SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST Elvin A. Kabat, Tai Te Wu, Howard Bilofsky, Margaret Reid-Miller, and Harold Perry (1983) #### Errata | | | rata | | | | | |--|--|--|--|--|---|---| | # | | | | | | | | 20 Position -1 | of 145 CL (precu | rsor hears | -h-11 . | | | | | 31 Pau and Paul | | rsor neavy | chains) sho | uld be Phe. | | | | 35 | are the same pr | otein. | | | | | | 4 The antibody | Specificities e | on 1071/1 m | | | | | |)5 light chains) | should by anti- | or (UK44-7A)
-P-azobenzen | and 10K;
e arsonate | 26-12A1 (mouse | kappa | | | 3 SAPC178 and S | APC176 (mouse 1s | ambda liete | -1-1-1 | • | | | | b and S176. | | AMOUNT TIRE | chains) sho | ould be named as | S178 | | | 4 References for | r HOPC1, J698, E | £2061. S176 | and Bacac | | | , | | o chains) shou]
6 (1970) Nature. | ld be Weigert, M | i., Cesari, | I.M., Yonko | (mouse lambda
Vich. S.J. & Co) | light | | | • | , 220, 1045-1047 | • | | | , | | | | | | | | | | | References for Cesari, I.M. | W3159 and MOPC! | 511 (mouse] | lambda ligh | t chains) shoul | d ha | | | 2112-2116. | " HOTEST. C. M" | (1973) Pro | oc. Natl. A | sad. Sci. U.S.A. | , 70, | | | J558, XS104, | and S178 (mous | Se lambde | 14.14 | | | | | completely, w. (mouse lambda | hile HOPC1, Jo | 598, H2061, | 11ght chaj
5176, H2020 | ins) were sequ | enced | | | compositions. | right chains) | were anal | yzed by a | mino acid seq | lence | | | There is an ad- | 44+4 | | | | | | | light chains) | i.e., Elliott | , B.W., Jr | oz and MA
., Steiner. | 8-13 (mouse 1: | imbda
u w | | | | | | | | | | | the genes has | n the notes of p | mouse lambda | light cha | ins, "The order | of | | | be replaced b | y "There are | two linkag | 3-J1-C1-V2-,
se groups: | 12-C2-J4-C4," sh | ould | | | | | | | | | | | Positions 13 and | d 14 of CAM (hum | man heavy ch | ain subgrou | up III) should | ho | | | | | | | | 00 | | | rosition 171 of | S43 CL (light c | onstant char | in) should | be Asn. | | | | and Gly post- | nd 143 of MOPC31 | 5 (light con | nstant chai | n) should to | Son. | | | (Bothwell, A.L.) | ., Paskind, M., | Roth. M | tion from n | ucleotide sequer | ices | | | w. a ballimore. | D. (1982) Nat | ure, 298, 38 | 30-382; Wu, | G.E., Govindi | ky, | 1000 | | Hozumi, N. & Mur | ialdo, H. (108 | | | | N | | | | | | | | | | | Positions 258 an | d 262 - d | | , , | | | | | Positions 258 an
revised by the a | d 263 of MOPC
uthors to Pro ar | 173 (heavy
nd Val respe | constant | chain) have b | een | | | Positions 258 an
revised by the a | d 263 of MOPC
uthors to Pro ar | 173 (heavy
nd Val respe | constant | chain) have b | een | | | Positions 258 an
revised by the a
The position num
should read as 99 | d 263 of MOPC uthors to Pro an bering for the c5. 95A, 95B, 95C | 173 (heavy
nd Val respe
codons of 1
7, 95D, 95E, | constant
ctively.
ight chair
95F, 96, a | chain) have b
variable reg | een | | | Positions 258 an
revised by the a
The position num
should read as go | d 263 of MOPC uthors to Pro ar bering for the c5. 95A, 95B, 95C | 173 (heavy
nd Val respe
codons of 1
2, 95D, 95E, | constant
ctively.
ight chair
95F, 96, a | chain) have b
variable reg | een | | | Positions 258 an
revised by the a
The position num
should read as 99
The human kappa (
(1982) J. Biol. (| d 263 of MOPC
uthors to Pro ar
bering for the c
5. 95A, 95B, 95C
J-segments (Hiet
Chem., 257, 1516 | 173 (heavy
nd Val respe
codons of 1
2, 95D, 95E, | constant
ctively.
ight chair
95F, 96, a | chain) have b
variable reg | een | | | Positions 258 an revised by the a The position number should read as 99 and 1 | d 263 of MOPC uthors to Pro ar bering for the c5. 95A, 95B, 95C | 173 (heavy nd Val respected on the codons of 1 | constant
ctively.
ight chair
95F, 96, a | chain) have b
variable reg | een | | | Positions 258 an revised by the a The position number should read as 99 The human kappa (1982) J. Biol. (| d 263 of MOPC uthors to Pro ar bering for the c 5. 95A, 95B, 95C J-segments (Hiet Chem., 257, 1516 J2 J TAC TYR TTC | 173 (heavy nd Val respectively respective | constant ctively. ight chair 95F, 96, a aizel, J.V. as follows: | chain) have be variable regularly. Jr. & Leder, | een | | | Positions 258 an revised by the a The position number of the position number of the position number of the position pos | d 263 of MOPC uthors to Pro ar bering for the c 5. 95A, 95B, 95C J-segments (Hiet Chem., 257, 1516 J2 J ACT THR ACT THR ACT THT PHE TTC | 173 (heavy nd Val respected on the val respected on the value of v | constant ctively. ight chair 95F, 96, a aizel, J.V. as follows: 14 C LEU A THR A | chain) have by variable regular of the chain | een | | | Positions 258 an revised by the a The position number of the position number of the position number of the position pos | d 263 of MOPC uthors to Pro at bering for the c 5. 95A, 95B, 95C J-segments (Hiet Chem., 257, 1516 J2 TAC TYR TTC ACT THR ACT TTT THE TTC GGC GLY GGC | 173 (heavy nd Val respected on the val respected on the value of 1. 95D, 95E, er, P.A., Mr. 1522) are at the value of | constant cotively. ight chair 95F, 96, a sizel, J.V. as follows: LEU A TERR AG THE THE TERR AG THE THE TERR AG T | chain) have by variable regular of the chain | een | | | Positions 258 an revised by the a revised by the a The position number of the position number of the position number of the human kappa. (1982) J. Biol. (1982 | d 263 of MOPC uthors to Pro ar bering for the c 5. 95A, 95B, 95C J-segments (Hiet Chem., 257, 1516 J2 J TAC TYR TC ACT TTT PHE TTC GGC GLY GGC CCC GGC GGLY GGC | 173 (heavy nd Val respected on the val respected on the value of v | constant cotively. ight chair 95F, 96, a sizel, J.V. as follows: LEU A: THR AA C PHE T: CILY CO | chain) have by the variable regular of the chain c | een | | | Positions 258 an revised by the a revised by the a The position number of the position number of the position number of the position po | d 263 of MOPC uthors to Pro ar bering for the c 5. 95A, 95B, 95C J-segments (Hiet Chem., 257, 1516 J2 J ACT THE ACT THE ACT TTT PHE ITC GGC GLY AGC GLY GGC AGC GLY ACC THER ACC AAG LXS AAAA | 173 (heavy and val respectations of 1 | constant cotively. ight chair 95F, 96, a sizel, J.V. as follows: LEU A TERN AC CLY GGLY GGLY GGLY GGLY GGLY GGLY GGLY | chain) have by variable regular of the chain | een | | | Positions 258 an revised by the a revised by the a The position number of the position number of the position number of the position po | d 263 of MOPC uthors to Pro ar bering for the c 5. 95A, 95B, 95C J-segments (Hiet Chem., 257, 1516 J2 J TAC TYR TTC ACT THR ACT TTT PHE TTC GGC GLY GGC CAG GLN CCT GGG GLY GGC ACC TER ACC ACC TER ACC ACC TER ACC ACC LEU GTG CTG LEU GTG CTG LEU GTG CTG LEU GTG | 173 (heavy nd Val respected on the value of 1 c., 95D, 95E, er. P.A., Me-1522) are a company of the value | constant cotively. ight chair 95F, 96, a sizel, J.V. as follows: LEU A' THR AGE TO FIRE TO GLY | chain) have by variable regular of the chain | een | | | Positions 258 an revised by the a revised by the a The position number of the position number of the position number of the position po | d 263 of MOPC uthors to Pro ar bering for the c 5. 95A, 95B, 95C Ut-segments (Hiet Chem., 257, 1516 Che | 173 (heavy nd Val respected on the value of value of the | constant cotively. ight chair 95F, 96. a mizel, J.V. as follows: LEU A' THER AG GLY CA GLY CA CLYS CG VAL CT VAL CT GLU GA | chain) have by variable regular of the chain | een | | | Positions 258 an revised by the a revised by the a The position number of the position number of the position number of the position number of the position | d 263 of MOPC uthors to Pro ar bering for the c 5. 95A, 95B, 95C J-segments (Hiet Chem., 257, 1516 J2 TAC TYR TTC ACT THR ACT TTT PHE TTC GGG GLY GGC CAG GLN CCT GGG GLY GGC ACC TER ACC ACC TER ACC ACC TER ACC ACC LEU GTG ACC TER ACC ACC LEU GTG ACC LEU GTG ACC TER ACC ACC LEU GTG ACC ACC ACC LEU GTG ACC | 173 (heavy and val respectively services of large larg | constant cotively. ight chair 95F, 96, a sizel, J.V. as follows: LEU A' THR AA COLY CALL CALL CALL CALL CALL CALL CALL CA | chain) have by variable regular of the characters, Jr. & Leder, Jr. & Leder, Jr. & Constant of the characters cha | een | | | Positions 258 an revised by the a revised by the a The position number of the position number of the position number of the position number of the position | d 263 of MOPC uthors to Pro ar bering for the c 5. 95A, 95B, 95C J-segments (Hiet Chem., 257, 1516 J2 TAC TYR TTC ACT THR ACT TTT PHE TTC GGC GLY GGC CAG GLN CCT TTT PHE GGC GGC GLY GGC ACC TER ACC AAC LYS AAA ACC | 173 (heavy nd Val respected on respe | constant ctively. ight chair 95F, 96, a sizel, J.V. as follows: LEU A' THER AG CLY GG GLU GA TILE AT | chain) have by variable regular of the characters, Jr. & Leder, Jr. & Leder, Jr. & Constant of the characters cha | een | | | Positions 258 an revised by the a revised by the a The position number of the position number of the position number of the position number of the position | d 263 of MOPC uthors to Pro ar bering for the c 5. 95A, 95B, 95C J-segments (Hiet Chem., 257, 1516 J2 TAC TYR TTC ACT THR ACT TTT PHE TTC GGG GLY GGC CAG GLN CCT GGG GLY GGC ACC TER ACC ACC TER ACC ACC TER ACC ACC LEU GTG ACC TER ACC ACC LEU GTG ACC LEU GTG ACC TER ACC ACC LEU GTG ACC ACC ACC LEU GTG ACC | 173 (heavy and val respectively services of large larg | constant cotively. ight chair 95F, 96, a sizel, J.V. as follows: LEU A' THR AA COLY CALL CALL CALL CALL CALL CALL CALL CA | chain) have by variable regular of the characters, Jr. & Leder, Jr. & Leder, Jr. & Constant of the characters cha | een | | | | The antibody light chains) SAPC178 and S and S176. References for chains) should (1970) Nature, S and S176. References for Casari, I.M. 2112-2116. J558, XS104, completely, w (mouse lambda compositions. There is an addight chains) (1981) Fed. Pro. The statement i the genes has be replaced b J2-C2-J4-C4." Positions 13 am Gln and Lys res; C and Gly respectige to the statement of the genes has be replaced b J2-C2-J4-C4." | The antibody specificities of light chains) should by anti- SAPC178 and SAPC176 (mouse lead of should by anti- SAPC178 and SAPC176 (mouse lead of should be weigert, M. Heferences for HOPC1, J698, Echains) should be Weigert, M. Clark (1970) Nature, 228, 1045-1047 References for W3159 and MOPC1 Cesari, I.M. & Weigert, M. 2112-2116. J558, XS104, and S178 (mouse completely, while HOPC1, J6 (mouse lambda light chains) compositions. There is an additional referentight chains) i.e., Elliott (1981) Fed. Proc., 40, 1098. The statement in the notes of the genes has been determined be replaced by "There are J2-02-J4-C4." Positions 13 and 14 of CAM (hunglin and Lys respectively. Positions 142 and 143 of MOPC3 and Gly respectively, based on (Bothwell, A.L.M., Paskind, M., | The antibody specificities for 10K44-7A1 The antibody specificities for 10K44-7A1 The antibody specificities for 10K44-7A1 Iight chains) should by anti-p-azobenzer SAPC178 and SAPC176 (mouse lambda light and S176. References for HOPC1, J698, H2061, S176, chains) should be Weigert, M., Cesari, (1970) Nature, 228, 1045-1047. References for W3159 and MOPC511 (mouse lambda completely, while HOPC1, J698, H2061, (mouse lambda light chains) were anal completely, while HOPC1, J698, H2061, (mouse lambda light chains) were anal compositions. There is an additional reference to TEPC9 light chains) i.e., Elliott, B.W., Jr (1981) Fed. Proc., 40, 1098. The statement in the notes of mouse lambda the genes has been determined as V1-J3-Ci be replaced by "There are two linkag J2-C2-J4-C4." Positions 13 and 14 of CAM (human heavy chain and Lys respectively. Positions 142 and 143 of MOPC315 (light coand Gly respectively, based on the translations (Bothwell, A.L.M., Paskind, M., Roth, M., | The antibody specificities for 10K44-7A1 and 10K. SAPC178 and SAPC176 (mouse lambda light chains) should be Weigert, M., Cesari, I.M., Yonko chains) should be Weigert, M., Cesari, I.M., Yonko (1970) Nature, 228, 1045-1047. The References for W3159 and MOPC511 (mouse lambda light chains) completely, while HOPC1, J698, H2061, S176, H2020 (mouse lambda light chains) were analyzed by a compositions. There is an additional reference to TEPC952 and MA (1981) Fed. Proc., 40, 1098. The statement in the notes of mouse lambda light chains be replaced by "There are two linkage groups: J2-02-J4-C4." Position 17 of S43 CL (light constant chain should Positions 142 and 143 of MOPC315 (light constant chain and Gly respectively, based on the translation from to (Bothwell, A.L.M., Paskind, M., Roth, M., Imanishi-Xa | 4 The antibody specificities for 10K44-7A1 and 10K26-12A1 (mouse light chains) should by anti-p-azobenzene arsonate. 3 SAPC178 and SAPC176 (mouse lambda light chains) should be named as and S176. 4 Heferences for HOPC1, J698, H2061, S176, and H2020 (mouse lambda chains) should be Weigert, M., Cesari, I.M., Yonkovich, S.J. & Cot (1970) Nature, 228, 1045-1047. 7 References for W3159 and MOPC511 (mouse lambda light chains) should be desart, I.M. & Weigert, M. (1973) Proc. Natl. Acad. Sci. U.S.A. 2112-2116. 8 J558, XS104, and S178 (mouse lambda light chains) were seque (mouse lambda light chains) were analyzed by amino acid sequences and distinct chains) were analyzed by amino acid sequences and distinct chains i.e., Elliott, B.W., Jr., Steiner, L.A. & Eisen, (1981) Fed. Proc., 40, 1098. The statement in the notes of mouse lambda light chains, "The order the genes has been determined as V1-J3-C3-J1-C1-V2-J2-C2-J4-C4," she replaced by "There are two linkage groups: J3-C3-J1-C1 Positions 13 and 14 of CAM (human heavy chain subgroup III) should Gln and Lys respectively. Positions 142 and 143 of MOPC315 (light constant chain) should be and Gly respectively, based on the translation from nucleotide sequences and Gly respectively, based on the translation from nucleotide sequences and Gly respectively. | The antibody specificities for 10K44-7A1 and 10K26-12A1 (mouse kappa light chains) should by anti-p-azobenzene arsonate. SAPC178 and SAPC176 (mouse lambda light chains) should be named as S178 and S176. References for HOPC1, J698, H2061, S176, and H2020 (mouse lambda light chains) should be Weigert, M., Cesari, I.M., Yonkovich, S.J. & Cohn, M. (1970) Nature, 228, 1045-1047. References for W3159 and MOPC511 (mouse lambda light chains) should be 2112-2116. J558, XS104, and S178 (mouse lambda light chains) were sequenced completely, while HOPC1, J698, H2061, S176, H2020, W3159, and MOPC511 (compositions. There is an additional reference to TEPC952 and MA8-13 (mouse lambda light chains) i.e., Elliott, B.W., Jr., Steiner, L.A. & Eisen, H.N. (1981) Fed. Proc., 40, 1098. The statement in the notes of mouse lambda light chains, "The order of the genes has been determined as V1-J3-C3-J1-C1-V2-J2-C2-J4-C4," should be replaced by "There are two linkage groups: J3-C3-J1-C1 and J2-C2-J4-C4." Positions 13 and 14 of CAM (human heavy chain subgroup III) should be GIn and Lys respectively. Positions 142 and 143 of MOPC315 (light constant chain) should be Ser and Gly respectively, based on the translation from nucleotide sequences (Bothwell, A.L.M., Paskiad, M., Roth, M., Tamishi-Xari, T. Pelicities. | ## SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST Tabulation and Analysis of Amino Acid and Nucleic Acid Sequences of Precursors, V-Regions, C-Regions, J-Chain, β_2 -Microglobulins, Major Histocompatibility Antigens, Thy-1, Complement, C-Reactive Protein, Thymopoietin, Post-gamma Globulin, and α_2 -Macroglobulin #### 1983 Elvin A. Kabat*, Tai Te Wu[†], Howard Bilofsky [‡], Margaret Reid-Miller[‡], and Harold Perry[‡] *Depts. of Microbiology, Human Genetics and Development, and Neurology, Cancer Center/ Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032 and the National Institute of Allergy and Infectious Diseases, Bethesda, MD 20205 † Depts. of Biochemistry, Molecular Biology, and Cell Biology, and Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60201 and the Cancer Center, Northwestern University Medical School, Chicago, IL 60611 ‡Bolt Beranek and Newman Inc., Cambridge, MA 02238 The collection and maintenance of this data base is sponsored through Contract N01-RR-8-2118 by the following components of the National Institutes of Health, Bethesda, MD 20205: Division of Research Resources National Cancer Institute National Institute of Allergy and Infectious Diseases National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases National Institute of General Medical Sciences U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health (1983) THE HEALTH SCIENCES LIBRARY Sanofi/Regeneron Ex. 1029, pg 904 Our listing of sequences will be kept up to date. Investigators are invited to send additional sequence data when accepted for publication. Send two copies of the manuscript together with a letter of acceptance from a journal to: Dr. E.A. Kabat National Institutes of Health Building 4, Room 337 9000 Rockville Pike Bethesda, Maryland 20205 If a computer tape is available, please send it to facilitate entering sequences. When published, three reprints should be provided. If any published sequences have been overlooked or if any errors are found, please bring them to our attention. Sanofi/Regeneron Ex. 1029, pg 905 | | | | | | | | | | | | | 246 | | | | | | | | | | | |-------------|-------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------| | CC | DONS | OF VAR | 2 | а | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | _ | | HK101 | HK102 | MOPC
41 | MOPC
21 | MOPC
167 | MOPC
149
(K2) | K2A | MPC
11 | MOPC
179B | S107
B | T1 | L6 | T2 | Ĺ7 | PKAPPA
(11)24
GGA | IG99
LAMBDA | IG13
LAMBDA | IG303
LAMBOA | \$43 | MOPO
315 | PLAI
-13 | | | 0
1
2
3 | GAC
ATC
CAG | GAC
ATC
CAG
ATG | GAC
ATC
CAG
ATG | AAC
ATT
GTA | GAT
ATT
GTG | GAC
ATC
CAG | GAC
ATC
CAG
ATG | GAC
ATT
GTG | GAC
ATC
CAG | GAA
AAT
GTG | GAC
ATC
AAG | GAC
ATC
AAG | GAC
ATC
TTG | GAC
ATC
TTG | GAC
ATT
GTG | CAG
GCT
GTT | CAG
GCT
GTT | CAG
GCT
GTT | CAG
GCT
GTT | CAG
GCT
GTT | | | | 4
5
6
7 | ATG
ACC
CAG
TCT
CCA | ATG
CAG
TOT | 400 | ATG
ACC
CAA
TCT | ATA
ACC
CAG
GAT | ATG
ACT
CAG | ACT | AGC
CAA | ACC
CAG | AGC
CAG
TCT
CGA | ACC
CAG
TCT | ACC
CAG
TCT | ACT
CAG
TCT | ACT
CAG
TCT | ATG
ACC
CAG
TCT | ACT
CAG | GTG
ACT
CAG | GTG
ACT
CAG | ACT
CAG | ACT
CAG | | | c | 9
10 | TCA | CCT
TCC
ACC
CTG | CAG
TCT
CCA
TCC
TCC | AAA
TCC | GAA
CTC
TCC | CAG
TCT
CCA
GCC
TCC | CAG
TCT
CCA
GCC
TCC | CAA
TCT
CCG
GCT | CAG
TCT
CCA
TCC | GCA | TCT | TCT | GCC | GCC
ATC
CTG | CAC
AAA
TTC | GAA
TGT
GCA | GAA
TCT
GCA | GAA
TCT
GCA | GAA
TCT
GCA | GAA
TCT
GCA | GCA | | 1 | 11
12
13
14 | CTG
TCT
GCA
TCT | CTG
TGT
GCA
TGT | TTA
TCT
GCC
TCT | ATG
TCC
ATG
TCA | AAT
CCT
GTC
ACT | CTA
TCT
GCA
TCT | CTA
TCT
GCA
TGT | GCT
GTG
TCT | TTA
TCT
GCC
TCT | ATG
GCT
GCC
TCT | ATG
TAT
GCA
TCT | ATG
TAT
GCA
TCT | ATC
CTG
TCT
GTG
AGT | CTG
TCT
GTG
AGT | ATG
TCC
ACA
TCA | GTC
ACC
ACA
TCA | CTC
ACC
ACA
TCA | ACA
ACA
TCA | CTC
ACC
ACA
TCA | ACC
ACA
TCA | CTC
ACC
ACA
TCA | | | 15
16
17 | GTA
GGA
GAC | GTA
GGA
GAC | CTG
GGA
GAA | GTA
GGA
GAG | TCT
GGA
GAA | GTG
GGT
GAA
ACT | GTG
GGT
GAA | GTA
GGG
CAG | CTG
GGA
GAA
AGA
GTC | CTG
GGG
CAG
AAG
GTC | GTA
GGA
GAG | GTA
GGA
GAG | CCA | CCA
GGA
GAA | GTA
GGA
GAC
AGG | GGT
GGA
ACA
GTC | CCT
GGT
GGA | GCT
GGT
GAA
ACA
GTC | CCT
GGT
GAA | GGT
GGA | CCT | | | 18
19
20
21 | AGA
GTC
ACC
ATC | AGA
GTC
ACC
ATC | AGA
GTC
AGT
CTC | AGG
GTC
ACC
TTG | TAC
GTT
TCC
ATC | ACC
ACC
ATC | ACT
GTC
ACC
ATC | AGG
GCC
ACC
ATA | AGT
AGT
CTC | ACC | AGA
GTC
ACT
ATC | AGA
GTC
ACT
ATC | GAA
AGA
GTC
AGT
TTC | AGA
GTC
AGT
TTC | AGC
ATC
ACC | GTC
ACA
CTC | ACA
GTC
ATA
CTC | GTC
ACA
CTC | ACA
GTC
ACA
CTC | ACA
GTC
ATA
CTC | GAA
ACA
GTC
ACA
CTC | | _ | 22
23
24 | ACT
TGT
CGG | ATC
ACT
TGC
CGG | CTC
ACT
TGT
CGG | ACC
TGC
AAG | TGG | TGT
CGA | ACA
TGT
CGA | ATA
TCC
TGC
AGA | TGC
CGG | ACC
TGC
AGT | TGC | ACT
TGC
AAG | TCC
TGC
AGG | TGC
TGC
AGG | AAG | TGT
CGC | ACT
TGT
CGC | TGT | TGT | TGT | TGT | | | 25
26
27
27A | GCG
AGG
CAG | GCC
AGT
CAG | GCA
AGT
CAG | GCC
AGT
GAG | | GCA
AGT
GGG | AGT
GGG | GGC
AGT
GAA
AGT | GCA
AGT
CAG | GCC
AGC
TCA | GCG
AGT
CAG | GCG
AGT
CAG | GGC
AGT
CAG | GCC
AGT
CAG | GCC
AGT
CAG | TCA
AGT
ACT | TGA
AGT
ACT | ACT
ACT | AGT
ACT | TCA
AGT
ACT | TCA
AGT
ACT | | CD | 27B
27C
27D | === | | | | | | | GTT
GAT
AGT | === | | | | | | | GGG | GGG | GGG | GGG | ĜĞĞ | | | 1 | 27E
27F
28
29 | GGT | ĀĞT | GAC | AAT
GTG | | ĀĀT
ATT | ĀĀT
ATT | TAT | GAC | AGT
GTA | GAC | GAC | AGC
ATT | AGC
ATT | GAT
GTG | GCT
GTT
ACA
ACT | GCT
GTT
ACA
ACT | GCT
GTT
ACA
ACT | GCT
GTT
ACA
ACT | GCT
GTT
ACA
ACT | GCT
GTT
ACA
ACT | | | 30
31
32
33 | AGC
AGC
TGG
TTA | AGT
AGC
TGG
TTG | ATT
GGT
AGT
AGC
TTA | GTT
ACT
TAT
GTT | | CAC
AAT
TAT
TTA | CAC
AAT
TAT
TTA | AAT
AGT
TTT
ATG | CAT
GGT
TAT
TTA | AGT
TOC
AGT
TAC | AAT
AGC
TAT
TTA | AAT
AGC
TAT
TTA | GGC
ACA
AGC
ATA | GGC
ACA
AGC
ATA | AGT
ACT
ACT
GTG | AGT
AAC
TAT
GCC | AGT
AAC
TAT
GCC | GGT
AAC
TAT
GCC | AGT
AAC
TAT
GCC | AGT
AAC
TAT
GCC | | | _ | 34
35
36 | GCC
TGG
TAT | GCC
TGG
TAT | TGG
CTT | TGG
TAT | | GCA
TGG
TAT | GCA
TGG
TAT | CAC
TGG
TAC | AAC
TTG
TTT | CAC
TGG | TGG
TTC | TGG
TTC | TGG
TAT | TGG
TAT | GCC
TGG
TAT | TGG
GTC | TGG
GTT | AAC
TGG
GTC | AAC
TGG
GTC | TGG
ATC | | | | 37
38
39 | CAG
CAG
AAA | CAG
CAG
AAA | CAG
CAG
GAA | CAA
CAG
AAA | | CAG | CAG
CAG | CAG | CAG
CAG
AAA | CAG | CAG | CAG | CAA
CAA
AGA | CAG
CAA
AGA | CAG
CAG
AAA | GAA
GAA
AAA | GAA
GAA | GAA
GAA | GAA
GAA | GAA
AAA | | | | 40
41
42
43 | GCA
GAG
AAA
GCC | GGG
AAA
GCC | CCA
GAT
GGA
ACT | CCA
GAG
CAA
TCT | | CAG
GGA
AAA
TCT | CAG
GGA
AAA
TCT | CCA
GGA
CAG
CCA | CCA
GGT
GAA
ACT | AAG
TCA
GGC
GCT | CCA
GGG
AAG
TCT | GGG
AAA
TCT | ACA
AAT
GGT
TCT | ACA
AAT
GGT
TCT | CCA
GGG
CAA
TCT | CCA
GAT
CAT
TTA | CCA
GAT
CAT
TTA | CCA
GAT
CAT
TTA | CCA
GAT
CAT
TTA | CCA
GAT
CAT
TTA | | | | 44
45
46
47 | AAG
TCC
CTG | CCT
AAG
CTC
CTG | ATT
AAA
CGC
CTG | CCT
AAA
CTC
TTA | | CAG
CTC
CTG | CCT
CAG
CTC
CTG | CCC
AAA
CTC
CTC | ATT
AAA
CAC
CTG | TCC
CCC
AAA
CCC | AAG
ACC
CTG | ACC | CCA
AGG
CTT
CTC | CCA
AGG
CTT
CTC | CCT
AAA
CTA
CTG | TTC
ACT
GGT
CTA | TTC
ACT
GGT
CTA | TTC
ACT
GGT
CTA | ACT
GGT
CTA | ACT
GGT
CTA | | | _ | 48
49
50 | TAT
GCT | TAT
GAT | TAC | TAC
GGG | _ | GTC
TAT | GTC
TAT | TAT | TAT
GAA | ATT
CAT | TAT | TAT | AAG
AAG | ATA
AAG
TAT | TAT
TCG | GGT
GGT | GGT
GGT | GGT
GGT | GGT
GGT | GGT
GGT | | | C
D
R | 51
52
53
54 | GCT
GCA
TCC
AGT
TTG | GCC
TCC
AGT
TTG | GCC
ACA
TCC
AGT | GCC
TCC
AAC
CGG | | GCA
AAA
ACC | AAA
ACC | GCA
TCC
AAC | ACA
TCC
AAT | AGG
ACA
TCC | GCA
AAC
AGA | GCA
AAC
AGA | GCT
TCT
GAG | GCT
TCT
GAG | GCA
TCC
TAC | ACC
AAC
AAC | ACC
AGC
AAC | ACC
AAC
AAC | ACC
AAC
AAC | AGC
AGC
AAC | | | | 55
56
57 | GAA
AGT
GGG | GAA
AGT
GGG | GAT
TCT
GGT | ACT
GGG | | GCA
GAT
GGT | GCA
GAT
GGT | GAA
TCT
GGG | GAT
TCT
GGT | AAC
CTG
GCT
TCT | GTA
GAT
GGG | GTA
GAT
GGG | TCC
ATC
TCT
GGG | ATC
TCT
GGG | CGG
TAC
ACT
GGA
GTC | CGA
GCT
CCA
GGT | CGA
GCT
CCA
GGT | GGA
GCT
.CCA
GGT | GGA
GCT
GCA | GGA
GCT
CCA | | | | 58
59
60
61 | GTC
CCA
TCA
AGG
TTC | GTC
CCA
TCA
AGG | GTC
GCC
AAA
AGG | GTC
CCC
GAT
CGC
TTC | | GTG
CCA
TCA | GTG
CCA
TCA | CCT
GCC | GTC
CCA
AAA | GGA
GTC
CCA | GTC
CCA
TCA | CCA
TCA | ATC
CCT
TCC | CCT
TCC | CCC | GTT
GCT
GCC | GTT
CCT
GTC | GTT
GCC | GTT
GCC | GTT
GTC | | | | 62
63
64 | AGC
GGC | AGC
GGC | AGT
GGC | TTC
ACA
GGT | | AGG
TTC
AGT
GGC | AGG
TTC
AGT
GGC | AGG
TTC
AGT
GGC | AGG
TTC
AGT
GGC | GCT
CGC
TTC
AGT | AGG
TTC
AGT
GGC | AGT
GGC | AGG
TTT
AGT
GGC | AGG
TTT
AGT
GGC | CGC
TTC
AC
GGC | AGA
TTC
TCA
GGC | AGA
TTC
TCA
GGC | AGA
TTC
TCA
GGC | AGA
TTC
TCA
GGC | AGA
TTC
TCA
GGC | | | | 65
66
67
68 | AGT
GGA
TCT
GGG | AGT
GGA
TCT
GGG | AGT
AGG
TCT
GGG | AGT
GGA
TCT
GCA | | AGT
GGA
TCA
GGA | AGT
GGA
TCA
GGA | AGT
GGG
TCT
AGG | AGT
AGG
TOT
GGG | GGC
AGT
GGG
TCT | AGT
GGA
TCT | AGT
GGA
TCT | AGT
GGA
TCA | AGT
GGA
TCA
GGG | AGT
GGA
TCT
GGG | TCC
CTG
ATT
GGA | TCC
CTG
ATT
GGA | TCC
CTG
ATT
GGA | TCC
CTG
ATT
GGA | TCC
CTG
ATT
GGA | | | F
R
3 | 69
70
71 | ACA
GAT
TTC | AGA
GAA
TTC | TCA
GAT
TAT
TCT | ACA
GAT
TTC | | AGA
GAA
TAT | ACA
CAA
TAT | ACA | TCA
GAT
TAT | GGG
ACC
TCT | GAA
GAT
TTT | | ACA
GAT
TTT | ACA
GAT
TTT | ACG
GAT
TTC | GAC
AAG
GCT | GAC
AAG
GCT | GAC
AAG
GCT | GAC
AAG
GCT | GAC
AAG
GCT | === | | | 72
73
74
75 | ACT
CTC
ACG
ATC | ACC
ACC
ATC | ACC
ATC | ACT
CTG
ACC
ATT | | TCT
CTC
AAG
ATC | AAG | ACC
ACC | CTC
ATT | TAC
TCT
CTC | ACC
ATC | ACC
ACC | AGT
CGT
AGC | ACT
CTT
AGC | ACC
ACC
ATC | GCC
CTC
ACC
ATC | GCC
CTC
ACC
ATC | GCC
CTC
ACC
ATC | ACC
ATC | GCC
CTC
ACC
ATC | | | | 76
77
78 | AGC
AGC
CTG | AGC
AGC
CTG | AGC
AGC
CTT | AGT
AGT
GTG | | AAC
AGC
CTG | CTG | AAT
CCT
GTG | AGC
CTT | AGC
AGC | AGC
AGC
CTG | CTG | AGT
GTG | AAC
AGT
GTG | AGC
AGT
GTG | ACA
GGG
GCA | ACA
GGG
GCA | ACA
GGG
GCA | ACA
GGG
ACA | ACA
GGG
GCA | | | | 79
80
81
82 | CAG
CCT
GAA
GAT | CAG
CCT
GAT
GAT | GAG
TCT
GAA
GAT | GAA
GAA
GAC | | CAG
CCT
GAA
GAT | GAA | GAG
GCT
GAT
GAT | GAG
TCT
GAA
GAT | GTG
GAG
GCT
GAA | GAA
GAT | GAA
GAT | TCT
GAA
GAT | GAG
TCT
GAA
GAT | CAG
GCT
GAA
GAC | CAG
ACT
GAG
GAT | CAG
ACT
GAG
GAT | CAG
ACT
GAG
GAT | CAG
ACT
GAG
GAT | CAG
ACT
GAG
GAT | | | CDRS | 83
84
85
86 | GCA
ACT
TAT
TAC | GCA
ACT
TAT | GTA
GAC
TAT | GCA
GAT
TAT
CAC | | GGG
AGT
TAT | GGG
AGT
TAT | GTT
GCA
ACC
TAT | GCA
GAC | GAT | GGA | GGA | GCA
GAA | GCA
GAT
TAT | CTA
GCA
GTT
TAT | GAG
GCA
ATA
TAT | GAT
GCA
ATG
TAT | GAG
GCA
ATA | GAG
GCA
ATG
TAT | GAT
GCA
ATG
TAT | | | | 87
88
89 | CAA | TAC | TAC | GGA | | TAC | TGT | TAC | TAT
TAC
TOT | TAC | CTT | CTA | TAC
TGT | TAC | TAC
TGT
CAG | TGT | TTC | TAT
TTC
TGT
GCT | TEC | TGT
GCT
CTA | | | | 90
91
92
93 | CAG
TAT
AAT
AGT | CAG
TAT
AAT
AGT | CAA
TAT
GCT
AGT | CAG
GGT
TAC
AGC | | CAT
TTT
TGG
AGT | TTT | CAA
AGT
AAT
GAG | CAA
TAT
GCT
AGT | CAG
CAG
TGG
AGT | GAT | GAT | TAT | CAA
AGT
AAT
AGC | CAA
CAT
TAT
AGT | GCT
CTA
TGG
TAC
AGC | CTA
TGG
TAC
AGC | GCT
CTA
TGG
TAC
AGC | GCT
CTA
TGG
TAC
AGC | TGG
TTC
AGA | | | | 94
95
96
97 | CCT | TAT | TCT
CCG
TGG
ACG | TAT
CCG
TAC
ACG | | CCT | CCT | GAT
CCG | CCT | CCA | CCG | CCG | CCA | CCA | ACT
CCT
CCC
ACG | CAT | CAT | AAC
CAT
TGG
GTG | AAC
CAT
TGG
GTG | AAC
CAT
TTT
GTT | | | 3 | 97A
97B
97C | | | | | | | | | | | | | | | | | | | === | | | | | 97D
97E
97F
98 | | | Tro | TTC | | | |
 | === | === | | | | | TTC | | | TTC | TTC | TTC | | | _ | 99
100
101
102 | | | TTC
GGT
GGA
GGC
ACC | GGA
GGG
GGG
ACC | | | | === | | GGC
TCG
GGG | GGT
GCT
GGG | | | | GGA
GGG
GGG
ACC | | | GGT
GGA
GGA | GGT
GGA
GGT | GGC
GGT
GGA | | | R
4 | 103
104
105 | | | AAG
CTG
GAA | AAG
CTG
GAA | | | | | | AAG'
TTG
GAA | AAG
CTG
GAG | | | | AAG
CTG
GAA | | | ACC
AAA
CTG
ACT
GTC | ACC
AAA
CTG
ACT | ACC
AAG
GTC
ACT | | | | 106
106A
107 | | | AAA | AAA | | | | | | ATA
AAA | AAA | | | | ATA
AAA | | | GTC
CTA
GGT | ACT
GTC
CTA
GGC | GTC
CTA
GGT | | | | 108 | | | CGT | | | | | | | cat | CGT | | | | cee | | | | | | | Sanofi/Regeneron Ex. 1029, pg 906 # DOCKET # Explore Litigation Insights Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things. ## **Real-Time Litigation Alerts** Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend. Our comprehensive service means we can handle Federal, State, and Administrative courts across the country. ## **Advanced Docket Research** With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place. Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase. ## **Analytics At Your Fingertips** Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours. Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips. ### API Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps. #### **LAW FIRMS** Build custom dashboards for your attorneys and clients with live data direct from the court. Automate many repetitive legal tasks like conflict checks, document management, and marketing. #### **FINANCIAL INSTITUTIONS** Litigation and bankruptcy checks for companies and debtors. ### **E-DISCOVERY AND LEGAL VENDORS** Sync your system to PACER to automate legal marketing.