The attending clinician, in judging whether treatment is effective at the dosage administered, will consider the general well-being of the subject as well as more definite signs such as relief of disease-related symptoms, inhibition of tumor growth, actual shrinkage of the tumor, or inhibition of metastasis. Size of the tumor can be measured by standard methods such as radiological studies, e.g., CAT or MRI scan, and successive measurements can be used to judge whether or not growth of the tumor has been retarded or even reversed. Relief of disease-related symptoms such as pain, and improvement in overall condition can also be used to help judge effectiveness of treatment.

Cardiovascular disease

The disclosed methods may be useful in the prevention and treatment of cardiovascular disease. Cardiovascular diseases that can be treated or prevented using polymer-agent conjugates, particles, compositions and methods described herein include cardiomyopathy or myocarditis; such as idiopathic cardiomyopathy, metabolic cardiomyopathy, alcoholic cardiomyopathy, drug-induced cardiomyopathy, ischemic cardiomyopathy, and hypertensive cardiomyopathy. Also treatable or preventable using polymer-agent conjugates, particles, compositions and methods described herein are atheromatous disorders of the major blood vessels (macrovascular disease) such as the aorta, the coronary arteries, the carotid arteries, the cerebrovascular arteries, the renal arteries, the iliac arteries, the femoral arteries, and the popliteal arteries. Other vascular diseases that can be treated or prevented include those related to platelet aggregation, the retinal arterioles, the glomerular arterioles, the vasa nervorum, cardiac arterioles, and associated capillary beds of the eye, the kidney, the heart, and the central and peripheral nervous systems. The polymer-agent conjugates, particles, compositions and methods described herein may also be used for increasing HDL levels in plasma of an individual.

Yet other disorders that may be treated with polymer-agent conjugates, particles, compositions and methods described herein include restenosis, e.g., following coronary intervention, and disorders relating to an abnormal level of high density and low density cholesterol.

The polymer-agent conjugate, particle or composition can be administered to a subject undergoing or who has undergone angioplasty. In one embodiment, the polymer-agent conjugate, particle or composition is administered to a subject undergoing or who has undergone angioplasty with a stent placement. In some embodiments, the polymer-agent conjugate, particle or composition can be used as a strut of a stent or a coating for a stent.

The polymer-agent conjugates, particles or compositions can be used during the implantation of a stent, e.g., as a separate intravenous administration, as coating for a stent or as the strut of a stent.

Stent

The polymer-agent conjugates, particles or compositions described herein can be used as or be part of a stent. As used herein, the term "stent" refers to a man-made 'tube' inserted into a natural passage or conduit in the body to prevent or counteract localized flow constriction. Types of stents include, e.g., coronary stent, urinary tract stent, urethral/prostatic stent, vascular stent (e.g., peripheral vascular stent, or stent graft), esophageal stent, duodenal stent, colonic stent, biliary stent, and pancreatic stent. Types of stents that can be used in coronary arteries include, e.g., bare-metal stent (BMS) and drug-eluting stent (DES). A coronary stent can be placed within the coronary artery during an angioplasty procedure.

Bare-metal stent (BMS)

In one embodiment, the polymer-agent conjugate, particle or composition can be used in combination with a BMS. As used herein, BMS refers to a stent without a coating that is made or a metal or combination of metals. BMS can be made from, e.g., stainless steel (e.g., BxVelocity ${ }^{\text {TM }}$ stent, Express $2{ }^{\mathrm{TM}}$ stent, R stent ${ }^{\mathrm{TM}}$, and Matrix ${ }^{\circledR}$ coronary stent), cobalt-chromium alloy (e.g., Driver ${ }^{\circledR}$ coronary stent, ML Vision ${ }^{\circledR}$ stent, and Coronnium ${ }^{\circledR}$ stent), or nickel titanium (Nitinol® stent). A polymer-agent conjugate, particle or composition described herein can be used as a coating of a BMS, e.g., to coat the luminal and/or abluminal surface of a BMS.

Drug-eluting stent (DES)

In one embodiment, the polymer-agent conjugate, particle or composition can be a DES or can be part of a DES. As used herein, DES refers to a stent placed into a natural passage or conduit of the body (e.g., a narrowed coronary artery) that releases (e.g., slowly releases) one or more agents to treat one or more symptoms associated with the constricted flow to the passage or conduit and/or one or more effect caused by or associated with the stent. For example, the DES can release one (or more) agent that reduces or inhibits the migration and/or proliferation of vascular smooth muscle cells (SMCs), that promotes or increases epithelialization, that reduces or inhibits a hypersensitivity reaction, that reduces or inhibits inflammation, that reduces or inhibits thrombosis, that reduces the risk of restenosis, and/or that reduces or inhibits other unwanted effects due to the stent.

One type of DES includes a stent strut and a polymer, on which an agent is loaded. Thus, in one embodiment, a polymer-agent conjugate, particle or composition described herein can be used in combination with other polymeric struts (e.g., other biocompatible or bioasorbable polymers). For example, a polymer-agent conjugate, particle or composition described herein can be coated on a polymeric strut, e.g., on the luminal and/or abluminal surface of a polymeric strut.

In another embodiment, the polymer-agent conjugates, particles and compositions described herein can be used as a polymeric strut, with out without an additional polymer and/or agent.

In one embodiment, the rate of major adverse cardiac events (MACE) of a subject having a stent made of a polymer-agent conjugate, particle or composition described herein or a strut coated with a polymer-agent conjugate, particle or composition described herein is reduced by at least $10,20,30,40,50,60,70,80,90$, 95% or more, as compared to the rate of MACE of a subject having a stent made of a different material (e.g., a metal or polymer) or a stent not coated or coated with a polymer and/or agent other than the polymer-agent conjugate, particle or composition. In another embodiment, the need for target vessel revascularization (TVR) of a subject having a stent made of a polymer-agent conjugate, particle or composition described herein or a strut coated with a polymer-agent conjugate, particle or composition described herein is reduced by at least $10,20,30,40,50,60,70,80,90$,
95% or more, compared to the TVR of a subject having a stent made of a different material (e.g., a metal or polymer) or a stent not coated or coated with a polymer and/or agent other than the polymer-agent conjugate, particle or composition. In yet another embodiment, the rate for target lesion revascularization (TLR) of a subject having a stent made of a polymer-agent conjugate, particle or composition described herein or a strut coated with a polymer-agent conjugate, particle or composition described herein is reduced by at least $10,20,30,40,50,60,70,80,90,95 \%$ or more, compared to the TLR of a subject having a stent made of a different material (e.g., a metal or polymer) or a stent not coated or coated with a polymer and/or agent other than the polymer-agent conjugate, particle or composition.

Agents

Agents that can be loaded onto a DES include, for example, antiproliferative agents, e.g., anticancer agents (e.g., a taxane (e.g., docetaxel, paclitaxel, larotaxel and cabazitaxel) and an anthracycline (e.g., doxorubicin); pro-endothelial cell agents, antirestenotic agents; anti-inflammatory agents; statins (e.g., simovastatin); immunosuppresants (e.g., mycophenolic acid); somatostatin receptor agonists (e.g., angiopeptin); and dimethyl sulfoxide.

Exemplary anti-proliferative agents include, e.g., an anticancer agent, e.g., a taxane (e.g., docetaxel, paclitaxel, larotaxel and cabazitaxel) and an anthracycline (e.g., doxorubicin); and an immunosuppressive agent, e.g., a rapamycin analogue (e.g., everolimus, zotarolimus, biolimus), pimecrolimus, or tacrolimus.

One or more of the pro-endothelial agents can be loaded on the stents, e.g., to promote, accelerate or increase endothelial healing. Exemplary pro-endothelial agents include, e.g., agents that diminish platelet adhesion and/or fibrinogen binding (e.g., titanium-nitride-oxide or titanium-nitride), agents that capture endothelial progenitor cells (EPCs) (e.g., antibodies (e.g., anti-CD34 antibody) or peptides (e.g., integrinbinding cyclic Arg-Gly-Asp peptide)), or estradiol.

One or more of anti-restenotic agent can also be loaded on or in the stents, e.g., anti-inflammatory agents (e.g., dexamethasone), immunosuppressive agents (e.g., mycophenolic acid), antisense agents (e.g., an advanced six-ring morpholino
backbone c-myc antisense (AVI-4126)), inhibitors of vascular smooth muscle cell proliferation and/or tissue factor expression (e.g., 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)-reductase-inhibitors (statins), simvastatin, angiopeptin or dimethyl sulfoxide (DMSO)), or anti-hyperlipidemic agents (e.g., probucol).

In one embodiment, the agent (or agents) is loaded on the luminal side of the stent. In another embodiment, the agent (or agents) is loaded on the abluminal side of the stent. In yet another embodiment, the agent (or agents) is loaded on both the luminal and abluminal sides of the stent. In another embodiment, an agent (or agents) is loaded on the luminal side of the stent and a different agent (or combination of agents) is loaded on the abluminal side of the stent. Thus, different agents (e.g., an anti-proliferation agent and a pro-endothelial agent) can be loaded on different sides (luminal or abluminal) of the stent, e.g., to allow for differential agent elution, or different agents can be loaded on the same side (luminal or abluminal side) of the stent, e.g., to allow for dual local agent elution.

In one embodiment, the agent is present at a concentration of at least about 1 , $2,3,4,5,6,7,8,9,10,20,50$, or $100 \mu \mathrm{~g} / \mathrm{mm}$. In one embodiment, more than about $50,60,70,80,90,95,99 \%$ of the agent is released over a period of one month. In one embodiment, the release of the agent (e.g., a pro-endothelial agent) is delayed for at least about $1,2,3,4,5,6,7,8,9$, or 10 days. In one embodiment, the release of the agent sustains for at least $7,14,21,28,35$, or 42 days.

Polymeric Stents

Stents described herein can be made of biocompatible and/or bioabsorbable polymers. A polymer-agent conjugate, particle or composition described herein can be the stent, the strut of a stent or the poly-agent conjugate, particle or composition can coat a strut made of a polymeric material.

An example of a biocompatible stent is the Endeavor Rsolute® stent. This system is composed of three elements: one hydrophobic polymer ('C10') to retain the drug and control drug release, another polymer ('C19') to provide improved biocompatibility, and finally (on the outer-most side of the stent) a polyvinyl pyrrolidinone (PVP) hydrophilic polymer which increases the initial drug burst and
further enhances biocompatibility. Thus, in one embodiment, the polymer-agent conjugate, particle or composition can be coated on an Endeavor Rsolute ${ }^{\circledR}$ stent. In other embodiments, a polymer-agent conjugate, particle or composition described herein can replace one or more of the elements of the Endeavor Rsolute ${ }^{\circledR}$ stent.

Bioabsorbable polymers (e.g., inert bioabsorbable polymer) can also be used in a DES, e.g., to reduce prothrombogenic potential and/or allow non-invasive imaging. In some embodiments, the bioabsorbable polymer has a degradation time of at least about $14,21,28,35,42,49,56,63,70$ days.

Exemplary bioasorbable stents include, e.g., a polymeric stent (e.g., a poly-Llactide stent, a tyrosine poly(desaminotyrosyl-tyrosine ethyl ester) carbonate stent, and a poly(anhydride ester) salicyclic acid stent). For example, Igaki-Tamai stent is constructed from a poly-L-lactic acid polymer and contains either the tyrosine kinase antagonist ST638 or paclitaxel. REVA® stent is a tyrosine poly(desaminotyrosyltyrosine ethyl ester) carbonate stent. It is radio-opaque and has slide and lock mechanism designed to allow for substantial reductions in stent-strut thickness. IDEAL ${ }^{\text {TM }}$ stent is a poly(anhydride ester) salicyclic acid stent. Infinnium ${ }^{\circledR}$ stent is composed of two biodegradable polymers with different paclitaxel-release kinetics. Other exemplary bioasorbable stents include, e.g., BVS $®$, Sahajanand $®$, Infinnium ${ }^{\circledR}$, BioMATRIX ${ }^{\circledR}$, Champion ${ }^{\circledR}$, and Infinnium ${ }^{\circledR}$. In one embodiment, a polymer-agent conjugate, particle or composition described herein can be coated onto any of these bioabsorbable stents. In other embodiments, a polymer-agent conjugate, particle or composition described herein can replace one or more elements of one of these bioabsorbable stents.

Biosorbable Metallic Stents

The polymer-agent conjugates, particles and compositions described herein can be used to coat a bioabsorbable metallic stent. An exemplary bioabsorbable stent is the Absorbable Metal Stent (AMS®) which is an alloy stent made of 93% magnesium and 7\% rare-earth metals.

Reservoir stents

As described herein, reservoir stents can be used, e.g., to decrease the "thickness" of the stent or reduce the unwanted effect due to microfragmentation of the polymer and/or the agent. For example, the drug can be loaded in one or more reservoirs or wells in the stent, compared to, e.g., more or less uniformly spread over the stent.

In one embodiment, a polymer-agent conjugate, particle or composition described herein is loaded in the reservoirs or wells located on the stent, e.g., the polymer-agent conjugate, particle or composition described herein is loaded in the reservoirs or wells located on the luminal side or the abluminal side of the stent. In yet another embodiment, the polymer-agent conjugate, particle or composition described herein is loaded in the reservoirs or wells located on both the luminal and abluminal sides of the stent.

In one embodiment, different agents (e.g., an anti-proliferation agent and a pro-endothelial agent) can be loaded into the reservoirs or wells on different sides (luminal or abluminal) of the stent, e.g., to allow for differential agent elution. In another embodiment, different agents can be loaded into adjacent reservoirs or wells of the same side (luminal or abluminal side) of the stent, e.g., to allow for dual local drug elution.

Strut

In one embodiment, the strut thickness is at least about $25,50,100,150,200$, $250 \mu \mathrm{~m}$. In another embodiment, the strut wideness is at least about $0.002,0.004$, $0.006,0.008$, or 0.01 inch. In yet another embodiment, the number of struts is at least about $4,8,12,16$, or 18 in its cross-section.

Various shapes of struts such as a zig zag coil, a ratchet log design, circumferential loops, etc. are known in the art and can be employed in the stents described herein.

In one embodiment, the strut can be made of a polymer-agent conjugate particle or composition described herein.

Combination therapy

In one embodiment, a polymer-agent conjugate, particle or composition described herein may be administered as part of a combination therapeutic with another cardiovascular agent including, for example, an anti-arrhythmic agent, an antihypertensive agent, a calcium channel blocker, a cardioplegic solution, a cardiotonic agent, a fibrinolytic agent, a sclerosing solution, a vasoconstrictor agent, a vasodilator agent, a nitric oxide donor, a potassium channel blocker, a sodium channel blocker, statins, or a naturiuretic agent.

In one embodiment, a polymer-agent conjugate, particle or composition may be administered as part of a combination therapeutic with an anti-arrhythmia agent. Anti-arrhythmia agents are often organized into four main groups according to their mechanism of action: type I, sodium channel blockade; type II, beta-adrenergic blockade; type III, repolarization prolongation; and type IV, calcium channel blockade. Type I anti-arrhythmic agents include lidocaine, moricizine, mexiletine, tocainide, procainamide, encainide, flecanide, tocainide, phenytoin, propafenone, quinidine, disopyramide, and flecainide. Type II anti-arrhythmic agents include propranolol and esmolol. Type III includes agents that act by prolonging the duration of the action potential, such as amiodarone, artilide, bretylium, clofilium, isobutilide, sotalol, azimilide, dofetilide, dronedarone, ersentilide, ibutilide, tedisamil, and trecetilide. Type IV anti- arrhythmic agents include verapamil, diltiazem, digitalis, adenosine, nickel chloride, and magnesium ions.

In another embodiment, a polymer-agent conjugate, particle or composition may be administered as part of a combination therapeutic with another cardiovascular agent. Examples of cardiovascular agents include vasodilators, for example, hydralazine; angiotensin converting enzyme inhibitors, for example, captopril; antianginal agents, for example, isosorbide nitrate, glyceryl trinitrate and pentaerythritol tetranitrate; antiarrhythmic agents, for example, quinidine, procainaltide and lignocaine; cardioglycosides, for example, digoxin and digitoxin; calcium antagonists, for example, verapamil and nifedipine; diuretics, such as thiazides and related compounds, for example, bendrofluazide, chlorothiazide, chlorothalidone, hydrochlorothiazide and other diuretics, for example, fursemide and triamterene, and sedatives, for example, nitrazepam, flurazepam and diazepam.

Other exemplary cardiovascular agents include, for example, a cyclooxygenase inhibitor such as aspirin or indomethacin, a platelet aggregation inhibitor such as clopidogrel, ticlopidene or aspirin, fibrinogen antagonists or a diuretic such as chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylchlorthiazide, trichloromethiazide, polythiazide or benzthiazide as well as ethacrynic acid tricrynafen, chlorthalidone, furosemide, musolimine, bumetanide, triamterene, amiloride and spironolactone and salts of such compounds, angiotensin converting enzyme inhibitors such as captopril, zofenopril, fosinopril, enalapril, ceranopril, cilazopril, delapril, pentopril, quinapril, ramipril, lisinopril, and salts of such compounds, angiotensin II antagonists such as losartan, irbesartan or valsartan, thrombolytic agents such as tissue plasminogen activator (tPA), recombinant tPA, streptokinase, urokinase, prourokinase, and anisoylated plasminogen streptokinase activator complex, or animal salivary gland plasminogen activators, calcium channel blocking agents such as verapamil, nifedipine or diltiazem, thromboxane receptor antagonists such as ifetroban, prostacyclin mimetics, or phosphodiesterase inhibitors. Such combination products if formulated as a fixed dose employ the compounds of this invention within the dose range described above and the other pharmaceutically active agent within its approved dose range.

Yet other exemplary cardiovascular agents include, for example, vasodilators, e.g., bencyclane, cinnarizine, citicoline, cyclandelate, cyclonicate, ebumamonine, phenoxezyl, fiunarizine, ibudilast, ifenprodil, lomerizine, naphlole, nikamate, nosergoline, nimodipine, papaverine, pentifylline, nofedoline, vincamin, vinpocetine, vichizyl, pentoxifylline, prostacyclin derivatives (such as prostaglandin El and prostaglandin 12), an endothelin receptor blocking drug (such as bosentan), diltiazem, nicorandil, and nitroglycerin. Examples of cerebral protecting drugs include radical scavengers (such as edaravone, vitamin E , and vitamin C), glutamate antagonists, AMPA antagonists, kainate antagonists, NMDA antagonists, GABA agonists, growth factors, opioid antagonists, phosphatidylcholine precursors, serotonin agonists, $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ channel inhibitory drugs, and K^{+}channel opening drugs. Examples of brain metabolic stimulants include amantadine, tiapride, and gamma-aminobutyric acid.

Examples of anticoagulants include heparins (such as heparin sodium, heparin potassium, dalteparin sodium, dalteparin calcium, heparin calcium, parnaparin sodium, reviparin sodium, and danaparoid sodium), warfarin, enoxaparin, argatroban, batroxobin, and sodium citrate. Examples of antiplatelet drugs include ticlopidine hydrochloride, dipyridamole, cilostazol, ethyl icosapentate, sarpogrelate hydrochloride, dilazep hydrochloride, trapidil, a nonsteroidal anti-inflammatory agent (such as aspirin), beraprostsodium, iloprost, and indobufene.

Examples of thrombolytic drugs include urokinase, tissue-type plasminogen activators (such as alteplase, tisokinase, nateplase, pamiteplase, monteplase, and rateplase), and nasaruplase. Examples of antihypertensive drugs include angiotensin converting enzyme inhibitors (such as captopril, alacepril, lisinopril, imidapril, quinapril, temocapril, delapril, benazepril, cilazapril, trandolapril, enalapril, ceronapril, fosinopril, imadapril, mobertpril, perindopril, ramipril, spirapril, and randolapril), angiotensin II antagonists (such as losartan, candesartan, valsartan, eprosartan, and irbesartan), calcium channel blocking drugs (such as aranidipine, efonidipine, nicardipine, bamidipine, benidipine, manidipine, cilnidipine, nisoldipine, nitrendipine, nifedipine, nilvadipine, felodipine, amlodipine, diltiazem, bepridil, clentiazem, phendilin, galopamil, mibefradil, prenylamine, semotiadil, terodiline, verapamil, cilnidipine, elgodipine, isradipine, lacidipine, lercanidipine, nimodipine, cinnarizine, flunarizine, lidoflazine, lomerizine, bencyclane, etafenone, and perhexiline), β-adrenaline receptor blocking drugs (propranolol, pindolol, indenolol, carteolol, bunitrolol, atenolol, acebutolol, metoprolol, timolol, nipradilol, penbutolol, nadolol, tilisolol, carvedilol, bisoprolol, betaxolol, celiprolol, bopindolol, bevantolol, labetalol, alprenolol, amosulalol, arotinolol, befunolol, bucumolol, bufetolol, buferalol, buprandolol, butylidine, butofilolol, carazolol, cetamolol, cloranolol, dilevalol, epanolol, levobunolol, mepindolol, metipranolol, moprolol, nadoxolol, nevibolol, oxprenolol, practol, pronetalol, sotalol, sufinalol, talindolol, tertalol, toliprolol, xybenolol, and esmolol), α-receptor blocking drugs (such as amosulalol, prazosin, terazosin, doxazosin, bunazosin, urapidil, phentolamine, arotinolol, dapiprazole, fenspiride, indoramin, labetalol, naftopidil, nicergoline, tamsulosin, tolazoline, trimazosin, and yohimbine), sympathetic nerve inhibitors (such as
clonidine, guanfacine, guanabenz, methyldopa, and reserpine), hydralazine, todralazine, budralazine, and cadralazine.

Examples of antianginal drugs include nitrate drugs (such as amyl nitrite, nitroglycerin, and isosorbide), β-adrenaline receptor blocking drugs (such as propranolol, pindolol, indenolol, carteolol, bunitrolol, atenolol, acebutolol, metoprolol, timolol, nipradilol, penbutolol, nadolol, tilisolol, carvedilol, bisoprolol, betaxolol, celiprolol, bopindolol, bevantolol, labetalol, alprenolol, amosulalol, arotinolol, befunolol, bucumolol, bufetolol, buferalol, buprandolol, butylidine, butofilolol, carazolol, cetamolol, cloranolol, dilevalol, epanolol, levobunolol, mepindolol, metipranolol, moprolol, nadoxolol, nevibolol, oxprenolol, practol, pronetalol, sotalol, sufinalol, talindolol, tertalol, toliprolol, andxybenolol), calcium channel blocking drugs (such as aranidipine, efonidipine, nicardipine, bamidipine, benidipine, manidipine, cilnidipine, nisoldipine, nitrendipine, nifedipine, nilvadipine, felodipine, amlodipine, diltiazem, bepridil, clentiazem, phendiline, galopamil, mibefradil, prenylamine, semotiadil, terodiline, verapamil, cilnidipine, elgodipine, isradipine, lacidipine, lercanidipine, nimodipine, cinnarizine, flunarizine, lidoflazine, lomerizine, bencyclane, etafenone, and perhexiline) trimetazidine, dipyridamole, etafenone, dilazep, trapidil, nicorandil, enoxaparin, and aspirin.

Examples of diuretics include thiazide diuretics (such as hydrochlorothiazide, methyclothiazide, trichlormethiazide, benzylhydrochlorothiazide, and penflutizide), loop diuretics (such as furosemide, etacrynic acid, bumetanide, piretanide, azosemide, and torasemide), K^{+}sparing diuretics (spironolactone, triamterene,
andpotassiumcanrenoate), osmotic diuretics (such as isosorbide, D-mannitol, and glycerin), nonthiazide diuretics (such as meticrane, tripamide, chlorthalidone, and mefruside), and acetazolamide. Examples of cardiotonics include digitalis formulations (such as digitoxin, digoxin, methyldigoxin, deslanoside, vesnarinone, lanatoside C, and proscillaridin), xanthine formulations (such as aminophylline, choline theophylline, diprophylline, and proxyphylline), catecholamine formulations (such as dopamine, dobutamine, and docarpamine), PDE III inhibitors (such as amrinone, olprinone, and milrinone), denopamine, ubidecarenone, pimobendan, levosimendan, aminoethylsulfonic acid, vesnarinone, carperitide, and colforsin
daropate. Examples of antiarrhythmic drugs include ajmaline, pirmenol, procainamide, cibenzoline, disopyramide, quinidine, aprindine, mexiletine, lidocaine, phenyloin, pilsicainide, propafenone, flecainide, atenolol, acebutolol, sotalol, propranolol, metoprolol, pindolol, amiodarone, nifekalant, diltiazem, bepridil, and verapamil. Examples of antihyperlipidemic drugs include atorvastatin, simvastatin, pravastatin sodium, fluvastatin sodium, clinofibrate, clofibrate, simfibrate, fenofibrate, bezafibrate, colestimide, and colestyramine.

Yet other exemplary cardiovascular agents include, for example, antiangiogenic agents and vascular disrupting agents.

Inflammation and Autoimmune Disease

The polymer-agent conjugates, particles, compositions and methods described herein may be used to treat or prevent a disease or disorder associated with inflammation. A polymer-agent conjugate, particle or composition described herein may be administered prior to the onset of, at, or after the initiation of inflammation. When used prophylactically, the polymer-agent conjugate, particle or composition is preferably provided in advance of any inflammatory response or symptom. Administration of the polymer-agent conjugate, particle or composition may prevent or attenuate inflammatory responses or symptoms. Exemplary inflammatory conditions include, for example, multiple sclerosis, rheumatoid arthritis, psoriatic arthritis, degenerative joint disease, spondouloarthropathies, gouty arthritis, systemic lupus erythematosus, juvenile arthritis, rheumatoid arthritis, osteoarthritis, osteoporosis, diabetes (e.g., insulin dependent diabetes mellitus or juvenile onset diabetes), menstrual cramps, cystic fibrosis, inflammatory bowel disease, irritable bowel syndrome, Crohn's disease, mucous colitis, ulcerative colitis, gastritis, esophagitis, pancreatitis, peritonitis, Alzheimer's disease, shock, ankylosing spondylitis, gastritis, conjunctivitis, pancreatis (acute or chronic), multiple organ injury syndrome (e.g., secondary to septicemia or trauma), myocardial infarction, atherosclerosis, stroke, reperfusion injury (e.g., due to cardiopulmonary bypass or kidney dialysis), acute glomerulonephritis, vasculitis, thermal injury (i.e., sunburn), necrotizing enterocolitis, granulocyte transfusion associated syndrome, and/or

Sjogren's syndrome. Exemplary inflammatory conditions of the skin include, for example, eczema, atopic dermatitis, contact dermatitis, urticaria, schleroderma, psoriasis, and dermatosis with acute inflammatory components.

In another embodiment, a polymer-agent conjugate, particle, composition or method described herein may be used to treat or prevent allergies and respiratory conditions, including asthma, bronchitis, pulmonary fibrosis, allergic rhinitis, oxygen toxicity, emphysema, chronic bronchitis, acute respiratory distress syndrome, and any chronic obstructive pulmonary disease (COPD). The polymer-agent conjugate, particle or composition may be used to treat chronic hepatitis infection, including hepatitis B and hepatitis C.

Additionally, a polymer-agent conjugate, particle, composition or method described herein may be used to treat autoimmune diseases and/or inflammation associated with autoimmune diseases such as organ-tissue autoimmune diseases (e.g., Raynaud's syndrome), scleroderma, myasthenia gravis, transplant rejection, endotoxin shock, sepsis, psoriasis, eczema, dermatitis, multiple sclerosis, autoimmune thyroiditis, uveitis, systemic lupus erythematosis, Addison's disease, autoimmune polyglandular disease (also known as autoimmune polyglandular syndrome), and Grave's disease.

Combination therapy

In certain embodiments, a polymer-agent conjugate, particle or composition described herein may be administered alone or in combination with other compounds useful for treating or preventing inflammation. Exemplary anti-inflammatory agents include, for example, steroids (e.g., Cortisol, cortisone, fludrocortisone, prednisone, 6[alpha]-methylprednisone, triamcinolone, betamethasone or dexamethasone), nonsteroidal anti-inflammatory drugs (NSAIDS (e.g., aspirin, acetaminophen, tolmetin, ibuprofen, mefenamic acid, piroxicam, nabumetone, rofecoxib, celecoxib, etodolac or nimesulide). In another embodiment, the other therapeutic agent is an antibiotic (e.g., vancomycin, penicillin, amoxicillin, ampicillin, cefotaxime, ceftriaxone, cefixime, rifampinmetronidazole, doxycycline or streptomycin). In another embodiment, the other therapeutic agent is a PDE4 inhibitor (e.g., roflumilast or rolipram). In another embodiment, the other therapeutic agent is an antihistamine
(e.g., cyclizine, hydroxyzine, promethazine or diphenhydramine). In another embodiment, the other therapeutic agent is an anti-malarial (e.g., artemisinin, artemether, artsunate, chloroquine phosphate, mefloquine hydrochloride, doxycycline hyclate, proguanil hydrochloride, atovaquone or halofantrine). In one embodiment, the other therapeutic agent is drotrecogin alfa.

Further examples of anti-inflammatory agents include, for example, aceclofenac, acemetacin, e-acetamidocaproic acid, acetaminophen, acetaminosalol, acetanilide, acetylsalicylic acid, S-adenosylmethionine, alclofenac, alclometasone, alfentanil, algestone, allylprodine, alminoprofen, aloxiprin, alphaprodine, aluminum bis(acetylsalicylate), amcinonide, amfenac, aminochlorthenoxazin, 3-amino-4hydroxybutyric acid, 2-amino-4-picoline, aminopropylon, aminopyrine, amixetrine, ammonium salicylate, ampiroxicam, amtolmetin guacil, anileridine, antipyrine, antrafenine, apazone, beclomethasone, bendazac, benorylate, benoxaprofen, benzpiperylon, benzydamine, benzylmorphine, bermoprofen, betamethasone, betamethasone- 17-valerate, bezitramide, [alpha]-bisabolol, bromfenac, pbromoacetanilide, 5-bromosalicylic acid acetate, bromosaligenin, bucetin, bucloxic acid, bucolome, budesonide, bufexamac, bumadizon, buprenorphine, butacetin, butibufen, butorphanol, carbamazepine, carbiphene, caiprofen, carsalam, chlorobutanol, chloroprednisone, chlorthenoxazin, choline salicylate, cinchophen, cinmetacin, ciramadol, clidanac, clobetasol, clocortolone, clometacin, clonitazene, clonixin, clopirac, cloprednol, clove, codeine, codeine methyl bromide, codeine phosphate, codeine sulfate, cortisone, cortivazol, cropropamide, crotethamide and cyclazocine.

Further examples of anti-inflammatory agents include deflazacort, dehydrotestosterone, desomorphine, desonide, desoximetasone, dexamethasone, dexamethasone-21- isonicotinate, dexoxadrol, dextromoramide, dextropropoxyphene, deoxycorticosterone, dezocine, diampromide, diamorphone, diclofenac, difenamizole, difenpiramide, diflorasone, diflucortolone, diflunisal, difluprednate, dihydrocodeine, dihydrocodeinone enol acetate, dihydromorphine, dihydroxyaluminum acetylsalicylate, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, diprocetyl, dipyrone, ditazol, droxicam, emorfazone, enfenamic
acid, enoxolone, epirizole, eptazocine, etersalate, ethenzamide, ethoheptazine, ethoxazene, ethylmethylthiambutene, ethylmorphine, etodolac, etofenamate, etonitazene, eugenol, felbinac, fenbufen, fenclozic acid, fendosal, fenoprofen, fentanyl, fentiazac, fepradinol, feprazone, floctafenine, fluazacort, flucloronide, flufenamic acid, flumethasone, flunisolide, flunixin, flunoxaprofen, fluocinolone acetonide, fluocinonide, fluocinolone acetonide, fluocortin butyl, fluocoitolone, fluoresone, fluorometholone, fluperolone, flupirtine, fluprednidene, fluprednisolone, fluproquazone, flurandrenolide, flurbiprofen, fluticasone, formocortal and fosfosal.

Further examples of anti-inflammatory agents include gentisic acid, glafenine, glucametacin, glycol salicylate, guaiazulene, halcinonide, halobetasol, halometasone, haloprednone, heroin, hydrocodone, hydro cortamate, hydrocortisone, hydrocortisone acetate, hydrocortisone succinate, hydrocortisone hemisuccinate, hydrocortisone 21lysinate, hydrocortisone cypionate, hydromorphone, hydrox ypethidine, ibufenac, ibuprofen, ibuproxam, imidazole salicylate, indomethacin, indoprofen, isofezolac, isoflupredone, isoflupredone acetate, isoladol, isomethadone, isonixin, isoxepac, isoxicam, ketobemidone, ketoprofen, ketorolac, p- lactophenetide, lefetamine, levallorphan, levorphanol, levophenacyl-morphan, lofentanil, lonazolac, lornoxicam, loxoprofen, lysine acetylsalicylate, mazipredone, meclofenamic acid, medrysone, mefenamic acid, meloxicam, meperidine, meprednisone, meptazinol, mesalamine, metazocine, methadone, methotrimeprazine, methylprednisolone, methylprednisolone acetate, methylprednisolone sodium succinate, methylprednisolone suleptnate, metiazinic acid, metofoline, metopon, mofebutazone, mofezolac, mometasone, morazone, morphine, morphine hydrochloride, morphine sulfate, morpholine salicylate and myrophine.

Further examples of anti-inflammatory agents include nabumetone, nalbuphine, nalorphine, 1-naphthyl salicylate, naproxen, narceine, nefopam, nicomorphine, nifenazone, niflumic acid, nimesulide, 5'-nitro-2'propoxyacetanilide,norlevorphanol, normethadone, normorphine, norpipanone, olsalazine, opium, oxaceprol, oxametacine, oxaprozin, oxycodone, oxymorphone, oxyphenbutazone, papaveretum, paramethasone, paranyline, parsalmide, pentazocine, perisoxal, phenacetin, phenadoxone, phenazocine, phenazopyridine hydrochloride,
phenocoll, phenoperidine, phenopyrazone, phenomorphan, phenyl acetylsalicylate, phenylbutazone, phenyl salicylate, phenyramidol, piketoprofen, piminodine, pipebuzone, piperylone, pirazolac, piritramide, piroxicam, pirprofen, pranoprofen, prednicarbate, prednisolone, prednisone, prednival, prednylidene, proglumetacin, proheptazine, promedol, propacetamol, properidine, propiram, propoxyphene, propyphenazone, proquazone, protizinic acid, proxazole, ramifenazone, remifentanil, rimazolium metilsulfate, salacetamide, salicin, salicylamide, salicylamide o-acetic acid, salicylic acid, salicylsulfuric acid, salsalate, salverine, simetride, sufentanil, sulfasalazine, sulindac, superoxide dismutase, suprofen, suxibuzone, talniflumate, tenidap, tenoxicam, terofenamate, tetrandrine, thiazolinobutazone, tiaprofenic acid, tiaramide, tilidine, tinoridine, tixocortol, tolfenamic acid, tolmetin, tramadol, triamcinolone, triamcinolone acetonide, tropesin, viminol, xenbucin, ximoprofen, zaltoprofen and zomepirac.

In one embodiment, a polymer-agent conjugate, particle or composition described herein may be administered with a selective COX-2 inhibitor for treating or preventing inflammation. Exemplary selective COX-2 inhibitors include, for example, deracoxib, parecoxib, celecoxib, valdecoxib, rofecoxib, etoricoxib, and lumiracoxib.

Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

EXAMPLES

Example 1. Purification and characterization of 5050 PLGA.

Step A: A 3-L round-bottom flask equipped with a mechanical stirrer was charged with 5050PLGA (300 g , Mw: 7.8 KDa; Mn: 2.7 KDa) and acetone (900 mL). The mixture was stirred for 1 h at ambient temperature to form a clear yellowish solution.

Step B: A 22-L jacket reactor with a bottom-outlet valve equipped with a mechanical stirrer was charged with MTBE ($9.0 \mathrm{~L}, 30$ vol. to the mass of 5050 PLGA). Celite® (795 g) was added to the solution with overhead stirring at $\sim 200 \mathrm{rpm}$ to produce a suspension. To this suspension was slowly added the solution from Step A over 1 h . The mixture was agitated for an additional one hour after addition of the polymer solution and filtered through a polypropylene filter. The filter cake was washed with MTBE ($3 \times 300 \mathrm{~mL}$), conditioned for 0.5 h , air-dried at ambient temperature (typically 12 h) until residual MTBE was $\leq 5 \mathrm{wt} \%$ (as determined by 1 H NMR analysis.

Step C: A 12-L jacket reactor with a bottom-outlet valve equipped with a mechanical stirrer was charged with acetone ($2.1 \mathrm{~L}, 7$ vol. to the mass of 5050 PLGA). The polymer/Celite ${ }^{\circledR}$ complex from Step B was charged into the reactor with overhead stirring at $\sim 200 \mathrm{rpm}$ to produce a suspension. The suspension was stirred at ambient temperature for an additional 1 h and filtered through a polypropylene filter. The filter cake was washed with acetone $(3 \times 300 \mathrm{~mL})$ and the combined filtrates were clarified through a 0.45 mM in-line filter to produce a clear solution. This solution was concentrated to $\sim 1000 \mathrm{~mL}$.

Step D: A 22-L jacket reactor with a bottom-outlet valve equipped with a mechanical stirrer was charged with water ($9.0 \mathrm{~L}, 30$ vol.) and was cooled down to $0-5^{\circ} \mathrm{C}$ using a chiller. The solution from Step C was slowly added over 2 h with overhead stirring
at $\sim 200 \mathrm{rpm}$. The mixture was stirred for an additional one hour after addition of the solution and filtered through a polypropylene filter. The filter cake was conditioned for 1 h , air-dried for 1 day at ambient temperature, and then vacuum-dried for 3 days to produce the purified 5050 PLGA as a white powder [$258 \mathrm{~g}, 86 \%$]. The ${ }^{1} \mathrm{H}$ NMR analysis was consistent with that of the desired product and Karl Fisher analysis showed $0.52 \mathrm{wt} \%$ of water. The product was analyzed by HPLC (AUC, 230 nm) and GPC (AUC, 230 nm). The process produced a more narrow polymer polydispersity, i.e. $\mathrm{Mw}: 8.8 \mathrm{kDa}$ and $\mathrm{Mn}: 5.8 \mathrm{kDa}$.

Example 2. Purification and characterization of 5050 PLGA lauryl ester.

A 12-L round-bottom flask equipped with a mechanical stirrer was charged with MTBE (4 L) and heptanes $(0.8 \mathrm{~L})$. The mixture was agitated at $\sim 300 \mathrm{rpm}$, to which a solution of 5050 PLGA lauryl ester (65 g) in acetone (300 mL) was added dropwise. Gummy solids were formed over time and finally clumped up on the bottom of the flask. The supernatant was decanted off and the solid was dried under vacuum at $25^{\circ} \mathrm{C}$ for 24 h to afford 40 g of purified 5050 PLGA lauryl ester as a white powder [yield: 61.5%]. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 5.25-5.16(\mathrm{~m}, 53 \mathrm{H}), 4.86-$ $4.68(\mathrm{~m}, 93 \mathrm{H}), 4.18(\mathrm{~m}, 7 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 179 \mathrm{H}), 1.26(\mathrm{bs}, 37 \mathrm{H}), 0.88(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR analysis was consistent with that of the desired product. GPC $(A U C, 230 \mathrm{~nm}): 6.02-9.9 \mathrm{~min}, \mathrm{t}_{R}=7.91 \mathrm{~min}$.

Example 3. Purification and characterization of 7525 PLGA.

A $22-\mathrm{L}$ round-bottom flask equipped with a mechanical stirrer was charged with 12 L of MTBE, to which a solution of 7525 PLGA (150 g , approximately 6.6 kD) in dichloromethane ($\mathrm{DCM}, 750 \mathrm{~mL}$) was added dropwise over an hour with an agitation of $\sim 300 \mathrm{rpm}$, resulting in a gummy solid. The supernatant was decanted off and the gummy solid was dissolved in DCM (3 L). The solution was transferred to a round-bottom flask and concentrated to a residue, which was dried under vacuum at $25^{\circ} \mathrm{C}$ for 40 h to afford 94 g of purified 7525 PLGA as a white foam [yield: 62.7%,]. ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 5.24-5.15(\mathrm{~m}, 68 \mathrm{H}), 4.91-4.68(\mathrm{~m}, 56 \mathrm{H}), 3.22(\mathrm{~s}$, $2.3 \mathrm{H}, \mathrm{MTBE}), 1.60-1.55(\mathrm{~m}, 206 \mathrm{H}), 1.19(\mathrm{~s}, 6.6 \mathrm{H}, \mathrm{MTBE})$. The ${ }^{1} \mathrm{H}$ NMR analysis 1005052.1
was consistent with that of the desired product. GPC (AUC, 230 nm): 6.02-9.9 min, $\mathrm{t}_{R}=7.37 \mathrm{~min}$.

Example 4. Synthesis, purification and characterization of \mathbf{O}-acetyl-5050-PLGA.

A $2000-\mathrm{mL}$, round-bottom flask equipped with an overhead stirrer was charged with purified 5050 PLGA [220 g, Mn of 5700] and DCM (660 mL). The mixture was stirred for 10 min to form a clear solution. Ac2O ($11.0 \mathrm{~mL}, 116 \mathrm{mmol}$) and pyridine ($9.4 \mathrm{~mL}, 116 \mathrm{mmol}$) were added to the solution, resulting in a minor exotherm of $\sim 0.5^{\circ} \mathrm{C}$. The reaction was stirred at ambient temperature for 3 h and concentrated to $\sim 600 \mathrm{~mL}$. The solution was added to a suspension of Celite ${ }^{\circledR}$ (660 g) in MTBE ($6.6 \mathrm{~L}, 30$ vol.) over 1 h with overhead stirring at $\sim 200 \mathrm{rpm}$. The suspension was filtered through a polypropylene filter and the filter cake was air-dried at ambient temperature for 1 day. It was suspended in acetone ($1.6 \mathrm{~L}, \sim 8 \mathrm{vol}$) with overhead stirring for 1 h . The slurry was filtered though a fritted funnel (coarse) and the filter cake was washed with acetone $(3 \times 300 \mathrm{~mL})$. The combined filtrates were clarified though a Celite pad to afford a clear solution. It was concentrated to $\sim 700 \mathrm{~mL}$ and added to cold water ($7.0 \mathrm{~L}, 0-5^{\circ} \mathrm{C}$) with overhead stirring at 200 rpm over 2 h . The suspension was filtered though a polypropylene filter. The filter cake was washed with water ($3 \times 500 \mathrm{~mL}$), and conditioned for 1 h to afford 543 g of wet cake. It was transferred to two glass trays and air-dried at ambient temperature overnight to afford 338 g of wet product, which was then vacuum-dried at $25^{\circ} \mathrm{C}$ for 2 days to constant weight to afford 201 g of product as a white powder [yield: 91%]. The 1H NMR analysis was consistent with that of the desired product. The product was analyzed by HPLC (AUC, 230 nm) and GPC (Mw: 9.0 kDa and $\mathrm{Mn}: 6.3 \mathrm{kDa}$).

Example 5. Synthesis, purification and characterization of doxorubicin 5050 PLGA amide

A $1000-\mathrm{ml}$ round-bottom flask with a magnetic stirrer was charged with purified 5050 PLGA [$55.0 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.0$ equiv.], doxorubicin• $\mathrm{HCl}(6.7 \mathrm{~g}, 11.4$ mmol, 1.1 equiv, 2-chloro-N-methyl pyridinium iodide ($3.45 \mathrm{~g}, 13.5 \mathrm{mmol}, 1.3$ equiv, and DMF (250 mL , anhydrous) under N_{2}. The suspension was stirred for 15 min and
triethylamine ($4.6 \mathrm{~mL}, 32.2 \mathrm{mmol}, 3.15$ equiv.) was added dropwise over 10 min . The reaction mixture became a dark red solution after the addition of TEA and an exotherm from $23.2{ }^{\circ} \mathrm{C}$ to $26.2^{\circ} \mathrm{C}$ was observed. The reaction was complete after 1.5 h as indicated by HPLC analysis. The mixture was filtered through a $0.5 \mu \mathrm{M}$ PTFE membrane and the filtrate was added dropwise into water (5.50 L) containing 11 mL of AcOH over 20 min via addition funnels. The suspension was stirred for $1 \mathrm{~h}(\mathrm{pH} \sim 3$ -4), filtered over 30 min , and the filter cake was washed with water ($3 \times 300 \mathrm{~mL}$). The solid was suspended in water (3.0 L) containing $0.1 \mathrm{vol} \%$ of AcOH and $5 \mathrm{vol} \%$ of acetone, stirred for 1 h , and filtered $(\mathrm{pH} \sim 4-5)$ to afford 201.9 g of wet doxorubicin 5050 PLGA amide. The wet doxorubicin 5050 PLGA amide sample was transferred into a glass tray and dried under vacuum with nitrogen bleeding at $25^{\circ} \mathrm{C}$ for 16 h to afford 162.9 g of semi-dry solid. The ${ }^{1} \mathrm{H}$ NMR analysis indicated ~ 1.0 $\mathrm{wt} \%$ of residual DMF. This sample was suspended in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~L})$ containing 3 mL of AcOH and 15 mL of acetone and stirred for 6 h , filtered, washed with $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~L})$, and held for 0.5 h to afford 163.3 g of wet doxorubicin 5050 PLGA amide. The wet doxorubicin 5050 PLGA amide (155.8 g) was dried under vacuum with N_{2} bleeding at $25^{\circ} \mathrm{C}$ for 16 h to afford 120.3 g of semi-dry product, which was dried at ambient temperature with N_{2} purge for 16 h to afford 54.4 g of doxorubicin 5050 PLGA amide [yield: 93\%]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 14.00(\mathrm{~s}, 1 \mathrm{H}), 13.27(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{bs}, 0.8 \mathrm{H}), 5.51$ (bs, 1.2H), $5.22-5.17(\mathrm{~m}, 40 \mathrm{H}), 4.91-4.72(\mathrm{~m}, 81 \mathrm{H}), 4.31-4.08(\mathrm{~m}, 7 \mathrm{H}), 3.64$ (bs, 0.9 H), 3.30 ($\mathrm{d}, J=20.4,1 \mathrm{H}$), 3.04 ($\mathrm{d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94 ($\mathrm{s}, 0.1 \mathrm{H}, \mathrm{DMF}$), 2.89 (s , $0.1 \mathrm{H}, \mathrm{DMF}$), $2.36(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{bs}, 5 \mathrm{H}), 1.60$ $-1.55(\mathrm{~m}, 120 \mathrm{H}), 1.28(\mathrm{~d}, J=6.6 \mathrm{~Hz})$. The ${ }^{1} \mathrm{H}$ NMR analysis was consistent with that of the desired product. HPLC (AUC, 480 nm): $13.00-17.80 \mathrm{~min}, \mathrm{t}_{R} 16.8 \mathrm{~min}$. GPC (AUC, 480 nm): $5.2-8.6 \mathrm{~min}, \mathrm{t}_{R} 6.51 \mathrm{~min}$. The product may also include free 5050 PLGA and/or a trace amount of doxorubicin.

Example 6. Synthesis, purification and characterization of doxorubicin 7525 PLGA amide

2-chloro-N-methyl pyridinium iodide $(1.95 \mathrm{~g}, 7.63 \mathrm{mmol})$ and TEA (3.15 mL , 22.6 mmol) were added to a mixture of purified 7525 PLGA [$25.0 \mathrm{~g}, 3.80 \mathrm{mmol}$] and doxorubicin $\bullet \mathrm{HCl}$ ($3.08 \mathrm{~g}, 5.32 \mathrm{mmol}$) in DMF (125 mL , anhydrous) and stirred at ambient temperature. After 1 h , the reaction was complete by HPLC $(0.4 \%$ doxorubicin remaining); however, there was 5.2% of an impurity at 12.0 min by HPLC analysis. The mixture was added into 2.50 L of water (25 mL of acetone wash) and 5.0 mL of acetic acid was added $(\mathrm{pH}=4-5)$. The resulting slurry was stirred for 30 min and filtered (250 mL water wash). The isolated wet cake was found to have only 1.7% of the 12.0 min impurity by HPLC analysis. The wet cake was slurried in water (1.25 L) and 1.3 mL of acetic acid was added. The mixture was stirred for 45 min, filtered (washed with 250 mL of water), and dried under vacuum for 44 h to afford 25.2 g of doxorubicin 7525 PLGA amide as a red solid [Yield: 93%]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 13.99(\mathrm{~s}, 1 \mathrm{H}), 13.26(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.2 \mathrm{H}), 7.79$ (t, $J=7.8 \mathrm{~Hz}, 1.1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1.1 \mathrm{H}), 6.44(\mathrm{bs}, 0.8 \mathrm{H}), 5.50(\mathrm{bs}, 1.3 \mathrm{H}), 5.22$ $5.17(\mathrm{~m}, 60 \mathrm{H}), 4.91-4.72(\mathrm{~m}, 53 \mathrm{H}), 4.31-4.08(\mathrm{~m}, 8 \mathrm{H}), 3.64(\mathrm{bs}, 1.1 \mathrm{H}), 3.30(\mathrm{~d}, J=$ $20.4,1.0 \mathrm{H}$), 3.04 (d, $J=18.9 \mathrm{~Hz}, 1.2 \mathrm{H}$), 2.94 ($\mathrm{s}, \sim 1.0 \mathrm{H}, \mathrm{DMF}$), 2.89 ($\mathrm{s}, 1.1 \mathrm{H}, \mathrm{DMF}$), 2.36 (d, $J=14.4 \mathrm{~Hz}, 1.8 \mathrm{H}), 2.17$ (m, 3.4H), 1.84 (bs, 3H), $1.60-1.55$ (m, 184H), $1.28(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 6.6 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR analysis was consistent with that of the desired product. HPLC (AUC, 480 nm): $13.15-18.50 \mathrm{~min}, \mathrm{t}_{R} 17.6 \mathrm{~min}$. GPC (AUC, 480 nm): $5.2-8.5 \mathrm{~min}, \mathrm{t}_{R} 6.29 \mathrm{~min}$. The product may also include free 7525 PLGA and/or a trace amount of doxorubicin.

Example 7. Synthesis, purification and characterization of paclitaxel-5050 PLGA-O-acetyl

A $250-\mathrm{mL}$ round-bottom flask equipped with an overhead stirrer was charged with 5050 PLGA-O-acetyl [$20 \mathrm{~g}, 2.6 \mathrm{mmol}$], paclitaxel ($1.85 \mathrm{~g}, 2.1 \mathrm{mmol}, 0.8$ equiv., N, N^{\prime}-dicyclohexyl-carbodiimide (DCC, $0.66 \mathrm{~g}, 3.2 \mathrm{mmol}, 1.3$ equiv.), 4dimethylaminopyridine (DMAP, $0.39 \mathrm{~g}, 3.2 \mathrm{mmol}, 1.3$ equiv.), and DCM ($100 \mathrm{~mL}, 5$ vol). The mixture was agitated at $20^{\circ} \mathrm{C}$ for 16 h and filtered to remove the dicyclohexylurea (DCU). The filtrate was concentrated to a residue and the residue was dissolved in acetone (100 mL), resulting in a cloudy suspension. It was filtered
to remove residual DCU byproduct. The filtrate was added dropwise to 5:1 MTBE/heptanes (1.2 L) with vigorously stirring. The white precipitates formed a gum shortly after precipitation. The supernatant was decanted off and the gummy solid was isolated. The precipitation was repeated twice and the gummy solid was dried under vacuum at $25^{\circ} \mathrm{C}$ for 16 h to afford 15.7 g of paclitaxel-5050 PLGA-Oacetyl [yield: 72%] ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 8.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.38(\mathrm{~m}, 6 \mathrm{H}), 6.29-6.24($ a singlet overlaps with a triplet, $1 \mathrm{H}), 6.06(\mathrm{bs}, 0.5 \mathrm{H}), 5.69(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.58(\mathrm{bs}, 0.5 \mathrm{H}), 5.26-5.17(\mathrm{~m}$, $40 \mathrm{H}), 4.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.90-4.72(\mathrm{~m}, 85 \mathrm{H}), 4.43(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (d, $J=8.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.44$ (bs, 2.5 H), $2.23(\mathrm{~s}, 1.5 \mathrm{H}), 2.17(\mathrm{~s}, 19 \mathrm{H}$, acetone), $1.8-1.7$ (bs, 15H), $1.68(\mathrm{~s}, 1.5 \mathrm{H}), 1.60$ $-1.55(\mathrm{~m}, 124 \mathrm{H}), 1.22(\mathrm{bs}, 2.5 \mathrm{H}), 1.14(\mathrm{~s}, 1.5 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR analysis was consistent with that of the desired product. HPLC (AUC, 230 nm): $13.00-16.50$ $\mathrm{min}, \mathrm{t}_{R} 15.60 \mathrm{~min} . \operatorname{GPC}$ (AUC, 230 nm): $6.0-9.7 \mathrm{~min}, \mathrm{t}_{R}=7.35 \mathrm{~min}$. The major product is paclitaxel-2'-5050 PLGA-O-acetyl (wherein paclitaxel is attached to 5050 PLGA-O-acetyl via the 2' hydroxyl group); the product may also include free 5050 PLGA-O-acetyl, 7 paclitaxel-conjugate, 1 paclitaxel-conjugate, product in which two or more polymer chains are linked to paclitaxel (e.g., via the 2 ' and 7 positions) and/or a trace amount of paclitaxel.

Example 8. Synthesis, purification and characterization of docetaxel-5050 PLGA-O-acetyl

A $250-\mathrm{mL}$ round-bottom flask equipped with an overhead stirrer was charged with O-acetyl-5050 PLGA ($16 \mathrm{~g}, 2.6 \mathrm{mmol}$), docetaxel ($1.8 \mathrm{~g}, 2.1 \mathrm{mmol}, 0.8$ equiv.), DCC ($0.66 \mathrm{~g}, 3.2 \mathrm{mmol}, 1.3$ equiv.), 4-dimethylaminopyridine (DMAP, $0.35 \mathrm{~g}, 3.2$ mmol, 1.3 equiv.), and $\mathrm{EtOAc}(80 \mathrm{~mL}, 5 \mathrm{vol})$. The mixture was agitated at $20^{\circ} \mathrm{C}$ for 2.5 h and an additional 0.5 equivalents of DCC $(0.27 \mathrm{~g})$ and DMAP $(0.16 \mathrm{~g})$ were added. The reaction was stirred at ambient temperature for 16 h and filtered to remove the dicyclohexylurea (DCU). The filtrate was diluted with EtOAc to 250 mL . It was washed with $1 \% \mathrm{HCl}(2 \times 60 \mathrm{~mL})$ and brine $(60 \mathrm{~mL})$. The organic layer was
separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated to a residue and the residue was dissolved in acetone (100 mL), resulting in a cloudy suspension. It was filtered to remove residual DCU byproduct. The filtrate was added dropwise to 5:1 MTBE/heptanes (600 mL) with vigorously stirring. The white precipitates formed a gum shortly after precipitation. The supernatant was decanted off and the gummy solid was isolated. The precipitation was repeated three more times and the gummy solid was dissolved in acetone (300 mL). The solution was concentrated to a residue, which was dried under vacuum at $25^{\circ} \mathrm{C}$ for 64 h to afford 14 g of docetaxel-5050 PLGA-O-acetyl [yield: 78%]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 8.11$ (d, $J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{~m}, 0.6 \mathrm{H}), 7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.39(\mathrm{~m}, 1.3 \mathrm{H}), 6.22(\mathrm{bs}, 0.5 \mathrm{H}), 6.68(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 5.69-5.67(\mathrm{~m}, 2.2 \mathrm{H}), 5.49-5.17(\mathrm{~m}, 49 \mathrm{H}), 4.90-4.72(\mathrm{~m}, 102 \mathrm{H}), 4.43$ $(\mathrm{m}, 1.2 \mathrm{H}), 3.92(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.42(\mathrm{bs}, 2.1 \mathrm{H}), 2.17(\mathrm{~s}, 29.3 \mathrm{H}$, acetone), 1.90 $(\mathrm{s}, 3 \mathrm{H}), 1.80(\mathrm{bs}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 164 \mathrm{H}), 1.34(\mathrm{~s}, 7 \mathrm{H}), 1.22(\mathrm{~m}, 4 \mathrm{H})$, $1.12(\mathrm{~s}, 2.4 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR analysis was consistent with that of the desired product. HPLC (AUC, 230 nm): $15.50-18.00 \mathrm{~min}, \mathrm{t}_{R} 17.34 \mathrm{~min}$. GPC (AUC, 230 nm): $6.0-$ $9.7 \mathrm{~min}, \mathrm{t}_{R}=7.35 \mathrm{~min}$. The major product is docetaxel-2'-5050 PLGA-O-acetyl (wherein docetaxel is attached to 5050 PLGA-O-acetyl via the 2 ' hydroxyl group); the product may also include free 5050 PLGA-O-acetyl, 7 docetaxel-conjugate, 10 docetaxel-conjugate, 1 docetaxel-conjugate, product in which two or more polymer chains are linked to docetaxel (e.g., via the 2^{\prime} and 7 positions) and/or a trace amount of docetaxel.

Example 9. Synthesis, purification and characterization of bis(docetaxel) glutamate-5050 PLGA-O-acetyl

A $500-\mathrm{mL}$, round-bottom flask was charged with 5050 PLGA-O-acetyl $[40 \mathrm{~g}$, 5.88 mmol , dibenzyl glutamate ($3.74 \mathrm{~g}, 7.35 \mathrm{mmol}$), and DMF ($120 \mathrm{~mL}, 3$ vol.) and allowed to mix for 10 min to afford a clear solution. CMPI ($2.1 \mathrm{~g}, 8.23 \mathrm{mmol}$) and TEA (2.52 mL) were added and the solution was stirred at ambient temperature for 3 h. The yellowish solution was added to a suspension of Celite (120 g) in MTBE (2.0 L) over 0.5 h with overhead stirring. The solid was filtered, washed with MTBE (300 mL), and vacuum-dried at $25^{\circ} \mathrm{C}$ for 16 h . The solid was then suspended in acetone
($400 \mathrm{~mL}, 10 \mathrm{vol}$), stirred for 0.5 h , filtered and the filter cake was washed with acetone ($3 \times 100 \mathrm{~mL}$). The combined filtrates were concentrated to 150 mL and added to cold water ($3.0 \mathrm{~L}, 0-5^{\circ} \mathrm{C}$) over 0.5 h with overhead stirring. The resulting suspension was stirred for 2 h and filtered through a PP filter. The filter cake was airdried for 3 h and then vacuum-dried at $28^{\circ} \mathrm{C}$ for 16 h to afford the product, dibenzylglutamate 5050 PLGA-O-acetyl [40 g, yield: 95\%]. The H NMR analysis indicated that the ratio of benzyl aromatic protons to methine protons of lactide was 10:46. HPLC analysis indicated 96% purity (AUC, 227 nm) and GPC analysis showed Mw: 8.9 kDa and $\mathrm{Mn}: 6.5 \mathrm{kDa}$.

Dibenzylglutamate 5050 PLGA-O-acetyl (40 g) was dissolved in ethyl acetate $(400 \mathrm{~mL})$ to afford a yellowish solution. Charcoal (10 g) was added to the mixture and stirred for 1 h at ambient temperature. The solution was filtered through a pad of Celite (60 mL) to afford a colorless filtrate. The filter cake was washed with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and the combined filtrates were concentrated to 400 mL . Palladium on activated carbon ($\mathrm{Pd} / \mathrm{C}, 5 \mathrm{wt} \%, 4.0 \mathrm{~g}$) was added, the mixture was evacuated for 1 min , filled up with H_{2} using a balloon and the reaction was stirred at ambient temperature for 3 h . The solution was filtered through a Celite pad (100 mL) and the filter cake was washed with acetone ($3 \times 50 \mathrm{~mL}$). The combined filtrates had a grey color and were concentrated to 200 mL . The solution was added to a suspension of Celite (120 g) in MTBE (2.0 L) over 0.5 h with overhead stirring. The suspension was stirred at ambient temperature for 1 h and filtered through a PP filter. The filter cake was dried at ambient temperature for 16 h , suspended in acetone (400 mL), and stirred for 0.5 h . The solution was filtered through a PP filter and the filter cake was washed with acetone ($3 \times 50 \mathrm{~mL}$). To remove any residual Pd, macroporous polystyrene-2,4,6-trimercaptotriazine resin (MP-TMT, 2.0 g , Biotage, capacity: 0.68 $\mathrm{mmol} / \mathrm{g}$) was added at ambient temperature for 16 h with overhead stirring. The solution was filtered through a Celite pad to afford a light grey solution. The solution was concentrated to 200 mL and added to cold water $\left(3.0 \mathrm{~L}, 0-5^{\circ} \mathrm{C}\right)$ over 0.5 h with overhead stirring. The resulting suspension was stirred at $<5^{\circ} \mathrm{C}$ for 1 h and filtered through a PP filter. The filter cake was air-dried for 12 h and vacuum-dried for 2 days
to afford a semi-glassy solid [glutamic acid-PLGA5050-O-acetyl, 38 g , yield: 95\%]. HPLC analysis showed 99.6% purity (AUC, 227 nm) and GPC analysis indicated Mw: 8.8 kDa and $\mathrm{Mn}: 6.6 \mathrm{kDa}$.

To remove any residual water, the glutamic acid-PLGA5050-O-acetyl [38 g] was dissolved in acetonitrile (150 mL) and concentrated to dryness. The residue was vacuum-dried at ambient temperature for 16 h to afford the desired product as a light grey powder $[36 \mathrm{~g}]$. A $1000-\mathrm{mL}$, round-bottom flask equipped with a magnetic stirrer was charged with glutamic acid-PLGA5050-O-acetyl [30 g, $4.5 \mathrm{mmol}, \mathrm{Mn}: 6.6 \mathrm{kDa}]$, docetaxel ($4.3 \mathrm{~g}, 2.9 \mathrm{mmol}$, 1.2 equiv), DMF (60 mL), and DCM (60 mL). The mixture was stirred for 10 min to afford a light brown solution. The first portion of EDC $\cdot \mathrm{HCl}(1.6 \mathrm{~g}, 8.3 \mathrm{mmol})$ and DMAP $(1.0 \mathrm{~g}, 8.3 \mathrm{mmol})$ was added and stirred at ambient temperature to yield a dark brown solution. After 2 h , a second portion of $\mathrm{EDC} \cdot \mathrm{HCl}(0.8 \mathrm{~g}, 4.2 \mathrm{mmol})$ and DMAP $(0.50 \mathrm{~g}, 4.2 \mathrm{mmol})$ was added and stirred for an additional 2 to produce a darker solution. A third portion of $\mathrm{EDC} \cdot \mathrm{HCl}(0.3 \mathrm{~g}, 1.6$ $\mathrm{mmol})$ and DMAP $(0.2 \mathrm{~g}, 1.6 \mathrm{mmol})$ was added. An additional portion of $\mathrm{EDC} \cdot \mathrm{HCl}$ $(0.3 \mathrm{~g}, 1.6 \mathrm{mmol})$ and DMAP ($0.2 \mathrm{~g}, 1.6 \mathrm{mmol})$ was added and stirred at ambient temperature for 2 h . The reaction mixture was added to a suspension of Celite (100 g) in MTBE (3.0 L) over 0.5 h with overhead stirring. The suspension was filtered through a PP filter and the filter cake was dried under vacuum at $25^{\circ} \mathrm{C}$ for 12 h . The solid was suspended in acetone (250 mL) for 0.5 h with overhead stirring. The suspension was filtered and the filter cake was washed with acetone ($3 \times 60 \mathrm{~mL}$). The combined filtrates were concentrated to 200 mL and added to cold water ($3 \mathrm{~L}, 0^{\circ} \mathrm{C}$) over 0.5 h with overhead stirring. The suspension was filtered through a PP filter; the filter cake was washed with water $(3 \times 100 \mathrm{~mL})$ and the solid was dried under vacuum at $25^{\circ} \mathrm{C}$ for 16 h to afford a crude product [33 g]. To reduce any possible residual docetaxel, a second MTBE purification was conducted. The crude product was dissolved in acetone (150 mL) and added to a suspension of Celite (100 g) in MTBE (3 L). The suspension was filtered; the solid was vacuum-dried for 3 h , and suspended in acetone (500 mL) with overhead stirring. The suspension was filtered and the filter cake was washed with acetone $(3 \times 100 \mathrm{~mL})$. The combined filtrates were concentrated to 200 mL and co-evaporated with acetonitrile $(100 \mathrm{~mL})$ to
dryness. The residue was dissolved in acetone (200 mL) and the solution was precipitated into a suspension of Celite® ${ }^{\circledR}(100 \mathrm{~g}) / \mathrm{MTBE}(3 \mathrm{~L})$ a third time. The mixture was stirred at ambient temperature for 1 h and filtered. The filter cake was washed with MTBE ($2 \times 200 \mathrm{~mL}$) and vacuum-dried at ambient temperature overnight. The bis(docetaxel) glutamate-5050 PLGA-O-acetyl /Celite complex was suspended in acetone (300 mL) with overhead stirring. The suspension was filtered and added to cold water (3 L) over 0.5 h with overhead stirring. The suspension was stirred at $<5^{\circ} \mathrm{C}$ for 1 h and filtered through a PP filter. The filter cake was washed with water ($3 \times 200 \mathrm{~mL}$); the filter cake was conditioned for 0.5 h and vacuum-dried for 2 days to afford the desired product as an off-white powder [30 g , yield: 88%;]. This product was purified by another MTBE precipitation without using Celite. The product was dissolved in acetone to afford a solution (200 mL) and added to cold MTBE ($2 \mathrm{~L}, 0^{\circ} \mathrm{C}$) over 1 h with overhead stirring. The resulting suspension was filtered and the filter cake was vacuum-dried at $25^{\circ} \mathrm{C}$ for 16 h to afford a product with a tan color [34 g]. This sample was further dried for another 24 h and the residual MTBE was not reduced. To remove the residual MTBE, the product was precipitated into water. The isolated solid was vacuum-dried for 2 days to constant weight to afford the desired product as an off-white powder [bis(docetaxel) glutamate-5050 PLGA-O-acetyl, 28.5 g , yield: 84%]. The ${ }^{1} \mathrm{H}$ NMR analysis indicated that the docetaxel loading was 10% and HPLC analysis showed $>99.5 \%$ purity (AUC, 227 $\mathrm{nm})$. GPC analysis indicated $\mathrm{Mw}: 9.9 \mathrm{kDa}$ and $\mathrm{Mn}: 6.1 \mathrm{kDa}$. The major product is bis(2'-docetaxel) glutamate-5050 PLGA-O-acetyl (wherein each docetaxel is attached to the glutamate linker via the 2^{\prime} hydroxyl group); the product may also include free 5050 PLGA-O-acetyl, mono(2'-docetaxel) glutamate-5050 PLGA-O-acetyl, mono(7docetaxel) glutamate-5050 PLGA-O-acetyl, mono(10-docetaxel) glutamate-5050 PLGA-O-acetyl, mono(1-docetaxel) glutamate-5050 PLGA-O-acetyl, (2'-docetaxel)(7-docetaxel) glutamate-5050 PLGA-O-acetyl, (2'-docetaxel)(10docetaxel) glutamate-5050 PLGA-O-acetyl, (2'-docetaxel)(1-docetaxel) glutamate5050 PLGA-O-acetyl, (7-docetaxel)(10-docetaxel) glutamate-5050 PLGA-O-acetyl, (7-docetaxel)(1-docetaxel) glutamate-5050 PLGA-O-acetyl, (10-docetaxel)(1docetaxel) glutamate-5050 PLGA-O-acetyl, and/or a trace amount of docetaxel.

Example 10. Synthesis, purification and characterization of tetra-(docetaxel) triglutamate- 5050 PLGA-O-acetyl

A $250-\mathrm{mL}$, round-bottom flask equipped with a magnetic stirrer was charged with N-(tert-butoxycarbonyl)-L-glutamic acid ($20 \mathrm{~g}, 40 \mathrm{mmol}$), (S)-dibenzyl 2aminopentanedioate ($4.85 \mathrm{~g}, 19.5 \mathrm{mmol}$), and DMF (100 mL). The mixture was stirred for 5 min to afford a clear solution. $\mathrm{EDC} \cdot \mathrm{HCl}(8.5 \mathrm{~g}, 44.3 \mathrm{mmol})$ and DMAP $(9.8 \mathrm{~g}, 80 \mathrm{mmol})$ were added. The reaction was stirred at ambient temperature for 3 h , at which time HPLC analysis indicated completion of the reaction. The reaction was concentrated to a syrup ($\sim 75 \mathrm{~g}$) and EtOAc (250 mL) was added with overhead stirring. The resulting suspension was filtered to remove the N, N-dimethyl pyridinium p-toluenesulfonate. The filtrate was concentrated to a yellowish oil and water (200 mL) was added with vigorous stirring. White solid was gradually formed and the suspension was filtered. The solid was washed with water $(2 \times 50 \mathrm{~mL})$ and dried under vacuum for 24 h to afford the N -Boc-tetrabenzyl-triglutamate product as a white powder [16.5 g , yield: 95%]. The 1H NMR analysis showed the desired product and HPLC analysis indicated a 92% purity (AUC, 254 nm). This crude product was further purified by recrystallization as follows. N-Boc-tetrabenzyl-triglutamate (15 g) was dissolved in hot IPAc ($15 \mathrm{~mL}, 1 \mathrm{vol}$) and the solution was allowed to cool down to ambient temperature. A hydrogel like solid was formed and it was slurried in MTBE (200 mL) for 1 h , filtered. The filtration was slow owing to the hydrogel-like particles. The hydrogel solid was vacuum-dried at ambient temperature to afford product as a white powder [12.5 g, recovery yield: 83\%]. The 1H NMR analysis showed the desired product and HPLC analysis indicated $\sim 100 \%$ purity (AUC, 254 nm).

A $250-\mathrm{mL}$, round bottom flask was charged with N-tert-butylox ycarbonyl-tetrabenzyl-triglutamate [N -t-BOC-tetrabenzyl-triglutamate, $11 \mathrm{~g}, 12.7 \mathrm{mmol}$] and DCM (25 mL) to afford a clear solution. Trifluoroacetic acid (TFA, 25 mL) was added to the solution and the reaction was stirred at ambient temperature. The solution was concentrated to a residue, dissolved in DCM (200 mL) and washed with saturated sodium bicarbonate $\left(\mathrm{NaHCO}_{3}, 2 \times 25 \mathrm{~mL}\right)$ and brine $(30 \mathrm{~mL})$. The organic
layer was separated and dried over sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 15 \mathrm{~g}\right)$. The solution was filtered and the filtrate was concentrated to a residue and vacuum-dried at ambient temperature for 16 h to afford the desired product $\left(\mathrm{NH}_{2}\right.$-tetrabenzyl-triglutamate) as a wax-like semi-solid product [9.3 g , yield: 96%]. HPLC analysis indicated a 97% purity (AUC, 254 nm).

A $1000-\mathrm{mL}$, round-bottom flask equipped with a magnetic stirrer was charged with NH_{2}-tetrabenzyl-triglutamate [4.0 g, 5.3 mmol , o-acetyl PLGA 5050 [30 g, 4.4 mmol, Mn: 6.8 kDa,], and DMF (100 mL). The mixture was stirred for a few minutes to afford a clear solution. 1-chloro-4-methylpyridinium iodide (CMPI, $1.7 \mathrm{~g}, 6.6$ mmol) and trifluoroacetic acid (TEA, $1.3 \mathrm{~mL}, 8.8 \mathrm{mmol}$) were added and the reaction was stirred at ambient temperature for 3 h . The reaction mixture was added into cold water (2 L) over 1 h with overhead stirring. The generated suspension was filtered through a PP filter. The filter cake was washed with water $(3 \times 300 \mathrm{~mL})$ and air-dried at ambient temperature for 16 h to afford a crude product. It was dissolved in acetonitrile (200 mL) and the solution concentrated to dryness. The residue was dissolved in acetone (100 mL) and the solution was added to cold MTBE ($0{ }^{\circ} \mathrm{C}, 2 \mathrm{~L}$) over 0.5 h with overhead stirring to afford a suspension. It was filtered through a PP filter and the filter cake was vacuum-dried for 16 h to afford the product (tetrabenzyl-triglutamate-PLGA 5050-O-acetyl [30 g, yield: 88\%]. The ${ }^{1}$ H NMR analysis indicated the ratio of benzyl aromatic protons over methine protons of lactide was 20:45. HPLC analysis showed $>95 \%$ purity (AUC, 227 nm) and GPC analysis indicated a Mw: 8.9 kDa and a Mn: 6.7 kDa .

The tetrabenzyl-triglutamate-PLGA 5050-O-acetyl [$30 \mathrm{~g}, 1.5 \mathrm{mmol}]$ was dissolved in ethyl acetate (300 mL) to afford a pale yellowish solution. Charcoal (10 g) was added and the mixture was stirred at ambient temperature for 1 h and filtered through a Celite pad (100 mL). The filtrate became colorless and was transferred to a $1000-\mathrm{mL}$, round bottom flask equipped with a magnetic stirrer. Palladium on activated carbon ($\mathrm{Pd} / \mathrm{C}, 5 \mathrm{wt} . \%, 4.0 \mathrm{~g}$) was added, the mixture was evacuated for 1 min, filled up with H_{2} using a balloon and stirred at ambient temperature for 3 h . It was filtered through a Celite pad $(100 \mathrm{~mL})$ and the filter cake was washed with
acetone $(3 \times 50 \mathrm{~mL})$. The combined filtrates had a grey color and were filtered through multiple $0.45 \mu \mathrm{M}$ polytetrafluoroethylene (PTFE) filters. The filtrate was concentrated to 150 mL and added to cold water ($1.5 \mathrm{~L}, 0-5^{\circ} \mathrm{C}$) over 0.5 h with overhead stirring. The suspension was filtered and the filter cake was washed with water ($3 \times 100 \mathrm{~mL}$), conditioned for 0.5 h , and vacuum-dried for 24 h to afford a white powder [triglutamate-PLGA5050-O-acetyl, 21 g , yield: 72\%]. HPLC analysis indicated a 100% purity (AUC, 227 nm) and. GPC analysis showed a Mw: 9.2 kDa and Mn: 6.9 kDa .

A $1000-\mathrm{mL}$, round-bottom flask equipped with a magnetic stirrer was charged with triglutamate-PLGA5050-O-acetyl [20 g, 2.9 mmol , Mn 6.9 kDa ,], docetaxel (5.7 $\mathrm{g}, 7.0 \mathrm{mmol}, 2.4$ equiv.), and DMF (75 mL). The mixture was stirred for 5 min to afford a clear solution. $\mathrm{EDC} \cdot \mathrm{HCl}(1.08 \mathrm{~g}, 5.6 \mathrm{mmol})$ and DMAP $(0.72 \mathrm{~g}, 5.6 \mathrm{mmol})$ were added and the reaction was stirred at ambient temperature for 3 h . A second portion $\mathrm{EDC} \cdot \mathrm{HCl}(0.54 \mathrm{~g}, 2.8 \mathrm{mmol})$, and DMAP $(0.54 \mathrm{~g}, 2.8 \mathrm{mmol})$ was added and the reaction was stirred for an additional 3 h . A third portion of $\mathrm{EDC} \cdot \mathrm{HCl}(0.36 \mathrm{~g}, 1.9$ mmol $)$ and DMAP ($0.24 \mathrm{~g}, 1.9 \mathrm{mmol}$) was added and the reaction was stirred for 14 h . An additional portion of $\mathrm{EDC} \cdot \mathrm{HCl}(0.36 \mathrm{~g}, 1.9 \mathrm{mmol})$ and $\mathrm{DMAP}(0.24 \mathrm{~g}, 1.9 \mathrm{mmol})$ was added and the reaction was stirred for another 4 h . The reaction mixture was added to a suspension of Celite (60 g) in MTBE (2.0 L) over 0.5 h with overhead stirring. The suspension was filtered through a PP filter and the crude product/Celite complex was dried under vacuum at $25^{\circ} \mathrm{C}$ for 12 h . The product/complex was suspended in acetone (200 mL) for 0.5 h with overhead stirring and filtered. The filter cake was washed with acetone $(3 \times 60 \mathrm{~mL})$. The combined filtrates were concentrated to 100 mL . A second Celite/MTBE precipitation was conducted; the filtrate from the acetone extraction was concentrated to 100 mL , added to cold water (1.0 L, $0-5^{\circ} \mathrm{C}$) with overhead stirring and filtered. The solid was vacuum-dried for 2 days to afford crude product as a white powder [24 g]. The crude product was dissolved in acetone (120 mL) and added to a suspension of Celite (70 g , Aldrich, standard supercell, acid washed) in MTBE (2.0 L) at ambient temperature with overhead stirring. The suspension was stirred for 2 h and filtered through a fritted funnel. The filter cake was washed with MTBE $(2 \times 200 \mathrm{~mL})$ and vacuum-dried at
ambient temperature overnight. The solid was suspended in acetone (200 mL) with overhead stirring for 1 h . The suspension was filtered through a fritted funnel and the filter cake was rinsed with acetone $(3 \times 100 \mathrm{~mL})$. The combined filtrates were concentrated to $\sim 150 \mathrm{~mL}$ and precipitated into Celite/MTBE a fourth time. To facilitate the purification, the filtrate was concentrated to $\sim 120 \mathrm{~mL}$ and added to MTBE (2.0 L) at ambient temperature with vigorous stirring. The suspension was filtered through a fritted funnel and the filter cake was vacuum-dried for 16 h to afford a crude product as a white powder containing $\sim 30 \mathrm{wt} \%$ of residual MTBE [30 g, > 100% yield,]. The crude product was dissolved in acetone (120 mL) and the solution was precipitated into MTBE (2.0 L). The resultant suspension was stirred at ambient temperature for 3 h and filtered through a fritted funnel. The filter cake was vacuumdried for 12 h to afford a white solid $[30 \mathrm{~g}]$. At this point, a third water precipitation was conducted to isolate the product and reduce the residual MTBE. The above crude product was dissolved in acetone $(100 \mathrm{~mL})$ and the solution was added to cold water (1.5 L, $0-5^{\circ} \mathrm{C}$) over 0.5 h with overhead stirring. The suspension was filtered through a fritted funnel. The filter cake was washed with water ($3 \times 200 \mathrm{~mL}$), conditioned for 2 h , and vacuum-dried for 2 days to afford the desired product (tetra(docetaxel) triglutamate-5050 PLGA-O-acetyl) as a white powder [20 g, yield: 78\%;]. HPLC analysis showed a 99.5% purity along with 0.5% of residual docetaxel. GPC analysis indicated a Mw: 10.8 kDa and $\mathrm{Mn}: 6.6 \mathrm{kDa}$.

The major product is tetra(2'-docetaxel) triglutamate-5050 PLGA-O-acetyl (wherein each docetaxel is attached to the triglutamate linker via the 2' hydroxyl group); the product may also include free 5050 PLGA-O-acetyl, monofunctionalized polymers (e.g., mono(2'-docetaxel) triglutamate-5050 PLGA-O-acetyl or monosubstituted products attached via the 7,10 or 1 hydroxyl groups), difunctionalized polymers (e.g., bis(2'-docetaxel)triglutamate-5050 PLGA-O-acetyl, or disubstituted products with docetaxel molecules attached via other hydroxyl groups or mixtures thereof), trifunctionalized polymers (e.g., tris(2'-docetaxel)triglutamate5050 PLGA-O-acetyl, or trisubstituted products with docetaxel molecules attached via other hydroxyl groups or mixtures thereof), and/or a trace amount of docetaxel.

Example 11. Synthesis, purification and characterization of folate-PEG-PLGAlauryl ester

The synthesis of folate-PEG-PLGA-lauryl ester involves the direct coupling of folic acid to PEG bisamine (Sigma-Aldrich, $\mathrm{n}=75$, MW 3350 Da). PEG bisamine was purified due to the possibility that small molecular weight amines were present in the product. 4.9 g of PEG bisamine was dissolved in DCM ($25 \mathrm{~mL}, 5 \mathrm{vol}$) and then transferred into MTBE ($250 \mathrm{~mL}, 50 \mathrm{vol}$) with vigorous agitation. The polymer precipitated as white powder. The mixture was then filtered and the solid was dried under vacuum to afford 4.5 g of the product [92%]. The ${ }^{1} \mathrm{H}$ NMR analysis of the solid gave a clean spectrum; however, not all alcohol groups were converted to amines based on the integration of α-methylene to the amine group (63% bisamine, 37% monoamine).

Folate- $(\gamma) \mathrm{CO}-\mathrm{NH}-\mathrm{PEG}-\mathrm{NH}_{2}$ was synthesized using the purified PEG bisamine. Folic acid ($100 \mathrm{mg}, 1.0$ equiv.) was dissolved in hot DMSO ($4.5 \mathrm{~mL}, 3$ vol to PEG bisamine). The solution was cooled to ambient temperature and (2-(7-Aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) (HATU, $104 \mathrm{mg}, 1.2$ equiv.) and N, N - Diisopropylethylamine (DIEA, $80 \mu \mathrm{~L}, 2.0$ equiv.) were added. The resulting yellow solution was stirred for 30 minutes and PEG bisamine ($1.5 \mathrm{~g}, 2$ equiv.) in DMSO ($3 \mathrm{~mL}, 2 \mathrm{vol}$) was added. Excess PEG bisamine was used to avoid the possible formation of di-adduct of PEG bisamine and to improve the conversion of folic acid. The reaction was stirred at $20^{\circ} \mathrm{C}$ for 16 h and directly purified by CombiFlash using a C18 column (RediSep, $43 \mathrm{~g}, \mathrm{C} 18$). The fractions containing the product were combined and the $\mathrm{CH}_{3} \mathrm{CN}$ was removed under vacuum. The remaining water solution ($\sim 200 \mathrm{~mL}$) was extracted with chloroform ($200 \mathrm{~mL} \times$ 2). The combined chloroform phases were concentrated to approximately 10 mL and transferred into MTBE to precipitate the product as a yellow powder. In order to completely remove any unreacted PEG bisamine in the material, the yellow powder was washed with acetone (200 mL) three times. The remaining solid_was dried under vacuum to afford a yellow semi-solid product (120 mg). HPLC analysis indicated a purity of 97% and the ${ }^{1} \mathrm{H}$ NMR analysis showed that the product was clean.

Folate- $(\gamma) \mathrm{CO}-\mathrm{NH}-\mathrm{PEG}-\mathrm{NH} 2$ was reacted with p-nitrophenyl-COO-PLGA-CO_{2}-lauryl to provide folic acid-PEG-PLGA-lauryl ester. To prepare p-nitrophenyl-COO-PLGA-CO ${ }_{2}$-lauryl, PLGA 5050 (lauryl ester) [$10.0 \mathrm{~g}, 1.0$ equiv.] and p nitrophenyl chloroformate ($0.79 \mathrm{~g}, 2.0$ equiv.) were dissolved in DCM. To the dissolved polymer solution, one portion of TEA (3.0 equiv.) was added. The resulting solution was stirred at $20^{\circ} \mathrm{C}$ for 2 h and the H NMR analysis indicated complete conversion. The reaction solution was then transferred into a solvent mixture of 4:1 MTBE/heptanes (50 vol). The product precipitated and gummed up. The supernatant was decanted off and the solid was dissolved in acetone (20 vol). The resulting acetone suspension was filtered and the filtrate was concentrated to dryness to produce the product as a white foam [$7.75 \mathrm{~g}, 78 \%, \mathrm{Mn}=4648$ based on GPC]. The 1
H NMR analysis indicated a clean product with no detectable p-nitrophenol.
Folate- $(\gamma) \mathrm{CO}-\mathrm{NH}-\mathrm{PEG}-\mathrm{NH} 2(120 \mathrm{mg}, 1.0$ equiv.) was dissolved in DMSO (5 mL) and TEA (3.0 equiv.) was added. The pH of the reaction mixture was $8-9 . p$ -nitrophenyl-COO-PLGA-CO ${ }_{2}$-lauryl ($158 \mathrm{mg}, 1.0$ equiv.) in DMSO (1 mL) was added and the reaction was monitored by HPLC. A new peak at $16.1 \mathrm{~min}(\sim 40 \%$, AUC, 280 nm) was observed from the HPLC chromatogram in 1 h . A small sample of the reaction mixture was treated with excess 1,8 -diazabicyclo[5.4.0] undec-7-ene (DBU) and the color instantly changed to dark yellow. HPLC analysis of this sample indicated complete disappearance of p-nitrophenyl-COO-PLGA-CO CO_{2}-lauryl and the 16.1 min peak. Instead, a peak on the right side of folate- (γ) CO-NH-PEG-NH2 appeared. It can be concluded that the p-nitrophenyl-COO-PLGA-CO CO_{2}-lauryl and the possible product were not stable under strong basic conditions. In order to identify the new peak at $16.1 \mathrm{~min}, \sim 1 / 3$ of the reaction mixture was purified by CombiFlash. The material was finally eluted with a solvent mixture of $1: 4 \mathrm{DMSO} / \mathrm{CH}_{3} \mathrm{CN}$. It was observed that this material was yellow which could have indicated folate content. Due to the large amount of DMSO present, this material was not isolated from the solution. The fractions containing unreacted folate- (γ) CO-NH-PEG-NH2 was combined and concentrated to a residue. A ninhydrin test of this residue gave a
negative result, which may imply the lack of amine group at the end of the PEG. This observation can also explain the incomplete conversion of the reaction.

The rest of reaction solution was purified by CombiFlash. Similarly to the previous purification, the suspected yellow product was retained by the column. MeOH containing 0.5% TFA was used to elute the material. The fractions containing the possible product were combined and concentrated to dryness. The ${ }^{1} \mathrm{H}$ NMR analysis of this sample indicated the existence of folate, PEG and lauryl-PLGA and the integration of these segments was close to the desired value of $1: 1: 1$ ratio of all three components. High purities were observed from both HPLC and GPC analyses. The Mn based on GPC was 8.7 kDa . The sample in DMSO was recovered by precipitation into MTBE.

Example 12. Synthesis and purification of docetaxel-2'-hexanoate-5050 PLGA-O-acetyl

A $500-\mathrm{mL}$ round-bottom flask equipped with a magnetic stirrer was charged with 6-(carbobenzyloxyamino) caproic acid ($4.13 \mathrm{~g}, 15.5 \mathrm{mmol}$), docetaxel (12.0 g , $14.8 \mathrm{mmol})$, and dichloromethane $(240 \mathrm{~mL})$. The mixture was stirred for 5 min to afford a clear solution, to which 1-ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride $(E D C \cdot H C l)(3.40 \mathrm{~g}, 17.6 \mathrm{mmol})$ and 4 dimethylaminopyridine (DMAP) ($2.15 \mathrm{~g}, 17.6 \mathrm{mmol})$ were added. The mixture was stirred at ambient temperature for 3 h at which time, IPC analysis showed a 57% conversion along with 34% residual docetaxel. An additional 0.2 equivalents of $\mathrm{EDC} \cdot \mathrm{HCl}$ and DMAP were added and the reaction was stirred for 3 h , at which time IPC analysis showed 63% conversion. An additional 0.1 equivalents of 6-(carbobenzyloxyamino) caproic acid along with 0.2 equivalents of $\mathrm{EDC} \cdot \mathrm{HCl}$ and DMAP were added. The reaction was stirred for 12 h and IPC analysis indicated 74% conversion and 12% residual docetaxel. To further increase the conversion, an additional 0.1 equivalents of 6(carbobenzyloxyamino) caproic acid and 0.2 equivalents of $\mathrm{EDC} \cdot \mathrm{HCl}$ and DMAP were added. The reaction was continued for another 3 h at which time, IPC analysis revealed 82% conversion and the residual docetaxel dropped to 3%. The reaction was
diluted with $\mathrm{DCM}(200 \mathrm{~mL})$ and washed with $0.01 \% \mathrm{HCl}(2 \times 150 \mathrm{~mL})$ and brine (150 $\mathrm{mL})$. The organic layer was separated, dried over sodium sulfate, and filtered. The filtrate was concentrated to a residue and dissolved in ethyl acetate (25 mL). The solution was divided into two portions, each of which was passed through a $120-\mathrm{g}$ silica column (Biotage F40). The flow rate was adjusted to $20 \mathrm{~mL} / \mathrm{min}$ and 2000 mL of 55:45 ethyl acetate/heptanes was consumed for each of the column purifications. The fractions containing minor impurities were combined, concentrated, and passed through a column a third time. The fractions containing product (shown as a single spot by TLC analysis) from all three column purifications were combined, concentrated to a residue, vacuum-dried at ambient temperature for 16 h to afford the product, $\mathrm{H}_{2} \mathrm{~N}$ - $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2$ '-docetaxel as a white powder [10 g , yield: 64%]. The ${ }^{1} \mathrm{H}$ NMR analysis was consistent with the assigned structure of the desired product; however, HPLC analysis (AUC, 227 nm) indicated only a 97% purity along with 3% of bis-adducts. To purify the $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2$-docetaxel product, ethyl acetate $(20 \mathrm{~mL})$ was added to dissolve the batch to produce a clear solution. The solution was divided into two portions, each of which was passed through a $120-\mathrm{g}$ silica column. The fractions containing product were combined, concentrated to a residue, vacuum-dried at ambient temperature for 16 h to afford the desired product (CBZ-$\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2$ '-docetaxel) as a white powder [8.6 g , recovery yield: 86%]. HPLC analysis (AUC, 227 nm) indicated $>99 \%$ purity.

A $1000-\mathrm{mL}$ round-bottom flask equipped with a magnetic stirrer was charged with CBZ-NH- $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2$-docetaxel product [$5.3 \mathrm{~g}, 5.02 \mathrm{mmol}$] and THF (250 $\mathrm{mL})$. To the resultant clear solution, $\mathrm{MeOH}(2.5 \mathrm{~mL})$ and $5 \% \mathrm{Pd} / \mathrm{C}(1.8 \mathrm{~g}, 10 \mathrm{~mol} \%$ of $\mathrm{Pd})$ were added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and methanesulfonic acid ($316 \mu \mathrm{~L}$, 4.79 mmol) was added. The flask was evacuated for 10 seconds and filled with hydrogen using a balloon. After 3 h , IPC analysis indicated 62% conversion. The ice-bath was removed and the reaction was allowed to warm up to ambient temperature. After an additional 3 h , IPC analysis indicated that the reaction was complete. The solution was filtered through a Celite ${ }^{\circledR}$) pad and the filtrate was black in appearance. To remove the possible residual Pd , charcoal (5 g , Aldrich, Darco ${ }^{\circledR}$) was added and the mixture was placed in a fridge overnight and filtered through a

Celite ${ }^{\circledR}$ pad to produce a clear colorless solution. This was concentrated at $<20^{\circ} \mathrm{C}$ under reduced pressure to a volume of $\sim 100 \mathrm{~mL}$, to which methyl tert-butyl ether (MTBE) (100 mL) was added. The resultant solution was added to a solution of cold MTBE (1500 mL) with vigorous stirring over 0.5 h . The suspension was left at ambient temperature for 16 h , the upper clear supernatant was decanted off and the bottom layer was filtered through a $0.45 \mu \mathrm{~m}$ filter membrane. The filter cake was vacuum-dried at ambient temperature for 16 h to afford the desired product $\left(\mathrm{H}_{2} \mathrm{~N}\right.$ $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2$ '-docetaxel) as a white solid [4.2 g, yield: 82%]. HPLC analysis indicated $>99 \%$ purity and the ${ }^{1} \mathrm{H}$ NMR analysis indicated the desired product.

A $100-\mathrm{mL}$ round-bottom flask equipped with a magnetic stirrer was charged with 5050 PLGA-O-acetyl ($5.0 \mathrm{~g}, 0.7 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2^{\prime}$-docetaxel $[0.85 \mathrm{~g}$, 0.84 mmol , GAO-G-28(3)], DCM (5 mL), and DMF (20 mL). The mixture was stirred for 5 min to produce a clear solution. $\mathrm{EDC} \cdot \mathrm{HCl}(0.2 \mathrm{~g}, 1.05 \mathrm{mmol})$ and DMAP ($0.21 \mathrm{~g}, 1.75 \mathrm{mmol}$) were added and the reaction was stirred for 3 h , at which time IPC analysis indicated 79% conversion along with 18% of $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2^{\prime}-$ docetaxel. Two small impurities were observed at 11.6 min and $11.7 \mathrm{~min}(2.8 \%$, AUC, 227 nm). An additional portion of EDC $\cdot \mathrm{HCl}(0.1 \mathrm{~g}, 0.5 \mathrm{mmol})$ and DMAP ($0.15 \mathrm{~g}, 1.2 \mathrm{mmol}$) was added and the reaction was stirred overnight. IPC analysis showed 92% conversion along with 6% of $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2^{\prime}$-docetaxel; the level of the two impurities did not change. To increase the conversion, an additional amount of 5050 PLGA-O-acetyl (0.5 g) along with $\mathrm{EDC} \cdot \mathrm{HCl}(0.1 \mathrm{~g})$ and DMAP (0.15 g) was added and the reaction was stirred at ambient temperature for 3 h . IPC analysis showed a 95.6% conversion along with 3.0% of $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2^{\prime}-$ docetaxel; the two impurities were about 1.3%. The reaction was combined with a previously prepared product and added to a suspension of Celite® (20 g) in MTBE $(600 \mathrm{~mL})$ with mechanical stirring over 30 min . The suspension was stirred at ambient temperature for 0.5 h and filtered. The filter cake was air-dried for 30 min and then vacuum-dried such that the residual MTBE contained no more than $5 \mathrm{wt} \%$. The polymer/Celite ${ }^{\circledR}$ complex was then suspended in acetone (50 mL) and the slurry was stirred for 30 min , filtered through a Celite pad. The filter cake was washed with acetone ($3 \times 30 \mathrm{~mL}$). The combined filtrates were concentrated to $\sim 25 \mathrm{~mL}$ and this
solution was analyzed by HPLC showing that the level of $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2^{\prime}-$ docetaxel or the impurities was identical to these prior to MTBE precipitation. The solution was added to cold water (500 mL) containing 0.05% acetic acid over 30 min . The suspension was stirred at $0^{\circ} \mathrm{C}$ for 1 h and filtered through a PP filter. The filter cake was washed with water ($3 \times 50 \mathrm{~mL}$), conditioned for 30 min , vacuum-dried at ambient temperature for 48 h to produce docetaxel-2'-hexanoate-5050 PLGA-Oacetyl as a white powder [$6.3 \mathrm{~g}, 85 \%$]. The ${ }^{1} \mathrm{H}$ NMR analysis indicated $10.5 \mathrm{wt} \%$ of loading. No DMAP or DMF was observed. GPC analysis indicated a Mw of 8.2 kDa and a Mn of 5.7 kDa . HPLC analysis indicated a purity of 98.6% (AUC, 230 nm) and a 0.75% of $\mathrm{H}_{2} \mathrm{~N}$-($\left.\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-\mathrm{O}-2^{\prime}$-docetaxel. The two impurities totaled $\leq 0.5 \%$ (AUC, 230 nm).

Example 13. Synthesis, purification and characterization of O-acetyl-5050-PLGA-($\boldsymbol{2}^{\prime}$ - β-alanine glycolate)-docetaxel

A 1000 mL round-bottom flask equipped with a magnetic stirrer was charged with carbobenzyloxy- β-alanine (Cbz- β-alanine, $15.0 \mathrm{~g}, 67.3 \mathrm{mmol}$), tert-butyl bromoacetate ($13.1 \mathrm{~g}, 67.3 \mathrm{mmol}$), acetone (300 mL), and potassium carbonate (14 g , $100 \mathrm{mmol})$. The mixture was heated to reflux at $60^{\circ} \mathrm{C}$ for 16 h , cooled to ambient temperature and then the solid was removed by filtration. The filtrate was concentrated to a residue, dissolved in ethyl acetate (EtOAc, 300 mL), and washed with 100 mL of water (three times) and 100 mL of brine. The organic layer was separated, dried over sodium sulfate and filtered. The filtrate was concentrated to clear oil [22.2 g, yield: 99\%]. HPLC analysis showed 97.4% purity (AUC, 227 nm) and ${ }^{1} \mathrm{H}$ NMR analysis confirmed the desired intermediate product, t-butyl (carbobenzyloxy- β-alanine) glycolate.

To prepare the intermediate product, carbobenzyloxy- β-alanine glycolic acid (Cbz- β-alanine glycolic acid), a 100 mL round-bottom flask equipped with a magnetic stirrer was charged with t-butyl (Cbz- β-alanine) glycolate $[7.5 \mathrm{~g}, 22.2 \mathrm{mmol}$] and formic acid ($15 \mathrm{~mL}, 2 \mathrm{vol}$). The mixture was stirred at ambient temperature for 3 h to give a red-wine color and HPLC analysis showed 63% conversion. The reaction was
continued stirring for an additional 2 h , at which point HPLC analysis indicated 80% conversion. An additional portion of formic acid ($20 \mathrm{~mL}, 5 \mathrm{vol}$ in total) was added and the reaction was stirred overnight, at which time HPLC analysis showed that the reaction was complete. The reaction was concentrated under vacuum to a residue and redissolved in ethyl acetate ($7.5 \mathrm{~mL}, 1$ vol.). The solution was added to the solvent heptanes ($150 \mathrm{~mL}, 20 \mathrm{vol}$.) and this resulted in the slow formation of the product in the form of a white suspension. The mixture was filtered and the filter cake was vacuum-dried at ambient temperature for 24 h to afford the desired product, $\mathrm{Cbz}-\beta$ alanine glycolic acid as a white powder [5.0 g , yield: 80%]. HPLC analysis showed 98% purity. The ${ }^{1} \mathrm{H}$ NMR analysis in DMSO-d6 was consistent with the assigned structure of Cbz- β-alanine glycolic acid [$\delta 10.16$ (s, 1H), 7.32 (bs, 5 H), 5.57 (bs, 1 H), $5.14(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~m}, 2 \mathrm{H})$].

To prepare the intermediate, docetaxel-2'-carbobenzyloxy- β-alanine glycolate (docetaxel-2'-Cbz- β-alanine glycolate), a $250-\mathrm{mL}$ round-bottom flask equipped with a magnetic stirrer was charged with docetaxel ($5.03 \mathrm{~g}, 6.25 \mathrm{mmol}$), Cbz- β-alanine glycolic acid [$1.35 \mathrm{~g}, 4.80 \mathrm{mmol}]$ and dichloromethane ($\mathrm{DCM}, 100 \mathrm{~mL}$). The mixture was stirred for 5 min to produce a clear solution, to which N -(3-Dimethylaminopropyl)- ${ }^{\prime}$ '-ethylcarbodiimide hydrochloride (EDC•HCl, $1.00 \mathrm{~g}, 5.23$ mmol) and 4-(dimethylamino)pyridine (DMAP, $0.63 \mathrm{~g}, 5.23 \mathrm{mmol}$) were added. The mixture was stirred at ambient temperature for 3 h , at which point HPLC analysis showed 48% conversion along with 46% of residual docetaxel. A second portion of Cbz- β-alanine glycolic acid ($0.68 \mathrm{~g}, 2.39 \mathrm{mmol}$), $\mathrm{EDC} \cdot \mathrm{HCl}(0.50 \mathrm{~g}, 1.04 \mathrm{mmol})$ and DMAP ($0.13 \mathrm{~g}, 1.06 \mathrm{mmol}$) were added and the reaction was allowed to stirred overnight. At this point, HPLC analysis showed 69% conversion along with 12% of residual docetaxel. The solution was diluted to 200 mL with DCM and then washed with 80 mL of water (twice) and 80 mL of brine. The organic layer was separated, dried over sodium sulfate, and then filtered. The filtrate was concentrated to a residue, re-dissolved in 10 mL of chloroform, and purified using a silica gel column. The fractions containing product (shown as a single spot by TLC analysis) were combined, concentrated to a residue, vacuum-dried at ambient temperature for 16 h to produce docetaxel-2'-Cbz- β-alanine glycolate as a white powder [3.5 g, yield: 52%].

HPLC analysis (AUC, 227 nm) indicated $>99.5 \%$ purity. The ${ }^{1} \mathrm{H}$ NMR analysis confirmed the corresponding peaks.

To prepare the intermediate, docetaxel-2'- β-alanine glycolate, a 250 mL round-bottom flask equipped with a magnetic stirrer was charged with docetaxel-2'-$\mathrm{Cbz}-\beta$-alanine glycolate $[3.1 \mathrm{~g}, 2.9 \mathrm{mmol}]$ and tetrahydrofuran (THF, 100 mL). To the clear solution methanol ($\mathrm{MeOH}, 4 \mathrm{~mL}$), methanesulfonic acid ($172 \mu \mathrm{~L}, 2.6 \mathrm{mmol}$), and 5% palladium on activated carbon $(\mathrm{Pd} / \mathrm{C}, 1.06 \mathrm{~g}, 10 \mathrm{~mol} \%$ of Pd$)$ were added. The mixture was evacuated for 15 seconds and filled with hydrogen using a balloon. After 3 h , HPLC analysis indicated that the reaction was complete. Charcoal (3 g , Aldrich, Darco®\#175) was then added and the mixture was stirred for 15 min and filtered through a Celite ${ }^{\circledR}$ pad to produce a clear colorless solution. It was concentrated under reduced pressure at $<20^{\circ} \mathrm{C}$ to $\sim 5 \mathrm{~mL}$, to which 100 mL of heptanes was added slowly resulting in the formation of a white gummy solid. The supernatant was decanted and the gummy solid was vacuum-dried for 0.5 h to produce a white solid. A volume of 100 mL of heptanes were added and the mixture was triturated for 10 min and filtered. The filter cake was vacuum-dried at ambient temperature for 16 h to produce docetaxel- $2^{\prime}-\beta$-alanine glycolate as a white powder [2.5 g, yield: 83%]. The HPLC analysis indicated $>99 \%$ purity (AUC, 230 nm). MS analysis revealed the correct molecular mass ($\mathrm{m} / \mathrm{z}: ~ 936.5$).

A 100 mL round bottom equipped with a magnetic stirrer was charged with O -acetyl-5050-PLGA [5.0 g, 0.7 mmol], docetaxel-2'- β-alanine glycolate [0.80 g, 0.78 mmol , dichloromethane ($\mathrm{DCM}, 5 \mathrm{~mL}$) and dimethylformamide ($\mathrm{DMF}, 20 \mathrm{~mL}$). The mixture was stirred for 5 min to produce a clear solution. $\mathrm{EDC} \cdot \mathrm{HCl}(0.22 \mathrm{~g}, 1.15$ $\mathrm{mmol})$ and DMAP $(0.22 \mathrm{~g}, 1.80 \mathrm{mmol})$ were added to the mixture and the reaction was stirred for $3 h$, at which time HPLC analysis indicated completion of the reaction. The reaction was concentrated under vacuum to remove DCM and then DCM was twice exchanged with 10 mL of acetone. The residue was diluted with acetone to 30 mL and precipitated in cold water containing 600 mL of 0.1% acetic acid. The resulting suspension was filtered and the filter cake was vacuum-dried for 24 h to afford a crude product as a white powder [yield $=5.0 \mathrm{~g}$]. The H NMR analysis indicated the presence of trace amounts of DMF and DMAP. The docetaxel loading 1005052.1
was estimated to be approximately $10 \mathrm{wt} \%$ and HPLC analysis indicated $>99 \%$ purity (AUC, 230 nm). To purify the crude product, it was dissolved in 20 mL of acetone and precipitated in 500 mL of cold water. The suspension was filtered through a polypropylene (PP) filter and the filter cake was vacuum-dried for 48 h to produce O-acetyl-5050-PLGA-(2'- β-alanine glycolate)-docetaxel as a white powder [4.8 g, yield: 84%]. GPC analysis showed that $\mathrm{Mw}=7.4 \mathrm{kDa}, \mathrm{Mn}=5.0 \mathrm{kDa}$ and PDI $=1.48 .{ }^{1} \mathrm{H}$ NMR analysis indicated a docetaxel loading of $10.7 \mathrm{wt} \%$ and HPLC analysis showed $>99 \%$ purity (AUC, 230 nm).

Synthetic scheme of O-acetyl-5050-PLGA-(2'- β-alanine glycolate)-docetaxel

Example 14. Synthesis of lauryl-polylactide (PLA)-O-CO-O-docetaxel

To prepare lauryl-PLA-O-CO-O-docetaxel, PLA-lauryl ester (inherent viscosity: $1-2 \mathrm{dL} / \mathrm{g}$) was first purified. A mass of 25 g of PLA lauryl ester was dissolved in a $1: 1 \mathrm{MTBE} / \mathrm{heptanes}$ mixture (100 vol.) with mechanical stirring at ambient temperature. The entire solution was concentrated to dryness and further dried under vacuum at ambient temperature to afford a white powder (18 g). The ${ }^{1} \mathrm{H}$ NMR analysis indicated 1.44 equivalents of lauryl segment. GPC analysis indicated a Mn and Mw of 8.5 kDa and 10.7 kDa respectively.

A $250-\mathrm{mL}$ round-bottom flask was charged with purified PLA-lauryl ester ($10.0 \mathrm{~g}, 1.18 \mathrm{mmol}]$ and anhydrous DCM (50 mL) under nitrogen. The mixture was stirred for 10 min to afford a clear solution. p-Nitrophenyl chloroformate $(0.5 \mathrm{~g}, 2.4$ mmol) was added to the solution and the mixture was stirred for an additional 10 min . A solution of TEA (0.5 mL) was then added dropwise and the reaction was stirred at ambient temperature for 6 h . An additional one equivalent of p-nitrophenyl chloroformate $(0.25 \mathrm{~g}, 1.2 \mathrm{mmol})$ and TEA $(0.25 \mathrm{~mL})$ were added and the reaction was stirred for 12 h . IPC analysis (${ }^{1} \mathrm{H}$ NMR) indicated completion of the reaction. The solution was concentrated to a residue and dissolved in acetone (20 mL), resulting in a cloudy mixture. This mixture was filtered to remove $\mathrm{TEA} \cdot \mathrm{HCl}$ and the filtrate was precipitated into a solution of $2: 1$ MTBE/heptanes (1000 mL). The resulting gummy solid was dissolved in acetone (20 mL) and concentrated to a residue, which was dried under vacuum at ambient temperature for 24 h to afford 5.6 g of p-NO NO_{2}-phenyl-COO-PLA- CO_{2}-lauryl [yield: $\sim 50 \%$]. The ${ }^{1} \mathrm{H}$ NMR analysis confirmed the desired product and GPC analysis showed a Mn and Mw of 9.3 and 11.1 kDa respectively.

A $100-\mathrm{mL}$ round-bottom flask was charged with $\mathrm{p}-\mathrm{NO}_{2}$-phenyl-COO-PLA-$\mathrm{CO}_{2}$-lauryl [$2.5 \mathrm{~g}, 0.28 \mathrm{mmol}$], docetaxel ($0.20 \mathrm{~g}, 0.25 \mathrm{mmol}$) and 1:1 DCM/EtOAc (15 mL). The entire mixture was stirred for 10 min . A catalyst, dialkylaminopyridine (DMAP, $61 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to the mixture and allowed to stir at ambient temperature under N_{2} for 6 h . The reaction was stirred for another 10 h to reach completion as confirmed by IPC analysis (${ }^{1} \mathrm{H}$ NMR). The
reaction was then filtered through a $0.45 \mu \mathrm{M}$ PTFE membrane and the filtrate was added dropwise into $2: 1 \mathrm{MTBE} /$ heptanes $(600 \mathrm{~mL})$ with vigorous agitation, resulting in a suspension. The milky supernatant was decanted off and the gummy solid was dissolved in acetone (15 mL). The solution was then added dropwise into an ice-cold solution of 0.1% sodium bicarbonate $(300 \mathrm{~mL})$ with agitation. The resulting suspension was filtered and the solid was dried under vacuum at ambient temperature for 24 h to afford 1.34 g of lauryl- PLA-O-CO-O-docetaxel [yield: 51%]. The ${ }^{1} \mathrm{H}$ NMR analysis indicated $9.3 \mathrm{wt} \%$ of docetaxel loading. GPC analysis showed a Mn and Mw of 12.4 and 14.3 kDa respectively.

Example 15. Synthesis of PLGA-PEG-PLGA

The triblock copolymer PLGA-PEG-PLGA will be synthesized using a method developed by Zentner et al., Journal of Controlled Release, 72, 2001, 203215. The molecular weight of PLGA obtained using this method would be $\sim 3 \mathrm{kDa}$. A similar method reported by Chen et al., International Journal of Pharmaceutics, 288, 2005, 207-218 will be used to synthesize PLGA molecular weights ranging from 1-7 kDa . The LA/GA ratio would typically be, but not limited to a ratio of $1: 1$. The minimum PEG molecular weight would be 2 kDa with an upper limit of 30 kDa . The preferred range of PEG would be $3-12 \mathrm{kDa}$. The PLGA molecular weight would be a minimum value of 4 kDa and a maximum of 30 kDa . The preferred range of PLGA would be $7-20 \mathrm{kDa}$. Any drug (e.g. docetaxel, paclitaxel, doxorubicin, etc.) could be conjugated to the PLGA through an appropriate linker (i.e. as listed in the previous examples) to form a polymer-drug conjugate. In addition, the same drug or a different drug could be attached to the other PLGA to form a dual drug polymer conjugate with two same drugs or two different drugs. Nanoparticles could be formed from either the PLGA-PEG-PLGA alone or from a single drug or dual polymer conjugate composed of this triblock copolymer.

Example 16. Synthesis of polycaprolactone-poly(ethylene glycol)polycaprolactone (PCL-PEG-PCL)

The triblock PCL-PEG-PCL will be synthesized using a ring open polymerization method in the presence of a catalyst (i.e. stannous octoate) as reported in Hu et al., Journal of Controlled Release, 118, 2007, 7-17. The molecular weights of PCL obtained from this synthesis range from 2 to 22 kDa . A non-catalyst method shown in the article by Ge et al. Journal of Pharmaceutical Sciences, 91, 2002, 14631473 will also be used to synthesize PCL-PEG-PCL. The molecular weights of PCL that could be obtained from this particular synthesis range from 9 to 48 kDa . Similarly, another catalyst free method developed by Cerrai et al., Polymer, 30, 1989, 338-343 will be used to synthesize the triblock copolymer with molecular weights of PCL ranging from $1-9 \mathrm{kDa}$. The minimum PEG molecular weight would be 2 kDa with an upper limit of 30 kDa . The preferred range of PEG would be $3-12 \mathrm{kDa}$. The PCL molecular weight would be a minimum value of 4 kDa and a maximum of 30 kDa . The preferred range of PCL would be $7-20 \mathrm{kDa}$. Any drug (e.g. docetaxel, paclitaxel, doxorubicin, etc.) could be conjugated to the PCL through an appropriate linker (i.e. as listed in the previous examples) to form a polymer-drug conjugate. In addition, the same drug or a different drug could be attached to the other PCL to form a dual drug polymer conjugate with two same drugs or two different drugs. Nanoparticles could be formed from either the PCL-PEG-PCL alone or from a single drug or dual polymer conjugate composed of this triblock copolymer.

Example 17. Synthesis of polylactide- poly(ethylene glycol)-polylactide (PLA-PEG-PLA)

The triblock PLA-PEG-PLA copolymer will be synthesized using a ring opening polymerization using a catalyst (i.e. stannous octoate) reported in Chen et al., Polymers for Advanced Technologies, 14, 2003, 245-253. The molecular weights of PLA that can be formed range from 6 to 46 kDa . A lower molecular weight range (i.e. $1-8 \mathrm{kDa}$) could be achieved by using the method shown by Zhu et al., Journal of Applied Polymer Science, 39, 1990, 1-9. The minimum PEG molecular weight would be 2 kDa with an upper limit of 30 kDa . The preferred range of PEG would be 3-12 kDa . The PCL molecular weight would be a minimum value of 4 kDa and a maximum of 30 kDa . The preferred range of PCL would be $7-20 \mathrm{kDa}$. Any drug
(e.g. docetaxel, paclitaxel, doxorubicin, etc.) could be conjugated to the PLA through an appropriate linker (i.e. as listed in the previous examples) to form a polymer-drug conjugate. In addition, the same drug or a different drug could be attached to the other PLA to form a dual drug polymer conjugate with two same drugs or two different drugs. Nanoparticles could be formed from either the PLA-PEG-PLA alone or from a single drug or dual polymer conjugate composed of this triblock copolymer.

Example 18. Synthesis of p-dioxanone-co-lactide-poly(ethylene glycol)-p-dioxanone-co-lactide (PDO-PEG-PDO)

The triblock PDO-PEG-PDO will be synthesized in the presence of a catalyst (stannous 2-ethylhexanoate) using a method developed by Bhattari et al., Polymer International, 52, 2003, 6-14. The molecular weight of PDO obtained from this method ranges from 2-19 kDa. The minimum PEG molecular weight would be 2 kDa with an upper limit of 30 kDa . The preferred range of PEG would be $3-12 \mathrm{kDa}$. The PDO molecular weight would be a minimum value of 4 kDa and a maximum of 30 kDa . The preferred range of PDO would be $7-20 \mathrm{kDa}$. Any drug (e.g. docetaxel, paclitaxel, doxorubicin, etc.) could be conjugated to the PDO through an appropriate linker (i.e. as listed in the previous examples) to form a polymer-drug conjugate. In addition, the same drug or a different drug could be attached to the other PDO to form a dual drug polymer conjugate with two same drugs or two different drugs. Nanoparticles could be formed from either the PDO-PEG-PDO alone or from a single drug or dual polymer conjugate composed of this triblock copolymer.

Example 19. Formulation of Docetaxel-PLGA particles via nanoprecipitation using PVA as surfactant

Docetaxel-5050 PLGA-O-acetyl ($700 \mathrm{mg}, 70 \mathrm{wt} \%$ or $600 \mathrm{mg}, 60 \mathrm{wt} \%$,) and mPEG-PLGA ($300 \mathrm{mg}, 30 \mathrm{wt} \%$ or $400 \mathrm{mg}, 40 \mathrm{wt} \%$, Mw 12.9 kDa) were dissolved to form a total concentration of 1.0% polymer in acetone. In a separate solution, 0.5% w/v PVA (80% hydrolyzed, Mw $9-10 \mathrm{kDa}$) in water was prepared. The polymer acetone solution was added using a syringe pump at a rate of $1 \mathrm{~mL} / \mathrm{min}$ to the aqueous solution $(\mathrm{v} / \mathrm{v}$ ratio of organic to aqueous phase $=1: 10)$, with stirring at 500 rpm .

Acetone was removed by stirring the solution for 2-3 hours. The nanoparticles were then washed with 10 volumes of water and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50 \mathrm{~cm}^{2}$). The solution was then passed through a $0.22 \mu \mathrm{~m}$ filter, and adjusted to a final concentration of 10% sucrose. The nanoparticles could be lyophilized into powder form. The nanoparticles contain about half the initial amount of mPEG-PLGA, and 15-30\% PVA.

Particle properties, evaluated by using the resulting plurality of particles made in the method above: (prior to passing through $0.22 \mu \mathrm{~m}$ filter):

	Docetaxel-5050 PLGA-O- acetyl/ mPEG-PLGA Starting amt:(70/30 wt\%)	Docetaxel-5050 PLGA-O- acetyl/ mPEG-PLGA Starting amt:(60/40 wt\%)
Z-average (nm)	93	84
Particle PDI	0.09	0.06
Dv50 (nm)	76	71
Dv90 (nm)	124	109

Example 20. Formulation of PEGylated docetaxel-5050 PLGA-O-acetyl

 nanoparticles via Nanoprecipitation using polysorbate 80 as the surfactantDocetaxel-5050 PLGA-O-acetyl ($672 \mathrm{mg}, 84 \mathrm{wt} \%$) and mPEG-PLGA (128 $\mathrm{mg}, 16 \mathrm{wt} \%$, Mw 12.9 kDa ,) were dissolved to form a total concentration of 2.0% polymer in acetone. In a separate solution, $0.5 \% \mathrm{w} / \mathrm{v}$ polysorbate 80 in water was prepared. The polymer acetone solution was added using a syringe pump at a rate of $1 \mathrm{~mL} / \mathrm{min}$ to the aqueous solution (v / v ratio of organic to aqueous phase $=1: 10$), with stirring at 500 rpm . Acetone was removed by stirring the solution for $2-3$ hours. The nanoparticles were then washed with 10 volumes of $0.5 \% \mathrm{w} / \mathrm{v}$ polysorbate 80 and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50 \mathrm{~cm}^{2}$). The solution was then passed through a $0.22 \mu \mathrm{~m}$ Nylon filter, and adjusted to a final concentration of 10% sucrose. The nanoparticles could
be lyophilized into powder form. The nanoparticles contain about half the initial amount of mPEG-PLGA, and 5-15\% surfactant.

Particle properties, evaluated by using the resulting plurality of particles made in the method above:

$$
\begin{aligned}
& \text { Zavg }=107 \mathrm{~nm} \\
& \text { Particle PDI }=0.112 \\
& \text { Dv50 }=89 \mathrm{~nm} \\
& \text { Dv90 }=150 \mathrm{~nm}
\end{aligned}
$$

Example 21. Formulation of PEGylated Docetaxel-5050 PLGA-O-acetyl nanoparticles via Nanoprecipitation using Solutol® HS 15 as the surfactant

Docetaxel-5050 PLGA-O-acetyl ($672 \mathrm{mg}, 84 \mathrm{wt} \%$) and mPEG-PLGA (128 $\mathrm{mg}, 16 \mathrm{wt} \%$, Mw 12.9 kDa ,) were dissolved to form a total concentration of 2.0% polymer in acetone. In a separate solution, $0.5 \% \mathrm{w} / \mathrm{v}$ Solutol ${ }^{\circledR} \mathrm{HS} 15$ in water was prepared. The polymer acetone solution was added using a syringe pump at a rate of $1 \mathrm{~mL} / \mathrm{min}$ to the aqueous solution (v / v ratio of organic to aqueous phase $=1: 10$), with stirring at 500 rpm . Acetone was removed by stirring the solution for $2-3$ hours. The nanoparticles were then washed with 10 volumes of $0.5 \% \mathrm{w} / \mathrm{v}$ Solutol® HS 15 and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50 \mathrm{~cm}^{2}$). The solution was then passed through a $0.22 \mu \mathrm{~m}$ Nylon filter, and adjusted to a final concentration of 10% sucrose. The nanoparticles could be lyophilized into powder form. The nanoparticles contain about half the initial amount of mPEG-PLGA, and 5-15\% surfactant.

Particle properties, evaluated by using the resulting plurality of particles made in the method above:

$$
\mathrm{Zavg}=106 \mathrm{~nm}
$$

Particle PDI $=0.093$

$$
\operatorname{Dv} 50=91 \mathrm{~nm}
$$

$$
\text { Dv90 }=147 \mathrm{~nm}
$$

Example 22. Formulation of PEGylated Docetaxel-5050 PLGA-O-acetyl/ Doxorubicin 5050 PLGA amide nanoparticles via Nanoprecipitation using PVA as the surfactant

Docetaxel-5050 PLGA-O-acetyl ($400 \mathrm{mg}, 59 \mathrm{wt} \%$), doxorubicin 5050 PLGA amide ($200 \mathrm{mg}, 8.9 \mathrm{wt} \%$) and mPEG-PLGA ($40 \mathrm{mg}, 6.25 \mathrm{wt} \%$, Mwt. 8232 Da) were dissolved to form a total concentration of 1.0% polymer in acetone. In a separate solution, $0.5 \% \mathrm{w} / \mathrm{v}$ PVA (viscosity $2.5-3.5 \mathrm{cp}$) in water was prepared. The polymer acetone solution was added using a syringe pump at a rate of $1 \mathrm{~mL} / \mathrm{min}$ to the aqueous solution (v / v ratio of organic to aqueous phase $=1: 10$), with stirring at 500 rpm. Acetone was removed by stirring the solution for 2-3 hours. The nanoparticles were then washed with 10 volumes of water and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50 \mathrm{~cm}^{2}$). The nanoparticle solution was adjusted to a final concentration of 10% sucrose. The nanoparticles could be lyophilized into powder form.

Particle properties, evaluated by using the resulting plurality of particles made in the method above:

$$
\begin{aligned}
& \text { Zavg }=146.6 \mathrm{~nm} \\
& \text { Particle PDI }=0.146 \\
& \text { Dv50 }=137 \mathrm{~nm} \\
& \text { Dv90 }=211 \mathrm{~nm}
\end{aligned}
$$

Example 23. Synthesis and Formulation of Rhodamine labeled PEGylated Docetaxel-5050 PLGA-O-acetyl via nanoprecipitation using PVA as the surfactant

Para-nitrophenyl protected PEG-PLGA 5050-lauryl ester (150 mg, 1.36×10^{-5} moles) was added to rhodamine B ethylene diamine ($8 \mathrm{mg}, 1.36 \times 10^{-5}$ moles) in N, N dimethylformamide (DMF) in the presence of triethylamine ($4 \mathrm{uL}, 2.72 \times 10^{-5}$ moles). The reaction mixture was stirred at room temperature overnight. DMF was removed from the reaction mixture under vacuum. Purification of the product was obtained
through 3 times precipitation of the crude product dissolved in dichloromethane in methyl tert-butyl ether. The product was then dried under vacuum overnight.

Docetaxel-5050 PLGA-O-acetyl ($120 \mathrm{mg}, 59 \mathrm{wt} \%$), mPEG-PLGA (18 mg, 8.9 $\mathrm{wt} \%$, Mw 12.9 kDa), Rhodamine B-labeled-PEG-PLGA-lauryl ester ($4 \mathrm{mg}, 1.9 \mathrm{wt} \%$) and purified PLGA ($60 \mathrm{mg}, 30 \mathrm{wt} \%$) were dissolved to form a total concentration of 1.0% polymer in acetone. In a separate solution, $0.5 \% \mathrm{w} / \mathrm{v}$ PVA (viscosity $2.5-3.5 \mathrm{cp}$) in water was prepared. The polymer acetone solution was added using a syringe pump at a rate of $1 \mathrm{~mL} / \mathrm{min}$ to the aqueous solution (v / v ratio of organic to aqueous phase $=1: 10$), with stirring at 500 rpm . Acetone was removed by stirring the solution for 2-3 hours. The nanoparticles were then washed with 10 volumes of water and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50 \mathrm{~cm}^{2}$). The nanoparticle solution was adjusted to a final concentration of 10% sucrose. The nanoparticles could be lyophilized into powder form.

Example 24. Formulation of Docetaxel-5050 PLGA-O-acetyl nanoparticles via Micro-Mixer using PVA as the surfactant

5050 purified PLGA ($211 \mathrm{mg}, 32 \mu \mathrm{~mol}$), docetaxel-5050 PLGA-O-acetyl (633 $\mathrm{mg}, 71 \mu \mathrm{~mol}$) and mPEG-PLGA (Mw $8.3 \mathrm{kDa}, 5 \mathrm{wt} \%$ total polymer) were combined at a total concentration of 1.0% polymer in acetone.

A separate solution of 0.5% polyvinylalcohol (80% hydrolyzed, Mw 9-10 kDa) in water was prepared. The organic and aqueous solutions were then blended
using a Caterpillar MicroMixer (CPMM-v1.2-R300), using flow rates of $5 \mathrm{~mL} / \mathrm{min}$ and $15 \mathrm{~mL} / \mathrm{min}$ respectively.

The acetone was removed from the resulting nanoparticle dispersion by rotary evaporation. The aqueous nanoparticle dispersion was washed with 10 volumes of water using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=$ $50 \mathrm{~cm}^{2}$). The dispersion was then concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50 \mathrm{~cm}^{2}$) . The solution was then passed through a $0.22 \mu \mathrm{~m}$ filter, and adjusted to a final concentration of 10% sucrose. The solution was then lyophilized to provide the particles. The nanoparticles contain half the initial amount of mPEG-PLGA, and 15-30\% PVA.

Particle properties:

$$
\begin{aligned}
& \text { Zavg }=133.9 \mathrm{~nm} \\
& \text { Particle PDI }=0.199 \\
& \text { Dv50 }=110 \mathrm{~nm} \\
& \text { Dv90 }=237 \mathrm{~nm}
\end{aligned}
$$

Example 25. Formulation of Doxorubicin 5050 PLGA amide nanoparticles via emulsion using PVA as the surfactant

Doxorubicin 5050 PLGA amide ($100 \mathrm{mg}, 100 \mathrm{wt} \%$) was dissolved to form a total concentration of 1.0% polymer in dichloromethane. In a separate solution, 0.5% w/v PVA (viscosity $2.5-3.5 \mathrm{cp}$) in water was prepared. The dissolved polymer solution in dichloromethane was mixed with the aqueous PVA solution and emulsified through a microfluidizer processor for three cycles at a pressure of 8500 psi. Dichloromethane was removed by stirring the solution for 12 hours. The nanoparticles were then washed with 10 volumes of water and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50$ cm^{2}). The nanoparticle solution was adjusted to a final concentration of 10% sucrose. The nanoparticles could be lyophilized into powder form and were prepared for purposes of comparison.

Particle properties:

$$
\begin{aligned}
& \text { Zavg }=91.19 \mathrm{~nm} \\
& \text { Particle PDI }=0.135 \\
& \text { Dv50 }=70.5 \mathrm{~nm} \\
& \text { Dv90 }=120 \mathrm{~nm}
\end{aligned}
$$

Example 26. Formulation of Embedded Docetaxel/Paclitaxel in Docetaxel-5050

PLGA-O-acetyl nanoparticles via emulsion using PVA as the surfactant

Docetaxel-5050 PLGA-O-acetyl ($90 \mathrm{wt} \%$), mPEG-PLGA ($10 \mathrm{wt} \%$) and either docetaxel or paclitaxel (30 mg) were dissolved in dichloromethane (DCM, 14 mL). A separate solution of 0.5% polyvinylalcohol (PVA, 80% hydrolyzed, $\mathrm{Mw} 9-10 \mathrm{kDa}$) in water was prepared. The dissolved polymer-drug solution was transferred with a syringe into a beaker containing the 0.5% PVA ($96 \mathrm{~mL}, \mathrm{v} / \mathrm{v}$ ratio of organic to aqueous phase $=\sim 1: 7$) and sonicated using a micro-tip horn (tip diameter $=1 / 2$ inch) for 5 minutes to form an emulsion. The emulsion is then transferred to a microfluidizer processor and passed through seven times with processing pressures ranging from $13,000-16,100 \mathrm{psi}$.

The DCM was removed from the resulting nanoparticle dispersion by rotary evaporation. The aqueous nanoparticle dispersion was washed with $10-20$ times volumes of water and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50 \mathrm{~cm}^{2}$). The solution was passed through a $0.22 \mu \mathrm{~m}$ filter, and for lyoprotection, 10% sucrose was added. The nanoparticles were lyophilized to form a white powder.

Particle properties:

	Docetaxel	Paclitaxel
Zavg (nm)	94	102
Particle PDI	0.107	0.103
Dv50 (nm)	75	82
Dv90 (nm)	128	142

Embedded drug (\% w/w)	1.9	4.5
Conjugate docetaxel (\% w/w)	4.0	4.1

Example 27. Formulation of docetaxel-2'-hexanoate-5050 PLGA-O-acetyl nanoparticles

One could prepare nanoparticles by combining docetaxel-2'-hexanoate-5050 PLGA-O-acetyl and mPEG-PLGA at a weight ratio ranging from 84-60/16-40 wt \% with a total concentration of 1% polymer in acetone. In a separate solution, $0.5 \% \mathrm{w} / \mathrm{v}$ PVA (viscosity $2.5-3.5 \mathrm{cp}$) in water could be prepared. The polymer acetone solution could be added using a syringe pump at a rate of $1 \mathrm{~mL} / \mathrm{min}$ to the aqueous solution $(\mathrm{v} / \mathrm{v}$ ratio of organic to aqueous phase $=1: 10)$, with stirring at 500 rpm . Acetone could be removed by stirring the solution for 2-3 hours. The nanoparticles could be then washed with 10 volumes of water and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50 \mathrm{~cm}^{2}$). For lyoprotection, standard lyoprotectants could be used (e.g. sucrose) and the nanoparticles could be lyophilized into powder form.

Example 28. Formulation of PEGylated O-acetyl-5050-PLGA-($\mathbf{2}$ '- β-alanine glycolate)-docetaxel nanoparticles

O-acetyl-5050-PLGA-(2'- β-alanine glycolate)-docetaxel ($600 \mathrm{mg}, 60 \mathrm{wt} \%$) and mPEG-PLGA ($400 \mathrm{mg}, 40 \mathrm{wt} \%$) were dissolved to form a total concentration of 1.0% polymer in acetone. In a separate solution, $0.5 \% \mathrm{w} / \mathrm{v}$ PVA (viscosity $2.5-3.5 \mathrm{cp}$) in water was prepared. The organic and aqueous solutions were then mixed together using a nanoprecipitation method at an organic to aqueous ratio of 1:10. Acetone was removed from the resulting nanoparticle dispersion by passive evaporation. The nanoparticles were then washed with 12 volumes of water and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50$ cm^{2}). The nanoparticle solution was adjusted to a final concentration of 10%
sucrose. The nanoparticles could be lyophilized into powder form. The nanoparticles contain half the initial amount of mPEG-PLGA, and 15-30\% PVA.

Particle properties:
Zavg $=74.3 \mathrm{~nm}$
Particle PDI $=0.097$
Dv50 $=57.5 \mathrm{~nm}$
Dv90 $=94.4 \mathrm{~nm}$

Example 29. Formulation of PEGylated bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles

Bis(docetaxel) glutamate-5050 PLGA-O-acetyl ($600 \mathrm{mg}, 60 \mathrm{wt} \%$) and mPEGPLGA ($400 \mathrm{mg}, 40 \mathrm{wt} \%$) were dissolved to form a total concentration of 1.0% polymer in acetone. In a separate solution, $0.5 \% \mathrm{w} / \mathrm{v}$ PVA (viscosity $2.5-3.5 \mathrm{cp}$) in water was prepared. The organic and aqueous solutions were then mixed together using a nanoprecipitation method at an organic to aqueous ratio of 1:10. Acetone was removed from the resulting nanoparticle dispersion by passive evaporation. The nanoparticles were then washed with 12 volumes of water and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50$ cm^{2}). The nanoparticle solution was adjusted to a final concentration of 10% sucrose. The nanoparticles could be lyophilized into powder form. The nanoparticles contain half the initial amount of mPEG-PLGA, and 15-30\% PVA.

Particle properties:
Zavg $=68.6 \mathrm{~nm}$
Particle PDI $=0.082$
Dv50 $=55.9 \mathrm{~nm}$
Dv90 $=87.2 \mathrm{~nm}$

Example 30. Formulation of PEGylated O-acetyl-5050-PLGA-(2'- β-alanine glycolate)-docetaxel/ docetaxel-2'5050 PLGA-o-acetyl nanoparticles

O-acetyl-5050-PLGA-(2'- β-alanine glycolate)-docetaxel, docetaxel-5050 PLGA-o-acetyl and mPEG-PLGA could be combined at a weight ratio of 84-60/16$40 \mathrm{wt} \%$ (polymer drug conjugates/mPEG-PLGA) with a total concentration of 1% polymer in acetone. In a separate solution, $0.5 \% \mathrm{w} / \mathrm{v}$ PVA (viscosity $2.5-3.5 \mathrm{cp}$) in water could be prepared. The polymer drug conjugates could vary from a ratio of 10:1 to $1: 10$. The organic and aqueous solutions could then be mixed together using a nanoprecipitation method at an organic to aqueous ratio of 1:10. The acetone could be removed from the resulting nanoparticle dispersion by passive evaporation. The nanoparticles could be washed with 15 volumes of water and concentrated using a tangential flow filtration system (300 kDa MW cutoff, membrane area $=50$ cm^{2}). The nanoparticle solution could be adjusted to a final concentration of 10% sucrose. The nanoparticles could be lyophilized into powder form. This particular nanoparticle configuration could allow for different release rates of docetaxel.

Example 31. Preparation of Docetaxel-PLGA Nanoparticles samples for Imaging using Cryo Scanning Electron Microscopy (Cryo-SEM)

Lyophilized samples of docetaxel-PLGA nanoparticles containing PVA were reconstituted and fixed in 0.5% osmium tetroxide $\left(\mathrm{OsO}_{4}\right)$ in water for $c a .15 \mathrm{~min}$ prior to centrifugation and washing with water. Sample droplets were placed into a rivet holder, which was fast frozen in liquid nitrogen slush (ca. $-210^{\circ} \mathrm{C}$) A vacuum was pulled and the sample was transferred to a Gatan Alto 2500-pre chamber (cooled to ca. $-160^{\circ} \mathrm{C}$). The sample was fractured, sublimated at $-90^{\circ} \mathrm{C}$ for $7-10$ minutes and coated with platinum using a sputter coating for 120 sec . Finally the samples were transferred to the microscope cryostage which is maintained at $-130^{\circ} \mathrm{C}$. The samples were imaged with an FEI NOVA nanoSEM field emission scanning electron microscope operating at an accelerating velocity of 5 kV .

The cryo-SEM images showed that the docetaxel-PLGA nanoparticles containing PVA were spherical and no apparent surface structure was evident. The particle sizes ranged from $50-75 \mathrm{~nm}$.

Example 32. Preparation of Docetaxel-PLGA Nanoparticles samples for Imaging using Transmission Electron Microscopy (TEM)

Carbon coated formvar grids (400 mesh) were glow-discharged prior to use. A droplet sample of docetaxel-PLGA nanoparticles containing PVA was added to the carbon grids and allowed to sit for $c a .2 \mathrm{~min}$. The grids were then quickly touched to droplets for 2% uranyl acetate. The excess stain was removed with filter paper and allowed to dry. The samples were imaged with a Phillips CM-100 transmission electron microscope operating at an accelerating velocity of 80 kV .

The TEM images showed that the docetaxel-PLGA nanoparticles containing PVA were spherical and relatively uniform in size. The particle size from the TEM micrograph were typically less than 150 nm .

Example 33. Synthesis, Purification and Characterization of Doxorubicin

 TosylateIn a $250-\mathrm{mL}$ round-bottom flask equipped with a magnetic bar and a thermocouple, doxorubicin $\cdot \mathrm{HCl}$ (NetQem, $1.43 \mathrm{~g}, 2.46 \mathrm{mmol}$) was suspended in anhydrous THF ($143 \mathrm{~mL}, 100 \mathrm{vol}$). The mixture was evacuated for 15 seconds while being stirred and filled up with nitrogen (1 atm). 1 M potassium tert-butoxide (KOtBu$) / \mathrm{THF}$ solution $(2.7 \mathrm{~mL}, 2.70 \mathrm{mmol})$ was added dropwise with stirring within 10 min . The solution turned a purple color and a slight exotherm was observed. The reaction temperature rose from $19^{\circ} \mathrm{C}$ to $21.7^{\circ} \mathrm{C}$ within 15 min and then slightly climbed up to a maximum of $22.4^{\circ} \mathrm{C}$ in half hour. The mixture was stirred for another hour at $22.4^{\circ} \mathrm{C}$ and then p-Toluenesulfonic acid (p-TSA, $0.70 \mathrm{~g}, 3.96 \mathrm{mmol}$) was added in one portion. The solution immediately turned a red color along with the precipitation of fine particles. The mixture was stirred for an additional half hour at ambient temperature and then cooled to $5^{\circ} \mathrm{C}$ and stirred for 1 h . The resulting red suspension was filtered under nitrogen. The filter cake was washed with THF (3×10
mL) and dried under vacuum at $25^{\circ} \mathrm{C}$ for 16 h to produce doxorubicin tosylate [1.73 $\mathrm{g}, 97 \%$ yield)]. HPLC analysis indicated a 97% purity (AUC, 480 nm).

To remove the excess p-TSA, the product was slurried in 5:1 MTBE/MeOH (60 mL) at ambient temperature for 3 h . The filtered solid was dried under vacuum at $25^{\circ} \mathrm{C}$ for 16 h to afford 1.32 g of product. HPLC analysis indicated 99% purity (AUC, 480 nm); however, the ${ }^{1}$ H NMR analysis showed that the equivalents of p-TSA were still ~1.2. DSC analysis of doxorubicin tosylate showed a sharp peak with a melting range of $188.5-196.5^{\circ} \mathrm{C}$.

Example 34. Synthesis and Characterization of Doxorubicin Octanesulfonate

In a 250 mL round-bottom flask equipped with a magnetic stirrer, 1octanesulfonic acid sodium salt monohydrate ($0.44 \mathrm{~g}, 1.86 \mathrm{mmol}$) was dissolved in water $(50 \mathrm{~mL})$. The mixture was stirred for 10 min to afford a clear solution, to which doxorubicin $\bullet \mathrm{HCl}(1.08 \mathrm{~g}, 1.86 \mathrm{mmol})$ was added in one portion. The solution became a dark red color after being stirred for a few minutes. After about 30 min , an orange powder formed. The mixture was stirred at ambient temperature for 2 h . The suspension was stored in fridge for 16 h and filtered through a Sharkskin ${ }^{\circledR}$ filter paper. The filtrate had a slightly red color and contained trace amounts of doxorubicin as evidenced by HPLC analysis. The presence of chloride in the filtrate was confirmed by the silver nitrate test. The filter cake was dried under vacuum at $28^{\circ} \mathrm{C}$ for 16 h to afford doxorubicin octanesulfonate [1.16 g , yield: 85%] as an orange powder. The ${ }^{1} \mathrm{H}$ NMR analysis indicated the desired product and HPLC analysis indicated $>99.5 \%$ purity. DSC analysis of doxorubicin octanesulfonate showed a sharp peak with a melting range of $198.7-202.0^{\circ} \mathrm{C}$.

Example 35. Synthesis, Purification and Characterization of Doxorubicin Naphthalene-2-Sulfonate

A $250-\mathrm{mL}$ round-bottom flask equipped with a magnetic bar and a thermocouple was charged with doxorubicin $\cdot \mathrm{HCl}$ (NetQem, $1.47 \mathrm{~g}, 2.53 \mathrm{mmol}$) and anhydrous THF ($150 \mathrm{~mL}, 100 \mathrm{vol}$). The suspension was evacuated for 15 seconds with stirring and filled up with nitrogen (1 atm). $1 \mathrm{M}(\mathrm{KOtBu}) / \mathrm{THF}$ solution (2.7 mL , 1005052.1
2.70 mmol) was added dropwise with stirring over 10 min . The mixture turned a purple color and a slight exotherm was observed, causing the reaction temperature to rise from $20.2{ }^{\circ} \mathrm{C}$ to $21.4^{\circ} \mathrm{C}$ within 15 min . The solution was stirred at $21.1^{\circ} \mathrm{C}$ for one hour and 2-naphthalenesulfonic acid $(0.63 \mathrm{~g}, 3.04 \mathrm{mmol})$ was added in one portion. The mixture immediately turned to a red color and the precipitation of fine particles was observed. The solution was stirred for an hour at ambient temperature and then filtered under nitrogen. The filtration was slow and took about 1 h . The filter cake was washed with THF $(3 \times 10 \mathrm{~mL})$ and dried under vacuum at $25^{\circ} \mathrm{C}$ for 16 h to afford 2.1 g of doxorubicin naphthalene-2-sulfonate as a dark red solid [yield: $>100 \%$]. HPLC analysis indicated a 98% purity (AUC, 480 nm). The ${ }^{1} \mathrm{H}$ NMR analysis showed that the ratio of 2-naphthalenesulfonic acid to doxorubicin was ~1.08.

To remove residual 2-naphthalenesulfonic acid, the doxorubicin naphthalene-2-sulfonate was slurried in 5:1 MTBE/MeOH (60 mL) for 3 h . The suspension was filtered and the filter cake was dried under vacuum at $25^{\circ} \mathrm{C}$ for 24 h to afford 1.90 g of the product as a fine red powder [yield: 100%]. The H NMR analysis indicated a clean product with a $1: 1$ ratio of doxorubicin to 2 -naphthalenesulfonic acid. HPLC analysis showed $>98 \%$ purity (AUC, 480 nm). The physical appearance of the product was similar to doxorubicin $\bullet \mathrm{HCl}$. DSC analysis of doxorubicin naphthalene-2sulfonate showed a sharp peak with a melting range of $203.1-207.4^{\circ} \mathrm{C}$.

Example 36. Cytotoxicity of nanoparticles formed from polymer drug conjugates

To measure the cytotoxic effect of nanoparticles formed from doxorubicin 5050 PLGA amide, paclitaxel-5050 PLGA-O-acetyl, docetaxel-5050 PLGA-O-acetyl or bis(docetaxel) glutamate-5050 PLGA-O-acetyl, the CellTiter-Glo® Luminescent Cell Viability Assay (CTG) (Promega) was used. Briefly, ATP and oxygen in viable cells reduce luciferin to oxyluciferin in the presence of luciferase to produce energy in the form of light. B16.F10 cells, grown to $85-90 \%$ confluency in $150 \mathrm{~cm}^{2}$ flasks (passage <30), were resuspended in media (MEM-alpha, $10 \% \mathrm{HI}-\mathrm{FBS}, 1 \mathrm{X}$ antibiotic-
antimycotic) and added to 96-well opaque-clear bottom plates at a concentration of 1500 cells/well in $200 \mu \mathrm{~L} /$ well. The cells were incubated at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ for 24 hours. The following day, serial dilutions of 2 X concentrated particles and 2 X concentrated free drug were made in 12-well reservoirs with media to specified concentrations. The media in the plates was replaced with $100 \mu \mathrm{~L}$ of fresh media and $100 \mu \mathrm{~L}$ of the corresponding serially diluted drug. Three sets of plates were prepared with duplicate treatments. Following 24, 48 and 72 hours of incubation at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$, the media in the plates was replaced with $100 \mu \mathrm{~L}$ of fresh media and $100 \mu \mathrm{~L}$ of CTG solution, and then incubated for 5 minutes on a plate shaker at room temperature set to 450 rpm and allowed to rest for 15 minutes. Viable cells were measured by luminescence using a microtiter plate reader. The data was plotted as $\%$ viability vs. concentration and standardized to untreated cells. The doxorubicin 5050 PLGA amide, paclitaxel-5050 PLGA-O-acetyl, docetaxel-5050 PLGA-O-acetyl and bis(docetaxel) glutamate-5050 PLGA-O-acetyl polymer drug conjugates inhibited the growth of B16.F10 cells in a dose and time dependent manner. Also, in comparison to the corresponding free drug, the polymer drug conjugates exhibited a slower release profile.
IC_{50} on Day 3:

Group	IC_{50}				
$(\mu \mathrm{M})$		$	$	Free doxorubicin	2.9
:---:	:---:				
Doxorubicin 5050 PLGA amide nanoparticles	7				
Free paclitaxel	480				
Paclitaxel-5050 PLGA-O-acetyl nanoparticles	0.13				
Free docetaxel	20				
Docetaxel-5050 PLGA-O-acetyl nanoparticles	25				
bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles					

Example 37. Bioburden test for contamination of nanoparticles formed from polymer drug conjugate

To measure the formulation sterility for PEGylated docetaxel-5050 PLGA-Oacetyl nanoparticles, the spot colony forming units per gram (CFU) assay, a modified plate count method, was used. A positive control was prepared by inoculating 10 mL of trypticase soy broth (TSB) with an isolated colony from an in house bacterial stock and grown at $37^{\circ} \mathrm{C}$ in a shaking incubator at 350 rpm for 24 hours. A subculture (1:100) was then prepared and grown at $37^{\circ} \mathrm{C}$ in a shaking incubator (350 rpm for 3 hours). The bacteria were then pelleted, washed with PBS and resuspended with fresh TSB. A 0.5 McFarland standard bacterial solution (equal to $1.5 \times 10^{6} \mathrm{CFU} / \mathrm{mL}$ based on turbidity measurement) was then prepared. An aliquot of $100 \mu \mathrm{~L}$ was sampled from each of the following solutions: a ca. $1.5 \mathrm{mg} / \mathrm{ml}$ nanoparticle solution ($4-5 \mathrm{~mL}$ batch size), a positive control and TSB, as well as a negative control. These were each mixed with $400 \mu \mathrm{~L}$ of TSB in a 1.5 mL microcentrifuge tube and cultured in a shaking incubator at $37^{\circ} \mathrm{C}$ (450 rpm for 3 days). On days 0 and $3,50 \mu \mathrm{~L}$ of each sample were removed from the sample mix and serially diluted at a ratio of $1: 10$ with TSB in a 96 -well plate. The diluted samples ($6 \mu \mathrm{~L}$) were spotted onto pre-dried trypticase soy agar (TSA) plates using a multichannel pipet. The spots were allowed to dry and the plates were incubated at $37^{\circ} \mathrm{C}$ for 24 hours. After 24 hours, the isolated colonies were counted and the CFU/mL calculated. To detect very low concentrations of contaminants, $200 \mu \mathrm{~L}$ of each sample mix were spread onto agar plates on day 3 and incubated at $37^{\circ} \mathrm{C}$ for 24 hours. The tests were carried out over an open flame.

Colony forming units per gram

Description	$\mathbf{T}_{\mathbf{0}}$ Spot CFU CFU/mL	\mathbf{T}_{72} Spot CFU CFU/mL	\mathbf{T}_{72} Plate CFU CFU/mL
PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles, Filtered with $0.22 \mu \mathrm{~m}$	0	0	0
Steriflip	0	0	0
PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles, Filtered with $0.45 \mu \mathrm{~m}$ Steriflip		0	0

Positive control, 1.5×10^{6} CFU/mL standardized stock solution in TSB	6.67×10^{5}	3.80×10^{11}	Lawn
Negative control, TSB	0	0	0

Example 38. In vivo efficacy of PEGylated Doxorubicin 5050 PLGA amide nanoparticles in a B16.F10 mouse model of melanoma

B16.F10 cells were grown in culture to $85-90 \%$ confluency in MEM- α medium supplemented with 10% FBS and 1% penicillin/streptomycin (passage $=4$) and then resuspended in PBS. B16.F10 cells (density $=5 \times 10^{6}$ cells $/ \mathrm{mL}$) were implanted subcutaneously (SC) into the right flank of male C57BL/6 mice (20-22 g on day 1 .

The five treatment groups that were administered to the mice were: 1) 0.9% NaCl solution; 2) Doxil (liposomal formulation of doxorubicin HCl containing $2 \mathrm{mg} / \mathrm{mL}$ doxorubicin HCl , Ortho Biotech) at $1 \mathrm{mg} / \mathrm{kg}$ dose; 3) three PEGylated doxorubicin 5050 PLGA amide nanoparticles with 1,2 and $3 \mathrm{mg} / \mathrm{kg}$ doxorubicin equivalent doses.

The treatments were administered IV into the tail vein of the mouse at a dose volume of $6 \mathrm{~mL} / \mathrm{kg}$, beginning on day 5 post-implantation, when the mean tumor volume was $50 \mathrm{~mm}^{3}$. The treatments were administered on days 5,8 , and 12 (biweekly $\times 3$ injections) post tumor implantation. Health status of the animals was monitored and the tumor was measured three times a week. On day-17 post-tumor implantation, mice were euthanized by CO_{2} inhalation according to the IUCAC procedure guideline. Tumor from each animal was dissected and tumor volume as well as tumor growth inhibition (TGI) was measured. Tumor volume was calculated using the formula: (width \times width \times length) $/ 2 \mathrm{~mm}^{3}$. TGI represented as $\%$ was calculated using the formula: ($1-($ treated tumor volume/control tumor volume $)$) \times 100.

Tumor growth inhibition (TGI)

The treatment groups of Doxil and all the PEGylated doxorubicin 5050 PLGA amide nanoparticles showed inhibition of tumor growth on day-17. A dose-dependent tumor growth inhibition was seen with PEGylated doxorubicin 5050 PLGA amide nanoparticles; 37% TGI at $1 \mathrm{mg} / \mathrm{kg}, 48 \%$ TGI at $2 \mathrm{mg} / \mathrm{kg}$ and 57% TGI at $3 \mathrm{mg} / \mathrm{kg}$. Doxil at $1 \mathrm{mg} / \mathrm{kg}$ exhibited 60% TGI on day 17 .

Tumor growth inhibition $(\mathrm{n}=4)$

Group	Dose $\mathrm{mg} / \mathrm{kg}$	Day-17 TGI, \%
$0.9 \% \mathrm{NaCl}$ control	---	---
Doxil	1	60%
PEGylated doxorubicin 5050 PLGA amide nanoparticles	1	37%
PEGylated doxorubicin 5050 PLGA amide nanoparticles	2	48%
PEGylated doxorubicin 5050 PLGA amide nanoparticles	3	58%

Example 39. In vivo efficacy of PEGylated paclitaxel-5050 PLGA-O-acetyl nanoparticles in a B16.F10 mouse model of melanoma

B16.F10 cells were grown in culture to $85-90 \%$ confluency in MEM- α medium supplemented with $10 \% \mathrm{FBS}$ and 1% penicillin/streptomycin (passage $=4$) and then resuspended in PBS. B16.F10 cells (density $=5 \times 10^{6}$ cells $/ \mathrm{mL}$) were implanted subcutaneously (SC) into the right flank of male C57BL/6 mice (20-22 g on day 1.

The four treatment groups that were administered to the mice were: 1) 0.9% NaCl solution; 2) Abraxane ${ }^{\circledR}$ (Abraxis) at $1.5,6$ and $15 \mathrm{mg} / \mathrm{kg}$ dose; 3) free paclitaxel at doses of $1.5,6$ and $15 \mathrm{mg} / \mathrm{kg}$ and 4) PEGylated paclitaxel-5050 PLGA-O-acetyl nanoparticles at doses of $1.5,3,6,9$, and $15 \mathrm{mg} / \mathrm{kg}$ paclitaxel equivalent.

The treatments were administered IV into the tail vein at a dose volume of $6 \mathrm{~mL} / \mathrm{kg}$, beginning on day-5 post-implantation, when the mean tumor volume was $55 \mathrm{~mm}^{3}$. The treatments were administered on days 5,8 , and 12 (biweekly $\times 3$
injections) post tumor implantation. Health status of the animals was monitored and tumor size was measured three times a week. On day17, post-tumor implantation, mice were euthanized by CO_{2} inhalation according to the IUCAC procedure guideline. Tumors from each animal were dissected and tumor size was measured. Tumor volume was calculated using the formula: (width \times width \times length) $/ 2 \mathrm{~mm}^{3}$. TGI represented as \% was calculated using the formula: ($1-$ (treated tumor volume/control tumor volume)) $\times 100$.

Tumor growth inhibition

Abraxane ${ }^{\circledR}$, free paclitaxel and all PEGylated paclitaxel-5050 PLGA-O-acetyl nanoparticles groups showed inhibition of tumor growth on day 17. A dosedependent TGI was seen with the free paclitaxel treated groups; 37\% TGI at $1.5 \mathrm{mg} / \mathrm{kg}, 57 \% \%$ TGI at $6 \mathrm{mg} / \mathrm{kg}$ and 83% TGI at $15 \mathrm{mg} / \mathrm{kg}$ doses. Abraxane ${ }^{\circledR}$ showed a 36% TGI at $1.5 \mathrm{mg} / \mathrm{kg}, 13 \% \%$ TGI at $6 \mathrm{mg} / \mathrm{kg}$ and 70% TGI at $15 \mathrm{mg} / \mathrm{kg}$ doses. At the lowest dose of $1.5 \mathrm{mg} / \mathrm{kg}$, PEGylated paclitaxel-5050 PLGA-O-acetyl nanoparticles exhibited a 42% TGI, which is similar to free paclitaxel and Abraxane® ${ }^{\circledR}$ treated groups at the same dose. However, PEGylated paclitaxel-5050 PLGA-O-acetyl nanoparticles showed a 42% TGI at $1.5 \mathrm{mg} / \mathrm{kg}, 40 \%$ TGI at $3 \mathrm{mg} / \mathrm{kg}, 46 \%$ TGI at $6 \mathrm{mg} / \mathrm{kg}, 61 \%$ TGI at $9 \mathrm{mg} / \mathrm{kg}$ and 58% TGI at $15 \mathrm{mg} / \mathrm{kg}$ doses.

Tumor growth inhibition ($\mathrm{n}=4$)

Group	Dose $\mathrm{mg} / \mathrm{kg}$	Day-17 TGI, $\%$
$0.9 \% \mathrm{NaCl}$ control	---	---
Abraxane ${ }^{\circledR}$	1.5	36%
Abraxane ${ }^{\circledR}$	6	13%
Abraxane ${ }^{\circledR}$	15	70%
Free paclitaxel	1.5	37%
Free paclitaxel	6	57%
Free paclitaxel	15	83%

PEGylated paclitaxel-5050 PLGA-O-acetyl nanoparticles	1.5	42%
PEGylated paclitaxel-5050 PLGA-O-acetyl nanoparticles	3	40%
PEGylated paclitaxel-5050 PLGA-O-acetyl nanoparticles	6	46%
PEGylated paclitaxel-5050 PLGA-O-acetyl nanoparticles	9	61%
PEGylated paclitaxel-5050 PLGA-O-acetyl nanoparticles	15	58%

Example 40. Tolerability and in vivo efficacy of PEGylated docetaxel-5050

 PLGA-O-acetyl nanoparticles in a B16.F10 mouse model of melanomaB16F10 cells were grown in culture to 85% confluency in MEM- α medium containing 10% FBS and 1% penicillin/streptomycin (passage $=4$) and then resuspended in PBS. B1610 cells (density $=10 \times 10^{6}$ cells) were implanted subcutaneously (SC) into the right flank of male C57BL/6 mice on Day 1. On Day 5 following tumor inoculations, animals were assigned to different treatment groups according to the tumor size.

The three treatment groups that were administered to the mice included: 1) a docetaxel vehicle formulation consisting of a $10 \mathrm{mg} / \mathrm{mL}$ stock solution (prepared with 20 mg of docetaxel, 0.2 mL ethanol, 0.5 mL polysorbate 80 and 1.3 mL water, added in that specific order and vortexed to ensure proper mixing). The stock solution was diluted further with PBS to 0.6 and $1.5 \mathrm{mg} / \mathrm{mL}$ (for a corresponding dose of 6 and 15 $\mathrm{mg} / \mathrm{kg}$) so that all the groups received the same amount of ethanol, polysorbate 80 , water and PBS. 2) PEGylated ($10 \mathrm{~mol} \%$) docetaxel-5050 PLGA-O-acetyl nanoparticles at doses of 6,15 and $30 \mathrm{mg} / \mathrm{kg}$). 3) Docetaxel vehicle.

Animals were treated with different concentrations of docetaxel and PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles as per the schedule (on Days 5, 8 and 12 following inoculation). The schedule consisted of 3 injections biweekly. The animals were monitored three times a week for health status and adverse effects from tumor cell inoculation to the end of the study. The body weight and tumor volume were also measured three times a week to evaluate the effect of the treatment.

Tumor growth inhibition

On Day 17, the PEGylated ($10 \mathrm{~mol} \%$) docetaxel-5050 PLGA-O-acetyl nanoparticles showed dose-dependent TGI. At 6,15 and $30 \mathrm{mg} / \mathrm{kg}$, the TGI was 53%, 88% and 93% after biweekly $\times 3$ injections.

Example 41. Tolerability and maximum tolerated dose of PEGylated bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles in a B16.F10 mouse model of melanoma

B16F10 cells were grown in culture to confluency in MEM- α medium containing $10 \% \mathrm{FBS}$ and 1% penicillin/streptomycin (passage $=4$) and then resuspended in PBS. B1610 cells (density $=1 \times 10^{6}$ cells $/ \mathrm{mL}$ in a 0.1 mL volume) were subcutaneously (SC) implanted into the right flank of male C57BL/6 mice on Day 1.

The five treatment groups that were administered to the mice included: 1) a docetaxel vehicle formulation consisting of a $10 \mathrm{mg} / \mathrm{mL}$ stock solution (prepared with 20 mg of docetaxel, 0.2 mL ethanol, 0.5 mL polysorbate 80 and 1.3 mL water, added in that specific order and vortexed to ensure proper mixing). The stock solution was diluted further with PBS to $0.6,1.5,3,4.5$ and $6 \mathrm{mg} / \mathrm{mL}$ (for a corresponding dose of $6,15,30,45$ and $60 \mathrm{mg} / \mathrm{kg}$) so that all the groups received the same amount of ethanol, polysorbate 80, water and PBS. 2) PEGylated bis(docetaxel) glutamate5050 PLGA-O-acetyl nanoparticles at doses of $6,15,30,45$ and $60 \mathrm{mg} / \mathrm{kg}$. 3) Docetaxel vehicle at the highest concentration of $6 \mathrm{mg} / \mathrm{mL}$ consisting of 6% ethanol/ 15% polysorbate $80 / 39 \%$ water and 40% PBS. 4) Sucrose vehicle ($100 \mathrm{mg} / \mathrm{kg}$). 5) PEGylated O-acetyl-5050-PLGA nanoparticle vehicle at the highest concentration of $6 \mathrm{mg} / \mathrm{mL}$.

The treatments were administered IV into the tail vein at a dose volume of 10 $\mathrm{mL} / \mathrm{kg}$, beginning on post-implantation Day 5 , when the mean tumor volume was 55 mm^{3}. The treatments were administered 4 times, on Days 5, 8, 12 and 15 (biweekly \times

4 injections). On Day 17 post-tumor implantation, mice were euthanized by CO_{2} inhalation according to the procedure guideline. Blood was collected by cardiac puncture and put into ethylenediaminetetraacetic acid (EDTA) or serum separation blood collection tubes. Whole blood was analyzed on the day of collection for CBC analyses. After the blood clotted and was centrifuged, serum was frozen immediately on dry ice for serum chemistry analyses. The tumors were removed by dissection, frozen immediately on dry ice and stored at $-80^{\circ} \mathrm{C}$, in which they were later analyzed for bis(docetaxel) glutamate- 5050 PLGA-O-acetyl and free docetaxel levels.

Tolerability was determined by changes in body weight, expressed as a percent of the initial body weight on post-implantation Day 5. The criterion at which a group was removed from the study was a mean of 20% body weight loss. Health monitoring was conducted daily, but no mice warranted removal due to indications of lethargy, tremors, hypothermia, etc. The maximum tolerated dose (MTD) was determined as the highest dose that did not cause a 20% body weight loss. Other indices of toxicity, complete blood count (CBC) and serum chemistry were determined from blood collected from animals that were euthanized on Day 17 by CO_{2} inhalation, according to the procedure guideline.

Body weight changes
The groups administered $6,15,30$ and $45 \mathrm{mg} / \mathrm{kg}$ of PEGylated bis(docetaxel)
glutamate-5050 PLGA-O-acetyl nanoparticles all gained weight on Day 17, a mean of $111 \%, 112 \%, 106 \%$ and $106 \%, 112 \%$ of the initial body weight was observed respectively. For the $60 \mathrm{mg} / \mathrm{kg}$, at Day 17 , a mean of 91% of the initial body weight was observed. In comparison, the three vehicle-treated groups all gained weight similarly, i.e. the docetaxel vehicle treatment gained 14.8%, the sucrose vehicle gained 13.8% and the PEGylated O-acetyl-5050-PLGA vehicle gained 16.2%. In contrast, there was a dose-related decline in body weights of mice administered docetaxel, i.e., the higher doses (e.g. 45 and $60 \mathrm{mg} / \mathrm{kg}$) caused a mean 20% of body weight loss earlier (Day 15) compared to the lower doses (e.g. $30 \mathrm{mg} / \mathrm{kg}$ occurred at Day 17). The 6 and $15 \mathrm{mg} / \mathrm{kg}$ of docetaxel groups caused a mean of 4 and 8% body weight respectively by Day 17 .

Tumor growth and tumor growth inhibition
On Day 17, all PEGylated bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles groups showed inhibition of tumor growth. The lower 2 doses, 6 and 15 $\mathrm{mg} / \mathrm{kg}$ caused similar inhibition of tumor growth, 49% and $48 \% \mathrm{TGI}$, respectively. For 30,45 and $60 \mathrm{mg} / \mathrm{kg}$, a $73 \%, 83 \%$ and 93% TGI was shown. The TGI was directly related to the tumor docetaxel content, $r>0.9$. In comparison, for the docetaxel control, at 6 and $15 \mathrm{mg} / \mathrm{kg}$, a 78% and 94% TGI, respectively was observed. In contrast, there was no effect by any vehicle on tumor growth, compared to the other vehicle-treated groups.

Complete blood count
PEGylated bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles showed a trend for a decline in the white blood cell (WBC) number, lymphocyte number and neutrophil number. However, there was no significant effect on either the WBC number (ranged from $10.8-6.2 \times 1000$ cells $/ \mu \mathrm{L}$ for $6-60 \mathrm{mg} / \mathrm{kg}$ doses), lymphocyte number (ranged from $6221-4317$ cells $/ \mu \mathrm{L}$ for $6-60 \mathrm{mg} / \mathrm{kg}$ doses) or neutrophil number (ranged from $4404-1889$ cells $/ \mu \mathrm{L}$ for $6-60 \mathrm{mg} / \mathrm{kg}$ doses). In addition, other CBC parameters were not affected by PEGylated bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles at doses up to $60 \mathrm{mg} / \mathrm{kg}$. In comparison, for the 3 vehicle treated groups (sucrose, docetaxel, O-acetyl-5050PLGA PEGylated nanoparticle), the WBC (ranged from $11.4-14.1 \times 1000$ cells $/ \mu \mathrm{L}$), lymphocyte number (7592-10222 cells/ $\mu \mathrm{L}$) and neutrophil number (3524-4557 cells $/ \mu \mathrm{L}$) all were within the normal range for mice.

Serum chemistry

The PEGylated bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles did not affect any serum chemistry parameter at doses up to $15 \mathrm{mg} / \mathrm{kg}$ and $60 \mathrm{mg} / \mathrm{kg}$ respectively. In comparison, docetaxel did not affect any serum chemistry parameter at doses up to $30 \mathrm{mg} / \mathrm{kg}$. The vehicle formulations did not affect any serum chemistry
parameter. (Serum chemistry parameters determined were alkaline phosphatase, ALT, AST, CPK, albumin, total protein, total bilirubin, direct bilirubin, BUN, creatinine, cholesterol, glucose, calcium, bicarbonate and A / G ratio.)

Maximum tolerated dose
The maximum tolerated dose (MTD) of PEGylated bis(docetaxel) glutamate5050 PLGA-O-acetyl nanoparticles was $60 \mathrm{mg} / \mathrm{kg}$ at the 4 -dose treatment schedule administered, 4-fold greater than free docetaxel (MTD $=15 \mathrm{mg} / \mathrm{kg}$ when administered IV biweekly for 2 weeks).

Tumor growth inhibition of B 16 F 10 tumor-bearing mice administered treatments.

Group	Dose $\mathbf{m g / k g}$	Day 17 Tumor Growth Inhibition, \%
Sucrose Vehicle control	0	----
PNP Vehicle	0	107%
Free docetaxel	6	78%
Free docetaxel	15	96%
Free docetaxel	30	95%
bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles	6	49%
bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles	15	48%
bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles	30	73%
bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles	45	83%
bis(docetaxel) glutamate-5050 PLGA-O-acetyl nanoparticles	60	93%

Example 42. In vivo efficacy of PEGylated docetaxel-5050 PLGA-O-acetyl

 nanoparticles in a A2780 ovarian human xenograft modelA2780 cells were grown in culture in RPMI-1640 containing $10 \% \mathrm{FBS}$ and 1% penicillin/streptomycin (passage $=2$). When confluent, the cells were removed using 0.05% trypsin and suspended in $1: 1$ mixture of RPMI-1640/Matrigel at a
density of 50×10^{6} cells $/ \mathrm{mL}$. The tumors were implanted SC by injecting 5×10^{6} A2780 cells in a 0.1 mL volume into the mammary fat pad of female CD-1 nude mice that were 6-8 weeks old.

The three treatment groups that were administered to the mice consisted of: 1) a docetaxel vehicle formulation consisting of a $10 \mathrm{mg} / \mathrm{mL}$ stock solution (prepared with 20 mg of docetaxel, 0.2 mL ethanol, 0.5 mL polysorbate 80 and 1.3 mL water, added in that specific order and vortexed to ensure proper mixing). The stock solution was diluted further with PBS to $1.5 \mathrm{mg} / \mathrm{mL}$ (for a dose of $15 \mathrm{mg} / \mathrm{kg}$ at $10 \mathrm{~mL} / \mathrm{kg}$ and $30 \mathrm{mg} / \mathrm{kg}$ at $20 \mathrm{~mL} / \mathrm{kg}$). This formulation was made within 30 minutes of administration to mice. 2) Filtered PEGylated O-acetyl-5050-PLGA nanoparticles at a dose of $30 \mathrm{mg} / \mathrm{kg}, 3$) docetaxel vehicle at the highest concentration of $1.5 \mathrm{mg} / \mathrm{mL}$ consisting of 1.5% ethanol, 3.8% polysorbate $80,9.8 \%$ water and 85% PBS.

The treatments were administered IV into the tail vein at a dose volume of 10 $\mathrm{mL} / \mathrm{kg}$ for the $15 \mathrm{mg} / \mathrm{kg}$ group and $20 \mathrm{~mL} / \mathrm{kg}$ for the other groups, beginning on postimplantation Day 8 , when the mean tumor volume was $128 \mathrm{~mm}^{3}$. The treatments were administered 2 times, on Day 8 and Day 15 (weekly $\times 2$ injections) for $n=8$ mice per group. The study endpoint for the vehicle-treated and the docetaxel 15 $\mathrm{mg} / \mathrm{kg}$ groups was a group mean tumor size of $1000 \mathrm{~mm}^{3}$. The study endpoint for the docetaxel $30 \mathrm{mg} / \mathrm{kg}$ and the nanoparticles groups was an individual mouse tumor size of $1000 \mathrm{~mm}^{3}$. On Day 50, the study was ended for all remaining mice. When removed from the study, mice were euthanized by CO_{2} inhalation.

Body weight changes

On Day 8, the PEGylated O-acetyl-5050-PLGA nanoparticles (dose $=30$ $\mathrm{mg} / \mathrm{kg}$) treatment group had a mean body weight of $27.6 \pm 1.0 \mathrm{~g}$. On Day 29 , this group had a mean body weight of $26.1 \pm 1.1 \mathrm{~g}$, representing a maximum body weight loss of $5 \pm 3 \%$. On the last day in the study (i.e. Day 50), the mean body weight was $27.2 \pm 1.7 \mathrm{~g}$. The mice were regaining weight, to $97 \pm 3 \%$ of this group's initial body weight. The formulation administered as a treatment to the mice was shown to be sterile using a bioburden assay.

The initial mean body weight of the docetaxel vehicle treated group was 26.3 $\pm 1.9 \mathrm{~g}$ on Day 8 . When this group was removed from the study on Day 25 , the mean body weight was $27.8 \pm 2.3 \mathrm{~g}$. This represented a $106 \pm 2 \%$ of the initial mean body weight. In comparison for the mice administered with docetaxel, on Day 8 , the mean body weight of the docetaxel administered $15 \mathrm{mg} / \mathrm{kg}$ group was $27.3 \pm 2.3 \mathrm{~g}$. On Day 22 , this group decreased in body weight to $25.3 \pm 1.7 \mathrm{~g}$, representing a maximum of 7% body weight loss. On Day 36, when the docetaxel administered $15 \mathrm{mg} / \mathrm{kg}$ group was removed from the study, the mean body weight was $30.7 \pm 2.5 \mathrm{~g}$, representing a $113 \pm 11 \%$ of the initial body weight. Similarly, on Day 8 , the mean body weight of the docetaxel administered $30 \mathrm{mg} / \mathrm{kg}$ group was $26.3 \pm 1.3 \mathrm{~g}$. On Day 22 , the mean body weight decreased to $23.7 \pm 1.9 \mathrm{~g}$, representing a maximum of 10% body weight loss. On Day 36 , this group weighed $30.7 \pm 2.5 \mathrm{~g}$, representing a $105 \pm 9 \%$ of the initial body weight. Overall, there was a dose-related decline in body weights of mice administered with docetaxel.

Tumor growth inhibition and tumor growth delay (TGD)
Tumor growth delay (TGD) is calculated by the difference between the day when the treatment group tumor size reached the maximum tumor volume of $3000 \mathrm{~mm}^{3}$ and the day when the vehicle treated group reached a tumor volume of $3000 \mathrm{~mm}^{3}$.

For the PEGylated O-acetyl-5050-PLGA nanoparticles administered at a dose of $30 \mathrm{mg} / \mathrm{kg}$, on Day 25 , the tumor volume was $110 \pm 135 \mathrm{~mm}^{3}$ (range $30-408 \mathrm{~mm}^{3}$), with a TGI of 91%. The group mean tumor volume did not reach the endpoint during the duration of the study. One individual mouse reached $1000 \mathrm{~mm}^{3}$ on Day 29 , however 6 mice remained in the study on Day 50. The TGD could not be calculated, but is estimated to be greater than 25 days.

For the docetaxel treatment group, on Day 25 , the tumor volume of the 15 $\mathrm{mg} / \mathrm{kg}$ group was $349 \pm 470 \mathrm{~mm}^{3}$ (range $68-1481 \mathrm{~mm}^{3}$), with a TGI of 71%. This group surpassed the endpoint on Day 32 with a tumor volume of $1477 \pm 1730 \mathrm{~mm}^{3}$ (range 165-5692 mm^{3}). No difference in the slope of the growth curve was apparent. The TGD was determined to be 5 days for the docetaxel treatment group ($15 \mathrm{mg} / \mathrm{kg}$)
by extrapolating to when the tumor growth curve crossed $1000 \mathrm{~mm}^{3}$. On Day 25 , the tumor volume of the $30 \mathrm{mg} / \mathrm{kg}$ group was $63 \pm 68 \mathrm{~mm}^{3}$ (range $7-218 \mathrm{~mm}^{3}$), with a TGI of 95%. This group reached the endpoint on Day 39 with a tumor volume of 950 $\pm 1239\left(0-3803 \mathrm{~mm}^{3}\right)$. Individual mice reached $1000 \mathrm{~mm}^{3}$ on Day 32 (1 mouse), Day 39 (1 mouse), Day 42 (3 mice) and Day 46 (1 mouse). On Day 50, 2 mice still remained in the study. No difference in the slope of the growth curve was apparent. The TGD was calculated to be 14 days. There was a dose-related inhibition of tumor growth of mice administered with the docetaxel treatment groups.

In contrast, on Day 25 , the mean tumor volume was $1000 \mathrm{~mm}^{3}$ for the docetaxel vehicle treatment group and the tumor doubling time was 4 days. There was no effect by the docetaxel vehicle on tumor growth, compared to the other treatment groups. The PEGylated O-acetyl-5050-PLGA nanoparticles administered at a dose of $30 \mathrm{mg} / \mathrm{kg}$ showed improved efficacy and a greater TGD, compared to docetaxel, at the same dose and schedule.

Tumor growth inhibition and tumor growth delay of A2780 tumor-bearing mice administered treatments.

Group	Day 25 Dose $(\mathbf{m g / k g})$	Tumor Growth Inhibition $(\%)$	Tumor Growth Delay (day)
Docetaxel Vehicle control	0	-----	71
Free docetaxel	15	71	5
Free docetaxel	30	95	14
PEGylated O-acetyl-5050-PLGA nanoparticles	30	91	>25

In the following examples when reference is made to "mPEG(Xk)-PLGA Y wt\%", Xk indicates the weight average molecular weight of the mPEG portion of the mPEGPLGA polymer (e.g., mPEG(2 k) indicates that 2 kDa mPEG is conjugated to PLGA), and Y indicates the weight percentage of mPEG-PLGA as compared to the PLGAdrug conjugate in the initial mixture used to make the nanoparticles. For example, 16 wt \% indicates that an $84: 16$ weight ratio of PLGA-drug conjugate to mPEG-PLGA
was prepared and added to surfactant in order to prepare the nanoparticles. Typically, approximately half of the mPEG-PLGA used in the reaction is incorporated in to the product nanoparticles. Thus the approximate components of the nanoparticles in the following examples are as follows:
$\mathrm{mPEG}(2 \mathrm{k})$-PLGA $16 \mathrm{wt} \%=$ In the particle: $\mathrm{mPEG}(2 \mathrm{k})$-PLGA $\sim 8 \mathrm{wt} \%, \mathrm{PVA}$ $\sim 23 \mathrm{wt} \%$, Docetaxel-5050 PLGA-O-acetyl $\sim 69 \mathrm{wt} \%$
$m P E G(2 k)-P L G A 30 \mathrm{wt} \%=\mathrm{In}$ the particle: $\mathrm{mPEG}(2 \mathrm{k})-\mathrm{PLGA} \sim 17 \mathrm{wt} \%, \mathrm{PVA}$ $\sim 23 \mathrm{wt} \%$, Docetaxel-5050 PLGA-O-acetyl $\sim 60 \mathrm{wt} \%$
$m P E G(2 \mathrm{k})$-PLGA $40 \mathrm{wt} \%=\mathrm{In}$ the particle: $\mathrm{mPEG}(2 \mathrm{k})$-PLGA $\sim 23 \mathrm{wt} \%, \mathrm{PVA}$ ~26wt\%, Docetaxel-5050 PLGA-O-acetyl ~51wt\%
mPEG(5k)-PLGA $16 \mathrm{wt} \%=\mathrm{In}$ the particle: $\mathrm{mPEG}(5 \mathrm{k})-\mathrm{PLGA} \sim 8 \mathrm{wt} \%, \mathrm{PVA} \sim 22 \%$, Docetaxel-5050 PLGA-O-acetyl ~70\%
mPEG(5k)-PLGA $30 \mathrm{wt} \%=\mathrm{In}$ the particle: $\mathrm{mPEG}(5 \mathrm{k})$-PLGA $\sim 16 \mathrm{wt} \%, \mathrm{PVA} \sim 24 \%$, Docetaxel-5050 PLGA-O-acetyl $\sim 60 \%$
$m P E G(5 \mathrm{k})-$ PLGA $40 \mathrm{wt} \%=\mathrm{In}$ the particle: $\mathrm{mPEG}(5 \mathrm{k})-\mathrm{PLGA} \sim 18 \mathrm{wt} \%, \mathrm{PVA} \sim 24 \%$, Docetaxel-5050 PLGA-O-acetyl ~58\%

Example 43. Efficacy and tolerability of PEGylated docetaxel-5050 PLGA-Oacetyl nanoparticles in a B16.F10 murine melanoma model

B16.F10 cells were grown in culture to confluency in MEM- α medium supplemented with 10% fetal bovine serum (FBS, passage 4) and 1% penicillin/streptomycin and then resuspended in PBS. A volume of 0.1 mL containing 1×10^{6} cells was subcutaneously implanted into the right flank of male C57BL/6 mice on day- 1 .

The seven treatment groups that were administered to the mice included: 1) A docetaxel formulation prepared at $10 \mathrm{mg} / \mathrm{mL}$ stock solution (with 20 mg of docetaxel, 0.2 mL ethanol, 0.5 mL polysorbate 80 and 1.3 mL water, added in that specific order and vortexed to ensure proper mixing) diluted further with PBS to 1.5 and $3 \mathrm{mg} / \mathrm{mL}$ for a corresponding dose of $15 \mathrm{and} 30 \mathrm{mg} / \mathrm{kg}$. For a $60 \mathrm{mg} / \mathrm{kg}$ dose, a $20 \mathrm{~mL} / \mathrm{kg}$
injection volume of a concentration of $3 \mathrm{mg} / \mathrm{mL}$ docetaxel formulation was administered. 2) PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles (mPEG(2k)-PLGA at $16 \mathrm{wt} \%$) administered at doses of 15 and $30 \mathrm{mg} / \mathrm{kg} .3$) PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles (mPEG(2k)-PLGA at 30 $\mathrm{wt} \%$) administered at doses of 15,30 and $60 \mathrm{mg} / \mathrm{kg}$. 4) PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles (mPEG(2k)-PLGA at $40 \mathrm{wt} \%)$) administered at doses of 15 and $30 \mathrm{mg} / \mathrm{kg}$. 5) PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles (mPEG(5k)-PLGA at $16 \mathrm{wt} \%$) administered at a dose of $15 \mathrm{mg} / \mathrm{kg}$. 6) PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles (mPEG(5k)-PLGA at $30 \mathrm{wt} \%$) administered at doses of 15 and $30 \mathrm{mg} / \mathrm{kg} .7$) PEGylated docetaxel-5050 PLGA-Oacetyl nanoparticles (mPEG(5k)-PLGA at $40 \mathrm{wt} \%$) administered at a dose of 15 $\mathrm{mg} / \mathrm{kg}$. Refer to table for detailed description of formulations.

The treatments were administered IV into the tail vein at a dose volume of 10 or $20 \mathrm{~mL} / \mathrm{kg}$ depending on the treatment group, beginning on post-implantation day 5 , when the mean tumor volume was approximately $55 \mathrm{~mm}^{3}$. Animals were monitored for any morbidity and adverse effect three times a week. Body weight and tumor volume were also measured three times a week.

Tumor volume was calculated with the following equation: (width \times width \times length) $/ 2 \mathrm{~mm}^{3}$. Efficacy was determined by tumor growth inhibition (TGI), tumor growth delay (TGD) and survival. TGI was represented as \% and calculated as follows: (1-(treated tumor volume/control tumor volume)) $\times 100$ when the control group mean tumor volume reached $\geq 3000 \mathrm{~mm}^{3}$. Tolerability was determined by changes in body weight, expressed as a percent of the initial body weight on postimplantation day-5. Health monitoring was conducted three times a week to evaluate lethargy, tremors, hypothermia, ataxia, hind limb paralysis etc. The criteria at which a mouse was removed from the study were $>20 \%$ body weight loss or severe morbidity or hind limb paralysis.

PEGylated nanoparticles (mPEG(2k)-PLGA at $16 \mathrm{wt} \%$)- q3dq4d
The docetaxel control group and the PEGylated nanoparticles were administered three times over a two week schedule at a dose of $15 \mathrm{mg} / \mathrm{kg}$ and 30
$\mathrm{mg} / \mathrm{kg}$ respectively. The docetaxel group showed a TGI of 90% in comparison to the PEGylated nanoparticles, which had a TGI of 84%. The docetaxel group exhibited a similar TGD of 12 days compared to 13 days for the PEGylated nanoparticles. The PEGylated nanoparticles did not cause any body weight loss and was better tolerated than the docetaxel group which caused a 12% maximum body weight loss.

PEGylated nanoparticles (mPEG(2k)-PLGA at $30 \mathrm{wt} \%$) - q3dq4d

The docetaxel control group and the PEGylated nanoparticles were administered three times over a two week schedule at a dose of $15 \mathrm{mg} / \mathrm{kg}$. Both the PEGylated nanoparticles and the docetaxel groups were equally efficacious. The TGI of the docetaxel and PEGylated groups were 90% and 86% respectively. Similarly both groups exhibited the same TGD of 11 days. The PEGylated nanoparticles did not show any body weight loss and was better tolerated than docetaxel, which caused a 11% maximum body weight loss.

PEGylated nanoparticles (mPEG(2k)-PLGA at $30 \mathrm{wt} \%$)- q 7 d
Both the docetaxel control group and the PEGylated nanoparticles were administered three times, once every week at a dose of $30 \mathrm{mg} / \mathrm{kg}$. The TGI for the docetaxel and PEGylated nanoparticles group was 90% and 96% respectively. The PEGylated nanoparticles showed a greater TGD (25 days) and survival compared to the docetaxel group (17 days). In addition, the PEGylated nanoparticles were better tolerated and caused no body weight loss, whereas the docetaxel group had a maximum body weight loss of 11%.

PEGylated nanoparticles (mPEG(2k)-PLGA at $30 \mathrm{wt} \%$) - q14d
Both the docetaxel control group and the PEGylated nanoparticles were administered two times, once every two weeks at a dose of $60 \mathrm{mg} / \mathrm{kg}$. The TGI for the PEGylated nanoparticles group was greater (i.e. 97%) than that of the docetaxel group (i.e. 71%). The PNP also exhibited an increased TGD and survival compared to docetaxel. The docetaxel group reached the tumor volume end point on day 29 and showed a TGD of 11 days. In the case of the PEGylated nanoparticles group, the
average tumor volume was $118 \mathrm{~mm}^{3}$ on day 42. A TGD for the PEGylated nanoparticles could not be determined because at the time of measurement, the group still had not reached the tumor volume end point (i.e. on day 56 , the average tumor volume was $840 \mathrm{~mm}^{3}$). In addition, the PEGylated nanoparticles were well tolerated and caused only 8% maximum body weight loss. The control group docetaxel did not show any body weight loss.

PEGylated nanoparticles (mPEG(2k)-PLGA at $40 \mathrm{wt} \%$)- q 7 d
Both the docetaxel control group and the PEGylated nanoparticles were administered three times, once every week at a dose of $15 \mathrm{mg} / \mathrm{kg}$. The TGI of the docetaxel group and the PEGylated nanoparticles was shown to be similar (approximately 90\%). The TGD of the free docetaxel and the PEGylated nanoparticles was 11 and 13 days respectively. There was no body weight loss associated with the PEGylated nanoparticles; in contrast, the docetaxel group showed a maximum body weight loss of 11%.

PEGylated nanoparticles (mPEG(5k)-PLGA at $16 \mathrm{wt} \%$)-q3dq4d
The docetaxel and the PEGylated nanoparticles groups were administered three times over a two week schedule at a dose of $15 \mathrm{mg} / \mathrm{kg}$. The docetaxel group had a TGI of 90% compared to the PEGylated nanoparticles group which had a TGI of 71%. The TGD of the docetaxel and PEGylated nanoparticles groups were 11 and 7 days respectively. The PEGylated nanoparticles were better tolerated and showed no body weight loss compared to the docetaxel group, which exhibited an 11% maximum body weight loss.

PEGylated nanoparticles (mPEG(5k)-PLGA at $30 \mathrm{wt} \%$)-q3dq4d
The docetaxel and the PEGylated nanoparticles groups were administered three times over a two week schedule at a dose of $15 \mathrm{mg} / \mathrm{kg}$. The docetaxel and PEGylated nanoparticles groups showed a similar TGI (i.e. 90\%). In terms of the TGD, the docetaxel group showed 11 days compared to the PEGylated nanoparticles (i.e. 13 days). The PEGylated nanoparticles were better tolerated than the docetaxel
control group. Also, the docetaxel group exhibited a maximum body weight loss of 11% compared to no body weight loss shown by the PEGylated nanoparticles group.

PEGylated nanoparticles (mPEG(5k)-PLGA at $30 \mathrm{wt} \%$)-q7d
Both the docetaxel and PEGylated nanoparticles groups were administered three times, once a week at a dose of $30 \mathrm{mg} / \mathrm{kg}$. The TGI of the docetaxel and PEGylated nanoparticles groups were 90% and 97% respectively. The TGD of the docetaxel group was determined to be 17 days as the average tumor volume reached the end point of $3000 \mathrm{~mm}^{3}$ at day 37. A TGD for the PEGylated nanoparticles could not be determined because at the time of measurement, the group still had not reached the tumor volume end point (i.e. on day 47, the average tumor volume was 2100 mm^{3}). The PEGylated nanoparticles did not cause any body weight loss and was better tolerated than free docetaxel which caused a 11% body weight loss.

PEGylated nanoparticles (mPEG(5k)-PLGA at $40 \mathrm{wt} \%$)-q4dq3d

The docetaxel and PEGylated nanoparticles groups were administered three times over a two week schedule at a dose of $15 \mathrm{mg} / \mathrm{kg}$. The TGI for both groups was similar (approximately 90-92\%). The TGD for the PEGylated nanoparticles (i.e. 15 days) was greater than that for the docetaxel group (i.e. 11 days). The PEGylated nanoparticles did not cause any body weight loss to the mice and were better tolerated compared to the docetaxel group which resulted in a 11% maximum body weight loss.

Comparison of efficacy and tolerability of different PEGylated nanoparticles (2 k) formulation and the control docetaxel treatment group

Formulation			Tumor	Tumor	Maximum
			Dchedule	Dose	growth
growth	body				
inhibition	delay	weight			
(TGI)	(TGD)	loss $(\%)$ $($ days $)$			
Docetaxel			$(\mathrm{mg} / \mathrm{kg})$	$(\%)$	

PEGylated nps (mPEG(2k)-PLGA $16 \mathrm{wt} \%)$	q3dq4dx3	30	84	13	0
Docetaxel	q3dq4dx3	15	90	11	11
PEGylated nps (mPEG(2k)-PLGA $30 \mathrm{wt} \%)$	q3dq4dx3	15	86	11	0
Docetaxel	q7dx3	30	90	17	11
PEGylated nps (mPEG(2k)-PLGA $30 ~ w t \%) ~$	q7dx3	30	96	25	0
Docetaxel	q14dx2	60	71	11	0
PEGylated nps (mPEG(2k)-PLGA 30 wt\%)	q14dx2	60	97	>38	8
Docetaxel	q3dq4dx3	15	90	11	11
PEGylated nps (mPEG(2k)-PLGA 40 wt\%)	q3dq4dx3	15	89	13	0

* q3dq4dx3- three injections administered over 2 weeks (3 days in between $1^{\text {st }}$ and $2^{\text {nd }}$
injection, 4 days in between $2^{\text {nd }}$ and $3^{\text {rd }}$ injection).
* q7dx3- three injections seven days apart.
* q14dx2- two injections 14 days apart.

Comparison of efficacy and tolerability of different PEGylated nanoparticles

(5k) formulation and the control docetaxel treatment group

Formulation	Schedule	Dose	Tumor growth inhibition (TGI) $(\%)$	Tumor growth delay (TGD) (days)	Maximum body weight loss $(\%)$
Docetaxel		q3dq4dx3	15	90	11

wt\%)					
Docetaxel	q3dq4dx3	15	90	11	11
PEGylated nps (PEG(5k)-PLGA 30 wt\%)	q3dq4dx3	15	90	13	0
Docetaxel	q7dx3	30	90	17	11
PEGylated nps (PEG(5k)-PLGA 30 wt\%)	q7dx3	30	97	>38	0
Docetaxel	q4dq3dx3	15	90	11	11
PEGylated nps (PEG(5k)-PLGA 40 wt\%)	q4dq3dx3	15	92	15	0

* q3dq4dx3- three injections administered over 2 weeks (3 days in between $1^{\text {st }}$ and $2^{\text {nd }}$ injection, 4 days in between $2^{\text {nd }}$ and $3^{\text {rd }}$ injection).
* q4dq3dx3- three injections administered over 2 weeks (4 days in between $1^{\text {st }}$ and $2^{\text {nd }}$ injection, 3 days in between $2^{\text {nd }}$ and $3^{\text {rd }}$ injection).
* q7dx3- three injections seven days apart.

Example 44. In vivo efficacy of PEGylated docetaxel-5050 PLGA-O-acetyl

 nanoparticles in a HCT-116 colon xenograft modelHCT-116 cells were grown in culture to confluency in McCoy's 5a medium containing 10% FBS and 1% penicillin/streptomycin and then resuspended in McCoy's 5a (passage 4). This suspension of HCT-116 cells (density $=3.7 \times 10^{6}$ cells $/ \mathrm{mL}$) was implanted subcutaneously above the right hind leg of male CD-1 nude mice on day 1 .

The three treatment groups that were administered to HCT-116 tumor bearing mice ($\mathrm{n}=6-7$ per group) included: 1) a docetaxel vehicle formulation consisting of 1.5% ethanol/ 3.75% polysorbate $80 / 9.75 \%$ water/ $85 \% \mathrm{PBS}$ at $20 \mathrm{~mL} / \mathrm{kg} ; 2$) 10 $\mathrm{mg} / \mathrm{mL}$ docetaxel stock solution (prepared with 20 mg of docetaxel, 0.2 mL ethanol, 0.5 mL polysorbate 80 and 1.3 mL water, added in that specific order and vortexed to ensure proper mixing) diluted in PBS to $1.5 \mathrm{mg} / \mathrm{mL}$ for a corresponding dose of 30 $\mathrm{mg} / \mathrm{kg}$ at an injection volume of $20 \mathrm{~mL} / \mathrm{kg}$ respectively; 3) PEGylated docetaxel-5050

PLGA-O-acetyl nanoparticle formulation (mPEG(2k)-PLGA with initial amount of 16 $\mathrm{wt} \%$) at a docetaxel equivalent concentration of $1.5 \mathrm{mg} / \mathrm{mL}$ for a corresponding dose of $30 \mathrm{mg} / \mathrm{kg}$ at an injection volume of $20 \mathrm{~mL} / \mathrm{kg}$

The treatments were administered IV into the tail vein at the respective dose volumes (refer to previous paragraph), beginning on post-implantation Day 13, when the mean tumor volume was $131 \mathrm{~mm}^{3}$. The vehicle and docetaxel treatments were administered two times, on Days 13 and 20 (weekly \times two injections).

The mice that were administered docetaxel at a dose of $30 \mathrm{mg} / \mathrm{kg}$ lost a maximum body weight of 14%. In comparison, the PEGylated formulation administered at a dose of $30 \mathrm{mg} / \mathrm{kg}$, did not lose any weight during the study.

Tumor growth inhibition
The tumor growth inhibition (TGI) of the mice treated with docetaxel at a dose of $30 \mathrm{mg} / \mathrm{kg}$ was 88%. Extrapolating to where the tumor growth curve reached the end point at a tumor volume of $1000 \mathrm{~mm}^{3}$, the TGD was calculated to be 22 days. For the PEGylated nanoparticles at a dose of $30 \mathrm{mg} / \mathrm{kg}$, the TGI was 77%. The TGD was determined to be 21 days.

Example 45. In vivo efficacy of PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles in a SK-OV-3 ovarian human xenograft model

SK-OV-3 cells were grown in culture to confluency in RPMI medium containing $10 \% \mathrm{FBS}$ and 1% penicillin/streptomycin and then resuspended in RPMI (passage 4) for implantation into mice. This suspension of SK-OV-3 cells (density = 30×10^{6} cells $/ \mathrm{mL}$) was implanted into the mammary gland of female CD-1 nude mice on Day 1.

Treatment groups that were administered to SK-OV-3 tumor-bearing mice (n $=4-5$ per group) included: 1) a docetaxel vehicle formulation consisting of 1.5% ethanol/ 3.75% polysorbate $80 / 9.75 \%$ water/ 85% PBS at $20 \mathrm{~mL} / \mathrm{kg}$; 2) $10 \mathrm{mg} / \mathrm{mL}$ docetaxel stock solution (prepared with 20 mg of docetaxel, 0.2 mL ethanol, 0.5 mL polysorbate 80 and 1.3 mL water, added in that specific order and vortexed to ensure 1005052.1
proper mixing) diluted in PBS to A) $1.5 \mathrm{mg} / \mathrm{mL}$ for a corresponding dose of $15 \mathrm{mg} / \mathrm{kg}$ and $30 \mathrm{mg} / \mathrm{kg}$ at an injection volume of $10 \mathrm{~mL} / \mathrm{kg}$ and $20 \mathrm{~mL} / \mathrm{kg}$ respectively, and B) $3 \mathrm{mg} / \mathrm{mL}$ for a dose of $60 \mathrm{mg} / \mathrm{kg}$ at an injection volume of $20 \mathrm{~mL} / \mathrm{kg}$; 3) PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticle formulation (mPEG(2k)-PLGA with initial amount of $16 \mathrm{wt} \%$) at a docetaxel equivalent concentration of $2.9 \mathrm{mg} / \mathrm{mL}$ for a corresponding dose of $60 \mathrm{mg} / \mathrm{kg}$ at an injection volume of $21 \mathrm{~mL} / \mathrm{kg}$.

The treatments were administered IV into the tail vein at the dose volumes stated above, beginning on post-implantation Day 51 , when the mean tumor volume was $232 \mathrm{~mm}^{3}$. The vehicle and docetaxel treatments were administered two times, on Days 51 and 58 (weekly \times two injections). The PEGylated nanoparticles treatment was administered once, on Day 51.

The high dose of docetaxel, $60 \mathrm{mg} / \mathrm{kg}$, caused greater than 20% body weight loss. Ataxia, which is defined as the inability to coordinate voluntary muscular movements that is symptomatic of some CNS disorders and injuries and not due to muscle weakness, was observed in all the mice four days after the second treatment of docetaxel. This group was removed 18 days after the second treatment, despite supportive measures (fluid replacement, easier access to food), due to the ataxia becoming more severe and affecting the forelimbs. The lower dose of docetaxel, 30 $\mathrm{mg} / \mathrm{kg}$, did not cause ataxia. Maximum body weight loss in the group administered docetaxel $30 \mathrm{mg} / \mathrm{kg}$ was 13%. The group administered the PEGylated nanoparticles at a dose of $60 \mathrm{mg} / \mathrm{kg}$ was only administered that treatment one time. No ataxia developed in this group, but this could not be compared to the high dose of docetaxel because of the different numbers of treatments. Maximum body weight loss in the group administered the PEGylated nanoparticles at $60 \mathrm{mg} / \mathrm{kg}$ was 11%, equivalent to the free drug (i.e. docetaxel) at $30 \mathrm{mg} / \mathrm{kg}$.

Tumor growth inhibition

All treatments inhibited tumor growth. The tumor growth delay (TGD) for docetaxel at a dose of $15 \mathrm{mg} / \mathrm{kg}$ was 18 days. The TGD for docetaxel at a dose of 30 $\mathrm{mg} / \mathrm{kg}$ was 42 days. At this time, this group had a large variation, with two mice $>1000 \mathrm{~mm}^{3}$ and three mice $<50 \mathrm{~mm}^{3}$. The TGD for PEGylated nanoparticles at 60
$\mathrm{mg} / \mathrm{kg}$ was 94 days, with a large intragroup variation with two mice $>1000 \mathrm{~mm}^{3}$ and three mice $<325 \mathrm{~mm}^{3}$, a similar pattern to free drug at a dose of $30 \mathrm{mg} / \mathrm{kg}$, but delayed approximately 54 days relative to free drug.

Example 46. In vivo efficacy of PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles in a MDA-MB-435 melanoma human xenograft model

MDA-MB-435 cells were grown in culture to confluency in RPMI medium containing 10% FBS and 1% penicillin/streptomycin and then resuspended in RPMI (passage 4) for implantation into mice. A volume of 0.1 mL containing 4.0×10^{6} cells MDA-MB-435 cells were implanted into the mammary gland of female CD- 1 nude mice on Day 1.

Treatments that were administered to the mice ($n=6-7 /$ group) included: 1) a docetaxel vehicle formulation consisting of 1.5% ethanol/ 3.75% polysorbate $80 /$ 9.75% water/ $85 \% \mathrm{PBS}$ at $20 \mathrm{~mL} / \mathrm{kg} ; 2$) $10 \mathrm{mg} / \mathrm{mL}$ docetaxel stock solution (prepared with 20 mg of docetaxel, 0.2 mL ethanol, 0.5 mL polysorbate 80 and 1.3 mL water, added in that specific order and vortexed to ensure proper mixing) diluted in PBS to A) $1.5 \mathrm{mg} / \mathrm{mL}$ for a corresponding dose of 15 and $30 \mathrm{mg} / \mathrm{kg}$ at an injection volume of $10 \mathrm{~mL} / \mathrm{kg}$ and $20 \mathrm{~mL} / \mathrm{kg}$, respectively, B) $3.0 \mathrm{mg} / \mathrm{mL}$ for a dose of $60 \mathrm{mg} / \mathrm{kg}$ at an injection volume of $20 \mathrm{~mL} / \mathrm{kg}$; 3) PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticle formulation (mPEG(2k)-PLGA with initial amount of $16 \mathrm{wt} \%$) made at a docetaxel equivalent concentration of $1.1 \mathrm{mg} / \mathrm{mL}$ for a corresponding dose of 30 $\mathrm{mg} / \mathrm{kg}$ at an injection volume of $26 \mathrm{~mL} / \mathrm{kg}$; 4) PEGylated docetaxel-5050 PLGA-Oacetyl nanoparticle formulation ($\mathrm{mPEG}(2 \mathrm{k}$)-PLGA with initial amount of $30 \mathrm{wt} \%$) made at a docetaxel equivalent of 1.5 and $2.85 \mathrm{mg} / \mathrm{mL}$ for corresponding doses of A) $15 \mathrm{mg} / \mathrm{kg}$ at an injection volume of $10 \mathrm{~mL} / \mathrm{kg}$, B) 30 and $60 \mathrm{mg} / \mathrm{kg}$ at an injection volume of $11 \mathrm{~mL} / \mathrm{kg}$ and $21 \mathrm{~mL} / \mathrm{kg}$, respectively.

The treatments were administered IV into the tail vein at the dose volumes stated above, beginning on post-implantation Day 21, when the mean tumor volume was $150 \mathrm{~mm}^{3}$ or, for one group, on Day 37, when the mean tumor volume for that
group was $433 \mathrm{~mm}^{3}$. The treatments were administered two times, on Days 21 and 28 (weekly \times two injections) for the vehicle, docetaxel and PEGylated nanoparticles groups and on Days 37 and 44 for a group that was administered PEGylated nanoparticles when the tumors were at a larger tumor volume (i.e. $433 \mathrm{~mm}^{3}$).

For groups administered the free docetaxel, the high dose, $60 \mathrm{mg} / \mathrm{kg}$, caused greater than 20% body weight loss. Ataxia was observed four days after the second treatment. This group was removed nine days after the second treatment, despite supportive measures (fluid replacement, easier access to food), due to severe ataxia. The docetaxel group administered at a dose of $30 \mathrm{mg} / \mathrm{kg}$ did not cause ataxia. Maximum body weight loss in the docetaxel dosed at $30 \mathrm{mg} / \mathrm{kg}$ group was 14% and in the case of the $15 \mathrm{mg} / \mathrm{kg}$ group, it was 10% of initial body weight.

Groups administered PEGylated nanoparticles had different responses depending on the $\mathrm{wt} \%$ and dose. The PEGylated nanoparticles (PEG at initial amount of $16 \mathrm{wt} \%$) administered at a dose of $30 \mathrm{mg} / \mathrm{kg}$ did not show any weight loss. The PEGylated nanoparticles (PEG at initial amount of $30 \mathrm{wt} \%$) administered at a dose of $15 \mathrm{mg} / \mathrm{kg}$ also did not show any weight loss. At a higher dose ($30 \mathrm{mg} / \mathrm{kg}$), the PEGylated nanoparticles treatment group lost 6% of its initial body weight. At an even higher dosage ($60 \mathrm{mg} / \mathrm{kg}$), the treatment group receiving PEGylated nanoparticles administered starting on Day 21 (i.e. when the mean tumor size was 150 mm^{3}) lost 11% body weight, which was equivalent to the free drug at a dose of 30 $\mathrm{mg} / \mathrm{kg}$. The treatment group receiving same PEGylated nanoparticles at a dose of 60 $\mathrm{mg} / \mathrm{kg}$ were also administered on Day 37 (i.e. when the mean tumor size was 433 mm^{3}) lost 19% body weight. This exaggerated weight loss was likely due to undetermined necrotic factors released from a relatively large amount of dead tumor tissue. One mouse in this latter group was found dead on Day 64 despite supportive measures (fluid replacement, easier access to food). The other mice in that group almost fully recovered their lost body weight and do not appear to be at any health risk at this time (Day 76).

Ataxia

Mice administered docetaxel at a dose of $60 \mathrm{mg} / \mathrm{kg}$ developed ataxia. The entire group showed abnormal gait and lack of coordination of the front limbs nine days after the second treatment. No other doses of docetaxel were observed to cause ataxia. In contrast to docetaxel, none of the mice administered PEGylated nanoparticles at any dose developed ataxia.

Tumor growth inhibition
All treatments groups resulted in tumor growth inhibition. The mean tumor volume of vehicle-treated group reached the endpoint of $1000 \mathrm{~mm}^{3}$ on Day 58 posttumor implantation. As of Day 76, it appears that the treatment at a dose of $15 \mathrm{mg} / \mathrm{kg}$ resulted in the same TGI for free docetaxel and PEGylated nanoparticles. At a dose of $30 \mathrm{mg} / \mathrm{kg}$, the TGI for free docetaxel was greater than that for PEGylated nanoparticles (mPEG-PLGA initial amount of $30 \mathrm{wt} \%>\mathrm{mPEG}$-PLGA initial amount of $16 \mathrm{wt} \%$). At a dose of $60 \mathrm{mg} / \mathrm{kg}$, free docetaxel was equivalent to PEGylated nanoparticles until the free drug group was removed from the study. As the study continues, docetaxel at a dose of $30 \mathrm{mg} / \mathrm{kg}$ is equivalent to PEGylated nanoparticles at a dose of $60 \mathrm{mg} / \mathrm{kg}$.

Example 47. Tolerability of the free drug docetaxel and PEGylated docetaxel5050 PLGA-O-acetyl nanoparticles in normal male C57BL/6 non-tumor-bearing mice.

Treatments that were administered to the male C57BL/6 mice ($\mathrm{n}=5 /$ group) included: 1) a docetaxel vehicle formulation consisting of 1.5% ethanol/ 3.75% polysorbate $80 / 9.75 \%$ water/ 85% PBS at $20 \mathrm{~mL} / \mathrm{kg}$; 2) $10 \mathrm{mg} / \mathrm{mL}$ docetaxel stock solution (prepared with 20 mg of docetaxel, 0.2 mL ethanol, 0.5 mL polysorbate 80 and 1.3 mL water, added in that specific order and vortexed to ensure proper mixing) diluted in PBS to $1.5,2.25$ and $3 \mathrm{mg} / \mathrm{mL}$ for a corresponding dose of 30,45 and 60 $\mathrm{mg} / \mathrm{kg}$ at an injection volume of $20 \mathrm{~mL} / \mathrm{kg}$; 3) PEGylated docetaxel-5050 PLGA-Oacetyl nanoparticles formulation (mPEG(2k)-PLGA initial amount of $30 \mathrm{wt} \%$) at a
docetaxel equivalent of $2.85 \mathrm{mg} / \mathrm{mL}$ for a dose of $60 \mathrm{mg} / \mathrm{kg}$ at an injection volume of $21 \mathrm{~mL} / \mathrm{kg}$.

Treatments were administered intravenously on a q7dx2 schedule, i.e., two treatments seven days apart (the first treatment was on Day one). The study ended on Day 14 , six days after the $2^{\text {nd }}$ treatment. Blood was collected for complete blood count (CBC) and serum chemistry. Leg muscles were collected so that nerve degeneration could be assessed from the sciatic nerve.

The vehicle-treated group gained 23% of its initial body weight by the end of the study. Docetaxel administered at doses of 30 and $45 \mathrm{mg} / \mathrm{kg}$ gained weight, up to 7% at the second treatment, weighing 3% and 2% respectively more than the initial on Day 14. The group administered docetaxel at a dose of $60 \mathrm{mg} / \mathrm{kg}$ did not gain weight after the first treatment and lost weight (19\%) after the second treatment, by the end of the study. The group administered PEGylated nanoparticles at a dose of $60 \mathrm{mg} / \mathrm{kg}$ did not gain weight after the first treatment and lost weight (16%) after the second treatment, by the end of the study.

Complete blood count

From the table below, the CBC analyses showed that the white blood cell number, neutrophil number and lymphocyte number were lower in the groups administered docetaxel and PNP at a dose of $60 \mathrm{mg} / \mathrm{kg}$. The white blood cells are expressed in units of $\times 1000$ cells $/ \mu \mathrm{L}$, the neutrophils and lymphocytes are expressed in units of cells $/ \mu \mathrm{L}$.

Treatment	WBC \#		Neutrophil		Lymphocyte	
	mean	SD	mean	SD	mean	SD
Docetaxel vehicle group	8.3	1.0	1474	390	6563	757
Docetaxel, $30 \mathrm{mg} / \mathrm{kg}$	5.1	1.7	556	254	4350	1394
Docetaxel, $45 \mathrm{mg} / \mathrm{kg}$	7.8	1.7	752	266	6780	1855
Docetaxel, $60 \mathrm{mg} / \mathrm{kg}$	6.2	1.0	470	159	5590	938
PEGylated docetaxel-5050 PLGA-O-	4.6	0.9	488	162	3958	1001

acetyl nanoparticles $($ mPEG(2k)-PLGA initial amount of 30 $w t \%)$						

Serum chemistry
Both the free docetaxel group and the PEGylated docetaxel-5050 PLGA-Oacetyl nanoparticles formulation (mPEG(2k)-PLGA initial amount of $30 \mathrm{wt} \%$) did not affect any serum chemistry parameter at doses up to $60 \mathrm{mg} / \mathrm{kg}$.

Sciatic nerve histopathology assessment
Mice administered the free docetaxel was observed to develop ataxia during the study with a dose-related effect. Specifically, no mice in the $30 \mathrm{mg} / \mathrm{kg}$ group were seen to develop ataxia or any overt signs of nerve damage. One mouse in the 45 $\mathrm{mg} / \mathrm{kg}$ group was observed to develop ataxia on Day 14 , while the others in that group had a normal gait. Five out of five mice in the $60 \mathrm{mg} / \mathrm{kg}$ group was observed to develop ataxia - one on Day 12, all on Day 14. None of the mice in the group administered PEGylated nanoparticles at a dose of $60 \mathrm{mg} / \mathrm{kg}$ was shown to develop ataxia. Refer to the table below for results.

Group	Dose $(\mathrm{mg} / \mathrm{kg})$	Ataxia $(\%)$
Docetaxel vehicle control	0	---
Free docetaxel	30	0
Free docetaxel	45	20
Free docetaxel	60	100
PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles (mPEG(2k)-PLGA initial amount of $30 \mathrm{wt} \%)$	60	0

These data showed that, contrary to the MDA-MB-435 study described above and historical data, free docetaxel and PEGylated docetaxel-5050 PLGA-O-acetyl nanoparticles (mPEG(2k)-PLGA initial amount of $30 \mathrm{wt} \%$) at a dose of $60 \mathrm{mg} / \mathrm{kg}$ 1005052.1
q7dx2 (i.e. two treatments seven days apart) are equivalent regarding body weight loss. Further, and also contrary to historical data, these treatments were similar regarding effects on the CBC .

A pathologist's assessment of the sciatic nerve histology found no treatment effects in any animals. Since ataxia was observed to be severe in the docetaxel group at a dose of $60 \mathrm{mg} / \mathrm{kg}$, and damage by taxanes of the sciatic nerve at the level of the muscle was shown previously in published studies, it was suggested by the pathologist that the section of sciatic nerve that was examined was too far from the spinal chord, and damage did not yet develop in that part of the sciatic nerve at the time of tissue collection.

Example 48. Synthesis of Polyfunctionalized PLGA/PLA based polymers

One could synthesize a PLGA/PLA related polymer with functional groups that are dispersed throughout the polymer chain that is readily biodegradable and whose components are all bioacceptable components (i.e. known to be safe in humans). Specifically, PLGA/PLA related polymers derived from 3-S-
[benxyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione (BMD) could be synthesized (see structures below). (The structures below are intended to represent random copolymers of the monomeric units shown in brackets.)

1. PLGA/PLA related polymer derived from BMD

2. PLGA/PLA related polymer with BMD and 3,5-dimethyl-1,4-dioxane-2,5-dione (bis-DL-lactic acid cyclic diester)

3. PLGA/PLA related polymer with BMD and 1,4-dioxane-2,5-dione (bis-glycolic acid cyclic diester

In a preferred embodiment, PLGA/PLA polymers derived from BMD and bis-DL-lactic acid cyclic diester will be prepared with a number of different pendent functional groups by varying the ratio of BMD and lactide. For reference, if it is assumed that each polymer has a number average molecular weight (Mn) of 8 kDa , then a polymer that is $100 \mathrm{wt} \%$ derived from BMD has approximately 46 pendant carboxylic acid groups (1 acid group per 0.174 kDa). Similarly, a polymer that is 25 $\mathrm{wt} \%$ derived from BMD and $75 \mathrm{wt} \%$ derived from 3,5-dimethyl-1,4-dioxane-2,5dione (bis-DL-lactic acid cyclic diester) has approximately 11 pendant carboxylic acid groups (1 acid group per 0.35 kDa). This compares to just 1 acid group for an 8 kDa PLGA polymer that is not functionalized and 1 acid group $/ 2 \mathrm{kDa}$ if there are 4 sites added during functionalization of the terminal groups of a linear PLGA/PLA polymer or 1 acid group $/ 1 \mathrm{kDa}$ if a 4 kDa molecule has four functional groups attached.

Specifically, the PLGA/PLA related polymers derived from BMD will be developed using a method by Kimura et al., Macromolecules, 21, 1988, 3338-3340. This polymer would have repeating units of glycolic and malic acid with a pendant carboxylic acid group on each unit $\left[\mathrm{RO}\left(\mathrm{COCH}_{2} \mathrm{OCOCHR}_{1} \mathrm{O}\right)_{\mathrm{n}} \mathrm{H}\right.$ where R is H , or alkyl or PEG unit etc. and R_{1} is $\left.\mathrm{CO}_{2} \mathrm{H}\right]$. There is one pendant carboxylic acid group for each 174 mass units. The molecular weight of the polymer and the polymer polydispersity can vary with different reaction conditions (i.e. type of initiator,
temperature, processing condition). The Mn could range from 2 to 21 kDa . Also, there will be a pendant carboxylic acid group for every two monomer components in the polymer. Based on the reference previously sited, NMR analysis showed no detectable amount of the β-malate polymer was produced by ester exchange or other mechanisms.

Another type of PLGA/PLA related polymer derived from BMD and 3,5-dimethyl-1,4-dioxane-2,5-dione (bis-DL-lactic acid cyclic diester) will be synthesized using a method developed by Kimura et al., Polymer, 1993, 34, 1741-1748. They showed that the highest BMD ratio utilized was $15 \mathrm{~mol} \%$ and this translated into a polymer containing $14 \mathrm{~mol} \%(16.7 \mathrm{wt} \%)$ of BMD -derived units. This level of BMD incorporation represents approximately 8 carboxylic acid residues per 8 kDa polymer (1 carboxylic acid residue/kDa of polymer). Similarly to the use of BMD alone, no β malate derived polymer was detected. Also, Kimura et al. reported that the glass transition temperatures $\left(\mathrm{T}_{\mathrm{g}}\right)$ were in the low $20^{\circ} \mathrm{C}$'s despite the use of high polymer molecular weights ($36-67 \mathrm{kDa}$). The T_{g} 's were in the $20-23^{\circ} \mathrm{C}$ for these polymers whether the carboxylic acid was free or still a benzyl group. The inclusion of more rigidifying elements (i.e. carboxylic acids which can form strong hydrogen bonds) should increase the T_{g}. Possible prevention of aggregation of any nanoparticles formed from a polymer drug conjugate derived from this specific polymer will have to be evaluated due to possible lower T_{g} values.

Another method for synthesizing a PLA-PEG polymer that contains varying amounts of glycolic acid malic acid benzyl ester involves the polymerization of BMD in the presence of 3,5-dimethyl-1,4-dioxane-2,5-dione (bis-DL-lactic acid cyclic diester), reported by Lee et al., Journal of Controlled Release, 94, 2004, 323-335. They reported that the synthesized polymers contained 1.3-3.7 carboxylic acid units in a PLA chain of approximately $5-8 \mathrm{kDa}$ (total polymer weight was approximately 1113 kDa with PEG being 5 kDa) depending on the quantity of BMD used in the polymerization. In one polymer there were 3.7 carboxylic acid units/hydrophobic block in which the BMD represents approximately $19 \mathrm{wt} \%$ of the weight of the hydrophobic block. The ratio of BMD to lactide was similar to that observed by

Kimura et al., Polymer, 1993, 34, 1741-1748 and the acid residues were similar in the resulting polymers (approximately 1 acid unit/kDa of hydrophobic polymer).

Polymers functionalized with BMD that are more readily hydrolysable will be prepared using the method developed by Kimura et al., International Journal of Biological Macromolecules, 25, 1999, 265-271. They reported that the rate of hydrolysis was related to the number of free acid groups present (with polymers with more acid groups hydrolyzing faster). The polymers had approximately 5 or $10 \mathrm{~mol} \%$ BMD content. Also, in the reference by Lee et al., Journal of Controlled Release, 94, $2004,323-335$, the rate of hydrolysis of the polymer was fastest with the highest concentration of pendent acid groups (6 days for polymer containing $19.5 \mathrm{wt} \%$ of BMD and 20 days for polymer containing $0 \mathrm{wt} \%$ of BMD.

A drug (e.g. docetaxel, paclitaxel, doxorubicin, etc.) could be conjugated to a PLGA/PLA related polymer with BMD (refer to previous examples above). Similarly, a nanoparticle could be prepared from such a polymer drug conjugate.

Example 49. Synthesis of polymers prepared using β-lactone of malic acid benzyl esters

One could prepare a polymer by polymerizing MePEGOH with RS- β-benzyl malolactonate (a β-lactone) with DL-lactide (cyclic diester of lactic acid) to afford a polymer containing MePEG (lactic acid) (malic acid)
$\mathrm{Me}(\mathrm{OCH} 2 \mathrm{CH} 2 \mathrm{O})[\mathrm{OCCCH}(\mathrm{CH} 3) \mathrm{O}] \mathrm{m}[\mathrm{COCH} 2 \mathrm{CH}(\mathrm{CO} 2 \mathrm{H}) \mathrm{O}]$. as developed by Wang et al., Colloid Polymer Sci., 2006, 285, 273-281. These polymers would potentially degrade faster because they contain higher levels of acidic groups. It should be noted that the use of β-lactones generate a different polymer from that obtained using 3-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione. In these polymers, the carboxylic acid group is directly attached to the polymer chain without a methylene spacer.

Another polymer that could be prepared directly from a β-lactone was reported by Ouhib et al., Ch. Des. Monoeres. Polym, 2005, 1, 25. The resulting polymer (i.e. poly-3,3-dimethylmalic acid) is water soluble as the free acid, has pendant carboxylic
acid groups on each unit of the polymer chain and as well it has been reported that 3,3-dimethylmalic acid is a nontoxic molecule.

One could polymerize 4-benzyloxycarbonyl-,3,3-dimethyl-2-oxetanone in the presence of 3,5 -dimethyl-1,4-dioxane-2,5-dione (DDD) and β-butyrolactone to generate a block copolymer with pendant carboxylic acid groups as shown by Coulembier et al., Macromolecules, 2006, 39, 4001-4008. This polymerization reaction was carried out with a carbene catalyst in the presence of ethylene glycol. The catalyst used was a triazole carbene catalyst which leads to polymers with narrow polydispersities.

Example 50. Regioselective synthesis of docetaxel-2'-5050 PLGA-O-acetyl
Docetaxel-2'-5050 PLGA-O-acetyl could be regioselectively prepared as illustrated in the following scheme. The 2 ' hydroxyl group of docetaxel is first protected using benzylchloroformate. Following purification of the 2 ' Cbz-protected docetaxel, the product may be orthogonally protected on the 7 and 10 hydroxyl groups using a silyl chloride (e.g., tert-butyldimethylsilyl chloride). The Cbz group may then be removed using hydrogenation over Pd / C, followed by coupling of PLGA-O-acetyl using EDC and DMAP. Final deprotection of the silyl protecting groups using TBAF would produce the docetaxel-2'-5050 PLGA-O-acetyl selectively coupled via the 2^{\prime} hydroxyl group.

Alternatively, docetaxel-2'-5050 PLGA-O-acetyl could be regioselectively prepared as illustrated in the scheme below. The 2^{\prime} hydroxyl group of docetaxel is first protected using tert-butyldimethylsilyl chloride. Following purification of the 2^{\prime} TBDMS-protected docetaxel, the product may be orthogonally protected on the 7 and 10 hydroxyl groups using a benzylchloroformate. The TBDMS group may then be removed using TBAF, followed by coupling of PLGA-O-acetyl using EDC and DMAP. Final deprotection of the Cbz protecting groups via hydrogenation over Pd / C would produce the docetaxel-2'-5050 PLGA-O-acetyl selectively coupled via the 2^{\prime} hydroxyl group.

Example 51. Regioselective synthesis of docetaxel-7-5050 PLGA-O-acetyl and docetaxel-10-5050 PLGA-O-acetyl

Docetaxel-7-5050 PLGA-O-acetyl and docetaxel-10-5050 PLGA-O-acetyl could be regioselectively prepared as illustrated in the following scheme. Docetaxel is first protected using two equivalents of benzylchloroformate, yielding a mixture of products. Two products, C2'/C7-bis-Cbz-docetaxel, and C2'/C10-bis-Cbz-docetaxel, can each be selectively purified.

C2'/C7-bis-Cbz-docetaxel can then be coupled to PLGA-O-acetyl using EDC and DMAP, which would result in attachment of PLGA-O-acetyl to the hydroxyl group at the 10-position of docetaxel. Deprotection of the Cbz protecting groups via hydrogenation over Pd / C would produce the docetaxel-10-5050 PLGA-O-acetyl selectively coupled via the 10 hydroxyl group.

C2'/C10-bis-Cbz-docetaxel can then be coupled to PLGA-O-acetyl using EDC and DMAP, which would result in attachment of PLGA-O-acetyl to the hydroxyl group at the 7-position of docetaxel. Deprotection of the Cbz protecting groups via
hydrogenation over Pd / C would produce the docetaxel-7-5050 PLGA-O-acetyl selectively coupled via the 7 hydroxyl group.

What is claimed is:

CLAIMS

1. A particle comprising:
a) a plurality of hydrophobic polymer-agent conjugates, wherein
i) each hydrophobic polymer-agent conjugate of said plurality comprises a hydrophobic polymer attached to an agent;
b) a plurality of hydrophilic-hydrophobic polymers, wherein
i) each of said hydrophilic-hydrophobic polymers of said plurality comprises a hydrophilic portion attached to a hydrophobic portion,
c) a surfactant.
2. The particle of claim 1 , comprising:
a) a plurality of hydrophobic polymer-agent conjugates, wherein
i) each hydrophobic polymer-agent conjugate of said plurality comprises a hydrophobic polymer attached to an agent,
ii) said hydrophobic polymer attached to agent can be a homopolymer or a polymer made up of more than one kind of monomeric subunit, iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said agent is about $1-30$ weight $\%$ of said particle and
v) said plurality of hydrophobic-agent conjugates is about 25-80 weight \% of said particle;
b) a plurality of hydrophilic-hydrophobic polymers, wherein
i) each of said hydrophilic-hydrophobic polymers of said plurality comprises a hydrophilic portion attached to a hydrophobic portion, ii) said hydrophilic portion has a weight average molecular weight of about $1-6 \mathrm{kD}$ (e.g., $2-6 \mathrm{kD}$), and
iii) said plurality of hydrophilic-hydrophobic polymers is about 5-30 weight \% of said particle;
and
c) a surfactant, wherein said surfactant is about $15-35$ weight $\%$ of said particle; and
wherein:
the diameter of said particle is less than about 200 nm .
3. The particle of claim 2, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-8 \mathrm{kD}$.
4. The particle of claim 2 , comprising:
a) a plurality of hydrophobic polymer-agent conjugates, wherein
i) each hydrophobic polymer-agent conjugate of said plurality comprises a hydrophobic polymer attached to an agent,
ii) said hydrophobic polymer attached to agent can be a homopolymer or a polymer made up of more than one kind of monomeric subunit, iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-15 \mathrm{kD}$, iv) said agent is about $1-30$ weight $\%$ of said particle, and v) said plurality of hydrophobic-agent conjugates is about 25-80 weight \% of said particle;
b) a plurality of hydrophilic-hydrophobic polymers, wherein
i) each of said hydrophilic-hydrophobic polymers of said plurality comprises a hydrophilic portion attached to a hydrophobic portion, ii) said hydrophilic portion has a weight average molecular weight of about $1-6 \mathrm{kD}$ (e.g., 2-6 kD), wherein
if the weight average molecular weight of said hydrophilic portion is about $1-3 \mathrm{kD}$, e.g., about 2 kD , the ratio of the weight average molecular weight of said hydrophilic portion to the weight average molecular weight of said hydrophobic portion is between 1:3-1:7, and if the weight average molecular weight of said hydrophilic portion is about $4-6 \mathrm{kD}$, e.g., about 5 kD ,
the ratio of the weight average molecular weight of said hydrophilic portion to the weight average molecular weight of said hydrophobic portion is between 1:1-1:4; and
iii) said plurality of hydrophilic-hydrophobic polymers is about 5-30 weight \% of said particle;
and
c) a surfactant, wherein
said surfactant is about $15-35$ weight $\%$ of said particle; and wherein:
the diameter of said particle is less than about 200 nm .
5. The particle of claim 4 , wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-8 \mathrm{kD}$.
6. The particle of claim 2, comprising:
a) a plurality of hydrophobic-agent conjugates, wherein
i) each hydrophobic-agent conjugate of said plurality comprises a
hydrophobic polymer attached to an agent,
ii) said hydrophobic polymer attached to said agent can be a
homopolymer or a polymer made up of more than one kind of monomeric subunit,
iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said agent is about $1-30$ weight $\%$ of said particle and
v) said plurality of hydrophobic-agent conjugates is about 35-80
weight \% of said particle;
b) a plurality of hydrophilic-hydrophobic polymers, wherein
i) each of said hydrophilic-hydrophobic polymers of said plurality comprises a hydrophilic portion attached to a hydrophobic portion, and
ii) said hydrophilic portion has a weight average molecular weight of about $2-6 \mathrm{kD}$ and said hydrophobic portion has a weight average molecular weight of between about $8-13 \mathrm{kD}$,
iii) said plurality of hydrophilic-hydrophobic polymers is about 10-25 weight \% of said particle;
iv) said hydrophilic portion of said hydrophilic-hydrophobic polymer terminates in an OMe,
and
c) a surfactant, wherein said surfactant is about $15-35$ weight $\%$ of said particle;
wherein:
said particle further comprises a hydrophobic polymer having a terminal acyl moiety;
and
the diameter of said particle is less than about 200 nm .
7. The particle of claim 6, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-8 \mathrm{kD}$.
8. A method of making the particle of claim 2 , comprising: providing an organic solution comprising:
a) a plurality of hydrophobic-agent conjugates, wherein
i) each hydrophobic-agent conjugate of said plurality comprises a hydrophobic polymer attached to an agent,
ii) said hydrophobic polymer attached to said agent can be a homopolymer or a polymer made up of more than one kind of monomeric subunit,
iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said agent is about $1-30$ weight $\%$ of said particle and
v) said plurality of hydrophobic-agent conjugates is about 25-80 weight \% of said particle;
b) a plurality of hydrophilic-hydrophobic polymers, wherein
i) each of said hydrophilic-hydrophobic polymers of said plurality comprises a hydrophilic portion attached to a hydrophobic portion,
ii) said hydrophilic portion has a weight average molecular weight of about 1-6 kD (e.g., 2-6 kD), and
iii) said plurality of hydrophilic-hydrophobic polymers is about 5-30 weight \% of said particle;
and
combining said organic solution with an aqueous solution comprising a solvent to provide said particles.
9. The particle of claim 8 , wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-8 \mathrm{kD}$.
10. A pharmaceutically acceptable composition comprising a plurality of particles of claim 2 and an additional component.
11. A kit comprising a plurality of particles of claim 2 .
12. A single dosage unit comprising a plurality of particles of claim 2.
13. A method of treating a subject having a disorder comprising administering to said subject an effective amount of particles of claim 2.
14. The particle of claim 2 comprising:
a) a plurality of hydrophobic polymer-agent conjugates, wherein
i) each hydrophobic polymer-agent conjugate of said plurality comprises a hydrophobic polymer attached to an agent,
ii) said hydrophobic polymer attached to said agent can be a homopolymer or a polymer made up of more than one kind of monomeric subunit,
iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said agent is about $1-30$ weight $\%$ of said particle and
v) said plurality of hydrophobic-agent conjugates is about 25-80 weight \% of said particle;
b) a plurality of PEG-hydrophobic polymers, wherein
i) each of said PEG-hydrophobic polymers of said plurality comprises
a PEG portion attached to a hydrophobic portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., $2-6 \mathrm{kD}$), and
iii) said plurality of PEG-hydrophobic polymers is about 5-30 weight \% of said particle;
and
c) PVA, wherein
said PVA has a weight average molecular weight of about 5-45 kD and is about $15-35$ weight $\%$ of said particle; and wherein:
the diameter of said particle is less than about 200 nm .
15. The particle of claim 14 , wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-8 \mathrm{kD}$.
16. The particle of claim 14 , comprising:
a) a plurality of hydrophobic polymer-agent conjugates, wherein
i) each hydrophobic polymer-agent conjugate of said plurality comprises a hydrophobic polymer attached to an agent,
ii) the hydrophobic polymer is made up of a first and a second type of monomeric subunit, and the ratio of the first to second type of
monomeric subunit in said hydrophobic polymer attached to said agent is from about 25:75 to about 75:25,
iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said agent is about $1-30$ weight $\%$ of said particle and
v) said plurality of hydrophobic-agent conjugates is about $25-80$ weight \% of said particle;
b) a plurality of PEG-hydrophobic polymers, wherein
i) each of said PEG-hydrophobic polymers of said plurality comprises
a PEG portion attached to a hydrophobic portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., $2-6 \mathrm{kD}$), wherein
if the weight average molecular weight of said PEG portion is about $1-3 \mathrm{kD}$, e.g., about 2 kD , the ratio of the weight average molecular weight of said PEG portion to the weight average molecular weight of said hydrophobic portion is between 1:3-1:7, and if the weight average molecular weight of said PEG portion is about $4-6 \mathrm{kD}$, e.g., about 5 kD , the ratio of the weight average molecular weight of said PEG portion to the weight average molecular weight of said hydrophobic portion is between 1:1-1:4; and
iii) said plurality of PEG-hydrophobic polymers is about 5-30 weight \% of said particle;
and
c) PVA, wherein
said PVA has a weight average molecular weight of about 5-45 kD and is about $15-35$ weight $\%$ of said particle; and wherein:
the diameter of said particle is less than about 200 nm
17. The particle of claim 16, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-8 \mathrm{kD}$.
18. The particle of claim 14 , comprising:
a) a plurality of hydrophobic polymer-agent conjugates, wherein
i) each hydrophobic polymer-agent conjugate of said plurality comprises a hydrophobic polymer attached to an agent, ii) the hydrophobic polymer is made up of a first and a second type of monomeric subunit, and the ratio of the first to second type of monomeric subunit in said hydrophobic polymer attached to said agent is from about 25:75 to about 75:25,
iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said agent is about $1-30$ weight $\%$ of said particle and
v) said plurality of hydrophobic polymer-agent conjugates is about 3580 weight \% of said particle;
b) a plurality of PEG-hydrophobic polymers, wherein
i) each of said PEG-hydrophobic polymers of said plurality comprises
a PEG portion attached to a hydrophobic portion, and
ii) said PEG portion has a weight average molecular weight of about 2-

6 kD and said hydrophobic portion has a weight average molecular weight of between about $8-13 \mathrm{kD}$,
iii) said plurality of PEG-hydrophobic polymers is about $10-25$ weight \% of said particle;
iv) said PEG portion of said PEG-hydrophobic polymer terminates in an OMe,
and
c) PVA, wherein said PVA has a weight average molecular weight of about $23-26 \mathrm{kD}$ and is about $15-35$ weight $\%$ of said particle;
wherein:
the particle further comprises a hydrophobic polymer having a terminal acyl moiety;
and
the diameter of said particle is less than about 200 nm .
19. The particle of claim 18, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-8 \mathrm{kD}$.
20. A method of making the particle of claim 14 , comprising:
providing an organic solution comprising:
a) a plurality of hydrophobic polymer-agent conjugates, wherein
i) each hydrophobic polymer-agent conjugate of said plurality comprises a hydrophobic polymer attached to an agent,
ii) the hydrophobic polymer is made up of a first and a second type of monomeric subunit, and the ratio of the first to second type of monomeric subunit in said hydrophobic polymer attached to said agent is from about $25: 75$ to about $75: 25$,
iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said agent is about $1-30$ weight $\%$ of said particle and v) said plurality of hydrophobic polymer-agent conjugates is about 2580 weight \% of said particle;
b) a plurality of PEG-hydrophobic polymers, wherein
i) each of said PEG-hydrophobic polymers of said plurality comprises
a PEG portion attached to a hydrophobic portion,
ii) said PEG portion has a weight average molecular weight of about 1 6 kD (e.g., 2-6 kD), and
iii) said plurality of PEG-hydrophobic polymers is about 5-30 weight \% of said particle; and
combining the organic solution with an aqueous solution comprising PVA to provide said particles.
21. The particle of claim 20, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $4-8 \mathrm{kD}$.
22. A pharmaceutically acceptable composition comprising a plurality of particles of claim 14 and an additional component.
23. A kit comprising a plurality of particles of claim 14.
24. A single dosage unit comprising a plurality of particles of claim 14.
25. A method of treating a subject having a disorder comprising administering to said subject an effective amount of the particle of claim 14.
26. The particle of claim 2 comprising:
a) a plurality of PLGA-agent (e.g., therapeutic or diagnostic agent) conjugates, wherein
i) each PLGA-agent conjugate of said plurality comprises a PLGA polymer attached to an agent,
ii) the ratio of lactic acid to glycolic acid in said PLGA polymer attached to said agent is from about $25: 75$ to about $75: 25$,
iii) said PLGA polymer attached to said agent has a weight average
molecular weight of about 4-15 kD,
iv) said agent is about $1-30$ weight $\%$ of said particle and
v) said plurality of PLGA-agent conjugates is about $25-80$ weight $\%$ of said particle;
b) a plurality of PEG-PLGA polymers, wherein
i) each of said PEG-PLGA polymers of said plurality comprises a PEG portion attached to a PLGA portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., $2-6 \mathrm{kD}$), and
iii) said plurality of PEG-PLGA polymers is about 5-30 weight \% of said particle;
and
c) PVA, wherein
said PVA has a weight average molecular weight of about $5-45 \mathrm{kD}$ and is about $15-35$ weight $\%$ of said particle; and
wherein:
the diameter of said particle is less than about 200 nm .
27. The particle of claim 26, wherein a)iii) said PLGA polymer attached to said agent has a weight average molecular weight of about 4-8 kD.
28. The particle of 26 , comprising:
a) a plurality of PLGA-agent (e.g., therapeutic or diagnostic agent) conjugates, wherein
i) each PLGA-agent conjugate of said plurality comprises a

PLGA polymer attached to an agent,
ii) the ratio of lactic acid to glycolic acid in said PLGA polymer
attached to said agent is from about 25:75 to about 75:25,
iii) said PLGA polymer attached to said agent has a weight average
molecular weight of about $4-15 \mathrm{kD}$,
iv) said agent is about $1-30$ weight $\%$ of said particle and
v) said plurality of PLGA-agent conjugates is about 25-80 weight \% of said particle;
b) a plurality of PEG-PLGA polymers, wherein
i) each of said PEG-PLGA polymers of said plurality comprises a PEG portion attached to a PLGA portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., 2-6 kD), wherein
if the weight average molecular weight of said PEG
portion is about $1-3 \mathrm{kD}$, e.g., about 2 kD , the ratio of the
weight average molecular weight of said PEG portion to the weight average molecular weight of said PLGA portion is between 1:3-1:7, and if the weight average molecular weight of said PEG portion is about $4-6 \mathrm{kD}$, e.g., about 5 kD , the ratio of the weight average molecular weight of said PEG portion to the weight average molecular weight of said PLGA portion is between 1:1-1:4; and
iii) said plurality of PEG-PLGA polymers is about 5-30 weight $\%$ of said particle;
and
c) PVA, wherein
said PVA has a weight average molecular weight of about $5-45 \mathrm{kD}$ and is about $15-35$ weight $\%$ of said particle; and
wherein:
the diameter of said particle is less than about 200 nm .
29. The particle of claim 28 , wherein a)iii) said PLGA polymer attached to said agent has a weight average molecular weight of about 4-8 kD.
30. The particle of claim 26 , comprising:
a) a plurality of PLGA-agent conjugates, wherein
i) each PLGA-agent conjugate of said plurality comprises a

PLGA polymer attached to an agent,
ii) the ratio of lactic acid to glycolic acid in said PLGA polymer attached to said agent is from about $25: 75$ to about $75: 25$,
iii) said PLGA polymer attached to said agent has a weight average molecular weight of about 4-15 kD,
iv) said agent is about $1-30$ weight $\%$ of said particle and
v) said plurality of PLGA-agent conjugates is about $35-80$ weight $\%$ of said particle;
b) a plurality of PEG-PLGA polymers, wherein
i) each of said PEG-PLGA polymers of said plurality comprises a PEG portion attached to a PLGA portion, and
ii) said PEG portion has a weight average molecular weight of about 2-

6 kD and said PLGA portion has a weight average molecular weight of between about 8-13 kD,
iii) said plurality of PEG-PLGA polymers is about $10-25$ weight $\%$ of said particle;
iv) said PEG portion of said PEG-PLGA polymer terminates in an OMe, and
c) PVA, wherein said PVA has a weight average molecular weight of about $23-26 \mathrm{kD}$ and is about $15-35$ weight $\%$ of said particle;
wherein:
said particle further comprises PLGA having a terminal acyl moiety;
and
the diameter of said particle is less than about 200 nm .
31. The particle of claim 30, wherein iii) said PLGA polymer attached to said agent has a weight average molecular weight of about $4-8 \mathrm{kD}$.
32. A method of making the particle of claim 26, comprising:
providing an organic solution comprising:
a) a plurality of PLGA-agent conjugates, wherein
i) each PLGA-agent conjugate of said plurality comprises a

PLGA polymer attached to an agent,
ii) the ratio of lactic acid to glycolic acid in said PLGA polymer
attached to said agent is from about 25:75 to about 75:25,
iii) said PLGA polymer attached to said agent has a weight average
molecular weight of about $4-15 \mathrm{kD}$,
iv) said agent is about $1-30$ weight $\%$ of said particle and
v) said plurality of PLGA-agent conjugates is about $25-80$ weight $\%$ of said particle;
b) a plurality of PEG-PLGA polymers, wherein
i) each of said PEG-PLGA polymers of said plurality comprises a PEG portion attached to a PLGA portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., 2-6 kD), and
iii) said plurality of PEG-PLGA polymers is about $5-30$ weight $\%$ of said particle; and
combining said organic solution with an aqueous solution comprising PVA to provide said particles.
33. The particle of claim 32, wherein a)iii) said PLGA polymer attached to said agent has a weight average molecular weight of about 4-8 kD.
34. A pharmaceutically acceptable composition comprising a plurality of particles of claim 26 and an additional component.
35. A kit comprising a plurality of particles of claim 26.
36. A single dosage unit comprising a plurality of particles of claim 26.
37. A method of treating a subject having a disorder comprising administering to said subject an effective amount of the particles of claim 26.
38. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said agent is a diagnostic agent.
39. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said agent is a therapeutic agent.
40. The particle of any of claims 1-12, 14-24, or 26-36, wherein said therapeutic agent is an anti-inflammatory agent or an agent for treatment of a cardiovascular disease.
41. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said therapeutic agent is an anti-cancer agent.
42. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said therapeutic agent is an alkylating agent, a vascular disrupting agent, a taxane, an anthracycline, a vinca alkaloid, a platinum-based agent, a topoisomerase inhibitor, an anti-angiogenic agent or an anti-metabolite.
43. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said therapeutic agent a taxane.
44. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said therapeutic agent is paclitaxel.
45. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said therapeutic agent is larotaxel.
46. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said therapeutic agent is cabazitaxel.
47. The particle of any of claims 1-12, 14-24, or 26-36, wherein said therapeutic agent is an anthracycline.
48. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said therapeutic agent is an doxorubicin.
49. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said therapeutic agent is a platinum-based agent.
50. The particle of claim any of claims $1-12,14-24$, or 26-36, wherein said therapeutic agent is selected from cisplatin, carboplatin and oxaliplatin.
51. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said therapeutic agent is a pyrimidine analog.
52. The particle of any of claims $1-12,14-24$, or $26-36$, wherein said therapeutic agent is gemcitabine.
53. The pharmaceutically acceptable composition of any of claims 10,22 or 34, wherein said additional component is a lyoprotectant.
54. The pharmaceutically acceptable composition of any of claims 10,22 or 34 , wherein said additional component is a carbohydrate.
55. The pharmaceutically acceptable composition of any of claims 10,22 or 34 , wherein said additional component is a cyclodextrin.
56. The pharmaceutically acceptable composition of any of claims 10,22 or 34, wherein said additional component is a 2-hydroxypropyl-beta-cyclodextrin.
57. The kit of any of claims 11,23 , or 35 , further comprising a liquid resistant container in which said plurality of particles is disposed.
58. The kit of any of claims 11,23 , or 35 , further comprising a diluent.
59. The method of any of claims 13,25 , or 37 , wherein said disorder is a disorder characterized by an unwanted proliferation of cells.
1005052.1
60. The method of any of claims 13,25 , or 37 , wherein said disorder is an inflammatory disorder.
61. The method of any of claims 13,25 , or 37 , wherein said disorder is a cardiovascular disorder.
62. The method of any of claims 13,25 , or 37 , wherein the disorder is cancer.
63. The method of claim 62 , wherein the cancer is breast cancer.
64. The method of claim 63 , wherein the breast cancer is locally advanced breast cancer.
65. The method of claim 63 , wherein the breast cancer is metastatic.
66. The method of claim 62 , wherein the cancer is non small cell lung cancer.
67. The method of claim 66, wherein the cancer is refractory, relapsed or resistant to a platinum-based agent and is unresectable, locally advanced or metastatic.
68. The method of claims 62 , wherein the cancer is prostate cancer.
69. The method of claim 68 , wherein the cancer is hormone refractory.
70. The method of claim 68 , wherein the cancer is metastatic.
71. The method of claim 62 , wherein the cancer is an unresectable cancer.
72. The method of claim 62 , wherein the cancer is a chemotherapeutic sensitive cancer.
73. The method of claim 62 , wherein the cancer is a chemotherapeutic refractory cancer.
74. The method of claim 62 , wherein the cancer is a chemotherapeutic resistant cancer.
75. The method of claim 62, wherein the cancer is a relapsed cancer
76. The method of claim 62 , wherein said plurality of particles is administered as adjunctive therapy with another therapy, e.g., radiation or surgery.
77. The particle of claim 2 comprising:
a) a plurality of hydrophobic polymer-docetaxel conjugates, wherein
i) each hydrophobic polymer-docetaxel conjugate of said plurality comprises a hydrophobic polymer attached to docetaxel, ii) said hydrophobic polymer attached to said docetaxel can be a homopolymer or a polymer made up of more than one kind of monomeric subunit,
iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-15 \mathrm{kD}$, iv) said docetaxel is about 1-30 weight \% of said particle and v) said plurality of hydrophobic polymer-docetaxel conjugates is about $25-80$ weight $\%$ of said particle;
b) a plurality of hydrophilic-hydrophobic polymers, wherein
i) each of said hydrophilic-hydrophobic polymers of said plurality comprises a hydrophilic portion attached to a hydrophobic portion, ii) said hydrophilic portion has a weight average molecular weight of about $1-6 \mathrm{kD}$ (e.g., $2-6 \mathrm{kD}$), and
iii) said plurality of hydrophilic-hydrophobic polymers is about 5-30 weight $\%$ of said particle;
and
c) a surfactant, wherein said surfactant is about $15-35$ weight $\%$ of said particle; and
wherein:
the diameter of said particle is less than about 200 nm .
78. The particle of claim 77, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-8 \mathrm{kD}$.
79. The particle of claim 77 , comprising:
a) a plurality of hydrophobic polymer-docetaxel conjugates, wherein
i) each hydrophobic polymer-docetaxel conjugate of said plurality comprises a hydrophobic polymer attached to docetaxel, ii) said hydrophobic polymer attached to said docetaxel can be a homopolymer or a polymer made up of more than one kind of monomeric subunit,
iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said docetaxel is about $1-30$ weight $\%$ of said particle and v) said plurality of hydrophobic polymer-docetaxel conjugates is about 25-80 weight \% of said particle;
b) a plurality of hydrophilic-hydrophobic polymers, wherein
i) each of said hydrophilic-hydrophobic polymers of said plurality comprises a hydrophilic portion attached to a hydrophobic portion, ii) said hydrophilic portion has a weight average molecular weight of about $1-6 \mathrm{kD}$ (e.g., $2-6 \mathrm{kD}$), wherein
if the weight average molecular weight of said hydrophilic portion is about $1-3 \mathrm{kD}$, e.g., about 2 kD , the ratio of the weight average molecular weight of said hydrophilic portion to the weight average molecular weight of said hydrophobic portion is between 1:3-1:7,
and if the weight average molecular weight of said hydrophilic portion is about $4-6 \mathrm{kD}$, e.g., about 5 kD , the ratio of the weight average molecular weight of said hydrophilic portion to the weight average molecular weight of said hydrophobic portion is between 1:1-1:4; and
iii) said plurality of hydrophilic-hydrophobic polymers is about 5-30 weight $\%$ of said particle; and
c) a surfactant, wherein said surfactant is about $15-35$ weight $\%$ of said particle; and
wherein:
the diameter of said particle is less than about 200 nm
80. The particle of claim 79, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-8 \mathrm{kD}$.
81. The particle of claim 77, comprising:
a) a plurality of hydrophobic polymer-docetaxel conjugates, wherein
i) each hydrophobic polymer-docetaxel conjugate of said plurality comprises a
hydrophobic polymer attached to docetaxel,
ii) said hydrophobic polymer attached to said docetaxel can be a
homopolymer or a polymer made up of more than one kind of monomeric subunit,
iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said docetaxel is about 1-30 weight $\%$ of said particle and
v) said plurality of hydrophobic polymer-docetaxel conjugates is about $35-80$ weight $\%$ of said particle;
b) a plurality of hydrophilic-hydrophobic polymers, wherein
i) each of said hydrophilic-hydrophobic polymers of said plurality comprises a hydrophilic portion attached to a hydrophobic portion, and ii) said hydrophilic portion has a weight average molecular weight of about $2-6 \mathrm{kD}$ and said hydrophobic portion has a weight average molecular weight of between about $8-13 \mathrm{kD}$, iii) said plurality of hydrophilic-hydrophobic polymers is about 10-25 weight $\%$ of said particle;
iv) said hydrophilic portion of said hydrophilic-hydrophobic polymer terminates in an OMe, and
c) a surfactant, wherein said surfactant is about $15-35$ weight $\%$ of said particle;
wherein:
said particle further comprises a hydrophobic polymer having a terminal acyl moiety;
and
the diameter of said particle is less than about 200 nm .
82. The particle of claim 81 , wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-8 \mathrm{kD}$.
83. A method of making the particle of claim 77, comprising:
providing an organic solution comprising:
a) a plurality of hydrophobic polymer-docetaxel conjugates, wherein
i) each hydrophobic polymer-docetaxel conjugate of said plurality comprises a hydrophobic polymer attached to docetaxel,
ii) said hydrophobic polymer attached to said docetaxel can be a homopolymer or a polymer made up of more than one kind of monomeric subunit,
iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said docetaxel is about $1-30$ weight $\%$ of said particle and
v) said plurality of hydrophobic polymer-docetaxel conjugates is about 25-80 weight \% of said particle;
b) a plurality of hydrophilic-hydrophobic polymers, wherein
i) each of said hydrophilic-hydrophobic polymers of said plurality comprises a hydrophilic portion attached to a hydrophobic portion, ii) said hydrophilic portion has a weight average molecular weight of about $1-6 \mathrm{kD}$ (e.g., $2-6 \mathrm{kD}$), and
iii) said plurality of hydrophilic-hydrophobic polymers is about 5-30 weight \% of said particle; and
combining said organic solution with an aqueous solution comprising a surfactant, to provide said particles.
84. The particle of claim 83 , wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-8 \mathrm{kD}$.
85. A pharmaceutically acceptable composition comprising a plurality of particles of claim 77 and an additional component.
86. A kit comprising a plurality of particles of claim 77.
87. A single dosage unit comprising a plurality of particles of claim 77.
88. A method of treating a subject having a disorder comprising administering to said subject an effective amount of particles of claim 77.
89. The particle of claim 2 comprising:
a) a plurality of hydrophobic polymer-agent conjugates, wherein
i) each hydrophobic polymer-docetaxel conjugate of said plurality comprises a hydrophobic polymer attached to docetaxel
ii) said hydrophobic polymer attached to said docetaxel can be a homopolymer or a polymer made up of more than one kind of monomeric subunit,
iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said docetaxel is about 1-30 weight \% of said particle and
v) said plurality of hydrophobic polymer-docetaxel conjugates is about $25-80$ weight $\%$ of said particle;
b) a plurality of PEG-hydrophobic polymers, wherein
i) each of said PEG-hydrophobic polymers of said plurality comprises
a PEG portion attached to a hydrophobic portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., $2-6 \mathrm{kD}$), and
iii) said plurality of PEG-hydrophobic polymers is about 5-30 weight \% of said particle;
and
c) PVA, wherein
said PVA has a weight average molecular weight of about $5-45 \mathrm{kD}$ and is about $15-35$ weight of said particle; and
wherein:
the diameter of said particle is less than about 200 nm .
90. The particle of claim 89 , wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about 4-8 kD.
91. The particle of claim 89 , comprising:
a) a plurality of hydrophobic polymer-docetaxel conjugates, wherein
i) each hydrophobic polymer-docetaxel conjugate of said plurality comprises a hydrophobic polymer attached to docetaxel,
ii) the hydrophobic polymer is made up of a first and a second type of monomeric subunit, and the ratio of the first to second type of
monomeric subunit in said hydrophobic polymer attached to said agent is from about 25:75 to about 75:25,
iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said docetaxel is about $1-30$ weight $\%$ of said particle and
v) said plurality of hydrophobic polymer-docetaxel conjugates is about 25-80 weight \% of said particle;
b) a plurality of PEG-hydrophobic polymers, wherein
i) each of said PEG-hydrophobic polymers of said plurality comprises
a PEG portion attached to a hydrophobic portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., $2-6 \mathrm{kD}$), wherein
if the weight average molecular weight of said PEG portion is about $1-3 \mathrm{kD}$, e.g., about 2 kD , the ratio of the weight average molecular weight of said PEG portion to the weight average molecular weight of said hydrophobic portion is between 1:3-1:7, and if the weight average molecular weight of said PEG portion is about $4-6 \mathrm{kD}$, e.g., about 5 kD , the ratio of the weight average molecular weight of said PEG portion to the weight average molecular weight of said hydrophobic portion is between 1:1-1:4; and
iii) said plurality of PEG-hydrophobic polymers is about 5-30 weight \% of said particle;
and
c) PVA, wherein
said PVA has a weight average molecular weight of about 5-45 kD and is about $15-35$ weight $\%$ of said particle; and wherein:
the diameter of said particle is less than about 200 nm
92. The particle of claim 91, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-8 \mathrm{kD}$.
93. The particle of claim 89 , comprising:
a) a plurality of hydrophobic polymer-docetaxel conjugates, wherein
i) each hydrophobic polymer-docetaxel conjugate of said plurality comprises a hydrophobic polymer attached to docetaxel, ii) the hydrophobic polymer is made up of a first and a second type of monomeric subunit, and the ratio of the first to second type of monomeric subunit in said hydrophobic polymer attached to said agent is from about $25: 75$ to about $75: 25$,
iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said docetaxel is about 1-30 weight \% of said particle and
v) said plurality of hydrophobic polymer-docetaxel conjugates is about $35-80$ weight $\%$ of said particle;
b) a plurality of PEG-hydrophobic polymers, wherein
i) each of said PEG-hydrophobic polymers of said plurality comprises
a PEG portion attached to a hydrophobic portion, and
ii) said PEG portion has a weight average molecular weight of about 2-

6 kD and said hydrophobic portion has a weight average molecular
weight of between about $8-13 \mathrm{kD}$,
iii) said plurality of PEG-hydrophobic polymers is about 10-25 weight \% of said particle;
iv) said PEG portion of said PEG-hydrophobic polymer terminates in an OMe ,
and
c) PVA, wherein said PVA has a weight average molecular weight of about $23-26 \mathrm{kD}$ and is about $15-35$ weight $\%$ of said particle;
wherein:
said particle further comprises a hydrophobic polymer having a terminal acyl moiety;
and
the diameter of said particle is less than about 200 nm .
94. The particle of claim 93, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about 4-8 kD.
95. A method of making the particle of claim 89 , comprising:
providing an organic solution comprising:
a) a plurality of hydrophobic polymer-docetaxel conjugates, wherein
i) each hydrophobic polymer-docetaxel conjugate of said plurality comprises a hydrophobic polymer attached to docetaxel,
ii) the hydrophobic polymer is made up of a first and a second type of monomeric subunit, and the ratio of the first to second type of monomeric subunit in said hydrophobic polymer attached to said agent is from about $25: 75$ to about $75: 25$,
iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said docetaxel is about $1-30$ weight $\%$ of said particle and
v) said plurality of hydrophobic polymer-docetaxel conjugates is about $25-80$ weight $\%$ of said particle;
b) a plurality of PEG-hydrophobic polymers, wherein
i) each of said PEG-hydrophobic polymers of said plurality comprises
a PEG portion attached to a hydrophobic portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., 2-6 kD), and
iii) said plurality of PEG-hydrophobic polymers is about 5-30 weight
\% of said particle; and
combining the organic solution with an aqueous solution comprising PVA to provide said particles.
96. The particle of claim 95, wherein iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $4-8 \mathrm{kD}$.
97. A pharmaceutically acceptable composition comprising a plurality of particles of claim 89 and an additional component.
98. A kit comprising a plurality of particles of claim 89.
99. A method of treating a subject having a disorder comprising administering to said subject an effective amount of the particles of claim 89 .
100. The pharmaceutically acceptable composition of any of claims 85 or 97 , wherein said additional component is a lyoprotectant.
101. The pharmaceutically acceptable composition of any of claims 85 or 97 , wherein said additional component is a carbohydrate.
102. The pharmaceutically acceptable composition of any of claims 85 or 97 , wherein said additional component is a cyclodextrin.
103. The pharmaceutically acceptable composition of any of claims 85 or 97 , wherein said additional component is a 2-hydroxypropyl-beta-cyclodextrin.
104. The kit of any of claims 86 or 98 , further comprising a liquid resistant container in which said plurality of particles is disposed.
105. The kit of any of claims 86 or 98 , further comprising a diluent.
106. The method of any of claims 85 or 99 , wherein said disorder is a disorder characterized by an unwanted proliferation of cells.
1005052.1
107. The method of any of claims 85 or 99 , wherein said disorder is an inflammatory disorder.
108. The method of any of claims 85 or 99 , wherein said disorder is a cardiovascular disorder.
109. The method of any of claims 85 or 99 , wherein the disorder is cancer.
110. The method of any of claims 109 , wherein the cancer is breast cancer.
111. The method of claim 110 , wherein the breast cancer is locally advanced breast cancer.
112. The method of claim 110 , wherein the breast cancer is metastatic.
113. The method of claim 109 , wherein the cancer is non small cell lung cancer.
114. The method of claim 113 , wherein the cancer is refractory, relapsed or resistant to a platinum-based agent and is unresectable, locally advanced or metastatic.
115. The method of claim 109 , wherein the cancer is prostate cancer.
116. The method of claim 115 , wherein the cancer is hormone refractory.
117. The method of claim 115 , wherein the cancer is metastatic.
118. The method of any of claims 109 , wherein the cancer is an unresectable cancer.
119. The method of any of claims 109 , wherein the cancer is a chemotherapeutic sensitive cancer.
120. The method of any of claims 109 , wherein the cancer is a chemotherapeutic refractory cancer.
121. The method of any of claims 109 , wherein the cancer is a chemotherapeutic resistant cancer.
122. The method of any of claims 109 , wherein the cancer is a relapsed cancer.
123. The method of any of claims 109 , wherein said plurality of particles is administered as adjunctive therapy with another therapy, e.g., radiation or surgery.
124. The particle of claim 2 comprising:
a) a plurality of PLGA-docetaxel conjugates, wherein
i) each PLGA-docetaxel conjugate of said plurality comprises a

PLGA polymer attached to docetaxel,
ii) the ratio of lactic acid to glycolic acid in said PLGA polymer
attached to said docetaxel is from about $25: 75$ to about $75: 25$,
iii) said PLGA polymer attached to said docetaxel has a weight average
molecular weight of about $4-15 \mathrm{kD}$,
iv) said docetaxel is about $1-30$ weight $\%$ of said particle and
v) said plurality of PLGA-docetaxel conjugates is about 25-80 weight \% of said particle;
b) a plurality of PEG-PLGA polymers, wherein
i) each of said PEG-PLGA polymers of said plurality comprises a PEG portion attached to a PLGA portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., $2-6 \mathrm{kD}$), and
iii) said plurality of PEG-PLGA polymers is about 5-30 weight $\%$ of said particle;
and
c) PVA, wherein said PVA has a weight average molecular weight of about 5-

45 kD and is about $15-35$ weight $\%$ of said particle; and
wherein:
the diameter of said particle is less than about 200 nm .
125. The particle of claim 124, wherein a)iii) said PLGA polymer attached to said docetaxel has a weight average molecular weight of about $4-8 \mathrm{kD}$.
126. The particle of claim 124 , comprising:
a) a plurality of PLGA-docetaxel conjugates, wherein
i) each PLGA-docetaxel conjugate of said plurality comprises a PLGA polymer attached to docetaxel,
ii) the ratio of lactic acid to glycolic acid in said PLGA polymer attached to said docetaxel is from about 25:75 to about 75:25,
iii) said PLGA polymer attached to said docetaxel has a weight average molecular weight of about 4-15 kD,
iv) said docetaxel is about $1-30$ weight $\%$ of said particle and
v) said plurality of PLGA-docetaxel conjugates is about 25-80 weight \% of said particle;
b) a plurality of PEG-PLGA polymers, wherein
i) each of said PEG-PLGA polymers of said plurality comprises a PEG portion attached to a PLGA portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., $2-6 \mathrm{kD}$), wherein
if the weight average molecular weight of said PEG portion is about $1-3 \mathrm{kD}$, e.g., about 2 kD , the ratio of the weight average molecular weight of said PEG portion to the weight average molecular weight of said PLGA
portion is between 1:3-1:7, and if the weight average molecular weight of said PEG portion is about $4-6 \mathrm{kD}$, e.g., about 5 kD , the ratio of the weight average molecular weight of said PEG portion to the weight average molecular weight of said PLGA portion is between 1:1-1:4; and
iii) said plurality of PEG-PLGA polymers is about 5-30 weight \% of said particle; and
c) PVA, wherein
said PVA has a weight average molecular weight of about $5-45 \mathrm{kD}$ and is about $15-35$ weight $\%$ of said particle; and wherein:
the diameter of said particle is less than about 200 nm
127. The particle of claim 126 , wherein a)iii) said PLGA polymer attached to said docetaxel has a weight average molecular weight of about $4-8 \mathrm{kD}$.
128. The particle of claim 124 , comprising:
a) a plurality of PLGA-docetaxel conjugates, wherein
i) each PLGA-docetaxel conjugate of said plurality comprises a

PLGA polymer attached to docetaxel,
ii) the ratio of lactic acid to glycolic acid in said PLGA polymer attached to said docetaxel is from about $25: 75$ to about $75: 25$,
iii) said PLGA polymer attached to said docetaxel has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said docetaxel is about 1-30 weight $\%$ of said particle and
v) said plurality of PLGA-docetaxel conjugates is about $35-80$ weight \% of said particle;
b) a plurality of PEG-PLGA polymers, wherein
i) each of said PEG-PLGA polymers of said plurality comprises a PEG portion attached to a PLGA portion, and
ii) said PEG portion has a weight average molecular weight of about 2-

6 kD and said PLGA portion has a weight average molecular weight of between about $8-13 \mathrm{kD}$,
iii) said plurality of PEG-PLGA polymers is about $10-25$ weight $\%$ of said particle;
iv) said PEG portion of said PEG-PLGA polymer terminates in an OMe,
and
c) PVA, wherein said PVA has a weight average molecular weight of about $23-26 \mathrm{kD}$ and is about $15-35$ weight $\%$ of said particle;
wherein:
said particle further comprises PLGA having a terminal acyl moiety; and the diameter of said particle is less than about 200 nm .
129. The particle of claim 128 , wherein a)iii) said PLGA polymer attached to said docetaxel has a weight average molecular weight of about $4-8 \mathrm{kD}$.
130. A method of making the particle of claim 124 , comprising:
providing an organic solution comprising:
a) a plurality of PLGA-docetaxel conjugates, wherein
i) each PLGA-docetaxel conjugate of said plurality comprises a PLGA polymer attached to docetaxel,
ii) the ratio of lactic acid to glycolic acid in said PLGA polymer attached to said docetaxel is from about $25: 75$ to about $75: 25$,
iii) said PLGA polymer attached to said docetaxel has a weight average molecular weight of about $4-15 \mathrm{kD}$,
iv) said docetaxel is about 1-30 weight $\%$ of said particle and
v) said plurality of PLGA-docetaxel conjugates is about 25-80 weight \% of said particle;
b) a plurality of PEG-PLGA polymers, wherein
i) each of said PEG-PLGA polymers of said plurality comprises a PEG portion attached to a PLGA portion,
ii) said PEG portion has a weight average molecular weight of about 1-

6 kD (e.g., 2-6 kD), and
iii) said plurality of PEG-PLGA polymers is about $5-30$ weight $\%$ of
said particle; and
combining said organic solution with an aqueous solution comprising
PVA to provide said particles.
131. The particle of claim 130 , wherein a)iii) said PLGA polymer attached to said docetaxel has a weight average molecular weight of about $4-8 \mathrm{kD}$.
132. A pharmaceutically acceptable composition comprising a plurality of particles of claim 124 and an additional component.
133. The pharmaceutically acceptable composition of claim 124 , wherein said additional component is a lyoprotectant.
134. The pharmaceutically acceptable composition of claim 124 , wherein said additional component is a carbohydrate.
135. The pharmaceutically acceptable composition of claim 124 , wherein said additional component is a cyclodextrin.
136. The pharmaceutically acceptable composition of claim 124 , wherein said additional component is a 2-hydroxypropyl-beta-cyclodextrin.
137. A kit comprising a plurality of particles of claim 124.
138. The kit of claim 137 , further comprising a liquid resistant container in which said plurality of particles is disposed.
139. The kit of claim 137, further comprising a diluent.
140. A single dosage unit comprising a plurality of particles of claim 124.
141. A method of treating a subject having a disorder comprising administering to said subject an effective amount of particles of claim 124.
142. The method of claim 141 , wherein said disorder is a disorder characterized by an unwanted proliferation of cells.
143. The method of claim 141, wherein said disorder is an inflammatory disorder.
144. The method of claim 141, wherein said disorder is a cardiovascular disorder.
145. The method of claim 141 , wherein the disorder is cancer.
146. The method of claims 145 , wherein the cancer is breast cancer.
147. The method of claim 146, wherein the breast cancer is locally advanced breast cancer.
148. The method of claim 146 , wherein the breast cancer is metastatic.
149. The method of claim 145 , wherein the cancer is non small cell lung cancer.
150. The method of claim 149 , wherein the cancer is refractory, relapsed or resistant to a platinum-based agent and is unresectable, locally advanced or metastatic. 1005052.1
151. The method of claim 145 , wherein the cancer is prostate cancer.
152. The method of claim 151, wherein the cancer is hormone refractory.
153. The method of claim 151, wherein the cancer is metastatic.
154. The method of claim 145 , wherein the cancer is an unresectable cancer.
155. The method of claim 145 , wherein the cancer is a chemotherapeutic sensitive cancer.
156. The method of claim 145 , wherein the cancer is a chemotherapeutic refractory cancer.
157. The method of claim 145 , wherein the cancer is a chemotherapeutic resistant cancer.
158. The method of claim 145 , wherein the cancer is a relapsed cancer
159. The method of claim 145, wherein the plurality of particles of claim 124 is administered as adjunctive therapy with another therapy, e.g., radiation or surgery.
160. The method of treating a subject of claim 13, wherein the particle is the particle of claim 4 , the disorder is cancer, and the agent is a taxane.
161. The method of treating a subject of claim 160 , wherein the agent is docetaxel.
162. The method of treating a subject of claim 161 , wherein the disorder is breast cancer.
163. The method of claim 162 , wherein the breast cancer is locally advanced breast cancer.
164. The method of claim 162 , wherein the breast cancer is metastatic.
165. The method of claim 161 , wherein the disorder is non small cell lung cancer.
166. The method of claim 165 , wherein the cancer is refractory, relapsed or resistant to a platinum-based agent and is unresectable, locally advanced or metastatic.
167. The method of claim 161 , wherein the cancer is prostate cancer.
168. The method of claim 167, wherein the cancer is hormone refractory.
169. The method of claim 167, wherein the cancer is metastatic.
170. The method of treating a subject of claim 25 , wherein the particle is the particle of claim 16, the disorder is cancer, and the agent is a taxane.
171. The method of treating a subject of claim 170 , wherein the agent is docetaxel.
172. The method of treating a subject of claim 171 , wherein the disorder is breast cancer.
173. The method of claim 172 , wherein the breast cancer is locally advanced breast cancer.
174. The method of claim 172 , wherein the breast cancer is metastatic.
175. The method of claim 171 , wherein the disorder is non small cell lung cancer.
176. The method of claim 175 , wherein the cancer is refractory, relapsed or resistant to a platinum-based agent and is unresectable, locally advanced or metastatic.
177. The method of claim 171 , wherein the cancer is prostate cancer.
178. The method of claim 177 , wherein the cancer is hormone refractory.
179. The method of claim 177, wherein the cancer is metastatic.
180. The method of treating a subject of claim 37 , wherein the particle is the particle of claim 28 , the disorder is cancer, and the agent is a taxane.
181. The method of treating a subject of claim 180 , wherein the agent is docetaxel.
182. The method of treating a subject of claim 181, wherein the disorder is breast cancer.
183. The method of claim 182, wherein the breast cancer is locally advanced breast cancer.
184. The method of claim 182 , wherein the breast cancer is metastatic.
185. The method of claim 181 wherein the disorder is non small cell lung cancer.
186. The method of claim 185, wherein the cancer is refractory, relapsed or resistant to platinum-based agent and is unresectable, locally advanced or metastatic.
187. The method of claim 181, wherein the cancer is prostate cancer.
188. The method of claim 187, wherein the cancer is hormone refractory.
189. The method of claim 187, wherein the cancer is metastatic.
190. The method of treating a subject of claim 141, wherein the particle is the particle of claim 130 and the disorder is cancer.
191. The method of treating a subject of claim 190, wherein the disorder is breast cancer.
192. The method of claim 191, wherein the breast cancer is locally advanced breast cancer.
193. The method of claim 191, wherein the breast cancer is metastatic.
194. The method of claim 190, wherein the disorder is non small cell lung cancer.
195. The method of claim 194, wherein the cancer is refractory, relapsed or resistant to a platinum-based agent and is unresectable, locally advanced or metastatic.
196. The method of claim 190 , wherein the cancer is prostate cancer.
197. The method of claim 196, wherein the cancer is hormone refractory.
198. The method of claim 196, wherein the cancer is metastatic.
199. The particle of claim 2 , wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $9-12 \mathrm{kD}$.
200. The particle of claim 2, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $8-13 \mathrm{kD}$.
201. The particle of claim 4, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about 9-12 kD.
202. The particle of claim 4, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $8-13 \mathrm{kD}$.
203. The particle of claim 6, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $9-12 \mathrm{kD}$.
204. The particle of claim 6, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $8-13 \mathrm{kD}$.
205. The particle of claim 8 , wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $9-12 \mathrm{kD}$.
206. The particle of claim 8 , wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $8-13 \mathrm{kD}$.
207. The particle of claim 14, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about 9-12 kD.
208. The particle of claim 14, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $8-13 \mathrm{kD}$.
209. The particle of claim 16, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $9-12 \mathrm{kD}$.
210. The particle of claim 16, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $8-13 \mathrm{kD}$.
211. The particle of claim 18, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $9-12 \mathrm{kD}$.
212. The particle of claim 18 , wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $8-13 \mathrm{kD}$.
213. The particle of claim 20, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $9-12 \mathrm{kD}$.
214. The particle of claim 20, wherein a)iii) said hydrophobic polymer attached to said agent has a weight average molecular weight of about $8-13 \mathrm{kD}$.
215. The particle of claim 77, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $9-12 \mathrm{kD}$.
216. The particle of claim 77, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $8-13 \mathrm{kD}$.
217. The particle of claim 79, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $9-12 \mathrm{kD}$.
218. The particle of claim 79, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $8-13 \mathrm{kD}$.
219. The particle of claim 81 , wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $9-12 \mathrm{kD}$.
220. The particle of claim 81 , wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $8-13 \mathrm{kD}$.
221. The particle of claim 83 , wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $9-12 \mathrm{kD}$.
222. The particle of claim 83 , wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $8-13 \mathrm{kD}$.
223. The particle of claim 89 , wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about 9-12 kD.
224. The particle of claim 89, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $8-13 \mathrm{kD}$.
225. The particle of claim 91, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $9-12 \mathrm{kD}$.
226. The particle of claim 91, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $8-13 \mathrm{kD}$.
227. The particle of claim 93, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $9-12 \mathrm{kD}$.
228. The particle of claim 93, wherein a)iii) said hydrophobic polymer attached to said docetaxel has a weight average molecular weight of about $8-13 \mathrm{kD}$.
229. The pharmaceutically acceptable composition of any of claims 10,22 or 34, wherein said additional component is a polysaccharide.
230. A polymer-agent conjugate comprising:
a hydrophobic polymer, wherein said hydrophobic polymer includes a terminal protecting group; and
an agent attached to said polymer.
231. The polymer-agent conjugate of claim 230, wherein said hydrophobic polymer is PLGA.
232. The polymer-agent conjugate of claim 231, wherein said PLGA polymer has a weight average molecular weight of about $4-8 \mathrm{kD}$.
233. The polymer-agent conjugate of claim 231, wherein said PLGA polymer has a weight average molecular weight of about $8-13 \mathrm{kD}$.
234. The polymer-agent conjugate of claim 231, wherein said PLGA polymer has a weight average molecular weight of about $9-12 \mathrm{kD}$.
235. The polymer-agent conjugate of claim 230, wherein said hydrophobic polymer is PLA.
236. The polymer-agent conjugate of claim 230, wherein said hydrophobic polymer is PGA.
237. The polymer-agent conjugate of claim 230, wherein said terminal protecting group is an acyl group.
238. The polymer-agent conjugate of claim 230, wherein said terminal protecting group is an acetyl group.
239. The polymer-agent conjugate of claim 230, having the formula:

wherein:
L is selected from a bond or linker;
R is selected from hydrogen and methyl, wherein about 45% to about 55% of R substituents are hydrogen and about 45% to about 55% are methyl;
R^{\prime} is selected from acyl and a hydroxy protecting group; and n is an integer from about 15 to about 308.
240. The polymer-agent conjugate of claim 239 , wherein R ' is acyl.
241. The polymer-agent conjugate of claim 239 , wherein R ' is acetyl.
242. The polymer-agent conjugate of claim 239 , wherein about 50% of R substituents are hydrogen and about 50% are methyl.
243. The polymer-agent conjugate of claim 10 , wherein n is from about 77 to about 123 .
244. The polymer-agent conjugate of claim 239, wherein n is from about 123 to about 200.
245. The polymer-agent conjugate of any of claims 230-244, wherein said agent is a therapeutic agent.
246. The polymer-agent conjugate of claim 245 , wherein said therapeutic agent is an anti-cancer agent.
247. The polymer-agent conjugate of claim 246, wherein said anti-cancer agent is an alkylating agent, a vascular disrupting agent, a taxane, an anthracycline, a vinca alkaloid, a platinum-based agent, a topoisomerase inhibitor, an anti-angiogenic agent or an anti-metabolite.
248. The polymer-agent conjugate of claim 246, wherein said anti-cancer agent is a taxane.
249. The polymer-agent conjugate of claim 248 , wherein said taxane is docetaxel.
250. The polymer-agent conjugate of claim 248 , wherein said taxane is paclitaxel.
251. The polymer-agent conjugate of claim 248 , wherein said taxane is larotaxel.
252. The polymer-agent conjugate of claim 248 , wherein said taxane is cabazitaxel.
253. The polymer-agent conjugate of claim 248, wherein said anti-cancer agent is an anthracycline.
254. The polymer-agent conjugate of claim 248 , wherein said anthracycline is doxorubicin.

Polymer ${ }^{1}$-ABX-Agent

Example	A	B	X	Drug	Hydroxy Protecting Groups	Process for Preparation	Final Product
1.	-	-	3-NH2	doxorubicin	None	1	doxorubicin attached to the polymer
2.	-	- $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$	3-NH2	doxorubicin	None	2	doxorubicin attached to the polymer
3.	-	- $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OCH}_{2} \mathrm{CO}-$	3-NH2	doxorubicin	None	2	doxorubicin attached to the polymer
4.	-	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CO}-$	3-NH2	doxorubicin	None	2	doxorubicin attached to the polymer
5.	-	$\begin{gathered} -\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{SSCH}_{2} \mathrm{CH}_{2} \mathrm{QCO}- \\ \mathrm{Q} \text { is } \mathrm{O} \text { or } \mathrm{NH} \end{gathered}$	3-NH2	doxorubicin	None	2	doxorubicin attached to the polymer
6.	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}-$	$-\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHCO}-$	3-NH2	doxorubicin	None	3	doxorubicin attached to the polymer
7.	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}-$	-S(CH2) ${ }_{2} \mathrm{OCO}-$	3-NH2	doxorubicin	None	3	doxorubicin attached to the polymer
8.	-	$\begin{gathered} -\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CO}- \\ \mathrm{n} \text { is } 1,2, \text { or } 3 \end{gathered}$	3-NH2	doxorubicin	None	2	doxorubicin attached to the polymer
9.	-	-NHZCO- *	3-NH2	doxorubicin	None	2	doxorubicin attached to the polymer
10.	-	-	2'-OH	paclitaxel	-	4	2'-paclitaxel attached to polymer
11.	-	-	$\begin{gathered} \text { 2’-OAcetyl, } \\ \text { 7-OH } \end{gathered}$	paclitaxel	Acetyl	5	2'-acetyl-7-paclitaxel attached to polymer
12.	-	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$	2'-OH	paclitaxel	None	6	2'- paclitaxel attached to polymer
13.	-	- $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OCH}_{2} \mathrm{CO}-$	2'-OH	paclitaxel	None	6	2'- paclitaxel attached to polymer
14.	-	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CO}-$	2'-OH	paclitaxel	None	6	2' -paclitaxel attached to the polymer
15.	-	$\begin{gathered} -\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{SSCH}_{2} \mathrm{CH}_{2} \mathrm{QCO}- \\ \mathrm{Q} \text { is } \mathrm{O} \text { or } \mathrm{NH} \end{gathered}$	2'-OH	paclitaxel	None	6	2'- paclitaxel attached to the polymer
16.	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}-$	$-\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHCO}-$	$2^{\prime}-\mathrm{OH}$	paclitaxel	None	7	2'- paclitaxel attached to the polymer
17.	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}-$	$-\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCO}-$	2'-OH	paclitaxel	None	7	2'- paclitaxel attached to the polymer
18.	-	$\begin{gathered} -\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CO}- \\ \mathrm{n} \text { is } 1,2, \text { or } 3 \end{gathered}$	$2^{\prime}-\mathrm{OH}$	paclitaxel	None	6	2'- paclitaxel attached to the polymer
19.	-	-NHZCO- *	2^{\prime}-OH	paclitaxel	None	6	2'- paclitaxel attached to the polymer
20.	-	-	2^{\prime}-OH	docetaxel	-	8	2'-docetaxel attached to the polymer
21.	-	-	$\begin{gathered} 2 \text { '-OAcetyl, } \\ 7-\mathrm{OH} \end{gathered}$	docetaxel	Acetyl	9	2'-acetyl-7-docetaxel attached to the polymer

* Z is a mono, di, or tripeptide or other peptide or derivative thereof where NH and CO represent the amino and acid terminus of the amino acid or peptide
${ }^{1}$ Polymer $=$ AcO-PLGA-C(O)-

FIGURE 1

Example	A	B	X	Drug	Hydroxy Protecting Groups	Process for Preparation	Final Product
22.	-	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$	2'-OH	docetaxel	None	10	2'-docetaxel attached to the polymer
23.	-	- $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OCH}_{2} \mathrm{CO}-$	2'-OH	docetacel	None	10	2'-docetaxel attached to the polymer
24.	-	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CO}-$	2'-OH	docetaxel	None	10	2'-docetaxel attached to the polymer
25.	-	$\begin{gathered} -\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{SSCH}_{2} \mathrm{CH}_{2} \mathrm{QCO}- \\ \mathrm{Q} \text { is } \mathrm{O} \text { or } \mathrm{NH} \end{gathered}$	2'-OH	docetaxel	None	10	2'-docetaxel attached to the polymer
26.	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}-$	$-\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHCO}-$	2'-OH	docetaxel	None	11	2'-docetaxel attached to the polymer
27.	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}-$	$-\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCO}-$	2'-OH	docetaxel	None	11	2'-docetaxel attached to the polymer
28.	-	$\begin{gathered} -\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CO}- \\ \mathrm{n} \text { is } 1,2, \text { or } 3 \end{gathered}$	2'-OH	docetaxel	None	10	2'-docetaxel attached to the polymer
29.	-	-NHZCO- *	2'-OH	docetaxel	None	10	2'-docetaxel attached to the polymer

[^0]FIGURE 1 (continued)

Polymer ${ }^{1}$-ABX-Agent

Example	A	B	X	Drug	Hydroxy Protecting Groups	Process for Preparation	Final Product
1.	$-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$	-	$2^{\prime}-\mathrm{OH}$	paclitaxel	,	12	2'-paclitaxel attached to Polymer
2.	- $\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$	-	$\begin{aligned} & 2^{\prime}-\mathrm{Ac}, \\ & 7 \prime-\mathrm{OH} \end{aligned}$	paclitaxel	Acetyl or hexanoyl	13	2'-acetyl-7-paclitaxel attached to Polymer
3.	- $\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$		7'-OH	paclitaxel	TBDMS ($\mathbf{t}-$ butyldimethylsilyl) or TROC	14	7'-paclitaxel attached to Polymer
4.	- $\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$	$2^{\prime}-\mathrm{OH}$	paclitaxel	-	15	2'-paclitaxel attached to Polymer
5.	- $\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$	- $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$	$2^{\prime}-\mathrm{OH}$	paclitaxel	Acetyl or hexanoyl	16	2'-acetyl-7-paclitaxel attached to Polymer
6.	$-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$	7’-OH	paclitaxel	TBDMS or TROC	17	7'-paclitaxel attached to Polymer
7.	-CO-	-	$2^{\prime}-\mathrm{OH}$	paclitaxel	-	12	2'-paclitaxel attached to Polymer
8.	- $\mathrm{CO}-$	-	$\begin{aligned} & 2^{\prime}-\mathrm{Ac}, \\ & 7 \prime-\mathrm{OH} \end{aligned}$	paclitaxel	Acetyl or hexanoyl	13	2'-acetyl-7-paclitaxel attached to Polymer
9.	-CO-		7'-OH	paclitaxel	TBDMS or TROC	14	7'-paclitaxel attached to Polymer
10.	-CO-	- $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$	2'-OH	paclitaxel	-	15	2'-paclitaxel attached to Polymer
11.	-CO-	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$	2^{\prime}-OH	paclitaxel	Acetyl or hexanoyl	16	2'-acetyl-7-paclitaxel attached to Polymer
12.	-CO-	$-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$	7’-OH	paclitaxel	TBDMS or TROC	17	7'-paclitaxel attached to Polymer

${ }^{1}$ Polymer = ROOC-PLGA-O-, wherein R is H or alkyl, or HO-PLGA-Y-PLGA-O-, wherein Y is a diol

FIGURE 2

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 10/28770

A. CLASSIFICATION OF SUBJECT MATTER IPC(8) - A61K 9/00 (2010.01) USPC - 424/400 According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) USPC - 424/400			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched USPC - 424/94.3, 194.1, 195.11, 424, 471, 490, 497, 499, 800; 435/7.23; 514/449 (text search - see search terms below)			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) PubWEST (PGPB, USPT, EPAB, JPAB); Google Patents; Google Search terms used: polymer, conjugate, nanoparticle, PLGA, PEG, PVA, docetaxel, doxorubicin, platinum, cancer, breast cancer, nonsmall cell lung cancer, prostate cancer; metastatic, refractory, kit, lyoprotectant, hydroxypropyl cyclodextrin			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where	propriate, of the relevant passages	Relevant to claim No.
$\frac{X}{Y}$	WO 2006/014626 A2 (MAYER et al.) 9 February 2006 [0044]-[0047], [0066], [0070]-[0072], [0076], [0079], [00 [0110], [0115]-[0116]	(09.02.2006) para [0024]-[0026], [0039], 81], [0086], [0092], [0095], [0108],	$\begin{aligned} & \frac{1,38-52}{2-37,53-159,161-169} \\ & 171-179,181-189,191- \\ & 254 \end{aligned}$
Y	US $2002 / 0164290$ A1 (STEFELY et al.) 7 November 2002 [0054], [0111]	$002 \text { (07.11.2002) рага [0012]-[0013]. }$	$\begin{aligned} & \text { 6-7, 18-19, 30-31, 81-82, } \\ & 93-94,128-129,203-204 \text {, } \\ & 211-212,219-220,227- \\ & 228,230-254 \end{aligned}$
Y	US 2008/0248126 A1 (CHENG et al.) 9 October 2008 [0101], [0124]-[0125], [0134]; Table 1; Fig. 2	(09.10.2008) para [0008], [0032], [0073],	$\begin{aligned} & 2-37,53-159,161-169 \\ & 171-179,181-189,191 . \\ & 229 \end{aligned}$
Y	US 2007/0071790 A1 (AMEER et al.) 29 March 2007 [0092]	29.03.2007) para [0010], [0012], [0079],	$\begin{aligned} & 2-37,53-159,161-169 \\ & 171-179,181-189,191- \\ & 229 \end{aligned}$
Y	US 7,163,698 B2 (OH et al.) 16 January 2007 (16.01.20 In 5-6; col 12, In 47-67	007) col 3, In 50-53; col 4, In 4-7; col 11,	$\begin{aligned} & \text { 14-37, 89-99, 124-159, } \\ & \text { 171-179, 181-189, 191- } \\ & 198,207-214,223-228, \\ & 239-254 \end{aligned}$
\pm Further documents are listed in the continuation of Box C .			
Date of the actual completion of the international search 15 May 2010 (15.05.2010)		Date of mailing of the international search report 15 JUL 2010	
Name and Mail Stop P P.O. Box 1 Facsimile	ailing address of the ISA/US T, Attn: ISAUUS, Commissioner for Patents 0, Alexandria, Virginia 22313-1450 - 571-273-3201	Authorized officer: Lee W. Young PCT Helpdesk: $571-272-4300$ PCT OSP: 571-272-7774	

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT
International application No.
РCT/US 10/28770

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

Box No. II Observations where certain claims were found unsearchable (Continuation of item $\mathbf{2}$ of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
2.Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
2. \triangle

Claims Nos.: 160, 170, 180 and 190
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1.As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees
3.As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. \square No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.
Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)
(19) Organisation Mondiale de la Propriété Intellectuelle
Bureau international

(43) Date de la publication internationale

 11 novembre 2010 (11.11.2010)
$||\mid$
(10) Numéro de publication internationale WO 2010/128258 A1
(51) Classification internationale des brevets :

A61K 31/337 (2006.01) A61P 35/00 (2006.01)
A61K 31/7068 (2006.01)
(21) Numéro de la demande internationale :

PCT/FR2010/050873
(22) Date de dépôt international :

6 mai 2010 (06.05.2010)
(25) Langue de dépôt :
français
(26) Langue de publication :
(30) Données relatives à la priorité :
$0902189 \quad 6$ mai 2009 (06.05.2009)
français
$0902264 \quad 11$ mai 2009 (11.05.2009)
FR
FR
(71) Déposant (pour tous les États désignés sauf US) : SANOFI-AVENTIS [FR/FR]; 174 avenue de France, F-75013 Paris (FR).
(72) Inventeur; et
(75) Inventeur/Déposant (pour US seulement): MAGHERINI, Emmanuelle [FR/FR]; c/o SanofiAventis, Département Brevets, 174 avenue de France, F-75013 Paris (FR).
(74) Mandataire : GASLONDE, Aude; c/o Sanofi-Aventis, Département Brevets, 174 avenue de France, F-75013 Paris (FR).
(81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible) : AE, AG, AL, AM, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}$, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible) : ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, $Z M, Z W$), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
Publiee :

- avec rapport de recherche internationale (Art. 21(3))
(54) Title : ANTITUMOR COMBINATION INCLUDING CABAZITAXEL AND CAPECITABINE
(54) Titre : COMBINAISON ANTITUMORALE COMPRENANT LE CABAZITAXEL ET LA CAPECITABINE
(57) Abstract : The invention relates to a pharmaceutical antitumor combination including cabazitaxel and capecitabine, wherein both of said antitumor agents may be in the form of a base, in the form of a pharmaceutically acceptable acid salt or in the form of a hydrate or solvate, intended for the treatment of metastatic breast cancer in patients progressing after a previous treatment with anthracyclines and taxanes.
(57) Abrégé : L'invention est relative à une combinaison pharmaceutique antitumorale comprenant le cabazitaxel et la capecitabine, ces deux agents antitumoraux pouvant être sous forme de base, sous forme d'un sel d'un acide pharmaceutiquement acceptable ou sous forme d'un hydrate ou d'un solvat, destinée à traiter le cancer du sein métastatique chez les patientes progressant après un traitement antérieur par anthracyclines et taxanes.

COMBINAISON ANTITUMORALE COMPRENANT

LE CABAZITAXEL ET LA CAPECITABINE

La présente invention concerne une combinaison antitumorale associant le cabazitaxel et la capecitabine dans le traitement du cancer du sein métastatique chez les patientes progressant après un traitement antérieur par anthracyclines et taxanes.

[Art antérieur et problème technique]

Le cancer du sein touche une large partie de la population féminine mondiale : 1,15 million de cas dans le monde en 2002 ; il est prévu qu'il touche 1,4 million de cas en 2010 (CA cancer J.Clin. 2005, 55, 74-108). Il s'agit du cancer le plus fréquent chez la femme.

Le cancer du sein métastatique (ou MBC en Anglais) est généralement traité par une chimiothérapie à base d'anthracyclines et de taxanes («Concise Review for clinicians: advances in screening, diagnosis and treatment of breast cancer» Mayo clinic proceedings 2004, 76, 810-816).

Le cancer peut être devenu résistant aux agents utilisés, en particulier aux taxanes, ce qui limite les options de traitement possible. Plusieurs mécanismes de résistance aux taxanes ont été décrits (expression de la P-glycoprotéine P-gp, gène mdr-1, métabolisme modifié du taxane, mutation du gène de la tubuline,...) : voir Drug Resistance Updates 2001, 4(1), 3-8; J.Clin.Onc. 1999, 17(3), 1061-1070.

Pour les patientes dont le cancer a progressé après un traitement antérieur à base d'anthracyclines et/ou de taxanes (75% des patients développent une résistance à ce traitement), la capecitabine en monothérapie ou la combinaison associant la capecitabine et le docetaxel est indiquée (J.Clin. Onc. 2002, 20(12), 2812-2823).

Il a également été observé que le cabazitaxel (ou XRP6258) pouvait être efficace dans le traitement du cancer du sein métastatique résistant aux taxanes («A multicenter phase ॥ study of XRP6258 administered as a 1-h i.v. infusion every 3 weeks in taxane-resistant metastatic breast cancer patients » Ann. Oncol. 2008, 19(9), 1547-1552).

De plus, dans la conclusion de l'abstract intitulé «In vitro induction of Thymidine Phosphorylase by XRP6258, a new taxoid» présenté au Congrès de Société Française de Pharmacologie à Clermont-Ferrand du 9 au 11 avril 2008, il est précisé : «XRP6258 induces TP expression, especially with MCF-7 breast carcinoma cells. This induction might be clinically relevant in the field of XRP6258/capecitabine combination, assessed in patients with breast cancer, as predictive of an increased cytotoxicity in the tumor cells for the combination. ».

II existe toujours un besoin de trouver et d'optimiser de nouvelles options thérapeutiques chez les patientes progressant après un traitement antérieur par anthracyclines et taxanes.

La présente invention répond à ce besoin en fournissant une nouvelle combinaison pharmaceutique antitumorale comprenant le cabazitaxel et la capecitabine pour laquelle il a fallu déterminer les doses de chaque drogue et le schéma d'administration convenable, de manière à obtenir une combinaison bien tolérée qui n'exacerbe pas la toxicité de chacun des deux agents antitumoraux et qui permette le traitement des patientes progressant après un traitement antérieur par anthracyclines et taxanes afin d'en evaluer l' activitité antitumorale.

[Brève description de l'invention]

L'invention est relative à une combinaison pharmaceutique antitumorale comprenant le cabazitaxel de formule

et la capecitabine de formule

ces deux agents antitumoraux pouvant être sous forme de base, sous forme d'un sel d'un acide pharmaceutiquement acceptable ou sous forme d'un hydrate ou d'un solvat, destinée à traiter le cancer du sein métastatique chez les patientes progressant après un traitement antérieur par anthracyclines et taxanes.
Le cabazitaxel peut être notamment sous forme d'un solvat acétonique. Plus particulièrement, le solvat acétonique du cabazitaxel contient entre 5 et 8% en poids d'acétone, de préférence entre 5 et 7%.

La combinaison comprend une quantité efficace de cabazitaxel et une quantité efficace de capecitabine.
Le cabazitaxel peut être administré à une dose (définie pour chaque administration) comprise entre 15 et $25 \mathrm{mg} / \mathrm{m}^{2}$.

La capecitabine peut être administrée deux fois par jour à une dose (définie pour chaque administration) comprise entre 675 et $1250 \mathrm{mg} / \mathrm{m}^{2}$, plutôt entre 825 et $1000 \mathrm{mg} / \mathrm{m}^{2}$.

Le cabazitaxel peut être administré par perfusion à une dose comprise entre 15 et 25 $\mathrm{mg} / \mathrm{m}^{2}$ et la capecitabine est administrée par voie orale deux fois par jour pendant 14 jours à une dose (définie pour chaque administration) comprise entre 675 et $1250 \mathrm{mg} / \mathrm{m}^{2}$, plutôt entre 825 et $1000 \mathrm{mg} / \mathrm{m}^{2}$, ce cycle d'administration des deux agents antitumoraux étant répétés avec un intervalle entre deux administrations de cabazitaxel de 3 semaines, pouvant être prolongé de 1 à 2 semaines en fonction de la tolérance à la précédente administration de cabazitaxel.

L'invention est aussi relative à l'utilisation du cabazitaxel et de la capecitabine de formule pour la préparation de la combinaison pharmaceutique antitumorale précitée.

[Description de l'invention]

définitions

- acide pharmaceutiquement acceptable: acide organique ou inorganique présentant une faible toxicité (voir Pharmaceutical salts J.Pharm.Sci. 1977, 66, 1-19);

S'agissant du cabazitaxel, celui appartient à la famille des taxoïdes et a pour formule :

10 II a pour nom chimique: 4α-acetoxy- 2α-benzoyloxy- 5β, 20 -epoxy- 1β-hydroxy- 7β, 10β -dimethoxy-9-oxo-11-taxen-13 α-yl (2R,3S)-3 tert-butoxycarbonylamino-2-hydroxy-3phenylpropionate. Ce composé et un mode de préparation est décrit dans le document WO 96/30355. Le cabazitaxel peut être administré sous forme de base (cf. formule ci-dessus), sous forme d'un sel d'un acide pharmaceutiquement acceptable ou sous forme d'un

- quantité efficace: quantité d'un composé pharmaceutique produisant un effet sur le cancer traité.
 hydrate. Il peut s'agir aussi d'un solvat c'est-à-dire d'un complexe moléculaire caractérisé par l'incorporation du solvant de cristallisation dans le cristal de la molécule du principe actif (voir à ce propos, en page 1276 de J.Pharm.Sci. 1975, 64(8), 1269-1288). En particulier, il pourra s'agir d'un solvat acétonique, plus particulièrement celui décrit dans WO 2005/028462. Il peut s'agir d'un solvat acétonique du cabazitaxel contenant entre 5 et 8% en poids d'acétone, de préférence entre 5 et 7% (\% signifie teneur en acétone/teneur en acétone+cabazitaxel $\times 100$). Une valeur moyenne de la teneur en acétone est de 7%, ce qui représente à peu près la stoechiométrie en acétone qui est de $6,5 \%$ pour un solvat à une molécule d'acétone. Le mode opératoire décrit ci-dessous permet de préparer un solvat acétonique du cabazitaxel :

A une solution de 207 g de 4-acétoxy-2 α-benzoyloxy- 5β, 20 -époxy-1-hydroxy- $7 \beta, 10 \beta$ - diméthoxy-9-oxo-tax-11-ène-13 α-yle, à environ 92% en poids dans environ 2 litres d'acétone, on ajoute à $20 \pm 5^{\circ} \mathrm{C}$ température ambiante, 940 ml d'eau purifiée puis on ensemence avec une suspension de 2 g de (2R,3S)-3-tert-butoxycarbonylamino-2-
hydroxy-3-phénylpropionate de 4-acétoxy-2 α-benzoyloxy-5 β,20-époxy-1-hydroxy-7 $\beta, 10 \beta$ -diméthoxy-9-oxo-tax-11-ène-13 α-yle isolé dans acétone/eau dans un mélange de 20 ml d'eau et 20 ml d'acétone. On laisse agiter environ 10 à 22 heures et on additionne en 4 à 5 heures 1,5 litres d'eau purifiée. On laisse agiter 60 à 90 minutes puis la suspension est filtrée sous pression réduite. Le gâteau est lavé sur filtre avec une solution préparée à partir de 450 ml d'acétone et 550 ml d'eau purifiée puis séché en étuve à $55^{\circ} \mathrm{C}$ sous pression réduite ($0,7 \mathrm{kPa} 6 \mathrm{~mm}$) pendant 4 heures. On obtient 197 g de (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-phénylpropionate de 4-acétoxy-2 α-benzoyloxy-5 β,20-époxy-1-hydroxy-7 $\beta, 10 \beta$-diméthoxy- 9 -oxo-tax-11-ène- 13α-yle, acétone contenant $0,1 \%$ d'eau et $7,2 \%$ d'acétone (théorie de $6,5 \%$ pour un solvat stoéchiométrique).

Le cabazitaxel est administré par voie parentérale, telle que par administration intraveineuse, en bolus ou par perfusion. Une forme galénique du cabazitaxel adaptée à être administrée par perfusion est celle où le cabazitaxel est en solution dans l'eau en présence d'excipients choisis parmi les surfactants, les cosolvants, le glucose ou le chlorure de sodium,... Par exemple, une forme galénique du cabazitaxel peut être préparée par dilution d'une solution prémix de cabazitaxel contenue dans une ampoule stérile (80 mg de cabazitaxel +2 ml de solvant + Polysorbate 80) avec une ampoule stérile contenant une solution de 6 ml d'eau et d'éthanol (13% poids d'éthanol 95%) afin d'obtenir 8 ml d'une solution prête à être rediluée dans une poche de perfusion. La concentration du cabazitaxel dans cette solution prête à être rediluée est d'environ $10 \mathrm{mg} / \mathrm{ml}$. La perfusion est alors préparée en injectant la quantité idoine de cette solution prête à être rediluée dans la poche de perfusion contenant de l'eau et du glucose (environ 5\%) ou du chlorure de sodium (environ 0,9\%).

S'agissant de la capecitabine (CAS RN 154361-50-9), celle-ci est commercialisée par la société Roche sous la marque Xeloda ${ }^{\circledR}$. Il s'agit d'une prodrug du 5 -fluorouracyl :

et a pour nom chimique: 5'-Deoxy-5-fluoro-N4-(pentyloxycarbonyl)cytidine N-[1-(5-Deoxy-beta-D-ribofuranosyl)-5-fluoro-2-oxo-1,2-dihydropyrimidin-4-yl]carbamic acid pentyl ester. Ce composé est décrit dans EP 0602454 ou US 5472949. La capecitabine
peut être administrée sous forme de base (cf. formule ci-dessus), sous forme d'un sel d'un acide pharmaceutiquement acceptable ou sous forme d'un hydrate ou d'un solvat.

Une forme galénique de la capecitabine adaptée à la voie orale est par exemple celle commercialisée sous la marque Xeloda ${ }^{\circledR}$ sous forme de comprimés contenant 150 ou 500 mg de capecitabine et du lactose anhydre comme excipient.

S'agissant de la combinaison, celle-ci consiste à associer sous forme de deux préparations pharmaceutiques distinctes le cabazitaxel et la capecitabine. La combinaison peut être utilisée dans le traitement du cancer du sein métastatique, notamment pour les patientes échappant à un traitement à base d'anthracyclines et/ou de taxanes.

La combinaison est administrée de façon répétée selon un protocole qui dépend de la patiente à soigner (surface corporelle, tolérance au précédent cycle...). Le cabazitaxel peut être administré par perfusion à la patiente selon un schéma intermittent avec un intervalle entre chaque administration de 3 semaines, pouvant être prolongé de 1 à 2 semaines en fonction de la tolérance de la précédente administration. La capecitabine peut quant à elle être administrée quotidiennement, par exemple sous forme de deux prises par jour, pendant une durée de 14 jours. Au cours d'un cycle, la $1^{\text {ère }}$ prise de capecitabine peut coincider avec l'administration du cabazitaxel.

Un exemple de protocole est le suivant : le cabazitaxel est administré par perfusion sur une durée de 1 heure environ à un jour J 1 donné ($1^{\text {er }}$ jour du cycle). La capecitabine est administrée par voie orale deux fois par jour, matin et soir, du jour J1 au jour J14 (du $1^{\text {er }}$ au $14^{\text {ème }}$ jour du cycle). Ce cycle consistant à administrer à la fois le cabazitaxel (à J 1) et la capecitabine (de J1 à J14) est ensuite répété avec un intervalle de 3 semaines (prolongeable de 1 à 2 semaines).

Les doses de cabazitaxel et de capecitabine administrées à chaque fois à la patiente dépendent de différents paramètres : surface corporelle, tolérance au précédent cycle.... Le cabazitaxel peut être administré à une dose (définie pour chaque administration) comprise entre 15 et $25 \mathrm{mg} / \mathrm{m}^{2}$. La capecitabine peut être administrée deux fois par jour à une dose (définie pour chaque administration) comprise entre 675 et $1250 \mathrm{mg} / \mathrm{m}^{2}$, plutôt entre 825 et $1000 \mathrm{mg} / \mathrm{m}^{2}$.

De préférence, la dose recommandée est de $20 \mathrm{mg} / \mathrm{m}^{2}$ de cabazitaxel le premier jour de traitement et de $2 \times 1000 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{jour}$ de capecitabine du premier au quatorzième jour, ce cycle d'administration des deux agents antitumoraux étant répété avec un intervalle entre deux administrations de cabazitaxel de 3 semaines, pouvant être prolongé de 1 à 2 semaines en fonction de la tolérance à la précédente administration de cabazitaxel.

[Example]

Une étude de phase $I / I I$ a été conduite dans quatre centres d'étude en Europe.

Partie 1 : la dose maximale administrée (Maximal Administered Dose an anglais - MAD) et la dose recommandée (Recommended Dose - RD) de cabazitaxel en association avec la capécitabine ont été déterminées.

Partie 2: l'activité anti-tumorale et la caractérisation du profil de tolérance ont été déterminées à la dose recommandée

La pharmacocinétique (PK), incluant l'étude des interactions médicamenteuses, a été aussi étudiée.

Fowerates

Gheres dinchsion principaux des patents
Les critères d'inclusion principaux ont été un âge supérieur ou égal à 18 ans, un cancer du sein métastatique ou localement récurrent et inopérable histologiquement prouvé, un indice Eastern Cooperative Oncology Group performance status (ECOG PS) de 0 à 2 , une exposition antérieure aux taxanes et aux anthracyclines et un fonctionnement adéquat au niveau hématologique, rénal et hépatique. Pour la partie 2 , les patientes sélectionnées devaient avoir au moins 1 lésion mesurable selon les directives RECIST (J Natl Cancer Inst 2000, 92, 205-216).

Les critères d'exclusion principaux ont été un cancer simultané, plus d'un traitement de chimiothérapie pour cancer métastatique, l'exposition antérieure à la capécitabine ou des conditions co-morbides significatives non contrôlées.

Trente-trois patientes avec un cancer du sein métastatique ont été incluses dans l'étude,
toutes précédemment traitées avec des anthracyclines et des taxanes: 15 patientes pour la partie 1 et 18 pour la partie 2 .

Les caractéristiques relatives aux patientes traitées sont précisées dans le Tableau I.

Tableau I

nombre de patientes	33
âge médian [min-max] (doit être >=18)	$55[34-74]$
diagnostic :	$25(76 \%)$
- carcinome ductal infiltrant	$4(12 \%)$
- carcinome lobulaire infiltrant	$4(12 \%)$
- carcinome mixte infiltrant	4,97
temps médian depuis le diagnostic initial en	
années [min-max]	$21,5]$
statut Her2 Neu par FISH	$33(100 \%)$
négatif	$29(88 \%)$
récepteur hormonal	$4(12 \%)$
ER+ et/ou PR+	$20(61 \%)$
Er- et PR-	$13(39 \%)$
ECOG PS à l'entrée dans l'étude	$3(1-6)$
0	métastatique:
1	$33(100 \%)$
nombre médian d'organes métastatiques	$27(82 \%)$
statut de la maladie au début du traitement	$20(61 \%)$
principaux organes envahis:	
os	
foie	$13(39 \%)$
ganglions distants	$10(30 \%)$

9

ganglions régionaux autres $^{\mathrm{a}}$	$4(12 \%)$
traitement antérieur	$6(18 \%)$
Nb de lignes de chimiotherapie antérieure pour	
maladie avancée :	$5(15 \%)$
0	$28(85 \%)$
1	

${ }^{a}$ inclut surrénal, tissu mou, péritoine, épanchement péricardique.
ECOG PS: Eastern Cooperative Oncology Group performance status; ER: recepteur aux oestrogènes ; PgR: recepteur à la progesterone ; HER2: human epidermal growth factor receptor.

Pharmacocinétique:

10 L'analyse pharmacocinétique n'a pas révélé d'apparente interaction entre le cabazitaxel et la capecitabine; la pharmacocinétique du cabazitaxel et de son metabolite ne semble pas affectée par la co-administration de capecitabine et vice versa.

Abstract

Farte 1 : determination de la dose maximale administrée (Maximal Administered Dose an anglais - MAD) et de la dose recommandée (Recommended Dose - RD) de cabazitaxel en association avec la capécitabine

Les toxicités doses limitantes (DLTs) c'est-à-dire la liste des évènements à surveiller, qui permettent de guider l'escalade de dose, ont tout d'abord été prédéfinies dans le protocole en accord avec l'échelle de classification $\mathrm{NCl}-\mathrm{CTCAE}$ version 3.

L'augmentation des doses a ete etudiee par groupe de trois patentes tant qu'aucune DLT Ta ©té observe. Si une DLT a gte constatee chez une patente, le groupe átétendu à six patentes, la MAD etent atteinte si aumins 2 patientes ont attem une DLT. La RD a éfe defni comme la plus hathe dose d dequelle mons de 33 \% des patentes on presemé une DlT.

Premier niveau de dose:

- 3 patientes - cabazitaxel $20 \mathrm{mg} / \mathrm{m}^{2}$ (J1) et capecitabine $825 \mathrm{mg} / \mathrm{m}^{2}$ deux fois par jour (J114)
- 1 DLT de type neutropénie grade 4 durant plus de 7 jours chez une patiente a été observée
- groupe étendu à 6 patientes sans nouvelles DLTs.

Second niveau de dose :

- 3 patientes - cabazitaxel $20 \mathrm{mg} / \mathrm{m}^{2}(\mathrm{~J} 1)$ et capecitabine $1000 \mathrm{mg} / \mathrm{m}^{2}$ deux fois par jour (J1-14)
- pas de DLT observée.

Troisième niveau de dose :

- 3 patientes - cabazitaxel $25 \mathrm{mg} / \mathrm{m}^{2}(\mathrm{~J} 1)$ et capecitabine $1000 \mathrm{mg} / \mathrm{m}^{2}$ deux fois par jour

La MAD a par conséquent été définie comme étant : cabazitaxel $25 \mathrm{mg} / \mathrm{m}^{2}$ et capecitabine $1000 \mathrm{mg} / \mathrm{m}^{2}$.

La RD a par conséquent été définie comme étant : cabazitaxel $20 \mathrm{mg} / \mathrm{m}^{2}$ et capecitabine $1000 \mathrm{mg} / \mathrm{m}^{2}$.

Partie 2 : Etude de l'activité anti-tumorale et caractérisation du profil de tolérance à la dose recommandée.

Les patientes incluses dans a parte 2 de féude ont éte tratées avec la PD .
(J1-14)

- 1 DLT de type neutropénie grade 4 durant plus de 7 jours chez une patiente a été observée
- groupe étendu à 6 patientes - une seconde DLT du même type chez une autre patiente a été observée.
,

Le critère d'évaluation d'efficacité principal a été le taux de réponse objective
(Objective Response Rate en anglais - ORR).

Le taux de réponse objective est défini, selon les directives RECIST (J Natl Cancer Inst 2000, 92, 205-216), comme la proportion de patientes avec une réponse complète
(Complete Response - CR) ou une réponse partielle (Partial Response - PR) confirmée divisée par le nombre total de patientes dans la population d'analyse.

Les critères secondaires d'évaluation d'efficacité ont été la durée de réponse au traitement (Duration of response en anglais - DR) et le temps de progression (Time To Progression - TTP).

Le temps jusqu'a progression (TTP) est défini, selon les directives RECIST (J Natl Cancer Inst 2000, 92, 205-216), comme le temps écoulé entre la première date d'administration de la combinaison et la date de la première documentation d'une progression de la maladie.

La durée de réponse au traitement (DR) est définie, selon les directives RECIST (J Natl Cancer Inst 2000, 92, 205-216), comme le temps écoulé entre la date de la première documentation d'une réponse objective ($C R$ ou $P R$) et la date de la première documentation d'une progression de la maladie ou la survenue d'un décès.

La capecitabine est administrée par voie orale deux fois par jour, matin et soir, du jour J1 au jour J 14 (du $1^{\text {er }}$ au $14^{\text {eme }}$ jour du cycle). Deux heures après l'administration du matin, le cabazitaxel est administré par perfusion (iv) sur une durée de 1 heure environ au jour J1 ($1^{\text {er }}$ jour du cycle). Ce cycle consistant à administrer à la fois le cabazitaxel (à J1) et la capecitabine (de J1 à J14) est ensuite répété toutes les trois semaines.

Le tableau II détaille un exemple concret d'un cycle.

Tableau II

heure	jour J1	jours J2 à J14
$7: 30$	petit déjeuner	petit déjeuner
$8: 00$	capecitabine (voie orale)	capecitabine (voie orale)
$10: 00$	cabazitaxel (perfusion)	
$19: 30$	dîner	dîner
$20: 00$	capecitabine (voie orale)	capecitabine (voie orale)

Les doses ont pu être réduites et la durée du cycle de traitement a pu être prolongée en cas d'évènement indésirable (Adverse Event en anglais - AE) sévère. Le traitement a été
continué jusqu'à la progression de maladie, la présence d'AE inacceptable ou le retrait de consentement de la patiente.

Un examen physique, des numérations globulaires, des formules leucocytaires complètes et des analyses de chimie sanguine ont été réalisés avant le recrutement des patientes et régulièrement pendant le traitement. Des évaluations tumorales par radiologie ont été réalisées au recrutement des patientes et toutes les 6 semaines. Les réponses ont été confirmées par 2 évaluations à au moins 4 semaines d'intervalle. Des données complémentaires ont été rassemblées toutes les 6 semaines jusqu'à la date de d'arrêt de l'étude.

Le Tableau III résume les caractéristiques de traitement des patients aux différents niveaux de dose testés.

Tableau III

dose		DL1 (20 $\quad \mathrm{mg} / \mathrm{m}^{2}$ cabazitaxel 2×825 $\mathrm{mg} / \mathrm{m}^{2} / \mathrm{jour}$ capecitabine pendant jours		$\begin{array}{\|l\|l\|} \hline \text { DL3 } \\ \text { (25 } \quad \mathrm{mg} / \mathrm{m}^{2} \\ \text { cabazitaxel } \\ +\quad 2 \times 1000 \\ \mathrm{mg} / \mathrm{m}^{2} / \mathrm{lour} \\ \text { capecitabine } \\ \text { pendant } \quad 14 \\ \text { jours }) \end{array}$	total
nombre de patientes		6	$21^{\text {a }}$	6	33
nombre de cycles		30	112	36	178
cabazitaxel	total médiane [min-max]	$\begin{aligned} & 30 \\ & 4,5[2-12] \end{aligned}$	$\begin{aligned} & 109 \\ & 5[2-13] \end{aligned}$	$\begin{aligned} & 36 \\ & 5,5[4-9] \end{aligned}$	$\begin{aligned} & 175 \\ & 5[2-13] \end{aligned}$
capecitabine	total médiane [min-max]	$\begin{array}{\|l\|} \hline 30 \\ 4,5[2-12] \end{array}$	$\begin{aligned} & 112 \\ & 6[2-13] \end{aligned}$	$\begin{aligned} & \hline 36 \\ & 5,5[4-9] \end{aligned}$	$\begin{aligned} & 178 \\ & 5[2-13] \end{aligned}$
Nombre de patients avec un traitement retardé		1	10	5	16
nombre de patients avec réduction de dose	cabazitaxel	1	4	5	10
	capecitabi ne	0	3	4	7
dose intensité relative médiane	cabazitaxel	$\begin{array}{\|l\|} \hline 0,97 \\ 1,01] \end{array} \quad[0,86-$	0,97 [0,69-1,00]	$\begin{aligned} & \hline 0,82 \\ & 0,91] \end{aligned} \quad[0,74-$	$\begin{array}{l\|} \hline 0,96 \\ {[0,69-} \\ 1,01] \\ \hline \end{array}$
	capecitabi ne	$\begin{array}{\|l\|} \hline 0,92 \\ 1,00] \end{array} \quad[0,64-$	0,89 [0,55-1,02]	$\begin{aligned} & 0,83 \\ & 1,03] \end{aligned} \quad[0,71-$	$\begin{aligned} & \hline 0,87 \\ & {[0,55-} \\ & 1,03] \end{aligned}$

[^1]
Tolérance

Les évènements indésirables (AE) les plus fréquents ont été les troubles gastrointestinaux, la fatigue, le syndrome pied-main et la toxicité hématologique, ce qui correspond au profil généralement attendu d'une association taxane-capécitabine.

Le Tableau IV présente les résultats d'activité anti-tumorale aux différents niveaux de dose testés.

Résultats nombre de patientes (\%)	$\begin{aligned} & \hline \text { DL1 } \\ & \left(20 \quad \mathrm{mg} / \mathrm{m}^{2}\right. \\ & \text { cabazitaxel } \\ & +\quad 2 \times 825 \\ & \mathrm{mg} / \mathrm{m}^{2} / \mathrm{jour} \\ & \text { capecitabine } \\ & \text { pendant } \quad 14 \\ & \text { j) } \end{aligned}$	DL2 ($20 \mathrm{mg} / \mathrm{m}^{2}$ cabazitaxel $+\quad 2 \times 1000$ $\mathrm{mg} / \mathrm{m}^{2}$ /jour capecitabine pendant 14 j)	$\begin{aligned} & \hline \text { DL3 } \\ & \left(25 \quad \mathrm{mg} / \mathrm{m}^{2}\right. \\ & \text { cabazitaxel } \\ & +\quad 2 \times 1000 \\ & \mathrm{mg} / \mathrm{m}^{2} / \mathrm{jour} \\ & \text { capecitabine } \\ & \begin{array}{l} \text { pendant } \quad 14 \\ \text { j) } \end{array} \\ & \hline \end{aligned}$	total
nombre de patientes	6	$21^{\text {a }}$	6	33
réponse complète	0	$1(5)^{\text {c }}$	1 (17)	2 (6)
réponse partielle	0	4 (19)	1 (17)	5 (15)
stabilisation	5 (83)	11 (52)	4 (67)	$20(64)^{\text {b }}$
progression	1 (17)	5 (24)	0	6 (18)
ORR, \% (95\% CI)	-	24 (8-47)	-	-
RD moyenne, mois (intervalle)	-	3,06 (2,1-8.4)	4,42 (3,1-5,8)	$\begin{gathered} 3,06 \\ (2,1-8,4) \end{gathered}$
TTP moyen, mois (95\% CI)		4,9 (2,7-NA)	NA	4,9 (3,4-NA)

${ }^{\text {a }}$ incluant 3 patientes de la partie 1 et 18 patients supplémentaires
${ }^{\mathrm{b}}$ incluant 7 patientes ayant une réponse partielle non confirmée (4 patientes avec cabazitaxel $20 \mathrm{mg} / \mathrm{m}^{2}+$ capecitabine $825 \mathrm{mg} / \mathrm{m}^{2}$; 2 patientes avec cabazitaxel $20 \mathrm{mg} / \mathrm{m}^{2}+$ capecitabine $1000 \mathrm{mg} / \mathrm{m}^{2}$ et 1 patiente avec cabazitaxel $25 \mathrm{mg} / \mathrm{m}^{2}+$ capecitabine 1000
$\mathrm{mg} / \mathrm{m}^{2}$).
${ }^{c}$ Patiente avec une carcinose péritonéale à l'entrée dans l'étude qui a présenté une CR confirmée.
Cl : intervalle de confiance; NA : non disponible.

La partie 2 de l'étude a confirmé la faisabilité de la combinaison pharmaceutique antitumorale comprenant le cabazitaxel et la capecitabine à la dose recommandée puisqu'il a été constaté que la combinaison est bien tolérée et n'exacerbe pas la toxicité de chacun des deux agents antitumoraux. De plus des signaux d'activité anti-tumorale encourageants on été observés à cette dose.

Une activité anti-tumorale a par ailleurs été constatée à tous les niveaux de dose testés.

Au total 7 patientes ont présenté une réponse objective.
II est remarquable de noter que 2 des 4 patientes qui avaient une progression de la maladie comme meilleure réponse sous la thérapie antérieure par taxane, ont vu leur cancer se stabiliser avec la combinaison cabazitaxel et capécitabine, tandis que 4 patientes qui avaient une stabilisation de leur maladie comme meilleure réponse sous la thérapie antérieure par taxane, ont obtenu une réponse objective au traitement.

REVENDICATIONS

1. Combinaison pharmaceutique antitumorale comprenant le cabazitaxel de formule

et la capecitabine de formule

5 ces deux agents antitumoraux pouvant être sous forme de base, sous forme d'un sel d'un acide pharmaceutiquement acceptable ou sous forme d'un hydrate ou d'un solvat destinée à traiter le cancer du sein métastatique chez les patientes progressant après un traitement antérieur par anthracyclines et taxanes.
2. Combinaison selon la revendication 1 comprenant une quantité efficace de cabazitaxel et une quantité efficace de capecitabine.
3. Combinaison selon la revendication 1 ou 2 dans laquelle le cabazitaxel est sous forme d'un solvat acétonique.
4. Combinaison selon la revendication 3 dans laquelle le solvat acétonique du cabazitaxel contient entre 5 et 8% en poids d'acétone, de préférence entre 5 et 7%.
5. Combinaison selon la revendication 1 à 4 dans laquelle le cabazitaxel est administré à une dose (définie pour chaque administration) comprise entre 15 et $25 \mathrm{mg} / \mathrm{m}^{2}$.
10. Combinaison selon la revendication 8 ou 9 dans laquelle au cours d'un cycle, la $1^{\text {ère }}$ prise de capecitabine coïncide avec l'administration du cabazitaxel.
11. Utilisation du cabazitaxel de formule

et de la capecitabine de formule

pour la préparation d'une combinaison pharmaceutique antitumorale telle que définie à l'une des revendications 1 à 10 .

c(Continu	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PEREZ E A: "Impact, mechanisms, and novel chemotherapy strategies for overcoming resistance to anthracyclines and taxanes in metastatic breast cancer" BREAST CANCER RESEARCH AND TREATMENT 200903 US, vol. 114, no. 2, March 2009 (2009-03), pages 195-201, XP002551476 page 197-198, passage "Treatment options for patients whose tumors are resistant to anthracyclines and taxanes"	1-11
A	ANONYMOUS: "View of NCTOO327743 on 2009_04_11" INTERNET CITATION 11 April 2009 (2009-04-11), pages 1-3, XP002551477 Retrieved from the Internet: URL:http://clinicaltrials.gov/archive/NCTO 0327743/2009_04_11 [retrieved on 2009-10-20] the whole document	1-11
A	ANONYMOUS: "View of NCTOO397761 on 2009_02_08" INTERNET CITATION 8 February 2009 (2009-02-08), pages 1-3, XP002551478 Retrieved from the Internet: URL: http://clinicaltrials.gov/archive/NCTO 0397761/2009_02_08 [retrieved on 2009-10-20] the whole document	1-11
A	WO 2005/028462 A (AVENTIS PHARMA SA [FR]) 31 March 2005 (2005-03-31)	3,4
X, P	BESSE-HAMMER T ET AL.: "A dose escalating study of XRP6258 in combination with capecitabine..." JOURNAL OF CLINICAL ONCOLOGY, [Online] vol. 27, no. 15S, 20 May 2009 (2009-05-20) XP002551479 Retrieved from the Internet: URL: http://meeting.ascopubs.org/cgi/conten t/abstract/27/15S/1053> [retrieved on 2009-10-20] * abstract	1-11

INTERNATIONAL SEARCH REPORT
Information on patent family members
International application No
PCT/FR2010/050873

Patent document cited in search report		Publication date date		Patent family member(s)	Publication date
WO 2005028462	A	31-03-2005	AU	2004274212 A1	31-03-2005
			BR	PI0414492 A	14-11-2006
			CA	2539309 A1	31-03-2005
			CN	1849311 A	18-10-2006
			EP	1667986 A1	14-06-2006
			FR	2859996 A1	25-03-2005
			HK	1093340 A1	19-06-2009
			JP	2007505866 T	15-03-2007
			KR	20060072147 A	27-06-2006
			MX	PA06002639 A	05-06-2006
			NZ	545835 A	30-10-2009
			PA	8612401 A1	04-08-2005
			RU	2342373 C2	27-12-2008
			ZA	200602255 A	25-07-2007

Categorie*	Identification des documents cites, avec, le cas echéant, l'indication des passages pertinents	no. des revendications visées
A	PEREZ E A: "Impact, mechanisms, and novel chemotherapy strategies for overcoming resistance to anthracyclines and taxanes in metastatic breast cancer" BREAST CANCER RESEARCH AND TREATMENT 200903 US, vol. 114, no. 2 , mars 2009 (2009-03), pages 195-201, XP002551476 page 197-198, passage "Treatment options for patients whose tumors are resistant to anthracyclines and taxanes"	1-11
A	ANONYMOUS: "View of NCTO0327743 on 2009_04_11" INTERNET CITATION 11 avril 2009 (2009-04-11), pages 1-3, XP002551477 Extrait de l'Internet: URL: http://clinicaltrials.gov/archive/NCTO 0327743/2009_04_11 [extrait le 2009-10-20] le document en entier	1-11
A	ANONYMOUS: "View of NCTO0397761 on 2009_02_08" INTERNET CITATION 8 février 2009 (2009-02-08), pages 1-3, XP002551478 Extrait de l'Internet: URL:http://clinicaltrials.gov/archive/NCTO 0397761/2009_02_08 [extrait le 2009-10-20] le document en entier	1-11
A	WO 2005/028462 A (AVENTIS PHARMA SA [FR]) 31 mars 2005 (2005-03-31)	3,4
X, P	BESSE-HAMMER T ET AL.: "A dose escalating study of XRP6258 in combination with capecitabine..." JOURNAL OF CLINICAL ONCOLOGY, [Online] vol. 27, no. 15S, 20 mai 2009 (2009-05-20) XPOO2551479 Extrait de l'Internet: URL:http://meeting. ascopubs.org/cgi/conten t/abstract/27/15S/1053> [extrait le 2009-10-20] * abrégé	1-11

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
WO 2005028462	A	31-03-2005	AU	2004274212 A1	31-03-2005
			BR	PI0414492 A	14-11-2006
			CA	2539309 A1	31-03-2005
			CN	1849311 A	18-10-2006
			EP	1667986 Al	14-06-2006
			FR	2859996 A1	25-03-2005
			HK	1093340 A1	19-06-2009
			JP	2007505866 T	15-03-2007
			KR	20060072147 A	27-06-2006
			MX	PA06002639 A	05-06-2006
			NZ	545835 A	30-10-2009
			PA	8612401 A1	04-08-2005
			RU	2342373 C2	27-12-2008
			ZA	200602255 A	25-07-2007

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization International Bureau
(43) International Publication Date 5 May 2011 (05.05 .2011)

(10) International Publication Number WO 2011/051894 A1
(51) International Patent Classification:

A61K 31/164 (2006.01) A61K 45/06 (2006.01)
A61K 31/56 (2006.01) A61P 35/00 (2006.01)
(21) International Application Number:

PCT/IB2010/054866
(22) International Filing Date:

27 October 2010 (27.10.2010)
(25) Filing Language:
(26) Publication Language:
(30) Priority Data:

61/256,160
29 October 2009 (29.10.2009)
US
61/293,903 11 January 2010 (11.01.2010) US
61/355,834 $\quad 17$ June 2010 (17.06.2010)
US
61/355,888 $\quad 17$ June 2010 (17.06.2010)
US
61/369,929 2 August 2010 (02.08.2010)
US
61/383,933 17 September $2010(17.09 .2010)$ US
61/389,969 5 October 2010 (05.10.2010)
English
English

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- of inventorship (Rule 4.17(iv))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
(54) Title: NOVEL ANTITUMORAL USE OF CABAZITAXEL

(57) Abstract: The invention relates to a compound of Formula (I): which may be in base form or in the form of a hydrate or a solvate, in combination with prednisone or prednisolone, for its use as a medicament in the treatment of prostate cancer, particularly metastatic prostate cancer, especially for patients who are not catered for by a taxane-based treatment.

NOVEL ANTITUMORAL USE OF CABAZITAXEL

The present invention relates to a novel antitumoral use of cabazitaxel in the treatment of prostate cancer, which may be metastatic, especially for patients who are not catered for by a taxane- based treatment. In particular, the present invention relates to the use of cabazitaxel in the treatment of patients with castration resistant metastatic prostate cancer, who have been previously treated with a docetaxel based regimen, an unmet medical need.

[Technical problem]

0 Prostate cancer affects a large proportion of the male population worldwide: 680000 cases worldwide in 2002; it is predicted that there will be 900000 new cases per year up to 2010 (CA Cancer J. Clin., 2005, 55, 74-108). It is the most frequently occurring cancer in men after lung cancer.

5 Prostate cancer is generally treated at the start by depriving the androgenic hormones, i.e. by surgical excision of the testicles The Current State of Hormonal Therapy for Prostate Cancer CA Cancer J. Clin., May 2002; 52: 154-179, or by radiotherapy treatment External beam radiation therapy for prostate cancer CA Cancer J. Clin., Nov. 2000; 50: 349-375. Treatments with antiandrogens or hormone manipulations are associated with responses of short duration and without any improvement in the survival time.

The use of cytotoxic chemotherapy is not a routine treatment, whereas its role in alleviating the symptoms and reducing the levels of PSA (prostate-specific antigen) is established. No monotherapy has obtained a degree of response of greater than 30%; combinations with an effect on PSA levels were tested. No effect on the survival time was seen and, what is more, the toxicity of these treatments, particularly on elderly patients, is problematic since, in addition to their tumour, they are generally suffering from related health problems and have a limited reserve of bone marrow.

Until recently, the chemotherapies used were limited to cyclophosphamide, anthracyclines (doxorubicin or mitoxantrone) and estramustine, and the effects of these treatments are relatively mediocre. Palliative effects were observed in patients following the administration of corticoids alone or of mitoxantrone with either prednisone or hydrocortisone. Following Phase II trials, the combination of mitoxantrone with corticoids was recognized as the reference treatment for hormone-resistant prostate cancer. More recently, treatments with docetaxel in combination with estramustine or prednisone have made it possible to treat cancers that are resistant to hormone deprivation Advances in Prostate Cancer Chemotherapy: A New Era Begins CA Cancer J. Clin., Sep. 2005; 55: 300-318, the survival was improved by 2.4 months.

It is generally accepted that the responses in advanced prostate cancers are difficult to evaluate on account of the heterogeneity of the disease and the lack of consensus regarding the treatment response criteria. Many patients with metastatic prostate cancer have no measurable disease, but have symptoms dominated by bone metastases. Measurement of the PSA level has been found to be a means for evaluating novel candidates and also the measurement of the tumour when this is possible, the measurement of bone tumours, the quality of life and the measurement of the pain.

Furthermore, cancer may become resistant to the agents used, in particular to taxanes, which limits the possible treatment options. Several taxane resistance mechanisms have been described (expression of P-glycoprotein P-gp, mdr-1 gene, modified metabolism of taxane, mutation of the tubulin gene, etc.): see Drug Resistance Updates 2001, 4(1), 3-8; J. Clin. Onc. 1999, 17(3), 1061-1070.

The technical problem that the invention intends to solve is that of providing a novel therapeutic option for treating prostate cancer, especially for patients who are not catered for by a taxanebased treatment, such as patients with castration resistant metastatic prostate cancer who have been previously treated with docetaxel (sold under the brand name Taxotere ${ }^{\circledR}$) based regimen, an unmet medical need.

Four clinical trials on cabazitaxel are known since April 2006. Three monotherapy tests have made it possible to determine the maximum tolerated dose and the toxicities at the limit doses: these tests were performed on breast, sarcoma and prostate tumours. Doses of $10-30 \mathrm{mg} / \mathrm{m}^{2}$ every three hours were used. A phase II trial was performed on patients with a breast cancer, who had previously received taxanes and anthracyclines as adjuvant (i.e. after a surgery) or as a firstline treatment. The response levels were 14.6% as adjuvant and 9.5% as second-line treatment.

[Brief description of the invention]

The invention relates to a novel antitumoral pharmaceutical therapeutic use comprising cabazitaxel of formula

The invention also relates to methods of treating patients with prostate cancer comprising administering an effective amount of the antitumoral agent cabazitaxel to said patient.

This antitumoral agent may be in the form of anhydrous base, a hydrate or a solvate, intended for treating prostate cancer, in particular for treating patients who are not catered for by a taxanebased treatment, such as patients who have been previously treated with a docetaxel-based regimen. This compound is preferably administered to a patient with advanced metastatic disease. In particular, the compound is administered to a patient with castration resistant prostate cancer. Cabazitaxel is preferably administered in combination with a corticoid chosen especially from prednisone and prednisolone. This corticoid is preferably administered at a daily dose of 10 mg orally.

In some aspects of the invention, cabazitaxel is administered in combination with prednisone for its use as a medicament in the treatment of patients with hormone-refractory prostate cancer who have been previously treated with docetaxel based regimen.

In some aspects of the invention, cabazitaxel is administered at a dose (defined for each administration) of between 20 and $25 \mathrm{mg} / \mathrm{m}^{2}$. Cabazitaxel may be in the form of an acetone solvate. More particularly, the acetone solvate of cabazitaxel contains between 5% and 8% and preferably between 5% and 7% by weight of acetone.

In some aspects of the invention, cabazitaxel may be administered by intravenous infusion at a dose of between 15 and $25 \mathrm{mg} / \mathrm{m}^{2}$, this administration cycle of the antitumour agent being repeated at an interval of 3 weeks between each cabazitaxel administration, which interval may be prolonged by 1 to 2 weeks depending on the tolerance to the preceding cabazitaxel administration.

In some embodiments, the effective amount of cabazitaxel produces at least one therapeutic effect selected from the group consisting of increase in overall survival, partial response, reduction in tumor size, reduction in metastasis, complete remission, partial remission, stable disease, or complete response.

The present invention also relates to a pharmaceutical composition that treats patients with prostate cancer comprising a clinically proven safe and effective amount of cabazitaxel.

Further embodiments of the invention comprise methods or using, treating, promoting, and providing cabazitaxel.

The present invention also relates to packages and articles of manufacture.

[Brief Description of the Drawings]

Figure 1 displays the Kaplan-Meier curves of the overall survival in a cabazitaxel study.

Figure 2 displays the Kaplan-Meier curves of progression-free survival in a cabazitaxel study.

Figure 3 shows an intention-to-treat analysis of overall survival in subgroups of patients defined by baseline characteristics. Hazard ratios <1 favor the cabazitaxel group, while those >1 favor the mitoxantrone group. Cl denotes confidence intervals.

Figure 4 graphically depicts the proportion of patients with changes in ECOG performance status from baseline during treatment (safety population).

Figure 5 graphically depicts the proportion of patients with changes from baseline in the Present Pain Intensity score during treatment (ITT).

Figure 6 graphically presents the mean area under the curve for PPI and analgesic scores by treatment cycle.

Figure 7 graphically presents the mean AUC analgesic score.

[Description of the invention]

Definitions

- Effective amount, as used herein, means an amount of a pharmaceutical compound, such as cabazitaxel, that produces an effect on the cancer to be treated.
- Clinically proven, as used herein, means clinical efficacy results that are sufficient to meet FDA approval standards.
- Castration resistant prostate cancer, as used herein, is synonymous with hormone-refractory prostate cancer.
- "Patient," as used herein, includes both human and animals. In one embodiment, a patient is a human.

Cabazitaxel belongs to the taxoid family and has the formula:

The chemical name of cabazitaxel is 4α-acetoxy-2 α-benzoyloxy- $5 \beta, 20$-epoxy- 1β-hydroxy- $7 \beta, 10 \beta$ -dimethoxy-9-oxo-11-taxen-13 -yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3phenylpropionate. Cabazitaxel is synonymously known as $(2 \alpha, 5 \beta, 7 \beta, 10 \beta, 13 \alpha)-4$-acetoxy-13-(\{(2R,3S)-3-[(tertbutoxycarbonyl)amino]-2-hydroxy-3-phenylpropanoyl\}oxy)-1-hydroxy-7,10-dimethoxy-9-oxo-5,20-epoxytax-11-en-2-yl benzoate.

This compound and a preparative method thereof is described in WO 96/30355, EP $0817 \mathbf{7 7 9}$ B1 and US $5 \mathbf{8 4 7}$ 170, which are hereby incorporated herein by reference. Cabazitaxel may be administered in base form (cf. above formula), or in the form of a hydrate. It may also be a solvate, i.e. a molecular complex characterized by the incorporation of the crystallization solvent into the crystal of the molecule of the active principle (see in this respect page 1276 of J. Pharm. Sci. 1975, 64(8), 1269-1288). In particular, it may be an acetone solvate, and, more particularly, may be the solvate described in WO 2005/02846. It may be an acetone solvate of cabazitaxel containing between 5% and 8% and preferably between 5% and 7% by weight of acetone ($\%$ means content of acetone/content of acetone+cabazitaxel $\times 100$). An average value of the acetone content is 7%, which approximately represents the acetone stoichiometry, which is 6.5%
for a solvate containing one molecule of acetone. The procedure described below allows the preparation of an acetone solvate of cabazitaxel:

940 ml of purified water are added at $20 \pm 5^{\circ} \mathrm{C}$ (room temperature) to a solution of 207 g of 4α - acetoxy-2 α-benzoyloxy- $5 \beta, 20$-epoxy- 1β-hydroxy- $7 \beta, 10 \beta$-dimethoxy-9-oxo-11-taxen-13 α-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-phenylpropionate at about 92% by weight in about 2 litres of acetone, followed by seeding with a suspension of 2 g of 4α-acetoxy- $2 \alpha-$ benzoyloxy-5 $\beta, 20$-epoxy-1 β-hydroxy- $7 \beta, 10 \beta$-dimethoxy-9-oxo-11-taxen-13 α-yl (2R,3S)-3-tert-butoxycarbonylamino-2-hydroxy-3-phenylpropionate isolated from acetone/water in a mixture of 20 ml of water and 20 ml of acetone. The resulting mixture is stirred for about 10 to 22 hours, and 1.5 litres of purified water are added over 4 to 5 hours. This mixture is stirred for 60 to 90 minutes, and the suspension is then filtered under reduced pressure. The cake is washed on the filter with a solution prepared from 450 ml of acetone and 550 ml of purified water, and then oven-dried at $55^{\circ} \mathrm{C}$ under reduced pressure (0.7 kPa) for 4 hours. 197 g of 4α-acetoxy- 2α-benzoyloxy- $5 \beta, 20-$ epoxy-1 β-hydroxy- $7 \beta, 10 \beta$-dimethoxy-9-oxo-11-taxen-13 α-yl ($2 R, 3 S$)-3-tert-butoxycarbonylamino-2-hydroxy-3-phenylpropionate acetone containing 0.1% water and 7.2% acetone (theoretical amount: 6.5% for a stoichiometric solvate) are obtained.

Cabazitaxel may be administered parenterally, such as via intravenous administration. A galenical form of cabazitaxel suitable for administration by intravenous infusion is that in which the cabazitaxel is dissolved in water in the presence of excipients chosen from surfactants, cosolvents, glucose or sodium chloride, etc. For example, a galenical form of cabazitaxel may be prepared by diluting a premix solution of cabazitaxel contained in a sterile vial $(80 \mathrm{mg}$ of cabazitaxel +2 ml of solvent + Polysorbate 80) with a sterile vial containing a solution of 6 ml of water and ethanol (13% by weight of 95% ethanol) in order to obtain 8 ml of a solution ready to be rediluted in a perfusion bag. The concentration of cabazitaxel in this ready-to-redilute solution is about $10 \mathrm{mg} / \mathrm{ml}$. The perfusion is then prepared by injecting the appropriate amount of this ready-to-redilute solution into the perfusion bag containing water and glucose (about 5%) or sodium chloride (about 0.9\%).

Cabazitaxel may be administered in combination with a corticoid, such as prednisone or prednisolone, as two distinct pharmaceutical preparations.

Accordingly, one aspect of the invention is a method of treating prostate cancer comprising administering to a patient in need thereof an effective amount of cabazitaxel in combination with a corticoid, such as prednisone or prednisolone.

The combination is administered repeatedly according to a protocol that depends on the patient to be treated (age, weight, treatment history, etc.), which can be determined by a skilled physician. In one aspect of the invention, cabazitaxel is administered by perfusion to the patient according to an intermittent program with an interval between each administration of 3 weeks, which may be prolonged by 1 to 2 weeks depending on the tolerance to the preceding administration. The median number of cycles is 6 . The prednisone or prednisolone may be administered daily, for example in the form of one dosage intake per day, throughout the duration of the treatment. Examples of doses for the two antitumoral agents are given in the "Example" section. The currently recommended dose is $25 \mathrm{mg} / \mathrm{m}^{2}$ of cabazitaxel administered as a on-hour infusion and 10 mg per day of prednisone or prednisolone administered orally.

In some aspects of the invention, the patient to be treated has prostate cancer that is resistant to hormone therapy (i.e., hormone refractory) and has previously been treated with docetaxel. In some aspects, the patient has prostate cancer that progressed during or after treatment with docetaxel. In some aspects, the patient was previously treated with at least $225 \mathrm{mg} / \mathrm{m}^{2}$ cumulative dose of docetaxel. In a particular aspect, the patient showed progression of their disease in the six months following hormone therapy or during docetaxel treatment or after docetaxel treatment. In another particular aspect, the patient showed progression of their disease in the three months following hormone therapy or after docetaxel treatment.

In some aspects of the invention, the patient to be treated has a measurable tumour and may show progression of the disease via a metastatic lesion of the viscera or a soft tissue of at least 1 cm determined by MRI or by an axial tomographic scan (CT scan).

In some aspects of the invention, the patient to be treated has an unmeasurable tumour and may show an increase in the PSA level with three measurements at a 1-week interval or the appearance of new lesions.

In some aspects of the invention, the patient to be treated has undergone castration by orchidectomy or with LHRH agonists, elimination of the androgens or monotherapy with estramustine.

In a preferred aspect, the life expectancy of the patient to be treated should be at least 2 months.

In some aspects, the treatment does not include patients who have previously received mitoxantrone, or who have received less than $225 \mathrm{mg} / \mathrm{m}^{2}$ of docetaxel, or who have undergone a radiotherapy that has eliminated more than 40% of the marrow, who have received a treatment within the 4 weeks preceding the test, who have a neuropathy or a stomatitis, involving the brain
or the meninges, who have shown severe hypersensitivity to polysorbate or to prednisone, whose blood analysis shows an appreciable decrease in neutrophils, haemoglobin or platelets, an increase in bilirubin and/or liver enzymes and creatinine, or who have heart problems or an infection requiring antibiotics.

An aspect of the invention comprises increasing the survival of a patient with hormone refractory metastatic prostate cancer, comprising administering a clinically proven effective amount of cabazitaxel to the patient in combination with prednisone or prednisolone. In a particular aspect, the patient has previously been treated with a docetaxel-containing regimen.

Cabazitaxel may be administered in combination with a medication to prevent or control nausea and vomiting or to prevent or control hypersensitivity to the cabazitaxel treatment. Preferably, a patient is pre-medicated with the medication, for example, at least 30 minutes prior to administering each dose of cabazitaxel.

One aspect of the invention comprises a method of reducing the risk of a severe hypersensitivity reaction in a patient with prostate cancer being treated with cabazitaxel, comprising administering to the patient a medication to prevent hypersensitivity prior to the administration of cabazitaxel.

Severe hypersensitivity reactions to cabazitaxel can occur and may include generalized rash/erythema, hypotension and bronchospasm. Patients should be observed closely for hypersensitivity reactions, especially during the first and second infusions. Hypersensitivity reactions may occur within a few minutes following the initiation of the infusion of cabazitaxel, thus facilities and equipment for the treatment of hypotension and bronchospasm should be available. If severe hypersensitivity reaction occurs, cabazitaxel infusion should be immediately discontinued and appropriate therapy should be administered. Examples of medications which may be used to prevent hypersensitivity to the cabazitaxel treatment include antihistamines, such as dexchloropheniramine (for example 5 mg), and diphenhydramine (for example 25 mg) or equivalent antihistamines; and corticosteroids, such as dexamethasone (for example 8 mg) or an equivalent steroid.

Nevertheless, cabazitaxel should not be given to and may be contraindicated in patients who have a history of severe hypersensitivity reactions to cabazitaxel. Depending on the formulation administered, cabazitaxel may also be contraindicated in patients who have a history of hypersensitivity reactions to other drugs formulated with polysorbate 80 .

One aspect of the invention comprises an article of manufacture comprising:
a) a packaging material;
b) cabazitaxel, and
c) a label or package insert contained within the packaging material indicating that severe hypersensitivity reactions can occur.

Gastrointestinal symptoms, such as, for example nausea, vomiting, and diarrhea, may occur with the treatment of cabazitaxel. Mortality related to diarrhea and electrolyte imbalance has been reported. Therefore, patients may also be rehydrated and treated with anti-diarrheal or antiemetic medications as needed. Treatment delay or dosage reduction may be necessary if patients experience Grade ≥ 3 diarrhea.

Examples of medications which may be used to prevent or control nausea and vomiting include histamine H_{2} antagonists and antiemetics, such as ondansetron, granisetron and dolesetron.

A possible side effect of the treatment with cabazitaxel is neutropenia, which is characterized by a reduced number of neutrophils. Unfortunately, a number of neutropenia deaths have been reported. Therefore, frequent blood counts should be obtained or performed to monitor for neutropenia. If neutropenia occurs, cabazitaxel treatment may be discontinued, and restarted when neutrophil counts recover to a level of $>1,500 / \mathrm{mm}^{3}$. Cabazitaxel should not be given to a patient with a neutrophil count $\leq 1,500$ cells $/ \mathrm{mm}^{3}$.

The present invention therefore also relates to a method of treating prostate cancer with cabazitaxel comprising administering cabazitaxel to the patient, monitoring blood counts in the patient, and measuring neutrophil levels. In one aspect, the method further comprises discontinuing cabazitaxel treatment if neutropenia occurs, and optionally restarting cabazitaxel treatment when neutrophil counts recover to a level of $>1,500 / \mathrm{mm}^{3}$. In one aspect, the monitoring comprises taking a blood sample from the patient.

Determining neutrophil counts can be performed according to procedures well know to those skilled in the art.

One aspect of the invention is a method of reducing the risk of neutropenia complications comprising administering cabazitaxel in combination with an agent useful for treating neutropenia. Such a neutropenia treatment agent is, for example, a hematopoietic growth factor which regulates the production and function of neutrophils such as a human granulocyte colony
stimulating factor, (G-CSF). In a particular aspect of the invention, the neutropenia is complicated neutropenia. Complicated neutropenia includes febrile neutropenia, prolonged neutropenia, or neutropenic infection. In a preferred embodiment, the neutropenia treatment agent is administered prior to the administration of cabazitaxel.

A particular aspect of the invention comprises a method of reducing the risk of neutropenia complications in a patient with prostate cancer being treated with cabazitaxel, comprising monitoring blood counts in the patient at regular intervals during treatment of the patient with cabazitaxel; reducing the dose of cabazitaxel if the patient experiences febrile neutropenia or prolonged neutropenia; discontinuing cabazitaxel treatment if the patient's neutrophil count is \leq 1,500 cells $/ \mathrm{mm}^{3}$; and optionally restarting cabazitaxel treatment when the patient's neutrophil counts recover to a level $\geq 1,500$ cells $/ \mathrm{mm}^{3}$.

In a particular aspect, primary prophylaxis with G-CSF should be considered in patients with highrisk clinical features (age > 65 years, poor performance status, previous episodes of febrile neutropenia, extensive prior radiation ports, poor nutritional status, or other serious comorbidities) that predispose them to increased complications from prolonged neutropenia. Therapeutic use of G-CSF and secondary prophylaxis should be considered in all patients considered to be at increased risk for neutropenia complications.

In another aspect, the monitoring of complete blood counts is performed on a weekly basis during cycle 1 and before each treatment cycle thereafter so that the dose can be adjusted, if needed. Therefore, another aspect for reducing the risk of neutropenia complications comprises monitoring blood counts in the patient and adjusting the dose of cabazitaxel. An example of a dose modification is described in Example 2.

One aspect of the invention comprises an article of manufacture comprising:
a) a packaging material;
b) cabazitaxel, and
c) a label or package insert contained within the packaging material indicating that cabazitaxel should not be given to patients with neutrophil counts of $\leq 1,500$ cells $/ \mathrm{mm}^{3}$.

Cases of renal failure should be indentified and managed aggressively, accordingly to procedures known to those skilled in the art. Renal failure may be associated with sepsis, dehydration, or obstructive uropathy. Furthermore, impaired hepatic function (e.g., total bilirubin \geq ULN, or AST and/or ALT $\geq 1.5 \times$ ULN) may increase cabazitaxel concentrations, and cabazitaxel should not be given to patients with hepatic impairment.

Cabazitaxel may cause fetal harm when administered to a pregnant woman.

Prednisone or prednisolone administered at 10 mg daily does not affect the pharmacokinetics of cabazitaxel.

Cabazitaxel is primarily metabolized through CYP3A. Concomitant administration of strong CYP3A inhibitors (for example, ketoconazole, itraconazole, clarithromycin, atazanavir, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin, voriconazole) may increase cabazitaxel concentrations. Therefore co-administration of cabazitaxel with strong CYP3A inhibitors should be avoided. Caution should be exercised with concomitant use of moderate CYP3A inhibitors. One aspect of the invention is a method of treating a patient for prostate cancer comprising determining whether the patient is undergoing treatment with a CYP3A inhibitor, discontinuing treatment with a CYP3A inhibitor, and then administering cabazitaxel to the patient.

Concomitant administration of strong CYP3A inducer (e.g., phenytoin, carbamazepine, rifampin, rifabutin, rifapentin, phenobarbital) may decrease cabazitaxel concentrations. Therefore coadministration of cabazitaxel with strong CYP3A inducers should be avoided. Therefore, one aspect of the invention is a method of treating a patient for prostate cancer comprising determining whether the patient is undergoing treatment with a CYP3A inducer, discontinuing treatment with a CYP3A inducer, and administering cabazitaxel to the patient.

In addition, patients should also refrain from taking St. John's Wort.

In some aspects of the invention, the cabazitaxel is administered in an amount to provide an AUC of about $991 \mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}$ (CV 34\%).

In some aspects of the invention, the cabazitaxel is administered in an amount to provide an $\mathrm{C}_{\text {max }}$ of about $226 \mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}(\mathrm{CV} 107 \%$).

In some aspects of the invention, the cabazitaxel is administered in an amount to provide a plasma clearance of $48.5 \mathrm{~L} / \mathrm{h}$ (CV 39\%).

One aspect of the invention is a package comprising cabazitaxel and a label, in a position which is visible to prospective purchasers, comprising a printed statement which informs prospective purchasers that the mean $\mathrm{C}_{\text {max }}$ of cabazitaxel in patients with metastatic prostate cancer was 226 ng/mL (CV 107\%).

Another aspect of the invention is a package comprising cabazitaxel and a label, in a position which is visible to prospective purchasers, comprising a printed statement which informs prospective purchasers that the mean AUC of cabazitaxel in patients with metastatic prostate cancer was $991 \mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}$ (CV 34\%).

Another aspect of the invention is a package comprising cabazitaxel and a label, in a position which is visible to prospective purchasers, comprising a printed statement which informs prospective purchasers that cabazitaxel has a plasma clearance of $48.5 \mathrm{~L} / \mathrm{h}$ (CV 39\%).

A variety of educational materials may be employed to ensure proper prescribing, dispensing, and patient compliance according to the methods described herein. For example, a variety of literature and other materials, such as, for example, prescribing information, package inserts, medications guides, physician information sheets, healthcare professional information sheets, medical journal advertisements, and product websites may describe the risks and benefits of taking cabazitaxel.

The invention also concerns a package comprising cabazitaxel and a label, said label comprising one or more messages that:
a) the efficacy and safety of cabazitaxel in combination with prednisone were evaluated in patients with hormone refractory metastatic prostate cancer previously treated with a docetaxel containing regimen; or
b) a total of 755 patients were randomized to receive either cabazitaxel $25 \mathrm{mg} / \mathrm{m}^{3}$ every 3 weeks for a maximum of 10 cycles with prednisone mg orally daily, or to receive mitoxantrone $12 \mathrm{mg} / \mathrm{m}^{2}$ intravenously every 3 weeks for a maximum of 10 cycles with prednisone 10 mg orally daily; or
c) the median number of cycles was 6 in the cabazitaxel group and 4 in the mitoxantrone group.

The invention also concerns a package comprising cabazitaxel and a label, said label comprising one or more messages that:
a) neutropenic deaths have been reported; or
b) frequent blood counts should be obtained to monitor for neutropenia; or
c) cabazitaxel should not be given if neutrophil counts are $\leq 1,500 \mathrm{cells} / \mathrm{mm}^{3}$.

The invention also concerns a method of promoting the use of cabazitaxel the method comprising the step of conveying to a recipient at least one message selected from:
a) neutropenic deaths have been reported; or
b) frequent blood counts should be obtained to monitor for neutropenia; or
c) cabazitaxel should not be given if neutrophil counts are $\leq 1,500$ cells $/ \mathrm{mm}^{3}$;
d) severe hypersensitivity can occur; or
e) severe hypersensitivity can occur and may include generalized rash/erythema, hypotension and brochospasm; or
f) discontinue cabazitaxel immediately if severe reactions occur; or
g) discontinue cabazitaxel immediately if severe reactions occur and administer appropriate therapy; or
h) cabazitaxel is contraindicated in patients with a history of severe hypersensitivity reactions to cabazitaxel or drugs formulated with polysorbate 80 .

The invention also concerns a method of providing cabazitaxel, wherein said cabazitaxel is provided along with information indicating that:
a) neutropenic deaths have been reported; or
b) frequent blood counts should be obtained to monitor for neutropenia; or
c) cabazitaxel should not be given if neutrophil counts are $\leq 1,500$ cells $/ \mathrm{mm}^{3}$;
d) severe hypersensitivity can occur; or
e) severe hypersensitivity can occur and may include generalized rash/erythema, hypotension and brochospasm; or
f) discontinue cabazitaxel immediately if severe reactions occur; or
g) discontinue cabazitaxel immediately if severe reactions occur and administer appropriate therapy; or
h) cabazitaxel is contraindicated in patients with a history of severe hypersensitivity reactions to cabazitaxel or drugs formulated with polysorbate 80 .

Example 1

A clinical study was performed wherein patients received either treatment with cabazitaxel or the reference treatment based on mitoxantrone each combined with prednisone or prednisolone.

More specifically, patients over 18 years of age with metastatic castration resistant metastatic prostate cancer either measurable by RECIST criteria or non-measurable disease with rising PSA levels or appearance of new lesions, ECOG (Eastern Cooperative Oncology Group) performance stage $0-2$, and adequate organ function (patients had to have neutrophils $>1,500 \mathrm{cells} / \mathrm{mm}^{3}$, platelets $>100,000$ cells $/ \mathrm{mm}^{3}$, hemoglobin $>10 \mathrm{~g} / \mathrm{dL}$, creatinine $<1.5 \times$ upper limit of normal (ULN), total bilirubin $<1 \times U L N$, AST $<1.5 \times$ ULN, and ALT $<1.5 \times$ ULN) who had had prior hormone therapy, chemotherapy, and radiotherapy, but had progressive during or after docetaxel treatment
(cumulative dose $\geq 225 \mathrm{mg} / \mathrm{m}^{2}$) were randomized to $10 \mathrm{mg} /$ day of prednisone with either mitoxantrone $12 \mathrm{mg} / \mathrm{m}^{2}$ or cabazitaxel $25 \mathrm{mg} / \mathrm{m}^{2}$, both administered every 3 weeks.

Patients with a history of congestive heart failure, or myocardial infarction within the last 6 months, or patients with uncontrolled cardiac arrhythmias, angina pectoris, and/or hypertension were not included in the study.

720 patients were planned to be included in the clinical study: 360 in each cabazitaxel + prednisone and mitoxantrone + prednisone group. Seven hundred and fifty-five patients (755) (median age 68; 84\% white) were actually enrolled, 378 in the cabazitaxel and prednisone/prednisolone group and 377 in the mitoxantrone and prednisone/prednisolone group. The maximal number of treatment cycles was 10 for cabazitaxel and 10 for mitoxantrone. The median number of treatment cycles was 6 for cabazitaxel and 4 for mitoxantrone. The median prior dose of docetaxel treatment was $576 \mathrm{mg} / \mathrm{m}^{2}$ for the cabazitaxel group and $529 \mathrm{mg} / \mathrm{m}^{2}$ for the mitoxantrone group. Median follow-up was 12.8 months.

The measurements of the results are performed via the same tests as at inclusion. MRI and spiral computed tomographic (CT) scans are preferably used.

The results are evaluated according to the following criteria (cf RECIST guideline): overall survival (OS): the time from inclusion to the study to the date of death complete response (CR): disappearance of the lesions partial response (PR): at least 30% reduction of the largest diameter of the lesion progression (PD): at least 20% increase in the sum of the largest diameter of the lesion or appearance of one or more new lesions
stable disease (SD): reduction of the tumour insufficient to be included in PR and increase of the tumour insufficient to be included in PD.

The confirmations of the measurements are made at least 4 weeks after the response criterion has been established for the first time.

The progression-free survival (PFS) is the time from inclusion in the study and the date of progression or death when the progression is either an increase of the PSA, or of the tumour, or of the pain.

It was found that the combination of cabazitaxel and prednisone is a well-tolerated combination with the safety profile of taxanes. At the dose investigated in this trial (LD2: $25 \mathrm{mg} / \mathrm{m}^{2}$ cabazitaxel $+10 \mathrm{mg} / \mathrm{m}^{2} /$ day prednisone), patients receiving cabazitaxel demonstrated statistically significant
longer overall survival (OS) compared to mitoxantrone ($p<0.0001$). The hazard ratio was 0.70 ($95 \% \mathrm{Cl} .0 .59,0.83$) in favor of cabazitaxel corresponding to a 30% reduction in risk of death. The median survival for patients in the cabazitaxel group was 15.1 months in comparison to 12.7 months in the mitoxantrone group. Notably, the extension of survival was observed irrespective of

The data related to the treated patients are given in Table 1: therapy. ECOG performance status, number of prior chemotherapy regimens and age. Benefit was also seen in the third of patients who were docetaxel-refractory and had progressed during docetaxel

Table 1: Efficacy analysis (intention-to-treat)

	CbzP $\mathrm{N}=378$ Median (months)	MP $\mathrm{N}=377$ Median (months)
Overall survival Median (months)	15.1	12.7
Hazard ratio (95\% CI)	0.70 (0.59; 0.83)	
p -value ${ }^{1}$	0.0001	
PFS Median (months)	2.8	1.4
Hazard ratio (95\% CI)	0.74 (0.64-0.86)	
p-value ${ }^{1}$	0.0001	
Tumor response ratep -value	14.4\%	4.4\%
	0.0005	
Time to Tumor Progression Median (months)	8.8	5.4
p-value	<0.001	
PSA Response rate p-value ${ }^{2}$	39.2\%	17.8\%
	0.0002	
PSA PFS Median (months)	6.4	3.1
Hazard ratio (95\% CI)	0.75 (0.63-0.90)	
p -value ${ }^{1}$	0.0010	
Pain Response rate p-value ${ }^{2}$	9.2\%	7.8\%
	0.6526	
Pain PFS Median (months)	Not reached	11.1
Hazard ratio (95\% CI)	0.91 (0.69-1.19)	
p-value	0.5192	

${ }^{1}$ Log-rank test, ${ }^{2}$ Chi-square test
CbzP : cabazitaxel with prednisone
MP: mitoxantrone with prednisone
Progression free survival (PFS) defined as the earliest progression in tumor, PSA or pain was also statistically significantly longer in the cabazitaxel group compared to the mitoxantrone group ($\mathrm{p}<0.0001$, hazard ratio $=0.74(95 \% \mathrm{CI}, 0.64,0.86)$, and the median progression-free survival was 2.8 months versus 1.4 months. Response rates and PFS for PSA and tumor assessments were statistically significant in favor of cabazitaxel, while response rate and PFS for pain did not show a statistically significant difference.

The most frequent Grade $3 / 4$ toxicities were neutropenia observed with a higher frequency in the cabazitaxel group with 81.7% compared to the mitoxantrone group with 58.0%. Rates of febrile neutropenia were 7.5% in the cabazitaxel group and 1.3% in the mitoxantrone group.

The most common ($\geq 20 \%$) grade 1-4 adverse reactions were anemia, leukopenia, neutropenia, thrombocytopenia, diarrhea, fatigue, nausea, vomiting, asthenia, and constipation.

The most common ($\geq 5 \%$) grade 3-4 adverse reactions in patients who received cabazitaxel were neutropenia, leukopenia, anemia, febrile neutropenia, diarrhea, fatigue, and asthenia.

Subgroup analyses by risk factors and a multivariate analysis showed that OS outcomes were consistent and robust in favor of cabazitaxel as shown in the herebelow table:

Table 2

	MP		CbzP		CbzP vs MP
	$\mathrm{N}(\%)$	Median OS (mos)	$\mathrm{N}(\%)$	Median OS (mos)	$\mathrm{HR}(95 \% \mathrm{CI})$
ITT	$377(100)$	12.7	$378(100)$	15.1	$0.70(0.59-0.83)$
PD while on D	$103(27)$	12.0	$113(30)$	14.2	$0.65(0.47-0.90)$
PD after last D dose, ≤ 3 mos	$180(48)$	10.3	$158(42)$	13.9	$0.70(0.54-0.90)$
PD after last D dose,>3 mos	$91(24)$	17.7	$103(27)$	17.5	$0.78(0.53-1.14)$

mos = months

D = Docetaxel

Table 3 - Incidence of Reported Adverse Reactions ${ }^{1}$ and Hematologic Abnormalities in $\geq 5 \%$ of Patients Receiving cabazitaxel in Combination with Prednisone or Mitoxantrone in

	```Cabazitaxel }25\textrm{mg}/\mp@subsup{\textrm{m}}{}{2}\mathrm{ every 3 weeks with prednisone 10 mg daily n=371```		Mitoxantrone $12 \mathrm{mg} / \mathrm{m}^{2}$ every 3 weeks with prednisone 10 mg daily n=371	
	$\begin{gathered} \hline \text { Grade 1-4 } \\ \mathrm{n}(\%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Grade 3-4 } \\ \mathrm{n}(\%) \\ \hline \end{gathered}$	$\begin{gathered} \text { Grade 1-4 } \\ \text { n (\%) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Grade 3-4 } \\ \text { n (\%) } \\ \hline \end{gathered}$
Any Adverse Reaction				
Blood and Lymphatic System Disorders				
Neutropenia ${ }^{2}$	347 (94\%)	303 (82\%)	325 (87\%)	215 (58\%)
Febrile Neutropenia	27 (7\%)	27 (7\%)	5 (1\%)	5 (1\%)
Anemia ${ }^{2}$	361 (98\%)	39 (11\%)	302 (82\%)	18 (5\%)
Leukopenia ${ }^{2}$	355 (96\%)	253 (69\%)	343 (93\%)	157 (42\%)
Thrombocytopenia ${ }^{2}$	176 (48\%)	15 (4\%)	160 (43\%)	6 (2\%)
Cardiac Disorders				
Arrhythmia ${ }^{3}$	18 (5\%)	4 (1\%)	6 (2\%)	1 (<1\%)
Gastrointestinal Disorders				
Diarrhea	173 (47\%)	23 (6\%)	39 (11\%)	1 (<1\%)
Nausea	127 (34\%)	7 (2\%)	85 (23\%)	1 (<1\%)
Vomiting	83 (22\%)	6 (2\%)	38 (10\%)	0
Constipation	76 (20\%)	4 (1\%)	57 (15\%)	2 (<1\%)
Abdominal Pain ${ }^{4}$	64 (17\%)	7 (2\%)	23 (6\%)	0
Dyspepsia ${ }^{5}$	36 (10\%)	0	9 (2\%)	0
General Disorders and Administration Site Conditions				
Fatigue	136 (37\%)	18 (5\%)	102 (27\%)	11 (3\%)
Asthenia	76 (20\%)	17 (5\%)	46 (12\%)	9 (2\%)
Pyrexia	45 (12\%)	4 (1\%)	23 (6\%)	1 (<1\%)
Peripheral Edema	34 (9\%)	2 (<1\%)	34 (9\%)	2 (<1\%)
Mucosal Inflammation	22 (6\%)	1 (< 1\%)	10 (3\%)	1 (< 1\%)
Pain	20 (5\%)	4 (1\%)	18 (5\%)	7 (2\%)
Infections and				


${ }^{1}$ Graded using NCI CTCAE version 3
${ }^{2}$ Based on laboratory values, cabazitaxel: $\mathrm{n}=369$, mitoxantrone: $\mathrm{n}=370$.
${ }^{3}$ Includes atrial fibrillation, atrial flutter, atrial tachycardia, atrioventricular block complete, bradycardia, palpitations, supraventricular tachycardia, tachyarrhythmia, and tachycardia.
$\begin{array}{ll}5 & { }^{4} \text { Includes abdominal discomfort, abdominal pain lower, abdominal pain upper, abdominal } \\ \text { tenderness, and Gl pain. } \\ & { }^{5} \text { Includes gastroesophageal reflux disease and reflux gastritis. } \\ & { }^{6} \text { Includes urinary tract infection enterococcal and urinary tract infection fungal. } \\ \\ & { }^{7} \text { Includes bronchopneumonia, lobar pneumonia, and pneumonia klebsiella. }\end{array}$

Table 4: Patient Characteristics

	MP ( $\mathrm{n}=377$ )	CBZP ( $\mathrm{n}=378$ )
Age (years)		
Median [range]	67 [47-89]	68 [46-92]
$\geq 65$ (\%)	57.0	64.9
ECOG PS (\%)		
0,1	91.2	92.6
2	8.8	7.4
$\mathrm{PSA}^{*}(\mathrm{ng} / \mathrm{mL})$		
Median [range]	127.5 [2-11220]	143.9 [2-7842]
Measurability of disease (\%)		
Measurable	54.1	53.2
Non-measurable	45.9	46.8
Disease site (\%)		
Bone	87.0	80.2
Lymph node	44.8	45.0
Visceral	24.9	24.9
Pain at Baseline, no. (\%)	168 (44.6)	174 (46.0)
Previous Therapy, no. (\%)		
Hormonal	375 (99.5)	375 (99.2)
No. of Chemotherapy   Regimens		
1	268 (71.1)	260 (68.8)
2	79 (21.0)	94 (24.9)
>2	30 (8.0)	24 (6.3)
Radiation	222 (58.9)	232 (61.4)
Surgery	205 (54.4)	198 (52.4)
Biologic Agent	36 (9.5)	26 (6.9)
$\begin{array}{l}\text { Previous docetaxel regimens, } n \\ (\%)\end{array}$		
1	327 (86.7)	316 (83.6)
2	43 (11.4)	53 (14.0)
>2	7 (1.9)	9 (2.4)
Median total previous docetaxel dose $\left(\mathrm{mg} / \mathrm{m}^{2}\right)$	529.2	576.6
Disease progression relative to docetaxel administration, n (\%)		
During treatment	104 (27.6)	115 (30.4)
<3 months from last dose	181 (48.0)	158 (41.8)
$\geq 3$ months from last dose	90 (23.9)	102 (27.0)
Unknown	2 (0.5)	3 (0.8)
Median time from las docetaxel dose to disease progression (months)	0.7	0.8

The primary reason for treatment discontinuation in both groups was disease progression (Table 5). The median delivered relative dose intensity was $96.1 \%$ in the cabazitaxel group and $97.3 \%$ in the mitoxantrone group. In the cabazitaxel group, $>75 \%$ of patients received $>90 \%$ of the planned dose intensity. Overall, $5.1 \%$ of mitoxantrone treatment courses were dose reduced compared with $9.8 \%$ of cabazitaxel treatment courses; 6.3 and $7 \%$ of all treatment courses were delayed by 9 days or less, and 1.6 and $2.3 \%$ of courses were delayed by more than 9 days for mitoxantrone and cabazitaxel respectively (See Table 5).

Table 5. Treatment Received and Reasons for Discontinuation in the Intention-to-Treat Population.*

	Mitoxantrone $(\mathrm{N}=377)$	Cabazitaxel $(\mathrm{N}=378)$
Patients receiving study treatment, no. (\%)	371 (98.4)	371 (98.1)
Patients completing planned ten cycles of study treatment, no. (\%)	46 (12.2)	105 (27.8)
Discontinuation of study treatment, no. (\%)	325 (86.2)	266 (70.4)
Reasons for discontinuation of study treatment, no. (\%)		
Disease progression	267 (70.8)	180 (47.6)
Adverse event	32 (8.5)	67 (17.7)
Non-compliance with protocol	0	1 (0.3)
Lost to follow-up	2 (0.5)	0
Patient's request	17 (4.5)	8 (2.1)
Other	7 (1.9)	10 (2.7)
No. of treatment cycles, median (range) ${ }^{\dagger}$	4 (1-10)	6 (1-10)
Relative dose intensity, median \% (range) ${ }^{\dagger}$	97.3 (42.5-106.0)	96.1 (49.0-108.2)
```Treatment delays, no. of cycles (%) }\mp@subsup{}{}{\ddagger < days > days```	$\begin{aligned} & 110(6.3) \\ & 28(1.6) \end{aligned}$	$\begin{gathered} 157(7.0) \\ 51(2.3) \end{gathered}$
Dose reductions, no. of cycles (\%) ${ }^{\ddagger}$	88 (5.1)	221 (9.8)

The results of this study are further illustrated to Figures 1, 2, and 3.

Example 2

Table 6 illustrates an example of a dosage modification for adverse reactions in patients treated with cabazitaxel

Table 6

Toxicity	Dosage Modification
Prolonged grade ≥ 3 neutropenia (greater than $1 \quad$ week) despite appropriate medication including G-CSF	Delay treatment until neutrophil count is $>1,500$ cells $/ \mathrm{mm}^{3}$, then reduce dosage of cabazitaxel to $20 \mathrm{mg} / \mathrm{m}^{2}$. Use G-CSF for secondary prophylaxis.
Febrile neutropenia	Delay treatment until improvement or resolution, and until neutrophil count is $>1,500$ cells $/ \mathrm{mm}^{3}$, then reduce dosage of cabazitaxel to $20 \mathrm{mg}^{2} / \mathrm{m}^{2} . \quad$ Use G-CSF for secondary prophylaxis.
Grade ≥ 3 diarrhea or persisting diarrhea despite appropriate medication, fluid and electrolytes replacement	Delay treatment until improvement or resolution, then reduce dosage of cabazitaxel to $20 \mathrm{mg} / \mathrm{m}^{2}$.

Discontinue cabazitaxel treatment if a patient continues to experience any of these reactions at 20 $\mathrm{mg} / \mathrm{m}^{2}$.

Example 3

Performance Status and Pain Scores during Treatment

Methods

- ECOG PS, pain measures, and analgesic consumption were assessed prior to every treatment cycle and at the end of study treatment.
- Pain assessments: Present Pain Intensity (PPI) scale from the McGill-Melzack questionnaire (Melzack R. Pain 1975;1:277-99). Mean Analgesic Score (AS) derived from analgesic consumption (in morphine equivalents) was calculated for the one-week period prior to each evaluation. Area under the curve (AUC) of PPI and AS was calculated by the trapezoid formula. Cumulative AUC of PPI and AS was calculated up to the last cycle of data available for each patient. Average AUC of the treatment groups was compared from Cycle 1 to Cycle 10.

Results

- Performance status remained stable in most patients during the treatment period and was similar between groups. See Figure 4.
- Overall, PPI scores were comparable; improving from baseline in 21.3% of men in the CbzP group and 18.2% in the MP group. See Figure 5.
- The CbzP group had a lower mean area under the curve (AUC) of PPI, suggesting less severe pain especially during cycles $7-10$. See Figure 6.
- Analgesic use was comparable between the groups (lower mean AUC of AS means lower pain medication use). See Figure 7.

Conclusion

Despite longer treatment with CbzP no worsening in ECOG PS was seen.

Present Pain Intensity score improved in 21% of men in CbzP vs. 18% in MP arm. Assessment of pain scores suggested less severe pain in the CbzP group during treatment.

Pain medication use was similar between groups.

Example 4

A population pharmacokinetic analysis was conducted in 170 patients with solid tumors at doses ranging from 10 to $30 \mathrm{mg} / \mathrm{m}^{2}$ weekly or every 3 weeks.

Based on the population pharmacokinetic analysis, after an intravenous dose of cabazitaxel 25 $\mathrm{mg} / \mathrm{m}^{2}$ every 3 weeks, the mean $\mathrm{C}_{\text {max }}$ in patients with metastatic prostate cancer was $226 \mathrm{ng} / \mathrm{mL}$ (CV 107\%) and was reached at the end of the 1-hour infusion ($T_{\max }$). The mean AUC in patients with metastatic prostate cancer was $991 \mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}$ (CV 34\%). No major deviation from the dose proportionality was observed from 10 to $30 \mathrm{mg} / \mathrm{m}^{2}$ in patients with advanced solid tumors. The volume of distribution (Vss) was $4,864 \mathrm{~L}\left(2,643 \mathrm{~L} / \mathrm{m}^{2}\right.$ for a patient with a median BSA of $\left.1.84 \mathrm{~m}^{2}\right)$ at steady state.

Based on the population pharmacokinetic analysis, cabazitaxel has a plasma clearance of 48.5 $\mathrm{L} / \mathrm{h}\left(\mathrm{CV} 39 \% ; 26.4 \mathrm{~L} / \mathrm{h} / \mathrm{m}^{2}\right.$ for a patient with a median BSA of $1.84 \mathrm{~m}^{2}$) in patients with metastatic
prostate cancer. Following a 1-hour intravenous infusion, plasma concentrations of cabazitaxel can be described by a 3 -compartment PK model with $\alpha-$, β-, and γ - half-lives of 4 minutes, 2 hours, and 95 hours, respectively.

CLAIMS

What is claimed is:

1. Compound of formula

which may be in base form or in the form of a hydrate or a solvate, in combination with prednisone or prednisolone, for its use as a medicament in the treatment of prostate cancer.
2. Compound according to claim 1, where the treated patients are not catered for by a taxane-based treatment.
3. Compound according to claim 1 or 2 , where the patients treated have been previously treated with a docetaxel-based regimen.
4. Compound according to any one of claims 1 to 3 , where the prostate cancer is an advanced metastatic disease.
5. Compound according to any one of claims 1 to 4 , where the prostate cancer is a castration resistant prostate cancer or hormone-refractory prostate cancer.
6. Compound according to any one of claims 1 to 5 , in the form of an acetone solvate.
7. Compound according to Claim 6, in which the acetone solvate contains between 5% and 8% and preferably between 5% and 7% by weight of acetone.
8. Compound according to any one of claims 1 to 7 , administered at a dose of between 15 and $25 \mathrm{mg} / \mathrm{m}^{2}$, the prednisone or prednisolone being administered at a dose of 10 mg/day.
9. Compound according to claim 8, administered at a dose of $25 \mathrm{mg} / \mathrm{m}^{2}$.
10. Compound according to any one of claims 1 to 9 , comprising repeating the administration of such compound as a new cycle every 3 weeks.
11. Compound according to claim 10, wherein the median number of cycles is 6 .
12. Compound according to any one of claims 1 to 11 , in combination with prednisone for its use as a medicament in the treatment of patients with castration resistant metastatic prostate cancer or hormone-refractory prostate cancer who have been previously treated with docetaxel based regimen.
13. Compound according to claim 12, which is cabazitaxel.
14. Compound according to any one of claims 1 to 13 , wherein said compound is administered in an amount to provide an AUC of about $991 \mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}$ (CV 34\%).
15. Compound according to any one of claims 1 to 14 , wherein said compound is administered in an amount to provide an $\mathrm{C}_{\max }$ of about $226 \mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}$ (CV 107\%).
16. Compound according to any one of claims 1 to 15 wherein said compound is administered in an amount to provide a plasma clearance of $48.5 \mathrm{~L} / \mathrm{h}$ (CV 39\%).
17. Compound according to any one of Claims 1 to 16 , further comprising monitoring blood counts and measuring neutrophil levels in the patient.
18. Compound according to Claim 17, wherein said monitoring comprises taking a blood sample from the patient.
19. Compound according to Claim 18, further comprising discontinuing cabazitaxel treatment in a patient with a neutrophil count of $\leq 1,500$ cells $/ \mathrm{mm}^{3}$.
20. A pharmaceutical composition comprising a compound as defined in claims 1 to 19.
21. A method of reducing the risk of neutropenia complications in a patient with prostate cancer being treated with a compound as defined in any one of claims 1 to 16, comprising monitoring blood counts in the patient at regular intervals during treatment of the patient; reducing the dose of the compound if the patient experiences febrile neutropenia or prolonged neutropenia; discontinuing the treatment if the patient's neutrophil count is $\leq 1,500$ cells $/ \mathrm{mm}^{3}$; and optionally restarting thetreatment when the patient's neutrophil counts recover to a level $\geq 1,500$ cells/mm ${ }^{3}$.
22. The method according to claim 21, further comprising administering G-CSF to a patient prior to the compound administration, wherein said patient is considered to be at increased risk for neutropenia complications.
23. A method of reducing the risk of a severe hypersensitivity reaction in a patient with prostate cancer being treated with a compound as defined in any one of claims 1 to 16 , comprising administering to the patient a medication to prevent hypersensitivity prior to the administration of cabazitaxel.
24. A method of increasing the survival of a patient with hormone refractory metastatic prostate cancer, comprising administering a clinically proven effective amount of a compound as defined in any one of claims 1 to 16 to the patient in combination with prednisone or prednisolone.
25. An article of manufacture comprising:
a) a packaging material;
b) cabazitaxel, and
c) a label or package insert contained within the packaging material indicating that cabazitaxel should not be given to patients with neutrophil counts of $\leq 1,500$ cells $/ \mathrm{mm}^{3}$.
26. An article of manufacture comprising:
a) a packaging material;
b) cabazitaxel, and
c) a label or package insert contained within the packaging material indicating that severe hypersensitivity reactions can occur.
27. A package comprising cabazitaxel and a label, said label comprising one or more messages that:
a) the efficacy and safety of cabazitaxel in combination with prednisone were evaluated in patients with hormone refractory metastatic prostate cancer previously treated with a docetaxel containing regimen;
b) a total of 755 patients were randomized to receive either cabazitaxel $25 \mathrm{mg} / \mathrm{m}^{3}$ every 3 weeks for a maximum of 10 cycles with prednisone mg orally daily, or to receive mitoxantrone $12 \mathrm{mg} / \mathrm{m}^{2}$ intravenously every 3 weeks for a maximum of 10 cycles with prednisone 10 mg orally daily; or
c) the median number of cycles was 6 in the cabazitaxel group and 4 in the mitoxantrone group.
28. A package comprising cabazitaxel and a label, said label comprising one or more messages that:
a) neutropenic deaths have been reported;
b) frequent blood counts should be obtained to monitor for neutropenia; or
c) cabazitaxel should not be given if neutrophil counts are $\leq 1,500$ cells $/ \mathrm{mm}^{3}$.
29. A package comprising cabazitaxel and a label said label comprising a printed statement which informs a reader that the mean $\mathrm{C}_{\text {max }}$ of cabazitaxel in patients with metastatic prostate cancer was $226 \mathrm{ng} / \mathrm{mL}$ (CV 107\%).
30. A package comprising cabazitaxel and a label, said label comprising a printed statement which informs a reader that the mean AUC of cabazitaxel in patients with metastatic prostate cancer was $991 \mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}$ (CV 34\%).
31. A package comprising cabazitaxel and a label, said label comprising a printed statement which informs a reader that cabazitaxel has a plasma clearance of $48.5 \mathrm{~L} / \mathrm{h}$ (CV 39\%).
32. A method of promoting the use of cabazitaxel, the method comprising the step of conveying to a recipient at least one message selected from:
a) neutropenic deaths have been reported;
b) frequent blood counts should be obtained to monitor for neutropenia;
c) cabazitaxel should not be given if neutrophil counts are $\leq 1,500$ cells $/ \mathrm{mm}^{3}$;
d) severe hypersensitivity can occur;
e) severe hypersensitivity can occur and may include generalized rash/erythema, hypotension and brochospasm;
f) discontinue cabazitaxel immediately if severe reactions occur;
g) discontinue cabazitaxel immediately if severe reactions occur and administer appropriate therapy; or
h) cabazitaxel is contraindicated in patients with a history of severe hypersensitivity reactions to cabazitaxel or drugs formulated with polysorbate 80 .
33. A method of providing cabazitaxel, wherein said cabazitaxel is provided along with information indicating that:
a) neutropenic deaths have been reported;
b) frequent blood counts should be obtained to monitor for neutropenia;
c) cabazitaxel should not be given if neutrophil counts are $\leq 1,500$ cells $/ \mathrm{mm}^{3}$;
d) severe hypersensitivity can occur;
e) severe hypersensitivity can occur and may include generalized rash/erythema, hypotension and brochospasm;
f) discontinue cabazitaxel immediately if severe reactions occur;
g) discontinue cabazitaxel immediately if severe reactions occur and administer appropriate therapy; or
h) cabazitaxel is contraindicated in patients with a history of severe hypersensitivity reactions to cabazitaxel or drugs formulated with polysorbate 80 .

FIGURE 1

FIGURE 2

FIGURE 3

Factor	Patient number	$\begin{gathered} \text { Hazard ratio } \\ (95 \% \mathrm{CI}) \end{gathered}$	- Favors Cabazitaxel	Favors Mitoxantrone ${ }^{\text {a }}$
All randomized patients	755	0.70 (0.59-0.83)	--	
ECOG status: 0,1	694	0.68 (0.57-0.82)		
ECOG status: 2	61	0.81 (0.48-1.38)		
Measurable disease: No	350	0.72 (0.55-0.93)	-	
Measurable disease: Yes	405	0.68 (0.54-0.85)		
No. of prior chemotherapies: 1	528	0.67 (0.55-0.83)		
No. of prior chemotherapies: ≥ 2	227	0.75 (0.55-1.02)		
Age: <65 years	295	0.81 (0.61-1.08)		
Age: ≥ 65 years	460	0.62 (0.50-0.78)	\square	
Rising PSA at baseline: No	159	0.88 (0.61-1.26)		
Rising PSA at baseline: Yes	583	0.65 (0.53-0.80)	\bullet	
Total docetaxel dose: $<225 \mathrm{mg} / \mathrm{m}^{2}$	59	0.96 (0.49-1.86)		
Total docetaxel dose: ≥ 225 to $450 \mathrm{mg} / \mathrm{m}^{2}$	206	0.60 (0.43-0.84)		
Total docetaxel dose: ≥ 450 to $675 \mathrm{mg} / \mathrm{m}^{2}$	217	0.83 (0.60-1.16)		
Total docetaxel dose: ≥ 675 to $900 \mathrm{mg} / \mathrm{m}^{2}$	131	0.73 (0.48-1.10)		
Total docetaxel dose: $\geq 900 \mathrm{mg} / \mathrm{m}^{2}$	134	0.51 (0.33-0.79)		
Progression during docetaxel treatment	219	0.65 (0.47-0.90)		
Progression <3 months after docetaxel	339	0.70 (0.55-0.91)		
Progression ≥ 3 months after docetaxel	192	0.75 (0.51-1.11)		
			0 0.5 Hazard ratio and	1.5 2

FIGURE 4

Proportion of patients with changes in ECOG performance status from baseline during treatment (safety population)

Improved: PS2 at baseline changed to 0 or 1 during treatment

Stable: no change
Worse: PS2 at baseline and changed to ≥ 3, or 0 or 1 at baseline changed to ≥ 2 during treatment

FIGURE 5

Proportion of patients with changes from baseline in the Present Pain Intensity score during treatment (ITT)

Improved: PPI score during treatment was lower vs
baseline
Stable: no change
Worse: >1 unit increase in PPI score during treatment vs baseline

FIGURE 6

Mean area under the curve for PPI and analgesic scores by treatment cycle

FIGURE 7

Mean AUC analgesic score

PGM=PRODOPS/XRP6258/OVERALL/SCS SCE 09/REPORT/PGM/ppauc as.sas OUT-REPORT/OUTPUT/ppauc as x $1 . c \mathrm{~cm}$ (17FEB2010-15:12

C(Continu	ion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No .
Y	TANNOCK IAN F ET AL: "Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer." THE NEW ENGLAND JOURNAL OF MEDICINE 7 OCT 2004 LNKD- PUBMED: 15470213, vol. 351, no. 15, 7 October 2004 (2004-10-07), pages 1502-1512, XP002623317, ISSN: 1533-4406 * abstract	1-33
Y	SOUTHWEST ONCOLOGY GROUP ET AL: "Quality of life and pain in advanced stage prostate cancer: results of a Southwest Oncology Group randomized trial comparing docetaxel and estramustine to mitoxantrone and prednisone.", JOURNAL OF CLINICAL ONCOLOGY : OFFICIAL JOURNAL OF THE AMERICAN SOCIETY OF CLINICAL ONCOLOGY 20 JUN 2006 LNKDPUBMED:16782921, vol. 24, no. 18, 20 June 2006 (2006-06-20) pages 2828-2835, XP002623318, ISSN: 1527-7755 the whole document	1-33
Y	US 2005/065138 A1 (DIDIER ERIC [FR] ET AL) 24 March 2005 (2005-03-24) the whole document	1-33
X, P	FOR THE TROPIC INVESTIGATORS ET AL: "Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial", LANCET THE, LANCET LIMITED. LONDON, GB, vol. 376, no. 9747, 2 October 2010 (2010-10-02), pages 1147-1154, XP027490891, ISSN: 0140-6736 [retrieved on 2010-10-02] the whole document	$\begin{aligned} & 1-5, \\ & 8-16,20, \\ & 25-31,33 \end{aligned}$
X, P	GALSKY, MATTHEW D. ET AL: "Cabazitaxel", NATURE REVIEWS DRUG DISCOVERY , 9(9), 677-678 CODEN: NRDDAG; ISSN: 1474-1776, 2010, XP002623319, the whole document	$\begin{aligned} & 1-5, \\ & 8-16,20, \\ & 25-31,33 \end{aligned}$
X, P	EP 2177630 A1 (ROUSSY INST GUSTAVE [FR]) 21 April 2010 (2010-04-21) page 9, paragraph 44 - paragraph 47	25-31,33

Information on patent family members

Patent document cited in search report		Publication date		Patent family member(s)	$\begin{gathered} \text { Publication } \\ \text { date } \end{gathered}$
US 2005065138	A1 24-03-2005		NONE		
EP 2177630	A1	21-04-2010	W0	2010037859 A2	08-04-2010

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 October 2011 (13.10.2011)

(51) International Patent Classification:

C12Q 1/68 (2006.01)
(21) International Application Number:

PCT/EP2011/055482
(22) International Filing Date:

8 April 2011 (08.04.2011)
(25) Filing Language:

English
(26) Publication Language: English
(30) Priority Data:
$10305361.7 \quad 8$ April 2010 (08.04.2010)
(71) Applicant (for all designated States except US): INSTITUT GUSTAVE ROUSSY [FR/FR]; 39 rue Camille Desmoulins, F-94805 Villejuif Cedex (FR).
(72) Inventors; and
(75) Inventors/Applicants (for US only): CHAUCHEREAU, Anne [FR/FR]; 31 rue André Salel, F-92260 Fontenay-Aux-Roses (FR). COMMO, Frédéric [FR/FR]; 17, Boulevard Richelieu, F-92500 Rueil Malmaison (FR). AL NAKOUZI, Nader [LB/LB]; rue Beraniyeh, Bâtiment Charbel Nakouzi, 2ème Etage, Amchit (LB).
(74) Agents: GALLOIS, Valérie et al.; Becker \& Associes, 25 rue Louis Le Grand, F-75 002 Paris (FR).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}$, $\mathrm{CA}, \mathrm{CH}, \mathrm{CL}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{DO}$, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a)) cer is responsive to a treatment with a molecule of the taxoid family based on a resistance expression signature, kits for performing the methods, and methods for screening or identifying a compound suitable for improving the treatment of a cancer with a molecule of the taxoid family or for reducing the resistance development during the treatment of a cancer with the molecule of the taxoid family.

METHODS FOR PREDICTING OR MONITORING WHETHER A PATIENT AFFECTED BY A CANCER IS RESPONSIVE TO A TREATMENT WITH A MOLECULE OF THE TAXOID FAMILY

FIELD OF THE INVENTION

The present invention relates to method for predicting the response to a treatment with a molecule of the taxoid family, kits and method for screening compounds useful for improve the treatment with the molecule.

BACKGROUND OF THE INVENTION

Prostate cancer became, based on frequency and in Western countries, the first cancer in men, behind the lung cancer. This disease is the second cause of cancer death in men. Since 2005, more than 60,000 men are touched by prostate cancer (PCa) each year and 10,000 men died of this disease. The efficiency of docetaxel chemotherapy (Taxotere $\mathbb{R}^{(R}$) in prostate cancer (CaP) has been demonstrated for the first time in 2004 in two clinical trials, i.e. TAX 327 and SWOG 99-16, with an increase in survival. Accordingly, docetaxel became today a treatment of choice of metastatic hormone-refractory prostate cancers and phase III clinical trials are ongoing to assess its efficacy for the treatment of high-risk localized prostate cancer. Taxotere ${ }^{\circledR}$ is currently approved in 5 different cancer types in Europe and the US: Prostate cancer, breast cancer, lung cancer, gastric cancer and head and neck cancer. However, in spite of the survival benefit provided by this molecule, docetaxel has a great toxicity and almost half of the patients treated with docetaxel develop a resistance to the chemotherapy either from the beginning, or in a secondary way. Moreover, docetaxel is not effective on all the types of cancer. For instance, in case of breast cancer, only 30 to 50% of the metastatic tumours respond to docetaxel. Resistance to taxanes is common and there is an increasing need to try and identify those patients who will respond to treatment.

A genomic analysis was performed with two cell lines (PC3 and DU145) resistant to a docetaxel dose of 11 nM (Patterson et al, Oncogene, 2006, 25: 6113-6122). The article discloses an expression signature of 30 genes. The authors also demonstrated the effect of STAT1 and Clusterin in an in vitro model for the docetaxel resistance. However, the validation of the expression of these two genes in the docetaxel-resistance has not been performed on tumours. The authors further demonstrated that resveratrol leads to a decreased expression of clusterin in docetaxel resistant cells and, then to an increase of apoptosis (Sallman et al, Mol. Can. Ther., 2007, $6: 2938-2947$). Other groups used docetaxel resistance cell lines (PC3-R) in their research
(Lo Nigro et al, BJU Int., 2008, 102 : 622-7). Some other groups used prostate cancer cell lines treated during a short period (24-72 h) with docetaxel for studying the role of genes in the docetaxel response.

In addition, a patent application WO 2006/062811 concerns a method for measuring resistance or sensitivity to docetaxel.

Therefore, there is still a strong need of a diagnostic method for predicting responsiveness to docetaxel and avoiding useless treatments. Indeed, before the initiation of the treatment, it is currently impossible to identify the patients who will respond to or who will have a resistance to docetaxel.

SUMMARY OF THE INVENTION

The present invention provides an expression signature specific of the docetaxel resistance in human prostate cancer. Based on this signature, the present invention provides a method for predicting or monitoring whether a patient affected by a cancer is responsive to a treatment with a molecule of the taxoid family.

Accordingly, the present invention concerns an in vitro method for predicting or monitoring whether a patient affected by a cancer is responsive to a treatment with a molecule of the taxoid family, wherein the method comprises: 1) providing a biological sample from said subject; 2) determining in the biological sample the expression level of the following genes JAM3, PCDH7, DCDC2, KHDRBS2, MFAP5, AUTS2, C2orf55, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6 and MBNL3.

Preferably, the expression level is compared to a reference expression level, for instance the expression level of the genes in cell-lines or patients sensitive to the treatment by the molecule of the taxoid family. In particular, the over-expression of genes from Tables 1 and 3 and/or the under-expression of genes from Tables 2 and 4 are indicative of a resistance to the treatment by the molecule of the taxoid family. More preferably, the over-expression of genes selected from the group consisting of PCDH7, KHDRBS2, AUTS2, and C2orf55 and/or the under-expression of genes selected from the group consisting of JAM3, DCDC2, MFAP5, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6, and MBNL3 are indicative of a resistance to the treatment by the molecule of the taxoid family. The expression level of genes can be determined by the quantity of protein or mRNA encoded by said genes. Preferably, the biological sample is a cancer sample.

In a preferred embodiment, the molecule of the taxoid family is selected from the group consisting of docetaxel, larotaxel, cabazitaxel (XRP6258), BMS-184476, BMS-188797, BMS-

275183, ortataxel, RPR 109881A, RPR 116258, NBT-287, PG-paclitaxel, ABRAXANE®, Tesetaxel, IDN 5390, Taxoprexin, DHA-paclitaxel, and MAC-321. More preferably, the molecule of the taxoid family is docetaxel.

Optionally, the method further comprises determining the expression level of at least one gene selected from the group consisting of FBN2, HIST2H2AA4, WDR31, FBXO15, THAP2, BF207040, HIST1H2BK, UNC13A, FAM27E3, LOC728613, FAM27E1, NPDC1, HIST1H2BL, UBE2J1, TJP2, HAVCR1, ZBTB24, CDKAL1, COQ3, TMCC3, ZFPM2, SLC3A2, LIMCH1, EPB41L2, B4GALT4, BX281122 and TPD52L1. Alternatively, the method further comprises determining the expression level of the genes FBN2, HIST2H2AA4, WDR31, FBXO15, THAP2, BF207040, HIST1H2BK, UNC13A, FAM27E3, LOC728613, FAM27E1, NPDC1, HIST1H2BL, UBE2J1, TJP2, HAVCR1, ZBTB24, CDKAL1, COQ3, TMCC3, ZFPM2, SLC3A2, LIMCH1, EPB41L2, B4GALT4, BX281122 and TPD52L1.

Optionally, the method further comprises determining the expression level of at least one gene selected from the group consisting of the genes listed in Tables 1-4.

Preferably, the biological sample is a cancer sample.
Preferably, the cancer is selected from the group consisting of the breast cancer, the lung cancer, the prostate cancer, the gastric cancer and the head and neck cancer, more preferably a prostate cancer.

The present invention also concerns kits and DNA chips suitable for this method. Accordingly, the present invention concerns a kit for predicting or monitoring whether a patient affected by a cancer is responsive to a treatment with a molecule of the taxoid family, wherein the kit comprises detection means selected from the group consisting of a pair of primers, a probe and an antibody specific to the genes JAM3, PCDH7, DCDC2, KHDRBS2, MFAP5, AUTS2, C2orf55, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6 and MBNL3 or a DNA chip comprises a solid support which carries nucleic acids that are specific to the genes JAM3, PCDH7, DCDC2, KHDRBS2, MFAP5, AUTS2, C2orf55, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6 and MBNL3. Optionally, the kit further comprises detection means selected from the group consisting of a pair of primers, a probe and an antibody specific to at least one gene selected from the group consisting of the genes the kit or DNA chip further comprises detection means for at least one gene selected from the group consisting of FBN2, HIST2H2AA4, WDR31, FBXO15, THAP2, BF207040, HIST1H2BK, UNC13A, FAM27E3, LOC728613, FAM27E1, NPDC1, HIST1H2BL, UBE2J1, TJP2, HAVCR1, ZBTB24, CDKAL1, COQ3, TMCC3, ZFPM2, SLC3A2, LIMCH1, EPB41L2, B4GALT4, BX281122 and TPD52L1. Optionally, the

DNA chip further carries nucleic acids that are specific to at least one gene selected from the group consisting of the genes the kit or DNA chip further comprises detection means for at least one gene selected from the group consisting of FBN2, HIST2H2AA4, WDR31, FBXO15, THAP2, BF207040, HIST1H2BK, UNC13A, FAM27E3, LOC728613, FAM27E1, NPDC1, HIST1H2BL, UBE2J1, TJP2, HAVCR1, ZBTB24, CDKAL1, COQ3, TMCC3, ZFPM2, SLC3A2, LIMCH1, EPB41L2, B4GALT4, BX281122 and TPD52L1.

The present invention further concerns methods for screening or identifying a compound suitable for improving the treatment of a cancer with a molecule of the taxoid family or for reducing the resistance development during the treatment of a cancer with a molecule of the taxoid family. In a first embodiment, the method comprises: 1) providing a cell-line with the genes PCDH7, KHDRBS2, AUTS2, and C2orf55 being over-expressed and the genes JAM3, DCDC2, MFAP5, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6, and MBNL3 being under-expressed; 2) contacting said cell-line with a test compound; 3) determining the expression level of said genes; and, 4) selecting the compound which decreases the expression level of one or several of the over-expressed genes and increases the expression level of one or several of the under-expressed genes. In a second embodiment, the method comprises: 1) providing a cell-line sensitive to the molecule of the taxoid family; 2) contacting said cell-line with a test compound and the molecule of the taxoid family; 3) determining the expression level of the genes JAM3, PCDH7, DCDC2, KHDRBS2, MFAP5, AUTS2, C2orf55, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6, and MBNL3; and, 4) selecting the compound which inhibits the appearance of an overexpression of the genes PCDH7, KHDRBS2, AUTS2, and C2orf55 and/or an under-expression of the genes JAM3, DCDC2, MFAP5, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6, and MBNL3.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides the identification of protein coding genes involved in the mechanism of docetaxel resistance in prostate cancer treatment.

The inventors prepared in vitro cellular models of docetaxel resistant prostate cancer by selecting cell clones by pharmaceutical pressure from a cellular model of prostate cancer i.e. IGR-CaP1 cell line. Cell lines became resistant to increasing doses of docetaxel ($5 \mathrm{nM} ; 12 \mathrm{nM}$; $25 \mathrm{nM}, 50 \mathrm{nM} ; 100 \mathrm{nM} ; 200 \mathrm{nM}$). The prostate cancer cell line IGR-CaP1 is described in CNCM deposit number I-4126 on February 10, 2009.

A micro-array genomic analysis was performed by comparing sensitive and resistant IGR-CaP1 cell line at six docetaxel concentrations (5; 12;25,50, 100 and 200 nM), as detailed in the experimental section. This analysis led to the identification of 1081 genes associated to the resistance to increasing doses of docetaxel (with a P value $\leq 1 \mathrm{e}-3$ and a fold change between the first and the last doses of docetaxel (between 5 and 200 nM) ≥ 2). In this signature, 772 genes are over-expressed and 309 genes are under-expressed. These genes are presented in Tables 1 to 4 .

The inventors realized a second microarray experiment in which the same IGR-CaP1 resistant cell lines have been used. Contrasting with the first analysis, the different resistant cell lines were cultured in the total absence of docetaxel for 2 passages before RNA extraction and microarray analysis, to retain only irreversible resistance mechanisms. To enhance the robustness of bioinformatics analysis, this analysis was generated from biological duplicates.

The second microarray genomic analysis was performed by comparing sensitive and resistant IGR-CaP1 cell line at six docetaxel concentrations (5;12;25,50, 100 and 200 nM), as detailed in the experimental section. This analysis led to the identification of 486 genes associated to the resistance to increasing doses of docetaxel (with a P value $\leq 1 \mathrm{e}-5$ and a fold change between the first and the last doses of docetaxel (between 5 and 200 nM) ≥ 2). Table 5 showed the 44 genes which were found in common in the two microarray analyses. Among these genes, a final list of 17 genes was selected with 4 genes that were overexpressed in a dosedependent manner and 13 genes that were under-expressed in a dose-dependent manner (Table $6)$.

On this basis, the inventors identified a set of genes whose combined expression profiles allow to distinguish patients between responder and non-responder to a treatment with a molecule of the taxoid family. A "responder" or "responsive" patient refers to a patient who shows or will show a clinically significant recovery when treated in the cancer when treated with a molecule of the taxoid family. In particular, the size of the tumor will no more increase, decrease or the tumor will disappear.

Therefore, the present invention discloses an expression signature useful for in vitro method for predicting whether a patient suffering of a cancer would be responsive to a treatment with a molecule of the taxoid family.

In a preferred embodiment of the invention, the method comprises determining the expression level of genes of Table 6, namely JAM3, PCDH7, DCDC2, KHDRBS2, MFAP5, AUTS2, C2orf55, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6, and MBNL3. In particular, when comparing with the expression level of the genes in cell-lines or patients sensitive to the treatment by the molecule of the taxoid family, the over-
expression of genes PCDH7, KHDRBS2, AUTS2, and C2orf55, and/or the under-expression of genes JAM3, DCDC2, MFAP5, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6, and MBNL3 are indicative of a resistance to the treatment by the molecule of the taxoid family. In addition, the expression level of one or several genes of Table 5 may further be determined, namely genes selected from the group consisting of FBN2, HIST2H2AA4, WDR31, FBXO15, THAP2, BF207040, HIST1H2BK, UNC13A, FAM27E3, LOC728613, FAM27E1, NPDC1, HIST1H2BL, UBE2J1, TJP2, HAVCR1, ZBTB24, CDKAL1, COQ3, TMCC3, ZFPM2, SLC3A2, LIMCH1, EPB41L2, B4GALT4, BX281122 and TPD52L1. More particularly, when comparing with the expression level of the genes in cell-lines or patients sensitive to the treatment by the molecule of the taxoid family, the over-expression of one or several genes selected among FBN2, HIST2H2AA4, WDR31, FBXO15, THAP2, BF207040, HIST1H2BK, UNC13A, FAM27E3, LOC728613, FAM27E1, NPDC1 and HIST1H2BL, and/or the under-expression of one or several genes selected among UBE2J1, TJP2, HAVCR1, ZBTB24, CDKAL1, COQ3, TMCC3, ZFPM2, SLC3A2, LIMCH1, EPB41L2, B4GALT4, BX281122 and TPD52L1 may be indicative of a resistance to the treatment by the molecule of the taxoid family. Optionally, the expression level of at least $6,7,8,9,10,15,20,25,30,40$ or all genes of Table 5 are determined. Optionally, the expression level of at least $6,7,8,9,10,15$, $20,25,30,40,50,60,70,80,90,100,150,200,300,500$ or 1000 additional genes of Tables 1-4 may also be determined. However, in a preferred embodiment, the method does not comprise the determination of the expression level of more than 200 , 100 or 50 genes, more preferably no more than $50,40,30$ or 20 genes.

Alternatively, the method comprises determining the expression level of genes from the present expression signature (see Tables 1 to 4 or Tables 1-6) in a biological sample of said patient. In particular, the method comprises determining the expression level of at least 5 genes selected from the group consisting of the genes listed in Tables 1-6 or in Tables 1 and 2, in a biological sample of said patient. Preferably, the method comprises determining the expression level of at least $6,7,8,9,10,15,20,25,30,40,50,60,70,80,90,100,150,200,300,500$ or 1000 genes of Tables $1-6$ or Tables 1 and 2 . Optionally, the method further comprises determining the expression level of at least one gene selected from the group consisting of the genes listed in Tables 3 and 4. Optionally, the method further comprises determining the expression level of at least one gene selected from the group consisting of the genes listed in Tables 5 and 6 . Preferably, the expression level of at least $2,3,5,10,15$ or 20 genes selected from the group consisting of the genes listed in Tables 3-6 or Tables 3 and 4, is determined. Preferably, the expression level of at least $2,3,5,10,15$ or 20 genes selected from the group
consisting of the genes listed in Tables 5 and 6 , is also determined. Alternatively, the method comprises determining the expression level of 5 to 1081 genes of Tables 1 to 4 , optionally of 10 to 500,20 to 300,30 to 250,50 to 250,20 to 250,30 to 200,40 to 150,50 to 100,60 to 90 or 70 to 80 . However, in a preferred embodiment, the method does not comprise the determination of the expression level of more than 200,100 or 50 genes, more preferably no more than $50,40,30$ or 20 genes.

By "predicting" or "prediction" is intended herein the likelihood that a patient will respond or not to a molecule of the taxoid family and also the extent of the response. Predictive methods of the invention can be used clinically to make treatment decisions by choosing the most appropriate treatment modalities for any particular patient.

Therefore, the present invention also concerns a method for selecting a patient suffering of a cancer for a treatment with a molecule of the taxoid family, comprising determining the expression level of genes of Table 6, namely JAM3, PCDH7, DCDC2, KHDRBS2, MFAP5, AUTS2, C2orf55, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6, and MBNL3 in a biological sample of said patient and selecting the patient predicted to be responsive to a treatment with a molecule of the taxoid family. In particular, when comparing with the expression level of the genes in cell-lines or patients sensitive to the treatment by the molecule of the taxoid family, the over-expression of genes PCDH7, KHDRBS2, AUTS2, and C2orf55, and/or the under-expression of genes JAM3, DCDC2, MFAP5, SLC3A1, AKAP12, ZNF649, RNASET2, NCF2, DLC1, CXCR4, CR594735, TRIM6, and MBNL3 are indicative of a resistance to the treatment by the molecule of the taxoid family. Optionally, the method further comprises determining the expression level of at least one gene selected from the group consisting of genes of Table 5, namely FBN2, HIST2H2AA4, WDR31, FBXO15, THAP2, BF207040, HIST1H2BK, UNC13A, FAM27E3, LOC728613, FAM27E1, NPDC1, HIST1H2BL, UBE2J1, TJP2, HAVCR1, ZBTB24, CDKAL1, COQ3, TMCC3, ZFPM2, SLC3A2, LIMCH1, EPB41L2, B4GALT4, BX281122 and TPD52L1. More particularly, when comparing with the expression level of the genes in cell-lines or patients sensitive to the treatment by the molecule of the taxoid family, the over-expression of one or several genes selected among FBN2, HIST2H2AA4, WDR31, FBXO15, THAP2, BF207040, HIST1H2BK, UNC13A, FAM27E3, LOC728613, FAM27E1, NPDC1 and HIST1H2BL, and/or the underexpression of one or several genes selected among UBE2J1, TJP2, HAVCR1, ZBTB24, CDKAL1, COQ3, TMCC3, ZFPM2, SLC3A2, LIMCH1, EPB41L2, B4GALT4, BX281 122 and TPD52L1 may be indicative of a resistance to the treatment by the molecule of the taxoid family. Optionally, the expression level of at least $6,7,8,9,10,15,20,25,30,40$ or all genes of Table 5
are determined. Optionally, the expression level of at least $6,7,8,9,10,15,20,25,30,40,50$, $60,70,80,90,100,150,200,300,500$ or 1000 additional genes of Tables $1-4$ may also be determined. However, in a preferred embodiment, the method does not comprise the determination of the expression level of more than 200 , 100 or 50 genes, more preferably no more than $50,40,30$ or 20 genes.

In addition, the present invention also concerns a method for selecting a patient suffering of a cancer for a treatment with a molecule of the taxoid family, comprising determining the expression level of at least $5,6,7,8,9,10,15,20,25,30,40,50,60,70,80,90,100,150,200$, 300,500 or 1000 genes selected from the group consisting of the genes listed in Tables 1-6 or Tables 1 and 2, in a biological sample of said patient and selecting the patient predicted to be responsive to a treatment with a molecule of the taxoid family. Optionally, the method further comprises determining the expression level of at least one gene selected from the group consisting of the genes listed in Tables 3-6 or Tables 3 and 4.

In an embodiment, the genes, preferably the additional genes, are selected from Tables 1 and 2 on the criteria of "fold change". Accordingly, the genes with the greatest fold change (in absolute value) between 5 nM of docetaxel and 200 nM of docetaxel are chosen. For instance, the genes associated with a fold change greater (in absolute value) than 3 , preferably than $4,5,6,7$, 8,9 or 10 , are selected. In a particular embodiment, the genes are selected from the group consisting of ENST00000399723, BI836406, C10orf79, AK022962, TMTC1, LOC728295, SUSD5, WNT6, BC044624, AY358241, ZNF251, ST6GAL2, LOC643401, NOV, CLGN, PROM1, SPEF2, FLRT2, RGS2, FOXP2, TRIM55, PKD2L1, RP4-692D3.1, CB985069, ARL14, AY831680, XRN1, THAP5, ZNF248, BC016022, PLAG1, THC2724353, THC2488083, C5orf41, BMS1P5, BMS1, THC2627008, PLA2G4A, DPY19L2, VCX2, PPP1R1C, GLT25D2, KIAA1841, IFIT2, ZNF596, TSPAN19, BC029907, C10orf107, ZNF594, AMPD1, C21orf88, THC2694827, HSPC105, IFI44, THC2662262, FAM84A, DNAH7, KHDRBS2, NANP, AK091357, N4BP2L1, FAM105A, CA941346, CCDC68, CASC1, FAM90A12, PBX1, THC2739159, KCNQ2, ANXA1, AL122040, THC2655194, ENST00000342608, DSC2, ENOX1, IL13, BG571904, BX455216, LOC729085, BG188151, LOC729409, C1orf103, PPP1R14C, NAIP, C13orf31, GOLGA8E, AK022848, CXorf22, KIF5C, LRRCC1, FAM81B, ID2, CMYA5, C1orf194, TTC18, tcag7.1314, ZNF385B, ADAMTS6, RHOU, ENST00000378850, C2orf55, GPR83, LRRIQ1, WDR31, DEFB126, ARMETL1, LOC642826, LOC129881, C2orf13, THC2553512, ACVR1C, ZNF207, ANTXR1, CHD9, THC2526838, ABCA12, TncRNA, FKTN, PTPRG, ZNF233, ENST00000370378, FANK1, PCM1, SERPINI1, ARID4B, KIAA1377, FGF7, CV339166, LINCR, DA834198, CFH, SCG2, ARHGEF10, DA093175, GOLGA8A, AK021467, LOC283666, FLJ35767, THC2725553, ZNF430, CCDC141, MAP3K13, CCDC66, THC2727226, THC2528990, THC2718728, THC2507829, AK123972, EDEM3, DB304731, TPD52L1,

MFAP5, EHF, NCF2, TRIM6, PERLD1, ATXN1, INHBB, CR627122, JAM3, CXCL14, CR594735, FLJ11235, C15orf52, LIMCH1, LOH11CR2A, BX281122, GPR110, ARNT2, ATP6V0A4, PDGFRB, ELA3B, NEDD9, MYH6, SLC35F2, HAS3, COLEC12, SLC3A2, AW993939, RUNX2, SUSD3, PLAU, SLC22A3, FCRL4, DOCK2, SOX3, THC2616558, RNASET2, LOC100130360, IL1R2, MGAT5B, TCF7L1, AF222857, AHNAK, HOXB8, S100A16, INSIG1 and DCDC2. Preferably, the genes are selected from the group consisting of ENST00000399723, BI836406, C10orf79, AK022962, TMTC1, LOC728295, SUSD5, WNT6, BC044624, AY358241, ZNF251, ST6GAL2, LOC643401, NOV, CLGN, PROM1, SPEF2, FLRT2, RGS2, FOXP2, TRIM55, PKD2L1, RP4-692D3.1, CB985069, ARL14, AY831680, XRN1, THAP5, ZNF248, BC016022, PLAG1, THC2724353, THC2488083, C5orf41, BMS1P5, BMS1, THC2627008, PLA2G4A, DPY19L2, VCX2, PPP1R1C, GLT25D2, KIAA1841, IFIT2, ZNF596, TSPAN19, BC029907, C10orf107, ZNF594, AMPD1, C21orf88, THC2694827, HSPC105, IFI44, THC2662262, FAM84A, DNAH7, KHDRBS2, NANP, AK091357, N4BP2L1, FAM105A, CA941346, CCDC68, CASC1, FAM90A12, PBX1, THC2739159, KCNQ2, ANXA1, AL122040, THC2655194, ENST00000342608, DSC2, ENOX1, IL13, BG571904, BX455216, LOC729085, BG188151, LOC729409, C1orf103, PPP1R14C, NAIP, C13orf31, GOLGA8E, AK022848, CXorf22, KIF5C, TPD52L1, MFAP5, EHF, NCF2, TRIM6, PERLD1, ATXN1, INHBB, CR627122, JAM3, CXCL14, CR594735, FLJ11235, C15orf52, LIMCH1, LOH11CR2A, BX281122, GPR110, ARNT2, ATP6V0A4, PDGFRB, ELA3B, NEDD9, MYH6, SLC35F2, HAS3, COLEC12, SLC3A2, AW993939, RUNX2 and SUSD3. More preferably, the genes are selected from the group consisting of ENST00000399723, BI836406, C10orf79, AK022962, TMTC1, LOC728295, SUSD5, WNT6, BC044624, AY358241, ZNF251, ST6GAL2, LOC643401, NOV, CLGN, PROM1, SPEF2, FLRT2, RGS2, FOXP2, TRIM55, PKD2L1, RP4-692D3.1, TPD52L1, MFAP5, EHF, NCF2, TRIM6, PERLD1, ATXN1, INHBB, CR627122, JAM3, CXCL14 and CR594735. In the most preferred embodiment, the genes are selected from the group consisting of ENST00000399723, BI836406, C10orf79, AK022962, TMTC1, LOC728295, SUSD5, WNT6, BC044624, TPD52L1, MFAP5, EHF, NCF2, TRIM6, PERLD1, ATXN1, INHBB and CR627122.

In another embodiment, the genes, preferably the additional genes, are selected from Tables 1 on the criteria of "fold change". Accordingly, the over-expressed genes with the greatest fold change (in absolute value) are chosen. For instance, the over-expressed genes associated with a fold change greater (in absolute value) than 3 , preferably than $4,5,6,7,8,9$ or 10 , are selected. In a particular embodiment, the genes are selected from the group consisting of ENST00000399723, BI836406, C10orf79, AK022962, TMTC1, LOC728295, SUSD5, WNT6, BC044624, AY358241, ZNF251, ST6GAL2, LOC643401, NOV, CLGN, PROM1, SPEF2, FLRT2, RGS2, FOXP2, TRIM55, PKD2L1, RP4-692D3.1, CB985069, ARL14, AY831680, XRN1, THAP5, ZNF248, BC016022, PLAG1, THC2724353, THC2488083, C5orf41, BMS1P5, BMS1, THC2627008, PLA2G4A, DPY19L2, VCX2, PPP1R1C, GLT25D2, KIAA1841, IFIT2, ZNF596, TSPAN19,

BC029907, C10orf107, ZNF594, AMPD1, C21orf88, THC2694827, HSPC105, IFI44, THC2662262, FAM84A, DNAH7, KHDRBS2, NANP, AK091357, N4BP2L1, FAM105A, CA941346, CCDC68, CASC1, FAM90A12, PBX1, THC2739159, KCNQ2, ANXA1, AL122040, THC2655194, ENST00000342608, DSC2, ENOX1, IL13, BG571904, BX455216, LOC729085, BG188151, LOC729409, C1orf103, PPP1R14C, NAIP, C13orf31, GOLGA8E, AK022848, CXorf22, KIF5C, LRRCC1, FAM81B, ID2, CMYA5, C1orf194, TTC18, tcag7.1314, ZNF385B, ADAMTS6, RHOU, ENST00000378850, C2orf55, GPR83, LRRIQ1, WDR31, DEFB126, ARMETL1, LOC642826, LOC129881, C2orf13, THC2553512, ACVR1C, ZNF207, ANTXR1, CHD9, THC2526838, ABCA12, TncRNA, FKTN, PTPRG, ZNF233, ENST00000370378, FANK1, PCM1, SERPINI1, ARID4B, KIAA1377, FGF7, CV339166, LINCR, DA834198, CFH, SCG2, ARHGEF 10, DA093175, GOLGA8A, AK021467, LOC283666, FLJ35767, THC2725553, ZNF430, CCDC141, MAP3K13, CCDC66, THC2727226, THC2528990, THC2718728, THC2507829, AK123972, EDEM3 and DB304731. Preferably, the genes are selected from the group consisting of ENST00000399723, BI836406, C10orf79, AK022962, TMTC1, LOC728295, SUSD5, WNT6, BC044624, AY358241, ZNF251, ST6GAL2, LOC643401, NOV, CLGN, PROM1, SPEF2, FLRT2, RGS2, FOXP2, TRIM55, PKD2L1, RP4-692D3.1, CB985069, ARL14, AY831680, XRN1, THAP5, ZNF248, BC016022, PLAG1, THC2724353, THC2488083, C5orf41, BMS1P5, BMS1, THC2627008, PLA2G4A, DPY19L2, VCX2, PPP1R1C, GLT25D2, KIAA1841, IFIT2, ZNF596, TSPAN19, BC029907, C10orf107, ZNF594, AMPD1, C21orf88, THC2694827, HSPC105, IFI44, THC2662262, FAM84A, DNAH7, KHDRBS2, NANP, AK091357, N4BP2L1, FAM105A, CA941346, CCDC68, CASC1, FAM90A12, PBX1, THC2739159, KCNQ2, ANXA1, AL122040, THC2655194, ENST00000342608, DSC2, ENOX1, IL13, BG571904, BX455216, LOC729085, BG188151, LOC729409, C1orf103, PPP1R14C, NAIP, C13orf31, GOLGA8E, AK022848, CXorf22 and KIF5C. More preferably, the genes are selected from the group consisting of ENST00000399723, BI836406, C10orf79, AK022962, TMTC1, LOC728295, SUSD5, WNT6, BC044624, AY358241, ZNF251, ST6GAL2, LOC643401, NOV, CLGN, PROM1, SPEF2, FLRT2, RGS2, FOXP2, TRIM55, PKD2L1 and RP4-692D3.1. In the most preferred embodiment, the genes are selected from the group consisting of ENST00000399723, BI836406, C10orf79, AK022962, TMTC1, LOC728295, SUSD5, WNT6 and BC044624.

In a further embodiment, the genes, preferably the additional genes are selected from Tables 2 on the criteria of "fold change". Accordingly, the under-expressed genes with the greatest fold change (in absolute value) are chosen. For instance, the under-expressed genes associated with a fold change greater (in absolute value) than 3 , preferably than $4,5,6,7,8,9$ or 10 , are selected. In a particular embodiment, the genes are selected from the group consisting of TPD52L1, MFAP5, EHF, NCF2, TRIM6, PERLD1, ATXN1, INHBB, CR627122, JAM3, CXCL14, CR594735, FLJ11235, C15orf52, LIMCH1, LOH11CR2A, BX281122, GPR110, ARNT2, ATP6V0A4, PDGFRB, ELA3B, NEDD9, MYH6, SLC35F2, HAS3, COLEC12, SLC3A2, AW993939, RUNX2,

SUSD3, PLAU, SLC22A3, FCRL4, DOCK2, SOX3, THC2616558, RNASET2, LOC100130360, IL1R2, MGAT5B, TCF7L1, AF222857, AHNAK, HOXB8, S100A16, INSIG1, DCDC2. Preferably, the genes are selected from the group consisting of TPD52L1, MFAP5, EHF, NCF2, TRIM6, PERLD1, ATXN1, INHBB, CR627122, JAM3, CXCL14, CR594735, FLJ11235, C15orf52, LIMCH1, LOH11CR2A, BX281122, GPR110, ARNT2, ATP6V0A4, PDGFRB, ELA3B, NEDD9, MYH6, SLC35F2, HAS3, COLEC12, SLC3A2, AW993939, RUNX2 and SUSD3. More preferably, the genes are selected from the group consisting of TPD52L1, MFAP5, EHF, NCF2, TRIM6, PERLD1, ATXN1, INHBB, CR627122, JAM3, CXCL14 and CR594735. In the most preferred embodiment, the genes are selected from the group consisting of TPD52L1, MFAP5, EHF, NCF2, TRIM6, PERLD1, ATXN1, INHBB and CR627122.

Optionally, the method of the invention further comprises determining the expression level of at least one gene, preferably at least one additional gene, selected from the group consisting of the genes listed in Table 3 and 4, preferably TFPI2, PCDH7, SMAD9, AK090762, RAB39B, BF831953, AL050204, VCX, ITGA2, CXCR4, SLC16A10, PDE1A, MAL, KRT80, FXYD2 and AK3L1, more preferably TFPI2, PCDH7, SMAD9, AK090762, RAB39B, BF831953, AL050204, VCX, CXCR4, SLC16A10, PDE1A, MAL, and the most preferably TFPI2, PCDH7, SMAD9, CXCR4 and SLC16A10. In particular, the expression level of at least $2,3,4,5,6,7,8,9$ or 10 genes was determined. In an embodiment, the method of the invention further comprises determining the expression level of at least one gene, preferably at least one additional gene, selected from the group consisting of TFPI2, PCDH7, SMAD9, AK090762, RAB39B, BF831953, AL050204, VCX, ITGA2, AKAP9, AUTS2, CEP152, SLITRK6, CCPG1, MANEAL, THC2733296, CD55, ANKRD18A, LAT2, BRCA2, LRP2BP, LPHN2 and ITGB8, preferably TFPI2, PCDH7, SMAD9, AK090762, RAB39B, BF831953, AL050204, VCX and ITGA2, more preferably TFPI2, PCDH7, SMAD9, AK090762, RAB39B, BF831953, AL050204 and VCX, the most preferably TFPI2, PCDH7 and SMAD9. In another embodiment, the method of the invention further comprises determining the expression level of at least one gene, preferably at least one additional gene, selected from the group consisting of CXCR4, SLC16A10, PDE1A, MAL, KRT80, FXYD2, AK3L1, LIN7A, GPR177, TNF, WNT2B, CGNL1, RPS6KA2, SUNC1, DIAPH2, AKAP12, NRG1, PDE4DIP, IL1R1, LZTS1, SLC3A1, MGST1, ACOT9, SLC12A3, ASRGL1 and HRG, preferably CXCR4, SLC16A10, PDE1A, MAL, KRT80, FXYD2 and AK3L1, more preferably CXCR4, SLC16A10, PDE1A and MAL, and the most preferably CXCR4 and SLC16A10.

The method can comprise the step of comparing the expression levels of the genes determined in the sample to reference or control expression levels. The reference or control expression levels are determined with a sample of cells, preferably cancer cells, which are
sensitive to the molecule of the taxoid family. Alternatively, reference or control expression levels are determined with a sample of patients or subjects sensitive to the treatment with the molecule of the taxoid family. Hence, an over-expressed gene herein refers to a gene having an increased expression in comparison to the expression level of this gene in a sensitive cell, and an under-expressed gene herein refers to a gene having a decreased expression in comparison to the expression level of this gene in a sensitive cell. However, the man skilled in art understands that other references can be used. For instance, the invention also contemplates a reference level corresponding to the expression level in a cell resistant to the molecule of the taxoid family.

In particular, when the genes selected from Table 1 (and optionally from Table 3) are over-expressed, one can predict that the patient would be resistant to a treatment with a molecule of the taxoid family. On the contrary, when the genes selected from Table 1 (and optionally from Table 3) are not over-expressed, one can predict that the patient would be responsive to a treatment with a molecule of the taxoid family. The same rules applied to the over-expressed genes in Tables 5 and 6 (with a positive fold change (FC)). At the opposite, when the genes selected from Table 2 (and optionally from Table 4) are under-expressed, one can predict that the patient would be resistant to a treatment with a molecule of the taxoid family. On the contrary, when the genes selected from Table 2 (and optionally from Table 4) are not under-expressed, one can predict that the patient would be responsive to a treatment with a molecule of the taxoid family. The same rules applied to the under-expressed genes in Tables 5 and 6 (with a negative fold change (FC)).

In addition, the genes can be selected in such a way that they comprise some overexpressed genes and some under-expressed ones. In this embodiment, the selected genes can comprise at least $5,6,7,8,9,10,15,20,25,30,40,50,60,70,80,90,100$, or 150 genes of Tables 1 and 3 and overexpressed genes of Tables 5 and 6 , and at least 5, 6, 7, 8, 9, 10, 15, 20, $25,30,40,50,60,70,80,90,100$, or 150 genes of Tables 2 and 4 and under-expressed genes of Tables 5 and 6. In a particular embodiment, the genes are selected in Tables 1 and 3 for overexpressed genes and in Tables 2 and 4 for the under-expressed genes. Alternatively, they can be selected in such a way that they comprise only over-expressed or under-expressed genes. In a preferred embodiment, the genes are selected among the genes having the greatest fold change.

In addition to the genes selected from Tables 1 to 6 , optionally 1 to 4 , the method can also comprise the determination of the expression level for control genes. The control genes are chosen among the genes known to have a constant expression level, in particular between sensitive and resistant cells to a molecule of the taxoid family. In addition, the expression level
of at least one control gene is determined in order to normalize the result. For instance, the control gene can be GAPDH, 18S RNA, beta-actine or lamin.

The molecule of the taxoid family refers to a class of anti-tumoral drugs belonging to the taxane family. It can be selected from the group consisting of paclitaxel, docetaxel and analogs, prodrugs or formulations thereof. In particular, analogs, prodrugs or formulations thereof can be for instance selected in the group consisting of larotaxel (also called XRP9881; Sanofi-Aventis), cabazitaxel (XRP6258) (Sanofi-Aventis), BMS-184476 (Bristol-Meyer-Squibb), BMS-188797 (Bristol-Meyer-Squibb), BMS-275183 (Bristol-Meyer-Squibb), ortataxel (also called IDN 5109, BAY 59-8862 or SB-T-101131 ; Bristol-Meyer-Squibb), RPR 109881A (Bristol-Meyer-Squibb), RPR 116258 (Bristol-Meyer-Squibb), NBT-287 (TAPESTRY), PG-paclitaxel (also called CT2103, PPX, paclitaxel poliglumex, paclitaxel polyglutamate or Xyotax ${ }^{T M}$), ABRAXANE® (also called Nab-Paclitaxel ; ABRAXIS BIOSCIENCE), Tesetaxel (also called DJ-927), IDN 5390 (INDENA), Taxoprexin (also called docosahexanoic acid-paclitaxel ; PROTARGA), DHApaclitaxel (also called Taxoprexin®), and MAC-321 (WYETH). Also see the review of Hennenfent \& Govindan (2006, Annals of Oncology, 17, 735-749). In a preferred embodiment of the present invention, the molecule of the taxoid family is the docetaxel.

The expression level of the selected genes can be determined by measuring the amounts of RNA, in particular mRNA, DNA, in particular cDNA, or protein using a variety of techniques well-known by the man skilled in art. In a particular embodiment, the under-expression of a gene can be indirectly assessed through the determination of the methylation status of its promoter. Indeed, a methylated promoter is indicative of an expression repression, and therefore of an under-expression. At the opposite, an unmethylated promoter is indicative of a normal expression. The methylation state of a promoter can be assessed by any method known by the one skilled in the art, for instance by the methods disclosed in the following documents: Frommer et al (Proc Natl Acad Sci U S A. 1992;89:1827-31) and Boyd et al (Anal Biochem. 2004;326:278-80).

The cancer can be selected from the group consisting of the breast cancer, the lung cancer, the prostate cancer, the gastric cancer and the head and neck cancer. In a preferred embodiment, the cancer is the prostate cancer.

The term "biological sample" means any biological sample derived from a patient, preferably a sample which contains nucleic acids or proteins. Examples of such samples include fluids, tissues, cell samples, organs, biopsies, etc. Most preferred samples are cancer tissue samples, in particular breast, lung, prostate, stomach, ovary or head and neck tumor samples. Blood, plasma, saliva, urine, seminal fluid, etc, may also be used. Cancer cells obtain form blood
as circulating tumor cells may also be used. The biological sample may be treated prior to its use, e.g. in order to render nucleic acids or proteins available. Techniques of cell lysis, concentration or dilution of nucleic acids or proteins, are known by the skilled person.

Generally, the expression level as determined is a relative expression level (mRNA or protein).

More preferably, the determination comprises contacting the sample with selective reagents such as probes, primers or ligands, and thereby detecting the presence, or measuring the amount, of proteins or nucleic acids of interest originally in the sample. Contacting may be performed in any suitable device, such as a plate, microtiter dish, test tube, well, glass, column, and so forth. In specific embodiments, the contacting is performed on a substrate coated with the reagent, such as a nucleic acid array or chip or a specific ligand array. The substrate may be a solid or semi-solid substrate such as any suitable support comprising glass, plastic, nylon, paper, metal, polymers and the like. The substrate may be of various forms and sizes, such as a slide, a membrane, a bead, a column, a gel, etc. The contacting may be made under any condition suitable for a detectable complex, such as a nucleic acid hybrid or an antibody-antigen complex, to be formed between the reagent and the nucleic acids or proteins of the sample.

In a preferred embodiment, the expression level may be determined by determining the quantity of mRNA.

Methods for determining the quantity of mRNA are well known in the art. For example the nucleic acid contained in the samples (e.g., cell or tissue prepared from the patient) is first extracted according to standard methods, for example using lytic enzymes or chemical solutions or extracted by nucleic-acid-binding resins following the manufacturer's instructions. The extracted mRNA is then detected by hybridization (e. g., Northern blot analysis) and/or amplification (e.g., RT-PCR). Preferably quantitative or semi-quantitative RT-PCR is preferred. Real-time quantitative or semi-quantitative RT-PCR is particularly advantageous.

Other methods of Amplification include ligase chain reaction (LCR), transcriptionmediated amplification (TMA), strand displacement amplification (SDA) and nucleic acid sequence based amplification (NASBA).

Nucleic acids having at least 10 nucleotides and exhibiting sequence complementarity or homology to the mRNA of interest herein find utility as hybridization probes or amplification primers. It is understood that such nucleic acids need not be identical, but are typically at least about 80% identical to the homologous region of comparable size, more preferably 85% identical and even more preferably $90-95 \%$ identical. In certain embodiments, it will be advantageous to use nucleic acids in combination with appropriate means, such as a detectable

[^0]: * Z is a mono, di, or tripeptide or other peptide or derivative thereof where NH and CO represent the amino and acid terminus of the amino acid or peptide

[^1]: ${ }^{\text {a }}$ incluant 3 patientes de la partie 1 et 18 patients supplémentaires

