ABSTRACT In both Eacherichia coli and Salmonella typhimurium there is approximately balanced sypthesis of the six calalytic and six regulatory polypeptide chains of the regulatory enzyme acpartate transcarbamoylase (earbamoylphosphaterisaspartate carbamoyltransferase, EC 2 1.3.2). This control is achieved by the contiguous pyri and pyrl genes, which encode the catalytic and regulatory chains, respectively. Evidence for this single transcriptional unit was obtained by a study of various deletion mutations and from the DNA sequedce of the intercistronic region between pyrB and pyri. One pyrB deletion, pyrB748, produced a normal level of regulatory chains even thoughit removed a substantial portion of the pyrB gene. Another deletion, pyrB740, shares a similar terminus at one end within pyr B, but the promoter region is removed: In-this deletion mutation, there is no production of the regulatory polypeptide, indicating that a single region adjacent to pyrB controls transcription of pyrl as well. Molecular cloning and subsequent DNA analysis demonstrated that the pyrB and pyrl genes are contiguous with pyrl as the distal gene in the operon. The cistrons are separated by a 15 -nudeotide untranslated region containing a sequence capable of interacting with the $16 S$ ribosomal RNA and allowing translation of the pyri cistron.

It has been known for many years that the allosteric enzyme aspartate transcarbamoylase (ATCase; aspartate carbamoyltransferase; carbamoylphosphate:L Laspartate carbamoyltransferase; EC 2.1.3.2) from Escherichia colt is an oligomer composed of six catalytic (c) and six regulatory (r) polypeptide chains (1-6). Moreover, there is approximately balanced biosynthesis of the chains in both E. coli (7) and Salmonella typhimurium (8). These observations led to the suggestion that the structural genes for the c and r chains (pyr B and pyrI, respectively) are organized as an operon (8) and that biosynthesis involves a polycistronic messenger RNA (7). However, precise knowledge of the location of the pyri gene and definitive evidence that both genes are subject to the same transcriptional control have not been available.

ATCase of both E. coli and S. typhimurium is composed of two trimeric catalytic (C) subunits and three dimeric regulatory (R) subunits ($1-6,9,10$). Lsolated C trimers of molecular weight 100,000 are catalytically active but insensitive to the feedback inhibitor, CIP, and the activator, ATP (1), whereas the free R dimers of molecular weight 34,000 are devoid of catalytic activity but still bind both CTP and ATP with high affinity (1). When C and R subunits are mixed, reconstituted ATCase of molecular. wejght 300,000 is formed in high yield, and the complex exhibits the allosteric properties of native ATCase (1).
Several lines of evidence indicate that the pyrl gene is in close proximity to the pyrB gene. Single deletions in S. typhimurrum eliminate production of both c and r polypeptide chains

The publication costs of this article were defrayed in part by page charge payment. This article must herefore be hereby masked "adoertisement" in eccordence with $18 . \mathrm{U}$. S. C. $\$ 1734$ soley to indicate His fact
(8). In addition, specialized λ phages capable of transducing the pyrB gene also encode the r chain (11), but the distance between pyrB and pyrl is uncertain. Alhough the genes for the blosynthetic pathway (pyrB, pyrC, pyrD, pyrE, and pyrF) respond in a coordinate manner to uracil starvation (12), they map at different positions (13). The increase in ATCase activity, reflecting the elevated and balanced expression of pyrB and pyrI, is at least 10 -fold greater than that of the other enzymes (12, 14).
Support for the suggestion that pyrB and pyrl are part of the same transcription unit stems from two independent sets of experiments. Perbal and Herve (7) determined the kinetics of incorporation of radioactively labeled amino acids into the cand r chains during and immediately after uracil starvation, and on the basis of the results they proposed that synthesis of both types of polypeptde chains was directed by a polycistronic messenger RNA in E. coli. Further evidence for an operon structure was provided by Syvanen and Roth (8) in their demonstration of the polarity of pyrB chain-terminating mutations on the synthesis of r chains in S. typhimurium.
In order to eliminate uncertainty regarding the organization of the pyrB and pyrI genes and the control of their expression, we have analyzed the effect of pyr B deletion mutations on the synthesis of the r polypeptide chains. These studies have shown that pyrl is subject to the same transcriptional regulation as pyrB even in the absence of the pyrB product. In addition, we have determined the position of the pyrl gene by DNA sequence analysis of the intercistronic region between pyrB and pyrI: These results establish that the contiguous pyr B and pyrI genes constitute a single transcriptional unit encoding the c and r chains of E. coli ATCase.

MATERLALS AND METHODS

Bacterial Strains and Their Construction. All S. typhimurium strains listed in Table 1 are derivatives of LT2 except TR3200, which was derived from L'17. The pyrH700 mutation results in a partially defective UMP kinase; as a consequence the levels of UDP and UTP are reduced, resulting in greatly increased production of ATCase ($9,15-17$). Mutation pyrB655 is a deletion that removes all of pyrB. (8). The F383-episome is derived from F128 (F^{\prime} pro lac) of E. coll K-12 and contains the E. coli pyrB (17). Media, transductional methods, and conjugational transfers were described earlier (17). High-biter phage P28 lysates for mapping experiments were concentrated 10 -foid to yield titers of about 10^{11} plaque-forming units/ml; they were stored in T-2 buffer (18).

[^0]PETITIONER'S EXHIBIT 1072

Table 1 Bacterial struins
Strain

Genotype
S. typhimurium

HS2230 arg 2002 fol-101 lequD798 praAPs7 pyrB655 pyrH700
HS2231 argRO02 fol-101 leuD798 proAB47 pyrB665 pyrH700/

HS2255 argZ2002 fol-101 LeuD798 proAB47 pyrB655 pyrf7700/
F399 lac ${ }^{+}$prot argF282:-Tn10 (P22 pyrB740)
HS2256 argLDOO2 fol 101 leuD798 praAB47 pyrE655 pyrH700/ P393 loc* pro argF282:TnI0 (P22 pyrB')
HS2273 argR002 fol. 101 lewD798 praAB47 pyrB655 pyrH700)
F393 lae ${ }^{*}$ prot arg7282:TnJ0 (P22 pyrB748)
HS2278 argROO2 fac-101 leuD798 praAB47 pyrB665 pyrH700) F393 lact prot (P22 pyrB754)
H52306 fol-101 leuD798 praAB47 pyrB655 pyrH700/
F399 lac* pro argF282::Tu10 (P22 pyrB748)
HS2307 fol-101 leuD798 praAB47 pyrB655/
F393 lac ${ }^{+}$pro ${ }^{+}$argF282:Th10 (P22 pyrB749)
TR3200* amLA1 praAB47 pyrB655 tp-130

coli

AT2535 ${ }^{\dagger}$ pyrB59, argH2, thi-1, hit-1, purF1, mtl-2, 工yl-7, molA1, ara-13, lacy 1 or lace29, rps-18, 9 or 14, tond 2 or ton14, tax-23 or $\mathrm{k}=\mathrm{zr}-25, \lambda^{\top}, \lambda^{-}$, sup 844
*Kinclly provided by J. R. Foth.
tObtained from the E. coli Genetic Stock Center (New Haven, CT).
Lsolation and Mepping of Deletion Mutants. Deletion mutants HS2255 (pyrB740), HS2273 (pyrB748), and HS2278 (pyrB754) are spontaneous derivatives of HS2256 obtained by selecting for pyrB mutants as suppressors of arginine auxotrophy (17). These deletion mutants are completely puxotropic for pyrimidines. Mapping was performed by transductional crosses sing high-titer P22 stockes prown on point mutants and select ing for the ability of the dejetion mutants to form pyrimidineing for the ability of the deletion mutants to form pyrimidineindependent (Pyr^{+}) transductants in spot tests on selective media. Endpoints were confirmed by crosses using $100-200 \mu \mathrm{l}$ of
high-titer P22 stocks and $100 \mu \mathrm{l}$ of recipient cells that had been concentrated 10 -fold after ovemight growth in nutrient broth supplemented with a 2% vol of E medium (at 50 times the normal concentration). The crosses were scored after 48 hr at $37^{\circ} \mathrm{C}$. In crosses in which recombination was possible at least 100 colonies resulted, whereas negative results were indicated by a complete absence of Pyr^{+}transductants.
Preparation of Cell Extracts. Bacteria for assays of R subunit were grown to late logarithmic phase in $25-\mathrm{ml}$ cultures of \mathbf{E} medium supplemented with 0.25% glucose, uracil at $20 \mu \mathrm{~g}$ / ml, and required amino acids at $100 \mu \mathrm{~g} / \mathrm{ml}$. Extracts were prepared as described by Syvanen and Foth (8). Protein concen trations in the extracts were $0.8-1.5 \mathrm{mg} / \mathrm{ml}$
Preparation of Radioactively Labeled C Subunit. ${ }^{125}$ I-Labeled C subunit was prepared by the method of Syvanen et al (19), using $0.5 \mathrm{mCi}\left(1 \mathrm{Ci}=3.7 \times 10^{30}\right.$ becquerels) of $\mathrm{Na}{ }^{12}$ (Amersham) and $40 \mu \mathrm{~g}$ of purified C subanit from E. coli ATC ase. The specific activity of the labeled protein was $4.2 \times 10^{\circ}$ cpm/ $\mu \mathrm{g}$.
Assay for R Subunit in Cell Extracts. The amount of R subunit in the extracts was measured by the procedure (assay II)
found to be present in the extracts in preliminary experiments This procedure was followed in order to obtain the maximal sensitivity consistent with a broad range of detection. The re constitution of ATCase was achieved by incubating the mixtures of subunits for 30 min at $30^{\circ} \mathrm{C}$. In all experiments the labeled C subunit was in excess of any unlabeled C subunit in the ex tracts, and not more than 50% of the ${ }^{125}$ I-labeled subunit was converted to radioactively labeled ATCase. Unlabeled ATCase and C subunit were added as markers and the samples were subjected to electrophoresis in $5-\mathrm{cm}$ polyacrylamide gels (5\%) After electrophoresis the gels were stained and sliced, and the distribution of radioactivity in ATCase and C subunit was determined.

Plasmid Construction. Restriction endonucleases were ob tained from New England BioLabs and used according to the supplier's specifications. The bacterial strain AD1lm5, carryin the λ specialized transducing phage ykl4m5 (λ d pyrB argl valS as a prophage (20) was kindly provided by Ald Kikuchi. Bac teriophage DNA was isolated by the procedure of Wu et al (21) Plasmid DNA was isolated by the allcaline- $\mathrm{NaDodSO}_{4}$ extrac tion method of Birmboim and Doly (22), and the DNA was purified further by centrifugation in a $\mathrm{CsCl} /$ ethidium bromide gradient (23).

A molecular recombinant plasmid containing the purB gene was constructed by digestion of yk14m5 and pBR322 (24) DNA with the restriction endonucleases Pst I and EcoRI and sub sequent ligation of the fragments with phage T4 DNA ligase Plasmids were used to transform strain AT2535 (carrying th pyrB59 allele) made competent by treatment with CaCl_{2} (25) The resulting transformants were selected as Pys^{+}tetracyclineresistant colonies. One isolate was selected and the 7.4 -kilobase (kb) plasmid, pDP7, was purified and analyzed by restriction endonuclease digestion and electrophoresis in 0.7% agarose gels.
The size of the DNA fragment containing the pyrB gene was reduced by digesting plasmid pDP7 with EcoRI and treating the linear DNA with Bal 31 double-stranded exonuclease (26) for 30 min at $30^{\circ} \mathrm{C}$. Incubation of the resulting DNA overnight with T4 DNA ligase yielded plasmid pDP8, which was used t transform AT2535 cells, selecting for pyrimidine prototrophy Lsolates were screened to ensure that they were tetracycline sensitive because exonucleolytic digestion of pDP7 from the EcoRI site should result in the loss of tetracycline resistance (27). The ability of plasmid pDP8 to encode both c and r polypeptides was tested as follows: A derivative of TR3000 (carrying the pyrB655 deletion) containing pDP8 was constructed. Cellular extracts were prepared and subjected to electrophoresis in 5\% polyacrylamide gels. The mobilities of the enzymically active proteins were determined by using the activity stain described by Bothwell (28). As little as I ng of active protein (ATCase or C subunit) can be detected readily by this procedure.

Sequence Determination. A DNA fragment approximately 650 base pairs in length was derived by digestion of pDP8 with the restriction endonuclease Msp 1 (Fig. 1) and was labeled at the 5^{\prime} termini with $\left[\gamma^{32} \mathrm{P}\right]$ ATP (Amersham, $>5,000 \mathrm{Cl} / \mathrm{mmol}$) and polynucleotide kinase (P-L Biochemicals). The DNA strands were separated according to the procedure of Maxam and Gilbert (29). In other exneriments the olasmid was dizested
yk14m5) by hipearization of the molecula by Reond digestion, treat ment with Bal 81 double-stranded exanuclaase, and ligation with I促 the reatriction site atilized to produce fracmente for ourleotide es quence determinations are ahown. Arrome represent the sites eleaved by Map I toyiold the fragment containing 650 base pairs. The fragment produced by Bgl IIPurs II contained 950 bese paire.
determined by the method of Maxam and Gilbert (29) with the modifieations described by Smith and Calvo (30).

RESULTS

Mapping of Deletion Mutations. Twenty-four pyrB deletion mutants have been isolated as part of the construction of a detailed recombination map of the pyrB locus; only three are described here. These deletions, pyrB740, pyrB748, and pyrB754, were mapped by transductional crosses with point mutations whose map positions had been determined independently (31) and art shown in Fig. 2. In this map, pyrB554 is the most pro moter-proximal point mutation that has been mapped (31) Deletions pyrB740 and pyrB748 fail to recombine with point mutations from pyrB554 through pyrB717. However these two deletions recombine with all point mutations from pyrB727 through the end of pyrB. A pyrB754 strain is able to form Pyr* transductants when donors carry point mutations from pyrB554 through pyrB731, but pyrB754 does not recombine with pyrB7I3 or pyrB730. These results are summarized by the map shown in Fig. 2.

The deletion pyrB754 extends at least to arg F on the F393 episome because it has simultaneously become Pyr^{-}and tetracycline sensitive (the transposon Tn 10 in argF of the parent strain confers tetracycline resistance). Because of the deletion argF has become 100% linked with pyrB by P2e-mediated transduction (342 of $342 \mathrm{Pyr}^{*}$ transductants had become arginine independent), as contrasted with the original cotransduction frequency of 7\% (for pyrB554, only 24 of $342 \mathrm{Pyr}^{+}$trans-

Fho. 2. Map of pros deletions. Relevant point mutations from the fine atructure recombination map of the pyri gene obtained by threeGetor croseses (31) are prosented at the top. Shown below are the three partial deletioni of pyrs utulired in thin worts eadpointis are datined by the nearest point mutations. Both pyFB740 and pyrB748 have their right endpointa between pyrB717 and pyrB727. Because pyrB727 rocombines with pyFB748 at a lower frequency than with prri740, the point of pyrB740. Deletions pyrB740 and pyri748 fril to recombino with pyrB554, the moet promoter-provimal point muthtion that has beea mapped. Deletion prri740 continued leftwand through the promoter for pyrB, whersas deletion pryB748 doce not (eve tert). Point mutation pyrH2s1 han been shown to correspond to amino acid residus 125 in the c polypeptide chain (32). Mutation pyrB754 deletes the car-bony-terminal coding region of $p y r B$, sll of $p y r l$, and the flanting region at least to orgF. Transeription is from left to right.

HB2278 H 82306
HB 2307 ET2002 Py 1655 pyrH700/F pro764 pyri65 pri700/F" pri874 pyrB655/P' pyrB748
Amounta of R subunit per mg of cell protain in the call extracts were determined by the procedure of Syvanen and Roth (8). Amounts levo than $0.2 \mu \mathrm{~g} / \mathrm{mg}$ were below the level of detection.
ductants were arginine independent). These results confirm the extent of the deletion pyrB754.
Production of R Subunit in pyrB Deletion Strains. The different strains containing deletions in pyrB were assayed for the production of R subunit (as deseribed in Materials and Methods) in order to determine which regions were necessary for pyrl expression. Table 2 summarizes the results of these assays in terms of the amount of R subunit- in crude extracts.
HS2030, carrying only the deletion pyrB655, produced no detectable R subunit, as expected from the results of Syvanen and Roth (8). In contrast, HS2231, with a normal pyrB gene on the episome, produced a large amount of R subunit because of the effect of the pyrH700 mutation (17). Deletions pyrB740 and pyrB754 eliminated the production of R subunit \ddagger However, a large quantity of \mathbf{R} subunit was produced in HS2273, which carries the deletion pyrB748. This mutation does not interfere with the normal control of A subunit synthesis, as shown by the results with HS2307. In this pyrH ${ }^{+}$derivative virtually no R subunit is detectable. The effect of pyrH700 on the production of R subunit in the absence of the pyrB product is consistent with the increase observed in ATCase production in pyr B^{+} strains caused by purH700 (17). The overproduction of R sub. unit in HS2273 is due primarily to the pyrH700 allele rather than arel2002, as shown by the comparison of the amounts of than argel2002, as shown by the comparison of the
\mathbf{R} subuit in the extractr of HS2306 and HS2307.
Structure of pDP8. The plasmid pDP8 was mapped by digestion with the Pst I, Bgl II, and Pou II restriction endonucleases. The extent of the Bal 31-induced deletion was estimated by digestion with HinfI and Taq I, placing the endpoint between nucleotides 851 and 1,005 of pBR322 (33). Nucleotide sequence determinations (34) show the junction to be at nucleotide 874 of the pBH322 sequence (27). The total size of the deletion is 2 kb , indicating that pDPS is 5.4 kb . Polyecrylamide gel electrophoresis of cellular extracts from a TR3200 derivative containing pDP8 revealed a single band when the gels were stained for enzyme activity (ref. 28; see Materials and Methods). The protein responsible for the activity had the electrophoretic mobility of native ATCase rather than free C subunit. Thus the ability of pDP8 to direct the synthesis of intact ATCase in the TR3200 backgnound was the result of the presence of both pyrB and pyri genes in the plasmid.
Sequence of the Intercistronic Region. The nucleotide sequence of parts of the pyrB and pyrI structural genes and the intercistronic region between them is shown in Fig. 3. Beginning with the inibiation trinucleotide, ATG, the predicted se-
\$Simflar results were obtnined for nine additional deletions. Five delotions extend in the same direction as pyrB740 with right endpoinks as five widely separated locations in pyrb. The other four celete different amounts of the promoter-distal end of pyrB.

Al a-Leu-Val-Lev-Asn-Arg-Asp-Let-Vat-Leu-Stop
 Wet-Thr-His-Asp-Asn-Lys-Ley-GIn-Vol
 GCA-CTG-GTT-CTG-AAT-CGC-GAT-CTG-GTA-CTG-TAAGGGGAAATAGAGATG-ACA-CAC-GAT-AAT-AAA-TTG-CAG-GTT

Fho. 3. Partial pualeotide sequence of the 650 -base DNA fragment containing parts of pyrB and pyrl and the intercistronic region. The sequence eads from the $\overline{5}^{\prime}$ direction on the left to the 3^{\prime} direction on the right. Amuno acids abown above the DNA sequence represent the carbaxyl-termina region of the cchain and the amino-terminal region of the r chain
quence of amino acids (shown above the DNA sequence in the 5 -to -3^{\prime} direction) is identical to the amino terminus of the \boldsymbol{r} polypeptide chain determined by Weber (2). The nucleotide sequence preceding the termination codon, IAA, is thoughl to constitute the coding region for the carboryl terminus of the c polypeptide chains for the following reasons: First, the terminal amino acid corresponding to the trinucleotide CTC is leucine, which has been identified as the carboxyl-terminal amino acid in the c chains (2). Second, the 650-base-pair Msp I fragment contains a nucleotide region encoding the peptide Arg-Leu-Asp-Pro-Ser-Glu-Tyr-Ala-Asn-Val-Lys, described by Landfear et al (35) as the amino acid residues from positions 207 to 217 in the c chains. This nucleotide sequence is in the same reading frame 192 base pairs from the carboxyl terminus in Fig. 3. Third, a DNA Fragment adjacent to the Msp I tragment descnbed here has a nucleotide sequence (34) that would encode a peptide identical to the 38 umino acid polypeptide whose sequence was determined by Wall and Schachman (32)
Although the complete nucleotide sequence of the pyr B gene and the amino acid sequence of the chains are not as yet available, the evidence cited here is sufficient to warrant the conclusion that the nucleotide sequence in Fig. 3 includes regions of the pyrB and pyrl structural genes as well as the intercistronic region.

DISCUSSION

Studies aimed at demonstrating an operon encoding the c and chains of ATCase $(7,8)$ have been hindered by the lack of direct r chains of ATCase $(7,8)$ have been hindered by the lack of direct
information concerning the linkage of the pyrB and $p y r I$
genes information concerning the linkage of the pyrB and pyrI genes
and the inability to isola e regulatory mutants of the cis-domiand the inability to isola e regulatory mutants of the cis-dominant type. From a study of various deletion mutations we have the production of both c and r polypeptide chains in a single transcriptional unit. Moreover, the structural organization of the pyrB and pyrl genes was determined by analysis of the DNA sequence of the intercistronic region.

The pyrB748 mutation as seen in Fig. 2, removes a large portion of the pyrB gene. Nonetheless there is normal synthesis of the r polypeptide. In a pyrB748 strain carrying the unlinked pyrH700 mutation there is a large production of R subunit (Ta ble 2) despite the lack of synthesis of C subunit. In contrast, the synthesis of R subunit is very low in a pyrB748 strain lacking the pyrH700 mutation (strain HS2307). These observations on the production of R subunit are very similar to those for \mathbf{R} production in comparable backgrounds of pyrB ${ }^{+}$strains, in which the R subunit exists as ATCase (17). We conclude from these results that the normal function of the regulatory region for pyrl is unaffected by pyrB748 and that possible trans effects of the c polypeptide on pyrl expression are highly unlikely.
As shown in Table 2, both pyrB754 and pyrB740 mutations eliminate production of the R subunit. In the case of pyrB75
and pyrl are contiguous genes. These results account for the polarity data of Syvanen and Roth (8) for S. typhimurium and the observations with the various deletions discussed above Additional sequence information (34) confirms the gene order shown in Fig. 1 with the pyrB cistron closer to the Pst I endonuclease recognition site and transcription away from that site. Because pyrB was isolated on a Pst I/EcoRI fragment from the transducing phage yk 14 m 5 (see Materiols and Methods) and the transducing phage $\mathrm{y} k 14 \mathrm{~m} 5$ (see Materials and Methods) and a 16.4 kb EcoRI fragment of this phage contains both the pyrB
and argl genes (34), the Pst I end of the cloned fragment must and argl genes (34), the Pst I end of the cloned fragment must be closer to argl. Therefore as reported for S. typhimurium
(8), transcription proceeds away from argl, in the so-called (8), transcription proceeds away from argl, in the so-called
counterclochwise direction on the E. coli chromosome (36)
counterclochwise direction on the E. coli chromosome (36).
The 15 -nucleotide untranslated region separaing pyrB and pyri differs from those needed in stoichiometric amounts to form anthranilate synthase and tryptophan synthase, respectively For both of these pairs of genes the intercistronic region con tains only two untranslated nucleotides. Oppenheim and Yanofsky (39) suggested that the small intercistronic regions would allow "translational coupling" of the genes by a mechanism in which one of the ribosomal subunits remains associated with the mRNA throughouk translation of both structural genes thereby leading to stoichiometric production of the polypep tades. In the case of the pyrB-pyrl operon the intercistroni region

$A-A-A-E \cdot G \cdot C \cdot G \cdot A-A-A-T-A-G-A-G$

contains sin nucleolides (indicated by asterisks) that have a se quence complementary to that of the 165 sibosomal RNA considered to be important in the initiation of translation. This result suggests that translational coupling probably does not occur In the pyrb-pyrl operon by the same mechanism as in the trp in the pyrb-pyri operon by the same mechanism as in the irp
operon, even though the products of these genes are all needed in stoichiometric amounts to form the oligomeric complexes.
Our findings demonstrate that the pyrB and pyrl genes are contiguous and are transcribed under the control of the same promoter. They are separated by a short intercistronic region containing the translational terminator for pyrB and a potentia ribosome binding site for pyrl. These results unambiguously establish that pyrB and pyrl make up an operon encoding the catalytic and regulatory chains of ATCase. Completion of the nucleotide sequence for this operon should yield additional information on the structure of ATCase and the regulation of its synthesis.

We thank Peter Bullock for valuable advice and Lily Wu for excellent technical assistance. This work was supported by Nat onal Institute of General Medical Sciences Research Grant GM 12159 and by National Science Foundation Research Grant PCM76-23308.
8. H
18. Hershey, A. D. \& Chase, M. (1952) J. Gen. Phytiol 36, 38-56.
19. Sywanen, J. M., Yang, Y. R. \& Kirschner, M. W. (1973) J. Biol

Kikuchi, A. \& Gorini, L. (1976) J. Micros. Bioh Cell 87, 1-10.
21. Wu, A. M., Chosh, S., Echols, H. \& Spiegelman; W. G. (1972)
21. J. Mol Biol 67, 407-4i

Bimboim, H. C. \& Doly, J. (1979) Nucleic Acids flet. 7,
1513-1523. Bazoril, M. \& Helinsh, D. R. (1968) J. MoL BioL 36, 185-194
32.

Wall, K. A
$11917-11926$ 3. Sotcliffe, J. G. (1978) Nucleic Acids Res. 5, $2721-2728$.
CA)
35.
 NatL Acual Sci. USA 75, 2654-2658.
36. Bechmarn, B. J. \& Low, K. B. (1980) Microbtol Bee. 44, 1-56. Nichols, B. P., Miozari, G. F., van Cleemput, M., Beanett, G.
N. \& Yanofsly, C. (1880) J. MoL BioL 142, 500-517.
38. 2a99-2403 Yanotsty, C. (1975) Proc. NatL Acad. Sct. USA 72,
9. Oppenheim, D. S. e Yanofiky, C. (1980) Genetics ${ }^{5}$, 785-795.

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

[^0]: Abbreviations: ATCase, aspartate transcarbamoylase, c, catalytic palypepdde chain; r, regulatory polypeptido chain; C, catalytic subunit, R , regulatory «ubuait; Pyr ${ }^{+}$, pyrimidine-independent; kb , diobose.

 - Present address: Medical Research Council Laboralory of Molecular Biology, Cambridge, England.
 1 To whom reprint requests should be addressed.

