IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:
Alan J. Korman, et al.
U.S. Patent No.: 6,984,720

RECEIVED
MAY 162011
PATENT EXTENSION
OPLA
For: HUMAN CTLA-4 ANTIBODIES

TRANSMITTAL LETTER

MS Hatch-Waxman PTE
Commissioner for Patents
Office of Patent Legal Administration
Room MDW 7D55
600 Dulany Street (Madison Building)
Alexandria, VA 22314
Dear Sir:
Enclosed are the following items for filing in connection with the above-referenced Patent Application:

1. Fee Transmittal;
2. Request for Extension of Patent Term Under 35 U.S.C. § 156 together with Exhibits 1-8 (original plus two copies);
3. Request for Extension of Patent Term Under 35 U.S.C. § 156 without Exhibits (for fee purposes); and 88/23/2011 RLOGAN $08888885588740 \quad 99646668$
4. Return receipt postcard.

01 FC:1457 1128.08 DA

Please charge our Deposit Account No. 50-0740 in the amount of $\$ 1,120.00$ to cover the required fees. The Director is hereby authorized to charge any deficiency in the fees filed,
asserted to be filed or which should have been filed herewith (or with any paper hereafter filed in this application by this firm) to our Deposit Account No. 50-0740, under Docket No. 029420.0155-US01. A duplicate copy of this paper is attached.

It is not believed that extensions of time or fees for net addition of claims are required beyond those that may otherwise be provided for in documents accompanying this paper.

However, if additional extensions of time are necessary to prevent abandonment of this application, then such extensions of time are hereby petitioned, and any fees required therefor (including fees for net addition of claims) are hereby authorized to be charged to our Deposit Account No. 50-0740.

Dated: May 16, 2011

Respectfully submitted,

Registration No.: 36;744
Natalie M. Derzko
Registration No.: 48,102
COVINGTON \& BURLING LLP
1201 Pennsylvania Avenue, NW
Washington, DC 20004-2401
(202) 662-6000

Approved for use through 09/30/2010. OMB 0651-0032 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no person are required to respond to a collection of information unless it displays a valid OMB control number

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re United States Patent of:
Alan J. Korman, et al.
Patent No.: 6,984,720
Issued: January 10, 2006
For: HUMAN CTLA-4 ANTIBODIES

Mail Stop Hatch-Waxman PTE
Commissioner for Patents
Office of Patent Legal Administration
Room MDW 7D55
600 Dulany Street (Madison Building)
Alexandria, VA 22314

REQUEST FOR EXTENSION OF PATENT TERM UNDER
 35 U.S.C. $\$ 156$

Sir:
Pursuant to 35 U.S.C. $\S 156$ and 37 C.F.R. §§1.710-1.791, Medarex, Inc., the current address of which is Route 206 and Province Line Road, Princeton, New Jersey 08540 ("Applicant" or "Medarex"), hereby requests an extension of U.S. Patent No. 6,984,720 (the "' 720 patent"). As permitted by 37 C.F.R. $\S 1.785$ (b) and MPEP $\S 2761$, Applicant is concurrently filing a request for patent term extension of U.S. Patent No. 7,605,238 based upon the same regulatory review period.

Medarex represents that it is the owner and assignee of the entire interest in and to Letters Patent of the United States No. 6,984,720 (Exhibit 1) granted to Alan J. Korman, Edward L. Halk, Nils Lonberg, Yashwant M. Deo and Tibor P. Keler (the "inventors") on January 10, 2006, for "Human CTLA-4 Antibodies" by virtue of an assignment from the inventors to Medarex, recorded in the United States Patent and Trademark Office ("PTO") on May 18, 2001
at Reel 011817 , Frame 0279 (Exhibit 2). The ' 720 patent matured from U.S. Patent Application No. 09/644,668, filed on August 24, 2000, which claims the benefit of U.S. Provisional Patent Application No. 60/150,452, filed on August 24, 1999, now expired.

The approved product that is relevant to this Request is YERVOY'TM (ipilimumab) Injection, for intravenous infusion, referred to herein as "YERVOY" or "Approved Product."

The Marketing Applicant for YERVOY is Bristol-Myers Squibb Company ("BMS'). Medarex is a wholly-owned subsidiary of BMS and is authorized to rely upon the activities of BMS, its predecessors, and affiliates for purposes of this patent term extension application.

The following information is submitted in accordance with 35 U.S.C. §156(d) and the rules for extension of patent term issued by the PTO at 37 C.F.R. Subpart F, $\S \S 1.710$ to 1.791 and follows the numerical format set forth in 37 C.F.R. §1.740:
(1) A COMPLETE IDENTIFICATION OF THE APPROVED PRODUCT AS BY APPROPRIATE CHEMICAL AND GENERIC NAME, PHYSICAL STRUCTURE OR CHARACTERISTICS:

The approved product is YERVOY, an injection for intravenous infusion of the active ingredient ipilimumab, available in two dosage forms namely, $50 \mathrm{mg} / 10 \mathrm{ml}(5 \mathrm{mg} / \mathrm{mL})$ and $200 \mathrm{mg} / 40 \mathrm{~mL}(5 \mathrm{mg} / \mathrm{mL})$. YERVOY has been approved for the treatment of unresectable or metastatic melanoma (approved labeling attached as Exhibit 3). YERVOY is a human cytotoxic T-lymphocyte antigen 4 (CTLA-4)-blocking antibody that is comprised of 1,326 amino acids. The amino acid sequence for YERVOY is as follows.

Antibody Segment	Amino Acid Sequence**
Heavy Chain	
FR1	QVQLVESGGGVVQPGRSLRLSCAASGFTFS
CDR1	SYTMH
FR2	WVRQAPGKGLEWVT
CDR2	FISYDGNNKYYADSVKG
FR3	RFTISRDNSKNTLYLQMNSLRAEDTAIYYCAR
CDR3	TGWLGPFDY
FR4	WGQGTLVTVSS
Heavy Chain Constant Region	ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC NVNHKPSNTKVDKRV EPKSCDKTHTCPPCPAPELLG GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG KEYKCKVSNKALPAPIEKTISKAK GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEW ESNGQPPNNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGK
Light Chain	
FR1	EIVLTQSPGTLSLSPGERATLSC
CDR1	RASQSVGSSYLA
FR2	WYQQKPGQAPRLLIY
CDR2	GAFSRAT
FR3	GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
CDR3	QQYGSSPWT
FR4	FGQGTKVEIK
Light Chain Constant Region	RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW KVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH KVYACEVTHQGLSSPVTKSFNRGEC

** The one-letter amino acid code used in the table follows the nomenclature developed by the International Union of Pure and Applied Chemistry (IUPAC) and the International Union of Biochmistry and Molecular Biology (IUB) in the IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), "Nomenclature and Symbolism for Amino Acids and Peptides," 1983. See http://www.chem.qmul.ac.uk/iupac/AminoAcid/AAln2.html\#AA1, visited May 13, 2011.
(2) A COMPLETE IDENTIFICATION OF THE FEDERAL STATUTE INCLUDING THE APPLICABLE PROVISION OF LAW UNDER WHICH THE REGULATORY REVIEW OCCURRED:

The Approved Product is a drug product that was approved under section 351 of the Public Health Service Act (PHSA) (42 U.S.C. §262).
(3) AN IDENTIFICATION OF THE DATE ON WHICH THE PRODUCT RECEIVED PERMISSION FOR COMMERCIAL MARKETING OR USE UNDER THE PROVISION OF LAW UNDER WHICH THE APPLICABLE REGULATORY REVIEW PERIOD OCCURRED:

The Approved Product received permission for commercial marketing or use by the United States Food and Drug Administration (FDA) pursuant to section 351(a) of the PHSA (42 U.S.C. § 262(a)) in a letter dated March 25, 2011. A copy of the approval letter is attached as Exhibit 4.
(4) IN THE CASE OF A DRUG PRODUCT, AN IDENTIFICATION OF EACH ACTIVE INGREDIENT IN THE PRODUCT AND AS TO EACH ACTIVE INGREDIENT, A STATEMENT THAT IT HAS NOT BEEN PREVIOUSLY APPROVED FOR COMMERCIAL MARKETING OR USE UNDER THE FEDERAL FOOD, DRUG AND COSMETIC ACT, THE PUBLIC HEALTH SERVICE ACT, OR THE VIRUS-SERUM-TOXIN ACT OR A STATEMENT OF WHEN THE ACTIVE INGREDIENT WAS APPROVED FOR COMMERCIAL MARKETING OR USE (EITHER ALONE OR IN COMBINATION WITH

OTHER ACTIVE INGREDIENTS), THE USE FOR WHICH IT WAS APPROVED, AND THE PROVISION OF LAW UNDER WHICH IT WAS APPROVED: (37 C.F.R. § 1.740(a)(4))

The active ingredient in YERVOY is ipilimumab. Ipilimumab is comprised of 1,326 amino acids and has an amino acid sequence as noted earlier in section (1) of this Request. YERVOY is a human cytotoxic T-lymphocyte antigen 4 (CTLA-4)-blocking antibody that has been approved under section 351(a) of the PHSA for the treatment of unresectable or metastatic melanoma.

Ipilimumab has not been previously approved for commercial marketing or use under the Federal Food, Drug, and Cosmetic Act, the PHSA, or the Virus-Serum-Toxin Act.

(5) A STATEMENT THAT THE APPLICATION IS BEING SUBMITTED

WITHIN THE SIXTY DAY PERIOD PERMITTED FOR SUBMISSION PURSUANT TO SECTION 1.720(f) AND AN IDENTIFICATION OF THE DATE OF THE LAST DAY ON WHICH THE APPLICATION COULD BE SUBMITTED:

This Request is timely filed, pursuant to 35 U.S.C. § 156(d)(1), within the permitted sixty-day (60 -day) period that began on March 25, 2011, when the product received permission for commercial marketing or use under section 351(a) of the PHSA and that will expire on May 24, 2011. Applicant understands that, pursuant to 37 C.F.R. § $1.720(\mathrm{f})$, the PTO may deem this period to expire one day earlier, on May 23, 2011.
(6) A COMPLETE IDENTIFICATION OF THE PATENT FOR WHICH AN EXTENSION IS BEING SOUGHT BY THE NAME OF THE INVENTOR, THE PATENT NUMBER, THE DATE OF ISSUE, AND THE DATE OF EXPIRATION:

UNITED STATES PATENT NO.: 6,984,720
INVENTORS: ALAN J. KORMAN EDWARD L. HALK NILS LONBERG YASHWANT M. DEO TIBOR P. KELER

DATE OF ISSUE: JANUARY 10, 2006
EXPIRATION DATE: AUGUST 2, 2022
The expiration date of U.S. Patent No. 6,984,720 ("the '720 patent") is August 2, 2022, based on the following information. The patent application that issued as the ' 720 patent, U.S. Patent Application No. 09/644,668 ("the '668 application"), was filed on August 24, 2000, and claims the benefit U.S. Provisional Patent Application No. 60/150,452, filed on August 24, 1999, now expired. Without a patent term adjustment, the expiration of the ' 720 patent would be August 24, 2020; however, as noted on its face, the ' 720 patent is entitled to a patent term adjustment pursuant to 35 U.S.C. $\S 154$ of 708 days, bringing the expiration of the ' 720 patent to August 2, 2022.
(7) A COPY OF THE PATENT FOR WHICH AN EXTENSION IS BEING SOUGHT, INCLUDING THE ENTIRE SPECIFICATION (INCLUDING CLAIMS) AND DRAWINGS:

A complete copy of U.S. Patent No. 6,984,720 is attached as Exhibit 1.
(8) A COPY OF ANY DISCLAIMER, CERTIFICATE OF CORRECTION, RECEIPT OF MAINTENANCE FEE PAYMENT, OR RE-EXAMINATION CERTIFICATE ISSUED IN THE PATENT:

No terminal disclaimer or certificate of correction has been filed in U.S. Patent No. $6,984,720$ ("the ' 720 patent"). Moreover, the ' 720 patent has not been reexamined, and so no re-examination certificate has been issued in U.S. Patent No. 6,984,720.

The first maintenance fee for the ' 720 patent was paid on July 10,2009 , as shown by the attached Patent Bibliographic Sheet obtained from Public PAIR on May 13, 2011 and the USPTO Maintenance Fee Statement for this patent obtained from Public PAIR on May 13, 2011, both found in Exhibit 5.

Accordingly, there are no unpaid maintenance fees for the ' 720 patent.
(9) A STATEMENT THAT THE PATENT CLAIMS THE APPROVED PRODUCT, OR A METHOD OF USING OR MANUFACTURING THE APPROVED PRODUCT, AND A SHOWING WHICH LISTS EACH APPLICABLE PATENT CLAIM AND DEMONSTRATES THE MANNER IN WHICH AT LEAST ONE SUCH PATENT CLAIM READS ON THE APPROVED PRODUCT OR A METHOD OF USING OR MANUFACTURING THE APPROVED PRODUCT:
U.S. Patent No. 6,984,720 claims the Approved Product. At least claims 2, 4 and 7, 8 and 10 read on the Approved Product. These claims are set forth below.
2. An antibody comprising: (a) a heavy chain variable amino acid sequence having the amino acid sequence set forth in SEQ ID NO:17; and (b) a light chain variable amino acid sequence having the amino acid sequence set forth in SEQ ID NO:7, wherein the antibody is capable of binding human CTLA4.
4. An antibody capable of binding human CTLA4, which antibody comprises: (a) a heavy chain variable region having CDR sequences set forth in SEQ ID NOS:27, 32 and 37; and (b) a light chain variable region having CDR sequences set forth in SEQ ID NOS:24, 29 and 35.
7. An antibody capable of binding human CTLA4, which antibody comprises: (a) a heavy chain variable region of a human V_{H} 3-30.3 gene; and (b) a light chain variable region of a human $V_{K} A-27$ gene.
8. An antibody according to claim 7, wherein the antibody is capable of binding human CTLA4 with a binding affinity of about $10^{8} \mathrm{M}^{-1}$ or greater.
10. An antibody according to claim 7, wherein the antibody inhibits binding of the human CTLA4 to B7-1 or to B7-2.

Pursuant to 37 C.F.R. § 1.740(a)(9), a showing which demonstrates the manner in which one claim reads on the Approved Product is set forth herein below.

CLAIM	The Approved Product
2. An antibody comprising:	Ipilimumab (the active ingredient in YERVOY
(a) a heavy chain variable amino acid sequence antibody. having the amino acid sequence set forth in SEQ ID NO:17; and	Ipilimumab comprises a heavy chain variable amino acid sequence composed of three complementarity determining regions (CDRs) and four framework regions (FRs) arranged as follows: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4, as set forth immediately under
	"Heavy Chain" in section (1) of this Request. The amino acid sequence compiled from these regions identified in section (1) of this Request has the amino acid sequence set forth in SEQ ID NO:17 of the '720 Patent.
(b) a light chain variable amino acid sequence	
having the amino acid sequence set forth in	
SEQ ID NO:7,	Ipilimumab comprises a light chain variable amino acid sequence composed of three CDRs and four FRs arranged as follows: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4, as set forth immediately under "Light Chain" in section (1) of this Request. The amino acid sequence compiled from these regions

	identified in section (1) of this Request has the amino acid sequence set forth in SEQ ID NO:7 of the '720 patent.
wherein the antibody is capable of binding human CTLA4.	Ipilimumab is capable of binding human CTLA4.

(10) A STATEMENT BEGINNING ON A NEW PAGE OF THE RELEVANT DATES AND INFORMATION PURSUANT TO 35 U.S.C. §156(g) IN ORDER TO ENABLE THE SECRETARY OF HEALTH AND HUMAN SERVICES OR THE SECRETARY OF AGRICULTURE, AS APPROPRIATE, TO DETERMINE THE APPLICABLE REGULATORY REVIEW PERIOD AS FOLLOWS:
(i) FOR A PATENT CLAIMING A HUMAN DRUG, ANTIBIOTIC, OR HUMAN BIOLOGICAL PRODUCT, THE EFFECTIVE DATE OF THE INVESTIGATIONAL NEW DRUG APPLICATION (IND) AND THE IND NUMBER; THE DATE ON WHICH A NEW DRUG APPLICATION (NDA) OR A PRODUCT LICENSE APPLICATION (PLA) WAS INITIALLY SUBMITTED AND THE NDA OR PLA NUMBER; AND THE DATE ON WHICH THE NDA WAS APPROVED OR THE PRODUCTS LICENSE ISSUED:

An original investigational new drug application ("IND") was submitted by Medarex, Inc., now a wholly-owned subsidiary of Bristol-Myers Squibb Co. ("BMS"), on July 12, 2000 and was received by FDA on July 13, 2000. A copy of FDA's acknowledgement letter is provided at Exhibit 6. The FDA assigned BB-IND No. 9186 to this IND, which became effective 30 days after FDA's receipt date, namely, on August 12, 2000.

A biologics license application ("BLA") was submitted by BMS on June 25, 2010 and acknowledged as received on this date in a letter from FDA dated July 8, 2010 (Exhibit 7). The Submission Tracking Number (STN) assigned to this BLA was BL 125377/0. The BLA was approved on March 25, 2011 (Exhibit 4).
(11) A BRIEF DESCRIPTION BEGINNING ON A NEW PAGE OF THE SIGNIFICANT ACTIVITIES UNDERTAKEN BY OWNER, THE MARKETING APPLICANT, DURING THE APPLICABLE REGULATORY REVIEW PERIOD WITH RESPECT TO THE APPROVED PRODUCT AND THE SIGNIFICANT DATES APPLICABLE TO SUCH ACTIVITIES:

In accordance with 37 C.F.R. § $1.740(\mathrm{a})(11)$, a list of significant activities, undertaken by the Marketing Applicant, its predecessors, and affiliates, in BB-IND No. 9186 and BL 125377/0 during the applicable regulatory review period with respect of the approved product is provided at Exhibit 8.
(12) A STATEMENT BEGINNING ON A NEW PAGE THAT IN THE

OPINION OF THE APPLICANT THE PATENT IS ELIGIBLE FOR THE EXTENSION AND A STATEMENT AS TO THE LENGTH OF EXTENSION CLAIMED, INCLUDING HOW THE LENGTH OF EXTENSION WAS DETERMINED:
(a) Statement of the eligibility of the patent for extension under 35 U.S.C. §156(a):

Section 156(a) provides, in relevant part, that the term of a patent which claims a product, a method of using a product, or a method of manufacturing a product shall be extended if (i) the term of the patent has not expired before an application for extension is submitted; (ii) the term of the patent has never been extended under 35 U.S.C. §156(e)(1); (iii) the application for extension is submitted by the owner of record of the patent or its agent in accordance with 35 U.S.C. §156(d); (iv) the product has been subject to a regulatory review period before its commercial marketing or use; and (v) the permission for the commercial marketing or use of the product after such regulatory review period is the first permitted commercial marketing or use of the product using the provision of law under which such regulatory review period occurred.

As described below by corresponding number, each of these elements is satisfied here:
(i) Pursuant to 35 U.S.C. $\S 154$, the term of United States Patent No. $6,984,720$ is currently set to expire on August 2,2022 . This Request is, therefore, being submitted prior to the expiration of the term of United States Patent No. 6,984,720.
(ii) The term of this patent has never been extended under 35 U.S.C. §156(e)(1).
(iii) This Request is being submitted by Medarex, the owner of record of United States Patent No. 6,984,720. (See Exhibit 2). Medarex is the owner of record by virtue of the duly recorded assignment discussed above. This Request is submitted in accordance with 35 U.S.C. §156(d) in that it is submitted within the sixty-day period beginning on March 25, 2011, the date the product received permission for marketing under section 351 of the Public Health Service Act (PHSA) (42 U.S.C. §262), and ending on May 24, 2011. Moreover, this Request contains the information required under 35 U.S.C. §156(d).
(iv) As evidenced by the March 25, 2011 letter from the FDA to BMS (Exhibit 7), the product was subject to a regulatory review period under section 351 of the Public Health Service Act (PHSA) (42 U.S.C. §262) before its commercial marketing or use.
(v) The permission for the commercial marketing of the YERVOY (ipilimumab) Injection product is the first permitted commercial marketing and use of the product, as defined in 35 U.S.C. §156(f), under section 351 of the Public Health Service Act (PHSA) (42 U.S.C. §262). (See, e.g., Section (4), above.)
(b) Statement as to length of extension claimed.

The term of U.S. Patent No. $6,984,720$, now expiring August 2, 2022, should be extended for 966 days, or to March 25, 2025, in accordance with 35 U.S.C. § 156.

As set forth in 35 U.S.C. $\S 156(\mathrm{~g})(1)$, the regulatory review period equals the length of time between the effective date of BB-IND No. 9186 of August 12, 2000, and the submission of the BL 125377/0 on June 25, 2010 (i.e., the "testing phase"), a period of 3,604 days, plus the length of time between the submission of the BL 125377/0 on June 25, 2010 to BLA approval on March 25, 2011 (i.e., the "approval phase"), a period of 274 days. These two periods added together equal 3,878 days.

Pursuant to 37 C.F.R. § $1.775(\mathrm{~d})$, the term of the patent as extended is determined by subtracting from the 3,878 day regulatory review period the following:
(i) 1,977 days, which is the number of days in the IND and BLA periods on or before the issuance of U.S. Patent No. 6,984,720 on January 10, 2006; and
(ii) 813 days, which is one-half the number of days remaining in the IND period after the subtraction of 1,977 days above (wherein half days are ignored for purposes of this subtraction, as provided by 37 C.F.R. § 1.775(d)(1)(iii)).

From the foregoing calculation, an extension of 1,087 days results, i.e., the remaining period under 35 U.S.C. $\S 156(\mathrm{~g})(1)(\mathrm{B})(\mathrm{i})(813$ days) plus the remaining period under 35 U.S.C. $\S 156(\mathrm{~g})(1)(\mathrm{B})(\mathrm{ii})$ (274 days). This length of an extension would provide a new expiration date for U.S. Patent No. 6,984,720 of July 24, 2025. However, this extension period is subject to two further potential limitations under 35 U.S.C. §156. One of these potential limitations does further limit the term of the patent and the other does not.

First, under 35 U.S.C. $\S 156(\mathrm{~g})(6)(\mathrm{A})$, a maximum extension of five years is permitted (i.e., 1826 days in this case). Since the current expiry date of U.S. Patent No. $6,984,720$ is August 2,2022 , no patent term extension could extend the term of the patent beyond August 2, 2027. Consequently, this provision does not operate to limit the possible extension available to U.S. Patent 6,984, 720 .

Second, under 35 U.S.C. §156(c)(3), the calculated extension period cannot lead to a patent term that would result in a patent term exceeding 14 years after the date of approval, that is, a patent term expiring after March 25, 2025. In this case, 35 U.S.C. §156(c)(3) does operate to limit the possible extension available to U.S. Patent $6,984,720$. The period from August 2, 2022 to March 25, 2025 amounts to 966 days.

Accordingly, United States Patent No. 6,984,720 is eligible for a patent term extension of 966 days.
(13) A STATEMENT THAT APPLICANT ACKNOWLEDGES A DUTY TO DISCLOSE TO THE COMMISSIONER OF PATENTS AND TRADEMARKS AND THE SECRETARY OF HEALTH AND HUMAN SERVICES ANY INFORMATION WHICH IS MATERIAL TO THE DETERMINATION OF ENTITLEMENT TO THE EXTENSION SOUGHT (SEE 37 C.F.R. §1.765).

Applicant acknowledges a duty to disclose to the Commissioner of Patents and Trademarks and the Secretary of Health and Human Services any information which is material to the determination of entitlement to the extension sought.

In accordance with the duty of disclosure described in 37 C.F.R. § 1.765 and acknowledged under 37 C.F.R. § 1.740(13), Applicant wishes to inform the Office that two patent term extension applications have been filed concurrently with respect to the regulatory review period for YERVOY ${ }^{\text {TM }}$ (ipilimumab) Injection. Such patent term extension applications are with respect to U.S. Patent No. $6,984,720$ (i.e., the present application) and U.S. Patent No. $7,605,238$. It is requested that the Office examine these extension applications concurrently so that a meaningful election can be made upon the receipt of a Notice of Final Determination and Requirement of Election as to which patent to ultimately extend in accordance with 37 C.F.R. § 1.785.
(14) THE PRESCRIBED FEE FOR RECEIVING AND ACTING UPON THE APPLICATION FOR EXTENSION (SEE 37 C.F.R. §1.20(j)):

Please charge our Deposit Account No. 50-0740 in the amount of $\$ 1,120.00$ to cover the fee for a request for extension of patent term. The Director is hereby authorized to charge our Deposit Account No. 50-0740, under Docket No. 029420.00155, for any deficiency in the fees filed, asserted to be filed or which should have been filed herewith (or with any paper hereafter filed in this application by this firm), to prevent this application from being inadvertently abandoned. A duplicate of this Request (without Exhibits 1-8) is attached.
(15) THE NAME, ADDRESS, AND TELEPHONE NUMBER OF THE PERSON TO WHOM INQUIRIES AND CORRESPONDENCE RELATING TO THE APPLICATION FOR PATENT TERM EXTENSION ARE TO BE DIRECTED:

Natalie M. Derzko
COVINGTON \& BURLING LLP
1201 Pennsylvania Avenue, N.W.
Washington, DC 20004-2401
Telephone No.: (202) 662-6000
Facsimile No.: (202) 662-6291

Pursuant to 37 C.F.R. $\S 1.740$ (b), this Request for Extension of Patent Term Under
35 U.S.C. §156, including Exhibits 1-8, is accompanied by two additional copies, for a total submission of three copies.

Dated: May 16, 2011

Respectfully submitted,

Paul J. Berman
Registration No.: 36,744
COVINGTON \& BURLING LLP
1201 Pennsylvania Avenue, N.W.
Washington, DC 20004-2401
(202) 662-6000

Attorneys for Applicant

(12) United States Patent Korman et al.

(10) Patent No.: US 6,984,720 B1
(45) Date of Patent:

Jan. 10, 2006

(54) HUMAN CTLA-4 ANTIBODIES

(75) Inventors: Alan J. Korman, Piedmont, CA (US); Edward L. Halk, Sunnyvale, CA (US); Nils Lonberg, Woodside, CA (US); Yashwant M. Deo, Annandale, NJ (US); Tibor P. Keler, Ottsville, PA (US)
(73) Assignee: Medarex, Inc., Annandale, NJ (US)
(*) Notice:
Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 708 days.
(21) Appl. No.: 09/644,668
(22)

Filed: Aug. 24, 2000

Related U.S. Application Data

(60) Provisional application No. 60/150,452, Giled on Aug. 24, 1999.
(51) Int. Cl.

CI2P 21/08 (2006.01)
C07K 16/00 (2006.01)
C07K 16/28 (2006.01)
(52) U.S. Cl. \qquad 530/388.22; 530/387.1; 530/387.9; 530/388.1
(58) Field of Classification Search \qquad 530/387.1, $530 / 387.9,388.1,388.22,388.15,388.2$, $530 / 388.7,388.73,388.75,387.3$
See application file for complete search history.
(56)

References Cited
U.S. PATENT DOCUMENTS

4,399,216	A	8/1983	Axel et al.
4,681,581	A	7/1987	Coates
4,683,195	A	7/1987	Mullis et al.
4,683,202	A	7/1987	Mullis
4,735,210	A	4/1988	Goldenberg
4,740,461	A	4/1988	Kaufman
4,816,397	A	3/1989	Boss et al.
4,921,040	A	5/1990	Ueruenduel et al.
4,959,455	A	9/1990	Clark et al.
5,101,827	A	4/1992	Goldenberg
5,151,510	A	9/1992	Stec et al.
5,194,594	A	3/1993	Khawli et al.
5,434,131	A	7/1995	Linsley et al.
5,530,101	A	6/1996	Queen et al.
5,545,806	A	8/1996	Lonberg et al.
5,545,807	A	8/1996	Surani et al.
5,569,825	A	10/1996	Lonberg et al.
5,585,089	A	12/1996	Queen et al.
5,591,669	A	1/1997	Krimpenfort et al.
5,612,205	A	3/1997	Kay et al.
5,625,126	A	4/1997	Lonberg et al.
RE35,500	E	5/1997	Rhodes
5,633,425	A	5/1997	Lonberg et al.
5,643,763	A	7/1997	Dunn et al.
5,648,471	A	7/1997	Butram et al.
5,661,016	A	8/1997	Lonberg et al.
5,693,761	A	12/1997	Queen et al.
5,693,792	A	12/1997	Torii et al.
5,697,902	A	12/1997	Goldenberg

5,703,057	A	12/1997	Johnston et al.
5,714,350	A	2/1998	Co et al.
5,721,367	A	2/1998	Kay et al.
5,733,743	A	3/1998	Johnson et al.
5,741,957	A	4/1998	Deboer et al.
5,750,172	A	5/1998	Meade et al.
5,756,687	A	5/1998	Denman et al.
5,770,197	A	6/1998	Linsley et al.
5,770,429	A	6/1998	Lonberg et al.
5,773,253	A	6/1998	Linsley et al.
5,777,085	A	7/1998	Co et al.
5,789,215	A	8/1998	Berns et al.
5,789,650	A	8/1998	Lonberg et al.
5,811,097	A	9/1998	Allison et al.
5,814,318	A	9/1998	Lonberg et al.
5,827,690	A	10/1998	Meade et al.
5,844,095	A	12/1998	Linsley et al.
5,855,887	A	1/1999	Allison et al.
5,874,299	A	2/1999	Lonberg et al.
5,877,397	A	3/1999	Lonberg et al.
5,885,796	A	3/1999	Linsley et al.
5,916,771	A	6/1999	Hori et al.
5,939,598	A	8/1999	Kucherlapati et al.
5,968,510	A	10/1999	Linsley et al.
5,977,318	A	11/1999	Linsley et al.
6,051,227	A	4/2000	Allison et al.
6,075,181	A	6/2000	Kucherlapati et al.
6,114,598	A	9/2000	Kucherlapati et al.
6,150,584	A	11/2000	Kucherlapati et al.
6,162,963	A	12/2000	Kucherlapati et al.
6,207,156	B1	3/2001	Kuchroo et al.
6,255,458	B1	7/2001	Lonberg et al.
6,682,736	B1 *	1/2004	Hanson et al. 424/144.1
2002/0086014	A1	7/2002	Korman el al.

FOREIGN PATENT DOCUMENTS

CA	2205680	B1	$11 / 1998$
EP	0256055	B1	$8 / 1991$
EP	0323997	B1	$4 / 1993$
EP	0338841	B1	$3 / 1995$
EP	0216846	B2	$4 / 1995$
EP	0463151	B1	$6 / 1996$
EP	0546073	B1	$9 / 1997$
WO	WO 90/04036	$*$	$4 / 1990$
WO	WO91/10741	$7 / 1991$	

(Continued)

OTHER PUBLICATIONS

L. Green et al.: "Regulation of B Cell Development by Variable Gene Complexity in Mice Reconstituted with Human Immunoglobulin Yeast Artificial Chromosome," J. Exp. Med., vol. 188, No. 3, Aug. 3, 1998 483-495.

(Continued)

Primary Examiner-Phillip Gambel
Assistant Examiner-Ilia Ouspenski
(74) Attorney, Agent, or Firm-Darby \& Darby

ABSTRACT
The present invention provides buman sequence antibodies against CTLA-4 and methods of treating human diseases, infections and other conditions using these antibodies.

14 Claims, 20 Drawing Sheets

	FOREIGN PATENT DOCUMENTS	
wo	W092/03918	3/1992
wo	W092/22645	12/1992
wo	WO 92/22647 Al	12/1992
wo	WO 92/22670 Al	12/1992
wo	WO 93/00431 AI	1/1993
wo	WO93/12227	6/1993
WO	W094/02602	2/1994
wo	WO94/25585	11/1994
wo	WO 94/29444 Al	12/1994
wo	WO 95/01994 A1	1/1995
wo	WO 95/03408 A1	2/1995
wo	WO 95/24217 A1	9/1995
wo	WO95/33770	12/1995
wo	WO 96/14436 A1	5/1996
wo	WO 96/22380 A2	7/1996
wo	WO96/33735	10/1996
wo	w096/34096	10/1996
wo	W097/07671	3/1997
wo	WO 97/13852 A1	4/1997
wo	WO 97/20574 A1	6/1997
wo	WO 97/38137 A1	10/1997
wo	WO98/24884	6/1998
wo	WO98/24893 A3	6/1998
wo	WO98/24893 A2	6/1998
wo	WO98/37757	9/1998
wo	W098/42752	10/1998
wo	WO 98/46996 A2	10/1998
wo	WO 98/50433 A2	11/1998
wo	WO 00/00569 Al	1/2000
wo	WO00/10383	3/2000
wo	WO 00/32231 Al	6/2000
wo	WO00/37504	6/2000
wo	WO 01/14424 A2	3/2001

OTHER PUBLICATIONS

L. Green et al.: et al.: "Antigen-specific buman monoconal antibodies from mice engineered with human Ig heavy and light chain YACs," Nature Genetics, vol. 7, May 1994.
T. Choi et al.: "Transgenic mice containing a human heavy chain immunoglobulin gene fragment cloned in a yeast artificial chromosome," Nature Genetics, vol. 4, Jun. 1993.
N. Tuaillon et al.: "Human immunoglobulin heavy-chain minilocus recombination in transgenic mice: Gene-segment use in μ and γ transcripts," Proc. Natl. Acad. Sci. USA., vol. 99, pp. 3720-3724, Apr. 1993, Immunology.
N . Tuaillon et al.: "Analysis of Direct and Inverted DJ h_{h} Rearrangements in a Human Ig Heavy Chain Transgenic Minilocus," The Journal of Immunology, 1995, 154: 6453-6456.
L. Taylor et al.: "Human immunoglobulin transgenes undergo rearrangment, somatic mutation and class switching in mice that lack endogenous IgM," International Immunology, vol. 6, No. 4, pp. 579-591, 1994.
N. Lonberg et al.: "Antigen-specific human antibodies from mice comprising four distinct genetic modifications," Nature, vol. 368, Apr. 28, 1994.
M. Mendez et al.: "Functional transplant ofmegabase human immunoglobullin loci recapitulates human antibody response in mice," Nature Genetics, vol. 15, Feb. 1997.
L. Taylor et al.: "A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins," Nucleic Acids Research, 1992, vol. 20, No. 23, pp. 6287-6295.
J. Chen et al.: "Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the Jh locus," International Immunology, vol. 5, No. 6, pp. 647-656, 1993.
Blair et al. "Cutting edge: CTLA-4 ligation delivers a unique signal to resting human CD4 T cells that inhibits interleukin-2 secretion but allows Bcl-X ${ }_{L}$ induction," The J . of Immunology 22:1767 (1998).
Bluestone (1997) J. Immunol. 158:1989-1993.
Brunet et al., Immunol. Rev. 103-21-36 (1988).
Brunet et al., Nature 328:267-270(1987).
Chambers (1997) Curr. Opin. Immunol. 9:396-404.
Chambers et al., Immunity. 7:885-895(1997).
Clark (1986) Human Immunol. 16:100-113.
Damle et al., Proc. Natl. Acad. Sci. 78:5096-6001 (1981).
Dariavach et al., Eur. J. Immunol. 18:1901-1905 (1988).
Elsas et al. "Combination Immunotherapy of B16 melanoma using anti-cytoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation," J. Exp. Med. 190:355-366 (1999).

Fishwild et al. "High-avidity human IgGk monoclonal antibodies from a novel strain of minilocus mice," Nature Biotechnology 14:845-851 (1996).
Freedman (1987) J. Immunol. 138:3260-3267.
Freeman (1989) J. Immunol. 143:2714-2722.
Gribben et al. "CTLA4 mediates antigen-specific apoptosis of human T cells," Proc. Natl. Acad. Sci. USA 92:811-815 (1995).

Hurwitz et al. "CTLA-4 blockade synergizes with tumorderived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma," Proc. Natl. Acad, Sci. USA 95:10067-10071 (1998).
Hurwitz et al. "Immunotherapy of primary prostrate cancer in a transgenic model using a combination of CTLA-4 blockade and tumor cell vacine," Cancer Research 60:2444-2448 (2000).
Kearney (1995) J. Immunol. 155:1032-1036.
Kohno et al., Cell Immunol. 131-1-10 (1990).
Krummel et al. "CD28 and CTLA-4 have opposing effects on the responses of T cells to stimulation," (1995) J. Exp. Med. 182:459-465).
Krummel et al., "CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells," J. Exp. Med 183:2533-2540 (1996).
Krummel et al. "Superantigen responses and co-stimulation:
CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo," (1996) Int'l Immunol. 8:519-523.
Kwon et al. "Manipulation of T cell costimulatory and. inhibitory signals for immunotherapy of prostrate cancer," proc. Natl. Acad, Sci. USA 94:8099-8103 (1997).
Lafage-Pochitaloff et al.., Immunogenetics 31:198-201 (1990).

Leach et al. "Enhancement of antitumor immunity by CTLA-4 blockade," Science 271:1734-1736 (1996).
Lesslauer et al., Eur. J. Immunol. 16:1289-1296 (1986). Lindsten et al., Science 244:339-343 (1989).
Linsley et al. "Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes," J Exp. Med. 176:1595-1604 (1992).
Linsley et al. "CTLA-4 is a second receptor for the B cell activation antigen B7," J. Exp. Med. 174:561-569 (1991).

US 6,984,720 B1

Page 3

Linsley et al., J. Exp. Med. 173:721-730 (1991).
Linsley et al., Proc. Natl. Acad. Sci. USA 87:5031-5035
(1990).
Lonberg et al. "Human antibodies from transgenic mice,"
International Review of Immunology 13:65-93 (1995).
Luhder (1998) J Exp. Med. 187:427-432.
Matsui (1999) J. Immunol. 162:4328-4335.
McCoy et al. "Protective immunity to nematode infection is
induced by CTLA-4 blockade," J. Exp. Med 186:183-187
(1997).
Neuberger "Generating high-avidity human Mabs in mice,"
Nature Biotechnology 14:826 (1996).
Thompson (1997) Immunity 7:445-450.
Thompson et al., Proc. Natl. Acad. Sci 86:1333-1337
(1989).

Walunas et al. "CTLA-4 ligation blocks CD28-dependant T cell activation," J. Exp. Med 183:2541-2550 (1996).
Walunas, et al., "CTLA-4 can function as a negative regulator of T Cell activation," Immunity. 1:405-413 (1994).
Wu et al., J Exp. Med. 185:1327-1335 (1997).
Yang et al. "Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy," Cancer Research 59:1236-1243 (1999).
Yokochi (1981) J. Immunol. 128:823.

* cited by examiner

FIG. 2

FIG. 3

```
    10D1.3 VH (SEQ ID NO:2)
tGGGGGAGGC GTGGTCCAGC CTGGGAGGTC CCTGAGACTC TCCTGTGCAG 50
CCTCTGGATT CACCTTCAGT AGCTATACTA TGCACTGGGT CCGCCAGGCT 100
CCAGGCAAGG GGCTGGAGTG GGTGACATTT ATATCATATG ATGGAAACAA 150
TAAATACTAC GCAGACTCCG TGAAGGGCCG ATTCACCATC TCCAGAGACA 200
ATTCCAAGAA CACGCTGTAT CTGCAAATGA ACAGCCTGAG AGCTGAGGAC 250
ACGGCTATAT ATTACTGTGC GAGGACCGGC TGGCTGGGGC CCTTTGACTA 300
CTGGGGCCAG GGAACCCTGG TCACCGTCTC CTCAGCCTCC ACCAAGGGC 349
    1OD1.3 VK (SEQ ID NO:3)
CTCCAGGCAC CCTGTCTTTG TCTCCAGGGG AAAGAGCCAC CCTCTCCTGC 50
AGGGCCAGTC AGAGTGTTGG CAGCAGCTAC TTAGCCTGGT ACCAGCAGAA 100
ACCTGGCCAG GCTCCCAGGC TCCTCATCTA TGGTGCATTC AGCAGGGCCA 150
CTGGCATCCC AGACAGGTTC AGTGGCAGTG GGTCTGGGAC AGACTTCACT 200
CTCACCATCA GCAGACTGGA GCCTGAAGAT TTTGCAGTGT ATTACTGTCA }25
GCAGTATGGT AGCTCACCGT GGACGTTCGG CCAAGGGACC AAGGTGGAAA 300
TCAAACGAAC TGTGGCTGCA C 321
```

FIG. 4
U.S. Patent

FIG. 5
2 of 2
U.S. Patent

FIG. 6
2 of 2

	CDR3_	
SSLQPEDFATYYC	QQYNSY	
F\|G. 7		

FIG. 8

FIG. 9

FIG. 10

FIG. 11

U.S. Patent

FIG. 12

FIG. 13A

FIG. 13B

FIG. 13C

FIG. 13G

FIG. 13F

FIG. 14

FIG. 15

FIG. 16

FIG. 17

1

HUMAN CTLA-4 ANTIBODIES

REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional patent application Ser. No. 60/150,452, filed Aug. 24, 1999 the disclosure of which is incorporated herein in its entirety.

FIELD OF THE INVENTION

The present invention relates generally to molecular immunology and the treatment of human diseases. In particular, it relates to novel human sequence antibodies against human CTLA-4 and methods of treating human diseases and infections using these antibodies.

BACKGROUND OF THE INVENTION

The vertebrate immune system requires multiple signals to achieve optimal immune activation; see, e.g., Janeway, Cold Spring Harbor Symp. Quant. Biol. 54:1-14 (1989); Paul William E., ed. Raven Press, N.Y., Fundamental Immunology, 4th edition (1998), particularly chapters 12 and 13, pages 411 to 478 . Interactions between T lymphocytes (T cells) and antigen presenting cells (APC) are essential to the immune response. Levels of many cohesive molecules found on T cells and APC's increase during an immune response (Springer et al., A. Rev. Immunol. 5:223-252 (1987); Shaw and Shimuzu, Current Opinion in Immunology, Eds. Kindt and Long, 1:92-97 (1988)); and Hemler, Immunology Today 9:109-113 (1988)). Increased levels of these molecules may help explain why activated APC's are more effective at stimulating antigen-specific T cell proliferation than are resting APC's (Kaiuchi et al., J. Immunol. 131:109-114 (1983); Kreiger et al., J. Immunol. 135:2937-2945 (1985); McKenzie, J. Immunol. 141:2907-2911 (1988); and Hawrylowicz and Unanue, J. Immunol. 141:4083-4088 (1988)).

T cell immune response is a complex process that involves cell-cell interactions (Springer et al., A. Rev Immunol. 5:223-252 (1987)), particularly between T and accessory cells such as APC's, and production of soluble immune mediators (cytokines or lymphokines) (Dinarello (1987) New Engl. Jour. Med 317:940-945; Sallusto (1997) J. Exp. Med. 179:1109-1118). This response is regulated by several T-cell surface receptors, including the T-cell receptor complex (Weiss (1986) Ann. Rev. Immunol. 4:593-619) and other "accessory" surface molecules (Allison (1994) Curr. Opin. Immunol. 6:414-419; Springer (1987) supra). Many of these accessory molecules are naturally occurring cell surface differentiation (CD) antigens defined by the reactivity of monoclonal antibodies on the surface of cells (McMichael, Ed., Leukocyte Typing III, Oxford Univ. Press, Oxford, N.Y. (1987)).

Early studies suggested that B lymphocyte activation requires two signals (Bretscher (1970) Science 169:1042-1049) and now it is believed that all lymphocytes require two signals for their optimal activation, an antigen specific or clonal signal, as well as a second, antigen non-specific signal. (Janeway, supra). Freeman (1989) J. Immunol. 143:2714-2722) isolated and sequenced a cDNA clone encoding a B cell activation antigen recognized by MAb B7 (Freeman (1987) J. Immunol. 138:3260). COS cells transfected with this cDNA have been shown to stain by both labeled MAb B7 and MAb BB-1 (Clark (1986) Human Immunol. 16:100-113; Yokochi (1981) J. Immunol. 128:823; Freeman et al., (1989) supra; Freeman et al. (1987), supra). In addition, expression of this antigen has
been detected on cells of other lineages, such as monocytes (Freeman et al., supra).
T helper cell (Tb) antigenic response requires signals provided by APC's. The first signal is initiated by interaction of the T cell receptor complex (Weiss, J. Clin. Invest. 86:1015 (1990)) with antigen presented in the context of class II major histocompatibility complex (MHC) molecules on the APC (Allen, Immunol. Today 8:270 (1987)). This antigen-specific signal is not sufficient to generate a fill response, and in the absence of a second signal may actually lead to clonal inactivation or anergy (Schwartz, Science 248:1349 (1990)). The requirement for a second "costimulatory" signal provided by the MHC has been demonstrated in a number of experimental systems (Schwartz, supra; Weaver and Unanue, Immunol. Today 11:49 (1990)). The molecular nature of this second signal is not completely understood, although it is clear in some cases that both soluble molecules such as interleukin (IL)-1 (Weaver and Unanue, supra) and membrane receptors involved in intercellular adhesion (Springer, Nature 346:425 (1990)) can provide costimulatory signals.

CD28 antigen, a homodimeric glycoprotein of the immunoglobulin superfamily (Aruffo and Seed, Proc. Natl. Acad. Sci. 84:8573-8577 (1987)), is an accessory molecule found on most mature human T cells (Damle et al., J. Immunol. 131:2296-2300(1983)). Current evidence suggests that this molecule functions in an alternative T cell activation pathway distinct from that initiated by the T-cell receptor complex (June et al., Mol. Cell. Biol. 7:4472-4481 (1987)). Monoclonal antibodies (MAbs) reactive with CD28 antigen can augment T cell responses initiated by various polyclonal stimuli (reviewed by June et at., supra). These stimulatory effects may result from MAb-induced cytokine production (Thompson et al., Proc. Natl. Acad. Sci 86:1333-1337 (1989); and Lindsten et al., Science 244:339-343 (1989)) as a consequence of increased m RNA stabilization (Lindsten et al. (1989), supra). Anti-CD28 mAbs can also have inhibitory effects, i.e., they can block autologous mixed lymphocyte reactions (Damle et al., Proc. Natl. Acad. Sci. 78:5096-6001 (1981)) and activation of antigen-specific T cell clones (Lesslauer et al., Eur. J. Immunol. 16:1289-1296 (1986)).
Some studies have indicated that CD28 is a counterreceptor for the B cell activation antigen, $\mathrm{B} 7 / \mathrm{BB}-1$ (Linsley et al., Proc. Natl. Acad. Sci. USA 87:5031-5035 (1990)). The B7/BB-1 antigen is hereafter referred to as the "B7 antigen". The B 7 ligands are also members of the immunoglobulin superfamily but have, in contrast to CD28, two Ig domains in their extracellular region, an N -terminal variable (V)-like domain followed by a constant (C)-like domain.

Delivery of a non-specific costimulatory signal to the T cell requires at least two homologous B 7 family members found on APC's, B7-1 (also called B7, B7.1, or CD80) and B7-2 (also called B7.2 or CD86), both of which can deliver costimulatory signals to T cells via CD28. Costimulation through CD28 promotes T cell activation.
Using genetic fusions of the extracellular portions of B7 antigen and CD28 receptor, and Immunoglobulin (Ig) C.gamma. 1 (constant region heavy chains), interactions between CD28 and B7 antigen have been characterized (Linsley et al., J. Exp. Med. 173:721-730 (1991)). Immobilized B7Ig fusion protein, as well as B7 positive CHO cells, have been shown to costimulate T cell proliferation.
T cell stimulation with B7 positive CHO cells also specifically stimulates increased levels of transcripts for IL-2. Additional studies have shown that anti-CD28 MAb inhibited IL-2 production induced in certain T cell leukemia cell
lines by cellular interactions with a B cell leukemia line (Kohno et al., Cell. Immunol. 131-1-10 (1990)).

CD 28 has a single extracellular variable region (V)-like domain (Aruffo and Seed, supra). A homologous molecule, CTLA-4 has been identified by differential screening of a murine cytolytic-T cell cDNA library (Brunet (1987) Nature 328:267-270).

CTLA-4 is a T cell surface molecule that was originally identified by differential screening of a murine cytolytic T cell cDNA library (Brunet et al., Nature 328:267-270 (1987)). CTLA-4 is also a member of the immunoglobulin (lg) superfamily; CTLA-4 comprises a single extracellular Ig domain. CTLA-4 transcripts have been found in T cell populations having cytotoxic activity, suggesting that CTLA-4 might function in the cytolytic response (Brunet et al., supra; Brunet et al., Immunol. Rev. 103-(21-36 (1988)). Researchers have reported the cloning and mapping of a gene for the human counterpart of CTLA-4 (Dariavach et al., Eur. J. Immunol. 18:1901-1905 (1988)) to the same chromosomal region ($2 \mathrm{q} 33-34$) as CD28 (LafagePochitaloff et al., Immunogenetics 31:198-201 (1990)). Sequence comparison between this human CTLA-4 DNA and that encoding CD28 proteins reveals significant homology of sequence, with the greatest degree of homology in the juxtamembrane and cytoplasmic regions (Brunet et al., 1988, supra; Dariavach et al., 1988, supra).
Some studies have suggested that CTLA-4 has an analogous function as a secondary costimulator (Linsley et al., J Exp. Med. 176:1595-1604 (1992); Wu et al., J. Exp. Med. 185:1327-1335 (1997) Lindsley, P. et al. U.S. Pat. Nos. $5,977,318 ; 5,968,510 ; 5,885,796$; and $5,885,579$). However, others have reported that CTLA-4 has an opposing role as a dampener of T cell activation (Krummel (1995) J. Exp. Med. 182:459-465); Krummel et al., Int'l Immunol. 8:519-523 (1996); Chambers et al., Immunity. 7:8855-895(1997)). It has been reported that CTLA-4 deficient mice suffer from massive lymphoproliferation (Chambers et al., supra). It has been reported that CTLA-4 blockade augments T cell responses in vitro (Walunas et al., Immunity. 1:405-413 (1994)) and in vivo (Kearney (1995) J. Immunol. 155:1032-1036), exacerbates antitumor immunity (Leach (1996) Science. 271:1734-1736), and enhances an induced autoimmune disease (Luhder (1998) J Exp. Med. 187:427-432). It has also been reported that CTLA-4 has an alternative or additional impact on the initial character of the T cell immune response (Chambers (1997) Curr. Opin. Immunol. 9:396404; Bluestone (1997) J. Immunol. 158:1989-1993; Thompson (1997) Immunity 7:445-450). This is consistent with the observation that some autoimmune patients have autoantibodies to CTLA-4. It is possible that CTLA-4 blocking antibodies have a pathogenic role in these patients (Matsui (1999) J. Immunol. 162:4328-4335).
Non-human CTLA-4 antibodies have be used in the various studies discussed above. However, one of the major impediments facing the development of in vivo therapeutic and diagnostic applications for antibodies in humans is the intrinsic immunogenicity of non-human immunoglobulins. For example, when immunocompetent human patients are administered therapeutic doses of rodent monoclonal antibodies, the patients produce antibodies against the rodent immunoglobulin sequences; these human anti-mouse antibodies (HAMA) neutralize the therapeutic antibodies and can cause acute toxicity. These and other deficiencies in the previous antibodies are overcome by the provision of human antibodies to CTLA-4 by the present invention.

SUMMARY OF THE INVENTION

The present invention provides a human sequence antibody that specifically binds to human CTLA-4 and a human
sequence antibody that specifically binds to human CTLA-4 which is substantially free of non-immunoglobulin associated human proteins.

In a related aspect, the invention also provides a therapeutically-effective human sequence antibody that specifically binds to human CTLA-4. In some embodiments, the therapeutically-effective human sequence antibody binds to CTLA-4 on the cell surface of normal human T cells. In other embodiments, the T cell subpopulations marked by $C D$ antigens CD4, CD8, CD25, and CD69 remain stable during and subsequent to the administration of the therapeuticallyeffective human sequence antibody. In other embodiments, the therapeutically-effective human sequence antibody binds CTLA-4 on the cell surface of normal human T cells. In other embodiments, the human sequence antibody is welltolerated in a patient.
Also provided is a composition of polyclonal antibodies comprising a plurality of human sequence antibodies that specifically bind to human CTLA-4. The composition of polyclonal antibodies can comprise at least about $2,5,10$, $50,100,500$ or 1000 different human sequence antibodies that specifically bind to human CTLA-4.

The invention also provides human sequence antibodies that specifically bind to human CTLA-4 and which block binding of human CTLA-4 to human B7 or do not block binding of human CTLA-4 to human B7.

The invention also provides human sequence antibodies that bind to human CTLA-4 with an equilibrium association constant (Ka) of at least $10^{8} \mathrm{M}^{-1}$. Also provided are human sequence antibodies that bind to human CTLA-4 with an equilibrium association constant (Ka) of at least $10^{9} \mathrm{M}^{-1}$.
The invention also provides human sequence antibodies that specifically bind to human CTLA-4 that block binding of human CTLA- 4 to human B7 by at least about $10 \%, 20 \%$, $30 \%, 40 \%, 50 \%, 60 \%, 70 \%, 80 \%, 90 \%, 99 \%$, or 100%.

The invention also provides human sequence antibodies that specifically bind to human CTLA-4 having an antibody heavy chain of either $\lg G$ or IgM. The IgG antibody heavy chain can be $\operatorname{IgG1} 1, \operatorname{IgG} 2, \operatorname{IgG} 3$ or $\operatorname{IgG4}$. The invention also provides human sequence antibodies wherein the antibody light chain is a kappa light chain. The human sequence antibody can be encoded by human IgG heavy chain and human kappa light chain nucleic acids that comprise nucleotide sequences in their variable regions as set forth in SEQ ID NO:2 through SEQ ID NO:23, respectively.

The invention also provides a human sequence antibody wherein the buman sequence antibody is encoded by human IgG heavy chain and human kappa light chain nucleic acids that comprise nucleotide sequences in their variable regions as set forth in SEQ ID NO:16 and SEQ ID NO:6, respectively.
The invention also provides a human sequence antibody wherein the human sequence antibody is encoded by human lgG heavy chain and human kappa light chain nucleic acids that comprise nucleotide sequences in their variable regions as set forth in SEQ ID NO:18 and SEQ ID NO:8, respectively.

The invention also provides a buman sequence antibody wherein the human sequence antibody is encoded by human IgG heavy chain and human kappa light chain nucleic acids that comprise nucleotide sequences in their variable regions as set forth in SEQ ID NO:22 and SEQ ID NO:12, respectively.
The invention also provides a human sequence antibody wherein the human sequence antibody is encoded by heavy
chain and light chain variable region amino acid sequences as set for the in SEQ ID NO:17 and SEQ ID NO:7, respectively.

The invention provides a human sequence antibody wherein the human sequence antibody is encoded by heavy chain and light chain variable region amino acid sequences as set for the in SEQ ID NO:19 and SEQ ID NO:9, respectively.

The invention also provides a human sequence antibody wherein the human sequence antibody is encoded by heavy chain and light chain variable region amino acid sequences as set for the in SEQ ID NO:23 and SEQ ID NO:13, respectively.

The invention provides a human sequence antibody wherein the human sequence antibody is encoded by human IgG heavy chain and human kappa light chain nucleic acids comprising variable heavy and light chain sequences from V gene segments VH 3-30.3 and VK A-27, respectively.
The invention also provides a human sequence antibody wherein the human sequence antibody is encoded by human IgG heavy chain and human kappa light chain nucleic acids comprising variable heavy and light chain sequences from V gene segments VH 3-33 and VK L-15, respectively.

Some human sequence antibodies of the invention comprise heavy chain CDR1, CDR2, and CDR3 sequences, SYTMH (SEQ ID NO:27), FISYDGNNKYYADSVKG (SEQ ID NO:32) and TGWLGPFDY (SEQ ID NO:37), respectively, and light chain CDR1, CDR2, and CDR3 sequences, RASQSVGSSYLA (SEQ ID NO:24), GAFSRAT (SEQ ID NO:29), and QQYGSSPWT (SEQ ID NO:35), respectively.

Some human sequence antibodies of the invention comprise heavy cbain CDR1, CDR2, and CDR3 sequences, SYTMH (SEQ ID NO:27), FISYDGSNKHYADSVKG (SEQ ID NO:33) and TGWLGPFDY (SEQ ID NO: 37), respectively, and light chain CDR1, CDR2, and CDR3 sequences, RASQSVSSSFLA (SEQ ID NO:25), GASSRAT (SEQ ID NO:30), and QQYGSSPWT (SEQ ID NO:35), respectively.

Other human sequence antibodies of the invention comprise heavy chain CDR1, CDR2, and CDR3 sequences, SYGMH (SEQ ID NO:28), VIWYDGSNKYYADSVKG (SEQ ID NO:34) and APNYIGAFDV (SEQ ID NO:38), respectively, and light chain CDR1, CDR2, and CDR3 sequences, RASQGISSWLA (SEQ ID NO:26), AASSLQS (SEQ ID NO:31), and QQYNSYPPT (SEQ ID NO:36), respectively.
The invention also provides human sequence antibodies that specifically bind to human CTLA-4, where in said human sequence antibody is produced by a transgenic non-human animal. The transgenic non-human animal can be a mouse.
The invention also provides a human sequence antibody that specifically bind to human CTLA-4 that is a Fab fragment.

The invention provides a polyvalent complex comprising at least two human sequence antibodies each of which specifically binds to human CTLA-4. The two different antibodies can be linked to each other covalently or noncovalently.
The invention provides a nucleic acid encoding a heavy chain of a human sequence antibody. The nucleic acid can comprise a nucleotide sequence as set forth in SEQ ID NO: 1 .

The invention provides a transgenic non-human animal having a genome comprising a human sequence heavy chain
component of an amyloid formation in the patient, such as a patient suffering from Alzbeimer's disease and the antigen is AB peptide. This method can further comprise administering a cytokine to the patient.

The invention provides a method of suppressing an immune response in a patient, comprising administering to the patient an effective dosage of a polyvalent preparation comprising at least two human sequence antibodies to human CTLA-4 linked to each other. The invention also provides a method of suppressing an immune response in a patient, comprising administering to the patient an effective dosage of a polyclonal preparation comprising at least two human sequence antibodies to human CTLA-4.

The present invention further provides isolated or recombinant human sequence antibodies and human monoclonal antibodies which specifically bind to human CTLA-4, as well as compositions containing one or a combination of such antibodies. Some of the human sequence antibodies of the invention are characterized by binding to human CTLA-4 with high affinity, and/or by blocking the interaction of human CTLA-4 with its ligand, the human B7-(1 and B7-(2 molecules. Accordingly, the human sequence antibodies and the human monoclonal antibodies of the invention can be used as diagnostic or therapeutic agents in vivo and in vitro.

The human sequence antibodies of the invention can encompass various antibody isotypes, or mixtures thereof, such as $\operatorname{IgG} 1, \operatorname{IgG} 2, \operatorname{IgG} 3, \operatorname{IgG} 4, \mathrm{IgM}, \operatorname{IgA} 1, \operatorname{IgA} 2, \operatorname{Ig} A s e c$, IgD, and IgE. Typically, they include IgG1 (e.g., IgG1k) and IgM isotypes. The human sequence antibodies can be fulllength (e.g., an IgG1 or IgG4 antibody) or can include only an antigen-binding portion (e.g., a Fab, $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)$ 2, Fv or a single chain $F v$ fragment). Some human sequence antibodies are recombinant human sequence antibodies. Some human sequence antibodies are produced by a hybridoma which includes a B cell obtained from a transgenic non-human animal, c.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a human light chain transgene. The hybridoma can be made by, e.g., fusing the B cell to an immortalized cell. Some human sequence antibodies of the invention are produced by hybridomas referred to as $4 \mathrm{C} 8,4 \mathrm{E} 10,4 \mathrm{E} 10.5,5 \mathrm{~A} 8,5 \mathrm{C} 4,5 \mathrm{C} 4.1 .3,5 \mathrm{D} 7$, 5D7.1, 5E10, 5E10.12, 5G1, 5G1.4, 6A10, 6C9, 6C9.6, 6D9, 6D9.7, 6G4, 7E4, 7E4.4, 7E6, 7H8, 8E8, 8E8.4, 8F8, $8 \mathrm{~F} 8.19,8 \mathrm{H} 1,9810,9 \mathrm{~A} 10.1,9 \mathrm{~B} 9,9 \mathrm{C} 1,9 \mathrm{G} 5,105 \mathrm{~B}, 10 \mathrm{~B} 5.8$, 10B9, 10B9.2, 10D1, 10D1.3, 10E11, 10E4, 11E4.5, 11B4, 11D10, 11E4, 11E4.1, 11E8, 11F10, 11F11, 11F9, 11G1, 11G1.5, 1C7, 1H8.8, 2A7, 2A7.6, 2E2, 2E2.7, 2E7, 2E7.2, 2G1, 2G1.2, 3C12, 3E10, 3E10.5, 3E6, 3E6.0, 3F10, 4A1, 4B6 and 4B6.12. Suffixes after the decimal point indicate different clonal isolates of the same hybridoma cell lines.
Some human sequence anti-CTLA-4 antibodies of the present invention can be characterized by one or more of the following properties: a) specificity for human CTLA-4 (specifically binding to human CTLA-4); b) a binding affinity to human CTLA-4 with an equilibrium association constant (K_{a}) of at least about $10^{7} \mathrm{M}^{-1}$, or about $10^{9} \mathrm{M}^{-1}$, or about $10^{10} \mathrm{M}^{-1}$ to $10^{11} \mathrm{M}^{-1}$ or higher; c) a kinetic association constant (k_{a}) of at least about 10^{3} about 10^{4}, or about $10^{5} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$; and/or, d) a kinetic disassociation constant (k_{d}) of at least about 10^{3}, about 10^{4}, or about $10^{5} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$.

In another aspect, the invention provides nucleic acid molecules encoding the buman sequence antibodies, or antigen-binding portions, of the invention. Accordingly, recombinant expression vectors that include the antibodyencoding nucleic acids of the invention, and host cells
transfected with such vectors, are also encompassed by the invention, as are methods of making the antibodies of the invention by culturing these host cells.
In yet another aspect, the invention provides isolated B-cells from a transgenic non-human animal, e.g., a transgenic mouse, which are capable of expressing various isolypes (e.g., IgG, $\operatorname{Ig} A$ and/or IgM) of human monoclonal antibodies that specifically bind to human CTLA-4. The isolated B cells can be obtained from a transgenic nonhuman animal, e.g., a transgenic mouse, which has been immunized with a purified or enriched preparation of human CTLA-4 antigen (or antigenic fragment thereof) and/or cells expressing human CTLA-4. The transgenic non-human animal, e.g., a transgenic mouse, can have a genome comprising a human heavy chain transgene and a human light chain transgene. The isolated B-cells can be immortalized to provide a source (e.g., a hybridoma) of human monoclonal antibodies to human CTLA-4.

Accordingly, the present invention also provides a hybridoma capable of producing human monoclonal antibodies that specifically bind to human CTLA-4. The hybridoma can include a B cell obtained from a transgenic non-human animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a human light chain transgene fused to an immortalized cell. The transgenic non-human animal can be immunized with a purified or enriched preparation of human CTLA-4 antigen and/or cells expressing human CTLA-4 to generate antibody-producing hybridomas.
In yet another aspect, the invention provides a transgenic non-human animal, such as a transgenic mouse, which express human monoclonal antibodies (also referred to herein as a "HuMAb-Mouse ${ }^{\text {TM } ") ~ t h a t ~ s p e c i f i c a l l y ~ b i n d ~ t o ~}$ human CTLA-4. The transgenic non-human animal can be a transgenic mouse having a genome comprising a human heavy chain transgene and a human light chain transgene. The transgenic non-human animal can be immunized with a purified or enriched preparation of CTLA-4 antigen (or antigenic fragment thereof) and/or cells expressing the human CTLA-4. The transgenic non-human animal, e.g., the transgenic mouse, can be capable of producing multiple isotypes of human monoclonal antibodies to human CTLA-4 (e.g., IgG, IgA and/or IgM) by undergoing V-D-J recombination and isotype switching. Isotype switching may occur by, e.g., classical or non-classical isotype switching.
In another aspect, the present invention provides methods for producing human sequence antibodies and human sequence monoclonal antibodies that specifically react with human CTLA-4. Some methods of the invention include immunizing a transgenic non-buman animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a human light chain transgene, with a purified or enriched preparation of human CTLA-4 antigen and/or cells expressing human CTLA-4. B cells (e.g., splenic B cells) of the animal can then be obtained and fused with myeloma cells to form immortal, hybridoma cells that secrete human monoclonal antibodies against human CTLA-4.

Anti-human CTLA-4 human monoclonal antibodies of the invention, or antigen binding portions thereof (e.g., Fab), can be derivatized or linked to another functional molecule, e.g., another peptide or protein (e.g., an Fab' fragment). For example, an antibody or antigen-binding portion of the invention can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities. For
example, the human sequence anti-CTLA-4 antibody, or antigen binding fragment thereof, can be conjugated to a therapeutic moiety, e.g., a cytotoxic drug, an enzymatically active toxin, or a fragment thereof, a radioisotope, or a small molecule anti-cancer drug. The antibodies of the invention can also be conjugated to cytotoxic pharmaceuticals, e.g., radiolabeled with a cytotoxic agents, such as, e.g., ${ }^{131}$ (e.g., Shen (1997) Cancer 80(12 Suppl): 2553-2557), copper-67 (e.g., Deshpande (1988) J. Nucl. Med. 29:217-225) or, e.g., conjugation to the ribosome inactivating protein gelonin (e.g., Boyle (1996) J. of Immunol. 18:221-230).

In another aspect, the present invention provides compositions, e.g., pharmaceutical and diagnostic compositions, comprising a pharmaceutically acceptable carrier and at least one human monoclonal antibody of the invention, or an antigen-binding portion thereof, which specifically binds to human CTLA-4. Some compositions comprise a combination of the human sequence antibodies or antigen-binding portions thereof, preferably each of which binds to a distinct epitope. Compositions, e.g., pharmaceutical compositions, comprising a combination of at least one human sequence antibodies or at least one human monoclonal antibody of the invention, or antigen-binding portions thereof, and at least one bispecific or multispecific molecule of the invention, are also within the scope of the invention.

For in vivo methods, the antibody, or antigen-binding portion thereof (or a bispecific or multispecific molecule of the invention), can be administered to a human subject suffering from a T-cell-related disease, or a disease that can be ameliorated or prevented by augmenting or suppressing or prolonging an immune response.

Human sequence monoclonal antibody and human sequence antibody compositions of the invention also can be administered in combination with other known therapies, e.g., an anti-cancer therapy. Accordingly, the invention provides a method for treating cancer in a subject comprising administering a therapeutically effective amount of a pharmaceutical composition of a human sequence antibody together with a pharmaceutical carrier to the subject. Some such methods include a vaccine. Some such vaccines include a tumor cell vaccine, a GM-CSF-modified tumor cell vaccine, or an antigen-loaded dendritic cell vaccine. In some such methods, the cancer is prostate cancer, melanoma, or epithelial cancer.
Human sequence antibodies to human CTLA-4 can be used in methods of treatment requiring either stimulation of immune responses or suppression. The former indication is treated using antibodies that block binding of human CTLA-4 to human B7. Diseases amenable to treatment by stimulation, augmentation of prolonging of immune responses including cancer, including cancers of the prostate, kidney or colon, pathogenic infections, diseases associated with auto-antigens, e.g., amyloidogenic diseases, including Alzheimer's disease, and diseases with inflammatory or allergic components. Immunosuppression is achieved using a polyvalent preparation comprising at least two different antibodies to human CTLA-4 that are linked to each other. Diseases amenable to treatment include graft versus host disease, host versus graft disease, autoimmune diseases and inflammation.

In yet another aspect, the present invention provides a method for detecting in vitro or in vivo the presence of human CTLA-4 antigen in a-sample, e.g., for diagnosing a human CTLA-4-related disease. In some methods, this is achieved by contacting a sample to be tested, along with a
control sample, with a human sequence antibody or a human monoclonal antibody of the invention, or an antigen-binding portion thereof (or a bispecific or multispecific molecule), under conditions that allow for formation of a complex between the antibody and human CTLA-4. Complex formation is then detected (e.g., using an ELISA) in both samples, and any statistically significant difference in the formation of complexes between the samples is indicative the presence of human CTLA-4 antigen in the test sample.

A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification, the figures and claims.

All publications, figures, GenBank Accession references (sequences), ATCC Deposits, patents and patent applications cited herein are hereby expressly incorporated by reference for all purposes to the same extent as if each was so individually denoted.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows schematics illustrating the targeted insertion of a neo cassette into the Sma I site of the $\mu 1$ exon. FIG. 1A) Schematic diagram of the genomic structure of the μ locus. The filled boxes represent the μ exons; FIG. 1B) Schematic diagram of the CmD targeting vector. The dotted lines denotes those genomic μ sequences included in the construct. Plasmid sequences are not shown; FIG. 1C) Schematic diagram of the targeted μ locus in which the neo cassette has been inserted into $\mu \mathrm{l}$. The box at the lower right shows those RFLP's diagnostic of homologous recombination between the targeting construct and the μ locus. The RFLP's were detected by Southern blot hybridization using probe A, the 915 bp Sac I fragment is shown in FIG. 1C.

FIG. 2 shows the results of experiments demonstrating that soluble human sequence antibodies against human CTLA-4 inhibit the binding of recombinant soluble human CTLA-4 to cells expressing mouse B7.1, as described in detail, below.
FIG. 3 shows the results of a competitive binding assay to identify human sequence antibodies of the invention that recognize non-overlapping epitopes on human CTLA-4, as described in detail, below.
FIG. 4 shows preliminary nucleotide sequence data for the heavy and light chain fragment of the anti-CTLA-4 antibody 10D1.3.
FIG. 5 shows the nucleotide sequences of the light chain variable Regions (V_{K}) of Anti-Human CTLA-4 Antibodies. The anti-CTLA-4 antibodies 10D1 (SEQ ID NO:6) and 4B6 (SEQ ID NO:8) derived from the V_{K} A-27 germline sequence (SEQ ID NO:4) are depicted at the top of the Figure. The anti-CTLA-4 antibody 1E2 (SEQ ID NO:12) derived from the V_{K} L-15 germline sequence (SEQ ID NO:10) is shown at the bottom of the Figure. The V_{K} sequences of three anti-CTLA-4 antibodies are aligned with their germline encoded VK gene sequences. The complementary determining residues (CDR) are labeled. Dashes denote sequence identity.
FIG. 6 shows the nucleotide sequences of the heavy chain variable Regions (V_{H}) of Anti-Human CTLA-4 Antibodies. The anti-CTLA-4 antibodies 10D1 (SEQ ID NO:16) and 4B6 (SEQ ID NO:18) derived from the V_{H} 3-30.3 germline sequence (SEQ ID NO:14) are depicted at the top of the Figure. The anti-CTLA-4 antibody 1E2 (SEQ ID NO:22) derived from the V_{H} 3-33 germline sequence (SEQ ID NO:20) is shown at the bottom of the Figure. The V_{H} sequences of three anti-CTLA-4 antibodies are aligned with
their germline encoded sequences. The complementary determining residues (CDR) are labeled. Dashes denote sequence identity.

FIG. 7 shows the predicted amino acid sequences of the light chain Variable Regions of Anti-Human CTLA-4 Antibodies. The predicted amino acid V_{K} sequences of the anti-CTLA-4 antibodies described in FIG. 5 are shown. The anti-CTLA-4 antibodies 10D1 (SEQ ID NO:7) and 4B6 (SEQ ID NO:9) derived from the V_{K} A-27 germline sequence (SEQ ID NO:5) are depicted at the top of the Figure. The anti-CTLA-4 antibody 1E2 (SEQ ID NO:13) derived from the V_{K} L-15 germline sequence (SEQ ID NO:11) is shown at the botom of the Figure.
FIG. 8 shows the predicted amino acid sequences of the heavy chain Variable Regions of Anti-Human CTLA-4 Antibodies. The predicted amino acid V_{H} sequences of the anti-CTLA-4 antibodies described in FIG. 6 are shown. The anti-CILA-4 antibodies 10D1 (SEQ ID NO:17) and 4B6 (SEQ ID NO:19) derived from the $\mathrm{V}_{H}, 3-30.3$ germline sequence (SEQ ID NO:15) are depicted at the top of the Figure. The anti-CTLA-4 antibody 1E2 (SEQ ID NO:23) derived from the V_{H} 3-33 germline sequence (SEQ ID NO:21) is shown at the bottom of the Figure.

FIG. 9 shows the results of binding experiments of MAb 10D1 to recombinant human CTLA-4 by ELISA. MAb 10D1 binds with dose-dependent and saturating kinetics to purified recombinant CTLA-4.

FIG. 10 shows the binding of 10D1 to a CTLA-4 expressing T-cell line. These data show that MAb 10D1 binds with dose-dependent and saturating kinetics to cells expressing CTLA-4.

FIG. 11 shows inhibition of binding of human B7.2 Ig to CTLA-4-expressing T-cells. These data show that MAb 10D1 can efficiently block B7.2 binding to CTLA-4 as compared to a control human MAb.
FIG. 12 shows the results for blocking CTLA-4-FITC binding to murine B 7.1 -expressing cells. These data show that MAb 10D1 can efficiently block CTLA-4 binding to B7.1 as compared to a control human MAb.

FIG. 13 shows competitive ELISAs of anti-CTLA-4 human MAbs demonstrating epitope group classifications.

FIG. 14 shows CTLA-4 expression on PHA-stimulated T-cells. Activated, but not resting T cells, express low but detectable levels of CTLA-4 at the cell surface.

FIG. 15 shows the results of MAb 10D1 in Complement Dependent Lysis of Activated T Cells. No lysis of PHAactivated T ceils is observed.

FIG. 16 shows the results of MAb 10D1 in AntibodyDependent Lysis of Activated T Cells. No lysis of PHAactivated T cells is observed with 10D1 and mononuclear cells.

FIG. 17 shows anti-10D1 IgM and lgG responses in cynomolgus monkeys injected with 10D1 antibody. No 5 significant antibody response to 10D1 is observed.

DETAILED DESCRIPTION

The present invention provides novel antibody-based therapies for treating and diagnosing diseases characterized by expression, particularly over-expression, or activation of, particularly overactivation, of human CTLA-4 and/or related molecules. Therapies of the invention employ human sequence antibodies, human sequence monoclonal antibodies, or antigen-binding portions thereof, which bind to an epitope present on human CTLA-4. These human sequence anti-CTLA-4 antibodies can act as functional
antagonists (e.g., inhibiting the ability of CTLA-4 to bind ligand or to activate the cell, e.g., by inhibiting its ability to transmit a signal to the cell) or agonists (e.g., to simulate the effect of ligand).
The human sequence antibodies of the invention can be produced in a non-human transgenic animal, e.g., a transgenic mouse, capable of producing multiple isotypes of human (e.g., monoclonal or polyclonal) antibodies to human CTLA-4 (e.g., IgG, IgA and/or IgE) by undergoing V-D-J recombination and isotype switching. Accordingly, various aspects of the invention include antibodies and antibody fragments, and pharmaceutical compositions thereof, as well as non-human transgenic animals, and B-cells and hybridomas for making such monoclonal antibodies. Methods of using the antibodies of the invention to detect a cell expressing human CTLA-4 or a related, cross-reactive growth factor receptor, or to inhibit growth, differentiation and/or motility of a cell expressing human CTLA-4, either in vitro or in vivo, are also encompassed by the invention.
Except when noted, the terms "patient" or "subject" are used interchangeably and refer to mammals such as human patients and non-human primates, as well as experimental animals such as rabbits, rats, and mice, and other animals.
The term "treating" includes the administration of the compounds or agents of the present invention to prevent or delay the onset of the symptoms, complications, or biochemical indicia of a disease, alleviating the symptoms or arresting or inhibiting further development of the disease, condition, or disorder (e.g., autoimmune disease). Treatment may be prophylactic (to prevent or delay the onset of the disease, or to prevent the manifestation of clinical or subclinical symptoms thereof) or therapeutic suppression or alleviation of symptoms after the manifestation of the disease.
In general, the phrase "sell tolerated" refers to the absence of adverse changes in health status that occur as a result of the treatment and would affect treatment decisions.

The term "lymphocyte" as used herein has the normal meaning in the art, and refers to any of the mononuclear, nonphagocytic leukocytes, found in the blood, lymph, and lymphoid tissues, i.e., B and T lymphocytes.

The phrase "subpopulations of T lymphocytes" or "T cell subset(s)" refers to T lymphocytes or T cells characterized by the expression of particular cell surface markers (see Barclay, A. N. et al. (eds.), 1997, The Leukocyte Antigen Facts Book, 2nd. edition, Academic Press, London, United Kingdom). The term "stable" in reference to T cells refers to the fact that the frequency or percentage of a T cell subset does not change over the course or duration of the administration of an agent.

The terms "cytotoxic T lymphocyte-associated antigen-4,""CTLA-4," "CTLA-4," "CTLA-4 antigen" and "CD152" (see, e.g., Murata (1999) Am. J. Pathol. 155:453-460) are used interchangeably, and include variants, isoforms, species homologs of human CTLA-4, and analogs having at least one common epitope with CTLA-4 (see, e.g., Balzano (1992) Int. J. Cancer Suppl. 7:28-32).
The complete cDNA sequence of human CTLA-4 has the Genbank accession number L15006. The region of amino acids $1-37$ is the leader peptide; 38-161 is the extracellular V-like domain; 162-187 is the transmembrane domain; and 188-223 is the cytoplasmic domain. Variants of the nucleotide sequence have been reported, including a G to A transition at position 49, a C to T transition at position 272, and an A to G transition at position 439. The complete DNA
sequence of mouse CTLA-4 has the EMBL accession number X05719 (Brunet et al.,(1987) Nature 328:267-270). The region of amino acids $1-35$ is the leader peptide.
The complete DNA sequence of human B7-1 (CD80) has the Genbank accession number X60958; the accession number for the mouse sequence is X 60958 ; the accession number for the rat sequence is U05593. The complete cDNA sequence of human B7-2 (CD86) has the Genbank accession number L25259; the accession number for the mouse sequence is L25606.
The genes encoding CD28 have been extensively characterized. The chicken mRNA sequence has the Genbank accession number X67915. The rat mRNA sequence has the Genbank accession number X55288. The human mRNA sequence has the Genbank accession number J02988. The mouse mRNA sequence has the Genbank accession number M34536.
The term "epitope" means a protein determinant capable of specific binding to an antibody. Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. Conformational and nonconformational epitopes are distinguished in that the binding to the former but not the latter is lost in the presence of denaturing solvents.
An intact "antibody" comprises at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, $\mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 . Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL . The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxyl-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Cl 19) of the classical complement system. The term antibody includes antigen-binding portions of an intact antibody that retain capacity to bind CTLA-4. Examples of binding include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a $F\left(a^{\prime}\right.$ ')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); See, e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA

85:5879-5883). Such single chain antibodies are included by reference to the term "antibody" Fragments can be prepared by recombinant techniques or enzymatic or chemical cleavage of intact antibodies.

A bispecific antibody has two different binding specificities, see. e.g., U.S. Pat. Nos. 5,922,845 and 5,837, 243; Zeilder (1999) J. Immunol. 163:1246-1252; Somasundaram (1999) Hum. Antibodies 9:47-54; Keler (1997) Cancer Res. 57:4008-401.4. For example, the invention provides bispecific antibodies having one binding site for a cell surface antigen, such as human CTLA-4, and a second binding site for an Fc receptor on the surface of an effector cell. The invention also provides multispecific antibodies, which have at least three binding sites. The term "bispecific antibodies" further includes diabodies. Diabodies are bivalent, bispecific antibodies in which the VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (See, e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, R. J., et al. (1994) Structure 2:1121-1123).
The term "human sequence antibody" includes antibodies having variable and constant regions (if present) derived from human germline immunoglobulin sequences. The human sequence antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo). However, the term "human sequence antibody", as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences (i.e., humanized antibodies).
The terms "monoclonal antibody" or "monoclonal antibody composition" refer to a preparation of antibody molecules of single molecular composition. A monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope. Accordingly, the term "human monoclonal antibody" refers to antibodies displaying a single binding specificity which have variable and constant regions (if present) derived from human germline immunoglobulin sequences. In one embodiment, the human monoclonal antibodies are produced by a hybridoma which includes a B cell obtained from a transgenic non-human animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a light chain transgene fused to an immortalized cell.

The term "diclonal antibody" refers to a preparation of at least two antibodies to human CTLA-4. Typically, the different antibodies bind different epitopes.
The term "oligoclonal antibody" refers to a preparation of 3 to 100 different antibodies to human CTLA-4. Typically, the antibodies in such a preparation bind to a range of different epitopes.
The term "polyclonal antibody" refers to a preparation of more than 1 (two or more) different antibodies to human CTLA-4. Such a preparation includes antibodies binding to a range of different epitopes.
The invention provides human sequence antibodies to human CTLA-4 which block or antagonize signals transduced by the human CTLA-4 receptor. Some of these antibodies can bind to an epitope on human CTLA-4 so as to inhibit CTLA-4 from interacting with a human B7 coun-
terreceptor. Because interaction of human CTLA-4 with human B7 transduces a signal leading to inactivation of T-cells bearing the human CTLA-4 receptor, antagonism of the interaction effectively induces, augments or prolongs the activation of T cells bearing the buman CTLA-4 receptor, thereby prolonging or augmenting an immune response. A "blocking antibody" refers to an antibody that reduces the binding of soluble human CTLA-4 to cell-expressed human B7 ligand by at least $10 \%, 20 \%, 30 \%, 40 \%, 50 \%, 60 \%, 70 \%$, $80 \%, 90 \%, 99 \%$ or 99.9% under conditions in which the ratio of antibody combining site to human CTLA-4 ligand binding site is greater than $1: 1$ and the concentration of antibody is greater than $10^{-8} \mathrm{M}$.

Other antibody preparations, sometimes referred to as multivalent preparations, bind to human CTLA-4 in such a manner as to crosslink multiple human CTLA-4 receptors on the same cell. Cross-linking of receptor has the same or similar effect to binding of human CTLA-4 to human B7. Thus, cross-linking of receptors effectively agonizes the human CTLA-4 response resulting in immunosuppression.

Cross-linking can also be accomplished by combining soluble divalent antibodies having different epitope specificities. These polyclonal antibody preparations comprise at least two pairs of heavy and light chains binding to different epitopes on human CTLA-4 such that an immunosuppressing signal can be transduced as a result of human CTLA-4 crosslinking.

The term "recombinant human antibody" includes all human sequence antibodies of the invention that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (described further in Section I, below); antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a recombinant, combinatorial human antibody library, or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies have variable and constant regions (if present) derived from human germline immunoglobulin sequences. Such antibodies can, however, be subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.

A "heterologous antibody" is defined in relation to the transgenic non-human organism producing such an antibody. This term refers to an antibody having an amino acid sequence or an encoding nucleic acid sequence corresponding to that found in an organism not consisting of the transgenic non-human animal, and generally from a species other than that of the transgenic non-human animal.
A "heterohybrid antibody" refers to an antibody having a light and beavy chains of different organismal origins. For example, an antibody having a human heavy chain associated with a murine light chain is a heterohybrid antibody. Examples of heterohybrid antibodies include chimeric and humanized antibodies, discussed supra.

The term "substantially pure" or "isolated" means an object species (e.g., an antibody of the invention) has been identified and separated and/or recovered from a component of its natural environment such that the object species is the
predominant species present (i.e., on a molar basis it is more abundant than any other individual species in the composition); a "substantially pure" or "isolated" composition also means where the object species comprises at least about 50 percent (on a molar basis) of all macromolecular species present. A substantially pure or isolated composition can also comprise more than about 80 to 90 percent by weight of all macromolecular species present in the composition. An isolated object species (e.g., antibodies of the invention) can also be purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of derivatives of a single macromolecular species. An isolated antibody to human CTLA-4 can be substantially free of other antibodies that lack binding to human CTLA-4 and bind to a different antigen. An isolated antibody that specifically binds to an epitope, isoform or variant of buman CTLA-4 may, however, have crossreactivity to other related antigens, e.g., from other species (e.g., CTLA-4 species homologs). Moreover, an isolated antibody of the invention be substantially free of other cellular material (e.g., non-immunoglobulin associated proteins) and/or chemicals.
"Specific binding" refers to antibody binding to a predetermined antigen. The phrase "specifically (or selectively) binds" to an antibody refers to a binding reaction that is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics. Typically, the antibody binds with an association constant (K_{a}) of at least about $1 \times 10^{6} \mathrm{M}^{-1}$ or $10^{7} \mathrm{M}^{-1}$, or about $10^{8} \mathrm{M}^{-1}$ to 10^{9} M^{-1}, or about $10^{9} \mathrm{M}^{-1}$ to $10^{11} \mathrm{M}^{-1}$ or higher, and binds to the predetermined antigen with an affinity that is at least two-fold greater than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than the predetermined antigen or a closely-related antigen. The phrases "an antibody recognizing an antigen" and "an antibody specific for an antigen" are used intercbangeably herein with the term "an antibody which binds specifically to an antigen".

The phrase "specifically bind(s)" or "bind(s) specifically" when referring to a peptide refers to a peptide molecule which has intermediate or high binding affinity, exclusively or predominately, to a target molecule. The phrases "specifically binds to" refers to a binding reaction which is determinative of the presence of a target protein in the presence of a heterogencous population of proteins and other biologics. Thus, under designated assay conditions, the specified binding moieties bind preferentially to a particular target protein and do not bind in a significant amount to other components present in a test sample. Specific binding to a target protein under such conditions may require a binding moiety that is selected for its specificity for a particular target antigen. A variety of assay formats may be used to select ligands that are specifically reactive with a particular protein. For example, solid-phase ELISA immunoassays, immunoprecipitation, Biacore and Western blot are used to identify peptides that specifically react with CTLA-4. Typically a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 times background.

The term "high affinity" for an IgG antibody refers to an equilibrium association constant $\left(\mathrm{K}_{a}\right)$ of at least about $10^{7} \mathrm{M}^{-1}$, at least about $10^{8} \mathrm{M}^{-1}$, at least about $10^{9} \mathrm{M}^{-1}$, at least about $10^{10} \mathrm{M}^{-1}$, at least about $10^{11} \mathrm{M}^{-1}$, or at least about $10^{12} \mathrm{M}^{-1}$ or greater, e.g., up to $10^{13} \mathrm{M}^{-1}$ or $10^{14} \mathrm{M}^{-1}$ or greater. However, "high affinity" binding can vary for other antibody isotypes.
The term " K_{a} ", as used herein, is intended to refer to the equilibrium association constant of a particular antibodyantigen interaction. This constant has units of $1 / \mathrm{M}$.

The term " K_{a} ", as used herein, is intended to refer to the equilibrium dissociation constant of a particular antibodyantigen interaction. This constant has units of M .

The term " k_{a} ", as used herein, is intended to refer to the kinetic association constant of a particular antibody-antigen interaction. This constant has units of $1 / \mathrm{Ms}$.
The term " k_{d} ", as used herein, is intended to refer to the kinetic dissociation constant of a particular antibody-antigen interaction. This constant has units of $1 / \mathrm{s}$.
"Particular antibody-antigen interactions" refers to the experimental conditions under which the equilibrium and kinetic constants are measured.
"Isotype" refers to the antibody class (e.g., IgM or IgG1) that is encoded by heavy chain constant region genes.
"Isotype switching" refers to the phenomenon by which the class, or isotype, of an antibody changes from one Ig class to one of the other Ig classes.
"Nonswitched isotype" refers to the isotypic class of heavy chain that is produced when no isotype switching has taken place; the CH gene encoding the nonswitched isotype is typically the first CH gene immediately downstream from the functionally rearranged VDJ gene. Isotype switching has been classified as classical or non-classical isotype switching. Classical isotype switching occurs by recombination events which involve at least one switch sequence region in the transgene. Non-classical isotype switching may occur by, for example, homologous recombination between human σ_{μ}, and buman Σ_{μ} (δ-associated deletion). Alternative nonclassical switching mechanisms, such as intertransgene and/ or interchromosomal recombination, among others, may occur and effectuate isotype switching.

The term "switch sequence" refers to those DNA sequences responsible for switch recombination. A "switch donor" sequence, typically a μ switch region, are 5 ' (i.e., upstream) of the construct region to be deleted during the switch recombination. The "switch acceptor" region are between the construct region to be deleted and the replacement constant region (e.g., γ, ϵ, etc.). As there is no specific site where recombination always occurs, the final gene sequence is not typically predictable from the construct.
"Glycosylation pattern" is defined as the pattern of carbohydrate units that are covalently attached to a protein, more specifically to an immunoglobulin protein. A glycosylation pattern of a heterologous antibody can be characterized as being substantially similar to glycosylation patterns which occur naturally on antibodies produced by the species of the non-human transgenic animal, when one of ordinary skill in the ant would recognize the glycosylation pattern of the heterologous antibody as being more similar to said pattern of glycosylation in the species of the nonhuman transgenic animal than to the species from which the CH genes of the transgene were derived.

The term "naturally-occurring" as applied to an object refers to the fact that an object can be found in nature. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally- 6 occurring.
The term "rearranged" refers to a configuration of a heavy chain or light chain immunoglobulin locus wherein a V segment is positioned immediately adjacent to a D-J or J segment in a conformation encoding essentially a complete 6 VH or VL domain, respectively. A rearranged immunoglobulin gene locus can be identified by comparison to germline

DNA; a rearranged locus has at least one recombined heptamer/nonamer homology element.
The term "unrearranged" or "germline configuration" in reference to a V segment refers to the configuration wherein the V segment is not recombined so as to be immediately adjacent to a D or J segment.
The term "nucleic acid" is intended to include DNA molecules and RNA molecules. A nucleic acid can be single-stranded or double-stranded.
The term "isolated nucleic acid" in reference to nucleic acids encoding antibodies or antibody portions (e.g., VH , VL, CDR3) that bind to CTLA-4, is intended to refer to a nucleic acid in which the nucleotide sequences encoding the antibody or antibody portion are free of other nucleotide 15 sequences encoding antibodies or antibody portions that bind antigens other than CTLA-4, which other sequences may naturally flank the nucleic acid in human genomic DNA. SEQ ID NOs: 4-23 comprise the nucleotide and amino acid sequences comprising the heavy chain (VH) and ${ }_{20}$ light chain (VL) variable regions of the 10D1, 4B6 and 1E2 human anti-CTLA-4 monoclonal antibodies of the invention.

The term "substantially identical," in the context of two nucleic acids or polypeptides refers to two or more sequences or subsequences that have at least about 80%, about 90 , about 95% or higher nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using the following sequence comparison method and/or by visual inspection. For 30 example, the invention provides nucleic acids having sequences that are substantially identical to SEQ ID NO:1, SEQ ID NO:2. Such "substantially identical" sequences are typically considered to be homologous. The "substantial identity" can exist over a region of sequence that is at least 35 about 50 residues in length, over a region of at least about 100 residues, or over a region at least about 150 residues, or over the full length of the two sequences to be compared. As described below, any two antibody sequences can only be aligned in one way, by using the numbering scheme in 40 Kabat. Therefore, for antibodies, percent identity has a unique and well-defined meaning.

Amino acids from the variable regions of the mature heavy and light chains of immunoglobulins are designated Hx and Lx respectively, where x is a number designating the 45 position of an amino acid according to the scheme of Kabat, Sequences of Proteins of immunological Interest (National Institutes of Health, Bethesda, Md., 1987 and 1991). Kabat lists many amino acid sequences for antibodies for each subgroup, and lists the most commonly occurring amino ard for each residue position in that subgroup to generate a consensus sequence. Kabat uses a method for assigning a residue number to each amino acid in a listed sequence, and this method for assigning residue numbers has become standard in the field. Kabat's scheme is extendible to other antibodies not included in his compendium by aligning the antibody in question with one of the consensus sequences in Kabat by reference to conserved amino acids. The use of the Kabat numbering system readily identifies amino acids at equivalent positions in different antibodies. For example, an amino acid at the L50 position of a human antibody occupies the equivalent position to an amino acid position L50 of a mouse antibody. Likewise, nucleic acids encoding antibody chains are aligned when the amino acid sequences encoded by the respective nucleic acids are aligned according to the Kabat numbering convention.
The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a mol-
ecule to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA), wherein the particular nucleotide sequence is detected at least at about 10 times background. In one embodiment, a nucleic acid can be determined to be within the scope of the invention (e.g., is substantially identical to SEQ ID NO:1 or SEQ ID NO:2) by its ability to hybridize under stringent conditions to a nucleic acid otherwise determined to be within the scope of the invention (such as the exemplary sequences described herein).

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acid, but not to other sequences in significant amounts (a positive signal (e.g., identification of a nucleic acid of the invention) is about 10 times background hybridization). Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found An extensive guide to the hybridization of nucleic acids is found in e.g., Sambrook, ed., Molecular Cloning: a Laboratory Manual (2nd ed.), Vols. 1-3, Cold Spring Harbor Laboratory, (1989); Current Protocols in Molecular Biology, Ausubel, ed. John Wiley \& Sons, Inc., New York (1997); Laboratory Techniques in Biochemistry and Molecular Biology: Hybridization Wrth Nucleic acid Probes, Part 1. Theory and Nucleic Acid Preparation, Tijssen, ed. Elsevier, N.Y. (1993).

Generally, stringent conditions are selected to be about $5-10^{\circ} \mathrm{C}$. lower than the thermal melting point (T_{m}) for the specific sequence at a defined ionic strength pH . The T_{m} is the temperature (under defined ionic strength, pH , and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at $\mathrm{T}_{m}, 50 \%$ of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about $30^{\circ} \mathrm{C}$. for short probes (e.g., 10 to 50 nucleotides) and at least about $60^{\circ} \mathrm{C}$. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide as described in Sambrook (cited below). For high stringency hybridization, a positive signal is at least two times background, preferably 10 times background bybridization. Exemplary bigh stringency or stringent hybridization conditions include: 50% formamide, $5 \times$ SSC and 1% SDS incubated at $42^{\circ} \mathrm{C}$. or $5 \times \mathrm{SSC}$ and 1% SDS incubated at $65^{\circ} \mathrm{C}$., with a wash in $0.2 \times \operatorname{SSC}$ and 0.1% SDS at $65^{\circ} \mathrm{C}$. For selective or specific hybridization, a positive signal (e.g., identification of a nucleic acid of the invention) is about 10 times background hybridization. Stringent hybridization conditions that are used to identify 5 nucleic acids within the scope of the invention include, e.g., hybridization in a buffer comprising 50% formamide, $5 \times$ SSC, and 1% SDS at $42^{\circ} \mathrm{C}$., or bybridization in a buffer comprising $5 \times$ SSC and 1% SDS at $65^{\circ} \mathrm{C}$., both with a wash of $0.2 \times \mathrm{SSC}$ and 0.1% SDS at $65^{\circ} \mathrm{C}$. In the present invention, genomic DNA or cDNA comprising nucleic acids of the invention can be identified in standard Southern blots under stringent conditions using the nucleic acid sequences disclosed here. Additional stringent conditions for such hybridizations (to identify nucleic acids within the scope of the invention) are those which include a hybridization in a buffer of 40% formamide, $1 \mathrm{M} \mathrm{NaCl}, 1 \% \mathrm{SDS}$ at $37^{\circ} \mathrm{C}$.

However, the selection of a hybridization format is not critical-it is the stringency of the wash conditions that set forth the conditions which determine whether a nucleic acid is within the scope of the invention. Wash conditions used to identify nucleic acids within the scope of the invention include, e.g.: a salt concentration of about 0.02 molar at pH 7 and a temperature of at least about $50^{\circ} \mathrm{C}$. or about $55^{\circ} \mathrm{C}$. to about $60^{\circ} \mathrm{C}$.; or, a salt concentration of about 0.15 M NaCl at $72^{\circ} \mathrm{C}$. for about 15 minutes; or, a salt concentration of about $0.2 \times$ SSC at a temperature of at least about $50^{\circ} \mathrm{C}$. or about $55^{\circ} \mathrm{C}$. to about $60^{\circ} \mathrm{C}$. for about 15 to about 20 minutes; or, the hybridization complex is washed twice with a solution with a salt concentration of about $2 \times$ SSC containing 0.1% SDS at room temperature for 15 minutes and then washed twice by $0.1 \times$ SSC containing 0.1% SDS at 68° C. for 15 minutes; or, equivalent conditions. See Sambrook, Tijssen and Ausubel for a description of SSC buffer and equivalent conditions.
The nucleic acids of the invention be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form. A nucleic acid is "isolated" or "rendered substantially pure" when purified away from other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, CsC1 banding, column chromatography, agarose gel electrophoresis and others well known in the art. see, e.g., Sambrook, Tijssen and Ausubel. The nucleic acid sequences of the invention and other nucleic acids used to practice this invention, whether RNA, cDNA, genomic DNA, or hybrids thereof, may be isolated from a variety of sources, genetically engineered, amplified, and/or expressed recombinantly. Any recombinant expression system can be used, including, in addition to bacterial, e.g., yeast, insect or mammalian systems. Alternatively, these nucleic acids can be chemically synthesized in vitro. Techniques for the manipulation of nucleic acids, such as, e.g., subcloning into expression vectors, labeling probes, sequencing, and bybridization are well described in the scientific and patent literature, see, e.g., Sambrook, Tijssen and Ausubel. Nucleic acids can be analyzed and quantified by any of a number of general means well known to those of skill in the art. These include, e.g., analytical biochemical methods such as NMR, spectrophotometry, radiography, electrophoresis, capillary electrophoresis, high performance liquid chromatograpby (HPLC), thin layer chromatography (TLC), and hyperdiffusion chromatography, various immunological methods, such as fluid or gel precipitin reactions, immunodiffusion (single or double), immunoelectrophoresis, radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, Southern analysis, Northern analysis, dot-blot analysis, gel electrophoresis (e.g., SDS-PAGE), RT-PCR, quantitative PCR, other nucleic acid or target or signal amplification methods, radiolabeling, scintillation counting, and affinity chromatography.
The nucleic acid compositions of the present invention, while often in a native sequence (except for modified restriction sites and the like), from either cDNA, genomic or mixtures may be mutated, thereof in accordance with standard techniques to provide gene sequences. For coding sequences, these mutations, may affect amino acid sequence as desired. In particular, DNA sequences substantially homologous to or derived from native V, D, J, constant, switches and other such sequences described herein are contemplated (where "derived" indicates that a sequence is identical or modified from another sequence).

A nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence.

For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence. With respect to transcription regulatory sequences, operably linked means that the DNA sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame. For switch sequences, operably linked indicates that the sequences are capable of effecting switch recombination.

The term "vector" is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors"). In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The term "recombinant bost cell" (or simply "host cell") refers to a cell into which a recombinant expression vector has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein.

The term "minilocus transgene" refers to a transgene that comprises a portion of the genomic immunoglobulin locus having at least one internal (i.e., not at a terminus of the portion) deletion of a non-essential DNA portion (e.g., intervening sequence; intron or portion thereof) as compared to the naturally-occurring germline Ig locus.

A "label" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include ${ }^{32} \mathrm{P}$, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins for which antisera or monoclonal antibodies are available (e.g., the polypeptides of the invention can be made detectable, e.g., by incorporating a radiolabel into the peptide, and used to detect antibodies specifically reactive with the peptide)
The term "sorting" in the context of cells as used herein to refers to both physical sorting of the cells, as can be accomplished using, e.g., a fluorescence activated cell sorter, as well as to analysis of cells based on expression of cell surface markers, e.g., FACS analysis in the absence of sorting.

The phrase "immune cell response" refers to the response of immune system cells to external or internal stimuli (e.g.,
stimulatory compound with a cell generates a "signal" that is transmitted through the signal transduction pathway, ultimately resulting in a cellular response, e.g., an immune response described above.

A signal transduction pathway refers to the biochemical relationship between a variety of signal transduction molecules that play a role in the transmission of a signal from one portion of a cell to another portion of a cell. Signal transduction molecules of the present invention include, for example, MAb 147.1 of the invention. As used herein, the phrase "cell surface receptor" includes molecules and complexes of molecules capable of receiving a signal and the transmission of such a signal across the plasma membrane of a cell. An example of a "cell surface receptor" of the present invention is the T cell receptor (TCR) or the B 7 ligands of CTLA-4.

A signal transduction pathway in a cell can be initiated by interaction of a cell with a stimulator that is inside or outside of the cell. If an exterior (i.e., outside of the cell) stimulator (e.g., an MHC-antigen complex on an antigen presenting cell) interacts with a cell surface receptor (e.g., a T cell receptor), a signal transduction pathway can transmit a signal across the cell's membrane, through the cytoplasm of the cell, and in some instances into the nucleus. If an interior (e.g., inside the cell) stimulator interacts with an intracellular signal transduction molecule, a signal transduction pathway can result in transmission of a signal through the cell's cytoplasm, and in some instances into the cell's nucleus.

Signal transduction can occur through, e.g., the phosphorylation of a molecule; non-covalent allosteric interactions; complexing of molecules; the conformational change of a molecule; calcium release; inositol phosphate production; proteolytic cleavage; cyclic nucleotide production and diacylglyceride production. Typically, signal transduction occurs through phosphorylating a signal transduction molecule.
The term "nonspecific T cell activation" refers to the stimulation of \mathbf{T} cells independent of their antigenic specificity.
Production Of Human Antibodies To CTLA-4
The monoclonal antibodies (mAbs) and the human sequence antibodies of the invention can be produced by a variety of techniques, including conventional monoclonal antibody methodology e.g., the standard somatic cell hybridization technique of Kohler and Milstein, Nature 256: 495 (1975). Any technique for producing monoclonal antibody can be employed e.g., viral or oncogenic transformation of B lymphocytes. One animal system for preparing hybridomas is the murine system. Hybridoma production in the mouse is a very well-established procedure. Immunization protocols and techniques for isolation of immunized splenocytes for fusion are known in the art. Fusion partners (e.g., murine myeloma cells) and fusion procedures are also known (see, e.g., Harlow and Lane (1988), Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory Press, 5 Cold Spring Harbor N.Y.).

Human monoclonal antibodies and human sequence antibodies directed against human CTLA-4 can be generated using transgenic mice carrying a human immune system rather than the mouse system. These transgenic mice, also referred to herein as "HuMAb-Mouse ${ }^{\text {TM }}$ ", contain a human immunoglobulin gene miniloci that encodes unrearranged buman heavy (μ and γ) and κ light chain immunoglobulin sequences, together with targeted mutations that inactivate the endogenous μ and κ chain loci (Lonberg, N. et al. (1994) Nature 368(6474): 856-859 and U.S. Pat. No. 5,770,429). Accordingly, the mice exhibit reduced expression of mouse

To determine if the selected human anti-CTLA-4 monoclonal antibodies bind to unique epitopes, each antibody can
be biotinylated using commercially available reagents (Pierce, Rockford, III.). Competition studies using unlabeled monoclonal antibodies and biotinylated monoclonal antibodies can be performed using CTLA-4 coated-ELISA plates as described above. Biotinylated MAb binding can be detected with a strep-avidin-alkaline phosphatase probe

To determine the isotype of purified antibodies, isotype ELISAs can be performed. Wells of microtiter plates can be coated with $1 \mu \mathrm{~g} / \mathrm{ml}$ of anti-human IgG overnight at $4^{\circ} \mathrm{C}$. After blocking with 1% BSA, the plates are reacted with 1 $\mu \mathrm{g} / \mathrm{ml}$ or less of monoclonal antibodies or purified isotype controls, at ambient temperature for one to two hours. The wells can then be reacted with either human IgGl or human IgM-specific alkaline phosphatase-conjugated probes. Plates are developed and analyzed as described above.

To demonstrate binding of monoclonal antibodies to live cells expressing the CTLA-4, flow cytometry can be used. Briefly, cell lines expressing CTLA-4 (grown under standard growth conditions) are mixed with various concentrations of monoclonal antibodies in PBS containing 0.1% BSA and 10% fetal calf serum, and incubated at $37^{\circ} \mathrm{C}$. for 1 hour. After washing, the cells are reacted with Fluorescein-labeled anti-human IgG antibody under the same conditions as the primary antibody staining. The samples can be analyzed by FACScan instrument using light and side scatter properties to gate on single cells. An alternative assay using fluorescence microscopy may be used (in addition to or instead of) the flow cytometry assay. Cells can be stained exactly as described above and examined by fluorescence microscopy. This method allows visualization of individual cells, but may have diminished sensitivity depending on the density of the antigen.

Anti-CTLA-4 human IgGs can be further tested for reactivity with CTLA-4 antigen by Western blotting. Briefly, cell extracts from cells expressing CTLA-4 can be prepared and subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis. After electrophoresis, the separated antigens are transferred to nitrocellulose membranes, blocked with 10% fetal calf serum, and probed with the monoclonal antibodies to be tested. Human IgG binding can be detected using anti-human IgG alkaline phosphatase and developed with BCIP/NBT substrate tablets (Sigma Chem. Co., St. Louis, Mo.).
Production of Transgenic Non-Human Animals that Generate Human Monoclonal Anti-CTLA-4 Antibodies

The present invention also provides transgenic nonhuman animals, e.g. a transgenic mice, which are capable of expressing human monoclonal antibodies that specifically bind to CTLA-4. High affinity human sequence antibodies are also provided. Some transgenic non-human animals, e.g., the transgenic mice, have a genome comprising a human heavy chain transgene and a light chain transgene. Some transgenic non-human animals are immunized with a purified or enriched preparation of CTLA-4 antigen and/or cells expressing CTLA-4. Some transgenic non-human animals are capable of producing multiple isotypes of human monoclonal antibodies to CTLA-4 (e.g., IgG, IgA and/or IgE) by undergoing V-D-J recombination and isotype switching. Isotype switching may occur by, e.g., classical or non-classical isotype switching.

The design of a transgenic non-human animal that responds to foreign antigen stimulation with a heterologous antibody repertoire, requires that the heterologous immunoglobulin transgenes contained within the transgenic animal function correctly throughout the pathway of B-cell development. In some mice, correct function of a heterologous heavy chain transgene includes isotype switching.

Accordingly, the transgenes of the invention are constructed so as to produce isotype switching and one or more of the following: (1) high level and cell-type specific expression, (2) functional gene rearrangement, (3) activation of and response to allelic exclusion, (4) expression of a sufficient primary repertoire, (5) signal transduction, (6) somatic hypermutation, and (7) domination of the transgene antibody locus during the immune response.
Not all of the foregoing criteria need be met. For example, in transgenic animal in which the endogenous immunoglobulin loci of the transgenic animals are functionally disrupted, the transgene need not activate allelic exclusion. Further, in transgenic animals in which the transgene comprises a functionally rearranged heavy and/or light chain 15 immunoglobulin gene, the second criteria of functional gene rearrangement is unnecessary, at least for that transgene which is already rearranged. For background on molecular immunology, See, e.g., Fundamental Immunology, 4th edition (1998), Paul, William E., ed. Lippencott-Raven Press, N.Y.

Some transgenic non-human animals used to generate the human monoclonal antibodies of the invention contain rearranged, unrearranged or a combination of rearranged and unrearranged heterologous immunoglobulin heavy and light chain transgenes in the germline of the transgenic animal. Each of the heavy chain transgenes comprises at least one CH gene. In addition, the heavy chain transgene can contain functional isotype switch sequences, which are capable of supporting isotype switching of a heterologous transgene encoding multiple CH genes in the B-cells of the transgenic animal. Such switch sequences can be those which occur naturally in the germline immunoglobulin locus from the species that serves as the source of the transgene CH genes, or such switch sequences can be derived from those which occur in the species that is to receive the transgene construct (the transgenic animal). For example, a human transgene construct that is used to produce a transgenic mouse may produce a higher frequency of isotype switching events if it incorporates switch sequences similar 40 to those that occur naturally in the mouse heavy chain locus, as presumably the mouse switch sequences are optimized to function with the mouse switch recombinase enzyme system, whereas the human switch sequences are not. Switch sequences can be isolated and cloned by conventional cloning methods, or can be synthesized de novo from overlapping synthetic oligonucleotides designed on the basis of published sequence information relating to immunoglobulin switch region sequences (Mills et al., Nucl. Acids Res. 15:7305-7316 (1991); Sideras et al., Intl. Immunol. 50 1:631-642 (1989).

For each of the foregoing transgenic animals, functionally rearranged heterologous heavy and light chain immunoglobulin transgenes are found in a significant fraction of the B-cells of the transgenic animal (at least 10 percent).
The transgenes used to generate the transgenic animals of the invention include a heavy chain transgene comprising DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and at least one constant region gene segment. The immunoglobu60 lin light chain transgene comprises DNA encoding at least one variable gene segment, one joining gene segment and at least one constant region gene segment. The gene segments encoding the light and heavy chain gene segments are beterologous to the transgenic non-human animal in that they are derived from, or correspond to, DNA encoding immunoglobulin heavy and light chain gene segments from a species not consisting of the transgenic non-human animal.

In one aspect of the invention, the transgene is constructed such that the individual gene segments are unrearranged, i.e., not rearranged so as to encode a functional immunoglobulin light or heavy chain. Such unrearranged transgenes support recombination of the V, D, and J gene segments (functional rearrangement) and preferably support incorporation of all or a portion of a D region gene segment in the resultant rearranged immunoglobulin heavy chain within the transgenic non-human animal when exposed to CTLA-4 antigen.

Such transgenes typically comprise a substantial portion of the C, D, and J segments as well as a subset of the V gene segments. In such transgene constructs, the various regulatory sequences, e.g. promoters, enhancers, class switch regions, splice-donor and splice-acceptor sequences for RNA processing, recombination signals and the like, comprise corresponding sequences derived from the heterologous DNA. Such regulatory sequences may be incorporated into the transgene from the same or a related species of the non-human animal used in the invention. For example, human immunoglobulin gene segments may be combined in a transgene with a rodent immunoglobulin enhancer sequence for use in a transgenic mouse. Alternatively, synthetic regulatory sequences may be incorporated into the transgene, wherein such synthetic regulatory sequences are not homologous to a functional DNA sequence that is known to occur naturally in the genomes of mammals. Synthetic regulatory sequences are designed according to consensus rules, such as, for example, those specifying the permissible sequences of a splice-acceptor site or a promoter/enhancer motif. The transgene may comprise a minilocus.
Some transgenic animals used to generate human antibodies to CTLA-4 contain at least one, typically 2-10, and sometimes $25-50$ or more copies of the transgene described in Example 37 of U.S. Pat. No. 5,770,429, or the transgene described in Example 2 below (e.g., HCo12), at least one copy of a light chain transgene described in Examples 38 of U.S. Pat. No. 5,770,429, two copies of the Cmu deletion described in Example 1 below, and two copies of the Jkappa deletion described in Example 9 of U.S. Pat. No. 5,770,429. The resultant animals are injected with antigens and used for production of human monoclonal antibodies against these antigens.

Some transgenic animals exhibit immunoglobulin production with a significant repertoire, ideally substantially similar to that of a native mouse. Thus, for example, animals in which the endogenous Ig genes have been inactivated, the total immunoglobulin levels range from about 0.1 to about $10 \mathrm{mg} / \mathrm{ml}$ of serum.

The immunoglobulins expressed by the transgenic mice typically recognize about one-half or more of highly antigenic proteins, e.g., staphylococcusprotein A. Typically, the immunoglobulins exhibit an association constant for preselected antigens of at least about $10^{7} \mathrm{M}^{-1}, 10^{9} \mathrm{M}^{-1}, 10^{9} \mathrm{M}^{-1}$, $10^{10} \mathrm{M}^{-1}, 10^{11} \mathrm{M}^{-1}, 10^{12} \mathrm{M}^{-1}, 10^{13} \mathrm{M}^{-1}$, or greater.
The transgenic mice of the present invention can be immunized with a purified or enriched preparation of human CTLA-4 antigen (or antigenic fragment thereof) and/or cells expressing human CTLA-4 as described previously. The mice produce B cells that undergo class-switching via intratransgene switch recombination (cis-switching) and express immunoglobulins reactive with CTLA-4. The immunoglobulins can be human sequence antibodies, wherein the heavy and light chain polypeptides are encoded by human transgene sequences, which may include sequences derived by somatic mutation and V region recombinatorial joints, as well as germline-encoded sequences;
these human sequence immunoglobulins can be referred to as being substantially identical to a polypeptide sequence encoded by a human VL or VH gene segment and a human JL or JH segment, even though other non-germline sequences may be present as a result of somatic mutation and differential V-J and V-D-J recombination joints. With respect to such human sequence antibodies, the variable regions of each chain are typically at least 80 percent encoded by human germ line V, J, and, in the case of heavy 10 chains, D, gene segments; frequently at least 85 percent of the variable regions are encoded by human germline sequences present on the transgene; often 90 or 95 percent or more of the variable region sequences are encoded by human germline sequences present on the transgene. 15 However, since non-germline sequences are introduced by somatic mutation and VJ and VDJ joining, the human sequence antibodies frequently have some variable region sequences (and less frequently constant region sequences) which are not encoded by human V, D, or J gene segments as found in the human transgene(s) in the germline of the mice. Typically, such non-germline sequences (or individual nucleotide positions) cluster in or near CDRs, or in regions where somatic mutations are known to cluster. The human sequence antibodies which bind to the predetermined anti25 gen can result from isotype switching, such that human antibodies comprising a human sequence γ chain (such as $\gamma 1$, $\gamma 2, \gamma 3$, or γ^{4}) and a human sequence light chain (such as kappa or lambda) are produced. Such isotype-switched human sequence antibodies often contain one or more 30 somatic mutation(s), typically in the variable region and often in or within about 10 residues of a CDR) as a result of affinity maturation and selection of B cells by antigen, particularly subsequent to secondary (or subsequent) antigen challenge. Some high affinity human sequence antibodies have equilibrium association constants of at least about $1 \times 10^{7} \mathrm{M}^{-1}$, or at least about $1 \times 10^{8} \mathrm{M}^{-1}$, or more than about $1 \times 10^{9} \mathrm{M}^{-1}$, or $5 \times 10^{9} \mathrm{M}^{-1}$ to $1 \times 10^{11} \mathrm{M}^{-1}$ or greater.
Another aspect of the invention pertains to the B cells from such mice which can be used to generate hybridomas 40 expressing human monoclonal antibodies which bind with high affinity (e.g., having association constant of greater than $10^{7} \mathrm{M}^{-1}$) to CTLA-4. These hybridomas are used to generate a composition comprising an immunoglobulin having an association constant (Ka) of at least $10^{7} \mathrm{M}^{-1}$ for 45 binding CTLA-4. Such immunoglobulin contains a human sequence light chain composed of a light chain variable region having a polypeptide sequence which is substantially identical to a polypeptide sequence encoded by a human Vk or $\mathrm{V} \lambda$ gene segment and a human Jk or $\mathrm{J} \lambda$ segment, and a light chain constant region having a polypeptide sequence which is substantially identical to a polypeptide sequence encoded by a buman Ck or $C \lambda$ gene segment. It also contains a human sequence heavy chain composed of a heavy chain variable region having a polypeptide sequence which is 55 substantially identical to a polypeptide sequence encoded by a human VH gene segment, optionally a D region, and a human JH segment, and a constant region having a polypeptide sequence which is substantially identical to a polypeptide sequence encoded by a human CH gene segment.
The invention also provides buman monoclonal antibodies and human sequence antibodies to human CTLA-4 derivatized or linked to another functional molecule, e.g., another peptide or protein (e.g., a cytokine, a cytotoxic agent, an immune stimulatory or inhibitory agent, a Fab' 65 fragment, and the like, as discussed above) to generate a bispecific or multispecific molecule which binds to multiple binding sites or target epitopes. For example, an antibody or
antigen-binding portion of the invention can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other binding molecules, such as another antibody, antibody fragment, peptide or binding mimetic.
Accordingly, the present invention includes bispecific and multispecific composition comprising at least one human sequence antibody or antigen binding fragment with a first binding specificity for human CTLA-4 and a second binding specificity for a second target epitope. The second target epitope can be an Fc receptor, e.g., human FcyRI or a human Fcy receptor. Therefore, the invention includes bispecific and multispecific molecules capable of binding both to FcyRI, FcyR or $\mathrm{Fc} \in \mathrm{R}$ expressing effector cells (e.g., monocytes, macrophages or polymorphonuclear cells (PMNs)), and to target cells expressing human CTLA-4. These multi-specific (e.g., bispecific or multispecific) molecules target human CTLA-4 expressing cells to effector cells, and trigger Fc receptor-mediated effector cell activities, such as phagocytosis of a human CTLA-4expressing cells, antibody dependent cell-mediated cytotoxicity (ADCC), cytokine release, or generation of superoxide anion.

The bispecific and multispecific molecules of the invention can comprise a binding specificity at least one antibody, 2 or an antibody fragment thereof, including, e.g., an Fab, Fab', F(ab')2, Fv, or a single chain Fv. The antibody may also be a light chain or heavy chain dimer, or any minimal fragment thereof such as a Fv or a single chain construct as described in, e.g, Ladner et al. U.S. Pat. No. 4,946,778. Bispecific and multispecific molecules of the invention can comprise a binding specificity for an FcyR or an FcyR present on the surface of an effector cell, and a second binding specificity for a target cell antigen, e.g., human CTLA-4.

The binding specificity for an Fc receptor is provided by a monoclonal antibody, the binding of which is not blocked by human immunoglobulin $G(\lg G)$. As used herein, the term "IgG receptor" refers to any of the eight y-chain genes located on chromosome 1. These genes encode a total of twelve transmembrane or soluble receptor isoforms which are grouped into three Fcy receptor classes: FcyRI (CD64), FcyRII (CD32), and FçRIII (CD16). For example, the Fc γ receptor can be a human high affinity FcyRI. The human Fc γ RI is a 72 kDa molecule, which shows high affinity for monomeric $\operatorname{IgG}\left(10^{8}\right.$ to $\left.10^{9} \mathrm{M}^{-1}\right)$.
The production and characterization of these preferred monoclonal antibodies are described by Fanger et al. in PCT application WO 88/00052 and in U.S. Pat. No. 4,954,617. These antibodies bind to an epitope of FcүRI, FcyRII or FcyRIII at a site which is distinct from the Fcy binding site of the receptor and, thus, their binding is not blocked substantially by physiological levels of IgG. Specific antiFcyRI antibodies useful in this invention are MAb 22, MAb 32, MAb 44, MAb 62 and MAb 197. The hybridoma producing MAb 32 is available from the American Type Culture Collection, ATCC Accession No. HB9469. AntiFcyRI MAb 22, $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ fragments of MAb 22, and can be obtained from Medarex, Inc. (Annandale, N.J.). In other embodiments, the anti- $\mathrm{Fc} \gamma$ receptor antibody is a humanized form of monoclonal antibody 22 (H22). The production and characterization of the H 22 antibody is described in Graziano (1995) J. Immunol 155:4996-5002 and PCT/US93/ 10384. The H22 antibody producing cell line was deposited at the American Type Culture Collection on Nov. 4, 1992 under the designation HA022CL1 and has the accession no. CRL 11177.

The binding specificity for an Fc receptor can also be provided by an antibody that binds to a human IgA receptor, e.g., an Fc-alpha receptor (FcaRI (CD89)). Preferably, the antibody binds to a human $\operatorname{Ig} A$ receptor at a site that is not blocked by endogenous IgA. The term "IgA receptor" is intended to include the gene product of one α-gene ($\mathrm{Fc} \alpha \mathrm{RI}$) located on chromosome 19. This gene is known to encode several alternatively spliced transmembrane isoforms of 55 to 110 kDa . FcaRI (CD89) is constitutively expressed on monocytes/macrophages, eosinophilic and neutrophilic granulocytes, but not on non-effector cell populations. FcaRI has medium affinity ($m \times 10^{7} \mathrm{M}^{-1}$) for both IgA1 and $\operatorname{IgA} 2$, which is increased upon exposure to cytokines such as G-CSF or GM-CSF (Morton (1996) Critical Reviews in Immunology 16:423-440). Four FcaRI-specific monoclonal antibodies, identified as A3, A59, A62 and A77, which bind FcaRI outside the IgA ligand binding domain, have been described by, e.g, Monteiro (1992) J. Immunol. 148:1764. Bispecific and multispecific molecules of the invention can further comprise a binding specificity which recognizes, e.g., binds to, a target cell antigen, e.g. human CTLA-4. The binding specificity is provided by a human sequence antibody or a human monoclonal antibody of the present invention.
An "effector cell specific antibody" as used herein refers to an antibody or functional antibody fragment that binds the Fc receptor of effector cells. Preferred antibodies for use in the subject invention bind the Fc receptor of effector cells at a site which is not bound by endogenous immunoglobulin. As used herein, the term "effector cell" refers to an immune cell which is involved in the effector phase of an immune response, as opposed to the cognitive and activation phases of an immune response. Exemplary immune cells include a cell of a myeloid or lymphoid origin, e.g., lym35 phocytes (e.g., B cells and T cells including cytolytic T cells (CTLs)), killer cells, natural killer cells, macrophages, monocytes, eosinophils, neutrophils, polymorphonuclear cells, granulocytes, mast cells, and basophils. Effector cells express specific Fc receptors and carry out specific immune 40 functions. An effector cell can induce antibody-dependent cell-mediated cytotoxicity (ADCC), e.g., a neutrophil capable of inducing $A D C C$. For example, monocytes, macrophages, neutrophils, eosinophils, and lymphocytes which express FcaR are involved in specific killing of target 45 cells and presenting antigens to other components of the immune system, or binding to cells that present antigens. An effector cell can also phagocytose a target antigen, target cell, or microorganism.

The expression of a particular FcR on an effector cell can 50 be regulated by humoral factors such as cytokines. For example, expression of FcyRI has been found to be up-regulated by interferon gamma (IFN- γ). This enhanced expression increases cytotoxic activity (including, e.g., phagocytosis) by FcyRI-bearing cells against target cells.
"Target cell" shall mean any undesirable cell in a subject (e.g., a human or animal) that can be targeted by a composition (e.g., a human sequence antibody or a human monoclonal antibody of the invention, a bispecific or a multispecific molecule of the invention). The target cell can be a cell 60 expressing or overexpressing human CTLA-4. Cells expressing human CTLA-4 can include tumor cells, e.g. lymphomas.
In addition to human sequence antibodies and human monoclonal antibodies of the invention, other antibodies can 65 be also be employed in the bispecific or multispecific molecules of the invention, including, e.g., murine, chimeric and humanized monoclonal antibodies.

Chimeric mouse-human monoclonal antibodies (i.e., chimeric antibodies) can be produced by recombinant DNA techniques known in the art. For example, a gene encoding the Fc constant region of a murine (or other species) monoclonal antibody molecule is digested with restriction enzymes to remove the region encoding the murine Fc , and the equivalent portion of a gene encoding a human Fc constant region is substituted. (See, e.g., Robinson et al., International Patent Publication PCT/US86/02269; Akira, et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al., European Patent Application 173,494; Neuberger et al., International Application WO 86/01533; Cabilly et al. U.S. Pat. No. 4,816,567; Cabilly et al., European Patent Application 125, 023; Better (1988) Science 240:1041-1043; Liu (1987) PNAS 84:3439-3443; Liu (1987) J. Immunol. 139:3521-3526; Sun (1987) PNAS 84:214-218; Nishimura (1987) Canc. Res. 47:999-1005; Wood (1985) Nature 314:446-449; Shaw (1988) J. Natl. Cancer Inst. 80:1553-1559)
The chimeric antibody can be further humanized by replacing sequences of the Fv variable region which are not directly involved in antigen binding with equivalent sequences from human Fv variable regions. General reviews of humanized chimeric antibodies are provided by Morrison (1985) Science 229:1202-1207 and by Oi (1986) BioTechniques 4:214. Those methods include isolating, manipulating, and expressing the nucleic acid sequences that encode all or part of immunoglobulin Fv variable regions from at least one of a heavy or light chain. Sources of such nucleic acid are well known to those skilled in the art and, for example, may be obtained from 7E3, an anti-GPII ${ }_{b} \mathrm{III}_{a}$ antibody producing hybridoma. The recombinant DNA encoding the chimeric antibody, or fragment thereof, can then be cloned into an appropriate expression vector. Suitable humanized antibodies can alternatively be produced by 35 CDR substitution U.S. Pat. No. 5,225,539; Jones (1986) Nature 321:552-525; Verboeyan et al. 1988 Science 239:1534; and Beidler (1988) J. Immunol. 141:4053-4060.

All of the CDRs of a particular human antibody may be replaced with at least a portion of a non-human CDR or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to the Fc receptor. An antibody can be humanized by any method, which is capable of replacing at least a portion of a CDR of a human antibody with a CDR derived from a non-human antibody. Winter describes a method which may be used to prepare the humanized antibodies of the present invention, see UK Patent Application GB 2188638A, filed on Mar. 26, 1987. The buman CDRs may be replaced with non-human CDRs using oligonucleotide site-directed mutagenesis as described in, e.g., WO 94/10332 entitled, Humanized Antibodies to Fc Receptors for Immunoglobulin G on Human Mononuclear Phagocytes.

Chimeric and humanized antibodies in which specific amino acids have been substituted, deleted or added are also within the scope of the invention. For example, humanized antibodies can have amino acid substitutions in the framework region, such as to improve binding to the antigen. In a humanized antibody having mouse CDRs, amino acids located in the buman framework region can be replaced with the amino acids located at the corresponding positions in the mouse antibody. Such substitutions are known to improve binding of humanized antibodies to the antigen in some instances. Antibodies in which amino acids have been added, deleted, or substituted are referred to herein as modified antibodies or altered antibodies.

Bispecific and multispecific molecules of the invention can further include a third binding specificity, in addition to an anti-Fc binding specificity and an anti-human CTLA-4 binding specificity. The third binding specificity can be an anti-enhancement factor (EF) portion, e.g., a molecule which binds to a surface protein involved in cytotoxic activity and thereby increases the immune response against the target cell. The "anti-enhancement factor portion" can be an antibody, functional antibody fragment or a ligand that binds to a given molecule, e.g., an antigen or a receptor, and thereby results in an enhancement of the effect of the binding determinants for the Fc receptor or target cell antigen. The "anti-enhancement factor portion" can bind an Fc receptor or a target cell antigen. Alternatively, the anti-enhancement factor portion can bind to an entity that is different from the entity to which the first and second binding specificities bind. For example, the anti-enhancement factor portion can bind a cytotoxic T-cell via, e.g., CD2, CD3, CD8, CD28, CD4, CD40, ICAM-1 or other immune cell molecules that are involved in an increased immune response against the target cell.

Bispecific and multispecific molecules of the present invention can be made using chemical techniques (see, e.g., Kranz (1981) Proc. Natl. Acad. Sci. USA 78:5807), "polydoma" techniques (see, e.g., U.S. Pat. No. $4,474,893$), or recombinant DNA techniques. Bispecific and multispecific molecules of the present invention can also be prepared by conjugating the constituent binding specificities, e.g., the anti-FcR and anti-human CTLA-4 binding specificities, using methods known in the art and as described herein. For example, each binding specificity of the bispecific and multispecific molecule can be generated separately and then conjugated to one another. When the binding specificities are proteins or peptides, a variety of coupling or cross-linking agents can be used for covalent conjugation. Examples of cross-linking agents include protein A , carbodiimide, N-succinimidyl-S-acetyl-thioacetate (SATA), N -succinimidyl-3-(2-pyridyldithio)propionate (SPDP), and sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohaxane-1carboxylate (sulfo-SMCC) (see, e.g., Karpovsky (1984) J. Exp. Med. 160:1686; Liu (1985) Proc. Natl. Acad. Sci. USA 82:8648). Other methods include those described by Paulus (Behring Ins. Mitt. (1985) No. 78, 118-132; Brennan (1985) Science 229:81-83), Glennie (1987) J. Immunol. 139: 2367-2375). Other conjugating agents are SATA and sulfoSMCC, both available from Pierce Chemical Co. (Rockford, III.).

When the binding specificities are antibodies (e.g., two humanized antibodies), they can be conjugated via sulfhydryl bonding of the C -terminus hinge regions of the two heavy chains. The hinge region can be modified to contain an odd number of sulfhydryl residues, e.g., one, prior to conjugation.
Alternatively, both binding specificities can be encoded in the same vector and expressed and assembled in the same host cell. This method is particularly useful where the bispecific and multispecific molecule is a MAb×MAb, MAb $\times F a b$, $F a b \times F\left(a b^{\prime}\right)_{2}$ or ligand $\times F a b$ fusion protein. A bispecific and multispecific molecule of the invention, e.g., a bispecific molecule can be a single chain molecule, such as a single chain bispecific antibody, a single chain bispecific molecule comprising one single chain antibody and a binding determinant, or a single chain bispecific molecule comprising two binding determinants. Bispecific and multispecific molecules can also be single chain molecules or may comprise at least two single chain molecules. Methods for preparing bi- and multispecific molecules are described for
example in U.S. Pat. No. 5,260,203; U.S. Pat. No. 5,455, 030; U.S. Pat. No. 4,881,175; U.S. Pat. No. 5,132,405; U.S. Pat. No. $5,091,513$; U.S. Pat. No. $5,476,786 ;$ U.S. Pat. No. $5,013,653$; U.S. Pat. No. $5,258,498$; and U.S. Pat. No. 5,482,858.

Binding of the bispecific and multispecific molecules to their specific targets can be confirmed by enzyme-linked immunosorbent assay (ELISA), a radioimmunoassay (RIA), or a Western Blot Assay. Each of these assays generally detects the presence of protein-antibody complexes of particular interest by employing a labeled reagent (e.g., an antibody) specific for the complex of interest. For example, the FcR-antibody complexes can be detected using e.g., an enzyme-linked antibody or antibody fragment which recognizes and specifically binds to the antibody-FcR complexes. Alternatively, the complexes can be detected using any of a variety of other immunoassays. For example, the antibody can be radioactively labeled and used in a radioimmunoassay (RIA) (see, for example, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is incorporated by reference herein). The radioactive isotope can be detected by such means as the use of a y counter or a scintillation counter or by autoradiography.

Also included in the invention are modified antibodies. The term "modified antibody" includes antibodies, such as monoclonal antibodies, chimeric antibodies, and humanized antibodies which have been modified by, e.g., deleting, adding, or substituting portions of the antibody. For example, an antibody can be modified by deleting the constant region and replacing it with a constant region meant to increase half-life, e.g., serum half-life, stability or affinity of the antibody
The antibody conjugates of the invention can be used to modify a given biological response or create a biological response (e.g., to recruit effector cells). The drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon-alpha; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.
Techniques for conjugating such therapeutic moiety to antibodies are well known, see, e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review', in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", 6 Immunol. Rev., 62:119-58 (1982).
Pharmaceutical Compositions

The invention provides pharmaceutical compositions comprising one or a combination of human monoclonal antibodies and/or human sequence antibodies (intact or binding fragments) formulated together with a pharmaceutically acceptable carrier. Some compositions include a combination of multiple (e.g., two or more) isolated human antibodies and/or human sequence antibody or antigenbinding portions thereof of the invention. In some compositions, each of the antibodies or antigen-binding portions thereof of the composition is a monoclonal antibody or a human sequence antibody that binds to a distinct, pre-selected epitope of human CTLA-4.
A. Effective Dosages

Dosage regimens are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.

Examples of pharmaceutically-acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.

Regardless of the route of administration selected, the compounds of the present invention, which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.
Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention can be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient. The selected dosage level depends upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors.
A physician or veterinarian can start doses of the compounds of the invention employed in the pharmaceutical composition at levels lower than that required to achieve the
desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. In general, a suitable daily dose of a compositions of the invention is that amount of the compound which is the lowest dose effective to produce a therapeutic effect. Such an effective dose generally depends upon the factors described above. It is preferred that administration be intravenous, intramuscular, intraperitoneal, or subcutaneous, or administered proximal to the site of the target. If desired, the effective daily dose of a therapeutic compositions can be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms. While it is possible for a compound of the present invention to be administered alone, it is preferable to administer the compound as a pharmaceutical formulation (composition).

Effective doses of the compositions of the present invention, for the treatment of immune-related conditions and diseases described herein vary depending upon many different factors, including means of administration, target site, physiological state of the patient, whether the patient is human or an animal, other medications administered, and whether treatment is prophylactic or therapeutic. Treatment dosages need to be titrated to optimize safety and efficacy.

For administration with an antibody, the dosage ranges from about 0.0001 to $100 \mathrm{mg} / \mathrm{kg}$, and more usually 0.01 to $5 \mathrm{mg} / \mathrm{kg}$, of the host body weight. For example dosages can be $1 \mathrm{mg} / \mathrm{kg}$ body weight or $10 \mathrm{mg} / \mathrm{kg}$ body weight or within the range of $1-10 \mathrm{mg} / \mathrm{kg}$. An exemplary treatment regime entails administration once per every two weeks or once a month or once every 3 to 6 months. In some methods, two or more monoclonal antibodies with different binding specificities are administered simultaneously, in which case the dosage of each antibody administered falls within the ranges indicated. Antibody is usually administered on multiple occasions. Intervals between single dosages can be weekly, monthly or yearly. Intervals can also be irregular as indicated by measuring blood levels of antibody to CTLA-4 in the patient. In some methods, dosage is adjusted to achieve a plasma antibody concentration of $1-1000 \mu \mathrm{~g} / \mathrm{ml}$ and in some methods $25-300 \mu \mathrm{~g} / \mathrm{ml}$. Alternatively, antibody can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the antibody in the patient. In generals human antibodies show the longest half life, followed by humanized antibodies, chimeric antibodies, and nonhuman antibodies. The dosage and frequency of administration can vary depending on whether the treatment is prophylactic or therapeutic. In prophylactic applications, a relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated, and preferably until the patient shows partial or complete amelioration of symptoms of disease. Thereafter, the patent can be administered a prophylactic regime.

Doses for nucleic acids encoding immunogens range from about 10 ng to $1 \mathrm{~g}, 100 \mathrm{ng}$ to $100 \mathrm{mg}, 1 \mu \mathrm{~g}$ to 10 mg , or 30-300 $\mu \mathrm{g}$ DNA per patient. Doses for infectious viral vectors vary from $10-100$, or more, virions per dose.
Some human sequence antibodies and human monoclonal antibodies of the invention can be formulated to ensure proper distribution in vivo. For example, the blood-brain barrier (BBB) excludes many highly hydrophilic compounds. To ensure that the therapeutic compounds of the

When the active compound is suitably protected, as described above, the compound may be orally administered, for example, with an inert diluent or an assimilable edible carrier.
B. Routes of Administration

Pharmaceutical compositions of the invention also can be administered in combination therapy, i.e., combined with other agents. For example, in treatment of cancer, the combination therapy can include a composition of the present invention with at least one anti-tumor agent or other conventional therapy, such as radiation treatment.
Pharmaceutically acceptable carriers includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. The carrier can be suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion). Depending on the route of administration, the active compound, i.e., antibody, bispecific and multispecific molecule, may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.
A "pharmaceutically acceptable salt" refers to a salt that retains the desired biological activity of the parent compound and does not impart any undesired toxicological effects (See, e.g., Berge, S. M., et al. (1977) J. Pharm. Sci. 66:1-19).
Examples of such salts include acid addition salts and base addition salts. Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like, as well as from nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like. Base addition salts include those derived from alkaline earth metals, such as sodium, potassium, magnesium, calcium and the like, as well as from nontoxic organic amines, such as N, N '-dibenzylethylenediamine, N -methylglucamine, chloroprocaine, choline, diethanolamine, ethylenediamine, procaine and the like.
A composition of the present invention can be administered by a variety of methods known in the art. The route and/or mode of administration vary depending upon the desired results. The active compounds can be prepared with carriers that protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are described by e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978. Pharmaceutical compositions are preferably manufactured under GMP conditions.
To administer a compound of the invention by certain routes of administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation. For example, the compound may be administered to a subject in an appropriate carrier, for example, liposomes, or a diluent. Pharmaceutically acceptable diluents include saline and aqueous buffer solutions. Liposomes include water-in-oil-in-water CGF emulsions as well as conventional liposomes (Strejan et al. (1984) J. Neuroimmunol. 7:27).

Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the
amount of active ingredient which can be combined with a carrier material to produce a single dosage form vary depending upon the subject being treated, and the particular mode of administration. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form generally be that amount of the composition which produces a therapeutic effect. Generally, out of one hundred percent, this amount range from about 0.01 percent to about ninety-nine percent of active ingredient, from about 0.1 percent to about 70 percent, or from about 1 percent to about 30 percent.

Formulations of the present invention which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate. Dosage forms for the topical or transdermal administration of compositions of this invention include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required.

The phrases "parenteral administration" and "administered parenterally" mean modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion.

Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
When the compounds of the present invention are administered as pharmaceuticals, to humans and animals, they can be given alone or as a pharmaceutical composition containing, for example, 0.01 to 99.5% (or 0.1 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.

The pharmaceutical compositions are generally formulated as sterile, substantially isotonic and in full compliance with all Good Manufacturing Practice (GMP) regulations of the U.S. Food and Drug Administration.

Methods and uses of the Invention
A. Methods

The compositions (e.g., human sequence antibodies and human monoclonal antibodies to human CTLA-4 and
55

60
B. Uses

1. Activating Immune Responses
a. Cancer

Some therapeutic methods treat patients with cancer. Blockade of CTLA-4 by antibodies can enhance the immune response to cancerous cells in the patient. Optionally, antibodies to CTLA-4 can be combined with an immunogenic agent, such as cancerous cells, purified tumor antigens (including recombinant proteins, peptides, and carbohydrate molecules), cells, and cells transfected with genes encoding immune stimulating cytokines and cell surface antigens such as B7 (see, e.g., Hurwitz, A. et al (1998) Proc. Natl. Acad. Sci U.S.A. 95, 10067-10071).

In murine experimental systems, implantation of some tumors followed by the administration of anti-CTLA-4 antibodies can result in the rejection of tumors. In some cases tumor rejection of established tumors occurs; in other cases the growth of the tumor is slowed by the use of anti-CTLA-4 antibodies. In general CTLA-4 blockade is effective against immunogenic tumors. Operationally this is defined as those tumors for which vaccination using the tumor itself can lead to immunity to tumor challenge. In humans, some tumors have been shown to be immunogenic such as melanomas. It is anticipated that by raising the threshold of T cell activation by CTLA-4 blockade, we may expect to activate tumor responses in the host.

CTLA-4 blockade is most effective when combined with a vaccination protocol. Many experimental strategies for vaccination against tumors have been devised (see Rosenberg, S., 2000, Development of Cancer Vaccines, ASCO Educational Book Spring: 60-62; Logothetis, C., 2000, ASCO Educational Book Spring: 300-302; Khayat, D. 2000, ASCO Educational Book Spring: 414-428; Foon, K. 2000, ASCO Educational Book Spring: 730-738; see also Restifo, N. and Sznol, M., Cancer Vaccines, Ch. 61, pp. 3023-3043 in DeVita, V. et al. (eds.), 1997, Cancer: Principles and Practice of Oncology, Fifth Edition). In one of these strategies, a vaccine is prepared using autologous or allogeneic tumor cells. These cellular vaccines have been shown to be most effective when the tumor cells are transduced to express GM-CSF. GM-CSF has been shown to be a potent activator of antigen presentation for tumor vaccination (Dranoff et al. (1993) Proc. Natl. Acad. Sci U.S.A. 90 (80: 3539-43).

Anti-CTLA-4 blockade together with the use of GMCSFmodified tumor cell vaccines has been shown to be effective in a number of experimental tumor models such as mammary carcinoma (Hurwitz et al. (1998) supra), primary prostate cancer (Hurwitz A. et al. (2000) Cancer Research 60 (9): 2444-8) and melanoma (van Elsas, A et al. (1999) J. Exp. Med. 190: 355-66). In these instances, nonimmunogenic tumors, such as the B16 melanoma, have been rendered susceptible to destruction by the immune system. The tumor cell vaccine may also be modified to express other immune activators such as IL2, and costimulatory molecules, among others.
The study of gene expression and large scale gene expression patterns in various tumors has led to the definition of so called tumor specific antigens (Rosenberg, SA (1999) Immunity 10: 281-7). In many cases, these tumor specific antigens are differentiation antigens expressed in the tumors and in the cell from which the tumor arose, for example melanocyte antigens gp 100, MAGE antigens, Trp-2. More importantly, many of these antigens can be shown to be the targets of tumor specific T cells found in the host. CTLA-4 blockade may be used in conjunction with a collection of recombinant proteins and/or peptides expressed in a tumor in order to
generate an immune response to these proteins. These proteins are normally viewed by the immune system as self antigens and are therefore tolerant to them. The tumor antigen may also include the protein telomerase, which is required for the synthesis of telomeres of chromosomes and which is expressed in more than 85% of human cancers and in only a limited number of somatic tissues (Kim, N et al. (1994) Science 266, 2011-2013). (These somatic tissues may be protected from immune attack by various means). Tumor antigen may also be "neo-antigens" expressed in cancer cells because of somatic mutations that alter protein sequence or create fusion proteins between two unrelated sequences (ie. ber-ab1 in the Philadelphia chromosome), or idiotype from B cell tumors. Other tumor vaccines may include the proteins from viruses implicated in human cancers such a Human Papilloma Viruses (HPV), Hepatitis Viruses (HBV and HCV) and Kaposi's Herpes Sarcoma Virus (KHSV). Another form of tumor specific antigen which may be used in conjunction with CTLA-4 blockade is purified heat shock proteins (HSP) isolated from the tumor tissue itself. These heat shock proteins contain fragments of proteins from the tumor cells and these HSPs are highly efficient at delivery to antigen presenting cells for eliciting tumor immunity (Suot, R \& Srivastava, P (1995) Science 269: 1585-1588; Tamura, Y. et al. (1997) Science 278: 117-120.

Dendritic cells (DC) are potent antigen presenting cells that can be used to prime antigen-specific responses. DC's can be produced ex vivo and loaded with various protein and peptide antigens as well as tumor cell extracts (Nestle, F. et al. (1998) Nature Medicine 4: 328-332). DCs may also be transduced by genetic means to express these tumor antigens as well. DCs have also been fused directly to tumor cells for the purposes of immunization (Kugler, A. et al. (2000) Nature Medicine 6:332-336). As a method of vaccination, DC immunization may be effectively combined with CTLA-4 blockade to activate more potent anti-tumor responses.

CTLA-4 blockade may also be combined with standard cancer treatments. CTLA-4 blockade may be effectively combined with chemotherapeutic regimes. In these instances, it may be possible to reduce the dose of chemotherapeutic reagent administered (Mokyr, M. et al. (1998) Cancer Research 58: 5301-5304). The scientific rationale behind the combined use of CTLA-4 blockade and chemotherapy is that cell death, that is a consequence of the cytotoxic action of most chemotherapeutic compounds, should result in increased levels of tumor antigen in the antigen presentation pathway. Other combination therapies that may result in synergy with CTLA-4 blockade through cell death are radiation, surgery, and hormone deprivation (Kwon, E. et al. (1999) Proc. Nail. Acad. Sci U.SA. 96 (26): 15074-9. Each of these protocols creates a source of tumor antigen in the host. Angiogenesis inhibitors may also be combined with CTLA-4 blockade. Inhibition of angiogenesis leads to tumor cell death which may feed tumor antigen into host antigen presentation pathways.

CTLA-4 blocking antibodies can also be used in combination with bispecific antibodies that target Fc alpha or Fc gamma receptor-expressing effectors cells to tumor cells (see, e.g., U.S. Pat. Nos. 5,922,845 and 5,837,243). Bispecific antibodies can be used to target two separate antigens. For example anti-Fc receptor/anti tumor antigen (i.e., Her$2 / \mathrm{neu}$) bispecific antibodies have been used to target macrophages to sites of tumor. This targeting may more effectively activate tumor specific responses. The T cell arm of these responses would by augmented by the use of CTLA-4
blockade. Alternatively, antigen may be delivered directly to DCs by the use of bispecific antibodies which bind to tumor antigen and a dendritic cell specific cell surface marker.
Tumors evade host immune surveillance by a large variety of mechanisms. Many of these mechanisms may be overcome by the inactivation of proteins which are expressed by the tumors and which are immunosuppressive. These include among others Tgf β (Kehrl, J. et al. (1986) J. Exp. Med. 163: 1037-1050), IL-10 (Howard, M. \& O'Garra, A. (1992) Immunology Today 13: 198-200), and Fas ligand (Hahne, M. et al. (1996) Science 274: 1363-1365). Antibodies to each of these entities may be used in combination with anti-CTLA-4 to counteract the effects of the immunosuppressive agent and favor tumor immune responses by the host.
Other antibodies which may be used to activate host immune responsiveness can be used in combination with anti-CTLA-4. These include molecules on the surface of dendritic cells which activate DC function and antigen presentation. Anti-CD40 antibodies are able to substitute effectively for T cell helper activity (Ridge, J. et al. (1998) Nature 393: 474-478). and can be used in conjuction with CTLA-4 antibodies (Ito, N. et al. (2000) Immunobiology 201 (5) 52740). Activating antibodies to T cell costimulatory molecules such as OX-40 (Weinberg, A. et al. (2000) J Immunol 164: 2160-2169), 4-1BB (Melero, I. et al. (1997) Nature Medicine 3: 682-685 (1997), and ICOS (Hutloff, A. et al. (1999) Nature 397: 262-266) may also provide for increased levels of T cell activation.

Bone marrow transplantation is currently being used to treat a variety of tumors of hematopoietic origin. While graft versus host disease is a consequence of this treatment, therapeutic benefit may be obtained from graft vs. tumor responses. CTLA-4 blockade can be used to increase the effectiveness of the donor engrafted tumor specific T cells (Blazar, B. et al., (1999) J Immunol 162: 6368-6377).
There are also several experimental treatment protocols that involve ex vivo activation and expansion of antigen specific T cells and adoptive transfer of these cells into recipients in order to antigen-specific \mathbf{T} cells against tumor (Greenberg, R. \& Riddell, S. (1999) 285: 546-51). These methods may also be used to activate T cell responses to infectious agents such as CMV (see below). Ex vivo activation in the presence of anti-CTLA-4 antibodies may be expected to increase the frequency and activity of the adoptively transferred T cells.
b. Infectious Diseases

Other methods of the invention are used to treat patients that have been exposed to particular toxins or pathogens. Similar to its application to tumors as discussed above, antibody mediated CTLA-4 blockade can be used alone, or as an adjuvant, in combination with vaccines, to stimulate the immune response to pathogens, toxins, and self-antigens. CTLA-4 blockade has been shown to be effective in the acute phase of infections of Nippostrongylus brasiliensis (McCoy, K. et al. (1997) 186(2); 183-187) and Leishmania donovani (Murphy, M. et al. (1998) J. Immunol. 161:4153-4160). Examples of pathogens for which this therapeutic approach may be particularly useful, include pathogens for which there is currently no effective vaccine, or pathogens for which conventional vaccines are less than completely effective. These include, but are not limited to HIV, Hepatitis (A, B, \& C), Influenza, Herpes, Giardia, Malaria, Leishmania, Staphylococcus Aureus, Pseudomonas aeruginosa. CTLA-4 blockade is particularly useful against established infections by agents such as HIV that present altered antigens over the course of the infections. These
novel epitopes are recognized as foreign at the time of anti-human CTLA-4 administration, thus provoking a strong T cell response that is not dampened by negative signals through CTLA-4.

Some examples of pathogenic viruses causing infections treatable by methods of the invention include hepatitis (A, B, or C), herpes virus (e.g., VZV, HSV-1, HAV-6, HSV-II, and CMV, Epstein Barr virus), adenovirus, influenza virus, flaviviruses, echovirus, rhinovirus, coxsackie virus, cornovirus, respiratory syncytial virus, mumps virus, rotavirus, measles virus, rubella virus, parvovirus, vaccinia virus, HTLV virus, dengue virus, papillomavirus, molluscum virus, poliovirus, rabies virus, JC virus and arboviral encephalitis virus.
Some examples of pathogenic bacteria causing infections treatable by methods of the invention include chlamydia, rickettsial bacteria, mycobacteria, staphylococci, streptococci, pneumonococci, meningococci and conococci, klebsiella, proteus, serratia, pseudomonas, legionella, diphtheria, salmonella, bacilli, cholera, tetanus, botulism, anthrax, plague, leptospirosis, and Lymes disease bacteria.

Some examples of pathogenic fungi causing infections treatable by methods of the invention include Candida (albicans, krusei, glabrata, tropicalis, etc.), Cryptococcus neoformans, Aspergillus (funigatus, niger, etc.), Genus Mucorales (Mucor, Absidia, Rhizophus), Sporothrix schenkii, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Coccidioides immitis and Histoplasma capsulatum.
Some examples of pathogenic parasites causing infections treatable by methods of the invention include Entamoeba histolytica, Balantidium coli, Naegleria fowleri, Acanthamoeba sp., Giardia lambia, Cryptosporidium sp., Pneumocystis carinii, Plasmodium vivax, Babesia microti, Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondi, Nippostrongylus brasiliensis.

In all of the above methods, a CTLA-4 blockade can be combined with other forms of immunotherapy such as cytokine treatment (e.g. interferons, GM-CSF, GCSF, IL-2), or bispecific antibody therapy, which provides for enhanced presentation of tumor antigens (see, e.g., Holliger (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak (1994) Structure 2:1121-1123).
C. Promoting Beneficial "Autoimmune" Reactions for the Treatment of Disease and Therapeutic Intervention

The ability of anti-CTLA-4 antibodies to provoke and amplify autoimmune responses has been documented in a number of experimental systems (EAE-Experimental Autoimmune Encephalomyelitis, a murine model for MS (Perrin, P. et al. (1996) J Immunol 157 (4): 1333-1336); diabetes (Lubder, F. et al. (1998) supra). Indeed, induction of anti-tumor responses using tumor cell and peptide vaccines reveals that many anti-tumor responses involve anti-self reactivities (depigmentation observed in anti-CTLA-4+GMCSF modified B16 melanoma in van Elsas et al. supra; depigmentation in Trp-2 vaccinated mice (Overwijk, W. et al. (1999) Proc. Natl. Acad. Sci. USA. 96: 2982-2987); autoimmune prostatitis evoked by TRAMP tumor cell vaccines (Hurwitz, A. (2000) supra), melanoma peptide antigen vaccination and vitilago observed in human clinical trials (Rosenberg, SA and White, Del. (1996) J Immunother Emphasis Tumor Immunol 19 (1): 81-4).
Therefore, it is possible to consider using anti-CTLA-4 blockade in conjunction with various self proteins in order to devise vaccination protocols to efficiently generate immune responses against these self proteins for disease treatment. For example, Alzheimers disease involves inap-
propriate accumulation of $A \beta$ peptide in amyloid deposits in the brain; antibody responses against amyloid are able to clear these amyloid deposits (Schenk et al., (1999) Nature 400: 173-177).

Other self proteins may also be used as targets such as IgE for the treatment of allergy and asthma, and TNF for rhematoid arthritis. Finally, antibody responses to various hormones may be induced by the use of anti-CTLA-4 antibody. Neutralizing antibody responses to reproductive hormones may be used for contraception. Neutralizing antibody response to hormones and other soluble factors that are required for the growth of particular tumors may also be considered as possible vaccination targets.
Analogous methods as described above for the use of anti-CTLA-4 antibody can be used for induction of therapeutic autoimmune responses to treat patients having an inappropriate accumulation of other self-antigens, such as amyloid deposits, including $\mathrm{A} \beta$ in Alzheimer's disease, cytokines such as TNF α, and IgE.
2. Inactivating Immune Responses

Disorders caused by immune responses are called bypersensitivity diesease. Diseases caused by failure of selftolerance and subsequent immune responses against self, or autologous, antigens are called autoimmune diseases. Hypersensitivity diseases can also result from uncontrolled or excessive responses against foreign antigens, such as microbes

Although soluble antibodies to human CTLA-4 have been shown to promote the expansion and activation of T cells (i.e., where CTLA-4 function (e.g., binding to ligand) is inhibited; in this scenario the antibodies are antagonists to CTLA-4 function), increasing the valency of these same antibodies produces the opposite effect (where now, in contrast, the antibodies are acting as agonists of CTLA-4 to suppress the immune response) (see, e.g., Knummel and Allison, 1996, J. Exp. Med. 183, 2533-2540). For the purposes of inactivating antigen specific T cell responses, such as those that are the targets of pathogenic autoreactive T cells, the target antigen which is specific for these T cells (ie. antigen and/or MHC/antigen complexes) must be administered with the polyvalent form of anti-CTLA-4 antibody.
a. Inflammation

Inflammation represents the consequence of capillary dilation with accumulation of fluid and migration of phagocytic leukocytes, such as granulocytes and monocytes. Inflammation is important in defending a host against a variety of infections but can also have undesirable consequences in inflammatory disorders, such as anaphylactic shock, arthritis, gout and ischemia-reperfusion. Activated T-cells have an important modulatory role in inflammation, releasing interferon y and colony stimulating factors that in turn activate phagocytic leukocytes. The activated phagocytic leukocytes are induced to express a number of specific cells surface molecules termed homing receptors, which serve to attach the phagocytes to target endothelial cells. Inflammatory responses can be reduced or eliminated by treatment with the therapeutic agents of the present invention. For example, polyvalent preparations of antibodies against CTLA-4 block activation of activated T-cells, thereby preventing these cells from releasing molecules required for activation of phagocytic cell types.
b. Autoimmune Diseases

A further situation in which immune suppression is desirable is in treatment of autoimmune diseases such as insulindependent diabetes mellitus, multiple sclerosis, stiff man syndrome, rheumatoid arthritis, myasthenia gravis and lupus
erythematosus. In these diseases, the body develops a cellular and/or humoral immune response against one of its own antigens leading to destruction of that antigen, and potentially crippling and/or fatal consequences. Activated T-cells are believed to play a major role in many autoimmune diseases such as diabetes mellitus. Autoimmune diseases are treated by administering one of the therapeutic agents of the invention that inhibits activation of T cells. Optionally, the autoantigen, or a fragment thereof, against which the autoimmune disease is targeted can be administered shortly before, concurrently with, or shortly after the immunosuppressive agent. In this manner, tolerance can be induced to the autoantigen under cover of the suppressive treatment, thereby obviating the need for continued immunosuppression. See, e.g., Cobbold et al., WO 90/15152 (1990).

C. Graft Versus Host Disease

A related use for the therapeutic agents of the present invention is in modulating the immune response involved in "graft versus host" disease (GVHD). GVHD is a potentially fatal disease that occurs when immunologically competent cells are transferred to an allogeneic recipient. In this situation, the donor's immunocompetent cells may attack tissues in the recipient. Tissues of the skin, gut epithelia and liver are frequent targets and may be destroyed during the course of GVHD. The disease presents an especially severe problem when immune tissue is being transplanted, such as in bone marrow transplantation; but less severe GVHD has also been reported in other cases as well, including heart and liver transplants. The therapeutic agents of the present invention are used to inhibit activation of donor leukocytes, thereby inhibiting their ability to lyse target cells in the host.
d. Transplant Rejection

Over recent years there has been a considerable improvement in the efficiency of surgical techniques for transplanting tissues and organs such as skin, kidney, liver, heart, lung, pancreas and bone marrow. Perhaps the principal outstanding problem is the lack of satisfactory agents for inducing immune-tolerance in the recipient to the transplanted allograft or organ. When allogeneic cells or organs are transplanted into a host (i.e. the donor and donee are different individual from the same species), the host immune system is likely to mount an immune response to foreign antigens in the transplant (host-versus-graft disease) leading to destruction of the transplanted tissue. $\mathrm{CD8}^{+}$cells, $\mathrm{CD}^{+}{ }^{+}$ cells and monocytes are all involved in the rejection of transplant tissues. The therapeutic agents of the present invention are useful to inhibit T-cell mediated alloantigeninduced immune responses in the donee thereby preventing such cells from participating in the destruction of the transplanted tissue or organ.
B. Methods for Detecting/Measuring the Presence of CTLA-4 in a Sample
The invention further provides methods for detecting the presence of human CTLA-4 antigen in a sample, or measuring the amount of human CTLA-4 antigen, comprising contacting the sample, and a control sample, with a human monoclonal antibody, or an antigen binding portion thereof, which specifically binds to human CTLA-4, under conditions that allow for formation of a complex between the antibody or portion thereof and human CTLA-4. The formation of a complex is then detected, wherein a difference complex formation between the sample compared to the control sample is indicative the presence of human CTLA-4 antigen in the sample.
C. Kits

Also within the scope of the invention are kits comprising the compositions (e.g., human sequence antibodies, human
antibodies, multispecific and bispecific molecules) of the invention and instructions for use. The kit can further contain a least one additional reagent, or one or more additional human antibodies of the invention (e.g., a human antibody having a complementary activity which binds to an epitope in CTLA-4 antigen distinct from the first human antibody). Kits typically include: a label indicating the intended use of the contents of the kit. The term label includes any writing, or recorded material supplied on or with the kit, or which otherwise accompanies the kit.

EXAMPLES

Example 1
Generation of Cmu Targeted Mice Construction of a CMD Targeting Vector
The plasmid pICEmu contains an EcoRI/Xhol fragment of the murine \lg heavy chain locus, spanning the mu gene, that was obtained from a Balb/C genomic lambda phage library (Marcu et al. Cell 22: 187, 1980). This genomic fragment was subcloned into the Xhol/EcoRI sites of the plasmid pICEMI9H (Marsh et al.; Gene 32, 481-485, 1984). The heavy chain sequences included in pICEmu extend downstream of the EcoRI site located just 3^{\prime} of the mu intronic enhancer, to the Xhol site located approximately 1 kb downstream of the last transmembrage exon of the mu gene; however, much of the mu switch repeat region has been deleted by passage in E. coli.
The targeting vector was constructed as follows (see FIG. 1). A 1.3 kb HindIII/Smal fragment was excised from pICEmu and subcloned into HindIII/SmaI digested pBluescript (Stratagene, La Jolla, Calif.). This pICEmu fragment extends from the HindIII site located approximately $1 \mathrm{~kb} 5^{\prime}$ of Cmu1 to the Smal site located within Cmu1. The resulting plasmid was digested with Smal/SpeI and the approximately $4 \mathrm{~kb} \mathrm{Smal} / \mathrm{XbaI}$ fragment from pICEmu, extending from the Sma I site in Cmul 3^{\prime} to the XbaI site located just downstream of the last Cmu exon, was inserted. The resulting plasmid, pTAR1, was linearized at the SmaI site, and a neo expression cassette inserted. This cassette consists of the neo gene under the transcriptional control of the mouse phosphoglycerate kinase (pgk) promoter (Xbal/TaqI fragment; Adra et al. (1987) Gene 60: 65-74) and containing the pgk polyadenylation site (PvuII/HindIII fragment; Boer et al. (1990) Biochemical Genetics 28: 299-308). This cassette was obtained from the plasmid pKJl (described by Tybulewicz et al. (1991) Cell 65: 1153-1163) from which the neo cassette was excised as an EcoRI/HindIII fragment and subcloned into EcoRI/HindIII digested pGEM-7Zf (+) to generate pGEM-7 (KJ1). The neo cassette was excised from pGEM-7 (KJ1) by EcoRI/Sall digestion, blunt ended and subcloned into the SmaI site of the plasmid pTAR1, in the opposite orientation of the genomic Cmu sequences. The resulting plasmid was linearized with Not I, and a herpes simplex virus thymidine kinase (tk) cassette was inserted to allow for enrichment of ES clones bearing homologous recombinants, as described by Mansour et al. (1988) Nature 336: 348-352. This cassette consists of the coding sequences of the tk gene bracketed by the mouse pgk promoter and polyadenylation site, as described by Tybulewicz et al. (1991) Cell 65: 1153-1163. The resulting CMD targeting vector contains a total of approximately 5.3 kb of homology to the heavy chain locus and is designed to generate a mutant mu gene into which has been inserted a neo expression cassette in the unique Smal site of the first Cmu exon. The targeting vector was linearized with PvuI, which cuts within plasmid sequences, prior to electroporation into ES cells.

Generation and Analysis of Targeted ES Cells
AB-1 ES cells (McMahon, A. P. and Bradley, A., (1990) Cell 62: 1073-1085) were grown on mitotically inactive SNL76/7 cell feeder layers (ibid.) essentially as described (Robertson, E. J. (1987) in Teratocarcinomas and Embryonic Stem Cells: a Practical Approach (E. J. Robertson, ed.) Oxford: IRL Press, p. 71-112). The linearized CMD targeting vector was electroporated into AB-1 cells by the methods described Hasty et al. (Hasty, P. R. et al. (1991) Nature 350: 243-246). Electroporated cells were plated into 100 mm dishes at a density of $1-2 \times 106$ cells/dish. After 24 bours, G418 (200 micrograms $/ \mathrm{ml}$ of active component) and FIAU ($5 \times 10-7 \mathrm{M}$) were added to the medium, and drugresistant clones were allowed to develop over 8-9 days. Clones were picked, trypsinized, divided into two portions, and further expanded. Half of the cells derived from each clone were then frozen and the other half analyzed for homologous recombination between vector and target sequences.
DNA analysis was carried out by Southern blot hybridization. DNA was isolated from the clones as described Laird et al. (Laird, P. W. et al., (1991) Nucleic Acids Res. 19: 4293). Isolated genomic DNA was digested with SpeI and probed with a 915 bp Sacl fragment, probe A(FIG. 1), which hybridizes to a sequence between the mu intronic enhancer and the mu switch region. Probe A detects a 9.9 kb SpeI fragment from the wild type locus, and a diagnostic 7.6 kb band from a mu locus which has homologously recombined with the CMD targeting vector (the neo expression cassette contains a SpeI site). Of 1132 G418 and FIAU resistant clones screened by Southern blot analysis, 3 displayed the 7.6 kb Spe I band indicative of homologous recombination at the mu locus. These 3 clones were further digested with the enzymes BgII, BstXI, and EcoRI to verify that the vector integrated homologously into the mu gene. When hybridized with probe A, Southern blots of wild type DNA digested with BgII, BstXI, or EcoRI produce fragments of 15.7, 7.3, and 12.5 kb , respectively, whereas the presence of a targeted mu allele is indicated by fragments of $7.7,6.6$, and 14.3 kb , respectively. All 3 positive clones detected by the Spel digest showed the expected BgII, BstXI, and EcoRI restriction fragments diagnostic of insertion of the neo cassette into the Cmul exon.

Generation of Mice Bearing the Mutated Mu Gene
The three targeted ES clones, designated number 264, 272, and 408, were thawed and injected into C57BL/6J blastocysts as described by Bradley (Bradley, A. (1987) in Teratocarcinomas and Embryonic Stem Cells: a Practical Approach. (E. J. Robertson, ed.) Oxford: IRL Press, p. 113-151). Injected blastocysts were transferred into the uteri of pseudopregnant females to generate chimeric mice representing a mixture of cells derived from the input ES cells and the host blastocyst. The extent of ES cell contribution to the chimera can be visually estimated by the amount of agouti coat coloration, derived from the ES cell line, on the black C57BL/6J background. Clones 272 and 408 produced only low percentage chimeras (i.e. low percentage of agouti pigmentation) but clone 264 produced high percentage male chimeras. These chimeras were bred with C57BL/6J females and agouti offspring were generated, indicative of germline transmission of the ES cell genome. Screening for the targeted mu gene was carried out by Southern blot analysis of Bgll digested DNA from tail biopsies (as described above for analysis of ES cell DNA). Approximately 50% of the agouti offspring showed a hybridizing BglI band of 7.7 kb in addition to the wild type band of 15.7 kb , demonstrating a germline transmission of the targeted mu gene.

Analysis of Transgenic Mice for Functional Inactivation of Mu Gene

To determine whether the insertion of the neo cassette into Cmul has inactivated the Ig heavy chain gene, a clone 264 chimera was bred with a mouse homozygous for the JHD mutation, which inactivates heavy chain expression as a result of deletion of the JH gene segments (Chen et al., (1993) Immunol. 5: 647-656). Four agouti offspring were generated. Serum was obtained from these animals at the age of 1 month and assayed by ELISA for the presence of murine IgM . Two of the four offspring were completely lacking lgM (Table 1). Genotyping of the four animals by Southern blot analysis of DNA from tail biopsies by BglI digestion and hybridization with probe A (FIG. 1), and by Stul digestion and hybridization with a 475 bp EcoRI/Stul fragment (ibid.) demonstrated that the animals which fail to express serum lgM are those in which one allele of the heavy chain locus carries the JHD mutation, the other allele the Cmul mutation. Mice heterozygous for the JHD mutation display wild type levels of serum Ig. These data demonstrate that the Cmul mutation inactivates expression of the mu gene.

TABLE 1

Level of serum IgM, detected by ELISA, for mice carrying both the CMD and JHD mutations (CMD/JHD), for mice heterozygous for the JHD mutation ($+/ \mathrm{JHD}$), for wild type ($129 \mathrm{~Sv} \times \mathrm{C} 57 \mathrm{BL} / 6 \mathrm{~J}$)F1 mice ($+/+$), and for B cell deficient mice homozygous for the JHD mutation (JHD/JHD).		
Mouse	Serum IgM (micrograms/ml)	Ig H chain genotype
42	<0.002	CMD/JHD
43	196	+/JHD
44	<0.002	CMD/JHD
45	174	+/3HD
$129 \times$ BL6 F1	153	+/+
JHD	<0.002	JHD/JHD

Example 2

Generation of HCol2 Transgenic Mice The HCol2 Human Heavy Chain Transgene

The HCo12 transgene was generated by coinjection of the 80 kb insert of pHC 2 (Taylor et al., 1994, Int. Immunol., 6: $579-591$) and the 25 kb insert of $\mathrm{pV} \times 6$. The plasmid $\mathrm{pV} \times 6$ was constructed as described below.
An 8.5 kb HindIII/Sall DNA fragment, comprising the germline human VH1-18 (DP-14) gene together with approximately 2.5 kb of 5^{\prime} flanking, and 5 kb of 3^{\prime} flanking genomic sequence was subcloned into the plasmid vector pSP72 (Promega, Madison, Wis.) to generate the plasmid p343.7.16. A 7 kb BamHI/HindIII DNA fragment, comprising the germline human VH5-51 (DP-73) gene together with approximately 5 kb of 5^{\prime} flanking and 1 kb of 3 ' flanking genomic sequence, was cloned into the pBR322 based plasmid cloning vector pGP1f (Taylor et al. 1992, Nucleic Acids Res. 20: 6287-6295), to generate the plasmid p251f. A new cloning vector derived from pGP1f, pGP1k (Seq. ID \#1), was digested with EcoRV/BamHI, and ligated to a 10 kb EcoRV/BamHI DNA fragment, comprising the germline human VH3-23 (DP47) gene together with approximately 4 kb of 5^{\prime} flanking and 5 kb of 3^{\prime} flanking genomic sequence. The resulting plasmid, p112.2RR.7, was digested with BamHI/SalI and ligated with the 7 kb purified BamHI/SalI insert of p 251 f . The resulting plasmid, $\mathrm{p} \mathrm{V} \times 4$, was digested with Xhol and ligated with the 8.5 kb Xhol/Sall insert of
p343.7.16. A clone was obtained with the VH1-18 gene in the same orientation as the other two V genes. This clone, designated $p V \times 6$, was then digested with NotI and the purified 26 kb insert coinjected-ogether with the purified 80 kb Notl insert of pHC 2 at a $1: 1$ molar ratio-into the pronuclei of one-half day (C57BL/6J×DBA/2J)F2 embryos as described by Hogan et al. (B. Hogan et al., Manipulating the Mouse Embryo, A Laboratory Manual, 2nd edition, 1994, Cold Spring Harbor Laboratory Press, Plainview N.Y.). Three independent lines of transgenic mice comprising sequences from both $\mathrm{V} \times 6$ and HC 2 were established from mice that developed from the injected embryos. These lines are designated (HCo12)14881, (HCo12)15083, and (HCo12)15087. Each of the three lines were then bred with mice comprising the CMD mutation described in Example 1, the JKD mutation (Chen et al. 1993, EMBO J. 12: 811-820), and the (KCo5)9272 transgene (Fishwild et al. 1996, Nature Biotechnology 14: 845-851). The resulting mice express human heavy and kappa light chain transgenes in a background homozygous for disruption of the endogenous mouse heavy and kappa light chain loci.

Example 3
Generation of Human IgG Kappa Anti-Human CTLA-4 Monoclonal Antibodies

Cell Based Antigen

A DNA segment encoding a fusion protein comprising sequences from the human CTLA-4 and the murine CD3zeta genes was constructed by PCR amplification of cDNA clones logether with bridging synthetic oligonucleotides. The encoded fusion protein contains the following sequences: i human CTLA-4 encoding amino acids $\mathbf{1 - 1 9 0}$ (containing the signal peptide, the extracellular domain of human CTLA-4 and the entirety of the presumed transmembrane sequence of human CTLA-4) and ii. murine CD3zeta from amino acid 52 to the carboxy terminus (Weissman et al. (1988) Science 239: 1018-1021). The amplified PCR product was cloned into a plasmid vector and the DNA sequence was determined. The cloned insert was then subcloned into the vector pBABE (which contains a gene encoding for puromycin resistance (Morganstern, JP and Land, H Nucl. Acids Res. 18: 3587-96 (1990)) to create pBABE-huCTLA4/CD3z. pBABE-huCTLA-4/CD3z was transfected into the retroviral packaging line, $\psi-2$, and a pool of puromycin resistant cells were selected. These cells were co-cultured with the murine T cell hybridoma BW5 147 (ATCC \#TIB47). After 2 days of co-culture the non-adherent BW5147 cells were removed and selected for resistance to puromycin. The puromycin resistant cell pool was subcloned by limiting dilution and tested for surface expression of human CTLA-4 by FACS. A clone expressing high levels of human CTLA4 at the cell surface was selected.
Soluble Antigen
Recombinant CTLA-4 fusion protein comprising the extracellular domain of human CTLA-4 was purchased from R\&D Systems (Cat. \#325-CT-200). Extracellular CTLA-4 fragment was prepared by proteolytic cleavage of the CTLA-4 fusion protein at a Factor Xa protease cleavage site located after the C-terminus of the CTLA-4 extracellular domain. Fusion protein was treated with Factor Xa at a ratio of $50: 1$ of fusion protein to Factor Xa, and the CTLA-4 fragment was isolated by passage over protein G-Sepharose and Mono Q HPLC. Fractions were tested for the presence of human CTLA-4 dimer were by SDS-PAGE and by binding to cells expressing mouse B7 molecules (LtkmB7.1: mouse Ltk(-) cells transfected with a mouse B7.1 cDNA clone expression vector). Positive fractions were pooled and dialyzed into PBS buffer.

Transgenic Mice
Two different strains of mice were used to generate CTLA-4 reactive monoclonal antibodies. Sirain ((CMD)++; (JKD) ++ ; (HCo7)11952+/++; (KCo5) $9272+/++$), and strain ((CMD) ++; (JKD) ++; (HCo12) $15087+1++$; (KCo5) $9272+/++$). Each of these strains are homozygous for disruptions of the endogenous heavy chain (CMD) and kappa light cbain (JKD) loci. Both strains also comprise a human kappa light chain transgene (KCo), with individual animals either hemizygous or homozygous for insertion \#11952. The two strains differ in the human heavy chain transgene used. Mice were hemizygous or homozygous for either the HCo 7 or the HCol2 transgene. The CMD mutation is described above in Example 1. The generation of (HCo12) 15087 mice is described in Example 2. The JKD mutation (Chen et al. 1993, EMBO J. 12: 811-820) and the (KCo5)9272 (Fishwild et al. 1996, Nature Biotechnology 14: 845-851) and (HCo7) 11952 mice, are described in U.S. Pat. No. 5,770,429 (Lonberg \& Kay, Jun. 23, 1998).

Immunization

Transgenic mice were initially immunized i.p. with $1-3 x$ 10^{7} cells in PBS, or with $10-50 \mathrm{xug}$ soluble fusion protein in adjuvant (either complete Freund's or Ribi). Immunized mice were subsequently boosted every 2 to 4 weeks i.p. with $1-3 \times 10^{7}$ cells in PBS. Animals were kept on protocol for 2 to 5 months. Prior to fusion, animals were boosted i.v. on days -3 and -2 with approximately 106 cells, or with $10-20$ ug soluble antigen (fusion protein or fusion protein and extracellular fragment). Some animals also received fusion protein i.v. on day -4. Successful fusions resulting in CTLA-4 reactive IgG kappa monoclonal antibodies were obtained from mice immunized by a variety of different protocols, including cells only, soluble antigen only, and cell immunizations followed by soluble antigen given i.v. prior to fusion.

Fusions
Spleen cells were fused to mouse myeloma cells (line P3x63 Ag8.6.53, ATCC CRL 1580, or SP2/0-Ag14, ATCC CRL 1581) by standard procedures (Harlow and Lane, 1988, Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor N.Y.; Kennett et al. 1980, Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analysis. Plenum, N.Y.; Oi and Hertzenberg, 1980, Immunoglobulin Producing Hybrid Cell Lines, in Selected Methods In Cellular Immunology, ed. Mishell and Shiigi, pp. 357-372. Freeman, San Francisco; Halk, 1984, Methods in Enzymology: Plant Molecular Biology, ed. Weissbach and Weissbach, pp. 766-780, Academic Press, Orlando, Fla.). Cells were cultured in DMEM, 10% FBS, OPI (Sigma 0-5003), BME (Gibco 21985-023), 3% Origen Hybridoma Cloning Factor (Igen IG50-0615), and 5% P388d1 (ATCC TIB 63) conditioned media. HAT or HT supplement was added to the medium during initial growth and selection.

Hybridoma Screening
To identify hybridomas secreting human IgG kappa antibodies, ELISA plates (Nunc MaxiSorp) were coated overnight at $4^{\circ} \mathrm{C}$. with $100 \mathrm{ul} /$ well goat anti-human Fcgamma specific antibody (Jackson Immuno Research \#109-006-098) at $1 \mathrm{ug} / \mathrm{ml}$ in PBS. Plates were washed and blocked with $100 \mathrm{ul} /$ well PBS-Tween containing 1\% BSA. Fifty ul cell culture supernatant was added followed by a 1-2 hour incubation. Plates were washed and then incubated for one hour with $100 \mathrm{ul} /$ well goat anti-Kappa light chain conjugated to alkaline phosphatase or horseradish peroxidase (Sigma \#A-3813, or \#A-7164). Plates were washed three times in PBS-Tween between each step. An analogous
assay was used to identify hybridomas that secrete human antibodies reactive with human CTLA-4. This assay was identical except that the ELISA plates were coated with recombinant CTLA-4 fusion protein instead of goat antihuman Fcgamma antibody.

Characterization of Monoclonal Antibodies
Seventy two hybridomas that were shown by ELISA to secrete human IgG kappa binding to human CTLA-4 were subcloned. Forty seven of these subclones were tested to determine if the secreted human antibodies bind to CTLA-4 expressing cells, and if the antibodies inhibit soluble CTLA-4 from binding to cells expressing B7. Binding was determined by flow cytometry. To measure inhibition, 50 microliters of each supernatant was incubated with 10^{5} LtkmB7.1 cells and 25 ng recombinant CTLA-4 fusion protein. Mean channel fluorescence was then determined by flow cytometry. FIG. 2 shows inhibition of soluble CTLA-4 binding to cells expressing B7.1. Mean channel fluorescence (MCF) of LtkmB7.1 cells stained with recombinant human CTLA-4 fusion protein was determined in the presence of hybridoma supernatant. Hybridomas that secrete blocking antibodies resulted in lower MCF values. BNI3.1 (Cat.\#34580D, Pharmingen, San Diego, Calif.) was used as a positive control mouse monoclonal antibody that blocks CTLA-4/B7 binding.

Approximately 40% of the hybridomas appear to strongly inhibit CTLA-4 binding to the B7 ligand.
Antibodies from clones 10D1.3, 4B6.12, and 11E8, were then assayed by BIAcore (Biacore AB, Uppsala, Sweden) to determine binding kinetics. Purified recombinant CTLA-4 extracellular fragment was coupled to the CM5 sensor chip@ 1200 RU. Binding was measured by adding antibody at concentrations of $0.25,0.5,1,2.5$, and $5 \mu \mathrm{~g} / \mathrm{ml}$ at a flow rate of $5 \mathrm{ul} / \mathrm{min}$. The binding curves were fit to a Langmuir binding model using BIAevaluation sofiware (Biacore AB,
Uppsala, Sweden). Antibodies were purified by protein-A Sepharose chromatography. Determined on and off rates are shown in Table 2:

TABLE 2

Kinetics of binding of human IgG kappa antibodies to recombinant CTlA-4 immobilized on a surface.			
Hybridoma	$\mathrm{ka}(1 / \mathrm{Ms})$	$\mathrm{kd}(1 / \mathrm{s})$	$\mathrm{Ka}(1 / \mathrm{M})$
10D1.3	4.1×10^{5}	1.0×10^{-4}	4×10^{9}
4 BB 6.12	5.1×10^{5}	1.3×10^{-4}	4×10^{9}
11 E 8	4.3×10^{5}	1.8×10^{-4}	2×10^{9}

Serial dilutions of 10 different human IgG kappa antihuman CTLA-4 monoclonal antibodies (3A4, 9A5, 2E2, $2 \mathrm{E} 7,4 \mathrm{~B} 6,4 \mathrm{E} 10,5 \mathrm{C} 4,5 \mathrm{G} 1,11 \mathrm{E} 8$, and 11 G 1) were added to microtiter wells coated with recombinant CTLA-4 fusion protein. After a 2 bour incubation, biotinylated antibody 11E8 was added to each well at a concentration of $0.1 \mu \mathrm{~g} / \mathrm{ml}$. The samples were incubated for 30 minutes, washed, and bound antibody detected with alkaline phosphatase/ streptavidin conjugate. The titrations are shown in FIG. 3. Antibody 11 E8 binding was blocked by itself and 7 of the other human antibodies. However, binding was not blocked by antibodies 3A4 or 9A5. Reciprocal binding experiments showed that 11E8 binding did not block either 3A4 or 9A5 binding to CTLA-4.

DNA Sequence
RNA was extracted from approximately 2×10^{6} cells of each subcloned hybridoma cell line and used to synthesize cDNA using reagents and protocols from Invitrogen (MicroFastTrack and cDNA Cycle: Cat. \#L1310-01, and \#K1520-

02, Invitrogen, Carlsbad, Calif.). Human immunoglobulin heavy and kappa light chain V region fragments were amplified by PCR using pfu polymerase (Stratagene, La Jolla, Calif.), degenerate FR1 primers and unique constant region primers. The resulting PCR fragments were cloned into the pCR-Blunt vector (Invitrogen, Carlsbad, Calif.) and the sequence of the insert determined. The preliminary sequences for the heavy and light chain fragment of hybridoma 10D1.3 are shown in FIG. 4. The determined sequences for the heavy and light chain fragment of bybridoma 10DI. 3 are shown in FIG. 5 through FIG. 8.

TABLE 3

Chain	HuMAb	CDR sequences of light and heavy chains for MAbs 10D1,\qquad				CDR3	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$
		CDR1	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$	CDR2	$\begin{aligned} & \text { SEQ ID } \\ & \text { NO: } \end{aligned}$		
Light	10D1	RASQSVGSSYLA	24	GAFSRAT	29	QQYGSSPWT	35
Chain	4B6	RASQSVSSSFLA	25	GASSRAT	30	QQYGSSPWT	35
	1E2	RASQGISSWLA	26	AASSLQS	31	QQYNSYPP'T	36
Heavy	10D1	SYTMH	27	FISYDGNNKYYADSVKG	32	TGWLGPFDY	37
Chain	4B6	SYTMH	27	FISYDGSNKHYADSVKG	33	TGWLGPFDY	37
	1E2	SYGMH	28	VIWYDGSNKYYADSVKG	34	APNYIGAFDV	38

Example 4

Use of Partial Antibody Sequences to Express Intact Antibodies
Antibodies interact with target antigens predominantly through amino acid residues that are located in the six heavy and light chain complimentarily determining regions (CDR's). For this reason, the amino acid sequences within CDR's are more diverse between individual antibodies than sequences outside of CDR's. Because CDR sequences are responsible for most antibody-antigen interactions, it is possible to express recombinant antibodies that mimic the properties of specific naturally occurring antibodies by constructing expression vectors that include CDR sequences from the specific naturally occurring antibody grafted onto framework sequences from a different antibody with different properties (Jones et al. 1986, Nature 321, 522-525). Such framework sequences can be obtained from public DNA databases that include germline antibody gene sequences. These germline sequences will differ from mature antibody gene sequences because they will not include completely assembled variable genes, which are formed by $V(D) \mathrm{J}$ joining during B cell maturation. Germline gene sequences will also differ from the sequence of a high affinity secondary repertoire antibody at individual nucleotides because of somatic mutations. However, somatic mutations are not distributed evenly across the variable region. For example, somatic mutations are relatively infrequent in the amino-terminal portion of framework region 1 and in the carboxy-terminal portion of framework region 4. Furthermore, many somatic mutations do not significantly alter the binding properties of the antibody. For this reason, it is not necessary to obtain the entire DNA sequence of a particular antibody in order to recreate an intact recombinant antibody having binding properties similar to those of the original antibody (see PCT/US99/05535 filed on Mar. 12, 1999, which is herein incorporated by reference for all purposes). Partial heavy and light chain sequence spanning the CDR regions is typically sufficient for this purpose. The 6 partial sequence is used to determine which germline variable and joining gene segments contributed to the recom-
fication to create an entirely synthetic variable region clone. This process has certain advantages such as elimination or inclusion of particular restriction sites, or optimization of 30 particular codons.

The nucleotide sequences of heavy and light chain transcripts from a hybridomas are used to design an overlapping set of synthetic oligonucleotides to create synthetic \mathbf{V} sequences with identical amino acid coding capacities as the 35 natural sequences. The synthetic heavy and kappa light chain sequences can differ from the natural sequences in three ways: strings of repeated nucleotide bases are interrupted to facilitate oligonucleotide synthesis and PCR amplification; optimal translation initiation sites are incorporated according to Kozak's rules (Kozak, 1991, J. Biol. Chem. 266, 19867-19870); and, HindIII sites are engineered upstream of the translation initiation sites.
For both the heavy and light chain variable regions, the optimized coding, and corresponding non-coding, strand sequences are broken down into $30-50$ nucleotide segments such that the breaks between nucleotides for the coding strand sequence occur at approximately the midpoint of the corresponding non-coding oligonucleotide. Thus, for each chain, the oligonucleotides can be assemble into overlapping double stranded sets that completely span the desired sequence. These oligonucleotides are combined into pools that span segments of $150-400$ nucleotides. The pools are then used as templates to produce PCR amplification products of $150-400$ nucleotides. Typically, a single variable region oligonucleotide set will be broken down into two pools which are separately amplified to generate two overlapping PCR products. These overlapping products are then combined by PCR amplification to form the complete variable region. It may also be desirable to include an overlapping fragment of the heavy or light chain constant region (including the BbsI site of the kappa light chain, or the AgeI site if the gamma heavy chain) in the PCR amplification to generate fragments that can easily be cloned into the expression vector constructs.
The reconstructed heavy and light chain variable regions are then combined with cloned promoter, translation initiation, constant region, 3^{\prime} untranslated, polyadenylation,
and transcription termination, sequences to form expression vector constructs. The heavy and light chain expression constructs can be combined into a single vector, co-transfected, serially transfected, or separately transfected into host cells which are then fused to form a host cell expressing both chains.

Plasmids for use in construction of expression vectors for human lgGk are described below. The plasmids were constructed so that PCR amplified V heavy and V kappa light chain cDNA sequences could be used to reconstruct complete heavy and light chain minigenes. These plasmids can be used to express completely human, or chimeric IgG1k or IgG4k antibodies. Similar plasmids can be constructed for expression of other heavy chain isotypes, or for expression of antibodies comprising lambda light chains.

The kappa light chain plasmid, pCK7-96 (SEQ ID NO:39), includes the kappa constant region and polyadenylation site, such that kappa sequences amplified with 5^{\prime} primers that include HindIII sites upstream of the initiator methionine can be digested with HindIII and BbsI, and cloned into pCK7-96 digested with HindIII and BbsI to reconstruct a complete light chain coding sequence together with a polyadenylation site. This cassette can be isolated as a HindIII/NotI fragment and ligated to transcription promoter sequences to create a functional minigene for transfection into cells.
The gamma1 heavy chain plasmid, pCG7-96 (SEQ ID NO:40), includes the human gammal constant region and polyadenylation site, such that gamma sequences amplified with 5^{\prime} primers that include HindIII sites upstream of the initiator methionine can be digested with HindIII and AgeI, and cloned into pCG7-96 digested with HindIII and AgeI to reconstruct a complete gamma1 heavy chain coding sequence together with a polyadenylation site. This cassette can be isolated as a HindIII/SalI fragment and ligated to transcription promoter sequences to create a functional minigene for transfection into cells.

The gamma4 heavy chain plasmid, pG4HE (SEQ ID NO:41), includes the human gamma4 constant region and polyadenylation site, such that gamma sequences amplified with 5 ' primers that include HindIII sites upstream of the initiator methionine can be digested with HindIII and Agel, and cloned into pG4HE digested with HindIII and AgeI to reconstruct a complete gamma 4 heavy chain coding sequence together with a polyadenylation site. This cassette can be isolated as a HindIII/EcoRI fragment and ligated to transcription promoter sequences to create a functional minigene for transfection into cells.

A number of different promoters (including but not limited to CMV, ubiquitin, SRalpha, and beta-actin) can be used to express the reconstructed heavy and light chain genes. For example the vector pcDNA3.1+(Invitrogen, Carlsbad, Calif.), can be cleaved with HindIII and either NotI, XhoI, or EcoRI, for ligation with either the kappa, gammal, or gamma4 cassettes described above, to form expression vectors that can be directly transfected into mammalian cells.

Example 5

10D1 Binding to CTLA-4
A. 10D1Binding to purified recombinant human CTLA-4

Binding of 10D1 to purified recombinant human CTLA-4 was shown by ELISA using standard methods and procedures (FIG. 9 and FIG. 10). Microtiter plates coated with purified CTLA-4 were incubated with varying concentration of 10D1, and then developed with goat anti-human IgG $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ conjugated to alkaline phosphatase. The data dem-
cosal lymphoid nodule in the colon (gastrointestinal tractcolon [$1 / 3$ donors]), and blood smears ($2 / 3$ donors).

Immunoreactive cells were identified as lympbocytes based on typical morphology (round molecular cells with large nucleus: cytoplasm ratio and scant cytoplasm, lack of dendritic processes, $10-15 \mu \mathrm{~m}$ in diameter) and location within the tissues (e.g., lypical location within lymphoid tissues). In the tonsils from all three donors (test tissues), lymphocytes, 10D1-FITC specifically stained discrete, round, granules at membrane and in the cytoplasm immediately below the membrane. Reactivity was observed with occasional follicular, interfollicular and subepithelial lymphocytes. Less than $1 \mathbf{- 2 \%}$ of all tonsillar lymphcytes were reactive with 10D 1-FITC.

In $1 / 3$ donors examined, 10D1-FITC also specifically stained discrete granules in occasional follicular and interfollicular lymphocytes located in submucosal lymphoid nodules in the colon (gastrointestinal tract-colon [large intestine]). Again, discrete membrane granules were stained.

In peripheral blood smears from two of the three donors examined, 10D 1-FITC specifically stained discrete granules approximately $1 \mu \mathrm{~m}$ in diameter associated with the membrane of rare lymphocytes. The granules were arranged in a ring or in a curved pattern. Less than $1-2 \%$ of all peripheral blood leukocytes were reactive with 10D1-FITC.

Table 4. Cross-Reactivity of MAb 10DI With Normal Human Tissues

TABLE 4

TABLE 4-continued

Tissue	eactivity of	Ab 10D1	ith Normal	Human Tis		β_{2}-microglobulin
	Test Article 10D1-FITC		NegativeControlAntibodyHulgG1-k-FITC		Assay Control*	
	$10 \mu \mathrm{~g} / \mathrm{ml}$	$2.5 \mu \mathrm{~g} / \mathrm{ml}$	$10 \mu \mathrm{~g} / \mathrm{ml}$	$2.5 \mu \mathrm{~g} / \mathrm{ml}$		
Spinal Cord	Neg	Neg	Neg	Neg	Neg	Pos
Spleen	Neg	Neg	Neg	Neg	Neg	Pos
Striated (Skeletal) Muscle	Neg	Neg	Neg	Neg	Neg	Pos
Testis	Neg	Neg	Neg	Neg	Neg	Pos
Thymus	Neg	Neg	Neg	Neg	Neg	Pos
Thyroid	Neg	Neg	Neg	Neg	Neg	Pos
Tonsil Lymphocytes (occasional follicular,	$2+$	1-2+	Neg	Neg	Neg	Pos
Interfollicular and subepithelial lymphocytes)						
Tonsil Other elements	Neg	Neg	Neg	Neg	Neg	Pos
Ureter	Neg	Neg	Neg	Neg	Neg	Pos
Urinary Bladder	Neg	Neg	Neg	Neg	Neg	Pos
Uterus - Body (endometrium)	Neg	Neg	Neg	Neg	Neg	Pos
Uterus - Cervix	Neg	Neg	Neg	Neg	Neg	Pos

*omission of test antibody
D. Specific Reactivity of 10D. 1 with macaque CTLA-4 Specific reactivity with macaque CTLA-4 was demonstrated using T-cells transfected to express the macaque CTLA-4 at high levels (Table 5). These data suggest that the CTLA-4 epitope for 10D1 is conserved between macaque and humans, therefore macaque is a good model to evaluate in vivo safety of anti-CTLA4 HuMAb 10D1.
Table 5
TABLE 5

Species	reactivity of isotype control (MFI)	reactivity of 10D1 (MF1)
human CTLA4	3	662
macaque CTLA4	4	606
murine CTLA4		
(negative control)	5	5

MAb $10 \mathrm{D} 1(10 \mu \mathrm{~g} / \mathrm{ml})$ was incubated with cell lines expressing recombinant CTLA-4 from various species, and detected by FITC-anti human IgG. The cell-associated fluorescence was determined by FACScan and reported as mean fluorescence intensity (MFI). These data show that MAb 10D1 reacts well with macaque and human CTLA-4, but not with murine CTLA-4.

Example 6

10D1 Blocking of CTLA-4 to B7 Ligands

In order to show that 10D1 binding to CTLA-4 blocks the interaction of CTLA-4 with CTLA-4 ligands, B7.1 and B7.2, competition assays were performed by flow cytometry (FIG. 11 and FIG. 12). As shown in FIG. 11, FITC-labeled human B7.2-Ig fusion protein was incubated with $58 \alpha \beta$ CTLA-4 T-cells and various concentrations of 10D1 MAb. In FIG. 12, FITC-labeled CTLA-4-Ig fusion protein was incubated with murine B7.1 transfected cells and various concentrations of 10D1 MAb.

The competition assays demonstrate the ability of 10D1 to 6 efficiently inhibit CTLA-4-B7 interactions at low concentrations ($1-10 \mu \mathrm{~g} / \mathrm{ml}$). The effective concentration would
reciprocal binding experiments (FIG. 13B). Human antibodies that belong to epitope groups $3,4 a$ and $4 b$ are effective blockers of CTLA-4/B7.1 binding (FIG. 3, and Table 6).
effective in mediating CDCC with human IgG_{1} than human complement=(Jurianz, Maslak et al. 1999). PHA-stimulated T-cells were labeled with ${ }^{51} \mathrm{Cr}$ and incubated with various

TABLE 6
$\left.\begin{array}{cccc}\hline & \text { CTLA-4 MABs: Epitope and CTLA-4/B7.1 Blocking Properties }\end{array}\right]$
*Murine monoclonal antibody
**Available from Pharmingen, BN13 Catalog \# 34580 D, San Diego CA.
***Available from Ancell, ANC 152.2/8H5 Catalog \# 359-020, Ancell Corp. Bayport, Mn.

Example 7

10D1 Binds to Human Activated T Cells

The ability of 10D1 antibody to bind to CTLA-4 expressed by normal human T cells was investigated by flow cytometric analysis of resting and activated T cells (FIG. 14). Freshly isolated human peripheral blood mononuclear cells at $2 \times 10^{6} / \mathrm{ml}$ were incubated in the presence or absence of $2 \mathrm{ug} / \mathrm{ml}$ of the T-cell mitogen, phytohemagglutinin (PHA). After four days incubation, the cells were washed and stained with the following antibodies: 1) no antibody; 2) HulgG1-FITC, a human $\lg G 1$ anti EGF receptor antibody; 3) 10D1-FITC, human IgG1 antiCTLA-4 antibody; and 4) 147-FITC-mouse anti-human CTLA-4 antibody. After incubation for 1 hr ., cells were washed and stained with rabbit anti-FITC IgG followed by goat anti-rabbit-PE. Analysis was performed on lymphocytes gated by forward versus side scatter. As shown in FIG. 14, resting lymphocytes do not bind 10D1 antibody, while PHA-activated T cells express low levels of CTLA-4 at the cell surface.

Example 8

10D1 Does not Mediate Complement-Dependent or
Antibody-Dependent Lysis of Activated T-Cells
The ability of MAb 10D1 to mediate complementdependent cellular cytotoxicity (CDCC) or antibodydependent cellular cytotoxicity (ADCC) of CTLA-4 expressing cells was investigated.

For CDCC experiments, rabbit serun was used as a source 6 of compliment, in order to provide optimal conditions for CDCC. Rabbit complement has been shown to be more

35 concentrations of anti-CTLA4 MAb 10D1 or anti-CD3 MAb with or without rabbit serum as a source of complement. After a 1 hour incubation, the ${ }^{51} \mathrm{Cr}$ released by dying cells was determined using a gamma counter. Target cells incubated with 2% SDS served as 100% lysis controls. The
40° anti-CTLA-4 MAb 10D1 did not mediate CDCC of the activated T-cells (FIG. 15). Under the same conditions, the murine $\operatorname{IgG} 2_{a}$ anti-CD3 MAb led to significant CDCC. Both murine $\operatorname{IgG} 2_{a}$ and human $\operatorname{IgG}{ }_{1}$ efficiently fix rabbit complement; therefore these differences most likely reflect the 45 greatly reduced expression of CTLA-4 as compared to CD3 on activated T-cells.

Similarly, no ADCC activity was observed for MAb 10D1 using autologous mononuclear cells as effector cells (FIG. 16). PHA-stimulated T-cells were labeled with ${ }^{51} \mathrm{Cr}$ and 50 incubated with various concentrations of anti-CTLA4 MAb 10D1 or anti-CD3 MAb and fresh autologous mononuclear cells. The effector to target cell ratio was $100: 1$. After a 4 hour incubation, the ${ }^{51} \mathrm{Cr}$ released by dying cells was determined using a gamma counter. Target cells incubated 55 with 2% SDS served as 100% lysis controls. Although the anti-CD3 MAb is a murine $\operatorname{IgG} 2_{a}$, which can mediate efficient ADCC with human effector cells, only low levels of ADCC were observed. These data are consistent with the requirement of high levels of antigen expression on the 60 surface of target cells for efficient ADCC. Since MAb 10D1 is a human IgG_{1}, an isolype generally capable of mediating CDCC and ADCC, the lack of these activities is likely due to the very low expression of CTLA-4 on activated T-cells. Furthermore, the observation of increased numbers of acti-
65 vated T-cells in the primate toxicology studies (see below) is consistent with the lack of ADCC and CDCC activity of activated T-cells by MAb 10D1 in vivo.

63

Example 9
10D1 preclinical toxicity studies in cynomolgus monkeys
Two independent toxicology studies of 10D1 antibody and macaques were performed. A total of eight monkeys were analyzed. Four monkeys (two males and two females) tolerated three bolus i.v. doses of $3 \mathrm{mg} / \mathrm{Kg}$ human antiCTLA4, and four monkeys (two males and two females) tolerated three bolus i.v. doses of $10 \mathrm{mg} / \mathrm{Kg}$ human antiCTLA4 without significant clinical, immunotoxicology, or histopathological findings.
A. 10D1 primate toxicology study ($3.0 \mathrm{mg} / \mathrm{Kg}$)

To investigate the effects of 10D1 in vivo, a primate toxicology study was performed with two macaques. In a multiple dose toxicity study of MAb 10D1, this antibody was administered via intravenous injection of macaques. The objective of this study was to determine the tolerability of MAb 10D1 in two monkeys given at a dose and schedule compatible with efficacious treatment in a murine tumor regression model and proposed dose in human clinical studies. Two female cynomolgus monkeys (Macaca fascicilaris) were treated with three intravenous bolus doses of $3.0 \mathrm{mg} / \mathrm{Kg}$ 10D1 on days 1,4 , and 7 to evaluate safety and T-cell activation in these animals. The animals were observed for any adverse reactions, weight loss/gain, and morbidity and mortality up to 14 days post administration of the first dose. Seven days after the last dose the animals were sacrificed and necropsied to examine their organs individually. Blood samples were collected before each dose and before necropsy for examination of T-cell populations and expression of activation markers by flow cytometry. Plasma was also collected from blood samples to determine 10D1 antibody levels and anti-10D1 antibody responses by ELISA.

The animals tolerated three doses of antibody 10D1 without any clinical symptoms during the treatment course. The weight of these animals did not change significantly. No gross findings were documented on 47 organs/tissues examined at necropsy for either animal.
Histopathology studies were performed at Redfield laboratories, Redfield, Ark. The results from these studies indicated that multiple doses of MAb 10D1 did not produce acute toxicity in any of the organs and tissues examined.
plasma of both monkeys (see Table 7). Plasma levels of 10D1 were determined by a competition assay with FITC10D1 using flow cytometry and 58 $\alpha \beta$ TCTLA-4 T-cells.

5

10

	TABLE 7			
		10D1 plasma levels		
	Time point	Monkey \#1		

Evaluation of the anti-10D 1 -antibody response was performed by ELISA. No significant anti-10D1 response was observed in either animal during the course of study (FIG. 17). Microtiter plates were coated with 10D1MAb (for lgM assay) or 10D1 F(ab') (for IgG assay). Dilutions of plasma samples from various time points were incubated with the plates, and anti-10D1 antibodies were detected with either anti-IgM or IgG Fc-specific alkaline phosphatase reagents. lgM anti-10D1 antibodies appear to have developed by day 14, however, the titers are very low. lgM anti-10D1 ant5ibodies appear to have developed by day 14 , however, the titers are very low. These data demonstrate that the monkeys did not develop anti-10D1 antibody responses after 3 doses of the antibody.
These data demonstrate that the animals did not develop a significant antibody response against MAb 10D1 during the course of this study.

Immunotoxicology was investigated by flow cytometric analysis of lymphocyte populations during the course of the study. The lymphocyte subsets examined included CD3 as a marker for total T-cells and CD20 as a marker for total B-cells. T-cells, were further subdivided for expression of CD4 (helper T-cell marker) and CD8 (cytotoxic T-cell marker), as well as for activation markers CD25, CD29, CD69 and HLA-DR. No remarkable changes in T-cell populations or expression of activation markers was noted. The results are summarized in Table 8 below.

TABLE 8

Time point	low cytometric analysis of lymphocyte populations	
	Monkey \#1	Monkey \#2
Pre-1 $\mathbf{1}^{\text {tr }}$ dose	$\begin{aligned} & \% \operatorname{CD} 3=61, \% \text { CD20 }=16 \\ & \% \operatorname{CD4}=43, \% \mathrm{CD8}=50 \\ & \% \text { CD25 } \leqq 1, \% \mathrm{CD} 29=41 \\ & \% \text { CD69 }=<1, \% \mathrm{HLA}-\mathrm{DR}=4 \end{aligned}$	$\begin{aligned} & \% \mathrm{CD} 3=54, \% \mathrm{CD} 20=22 \\ & \% \mathrm{CD4}=59, \% \mathrm{CD8}=36 \\ & \% \mathrm{CD} 25 \leqq 1, \% \mathrm{CD} 29=29 \\ & \% \mathrm{CD} 69 \leqq 1, \% \text { HLA-DR }=1 \end{aligned}$
Day 4, pre-2 ${ }^{\text {nd }}$ dose		$\begin{aligned} & \% \text { CD3 }=56, \% \text { CD20 }=16 \\ & \% C D 4=62, \% \text { CD8 }=37 \\ & \% C D 25 \leqq 1, \% C D 29=36 \end{aligned}$ $\% \operatorname{CD69} \leqq 1, \% \text { HLA-DR } \leqq 1$
Day 7, pre-3 ${ }^{\text {rd }}$ dose	$\begin{aligned} & \% \mathrm{CD} 3=59, \% \mathrm{CD} 20=15 \\ & \% \mathrm{CD4}=47, \% \mathrm{CD}=59 \\ & \% \mathrm{CD} 25=2, \% \text { CD29 }=44 \\ & \% \mathrm{CD} 69=1, \% \text { HLA-DR }=4 \end{aligned}$	$\begin{aligned} & \% \text { CD3 }=51, \% \text { CD20 }=17 \\ & \% \text { CD4 }=51, \% \text { CD8 }=39 \\ & \% \text { CD25 }=1, \% \text { CD29 }=39 \\ & \mathscr{W}^{2} \text { CD69 }=1, \% \text { HLA-DR }=2 \end{aligned}$
Day 14	$\begin{aligned} & \% \text { CD3 }=64, \% \text { CD20 }=14 \\ & \% \text { CD4 }=49, \% \text { CDS }=44 \\ & \% \text { CD25 }=1, \% \text { CD29 }=44 \\ & \% C D 69 \leqq 1, \% \text { HLA-DR }=15 \end{aligned}$	$\begin{aligned} & \% \mathrm{CD} 3-59, \% \mathrm{CD} 20=20 \\ & \% \mathrm{CD} 4=60, \% \mathrm{CDS}=35 \\ & \% \mathrm{CD} 25 \leqq 1, \% \mathrm{CD} 29=34 \\ & \% \mathrm{CD} 69 \leqq 1, \% \mathrm{HLA} \cdot \mathrm{DR}=1 \end{aligned}$

Pharmacokinetic analysis revealed the presence of significant levels (up to $97.3 \mu \mathrm{~g} / \mathrm{ml}$) of 10D1 MAb in the

Heparinized blood samples were analyzed fresh by flow cytometry using FITC- or PE-labeled anti-lymphocyte
reagents. \% CD3 and \% CD20 are based on a lymphocyte gate. The additional T-cell markers and activation markers are all based on CD3-positive cells. These data indicate that multiple doses of MAb 10D1 does not have a significant effect on B and T-cell populations or T-cell activation markers.
B. 10D1 Primate Toxicology Study (3.0 and $10.0 \mathrm{mg} / \mathrm{Kg}$)

Six cynomolgus monkeys (four males and two females), experimentally non-naive and weighing 2.4 to 3.8 kg at the outset of the study, were assigned to treatment groups as shown in Table 9 below.

TABLE 9

Group No.	Number of Males/Females	Dose Level $(\mathrm{mg} / \mathrm{kg})$	Dose Vol. $(\mathrm{m} / \mathrm{kg})$	Dose Solution Conc. $\mathrm{mg} / \mathrm{ml})$
1	$3 / 0$	3	0.6	5.0
2	$2 / 2$	10	2.0	5.0

Each animal received a dose of human anti-CTLA4 (5 $\mathrm{mg} / \mathrm{ml}$ concentration) by intravenous injection (i.e., "slowpush" bolus injection) every three days for one week (i.e., on Days 1, 4 and 7). Detailed clinical observations were conducted at least twice daily ("cageside observations"), and a thorough physical examination was performed on each animal prior to the study and on Day 12. Body weights were measured weekly (prestudy and Days 7 and 14), and ophthalmoscopic examination was conducted on all animals prior to the study and on Day 12. Blood samples for evaluation of serum chemistry, hematology and coagulation parameters were collected from all animals prestudy and on Day 14. Additional samples for selected hematology parameters (total and differential white blood cells only) were collected prior to dosing on each dosing day (Days 1, 4, and 7). Urine samples for standard urinalysis were obtained by drainage from specially designed cage-pans prior to dosing and on Day 13. Blood samples were also collected prior to each dose (Days 1, 4 and 7) and prior to termination (Day 14) for various analyses conducted by Medarex. These included analysis of test article concentration (pharmacokinetics), determination of the presence of antibodies to the test article, and flow cytometry analysis. All animals were euthanized on Day 14, at which time, a complete gross necropsy was conducted, major organs were weighed, and a standard complete set of tissues was collected from each animal and processed for examination by light microscopy.
Intravenous administration of human anti-CTLA4 at dose levels of $3 \mathrm{mg} / \mathrm{kg}$ and $10 \mathrm{mg} / \mathrm{kg}$ given every three days for a total of three doses was very well tolerated by cynomolgus monkeys. There were no clinical signs of toxicity from the cageside observations and physical examinations, and no effects on body weight, ocular examination findings, clinical pathology parameters, gross necropsy findings, organ weights or tissue histomorphology.
obtained prior to dosing on Days 4 and 7, and prior to necropsy on Day 14) indicated dose-dependent exposure to the test article. On Day 7, predose mean concentrations were approximately 84 and $240 \mu \mathrm{~g} / \mathrm{ml}$ for the 3 - and $10-\mathrm{mg} / \mathrm{kg}$ 5 dose groups, respectively.

A potential for accumulation of the test article in serum with the every-three-day dosing schedule in monkeys was evident from the difference between the Day 4 and Day 7 trough levels (i.e., means concentrations on Day 7 were the high residual levels on Day 14 (one week after the last dose), which were similar to the Day 7 trough levels. Evidence of antibody formation against the test article was detected in two of the six study animals (one from Group 1 and another from Group 2). In the former case, it appeared that the antibody response might have affected the clearance of the test article from circulation. Flow cytometric analysis of lymphocyte subsets revealed a modest increase in total CD3-positive cells between Days 1 and Day 14, which correlated with an increase in CD3/CD4-positive cells, and a respective decrease in CD3/CD8-positive cells (Group 2 only). The percentage of CD3 cells expressing CD29 and HLA-DR moderately increased over the course of the study, which was consistent with previous findings that antiCTLA4 antibodies can enhance antigen-specific T-cells.

In conclusion, apart from the minor changes in circulating lymphocyte subpopulations, the highest dose level tested in this study (i.e., three doses of $10 \mathrm{mg} / \mathrm{kg}$ given at three-day intervals) was an absolute no-effect dose level in cynomolgus monkeys.

Example 10

A Phase I Human Clinical trial of MAb 10D1 in Prostate Cancer (MDXCTLA4-01) and Melanoma (MDXCTLA4-02)

MDXCTLA4-01 is an open-label study of anti-cytotoxic T-lymphocyte-associated antigen-4 (anti-CTLA4) monoclonal antibody 10D1 (MAb 10D1in patients with progressive, metastatic, hormone-refractory prostate cancer. Treatment is a single dose of MAb 10D1 that is administered intravenously, as an infusion, at a dosage of $3.0 \mathrm{mg} / \mathrm{Kg}$.

The objectives of this trial are to determine if i. administration of MAb 10D1 causes nonspecific T-cell activation, ii. to establish a safety/tolerability profile for MAb 10D1 in these patients and, iii. to determine the pharmacokinetic profile of MAb 10D1 and assess the development of a host 50 immune response to MAb 10D1. In addition the study will attempt to identify preliminary evidence of efficacy. The study is a multicenter, open-label study of a single dose of MAb 10D1 in 14 subjects. The study consists of four phases: Screening, Infusion, Post-infusion, and Follow-up (see Table 10 below).

TABLE 10

Phase	Screen	Infusion	Post-infusion												Followup
Time	$\begin{gathered} \text { days } \\ -14 \text { to } 0 \end{gathered}$	$\begin{gathered} -30 \text { to } 130 \\ \text { min } \end{gathered}$	$\begin{aligned} & 145 \\ & \text { min } \end{aligned}$	$\begin{aligned} & 160 \\ & \min \end{aligned}$	190 \min	$\begin{aligned} & 250 \\ & \text { min } \end{aligned}$	$\begin{aligned} & 370 \\ & \text { min } \end{aligned}$	$\begin{aligned} & 24 \\ & \text { his } \end{aligned}$	$\begin{aligned} & 48 \\ & \text { hrs } \end{aligned}$	$\begin{gathered} 72 \\ \text { hrs } \end{gathered}$	$\begin{gathered} \text { day } \\ 7 \end{gathered}$	day 14	day 21	$\begin{gathered} \text { day } \\ 28 \end{gathered}$	monthly

The results of the analysis of test article concentration in serum samples (i.e., trough levels measured in samples

65
Patients with histologic diagnosis of primary adenocarcinoma of the prostate, and progressive metastatic carcinoma
of the prostate after androgen deprivation and at least one systemic non-hormonal manipulation, are being screened for participation in this study. Subjects must have progressive measurable disease, progressive PSA, PSA $>5 \mathrm{ng} / \mathrm{ml}$, testosterone $<50 \mathrm{ng} / \mathrm{dl}$, primary gonadal androgen suppression, 5 life expectancy >12 weeks, and Karnofsky Performance Status $\geqq 60 \%$.

Subjects undergo physical examination, ECG, chest radiography, diagnostic imaging, and blood sampling for hematological, biochemical, and immune function assessments, and have vital signs monitored. Monthly telephone interviews are used to collect and record information on a subset of adverse events, including autoimmune adverse events after disease progression, until six months after treatment. PSA (decline, duration of decline, progression, time to progression) and disease response (complete, partial, stable, progressive) are monitored. Plasma concentrations of MAb 10 D 1 are being assessed immediately prior to, during, and up to two months after, infusion.

Data from four prostate cancer subjects that have been treated are shown in Table 11. No adverse events have been recorded. For all of the subjects treated, MAb 10D1 appears to be well tolerated.

Because of the importance of monitoring the immune status of patients in the trial and the specific goal of monitoring generalized effects on T cell activation by anti-CTLA-4 antibody, the entry criteria in this study included minimum levels of CD4 and CD8 T cells of $\geqq 500 / \mathrm{ml}$ and $\geqq 500 / \mathrm{ml}$ respectively. However, it was observed during the initial accrual in the study that prostate cancer patients have significantly reduced T cell numbers although CD4 and CD8 T cells are clearly present. Many patients were initially rejected based on the above entry criteria (see Table 11). The apparent reduced T cell counts observed is a previously undocumented observation in prostate cancer patients that may have relevance in treatments involving cancer vaccination in these patients. Subsequent to these observations, the entry criteria were amended to include patients having CD4 and CD8 count of $\geqq 300 / \mathrm{ml}$ and $\geqq 200 / \mathrm{ml}$ respectively.
In order to evaluate whether administration of MAb 10D1 can induce undesirable non-specific T cell activation, peripheral blood lymphocytes from the prostate cancer subjects were analyzed by flow cytometry for each of the 45 following markers: CD4, CD8, CD25, CD44, CD69 and HLA-DR. Blood samples were taken at time points indicated in Table 10. No significant change in the frequency of any of these markers was observed during the course of the treatment for each of the prostate cancer subjects treated thus far. An example of this analysis is shown in Table 12 which shows the frequency of CD4, CD25,CD69-positive cells and CD8, CD25,CD69-positive cells at times prior to, during, and subsequent to MAb 10D1 administration in two of the subjects. These data demonstrate that MAb 10D1 does 55 not result in non-specific T cell activation.

TABLE 12

Flow cytometric analysis of \mathbf{T} cell activation markers in prostate cancer subjects treated with $3.0 \mathrm{mg} / \mathrm{Kg}$ MAb 10 D 1 .			
Patient Number	Time Point	$\mathrm{CD}(4+25+69) \%$	$\mathrm{CD}(8+25+69) \%$
3	Screen	1.7	0.8
3	$\begin{aligned} & -30 \text { MIN (Pre- } \\ & \text { Infusion) } \end{aligned}$	2.6	0.8

A second clinical trial (MDXCTLA4-02) using MAb 10D1 in subjects with Stage IV malignant melanoma has also been initiated. A single dose of MAb 10D1 will be administered intravenously, as an infusion, at a dosage of 3.0 $\mathrm{mg} / \mathrm{Kg}$. This study also consists of four phases (Screening, Infusion, Post-Infusion and Follow-up) as described in Table 9, above.

The goals of this study are as those regarding the abovedescribed study in prostate cancers as well as to specifically establish a safety/tolerability profile for MAb 10D1 in ${ }^{60}$ patients with Stage IV malignant melanoma. One patient has been treated in this study (see Table 13). As in the prostate cancer study, MAb 10D1 appears to be well tolerated. Flow cytometric analysis of \mathbf{T} cell activation markers in this 65 subject, analogous to that performed for the prostate tumor trial, also showed no evidence of non-specific T cell activation.

AATTAGCGGC	CGCTGTCGAC	AAGCTTCGAA	TtCAGTATCG	ATGTGGGGTA	50
CCTACTGTCC	CGGGATTGCG	GATCCGCGAT	GATATCGTTG	ATCCTCGAGT	100
GCGGCCGCAG	TATGCAAAAA	AAAGCCCGCT	CATTAGGCGG	GCTCTTGGCA	150
GAACATATCC	ATCGCGTCCG	CCATCTCCAG	CAGCcGcacg	CGGCGCATCT	200
CGGGCAGCGT	TGGGTCCTGG	CCACGGGTGC	gcatgatcgi	g.tcctatcg	250
TTGAGGACCC	GGCTAGGCTG	GCGGGGTTGC	CTTACTGGTT	AGcagatiga	300
ATCACCGATA	cgcgagcgan	CGTGAAGCGA	CTGCTGCTGC	AAAACGTCTG	350
CGACCTGAGC	AACAACATGA	ATGGTCTPTCG	GTTTCCCGTGT	tTCGTAAAGT	400
CTGGAAACGC	GGAAGTCAGC	GCCCTGCACC	ATtatgttce	GGATCTGCAT	450
CGCAGGATGC	TGCTGGCTAC	CCTGTGGAAC	ACCTACATCT	gtattancga	500
AGCGCTGGCA	TTGACCCTGA	GTGATTTTTC	TCTGGTCCCG	CCGCATCCAT	550
ACCGCCAGTT	GTtTACCCTC	ACAACGTTCC	AGTAACCGGG	CATGTTCATC	600
ATCAGTAACC	CGTATCGTGA	GCATCCTCTC	tCGTTTCATC	ggtatcatta	650
CCCCCATGAA	CAGAAATTCC	CCCTTACACG	gagccatcan	gTgaccanac	700
AGGAAAAAAC	CGCCCTTAAC	ATGGCCCGCT	ttatcagang	ccagacatta	750
ACGCTTCTGG	AGAAACTCAA	CGAGCTGGAC	GCGGATGAAC	AGGcagacat	800
Ctgtgatcg	Cttcacgacc	acgctgatga	GCTTTACCGC	AGCTGCCTCG	850
CGCGTTTCGG	TGATGACGGT	GAAAACCTCT	gacacatgca	GCTCCCGGAG	900
ACGGTCACAG	CTTGTCTGTA	AGCGGATGCC	GGGAGCAGAC	AAGCCCGTCA	950
GGGCGCGTCA	GCGGGTGTTG	gcgGgtatcg	GGGCGCAGCC	ATGACCCAGT	1000
CACGTAGCGA	tagcgalag	tatactggct	taActatgcg	gcatcagagc	1050
Agatig	gagagtgcac	CATATGCGGT	gTGAAATACC	GCACAGATGC	1100
gTang inga	AATACCGCAT	CAGGCGCTCT	tccgcticct	CGCTCACTGA	1150
CTCGCTGCGC	TCGGTCGTTC	GGCTGCGGCG	AGCGGTATCA	GCTCACTCAA	1200
AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	gGGAtaACGC	AGGAAAGAAC	1250
Atgtgaccan	AAGGCCAGCA	AAAGGCCAGG	AACCGTAAAA	AGGCCGCGTT	1300
GCTGGCGTTT	ttccataggc	Tccacccccc	TGACGAGCAT	CACAAAAATC	1350
GACGCTCAAG	tcagaggtag	CGAAACCCGA	CAGGACTATA	AAgAtaccag	1400
GCGTTTCCCC	CTGGAAGCTC	CCTCGTGCGC	TCTCCTGTTC	CGACCCTGCC	1450
GCTTACCGGA	tacctatccg	ccttectcce	TTCGGGAAGC	GTGGCGCTTT	1500
CTCATAGCTC	ACGCTGTAGG	TATCTCAGTT	CGGTGTAGGT	CGTtCGCtce	1550
AAGCTGGGCT	GTGTGCACGA	ACCCCCCGTT	CAGCCCGACC	GCTGCGCCTT	1600
ATCCGGTAAC	tatcgictig	Agtccancce	gGtangacac	gactitatcge	1650
CACTGGCAGC	AGCCAGGCGC	GCCTTGGCCT	AAGAgGccac	tGgtancagg	1700
Attagcagag	CGAGGTATGT	AGGCGGTGCT	ACAGAGTTCT	TGAAGTGGTG	1750
GCCTAACTAC	gGctacacta	GAAGGACAGT	ATTTGGTATC	TGCGCTCTGC	1800
TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG	Atccgecana	1850
CAAACCACCG	CTGGTAGCGG	TGGTTTTTTT	GTtTGCAAGC	agcagattac	1900
GCGCAGAAAA	AAAGGATCTC	AAGAAGATCC	trigatcter	TCTACGGGGT	1950
CTGACGCTCA	GTGGAACGAA	AACTCACGTT	AAGGGATTTT	ggtcatgaga	2000

tIATCAAAAA GGATCTTCAC CTAGATCCTT TTAAATTAAA AATGAAGTTT 2050 TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT 2100 GCTTAATCAG TGAGGCACCT ATCTCAGCGA TCTGTCTATT TCGTTCATCC 2150 ATAGTTGCCT GACTCCCCGT CGTGTAGATA ACTACGATAC GGGAGGGCTT 2200 ACCATCTGGC CCCAGTGCTG CAATGATACC GCGAGACCCA CGCTCACCGG 2250 CTCCAGATTT ATCAGCAATA AACCAGCCAG CCGGAAGGGC CGAGCGCAGA 2300 AGTGGTCCTG CAACTTTATC CGCCTCCATC CAGTCTATTA ATTGTTGCCG 2350 GgAAGCTAGA GTAAGTAGTT CGCCAGITIAA TAGTTTGGCGC AACGTTGTTG 2400 CCATTGCTGC AGGCATCGTG GTGTCACGCT CGTCGTTUGG TATGGCTTCA 2450 TTCAGCTCCG GTTCCCAACG ATCAAGGCGA GTTACATGAT CCCCCATGTT 2500 GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT GTCAGAAGTA 2550 AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT 2600 CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC 2650 AACCAAGTCA TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC 2700 CGGCGTCAAC ACGGGATAAT ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG 2750 CTCATCATTG GAAAACGTTC TTCGGGGCGA AAACTCTCAA GGATCTTACC 2800 GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC AACTGATCTT 2850 CAGCATCTTT TACTITCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG 2900 CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT 2950 CATACTCTTC CTTTHTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC 3000 TCATGAGCGG ATACATATTT GAATGTATTT AGAAAAATAA ACAAATAGGG 3050 GTTCCGCGCA CATTTCCCCG AAAAGTGCCA CCTGACGTCT AAGAAACCAT 3100 TATTATCATG ACATTAACCT ATAAAAATAG GCGTATCACG AGGCCCTITTC 3150
GTCTTCAAG 3159
pCK7-96 (Nucleotide residues 3376 to 3881)(SEQ ID NO:39)
AGGAGAATGAATAAATAAAGTGAATCTTTTGCACCTGTGGTTTCTCTCTTTCCTCAATTTAATAATTATT ATCTGTTGTTTACCAACTACTCAATTTCTCTTATAAGGGACTAAATATGTAGTCATCCTAAGGCGCATA ACCATTTATAAAAATCATCCTTCATTCTATTTTACCCTATCATTCCTCTGCAAGACAGTCCTCCCTCAAA CCCACAAGCCTTCTGTCCTCACAGTCCCCTGGGCCATGGATCCTCACATCCCAATCCGCGGCCGCAATT CGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAG CCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCT CACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTPATGAATCGGCCAACGCGCGGGGA GAGGCGGTTTGCGTATTGGGCGC

```
PCG7-96 (SEQ ID NO:40)
```

GAACTCGAGCAGCTGAAGCTTTCTGGGGCAGGCCAGGCCTGACCTTGGCTTTGGGGCAGGGAGGGGGCTAAGGTG AGGCAGGTGGCGCCAGCCAGGTGCACACCCAATGCCCATGAGCCCAGACACTGGACGCTGAACCTCGCGGACAGT TAAGAACCCAGGGGCCTCTGCGCCCTGGGCCCAGCTCTGTCCCACACCGCGGTCACATGGCACCACCTCTCTTGC AGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCT GGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGT GCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAG

CTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGGTGA GAGGCCAGCACAGGGAGGGAGGGTGTCTGCTGGAAGCCAGGCTCAGCGCTCCTGCCTGGACGCATCCCGGCTATG CAGCCCCAGTCCAGGGCAGCAAGGCAGGCCCCGTCTGCCTCTTCACCCGGAGGCCTCTGCCCGCCCCACTCATGC TCAGGGAGAGGGTCTTCTGGCTTTTTCCCCAGGCTCTGGGCAGGCACAGGCTAGGTGCCCCTAACCCAGGCCCTG CACACAAAGGGGCAGGTGCTGGGCTCAGACCTGCCAAGAGCCATATCCGGGAGGACCCTGCCCCTGACCTAAGCC CACCCCAAAGGCCAAACTCTCCACTCCCTCAGCTCGGACACCTTCTCTCCTCCCAGATTCCAGTAACTCCCAATC TTCTCTCTGCAGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGGTAAGCCAGCCCAGGCCT CGCCCTCCAGCTCAAGGCGGGACAGGTGCCCTAGAGTAGCCTGCATCCAGGGACAGGCCCCAGCCGGGTGCTGAC ACGTCCACCTCCATCTCTTCCTCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCC AAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAG GTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAG GTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGTGGGACCCGTGGGGTGCGA GGGCCACATGGACAGAGGCCGGCTCGGCCCACCCTCTGCCCTGAGAGTGACCGCTGTACCAACCTCTGTCCCTAC AGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAA CTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAG CAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAG CCTCTCCCTGTCTCCGGGTAAATGAGTGCGACGGCCGGCAAGCCCCCGCTCCCCGGGCTCTCGCGGTCGCACGAG GATGCTTGGCACGTACCCCCTGTACATACTTCCCGGGCGCCCAGCATGGAAATAAAGCACCCAGCGCTGCCCTGG GCCCCTGCGAGACTGTGATGGTTCTTHCCACGGGTCAGGCCGAGTCTGAGGCCTGAGTGGCATGAGGGAGGCAGA GCGGGTCCCACTGTCCCCACACTGGCCCAGGCTGTGCAGGTGTGCCTGGGCCCCCTAGGGTGGGGCTCAGCCAGG GGCTGCCCTCGGCAGGGTGGGGGATTHGCCAGCGTGGCCCTCCCTCCAGCAGCACCTGCCCTGGGCTGGGCCACG GGAAGCCCTAGGAGCCCCTGGGGACAGACACACAGCCCCTGCCTCTGTAGGAGACTGTCCTGTTCTGTGAGCGCC ССTGTCCTCCCGACCTCCATGCCCACTCGGGGGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGGGTACCGAGC TCGAATTCATCGATGATATCAGATCTGCCGGTCTCCCTATAGTGAGTCGTATTAATTTCGATAAGCCAGGTTAAC CTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACT GACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACA GAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCG TTGCTGGCGTTITTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGA AACCCGACAGGACTATAAAGATACCAGGCGTTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTG CCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTAT CTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCC TTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAAC AGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGA AGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGC AAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAA GAAGATCCTTTGATCTHTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTHTGGTCATG AGATTATCAAAAAGGATCTTCACCTAGATCCTTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATAT GAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATITCGTTCA TCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCA

ATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGC AGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCG CCAGTTAATAGTTTGGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTITGGTATGGCT TCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGITAGCTCC TTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAAT PG4HE (SEQ ID NO:41)

GAACTCGAGCAGCTGAAGCTTTCTGGGGCAGGCCGGGCCTGACTTTGGCTGGGGGCAGGGAGGGGGCTAAGGTGA CGCAGGTGGCGCCAGCCAGGTGCACACCCAATGCCCATGAGCCCAGACACTGGACCCTGCATGGACCATCGCGGA TAGACAAGAACCGAGGGGCCTCTGCGCCCTGGGCCCAGCTCTGTCCCACACCGCGGTCACATGGCACCACCTCTC TTGCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCG CCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCG GCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCA GCAGCTTGGGCACGAAGACCTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTG GTGAGAGGCCAGCACAGGGAGGGAGGGTGTCTGCTGGAAGCCAGGCTCAGCCCTCCTGCCTGGACGCACCCCGGC TGTGCAGCCCCAGCCCAGGGCAGCAAGGCATGCCCCATCTGTCTCCTCACCCGGAGGCCTCTGACCACCCCACTC ATGCTCAGGGAGAGGGTCTTCTGGATTTMTCCACCAGGCTCCGGGCAGCCACAGGCTGGATGCCCCTACCCCAG CCCTGCGCATACAGGGGCAGGTGCTGCGCTCAGACCTGCCAAGAGCCATATCCGGGAGGACCCTGCCCCTGACCT AAGCCCACCCCAAAGGCCAAACTCTCCACTCCCTCAGCTCAGACACCTTCTCTCCTCCCAGATCTGAGTAACTCC CAATCTTCTCTCTGCAGAGTCCAAATATGGTCCCCCATGCCCATCATGCCCAGGTAAGCCAACCCAGGCCTCGCC CTCCAGCTCAAGGCGGGACAGGTGCCCTAGAGTAGCCTGCATCCAGGGACAGGCCCCAGCCGGGTGCTGACGCAT CCACCTCCATCTCTTCCTCAGCACCTGAGTTCCTGGGGGGACCATCAGTCTTCCTGTTCCCCCCAAAACCCAAGG ACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCC AGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTC CCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCCAAAGGTGGGACCCACGGGGTGCGAGGGC CACATGGACAGAGGTCAGCTCGGCCCACCCTCTGCCCTGGGAGTGACCGCTGTGCCAACCTCTGTCCCTACAGGG CAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACC TGCCTGGTCAAAGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTAC AAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAGGCTAACCGTGGACAAGAGCAGG TGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTC TCCCTGTCTCTGGGTAAATGAGTGCCAGGGCCGGCAAGCCCCCGCTCCCCGGGCTCTCGGGGTCGCGCGAGGAT CTTGGCACGTACCCCGTCTACATACTTCCCAGGCACCCAGCATGGAAATAAAGCACCCACCACTGCCCTGGGCCC CTGTGAGACTGTGATGGTTCTTTCCACGGGTCAGGCCGAGTCTGAGGCCTGAGTGACATGAGGGAGGCAGAGCGG GTCCCACTGTCCCCACACTGGCCCAGGCTGTGCAGGTGTGCCTGGGCCACCTAGGGTGGGGCTCAGCCAGGGGCT GCCCTCGGCAGGGTGGGGGATTTGCCAGCGTGGCCCTCCCTCCAGCAGCAGCTGCCCTGGGCTGGGCCACGGGAA GCCCTAGGAGCCCCTGGGGACAGACACACAGCCCCTGCCTCTGTAGGAGACTGTCCTGTCCTGTGAGCGCCCTGT CCTCCGACCCCCCATGCCCACTCGGGGGGATCCCCGGGTACCGAGCTCGAATTCATCGATGATATCAGATCTGC GGTCTCCCTATAGTGAGTCGTATTAATTTCGGATAAGCCAGGTTAACCTGCATTAATGAATCGGCCAACGCGCGG GAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCC GCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACAT

GTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCC CCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGC GTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTUTCT CCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA GCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAA CCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGG TGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCT GAAGCCAGTTACCTTCCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTT TTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTC TGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGAT CCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATG CTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTA GATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGC TCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTC CATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGC CATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTPCATTCAGCTCCGGTTCCCAACGATCAAG GCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAA GTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATG CTHTTCTGTGACTGGTGAGTACTCAACCAAGTCATHCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGGCC GGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGG GCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTC AGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAG GGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTPATTGTCT CATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGT GCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCG TCTCGCGCGTITCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTA AGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTA TGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGGACATATTGTCGTTAGAACGCGGCTACAATTAATA CATAACCTTATGTATCATACACATACGATTTAGGTGACACTATA 10D1 VH(SEQ ID NO:16)

CAGGTGCAGC TGGTGGAGTC TGGGGGAGGC GTGGTCCAGC CTGGGAGGTC 50 CCTGAGACTC TCCTGTGCAG CCTCTGGATT CACCTTCAGT AGCTATACTA 100 TGCACTGGGT CCGCCAGGCT CCAGGCAAGG GGCTGGAGTG GGTGACATTT 150 ATATCATATG ATGGAAACAA TAAATACTAC GCAGACTCCG TGAAGGGCCG 200 ATTCACCATC TCCAGAGACA ATTCCAAGAA CACGCTGTAT CTGCAAATGA 250 ACAGCCTGAG AGCTGAGGAC ACGGCTATAT ATTACTGTGC GAGGACCGGC 300 TGGCTGGGGC CCTTTGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC 350 CTCAG

10D1 VK(SEQ ID NO:6)
GAAATTGTGT TGACGCAGTC TCCAGGCACC CTGTCTTTGT CTCCAGGGGA 50
AAGAGCCACC CTCTCCTGCA GGGCCAGTCA GAGTGTTGGC AGCAGCTACT 100
TAGCCTGGTA CCAGCAGAAA CCTGGCCAGG CTCCCAGGCT CCTCATCTAT 150
GGTGCATTCA GCAGGGCCAC TGGCATCCCA GACAGGTTCA GTGGCAGTGG 200
GTCTGGGACA GACTTCACTC TCACCATCAG CAGACTGGAG CCTGAAGATT 250
TTGCAGTGTA TTACTGTCAG CAGTATGGTA GCTCACCGTG GACGTTCGGC 300
CAAGGACCA AGGTGGAAAT CAAAC
4B6 VH(SEQ ID NO: 18)
CAGGTGCAGC TGGTGGAGTC TGGGGGAGGC GTGGTCCAGC CTGGGAGGTC 50
CCTGAGACTC TCCTGTGCAG CCTCTGGATT CACCTTCAGT AGCTATACTA 100
TGCACTGGGT CCGCCAGGCT CCAGGCAAGG GGCTGGAGTG GGTGACATTT 150
ATATCATATG ATGGAAGCAA TAAACACTAC GCAGACTCCG TGAAGGGCCG 200
ATTCACCGTC TCCAGAGACA ATTCCAAGAA CACGCTGTAT CTGCAAATGA 250
ACAGCCTGAG AGCTGAGGAC ACGGCTATAT ATTACTGTGC GAGGACCGGC 300
TGGCTGGGGC CCTITGACTA CTGGGGCCAG GGAACCCTGG TCACCGTCTC 350
CTCAG
4B6 VK(SEQ ID NO: 8)
GAAATTGTGT TGACGCAGTC TCCAGGCACC CTGTCTTTGT CTCCAGGGGA 5
AAGAGCCACC CTCTCCTGCA GGGCCAGTCA GAGTGTTAGC AGCAGCTTCT 100
TAGCCTGGTA CCAGCAGAAA CCTGGCCAGG CTCCCAGGCT CCTCATCTAT 150
gGTgcatcca gcagggccac tggcatccca gacaggrrtca gTggceagtgg 200
gTCTGGGACA GACTTCACTC TCACCATCAG CAGACTGGAG CCTGAAGATT 250
TTGCAGTGTA TTACTGTCAG CAGTATGGTA GCTCACCGTG GACGTTCGGC 300
CAAGGGACCA AGGTGGAAAT CAAAC 325
$1 E 2 \mathrm{VH}(\mathrm{SEQ}$ ID NO:22)
CAGGTGCAGC TGGTGGAGTC TGGGGGAGGC GTGGTCCAGC CTGGGAGGTC 50
CCTGAGACTC TCCTGTGCAG CGTCTGGATT CACCTTCAGT AGCTATGGCA 100
TGCACTGGGT CCGCCAGGCT CCAGGCAAGG GGCTGGAGTG GGTGGCAGTT 150
ATATGGTATG ATGGAAGTAA TAAATACTAT GCAGACTCCG TGAAGGGCCG 200
ATTCACCATC TCCAGAGACA ATTCCAAGAA CACGCTGTAT CTGCAAATGA 25
ACAGCCTGAG AGCCGAGGAC ACGGCTGTGT TTTACTGTGC GAGAGCTCCC 300
AATTATATTG GTGCTTTTGA TGTCTGGGGC CAAGGGACAA TGGTCACCGT 350
cTCTTCAG
$1 E 2$ VK(SEQ ID NO: 12)
GACATCCAGA TGACCCAGTC TCCATCCTCA CTGTCTGCAT CTGTAGGAGA 50
CAGAGTCACC ATCACTTGTC GGGCGAGTCA GGGTATTAGC AGCTGGTTAG 100
CCTGGTATCA GCAGAAACCA GAGAAAGCCC CTAAGTCCCT GATCTATGCT 150
GCATCCAGTT TGCAAAGTGG GGTCCCATCA AGGTTCAGCG GCAGTGGATC 200
TGGGACAGAT TTCACTCTCA CCATCAGCAG CCTGCAGCCT GAAGATHTTG 250
CAACTTATTA CTGCCAACAG TATAATAGTT ACCCTCCGAC GTTCGGCCAA 300
GGGACCAAGG TGGAAATCAA AC
TABLE 11

Screen no.	Subject no.	Initials	Amendment \#	Day	Date	$\begin{gathered} \text { PSA } \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	Platelets$\times 10^{3} / \mathrm{ul}$	Study No. MDXCTLA4-01 Selected Lab Values Summary									$\begin{gathered} \text { CD4/ } \\ \mathrm{ul} \\ \hline \end{gathered}$	$\begin{gathered} \text { CD8/ } \\ \mathrm{ul} \\ \hline \end{gathered}$	$\begin{gathered} \text { ESR } \\ \mathrm{mm} / \mathrm{hr} \end{gathered}$	$\begin{aligned} & \mathrm{H}_{\mathrm{g}} \\ & \mathrm{~g} / \mathrm{dl} \end{aligned}$	Herit $\%$
								WBC$\times 10^{3} / \mathrm{cl}$	Neuts		Lymphs		Monos		Eos						
									$\%$	$\times 10^{3} / \mathrm{ul}$	$\%$	$\times 10^{3} / \mathrm{ll}$	\%	$\times 10^{3} / \mathrm{wl}$	\%	$\times 10^{3} / \mathrm{ul}$					
02001	001	JGR		Scr		144.80	263	8.12	73.00	5.90	18.00	1.47	5.60	0.46	1.80	0.15	670	367	71	10.4	30
02001	001	JGR		0		185.20	267	5.74	66.00	3.79	22.00	1.32	6.60	0.38	3.10	0.18	704	376		10.6	32
02001.	001	JGR		1			259	6.31	69.00	4.38	20.00	1.29	8.70	0.55	0.90	0.00	A	A		9.5	30
02001	001	JGR		2			240	6.59	70.00	4.66	19.00	1.31	6.70	0.44	1.80	0.12	556	303		9.5	28
02001	001	JGR		3			270	6.53	71.00	4.63	21.00	1.36	5.50	0.36	2.20	0.14	608	254		9.3	28
02001	001	JGR		7		257.40	299	6.70	68.00	4.56	23.00	1.53	6.00	0.40	2.50	0.17	A	A		9.5	28
02001	001	JGR		14		332.30	308	6.87	71.90	7.94	21.20	1.39	5.21	0.36	1.90	0.13	A	A		8.8	25
02001	001	JGR		21			286	9.72	74.00	7.20	19.70	1.91	4.80	0.46	1.00	0.10	A	A		9.1	28
02001	001	JGR		28		351.00	304	5.38	63.00	3.40	26.00	1.44	5.80	0.31	2.90	0.16				8.7	25
01002		JWF		Scr		28.30	271	11.60	75.40	8.75	13.60	1.58	5.70	0.66	4.60	0.53	399	189	41	13.9	37
01003		MZB		Scr		12.70	178	5.49	69.00	3.79	19.60	1.08	6.30	0.35	2.70	0.24	325	168	19	12.7	36
01004		TEQ		Scr		1459.00	264	6.26	75.10	4.70	14.40	0.90	7.70	0.48	2.40	0.15	365	129	61	12.8	36
01005		WMN		Scr		192.40	212	6.85	73.70	5.05	17.40	1.20	6.20	0.43	2.20	0.15	483	217			
01006		MRS		Scr		4503.00	140	7.55	76.70	5.79	15.90	1.20	6.20	0.47	0.80	0.06	319	363	83		
01007		TAB		Scr		1394.00	205	5.78	73.00	4.24	13.00	0.76	6.50	0.37	6.00	0.35	376	127		14.1	43
01008		CHB		Scr		70.70	229	4.67	54.00	2.56	32.00	1.52	8.30	0.39	3.40	0.16	461	499		15.6	45
01009	003	RAB		Scr		238.60	144	3.70	78.00	2.88	14.00	0.55	5.40	0.20	1.20	0.04	211	162	43	9.8	30
01009	003	RAB		0		336.90	123	3.92	68.00	2.67	21.00	0.83	8.70	0.34	1.50	0.06	374	188		10.9	31
01009	003	RAB		1			122	3.35	71.00	2.38	22.00	0.74	4.00	0.14	1.80	0.06	307	192		11.3	32
01009	003	RAB		2			109	4.05	74.00	2.99	19.00	0.77	4.80	0.20	1.20	0.05	328	220		11.3	33
01009	003	RAB		3			114	3.79	70.00	2.67	21.00	0.81	6.20	0.23	1.30	0.05	313	265		10.9	31
01009	003	RAB		7		249.30	69	3.38	75.00	2.54	17.00	0.60	5.60	0.19	0.70	0.02	244	161		10.4	30
01009	003	RAB		14		269.80	101	3.68	69.00	2.54	21.20	0.78	8.50	0.31	1.00	0.04	308	173		8.8	25
01009	003	RAB		21			122	4.82	78.00	3.76	13.20	0.64	7.70	0.37	0.60	0.03	218	195		7.4	20
01012	004	CEH		Scr		112.90	172	5.85	64.00	3.74	28.00	1.69	5.60	0.33	1.00	0.06	746	451	10	13.2	40
01012	004	CEH		1													642	475			
01012	004	CEH		2			150	4.82	67.70	3.26	26.40	1.28	4.60	0.22	1.10	0.05	552	380		12.2	36
01012	004	CEH		3			147	4.36	83.70	2.78	29.30	1.28	5.10	0.22	1.30	0.06	544	441		13.1	37
01012	004	CEH		7		190.00	159	4.95	58.60	2.90	32.70	1.61	5.90	0.29	2.50	0.12	642	506		12.6	35
01012	004	CEH		14		207.60	199	5.64	63.10	3.55	29.30	1.65	5.70	0.32	1.60	0.09				13.5	38
01013		KJF		Scr		49.10	228	8.53	65.00	5.62	26.00	2.23	5.30	0.46	2.30	0.20	1213	398		13.4	37
02014	002	Lrs		Scr		12.70	222	5.65	53.00	3.01	34.00	1.92	7.40	0.42	3.90	0.22	721	439		13.6	40
02014	002	L-S		0		27.50	217	5.88	57.00	3.36	32.00	1.88	8.60	0.50	1.50	0.09	676	389		13.5	38
02014	002	L-S		1			226	5.74	55.00	3.19	35.00	2.04	7.00	0.40	1.40	0.08	632	405		13.6	38
02014	002	L-S		2			223	5.59	55.00	3.09	32.00	1.84	9.80	0.55	1.40	0.08	590	339		13.5	39
02014	002	L-S		3			219	4.89	54.00	2.66	34.00	1.68	7.50	0.37	2.70	0.13	529	358		13.2	37
01016	ineligible	normal range		low high		4856.00	106	7.31	86.00	6.29	5.00	0.33	6.80	0.49	1.90	0.14	57.6	7		10.3	31
				150	3.80		40.50	1.96	15.40	0.80	2.60	0.12			404	220					
				7.00		10.70	75.00	7.23	48.50	3.00	10.00	0.92	6.80	0.57	1612	1128	30				

TABLE 13

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 41	
<210> SEQ ID No 1	
<211> LENGTH: 3159	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Description of Artificial Sequence:cloning vector pGP1k	
<400> SEQUENCE: 1	
aattagegge cgetgtcgac aagcttcgaa ttcagtatcg atgtggggta cotactgtcc	60
cgggattgeg gatccgegat gatatcgttg atcctcgagt geggecgeag tatgcaaaaa	120
aaagcecget cattaggegg gctettggca gaacatatce atcgegtecg coatctecag	180
cagcegcacg cggcgeatct cgggeagegt tgggtcetgg ccacgggtge gcatgategt	240
gctcctgtcg ttgaggacce ggctaggctg geggggttge cttactggtt agcagaatga	300
atcaccgata cgegagegaa egtgaagega ctgctgctge aaaacgtctg egacctgagc	360
aacaacatga atggtetteg gtttecgtgt ttcgtaaagt ctggaaacge ggaagtcage	420
gccetgcace attatgttec ggatctgcat cgeaggatgc tgctggetac cetgtggaac	480
acctacatct gtattaacga agcgetggca ttgaccctga gtgatttttc tctggtcecg	540
ccgcatccat accgecagtt gtttaccetc acaacgttce agtaaceggg catgttcatc	600
atcagtaace cgtatcgtga gcatcctctc tcgtttcate ggtatcatta cececatgaa	660
cagaattcc cecttacacg gaggcatcaa gtgaccaaic aggaaamaac cgeccttaac	720
atggeceget ttatcagaag ccagacatta acgettctgg agaaactcaa cgagctggac	780
gcggatgaac aggcagacat ctgtgaatcg cttcacgacc acgetgatga getttaccge	840
agctgcetcg egcgtttcgg tgatgacggt gaaaacctct gacacatgca gctcceggag	900
acggtcacag ettgtctgta agcggatgec gggagcagac aagcecgtca gggegegtca	960
gegggtgttg gegggtgtcg gggegcagcc atgacccagt cacgtagega tagcggagtg	1020
tatactggct taactatgcg gcatcagagc agattgtact gagagtgcac catatgcggt	1080

-continued

<210> SEQ ID NO 2
<211> LENGTH: 349
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE
<223> OTHER INFORMATION: preliminary sequence for heavy chain fragment 10D1. 3

-continued	
<400> SEQUENCE: 2	
tgggggagge gtggtccage ctgggaggtc cetgagacte tectgtgeag cetctggatt	60
caccttcagt agctatacta tgcactgggt cogccaggct ccaggcaagg ggctggagtg	120
ggtgacattt atatcatatg atggaaacaa taaatactac gcagactecg tgaagggecg	180
attcaccatc tccagagaca attccaagaa cacgetgtat ctgcaaatga acagcetgag	240
agctgaggac acggctatat attactgtge gaggaccgge tggctgggge ectttgacta	300
ctggggceag ggaaccetgg tcaccgtctc ctcagcctcc accaaggge	349
<211> LENGTH: 321	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<220> FEATURE:	
<223> OTHER INFORMATION: preliminary sequence for light chain fragment 10D1. 3	
<400> SEQUENCE : 3	
ctccaggcac cetgtctttg tctecaggg aaagagccac cetctcctge agggecagtc 60	
agagtgttgg cagcagctac ttagcetggt accagcagaa acctggcoag gctcccaggc 120	
tcctcatcta tggtgeattc agcagggeca ctggcatcec agacaggttc agtggeagtg 180	
ggtctgggac agacttcact ctcaccatca gcagactgga gcetgaagat tttgcagtgt 240	
attactgtca gcagtatggt agctcaccgt ggacgttegg ccaagggacc aaggtggaaa	300
tcaaacgaac tgtggetgca c	321
$<210\rangle$ SEQ ID NO 4	
<211> LENGTH: 287	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<220> FEATURE:	
<223> OTHER INFORMATION: Vk A-27 germline sequence	
<400> SEQUENCE: 4	
gaaattgtgt tgacgcagte tccaggcacc ctgtctttgt ctccagggga aagagccacc	60
ctctcctgca gggccagtca gagtgttage agcagctact tagcetggta coagcagaaa	120
cetggceagg cteccaggct cctcatctat ggtgcatcca gcagggecac tggcatcoca	180
gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggag	240
cctgaagatt ttgcagtgta ttactgtcag cagtatggta gctcacc	287

$<210>$	SEQ ID NO 5
$<211>$ LENGTH: 95	
$<212>$ TYPE: PRT	
$<213>$ ORGANISM: Homo sapiens	
$<220>$ FEATURE:	
$<223>$ OTHER INFORMATION: light chain variable region predicted sequence	
	for Vk A-27 germline
$<400>$	SEQUENCE: 5

$\underset{1}{\text { Glu }}$ Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
$2025 \quad 30$
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
50

<210> SEQ ID NO 7
<211> LENGTH: 108
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: light chain variable region predicted sequence
\quad for 10D1 from Vk A-27
$<400>$ SEQUENCE: 7

-continued	
gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggag	240
cetgaagatt ttgeagtgta ttactgtcag cagtatggta getcacegtg gacgttegge	300
caagggacca aggtggaaat caaac	325
<210> SEQ ID NO 9	
<211> LENGTH: 108	
<212> TYPE: PRT	
<213> ORGANISM: Homo sapiens	
<220> FEATURE: <223> OTHER INFORMATION: light chain variable region predicted sequence for 4B6 from Vk A-27	
<400> SEQUENCE: 9	
$\underset{1}{\text { Glu Ile val Leu Thr }} \underset{5}{\text { Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly }} \underset{10}{ }$	
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser	
Phe Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu	
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser	
$\underset{65}{\text { Gly Ser Gly Ser Gly Thr }} \underset{70}{ }$ Asp Phe Thr Leu Thr $\underset{75}{ }$ Ile Ser Arg Leu Glu	
Trp Thr Phe Gly Gln Gly Thr Lys Val Glu ile Lys100105	
<210><211>SEQ IDLENG	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<220> FEATURE:	
<400> SEQUENCE: 10	
gacatccaga tgacccagte tecatcctea ctgtctgeat ctgtaggaga cagagtcacc 60	
atcacttgtc gggegagtca gggtattage agctggttag cetggtatca gcagaaacca 120	
gagaangcec ctaagtccet gatctatget gcatccagtt tgcaaagtgg ggtcceatca 180	
aggttcageg gcagtggatc tgggacagat ttcactctca ccatcagcag cetgcagcet 240	
gaegatttg caacttatta ctgccaacag tataatagtt accetcc 287	

$<210>$	SEQ ID NO 11
<211> LENGTH: 94	
<212> TYPE: PRT	
<213> ORGANISM: HOmO sapiens	
<220> FEATURE:	
<223> OTHER TNFORMATION: light chain variable region predicted sequence	
\quad for Vk L-15 germline	
$<400>$ SEQUENCE: 11	

$<210>$ SEQ ID NO 13	
$<211>$ LENGTH: 107	
$<212>$ TYPE: PRT	
$<213>$ ORGANISM: Homo sapiens	
$<220>$ FEATURE:	
$<223>$ OTHER INFORMATION: light chain variable region predicted sequence	
	for 1E2 from Vk L-15
$<400>$	SEQUENCE: 13

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr tle Ser Ser Leu Gln Pro
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Pro Pro
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
$<210>$ SEQ ID NO 14
$<211>$ LENGTH: 294
$<212>$ TYPE: DNA
$<213>$ ORGANISM: HOMO sapiens
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: VH $3-30.3$ germline sequence
$<400>$ SEQUENCE: 14
caggtgeage tggtggagtc tgggggagge gtggtccagc etgggaggtc cetgagacte 60
tcctgtgcag cotctggatt caccttcagt agctatgcta tgcactgggt cogccaggct 120

ccaggcaagg ggctggagtg ggtggcagtt atatcatatg atggaagcaa taaatactac 180
gcagactceg tgaagggecg attcaccatc tccagagaca attccaagaa cacgetgtat 240

Ala Arg

<210> SEQ ID NO 17
$<211>$ LENGTH: 118
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: heavy chain variable region predicted sequence
for 10D1 from VH $3-30.3$
$<400>$ SEQUENCE: 17

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
$2025 \quad 30$

Thr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu trp Val
35 Thr Phe Ile Ser Tyr Asp Gly Asn Asn Lys Tyr Tyr Ala Asp Ser Val

<210> SEQ ID NO 18
<211> LENGTH: 355
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain variable region VH 4E6 from VH
$\quad 3-30.3$
<400> SEQUENCE: 18

$<210>$	SEQ ID NO 19
$<211>$	LENGTH: 118
$<212>$	TYPE: PRT
$<213>$	ORGANISM: HOMO sapiens
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: heavy chain variable region predicted sequence
	for 4B6 from VH $3-30.3$
$<400>$	SEQUENCE: 19

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly the Thr phe Ser Ser Tyr
Thr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
Thr Phe Ile Ser Tyr Asp Gly Ser Asn Lys His Tyr Ala Asp Ser Val
50
50

| Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr | | |
| ---: | ---: | ---: | ---: |
| 65 | 70 | 85 |

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Ile Tyr Tyr Cys $\underset{95}{95}$| 95 |
| ---: |

Ala Arg Thr Gly Trp Leu Gly Pro Phe Asp Tyr Trp Gly Gln Gly Thr
100
105
<210> SEQ ID NO 20
<211> LENGTH: 296
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<223> OTHER INFORMATION: VH $3-33$ germline sequence

-continued		
<400> SEQUENCE: 20		
caggtgcage tggtggagtc tgggggagge gtggtccagc	ctgggaggtc cetgagactc	60
tcetgtgeag egtctggatt caccttcagt agctatggca	tgcactgggt cegceagget	120
ccaggcaagg ggctggagtg ggtggcagtt atatggtatg	atggaagtaa taaatactat	180
gcagactecg tgaagggecg attcaccatc tccagagaca	attccaagaa cacgetgtat	240
ctgcaaatga acagcetgag agcegaggac acggctgtgt	attactgtge gagaga	296

> SEQ ID NO 21			
<211> LENGTH: 98			
<212> TYPE: PRT			
<213> ORGANISM: Homo gapiens			
<220> FEATURE:			
<223> OTHER INFORMATION: heavy chain variable region predicted sequence for VH 3-33 germline			
<400> SEQUENCE: 21			
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr			
Ala Val50 Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val			
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr6570			
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys $\underset{95}{95} \begin{array}{r}95\end{array}$			

Ala Arg

<210> SEQ ID NO 23
<211> LENGTH: 119
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain variable region predicted sequence
\quad for $1 E 2$ from VH 3-33
<400> SEQUENCE: 23

<210> SEQ ID NO 25
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<223> OTHER INFORMATION: light chain CDR1 (HuMab 4B6)
<400> SEQUENCE: 25
Arg Ala Ser Gln Ser Val Ser Ser Ser Phe Leu Ala
1
10
$\underset{1}{\operatorname{Arg} \text { Ala Ser Gln Gly Ile Ser Ser Trp Leu Ala }} \underset{5}{ }$
<210> SEQ ID NO 27
$<211>$ LENGTH: 5
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<220>$ FEATURE:
$<223>$ OTHER TNFORMATION: heavy chain CDR1 (HuMab 10D1, 4B6)
$<400>$ SEQUENCE: 27
Ser Tyr Thr Met His
1
<210> SEQ ID NO 28
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
-continued
<223> OTHER INFORMATION: heavy chain CDR1 (HuMab 1E2)
<400> SEQUENCE: 28
Ser TYr Gly Met His
1
< $210>$ SEQ ID NO 29
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<223> OTHER INFORMATION: light chain CDR2 (HuMab 10D1)
<400> SEQUENCE: 29
Gly Ala Phe Ser Arg Ala Thr
1
<210> SEQ ID NO 31
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: HOMO sapiens
<220> FEATURE:
<223> OTHER INFORMATION: light chain CDR2 (HuMab 1E2)
<400> SEQUENCE: 31
Ala Ala Ser Ser Leu Gln Ser
$<210>$ SEQ ID NO 32
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR2 (HuMab 10D1)
<400> SEQUENCE: 32

Gly
<210> SEQ ID NO 33
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR2 (HuMab 4B6)
<400> SEQUENCE: 33

Gly
<210> SEQ ID NO 34 <211> LENGTH: 17

gtcatcctaa ggcgeataac catttataan aatcatcctt cattctattt taccetatca	180
tcctctgcaa gacagtcctc cotcaaacce acaagccttc tgtcctcaca gtcocctggg	240
ccatggatcc tcacatccea atcegcggce gcaattcgta atcatggtca tagctgtttc	300
ctgtgtgaan ttgttatccg ctcacaattc cacacaacat acgagecgga agcataaagt	360
gtaagectg gggtgcetaa tgagtgagct aactcacatt aattgegttg cgctcactge	420
cogctttcea gtcgggaan etgtcgtgec agctgcatta atgaatcgge caacgegegg	480
ggagaggegg tttgegtatt gggege	506
<210> SEQ ID NO 40	
<211> LENGTH: 4723	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Description of Artificial Sequence:gamal chain plasmid pCG-96	eavy
<400> SEQUENCE : 40	
gaactcgage agctgaagct ttctggggca ggccaggect gacettggct ttggggcagg	60
gagggggeta aggtgaggca ggtggcgeca gceaggtgea cacccaatge ceatgagcec	120
agacactgga cgetgaacet egeggacagt taagaaceca ggggectetg cgecetggge	180
ccagctctgt cccacaccge ggtcacatgg caccacctct ettgcagcet ccaccaaggg	240
cecateggte ttececctgg cacectcetc caagageace tetgggggea cageggecet	300
gggctgcetg gtcaaggact acttcccega accggtgacg gtgtcgtgga actcaggege	360
cctgaccage ggegtgeaca ecttcecgge tgtcetacag tectcaggac tetactecct	420
cagcagcgtg gtgaccgtgc cetccagcag cttgggcacc cagacctaca tctgcaacgt	480
gaatcacaag cccagcaaca ccaaggtgga caagaaagtt ggtgagagge cagcacaggg	540
agggagggtg tctgctggaa gccaggctca gcgetcctgc ctggacgeat cecggctatg	600
cagccecagt ccagggeagc aaggcaggce cegtctgcet cttcacecgg aggectetge	660
cogecceact catgctcagg gagagggtct tctggctttt tceccaggct ctgggcagge	720
acaggctagg tgcecctanc ecaggcectg cacacaaagg ggcaggtgct gggctcagac	780
ctgccaagag ccatatccgg gaggaccetg cecctgacct aagcccacce caaaggecaa	840
actetccact ccctcagctc ggacaccttc tetcctccea gattccagta acteccaatc	900
ttctctctge agagcecaaa tcttgtgaca aaactcacac atgcceaccg tgeccaggta	960
agccagceca ggcetcgcec tccagctcaa gqcgggacag gtgcectaga gtagcetgca	1020
tccagggaca ggccecagce gggtgctgac acgtccacct ccatctcttc ctcagcacet	1080
gaactectgg ggqgaccgtc agtcttcctc ttccccccaa aacccaagga caccetcatg	1140
atctccegga cocctgaggt cacatgegtg gtggtggacg tgagcoacga agaccetgag	1200
gtcaagttca actggtacgt ggacggegtg gaggtgcata atgccaagac aaagcegcgg	1260
gaggagcagt acaacagcac gtaccgtgtg gtcagcgtce tcaccgtcct gcaccaggac	1320
tggctgaatg gcaaggagta caagtgcaag gtctccaaca amgccetcce agcceccatc	1380
gagaaaica tetccaaagc caaaggtggg accegtgggg tgcgagggec acatggacag	1440
aggecggctc ggcecaccet ctgecetgag agtgaccget gtaccaacct ctgtcectac	1500
agggcagcec cgagaaccac aggtgtacac cotgccecca tccogggatg agctgaccaa	1560
gaaccaggte agcetgacet gectggtcaa aggcttctat cccagcgaca tcgecgtgga	1620

-continued

aataccgegc cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg 4080
cgaaaactct caaggatctt accgctgttg agatccagtt egatgtaacc cactcgtgca 4140
cccaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaacagga 4200
aggcaaaatg cegcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc 4260
ttccttttc aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 4320
tttgaatgta tttagaaaaa taaacaaata ggggttccge gcacatttcc ecgaaaagtg 4380
ccacctgacg tctaagaaac cattattatc atgacattaa cctataaaaa taggcgtatc 4440
acgaggecet ttcgtctcge gegttteggt gatgacggtg aaaacctetg acacatgcag 4500
ctcceggaga cggtcacage ttgtctgtaa geggatgecg ggagcagaca agcecgtcag 4560
ggcgegtcag cgggtgttgg egggtgtcgg ggctggctta actatgcggc atcagagcag 4620
attgtactga gagtgcacca tatggacata ttgtcgttag aacgeggcta caattaatac 4680
ataaccttat gtatcataca catacgattt agqtgacact ata 4723
<210> SEQ ID NO 41
<211> LENGTH: 4694
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence:gamma heavy
chain plasmid pG4HE
<400> SEQUENCE: 41
gaactcgage agctgaaget ttctggggea ggcegggect gactttggct gggggcaggg 60
agggggetaa ggtgacgeag gtggegceag ceaggtgcac acceaatgce catgagecea 120
gacactggac cetgeatgga ecategegga tagacaagaa ecgaggggee tetgegecet 180
gggeccaget etgtcceaca ecgeggtcac atggcaccac etctcttgea gettccacca 240
agggeceatc egtcttcece ctggegecet getccaggag cacctcogag agcacagecg 300
ccetgggetg cetggtcaag gactacttcc cegaaceggt gacggtgtcg tggaactcag 360
gcgecetgac cagcggegtg cacaccttce cggctgtcet acagtcctca ggactctact 420
ccctcagcag cgtggtgace gtgecctcca gcagcttggg cacgaagace tacacctgea 480
acgtagatca caagcccagc aacaccaagg tggacaagag agttggtgag aggccagcac 540
agggagggag ggtgtctget ggaagccagg ctcagccetc etgcetggac gcaccceggc 600
tgtgeagece cagcecaggg cagcaaggca tgccceatct gtctcctcac ecggaggect 660
ctgaccace cactcatget cagggagagg gtcttctgga tttttccace aggetceggg 720
cagccacagg ctggatgece ctaccecagg ecctgegcat acaggggcag gtgetgegct 780
cagacctgec aagagccata tecgggagga cectgccect gacctaagce caccccaaag 840
gecaaactct ceactccetc agetcagaca cettctctcc teccagatct gagtaactec 900
caatcttctc tetgcagagt ccaaatatgg tccccatgc ccatcatgec caggtaagce 960
aacccaggec tcgecctcca gctcaaggeg ggacaggtge cctagagtag cetgcatcca 1020
gggacaggec ccagcogggt gctgacgcat ccacctccat ctcttcctca gcacctgagt 1080
tcetgggggg accatcagtc ttcetgttcc cccaaaacc caaggacact ctcatgatct 1140
cecggacece tgaggtcacg tgegtggtgg tggacgtgag ceaggaagac cecgaggtce 1200
agttcaactg gtacgtggat ggegtggagg tgcataatge caagacaaag cegcgggagg 1260
agcagttcaa cagcacgtac cgtgtggtca gegtcctcac egtcctgcac caggactgge 1320

tgaacggcaa	ggagtacaag tgcaaggtct ccaacaaagg	tccogtce tccatcgaga	1380
aaaccatctc	caaagccaaa ggtgggacec acggggtgeg	ggccacat ggacagaggt	1440
cagctcggec	caccctctgc cetgggagtg accgctgtge	ctgt coctacaggg	1500
cagececgag	agceacaggt gtacaccotg cocccatccc	ggaggagat gaccaagace	1560
caggtcagec	tgacctgcct ggtcaaagge ttctacccca	cgacatcgc cgtggagtgg	1620
gagagcaatg	ggcagecgga gaacaactac aagaccacg	gtgct ggactccgac	1680
ggctccttct	tcctctacag caggctaacc gtggacaag	ggtggea ggaggggaat	1740
gtcttctcat	tccgtgat gcatgaggct ctgcacaacc	aca gaagagcetc	1800
tcectgtcte	tgggtaaatg agtgecaggg coggcaagec	getccec gggetctegg	1860
ggtcgegcga	ggatgettgg cacgtaccce gtctacatac	tccoaggca cccagcatgg	1920
aataaggca	cccaccactg cectgggece ctgtgagact	gatggttc tttccacggg	1980
tcaggecgag	tctgaggcet gagtgacatg agggaggcag	gcgggtece actgtcceca	2040
cactggecea	ggctgtgeag gtgtgectgg gceacctagg	tggggctca gceagggget	2100
geceteggea	gggtggggga tttgecageg tggecetec	cagcagea getgecetgg	2160
getgggecac	gggaagcect aggagcecet ggggacagac	c tgectctgta	2220
ggagactgtc	ctgtcctgtg agcgecctgt cetccgaccc	atgccea ctcgggggga	2280
teccegggta	gagctcga attcatcgat gatatcagat	cggtct cectatagtg	2340
agtcgtatta	atttcgataa gccaggttaa cetgcattaa	aatcggec aacgegcggg	2400
gagaggeggt	ttgegtattg ggegctcttc cgettcctc	cactgact cgctgcgetc	2460
ggtcgttcgg	gcggcgag cggtatcagc tcactcaaa	ggtaatac ggttatccac	2520
agaatcaggg	gataacgeag gaaagaacat gtgagcaaan	cagcaan aggecaggaa	2580
cogtaaanag	gcegegttge tggegttttt ccataggctc	gcccocctg acgagcatca	2640
caaaaatcga	cgctcaagtc agaggtggcg aaaccogaca	ggactataea 'gataccaggc	2700
gtttceccet	ggaagctcce tcgtgegcte tcctgttccg	cctgecge ttaccggata	2760
cetgtcegec	tttctccett cgggaagegt ggegctttc	aatgetcac gctgtaggta	2820
tctcagttcg	gtgtaggtcg ttcgetccaa getgggetg	gcacgaac cccecgttca	2880
gecegacege	tgcgecttat coggtaacta tegtettga	caacccgg taagacacga	2940
cttategeca	ggcagcag ccactggtaa caggattag	agcgaggt atgtaggegg	3000
tgctacagag	ttcttgaagt ggtggcetaa ctacggctac	tagaagga cagtatttgg	3060
tatctgeget	ctgctgaagc cagttacctt cggaaaaaga	ttggtagct cttgatcegg	3120
caaacaamec	accgctggta gcggtggttt ttttgtttgc	agcagcaga ttacgegcag	3180
aaaaaagga	tctcaagaag atcetttgat cttttctacg	ggtctgacg ctcagtggaa	3240
cgaaaactca	ttaaggga ttttggtcat gagattatca	aaeggatct tcacctagat	3300
ccttttaant	taaaaitgaa gttttaaatc aatctaaagt	tatatgagt aaacttggtc	3360
tgacagttac	caatgcttaa tcagtgagge acctatctea	gatctgtc tatttcgttc	3420
atccatagtt	gcetgactec cogtcgtgta gataactacg	atacgggagg gcttaccatc	3480
tggececagt	gctgcaatga taccgegaga cccacgetca	ccggetccag atttatcage	3540
aataaaccag	ccagecggaa gggecgageg cagaagtggt	ctgcaactt tatccgccte	3600
catccagtct	attaattgtt gcegggaagc tagagtaagt	agttegecag ttaatagttt	3660

-continued

gcgcaacgtt gttgecattg ctacaggcat cgtggtgtca egctegtegt ttggtatgge	3720
ttcattcage tccggttccc aacgatcang gegagttaca tgatccccca tgttgtgcaa	3780
aaaageggtt agctccttcg gtcetcegat cgttgtcaga agtaagttgg cegcagtgtt	3840
atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat cegtaagatg	3900
cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta tgeggegace	3960
gagttgetct tgcecggegt caatacggga taataccgeg ccacatagca gaactttaaa	4020
agtgetcatc attggaaaac gttcttcggg gegaaaictc tcaaggatct taccgetgtt	4080
gagatccagt tegatgtaac ccactegtge acccaactga tcttcagcat cttttacttt	4140
	4200
ggcgacacgg aaatgttgaa tactcatact cttcctttt caatattatt gaagcatta	4260
tcagggttat tgtctcatga gcggatacat atttgaatgt atttagaaaa ataaacaaat	4320
aggggttccg cgcacatttc cocgaaaagt gccacctgac gtctaagaan ccattattat	4380
catgacatta acctataaa ataggcgtat cacgaggcec tttcgtcteg cgegtttegg	4440
tgatgacggt gaaaacctct gacacatgca gctccoggag acggtcacag cttgtctgta	4500
agcggatgce gggagcagac aagcecgtca gggegcgtca gcgggtgttg gegggtgteg	4560
gggctggctt aactatgegg catcagagca gattgtactg agagtgcace atatggacat	4620
attgtegtta gaacgegget acaattaata cataacetta tgtatcatac acatacgatt	4680
taggtgacac tata	4694

What is claimed is:

1. An antibody comprising:
(a) a heavy chain variable amino acid sequence having the amino acid sequence set forth in SEQ ID NO:19; and
(b) a light chain variable amino acid sequence having the amino acid sequence set forth in SEQ ID NO:9,
wherein the antibody is capable of binding human CTLA4.
2. An antibody comprising:
(a) a heavy chain variable amino acid sequence having the amino acid sequence set forth in SEQ ID NO:17; and
(b) a light chain variable amino acid sequence having the amino acid sequence set forth in SEQ ID NO:7,
wherein the antibody is capable of binding human CTLA4.
3. An antibody comprising:
(a) a heavy chain variable amino acid sequence having the amino acid sequence set forth in SEQ ID NO:23; and
(b) a light chain variable amino acid sequence having the amino acid sequence set forth in SEQ ID NO:13,
wherein the antibody is capable of binding human CTLA4.
4. An antibody capable of binding human CTLA4, which antibody comprises:
(a) a heavy chain variable region having CDR sequences set forth in SEQ ID NOS:27, 32 and 37; and
(b) a light chain variable region having CDR sequences set forth in SEQ ID NOS:24, 29 and 35.
5. An antibody capable of binding human CTLA4, which antibody comprises:
(a) a heavy chain variable region having CDR sequences set forth in SEQ ID NOS:27, 33 and 37; and
(b) a light chain variable region having CDR sequences set forth in SEQ ID NOS:25, 30 and 35.
6. An antibody capable of binding human CTLA4, which 40 antibody comprises:
(a) a heavy chain variable region having CDR sequences set forth in SEQ ID NOS:28, 34 and 38; and
(b) a light chain variable region having CDR sequences set forth in SEQ ID NOS:26, 31 and 36.
7. An antibody capable of binding human CTLA4, which antibody comprises:
(a) a heavy chain variable region of a buman V_{H} 3-30.3 gene; and
(b) a light chain variable region of a buman $V_{K} \mathrm{~A}-27$ gene.
8. An antibody according to claim 7, wherein the antibody is capable of binding human CTLA4 with a binding affinity of about $10^{8} \mathrm{M}^{-1}$ or greater.
9. An antibody according to claim 7, wherein the antibody is capable of binding human CTLA4 with a binding affinity of about $10^{9} \mathrm{M}^{-1}$ or greater.
10. An antibody according to claim 7, wherein the anti60 body inhibits binding of the human CTLA4 to B7-1 or to B7-2.
11. An antibody capable of binding human CTLA4, which antibody comprises:
(a) a heavy chain variable region of a human V_{H} 3-33 gene; and
(b) a light chain variable region of a human $\mathrm{V}_{K} \mathrm{~L}-15$ gene.
12. An antibody according to claim 11, wherein the antibody is capable of binding human CTLA4 with a binding affinity of about $10^{8} \mathrm{M}^{-1}$ or greater.
13. An antibody according to claim 11, wherein the antibody is capable of binding human CTLA4 with a bind- 5 ing affinity of about $10^{9} \mathrm{M}[-1]^{-1}$ or greater.
14. An antibody according to claim 11, wherein the antibody inhibits binding of the human CTLA4 to B7-1 or to B7-2.

ATSerat.in
 0146430051005

UNITED STALL DEPARTMENT OF COMMERCE Patent and Trademark Office ASSISTANT SECRETARY AND COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

AUGUST 06, 2001
PTA
TOWNSEND AND TOWNSEND AND CREW LLB ANDREW T. SERAFINI, PH.D.
TWO EMBARCADERO CENTER, ETH FLOOR
SAN FRANCISCO, CA 94111-3834

UNITED STATES PATENT AND TRADEMARK OFFICE
NOTICE OF RECORDATION OF ASSIGNMENT DOCUMENT
THE ENCLOSED DOCUMENT HAS BEEN RECORDED BY THE ASSIGNMENT DIVISION OF THE U.S. PATENT AND TRADEMARK OFFICE. A COMPLETE MICROFILM COPY IS AVAILABLE AT THE ASSIGNMENT SEARCH ROOM ON THE REEL AND FRAME NUMBER REFERENCED BELOW.

PLEASE REVIEW ALL INFORMATION CONTAINED ON THIS NOTICE. THE INFORMATION CONTAINED ON THIS RECORDATION NOTICE REFLECTS THE DATA PRESENT IN THE PATENT AND TRADEMARK ASSIGNMENT SYSTEM. IF YOU SHOULD FIND ANY ERRORS OR HAVE QUESTIONS CONCERNING THIS NOTICE, YOU MAY CONTACT THE EMPLOYEE WHOSE NAME APPEARS ON THIS NOTICE AT 703-308-9723. PLEASE SEND REQUEST FOR CORRECTION TO: USS. PATENT AND TRADEMARK OFFICE, ASSIGNMENT DIVISION, BOX ASSIGNMENTS, CG-4, 1213 JEFFERSON DAVIS HWY, SUITE 320, WASHINGTON, D.C. 20231.

RECORDATION DATE: 05/18/2001
REEL/FRAME: 011817/0279
NUMBER OF PAGES: 2
BRIEF: ASSIGNMENT OF ASSIGNOR'S INTEREST (SEE DOCUMENT FOR DETAILS).

ASSIGNOR:
KIRMAN, ALAN J.
ASSIGNOR:
WALK, EDWARD L.
ASSIGNOR:
LONBERG, NILS
ASSIGNOR:
DEC, YASHWANT M.
ASSIGNOR:
KELER, TABOR P.
ASSIGNEE:
MEDAREX, INC.
67 BEAVER AVENUE
ANNANDALE, NEW JERSEY 08801

DOC DATE: 05/15/2001

DOC DATE: 05/15/2001

DOC DNTE: 05/15/2001

DOC DATE: 05/15/2001

DOC DATE: 05/15/2001

```
- 011817/0279 PAGE 2
```

SERIAL NUMBER: 09644668 FILING DATE: 08/24/2000 PATENT NUMBER:

ISSUE DATE:

LAZENA MARTIN, EXAMINER ASSIGNMENT DIVISION OFFICE OF PUBLIC RECORDS

ASSIGNMENT OF PATENT APPLICATION

JOINT

WHEREAS, Alan J. Korman, of 301 El Cerrito Avenue, Piedmont, CA 94611; Edward L. Halk, of 1004 Edmonds Court, Sunnyvale, CA 94087; Nils Lonberg, of 780 W. California Way, Woodside, CA 94062; Yashwant M. Deo, of 1545 Route 22 East, Annandale, NJ 08801; and Tibor P. Keler, of 30 Park Road, Ottsville, PA 18942 thereinafter referred to as "Assignors," are the inventors of the invention described and set forth in the below-identified application for United States Letters Patent:

Title of Invention:	HUMAN CTLA-4 ANTIBODIES AND THEIR USES
Filing Date:	August 24,2000
Application No.:	$09 / 644,668$; and

WHEREAS, Medarex, Inc., located at 67 Beaver Avenue, Annandale, NJ, 08801, hereinafter referred to as ASSIGNEE," is desirous of acquiring an interest in the invention and application and in any U.S. Letters Patent and Registrations which may be granted on the same;

For good and valuable consideration, receipt of which is hereby acknowledged by Assignors, Assignors have assigned, and by these presents do assign to Assignee all right, title and interest in and to the invention and application and to all foreign counterparts (including patent, utility model and industrial designs), and in and to any Letters Patent and Registrations which may hereafter be granted on the same in the United States and all countries throughout the world, and to claim the priority from the application as provided by the Paris Convention. The right, title and interest is to be held and enjoyed by Assignee and Assignee's successors and assigns as fully and exclusively as it would have been held and enjoyed by Assignors had this Assignment not been made, for the full term of any Letters Patent and Registrations which may be granted thereon, or of any division, renewal, continuation in whole or in part, substitution, conversion, reissue, prolongation or extension thereof.

Assignors further agree that they will, without charge to Assignee, but at Assignee's expense, (a) cooperate with Assignee in the prosecution of U.S. Patent applications and foreign counterparts on the invention and any improvements, (b) execute, verify, acknowledge and deliver all such further papers, including patent applications and instruments of transfer, and (c) perform such other acts as Assignee lawfully may request to obtain or maintain Letters Patent and Registrations for the invention and improvements in any and all countries, and to vest title thereto in Assignee, or Assignee's successors and assigns.

Assignors hereby authorize and request Townsend and Townsend and Crew LLP, Two Embarcadero Center, $8^{\text {th }}$ Floor, San Francisco, CA 94111-3834, to insert herein above the application number and filing date of said application when known.

HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use YERVOY safely and effectively. See full prescribing information for YERVOY.

YERVOY ${ }^{\text {n/ }}$ (ipilimumab)
Injection, for intravenous infusion
Initial U.S. Approval: 2011

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS See full prescribing information for complete boxed warning.

YERVOY can result in severe and fatal immune-mediated adverse reactions due to T-cell activation and proliferation. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immunemediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions. (2.2)

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests and thyroid function tests at baseline and before each dose. (5.1, 5.2, 5.3, 5.4, 5.5)

INDICATIONS AND USAGE

YERVOY is a human cytotoxic T-lymphocyte antigen 4 (CTLA-4)-blocking antibody indicated for the treatment of unresectable or metastatic melanoma. (1)

DOSAGE AND ADMINISTRATION

- YERVOY $3 \mathrm{mg} / \mathrm{kg}$ administered intravenously over 90 minutes every

3 weeks for a total of four doses. (2.1)

- Permanently discontinue for severe adverse reactions. (2.2)
\qquad
- $50 \mathrm{mg} / 10 \mathrm{~mL}(5 \mathrm{mg} / \mathrm{mL})$ (3)
- $\quad 200 \mathrm{mg} / 40 \mathrm{~mL}(5 \mathrm{mg} / \mathrm{mL})$ (3)

None. (4)
___WARNINGS AND PRECAUTIONS
Immune-mediated adverse reactions: Permanently discontinue for severe reactions. Withhold dose for moderate immune-mediated adverse reactions until return to baseline, improvement to mild severity, or complete resolution, and patient is receiving less than 7.5 mg prednisone or equivalent per day. Administer systemic high-dose corticosteroids for severe, persistent, or recurring immune-mediated reactions. (5.1, 5.2, 5.3, 5.4, 5.5)

- Immune-mediated hepatitis: Evaluate liver function tests before each dose of YER VOY.
- Immune-mediated endocrinopathies: Monitor thyroid function tests and clinical chemistries prior to each dose. Evaluate at each visit for signs and symptoms of endocrinopathy. Institute hormone replacement therapy as needed.
-_-_-_-_ADVERSE REACTIONS
Most common adverse reactions ($\geq 5 \%$) are fatigue, diarrhea, pruritus, rash, and colitis. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Bristol-Myers Squibb at 1-800-721-5072 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

USE IN SPECIFIC POPULATIONS
Pregnancy: Based on animal data, YERVOY may cause fetal harm (8.1)

- Nursing mothers: Discontinue nursing or discontinue YERVOY. (8.3)

See 17 for PATIENT COUNSELING INFORMATION and Medication Guide

Revised: March 2011

8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
8.3 Nursing Mothers
8.4 Pediatric Use
8.5 Geriatric Use
8.6 Renal Impairment
8.7 Hepatic Impairment

10 OVERDOSAGE
11 DESCRIPTION
12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
12.3 Pharmacokinetics

13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
13.2 Animal Toxicology and/or Pharmacology

14 CLINICAL STUDIES
16 HOW SUPPLIEDISTORAGE AND HANDLING
17 PATIENT COUNSELING INFORMATION
*Sections or subsections omitted from the full prescribing information are not listed

FULL PRESCRIBING INFORMATION

WARNING: IMMUNE-MEDIATED ADVERSE REACTIONS

YERVOY can result in severe and fatal immune-mediated adverse reactions due to T-cell activation and proliferation. These immune-mediated reactions may involve any organ system; however, the most common severe immune-mediated adverse reactions are enterocolitis, hepatitis, dermatitis (including toxic epidermal necrolysis), neuropathy, and endocrinopathy. The majority of these immune-mediated reactions initially manifested during treatment; however, a minority occurred weeks to months after discontinuation of YERVOY.

Permanently discontinue YERVOY and initiate systemic high-dose corticosteroid therapy for severe immune-mediated reactions. /See Dosage and Administration (2.2)]

Assess patients for signs and symptoms of enterocolitis, dermatitis, neuropathy, and endocrinopathy and evaluate clinical chemistries including liver function tests and thyroid function tests at baseline and before each dose. /See Warnings and Precautions (5.1, 5.2, 5.3, 5.4, 5.5)]

1 INDICATIONS AND USAGE

YERVOY (ipilimumab) is indicated for the treatment of unresectable or metastatic melanoma.

2 DOSAGE AND ADMINISTRATION

2.1 Recommended Dosing

The recommended dose of YERVOY is $3 \mathrm{mg} / \mathrm{kg}$ administered intravenously over 90 minutes every 3 weeks for a total of four doses.

2.2 Recommended Dose Modifications

- Withhold scheduled dose of YERVOY for any moderate immune-mediated adverse reactions or for symptomatic endocrinopathy. For patients with complete or partial resolution of adverse reactions (Grade $0-1$), and who are receiving less than 7.5 mg prednisone or
equivalent per day, resume YERVOY at a dose of $3 \mathrm{mg} / \mathrm{kg}$ every 3 weeks until administration of all 4 planned doses or 16 weeks from first dose, whichever occurs earlier.
- Permanently discontinue YERVOY for any of the following:
- Persistent moderate adverse reactions or inability to reduce corticosteroid dose to 7.5 mg prednisone or equivalent per day.
- Failure to complete full treatment course within 16 weeks from administration of first dose.
- Severe or life-threatening adverse reactions, including any of the following:
- Colitis with abdominal pain, fever, ileus, or peritoneal signs; increase in stool frequency (7 or more over baseline), stool incontinence, need for intravenous hydration for more than 24 hours, gastrointestinal hemorrhage, and gastrointestinal perforation
- Aspartate aminotransferase (AST) or alanine aminotransferase (ALT) >5 times the upper limit of normal or total bilirubin >3 times the upper limit of normal
- Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations
- Severe motor or sensory neuropathy, Guillain-Barré syndrome, or myasthenia gravis
- Severe immune-mediated reactions involving any organ system (eg, nephritis, pneumonitis, pancreatitis, non-infectious myocarditis)
- Immune-mediated ocular disease that is unresponsive to topical immunosuppressive therapy

2.3 Preparation and Administration

- Do not shake product.
- Inspect parenteral drug products visually for particulate matter and discoloration prior to administration. Discard vial if solution is cloudy, there is pronounced discoloration (solution may have pale yellow color), or there is foreign particulate matter other than translucent-towhite, amorphous particles.

Preparation of Solution

- Allow the vials to stand at room temperature for approximately 5 minutes prior to preparation of infusion.
- Withdraw the required volume of YERVOY and transfer into an intravenous bag.
- Dilute with 0.9\% Sodium Chloride Injection, USP or 5\% Dextrose Injection, USP to prepare a diluted solution with a final concentration ranging from $1 \mathrm{mg} / \mathrm{mL}$ to $2 \mathrm{mg} / \mathrm{mL}$. Mix diluted solution by gentle inversion.
- Store the diluted solution for no more than 24 hours under refrigeration $\left(2^{\circ} \mathrm{C}\right.$ to $8^{\circ} \mathrm{C}, 36^{\circ} \mathrm{F}$ to $46^{\circ} \mathrm{F}$) or at room temperature ($20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}$ to $77^{\circ} \mathrm{F}$).
- Discard partially used vials or empty vials of YERVOY.

Administration Instructions

- Do not mix YERVOY with, or administer as an infusion with, other medicinal products.
- Flush the intravenous line with 0.9% Sodium Chloride Injection, USP or 0.5% Dextrose Injection, USP after each dose.
- Administer diluted solution over 90 minutes through an intravenous line containing a sterile, non-pyrogenic, low-protein-binding in-line filter.

3 DOSAGE FORMS AND STRENGTHS

$50 \mathrm{mg} / 10 \mathrm{~mL}(5 \mathrm{mg} / \mathrm{mL})$.
$200 \mathrm{mg} / 40 \mathrm{~mL}(5 \mathrm{mg} / \mathrm{mL})$.

4 CONTRAINDICATIONS

None.

5 WARNINGS AND PRECAUTIONS

YERVOY can result in severe and fatal immune-mediated reactions due to T-cell activation and proliferation. [See Boxed Warning]

5.1 Immune-mediated Enterocolitis

In Study 1, severe, life-threatening, or fatal (diarrhea of 7 or more stools above baseline, fever, ileus, peritoneal signs; Grade 3-5) immune-mediated enterocolitis occurred in 34 (7\%) YERVOY-treated patients, and moderate (diarrhea with up to 6 stools above baseline, abdominal pain, mucus or blood in stool; Grade 2) enterocolitis occurred in 28 (5\%) YERVOY-treated patients. Across all YERVOY-treated patients ($\mathrm{n}=511$), 5 (1%) patients developed intestinal perforation, $4(0.8 \%)$ patients died as a result of complications, and 26 (5\%) patients were hospitalized for severe enterocolitis.

The median time to onset was 7.4 weeks (range $1.6-13.4$) and 6.3 weeks (range $0.3-18.9$) after the initiation of YERVOY for patients with Grade 3-5 enterocolitis and with Grade 2 enterocolitis, respectively.

Twenty-nine patients (85%) with Grade 3-5 enterocolitis were treated with high-dose ($\geq 40 \mathrm{mg}$ prednisone equivalent per day) corticosteroids, with a median dose of $80 \mathrm{mg} /$ day of prednisone or equivalent; the median duration of treatment was 2.3 weeks (ranging up to 13.9 weeks) followed by corticosteroid taper. Of the 28 patients with moderate enterocolitis, 46% were not treated with systemic corticosteroids, 29% were treated with $<40 \mathrm{mg}$ prednisone or equivalent per day for a median duration of 5.1 weeks, and 25% were treated with high-dose corticosteroids for a median duration of 10 days prior to corticosteroid taper. Infliximab was administered to 5 of the 62 patients (8%) with moderate, severe, or life-threatening immune-mediated enterocolitis following inadequate response to corticosteroids.

Of the 34 patients with Grade 3-5 enterocolitis, 74% experienced complete resolution, 3% experienced improvement to Grade 2 severity, and 24% did not improve. Among the 28 patients with Grade 2 enterocolitis, 79% experienced complete resolution, 11% improved, and 11% did not improve.

Monitor patients for signs and symptoms of enterocolitis (such as diarrhea, abdominal pain, mucus or blood in stool, with or without fever) and of bowel perforation (such as peritoneal signs and ileus). In symptomatic patients, rule out infectious etiologies and consider endoscopic evaluation for persistent or severe symptoms.

Permanently discontinue YERVOY in patients with severe enterocolitis and initiate systemic corticosteroids at a dose of 1 to $2 \mathrm{mg} / \mathrm{kg} /$ day of prednisone or equivalent. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least one month. In
clinical trials, rapid corticosteroid tapering resulted in recurrence or worsening symptoms of enterocolitis in some patients.

Withhold YERVOY dosing for moderate enterocolitis; administer anti-diarrheal treatment and, if persistent for more than one week, initiate systemic corticosteroids at a dose of $0.5 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ prednisone or equivalent. [See Dosage and Administration (2.2)]

5.2 Immune-mediated Hepatitis

In Study 1, severe, life-threatening, or fatal hepatotoxicity (AST or ALT elevations of more than 5 times the upper limit of normal or total bilirubin elevations more than 3 times the upper limit of normal; Grade 3-5) occurred in 8 (2\%) YERVOY-treated patients, with fatal hepatic failure in 0.2% and hospitalization in 0.4% of YERVOY-treated patients. An additional 13 (2.5\%) patients experienced moderate hepatotoxicity manifested by liver function test abnormalities (AST or ALT elevations of more than 2.5 times but not more than 5 times the upper limit of normal or total bilirubin elevation of more than 1.5 times but not more than 3 times the upper limit of normal; Grade 2). The underlying pathology was not ascertained in all patients but in some instances included immune-mediated hepatitis. There were insufficient numbers of patients with biopsy-proven hepatitis to characterize the clinical course of this event.

Monitor liver function tests (hepatic transaminase and bilirubin levels) and assess patients for signs and symptoms of hepatotoxicity before each dose of YERVOY. In patients with hepatotoxicity, rule out infectious or malignant causes and increase frequency of liver function test monitoring until resolution.

Permanently discontinue YERVOY in patients with Grade 3-5 hepatotoxicity and administer systemic corticosteroids at a dose of 1 to $2 \mathrm{mg} / \mathrm{kg} /$ day of prednisone or equivalent. When liver function tests show sustained improvement or return to baseline, initiate corticosteroid tapering and continue to taper over 1 month. Across the clinical development program for YERVOY, mycophenolate treatment has been administered in patients who have persistent severe hepatitis despite high-dose corticosteroids. Withhold YERVOY in patients with Grade 2 hepatotoxicity. [See Dosage and Administration (2.2)]

5.3 Immune-mediated Dermatitis

In Study 1, severe, life-threatening, or fatal immune-mediated dermatitis (eg, Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations; Grade 3-5) occurred in 13 (2.5\%)

YERVOY-treated patients. One (0.2%) patient died as a result of toxic epidermal necrolysis and one additional patient required hospitalization for severe dermatitis. There were 63 (12\%) patients with moderate (Grade 2) dermatitis.

The median time to onset of moderate, severe, or life-threatening immune-mediated dermatitis was 3.1 weeks and ranged up to 17.3 weeks from the initiation of YERVOY.

Seven (54\%) YERVOY-treated patients with severe dermatitis received high-dose corticosteroids (median dose 60 mg prednisone/day or equivalent) for up to 14.9 weeks followed by corticosteroid taper. Of these 7 patients, 6 had complete resolution; time to resolution ranged up to 15.6 weeks.

Of the 63 patients with moderate dermatitis, 25 (40\%) were treated with systemic corticosteroids (median of $60 \mathrm{mg} /$ day of prednisone or equivalent) for a median of 2.1 weeks, 7 (11%) were treated with only topical corticosteroids, and 31 (49\%) did not receive systemic or topical corticosteroids. Forty-four (70\%) patients with moderate dermatitis were reported to have complete resolution, 7 (11\%) improved to mild (Grade 1) severity, and 12 (19\%) had no reported improvement.

Monitor patients for signs and symptoms of dermatitis such as rash and pruritus. Unless an alternate etiology has been identified, signs or symptoms of dermatitis should be considered immune-mediated.

Permanently discontinue YERVOY in patients with Stevens-Johnson syndrome, toxic epidermal necrolysis, or rash complicated by full thickness dermal ulceration, or necrotic, bullous, or hemorrhagic manifestations. Administer systemic corticosteroids at a dose of 1 to $2 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ of prednisone or equivalent. When dermatitis is controlled, corticosteroid tapering should occur over a period of at least 1 month. Withhold YERVOY dosing in patients with moderate to severe signs and symptoms. [See Dosage and Administration (2.2)]

For mild to moderate dermatitis, such as localized rash and pruritus, treat symptomatically. Administer topical or systemic corticosteroids if there is no improvement of symptoms within 1 week.

5.4 Immune-mediated Neuropathies

In Study 1, one case of fatal Guillain-Barré syndrome and one case of severe (Grade 3) peripheral motor neuropathy were reported. Across the clinical development program of

YERVOY, myasthenia gravis and additional cases of Guillain-Barré syndrome have been reported.

Monitor for symptoms of motor or sensory neuropathy such as unilateral or bilateral weakness, sensory alterations, or paresthesia. Permanently discontinue YERVOY in patients with severe neuropathy (interfering with daily activities) such as Guillain-Barré-like syndromes. Institute medical intervention as appropriate for management of severe neuropathy. Consider initiation of systemic corticosteroids at a dose of 1 to $2 \mathrm{mg} / \mathrm{kg} /$ day prednisone or equivalent for severe neuropathies. Withhold YERVOY dosing in patients with moderate neuropathy (not interfering with daily activities). [See Dosage and Administration (2.2)]

5.5 Immune-mediated Endocrinopathies

In Study 1, severe to life-threatening immune-mediated endocrinopathies (requiring hospitalization, urgent medical intervention, or interfering with activities of daily living; Grade 3-4) occurred in 9 (1.8\%) YERVOY-treated patients. All 9 patients had hypopituitarism and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies. Moderate endocrinopathy (requiring hormone replacement or medical intervention; Grade 2) occurred in $12(2.3 \%)$ patients and consisted of hypothyroidism, adrenal insufficiency, hypopituitarism, and one case each of hyperthyroidism and Cushing's syndrome. The median time to onset of moderate to severe immune-mediated endocrinopathy was 11 weeks and ranged up to 19.3 weeks after the initiation of YERVOY.

Of the 21 patients with moderate to life-threatening endocrinopathy, 17 patients required long-term hormone replacement therapy including, most commonly, adrenal hormones ($\mathrm{n}=10$) and thyroid hormones ($\mathrm{n}=13$).

Monitor patients for clinical signs and symptoms of hypophysitis, adrenal insufficiency (including adrenal crisis), and hyper- or hypothyroidism. Patients may present with fatigue, headache, mental status changes, abdominal pain, unusual bowel habits, and hypotension, or nonspecific symptoms which may resemble other causes such as brain metastasis or underlying disease. Unless an alternate etiology has been identified, signs or symptoms of endocrinopathies should be considered immune-mediated.

Monitor thyroid function tests and clinical chemistries at the start of treatment, before each dose, and as clinically indicated based on symptoms. In a limited number of patients, hypophysitis was diagnosed by imaging studies through enlargement of the pituitary gland.

Withhold YERVOY dosing in symptomatic patients. Initiate systemic corticosteroids at a dose of 1 to $2 \mathrm{mg} / \mathrm{kg} /$ day of prednisone or equivalent, and initiate appropriate hormone replacement therapy. [See Dosage and Administration (2.2)]

5.6 Other Immune-mediated Adverse Reactions, Including Ocular Manifestations

The following clinically significant immune-mediated adverse reactions were seen in less than 1\% of YERVOY-treated patients in Study 1: nephritis, pneumonitis, meningitis, pericarditis, uveitis, iritis, and hemolytic anemia.

Across the clinical development program for YERVOY, the following likely immune-mediated adverse reactions were also reported with less than 1% incidence: myocarditis, angiopathy, temporal arteritis, vasculitis, polymyalgia rheumatica, conjunctivitis, blepharitis, episcleritis, scleritis, leukocytoclastic vasculitis, erythema multiforme, psoriasis, pancreatitis, arthritis, and autoimmune thyroiditis.

Permanently discontinue YERVOY for clinically significant or severe immune-mediated adverse reactions. Initiate systemic corticosteroids at a dose of 1 to $2 \mathrm{mg} / \mathrm{kg} /$ day prednisone or equivalent for severe immune-mediated adverse reactions.

Administer corticosteroid eye drops to patients who develop uveitis, iritis, or episcleritis. Permanently discontinue YERVOY for immune-mediated ocular disease that is unresponsive to local immunosuppressive therapy. [See Dosage and Administration (2.2)]

6 ADVERSE REACTIONS

The following adverse reactions are discussed in greater detail in other sections of the labeling.

- Immune-mediated enterocolitis [see Warnings and Precautions (5.1)].
- Immune-mediated hepatitis [see Warnings and Precautions (5.2)].
- Immune-mediated dermatitis [see Warnings and Precautions (5.3)].
- Immune-mediated neuropathies [see Warnings and Precautions (5.4)].
- Immune-mediated endocrinopathies [see Warnings and Precautions (5.5)].
- Other immune-mediated adverse reactions, including ocular manifestations [see Warnings and Precautions (5.6)].

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, the adverse reaction rates observed cannot be directly compared with rates in other clinical trials or experience with therapeutics in the same class and may not reflect the rates observed in clinical practice.

The clinical development program excluded patients with active autoimmune disease or those receiving systemic immunosuppression for organ transplantation. Exposure to YERVOY $3 \mathrm{mg} / \mathrm{kg}$ for four doses given by intravenous infusion in previously treated patients with unresectable or metastatic melanoma was assessed in a randomized, double-blind clinical study (Study 1). [See Clinical Studies (14)] One hundred thirty-one patients (median age 57 years, 60% male) received YERVOY as a single agent, 380 patients (median age 56 years, 61% male) received YERVOY with an investigational gp 100 peptide vaccine (gpl00), and 132 patients (median age 57 years, 54% male) received gp 100 peptide vaccine alone. Patients in the study received a median of 4 doses (range 1 to 4 doses). YERVOY was discontinued for adverse reactions in 10% of patients.

The most common adverse reactions ($\geq 5 \%$) in patients who received YERVOY at $3 \mathrm{mg} / \mathrm{kg}$ were fatigue, diarrhea, pruritus, rash, and colitis.

Table 1 presents selected adverse reactions from Study 1, which occurred in at least 5% of patients in the YERVOY-containing arms and with at least 5% increased incidence over the control gpl00 arm for all-grade events and at least 1% incidence over the control group for Grade 3-5 events.

Table 1:
Selected Adverse Reactions in Study 1

	Percentage (\%) of Patients ${ }^{\text {a }}$					
	$\begin{gathered} \hline \text { YERVOY } \\ 3 \mathrm{mg} / \mathrm{kg} \\ \mathrm{n}=131 \\ \hline \end{gathered}$		$\begin{gathered} \text { YERVOY } \\ 3 \mathrm{mg} / \mathrm{kg}+\mathrm{gpl} 00 \\ \mathrm{n}=380 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{gp} 100 \\ & \mathrm{n}=132 \end{aligned}$	
System Organ Class/ Preferred Term	Any Grade	$\begin{gathered} \text { Grade } \\ 3-5 \end{gathered}$	Any Grade	Grade $3-5$	Any Grade	Grade 3-5
Gastrointestinal Disorders						
Diarrhea	32	5	37	4	20	1
Colitis	8	5	5	3	2	0
Skin and Subcutaneous Tissue Disorders						
Pruritus	31	0	21	<1	11	0
Rash	29	2	25	2	8	0
General Disorders and Administration Site Conditions						
Fatigue	41	7	34	5	31	3

a
Incidences presented in this table are based on reports of adverse events regardless of causality.

Table 2 presents the per-patient incidence of severe, life-threatening, or fatal immune-mediated adverse reactions from Study 1.

Table 2: \quad Severe to Fatal Immune-mediated Adverse Reactions in Study 1

	Percentage (\%) of Patients	
	$\begin{gathered} \hline \text { YERVOY } \\ 3 \mathrm{mg} / \mathrm{kg} \\ \mathrm{n}=131 \\ \hline \end{gathered}$	YERVOY $3 \mathrm{mg} / \mathrm{kg}+\mathrm{gp} 100$ $\mathrm{n}=380$
Any Immune-mediated Adverse Reaction	15	12
$\text { Enterocolitis }{ }^{\mathrm{a}, \mathrm{~b}}$	7	7
Hepatotoxicity ${ }^{\text {a }}$	1	2
Dermatitis ${ }^{\text {a }}$	2	3
Neuropathy ${ }^{\text {a }}$	1	<1
Endocrinopathy	4	1
Hypopituitarism	4	1
Adrenal insufficiency	0	1
Other		
Pneumonitis	0	<1
Meningitis	0	<1
Nephritis	1	0
Eosinophilia ${ }^{\text {c }}$	1	0
Pericarditis ${ }^{\text {a,c }}$	0	<1
${ }^{\text {a }}$ Including fatal outcome.		
${ }^{\text {b }}$ Including intestinal perforation.		
${ }^{\text {c }}$ Underlying etiology not established.		

Across clinical studies that utilized YERVOY doses ranging from 0.3 to $10 \mathrm{mg} / \mathrm{kg}$, the following adverse reactions were also reported (incidence less than 1% unless otherwise noted): urticaria (2%), large intestinal ulcer, esophagitis, acute respiratory distress syndrome, renal failure, and infusion reaction.

Based on the experience in the entire clinical program for melanoma, the incidence and severity of enterocolitis and hepatitis appear to be dose dependent.

6.2 Immunogenicity

In clinical studies, 1.1% of 1024 evaluable patients tested positive for binding antibodies against ipilimumab in an electrochemiluminescent (ECL) based assay. This assay has substantial limitations in detecting anti-ipilimumab antibodies in the presence of ipilimumab. Infusion-related or peri-infusional reactions consistent with hypersensitivity or anaphylaxis were not reported in these 11 patients nor were neutralizing antibodies against ipilimumab detected.

Because trough levels of ipilimumab interfere with the ECL assay results, a subset analysis was performed in the dose cohort with the lowest trough levels. In this analysis, 6.9% of 58 evaluable patients, who were treated with $0.3 \mathrm{mg} / \mathrm{kg}$ dose, tested positive for binding antibodies against ipilimumab.

Immunogenicity assay results are highly dependent on several factors including assay sensitivity and specificity, assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of incidence of antibodies to YERVOY with the incidences of antibodies to other products may be misleading.

7 DRUG INTERACTIONS

No formal drug-drug interaction studies have been conducted with YERVOY.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category C
There are no adequate and well-controlled studies of YERVOY in pregnant women. Use YERVOY during pregnancy only if the potential benefit justifies the potential risk to the fetus.

In a combined study of embryo-fetal and peri-postnatal development, severe toxicities including increased incidences of third-trimester abortion, stillbirth, premature delivery, low birth weight, and infant mortality occurred following intravenous administration of ipilimumab to pregnant cynomolgus monkeys every 21 days from the onset of organogenesis through parturition at doses of 2.6 or 7.2 times the recommended human dose of $3 \mathrm{mg} / \mathrm{kg}$ (by AUC). [See Nonclinical Toxicology (13.2)]

In genetically engineered mice in which the gene for CTLA-4 has been deleted (a "knockout mouse"), offspring lacking CTLA-4 were born apparently healthy, but died within 3-4 weeks due to multi-organ infiltration and damage by lymphocytes.

Human IgGl is known to cross the placental barrier and ipilimumab is an IgGl ; therefore, ipilimumab has the potential to be transmitted from the mother to the developing fetus.

8.3 Nursing-Mothers

It is not known whether ipilimumab is secreted in human milk. Because many drugs are secreted in human milk and because of the potential for serious adverse reactions in nursing infants from YERVOY, a decision should be made whether to discontinue nursing or to discontinue YERVOY, taking into account the importance of YERVOY to the mother.

8.4 Pediatric Use

Safety and effectiveness of YERVOY have not been established in pediatric patients.

8.5 Geriatric Use

Of the 511 patients treated with YERVOY at $3 \mathrm{mg} / \mathrm{kg}, 28 \%$ were 65 years and over. No overall differences in safety or efficacy were reported between the elderly patients (65 years and over) and younger patients (less than 65 years).

8.6 Renal Impairment

No formal studies of YERVOY in patients with renal impairment have been conducted. [See Clinical Pharmacology (12.3)]

8.7 Hepatic Impairment

No formal studies of YERVOY in patients with hepatic impairment have been conducted. [See Clinical Pharmacology (12.3)]

10 OVERDOSAGE

There is no information on overdosage with YERVOY.

11 DESCRIPTION

YERVOY (ipilimumab) is a recombinant, human monoclonal antibody that binds to the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4). Ipilimumab is an IgGl kappa immunoglobulin with an approximate molecular weight of 148 kDa . Ipilimumab is produced in mammalian (Chinese hamster ovary) cell culture.

YERVOY is a sterile, preservative-free, clear to slightly opalescent, colorless to pale yellow solution for intravenous infusion, which may contain a small amount of visible translucent-towhite, amorphous ipilimumab particulates. It is supplied in single-use vials of $50 \mathrm{mg} / 10 \mathrm{~mL}$ and $200 \mathrm{mg} / 40 \mathrm{~mL}$. Each milliliter contains 5 mg of ipilimumab and the following inactive ingredients: diethylene triamine pentaacetic acid (DTPA) (0.04 mg), mannitol (10 mg), polysorbate 80 (vegetable origin) (0.1 mg), sodium chloride (5.85 mg), tris hydrochloride (3.15 mg), and Water for Injection, USP at a pH of 7.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

CTLA-4 is a negative regulator of T-cell activation. Ipilimumab binds to CTLA-4 and blocks the interaction of CTLA-4 with its ligands, CD80/CD86. Blockade of CTLA-4 has been shown to augment T-cell activation and proliferation. The mechanism of action of ipilimumab's effect in patients with melanoma is indirect, possibly through T-cell mediated anti-tumor immune responses.

12.3 Pharmacokinetics

The pharmacokinetics of ipilimumab was studied in 499 patients with unresectable or metastatic melanoma who received doses of $0.3,3$, or $10 \mathrm{mg} / \mathrm{kg}$ administered once every 3 weeks for four doses. Peak concentration $\left(C_{m a x}\right)$, trough concentration $\left(C_{m i n}\right)$, and area under the curve (AUC) of ipilimumab were found to be dose proportional within the dose range examined. Upon repeated dosing of YERVOY administered every 3 weeks, ipilimumab clearance was found to be timeinvariant, and minimal systemic accumulation was observed as evident by an accumulation index of 1.5 -fold or less. Ipilimumab steady-state concentration was reached by the third dose. The following mean (percent coefficient of variation) parameters were generated through population pharmacokinetic analysis: terminal half-life of 14.7 days (30.1%); systemic clearance (CL) of $15.3 \mathrm{~mL} / \mathrm{h}(38.5 \%)$; and volume of distribution at steady-state (Vss) of 7.21 L (10.5\%). The
mean ($\pm \mathrm{SD}$) ipilimumab $\mathrm{C}_{\text {min }}$ achieved at steady-state with the $3-\mathrm{mg} / \mathrm{kg}$ regimen was $21.8 \mathrm{mcg} / \mathrm{mL}(\pm 11.2)$.

Specific Populations: Cross-study analyses were performed on data from patients with a variety of conditions, including 420 patients with melanoma who received single or multiple infusions of YERVOY at doses of $0.3,3$, or $10 \mathrm{mg} / \mathrm{kg}$. The effects of various covariates on ipilimumab pharmacokinetics were assessed in population pharmacokinetic analyses.

Ipilimumab CL increased with increasing body weight; however, no dose adjustment of YERVOY is required for body weight after administration on a $\mathrm{mg} / \mathrm{kg}$ basis. The following factors had no clinically meaningful effect on the CL of ipilimumab: age (range 26 to 86 years), gender, concomitant use of budesonide, performance status, HLA-A2*0201 status, positive anti-ipilimumab antibody status, prior use of systemic anticancer therapy, or baseline lactate dehydrogenase (LDH) levels. The effect of race was not examined as there were insufficient numbers of patients in non-Caucasian ethnic groups.

Renal Impairment: Creatinine clearance at baseline did not have a clinically important effect on ipilimumab pharmacokinetics in patients with calculated creatinine clearance values of $29 \mathrm{~mL} / \mathrm{min}$ or greater.

Hepatic Impairment: Baseline AST, total bilirubin, and ALT levels did not have a clinically important effect on ipilimumab pharmacokinetics in patients with various degrees of hepatic impairment.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

The carcinogenic potential of ipilimumab has not been evaluated in long-term animal studies.

Mutagenesis

The genotoxic potential of ipilimumab has not been evaluated.
Impairment of Fertility

Fertility studies have not been performed with ipilimumab.

13.2 Animal Toxicology and/or Pharmacology

The effects of ipilimumab on prenatal and postnatal development in monkeys have not been fully investigated. Preliminary results are available from an ongoing study in cynomolgus monkeys. Pregnant monkeys received ipilimumab every 21 days from the onset of organogenesis in the first trimester through delivery, at dose levels either 2.6 or 7.2 times higher than the clinical dose of $3 \mathrm{mg} / \mathrm{kg}$ of ipilimumab (by AUC). No treatment-related adverse effects on reproduction were detected during the first two trimesters of pregnancy. Beginning in the third trimester, the ipilimumab groups experienced higher incidences of abortion, stillbirth, premature delivery (with corresponding lower birth weight), and higher incidences of infant mortality in a dose-related manner compared to controls.

Genetically engineered mice heterozygous for CTLA-4 (CTLA-4+/-), the target for ipilimumab, appeared healthy and gave birth to healthy CTLA-4 $+/$ - heterozygous offspring. Mated CTLA-4+/- heterozygous mice also produced offspring deficient in CTLA-4 (homozygous negative, CTLA-4-/-). The CTLA-4-/- homozygous negative offspring appeared healthy at birth, exhibited signs of multiorgan lymphoproliferative disease by 2 weeks of age, and all died by 3-4 weeks of age with massive lymphoproliferation and multiorgan tissue destruction.

14 CLINICAL STUDIES

The safety and efficacy of YERVOY were investigated in a randomized (3:1:1), double-blind, double-dummy study (Study 1) that included 676 randomized patients with unresectable or metastatic melanoma previously treated with one or more of the following: aldesleukin, dacarbazine, temozolomide, fotemustine, or carboplatin. Of these 676 patients, 403 were randomized to receive YERVOY at $3 \mathrm{mg} / \mathrm{kg}$ in combination with an investigational peptide vaccine with incomplete Freund's adjuvant (gp100), 137 were randomized to receive YERVOY at $3 \mathrm{mg} / \mathrm{kg}$, and 136 were randomized to receive gp 100 alone. The study enrolled only patients with HLA-A2*0201 genotype; this HLA genotype facilitates the immune presentation of the investigational peptide vaccine. The study excluded patients with active autoimmune disease or those receiving systemic immunosuppression for organ transplantation. YERVOY/placebo was administered at $3 \mathrm{mg} / \mathrm{kg}$ as an intravenous infusion every 3 weeks for four doses. Gpl00/placebo was administered at a dose of 2 mg peptide by deep subcutaneous injection every 3 weeks for four doses. Assessment of tumor response was conducted at weeks 12 and 24 , and every 3 months thereafter. Patients with evidence of objective tumor response at 12 or 24 weeks had assessment for confirmation of durability of response at 16 or 28 weeks, respectively.

The major efficacy outcome measure was overall survival (OS) in the YERVOY+gp100 arm compared to that in the gpl00 arm. Secondary efficacy outcome measures were OS in the YERVOY+gp 100 arm compared to the YERVOY arm, OS in the YERVOY arm compared to the gpl00 arm, best overall response rate (BORR) at week 24 between each of the study arms, and duration of response.

Of the randomized patients, $61 \%, 59 \%$, and 54% in the YERVOY+gp100, YERVOY, and gpl00 arms, respectively, were men. Twenty-nine percent were ≥ 65 years of age, the median age was 57 years, 71% had M1c stage, 12% had a history of previously treated brain metastasis, 98% had ECOG performance status of 0 and 1, 23% had received aldesleukin and 38% had elevated LDH level. Sixty-one percent of patients randomized to either YERVOY-containing arm received all 4 planned doses. The median duration of follow-up was 8.9 months.

The OS results are shown in Table 3 and Figure 1.

Table 3: Overall Survival Results

	$\begin{gathered} \hline \text { YERVOY } \\ \mathrm{n}=137 \\ \hline \end{gathered}$	$\begin{gathered} \text { YERVOY+gpl00 } \\ \mathrm{n}=403 \end{gathered}$	$\begin{aligned} & \hline \text { gp100 } \\ & \mathrm{n}=136 \end{aligned}$
Hazard Ratio (vs. gpl00) (95\% CI)	$\begin{gathered} 0.66 \\ (0.51,0.87) \end{gathered}$	$\begin{gathered} 0.68 \\ (0.55,0.85) \end{gathered}$	
p -value	$\mathrm{p}=0.0026^{\text {a }}$	$\mathrm{p}=0.0004$	
Hazard Ratio (vs. YERVOY) (95\% CI)		$\begin{gathered} 1.04 \\ (0.83,1.30) \end{gathered}$	
Median (months) (95\% CI)	$\begin{gathered} 10 \\ (8.0,13.8) \end{gathered}$	$\begin{gathered} 10 \\ (8.5,11.5) \end{gathered}$	$\begin{gathered} 6 \\ (5.5,8.7) \end{gathered}$

Figure 1: Overall Survival

The best overall response rate (BORR) as assessed by the investigator was 5.7% ($95 \% \mathrm{CI}: 3.7 \%$, 8.4%) in the YERVOY $+\mathrm{gp} 100 \mathrm{arm}, 10.9 \%$ (95% CI: $6.3 \%, 17.4 \%$) in the YERVOY arm, and $1.5 \%(95 \% \mathrm{CI}: 0.2 \%, 5.2 \%)$ in the gpl00 arm. The median duration of response was 11.5 months in the YERVOY +gp 100 arm and has not been reached in the YERVOY or gpl00 arm.

16 HOW SUPPLIED/STORAGE AND HANDLING

YERVOY is available as follows:

Carton Contents	NDC
One 50 mg vial $(5 \mathrm{mg} / \mathrm{mL})$, single-use vial	NDC $0003-2327-11$
One 200 mg vial $(5 \mathrm{mg} / \mathrm{mL})$, single-use vial	NDC $0003-2328-22$

Store YERVOY under refrigeration at $2^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}\left(36^{\circ} \mathrm{F}\right.$ to $\left.46^{\circ} \mathrm{F}\right)$. Do not freeze. Protect vials from light.

17 PATIENT COUNSELING INFORMATION

See MEDICATION GUIDE.

- Inform patients of the potential risk of immune-mediated adverse reactions.
- Advise patients to read the YERVOY Medication Guide before each YERVOY infusion.
- Advise women that YERVOY may cause fetal harm.
- Advise nursing mothers not to breast-feed while taking YERVOY.

Manufactured by: Bristol-Myers Squibb Company
Princeton, NJ 08543 USA
U.S. License No. 1713

MEDICATION GUIDE

YERVOY ${ }^{\text {TM }}$ (yur-voi)

(ipilimumab)

Read this Medication Guide before you start receiving YERVOY and before each infusion. There may be new information. This Medication Guide does not take the place of talking with your healthcare provider about your medical condition or your treatment.

What is the most important information I should know about YERVOY?

YERVOY can cause serious side effects in many parts of your body which can lead to death. These side effects are most likely to begin during treatment; however, side effects can show up months after your last infusion.

These side effects may include:

1. Inflammation of the intestines (colitis) that can cause tears or holes (perforation) in the intestines. Signs and symptoms of colitis may include:

- diarrhea (loose stools) or more bowel movements than usual
- blood in your stools or dark, tarry, sticky stools
- stomach pain (abdominal pain) or tenderness

2. Inflammation of the liver (hepatitis) that can lead to liver failure.

Signs and symptoms of hepatitis may include:

- yellowing of your skin or the whites of your eyes
- dark urine (tea colored)
- nausea or vomiting
- pain on the right side of your stomach
- bleeding or bruise more easily than normal

3. Inflammation of the skin that can lead to severe skin reaction (toxic epidermal necrolysis). Signs and symptoms of severe skin reactions may include:

- skin rash with or without itching
- sores in your mouth
- your skin blisters and/or peels

4. Inflammation of the nerves that can lead to paralysis. Symptoms of nerve problems may include:

- unusual weakness of legs, arms, or face
- numbness or tingling in hands or feet

5. Inflammation of hormone glands (especially the pituitary, adrenal, and thyroid glands) that may affect how these glands work. Signs and symptoms that your glands are not working properly may include:

- persistent or unusual headaches
- unusual sluggishness, feeling cold all the time, or weight gain
- changes in mood or behavior such as decreased sex drive, irritability, or forgetfulness
- dizziness or fainting

6. Inflammation of the eyes. Symptoms may include:

- blurry vision, double vision, or other vision problems
- eye pain or redness

Call your healthcare provider if you have any of these signs or symptoms or they get worse. Do not try to treat symptoms yourself.

Getting medical treatment right away may keep the problem from becoming more serious. Your oncologist may decide to delay or stop YERVOY.

What is YERVOY?

YERVOY is a prescription medicine used in adults to treat melanoma (a kind of skin cancer) that has spread or cannot be removed by surgery.

It is not known if YERVOY is safe and effective in children less than 18 years of age.

What should I tell my healthcare provider before getting YERVOY?

Before you are given YERVOY, tell your healthcare provider about all your

 health problems if you:- have an active condition where your immune system attacks your body (autoimmune disease), such as ulcerative colitis, Crohn's disease, lupus, or sarcoidosis
- had an organ transplant, such as a kidney transplant
- have liver damage from diseases or drugs
- have any other medical conditions
- are pregnant or plan to become pregnant. YERVOY may cause stillbirth, premature delivery, and/or death of your unborn baby
- are breast-feeding

Tell your healthcare provider about all the medicines you take, including all prescription and non-prescription medicines, steroids or other medicines that lower your immune response, vitamins, and herbal supplements.
Know the medicines you take. Keep a list to show your doctors and pharmacists each time you get a new medicine.

You should not start a new medicine before your talk with the healthcare provider who prescribes you YERVOY.

How will I receive YERVOY?

You will get YERVOY through an intravenous line in your vein (infusion). It takes about 90 minutes to get a full dose.

- YERVOY is usually given every 3 weeks for up to 4 doses. Your healthcare provider may change how often you receive YERVOY or how long the infusion may take.
- Your healthcare provider should perform blood tests before starting and during treatment with YERVOY.

It is important for you to keep all appointments with your healthcare provider. Call your healthcare provider if you miss an appointment. There may be special instructions for you.

What are the possible side effects of YERVOY?

YERVOY can cause serious side effects. See "What is the most important information I should know about YERVOY?"

The most common side effects of YERVOY include:

- tiredness
- diarrhea
- itching
- rash

These are not all of the possible side effects of YERVOY. For more information, ask your healthcare provider.

Call your healthcare provider for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

You may also report side effects to Bristol-Myers Squibb at 1-800-721-5072.

General information about the safe and effective use of YERVOY.

Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide.

This Medication Guide summarizes the most important information about YERVOY. If you would like more information, talk with your healthcare provider. You can ask your healthcare provider for information about YERVOY that is written for healthcare professionals.

For more information, call 1-800-321-1335.

What are the ingredients of YERVOY?

Active ingredient: ipilimumab
Inactive ingredients: diethylene triamine pentaacetic acid (DTPA), mannitol, polysorbate 80, sodium chloride, tris hydrochloride, and Water for Injection, USP

This Medication Guide has been approved by the U.S. Food and Drug Administration.

Manufactured by: Bristol-Myers Squibb Company
Princeton, NJ 08543 USA
U.S. License Number 1713

Bristol-Myers Squibb Company
Princeton, NJ 08543 USA

1281558
Issued: March 2011

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Food and Drug Administration
Silver Spring MD 20993
Our STN: BL 125377/0
BLA APPROVAL
March 25, 2011

Bristol-Myers Squibb Company
Attention: A. Heather Knight-Trent, PharmD
Director-Oncology
5 Research Parkway
Wallingford, CT 06492-7660

Dear Dr. Knight-Trent:
Please refer to your Biologics License Application (BLA) dated June 25, 2010, received June 25, 2010, submitted under section 351 of the Public Health Service Act for YERVOY (ipilimumab).

We acknowledge receipt of all subsequent amendments received through March 24, 2011.
We have approved your BLA for ipilimumab effective this date. You are hereby authorized to introduce or deliver for introduction into interstate commerce, ipilimumab, under your existing Department of Health and Human Services U.S. License No. 1713. Ipilimumab is indicated for the treatment of unresectable or metastatic melanoma.

Under this license, you are approved to manufacture ipilimumab drug substance at Lonza Biologics, Incorporated at Portsmouth, New Hampshire. The final formulated product will be manufactured, filled, labeled and packaged at Baxter Pharmaceutical Solutions, LLC at Bloomington, Indiana. You may label your product with the proprietary name YERVOY and will market it in $50 \mathrm{mg} / 10 \mathrm{~mL}$ and $200 \mathrm{mg} / 40 \mathrm{~mL}$ single-use vials.

Your application for ipilimumab was not referred to an FDA advisory committee because outside expertise was not necessary; there were no controversial issues that would benefit from advisory committee discussion.

The dating period for ipilimumab shall be 36 months from the date of manufacture when stored at $2-8^{\circ} \mathrm{C}$, but should not exceed 48 months from the date of drug substance manufacture. The date of drug product manufacture shall be defined as the date of final sterile filtration of the formulated drug product. The dating period for your drug substance shall be 36 months from the date of manufacture when stored at $2-8^{\circ} \mathrm{C}$. The expiration date for the packaged product, ipilimumab single-use vials, shall be dependent on the shortest expiration date of any component.

We have approved the stability protocols in your license application for the purpose of extending the expiration dating period of your drug substance and drug product under 21 CFR 601.12.

BL 125377/0
Page 2

You are not currently required to submit samples of future lots of ipilimumab to the Center for Drug Evaluation and Research (CDER) for release by the Director, CDER, under 21 CFR 610.2. We will continue to monitor compliance with 21 CFR 610.1, requiring completion of tests for conformity with standards applicable to each product prior to release of each lot.

Any changes in the manufacturing, testing, packaging, or labeling of ipilimumab, or in the manufacturing facilities, will require the submission of information to your biologics license application for our review and written approval, consistent with 21 CFR 601.12.

We are approving this application for use as recommended in the enclosed agreed-upon labeling text.

CONTENT OF LABELING

As soon as possible, but no later than 14 days from the date of this letter, submit, via the FDA automated drug registration and listing system (eLIST), the content of labeling [21 601.14(b)] in structured product labeling (SPL) format, as described at http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/default.htm, that is identical to the enclosed labeling (text for the package insert, Medication Guide). Information on submitting SPL files using eLIST may be found in the guidance for industry titled "SPL Standard for Content of Labeling Technical Qs and As" at http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/U CM072392.pdf. For administrative purposes, please designate this submission "Product Correspondence - Final SPL for approved BL̦A STN 125377/0."

The SPL will be accessible via publicly available labeling repositories.

CARTON AND IMMEDIATE CONTAINER LABELS

Submit final printed carton and container labels that are identical to the enclosed carton and immediate container labels and carton and immediate container labels submitted on March 11, 2011 as soon as they are available, but no more than 30 days after they are printed. Please submit these labels electronically according to the guidance for industry titled "Providing Regulatory Submissions in Electronic Format - Human Pharmaceutical Product Applications and Related Submissions Using the eCTD Specifications (June 2008)". Alternatively, you may submit 12 paper copies, with 6 of the copies individually mounted on heavy-weight paper or similar material. For administrative purposes, designate this submission "Product
Correspondence - Final Printed Carton and Container Labels for approved BLA STN 125377/0." Approval of this submission by FDA is not required before the labeling is used.

Marketing the product with final printed labeling (FPL) that is not identical to the approved labeling text may render the product misbranded and an unapproved new drug.

REQUIRED PEDIATRIC ASSESSMENTS

Under the Pediatric Research Equity Act (PREA) (21 U.S.C. 355c), all applications for new active ingredients, new indications, new: dosage forms, new dosing regimens, or new routes of administration are required to contain an assessment of the safety and effectiveness of the product for the claimed indication in pediatric patients unless this requirement is waived, deferred, or inapplicable.

Because this drug product for this indication has an orphan drug designation, you are exempt from this requirement.

POSTMARKETING REOUIREMENTS UNDER 505(0)

Section 505(o)(3) of the Federal Food, Drug, and Cosmetic Act (FDCA) authorizes FDA to require holders of approved drug and biological product applications to conduct postmarketing studies and clinical trials for certain purposes, if FDA makes certain findings required by the statute.

We have determined that an analysis of spontaneous postmarketing adverse events reported under subsection $505(\mathrm{k})(1)$ of the FDCA will not be sufficient to identify an unexpected serious risk of embryo-fetal toxicity or anti-drug antibody responses.

Furthermore, the new pharmacovigilance system that FDA is required to establish under section $505(\mathrm{k})(3)$ of the FDCA is not yet sufficient to àssess these serious risks.

Therefore, based on appropriate scientific data, FDA has determined that you are required to conduct the following:

1. To submit the final report for study DN120020 (Intravenous Study of Pre- and Posit-natal Developmental in Cynomolgus Monkeys with a 6-Month Post-natal Evaluation).

The timetable you submitted on March 14; 2011, states that you will conduct this study according to the following schedule:

Final Report Submission:
December 31, 2011
2. To develop a validated, sensitive, and accurate assay for the detection of binding antibodies to ipilimumab, including procedures for accurate detection of antibodies to ipilimumab in the presence of ipilimumab levels that are expected to be present in the serum or plasma at the time of patient sampling.

The timetable you submitted on March 14,:2011, states that you will conduct this assay according to the following schedule:

Final Report Submission (Assay and Methodology):
December 2;2011

BL 125377/0
Page 4
3. To develop a validated, sensitive, and accurate assay for the detection of neutralizing antibodies to ipilimumab, including procedures for accurate detection of neutralizing antibodies to ipilimumab in the presence of ipilimumab levels that are expected to be present in the serum or plasma at the time of patient sampling. In the event such an assay can not be developed, evidence of due diligence in attempting to develop the assay will be provided.

The timetable you submitted on March 14, 2011, states that you will conduct this assay according to the following schedule:

Final Report Submission (Assay and Methodology): February 20, 2012

Finally, we have determined that only a clinical trial (rather than a nonclinical or observational study) will be sufficient to address the following:

- Identify unexpected serious risk of anti-drug antibody responses;
- Assess a signal of serious risk of immune-mediated adverse reactions associated with CD86 gene polymorphisms;
- Assess a known serious risk of fatal and life-threatening immune-mediated adverse reactions

Therefore, based on appropriate scientific data, FDA has determined that you are required, to conduct the following:
4. To conduct an assessment of anti-drug antibody (ADA) response and neutralizing ADA responses to ipilimumab with a validated assay (required in PMR 2 and 3) capable of sensitively detecting ADA responses in the presence of ipilimumab levels that are expected to be present at the time of patient sampling. The ADA response will be evaluated in at least 300 ipilimumab-treated patients enrolled in the required postmarketing trial (PMR 6) comparing $3 \mathrm{mg} / \mathrm{kg}$ versus $10 \mathrm{mg} / \mathrm{kg}$ of ipilimumab monotherapy. The final report will include information on the level of ipilimumab in each patient's test sample at each sampling time point.

The timetable you submitted on March 14, 2011, states that you will conduct this assessment from clinical trial data according to the following schedule:

Final Protocol Submission:
Patient Accrual Completed
Trial Completion Date:
Final Report Submission:

September 30, 2011
December 31, 2014
August 31, 2017
December 29, 2017
5. During the conduct of the required postmarketing trial comparing $3 \mathrm{mg} / \mathrm{kg}$ vs. $10 \mathrm{mg} / \mathrm{kg}$ ipilimumab monotherapy (PMR 6), you will obtain comprehensive baseline DNA sample acquisition ($\geq 95 \%$ of ITT) and conduct pharmacogenomic association analyses to assess the potential clinical utility of CD86 gene polymorphisms as genetic determinants of immune mediated adverse events. You will provide a protocol that addresses SNP selection, data analyses approaches, and other methodological issues. You will provide a Final Report including electronic datasets.

The timetable you submitted on March 14, 2011, states that you will conduct this assessment from clinical trial data according to the following schedule:

Draft Protocol Submission:
November 30, 2011
Final Protocol Submission:
May 30, 2012
Final Report Submission:
December 29, 2016
6. Following the assessment of data from Trial CA184024, you will design and conduct a trial to compare the efficacy, with the primary endpoint of overall survival and the safety of ipilimumab at doses of $3 \mathrm{mg} / \mathrm{kg}$ versus $10 \mathrm{mg} / \mathrm{kg}$ given as monotherapy every three weeks for four doses in patients with unresectable Stage III or Stage IV melanoma.

The timetable you submitted on March 14,2011 , states that you will conduct this trial according to the following schedule:

Preliminary CA184024 Data Submission:
June 30, 2011
Draft Protocol Synopsis Submission:
June 30, 2011
Final Protocol Submission:
First Patient Accrued to Trial:
Last Patient Accrued to Trial:
Trial Completion:
Final Report Submission:
September 30, 2011
March 30, 2012
December 31, 2014
August, 31, 2017
December 31, 2017
Submit protocols to your IND, with a cross-reference letter to this BLA. Submit all final reports to your BLA. Prominently identify the submission with the following wording in bold capital letters at the top of the first page of the submission, as appropriate:

- REQUIRED POSTMARKETING PROTOCOL UNDER 505(0)
- REQUIRED POSTMARKETING FINAL REPORT UNDER 505(0)
- REQUIRED POSTMARKETING CORRESPONDENCE UNDER 505(0)

Section 505(o)(3)(E)(ii) of the FDCA requires you to report periodically on the status of any study or clinical trial required under this section. This section also requires you to periodically report to FDA on the status of any study or clinical trial otherwise undertaken to investigate a safety issue. Section 506B of the FDCA, as well as 21 CFR 601.70 requires you to report annually on the status of any postmarketing commitments or required studies or clinical trials.

BL 125377/0
Page 6

FDA will consider the submission of your annual report under section 506B and 21 CFR 601.70 to satisfy the periodic reporting requirement under section 505(o)(3)(E)(ii) provided that you include the elements listed in 505(o) and 21 CFR 601.70. We remind you that to comply with 505(o), your annual report must also include a report on the status of any study or clinical trial otherwise undertaken to investigate a safety issue. Failure to submit an annual report for studies or clinical trials required under 505(o) on the date required will be considered a violation of FDCA section 505(o)(3)(E)(ii) and could result in enforcement action.

POSTMARKETING COMMITMENTS SUBJECT TO THE REPORTING REQUIREMENTS UNDER SECTION 506B

We remind you of your postmarketing commitments:
7. To identify further genetic determinants of immune-mediated adverse events caused by ipilimumab. DNA samples from the required postmarketing study comparing $3 \mathrm{mg} / \mathrm{kg}$ vs. 10 $\mathrm{mg} / \mathrm{kg}$ ipilimumab monotherapy will be used to conduct genome-wide association analyses. The design of these analyses will be reviewed by FDA and a final report with electronic datasets will be provided.

The timetable you submitted on March 14, 2011, states that you will conduct this study according to the following schedule:

Draft Protocol Submission:
Final Protocol Submission:
Final Report Submission:

December 29, 2016
July 31, 2017
December 31, 2018

POSTMARKETING COMMITMENTS NOT SUBJECT TO THE REPORTING REQUIREMENTS UNDER SECTION 506B

We remind you of your postmarketing commitments:
8. To develop and validate a semi-quantitative assay to evaluate visible particulates in drug product. The assay will be incorporated into the drug product release and stability testing programs. The final validation report with the specifications and method validation will be submitted as a CBE-30 supplement by May 30, 2011.

The timetable you submitted on March 14, 2011, states that you will conduct this study according to the following schedule:

Final Report Submission as a CBE-30 supplement: May 30, 2011
9. To replace the IEF assay with the CEX assay for the release of drug product after sufficient data has been acquired to support establishment of CEX acceptance criteria. The final study report will be submitted as a CBE-30 by June 30, 2011.

The timetable you submitted on March 14, 2011, states that you will conduct this study according to the following schedule:

Final Report Submission as a CBE-30 supplement: June 30, 2011
10. To discontinue the IEF method as a specification for charge in the drug substance and drug product stability programs after three years of market life data are collected for the CEX assay on three batches of drug substance and three batches of either presentation of drug product. The final results and proposed CEX specification will be submitted as a CBE-30 supplement by March 31, 2014.

The timetable you submitted on March 14,2011, states that you will conduct this study according to the following schedule:

Final Report Submission as a CBE-30 supplement: March 31, 2014
11. To perform studies to confirm that clearance of Antifoam C is well controlled by the manufacturing process and provide a risk assessment for residual amounts that may be present in the drug product. The final report will be submitted as a CBE-0 supplement by July 29, 2011.

The timetable you submitted on March 14, 2011, states that you will conduct this study according to the following schedule:

Final Report Submission as a CBE-30 supplement: July 29, 2011
12. To develop and validate a process-specific host cell protein (HCP) ELISA. This assay will replace the current Cygnus Kit ELISA being used in the drug substance release program. The final study and validation reports will be submitted as a CBE-30 supplement by November 30, 2011.

The timetable you submitted on March 14, 2011, states that you will conduct this study according to the following schedule:

Final Report/Validation Report Submission. as a CBE-30 supplement:

November 30, 2011

BL 125377/0
Page 8
13. To reassess release and stability specifications for ipilimumab drug substance and drug product through April 30, 2013. The assessment will be submitted in the 2013 Annual Report.

The timetable you submitted on March 14, 2011, states that you will conduct this study according to the following schedule:

Final Report Submission (Annual Report): May 2013
14. To submit the final study reports for studies performed to confirm product stability over the course of the in-process hold times of 14 days at $2-8^{\circ} \mathrm{C}$ and 72 hours at $22-28^{\circ} \mathrm{C}$. Final study results will be submitted in the 2012 Annual Report.

The timetable you submitted on March 14,2011 , states that you will conduct this study according to the following schedule:

Final Report Submission (Annual Report): May 2012
15. To submit the final concurrent column life-time study reports for the Poros 50HS, QSepharose and CHT Type II columns. The final report will be submitted in the 2013 Annual Report.

The timetable you submitted on March 14, 2011, states that you will conduct this study according to the following schedule:

Final Report Submission (Annual Report): May 2013
16. To submit the final study reports for the drug substance storage container leachate studies to assess the volatile organic compounds (VOC), semi-VOC, non-VOC and trace metals in drug substance and formulation buffer samples held at 2 to $8^{\circ} \mathrm{C}$ for up to 3 years and under accelerated aging conditions of $40^{\circ} \mathrm{C}$ to simulate 3 years at 2 to $8^{\circ} \mathrm{C}$. Final reports will be submitted in the 2013 Annual Report.

The timetable you submitted on March 14, 2011, states that you will conduct this study according to the following schedule:

Final Report Submission (Annual Report): May 2013
17. To re-assess the bioburden action limits for the purification in-process intermediates based on the manufacturing scale data from 30 lots using a 10 mL sample volume and submit the summary report in a CBE-0 supplement by March 31, 2013.

The timetable you submitted on March 14, 2011, states that you will conduct this study according to the following schedule:

Final Report Submission as a CBE-0 supplement: March 31, 2013
18. To develop and implement a container closure integrity test to replace the sterility test in the stability program. The ability of a container closure system to maintain the integrity of its microbial barrier and hence the sterility of a drug product throughout its shelf-life should be demonstrated. Submit the summary report and data in a CBE-0 supplement by December 2011.

The timetable you submitted on March 14,2011 , states that you will conduct this study according to the following schedule:

Final Report Submission as a CBE-0 supplement: December 31, 2011

Submit clinical protocols to your IND 9186 for this product. Submit nonclinical and chemistry, manufacturing, and controls protocols and all final reports to this BLA. In addition, under 21 CFR 601.70 you should include a status summary of each commitment in your annual progress report of postmarketing studies to this BLA. The status summary should include expected summary completion and final report submission dates, any changes in plans since the last annual report, and, for clinical studies/trials, number of patients entered into each study/trial. All submissions, including supplements, relating to these postmarketing commitments should be prominently labeled "Postmarketing Commitment Protocol," "Postmarketing Commitment Final Report," or "Postmarketing Commitment Correspondence."

RISK EVALUATION AND MITIGATION STRATEGY REQUIREMENTS

Section 505-1 of the FDCA authorizes FDA to require the submission of a risk evaluation and mitigation strategy (REMS), if FDA determines that such a strategy is necessary to ensure that the benefits of the drug outweigh the risks (section 505-1(a)).

In accordance with section 505-1 of FDCA, we have determined that a REMS is necessary for YERVOY (ipilimumab) to ensure the benefits of the drug outweigh the risks of severe and fatal immune-mediated adverse reactions such as fatal immune-mediated enterocolitis (including gastrointestinal perforation), fatal immune-mediated hepatitis (including hepatic failure), fatal immune-mediated toxicities of the skin (including toxic epidermal necrolysis), fatal nervous system toxicity, and endocrinopathies, associated with the use of YERVOY (ipilimumab).

We have determined that a communication plan targeted to healthcare providers is necessary to support implementation of the REMS.

Your proposed REMS, submitted on June 25, 2010, as amended, and appended to this letter, is approved. The REMS consists of a communication plan and a timetable for submission of assessments of the REMS.
The REMS assessment plan should include but is not limited to the following:
a. An evaluation of healthcare providers' (HCPs) understanding of the serious risks of YERVOY (ipilimumab) and the management of the immune-mediated adverse reactions caused by YERVOY.
b. With regard to assessment of the communication plan:
i The date of product launch and the launch of the communication plan.
ii The date(s) of mailing and number of recipients of the Dear Healthcare Provider (DHCP) letter and the communication package.
iii The number of mailings returned.
iv The sources of the recipient lists.
v The number of new prescribers prescribing YERVOY (ipilimumab) /new facilities purchasing YERVOY (ipilimumab) during the reporting period. Of the new prescribers/purchasers, the number supplied with the communication materials within the required timeframe; the number not supplied with communication materials within the required timeframe; the reasons for the failure to deliver communication materials within the required timeframe.
c. Based on the information submitted, an assessment of and conclusion regarding whether the REMS is meeting its goals, and whether modifications to the REMS are needed.
d. Specification of measures that would be taken to increase awareness if surveys of HCPs indicate that provider awareness is not adequate.
e. An analysis of post-marketing cases of immune-mediated adverse events reported for YERVOY that result in the patient's death, including an analysis of the length and reasons for any reported delay in recognition and treatment of the events.
f. Information on the status of any post-approval study or clinical trial required under section 505(o) or otherwise undertaken to investigate a safety issue. With respect to any such post-approval study, you must include the status of such study, including whether any difficulties completing the study have been encountered. With respect to any such post-approval clinical trial, you must include the status of such clinical trial, including whether enrollment has begun, the number of participants enrolled, the expected completion date, whether any difficulties completing the clinical trial have been encountered, and registration information with respect to requirements under subsections (i) and (j) of section 402 of the Public Health Service Act. You can satisfy these requirements in your REMS assessments by referring to relevant information included in the most recent annual report required under section 506B and 21 CFR 601.70 and including any material or significant updates to the status information since the annual report was prepared. Failure to comply with the REMS assessments provisions in section $505-1(\mathrm{~g})$ could result in enforcement action.

BL 12537.7/0
Page 11

Submit the methodology and survey instrument(s) for review at least 90 days before the next evaluation is conducted. Submit both methods and instruments together.

We remind you that in addition to the assessments submitted according to the timetable included in the approved REMS, you must submit a REMS assessment and may propose a modification to the approved REMS when you submit a supplemental application for a new indication for use as described in section $505-1(\mathrm{~g})(2)(\mathrm{A})$ of the FDCA.

Prominently identify the submission containing the REMS assessments or proposed modifications with the following wording in bold capital letters at the top of the first page of the submission:

BLA 125377
REMS ASSESSMENT.
NEW SUPPLEMENT FOR BLA 125377
PROPOSED REMS MODIFICATION REMS ASSESSMENT

NEW SUPPLEMENT (NEW INDICATION FOR USE)
FOR BLA 125377
REMS ASSESSMENT
PROPOSED REMS MODIFICATION (if included)
If you do not submit electronically, please send 5 copies of REMS-related submissions.

REPORTING REOUIREMENTS

You must submit adverse experience reports under the adverse experience reporting requirements for licensed biological products (21 CFR 600.80). You should submit postmarketing adverse experience reports to:

Food and Drug Administration
Center for Drug Evaluation and Research
Central Document Room
5901-B Ammendale Road
Beltsville, MD 20705-1266
Prominently identify all adverse experience reports as described in 21 CFR 600.80 .
The MedWatch-to-Manufacturer Program provides manufacturers with copies of serious adverse event reports that are received directly by the FDA: New molecular entities and important new biologics qualify for inclusion for three years after approval.: Your firm is eligible to receive copies of reports for this product. To participate in the program, please see the enrolliment instructions and program description details at http://www.fda.gov/Safety/MedWatch/HowToReport/ucm166910.htm.

You must submit distribution reports under the distribution reporting requirements for licensed biological products (21 CFR 600.81).

You musts submit reports of biological product deviations under 21 CFR 600.14. You should promptly identify and investigate all manufacturing deviations; including those associated with processing, testing, packing, labeling, storage, holding and distribution. If the deviation involves a distributed product, may affect the safety, purity, or potency of the product, and meets the other criteria in the regulation, you must submit a report on Form FDA-3486 to:

> Food and Drug Administration
> Center for Drug Evaluation and Research
> Division of Compliance Risk Management and Sürveillance
> $5901-\mathrm{B}$ Ammendale Road
> Beltsville, MD 20705-1266

Biological product deviations, sent by courier or overnight mail, should be addressed to:

Food and Drug Administration
Center for Drug Evaluation and Research
Division of Compliance Risk Management and Surveillance
10903 New Hampshire Avenue, Bldg. 51; Room 4206
Silver Spring, MD 20903

PROMOTIONAL MATERIALS

You may request advisory comments on proposed introductory advertising and promotional labeling. To do so, submit, in triplicate, a cover letter requesting advisory comments, the proposed materials in draft or mock-up form with annotated references, and the package insert to:

> Food and Drug Administration
> Center for Drug Evaluation and Research
> Division of Drug Marketing, Advertising, and Communications
> 5901-B:Ammendale Road
> Beltsville, MD 20705-1266

You must submit final promotional materials, and the package insert, at the time of initial dissemination or publication, accompanied by a Form FDA 2253. For instruction on completing the Form FDA 2253, see page 2 of the Form. For more information about submission of promotional materials to the Division of Drug Marketing, Advertising, and Communications (DDMAC), see http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm090142:htm.

All promotional claims mustt be consistent with and not contrary to approved labeling. You should not make a comparative promotional claim or claim of superiority over other products unless you have substantial evidence to support that claim.

LETTERS TO HEALTH CARE PROFESSIONALS

We acknowledge that you will issue a letter communicating important safety-related information about this drug product (i.e., a "Dear Health Care Professional" letter); we request that you submit, at least 24 hours prior to issuing the letter, an electronic copy of the letter to this BLA to the following address:

MedWatch Program
Office of Special Health Issues
Food and Drug Administration
10903 New Hampshire Ave
Building 32, Mail Stop 5353
Silver Spring, MD 20993

POST-ACTION FEEDBACK MEETING

New molecular entities and new biologics qualify for a post-action feedback meeting. Such meetings are used to discuss the quality of the application and to evaluate the communication process during drug development and marketing application review. The purpose is to learn from successful aspects of the review process and to identify areas that could benefit from improvement. If you would like to have such a meeting with us, call the Regulatory Project Manager for this application.

If you have any questions, call Erik S. Laughner, M.S., RAC (US), Senior Regulatory Health Project Manager, at (301) 796-1393.

ENCLOSURES:
Content of Labeling
Carton and Container Labeling
REMS
REMS Materials

United States Patent and Trademark Office

Patent Bibliographic Data			05/13/2011 04:22 PM		
Patent Number:	6984720		Application Number:	09644668	
Issue Date:	01/10/2006		Filing Date:	08/24/2000	
Title:	HUMAN CTLA-4 ANTIBODIES				
Status:	8th year fee window opens: 01/10/2013			Entity:	Large
Window Opens:	01/10/2013	Surcharge Date:	07/11/2013	Expiration:	N/A
Feo Amt Due:	Window not open	Surchg Amt Due:	Window not open	Total Amt Due:	Window not open
Fee Code:	1552	MAINTENANCE FEE DUE AT 7.5 YEARS			
Surcharge Fee Code:					
Most recent events (up to 7):	07/10/2009	Payment of Maintenance Fee, 4th Year, Large Entity. -- End of Maintenance History ---			
Address for fee purposes:	Medarex c/o DARBY \& DARBY P.C P.O. BOX 770 Church Street Station NEW YORK, NY 100080770				
Run Another Query					

Need Help? | USPTO Home Page | Finance Online Shopping Page | Alerts Page

UNITED STATES PATENT AND TRADEMARK OFFICE
Commissioner for Patents United States Patent and Trademark Office
P.O. Box 1450

Medarex
c/o DARBY \& DARBY P.C.
P.O. BOX 770

Church Street Station

MAINTENANCE FEE STATEMENT

According to the records of the U.S.Patent and Trademark Office (USPTO), the maintenance fee and any necessary surcharge have been timely paid for the patent listed below. The "PYMT DATE" column indicates the payment date (i.e., the date the payment was filed).

The payment shown below is subject to actual collection. If the payment is refused or charged back by a financial institution, the payment will be void and the maintenance fee and any necessary surcharge unpaid.

Direct any questions about this statement to: Mail Stop M Correspondence, Director of the USPTO, P.O.Box 1450, Alexandria, VA 22313-1450.

			U.S.	PATENT	APPL.				
PATENT		SUR	PYMT	APPLICATION	ISSUE	FILING	PAYMENT	SMALL	ATTY DKT
NUMBER	FEE AMT	CHARGE	DATE	NUMBER	DATE	DATE	YEAR	ENTITY?	NUMBER
$\mathbf{6 , 9 8 4 , 7 2 0}$	$\mathbf{\$ 9 8 0 . 0 0}$	$\mathbf{\$ 0 . 0 0}$	$\mathbf{0 7 / 1 0 / 0 9}$	$\mathbf{0 9 / 6 4 4 , 6 6 8}$	$\mathbf{0 1 / 1 0 / 0 6}$	$\mathbf{0 8 / 2 4 / 0 0}$	$\mathbf{0 4}$	NO	MEDRX 0024 (2)

Our Reference: BB-IND 9186
Medarex, Incorporated Attention: Randall-T. Curnow, M.D. Senior Vice President and Chief Medical Office 67 Beaver Avenue
Annandale, NJ 08801
Dear Dr. Curnow:
3
The Center for Biologics Evaluation and Research has received your Investigational New Drug Application (IND). The following product name and BB-IND number have been assigned to this application. They serve only to identify it and do not imply that this Center either endorses or does not endorse your application.

BB-IND \#: 9186

SPONSOR: Medarex, Incorporated
PRODUCT NAME: Human Monoclonal Antibody (MDX-CTLA4) to CTLA4
DATE OF SUBMISSION: July 12, 2000

DATE OF RECEIPT: July 13, 2000

This BB-IND number should be used to identify all future correspondence and submissions, as well as telephone inquiries concerning this IND. Please provide an original and two copies of every submission to this file. Please include three originals of all illustrations which do not reproduce well.

It is understood that studies in humans will not be initiated until 30 days after the date of receipt shown above. If this office notifies you, verbally or in writing, of serious deficiencies that require correction before human studies can begin, it is understood that you will continue to withhold such studies until you are notified that the material you have submitted to correct the deficiencies is satisfactory. If such a clinical hold is placed on this file, you will be notified in writing of the reasons for placing the IND on hold.

You are responsible for compliance with applicable portions of the Public Health Service Act, the Federal Food, Drug, and Cosmetic Act, and the Code of Federal Regulations (CFR). A copy of 21 CFR Part 312, pertaining to INDs, is enclosed. Copies of other pertinent regulations are available from this Center upon request. The following points regarding obligations of an IND sponsor are included for your information only, and are not intended to be comprehensive.

Progress reports are required at intervals not exceeding one year and are due within 60 days of the anniversary of the date that the IND went into effect [21 CFR 312.33]. Any unexpected, fatal or immediately life-threatening reaction associated with use of this product must be reported to this Division by telephone or facsimile transmission no later than seven calendar days after initial receipt of the information. All serious, unexpected adverse experiences, as well as results from animal studies that suggest significant clinical risk, must be reported, in writing, to this Division and to all investigators within fifteen calendar days after initial receipt of this information [21 CFR 312.32].

Charging for an investigational product in a clinical trial under an IND is not permitted without the prior written approval of the FDA.
) Prior to use of each new lot of the investigational biologic in clinical trials, please submit the lot number, the results of all tests performed on the lot, and the specifications when established (i.e., the range of acceptable results).

If not included in your submission, please provide copies of the consent forms for each clinical study. A copy of the requirements for and elements of informed consent are enclosed. Also, please provide documentation of the institutional review board approval(s) for each clinical study.

All laboratory or animal studies intended to support the safety of this product should be conducted in compliance with the regulations for "Good Laboratory Practice for Nonclinical Laboratory Studies" (21 CFR Part 58, copies available upon request). If such studies have not been conducted in compliance with these regulations, please provide a statement describing in detail all differences between the practices used and those required in the regulations.

Item 7a of form FDA 1571 requests that either an "environmental assessment," or a "claim for categorical exclusion" from the requirements for environmental assessment, be included in the IND. If you did not include a response to this item with your application, please submit one. See the enclosed information sheet for additional information on how these requirements may be addressed.

Telephone inquiries concerning this IND should be made directly to me at (301) 827-5101. Correspondence regarding this file should be addressed as follows:

Center for Biologics Evaluation and Research
Attn: Office of Therapeutics Research and Review
HFM-99, Room 200N
1401 Rockville Pike
Rockville, MD 20852-1448
If we have any comments after we have reviewed this submission, we will contact you.
Sincerely yours,
ShasonSickafuse

Sharon Sickafuse. M.S.
Regulatory Project Manager
Division of Application Review and Policy
Office of Therapeutics
Research and Review
Center for Biologics
Evaluation and Research
Enclosures (3): 21 CFR Part 312
21 CFR 50.20, 50.25
Information sheet on 21 CFR 25.24
this chapter.
(d) After April 20, 1998, any such OTC
drug product initially introduced or
 interstate commerce that is not in
compliance with this section is subject
to regulatory action (G3 FR 13528, Mar. 20, 1998)

(a) This part containa procedures and requirements governing the use of investigational new drugs, including pro-
cedures and requirements for the submission to. and review by, the food and Drug Administration of investlgational new drug applications (IND's). An investigational new drug for which
an IND is in effect in accordance with this part is exempt from the premar-

(b) References in this part to regula-
tions in the Code of Federal Regula-

0
0
0
0
0
3
0
0

8312.2 Applicability.
(a) Applicability. Except as provided

 Food, Drug, and Cosmetic Act or to the licensing provisions of the Public amenued (42 U.S.C. 201 et seq.)). (b) Exemptions. (1) The clinical Invesfully marketed in the United States is exempt from the requirements of this
(1) The investigation is not intended to be reported to FDA as a well-con-
 to support any other significant change
in the labeling for the drug;
(ii) If the drug that is und- oing in-
vestigation is lawfully ma: id as a

Food and Diug Administrution, HHS

\section*{

 ul es ก |Luijobi!sanu jos sBma-o ucdans
 .160 Drugs for investigational use in lab- Uratory research animals or in vitro testa.

A UTтIORITY: 21 U.S.C. 321, 331, 351, 352, 363,
355, 371: 42 U.S.C. 262.
$\begin{aligned} & \text { Sounce: } 52 \text { FR 8831. Mar. 19, 1987. unless } \\ & \text { otherwise noted. }\end{aligned}$

Subpart A-General Provisions
 \$312.1 Scope.

Ihreatening and Severely-debilifating
Ilinesses
 IIfe-threatening and severely-debilitating
IIInesses.
312.85 Phase 4 studies. $\begin{array}{ll}312.85 & \text { Phase } 4 \text { studles. } \\ \text { 312.85 } & \text { Focused FDA re }\end{array}$
312.80 Purpose.

 Subpant F-Miscelichieous 312.110 Import and t.xport requirements. 312.120 Forelgn clinical studirs,\ldots con-
fucted under an IND.
312.130 Availability for publle dlaclosure of 312.130 Avallablifty for pulille diaclosure of

for marketing. In the absence of an apviated new drug application, such product is also misbranded under section
(c) Clinical Investigations designed to obtain evidence that any urug prodfor OTC use for the treatment and/or prevention of nocturnal leg muscle pose intended must comply with the requirements and procedures governing set forth in part 312 of this chapter. (d) After February 22, 1995, any such
OTC drug product Initially introduced
 into interstate commerce that is not in to regulatory action.
\$310.547 Drug producte contrining quinine offered over-the-counter
(OTC) for the treatment and/or pre-
vention of malaria. (a) Quinine and quinine salts have been used OTC for the treatment and/or
prevention of malarla, a serious and prevention of malarla, a serious and Quinine is no longer the drug of choice for the treatment andor prevention of most types of malaria. In addition, pects of the disease itself and some potentially serious and life-threatening risks associated with the use of quining at doses employed for the treatment of
malarla. There is a lack of adequate malaria. There is a lack of adequate
data to establish general recognition of the safety of quinine drus products for OTC use in the treatment apdor pre-
vention of malaria. Therefore, quinine vention of malaria. Therefore, quinine effectlvely used for the treatment and/ effectively used for the treatment and/
or prevention of malaria except under the care and supervision of a doctor. quinine or quinine salts that is labeled. represented. or promoted for the treatment and/or prevention of malaria is regarded as a new drug within the meaning of section $201(p)$ of the act, for
which an approved application or abbreviated application under section 505 of the act and nart 314 of this chapter is required fr arketing. In the ab-
sence of an ap, ved newydrug applica- for the product:
(111) The investigation does not in-
volve a route of administration or dosage level or use in a patient population or other factor that significantly in-
creases the risks cor decreases the acceptabllity of the risks) assoclated with the use of the drug product:
(Iv) The investigation is conduc compliance with the requirements for Institutional review set forth in part 56
and with the requirements for informed consent set forth in part 50 ; and informed (v) The Investigation is conducted in
conplifance with the requirements of (2)(i) A clinical investigation involvIng ail in vitro diagnostic biological product listed in paragraph (b)(2)(11) of
this section is exempt from the requirements of this part if (a) it is indure that confirms the diagnosis made by another, medically estabnosished, diagnostic product or procedure and (b) it
is shipped in compliance with $\$ 312.160$. (il) In accordance with paragraph products are exempt from the requile-
 (c) anti-human globulin.
(3) A drug intended solely for tests in
vitro or in laboratory research animals is exempt from the requirements of
this part if shipped in accordance with this part if shipped in accordance with
$\$ 3$.
(4) FDA will not accepp an applica-
tlon for an investigation that is empt under the provisions of paragraph (b)(1) of thils section.
(5) A clinical investigation involving
use of a placebo is exempt from the re-
 tigation does not otherwise require
submission of an IND.
(6) A clinical investigation involving an exception from informed consent
under $\$ 50.24$ of this chapter is not exennt from the requirements of tuls (c) Bioanailabilley studies. The applica-
bility of part !:s in vivo bloavaliability pulics say humans is subject to the provisions of $\$ 320.31$.
$\$ 312.22$
(c) Phase 3. Phase 3 studics are ex-
panded controlled and uncontrolled paniled controlled and uncontrolled ilminary evidence sugresting effectiveness of the drug lias been obtalned, and are intended to gather the additional information about effectiveness and overall benertt-risk relationship of the drug and to provide an ndequate basis for physician lateling. Phase 3 studles
usually include from severini hundred to several thousand auli/ncts.
8312.22 General principles of the IND
(a) FDA's primary objectives in reviewing an ind are, in all phases of the Investigation, to assure the sarety and
rights of subjects. anil. in Phase and 3. to help assure that the quallity os the scientific evaluation of drugs is ade-
quate to permit an evaluation of the quate to permit an evaluation of the

 will also include an assessment of the
sclentific quality of the clinical invessclentific quality of the cllnical inves-
 of meeling statutory standards for

particular drug that must be submitted particular drug that must be submitted
in an IND to assure the accomplish-

(c) The central focus of the intial
IND subinisslon should be on the genIND subinission should be on the gen-

 contain new or revised protocols should build logically on previous submissiong

 focus for reporing the st of studies
being fonducted under the ind and

Such a clinical inverstigation is not
permitted to proceed witiout the f: lor

 19971
3312.21 Phasen of an invertigation.
more phases of an investigation. The cintested nvestigacion of a previolito three plases. Although in general the phases are conducted sequentially, of an investigation are a follows: Intitial Introduction of an Investigational new drug into humans. Phase 1
 es are deslgned to detormine the me-

 possible, to gain early evidence on ef-厓 Inforination aljout the drus's phar-
macolitnetics nul wharmacolopical ef-
 valid. Phase 2 studies. The total numher of subjects and patients included in
 (2) Phase 1 studies also Include studfes of drug motabolisis, structure-ac-

 which investigational drups are used as
research tools to explore blological
(i) Phuse 2. Phase 2 includes the controlled clinical stullies conducted to for a particular indication or indicafons in patients with the disease or condition under study and to deterinde the common short-term side ef-
fects and risks assoclated with the drup. Phase 2 studies are typically well
 nalents. usually involving no more
(a) A sponsor may request $F D A$ to
waive applicable requirement under this part. A walver request may be sub mation ameniment to an ind. In an emergency. a request may be made by telephone or other rapld communica-
tion means. A walver request is required to contaln at least one of the
following: (1) An explanation why the sponsor's
compliance with the reguirement is unnecessary or cannot be achieved; submission or course of action that
satisifies the purpose of the requirewaiver (3) information justifying a
(b) FDA may grant a walver if it would not pose a significant and unreawould not pose a significant and unren-
sonable risk to human suljects of the
investigation and that one of the fol lowing is met: (1) The sponsor's compliance with the
requirement is unnecessary for the agency to evaluate the application. or
compliance cannot be achleved: (2) The sponsor's propesect alter(3) The applicicants sulmission or other-
wise justifies a waiver. wise justifies a waiver.
(Collection of Information regulrements ap-
proved liy tho Office of Managenient and
Budget under control nuinber $0910-0014$)

I52 FR 8R31. Mar. 19. 1987. as amended at 52
FR 23U31, Junc 17, 1907)
Subpart B-Investigalional New 8312.20 Requirement foran IND.
(a) A sponsor shall submit an IND to FDA if the sponsor intends to conduct
a clinical investigation with an inves. tigational new drug that is subject to
§312.2(a)
(b) A sponsor shall not begin a clin-
cal investigatlon subject ical investigatlon subject to $9312.2(a)$
until the finvestlgation is subjecl IND which is in effect in accordance
(r) A sponsor shall suhmit a separate
IND) (or any cliniral luvesta

(d) Charging for and commercialization of investigutionnit druos-(1) Crinical
trials under an IND. Charging for an investigational drug in a clinical trial the prior written approval of FDA, in requesting such approval. the sponsor shall provide a full written explanation of why charging is necessary in order tinue the clinical trial, e.g., why distribution of the drug to test subjects
sliould not he consldered part of the normal cost of doing business.
(2) Treatment protocol or treatment charge for an investigational drug for a treatiment use under a treatment protocol or trentinent IND provided: (1) ongolng clinical investigations under the authorized IND; (ii) charging does not constitute commerclal marketing appulication has not been approved; (111) the drug is not being commercially promoted or advertised; and (iv) the sponsor inf the drug is actively pursuing
mark: marks . 4 approval with due dilligence.
FDA inust ve nolified in wrilding in aslvance of cominencing anys such
cliatres, In an informatlon amending cliarges. In an information amendinent Ror chargling goes into effect automatically 30 days after recelpt by FDA of the information amenilment, unless the (3) Noncompreal to the contrary. timal drug. Under this section, the sponsor may nol commercialize an in-
vestigational drug by charging a price larger than that necessary to recover costs of manufacture, research, devel-
opment. and handling of the investigaopment, and handling of the investiga-
tlonal drug. (4) Willidr
thorizatlon to charge for an investigational drug under this section may be
withdrawn by FDA if the agency finds that the condllions underlylng the authorlzation are no Ionger satisfled.

Collection of information requirements ap-
proved liy thire Office of Manavenient and Proved by the Office of Manakenient and
Buigect under control number 0910-0014)

not sulmilled inillally in the ind
 Phase 1 studies may be less detalled and more nexible than protocols for Phase 2 and 3 studies．Phase 1 protocols
should be ulrected primarily at pro－ should be directed primarily at pro－
viding nn outline or the investigation－ an estimate of the number of patients

 mellind to he used in determining
dose－and should specify in detail only
 critical to safely，such as necessary роo！

 to PDA only in tho nanual renort．
（it）In Pliases 2 and 3 ．detai it proto－ cols describing all aspects of the study Slould be sulmittell．A prolocol for a Phase 2 or 3 investigation should be de－ signed in such a way that．If the spon－
sor anticipates that some devation sor anticlunce siat some deviation essary as the investifalion progresses． alternalives or conlingencies to pro－ vilde for such ilevinclion are bullt into the protocols at the outsel．For exam－ ple，a protocol for a controlled short－
lerm study might include a plan for an enrly crossover of norresponders to an alternative therapy．
（iii）A i protocol is refulred to contain the following．with the specific ele－ ments and detail of the protocol re－
necling the above distinctions depend－ ing on the phase of study： purvose of the stuily．
（i）The name and alldress and a state－ ment of the qualifications scrurriculum
vilae or oulicr atatement of qualifica－ vilae or olher atatement of qualifica－
tions）of each investigator，and the thons）of each investigator，and the
name of each sulinnestigator（e．g．，re－准 the supervision of the investigitior：the
name and address of the research name and address of the research ca－
cilities to be used；and the name and address on cach reviewing Instituctonal

Reviciv Boaril．

posedic clinitcal investigalifun（s）． from Investigation or marketing in any country for any reason related to sare－ the country（les）where the drug was withdrawal．
（iv）A briec dnscriputon of the overall for the following year．Tlie plan should Snclude che following：（a）The rationale for the drug or the research study：（b） theneral apuroach to be followed In

品
鹿号
 prior studles in humans with the drug or related druses．
（4）IReserved
（5）Investioutor＇s brochure．If retultred unlerer §312．55．a cony of the investiga－
tor＇s brochure．contanining the fol－ lowing information
（i）A brief drscription of the drug sulstance and the formulation，Inciud－
ink the structural forinula，if snown．
 cological nnid toxicolousical effects of
the drug in animals and．to the extent known，in humans．
（iiii）A summary of the pharmaco－ kinetics and bitological disposition of
the drug in anlmals and，if known．in
（iv）A summary of information relat－
 5
0
0
0
0
0
0 such studlics may be appended when
useful．）
（v）Aldescription of possithle risks and
 unler investipanal．or with related Irugs．and of precautions or special ment toring to be done ns part of the in－
sulivalional use of the itrue． ion Protyerils．（a）A prolvicol for each 21 CrR Ch． 1 （4－1－99 Edilion） nscil clinncel inversifation and
he inventigator will report to the mb proposed changes th the research actlve． ments of part 56 ． （v）A commitment to conduct the in
vestigation in accordance wilh all onier applic：ible regulatory require－ （vi）The name and title of the person
responstinn fur monthiln the coll

（vili）The name（s）and tille（9）of the parson（s）responailile under g 312.32 for
review and cevaluation of information relevant to the safety of the drug． （vili）If a sponsor has transferred any
obligations for the conduct of any clln． Ical study to a contract research orga－ nization．a slantement connalinng the the
name and address or thic contract re． scarch orkantzation．identificalion of the elimical study．and a listing of the
ouligallons lransferrell．If all ondiga． tions gnverning the conduct of the statement of this transfer－in alleu of a listing of the specificingilig－in in ileu of a
ferredum trans－ ferred－may ve submitted．
（ix）The signature or the
（ix）The slgnature of the sponsor or
the sponsor＇s Ruthorized reperesenta－
itve．If the prrson signing Uive．If the prrson signink the applica．
tion does not reside or have a place of business within the United States，the IND is required to contaln the name and address of．and le countersigned
by，an atcorney．akent．or other au－ by，an attorney，arent．or other au－
thorized orficlay who resides．orr matn．
Lains a place of business withtn the Lains a place of business within the （2） 1 table of contents． investigutionalt nian．（1）A brier introduc． tory statement pliving the name of the
drug and all active ingredlents．Uhe
 structural formula of the druy（II
known）．the formulation of the dosare Yorms．）to be used．the route of aillinin－
istration，amil the broall objectlves and istration，and the broall objectives and
planned duration of the proposed clln－ （ii） 1 inter summary of prevlous
 and lo investientilional or market：1ne ex．
perlencesin oller countries that may
should update the general investiga． tional plan for che coming year． （d）The ind format set forth in
$\$ 312.23$ should be followed routinely by sponsors in the interest of fostering an efficient review of applications．Spon－
sors are expectell to exercise conside－ aule discretion．however，regaruling the each sectlon．depending upol：＇iie kind of drug being studted and the nature of 312.23 outlines the inforination neecled new molecular entlev．A sponsor－Inves． u，watur whio uses，as a reseanch tool，an ready subject to a a manufacturer＇s ind or marketing application should follow narily may．if authorized by the manu－ facturer，refer to the manufacturer＇s IND or marketing application in pro－
vidung the technical information sup－ purting hie proposed cllincanativessupa－ Luon．A sponsor－investigator who uses
an investigational drug not sulject to a manufacturer＇s ind or marketing ap－ plication is ordinarily required to sub－ porting the IND．unless such informa． tion may be referencell from the sci－
entific literature．
（a） 1 ind content and format． π cllnical investleation subject to this part shanl sulmint an＂Investitgational
New Drug Appication＂（IND）inclua ing．In the following order： （i）Couver slicet（Form FDA－157）．A cover sheet for the application con－ taluing the following： number or the sronsor．the date of the ugational new true （it）IUPMtificatlouin of the plange or
phases or the cllnical Investigation to be contucted．
（ill）A commmitment not to brgin clin－
tcal therealualions until an IND cov－ ering the investigatlons is in effect．
（iv）A commmitment Liat an Insu Lomal heview Board（1123）that com－
 lial anil co ．Mng review and ap－
proval of each ，．，Uhe stmples in the pro－
tifalion. If vary short-lerin ingts are
pioposed, the sumportine stability data
can lie correspondingly limited. (iii) As drug developinent and as the scale or produclion is
chan: al from the piloterale chan: al from the pilot-scale produc-
thon appropriate for the ifminol Inital clinical inveatigations to the largerscale production needed for expandel
clinical trials, the sponsor should sub. mlt . information ameminenta to sup. plement the inilial Informalion sulimitted on the chemistry. manufac-
turing, and control processes will Information appropriale to the expanded (lv) Renecting the distinctions do-
scribed In this paragraph (a)(7), and
 sulsmission is required to conlain the
(it) Drug sulisfance. A desciliption of the drug substance. includlug its physIcal, chemical. or blological character-
islics; then name and address of its manIstics; the name and address of its man-
ufachurer; the epmeral method of prepaufacturer; the general method of prepa-
ratlor of the drug substance; the acceptable limits and analyf.jcal methods used to assure the identity. etrenglh. quallty, and purity of the drug sub-
stance; and information suffictent to

 the planned clinical studies. Iteference
to the current edition of the United Stites I'harinaconneia-National Formulary may satisfy relevant require-
ments in this paragraph
(b) Drug product. A list of all compo-
nents. which many include reassnable nents. which may include reasonable
alternatives for inactive compounds
 tlealional drue product. includinge both
those components intemed in those components intembed in apponar
in the drue product num those which may not appear but which are used in

 ations that may any reasomabie variInvestlgational st mep: the name and address of the drus product manufaclirer: a hrinf general lesacription of the nian:dacturing and packaging proce-
h. as aspron' acceptable limion nnd analytical meth-
onls used to assure the strenguthe tuality, and purity of the

1,1) A description of the design of the group to be used. If any, and a lescription or me chorls to be used to minimize tors, and analysts. cors, and analysts. dose(s) to tee administered, the planned maximum dosage, and the duration of
individual patient exposure to the
(f) A deseription of the ohgervations the objectlves of the sting. dures. lalloratory tests, or other measures to be taken to monitor the effects
(7) Chemistry. manufacturing and conthe uarticular tuvestifinations covered by the IND. a section descril) ing the ofmposit.lon, manuracture. and control product. Althoush in each phase of the investigation sufficient information is proper identification, quallisy purity and strength of the qualluy, purity.
anvestigationai drug, Lb.. : monount of information needed. Lo make that assurance wlll vary
with the phase of the lavestigation. the
 corination nitherivise avallatile. FDA recopnizer that modifications to the
melhod of mreparation or the new drug subslance and losagen of the new drug In the dosage form itself are 11 kely as the investigation progresses. There-
fow, ithe $\cdots=$ nphasis in an Inslial riase: fow, bine comphasis in an Inilial rhase 1
subunission should generally be placed on the inentifican. Ioni and control of the raw materials and the new drug sul)-
slance. Final succificatlons siance. Final specifications for the
drug substance anil drug product are not expected until the end of hio investigatlonal proress.
(ii) It should be
amount of information to bined that the
 clingeal investileation. For example, alanden stabinity ilatia are requifed in that the new brug substance and drue product are willinin acceptable chemical and bhysical. il.a for the planned du-
(c) Material in a forcion lanauage. The sponsor shal1 sumpnit an accurate and coinpicte Finkilish translation of cach The sponsor shall also submit a conv of
 milterel.
(d) Number of conics. The sponsor
shall sullunit an oritinal and two coples
of all sulumsal of all sullminssions to the ind flle. In.
cluding the original sulimission and all amendments and renorts.
(e) Numbcring of 1 IND subnissions.
mach sulbmission relating to an ind is Iceluired to ise nummering to an IND is
 ovo; each sulsequent submission (e.g. is required to be numbered chronologically in sequence.
(f) Ifentification of
() Adentification of ercemtion frnm in-
formed consent. If the Invesulgatlon in. volves an excemplinn from informed con-
 the cover shinet that the inves.l.tation or this clapter.

 s 512.30 Protocol amendmenta.
Ones an IND is in effect. a sponsor the cimnical Investigations are conducterd accordine to protocols Included In the application. 7 section sets protocols may bin subumitted and
changes in previnusiy sulbmeltel cols may be maile. Whinnever a spounsor intenis to conduci a clinceal Investikalion with an oxeception frinin inforined forth in 550.21 of thils clapter. the sponsor shall sulmit a separate ind for
such hinvestimation.

Uniterd States. thie sponsor ts not roquired io sulmit pulished materina
concerning that active irug component unless such maticrini relates directly t.o the proposed investigational use in.
cluding publicalions relevant to con-onfiat-component interaction).
(1ii) If the drug has outside the Unitedl States, a list of the
 which the drues has been wlhadrawn related to safety or effectiveness. (10) Additional information. In certinin mation on spectal topics may be needed. Such information shanii be sub(1) Drug depender." :ind abuse potenstance or otherwise has aluuse poturn Lal. a section descrifling relevant cllaical studles and experience and studics
in test animals. In test animals.
radioneliviocective drug. If the drug is a antmal or human stuilles to allow a reasonate calculation of radiation-at.
sorlved dose to ule whote bolly and critlcal orrans uplon adimintstration to a
human subject. Plase dioarctive drugs must include studies | which will oitain sufficient data for dosime try calculations.
(1II) Pediatric studics. Plans for assess
 |would ald evaluation or the proposed Chelr safety or their design and potential as controlled cil inical trials to sup. (11) Rerterant infornution. If erfuest.ed hy FDA, any other relevant informa-
tlion nected for review of the applica-
(b) Information previnusly suthmittrat. The sponsor ordinarily is not required
to resulmit information previously submitati, hut may intorporate the inInformation sulmimitteal previously must tuentify tire file ty nime prevernce
 Where he thronmation can lie foumd. Λ
reference to inf allon sulmmilted to the agency by a son otharer than the
$\$ 312.32$ mitted ctither on an FDA Form 3500A or．If preferred，on a CIOMS I form：re－
jortis from animal or epidemiological jorits from animal or epidemiological
atuiles shall be aubmitted in a nar－ ratlve format）and shall bear promi－ nent lifentification of its contents，i．e．． ＂IIND Safety Report．＂Each written no－ tification to FDA shall be transmitted
to thie FDA new drug review division in the Center for Drug review division in search or the prog Evaluation and Re－ In the Center for Minlogics Evaluation and Research that has responsluility inines that additional data are neelled． the agency may require further data to bo submitted．
（iI）In each written IND safety re－
port，tho sponsor shall dentify all safe－ l．y reports prevlously filed with the IND concerning a similar adverse expe－ rlence，and shall analyze the slgnifi－
cance of the adverse experiencr in $11 g h t$ of the previouos，simillar reports． of the prevlouos．similar reports．
mission safety reports．The sacsimile trans－ also notify FDA by telephone or by fac－ simile＇ransmission of any unexpected ratal or life－threatening experience ns－
 than 7 calendar days after the later Ror＇s infinal recelpt of the information． Each telephone call or facsimile trans－ mission to FDA shall be liransmitted to the FDA new drug review division in search or the product review and Re－ in the Center frol Bitolngics Evaluation

DA may request a sponsor to subnit IND
 quency different than that required under this paragraph．The sponsor may
also propose and adopt a different re－ alao propose and adopt a different re－
porting format or frequency if the
change is apred to change is agreed to in advance by the dirnctor of the new drug review divi－
sion in the Center for Drug Evaluation sion in the Center for Drug Evaluation
and Research or the director of the
 for Blologics Evaluation and Research
which is responsible for remas of the

Food and Drug Adminisfration，HilS hencliure：or．if an Investigator bro－ specificity or seluerity of whith is not consistent with the risk information described in the reneral invnatiga－
tlonal plan or elsewhere in the curirent application，as amended．For example． under this definltion．hepatle necrosls
would be unexpected iby virtue of rreater severity）if the investleator brochure only referren tin elevated he－ nalice rnaymes or hepalillis．Simllarly．
cerelral thrombonmholism and cere－ bral vasculitis would be unexpected by virtue of greater specificity）if the in－ vestifator brochure only listed cere－
bral vascular accidentis．＂Unexpected as used in thls definition．refers to an adverse drus experience cliat has not bern previously observall（e．g．，Incluiled than from the perspective of such expe－ rience not betne anticipated from the
pharinacolopical properties of the

（b）Revicit of safety informatinn．The
 drug obtained or otherwise recelved by the sponsor from any source．forelgn or
domestic．Including information de－ rived from any clinical or epidemlolog－
 tions，a cominercial markeling experi－
ence，reports in the scientific lit－ erature，and unpubilished sciencific pa－
 resulatory authorities that have not
alrealy been previously reported to the agency by the sponsar
（c）IND）safety remonu．：（1）Written re－ and all marticinating investigators in a兰
（A）Ally alverse expertence ansoci－
ated with the use of the drug that is
both serinus and unexpencled：or tory animals that suegests a signifi－
 teratogenicity，or carcinogenicity．

 Is calemiar days after the sponsor＇s inl－
thal recept of the Information．Each
 әаाวยareu e ul do vחoge usiod viad
milten as necessary but．to the extent
feasilly．not more bian every 30 days
Collection of inti．．tiation requitements ap－ nrovect ly the Orflce of Manarementht and
Budget under control number 090.0014 ）
 19月月1
\＄312．32 IND afety reports．
（a）Definitinns．Thr fllini ．Ieflnl－ loons of hermis apply te $1 / 1 \mathrm{~s}$ section drug． There is a reasonable possibinity that
by thers．A atistantin dlamution of a berson＇s ability to conduct normal
liat：：hrentening ontuerse drug crpert－ cnct．Any adverse dirug experience that places the patient or subject．In the
vicw or the investigator，at iminedlate risic of denth fronil i．he renct．ion as it oc－ curred．i．e．．It loes not inclurle a reac－ tion tha．t，hail it occurred in a more se－
vere form，misht have caused death Serious adverse drug experience：Any adversc drug experience occurring at
any lose that reaults in any of the fol－ any iose that results in any of the fol－
lowing outcomes：Death．a life－threat． ening adverse drug experience，inpa－ tient hospitalization or prolongation of
existing hospitalization，a persistent or existing hospitalization，a persistent or
simnificant disablitis／incapacity，or a congenital anornaly／birth defect．Im－
 result in death，he life－threatening．or
require hospitalization may be consid－ ered a serlous alversn drug experience
wlien．bosed upon appropriate wlen．based upon appropriate medical
juthenient，lley inny jeopardize tio judgnient，they inay jeopardize the pa－
tlent or subject and may require med－ Ical or surgical Intinvention to provent
one of the outcomes listed in this ilefi

 refuiring intenslve tiontment in an
emersency room or

 the development of drug dependency or
lrug aliuse．

Unerprcted aducrse drug crperience：
Anv adverse drug experionce．the spect－
ficity or soverity of whic：h is not con－
sistent with the current investigator submit a protucol aniendinent for a
new protocol or a change in protocol before its Implementation．Protocol amendments to add a new investigator
or to provide additional information about investigators may be grouped and submitted at 30 －day Intervals． wols or peral submissions or new proto－ pated during a short period．the spon－ sible；to include these all in a single subinission．
（Collection of inforination reguirements ap－ Buls：${ }^{2}$ ，intier control number 0910－0014） 152．FR an31．Mar．19．1907，as nmpndec｜at 52 1988； 61 FRL $515: 50$ ．Oct．2． 19961
312．31 Information amendments． ment．A sponsor shall report in an in－ formation amendment essential infor－ the scope of a protocol amendment． IND suncty reports．or annual report． Information amendment include： （1）New toxicolog．y．chemistry， other fechinical information：or ance of a clinical investigation．
（b）Content and formut of an informa． non is ment．An information a yond－ Ifentification of its contents（e．g．．＂In－ formation Ainenument：Chemistry． mation Amenulinent：Pharmatcology－ Toxicology＂．＂Information Ainend－ folloiving：
（1）A statement of the nature and （2）An organized sulmission of the data in a format approprlate for scl－
（3）If the sponsen desires FDA to com－ ment on an information amendinent，a amendments to submitterd．Inforination
prolncol number). Its purpose. a brief stapement identifying the poilent pop-
ulation. and a statement as whether the sturly is completed
(2) The total nur'ar of subjects initlally planned for inclusion in the stady to date, tabulated by age group. gentier, and race: the number whose participation In the study was comdropped out of the study for any rea-
(3) If the study has heen or if interim results are known, a brief description of any avallable study re-
(b) Summary information. Information obtained during the previous year's
clinical and nonclinical investigations. Includlng: showing the most or tabular summary serinus adverse experiences by body
(2) A summary of all IND safety ro ports submitled during the past year. (3) A list of subjects who died during
participation in the Investigation, with the cause of death for each subject. (1) A list of subjects who dropped out during the course of the investigation ence, whether or not thought to be drue related.
(5) Λ brief description of what. If any-
thing, was obtained that is pertinent to an understanding of the drug's actions. including. for example., information controlled tralls, and information about bloavailablifity. and information
(G) A list of the rreclinical studies
(including animal studies) completed (including animal studles) completed
or in progress during the past year and
 (7) A summary of any sjenificant manufacturime or inicroviological

 replace that submitted 1 year earlier,
The general investigational plan shali contain the information required under (d) If the investigator brochure has been revised. a description of the revision and copy of the new brochure.
a safety report for any adverse experience associated with use of the drug
that is not from the clinical study itself.
(d) Followup. (1) The sponsor shall
promptly investigate all safety information received by it.
(2) Followup information to a safety
report sliall be submilted as suon as (3) It the results of a 18 avalable. igation show that an arlverse drug exreportable under paragraph (c) of this section is so reportable, the sponsor
shall report such experience in a written safety report as soon as possible. but in no event later than 15 calendar days after the determination is made. thon of other safety inforimation shanll
be submitted, as appropriatc, in an information amendment or annual re(e) Disclaimer. A safety report or other information submitted by a sponFDA of that report or information) loes not necessarily reflect a conclunort or information constitutes an admifsion that the drug caused or consponsor need not admit. and may deny. sponsor need not admit. and may deny.
that the report or information submilted by the sponsor constitutes an cributed to an adverse experience. coluted to an adverse experlence.

Collection of Information requirements ap-
proved by the orfice of Mannenen and (52 Fut uniler control number 0910-0014)
 FR 23031. Junc 17. 1997: 55 FR 11/679, Mar. 29. \$312.33 Annunl reporte.

A sponsor shall within 60 days of the into effect. sul)mit a thrief report of the propress of the investigation that in-
cludes:
(a) Individual study information. A brlef summary of the slatus of each pleted during the previous year. The summary is requitred to include the fol(1) The tit) othe study (with any
Food and Drug Administration, HHS

 practicioner's treatment IND.
(iil) A statement of the steps taken by the practitioner to obtain the drug
 (lv) A treatment protescol containing
the saine information the saine information listed in para(v) A statement of the practitioner's quallifations to use the investiga-
tinnal drug for the intended treatinent use. (vi) The practitioner's statement of
famillarity with informatlon on the famillarity with information on the from previous clinical and nonclinical
experlence with the trug experlence with the irug.
(vil) Apreement to report to FDA gafet.y information in report to FDA
$\mathbf{6 3 1 2 . 3 2}$ (2) Λ Hensell practilioner whoral)mits a treatment IND under whis alab-
tion is tion is the sponsor-Investipator for
such IND and is responslble for meetIng all applicable sponsor and investigator reaponsibilities under this part and 21 CFR parts 50 and 56.

Collertion of information refuirements ap-
 [52 FR 19177. May 22.1987 , as amended at 57
FR 132 19. Apr. 15. 1992] Fル 13219. Apr. 15. 1992)
8312.36 Emergency use of an inves-

Need for an investigational drug may arise in an emergency situalion that an IND in accorrlame wilh $\$ 312.23$ or \$312.31. In such a case. FDA may auiffed use in advance of sulimisalon of an IND. A request for such authorization may be thansmilted to FDA by lele:-
 drugs. the request should lie directed to the Division of Biolorical Investigational New Drugs (HFB-230), Center for Biologics Evaluation and Inesearch,
8BOO llockville Pike. Bethesin. MJj 20892. 301-413-4861. For all othat investhational drugs. the request for atuument Management. ant leporting
...AnchiHFD-53I. Centin lir I)rug Fival-

(2) A treatment protocol is to be sup-
ported by the following:
(i) Informational brochure for sup(ii) The technical ing plissician. relevant. to safety and effectiveness of the drug for the intended treatment sponsor's IND may lee incorporated by
(ifi) A commitment by the sponsor lo assure compllance of all partiripating
Investigators wilh the livformed consent regulrements of 21 CPL pint fn.
(3) A licensed practioner who (3) A licensed practioner who reccives
an Invesligational drug for t,realment an inveshigational drug for trealment
use under a treatment protocol is an "investlgator" under the protocol ablil is responsible for motelink all applica-
the fuvestigal.or responsibilities under this part and 21 CFR parta so and 56. consed prate:ilionner. (J) If a llcensed imedconsed pructilimner. (1) If a licensed med-
ical practilfoner wants to obtain an investigational drug subject, ion a conurolled clinical trial for a treatment
use. the practitioner slould first attempt to oblain the drug from the aponsor of the controlled trial under a treatment protocol. If the sponsor of
the controlled clinical thvestigation of the dru: whl not establish a treatment protocol for the drug under paragraph (a) of this section. the licensed medical
practitioner may seek to obtain line drug from the sjoonsor and subinil a treatment IND to FDA reguesting authorization to use the Investigational drug for treatment use. A treatment use under a treatment IND may begin
30 days after FIDA recelves the IND or
 begin. A tireat.ment IND is required to contain the following:
(i) A cover sheet (Form FDA 1571) (i) A cover sheet
meeting $\$ 312.23(\mathrm{~g})(1)$.
(ii) Information (when not provided
by the sponsor) on the Irug's chein-
 prior clinical and noncilnical experi-
 cordance with $\$ 312.23$. A sponsor of a
clinical investigation subject to an IND who supplies an investigational drug to
a licensed medical practitioner for pura licensed medical practitioner for pur-
poses of a separale treatiment clinical Investigalion ghall be depmed to au-
lhorize line fichorporation-by-referenco
he sponsor and investigators com-
lying with the safeguards of the IND rocess. including the regulations gov0) and institutional review borrls (21 :FR part 56) and the applicable provif the drug throukh gualified experts. iaintenance of ailequate manufac-
uring facilities, and subinission of IND arely reports. linical hold a proposed or ongolng "eatment protocol or treatinent IND 1 accordance with $\$ 312.42$.
 312.35 Sulmissions
(a) Trratinent prulacol submilted by ivestigation of a drug who intends to zonsor a treatment use for the drug
iall submit to FrjA a tiveatment procol under $\$ 312.34$ if the sponsor beeves the criteria of $\$ 312.34$ are satis. nier $\$ 312.34$. but FDA believes that e protocol should have hean subItled under this section, FDA may der $\$ 312.34$. A treatment use under a
 uller notification by FDA that the eatment use described in the protocol
(1) A lreatment protocol is required contain the following:
(i) The intended use of the drus.
 r use of the drus, including, as appro

 explanation of why the use of the vestigational drug is preferable to ents. of availabie marketed treat(ili) A brief description of the criterla iv) The method of administuation of e drug and the dosages.
v) A description of ellinical procees to monitior the sets of the drug
in this part and parts 50 anu with re-
spect to'tie conduct of the clinical in-
（ii）The plan or protocol for the fin－
vestigation is clearly orficiont in de－
 or treatiment protocol． （i）Proposed use．FDA may place a protocol on clinical InN or treatment if it is deter－ mined that： \＄312．34（b）for permitting criteria in use to hegin nur not satisfird；or （B）The treatment protocol or treal．
ment INI）does not grontaln the fufor－ mation required under $\$ 312.35$（a）or（b） to make the specified determination uncler $\$ 312.311 \mathrm{~b}$ ）．
（II）Ongning us
ongolng treatment protucol prace an ment JND on clinical bold if it is deter－ mined that：
（A）Thicre becomng avallable a com－
parable or sallsfactory allernatlun drug or other thinapy to treat that stage of the disease In the intended pa－ tlesi．population for which the inves－ （I3）The inug is heing used： undine investigation in a controlled uniner investigation in a controlled
cli，al trial under an IND in effect for the tirlal and not all controlled clinical trials necessary to support a mar－ keling applicalinn have been com－
pleted．or a clinical study under the IND has been placed on clinical hold： （ P ）．The sponsor of the controlled approval with due tlligence：marketing （D）If the treatment IND ment protocol is intening for a serious disease，there is insulficiont evidence of safety and effectiveness to support （E）If the
treatment IND was based on an imme． diately life－threatening disease，the avallable sclentific evitience，taken as basis for concluifing that the drug： （1），May be effective for its intended
use in ils intencled population or （2）Would not expose the patients to
whom the drug is to be ariministored to Whom the drug is to be administerell to Lional risk of illness or injuriv．
（iii）FDA may place a proposed or on－ cocol on clinfal hold if it finils that
any of the conditlons in daraeranh any of the conditions in daragranh

ででes

（1）Clinical hold of any study that is not designcd to be adicquatc and well－con－ ronled．FDA may place a proposed or
ongoing investigation that is not de－ sifnod to be adequate and well－con－ （1）Any of the conditions inds that： graph（b）（1）or（b）（2）of this section
（iii）There is reasonable evidence the ndequate and well－controllegigned to be nuequale and well－controlled is imned－ fering with the conduct or compinter－ of．a study that is designed to be an adequate and well－conlrolled lovestiga－ tion of the same or another investiga－ tional drug：or
（Si）Insufficient quantities of the in－
vestigational drug exist to adequately vestifational drug exist to adequately
conduct both the investigation that is not designed to be adequate and well－ controlled and the Investigations that are designed to be adequate and well－
controlled；or （iv）The drug
or more adequate anin well－cod in one investigatinns that surongly suggest
lack of effectiveness；or lack of effectiveness：or
or approved for the same indication and avallable to the same patlent popu－ lation has demonstrated a better po－ （vii）The drumisk balance：or （vi）The drug has recelved marketing
approval for the saine Indication in the same patient population；or designed to be an of the study that is
 pursuing marketing approval of the in－

（viII）The Commissioner determines that it would not be in the publicic inter－

 enrollinent in nonconcurrently con－
 （5）Clinical hnvert of any！d．digution in－ velving exan ex，ition from informed con－

clinical in the agency

elinical investigations or response to
the agenes．
 huilket umbler conitrel of Mannermant

Ifi FR R831．Mar．19．1997，as amented at 52
FR 23031．Juns 17．19071
8312．42 Cininiral holds and requests for
（a）Grenerct．A allateal hosld is an order issued hy FDA to the sponsor tio delay sumpenal an ongoing fuvestlization．The clinical linhu oriler mav apply to one or more of the investigations covered by
an JND ．When a proposed y！ 1 is phasend on climical holit．subjec．．．may When an ongoing study is placerd on Clluleal hold，no new suljecets anay be
angole recruited to the study and placed on ready in lige study shoutd be taken ofr ready in the sludy should be laken ofr
therany involving the investikational drug unless specifically permitied by FDA th the interest of patient safety． hold－（1）Clinical himpon of a Phase 1 study under an IND．FI）A may place a pro－ on cilnital hold if it finils that： （1）Human subjects are or would be
exposed to an unreasonable and sikulif． cant risk of illness or injury：
in the IND are not qualified lyy neason of thelr scientific training and experi－ ence to conduct the investlgation de－ scribed in the IND：
（ili）The invest．
misleading，crrone us．or materially
（iv）The ind duas not contain sulfi． clent liforination recruired under． $\$ 312.23$ to nssess the risks to subjects of
Che proposed sturlics．
（2）Clinicul hold of＂lhase 2 or 3 study under an IND．FIDA may placn a pro－ posed or ongoing lhase 2 or 3 inves－
ligation on clintical hold if it finds （i）Any of the contitions in para－ graph（b）（1）i）through（iv）of this sec－
tion apply：or （2）Each pariticijating Investigator
conducts his or her investigaton in compliance with the requircinents of This part and parts 50 and 56.
（1）Thirty days after FDA recelves the IND．unless FDA notifies the spon－ sor that the investigntlons descifind in （2）On earlier motification by FDA that the clintial investlazations in the
INI）niay him：In．Fisa willi notify the spunsor in writing of the date it re－ ceives the IND．
（c）A sponsor mav ship an investiga－
tional new drug to investgators named
（1）Thirty days after FDA receives
（2）Un carlier FDA authorization to
（i）An investigator may not mimin－ ister an investleational new drug to human subjects until the IND goes into
effect under paragraph（ L ）of this sec－ llon．

6312．41 Comment and advice on an
IND．
（a）FDA may at any time during the
course of the investigation commu－ nicate with the sponsor orally or in Writilng nlome deficiencles in the IND
or aljout FDA＇s need for more data or
（il）On the gopsor＇s reqles PDA jwill provide advice on specific matters advice may include alvice on the ade－ quace of techurical data lon subport an clingigal trial．and oll whether pronosed
chat Investigations are likely to produce the data and information blat is needed to plicat．ion requirents for a marketing ap－ plication．
companied by a cominical hold order under §312．42，FJA cominumieations wilin a sponsor uncler this section are modification in the planned or onfoing
not the drug is safe and effective for use; or
(ili)
(1i1) There is convincing evidence
that the drug is not effective for the purpose for which it is being inves-
tigated.
(3) FDA may propose to terminate a (1) Any of the conditions in para-
graphs (b)(1)(1) through (x) of the graphs (b)(1)(1) through (x) of this sec(11) Any of the conditions in
$\$ 312.42(\mathrm{~b})(3)$ apply. (c) Opportunity for sponsor response. (1) Ir FDA proposes to terminate an writing, and invite correction or explanation within a period of 30 days. (2) On such notification, the sponsor may provide a written explanation or correction or may request a conference
with FDA to provide the requested explanation or correction. If the sponsor within the allocated the notification shall be terminated.
(3) If the sponsor responds but FDA does not accept the explanation or correction aubmitted. FDA shall inform the sponsor in writing of the reason for
the nonacceptance and provide the sponnor with an onportunity for a regulatory bearing before FDA under part
16 on the question of whether the IND
 quest for a regulatory heatmg must be
(a) General. This sit lescribes the procedures under which FDA may ter minate an IND. If an IND is terml nated. the sponsor shall end all clinica
Investigations conducted under the
 the drug. A termination action may be based on deficlencles in the IND or in
the conduct of an Investigation under an IND. Except as provided In paragraph (d) of this section, a termination
shall be preceded by a proposal to ternilnate by FDA and an opportunity for general, only initiate an action under this section after first attempting to appronrlate, through the cilinical whold
(b) Grounds for termination-(1) Phase 1. FDA may propose to termluate an
 to an unreasonable and significant risk (ii) The IND does not contain surf1 cient information required under of the clinical Investigations. subjects
(iii) The methods, facilities, and con-
 tional drug are inadequate to establigh and malntain appropriate standards of Identity, strength, quality, and purity
as needed for subject safety.
(iv): The clinical investigations are
 the protocols suhmitted in the ind. (v) The drug is being promoted or tributed for commercial purposes not justifiga by the requirements of the in-
vestigation or permitted by $\$ 312.7$. (vi) The IND, or any amendment or statement of a material fact or omits material Information required by this part.
(vil)
(vil) The sponsor fails promptly to in-
vesligate and inform Drug Adminlstration and all investiga-
tors of serious and - pariances in and uncexpected adverse falls to make any other report re-
quired under thle
endar daye of recelpt of the reciuest a.
 will either remove or maintain the for such determination the reasons for such determination. Notwithtime, a sponsor may nor day response clinical trial on which a clinieni hold has been imposer until the eponsor has been notified.
in Appeal. If the sponsor disagrees 듣 hold, the sponsor may request recon-
sideration of the declsion in accordanc
(g) Conversion of IN., on clinical hold covered by an IND rinaln covered by an IND reinain on clinical ue placed on inactive status by FDA

14. Effective. Date. Note: At 63 FR 68678. Dec. paragraph (e). effective Apr. 28. 1999. For the
convenlence or the user, the supersedou text follows: 8312.42
312.42 Cliniral holdn and requesta for
modification.
(e) Resumption of clinical investiogations. If.
by the terms of the clinlcal hold order, reby the terins of the clinical hold order., re-
sumption of the affected investigation is per-
mitted wite
 made, the investikntiton mar modification is
as the correction or man soon as the correction or moditicaction is made. In
all other cases, an investigation may
 Director's ilesignee) with reaponsibility for
revlews of the IND has notified the sponsor that the investigation may proceed. In thene

 or otherwise satisficd the agency that the in-

mny place a proposed or ongolng Invesinformed consent under $\$ 50.24$ of this chapter on clinical hold if it is determined that
graphs (b)(1) or conditions in para(iil) The pertinent criteria in 650.24 of this chapter for such an investigation or not satisfied. FDA concludes of deficicncy. Whenever in a clinical investigation that may be hold FDA will, unless patients are exposed to immediate and serlous risk. resolve the matter with the sponsor before issuing the cllnical hold order. clinical hold order may be made by telephone or other means of rapld comhold order will lidentify the studies under the IND to which the hold applles. and will briefly explain the basis will be made by or on behalf of the DIvislon Director with responslbility for
review of the IND. As soon as possible and no more th. 30 days after imposition of the clinical hold. the Division
Oirector will provide the sponsor a

[^0](e) Resumption of clinical investiga-
inns. An investigation may only rejume after FDA (usually the Dlvision
 nvestiration may proceed. Resumpiten of the affected investigationp-
will be authorized when :orrects the deficlency(les) previously hat or otherwise satisfles the agency DA may noulify a sponsor of its deter. nination regariling the clinical hold by
elephone or other means of rapld comnunlcation. If a sponsor of an lind com-
las been placed uests in writing that the clinical hold
 ponse to the issuess! ldentified in the
Inical hold orde. DA shall respond
n writing to the. Asor wilhin 30 -cal.

(y) ci for an end-of-Phase 2 meeling are to be made with the division In FDA's Center Or Drut Evaluation an: Research or
the Center for Blologics Evaluation
 revlew of che IND. The meeting will be
 syonsor and FDA may bring consultants to the meeting. The meeting should be elrected primarily at estabthe sponsor of the overall plan for Plase 3 and the objectives and design
 tha techntcal information to support
Phase 3 studies andor a marketing app
 will also provide its best judgment. at that time. of the pediatric studles that
 and whether their submission will be
 maters will be rechrided in minuteco of the conference this will be taken by
FDA in accordance wilh $\$ 10.65$ and proFDA in accordance wild 510.65 and pro-
vided to the sponsor. The minutes
along vith along' with any other written materlal
provided to the sponsor will serve as a

 entinc development that requires oth-
erwise. studies conducted in accord-

ings. FDA has found that delays assuct-

 7
0
0
0
0
0
0
0
0 and well-controlled to establlah the drus's effrectiveness, to luentify the

 of constduriable essiststance in plagning .iter otudies an: that meetlings held
near completion or Phase 3 and before subminasion of a marketlnk anplication developing methods of presentation and subulission of lint in the mar-
keting application that facilitate review and allow timely FDA response.
 meecing is to determine the sarety of
 quacy of curreat sturlics and wans to ansess. and to identify any addititonal in-
net ormation necessary to support a mar-
beting application for the uses under investigation.
(ii) Elicioibitity for meeting. Whllle the
end-of-Phase 2 mee.ting is ilesigned

(ili) Timing. To lee most useful to the

 not, however, intended to delay the transilion of an investigation from
Phase 2 to Phase 3.
(iv) Advance information. At Jeast 1
month in alvance oi $1 /$ end-of-Phase
 background infirmation on the spon-
Bor's plan for iliase 3 . including summarles of the Phase 1 and 2 investigacilnical studies, plans for any additional nonclinical studles, plans for re-
diatrict studles. Including a time line

 .ents of such a sutimmsion are de-
Beritiod miore fully in FIDA starr mann
(d) A anonsmr who intends to resume
clinical munn: ifation under an ind placed on inactive status shall sulimitt a protocol amendment under $\$ 312.30$ tigational plan for the coming year and appropriate protocols. If the protocol amendment relles on information pre-
viously submiticd. the plan shall rererence such information. Additional invormation supporting the proposed investigation. If nyy, shall be sulimilted
in an information amendment. Not-
withstanding withstanding the provisions of $\$ 312.30$. clinical invest/gations under an IND on
Inactive status may only resume (1) 30 nactive status may only resume (1) 30
davs after FDA recelves the protocol amendment. unless FDA notifies the sponsor that the investigallons de-
scribed in the amendment are sulject scribed in the ameniment are sulbect
to a clinical hold under 5312.42 . or (2) on earlier notification by FDA that the clinical investigations described in the (e) An IND that remains on inactive
status for 5 years or more may be terminated under $\$ 312.44$.
 lifi FR R831. Mar. 19. 1987, as amented at 52
FR 23031. June 17, 1097) $\$ 312.47$ Meetinga.
(a) General. Mectings between a spon-
gor and. the agency are frequently use ful in resolving questlons anı issues investigation. FDA encournges cincal meetings to the extent encourages such the evaluation of the drus and in the
solution of scientific problems consolution of scientific problems con-
cerning the drug. to the extent that部 principle underlying the conduct of
such meetinge is that there should be such incetines is that there should be
free. full. and open communication
about any sclentific
 tion that mav arise during the clinical
investifation. These meetings shall be conduc Led and de mented in accord-
ance with part 10 .
(b) "End-of-Phase 2" meetings and meetings held before submission "f a mar-
ketiny a pplicafioun. keting application. AL specific times meetings belween FDA and a sponsor can be especially helpful in minlmiaing
wasteful eexpenditurcs of cime and
recelpt of FDA's notification of non-
 acceptance
(d) Immed withstanding paragraphs (a) through conclucles that continuation of the investigation presents an immediate and substantial danger to the health of individuals, the agency shall immesor from the Director of the Center for Director of lie Center for Blologics Evaluation and Research, terminate the IND. An IND so terminated is sub-
fect to relustatement by the Director on the basis of nillititional submissions that eliminate such danger. If an IND is terminated under this paragraph, the

 er the IND should be reinstated.

Collection of inforination requirements approved by the orfice of Manngement and
Budket under control number 0910-0014) 152 FR 8831. Mar. 19. 1987. as nmanded at 52
FR 23031. June 17. 1987: 55 Fil 11579 , Mar. 29. FR 22031. June 17. 1987: 55 Fil ins79, Mar. 29.
1990: 57 FR 13219, Apr. 15. 1992J \$312.45 Inactive atatug.
(a) If no subjects are entered into or more under an a period of 2 years tigations under an IND remain on clinmay be placed by FDA on inactive sta tus. This action may be taken by FDA | elther on request of the sponsor or on
FDA's own inltiative. If FDA seeks to att on its own initlative under this section. It shall first nolify the sponsor in
writing of the proposed inacuve sate Upon receipt of such notification, the sponsor shall have 30 days to respond as to why the IND should continue to
remain actlve. remain actuve. status. all investigators shall be so no tifled and all stocks of the drug shall
be returned or othervise disposed of in accorilance with $\S 312.59$.
(c) A sponsor is not required to submit antual reports to an IND on inacer. evpr. stlll in effem for purposes of the
pulice diselosu1 data and informa-
tion under $\$ 312.1$,

Food or ${ }^{-1}$ Druy fidministration. HHS
 to conduct an investigation properiy. ensuring proper inunitoring of the in. vestigation(s). ensuring that the inves-
tisation(s) is ronducted in accordance tiration(s) is ronducted in accordance
with the gencral investigational plan and protocols contained in the IND. mpect to the investikations. and ensuring that FDA and all participating investigators are promptiv !nformed or algnificant new alverse- orfects or risks with respect to the drup. Adilitional
specific responstuilitics of sponsors are described elsewhere in thi. pitit.
8312.52 Trnnsfer of obligntions to a
contract rescarch organization. (a) A sponsor may transfer responstblity for any or all or the oblliations
set forth in this paitt to a contract re-
 shall hue 'escribed in writinur iot all obligations are transferreth, the writing gations ljeing assumed by the contract

 ferred ls acceptable. Any obligation not covered liy the writien description
shall be deemed not to have been transferred.
(b) A contract research organization sor shall comply with the specific regusor shas in thits with the specific regu-
lation applicable to this obligation and shall be subject to the same regulatory action as a sponsor for fallure to comply with any obli-
gation assumed under these regulations. Thus, all references to "sponsor"

 the sponsor.
312.53 Selecting investigators and
moniturs.
(a) Smecting intestignings. A sponsor by training an" rexperience as appropriate experts to investigate the drug. (1) Control of Arig. A pponsor shall
shly) investigational new irues only to - Leseretieators participating in the in-- stifatinn.
(c) ()tmining informatinn from the in.
vestigntor. Before prrmitline an lnvesti.

f332.i8

 seareh which is respunaible for revlew
of the IND. FODA will make every at-
tompt to tompt to grant recfuests for meelings
Chat involve important issues and that can lee seheduled at mutually conven-
fent times. ient times.
(2) The "ent-or-Phase 2 " and "pre-
NDA" meetings described in 3 .
 discussing and resnivimely sclentific and
medical issues on which the sponsor disagrees with thin agency the sponsor
(3) In relunesti: . a mecting designed
to resolve a scientific or medlical dis.

 advisory cominitite inembers or other

 ommendations.
 Subpart: D-Responsibilities of
Sponsors and Investigators \$312.5n General responsibilities of

Snonsmis are responsibile for select-
ink qualiteal investigators, providing
2) CFR Ch. 1 (1-1..99 Edilion)
the sulmiss:iun. Includhat methods for

nceled or onkoing pediatric studies. slon at the meeting.

C'ullaction of Information requirements ap-
proverl hy the Offter of Minnigement and 152 FR ba31. Mar. 1.9. 1997. ns ainendell at 52
 18312.48 Dispute resolution.
(a) General. The Food and Drug Addifferences beiween sponsors and FDA reviewing divistons with respect to requirements for IND's as quickly and erative exchange of information and

(b) Administrative and ppocedural dural disputes arinise. the sponsor procefirst. allempt to resolve the matler With the division in FDA's Center for Drur Evaluation and Research or Cen-
ter for Moologics Evaluation and Research which is responsibte for review of the INI). beginning with the conpilication. If the dispute is not resolved, the sumsor may ralse the matter with Whose function shall be to investigate
what has happened and to fachitate limely and equi
priate issues to resolution. Appro-
(11) Selecting muniturs. A sponsor shall
selow. a monltor qualifict li: and experienen to monitor the piogress
of the investikation.
(Collection of inforination refulicuments ap. buatrat under control number 0910 noli) 152 FIt na3l. Mar. 19. 19n7. na nmionded nt 52

\$312.54 Fimergeniry resenrch under

 a 4 donluour lluts losiliods aly (v) under $\$ 50.24$ of this chaptre. Whensent sponsor receives frum the IRIS informalion concerning the public diselosures requlred by $\$ 50.24(a)(7)(i f)$ and (a)(7)(iii) shall submit to the IND file and to Docket Number $95 S^{-}-0158$ in hie Durkets
Management Branch (HFA-305). Food Management Branch (HFA-306). Food
and Drug Asministration, 12420 parkalld Drug Aisministintion, Dr.. rm. 1-23. Hockville. MD 20857, copies of the information that was dis closed. Hentified by the IND number..
(b) The sponsor also shall monitor such investigations to identify when an IRBs Hetermines that it cannol approve
i. Ine research because it then not meet the research luecause it tioes nol meet
the reriteria in the excoption in the eriteria in lie excoption in
$\$ 50.21(a)$ of this chapter or hecause of

 formation in wriling to FUA. Inves
tigators who are asked to participate in this or a substantially equivalent clingeal investieation, and other IleH's
that are asten lio review this or a sub. stanlall.: quivalont juvestigation (01 Fu sisim. Oct. 2. [!ma]
8312.55 Informing investigntors.
(a) Beforn the investigation becins. a sponsor inthar than a spmonsor-inverstl-
gator') shall pive each partichatins clintcal investigator an investimation
inochure contiainge the informatinn lesciriberl in §312.23(a)f!). (h) The sponsor sliall, as the overall
investikat.lon jroceeils. Kenp mach par. ticipating invostigatol informed of new oloservalions ellscovernd by or reported
lo the sponsor on the drue. particu-
larly wilh respect lavly with respect tn adverse effects
nuld saftise. Such information mav be
lo an institutional review requirnenent under mart 56 . an IRB that complies be responsible for the initial and concinuing review and approval or the clingator will promptly report to the IRB all changes in the research activici.y and all mianticipaled problems involving
risks Lo luman subjects or others. and will not make any changes in the re-
search without jals approval, except
 immediate hamards to the human sub-
jects. investigators (e.g.. research fellows, residents) who will he assisting the fo-
vestigatur in the conduct of the lnves-
leallon(s). (2) Curriculum vilac. A curriculum lions of the investigator showing the
cducation. training. and experionce that qualifles thie investicator as an expert ill the clinical investigation of the
drug for the use under investigation.
(3) Clinical protocol. (1) For Phase 1 InManued investigation incluiling the eslimated duratlon of the study and the maximum number of subjects that will
le fiscolved.
(ii) For Phase 2 or 3 investigentions. an outline of the sliuly protocol inchut-
ing an approximation of the number of subjectis to be treated with the drug and the number to be employed as convestigated: characleristics of suhjects live aye. sex, amd comblition: the kime of clinical ohservations anil inborationg
tesats to be condicted: the estimated duration of the study: and copies or a description of case rejort forms to lee
uspal.
(1) Financial disclasure information. Sulficient accurate financial informa-
tion to allow the sponsor to submit complete and accurale certification or
disclesure statements recuired unler part of of this chapter. 'The sponsor shall obtain a commitment from the
clinical investigator to promplly uplate this Infoumation if any relevant changes ncelt ring the course of the
invostigation if f i. the completion of the statily.
 upon request from any properly authorized officer or emplovee of the Food and Drug Administration, at rea-
sonablo times. permit such officer or employee to have access to and copy
and verify any records and repors lating to a clinical investigation conducted under this part. Upon written
request by FDA. the sponsor shall subreguest by FDA. the sponsor shall sub-
mit int reorrts or reports or copples of
them) to FDA. The sponsor shall
 investigator whonthas falled to to maintaln or mate avaliable records or reports of
the investigation as required by this part.
(b) Controlled substances. If an inves-
tigationnil new drug is a substance usttigatonnt new druy is a substance rist-
ed In any schedule of the Conirolled
Substances Act (21 US.C Substances Act (21 U.S.C. B01: 21 CFR
part 1038). records concerning shippart
ment, dellivery, recelpt, and disposilion of the drug., which are required to the kept under this part or other applica-
ble parts or this chapter shall upo request of a properly authorized employee of the Drug Enforcement Administration or the U.S. Department of vestikator or sponsar to whom the request is made. for inspection and copy-
ing. In addution. Uhe sponsor shat sure that adenuate prociautions are taken. including storage of the investikntunal druy in a securety locked, sulstaninally constructed cablinet. or
other securely locked. subslantially constructed enclosure, access to which of the sutustance into therall channels of distatilution.
312.59 Disposition of unused supply
of investigationnl drug.

The sponsor shall assure the relurn of all unused supplies of the investiga-
tional drug from each individual investional druk from each individual inves-
ligator whose participation in the investigation is disconlinued or cerminated. The sponsor may authorize al-
termative disposition of unused supplies termative disposition of unused supplijes
of the investigational drug provided
this alternative this alternative disposition does not
expose human risks from the drug.
tnvestigator shan take adequate precautions, including slorage of the in-
vestigational drug in a securely locked. substantiallv constructed calinet. or other securely locked. sulistant.jally constructicd enclosure, nccess to whith
is limited, to prevent theft or diversion of the substance into illegal channels of distribution.
$\$ 312.70$ Distrunlifiention of n.linienl inveatigntur.
(a) If FDA has
(a) If FDA hins information indleating
that an Investirator (Including a spon-sor-investigator) has repueatodly or dequiraments of this part, part 50 , or part Sn of this chapter. or has submilted to FDA or to the sponsor false Information in any reguired report. The Conter.
for Drue Fevaluation and Research or lhe cemere for Mologics Exealch or and Reseateh will furnish the invashit-
gator written notice of the matter complained of and offer the matter gator an opportunity to explatin the matter in writing. or, at the optlon of ference. If an explanation is offered but not accopted liy the Center for Drug

 lunity for a regulatory hearing onder part 16 on the guestion of whether the
Investigator is enttled to vestikallonal new drugs to recelve in-
(b) Afler evalualing all avallable: in-
formation, including any explanalion
 Commissioner determinos that the in-
vestifator has repeatedly or dell
 yulrements of chis jart. parth: fos, or part 56 of this chapter. or has delliberately
or repeaticelly submitted false Informatlon ta FDA or to the sponser in any reip ieel report. Whe Commissioner will notify the inveatigator and the sponsor vestigator lins heen inmed wich hae inpant that the investigator is not entit.ed to recelve investignational drugs.
The notificatinn will provide a state The notification will provide a state.
ment or lasis for such determination. (c) Eachis IND and each approved anplication sulmiked undirr part 314 congator who has wen detcmmined to be
$\$ 312.110$

 writien request from the person that seeks to "nort the drug. A request must provide adequate information about the drug to saisisfy FDA that the drug is appropriate for the proposed investigational use in humans, that the drug will be used for investigational
purposes only. and that the drug may purposer only. and that the druk may
be legaliy used by that consignee in the Importing country for the proposed investigational use. The request shall spectry the quantity of the drus to be
 quency of expected shipments. If FDA praph. the agency sliall concurrently notiry the aovernment of the importing country of such authorization.
(i1) Through submission to the International Afrairs Starf (HIFY-50). Asso-
clate Commissioner for Health Act clate Commissloner for Healith Affars.
Food and Drug Adminstration, 5600 FIShers Lane, Rockville, MD 20857, of a formal request from an authorized officlal of the government of the country to which the drug is proposed to be shipped. A request must specify that the forelgn government has adequate information atbout the drug and the proposed investigational use, that the
drug will be used for Investigational purposes only, and that the foreign government is satisfled that the drug may legally be used by the intended
conslgnee in that country such consignee in that country. Such a red
quest shall specify the quancity of drug to be shipped per shinment and the freruency of expected shifpnents.
(dili) Authorization to export an investigational drug under paragraph (b) (2)(1) or (1II) of this section may be
revoked Ly FDA if the agency finds revoked Cy FDA if the agency IInds
that the conditions underiyng its au-
thorization
(3) This paragraph applies only where
the Irug is to be used for the purpose of the drug is to be used for the purpose of
clinical invesugation
(4) This paragraph does not apply to the export of new drugs (Including blo-
logical products. antlibiotic drugs, and ogical products. antibliotic drugs, and
insulin) approved or authorlzace (ior cx port uniler section 802 or t : it 21
U.S.C. 382$)$ of sectlon $351(\mathrm{~h})(1)(\ldots$ of of the
 \$312.86

At the discrititon of the agency. FDA
may unilertake focusel may untlertake fochasel 1requlatory re-
search on crilucal rate-llmiling aspects of the preclinital. chemleal'manufac-
turing. and clinical Luringe, and clinical whases of druk dee.
velopment and evaluatlon. When Initiated. FDA will underlake such re-
search efforts as a means for mell

 nesses.
312.87 Artive monitaring of conduct
nnd evnluntion of clinical trints For druse coveret under this section.
Hise Cornmissinncr and ficials will monitur te: en ropress of the
concluct andecvaluation of clinical
deferred until afler approval. The pro respect to ond-or-pliase 2 confrerences including documentation of agree ena ${ }^{153}$ FR 41523. Oct. 21. 1988, as \$312.83 Treatment protocols. tost results apprars promitink. FDN
may ask the sponsor to sutmita a treatment protocol to be revlewed under the \$5312.31 and and 312.35 . Sutiteria a listed in protnco if requested and granted. the complete data necessary for a marketing application are belink assembljed by the sponsor and reviewoud by FDA
(unless Rrounds exxist for clinical hold nf onfoing
$\$ 312.42(b)(3)(i 1))$ $\$ 312.84$ (3)
 (a) FDA's npplication of the statuthall recornize the need for a medical isk-venefit juuginent in making the Inal declsion on approvalillty. As part thatement of purpose in $\oint 332.80$. FDA vIll consider whethice the benerits of
the trug outwelch the known cotlal rlaks of the crug and the need is answer remaining questlons about nto consideration the mevertity of the itcernative thernpy.
(b) In making declsions on whether o grant marketing approval for proil-
cts that have tren the sulject of an nd-or-- bhane 1 mectline under 9312.82 .
 divisory commitcecs. Upon the flilng such a market.1ing application under
314.101 or part 001 or this chapter. FDA III notify the memvers of the relevant :anding advisory commilt ece of the ap.
ilcation's filling and its avallability ols avallability (c) If FDA cone si liat the data
esente! are not ificirntifor mar:-
 rekuintions or the country in which the re－
senchexperiment is performed． 3．Blomedical resparch involving human
salijecta should be conducted only by sct－ entifically gualifled nerrona nond under the supervision of a clinticnlly completent mell－
cial person．The responstility for the human sulject must always rest wlth a medically qualifind persin and never rest on the sub－
ject ne the research，peven though the nubject has glven his or her consent．
4．Murnedlenal research Involving human 4．Murnedical research involving human
suljects cannot lealumately he carried out unless the ：mportance of the oijectlve is in
pronortion to the inherctit risk to tho sub－ jent．
fivery blompdieal resnarch project ：In－
volving human subjects viving human sulyjects should propect in preceded comparison wifl rireseceable lienefits to the pubject or to others．Concern for the foter－
psis of the subject must always prevail over …

7．Physiclans should al）stalin from enkeging

 the hazartis are found to outweigh the poten－
tial henefits．

 nerinnntation not in accorlinace w wh ex－
yrinciplos lald down in this Declaration principlos lald down in this Declaration
alinulif not be accepted for pubilicntion．

 should be tinformed that tire or ahe is at the
sithe erty to abstain from participation in the
at illy anil that he or she ls free to his or her consent to the ls free to withuraw

 the resparch project the whysician should bo

Food and Drug＾dministration，HHS

 thr fultilinent of this misston． Medical Assoritation bindse the physictan with the wortis．＂The hralth of my paitiene wili ton

The purprose of biomedteal resararch involv－
品
In currnt modical imasitice most diag－
nostic．therapeutic or prouhylactic proce－

Mellical progress is lase！t on research
第
 a
0
0
0
0
0
\vdots
0 olject or which is purelve cicinitice and with．
ont Implying direct diarnostc or thera． prustc value to the person subjected to the Spiccial caution must be nexnrefised in the
condunt of research whic：h mav nfrect the en．
 Berause it is essential Lint the results of

 the future．It must be strossed that the
standards as drafted are only a guide to phy－ srians all over the world．Physiciang are not
rellevedi from riminal．©ivil and petical re－ spninsililitiles under the laws of theit own
countries． siodpuand ग्रne l

 tlonal background insshgatior or nila－ （1）A descriptitutional recoras， stance and drug product used in the stuily，including a description of com－ and bionvallability of the specific drug product used in the clinical study，if
（6）If the stuily is intenninal to support the effecliveness of a drug producl．In－
formation showing that the study is aderuate and well controlled under （e）Conformance with ethical principles．
（1）Foreign clinical research is required to have been conducted In accordance with the othical principles slaterl in
the＂Declacalion of Helsinki＂（see paragraph（c）（4）of this Hection）or the laws and regulations of the country in which the research was conducted，
whichever represents the greater pro－ tection of the individual． （2）For each forelgn
（2）For each forelgn cllinlcal study sor shall explain how the research con－ formed to the ethical principles con－
tained in the＂Declaration of Melsinkl＂ or the fronion country＇s standarils．
whichever werc used．If the forelgn
 sponsor shall explain in detall how those standards differ from the＂Dec－ larfer greater protection．and how they （3）When the reaction． proved by an indespendent revlew com－ miltee．the sponsor shall submit to
FD documentaclon of such review and approval．Incluiling the names and approval．Incluiline the names and
qualifications of the members of the committee．In this regard，a＂review committee＂means a commiltee com－ posed of scientists and，where prac－ qualified（e．g．，other health profes－ stonals or layinen）．The investigator may not vote on any aspect of the re－

[^1] \pm
（Gollection of information requirements ap－ Budgel under control number 0910－0014） 152 FR 8R31．Mar．19．1987，as amencled at fi2
FR 23031．June 17，1987； 04 FR 401，Jan．5，1999）

 lence of the user，the superacded text fol－
lowa： 8312．110 Import nad export requirements． ＊
（14）＂．＂．
（4）parapraph dons not apply to the
export of nn ancililotice drug product allipped
 （5）This paragranh dons not apply to the
expurt of new arups dincluding blological productas approvell for expmert uncler section
Ro2 of the net or section $351(h)(1)(A)$ of the
Puthen Public llenlih Scrvice Act．
＊＊
8312．120 Forrign clinicnl atudies not
conducted under （a）Iniroduction．This section de－ scribes the critcria for acceptance by
FDA of foreign clinical studles not con－ ducted under an IND．In general，FDA well designed，well conducted，per－ formed by qualified Investigators，and
conducted in accordanco with principles acceptable to the world com－ may be whllized to support clinical in．
 or marketing approval．Marketing ap－ lroval of a new drug based solely on
forelign clinical data is governed by 5314.106.
（b）Data submissions．A sponsor who
wishics to rely on a forelgn clintcal sludy to support，an IND or to support shall submil to FDA the following in－ （1） 1 infacription of the investigator＇s
qualificalions： ${ }^{\text {cilitiles；}}$ A description of the research fa－

[^2](c) All corresponilence relating to bi-
ologlanl products for human use which
 mitted to the Division of Oncology and Radliopharmaceutical Drug Products HFD-150), Center for Drug Evaluation tration. 5600 Fishers Lane. Rockville MD 20857. except that applicatior for coupled antibnding shall be sutmitted in accorruance wilh paragraph (b) or
this section. this section.
(d) All corr
(d) All correspondence relating to ex-
port of an investipational drug tor prt of an investigational drug under
$\$ 312.110(b)(2)$ shall be submitted to the Internatlonal Affairs Staff (HFY-50), Offlce of Health Affalrs. Food and Drug Administration. 5 firs. Fiod and Drug:
Rockville, MD 20557. Rockville, MD 20857.
(Collection of informnt
 Britgec under contritol number 0990-0014). and

19901
8312.1

(a) FDA has made avallable guldelines under $\$ 10.90(\mathrm{~b})$ to help persons to
comply with certain requiremens of uls ithe Centertor (b) The Center for Drug Evaluation
and Research and the Center for Blo logics Evaluation and Research malntain lists of guldelines that apply to the Centers ${ }^{\text {' }}$ regulations. The Hists state how a person can outaln a copy of each guldeline. A request for a cony of
the lists should be directed to the CDER Executlive Secretarlat Staff (HFD-8). Center for Drug Evaluation and Research. Food and Drug AuminisMD 20857, for drug products, and the Congressional, Consumer, and Interns 'ional Affairs Staff (HFB-142), Cen-
ter for Biologics Evaluation and Reler for Biologics Evaluation and Re-
Bearch. Food and Drug Administration. 8800 Rockvilile Pilke. Delhesua. MD

Food and Drug Administration, HHS submit a request under the Freedom of Information Act.

Food and Drug Administration, HHS

 3s3. Oct. 2. 1996;61 Fr 401. Jan. 5. 1999)

\$312.140 Addreas for correapondence. (b) Except as provided in paragraph an Initial IND submission to the Central Document Room, Center for Drug
Evaluation and Research. Food Drug Alministration. Park Blilg.., Rm. 214. 12120 Priklawn Dr., Rockvilic, MD.
20as2. On recelving the Inforin the sponsor which one or the will visions in the Center for Drug Evalua-
 Bioligics Evaluation and Research is
responsible for the IND. Amendments, reports; andl other correspondence relalling to matters covered by the IND

 tained in the submissin, for example.
"IND Application", "Proter ment". etc
-(b) Applications for the products listvision of Blological Investigational New Drugs (hFB-230). Center for Bioand Drug Auministratlon. 8800 Rockville PIke. Bethesca, MD 20892. (1) Products subject to the licenstng provl-
sions or the Publlic Health Service Act of July 1.1944 (58 Stat. f82. as amended 142 U.S.C. 201 et seq.) or sus.1, ect to part wilh containers intended for the collection. processing. or storage or blood or
blood components: (3) urokinase prod-
 hydroxyethyl starch for inikapheresis; and (5) coupled antibodies. i.e... prod-
ucts that consist of an antibody com-

 lect thut the biological component de-
the rxpurimirntal design is not related to the
patifent: s lilmmas. team ahould discontinue the research if in in
hisher or thels fuisme it ued. he harmful to the Individual. If contlosclence and soclety shmald thever tinterest of denice over consliderations related to the
wellitining of the aulinget. (Collection of information requirements ap.
proved ly thn Offica of 0910.0011)
 fiffective date, note: At 01 fit iol dan.

12.130 Aunilability for puhlir diaclo.
airre of data and informntion in an
IND.
(a) The existence of an Invegliga
 viously been publicly disclosed or ac-
(b) The avallablitty for public discloinvestigational new drug application for a new drug will be handled in ac cordance with the provisions established in $\$ 314.430$ for the confidentiality submitted in part 314. The availabllity for public disclosure nf all data and in. formation in an investigational new uct will be governed by the provisions
(c) Notwllhstanding the provisions of \$314.430, FDA shall disclose upon request to an indluldual to whom an ina copy on any INI) safocty report relat-
ing to the use in the lation ing to the use in the Individual.
(d) 'ithe avallability of infor
renulred to avaliability of information vestigations involving an exception from informed consent an excepption Porsons wishiths to request the publicly
llisclosable informaclow disclosable information in the IND that was required to be filed in Docket ageinent Branch (MFA-305), Food and

inor's legal guardlan. contain a stanemarch protocol should always ations inoolvell and should etudicate that the nrinciples emameintexd in the present Decinin-
Lion are complifd wilh.

$$
\begin{aligned}
& \text { I!. Medicn1 Rasearch Combined with } \\
& \text { Irofessional Curc (CClinical Rescarch) }
\end{aligned}
$$

1. In the trentment of the stek person. the
physlelan must he rees to nostic and therapeutic measure, if in his or estanilishing heallih or allevinuting sufferiny. comfort or a new method should be welphed diagnostic and therapeutic methest current 13. In any medical atudy, every pallent-Inshould the nasured of the that proven any4. The refusal or the patlent to participate siclan-pititient relationship. 5. If the physicitan considers it essenclal
 the exprrimental protocol for trauspilssion
to che indrpenilent commit.tec (I. 2). 6. The nhysictian comm combline medical re-
 edge. only to the extent that mellical research la justified by $1 /$ s docentinit diagnostic
or therapeutic value for the patient.
III. Nin-Therancuutic Biomedical Research in-

Mnlun-Theranciutic Riomedical Research In-
medical Research) Suhjects (Non-Clinical Dio1. In the purely serientific, application of
meilical ressenreli carricil nut, on n human
 malt in. ino notwo of the lire nnd health of

Subnart G-Drugs for Investiga-
21 CRR Ch. 1 (A-1-99 fidilion)
(1) The sponsor or the thesestigation
lias falled to romply with any of the

 tion is unsafe or olierwise contranty to the public interest or the druk is used
for purposes other than bona fide scl-
 the gerson shippink the drux or its Ifing:
Ink and invite immedtate correction. if correction is not immedtacely made.
the person shall have an opportuntit her person shanl have an opportunity
for
pursuatatory
hearing before FDA
(c) Disposition of unused druo. The
 graph (a) of thits section shall assure
the return of all unused supplles of the
 whencever the investigatlon discon-
tinues or tinues or the investigation is term-
nated. The person who ships the mny authorize in writing alternative disposition of unused supplies of the
drug provided this alternative dispost drua provided this alternative disposi-
tion does not expose humans to risko from the drug. elther directly or indirectly (e.e. Lhrough foocl-prorucing
animals). The shilper shall maintain records of any alternative disposition.

 ${ }^{[52}$ FR 月331, Mar. 19. 1987, as aminuled at 52 1988]

PART 314-APPLICNTIN F FOR FDA

APPROVAL TO MARKET A NEW
DRUG
Subpart A-General Provisions

 $3-$ nefupal to approve an abbreviated tional Use in Laboratory Re-
search Animals or In Vitro
Tests
\$312.160 Drugs for inventigationnl use
in non may ship a druk intended solely for tests in vilto or in animala sued only,
for laborator: research purposes if it ts a
 animanal, or for tests in in viltro. Not for use in
humans.
(II) A person may shlp a blological product for Investigational in vitro di$5312.2(1)$ (2)(11) if it is laveled as follows: CAUTION: Contains a Molopical product
for Inveatigational in vitro dinnonostic tests
(2) A nerson shipping a urug under paragraph (a) of this sectlon shall use due dilligence to assure that the con-
stignee is repularly engaged ducting such tests and that the shlpment of the new drug will actually be
used for tests in vitro or in animals usech only for lathoratory research.
(3) A person whats paragraph (a) of this section under maintain adequate records show ling the
name and post office address of the exname and post ofrice address or the exthe date, quantity, and batch or code mark of each shipment and dellvery. (a)(1)(1) of this section aro to parapranh anined for a period of 2 years ander the shipment. Records anu reports or data
and
shipments and
(a)(1) sil) of thils section and paragraph
 The person who shit phs he drues shall
 Food and Drug Almmintstration, at rea-
sonalie times. permit such ofricer or
 anined under thas section toll to be mainshiin. FDA may - of authorization to tion to ship a dru sder this succtlon if
it finds that:
.Sounce: 50\%Rr 7993, Feh. 22. 1995, unless
314. 50 Withirrwal or aprroval or an appll-

DIE \% $1 d$

§50.20 Gemeral requirements for informed consent.
Except as provided in 550.23 , no instigacor may involve a human being as a subject in research covered by these regulations unless the investigntor has obtained the legally effective arioct's cogally authorized rect or the subject's legally authorized represencative. an investigator shall seak such consent only under circumatances that provide the prospective subject or the representarive sufficient opportanity to consider whether or not to participace and that minimize the possibillty of coercion or undue influence. The information that is given to the subject or the representative shall be in language understandable to the subject or the representanve. No informed conander oral or written, may include any exculpacory language through which the subject or che representative is made to waive or appear to waive any of the subject's legal rights, or releases or appears to release the investigator, the sponsor. the institution, or its agents from liability for negligence.
1ce. - . . .'

850.25 Elements of informed consent.

). Boric elements of informed consent. seeking informed consent, the following information shall be provided to each subject:
-- .. (I) A.statement that the study involves research. an explanation of the purposes of the research and the expected duration of the subject's participation. a description of the procedures to be followed. and idencification of any procedures which are experimental.
(2) A description of any reasonably foreseeable risks or discomforts to the subject.
(3) A description of any beneflts to the subject or to others which may reasonably be expected from the research.
(4) A disclosure of appropriate alter. native procedures or courses of treatment. if any, that might be advantageous to the subject.
(5) A statement describing the extent, if any. to which confldentiallty of records identifying the subject will be maintained and that notes the possibility that the Food and Drug Administration may inspect the records.
(6) For research involving more than minimal risk. an explanation as to whether any compensation and an ex-
planation as to whether any medica trearments are available if injury occurs and. if so, what they consist of. or where further information may be obtained.
(7) An explanation of whom to contact for answers to pertinenc questions about the research and research subjects' rights, and whom to contact in the event of a research-related injury to the subject.
(8) A statement that participation is voluntary. that reiusal to participate will involve no penalty or loss of beneIts to which the subject is otherwise entitied, and that the subject may discontinue participation at ans time without penalty or loss of benefts to which the subject is otherwise enditled.
(b) Additional elements of informed consent. When appropriate, one or more of the following elements of information shall also be provided to each subject:
(1) A statement that the particular treatment or procediure may involve risks to the subject (or to the embryo or fetus, if the subject is or may become pregnant) which are currently unforeseeable.
(2) Anticipated circomstances under which the subject's participation may be terminated by the investigator without regard to the subject's consent.
(3) Any additional costs to the subject that may result from participation in the research.
.. (4)...The consequences of a subject's decision to withdraw from the research and procedures for orderiy termination of participation by the subject.
(5) A statement that signiffcant new findings developed daring the course of the research which may relace to the subject's willingness to continue parcicipation will be provided to the subject.
(6) The approxdmate number of subjects involved in the strudy.
(c) The informed consent requirements in these regulations are not intended to preempt any applicable Federal. State. or local laws which require additional information to be disclosed for informed consent to be legally effective.
(d) Noching in these regulations is intended to limit the authority of a physician to provide emergency medical
care to the extent the physician is permitted to do so under applicable \vec{F} ederal. State, or local law.

Information Sheet for a Claim of Categorical Exclusion for an IND Under 21 CFR 25.24

For those wastes generated in the production and use of the product which will be controlled, please indude documentation that such waste storage or disposal is in compliance with federal, state and local requirements for hazardous waste production. As an alternative, identify any generally recognized, scientifically sound control procedures which have been implemented to reduce the likelihood of inadvertent release of potentially toxic materials into the environment (e.g., compliance with the NIH Guidelines for Research Involving Recombinant DNA Molecules [51 FR 16958 (1986)] and/or compliance with the EPA Effluent Guidelines and Standards for Pharmaceutical Manufacturing [40 CFR 439]). If these alternatives are not applicable; a description of the control procedures actually used to prevent waste from entering the environment should be submitted.

For those wastes generated in the production and use of the product which will not be controlled, please list the potentially toxic waste compounds, including the quantities and concentrations which may be expected to enter the environment from both productions of the product and from the intended clinical studies, and briefly describe the immediate environment into which such release will occur. Further, provide the appropriate references or experimental data from which it may be reasonably conciuded that such release is non-toxic.

If the waste to be generated during the production and proposed investigational use of this product is either not controlled or is not reasonably expected to be non-toxic in the environment to which it will be released, please submit an environmental assessment using the format described in 21 CFR 25.31.

If actions under proposed amendments to this IND substantially atter the quantity, quality or conditions of waste release in such a way as to alter the basis for either a claim of categorical exclusion or an environmental assessment, then such amendments should be supported by the appropriate data for a claim of categorical exclusion or an amended environmental assessment for wastes generated under the proposed amendments to this IND.

An investigator sponsored IND for which no additional product manufacturing is intended will ordinarily have addressed these environmental issues by incorporating the manufacturer's IND or MF by cross reference. However, if the use of the product during clinical investigation is expected to result in the uncontrolled release of toxic materials into the environment then an environmental assessment should be submitted.

3/30/94

Our STN: BL [125377/0]

Bristol-Myers Squibb Company
Attention: A. Heather Knight-Trent, Pharm D.
Director-Oncology
5 Research Parkway
Wallingford, CT 06492-7660
Dear Dr. Knight-Trent:
We have received your biologics license application (BLA) submitted under section 351 of the Public Health Service Act (PHS Act) for the following:

Name of Biological Product: Ipilimumab
Date of Application:
JUNE 25, 2010
Date of Receipt:
JUNE 25, 2010
Our Submission Tracking Number (STN): BL 125377/0
Proposed Use: Pretreated Advanced Melanoma
We will notify you within 60 days of the receipt date if the application is sufficiently complete to permit a substantive review.

The BLA Submission Tracking Number provided above should be cited at the top of the first page of all submissions to this application. If you have any questions, contact Erik S. Laughner, Senior Regulatory Health Project Manager, at (301) 796-1393.

Sincerely,

[^3]
Exhibit 8

DESCRIPTION OF SIGNIFICANT ACTIVITIES OF APPLICANT DURING

REGULATORY REVIEW

Date	Event
12-JUL-2000	Submission of initial IND under IND8937.005 by Medarex
13-JUL-2000	FDA receipt of IND (transferred by FDA to IND 9186.000)
31-JUL-2000	Submission of protocol amendment
24-AUG-2000	Submission of protocol IRB approval
27-NOV-2000	Submission of protocol amendment
23-AUG-2001	Submission of protocol amendments and investigator brochure
04-SEP-2001	Submission of annual report
11-MAR-2002	Submission of protocol amendment, IRB approval, approved informed consent, and toxicity
report	
27-JUN-2002	Submission of pharmacokinetic data
27-JUN-2002	Submission of protocol, DTIC, and informed consent
20-AUG-2002	Submission of protocol amendment
7-OCT-2002	Submission of annual report containing revised investigator brochure
20-JAN-2003	Response to FDA request for monitoring information
28-FEB-2003	Submission of new protocol
21-MAR-2003	Submission of protocol amendment
13-MAY-2003	Request for mid-phase II teleconference
19-MAY-2003	Submission of protocol
O1-JUL-2003	Submission of new protocol
03-JUL-2003	Submission of protocol amendment
09-JUL-2003	Submission of protocol amendment
O5-AUG-2003	Submission of mid-phase II follow-up questions
11-SEP-2003	Response to FDA request regarding patient death
16-SEP-2003	Submission of protocol amendment
O6-OCT-2003	Submission of annual report
23-DEC-2003	Submission of investigator brochure, version 4

Date	Event
29-DEC-2003	Request for EOP2 meeting
10-MAR-2004	Submission of protocol amendment
17-MAY-2004	Submission of protocol amendment
03-JUN-2004	Submission of protocol amendment
22-JUN-2004	Submission of protocol amendment
22-JUN-2004	Submission of protocol amendment
20-AUG-2004	Submission of annual report
18-OCT-2004	Submission of investigator brochure, version 5
27-OCT-2004	Submission of protocol amendment
01-JAN-2005	Submission of annual report supplement and investigator brochure, version 6
04-MAR-2005	Submission of protocol amendment
22-MAR-2005	Submission of quarterly safety report
28-MAR-2005	Submission of rational for protocol arm
20-JUL-2005	Notification of study closure for Canadian protocol
28-JUL-2005	Submission of quarterly safety report
08-AUG-2005	Transfer of IND from Medarex to Bristol Myers Squibb (BMS)
11-AUG-2005	FDA acceptance of BMS sponsorship
23-AUG-2005	Submission of investigator brochure
30-AUG-2005	Notification of orphan drug designation
12-SEPT-2005	Submission of new investigator information
13-SEP-2005	Submission of data summary
22-SEP-2005	Submission of quarterly safety report
26-SEP-2005	Request for type B meeting
03-OCT-2005	Submission of protocol amendment
05-OCT-2005 Submission of preliminary safety data, protocol synopsis, and draft protocol 06-OCT-2005 Receipt of Orphan Drug Application letter from FDA 13-OCT-2005 FDA acceptance of sponsorship 14-OCT-2005 Confirmation from FDA of EOP1 meeting 20-OCT-2005 Submission of annual report 20-OCT-2005 Submission of investigator brochure, version 8 FDA comments on briefing document submitted for EOP1 meeting	

Date	Event
03-NOV-2005	Request for SPA
18-NOV-2005	Submission of protocol amendments, revised protocol, and new investigator information
22-NOV-2005	Submission updated safety data
22-NOV-2005	Preliminary comments from FDA regarding BMS questions
29-NOV-2005	Submission of CMC amendment
07-DEC-2005	FDA minutes of 11/28/05 EOP1/pre-phase 2 meeting
09-DEC-2005	Correspondence regarding sponsor minutes from 11/28/05 EOP1 meeting and FDA
comments on SPA	
13-DEC-2005	Submission of protocol amendments and new investigator information
14-DEC-2005	Submission of quarterly safety report
22-DEC-2005	Synchronization of oncology annual reports
Submission of annual integrated summary of safety	
11-JAN-2006	Submission of protocol amendments
26-JAN-2006	Request for FDA feedback and guidance on revision of protocol
30-JAN-2006	FDA responses to BMS questions regarding protocol revisions
06-FEB-2006	Request for SPA
13-FEB-2006	Protocols for studies to investigate monotherapy in solid tumors or
hematologic malignancies can be included under IND 8937.	
20-FEB-2006	SPA submission
21-FEB-2006	Submission of new protocol, revised protocol, and protocol amendments
21-FEB-2006	Submission of request for SPA
12-MAR-2006	Discussion of SPA with FDA
14-MAR-2006	Submission of new investigator information
14-MAR-2006	Letter to investigators regarding protocol
15-MAR-2006	FDA request for a formal type C meeting
16-MAR-2006	Request for SPA
16-MAR-2006	FDA rejection of request for SPA
20-MAR-2006 Submission of draft statistical analysis plan 23-MAR-2006 Correspondence from FDA regarding SPA 24-MAR-2006 FDA internal meeting regarding SPA 24-MAR-2006 FDA rejection of request for SPA 29-MAR-2006 Submission of new investigator information	

Page 3 of 14

Date	Event
11-APR-2006	Request for SPA for revised protocol
13-APR-2006	Submission of protocol amendments and revised protocol Transfer of obligations to CROs
20-APR-2006	Submission of new investigator information
20-APR-2006	Submission of new protocol Transfer of obligations to CROs
10-MAY-2006	Submission of new investigator information
11-MAY-2006	FDA comments on SPA
15-MAY-2006	FDA grant of SPA
18-MAY-2006	Teleconference regarding reproductive toxicology studies
18-MAY-2006	Request for FDA clarification on SPA
18-MAY-2006	Request for FDA guidance on international Phase 3 trial.
19-MAY-2006	Withdrawal of protocol
24-MAY-2006	Response to FDA regarding reproductive toxicology studies
30-MAY-2006	Resubmission of request for SPA
31-MAY-2006	Submission of administrative letter, protocol amendment, and new investigator information
02-JUN-2006	Submission of administrative letter
14-JUN-2006	Submission of revised protocol
16-JUN-2006	FDA comments on SPA
27-JUN-2006	Submission of BMS proposal regarding reproductive toxicology studies
28-JUN-2006	Submission of annual report
29-JUN-2006	Submission of new investigator information
12-JUL-2006	Request for FDA advice regarding proposed modifications to IRC charters
17-JUL-2006	Submission of protocol amendment and new investigator information
21-JUL-2006	Request for FDA feedback on retreatment recommendation
26-JUL-2006	Submission of new investigator information
03-AUG-2006	Submission of protocol amendment and new investigator information
05-AUG-2006	FDA review of retreatment recommendation
10-AUG-2006	Submission of proposal regarding DMC review
14-AUG-2006	Submission of new investigator information
22-AUG-2006	Submission of new investigator information
25-AUG-2006	Request for CMC type B meeting

Date	Event
28-AUG-2006	Submission of protocol amendment and new investigator information
31-AUG-2006	Receipt of FDA feedback regarding BMS proposal for IRC charters
31-AUG-2006	Teleconference regarding a site-specific amendment
31-AUG-2006	Request for EOP1 type B meeting
07-SEP-2006	Submission of protocol amendment, informed consent form, and draft case report forms
14-SEP-2006	Submission of new investigator information and investigator brochure
18-SEP-2006	Submission of background information for 10/19/06 CMC type B meeting
26-SEP-2006	Submission of new investigator information
03-OCT-2006	BMS request for FDA review of cardiovascular safety and assessments.
06-OCT-2006	BMS request for fast-track designation
12-OCT-2006	FDA comments on site-specific amendment
26-OCT-2006	Submission of protocol amendment and revised protocol
27-OCT-2006	Submission of new investigator information for protocols CA184-022, -025
27-OCT-2006	Submission of new investigator information and revised protocol
03-NOV-2006	Submission of protocol amendments and revised protocols
07-NOV-2006	Follow-up from 10/19/06 CMC type B meeting
08-NOV-2006	Submission of new investigator information
10-NOV-2006	Submission of new investigator information
21-NOV-2006	Submission of clinical study report
21-NOV-2006	Submission of new investigator information
28-NOV-2006	FDA Grant of fast track designation
28-NOV-2006	FDA support for site-specific protocol amendment
O7-DEC-2006	Ipilimumab presentation to DMC
13-DEC-2006	Submission of IND SN352
15-DEC-2006	Submission of new investigator information
19-DEC-2006	Submission of new investigator information
21-DEC-2006	Submission of new investigator information
09-JAN-2007	Request to FDA regarding wording for amendments and regarding patients with mixed
response	
12-JAN-2007	Submission of new investigator information
18-JAN-2007	Briefing of new FDA reviewer on recent expedited safety reports.

Date	Event
02-FEB-2007	Submission of SPA, draft revised protocol, protocol amendment, and draft DMC charter
05-FEB-2007	Submission of SPA, draft revised protocol, informed consent form, case report form, and DMC charter
08-FEB-2007	Submission of new investigator information
08-FEB-2007	Submission of protocol amendment and revised protocol
06-MAR-2007	Issue of investigator letter regarding collecting blood samples.
07-MAR-2007	Submission of administrative letter and investigator letter
15-MAR-2007	Submission of addendum to investigator brochure, version 9
16-MAR-2007	Amendment to Drug Master File for CMC variation for a new presentation
22-MAR-2007	Submission of protocol amendment and revised protocol
27-MAR-2007	Submission to FDA of minutes from 11/2/06 meeting
30-MAR-2007	Submission of administrative letter, protocol amendment, and revised protocol
03-APR-2007	Submission of new investigator information
04-APR-2007	Submission of new protocol
10-APR-2007	Submission of administrative letter
13-APR-2007	Submission of CMC information amendment
20-APR-2007	Proposal of addendum to IRC charter
25-APR-2007	Notice to FDA of a safety event
30-APR-2007	Submission of new investigator information
O1-MAY-2007	Submission of initial written report for expedited safety report
11-MAY-2007	Submission of protocol amendment
15-MAY-2007	Response to FDA request for synopsis for ipilimumab treatment use protocol
16-MAY-2007	Submission of new investigator information
22-MAY-2007	Submission of new protocol
24-MAY-2007	Submission of request for review of proposed tradename
25-MAY-2007	Submission of addendum to IRC charter
30-MAY-2007	Submission of new investigator information
04-JUN-2007	Submission of new investigator information
05-JUN-2007	Discussion of timelines for submission of treatment protocol with FDA
11-JUN-2007	Response to FDA request for information
15-JUN-2007	Submission of addendum to investigator brochure

Date	Event
15-JUN-2007	Submission of draft treatment protocol
20-JUN-2007	Submission of administrative letters and revised protocol
20-JUN-2007	Submission of protocol amendment and revised protocol
22-JUN-2007	Pre-BLA meeting discussion with FDA
26-JUN-2007	Submission of annual report
27-JUN-2007	Response to FDA request for information
28-JUN-2007	Submission of new investigator information
29-JUN-2007	BMS to provide Core Statistical Analysis Plan for Clinical Study Reports of Protocols CA184-004, 007, -008, -022 and -024 in Unresectable Stage III or IV Melanoma 03-JUL-2007
Submission of administrative letters	
12-JUL-2007	Submission of new investigator information
13-JUL-2007	Submission of revised draft treatment protocol
17-JUL-2007	Submission of new investigator information
17-JUL-2007	Submission of protocol amendment, revised protocol, and informed consent form
17-JUL-2007	Correspondence with FDA regarding SPA
18-JUL-2007	FDA receipt of development meeting background document
18-JUL-2007	FDA approval of draft treatment protocol
18-JUL-2007	Letter from FDA regarding treatment use protocol
18-JUL-2007	Response to FDA request for submission of development meeting background document as
an informal amendment to IND	
19-JUL-2007	Response to FDA request for redline of revised protocol
20-JUL-2007	Submission of new protocol
31-JUL-2007	Submission of protocol amendment and revised protocols
08-AUG-2007	Submission of new investigator information
O8-AUG-2007	Submission of new investigator information
20-AUG-2007	Submission of protocol amendment and revised protocols
20-AUG-2007	Submission of new investigator information
29-AUG-2007	Request for a face-to-face CMC pre-BLA type B meeting
06-SEPT-2007	Submission of new investigator information
07-SEPT-2007	Letter from FDA confirming 10/31/07 type B meeting
25-SEPT-2007	Submission of CMC pre-BLA type B meeting background document
02-OCT-2007	Submission of investigator brochure

Date	Event
04-OCT-2007	Submission of new investigator information
05-OCT-2007	Communication of plans regarding access program
15-OCT-2007	Submission of minutes from 8/28/07 meeting and update on status of communication plan
15-OCT-2007	Request for a type B meeting
16-OCT-2007	Submission of new investigator information
23-OCT-2007	Submission of new investigator information
23-OCT-2007	Submission of communication plan for treatment protocol
29-OCT-2007	Letter from FDA regarding type B meeting
29-OCT-2007	FDA comments on briefing package for 10/31/07 CMC pre-BLA meeting
31-OCT-2007	Type B CMC pre-BLA meeting with FDA
05-NOV-2007	Submission of new investigator information and administrative letter
14-NOV-2007	Submission of new investigator information
14-NOV-2007	Submission of updated consent forms
16-NOV-2007	Submission of protocol amendment and revised protocols
16-NOV-2007	Submission of background document for type B meeting
03-DEC-2007	Submission of new investigator information
05-DEC-2007	Submission of clinical study reports
12-DEC-2007	Response to FDA questions
14-DEC-2007	Submission of new investigator information
19-DEC-2007	Response to FDA questions received on 12/18/07
20-DEC-2007	Type B meeting at FDA
07-JAN-2008	Notification of new BMS contact
24-JAN-2008	Response to FDA request for hepatotoxicity analysis
25-JAN-2008	Submission of new investigator information
31-JAN-2008	FDA response to hepatotoxicity analysis
31-JAN-2008	FDA feedback on review of tradename
04-FEB-2008	Submission of change in investigator information
06-FEB-2008	Email correspondence with FDA regarding hepatotoxicity management
08-FEB-2008	Submission of administrative letter
20-FEB-2008	BMS request for type C meeting
21-FEB-2008	Withdrawal of application for type C meeting.

Page 8 of 14

Date	Event
21-FEB-2008	Request for a face-to-face pre-BLA type B meeting
25-FEB-2008	Submission of final clinical study report
26-FEB-2008	Submission of change in investigator information
27-FEB-2008	Request for SPA
03-MAR-2008	Letter from FDA confirming 4/25/08 pre-BLA meeting
11-MAR-2008	Submission of protocol amendment and revised protocols
21-MAR-2008	Submission of background document for type B pre-BLA meeting.
28-MAR-2008	Notification of new BMS contact
28-MAR-2008	FDA Comments on SPA
01-APR-2008	Response to FDA comments regarding SPA
02-APR-2008	Submission of new investigator information and change in investigator information
11-APR-2008	FDA request regarding expanded access protocol
14-APR-2008	Submission of new protocol and new investigator information
14-APR-2008	Acknowledgement acceptance letter for SPA
15-APR-2008	Submission of changes in investigator information
18-APR-2008	Response to FDA comments
18-APR-2008	Submission of new investigator information
25-APR-2008	Pre-BLA meeting
29-APR-2008	FDA request for teleconference
30-APR-2008	Response to FDA request regarding changes to protocol
30-APR-2008	Submission of SN 061
08-MAY-2008 Submission of new investigator information 13-MAY-2008 Submission of protocol amendment and revised protocol 13-MAY-2008 Submission of new protocol and new investigator information Transfer of obligation 15-MAY-2008 Addendum to investigator brochure, version 10 29-MAY-2008 Responses to FDA comments 30-MAY-2008 Submission of protocol amendment and revised protocol 06-JUN-2008 Response to 6/5/08 FDA request regarding amount of site activity and status 09-JUN-2008 Submission of new investigator information 26-JUN-2008 Submission of annual report	

Date	Event
01-JUL-2008	Submission of documents for 7/9/08 teleconference
09-JUL-2008	Teleconference with FDA
04-AUG-2008	Submission of protocol amendment
07-AUG-2008	Submission of new investigator information
21-AUG-2008	Submission of prostate meeting information
26-AUG-2008	Submission of new investigator information
27-AUG-2008	Response to FDA request to provide information for 7/9/2008 teleconference
28-AUG-2008	Submission of CMC-DMF amendment
28-AUG-2008	Submission of investigator brochure, version 11
04-SEP-2008	Submission of new investigator information
10-SEP-2008	Submission of protocol amendment
19-SEP-2008	Discussion on prostate meeting with FDA
25-SEP-2008	Submission of protocol amendment and revised protocol
30-SEP-2008	Response to FDA request for revisions to informed consent form
01-OCT-2008	Submission of new investigator information
07-OCT-2008	Submission of protocol amendment
08-OCT-2008	Submission of protocol amendment and revised protocol
17-OCT-2008	Submission of new investigator information
17-OCT-2008	Request for SPA
23-OCT-2008	Submission of request for review of proposed trade name
28-OCT-2008	Discussion regarding SPA request, safety issues, and DMC
29-OCT-2008	Submission of new investigator information
30-OCT-2008	Submission of final clinical study report
07-NOV-2008	Submission of amendment to SPA
07-NOV-2008	Submission of revised case report form
18-NOV-2008	Submission of clinical report protocol
19-NOV-2008	Submission of new investigator information
19-NOV-2008	Submission of slides for 11/20/08 teleconference
18-DEC-2008	Submission of new investigator information
19-DEC-2008	FDA questions concerning revisions to study
06-JAN-2009	Submission of new investigator information

Date	Event
22-JAN-2009	Submission of addendum to investigator brochure, version 11
27-JAN-2009	Request for FDA assistance on SPA
30-JAN-2009	Submission of new investigator information
18-FEB-2009	Email correspondence with FDA regarding DMC
19-FEB-2009	Submission of new investigator information
24-FEB-2009	Submission of new protocol, protocol amendment, new investigator information, and transfer of obligation
25-FEB-2009	Request for SPA
26-FEB-2009	Submission of protocol amendments and revised protocols
03-MAR-2009	Letter from FDA regarding SPA comments
17-MAR-2009	Response to FDA regarding SPA comments
20-MAR-2009	Request for type C meeting
20-MAR-2009	Meeting request regarding SN694
23-MAR-2009	Response to FDA request for additional information
26-MAR-2009	Submission of archival copy of approved protocols and amendments approved under SPA
27-MAR-2009	FDA response regarding logistics for type C meeting
01-APR-2009	Submission of new investigator information
03-APR-2009	Correspondence with FDA regarding converting to eCTD
06-APR-2009	Submission of summary of changes, revised protocol, protocol amendments, abbreviated statistical analysis plan, IRC charter and data monitoring committee information
06-APR-2009	Submission of change in investigator information
22-APR-2009	Submission of protocol amendment and revised protocol
30-APR-2009	Submission of background document for type C meeting
30-APR-2009	Safety teleconference with FDA
01-MAY-2009	Teleconference regarding Type C questions
27-MAY-2009	Submission of protocol amendment and revised protocol
28-MAY-2009	Submission of changes in investigator information
28-MAY-2009	FDA comments regarding upcoming teleconference
03-JUN-2009	Teleconference with FDA regarding comparability process
11-JUN-2009	Submission of protocol amendment and revised protocol
25-JUN-2009	Submission of annual report
14-JUN-2009	Submission of change in investigator information

Date	Event
14-JUL-2009	Submission of change in investigator information
28-JUL-2009	Response to FDA request for meeting minutes from teleconference
07-AUG-2009	Submission of amendment to CMC information by reference to DMF amendment
07-AUG-2009	Submission of new protocol, protocol amendment, revised protocol, and new investigator information
24-AUG-2009	Submission of investigator brochure, version 12
25-AUG-2009	Submission of administrative letter
14-SEP-2009	Request for review of proposed tradename
29-SEP-2009	Submission of addendum to investigator brochure, version 12
14-OCT-2009	Submission of protocol amendment, revised protocol, administrative letter
23-OCT-2009	Submission of new investigator information and change in investigators
06-NOV-2009	Submission of protocol amendment and revised protocol
13-NOV-2009	Submission of preliminary data
03-DEC-2009	Request for type C meeting
07-DEC-2009	Purchase of MDS Pharma Services's central lab by Clearstone Central Laboratories
09-DEC-2009	Submission of change in investigator information
11-DEC-2009	Submission of background document for type C meeting
14-DEC-2009	Request for type B pre-BLA meeting
12-JAN-2010	Submission of administrative letters and protocol amendment
19-JAN-2010	Request for waiver of requirements regarding supportive documentation
25-JAN-2010	Submission of clarification questions to FDA regarding BLA
02-FEB-2010	Correspondence with FDA regarding topics for background document discussion on 3/4/2010
22-FEB-2010	Submission of new investigator information and change of investigator information
02-MAR-2010	FDA comments on ipilimumab pre-BLA
12-MAR-2010	Request for type C meeting
23-MAR-2010	Submission of protocol amendment and revised protocol
23-MAR-2010	FDA grant of type C meeting request
24-MAR-2010	Correspondence with FDA regarding informal meeting request with CDRH
24-MAR-2010	FDA grant of waiver for studies not conducted under IND
09-APR-2010	Request for proprietary name review
26-APR-2010	Submission of comparability type C meeting background document

Date	Event
05-MAY-2010	Submission of clinical study report
05-MAY-2010	FDA request for information on Al monkey toxicity
07-MAY-2010	Response to FDA request for information regarding patients with brain metastases
18-MAY-2010	Response to FDA request for information regarding pre-license inspections
16-JUN-2010	Response to FDA comments on enhanced pre- and post-natal development protocol in
monkeys	
22-JUN-2010	Submission of annual report
25-JUN-2010	Submission of initial BLA application for ipilimumab injection (5mg/lmL)
07-JUL-2010	Submission of administrative letter, revised protocol, and new investigator information
08-JUL-2010	FDA acknowledgement of BLA receipt
12-JUL-2010	BLA monthly update teleconference
14-JUL-2010	Submission regarding expanded access program
02-AUG-2010	Response to FDA request for information regarding statistics
10-AUG-2010	Submission of proposal for providing high-level OS
13-AUG-2010	Response to FDA regarding annotated package insert
16-AUG-2010	Response to FDA questions
16-SEP-2010	Response to FDA regarding protocol and SPA
20-SEP-2010	Response to FDA nonclinical requests
28-SEP-2010	Response to FDA requests regarding ECGs
28-SEP-2010	FDA grant of tradename YERVOY
30-SEP-2010	Response to FDA request to provide study
04-OCT-2010	Submission of investigator brochure, version 13
19-OCT-2010	Response to FDA questions
12-NOV-2010	Submission of administrative letter, protocol amendment, and new investigator information
16-NOV-2010	Response to FDA requests from 11/4/2010
02-DEC-2010	Submission of statistical analysis plan
13-DEC-2010	Response to FDA's request for information regarding safety review
06-JAN-2011	Response to FDA package insert revisions
12-JAN-2011	Response to FDA request for CMC information
18-JAN-2011	Response to FDA request regarding post marketing requirement request
20-JAN-2011	Response to FDA request regarding proposed REMS comments

Date	Event
07-FEB-2011	Response to FDA request regarding immunogenicity
08-FEB-2011	Response to FDA request regarding proposed labeling and cases for further examination
08-FEB-2011	Response to FDA request regarding business card in packaging
22-FEB-2011	Response to FDA request for additional CMC information
24-FEB-2011	Response to FDA request regarding package insert revisions
01-MAR-2011	Response to FDA request regarding post-marketing requirements and medication guide
01-MAR-2011	Response to FDA request for CMS and PMC information
02-MAR-2011	Response to FDA request regarding postmarketing commitments
11-MAR-2011	Response to FDA request regarding carton/container labels
14-MAR-2011	Response to FDA request regarding package insert revisions
14-MAR-2011	Response to FDA request regarding REMS and supporting document assessment revisions
14-MAR-2011	Response to FDA request regarding postmarketing commitments
15-MAR-2011	Submission of revised version of REMS materials
24-MAR-2011	Response to FDA package insert revisions and REMS material
25-MAR-2011	Response to FDA revisions to BMS REMS webpage
25-MAR-2011	Approval of BLA for YERVOY (ipilimumab)
01-APR-2011	Submission of final product label/structured product label management guide submission

[^0]: written explanation of the basis for the

[^1]: committee．
 （1）The
 states as
 （1）The＂Declaration of Helsinkl＂
 states as follows：

[^2]: tocol and resicus of they study，and．

[^3]: /Patricia Keegan/
 Patricia Keegan, M.D.
 Director
 Division of Biologic Oncology Products
 Office of Oncology Drug Products
 Center for Drug Evaluation and Research

