

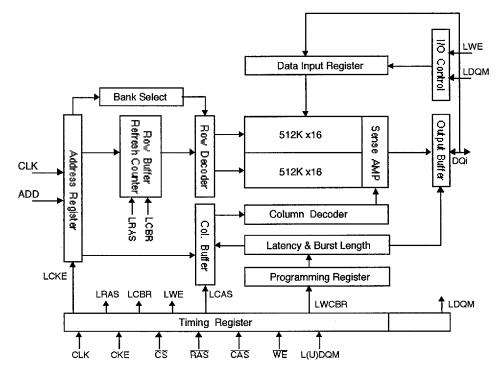
512K x 16Bit x 2 Bank Synchronous DRAM

FEATURES

- · JEDEC standard 3.3V Power Supply.
- LVTTL compatible with multiplexed address.
- Dual Bank.
- · MRS cycle with address key programs.
 - -. CAS Latency (1, 2, 3)
 - -. Burst Length (1, 2, 4, 8 & Full page)
 - -. Burst Type (Sequential & Interleave)
- All inputs are sampled at the positive going edge of the system clock.
- Burst Read Single Bit Write Operation.
- · L(U)DQM for byte masking.
- · Auto & Self Refresh.
- · 32ms Refresh Period. (2K cycle)

GENERAL DESCRIPTION

The KM416S1120A is 16,777,216 bits synchronous high data rate Dynamic RAM organized as 2 x 524,288 words by 16 bits, fabricated with SAMSUNG's high performance CMOS technology.


Synchronous design allows precise cycle control with the use of system clock. I/O transactions are possible on every clock cycle.

Range of operating frequencies, programmable burst length, and programmable latencies allows the same device to be useful for a variety of high bandwidth, high performance memory system applications.

ORDERING INFORMATION

Part NO.	Max Freq.	Package
KM416S1120AT-G/F10	100 MHz	TSOP (II)
KM416S1120AT-G/F12	83 MHz	TSOP (II)

FUNCTIONAL BLOCK DIAGRAM

CD-ROM(Edition 3.0) This Data Sheet is subject to change without notice.

(C) 1996 Samsung Electronics Printed in Korea.

Find authenticated court documents without watermarks at docketalarm.com.

KM416S1120AT SDRAM

PIN CONFIGURATION (Top View)

1			
VDDC	10	50	Vss
DQ0 t	2	49	DQ15
DQ1 c	3	48	DQ14
Vssq c	4	47	Vssq
DQ2 d	5	46	DQ13
DQ3 c	6	45	DQ12
VDDQE	7	44	VDDQ
DQ4 c	8	43	DQ11
DQ5 d	9	42	DQ10
Vssq 🛛	10	41	Vssq
DQ6 c	11	40	DQ9
DQ7 c	12	39	DQ8
VDDQC	13	38	VDDQ
LDQM d		37	₽N.C
WEd		36	UDQM
CAS		35	¢ CLK
RAS c		34	D CKE
CS d	18	33	ÞN.C
A11 C	19	32	Þ A9
A10 E	20	31	P A8
Aod	21	30	Þ A7
A1 C	22	29	P A6
A2 C			A5 50 PIN TSOP (11)
Азс			A4 (400mil x 825mil)
VDDC	25	26	Vss (0.8 mm PIN PITCH)

PIN FUNCTION DESCRIPTION

PIN	NAME	INPUT FUNCTION
CLK	System Clock	Active on the positive going edge to sample all inputs.
ខទ	Chip Select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE, and L(U)DQM
CKE	Clock Enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disables input buffers for power down in standby. CKE should be enabled tPDE prior to valid command.
A0~A10	Address	Row / column addresses are multiplexed on the same pins. Row address : RAo ~ RA1o, Column address : CAo ~ CA7
A11	Bank Select Address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row Address Strobe	Latches row addresses on the positive going edge of the CLK with $\overline{\text{RAS}}$ low. Enables row access & precharge.
CAS	Column Address Strobe	Latches column addresses on the positive going edge of the CLK with $\overline{\text{CAS}}$ low. Enables column access.
WE	Write Enable	Enables write operation and row precharge.
L(U)DQM	Data Input/Output Mask	Makes data output Hi-Z, tsHz after the clock and masks the output. Blocks data input when DQM active. (Byte Masking)
DQ0 ~ 15	Data Input/Output	Data inputs/outputs are multiplexed on the same pins.
VDD/Vss	Power Supply/Ground	
VDDQ/VSSQ	Data Output Power/Ground	

CD-ROM(Edition 3.0) This Data Sheet is subject to change without notice.

DOCKE

Δ

RM

Δ

(C) 1996 Samsung Electronics Printed in Korea.

Find authenticated court documents without watermarks at docketalarm.com.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-1.0 ~ 4.6	V
Voltage on VDD supply relative to Vss	VDD, VDDQ	-1.0 ~ 4.6	v
Storage temperature	Tstg	-55 ~ +150	0°
Power dissipation	PD	1	W
Short circuit current	los	50	mA

Note : Permanent device damage may occur if 'ABSOLUTE MAXIMUM RATINGS' are exceeded. Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltages referenced to Vss = 0V, TA=0°C to 70°C)

Parameter	Symbol	Min.	Тур	Max.	Unit	Note
Supply voltage	VDD,VDDQ	3.0	3.3	3.6	ν	
Input high voltage	Vін	2.0	3.0	VDD+0.3	v	
Input low voltage	VIL	-0.3	0	0.8	V	Note 1
Output high voltage	Vон	2.4	-	-	V	юн=-2mA
Output low voltage	Vol	-	-	0.4	V	IOL = 2mA
Input leakage current	lır.	-5	-	5	uA	Note 2
Output leakage current	IOL	-5	-	5	uA	Note 3

Note: 1. VIL(min.) = -1.5V AC (pulse width \leq 5 ns)

2. Any input $0 \le V \ge 0.3V$, all other pins are not under test = 0V.

3. Dout is disabled, 0V≤VOUT≤VDD.

CAPACITANCE (VDD= 3.3V, TA= 25°C, f= 1MHz)

Parameter	Symbol	Min	Max	Unit
Input capacitance (Ao ~ A11)	CIN1	-	5	pF
Input capacitance (CLK,CKE,CS, RAS,CAS,WE & L(U)DQM)	CIN2	-	5	pF
Data input/output capacitance (DQo ~ DQ15)	Соит	-	6	pF

DECOUPLING CAPACITANCE GUIDE LINE

Recommended decoupling capacitors are added to power line on PCB.

Parameter	Symbol	Value	Unit
Decoupling Capacitance between VDD and VSS	CDC1	0.1 * 3	uF
Decoupling Capacitance between VDDQ and VSSQ	CDC2	0.1 * 3	υF

Note: 1. VDD and VDDQ pins are separated each other.

All VDD pins are connected inside the chip. All VDDQ pins are connected inside the chip.

 Vss and VssQ pins are separated each other. All Vss pins are connected inside the chip.

CD-ROM(Edition 3.0) This Data Sheet is subject to change without notice.

DOCKE

RM

(C) 1996 Samsung Electronics Printed in Korea.

KM416S1120AT SDRAM

DC CHARACTERISTICS

(Recommended Operating Conditions Unless Otherwise Noted, TA = 0 to 70 °C)

Parameter	Symbol	Test Condition CAS			sion	Unit	Note
			Latency	-10	-12		
		Burst Length =1	3	105	100	mA	
Operating Current	ICC1	tRC ≥ tRC(min)	2	95	90		1
		IOL = 0 mA	1	90	85		
Precharge Standby Current	Icc2P	CKE≤VIL(max), tcc=15ns		:	3	mA	
in Power-down mode	Icc2PS	CKE & CLK≤ViL(max), tcc= ∞		:	2		
Precharge Standby Current	Icc2N	CKE≥VIH(min), CS≥VIH(min), tcc=15n Input signals are changed one time du		2	25	mA	
in Non power-down mode	lcc2NS	CKE≥VIH(min), CLK≤VIL(max), tcc=∞ Input signals are stable		1	8		
Active Standby Current	ІссзР	CKE≤VIL(max), tcc=15ns 3					
in power-down mode	Icc3PS	CKE & CLK≤Vi∟(max), tcc= ∞		2		mA	
Active Standby Current in Non power-down mode	ICC3N	CKE≥VIH(min), CS≥VIH(min), tcc=15n Input signals are changed one time du	30		mt		
(One Bank Active)	Icc3NS	CKE≥V⊮(min), CLK≤V৷L(max), tcc=∞ Input signals are stable	15		mA		
		lo∟≕ 0 mA	3	145	125	mA	
Operating Current (Burst Mode)	Icc4	Page Burst All Banks activated	2	105	90		1, 2
	Ì	tccD=tccD(min)	1	65	60		
			3	95	90	mA	
Refresh Current	ICC5	tRC ≥ tRC(min)	2	90	85		3
			1	85	80]	
Oalf Dafaada Ourrant	1			2		mA	4
Self Refresh Current	ICC6	CKE ≤ 0.2V	(E ≤ 0.2V 250		50	uA	5

Note: 1. Measured with outputs open.

2. Assumes minimum column address update cycle tCCD(min)

3. Refresh period is 32ms.

4. KM416S1120AT-G**

5. KM416S1120AT-F**

CD-ROM(Edition 3.0) This Data Sheet is subject to change without notice.

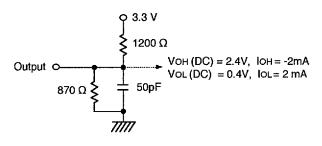
DOCKE

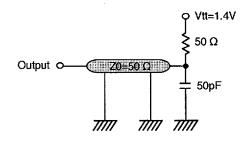
Δ

RM

Δ

(C) 1996 Samsung Electronics Printed in Korea.


Find authenticated court documents without watermarks at docketalarm.com.



KM416S1120AT SDRAM

AC OPERATING TEST CONDITIONS (VDD = 3.3V±0.3V, TA = 0 to 70 °C)

Parameter	Value
AC input levels	VIH/ VIL= 2.4V / 0.4V
Input timing measurement reference level	1.4V
Input rise and fall time	tr / tf = 1ns / 1ns
Output measurement reference level	1.4V
Output load condition	See Fig. 2

(Fig. 1) DC Output Load Circuit

(Fig. 2) AC Output Load Circuit

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter			Vera			
		Symbol	- 10	sion - 12	Unit	Note
Row active to Row active delay		tRRD(min)	20	24	ns	1
RAS to CAS delay		tRCD(min)	26	30	ns	1
Row precharge time		tRP(min)	26	30	ns	1
		tRAS(min)	60	66	ns	1
	Row active time		200	200	us	
Row cycle time	ow cycle time tRC(min)		96	100	ns	1
Last data in to new col. address	delay	tCDL(min)	1		CLK	2
Last data in to Row precharge		tRDL(min)	1		CLK	2
Last data in to burst stop		tBDL(min)	0		CLK	2
Col. address to col. address de	ay	tCCD(min)	1		CLK	3
CASI		tency= 3	2			
Number of valid output data	CAS La	tency= 2	1		ea	4
	CAS La	tency= 1	()	Ţ	

Note: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time,

- and then rounding off to the next higher integer.
- 2. Minimum delay is required to complete write.
- 3. All parts allow every cycle column address change.
- 4. In case of Row precharge interrupt, Auto precharge and Read burst stop.

CD-ROM(Edition 3.0) This Data Sheet is subject to change without notice.

(C) 1996 Samsung Electronics Printed in Korea.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.