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ABSTRACT

The /O power consumption in MPEG-2 decoder is
significant because of the wide connection with large
capacitances to the frame buffer. To reduce the power
dissipation on the Memory Bus, the Gray code encoding
scheme is proposed to increase the correlation of the image
data transferred on the bus. The bit switching probability in
the re-coded data will then decrease and in turn the bus
power consumption will be reduced. Combined with the
proposed bus arbitration and scheduling scheme proposed
in this paper, 22% reduction of power dissipation may be
achieved.

L. INTRODUCTION

ISO standard 13818-2[1] known as MPEG-2 (Moving
Pictures Expert Group) has been adopted in many
applications like DVD Player, set-top boxes and
entertainment machines. Because the required computing
power for this algorithm is huge, a high performance VLSI
solution to the MPEG-2 video decompression is necessary.
To promote the success of this motion picture standard, the
cost in the video decoding system should also keep low.
Usually, the key components in a low cost MPEG-2
decoding system includes a high performance single chip
MPEG-2 decoder VLSI and the associated frame buffer
DRAM.

Although most MPEG-2 applications belong to the non-
portable ones, the cost of providing power and associated
cooling indicates that the power reduction is still necessary
for non-portable applications[2]. Several approaches to
reduce the power consumption for the video decoding
system has been proposed[3]{4]. In [3] the circuit approach
using low-power ASIC RAMs as the on-chip I/O buffers
with Selective Bit Line Precharge (SBLP) scheme is
adopted to reduce the bit line current. In [4] a low-power
approach at architectural level is proposed to reduce power
consumption for MPEG functional unit like DCT. The
power reduction of on-chip buffers and functional units in
MPEG-2 decoder can be achieved using these approaches.
However, because of the nature of inter-frame coding in the
MPEG-2 video decompressing algorithm, there must offer
enough memory bandwidth for single-chip MPEG-2
decoder to perform all the frame buffer access. The fast and
wide memory bus between decoder chip and frame buffer
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DRAM will cause a significant power consumption because
of large capacitance involved at the I/O. Thus, it is also
necessary to explore approaches to decrease the I/O power
dissipation.

In this paper, we propose some architectural
approaches to reduce power consumption for the I/O bus.
This strategy has been adopted in the MPEG-2 Video
Decoder Chip we designed[5]. In section II we first give an
overview to our MPEG-2 video decoder VLSI. According
to the static characteristics of data on the Memory Bus, the
Gray code encoding scheme to reduce the circuit switching
activity is described in section III. In Section IV we
describe the bus arbitration and scheduling strategy to
preserve the static characteristics of data while transferring
them dynamically on the Memory Bus. Section V concludes
this paper.

II. THE MPEG-2 VIDEO DECODER
A. System Architecture
Fig. 1 shows the block diagram of our MPEG-2 video
decoder VLSI. Together with four 4M-bit DRAM and some
video post-processing components, a complete video
decoder system for MPEG-2 video at main profile and main
level (MP@ML) can be constructed.

The Decoding Pipeline consists of three functional
blocks: wvariable-length/run-length decoder (VLD-RLD),
inverse quantization/inverse cosine transform unit (IQ-
IDCT), and motion compensation/interpolation unit (MC-
Interpolator). These functional units can perform the main
MPEG-2 decompression algorithm. The RISC-based
System Controller can control all other associated
functional blocks according to the system parameters issued
by host system and the programs stored in instruction RAM.
Also, it parses the header information of MPEG-2 bitstream
and performs the error concealment routines while error
bitstream is encountered. Under the control of System
Controller, the decoding pipeline can decode the variable-
length-coded information in the MPEG-2 bitstream.

According to the parameters from MPEG-2 bitstream
header, the Memory Controller can set up the suitable
addresses to load reference pictures. Also, it stores
reconstructed picture and loads display picture. It also
manages a circular buffer located in external DRAM as the
video rate buffer (VBV buffer). The external DRAM, which
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is connected to the Memory Controller via the DRAM
interface, is used to hold the VBV buffer and store decoded
frames.

This chip has two internal buses. The 64-bit Memory
Bus is used to deliver the incoming MPEG-2 bitstream and
decoded pictures. All data transfers to and from the external
DRAM pass through this data bus. The control commands
between the System Controller and other functional blocks
are issued via the 16-bit RISC Data Bus.

B. MPEG-2 Decoding Process
The steps to decode the MPEG-2 bitstream are listed as
follows:

1) Coded bitstream supplied to the Host Interface is
written to the VBV buffer on external DRAM
through the bitstream FIFO and Memory Bus. The
transfer is initialized by host system.

2) Coded bitstream is then read out from the VBV
buffer, via VLD FIFO, to the VLD-RLD. If the
incoming bits belong to the high layer fixed-length
coded data (e.g., sequence header, GOP header,
picture header and slice header as defined in
MPEG-2), they will be then forwarded to System
Controller to extract the decoding parameters. On
the other hand, if variable-length codes (macroblock
header or quantized dct coefficients) are
encountered, they will be decoded in the VLD-RLD
under the control of System Controller. The
decoded DCT coefficients will then be transferred
to IQ-IDCT.

3) System Controller first sets up the address of current
macroblock for the Memory Controller and checks
the type of this macroblock. If the current
macroblock is non-intra coded, System Controller
also has to calculate the actual motion vectors and
set up the addresses of reference macroblocks for
the Memory Controller for this non-intra macro-
block.

4) The quantized DCT coefficients are first de-
zigzagged and inverse-quantized in IQ unit. Then
those values are passed to IDCT unit to recover to
the original pixel values or DFD. Finally, the output
will be fed to MC-Interpolator.

5) For non-intra  macroblock, = MC-Interpolator
initializes a memory transfer through Memory
Interface to load the reference macroblocks from
reference Picture Buffer on external DRAM to the
Reference MB buffer. The addresses of these
macroblocks are derived by the motion vectors.
Interpolation will be needed if motion vectors are
given in the half-pel boundary. After MC-
Interpolator adds the data of IDCT results and
reference macroblock, 1t will then write the
reconstructed blocks to the Picture Buffer on
external DRAM. On the other hand, MC-
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Interpolator will forward the IDCT results to the
Picture Buffer if intra-coded macroblock is
encountered.

6) After decoding one frame, the reconstructed image
is re-read from the Picture Buffer according to a
specified format and output to the video subsystem
outside the decoder chip through Video Interface.

II. BUS POWER REDUCTION

A. Bus Power Consumption

In order to. reduce the number of DRAMSs and the
number of I/O pins, the VBV Buffer and Picture Buffer
share the same memory port. Wide memory bus
organization is often adopted to support sufficient
bandwidth because of the low speed nature of DRAM. In
our MPEG-2 decoder system that supports MPEG-2
specification at main profile and main level, a 64-bit
Memory Bus is used as the I/O channel between decoder
chip and frame buffer memory. Not only the larger number
of switching signals in the Memory Bus will contribute a
significant percentage of power consumption for MPEG-2
decoder, but they also do for the DRAM. Therefore, it is
necessary to explore the strategy to reduce the power
dissipation associated with the I/O bus.

The bus power consumption is dominated by the
switching power consumption[2]:

_ 2
Pivitching = %01 ® CreVy o ke (1)

where Fe i denotes the clock rate, Vy, is the supply
voltage, C, denotes the node capacitance, and o, Is

defined as the average number of times in each clock cycle
that a node will make a power consumption transition (0 to
D).

As the technology is progressed to the sub-micron
technology, the bus power problem is even more severe.
The capacitance (Cy) percentage in bus routing with respect
to the whole chip is becoming larger and larger. Under the
consideration that the device process or circuit performance
will not be influenced by the change of the voltage or
frequency, we try to find strategies to reduce the switching
probability ¢_,; in order to decrease the bus power

dissipation.

B. Static Analysis for Data Sequence of Values

Using coding as a method to reduce the number of bit
switches on the data bus has been proposed[7]. Although
the "Bus-Invert Coding" in [7] for data bus is optimal for
the random-distributed sequence of data, the required extra
buses and "majority voter" circuits contribute a significant
percentage to the system cost. Furthermore, the data
sequence on the Memory Bus of our MPEG-2 decoder is
not random-distributed. Therefore, we have to explore
another method to reduce bus switching activity and power
dissipation.

Our goal is to find an architectural approach to decrease
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the bus switching activity and then reduce the power
consumption on the Memory Bus of our MPEG-2 video
decoding system. We first analyze the static data transfer
patterns for the different traffic sources on the bus. The I/O
processes occurred on the Memory Bus include:

(a) Bitstream Write: Storing compressed bitstream from
Bitstream FIFO to the VBV Buffer on external
DRAM.

(b) Bitstream Read: Loading compressed bitstream
from VBV Buffer to VLD FIFO.

(¢) MC Read: Loading reference macroblocks from the
Picture Buffer on external DRAM to Motion
Compensation unit.

(d) MC Write: Storing reconstructed macroblock from
Motion Compensation unit to Picture Buffer.

(e) Video Read: Loading image pixels from Picture
Buffer to Video FIFO for displaying.

The data of I/O processes (a) and (b) belong to the
compressed MPEG bitstreams. Although this kind of data
sequence does not show much temporal correlation, their
occurrence on the Memory Bus is relatively rare and will
not contribute much to the bus power consumption. On the
other hand, the data of I/O processes (c), (d) and (e), which
dominates the Memory Bus /O, belong to the reconstructed
image pixels. Fig. 2 shows the data sequence patterns for
these kinds of transactions. The data sequence patterns for
the MC Read/Write processes are block-wise as shown in
Fig. 2(a), where the 64-bit data words (eight pixels per word)
in the same macroblock column (8x16 pixel samples) are
read/written column by column. For the Video Read process,
the image data are read in raster-scan as shown in Fig. 2(b),
where the 64 bit data words are read scanline by scanline.

For these kinds of data transfers, each bit slice [N+8:N]
(where N = 0, 8, 16,..., 56) on the Memory Bus contains
one pixel sample. The highly spatial correlation in the
image frame indicates that the temporal data sequence may
be also highly correlated while transferring them on the
Memory Bus. Fig. 3 illustrates the distribution of bus value
difference between the value of the bus bit slice [N+8:N] on
the present transfer cycle and that on the next cycle. The
listed I/O processes are "MC Read" and "Video Read" and
the associated MPEG-2 bitstreams includes "Table Tennis",
"Football" and " Flower garden”. For these I/O processes,
Fig. 3 shows that two numbers with small difference
between them are more likely to happen successively on
Memory Bus than those with large difference. Fig. 4 shows
that there are also similar distributions on the bus value
difference for bit slice [N+8:N+8-m] (m=4~8). The above
static analysis indicates that if we re-code the bus data to the
one with the smaller Hamming distance (the number of bits
in which they differ) between neighbor data values, the total
bit switches on the Memory Bus may be lower.

C. Gray Code Representation

One candidate code is "Gray code" representation,
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which changes by only one bit as it sequences from one
number to the next[8]. The conversions between (n+1)-bit
binary (b,b,.,......b1,bg) and Gray code (g,8np-----8180)
are:

Binary to Gray Code:
8= b,
~ . @)
8§ =b,,®b (i=n-10)
Binary to Gray Code:
b, =g,
- L 3
bj=b,,®g (=n-10)

The circuit overhead for converting (n+1)-bit binary
code to Gray code is n two-input exclusive-OR gates with
critical path of one gate delay. However, while there need
still only n two-exclusive-OR gates to convert (n+1)-bit
Gray code to binary code, the critical path will be n gate
delays. The maximum bit width using the Gary code
encoding scheme may be limited by the long critical path of
this inverse conversion.

Fig. (5) shows the distribution of Hamming distance for
4-bit and 8-bit binary code and Gray code representation.
Obviously, while two numbers are encoded with Gray code
representation, the average Hamming distance between
them will be smaller than the distance using binary code if
the value difference between these two numbers is odd. For
an even value difference, although the average Hamming
distance will be larger while using Gray code representation,
the difference of these two average Hamming distances is
not large for small value differences. In our MPEG-2
decoder, most data on Memory Bus are temporally
correlated. As Fig. (3) and (4) are shown, the difference
between the present bus value and the next one is usually
small. Therefore, using Gray code encoding scheme to re-
code the bus data for I/O processes (c)-(e) will cause the
reduction in the total number of bit switches on Memory
Bus.

Table 1 illustrates the number of bit switches using
Gray code encoding scheme and "Bus-Invert Coding" for
I/O processes "MC Read” and "Video Read". The m-bit
Gray code means that we convert the bit slice [N+8:N+8-m]
of the data (where N=0, 8...., 56 and m=4 and 8) into m-bit
Gray code and leave the bit slice [N+7-m:N] unchanged. As
the table is shown, the number of bit switches using Gray
code encoding scheme decreases as m increases. It is
reasonable because the distribution of bus value difference
is. non-increasing and there is only one-bit difference
between m-bit and (m-1)-bit Gray code. Also, although
Gray code representation reduces the number of bit
switches for data for all video sequences, the reduction
degrees are different for different sequences. For sequence
with larger near-still background like "Table Tennis", the
reduction can be high as 22%. However, the reduction may
be only 10% for sequence "Flower garden”, for the spatial
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correlation is relatively lower between the adjacent pixels in
the frame. The resulting reduction of bus switches is near to
the results using "Bus-Invert Coding" scheme proposed in
[8], while the cost to implement the Gray code encoding is
far less than that to implement "Bus-Invert Coding" method.

IV. POWER CONSUMPTION AND BUS
SCHEDULING

The static pattern analysis for different /O processes
occurred on the Memory Bus of MPEG-2 decoder shows
that the number of bit switches will be effectively reduced
by the Gray code encoding scheme. However, there is no
dedicated I/O channel for each I/O process and a single
Memory Bus is time-shared by all the traffic sources in
order to reduce the complexity of the DRAM Interface
circuitry. Instead of being transferred continuously, the data
for each I/O process will be organized in small burst to be
transferred on the Memory Bus. Because bus arbitration
/scheduling strategy determines the intermixed patterns of
data from different traffic sources, it is necessary to explore
the influence of bus scheduling on bus switching activity. In
section 4-A we first shows a bus arbitration/scheduling
model for the dynamic analysis of data sequence. Based on
this analysis, the impact of bus arbitration/scheduling on the
bus switching activity will be described in section 4-B.

A. Bus Scheduling Model

In order to acquire high throughput, all the processes
that initialize /O transaction will access DRAM by burst to
take advantage of page mode feature. Assume that the real-
time scheduling model for the I/O processes on the Memory
Bus is a non-preemptive one. For a set of n /O processes T,
T2s..., Tn, With priority levels P, Pa,..., P, (P> Py >..> P)),
the process of T; will not miss its deadline for any

transaction release time under fixed-priority scheduling if
the following holds [9][10]:

c,+A  C, B.
S = min 2;(1 ye— L Byl
0<r<D; | io| Tj t t Trej t

)

where
® 7, denotes the minimum cycles between

transactions of T;.

two

® (; denotes the cycles required to transfer data of 1;
at each bus transaction.

D is the deadline of ;.

B; is the worst case blocking cycles of 1;.
Cior 1s the DRAM refresh cycles.

T, is the DRAM refresh period.

A is the overhead because of bus arbitration and
DRAM page fault.

For a single bus architecture with bus width W,,,
suitable I/O buffering for the I/O processes may be needed
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in order to prevent the associated functional unit from
starving. Assume that the buffer associated with process 7;
follows FCFS discipline and has a FIFO length Z; and a
FIFO threshold TH, In additional to send/receive data
to/from the Memory Bus, the FIFO is also filled/emptied by
associated functional unit with rate R; (Byte/cycle). The data
filling/emptying will change the FIFO data level and a bus
request from FIFO will be generated while the FIFO level
becomes higher/lower than the FIFO threshold.

The deadline D; is of 1; can be defined as the time that
the FIFO become underflow or overflow. Then we have:
TH,

R.

it

D; = &)

The worst case blocking time of t; is simply the
maximum execution time over all lower priority processes:
B; = max C, (6)

i+1<k<n

Let £ = D; and from (4), (5) and (6) we can estimate
FIFO threshold TH; as:

max C, +A
TH[ > i+1<k<n R,‘
C1(C +A) C,
1—[2_‘1——‘_-’— fJ

PR T

N

Note that the above equation is slightly pessimistic
because we ignore the minimum constraints in (4) and
assume S; to be unity.

The FIFO length L; can also be calculated as:

L =Ci(W,,, —R)+TH, (8)
providing that:

C,(W,,, —R)—TH.
Ti: l( buth) i50 (9)

i

The bus and FIFO model for our MPEG-2 decoder is
shown in Fig. 6. The Memory Controller consists of a non-
preemptive fixed-priority scheduler to arbitrate the bus I/O.
If we let Pvizlm_ﬁf'o> Pvlz[_ﬁjb > Pbit.vrreumjifo> Pmc, we have the
lower bound of the FIFO length associated with Video
FIFO, VLD FIFO and Bitstream FIFO as:

- Rviden_ﬁfz)>
max(Cm(. 4 Cv[([_ﬂfm Chitxrream_ﬂfn) +A

o ( Cr j
Tref

Lviden_fzf() 2 Cvidey_flfn(Wbu.\'

+

e Rvidea;_ﬁfn
(10)
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Ly sio 2 Cota_ it Whus — Ruia_giro)

max(Cy., Coirerream_ ﬁﬁ)) +A

1- [ Cvideo‘fifo +A + Eﬁ)
Tideo_figo T,

+ o R

vid_fifo

(1
Lbitstream_ fifo 2 Cbitstream_ fiﬁ)(Wbuv - Rbirsrream_f(fo)

. CctA

1— Cvideo_fifo +A + Cvld_flfo +A + Cref
Tvideov fifo Tvld_ fifo Tref

¢ Rbitstream_ fifo
(12)

The equations (10), (11) and (12) shows that the FIFO
length is determined by burst size of each transaction and
the FIFO filling/emptying rate of associated functional unit.
The first term in equations (10)-(12) accounts for the FIFO
capacity to send/receive a burst of data to/from Memory
Bus, while the capacity to accommodate the blocking by
other tasks contributes the second one. Obviously, if the
MPEG-2 decoder chip adopts fixed-priority scheme to
arbitrate bus I/O, data transfer may be blocked by another
data transfer with the time proportional to the transfer burst
size.

B. Bus Scheduling and Switching Activity

In order to preserve the data correlation of I/O transfers
for image-type data, it is necessary to reduce the probability
of intermixing the transactions of different /O processes on
Memory Bus. As Fig. 7 is shown, transferring those I/O
processes with larger burst size is a good way to reduce the
intermixed probability and preserve the data correlation.
However, equations (10)-(12) indicate that the internal
buffer size should be increased in order to ensure that the
FIFO will not be overflow or underflow and to prevent the
functional units from starvation. Large internal buffer
memories not only increase the chip area, but also consume
more power. Therefore, in order to preserve the data
correlation, the non-preemptive fixed-priority arbiter in
Memory Controller must be modified to accommodate
larger burst of memory access without affecting the size of
the internal buffer.

Our goal is to construct a arbiter/scheduler to
accommodate larger transaction length for different I/O
processes without the necessity to increase the total FIFO
size. We first analyze the characteristics of memory I/O
transactions as listed in table 2. It can be found that the
required bandwidth for the processes "Bitstream Read" and
"Bitstream Write" are relatively lower. This means that the
associated FIFO filling/emptying rates Rpygream e and
R.u4_siro are also low and we can estimate the length of both
FIFOs as:

(13)

Lo _fito = Cota_fitoWhus = Ruta_fifo)
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and

- Rbitstream_ fifo)
(14)

Lb[rstream_ fifo = Cbirsrrer/mz~ fifo( WbuS

Therefore, we only have to find a strategy to reduce the
extra length of Video FIFO to accommodate the blocking
by low-priority tasks, which contribute the second term of
equation (10).

The data in table 2 also indicate that the transactions
MC read, MC write and Video Read dominate the memory
bus I/O time. However, because these I/O processes are
deterministic, it is possible to schedule these tasks in the
decoding time domain. According to the off-line schedule
analyzed in advance, the Memory Controller then performs
arbitration as follows. Normally, the Memory Controller
monitors the /O requests to or from VBV buffer and
performs the compressed bitstream transfer for VLD FIFO
and bitstream FIFO. While it is time for I/O process like
Video Read, MC Read and MC Write, the bus will be
allocated to that process until the transaction ends. The
Memory Controller will then return to the state to handle
the memory access to/from VLD FIFO/bitstream FIFO.
Because the processes Video Read, MC Read ad MC Write
are off-line scheduled, the latter processes will not
contribute the blocking time to the former. On the other
hand, the blocking time of Video Read contributed by
process "Bitstream Read” and "Bitstream Write" will also
be less because the scheduler polls the state of those FIFOs
and fill/empty them as soon as possible. Therefore, by using
the propose bus arbitration/scheduling scheme, we can
estimate the length of Video FIFO as:

Lvideo_fzfa = Cvideo_fl_'fo(wbus - Rvideo_fifo) as)
Compared to the fixed-priority scheme, the proposed

scheme allows larger burst of memory access to Video

FIFO. However, the required FIFO size will not be

increased.

Fig. 7 shows that under the same FIFO size, the
proposed bus scheduling scheme allows larger burst of
memory access than the fixed-priority scheme. Table 3
shows the comparison of switching activity reduction by
Gray code encoding scheme with different scheduling
schemes for burst and FIFO sizing.

V. CONCLUSION

The wide connection between the MPEG-2 decoder and
its associated frame buffer DRAM is used to provide
sufficient I/O bandwidth. The large capacitances on this
Memory Bus make the reduction of switching activity on
the bus is needed in order to reduce the total power
consumption of the whole decoding system. Because most
image data that transferred on the bus are highly correlated
in spatial domain, their transfer reveals highly temporal
correlation. Using Gray code coding scheme to re-code the
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