcast

channel in an unplanned manner. In this illustration, computer H has disconnected in an
unplanned manner. When each of its neighbors, computers A, E, F, and |, recognizes the
disconnection, each neighbor broadcasts a port connection request indicating that it needs to
fill an empty port. As shown by the dashed lines, computers F and I and computers A and E
respond to each other’s requests and establish a connection. ‘

It is possible that a planned or unplanned disconnection may result in two
neighbors each having an empty internal port. In such a case, since they are neighbors, they
are already connected and cannot fill their empty ports by connecting to each other. Such a
condition is referred to as the “neighbors with empty ports” condition. Each neighbor
broadcasts a poi't connection request when it detects that it has an empty port as described
above. Whena neighbor receives the pbrt connection request from the other neighbor, it will
recognize the condition that its neighbor also has an empty port. Such a condition may also
occur when the broadcast channel is in the small regime. The condition can only be
corrected when in the large regime. When in the small regime, each computer will have less
than four neighbors. To detect this condition in the large regime, which would be a problem
if not repaired, the first neighbor to receive the port connection request recognizes the
condition and sends a condition check message to the other neighbor. The condition check
message includes a list of the neighbors of the sending computer. When the receiving
computer receives the list, it compares the list to its own list of neighbors. If the lists are
different, then this condition has occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition repair request to one of the
neighbors of the sending computer which is not already a neighbor of the receiving
computer. When the computer receives the condition repair request, it disconnects from one
of its neighbors (other than the neighbor that is involved with the condition) and connects to
the computer that sent the condition repair request. Thus, one of the original neighbors
involved in the condition will have had a port filled. However, two computers are still in
need of a connection, the other original neighbor and the computer that is now disconnected
from the computer that received the condition repair request. Those two computers send out

port connection requests. If those two computers are not neighbors, then they will connect to

[03004-8001/SL003733.105] -14. 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1118 of 1657

10

15

20

25

30

each other when they receive the requests. If, however, the two computers are neighbors,
then they repeat the condition repair process until two non-neighbors are in need of
connections.

It is possible that the two original neighbors with the condition may have the
same set of neighbors. When the neighbor that receives the condition check message
determines that the sets of neighbors are the same, it sends a condition double check message
to one of its neighbors other than the neighbor who also has the condition. - When the
computer receives the condition double check message, it determines whether it has the same

set of neighbors as the sending computer. If so, the broadcast channel is in the small regime

-and. the condition is not a problem. If the set of neighbors are different, then the computer

that received the condition double check message sends a condition check message to the
original neighbors with the condition. The computer that receives that condition check
message directs one of it neighbors to connect to one of the original neighbors with the
condition by sending a condition repair message. Thus, one of the original neighbors with
the condition will have its port filled.

Figure 5C illustrates the neighbors with empty ports condition. In this
illustration, computer H disconnected in an unplanned manner, but computers F and I
responded to the port connection request of the other and are now connected together. The
other former neighbors of computer H, computers A and E, are already neighbors, which
gives rise to the neighbors with empty ports condition. In this example, computer E received
the port connection request from computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a condition check message with a list
of its neighbors to computer A. When computer A received the list, it recognized that
computer E has a different set of neighbor (i.e., the broadcast channel is in the large regime).
Computer A selected computer D, which is a neighbor of computer E and sent it a condition
repair request. When computer D received the condition repair request, it disconnected from
one of its neighbors (other than computer E), which is computer G in this example.
Computer D then connected to computer A. Figure 5D illustrates two computers that are not
neighbors who now have empty ports. Computers E and G now have empty ports and are
not currently neighbors. Therefore, computers E and G can connect to each other.

Figures 5E and 5F further illustrate the neighbors with empty ports condition.
Figure 5E illustrates the neighbors with empty ports condition in the small regime. In this

{03004-8001/SL003733.105] -15- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1119 of 1657

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then each computer
broadcasts a port connection request when it detects the disconnect. When computer A

receives the port connection request form computer B, it detects the neighbors with empty

ports condition and sends a condition check message to computer B. Computer B recognizes

that it has the same set of neighbors (computer C and D) as computer A and then sends a
condition double check message to computer C. Computer C recognizes that the broadcast
channel is in the small rregime because is also has the same set of neighbors as computers A
and B, computer C may then broadcast a message indicating that the broadcast channel is in
the small regime.

Figure 5F illustrates the situation of Figure SE when in the large regime. As
discussed above, computer C receives the condition double check message from computer B.
In this case, computer C recognizes that the broadcast channel is in the large regime because
it has a set of neighbors that is different from computer B. The edges extending up from
computer C and D indicate connections to other computers. Computer C then sends a
condition check message to computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the neighbors of computer C. The

computer that receives the condition repair message disconnects from one of its neighbors,

other than computer C, and tries to connect to computer B and the neighbor from which it -

disconnected tries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports above number 2056
as user ports. The broadcast technique uses five user port numbers on each computer: one
external port and four internal ports. Generally, user ports cannot be statically allocated to
an application program because other applications programs executing on the same computer
may use conflicting port numbers. As a result, in one embodiment, the computers connected
to the broadcast channel dynamically allocate their port numbers. Each computer could
simply try to locate the lowest number unused port on that computer and use that port as the
call-in port. A seeking computer, however, does not know in advance the call-in port
number of the portal computers when the port numbers are dynamically allocated. Thus, a
seeking computer needs to dial ports of a portal computer starting with the lowest port
number when locating the call-in port of a portal computer. If the portal computer is

{03004-8001/5L003733.105] -16- 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1120 of 1657

10

15

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the seeking computer
would eventnally find the call-in port. If the portal computer is not connected, then the
seeking computer would eventually dial every user port. In addition, if each application
program on a computer tried to allocate low-ordered port numbers, then a portal computer
may. end up with a high-numbered port for its call-in port because many of the low-ordered
port numbers would be used by other application programs. Since the dialmg of a port is a
relatively slow process, it would take the seeking computer a long time to locate the call-in
port of a portal computer. To minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a portal computer should use when
finding an available port for its call-in port. In one embodiment, the broadcast technique
uses a hashing algorithm to identify the port order. The algorithm preferably distributes the
ordering of the port numbers .fandomly through out the user port number space and only
selects each port number once. In addition, every time the algorithm is executed on any
computer for a given channel type and channel instance, it genérates the same port ordering.
As described below, it is possible for a computer to be connected to multiple broadcast
channels that are uniquely identified by channel type and channel instance. The algorithm
may be “seeded” with channel type and channel instance in order to generate a unique
ordering of port numbers for each broadcast channel. Thus, a seeking computer will dial the
ports of a portal computer in the same order as the portal computer used when allocating its
call-in port.

If many computers are at the same time seeking connection to a broadcast
channel through a single portal computer, then the ports of the portal computer may be busy
when called by seeking computers. The seeking computers would typically need to keep on
redialing a busy port. The process of locating a call-in port may be significantly slowed by
such redialing. In one embodiment, each seeking computer may each reorder the first few
port numbers generated by the hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers generated by the hashing algorithm. The
random ordering could also be weighted where the first port number generated by the
hashing algorithm would have a 50% chance of being first in the reordering, the second port
number would have a 25% chance of being first in the reordering, and so on. Because the
secking computers would use different orderings, the likelihood of finding a busy port is
reduced. For example, if the first eight port numbers are randomly selected, then it is

[03004-8001/SL003733.105) -17- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1121 of 1657

10

15

20

25

30

possible that eight seeking computers could be simultaneously dialing ports in different
sequences which would reduce the chances of dialing a busy port.
Locating a Portal Computer

Each computer that can connect to the broadcast channel has a list of one or
more portal computers through which it can conﬁect to the: broadcast channel. In one
embodimcnt, each computer has the same set of portél computers. A seeking computer

locates a portal computer that is connected to the broadcast channel by successively dialing

the ports of each portal computer in the order specified by an'algon'thm. A seeking computer
could select the first portal computer and then dial all its ports until a call-in port of a
computer that is fully connected to the broadcast channel is found. If no call-in port is
found, then the seeking computer would select the next portal computer and Vrepeat the
process until a portal computer with such a call-in port isyfound. A pi-dblem with such a

seeking technique is that afl user ports of each portal computer are dialed until a portal

computer fully connected to the broadcast channel is found. In an alternate embodiment, the
seeking computer selects a port number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to the broadcast channel is found,
then the seeking computer selects the next port number and repeats the process. Since the
call-in ports are likely allocated at lower-ordered port nuinbers, the seeking computer first
dials the port numbers that are most likely to be call-in ports of the broadcast channel. The

seeking computers may have a maximum search depth, that is the number of ports that it will |

dial when seeking a portal computer that is fully connected. If the seeking computer
exhausts its search depth, then either the broadcast channel has not yet been established or, if
the seeking computer is also a portal computer, it can then establish the broadcast channel
with itself as the first fully connected computer.

When a seeking computer locates a portal computer that is itself not fully
connected, the two computers do not connect when they first locate each other because the
broadcast channel may already be established and accessible through a higher-ordered port
number on another portal computer. If the two seeking computers were to connect to each
other, then two disjoint broadcast channels would be formed. Each seeking computer can
share its experience in trying to locate a portal computer with the other seeking computer. In

particular, if one seeking computer has searched all the portal computers to a depth of eight,

[D3004-8001/S1.003733.105] -18- 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1122 of 1657

10

15

20

25

30

then the one seeking computer can share that it has searched to a depth of eight with another
seeking computer. If that other seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through eight and that other seeking
computer can advance its searching to a depth of nine. |

In one embodiment, each computer may have a different set of portal
computers and a different maximum search depth. In such a situation, it may be possible that
two disjoint broadcast channels are formed because a seeking computer cannot locate a fully
connected port computer at a higher depth. Similarly, if the set of portal computers are

disjoint, then two separate broadcast channels would be formed.

Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting computer are
preferably selected randomly from the set of currently connected computers. One advantage
of the broadcast channel, however, is that no computer has global knowledge of the
broadcast channel. Rather, each computer has local knowledge of itself and its neighbors.
This limited local knowledge has the advantage that all the connected computers are peers
(as far as the broadcasting is concemed) and the failure of any one computer (actually any
three computers when in the 4-regular and 4-connect forin) will not cause the broadcast
channel to fail. This local knowledge makes it difficult for a portal computer to randomly
select four neighbors for a seeking computer.

To select the four computers, a portal computer sends an edge connection
request message through one of its internal connections that is randomly selected. The
receiving computer again sends the edge conmection request message through one of its
internal connections that is randomly selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast channel. Eventually, a
receiving computer will decide that the message has traveled far enough to represent a
randomly selected computer. That receiving computer will offer the internal connection
upon which it received the edge connection request message to the seeking computer for
edge pinning. Of course, if either of the computers at the end of the offered internal
connection are already neighbors of ﬂie seeking computer, then the seeking computer cannot

connect through that internal connection. The computer that decided that the message has

[03004-8001/5L003733.105] -19- 731400

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1123 of 1657

10

15

20

25

30

traveled far enough will detect this condition of already being a neighbor and send the
message to a randomly selected neighbor. -

In one embodiment, the distance that the edge connection request message
travels is established by the portal computér to be approximately twice the estimated
diameter of the broadcast channel. The message includes an indication of the distance that it
is to travel. Each receiving computer decrements that distance to travel before sending the
message on. The computer that receives a message with a distance to travel that is zero is
considered to be the randomly selected computer. If that randomly selected computer cannot

connect to the seeking computer (e.g., because it is. already connected to it), then that

. randomly selected computer forwards the edge connection request to one of its neighbors

with a new distance to travel. In one embodiment, the forwarding computer toggles the new
distance to travel between zero and one to help prevent two computers from sending the
message back and forth between each other.

Because of the local nature of the information maintained by each computer
connected to the broadcast channel, the computers need not generally be aware of the
diameter of the broadcast channel. In one embodiment, each message sent through the
broadcast channel has a distance traveled field. Each computer that forwards a message
increments the distance traveled field. Each computer also ‘maintains an estimated diameter
of the broadcast channel. When a computer receives a message that has traveled a distance
that indicates that the estimated diameter is too small, it updates its estimated diameter and
broadcasts an estimated diameter message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own estimated diameter, it updates its
own estimated diameter. This estimated diameter is used to establish the distance that an

edge connection request message should travel.

External Data Representation
The computers connected to the broadcast channel may internally store their

data in different formats. For example, one computer may use 32-bit integers, and another
computer may use 64-bit integers. As another example, one computer may use ASCII to
represent text and another computer may use Unicode. To allow communications between
heterogeneous computers, the messages sent over the broadcast channel may use the XDR
(“eXternal Data Representation”) format.

[03004-8001/5L003733.105] -20- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1124 of 1657

10

15

20

25

30

The underlying peer-to-peer communications protocol may send multiple
messages in a single message stream. The traditional technique for retrieving messages from
a stream has been to repeatedly invoke an operating system routine to retrieve the next
message in the stream. The retrieval of each message may require two calls to the operating
system: one to retrieve the size of the next message and the other to retrieve the number of
bytes indicated by the retrieved size. Such calls to the operating system can, however, be
very slow in comparison to the invocations of local routines. To overcome the inefficiencies
of such repeated calls, the broadcast technique in one embodiment, uses XDR to identify the
message boundaries in a stream of messages. The broadcast technique may request the
operating system to provide the next, for example, 1,024 bytes from the stream. The
broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages
and use the success or failure of each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The invocation of XDR routines do
not involve system calls and are thus more efficient than repeated system calls.

M-Regular

In the embodiment described above, each fully connected corﬁputer has four
internal connections. The broadcast technique can be used with other numbers of internal
connections. For example, each computer could have 6, 8, or any even number of internal
connections. As the number of internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a message tends to decrease. The
time that it takes to connect a seeking computer to the broadcast channel may, however,
increase as the number of internal connections increases. When the number of internal
connectors is even, then the broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal connections is odd, then when
the broadcast channel has an odd number of computers connected, one of the computers will

have less than that odd number of internal connections. In such a situation, the broadcast

network is neither m-regular nor m-connected. When the next computer connects to the

broadcast channel, it can again become m-regular and m-connected. Thus, with an odd
number of internal connections, the broadcast channel toggles between being and not being

m-regular and m-connected.

[03004-8001/SL003733.105] -21- 7131700

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1125 of 1657

10

15

20

25

30

Components
Figure 6 is a block diagram illustrating components of a computer that is

connected to a broadcast channel. The above description generally assumed that there was
only one broadcast channel and that each computer had only one connection to that broadcast
channel. More generally, a network of computers may have multiple broadcast channels,
each computer may be connected to more than one broadcast channel, and each computer
can have multiple connections to the same broadcast channel. The broadcast channel is well

suited for computer processes (e.g., application programs) that execute collaboratively, such

.as network meeting programs. Each computer process can connect to one or more broadcast

channels. The broadcast channels can be identified by channel type (e.g., application
program name) and channel instance that represents separate broadcast channels for that
channel type. When a process attempts to connect to a broadcast channel, it seeks a process
currently connected to that broadcast channel that is executing on a portal computer. The
secking process identifies the broadcast channel by channel type and channel instance.
Computer 600 includes multiple application programs 601 executing as
separate processes. Each application program interfaces with a broadcaster component 602
for each broadcast channel to which it is connected. The broadcaster component may be
implement as an object that is instantiated within the process Space of the application -
program. Alternatively, the broadcaster component may execute as a separate process or
thread from the application program. In one embodiment, thé broadcaster component
provides functions (e.g., methods of class) that can be invoked by the application programs.
The primary functions provided may include a connect function that an application program
invokes passing an indication of the broadcast channel to which the application program
wants to connect. The application program may provide a callback routine that the
broadcaster component invokes to notify the application program that the connection has
been completed, that is the process enters the fully connected state. The broadcaster
component may also provide an acquire message function that the applicatidn program can
mvoke to retrieve the next message that is broadcast on the broadcast channel. Alternatively,
the application program may provide a callback routine (which may be a virtual function
provided by the application program) that the broadcaster component invokes to notify the
application program that a broadcast message has been received. Each broadcaster

component allocates a call-in port using the hashing algorithm. When calls are answered at

[03004-8001/SL003733.105) -22- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1126 of 1657

10

15

20

25

30

the call-in port, they are transferred to other ports that serve as the extemal and internal
ports.

The computers connecting to the broadcast channel may include a central
processing unit, memory, input devices (e.g., keyboard and pointing device), output devices
(e.g., display devices), and storage devices (e.g., disk drives). The memory and storage
devices are computer-readable medium that may contain computer instructions that
implement the broadcaster component. - In addition, the data structures and message
structures may be stored or transmitted via a signal Iransrhitted on a computer-readable
media, such as a communications link. _ _

Figure 7 is a block diagram illustrating the sub-components of the broadcaster
component in one embodiment. The broadcaster component includes a connect component
701, an external dispatcher 702, an internal dispatcher 703 for each internal connection, an
acquire message component 704 and a broadcast component 712. The application program
may provide a connect callback component 710 and a receive response component 711 that
are invoked by the broadcaster componént. The application program invokes the connect
component to establish a connection to a designated broadcast channel. The comnect
component identifies the external port and installs the external dispatcher for handling
messages that are received on the external port. The connect component invokes the seek
portal computer component 705 to idéntify a portal computer that is connected to the
broadcast channel and invokes the connect request component 706 to ask the portal computer
(if fully connected) to select neighbor processes for the newly connecting process. The
external dispatcher receives external messages, identifies the type of message, and invokes
the appropriate handling routine 707. The internal dispatcher receives the internal messages,
identifies the type of message, and invokes the appropriate handling routine 708. - The
received broadcast messages are stored in the broadcast message queue 709. The acquire
message component is invoked to retrieve messages from the broadcast queue. The

broadcast component is invoked by the application program to broadcast messages in the

broadcast channel.

An Information Delivery Service
In one embodiment, an information delivery service application is

implemented using the broadcast channel. The information delivery service allows

{03004-8001/SL.003733.105] -23- /31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1127 of 1657

10

15

20

25

30

participants to monitor messages as they are broadcast on the broadcast channel. Each
partibipant may function as a producer of information, as a consumer of information, or both.
The producers broadcast messages on the broadcast channel, and consumers receive the
broadcast messages. For example, a sports broadcast channel may be used to disseminatey the
results of sporting events. Certain organizatioﬁs, such as the National Football League, may
be authorized to broadcast results of sporting events on the broadcast channel. The operators
of the broadcast chanhél may sell subscriptions to the broadcast channel to sports enthusiasts.
The information delivery service may be used to distribute a broad range of content including
news articles, stock prices, weather alerts, medical alerts, traffic reports, and so on.

The information delivery service may provide a directory web site
where consumers can locate and subscribe to broadcast channels of interest. The directory
may provide a hierarchical organization of topics of the various broadcast channels. When a
user decides to subscribe to a broadcast channel, the broadecaster component and information
delivery service application program may be downloaded to the user’s computer if not
already available on the user’s computer. Also, the channel type and channel instance
associated with that broadcast channel and the identification of the portal computers for that
broadcast channel may be downloaded to the subscriber’s computer. The information
delivery service may also provide a subscriber identifier that may be used by a portal
computer to authorize access to or track who has connected to the broadcast channel.

The information delivery service web site may also allow an entity to
create new broadcast channels. For example, the NFL may want a broadcast channel
dedicated to the dissemination of information under its control. In which case, the entity
would interact with the web site to create the broadcast channel. The creation of the
broadcast channel would entail the generation of a channel type and channel instance, the
specification of security level (e.g., encrypted messages), the specification of subscriber
qualifications, and so on.

A user may subscribe to a broadcast channel for an individual topic,
which corresponds to a leaf node in the hierarchy, or a user may subscribe to a category of
topics, which corresponds to a non-leaf node in the hierarchy. For example, a user may
subscribe to a category of sports scores or subscribe to the topic of NFL scores. In one
embodiment, each topic would have its own broadcast channel. As a result, the subscribing
to a category of topics would mean subscribing to multiple broadcast channels.

[03004-8001/81L003733.105] ~24- 131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1128 of 1657

10

15

Alternatively, a category of topics may have a single broadcast channel. If a user subscribes
to just one topic in the category, the information delivery service application program
executing at the subscriber’s computer would simply disregard messages not related to the
topic. ,
Many different fee structures can be used by the information delivery
service. A subscriber may be charged a fixed fee per month for subscribing to a'fopic.
Alternatively, a subscriber may be charged based on time actually connected. For example,
when a subscriber’s computer is connected, it might broadcast an identification message
every hour or so. A billing computer could monitor the broadcast and record the connect
time based on the identification messages. If the billing computer does not receive an
identification message for a certain time period, it assumes that the subscriber’s computer has
disconnected. Also, the operator of the broadcast channel may derive revenue from
advertisements broadcast over the broadcast channel. The fee for advertising on a broadcast
channe] may vary based on the number of subscribers connected to the broadcast channel at
the time the advertisement is broadcast.

The folloWing tables list messages sent by the broadcaster components.

EXTERNAL MESSAGES

Message Type Description

seeking connection_call | Indicates that a seeking process would like to know whether the
receiving process is fully connected to the broadcast channel

connection_request_call | Indicates that the sending process would like the receiving
' process to initiate a connection of the sending process to the
broadcast channel

edge_proposal_call Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
'| channel (i.e., edge pinning) -

port_connection_call Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcast
channel

connected stmt Indicates that the sending process is connected to the broadcast
channel

condition_repair_stmt Indicates that the receiving process should disconnect from one

of its neighbors and connect to one of the processes involved in .

[03004-8001/8L003733.105] -25- 7731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1129 of 1657

10

the neighbors with empty port condition

INTERNAL MESSAGES
Message Type Description
broadcast_stmt Indicates a message that is being broadcast through the

broadcast channel for the application programs..

connection_port_search_stmt | Indicates that the designated process is looking for a port

through which it can connect to the broadcast channel

connection_edge_search call | Indicates that the requesting process is looking for an edge
through which it can connect to the broadcast channel

| connection_edge séarch resp | Indicates whether the edge between this process and the

sending neighbor has been accepted by the requesting

party
diameter_estimate_stmt Indicates an estimated diameter of the broadcast channel
diameter reset_stmt : Indicates to reset the estimated diameter to indicated
diameter o
disconnect_stmt | Indicates that the sending neighbor is disconnecting from
the broadcast channel
condition_check_stmt Indicates that neighbors with empty port condition have
been detected

condition_double_check_stmt | Indicates that the neighbors with empty ports have the
same set of neighbors

shutdown_stmt Indicates that the broadcast channel is being shutdown

Flow Diagrams

Figures 8-34 are flow diagrams illustrating the processing of the broadcaster
component in one embodiment. Figure 8 is a flow diagram illustrating the processing of the
connect routine in one embodiment. This routine is passed a channel type (e.g., application
name) and channel instance (e.g., session identifier), that identifies the broadcast channel to
which this ;Srocess wants to connect. The routine is also passed auxiliary information that
includes the list of portal computers and a connection callback routine. When the connection
is established, the connection callback routine is invoked to‘notify the application program.
When this process invokes this routine, it is in the seeking connection state. When a portal
computer is located that is connected and this routine connects to at least one neighbor, this

{03004-8001/51.603733.105] -26- 773100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1130 of 1657

:..,,,-,.,4
ES

10

15

20

25

30

process enters the partially connected state, and when the process eventually connects to four
neighbors, it enters the fully connected state. When in the small regime, a fully connected
process may have less than four neighbors. In block 801, the routine opens the call-in port
through which the process is to communicate with other processes when establishing external
and internal connections. The port is selected as the first available port using the hashing
algorithm described above. In block 802, the routine sets the connect time to the current
tune The connect time is used to identify the instance of the process that is connected
through this external port. One process may connect to a broadcast channel of a certain
channel type and channel instance using one call-in port and then disconnects, and another -
process may then connect to that same broadcast channel using the same call-in port. Before
the other process becomes fully connected, another process may try to communicate with it
thinking it is th.e fully connected old process. In such a case, the connect time can be used to
identify this situation. ‘In block 803, the. routine invokes the seek portal computer routine
passing the channel type and channel instance. The seek portal computer routine attempts to
locate a portal computer through which this process can connect to the broadcast channel for
the passed type and instance. In decision block 804, if the seek portal computer routine is
successful in locating a fully connected process on that portal computer, then the routine
continues at block 805, else the routine returns an unsuccessful indication. In decision block
805, if no portal computer other than the portal computer on which the process is executing
was located, then this is the first process to fully connect to broadcast channel and the
routime continues at block 806, else the routine continues at block 808. In block 806, the
routine invokes the achieve connection routine to change the state of this process to fully
connected. In block 807, the routine installs the external dispatcher for processing messages
received through this process’ external port for the passed channel type and channel instance.
When a message is received through that external port, the external dispatcher is invoked.
The routine then returns. In block 808, the routine installs an external dispatcher. In block
809, the routine invokes the connect request routine to initiate the process of identifying
neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of the seek portal
computer routine in one embodiment. This routine is passed the channel type and channel
instance of the broadcast channel to which this process wishes to connect. This routine, for
each search depth (e.g., port number), checks the portal computers at that search depth. If a

[03004-8001/SL003733.105] 27- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1131 of 1657

10

15

20

25

30

portal computer is located at that search depth with a process that is fully connected to the
broadcast channel, then the routine returns an indication of success. In blocks 902-911, the
routine loops selecting each search depth until a process is located. In block 902, the routine
selects the next search depth using a port number ordering algorithm. In decision block 903,
if all the search depths have already been selected during this execution of the loop, that is
for the currently selected depth, then the routine returns a failure indication, else the routine
continues at block 904. In blocks 904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer is connected to (or attempting to
connect to) the broadcast channel with the passed channel type and channel instance. In
block 904, the routine selects the next portal computer. In decision block 905, if all the
portal computers have already been selected, then the routine loops to block 902 to select the
next search depth, else the routine continues at block 906. In block 906, the routine dials the
selected portal computer through the port represented by the search depth. In decision block
907,.if the dialing was successful, then the routine continues at block 908, else the routine
loops to block 904 to select the next portal computer. The dialing will be successful if the
dialed port is the call-in port of the broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In block 908, the routine invokes a
contact process routine, which contacts the answering process of the portal computer through
the dialed port and determines whether that process is fully connected to the broadcast
channel. In block 909, the routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the broadcast channel, then the
routine returns a success indicator, else the routine continues at block 911. In block 911, the
routine invokes the check for external call routine to determine whether an external call has
been made to this process as a portal computer and processes that call. The routine then
loops to block 904 to select the next portal computer.

Figure 10 is a flow diagram illustrating the processing of the contact process
routine in one embodiment. This routine determines whether the process of the selected
portal computer that answered the call-in to the selected port is fully connected to the
broadcast channel. In block 1001, the routine sends an external message (i.e.,
seeking_connection_call) to the answering process indicating that a seeking process wants to
know whether the answering process is fully connected to the broadcast channel. In block

1002, the routine receives the external response message from the answering process. In

[03004-8001/SLO03733.105] -28- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1132 of 1657

10

15

20

25

30

decision block 1003, if the external response message is successfully received (ie.,
seeking_connection_resp), then the routine continues at block 1004, else the routine returns.
Wherever the broadéast component requests to receive an external message, it sets a time out
period. If the external message is not received within that time out period, the broadcaster
component checks its own call-in port to see if another process is calling it. In particular, the
dialed process may be calling the dialing process, which may result in a deadlock situation.
The broadcaster component may repeat the receive request several times. If the expected
messagé is not received, then the broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicates in its response message that it is fully
connected to the broadcast channel, then the routine continues at block 10085, else thé routine
continues at block 1006. In block 1005, the routine adds the selected portal computer to a
list of connected portal computers and then returns. In block 1006 the routme adds the
answering process to a list of fellow seeking processes and then returns.

Figure 11 is a flow diagram illustrating the processing of the connect rcquest
routine in one embodiment. This routine requests a process of a portal computer that was
identified as being fully connected to the broadcast chanhelto initiate the connection of this
process to the broadcast channcl. In decision block 1101, if at least one process of a portal
computer was located that is fully connected to the broadcast channel, then the routine
continues at block 1103, else the routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently disconnected from the broadcast channel.
In one embodiment, a seeking computer may always search its entire search depth and find
multiple portal computers through which it can connect to the broadcast channel. In block
1102, the routine restarts the process of connecting to the broadcast channel and returns. In
block 1103, the routine dials the process of one of the found portal computers through the
call-m port. In decision block 1104, if the dialing is successful, then the routine continues at
block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for
example, the dialed process recently disconnected from the broadcast channel. In block
1105, the routine sends an external message to the dialed process requesting a connection to
the broadcast channel (i.e., connection_request_call). In block 1106, the routine receives the
response message (i.e., connection_request_resp). In decision block 1107, if the response
message is successfully received, then the routine continues at block 1108, else the routine
continues at block 1113. In block 1108, the routine sets the expected number of holes (i.e.,

[03004-8001/SL003733.105] -20- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1133 of 1657

10

15

20

25

30

empty internal connections) for this process based on the received response. When in the
large regime, the expected number of holes is zero. When in the small regime, the expected

number of holes varies from one to three. In block 1109, the routine sets the estimated

~ diameter of the broadcast channel based on the received response. In decision block 1111, if

the dialed process is ready to connect to this process as indicated by the response message,
then the routine continues at block 1112, else the routine continues at block 1113; In block
1112, the routine invokeé the add neighbor routine to add the anéwering process as a
neighbor to this process. This adding of the answering process typically occurs when the
broadcast channel is in the small regime. When in the large regime, the random walk search
for a neighbor is performed. In block 1113, the routine hangs up the external connection
with the answering process computer and then returns.

Figure 12 is a flow diagram of the processing of the check for external call

routine in one embodiment. This routine is invoked to identify whether a fellow seeking.

process is attempting to establish a connection to the broadcast channel through this process.
In block 1201, the roufine vattempts to answer a call on the call-in port. In decision block
1202, if the answer is successful, then the rouﬁné continues at block 1203, else the routine
returns. In block 1203, the routine receives the external message from the extemnal port. In
decision block 1204, if the type of the message indicates that a secking process is balling
(i.e., seeking_connection_call), then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message (i.e., seeking_connection_resp)
to the other seeking process indicating that this process is also is seeking a connection. In
decision block 1206, if the sending of the external message is successful, then the routine
continues at block 1207, else the routine returns. In block 1207, the routine adds the other
seeking process to a list of fellow seeking processes and then returns. This list may be used
if this process can find no process that is fully connected to the broadcast channel. In which
case, this process may check to see if any fellow seeking process were successful in
connecting to the broadcast channel. For example, a fellow seeking process may become the
first process fully connected to the broadcast channel.

Figure 13 is a flow diagram of the processing of the achieve connection routine
in one embodiment. This routine sets the state of this process to fully connected to the
broadcast channel and invokes a callback routine to notify the application program that the
process is now fully connected to the requested broadcast channel. In block 1301, the

{03004-8001/SL003733.105] -30~ 7731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1134 of 1657

10

15

20

25

30

routine sets the connection state of this process to fully connected. In block 1302, the
routine notifies fellow seeking processes that it is fully connected by sending a connected
external message to them (i.e., connected stmt). In block 1303, the routine invokes the
connect callback routine to notify the application program and then retums.

Figure 14 is a flow diagram illustrating the processing of the external

dispatcher routine in one embodiment. This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,
and invokes the appropriate routine to handle that message.. This routine loops processing
each message until all the received messages have been handled. In block 1401, the routine
answers (e.g., picks up) the external port and retrieves an external message. In decision
block 1402, if a message was retrieved, then the routine continues at block 1403, else the
routine hangs up on the external port in block 1415 and returns. In decision block 1403, if
the message type is for a process -Seel'dng a connection (i.e., seeking_connection_call), then
the routine invokes the handle seeking connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if thé message type is for a connection
request call (i.e., connection_request call), then the routine invokes the handle connection
request call routine in block 1406, else the routine continues at block 1407. In decision
block 1407, if the message type is edge proposal call (i.e., edge proposal call), then the -
routine invokes the handle edge proposal call routine in block 1408, else the routine
continues at block 1409. In decision block 1409, if the mcssage,typc is port connect call
(i.e., port_connect_call), then the routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In decision block 1411, if the message
type is a connected statement (ie., connected stmt), the routine invokes the handle
connected statement in block 1112, else the routine continues at block 1212. In décisi.on
block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt),

then the routine invokes the handle condition repair routine in block 1413, else the routine

- loops to block 1414 to process the next message. Afier each handling routine is invoked, the

routine loops to block 1414. In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment. This routine is invoked when a seeking process
is calling to identify a portal computer through which it can connect to the broadcast channel.

[03004-8001/SL003733.105] -31- 713100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1135 of 1657

10

15

20

25

30

In decision block 1501, if this process is currently fully connected to the broadcast channel
identified in the message, then the routine continues at block 1502, else the routine continues
at block 1503. In block 1502, the routine sets a message to indicate that this process is fully
connected to the broadcast channel and continues at block 1505. In block 1503, the routine
sets a message to indicate that this process is not fully connected. In block 1504, the routine
adds the identification of the seeking process to a list of fellow seeking processes. If this
process is not fully connected, then i1t is attcmpting to comnect to the broadcast channel. In
block 1505, the routine sends the external méssage response (i.e., seeking_connection_resp)
to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the handle connection
request call routine in one embodiment. This routine is invoked when the calling process
wants this process to initiate the connection of the process to the broadcast channel. This
routiné either allows the calling process to establiéh an internal cb’nnéction with this process
(e.g., if in the small regime) or starts the process of identifying a process to which the calling
process can connect. In decision block 1601, if this process is currently fully connected to
thé broadcast chénnel, then the routine continues at block 1603, else the routine hangs up on
the external port in block 1602 and retums. In block 1603, the routine sets the number of
holes that the calling process should expect in the response message. In block 1604, the
routine sets the estimated diameter in the resi:imse message. In block 1605, the routine
indicates whether this process is ready to connect to the calling process. This process is
ready to connect when the number of its holes is greater than zero and the calling process is
not a neighbor of this process. In block 1606, the routine sends to the calling process an
external message that 1is responsive to the connection request call (ie,
connection_request_resp). In block 1607, the routine notes the number of holes that the
calling process needs to fill as indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then the routine contihues at block
1609, else the routine continues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In block 1610, the routine
decrements the number of holes that the calling process needs to fill and continues at block
1611. In block 1611, the routine hémgs up on the external port. In decision block 1612, if
this process has no holes or the estimated diameter is greater than one (ie, in the large
regime), then the routine continues at block 1613, else the routine continues at block 1616.

{03004-8001/51.003733.105] -32- 31100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1136 of 1657

10

15

20

25

30

In blocks 1613-1615, the routine loops forwarding a request for an edge through which to
connect to the calling process to the broadcast channel. One request is forwarded for each
pair of holes of the calling process that needs to be filled. In decision block 1613, if the
number of holes of the calling process to be filled is greater than or equal to two, then the
routine continues at block 1614, else the routine continues at block 1616. In block 1614, the
routine invokes the forward connection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk distance. In one embodiment, the
distance is twice in the estimated diameter of the broadcast channel. In block 1614, the
routine decrements the holes left to fill by two and loops to block 1613. In decision block
1616, if there is still a hole to fill, then the routine continues at block 1617, else the routine
returns. In block 1617, the routine invokes the fill hole routine passing the identification of
the calling process. The fill hole routine broadcasts a connection ﬁort search statement (ie,
_cohnection _port_search_stmt) for a hole of a connected process through which the calling
process can connect to the broadcast channel. The routine then returns.

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment. This routine adds the process calling on the external port as a
neighbor to this process. In block 1701, the routine identifies the calling process on the
external port. In block 1702, the roixtinc sets a flag to indicate that the neighbor has not yet
received the broadcast messages from this process. This flag is used to ensure that there are
no gaps in the messages initially sent to the new neighbor. The extemal port becomes the
internal port for this connection. In decision block 1703, if this f:rocess is in the seeking
connection state, then this process is comnecting to its first neighbor and the routine
continues at block 1704, else the routine continues at block 1705. In block 1704, the routine
sets the connection state of this process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this process. In block 1706, the routine
installs an internal dispatcher for the new neighbor. The mtemal dispatcher is invoked when
a message 1s received from that new neighbor through the internal port of that new neighbor.
In decision block 1707, if this process buffered up messages while not fully connected, then
the routine continues at block 1708, else the routine continues at block 1709. In one
embodiment, a process that is partially connected may. buffer the messages that it receives
through an internal connection so that it can send these messages as it connects to new

neighbors. In block 1708, the routine sends the buffered messages to the new neighbor

[03004-8001/5L.003733.105] ~-33- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1137 of 1657

10

15

20

25

30

through the internal port. In decision block 1709, if the number of holes of this process
equals the expected number of holes, then ﬂlis process is fully connected and the routine
continues at block 1710, else the routine continues at block 1711. In block 1710, the routine
invokes the ac,hieﬁe connected routine to indicate that this process is fully connected. In
decision block 1711, if the number of holes for this process is zero, then the routine -
continues at block 1712, else the routine returns. In block 1712, the routine deletes any
pending edges and then returns. A pending edge is an edge that has been proposed to this
process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward
cormection edge search routine in one embodiment. This routine is responsible for passing
along a fequcst to connect a requesting process to a randomly selected neighbor of this
process through the internal port of the selected neighbor, that is part of the random walk. In
decision block 1801, if the fdrwarding distance remaining is greater than zero, then the
routine continues at block 1804, else the routine continues at block 1802. In decision block
1802, if the number of neighbors of this process is greater than one, then the routine
continues at block 1804, else this broadcast channel is in the small regime and the routine
continues at block 1803. In decision block 1803, if the requesting process is a neighbor of
this process, then the routine returns, else ﬂle rouﬁnc continues at block 1804. In blocks
1804-1807, the routine loops attempting to send a connection edge search call intemnal
message (i.e., connection_edge_search_call) to a randomly selected neighbor. In block 1804,
the routine randomly selects a neighbor of this process. In decision block 1805, if all the
neighbors of this process have already been selected, then the routine cannot forward the
message and the routine returns, else the routine continues at block 1806. In block 1806, the
routine sends a connection edge search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is successful, then the routine continues at
block 1808, else the routine loops to block 1804 to select the next neighbor. When the
sending of an internal message is unsuccessful, then the neighbor may have disconnected
from the broadcast channel in an unplanned manner. Whenever such a situation is detected
by the broadcaster component, it attempts to find another neighbor by invoking the fill holes
routine to fill a single hole or the forward connecting edge search routine to fill two holes. In
block 1808, the routine notes that the recently sent connection edge search call has not yet
been acknowledged and indicates that the edge to this neighbor is reserved if the remaining

[03004-8001/SL003733.105) «34- 731000

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1138 of 1657

g

15

20

25

30

forwarding distance is less than or equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge pinning. The routine then returns.
Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. This routine is invoked when a message is received from a proposing
process that proposes to connect an edge between the proposing process and one of its
neighbors to this process for edge pinning. In decision block 1901, if the number of holes of
this process minus the number of pending edges is greater than or equal to one, then this
process still has holes to be filled and the routine continues at block 1902, else the routine
continues at block 1911. In decision block 1902, if the proposing process or its neighbor is a

 neighbor of this process, then the routine continues at block 1911, else the routine continues

at block 1903. In block 1903, the routine indicates that the edge is pcnding between this
process and the prdposing procéss. In decision block 1904, if a proposed neighbor is already
pending as a proposed neighber, then the routine continues at block 1911, else the routine
continues at block 1907. In block 1907, the routine sends an edge proposal response as an
external message to the. proposing process (i.e., edge proposal resp) indicating that the
proposed edge is accepted. In decision block 1908, if the seﬁding of the message was
successful, then the routine continues at block 1909, else the routine returns. In block 1909,
the routine adds the edge as a pending edge. In block 1910, the routine invokes the add
neighbor routine to add the proposing process on the external port as a neighbor. The routine
then returns. In block 191 1, the routine sends an external message (i.e., edge_proposal_resp)
indicating that this proposed edge is not accepted. In decision block 1912, if the number of
holes is odd, then the routine continues at block 1913, else the routine returns. In block
1913, the routine invokes the fill hole routine and then returns.

Figure 20 is a flow diagram illustrating the processing of the handle port
connection call routine in one embodiment. This routine is invoked when an external
message is received then indicates that the sending process wants to connect to one hole of
this process. In decision block 2001, if the number of holes of this process is greater than
zero, then the routine continues at block 2002, else the routine continues at block 2003. In
decision block 2002, if the sending process is not a neighbor, then the routine continues at
block 2004, else the routine continues to block 2003. In block 2003, the routine sends a port
connection response external message (i.e., port_connection_resp) to the sending process that

indicates that it is not okay to connect to this process. The routine then returns. In block

[03004-8001/SLOD3733.105) -35- 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1139 of 1657

10

15

20

25

30

2004, the routine sends a port connection response external message to the sending process
tﬁat indicates that is okay to connect this process. In decision block 2005, if the sending of
the message was successful, then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006, the‘routine invokes the add neighbor routine to add
the sending process as a neighbor of this process and then returns. In block 2007, the routine
hangs up the external connection. In block 2008, the routine invokes the connect request
routine to request that a.process connect to one of the holes of this process. The routine then
returns. |

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. This routine is passed an indication of the requesting process. If this
process is requesting to fill a hole, then this routine sends an. internal message to other

processes. If another process is requesting to fill a hole, then this routine invokes the routine

to handle a connection port search request. In block 2101, the routine initializes a

connection port search statement internal message (i.e., connection port_search_stmt). In
decision block 2102, if this process is the requesting process, then the routine continues at
block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
the message to the neighbors of this process through the internal ports and then returns. In
block 2104, the routine invokes the handle connection port search routine-and then returns.
Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment. This routine is passed an indication of the neighbor who sent the
internal message. In block 2201, the routine réceives the internal message. This routine
identifies the message type and invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the estimated diameter of the broadcast
channel based on the information in the received message. In decision block 2203, if this
process is the originating process of the message or the message has already been received
(i.c., a duplicate), then the routine ignores the message and continues at block 2208, else the
routine continues at block 2203A. In decision block 22034, if the process is partially
connected, then the routine continues at block 2203B, else the routine continues at block
2204. In block 2203B, the routine adds the message to the pending connection buffer and
continues at block 2204. In decision blocks 2204-2207, the routine decodes the message
type and invokes the appropriate routine to handle the message. For example, in decision
block 2204, if the type of the message is broadcast statement (i.e., broadcast_stmt), then the

[03004-8001/SL.003733.105] -36- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Voi. 4, p. 1140 of 1657

10

15

20

25

30

routine invokes the handle broadcast message routine in block 2205. After invoking the
appropriate handling routine, the routine continues at block 2208. In decision block 2208, if
the partially connected buffer is full, then the routine continues at block 2209, else the
routine continues at block 2210. The broadcaster component collects all its internal
messages in a buffer while partially connected so that it can forward the messages as it
connects to new neighbors. If, however, that buffer becomes full, then the process assumes
that it is now fully connected and that the expected number of connections was too high,
because the broadcast channel is now in the small regime. In block 2209, the routine invokes
the achieve connection routine and then continues in block 2210. In decision block 2210, if
the application program message queue is empty, then the routine returns, else the routine
continues at block 2212. In block 22 1’2, the routine invokes the receive rcSponse routine
passing the acquired message and then returns. The received response routine is a callback
routine of the application program.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment. This routine is passed an indication of the originating
process, an indication of the neighbor who sent the broadcast message, and the broadcast
message itself. In block 2301, the routine performs the out of order processing for this
message. The broadcaster component queues messages from each originating process until it
can send them in sequence number order to the application program. In block 2302, the
routine invokes the distribute broadcast message routine to forward the message to the
neighbors of this process. In decision block 2303, if a newly connected neighbor is waiting
to receive messages, then the routine continues at block 2304, else the routine returns. In
block 2304, the routine sends the messages in the correct order if possible for each
originating process and then retumns.

Figure 24 is a flow diagram illustrating the processing of the distribute
broadcast message routine in one embodiment. This routine sends the broadcast message to
each of the neighbors of this process, except for the neighbor who sent the message to this
process. In block 2401, the routine selects the next neighbor other than the neighbor who
sent the message. In decision block 2402, if all such neighbors have already been selected,
then the routine returns. In block 2403, the routine sends the message to the selected
neighbor and then loops to block 2401 to select the next neighbor,

{03004-8001/SL.003733.105] : -37- 73100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1141 of 1657

10

15

20

. 25

30

Figure 26 is a flow diagram illustrating the processing of the handle connection
port search statement routine in one embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In block 2601, the routine invokes the
distribute internal message which sends the message to each of its neighbors other than the
sending neighbor. In decision block 2602, if the number of holes of this process is greater
than zero, then the routine continues at block 2603, else the routine returns. In decision
block 2603, if the requesting process is a neighbor, then the routine continues at block 2605,

else the routine continues at block 2604. In block 2604, the routine invokes the court

neighborioutine and then returns. The court neighbor routine connects this process to the
requesting process if possible. In block 2605, if this process has one hole, then the neighbors
with empty ports condition exists and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition check message (z e,
condition_check) that includes a list of this procéss’ neighbors. In block 2607, the routine
sends the message to the fequesting neighbor. ‘

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment. This routine is passed an indication of the prospective neigixbor
for this process. If this process can connect to the prospective neighbor, then it sends a port
connection call external message to the prospective neighbor and adds the prospective
neighbor as a neighbor. In decision block 2701, if the prospective neighbor is already a
neighbor, then the routine returns, else the routine continues at block 2702. In block 2702,
the routine dials the prospective neighbor. In decision block 2703, if the number of holes of
this process is greater than zero, then the routine continues at block 2704, else the routine
continues at block 2706. In block 2704, the routine sends a port connection call external
message (i.e., port_connection_call) to the prospective neighbor and receives its response
(i.e., port_connection_resp). Assuming the response is successfully received, in block 2705,
the routine adds the prospective neighbor as a neighbor of this process by invoking the add
neighbor routine. In block 2706, the routine hangs up with the prospect and then retumns.

Figure 28 is a flow diagram illustrating the processing of the handle connection
edge search call routine in one embodiment. This routine is passed a indication of the
neighbor who sent the message and the message itself. This routine either forwards the
message to a neighbor or proposes the edge between this process and the sending neighbor to
the requesting process for edge pinning. In decision block 2801, if this process is not the

[03004-8001/5L003733,105) ~38- 773100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1142 of 1657

.....

10

15

20

25

30

requesting process or the number of holes of the requesting process is still greater than or
equal to two, then the routine continues at block 2802, else the routine continues at block
2813. In decision block 2802, if the forwarding distance is greater than zero, then the
random walk is not complete and the routine continues at block 2803, else the routine
continues at block 2804. In block 2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting process and the decremented
forwarding distance. The routine then continues at block 2815. In decision block 2804, if
the requesting process is a neighbor or the edge between this process and the sending
neighbor is reserved because it has already been offered to a process, then the routine
continues at block 2805, else the routine continues at block 2806. In block 2805, the routine
invokes the forward connection edge search routine passing an indication of the requesting
party and a toggle indicator that alternatively indicates to continue the random walk for one
or two more computers. The routine then continues at block 2815. In block 2806, the
routine dials the reqﬁcsting process via the call-in port. In block 2807, the routine sends an
edge proposal call external message (i.e., edge_proposal_call) and receives the response (ie.,
edge_proposal_resp). Assuming that the respbnse is successfully received, the routine
continues at block 2808. In decision block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine continues at block 2809, else the
routine continues at block 2812. In block 2809, the routine reserves the edge between this
process and the sending neighbor. In block 2810, the routine adds the requesting process as
a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the
sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and
continues at block 2815. In decision block 2813, if this process is the requesting process and
the number of holes of this process equals one, then the routine continues at block 2814, else
the routine continues at block 2815. In block 2814, the routine invokes the fill hole routine.
In block 2815, the routine sends an connection edge search response message (i.e.,
connection_edge_search_response) to the sending neighbor indicating acknowledgement and
then returns. The graphs are sensitive to parity. That is, all possible paths starting from a
node and ending at that node will have an even length unless the graph has a cycle whose
length is odd. The broadcaster component uses a toggle indicator to vary the random walk
distance between even and odd distances.

[03004-8001/SL003733.105} -39- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1143 of 1657

10

15

20

25

30

Figure 29 is a flow diagram illustrating the processing of the handle connection
edge search response routine in one embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message. In block 2901, the routine notes
that the connection edge search response (i.e., comnection_edge search_resp) has been
received and if the forwarding distance is less than or equal to one unreserves thc; edge
between this process and the sending neighbor. In decision block 2902, if the tequesting
process indicates that the edge is acceptable as indicated in the message, then the routine
continues at block 2903, else the routine returns. In block 2903, the routine reserves the edge
between this. process and the sending neighbor. In block 2904, the routine removes the
sending neighbor as a neighbor. In block 2905, the routine invokes the court neighbor
routine to connect to the requesting process. In decision block 2906, if the invoked routine
was unsuccessful, then the routine continues at block 2907, else the routine returns. In
decision block 2907, if the numﬁer of holes of this process is greater than zero, then the
routine continues at block 2908, else the routine returns. In block 2908,' the routine invokes
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment. This routine is invoked by the application program to broadcast a
message on the broadcast channel. This routine is passed the message to be broadcast. In
decision block 3001, if this process has at least one neighbor, then the routine continues at
block 3002, else the routine returns since it is the only process connected to be broadcast
channel. In block 3002, the routine generates an internal message of the broadcast statement
type (i.e., broadcast _stmt). In block 3003, the routine sets the sequence number of the
message. In block 3004, the routine invokes the distribute internal message routine to
broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment. The acquire message routine may be invoked by the application
program or by a callback routine provided by the application program. This routine returns a
message. In block 3101, the routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was retrieved, then the routine
returns an indication of success, else the routine returns indication of failure.

Figures 32-34 are flow diagrams illustrating the processing of messages
associated with the neighbors with empty ports condition. Figure 32 is a flow diagram

[03004-8001/8L003733.105] 40 7/31/60

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1144 of 1657

10

15

20

25

30

illustrating processing of the handle condition check message in one embodiment. This
message is sent by a neighbor process that has one hole and has received a request to connect
to a hole of this process. In decision block 3201, if the number of holes of this process is
equal to one, then the routine continues at block 3202, else the neighbors with empty ports
condition does not exist any more and the routine returns. In decision block 3202, if the
sending néighbor and this process have the same set of neighbors, the routine continues at -
block 3203, else the routine continues at block 3205. In block 3203, the roun'lie mitializes a
condition double check message (i.e., condition__double__check) with the list of neighbors of
this process. In block 3204, the routine sends the message internally to a neighbor other than
sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of
the sending process that is not also a neighbor of this process. In block 3206,k‘the routine
sends a condition repair message (i.e., condition_repair stmt) externally to the selected
process. In block 3207, the routine invokes the ’add ncighbor routine to add the selected |
neighbor as a neighbor-of this process and then returns. | |
Figure 33 is a flow diagram illustrating processing of the handle condition
repair statement routine in one ernbodhneﬁt. This routine removes an existing neighbor and

connects to the process that sent the message. In decision block:3301,'if this process has no

- holes, then the routine continues at block 3302, eIse the routine continues at block 3304. In

block 3302, the routine selects a neighbor that is not involved in the neighbors with empty
ports condition. In block 3303, the routine removes the selected neighbor as a neighbor of
this probess. Thus, this process that is executing the routine now has at least one hole. In
block 3304, the routine invokes the add neighbor routine to add the process that sent the
message as a neighbor of this process. The routine then retumns. . ,
Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine. This routine determines whether the neighbors with empty ports
condition really is a problem or whether the broadcast channel is in the small regime. In
decision block 3401, if this process has one hole, then the routine continues at block 3402,
else the routine continues at block 3403. If this process does not have one hole, then the set
of neighbors of this process is not the same as the set of neighbors of the scndihg process. In
decision block 3402, if this process and the sending process have the same set of neighbors,
then the broadcast channel is not in the small regime and the routine continues at block 3403,
else the routine continues at block 3406. In decision block 3403, if this process has no holes,

[03004-8001/SL003733.105) -41- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1145 of 1657

10

15

then the routine returns, else the routine continues at block 3404. In block 3404, the routin¢
sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a
diameter reset internal message (i.e., diameter_reset) indicating that the estimated diameter is
one and then returns. In block 3406, the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message (i.e., condition_check_stmt) with
the list of neighbors to the neighbor who sent the condition double check message and then
returns. _

From the above description, it will be appreciated that although specific
embodiments of the technology have been described, various modifications may be made
without deviating from the spirit and scope of the invention. For example, the
communications on the broadcast channel may be encrypted. Also, the channel instance or
session identifier may be a very large number (e.g., 128 bits) to help prevent an unauthorized
user to maliciously tap into a broadcast channel. The portal computer may also enforce
security and not allow an unauthorized user to conmect to the broadcast channel.

Accordingly, the invention is not limited except by the claims.

(03004-8001/SLO03733.105] -42- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1146 of 1657

CLAIMS

1. A computer network for providing an information delivery service for a
plurality of participants, each participant having connections to at least three neighbor
participants, wherein an originating participant sends data to the other participants by
sending the data through each of its connections to its neighbor participants and wherein
each participant sends data that it receives from a neighbor participant to its other neighbor

participants.

2. The computer network of claim 1 wherein each participant is connected

to 4 other participants.

3. The computer network of claim 1 wherein each participant is connected

to an even number of other participants.

4. The computer network of claim 1 wherein the network is m-regular,

where m is the number of neighbor participants of each participant.

5. The computer network of claim 1 wherein the network is m-connected,

where m is the number of neighbor participants of each participant.

6. The computer network of claim 1 wherein the network is m-regular and

m-connected, where m is the number of neighbor participants of each participant.
7. The computer network of claim 1 wherein all the participants are peers.

8. The computer network of claim 1 wherein the connections are peer-to-

peer connections.

[03004-8001/SL003733.105] -43- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1147 of 1657

9. The computer network of claim 1 wherein the connections are TCP/IP

connections.

10. The computer network of claim 1 wherein each participant is a process

executing on a computer.

11. The computer network of claim 1 wherein a computer hosts more than

one participant.

12. The computer network of claim 1 wherein each participant sends to each

of its’ncighbors only one copy of the data.

13. The computer network of claim 1 wherein the interconnections of

participants form a broadcast channel for a topic of interest.

14. A information delivery service comprising: :
a plurality of broadcast chanhels, each broadcast channel for distributing
information relating to a topic;
means for identifying a broadcast channel for a topic of interest; and

means for connecting to the identified broadcast channel.

15. The information delivery service of claim 14 wherein means for
identifying a topic of interest includes accessing a web server that maps topics to
corresponding broadcast channel.

16. The information deliver service of claim 14 wherein a broadcast channel
is formed by subscriber computers that are each interconnected to at least three other

subscriber computers.

[03004-8001/SL003733.105] -44- 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1148 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1149 of 1657

N

8 T N
R a)
L \\\\ - ‘,&Mr»/ €l
77 | - N\ .
y /A e S\ T

@ 1//,/ , .~\l \\“\\\ I

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1150 of 1657

NN

Fig 30

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1151 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1152 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1153 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1154 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1155 of 1657

J
, LD
9 LT
,/ Q
; L 4
/ Do
| , _ o
= _ L
) R <)
\"-\ B .
_‘—

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1156 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1157 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1158 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1159 of 1657

¢ Q

[z v

?—bx. fovu» ..Q.v

\..n*n)
.. %n&@

(ysul2auogo

.w%f. _uﬁ.}u.u

2.0

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1160 of 1657

rourdory

Hy7Y

Y2eq
o
.*.UEBU

Q/l

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1161 of 1657

o, .ClonneckruxCafn)

a g

ﬂ?d'_'*';"\&. -
con | F‘ E: g

o 3

T Covrel
(c\n\\f\e—\
cChamnel]:nsf‘hce

\'52&& Pa d-a.l L

A i eare “
Connectican
o7
I rstald Ectarrd)
Iastedd tﬁt’#"‘"ﬂ Dispd‘rj‘ <
D| SP?‘&‘O"\V
. 9
CDY\ ﬁ(’d‘ Q@Tﬂo}f‘

odhan—, .,
LTaue)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1162 of 1657

Rﬁj"’\/ %’m e) C\\a-vw\d ‘TW

‘ Chcum?_\ Tastoren

Qe,*u.»v\.-

r T, rreCC \

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1163 of 1657

o Coateckt .
Progac)

of

Sand Extorwed
rr e.ﬁsa%e_

-

Z2ar 2

RecefJeEtarnd
preszage

]

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1164 of 1657

rpoe.v-au

Sapd €t opemad]

l \‘u-u..‘o-#. :-dm-mﬂ o0l

o

m
Q _St(cccss ot

e

So¥ 2s gk holeg
*G“f‘r/w- '/"’":\bM

o9

»

12
Add Nﬁgkb&f ﬂ

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1165 of 1657

1 el | Fro (2

T Suceest

yi 27

Add atar a8
feNow ceelcar

o)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1166 of 1657

Prc%u 2. 7
1 ¥ e Ackeve ,
22 Connechy .

PR ,
S Vede =
Scm\ntc,teﬁnl
2
noty g\q fellow
beahrio: ©
03 F‘? '\%
1noke :
copnggh.

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1167 of 1657

pl ‘

[Prch , .
e ihz.ﬂ»,\e ‘ hM% :"F’ J
T .

Fr% 1<

o

ch'pQSa\ cal LIt

[o

Ra~da PO«
C@n\\ec,thc. H

|3

S wdihen
P e SA =y

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1168 of 1657

¢

Set vmaco

fi'armté‘c‘ !' ¥y

l

501«4 Ex{‘.a\-*q'd —
Messege | 22

(3 -

Fog 15

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1169 of 1657

set wwcovner's

Wwoles-to-
holes-fo-Geat]

39

: ne«gubar

(o

'Cfa'\’é?ﬁﬁ\ ‘ -

N

I

r] .

I

=
e

holes ol -:%

r |Fol
(4-.(‘:, uf T\J\)]I

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1170 of 1657

g (' dd Naighbor)

o

| "’&i‘&ﬁa i

Iz

e P P.n—(!-f
eaol%;—:.s 3 l

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1171 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1172 of 1657

- ’ Nessa%(.

e

prdd 5“9"&“

" P2
FiYle] 1 % 0
] - add K).u%kborﬂ
R ehu~ |-

)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1173 of 1657

) N
- L =0 AN
(Leekr)

Seo~d Exhsenad

yMesson e
(o tpst-
o5
'\} Success 4
DN
P\o.-«:&w,ﬁ A-dd Neighbe
b o
Conned™
(Z_-eefu est
[
|

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1174 of 1657

z6 (Fil\Hole)

1 AN

iniBJu]

X 2

Howd le Commnerhod] | Dizhe: oo
e =2
[I

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1175 of 1657

g/

L.

Wa&e.
1l 42

Assess)
Dia R

of

Hand le Groe a((’eﬂ_’ﬂ___
MSS

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1176 of 1657

! g. «st \
1 ooit‘ S ‘?‘IW"‘ red ‘\LO(

messo %’

Fr') weass (’/

«F

ol

Diskiouwta
Broa.«h-os{']

esage

o of
04 lecr oot

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1177 of 1657

w© D|’5"ﬁ Mf

Bfoad('us mbw
N O/
Seleck next ' _ :
dechnet 29

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1178 of 1657

\3 (cw“we ‘nlﬂ-iikb"r
%b.r i S&'AC PJM sa
+vJ"I' Mmes %e
o -

r'?.fz**:w 2
) pn*‘—“*fé 69/‘J F\% ZQ

ﬁCnuJi l}h—ig—\xb&

Cmdj *\NC"\@C&
VYnes Soce ww‘gbaf

o)
o | b«\bgﬂa
Me-&;a%(a

S

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1179 of 1657

2\

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1180 of 1657

‘ B ‘A.i
FXPRESS MAIL NO. EL404935319US

. ke ‘p
U.8. Patent Application No. 09/629,023

10

15

20

DISTRIBUTED AUCTION SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS -

This application is related to U.S. Patent Application No. | ,
entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket No.
030048001 US); U.S. Patent Application No. , entitled “JOINING A |
BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048002
US); U.S. Patent Application No. ‘ , “LEAVING A BROADCAST
CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048003 US): U.S. Patent
Application No. , entitled “BROADCASTING ON A BROADCAST
CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Patent
Application No. , entitled “CONTACTING A BROADCAST
CHANNEL,” filed on July 31, 2000 (Attorney Docket No. 030048005 US); U.S. Patent
Application No. , entitled “DISTRIBUTED AUCTION SYSTEM,” filed
on July 31,2000 (Attorney Docket No. 030048006 US); U.S. Patent Application
No. , entitled “AN INFORMATION DELIVERY SERVICE,” filed on
July 31, 2000 (Attorney Docket No. 030048007 US); U.S. Patent Application
No. , entitled “DISTRIBUTED CONFERENCING SYSTEM,” filed on
July 31, 2000 (Attorney Docket No. 030048008 US); and U.S. Patent Apﬁlication
No. , entitled “DISTRIBUTED GAME ENVIRONMENT,” filed on
July 31,2000 (Attorney Docket No. 030048009 US), the disclosures of which are

incorporated herein by reference.

TECHNICAL FIELD

The described system relates generally to a computer system for conducting

an auction, and more particularly to conducting auctions in a distributed environment.

{03004-8006/Document2] -1-

cem m e, e mmw R 7

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1181 of 1657

10

15

20

25

BACKGROUND

Because it facilitates electronic communi;:atioris between vendors and
purchasers, the Internet is increasingly being used to conduct “electronic commerce.”
The Internet éomprises a vast number of computers and computer networks that are
interconnected through communication channels. Electronic commerce refers generally
to commercial transactions that are at least partially conducted using the computer
systems of the parties to the transactions. For example, a purchaser can use a personal
computer to connect via the Internet to a vendor’s computer. The purchaser can then
interact with the vendor’s computér' to conduct the transaction. Although many of the
commercial transactions that are performed today could be performed via electronic
commerce, the acceptance and wide-spread use of electronic commerce depends, in large
part, upon the ease-of-use of conducting such electronic commerce. If electronic
commerce can be easily conducted, then even the novice computer user will choose to
engage in electronic commerce. Therefore, it is important that techniques be developed
to facilitate conducting electronic commerce.

The Internet is also being used to conduct other types of commercial
transactions. For example, some server computer systems have: ’:bcen developed to
support the conducting of auctions electronically. To conduct an auction electronicaily,
the seller of an item provides a definition of the auction via web pages to :; server
computer system. The definition includes a description of the item, an auct{on time
period, and optionally a minimum bid. The server computer system then conducts the
auction during the specified time period. Potential buyers can search the server computer
system for an auction of interest. When such an auction is found, the potential buyer can
view the bidding history for the auction and enter a bid for the item. When the auction is
closed, the server computer system notifies the winning bidder and the seller (e.g., via
electronic mail) so that they can complete the transaction.

Although such auction servers facilitate the conducting of auctions
electronically, the conducting of such auctions has several disadvantages. First, the
reliability of the auction system depends upon the reliability of the auction server itself.

{03004-8006/Document1] e

e p———— o (407

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1182 of 1657

10

15

20

25

If the auction server were to fail, then the auctions could not be conducted. Thus, one
failure can bring the entire auction system down. Second, the aiictions conduéted by the
auction servers to do not closely model traditional non-computer auctions. In particular,
the electronic auctions typically close at a fixed time whereas a non-computer auction
typically closes when an auctioneer ‘determines that no further bidding is likely. For
example, an electronic auction may advertise that it will close at 5 p.m. on a certain day.
Bidders can place bids up to that time. Traditional auctions, however, may have a set
starting time, but their closing depends on bidding activity. Also, these electronic
auctions, especially when web-based; do not provide for real-time notification of bidding
activity. A bidder only finds out about being outbid in a couple of ways. The bidder may
find out by penodically accessing the auction web page to see the current high bid. Such

repeated accessing of the auction web page is cumbersome. Some auction servers may

send out electronic mail messages when someone is outbid. Such electronic mail

messages may not, however, arrive soon enough for the bidder to place a new bid.
It would be desirable to have an electronic auction system that would avoid
these disadvantages of current server-based auction systems and more closely model

traditional non-computer auctions.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram illustrating components of the auction systexh in
one embodiment. ‘

Figure 2 is a block diagram iIluétrating the components of a participant’s
computer in one embodiment.

Figure 3 is a block diagram illustrating a display of current auctions.
Window 300 is displayed by the display status routine.

Figure 4 is a diagram illustrating the display all the auction-specific

window.

Figure 5 is a flow diagram of routine to request the current state of the
auctions.
[03004.8006/Document1] -3-

R W oy < 1 W

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1183 of 1657

10

15

20

25

going message.

Figure 6 is the flow diagram of routine that receives a current state request

message.

Figure 7 is a flow diagram of routine that receives the current state

message.
Figure 8 is a flow diagram illustrating the processing of the submit bid
routine in one embodiment.
Figure 9 is a flow diagram illustrating the processing of the receive bid
message routine in one embodiment.
, Figure 10 is a flow diagram illustrating a routine that processes the
expiration of the going timer. ‘

Figure 11 is a flow diagram illustrating a routine that processes a received

Figure 12 is a flow diagram illUsﬁating a routine that processes the
expiration of the gone timer.

Figure 13 is a block diagram illustrating a routine that processes a received
on message.

Figure 14 is a flow diagram illustrating and auction agent in one

embodiment.

DETAILED DESCRIPTION

A method and system for conducting electronic auctions with a distributed
auctioneer is provided. In one embodiment, each participant’s computer includes an
auctioneer component for opening auctions, for accepting bids, and for closing auctions.
Thus, the auction system does not depend on a central auction server for coordinating the
bidding at an auction. The auction system is, in a sense, server-less. The auction system
uses a broadcast channel to communicate between the participants of an auction. Each
participant’s computer is connected to the broadcast channel and executes an auction
participant program. The auction participant program allows a participant to place a bid

on the item being auctioned, to receive and display bids of other participants, and to

[03004-8006/Document1}] i

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1184 of 1657

10

15

20

25

coordinate the closing of the auction. When a participant places a bid on the item being
auctioned, the auction participant program broadcasts a bid message on the broadcast
channel. Each auction participant program connected to the broadcast channel receives
the bid message and displays the current high bid to its participaht. The auction
participant program whose participant submitted the high bid coordinates the closing of
the auction in accordance with closing rules. For example, when the auction participant
program determines that its participant has not been outbid for a certain time perion, then
the auction participant program may broadcast a “going” message. The going message
corresponds to an auctioneer who wams participants that the auction is about to close. If
the auction particii)ant program determines that its participant has not been outbid for
certain time period after sending the going message, then the auction-participant prdgram
may broadcast a “gone” message. When the auction panicipant programs receive the
gone message, they notify their participants that the auction is closed. The auction

participant program whose participant placed the winning bid then communicates with an

auction listing server to complete the transaction. Because the participants are connected

through a broadcast channel, each participant receives notification of each bid as it is
placed. In addition, the auction system’s reliability is not dependent on a central auction
server. If any one of the participant’s computer fails, then the other participants can
continue on with the auction. In one embodiment, the auction system is implemented
using the broadcast channel as described in U.S. Patent Application No. , entitled
“A Broadcasting Network,” which is being filed concurrently and which is hereby
incorporated by reference. One skilled in the art will, however, appreciate that the
auction system can be used with other underlying communication networks.

The auction system may include an auction listing server computer, an
auction monitor computer, and participants’ computers. The auction listing server
computer may provide a web site through which sellers can list their items to be
auctioned. When an item is listed, the seller can provide a picture of the item to be
auctioned (if appropriate), the minimum bid for the item, and a start time for the auction.

Potential bidders can access web pages of the auction listing server to view the listed

{03004-8006/Document1] -5

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1185 of 1657

10

15

20

auctions. Potential bidders may also download the auction participant program from the
auction listing server to their computers. When a user wants to participate in a certain
auction, the participant runs the auction participant program which may provide a list of

the current auctions being conducted along with the status of each auction. The

participant can select a certain auction and place a bid at that auction. Because the two-

participants may place a bid for the same amount for an item at approximately the same
time, the auction participant program awards the bid to the participant based on a random
number generated by the bidder’s auction participant program. When a bid is placed, the
auction participant program automatically generates and includes a random number with
a bid message as it is broadcast. Whenever an auction participant program receives a bid
for the same amount as the current high bid, the auction participant program awards the
bid to the participant with thehighest fandomly generated number. The auction monitor
computer may also be connected to the broadcast ;:hannel. The auction monitor tracks
the status of the auction by monitoring the bids placed at the auction.. The auction
monitor may provide the status of the auctions to the auction listing server and to auction
participant programs as they join the auction.

Figure 1 is a block diagram illustrating components of the auction system in
one embodiment. The auction system includes an'auction listing server 101, participant
computers 102, and an auction monitor 103. Each computér may include a central
processing unit, memory, input devices (e.g., a keyboard and pointing device), output
devices (e.g., display devices), and storage devices (e.g., disk drives). The memory and
storage devices are computer-readable media that may contain computer instructions that
implement the auction system. The computer-readable media may also include computer
data transmission media, such as wire-based or wireless communications mechanisms.
The participant computers may include a browser for accessing web pages provided by
the auction listing server. The participant computers and the auction monitor are
connected to the broadcast channel 105. The participant computers, the auction monitor
computer, and the auction listing server are interconnected via the Internet 104. The

participant computers may use a browser to access auction information provided by the

[03004-8006/Document!] -6~

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1186 of 1657

10

15

20

25

auction listing server. The auction listing server may include a web engine 106, a create
auction component 107, a close auction component 108, and auction détabase 109. The
create auction component is used by a seller to create an auction for an item. The close
auction component is used by a winning bidder to affect payment for the item being

purchased. The auction listing server may also include a component for registering

participants and a participant database. The auction database defines the auctions and -

may contain the current state of the auction as provided by the auction monitor. One
skilled in the art will appreciate that various different communication mechanisms may be
used by the auction system. For example, the broadcast channel méy actually be
implemented using the Internet itself. In addition, multiple auctions may be conducted
simultaneously on the broadcast channel. In such cases, each message that is broadcast
will include an auction identifier. Alternatively, each auction may have its own broadcast
channel. The auction listing server may proi;ide broadcast channel information

(e.g., application and session identifier) to each auction participant program. The

‘messages may be encrypted, or otherwise secured, to ensure that only an authorized |

auction participant program participates in an auction.

Figure 2 is a block diagram illustrating the components of a participant’s
computer in one embodiment. The participant computer includes a broadcaster
component 201, auction participant program 202, and an auction database 203. The
broadcaster component controls the comnection to, broadcasting message on to, and
receiving messages off of the broadcast channel. The auction participant program
controls the participating in an auction by sending messages on to and receiving messages
off of the broadcast channel using the broadcaster component. The functions of the
broadcaster component and the broadcast channel are described in the U.S. Patent
Application No. , entitled “A Broadcasting Network,” which is

hereby incorporated by reference. The auction database contains current state
information for the auctions. The auction participant program includes a monitor sub-
component 105, a message handlers 106, a display state sub-component 107, and a

subunit bid sub-component 108. The monitor sub-component monitors the messages sent

{03004-8006/Document1] -7~

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1187 of 1657

10

15

20

25

on the broadcast channel and invokes the appropriate message handler routine. The

- display state sub-component displays the current state of the auctions, The submit bid

sub-component is invoked when a participant wants to submit a bid at an auction.

Figure 3 is a block diagram illustrating a display of currently defined
auctions. Window 300 is displayed by a display state routine. The window includes a
sub-window 301 for each auction. Each sub-window may include information describing
the auction. When a user selects a sub-window, then the display state routine displays an
auction-specific window. Figure 4 is a diagram illustrating the display of an auction-
spéciﬁc window. Window 400 includes an item picture. 401, an item description area
402, an auction description area 403, and a place bid button 404. The item picture area

may contain the picture of the item being auctioned. The item description area includes a

description of the item being auction. The auction description area contains information -

describing the current status of the auction. For example, the actual auction state may be
the start time of the auction, an indication that the auction is in progress, an indication
that the auction is “going,” and an indication that the auction is closed. The auction
description area may also include the minimum bid, the current bid, and a suggested bid
amount which may be overridden. When the participant selects the place bid button, the
auction participant program submits the bid amount.

Figures 5-14 are flow diagrams illustrating the processing of the auction
participant program. The processing in these flow diagrams 1s illustrated in reference to a
single auction. One skilled in the art would appreciate that the processing could be
modified to accommodate multiple simultaneous auctions. Figure 5 is a flow diagram of
a routine to request the current state of the auction. This routine may be invoked when
the auction participant program first starts executing. When the auction participant
program starts, it may contact the auction listing server to retrieve the current state of the
auction. Alternatively, as shown in block 501, the request current state routine may
broadcast a current state request message on the broadcast channel. The auction
participant program will receive an indication of the current state of the auction in

response. The auction participant program stores that state information in its auction

{03604-8006/Document]] -8«

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1188 of 1657

10

15

20

25

database. Figure 6 is the flow diagram of routine that receives and processes a current

state request message. Each auction participant program may ignore this request if the .

auction monitor is configured to respond to the request. Alternatively, the auction
participant program with the current high bid at the auction may respond by broadcasting
a message that includes the current state of the auction. In decision block 601, if this
participant has the current high bid, then the routine continues at block 602, else the
routine returns. In block 602, the routine broadcasts the state of the auction and then
returns. Figure 7 is a flow diagram of a routine that receives the current state message.
In block 701, the routine updates the auction state in the auction database and retumns.
Figure 8 is a flow diagram illustrating the processing of the submit bid
routine in one embodiment. This routine validates the bid amount and then broadcasts

that bid. The routine also sets a timer to indicate when a going message should be

“broadcast to notify the other participants that the auction will end if no participant places

a higher bid. In decision block 801, if the bid is valid, then the routine continues at block
802, else the routine returns. The routine determines whether a bid is valid by ensuring
that the bid is greater than the current high bid. The routine may also check whether the

auction is still open. The auction may have closed since the time the participant selected

the place bid button. In block 802, the routine generates a random number that is to be
included in the bid message. This random number is used by the receiving participants in
case two bids of the same amount are received by those participants. If so, the
participants award the bid to the bidder with the highest random number. In block 803,
the routine creates a bid message that includes the identification of the participant, the bid
amount, and the random number. In the situation where messages for multiple auctions
are being broadcast on the broadcast channel, the bid message may also include the
auction identifier. In block 804, the routine broadcasts the bid message on the broadcast
channel. In block 805, the routine starts a timer for sending the going message. The
routine then returns.

Figure 9 is a flow diagram illustrating the processing of the receive bid

message routine in one embodiment. This routine is invoked when the auction participant

{03004-8006/Document] O

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1189 of 1657

10

15

20

program receives a bid message from the broadcast channel. This routine validates the

'bid, updates the auction state, and clears any timers. In decision block 901, if the auction

is currently open, the routine continues at block 902, else the routine returns. In decision
block 902, if the received bid is greater than or equal to ihe current high bid, then the
routine continues at block 903, else the received bid has already been outbid and the
routine returns. In decision block 903, if received bid equals the current high bid, then
two participants have bid the same amount and the routine continues at block 904, else
the routine continues at block 905. In decision block 904, if the random number included
in the received bid message is greater than the random number that was included with the
bid message with the current high bid, then the bid will be awarded to the participant who

sent the bid message and the routine continues at block 905, else the routine returns. In

- block 905, the routine replaces the current high bid in the auction database and may

update the display. In block 906, the routine clears any timers that may have been set to

- indicate the end of the auction. The routine then returns.

Figure 10 is a flow diagram illustrating a routine that processes the
expiration of the going timer. In block 1001, the routine broadcasts a going message.
The going message may identify the participant and the current high bid. In block 1002,
the routine sets a timer for the sending of the gone message, which indicates the auction
is now closed. The routine then returns. Figure 11 is a flow diagram illustrating a
routine that processes a received going message. In decision block 1101, if the going

message corresponds to a bid that has already been superseded, then the routine returns,

-else the routine continues at block 1102. In block 1102, the routine updates the state of

the auction, which may include updating the display. The routine then returns.

Figure 12 is a flow diagram illustrating a routine that processes the
expiration of the gone timer. In block 1201, the routine broadcasts a gone message,
which may identify the participant who is sending the message along with the bid
amount. In block 1202, the routine updates the status of the auction to indicate that it is
closed. Figure 13 is a block diagram illustrating a routine that processes a received gone

message. In block 1301, the routine updates the state of the auction to indicate that it is

[03004-8006/Document] -10-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1190 of 1657

- 10

15

20

closed. In one embodiment, the auction participant program may also broadcast a

suppress message prior to broadcasting the gone message. When a participant receives a

- suppress message, it can no longer submit a bid at that auction. If the parﬁcipantwho

broadcasted the suppress message receives no bid message from another participant for
certain péli()d of time, it then broadcasts the gone message. If, however, a participant
after receiving the suppress message does not receive a gone message within the certain
period of time, it can assume that the auction s still open.

Figure 14 is a flow diagram illustrating an auction agent in one
embodiment. The auction agent is a program that allows a participant to specify a
maximum bid that they want a place for an item. The auction agent will automatically
monitor the auction and place bids on behalf of the participant up to the maximum bid.
The auction agent may use various techniques to disguise from the other participants that
it is an automated agent. For example, the auction‘agent may delay the placing of a new
bid when being outbid. The delay may be a randomly selected time period or specified in
rules provided by the participant. In addition, the auction agent may wait until it receives
a going message to place the new bid. In block 1401, the routine retrieves the current
high bid from the auction database. In decision block 1402, if the current high bid is
already greater than the maximum bid that is authorized for this agent, then the routine
continues at block 1403, else the routine continues at block 1404. In block 1403, the
routine notifies the participant that the participant has been outbid at the auction and then
returns. In block 1404, the routine submits a bid that is the current bid plus the minimum
bid increment. The submitted bid is broadcast on the broadcast channel. - In block 1405,
the routine waits for a message to be broadcast for the auction. This auction participant
program Will also broadcast going and gone messages as appropriate. In decision block
1406, if the message indicates that a new bid has been placed that is higher than the
current bid, then the routine continues at block 1407, else the routine continues at block
1408 because this auction participant program has broadcast a gone message. In block

1407, the routine optionally delays and then loops to block 1402 to submit a new bid. In

{03004-8006/Document 1] -11-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1191 of 1657

block 1408, the routine notifies the participant that the auction has been won and then
returns.

Based on the description, it will be appreciated that although specific
embodiments of the invention have been described for purposes of illustration, various
modifications may be made without deviating from the spirit ahd scope of the invention.

Accordingly, the invention is not limited except by the appended claims.

[03004-8006/Document1 -12-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1192 of 1657

CLAIMS

1. An auction system comprising;
an auction listing server through which an auction for an item can be defined

and information about defined auctions can be retrieved; and

an auction participant program that executes at each participant’s computer,
that receives bid messages that are broadcast on a broadcast channel, that broadcasts bid
messages when the participant submits a bid, and that, when the participant has submitted the

highest bid, determines when the auction ends.

2. The auction system of claim 1 wherein a participant computer is

connected to at least three other participant computers.

3. The auction system of claim 1 including: _
an auction monitor computer that monitors the state of the auction based on

messages sent on the broadcast channel.

4. The auction system of claim 1 wherein multiple auctions are conducted

simultaneously on the broadcast channel.

5. The auction system of claim 1 wherein each auction is conducted on a.
separate broadcast channel.
6. The auction system of claim 1 wherein each broadcast bid message

includes a randomly generated number for use in awarding bids when two or more

participants bid the same amount.

7. The auction system of claim 1 wherein the auction participant program

broadcasts a going message when it decides that the auction is about to end.

[63004.8006/Document] -13-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1193 of 1657

8. The auction system of claim 7 wherein the going message is sent by the

auction participant program that has submitted the current high bid.

9. An auction system comprising a plurality of computer systems, each
computer systém, capable of sending a message to each other computer system, each
computer system including a component that receives bid messages from other computer
systems, that sends bid messages to other computer. systems, that sets a current high‘ bid
based on the bid messages, and that determines when to close an auction when the computer

system has submitted the current high bid.

10. The auction system of claim 9 wherein the computer systems are

connected via a broadcast channel.

11. The auction system of claim 9 wherein the computer systems are

interconnected to form an m-regular graph, where m is 4 or larger.

12. The auction system of claim 9 wherein a computer system determines to

close an auction after it has sent a going message to the other computer systems.

13. The auction system of claim 12 wherein the determination is made a

certain time period after sending the going message.

14. The auction system of claim 12 including sending a gone message when

the computer system.determines to close an auction.

15. The auction system of claim 9 wherein each computer system resolves

bids of equal amount based on a random number included with a bid message.

16. A method in a computer system for resolving equal bids at an auction,
the method comprising:

receiving a first bid and a first ticbreaker;

{03004-8006/Document] 14 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1194 of 1657

indicating that the first bid is the current high bid at the auction;
receiving a second bid and a second tiebreaker; and
when the first bid and the second bid are equal,
comparing the first tiebreaker to the second tiebreaker; and
indicating that the second bid is the current high bid at the auction based

on the comparison.

17. The method of claim 16 wherein the first tiebreakér and the second

tiebreaker are randomly generated numbers.

18. The method of claim 16 wherein the computer system is connected to a

broadcast channel.

19. The method of claim 16 whe;ein the auction has no central auction

SEIVETr.

20. The method of claim 16 wherein each participant in the auction is a peer

computer system.

21. The method of claim 16 wherein the second bid is indicated as the

current high bid when the second tiebreaker is larger than the first tiebreaker.

22. The method of claim 16 wherein computer systems participating in the

auction are interconnected in a m-regular graph, where m is 4 or greater.

(03004-8006/Document1] 15 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1195 of 1657

s @

—

sy
452poargl

ST
)\..,/'QS.C
<0
, ? ~
LRSS ! _
2o A
N ﬁwz—)\.ﬁ\ﬂ
‘. /\
. heo
T
2@ |y

Lo [<R
g e Jowmc«M
Lo | 7EY,
Mg
[
.0
G L2ANTS
,w/iw,l
~a et

1@

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1196 of 1657

PM }\Q(}wj"

Com puhia.

)]
Q _ém M
2° |
N
; Q~§ %‘l{ ‘:’,\& ‘3\;4'2'
. g N S =2 /\\
N o é‘ - ,/-'3(13 So
X ¥
§ £ ,}: < S 3=
g 3l ¥
D & = av

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1197 of 1657

p O

‘ i
-—.i .
Aud\'uw_. LJC'&_
0| ol o/
{*ud\,}»\ Auchon Avchn
9 2 , oo
5
| ,)
v ! ‘
o) o of
A chn Pruchin L. Aueh~

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1198 of 1657

0o

ol
CFeva Tten De.scﬁ‘Pbp\ 5 ’0&
pl'chue,
ﬁud\v\-sm: I«DrogiCSS @o.\n.él.

Minimwe 0id: $ 100

@ cuyresk b ¥ 1852 (me. Sn;ﬂ)
Rid Amowd $ 155

S

Plocssid) | 04

Frg Y

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1199 of 1657

s

Broadea St 4|

e L

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1200 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1201 of 1657

., 0
oS3 puchn
pd St

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1202 of 1657

Cregte
3. essago

|1
‘Broajca st -
B¢d Messa %Z

0§
Sto«i—‘#féé(
Lo Puctin

G

Fg ¥

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex.

1002, Vol. 4, p. 1203 of 1657

T e 1 P e e e et o e " e e st P e < et

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1204 of 1657

i)

B(Oadcas.l_ 0,
Go;"&“&g

S

Sted GonRg o2
T roner

Fig 1O ’

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1205 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1206 of 1657

e e e Ggf\‘e
‘] WS‘P’

Brood ces +
Gone Ms§_

2]

close fucho~

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1207 of 1657

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1208 of 1657 -

Process
losev

o p‘i?)f\a-l]
De\ow’

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1209 of 1657

' U.S. Patent Application No. 09,629,572
- EXPRESS M "L NO. FEL404935340US

10

15

20

25

Y
" CONTACTING A BROADCAST CHANNEL

L]

CROSS-REFERENCE TO RELATED APPLICATIONS.

This application is related to U.S. Patent Application No.

k]

entitled “BROADCASTING NETWORK,” filed on July 31, 2000 (Attorney Docket

No. 030048001 US); U.S. Patent Application No.
BROADCAST CHANNEL,” filed on July 31, 2000 (Attorney Docket No.
U.S. Patent Application No.

R enﬁﬂed “JOINING A

030048002 US);

, “LEAVING A BROADCAST CHANNEL,”

filed on July 31, 2000 (Attorney Docket No.ﬂ 030048003 US); U.S. Patent Application

HANNEL,” filed
ent Application

No. , entitled “BROADCASTING ON A BROADCAST C]
on July 31, 2000 (Attorney Docket No. 030048004 US); U.S. Pat
No. , entitled “CONTACTING A BROADCAST CHAN

No.
July 31, 2000 (Attorney Docket No. 030048006 US), U.S. Patg
No. , entitled “AN INFORMATION DELIVERY SERY

July 31,2000 (Attorney Docket No. 030048007 US); U.S. Pats
No. , entitled “DISTRIBUTED CONFERENCING SYS]

INEL,” filed on

July 31,2000 (Attoney Docket No. 030048005 US); U.S. Patént Application
. entiled “DISTRIBUTED AUCTION SYSTEM,” filed on

>nt Application
VICE,” filed on
:nt Application
TEM,” filed on

July 31, 2000 (Attomey Docket No. .030048008 US); and US. Patent Application

No. , entitled “DISTRIBUTED GAME ENVIRONME
July 31,2000 (Attorney Docket No. 030048009 US), the disclosures

incorporated herein by reference.

ENT,™ ﬁ}ed on

of ,which are

TECHNICAL FIELD

The described technology relates generally to a computer network and more

particularly, to a broadcast channel for a subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communications techniques such

as point-to-point network protocols, client/server middleware, multi

{63604-8005/81.003733,101]

-1-

pasting network

7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1210 of 1657

10

15

20

25

30

protocols, and peer-to-peer middleware. Each of these communications itechniques have
their advantages and disadvantages, but none is particularly well suited to ;khe simuitaneous
sharing of information among computers that are widely distn'butcd.g For example,
collaborative processing applications, such as a network meeting programs:, have a need to
distribute information in a timely manner to all participants who may be geographically
distributed. :
The point-to-point network protocols, such as UNIX pipes, T%L’P/IP, and UDP,
allow processes on different computers to communicate via point-to-point qionnections. The
interconnection of all participants using point-to-point connections, wlﬁile theoretically
possible, does not scale well as a number of participants grows. Folj; example, each
participating process would need to manage its direct ccnnectibns to all ofher participating
processes. Programmers, however, find it very difficult to manage single connections, and
management of multiple connections is much more complex. In addition, participating
processes may be limited to the number of direct connections that they can support. This
limits the number of possible participants in the sharing of information. -
The client/server middleware systems provide a server that coordinates the
communications between the various clients who are sharing the information. The server
functions as a central authority for controlling access to shared resourcct. Examples of
client/server middleware systems include remote procedure calls (“RPC”), fatabase servers,
and the common object request broker architecture (“CORBA”). Client/s¢rver middleware
systems are not particularly well suited to sharing of information among many participants.
In particular, when a client stores information to be shared at the server, gach other client

would need to poll the server to determine that new information is being shared. Such

polling places a very high overhead on the communications network. Al
client may register a callback with the server, which the server then iny

ternatively, each

rokes when new

information is available to be shared. Such a callback technique presents a performance

bottleneck because a single server needs to call back to each client
information is to be shared. In addition, the reliability of the entire sharin

whenever new

g of information

depends upon the reliability of the single server. Thus, a failure at a sing}

the server) would prevent communications between any of the clients.

e computer (i.e.,

The multicasting network protocois allow the sending of broadcast messages to

multiple recipients of a network. The current implementations of such mulﬁcasﬁng network

[03004-8005/81.003733.101] ~2-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002,

731700

Vol. 4, p. 1211 of 1657

10

15

20

25

30

protocols tend to place an unacceptable overhead on the underlying network. For example,
UDP multicasting would swamp the Internet when trying to locate all possible participants.
IP multicasting has other problems that include needing special-purpose mﬁrastmcmre (e.g.,
routers) to support the sharing of information efficiently.

The peer-to-peer middleware communications systems rely th a multicasting
network protocol or a graph of point-to-point network protocols. Slgch peer-to-peer
middleware is provided by the T.120 Internet standard, which is used in %uch products as
Data Connection’s D.C.-share and Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph of the connections used for.
sharing the information. Thus, it is neither suitable nor desirable to nse peer-to-peer
middleware systems when more than a small number of participants is desired. In addition,
the underlying architecture of the T.120 Internet standard is a tree structure| which relies on
the root node of the tree for reliability of the entire network. That is, each m}essage must pass

through the root node in order to be received by all participants. |
' It would be desirable to have a reliable communications lnetwork that is
suitable for the simultaneous sharmg of information among a large number[of the processes

that are widely distributed. §

BRIEF DESCRIPTION OF THE DRAWINGS : , I

z

Figure 1 illustrates a graph that is 4-regular and 4-connected wkmch represents a

broadcast channel. !
Figure 2 illustrates a graph representing 20 computers connected to a broadcast
channel. |
‘ Figures 3A and 3B illustrate the process of connecting a new computer Z to the
broadcast channel. {
Figure 4A illustrates the broadcast channel of Figure 1 Ewith -an added
computer. ;
Figure 4B illustrates the broadcast channel of Figure 4A|with an added
computer. |
Figure 4C also illustrates the broadcast channel of Figure 4A with an added
computer. :
{03004-8005/81.003733.101] ~3- ; 731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1212 of 1657

10

15

‘20

25

30

Figure 5A illustrates the disconnecting of a computer ﬁ"onfx the broadcast
channel in a planned manner. g

Figure 5B illustrates the disconnecting of a computer f['Oﬂ;l the broadcast
channel in an unplanned manner. i

Figure 5C illustrates the neighbors with empty ports condmon

Figure 5D illustrates two computers that are not neighbors|who now have

empty ports.
Figure SE illustrates the neighbors with empty ports condition in the small

regime.
Figure 5F illustrates the situation of Figure 5E when in the largie regime.
Figure 6 is a block diagram illustrating components of a céomputer that is
connected to a broadcast channel.
Figure 7 is a block diagram illustrating the sub-components of the broadcaster
component in one embodiment.
Figure 8 is a flow diagram illustrating the processing of the connect routine in
one embodiment.
Figure 9 is a flow diagram illustrating the processing of |the seek portal
computer routine in one embodiment.
Figure 10 is a flow diagram illustrating the processing of the| contact process
routine in one embodiment. :
Figure 11 is a flow diagram illustrating the processing of thei connect request
routine in one embodiment. |
Figure 12 is a flow diagram of the processmg of the check for external call

routine in one embodiment.

Figure 13 is a flow diagram of the processing of the achieve cdpmectton routine
in one embodiment. .

Figure 14 is a flow diagram illustrating the processing lof the external
dispatcher routine in one embodiment.

Figure 15 is a flow diagram 1llustratmg the processing of thé handle seeking
connection call routine in one embodiment.

Figure 16 is a flow diagram illustrating processing of the héndle connection
request call routine in one embodiment. ;
{03004-8005/SL003733.101] .. : 1B1/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1213 of 1657

10

15

20

25

30

Figure 17 is a flow dlagram illustrating the processing of the add neighbor
routine in one embodiment. '

Figure 18 is a flow diagram illustrating the processing bf the forward
connection edge search routine in one embodiment.

Figure 19 is a flow diagram illustrating the processing of the handle edge
proposal call routine. ’

Figure 20 is a flow diagram illustrating the processing of !the handle port
connection call routine in one embodiment. |

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. |

Figure 22 is a flow diagram illustrating the processing of the internal dispatcher
routine in one embodiment. |

Figure 23 is a flow diagram 1llustrating the processing of the handle broadcast
message routine in one embodiment. : !

Figure 24 is a flow diagram illustrating the processing df the distribute
broadcast message routine in one embodiment.

Figure 26 is a flow diagram illustrating the processing of the hhndle connection
port search statement routine in one embodiment.

Figure 27 is a flow diagram illustrating the processing of th{: court neighbor
routine in one embodiment.

Figure 28 is a flow diagram illustrating the processing of the hpndle connection
edge search call routine in one embodiment.

Figure 29 is a flow diagram illustrating the processing of the hp.ndle connection
edge search response routine in one embodiment.

- Figure 30 is a flow diagram illustrating the processing of the proadcast routine
in one embodiment.

Figure 31 is a flow diagram illustrating the processing of the|acquire message

. - - [
routine in one embodiment, i

Figure 32 is a flow diagram illustrating processing of the }nandle condition
check message in one embodiment.
Figure 33 is a flow diagram illustrating processing of the handle condition

repair statement routine in one embodiment.

{03004-8005/SL003733.101] -5- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1214 of 1657

10

15

20

25

30

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel overlaysja point-to-point
communications network is provided. The broadcasting of a message ov};-.r the broadcast
channel is effectively a multicast to those computers of the network thiat are currently
connebted to the broadcast channel. In one embodiment, the broadcast techilique provides a
logical broadcast channel to which host computers through their executing ;E)rocesses can be
connected. Each computer that is connected to the broadcast channej can broadcast
messages onto and receive messages off of the broadcast channel. Each jmmputcr that is
connected to the broadcast channel receives all messages that are broad:cast while it is
connected. The logical broadcast channel is implemented using an mcierlﬁng network
system (e.g., the Internet) that allows each computer connected to the mderlying network
system to send messages to each other connected computer using each conixputer’s address.
Thus, the broadcast technique effectively provides a broadcast channel usuﬁg an underlying
network system that sends messages on a point-to-point basis. !

The broadcast technique overlays the underlying network systbm with a graph
of point-to-point connections (i.e., edges) between host computers (i.e., nodes) through
which the broadcast channel is implemented. In one embodiment, eqzch computer is
connected to four other computers, referred to as neighbors. (Actually, a p;rocess executing

on a computer is connected to four other processes executing on this or four other

computers.) To broadcast a message, the originating computer sends the message to each of

its neighbors using its point-to-point connections. Each computer that reccives the message
then sends the message to its three other neighbors using the point-to-point'connections. In
this way, the message is propagated to each computer using the underlying I:Fetwork to effect
the broadcasting of the message to each computer over a logical broadcast dlchanncl. A graph
in which each node is connected to four other nodes is referred to as a 4-regular graph. The
use of a 4-regular graph means that a computer would become disconnected from the
broadcast channel only if all four of the connections to its neighbors fail. TlLe graph used by
the broadcast technique also has the property that it would take a failure of four computers to

[03004-8005/SL003733.101] -6- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1215 of 1657

10

15

20

25

30

divide the graph into disjoint sub-graphs, that is two separate broadcast ichannels. This
property is referred to as being 4-comnected. Thus, the graph is both 4-regular and 4-
connected.’

Figure 1 illustrates a graph that is 4-regular and 4-connected \}vhjch represents
the broadcast channel. Each of the nine nodes A-I represents a computer tha?t is connected to
the broadcast channel, and each of the edges represents an “edge” conneclipn between two
computers of the broadcast channel. The time it takes to broadcast a rinessage to each
computer on the broadcast channel depends on the speed of the connccﬁ(fms between the
computers and the number of connections between the originating computei and each other
computer on the broadcast channel. The minimum number of connectioné; that a message
would need to traverse between each pair of computers is the “distanqe” between the
computers (i.e., the shortest path between the two nodes of the graph). lTor example, the
distance between computers A and F is one because computer A is ﬁrecﬂy connected to
computer F. The distance between computers A and B is two because there is no direct
connection between computers A and B, but computer F is directly connected to computer B.
Thus, a message originating at computer A would be sent directly to computer F, and then

sent from computer F to computer B. The maximum of the distances between the computers

is the “diameter” of broadcast channel. The diameter of the broadcast channel represented
by Figure 1 is two. That is, a message sent by any computer would traveﬂlrse no more than
two connections to reach every other computer. Figure 2 illustrates a graplﬂ: representing 20
computers connected to a broadcast channel. The diameter of this broadcasti channel is 4. In
particular, the shortest path between computers 1 and 3 contains four connektions (1-12, 12-
15, 15-18, and 18-3). '

The broadcast technique includes (1) the connecting of cbmputcrs to the
broadcast channel (i.e., composing the graph), (2) the broadcasting of m@:ssagcs over the
broadcast channel (i.e., broadcasting through the graph), and (3) the @jsconnecting of
computers from the broadcast channel (i.e., decomposing the graph) composi;ng the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking th# connection first

locates a computer that is currently fully connected to the broadcast c*lannel and then

7/31/00

t
i
[03004-8005/51L.003733.101] -7- ‘
]

1
i
)

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1216 of 1657

10

15

20

25

30

establishes a connection with four of the computers that are already connected to the
broadcast channel. (This assumes that there are at least four computers already connected to
the broadcast channel. When there are fewer than five computers connected, the broadcast
channel cannot be a 4-regular graph. In such a case, the broadcast channel|is considered to
be in a “small regime.” The broadcast technique for the small regime is described below in
detail. When five or more computers are connected, the broadcast channel|is considered to

be in the “large regime.” This description assumes that the broadcast channel is in the large

regime, unless specified otherwise.) Thus, the process of connecting fo the broadcast
channel includes locating the broadcast channel, identifying the neighbors fér the connecting
computer, and then connecting to each identified neighbor. Each computeli is aware of one
or more “portal computers” through which that computer may locate the brjoadcast channel.
A seeking computer locates the broadcast channel by contacting the portal computers until it
finds one that is currently fully connected to the broadcast channel. 'ﬁhe found portal
computer then directs the identifying of four computers (i.e., to be the see}k'mg computer’s
neighbors) to which the seeking computer is to connect. Each of these fou% computers then
cooperates with the seeking computer to effect the connecting of the seekiné: computer to the

broadcast channel. A computer that has started the process of locating a por#al computer, but

~ does not yet have a neighbor, is in the “seeking connection state.” A é:omputer that is

connected to at least one neighbor, but not yet four neighbors, is in the “pa.hially connected
state.” A computer that is currently, or has been, previously connected to four neighbors is
in the “fully connected state.”

Since the broadcast channel is a 4-regular graph, each q'f the identified
computers is already connected to four computers. Thus, some conniections between
computers need to be broken so that the seeking computer can connect to foi: computers. In

one embodiment, the broadcast technique identifies two pairs of computers that are currently

. I
connected to each other. Each of these pairs of computers breaks the codnecﬁon between

* them, and then each of the four computers (two from each pair) connecliis to the seeking

computer. Figures 3A and 3B illustrate the process of a new computer Z éonnec‘dng to the
broadcast channel. Figure 3A illustrates the broadcast channel before! computer Z is
connected. The pairs of computers B and E and computers C and D are the flwo pairs that are
identified as the neighbors for the new computer Z. The connections between each of these

pairs'is broken, and a connection between computer Z and each of computef's B,C, D, and E

[03004-8005/SL003733.101] -8- ' 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1217 of 1657

10

15

20

25

30

is established as indicated by Figure 3B. The process of breaking the connection between
two neighbors and reconnecting each of the former neighbors to another computer is referred
to as “edge pinning” as the edge between two nodes may be considered to fbc stretched and
pinned to a new node.

Each computer connected to the broadcast channel t allocates five
communications ports for communicating with other computers. Four !pf the ports are
referred to as “internal” ports because they are the ports through which thej messages of the
broadcast channels are sent. The comnections between internal ports d»f neighbors are

 referred to as “internal” connections. Thus, the internal connections of the broadcast channel

form the 4-regular and 4-connected graph. The fifth port is referred to as ail “external” port
because it is used for sending non-broadcast messages between two computers. Neighbors
can send non-broadcast messages either through their mternal ports of their connection or
through their external ports. A seeking computer uses external ports whenjiocaﬁng a portal
computer.

In one embodiment, the broadcast technique cstablish# the computer
connections using the TCP/IP communications protocol, which. is a point-t‘b-point protocol,
as the underlying network. The TCP/IP protocol provides for reliable and lordered delivery
of messages between computers. The TCP/IP protocol provides each compiuter with a “port
space” that is shared among all the processes that may execute on that com}puter The ports
are identified by numbers from 0 to 65,535. The first 2056 ports are resesrved for specific
applications (e g., port 80 for HTTP messages). The remainder of the poi'ts are user ports
that are available to any process. In one embodiment, a set of port numbers can be reserved
for use by the computer connected to the broadcast channel. In an alternative embodiment,
the port numbers used are dynamically identified by each computer. | Each computer

dynamically identifies an available port to be used as its call-in port. This c?ll-in port is used
to establish connections with the external port and the internal ports. Eachj computer that is
connected to the broadcast channel can receive non-broadcast messages th1fr0ugh its external

port. A secking computer tries “dialing” the port numbers of the portal domputers until a

~portal computer “answers,” a call on its call-in port. A portal computer axiswers when it is

connected to or attempting to connect to the broadcast channel and its call4in port is dialed.
(In this description, a telephone metaphor is used to describe the connections.) When a

computer receives a call on its call-in port, it transfers the call to another port. Thus, the
{03004-8005/51.003733.101] . 3100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1218 of 1657

10

15

20

25

30

seeking computer actually communicates through that transfer-to port, whid;h is the external
port. The call is transferred so that other computers can place calls to that f;omputer via the
call-in port. The seeking computer then communicates via that external p(f:rt to request the
portal computer to assist in connecting the seeking computer to the broadcafst channel. The
seeking computer could identify the call-in port number of a portal camputci‘ by successively
dialing each port in port number order. As discussed below in detail, the brqiadcast technique
uses a hashing algorithm to select the port number order, which may result in improved
performance.

A seeking computer could connect to the broadcast channel by connecting to
computers either directly connected to the found portal computer or directly connected to one
of its neighbors. A possible problem with such a scheme for identifying the neighbors for
the seeking computer is that the diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and establishes a connection to the
broadcast channel directly through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes are added.| -Figures 4A-4C
illustrate that possible problem. Figure 4A illustrates the broadcast channel|of Figure 1 with
an added c;)mputer. Computer J was connected to the broadcast channel by edge pinning
edges C-D and E-H to computer J. The diameter of this broadcast channel is still two.
Figure 4B illustrates the broadcast channel of Figure 4A with an added computer.

Computer K was connected to the broadcast channel by edge pinning edges E-J and B-C to
computer K. The diameter of this broadcast channel is three, because the simrtest path from
computer G to computer K is through edges G-A, A-E, and E-K. Figure 4b also illustrates
the broadcast channel of Figure 4A with an added computer. Computer K ifwas connected to
the broadcast channel by edge pinnixig edges D-G and E-J to computer K. %The diameter of
this broadcast channel is, however, still two. Thus, the selection of neiglibors impacts the
diameter of the broadcast channel. To help minimize the diameter, the brciadcast technique
uses a random selection technique to identify the four neighbors of a computer in the seeking
connection state. The random selection technique tends to distribute the cotmectionsto new
seeking computers throughout the computers of the broadcast channel which may result in

smaller overall diameters.

{03004-8005/81.003733.101) -10- 3100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1219 of 1657

10

15

20

25

30

Broadcasting Through the Graph

As described above, each computer that is connected to the brioadcast channel
can broadcast messages onto the broadcast channe] and does receive all miessages that are
broadcast on the broadcast channel. The computer that originates a message; to be broadcast
‘ When a

computer receives a broadcast message from a neighbor, it sends the message to its three

sends that message to each of its four neighbors using the internal connedtions.

other neighbors. Each computer on the broadcast channel, except the origixiating computer,
will thus receive a copy of each broadcast message from each of its four njeighbors. Each
computer, however, only sends the first copy of the message that it receivesito its neighbors
and disregards subsequently received copies. Thus, the total number of copijes of a message
that is sent between the computers is 3N+1, where N is the number of comﬁuters connected
to the broadcast channel. Each computer sends three copies of the messagq except for the
originating computer, which sends four copies of the message. i

The redundancy of the message sending helps to ensure the overall reliability
of the broadcast channel. Since each computer has four connections tp the broadcast
channel, if one computer fails during the broadcast of a message, its neighibors have three
other connections through which they will receive copies of the broadcast message. Also, if
the internal connection between two computers is slow, each computer |has three other

connections through which it may receive a copy of each message sooner.

Each computer that originates a message numbers its
sequentially. Because of the dynamic nature of the broadcast channel and b
many possible connection paths between computers, the messages may be

order. For example, the distance between an originating computer and a ¢

OWNn messages
ecause there are
received out of

ertain receiving

computer may be four. After sending the first message, the originating computer and
receiving computer may become neighbors and thus the distance between them changes to

one. The first message may have to travel a distance of four to reach the rec¢iving computer.

The second message only has to travel a distance of one. Thus, it is possible for the second
message to reach the receiving computer before the first message. é

When the broadcast channel is in a steady state (i. e., no compLJters connecting
or disconnecting from the broadcast channel), out-of-order messages are not a problem
because each computer will eventually receive both messages and can queug messages until
all earlier ordered messages are received. If, however, the broadcast chaLmel is not in a
-11-

{03004-8005/5L003733.101] 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex..1002, Vol. 4, p. 1220 of 1657

10

15

20

25

30

steady state, then problems can occur. In particular, a computer may ! connect to the
broadcast channel after the second message has already been received and ii?orwarded on by
its new neighbors. When a new neighbor eventually receives the first mess?xge, it sends the
message to the newly connected computer. Thus, the newly connected comp;uter will receive
the first message, but will not receive the second message. If the newly connected computer
needs to process the messages in order, it would wait indefinitely for the secénd message.
One solution to this problem is to have each computer queue L:ll the messages
that it receives until it can send them in their proper order to its neighbors§ This solution,
however, may tend to slow down the propagation of messages through the éomputers of the
broadcast channel. Another solution that may have less impact on the propagation speed is
to queue messages only at computers who are neighbors of the newly connected computers.

Each already connected neighbor would forward messages as it receives them to its other

neighbors who are not newly connected, but not to the newly connected

already connected neighbor would only forward messages from each origina

neighbor. The
ling computer to

the newly connected computer when it can ensure that no gaps in the messages from that

originating computer will occur. In one embodiment, the already connected neighbor may

track the highest sequence number of the messages already received and fotwarded on from

each originating computer. The already connected computer will send only higher numbered

messages from the originating computers to the newly connected computer.

Once all lower

numbered messages have been received from all originating computers, then the already

connected computer can treat the newly connected computer as its othe

r neighbors and

simply forward each message as it is received. In another embodiment, each computér may

queue messages and only forwards to the newly connected computer those

messages as the

gaps are filled in. For example, a computer might receive messages 4 and 5 [and then receive

message 3. In such a case, the already connected computer would forward q

neue messages 4

and 5. When message 3 is finally received, the already connected computer will send

messages 3, 4, and 5 to the newly connected computer. If messages 4 and 5
newly connected computer before message 3, then the newly connected

process messages 4 and 5 and disregard message 3. Because the already co

were sent to the

computer would

ected computer

queues messages 4 and 5, the newly connected computer will be able to process message 3.
it 1s possible that a newly connected computer will receive a set of messages from an
onginating computer through one neighbor and then receive another set of n?essage from the

|
I

[03004-8005/S1.003733.101) -12- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1221 of 1657

10

15

20

25

30

same originating computer through another neighbor. If the second set of m%essages contains
a message that is ordered earlier than the messages of the first set receivcd!, then the newly
connected computer may ignore that earlier ordered message if the cqf)mputer already
processed those later ordered messages.
Decomposing the Graph

A connected computer disconnects from the broa&cast channel either in a
planned or unplanned manner. When a computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The disconnect message includes a hist that
identifies the four neighbors of the disconnecting computer. When a neighbor receives the
disconnect message, it tries to connect to one of the computers on the list. In one
embodiment, the first computer in the list will try to connect to the second|computer in the
list, and the third computer in the list will try to connect to the fourth computer in the list. If

a computer cannot connect (e.g., the first and second computers are already (Iconnected), then
the computers may try connecting in various other combinations. If cormeéctions cannot be
established, each computer broadcasts a message that it needs to establish aiconnection with
another computer. When a computer with an available internal port receives the message, it
can then establish a connection with the computer that broadcast the message. Figures 5A-
5D illustrate the disconnecting of a computer from the broadcast channel. Figure 5A
illustrates the disconnecting of a computer from the broadcast channel in a planned manner.

When computer H decides to disconnect, it sends its list of neighbors to each of its neighbors

'(computers A, E, F and I) and then disconnects from each of its neighbors. When

computers A and I receive the message they establish a connection between them as
indicated by the dashed line, and,sinﬁlarly for computers E and F.

When a computer disconnects in an unplanned manner, such as resulting from
a power failure, the neighbors connected to the disconnected computer recognize the

disconnection when each attempts to send its next message to the now disconnected

computer. Each former neighbor of the disconnected computer recognizes ﬂ?at it is short one
connection (i.e., it has a hole or empty port). When a connected computer d'Etects that one of

its neighbors is now disconnected, it broadcasts a port connection request pn the broadcast

~channel, which indicates that it has one internal port that needs a conn ction. The port

connection request identifies the call-in port of the requesting computer. When a connected

(03004-8005/51.003733.101] -13- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1222 of 1657

10

15

20

25

30

computer that is also short a connection receives the connection request, i:t communicates
with the requesting computer through its external port to establish a connect};lion between the
two computers. Figure 5B illustrates the disconnecting of a computer ﬁ'oxfn the broadcast
channel in an unplanned manner. In this illustration, computer H has dislé:onnected In an
unplanned manner. When each of its neighbors, computers A, E, F, and I, recognizes the
disconnection, each neighbor broadcasts a port connection request indicatiné that it needs to
fill an empty port. As shown by the dashed lines, computers F and I and coxinputers Aand E
respond to each other’s requests and establish a connection. :

It is possible that a planned or unplanned disconnection mz?}y result in two
neighbors each having an empty internal port. In such a case, since they arci neighbors, they
are already connected and cannot fill their empty ports by connecting to ea<th other. Such a
condition is referred to as the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects that it has an empty ﬁon as described
above. When a neighbor receives the port connection request from the other!neighbor, it will
recognize the condition that its neighbor also has an empty port. Such a condition may also
occur when the broadcast channel is in the small regime. The condititn can only be

corrected when in the large regime. When in the small regime, each comput[er will have less.

~ than four neighbors. To detect this condition in the large regime, which would be a problem

if not repaired, the first neighbor to receive the port connection request recognizes the
condition and sends a condition check message to the other neighbor. Thc!condition check
message includes a list of the neighbors of the sending computer. When the receiving
computer receives the list, it compares the list to its own list of neighbors| If the lists are
different, then this condition has occurred in the large regime and repair is n%eded. ‘To repair
this condition, the receiving computer will send a condition repair request to one of the
neighbors of the sending computer which is not already a neighbor «{f the - receiving

computer. When the computer receives the condition repair request, it discdnnects from one

- of its neighbors (other than the neighbor that is involved with the condition) and connects to

the computer that sent the condition repair request. Thus, one of the original neighbors
involved in the condition will have had a port filled. However, two computers are still in
need of a connection, the other original neighbor and the computer that is now disconnected
from the computer that received the condition repair request. Those two computers send .out

port connection requests. If those two computers are not neighbors, then they will connect to

(03004-8005/SL003733.101] -14- ; 7731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1223 of 1657

i0

15

0

25

30

each other when they receive the requests. If, however, the two computcf?s are neighbors,
then they repeat the condition repair process until two non-neighbors iare in need of
connections. f
It is possible that the two original neighbors with the conditién may have the
same set of neighbors. When the neighbor that receives the condition% check message
determines that the sets of neighbors are the same, it sends a condition doub]}ie check message
to one of its neighbors other than the neighbor who also has the condiilion. When the
computer receives the condition double check message, it determines whetlle:r it has the same
set of neighbors as the sending computer. If so, the broadcast channel is in :the small regime
and the condition is not a problem. If the set of neighbors are different, thfen the computer
that received the condition double check message sends a condition checléz message to the
original neighbors with the condition. The computer that receives that |condition check
message directs one of it neighbors to connect to one of the original neighbors with the
condition by sending a condition repair message. Thus, one of the ongm@l neighbors with
the condition will have its port filled.
Figure 5C illustrates the neighbors with empty ports condition. In this
illustration, computer H disconnected in an unplanned manner, but computers F and I
responded to the port connection request of the other and are now connected together. The
other former neighbors of computer H, computers A and E, are already neighbors, which
gives rise to the neighbors with empty ports condition. In this example, computer E received

‘the port connection request from computer A, recognized the possible condition, and sent

(since they are neighbors via the internal connection) a condition check message with a list
of its neighbors to computer A. When computer A received the list, 'itj recognized that
computer E has a different set of neighbor (i.e., the broadcast channel is in tﬁa large regime).
Computer A selected computer D, which is a neighbor of computer E and sént it a condition

repair request. When computer D received the condition repair request, it dj
one of its neighbors (other than computer E), which is computer G i

Computer D then connected to computer A. Figure 5D illustrates two comp!

‘neighbors who now have empty ports. Computers E and G now have emp

not currently neighbors. Therefore, computers E and G can connect to each
Figures SE and SF further illustrate the neighbors with empty!

sconnected from
n this example.
uters that are not
ty ports and are
other.

ports condition.
regime. In this

Figure SE illustrates the neighbors with empty ports condition in the small

{03004-8005/81L.003733.101] -15-

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1224 of 1657

73100

10

15

20

25

30

example, if computer E disconnected in an unplanned manner, then jeach computer
broadcasts a port connection request when it detects the disconnect. Wﬁen computer A
receives the port connection request form computer B, it detects the neighlfyors with empty
ports condition and sends a condition check message to computer B. Compuiéer B recogniz.es
that it has the same set of neighbors (computer C and D) as computer A and then sends a
condition double check message to computer C. Computer C recognizes thlpt the broadcast
channel is in the small regime because is also has the same set of neighborslas computers A
and B, computer C may then broadcast a message indicating that the broadcést channel is in
the small regime. :

Figure SF illustrates the situation of Figure SE when in the laIirge regime. As
discussed above, computer C receives the condition double check message fr#)m computer B.
In this case, computer C recognizes that the broadcast channel is in the large| regime because

it has a set of neighbors that is different from computer B. The edges extending up from

computer C and D indicate connections to other computers. Computer C then sends a
condition check message to computer B. When computer B receives the icondiﬁon check
message, it sends a condition repair message to one of the neighbors of cd;mputer C. The
computer that receives the condition repair message disconnects from one ¢f its neighbors,
other than computer C, and tries to connect to computer B and the neighb&r from which it
disconnected tries to connect to computer A. |
Port Selection

As described above, the TCP/IP protocol designates ports aboye number 2056
as user ports. The broadcast technique uses five user port numbers on eac}ii computer: one
external port and four internal ports. Generally, user ports cannot be static!hlly allocated to
an application program because other applications programs executing on th% same computer
may use conflicting port numbers. As a result, in one embodiment, the computers connected
to the broadcast channel dynamically allocate their port numbers. Each |computer could
simply try to locate the lowest number unused port on that computer and us<i: that port as the
call-in port. A seeking computer, however, does not know in advance |the call-in port
number of the portal computers when the port numbers are dynamically allocated. Thus, a
seeking computer needs to dial ports of a portal computer starting with |the l_oWeSt port
number when locating the call-in port of a portal computer. If the portal computer is

[03004-8005/SL.003733.101] -16- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1225 of 1657

10

15

20

25

30

connected to (or attempting to connect to) the broadcast channel, then the sjr:eking computer
would eventually find the call-in port. If the portal computer is not con?{nected, then the
seeking computer would eventually dial every user port. In addition, if :bach application
program on a computer tried to allocate low-ordered port numbers, then ai portal computer
may end up with a high-numbered port for its call-in port because many oﬂ the low-ordered
port numbers would be used by other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer a long time tzltiate the call-in
port of a portal computer. To minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a portal computer should use when
finding an available port for its call-in port. In one embodiment, the brofp,dcast technique

uses a hashing algorithm to identify the port order. The algorithm preferably distributes the
ordering of the port numbers randomly through out the user port number@ space and only
selects each port number once. In addition, every time the algorithm is i;xecuted on any
computer for a given channel type and channel instance, it generates the saxipe port ordering.
As described below, it is possible for a computer to be connected to mii,lltiple broadcast
channels that are uniquely identified by channel type and channel instancef; The algorithm
may be “seeded” with channel type and channel instance in order to génerate a unique
ordering of port numbers for each broadcast channel. Thus, a seeking comp%uter will dial the
ports of a portal computer in the same order as the portal computer used w@\en allocating its
call-in port.

If many computers are at the same time seeking connectiop to a broadcast
channel through a single portal computer, then the ports of the portal COIIIplLtCI’ may be busy
when called by seeking computers. The seeking computers would typically| need to keep on

redialing a busy port. The process of locating a call-in port may be significantly slowed by

such redialing. In one embodiment, each seeking computer may each reorder the first few
port numbers generated by the hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers generated by the hashing algorithm. The
random ordering could also be weighted where the first port number |c:n\';:mted by the
hashing algorithm would have a 50% chance of being first in the reordering, the second port
number would have a 25% chance of being first in the reordering, and so ian. Because the
seeking computers would use different orderings, the likelihood of fmdnfg a busy port is
reduced. For example, if the first eight port numbers are randomly sel}ected, then it 1s

[03004-8005/SL.003733.101] -17- ; 7731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1226 of 1657

10

20

25

30

possible that eight seeking computers could be simultaneously dialing pérts in different
sequences which would reduce the chances of dialing a busy port. ‘

Locating a Portal Computer
Each computer that can connect to the broadcast channel hasia list of one or

more portal computers through which it can connect to the broadcast channel. In one
embodiment, each computer has the same set of portal computers. A seeking computer
locates a portal computer that is connected to the broadcast channel by sucé:essively dialing

the ports of each portal computer in the order specified by an algorithm. A seeking computer
could select the first portal computer and then dial all its ports until a c:iall-in port of a
computer that is fully connected to the broadcast channel is found. If np call-in port is
found, then the seeking computer would select the next portal computer, and repeat the
process until a portal computer with such a call-in port is found. A problem with such a
secking technique is that all user ports of each portal computer are dialed until a portal
computer fully connected to the broadcast channel is found. In an alternate embodiment, the
seeking computer selects a port number according to the algorithm and then dials each portal

computer at that port number. If no acceptable call-m port to the broadcast dharmel 1s found,
then the seeking computer selects the next port number and repeats the pchess Since the
call-in ports are likely allocated at lower-ordered port numbers, the seekmg computer first
dials the port numbers that are most hkeiy to be call-in ports of the broadcast channel. The
seeking computers may have a maximum search depth, that is the number ofgports that it will
dial when seeking a portal computer that is fully connécted. If the sdeking computer
exhausts its search depth, then either the broadcast channel has not yet been ;:stablished or, if
the seeking computer is also a portal computer, it can then establish the broadcast channel
with 1tself as the first fully connected computer.

When a seeking computer locates a portal computer that is ltsclf not fully
connected, the two computers do not connect when they first locate each other because the
broadcast channel may already be established and accessible through a higiher—ordered port
number on another portal computer. If the two seeking computers were tojconnect to each
other, then two disjoint broadcast channels would be formed. Each seckililg computer can
share its experience in trying to locate a portal computer with the other seekii}ng computer. In
particular, if one seeking computer has searched all the portal computers to ‘a depth of eight,

{03004-8005/5L.003733.101] - -18- . ; 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1227 of 1657

10

15

20

25

30

then the one seeking computer can share that it has searched to a depth of ejght with another
seeking computer. If that other seeking computer has searched to a depthiof, for example,
only four, it can skip searching through depths five through eight and ﬂiat other seeking
computer can advance its searching to a depth of nine. ,

In one embodiment, each computer may have a differet:\t set Qf portal
computers and a different maximum search depth. In such a situation, it ma§ be possible that
two disjoint broadcast channels are formed because a seeking computer canfnot locate a fully
connected port computer at a higher depth. Similarly, if the set of portiil computers are
disjoint, then two separate broadcast channels would be formed.

Identifying Neighbors for a Seeking Computer ;
As described above, the neighbors of a newly connccnqg computer are

preferably selected randomly from the set of currently connected computcrsf One advantage
of the broadcast channel, however, is that no computer has global kxglowledge of the
broadcast channel. Rather, each computer has local knowledge of itself and its neighbors.
This limited local knowledge has the advantage that all the connected confxputers ‘are peers
(as far as the broadcasting is concerned) and the failure of any one complitcr (actually any

three computers when in the 4-regular and 4-connect form) will not cadse the broadcast

channel to fail. This local knowledge makes it difficult for a portal computer to randomly
select four neighbors for a seeking computer. _

To select the four computers, a portal computer sends an iedge connection
request message through one of its internal connections that is randomlﬁir selected. The
receiving computer again sends the edge connection request message through one of its
internal connections that is randonily selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast channel; Eventually, a
receiving computer will decide that the message has traveled far enough to represent a
randomly selected computer. That receiving computer will offer the intemal connection
upon which it received the edge connection request message to the seeking computer for
edge pinning. Of course, if either of the computers at the end of the| offered internal
cOnn:ction are already neighbors of the seeking computer, then the seeking computer cannot

connect through that internal connection. The computer that decided that the message has

[03004-8005/5L.003733.101) -19- 7731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1228 of 1657

10

15

20

25

30

traveled far enough will detect this condition of already being a neighqior and send the
message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection irequest message
travels is established by the portal computer to be approximately twi@:e the estimated
diameter of the broadcast channel. The message includes an indication of tlile distance that 1t
is to travel. Each receiving computer decrements that distance to travel bél;fore sending the
message on. The computer that receives a message with a distance to traw.i'el that 1is zero is
considered to be the randomly selected computer. If that randomly selected !computer cannot
connect to the seeking computer (e.g., because it is already connected Ito it), then that
randomly selected computer forwards the edge connection request to one| of its neighbors
with a new distance to travel. In one embodiment, the forwarding compute% toggles the new
distance to travel between zero and one to help prevent two computers from sending the
message back and forth between each other.

Because of the local nature of the information maintained by each computer
connected to the broadcast channel, the computers need not generally be aware of the
diameter of the broadcast channel. In one embodiment, each message sent through the

broadcast channel has a distance traveled field. Each computer that forwards a message

~ increments the distance traveled field. Each computer also maintains an esfimated diameter

of the broadcast channel. When a computer receives a message that has tralveled a distance
that indicates that the estimated diameter is too small, it updates its estimated diameter and
broadcasts an estimated diameter message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own estimated diameter, it updates its
own estimated diameter. This estimated diameter is used to establish the|distance that an

edge connection request message should travel.

External Data Representation
The computers connected to the broadcast channel may internally store their

~ data in different formats. For example, one computer may use 32-bit integers, and another

computer may use 64fbit integers. As another example, one computer may use ASCII to
represent text and another computer may use Unicode. To allow communications between
heterogeneous computers, the messages sent over the broadcast channel may use the XDR
(“eXternal Data Representation”) format.

73100

13
i
|
i
[03004-8005/SL003733.101} -20- i
i
H
|

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1229 of 1657

10

15

20

25

30

The underlying peer-to-peer communications protocol mayf' send multiple
messages in a single message stream. The traditional technique for ret:icvinjg messages from
a stream has been to repeatedly invoke an operating system routine to r:petrieve the next
message in the stream. The retrieval of each message may require two callsg to the operating
system: one to refrieve the size of the next message and the other to retriev;e the number of
bytes indicated by the retrieved size. Such calls to the operating system d:an, however, be
very slow in comparison to the invocations of local routines. To overcome t#\e inefficiencies
of such repeated calls, the broadcast technique in one embodiment, uses XDF{ to identify the
message boundaries in a stream of messages. The broadcast technique ;nay request the
operating system to provide the next, for example, 1,024 bytes from ﬂ}e stream. The
broadcast technique can then repeatedly invoke the XDR routines to retrieve the messages
and use the success or failure of each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The invocation of XDR routines do
not involve system calls and are thus more efficient than repeated system calis.

M-Regular | -

In the embodiment described above, each fully connected co;gnputer has four
internal connections. The broadcast technique can be used with other mnilbers of internal
connections. For example, each computer could have 6, 8, or any even nu;mbcr of internal
connections. As the number of internal connections increase, the diameteriof ‘the broadcast
channel tends to decrease, and thus propagation time for a message tends to decrease. The
time that lt takes to connect a seeking computer to the broadcast channel may, however,
increase as the number of internal connections increases. When the nu#nber of internal
connectors is even, then the broadcast channel can be maintained as% m-regular and
m-connected (in the steady state). If the number of internal connections xsg odd, then when
the broadcast channel has an odd number of computers connected, one of thie computers will
have less than that odd number of internal connections. In such a situatic@n, the broadcast
network is neither m-regular nor m-connected. When the next computeri connects to the

broadcast channel, it can again become m-regular and m-connected. Th]us with an odd

‘number of internal connections, the broadcast channel toggles between bemg and not being

m—rcgulat and m-connected.

103004-8005/SLO03733.101] -21- 3100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1230 of 1657

10

15

20

25

30

Components i
| Figure 6 is a block diagram illustrating components of a c{fomputcr that is
connected to a broadcast channel. The above description generally assumed that there was
only one broadcast channel and that each computer had only one connection Tﬁo that broadcast
channel. More generally, a network of computers may have multiple broiadcast channels,
each computer may be connected to more than one broadcast channel, anc@ each computer
can have multiple connections to the same broadcast channel. The broadcas‘ channel is well
suited for computer processes (e.g., application programs) that execute collaboratively, such
as network meeting programs. Each computer process can connect to one of more broadcast
channels. The broadcast channels can be identified by channel type (L g, application
pro‘gram name) and channel instance that represents separate broadcast channels for that
channel type. When a process attempts to connect to a broadcast channel, it seeks a process
currently connected to that broadcast channel that is executing on a portal computer. The
seeking process identifies the broadcast channel by channel type and channel instance.
Computer 600 includes multiple application programs 601 executing as
separate processes. Each application program interfaces with a broadcaster component 602
for each broadcast channel to which it is connected. The broadcaster component may be

implement as an object that is instantiated within the process space of] the application

program. Altematively, the broadcaster component may excbutc as a separate process or

thread ﬁom the application program. In one embodiment, the broadcéster component

- provides functions (e.g., methods of class) that can be invoked by the appii%:ation programs.

The primary fimctions provided may include a connect function that an ,apptlication program
invokes passing an indication of the broadcast channel to which the 'apppcaﬁon program
wants to connect. The application program may provide a callback routine that the
broadcaster component invokes to notify the application program that the(connection has
been completed, that is the process enters the fully connected state. (The broadcaster
component may also provide an acquire message function that the application program can
invoke to retrieve the next message that is broadcast on the broadcast chanriel. Alternatively,
the application program may provide a callback routine (which may be a virtual function

provided by the application program) that the broadcaster component invokes to notify the
application program that a broadcast message has been received. Hach broadcaster

component allocates a call-in port using the hashing algorithm. When calls| are answered at

{03004-8005/51.003733.101] 22w 7431/00

|
|
i

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1231 of 1657

10

15

20

25

the call-in port, they are transferred to other ports that serve as the exterhal and internal
ports. ‘

The computers connecting to the broadcast channel may include a central
processing unit, memory, input devices (e.g., keyboard and pointing device), output devices
(e.g, display devices), and storage devices (e.g., disk drives). The memiory and storage
devices are computer-readable medium that may contain computer ipstructions that
implement the broadcaster component. In addition, the data structurq:s and message
structures may be stored or transmitted via a signal transmitted on a 'cd:mputer-readable
media, such as a communications link.

Figure 7 is a block diagram illustrating the sub-components oﬁ the broadcaster
component in one embodiment. The broadcaster component includes a con;nect component
701, an external dispatcher 702, an internal dispatcher 703 for each intemajﬁ connection, an
acquire message component 704 and a broadcast component 712. The appllication program
may provide a connect callback component 710 and a receive response con;lponent 711 that

are invoked by the broadcaster component. The application program invc%kes the connect

- component to establish a connection to a designated broadcast channelf The connect

component identifies the external port and installs the external dJSpatcHer for handling
messages that are received on the external port. The connect component mvokcs the seek
portal computer component 705 to identify a portal computer that is cpnnectedf to the

broadcast channel and invokes the connect request component 706 to ask theiportal computer-

(if fully cormected)»to select neighbor processes for the newly connecﬁng process. The
external dispatcher receives external messages identifies the type of messz}ge and invokes
the appropriate handhng routine 707. The internal dispatcher receives the mrtemal messages,
identifies the type of message, and invokes the appropriate handling routine 708. The

. received broadcast messages are stored in the broadcast message queue 709. The acquire

message component is invoked to retrieve messages from the broadcast queue. The
broadcast component is invoked by the application program to broadcast messages in the
broadcast channel.

The following tables list messages sent by the broadcaster components.

[03004-8005/SL003733.101} -23- 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1232 of 1657

[P

EXTERNAL MESSAGES

Message Type Description

seeking connection_call | Indicates that a seekmg process would like to kniow whether the
receiving process is fully connected to the broadcast channel

connection_request_call | Indicates that the sending process would like thq receiving
process to initiate a connection of the sending priocess to the
broadcast channel

edge_proposal_call Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
channel (i.e., edge pinning)

port_connection_call Indicates that the sending process is proposing ajport through
which the receiving process can connect to the broadcast
channel

connected_stmt Indicates that the sending process is connected to the broadcast
channel

condition_repair_stmt Indicates that the receiving process should dlscohnect from one
of its neighbors and connect to one of the proccsqses involved in
| the neighbors with empty port condition

INTERNAL MESSAGES
Message Type Description
broadcast_stmt Indicates a message that is being broadcast ithrough the

broadcast channel for the application pmgrgims

connection_port_search_stmt | Indicates that the designated process is looking for a port
through which it can connect to the broadcast channel

connection_edge_search_call | Indicates that the requesting process is looking for an edge
through which it can connect to the broadcast channel

connection_edge search_resp | Indicates whether the édgc between this process and the
sending neighbor has been accepted by the requesting

party
diameter_estimate_stmt Indicates an estimated diameter of the broadcast channel
diameter_reset_stmt Indicates to reset the estimnated diameter to mdicated

| diameter

disconnect_stmt Indicates that the sending neighbor is dlsco{mccnng from

the broadcast channel :
condition_check_stmt Indicates that neighbors with empty port condition have
[03004-8005/SLO03733.101] -24- ! 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1233 of 1657

10

15

20

25

i

been detected

condition_double_check stmt | Indicates that the neighbors with empty poﬁs have the
same set of neighbors

shutdown_stmt Indicates that the broadcast channel is bﬁ:ingE shutdown

Flow Diagrams ~,
Figures 8-34 are flow diagrams illustrating the processing oﬁ the broadcaster

component in one embodiment. Figure 8 is a flow diagram illustrating the f}rocessing of the
connect routine in one embodlment This routine is passed a channel type {e g., application
name) and channel instance (e.g., session 1dent1ﬁer) that identifies the broddcast channel to
which this process wants to connect. The routine is also passed auxiliary |mformatton that
includes the list of portal computers and a connection callback routine. thin the connection
is established, the connection callback routine is invoked to notify the appfication program.
When this process invokes this routine, it is in the seeking connection state, When a portal
computer is located that is connected and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the process eventually|connects to four
neighbolrs,‘ it enters the fully connected state. When in the small regime, q fully connected
process may have less than four ncighbors. In block 801, the routine open*s the call-in port

through which the process is to communicate with other processes when esta#:lishing external
and internal connections. The port is selected as the first available port u‘ting the hashing
algorithm described above. In block 802, the routine sets the conmnect tlma to the current
time. The connect time is used to 1denufy the instance of the process tbat is connected

‘through this external port. One process may connect to a broadcast channel of a certain

channel type and channel instance using one call-in port and then disconngcts, and another
process may then connect to that same broadcast channel using the same call-in port. Before
the other process becomes fully connected, another process may try to comémunicatc with it
thinking it is the fully connected old process. In such a case, the connect Me can be used to
identify this situation. In block 803, the routine invokes the seek portal 40mputer routine
passing the channel type and channel instance. The seek portal computer roiltine attempts to
locate a portal computer through which this process can connect to the broa&cast channel] for

the passed type and instance. In decision block 804, if the seek portal conputcr routine is

[03004-8005/SL003733,101] -25- ‘ 31460

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1234 of 1657

10

15

20

25

30

successful in locating a fully connected process on that portal computer, ithen the routine
continues at block 805, else the routine returns an unsuccessful indication. In decision block
805, if no portal computer other than the portal computer on which the pro?:ess is executing
was located, then this is the first process to fully connect to broadcast :ichannel and the
routine continues at block 806, else the routine continues at block 808. ﬂl block 806, the
routine invokes the achieve connection routine to change the state of this%process to fully
connected. In block 807, the routine installs the external dispatcher for prog!;cssing messages
received through this process’ external port for the passed channel type and lz:harmel instance.
When a message is received through that external port, the external dispa%cher is invoked.
The routine then returns. In block 808, the routine installs an external disﬂ?tcher. In block

‘809, the ‘routine invokes the connect request routine to imitiate the proce&s of identifying

neighbors for the seeking computer. The routine then returns.

Figure 9 is a flow diagram illustrating the processing of lthe seek portal
computer routine in one embodiment. This routine is passed the channel llype and channel
instance of the broadcast channel to which this process wishes to connect. Irl‘his routine, for
each search depth (e.g., port number), checks the portal computers at that séarch depth. Ifa
portal computer is located at that search depth with a process that is fully ;bonnccted to the

* broadcast channel, then the routine returns an indication of success. In blo{;ks 902-911, the

routine loops selecting each search depth until a process is located. Inf»blocﬁ 902, the routine
selects the next search depth using a port number ordering algorithm. In dec%ision block 903,

. if all the search depths have already been selected during this execution 'ofithe loop, that is-

for the currently selected depth, then the routine returns a failure indication, else the routine
continues at block 904. In blocks 904-911, the routine loops selecting eachj portal computer
and determining whether a process of that portal computer is connected to {or attempting to
connect to) the broadcast channel with the passed channel type and chanﬁel instance. In
block 904, the routine selects the next portal computer. In decision block 905, if all the’

* portal computers have already been selected, then the routine loops to block FOZ to select the

next search depth, else the routine continues at block 906. In block 906, the [routine dials the
selected portal computer through the port represented by the search depth. Ih decision block
907, if the dialing was successful, then the routine continues at block 908, else the routine
loops to block 904 to select the next portal computer. The dialing will be Successful if the

dialed port is the call-in port of the broadcast channel of the passed channel t;ype and channel
{03004-8005/SL003733.101) -26- ; 13100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1235 of 1657

10

15

20

25

30

instance of a process executing on that portal computer. In block 908, the routine invokes a
contact process routine, which contacts the answering process of the portal computer through
the dialed port and determines whether that process is fully connected to the broadcast
channel. In block 909, the routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the broadcast channel, then the
routine returns a success indicator, else the routine continues at block 911. [n block 911, the

routine invokes the check for external call routine to determine whether an|external call has

been made to this process as a portal computer and processes that call. Trhe routine then
loops to block 904 to select the next portal computer. .

Figure 10 is a flow diagram illustrating the processing of thc: contact process
routine in one embodiment. This routine determines whether the procesli; of the selected
portal computer that answered the call-in to the selected port is fully éonnected to the
broadcast channel. In block 1001, the routine sends an extemai message (i.e.,
seeking_connection_call) to the answering process indicating that a seeking!process wants to
know whether the answering process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message from the answeir'mg process. In
decision block 1003, if the external response message is succcssfullir received (i.e.,
seeking_connection_resp), then the routine continues at block 1004, else thp routine returns.

Wherever the broadcast component requests to receive an external message, it sets a time out

period. If the external message is not received within that time out period, the broadcaster
component checks its own call-in port to see if another process is calling it. |In particular, the
dialed process may be calling the dialing process, which may resuit in a deadlock situation.
The broadcaster component may repeat-the receive request several times.| If the expected
message is not received, then the broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicates in its response message that it is fully
connected to the broadcast channel, then the routine continues at block 1003, else the routine
continues at block 1006. In block 1005, the routine adds the selected portal computer to a
list of connected portal computers and then returns. In block 1006, the [routine adds the

- answering process to a list of fellow seeking processes and then returns. |

Figure 11 is a flow diagram illustrating the processing of thé¢ connect request
routine in one embodiment. This routine requests a process of a portal computer that was

identified as being fully connected to the broadcast channel to initiate the Gonnection of this

[03004-8005/S1.003733.101] -27- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1236 of 1657

10

15

20

25

30

process to the broadcast channel. In decision block 1101, if at least one p%ocess of a portal
computer was located that is fully connected to the broadcast channel, ‘then the routine
continues at block 1103, else the routine continues at block 1102. A prou:ess of the portal
computer may no longer be in the list if it recently disconnected from the b;oadcast channel.
In one embodiment, a seeking computer may always search its entire searcih depth and find
multiple portal computers through which it can connect to the broadcast c}lannel. In block
1102, the routine restarts the process of connecting to the broadcast channél and returns. In
block 1103, the routine dials the process of one of the found portal compfpters through the
call-in port. In decision block 1104, if the dialing is successful, then the rméltinc continues at
block 1105, else the routine continues at block 1113. The dialing may be unsuccessful if, for
example, the dialed process recently disconnected from the broadcast climmel. In block
1105, the routine sends an external message to the dialed process requesting a connection to
the broadcast channel (i.e., connection_request_call). In block 1106, the roélt'me receives the
response -message (J.e., connection_request_resp). In decision block 110’7;,, if the response
message is successfully received, then the routine continues at block 1108, else the routine
continues at block 1113. In block 1108, the routine sets the expected num?:er of holes (i.e.,
empty internal connections) for this process based on the received respon%zc. ‘When in the
large regime, the expected number of holes is zero. When in the small regiftme, the expected
number of holes varies from one to three. In block 1109, the routine séts the estimated
diameter of the broadcast ci_;annel based on the received response. In decisi%on block 1111, if
the dialed process is ready to connect to this process as ndicated by the r¢sponse message,
T(1113. In block
1112, the routine invokes the add neighbor routine to add the answering process as a

then the routine continues at block 1112, else the routine continues at block

neighbor to this process. This adding of the answering process typically joccurs when the
broadcast channel is in the small regime. When in the large regime, the random walk search
for a neighbor is performed. In block 1113, the routine hangs up the external connection
with the answering process computer and then returns. ‘§

Figure 12 is a flow diagram of the processing of the check }for external call
routine in one embodiment. This routine is invoked to identify whether b fellow seeking
process is attempting to establish a connection to the broadcast channel thrciugh this process.
In block 1201, the routine attempts to answer a call on the call-in port. .U!Il decision block
1202, if the answer is successful, then the routine continues at block 1203;@ else the routine

[03004-8005/SL003733.101] -28- ; 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1237 of 1657

10

15

20

25

30

returns. In block 1203, the routine receives the external message from the }.:xtemal port. In
decision block 1204, if the type of the message indicates that a seeking érocess is calling
(i.e., seeking connection_call), then the routine continues at block 1205,; else the routine
returns. In block 1205, the routine sends an external message (V.e., seeking_bonnection_resp)
to the other seeking process indicating that this process is also is seeking a connection. In
decision block 1206, if the sending of the external message is successful,!then the routine
continues at block 1207, else the routine returns. In block 1207, the routine adds the other
seeking process to a list of fellow seeking processes and then returns. Thisilist may be used
if this process can find no process that is fully connected to the broadcast ckilannel. In which
case, this process may check to see if any fellow seeking process were successful in
connecting to the broadcast channel. For example, a fellow seeking process/may become the
first process fully connected to the broadcast channel. f

Figure 13 is a flow diagram of the processing of the achieve cémnection routine
in one embodiment. This routine sets the state of this process to fully connected to the
broadcast channel and invokes a callback routine to notify the application program that the
process is now fully connected to the requested broadcast channel. In |block 1301, the
r_ouﬁﬁc sets the connection state of this process to fully connected. In|block 1302, the
routine notifies fellow seeking processes that it is fully connected by sending a connected
external message to them (i.e., connected stmt). In block 1303, the routine invokes the
connect callback routine to notify the application program and then returns.

Figure 14 is a flow diagrarh illustrating the processing |of the external
dispatcher routine in one embodiment. This routine is invoked when the external port

receives a message. This routine retrieves the message, identifies the external message type,

and invokes the appropriate routine to handle that message. This routine [loops processing
each message until all the received messages have been handled. In block [1401, the routine
answers (e.g., picks up) the external port and retrieves an external mcssijlge. In decision
block 1402, if a message was retrieved, then the routine continues at blocj;k 1403, else the
routine hangs up on the external port in block 1415 and returns. In decisiqf)n block 1403, if

the message type is for a process seeking a connection (i.e., seeking_conng¢ction_call), then

the routine invokes the handle seeking connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the message type is for a connection

request call (i.e., connection_request_call), then the routine invokes the handle connection

{03004-8005/5L003733.101] -29- ' 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1238 of 1657

10

15

20

25

30

request call routine in block 1406, else the routine continues at block 1{07. In decision
block 1407, if the message type is edge proposal call (i.e., edge _proposa;ll,_call), then the
routine invokes the handle edge proposal call routine in block 1408, ielse the routine
continues at block 1409. In decision block 1409, if the message type is i)ort connect call
(i.e., port_connect call), then the routine invokes the handle port connecﬁ@n call routine in
block |
type is a connected statement (ie., connected stmt), the routine inv%:kes the handle

connected statement in block 1112, else the routine continues at block lflg 12. In decision
block 1412, if the message type is a condition repair statement (i.e., condition_repair_stmt),
then the routine invokes the handle condition repair routine in block 1413] else the routine
loops to block 1414 to process the next message. After each handling routine is invoked, the
routine loops to block 1414. In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message. :

Figure 15 is a flow diagram illustrating the processing of the handle seeking
connection call routine in one embodiment. This routine is invoked when a seeking process

1s calling to identify a portal computer through which it can connect to the broadcast channel.

In decision block 1501, if this process is currently fully conmected to the hroadcast channel
identified in the message, then the routine continués at block 1502, else the foutine continues
at block 1503. In block 1502, the routine sets a message to indicate that this process is fully
connected to the broadcast channel and continues at block 1505. In block 1503, the routine
sets a message to indicate that this process is not fully connected. In block 1504, the routine

adds the identification of the seeking process to a list of fellow seeking processes. If this
process is not fully connected, then it is attempting to connect to the broaji:ast channel. In
block 1505, the routine sends the external message response (i.e., seekmg_jconncctlon resp)
to the seeking process and then returns.

Figure 16 is a flow diagram illustrating processing of the h*mdle connection
request call routine in one embodiment. This routine is invoked when the calling process
wants this process to initiate the connection of the process to the broadca;pt channel. This
routine either allows the calling process to establish an internal connection thth this process
(e.g., if in the small regime) or starts the process of identifying a process to f}which the calling
process can connect. In decision block 1601, if this process is currently f{.\ﬂy connected to

the broadcast channel, then the routine continues at block 1603, else the roﬁtme hangs up on

[03004-8005/81.003733.101] -30- f 7!3 100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1239 of 1657

10

15

20

25

30

the external port in block 1602 and retumns. In block 1603, the routine sets the number of
holes that the calling process should expect in the response message. Iniblock 1604, the
routine sets the estimated diameter in the response message. In block 1605, the routine
indicates whether this process is ready to connect to the calling process. This process is
ready to connect when the number of its holes is greater than zero and the éalling process is
not a neighbor of this process. In block 1606, the routine sends to the calling process an
external message that is responsive to the connection request call (ie,
connection_request_resp). In block 1607, the routine notes the number of holes that the
calling process needs to fill as indicated in the request message. In decisién block 1608, if
this process is ready to connect to the calling process, then the routine continues at block
1609, else the routine continues at block 1611. In block 1609, the routinei invokes the add
neighbor routine to add the calling process as a neighbor. In block 1@510, the routine
decrements the number of holes that the calling process needs to fill and ccibntinucs at block
1611. In block 1611, the routine hangs up on the external port. In dccrsan block 1612, if
this process has no holes or the estimated diameter is greater than one (k e., in the large
regime), then the routine continues at block 1613, else the routine contmue}s at block 1616.
In blocks 1613-1615, the routine loops forwarding a request for an edge t}uough ‘which to
connect to the calling process to the broadcast channel. One request is fotwarded for each
pair of holes of the calling process that needs to be filled. In decision bllock 1613, if the
number of holes of the calling process to be filled is greater than or equal to two, then the
routine continues at block 1614, else the routine continues at block 1616. In block 1614, the
routine invokes the forward connection edge search routine. The invoked foutine is passed
to an indication of the calling procéss and the random walk distance. In one embodiment, the
distance is twice in the estimated diameter of the broadcast channel. In|block 1614, the
routine decrements the holes left to fill by two and loops to block 1613. Iin decision block
1616, if there is still a hole to fill, then the routine continues at block 1617?, else the routine
returns. In block 1617, the routine invokes the fill hole routine passing thei identification of
the calling process. The fill hole routine broadcasts a connection port searc}l statement (i.e.,
connection_port_search_stmt) for a hole of a connected process through vi/hich the calling
process can connect to the broadcast channel. The routine then returns. |

Figure 17 is a flow diagram illustrating the processing of the add neighbor
routine in one embodiment. This routine adds the process calling on the e}xtemal port as a

{03004-8005/SL003733.101] -31- ; 731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1240 of 1657

10

I5

20

25

30

neighbor to this process. In block 1701, the routine identifies the callmg process on the
external port. In block 1702, the routine sets a flag to indicate that the neiéhbor has not yet
received the broadcast messages from this process. This flag is used to ens@re that there are
no gaps in the messages initially sent to the new neighbor. The external ﬁoﬂ becomes the
internal port for this connection. In decision block 1703, if this process is in the seeking
connection state, then this process is connecting to its first neighbor iand the routine
continues at block 1704, else the routine continues at block 1705. In block ;1704, the routine
sets the connection state of this process to partially connected. In block 113705, the routine
adds the calling process to the list of neighbors of this process. In block !706, the routine
installs an internal dispatcher for the new neighbor. The internal dispatcher lis invoked when
a message is received from that new neighbor through the internat port of tth new neighbor.

In decision block 1707, if this process buffered up messages while not fu11y1 connected, then

the routine continues at block 1708, else the routine continues at bloclf 1709. In one
embodiment, a process that is partially connected may buffer the messageéi; that it receives
through an internal connection so that it can send these messages as it ¢onnects to new
neighbors. In block 1708, the routine sends the buffered messages to thic ‘new neighbor
through the internal port. In decision block 1709, if the number of holcs% of this process
equals the expected number of holes, then this process is fully connected% and the routine
continues at block 1710, else the routine continues at block 1711, In blopk 15_710, the routine
invokes the achieve connected routine to indicate that this process is fulliir connected. In
decision block 1711, if the number qf holes for this process is zero, 4hen the routine
continues at block 1712, else the routine returns. In block 1712, the rodﬁne deletes any
pending edges and then returns. A pending edge is an edge that has been {proposed to this
process for edge pinning, which in this case is no longer needed.

Figure 18 is a flow diagram illustrating the processing of the forward

connection edge search routine in one embodiment. This routine is responsible for passing

~ along a request to connect a requesting process to a randomly selected ileighbor of this

process through the internal port of the selected neighbor, that is part of the xiandom walk. In
decision block 1801, if the forwafding distance remaining is greater tham zero, then the
routine continues at block 1804, else the routine continues at block 1802. In decision block
1802, if the number of neighbors of this process is greater than one, éhen the routine
continues at block 1804, else this broadcast channel is in the small regime|and the routine

{03004-8008/5L.003733.101) -32~- : 31400

i O

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1241 of 1657

10

15

20

25

30

continues at block 1803. In decision block 1803, if the requesting process ?is a neighbor of
this process, then the routine returns, else the routine continues at block }804. In blocks
1804-1807, the routine loops attempting to send a connection edge sca#ch call internal
message (i.e., connection_edge search_call) to a randomly selected neighbori. In block 1804,
the routine randomly selects a neighbor of this process. In decision blockz 1805, if all the
neighbors of this process have already been selected, then the routine car}not forward the
message and the routine returns, else the routine continues at block 1806. Iﬂ block 1806, the
routine sends a connection edge search call internal message to the selectihd neighbor. In
decision block 1807, if the sending of the message is successful, then the rod;tinc continues at
block 1808, else the routine loops to block 1804 to select the next neigﬂbor. When the
sending of an internal message is unsuccessful, then the neighbor may hz%ve disconnected
from the broadcast channel in an unplanned manner. Whenever such a sitd:ation is detected
by the broadcaster component, it attempts to find another neighbor by invokiling the fill holes
routine to fill a single hole or the forward connecting edge search routine to ﬁll two holes. In
block 1808, the routine notes that the recently sent connection edge search§ call has not yet
been acknowledged and indicates that the edge to this neighbor is reservediif the remaining

- forwarding distance is less than or equal to one. It is reserved because the qfelccted neighbor

may offer this edge to the requesting process for edge pinning. The routine &1cn returns.
Figure 19 is a flow diagram illustrating the processing of 'hle handle edge
proposal call routine. - This routine is invoked when a message is received from a proposing
process that proposes to connect an edge between the proposing p'rocess and one of its
neighbors to this process for edge pinning. In decision block 1901, if the nqmber of holes of
this process minus the number of pending edges is greater than or cqual to one, then this
process still has holes to be filled and the routine continues at block 1902,; else the routine
continues at block 1911. In decision block 1902, if the proposing process o its neighbor is a
neighbor of this process, then the routine continues at block 1911, else the ﬁoutine continues
at block 1903. In block 1903, the routine indicates that the edge is pending between this
process and the proposing process. In decision block 1904, if a proposed nejghbor is already

 pending as a proposed neighbor, then the routine continues at block 1911 else the routine

continues at block 1907. In block 1907, the routine sends an edge proposdl response as an

external message to the proposing process (i.e., edge proposal resp) int‘ﬂicating that the
proposed edge is accepted. In decision block 1908, if the sending of t'pe message was

[03004-8005/SL003733.101] -33- % 7131/00

|

!

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1242 of 1657

-

10

15

20

25

30

successful, then the routine continues at block 1909, else the routine rehun§. In block 1909,
the routine adds the edge as a pending edge. In block 1910, the rouﬁncimvokes the add
neighbor routine to add the proposing process on the external port as a neighbor. The routine
then returns. In block 1911, the routine sends an external message (i.e., edgtie _proposal_tesp)
indicating that this proposed edge is not accepted. In decision block 1912, ilf the number of
holes is odd, then the routine continues at block 1913, else the routine r%tums. In block

1913, the routine invokes the fill hole routine and then returns.
Figure 20 is a flow diagram illustrating the processing of
connection call routine in one embodiment. This routine is invoked w

message is received then indicates that the sending process wants to conne

the handle port
‘hen an external

ct to one hole of

this process. In decision block 2001, if the number of holes of this process is greater than

zero, then the routine continues at block 2002, else the routine continues a

t block 2003. In

decision block 2002, if the sending process is not a neighbor, then the routine continues at

‘block 2004, else the routine continues to block 2003. In block 2003, the rou

connection response external message (i.e., port_connection_resp) to the sen
indicates that it is not okay to connect to this process. The routine then r
2004, the routine sends a port connection response external mcésage to the
that indicates that is okay to connect this process. In decision block 2005,
the message was successful, then the routine continues at block 2006,
continues at block 2007. In block 2006, the routine invokes the add neighb

tine sends a port
ding procéss that
eturns. In block
sending process
if the sending of
else the routine
pr routine to add

the sending process as a neighbor of this process and then returns. In block 2007, the routine

hangs up the external connection. In block 2008, the routine invokes the] connect request
routine to request that a process connect to one of the holes of this process. szhe routine then
returns. /

Figure 21 is a flow diagram illustrating the processing of the fill hole routine in
one embodiment. This routine is passed an indication of the requesting process. If this
process is requesting to fill a hole, then this routine sends an internal message to other
processes. If another process is réquesting to fill a hole, then this routine invokes the routine
to handle a connection port search request. In block 2101, the routine initializes a
connection port search statement internal messagc (i.e., connection _poﬁ_éearch__sﬂnt). In
decision block 2102, if this process is the requesting process, then the routine continues at
block 2103, else the routine continues at block 2104. In block 2103, the routine distributes
-34-

[03004-8005/81.003733.101) 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1243 of 1657

10

15

20

25

30

the message to the neighbors of this process through the internal ports and ifthen returns. In
block 2104, the routine invokes the handle connection port search routine anﬂ then retumns.
Figure 22 is a flow diagram illustrating the processing of the ixﬁernal dispatcher
routine in one embodiment. This routine is passed an indication of the neighi)or who sent the
internal message. In block 2201, the routine receives the internal messaée This routine
identifies the message type and invokes the appropriate routine to handle ihe message. In
block 2202, the routine assesses whether to change the estimated dlameterl}of the broadcast
channel based on the information in the received message. In decision bli ck 2203, if this
process is the originating process of the message or the message has alreaqy been received
(i.e., a duplicate), then the routine ignores the message and continues at blo&k 2208, else the
routine continues at block 2203A. In decision block 2203A, if the prcgcess is partially
connected, then the routine continues at block 2203B, else the routine continues at block
2204. In block 2203B, the routine adds the message to the pending connection buffer and
continues at block 2204. In decision blocks 2204-2207, the routine decodes the message

type and invokes the appropriate routine to handle the message. For example, in decision

block 2204, if the type of the message is broadcast statement (i.e., broadcast_stmt), then the
routine invokes the handle broadcast message routine in block 2205. Aﬂter invoking the
appropriate handling routine, the routine continues at block 2208. In dccisidfm block 2208, if
the partially connected buffer is full, then the routine continues at ‘bloc]% 2209, else the

routine continues at block 2210. The broadcaster component collcctsi all its internal

messages in a buffer while partially connected so that it can forward messages as it
connects to new neighbors. If, however, that buffer becomes full, then the iprocess assumes
that it is now fully connected and that the expected number of connecﬁoxfxs was too high,

because the broadcast channel is now in the small regime. In block 2209, th% routine invokes

the achieve connection routine and then continues in block 2210, In decisi(im block 2210, if
the application program message queue is empty, then the routine returns,i else the routine
continues at block 2212. In block 2212, the routine invokes the receive }response routine’
passing the acquired message and then returns. The received response roufme 1s a callback
routine of the application program.

Figure 23 is a flow diagram illustrating the processing of the handle broadcast
message routine in one embodiment. This routine is passed an indication ckf the originating

process, an indication of the neighbor who sent the broadcast message, ai}d the broadcast

[03004-8005/5L.003733.101] -35- ! 7731/00

|

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1244 of 1657

10

15

20

25

30

message itself. In block 2301, the routine performs the out of order pro:cessing for this
message. The broadcaster component queues messages from each originatiné process until it
can send them in sequence number order to the application program. In :[block 2302, the
routine invokes the distribute broadcast message routine to forward the glmessage to the
neighbors of this process. In decision block 2303, if a newly connected nei@hbor is waiting
to receive messages, then the routine continues at block 2304, else the rou;tine returns. In
block 2304, the routine sends the messages in the correct order if pcj?ssible for each
originating process and then returns. f

Figure 24 is a flow diagram illustrating the processing of the distribute
broadcast message routine in one embodiment. This routine sends the broadcast message to
each of the neighbors of this process, except for the neighbor who sent thei message to this
process. In block 2401, the routine selects the next neighbor other than the neighbor who
sent the message. In decision block 2402, if all such neighbors have alread:y been selected,
then the routine returns. In block 2403, the routine sends the messageg to the selected
neighbor and then loops to block 2401 to select the next neighbor. '

Figure 26 is a flow diagram illustrating the processing of the h?ndle connection
port search statement routine in one embodiment. This routine is passed an Fmdxcatlon of the
neighbor that sent the message and the message itself. In block 2601, the ro#tmc invokes the

distribute internal message which sends the message to each of its ncighbo*s other than the

sending neighbor. In decision block 2602, if the number of holes of this p'rocess is greater

than zero, then the routine continues at block 2603, else the routine returns. In decision
block 2603, if the requesting process is a neighbor, then the routine continu%s at block 2605,
else the routine continues at block 2604. In block 2604, the routine ﬂvokes the court
neighbor routine and then returns. The court neighbor routine connects this process to the
requesting process if possible. In block 2605, if this process has one hole, then the neighbors
with empty ports condition exists and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition check: message . (i.e.,
condition_check) that includes a list of this process’ neighbors. In block 2607, the routine
sends the message to the requesting neighbor.

Figure 27 is a flow diagram illustrating the processing of the court neighbor
routine in one embodiment. This routine is passed an indication of the prospective neighbor

for this process. If this process can connect to the prospective neighbor, then it sends a port

[03004-8005/81.003733.101] -36- 731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1245 of 1657

10

13

20

- 23

30

connection call external message to the prospective neighbor and adds |the prospective
neighbor as a neighbor. In decision block 2701, if the prospective neigh:’bor is already a
neighbor, then the routine returns, else the routine continues at block 2702 In block 2702,
the routine dials the prospective neighbor. In decision block 2703, if the nu:mber of holes of
this process is greater than zero, then the routine continues at block 2704,% else the routine
continues at block 2706. In block 2704, the routine sends a port connect}ion call external
message (i.e., port_connection_call) to the prospective neighbor and rcccivcs its response
(i.e., port_connection_resp). Assuming the response is successfully reccive%l, in block 2705,
the routine adds the prospective neighbor as a neighbor of this process by invoking the add
neighbor routine. - In block 2706, the routine hangs up with the prospect and *hen returns.
Figure 28 is a flow diagram illustrating the processing of the hémdlc connection
edge search call routine in one embodiment. This routine is passed a i?hdication of the
neighbor who sent the message and the message itself. This routine eiﬂiper forwards the
message to a neighbor or proposes the edge between this process and the sex{&ng neighbor to
the requesting process for edge pinning. In decision block 2801, if this pi'ocess is not the
requesting process or the number of holes of the requesting process is still greater than or

~ equal to two, then the routine continues at block 2802, else the routine continues at block

2813. In decision block 2802, if the forwarding distance is greater thalll'zero, then the
random walk is not complete and the routine continues at block 2803, [else the routine
continues at block 2804. In block 2803, the routine invokes the forward connection edge

search routine passing the identification of the requesting process and the decremented
forwarding distance. The routine then continues at block 2815. In decision block 2804, if

the requesting process is a neighbor or the edge between this process gnd the sending

neighbor is reserved because it has already been offered to a process, then the routine
continues at block 2803, else the routine continues at block 2806. In block ?805, the routine
invokes the forward connection edge search routine passing an indication éf the requesting
party and a toggle indicator that alternatively indicates to continue the randé»m walk for one
or two more computers. The routine then continues at bldck 2815, In iblock 2806, the
routine dials the requesting process via the call-in port. In block 2807, the jtoutine sends an
edge propbsal call external message (i.e., edge_proposal_call) and receives qixc response (i.e.,
edge_proposal resp). Assuming that the response is successfully recei\:/ed, the routine
continues at block 2808. In decision block 2808, if the response indicates|that the edge is

[03004-8005/SLOG3733.101] -37- 7131100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1246 of 1657

g iﬁ‘.’

10

15

20

25

30

acceptable to the requesting process, then the routine continues at block 2809, else the
routine continues at block 2812. In block 2809, the routine reserves the efdgc between this
process and the sending neighbor. In block 2810, the routine adds the rchicsting process as
a neighbor by invoking the add neighbor routine. In block 2811, the routine removes the
sending neighbor as a neighbor. In block 2812, the routine hangs up the external port and
continues at block 2815. In decision block 2813, if this process is the requeisting process and

the number of holes of this process equals one, then the routine continues at block 2814, else

. the routine continues at block 2815. In block 2814, the routine invokes thef fill hole routine. .

In block 2815, the routine sends an connection edge search responsie message (i.e.,
connection_edge_search_response) to the sending neighbor indicating aclmfpwlcdgemcnt and
then returns. The graphs are sensitive to parity. That is, all possible patﬂ;s starting from a
node and ending at that node will have an even length unless the graph hi?s a cycle whose
length is odd. The broadcaster component uses a toggle indicator to vary Pxe random walk
distance between even and odd distances.

Figure 29 is a flow diagram illustrating the processing of the k\bndle connection
edge search response routine in one embodiment. This routine is passed as{mmcanon of the
requesting process, the sending neighbor, and the message. In block 2901, fthe routine notes
that the connection edge search response (i.e., connection_edge_searchi_rcsp) has been
received and if the forwarding distance is less than or equal to one unriascrves the edge
between this process and the sending neighbor. In decision block 2902, ;}if the requesting
process indicates that the edge is acceptable as indicated in the message, then the routine
continues at block 2903, else the routine returns. In block 2903, the routine i-eserves the edge

between this process and ‘the sending neighbor. In block 2904, the. roufine removes the -

sending neighbor as a neighbor. In block 2905, the routine invokes th? court neighbor
routine to connect to the requesting process. In decision block 2906, if th§ invoked routine
was unsuccessful, then the routine continues at block 2907, else the roq*tme returns. In
decision block 2907, if the number of holes of this process is greater thdrn zero, then the
routine continues at block 2908, else the routine returns. In block 2908, th¢ routine invokes
the fill hole routine and then returns.

Figure 30 is a flow diagram illustrating the processing of the broadcast routine
in one embodiment. This routine is invoked by the application progran@ to broadcast a
message on the broadcast channel. This routine is passed the message to be broadcast. In

[03004-2005/SL003733.101] -38- , 7131/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1247 of 1657

10

15

20

25

30

decision block 3001, if this process has at least one neighbdr, then the routine continues at
block 3002, else the routine returns since it is the only process connected] to be broadcast
channel. In block 3002, the routine generates an internal message of the broiadcast statement
type (i.e., broadcast _stmt). In block 3003, the routine sets the sequencé number of the
message. In block 3004, the routine invokes the distribute internal message routine to
broadcast the message on the broadcast channel. The routine returns.

Figure 31 is a flow diagram illustrating the processing of the acquire message
routine in one embodiment. The acquire message routine may be invoked by the application
program or by a callback routine provided by the application program. This iroutine returns a
message. In block 3101, the routine pops the message from the messa%e queue of the
broadcast channel. In decision block 3102, if a message was retrieved, khen the routine
returns an indication of success, else the routine returns indication of faﬂure |

Figures 32-34 are flow diagrams illustrating the processxﬁlg of messages
associated with the neighbors with empty ports condition. Figure 32 is %a flow diagram
illustrating processing of the handle condition check message in one embodiment This
message is sent by a neighbor process that has one hole and has received a rdquest to connect
to a hole of this process. In decision block 3201, if the number of holes Qf this process 18
equal to one, then the routine continues at block 3202, else the neighbors \{\ﬂth empty ports
condition does not exist any more and the routine returns. In decision blt::\k 3202, if the
sending neighbor and this process have the same set of neighbors, the routine continues at
block 3203, else the routine continues at block 3205. In block 3203, the rm}ﬁne initializes a
condition double check message (i.e., condition_double_check) with the list of neighbors of
this process. In block 3204, the routine sends the message internally to a neighbor other than
sending neighbor. The routine then returns. In block 3205, the routine selects a neighbor of
the sending process that is not also a neighbor of this process. In block #206, the routine
sends a condition repair message (ie., condition_repair_ stmf) extemallyi to the selected
process. In block 3207, the routine invokes the add neighbor routine to pdd the selected

neighbor as a neighbor of this process and then returns.

Figure 33 is a flow diagram illustrating processing of the liandle condition
Tepair statement routine in one embodiment. This routine removes an cxxsqng neighbor and
connects to the process that sent the message. In decision block 3301, if t‘m}s process has no

holes, then the routine continues at block 3302, else the routine continues aé block 3304. In
[03004-8005/8L003733.101) -39- i 731400

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1248 of 1657

10

15

20

25

block 3302, the routine selects a neighbor that is not involved in the ncighl,*;)ors with empty
ports condition. In block 3303, the routine removes the selected neighbor és a neighbor of
this process. Thus, this process that is executing the routine now has at lea;st one hole. In
block 3304, the routine invokes the add neighbor routine to add the procéss that sent the
message as a neighbor of this process. The routine then returms. ?

Figure 34 is a flow diagram illustrating the processing of the handle condition
double check routine. This routine determines whether the neighbors w%xﬂx empty ports
condition really is a problem or whether the broadcast channel is in the sx':nall regime. In
decision block 3401, if this process has one hole, then the routine continueL at block 3402,
eise the routine coniinues at block 3403. If this process does not have one Iiole, then the set
of neighbors of this process is not the same as the set of neighbors of the sen%iing process. In
decision block 3402, if this process and the sending process have the same élet of neighbors,
then the broadcast channel is not in the small regime and the routine contmues at block 3403,
else the routine continues at block 3406. In decision block 3403, if this proc¢ss has no holes,
then the routine returns, else the routine continues at block 3404. In block 3404, the routine
sets the estimated diameter for this process to one. In block 3405, the routine broadcasts a

diameter reset internal message (i.e., diameter_reset) indicating that the estimated diameter is
one and then returns. In block 3406, the routine creates a list of ncighbbrs of'this process. In
block 3407, the routine sends the condition check inessé.ge (e, condition__dgheck_sﬁnt) with
the list of neighbors to the neighbor who sent the condition double check niessage and then
retums.

From the above description, it will be appreciated that 4mough specific
embodiments of the technology have been described, various modiﬁcatioris may be made
without deviating from the spirit and scope of the invention. Fo# example, the
communications on the broadcast channel may be enczypted Also, the chqnncl instance or
session identifier may be a very large number (e.g., 128 bits) to help prevent|an unauthorized
user to maliciously tap into a broadcast channel. The portal computer may also enforce
security and not allow an unauthorized user to comnect to the broadcast channel.

Accordingly, the invention is not limited except by the claims,

[03004-8005/SL.003733.101} =40~ 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1249 of 1657

10
11

CLAIMS

L A method in a computer for locating a computer ﬂirough which to
connect to a network, the method comprising:
providing an identification of a portal computer, the iportal computer
having communications ports with one of the communications ports bei&ing enabled for
communications when the portal computer is in a state to coordinate the}connection of a
seeking computer to the network;
repeatedly selecting a communications port of the port%al computer and

H

i

atternpting to communicate with the selected communications port until the |communications
with the selected communications port is successful; and .
using the selected communications port to requesti that the portal

computer coordinate the connecting of the computer to the network.
2. The method of claim 1 wherein the communications pox%ts are selected in
an order that is the same as used by the portal computer when it selected ajcommunications

port.

3. The method of claim ! wherein the communications p@orts are selected

“based on a hashing algorithm ordering.

4. The method of claim 3 wherein the hashing algorithm cirdering provides
an ordering in which each communications port is selected withou;t re-selecting a

communications port.

5. The method of claim 3 wherein the hashing algori%hm ordering 1is
modified to reduce conflicts with other seeking computer that use th{z same hashing
algorithm. :

[03004-8005/5LO03733.101} 41 : 7731400

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1250 of 1657

6. The method of claim 5 wherein a number of the first bomMcaﬁons

ports ordered by the hashing algorithm are reordered.

7. The method of claim 1 wherein the identification of a plurality of portal
computers is provided and when a communications port is selected, attempting to
communicate with each of the identified portal computers throug_h the selected

communications-port before selecting the next communications port.

8. The method of claim 1 wherein the communications ports are TCP/IP

ports.

9. A method in a computer system for locating a communications port,

each communications port having a port number, the method comprising: |

providing an ordering of the communications ports that is not port
number sequential; and
until 2 communications port through which a coq;nection can be
established is found,
selecting the next communications port lin the provided
order; and '
determining whether a connection can/ be established

through the selected communications port.

10. The method of claim 9 wherein the ordering is provided by a hashing
algorithm.

11. The method of claim 9 wherein the communications }#oﬁs are TCP/IP

port.

12. The method of claim 9 wherein the communications piorts are ports of
another computer.

[03004-8005/SL.003733.101] -42- 7/31/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1251 of 1657

13. The method of claim 12 wherein the other computer uses the same

provided ordering of communications ports when selecting its communications port.

14, The method of claim 9 including reordering some |portions of the

provided ordering of the communications ports.

15. A data structure transmitted on a communications channel comprising a -
sequence of messages, each message in the sequence identifying a communications port of a
computer system, whereby a hashing algorithm is used to order the identification of the

communications ports in the sequence of messages.

16. The data structure of claim 15 wherein each mesrsage requests a

connection to a receiving computer via the identified communications port.

17. The data structure of claim 15 wherein the messakes are TCP/IP

messages.

18. The data structure of claim 15 wherein the communic%ﬁons channél is
the Internet. f

19. The data structure of claim 15 wherein the sequence of inessag’es is used
to locate a portal computer through which a sending computer can request é connection to a
broadcast channel. ,

20. A computer network having a plurality of participants,icach participant
having connections to neighbor participants, wherein a participant locates aicommunications
port of a portal computer by repeatedly selecting a communications pojrt of the portal
computer and attempting to communicate wiih the selected communicatioils port until the

communications with the selected communications port is successful.

[03004-8003/SLO03 733,101} -43- : 7731100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1252 of 1657

21, The computer network of claim 20 wherein the selecting of the

communications ports is ordered according to a function.

22. The computer network of claim 21 wherein the portal caf}mputer uses the

same function to order its selection of a communications port.

23. The computer network of claim 20 wherein an originating participant
sends data to the other participants by sending the data through each of its connections to its
neighbor participants, wherein when each participant sends data that it f.receives from a
neighbor participant to its other neighbor participants.

24. The computer network of claim 20 wherein eacl!n participant is

connected to 4 other participants.

25. The computer network of claim 20 wherein eachil participant is

connected to an even number of other participants.

26 The computer network of claim 20 wherein the netwcirk is m-regular,
where m is the number of neighbor participants of each participant. ‘

27. The computer network of claim 26 wherein the network is m-connected,
- where m is the number of neighbor participants of each participant.

28. The computer network of claim 20 wherein the netwprk is- m-regular

and m-connected, where m is the number of neighbor participants of each participant.
|

29. The computer network of claim 20 wherein all the parti¢ipants are peers.

30. The computer network of claim 20 wherein the connections are peer-to-
peer connections.

[03004-8005/SL003733.101] -44- ‘ 773100

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1253 of 1657

31. The computer network of claim 20 wherein the connections between

neighbor computers are point-to-point.

32. The computer network of claim 20 wherein the connect?:ions are TCP/IP

connections.

33. A component in a computer system for locating a comr?hunications port
of a portal computer, comprising; |

means for identifying the portal computer, the portal coinputer having a

dynamically selected communications port for communicating with other computers; and

means for identifying the communications port of the identified portal
computer by repeatedly trying to establish a connection with the identified iportal computer
through communications ports until a connection is successfully established.

34. The component of claim 33 wherein the communications ports are
trying in an order that is the same as used by the portal computer when it dyxjamically selects

a communications port.

35. The component of claim 33 wherein the conununicaﬁorfs ports are tried

based on a hashing algorithm ordering.

36. The component of claim 35 wherein ththashing algorithm ordering
provides an ordering in which each communications port is tried without re-trying a

communications port,

37. The component of claim 35 wherein the hashing algorithm ordering is
modified to reduce conflicts with other computers that use the same hashing fxlgorithm.

38. The component of claim 37 wherein a numbc;r of the first
communications ports ordered by the hashing algorithm are reordered. §

[03004-8005/SL003733.101) -45- (131400

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1254 of 1657

39. The component of claim 33 including: :
means for identifying a plurality of portal computers; and
means for trying to establish a connection with each of the identified

portal computers through a certain communications port before tq’ymg the next o

communications port.

40. The component of claim 33 wherein the cormnuniczfttions ports are

TCP/IP ports. | e

{03004-8005/81.003733.101) -46- ‘ ; 7731/00

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1255 of 1657

X
,,.%j_

\—-\

IPR2016-00726 - ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1002, Vol. 4, p. 1256 of 1657

