throbber
""
`
`PATENT APPLICATION TRANSMITTAL LETTER
`(Large Entity)
`
`Docket No-
`H0003789US
`
`TO THE COMMISSIONER FOR PATENTS
`
`Transmitted herewith for filing under 35 U.S.C. 111 and 37 C.F.R. 1.53 is the patent application of:
`
`Daniel C. Merkel, Rajiv R. Singh, Hsueh Sung Tung
`
`For: PROCESS FOR PRODUCING FLUOROPROPENES
`
`Enclosed are:
`
`EDCDCIDCIIZ
`
`Certificate of Mailing with Express Mail Mailing Label No.
`sheets of drawings.
`
`EL262354613US
`
`A certified copy of a
`
`application.
`
`Declaration
`Power of Attorney
`Information Disclosure Statement
`
`Cl Signed.
`
`Preliminary Amendment
`
`Cl Unsigned.
`
`Other: Application Data Sheet, Two Acknowledgement Postcards
`
`CLAIMS AS FILED
`
`_
`
`II1
`
`Multiple Dependent Claims (check if applicable) D
`
`|
`I
`BASIC FEEI
`
`I A
`
`to cover the filing fee is enclosed.
`$1,760.00
`check in the amount of
`IZI The Director is hereby authorized to charge and credit Deposit Account No.
`as described below.
`
`19-5425
`
`Cl Charge the amount of
`
`as filing fee.
`
`Credit any overpayment.
`
`IX] Charge any additional filing fees required under 37 C.F.R. 1.16 and 1.17.
`E] Charge the issue fee set in 37 C.F.R. 1.18 at the mailing of the Notice of Allowance,
`pursuant to 37 C.F.R. 1.31 1 (b).
`
`Dated: October27,2003
`
`’ RMSignature
`
`Peter J. Butch III, Reg. No. 32,203
`Honeywell International, Inc.
`101 Columbia Road, Building Meyer 5
`Morristown, NJ 07962-2245
`Telephone: 973-455-2587
`
`P01LARGEIREV06
`
`Arkema Exhibit 1037
`
`Page 1 of 40
`
`Arkema Exhibit 1037
`
`Page 1 of 40
`
`

`
`CERTIFICATE OF MAILING BY EXPRESS MAIL UNDER 37 CFR 1.10
`
`EV262354613US
`Express Mail Label Number
`
`Attorney Docket No. H0O03789US
`S&L Docket No. P26,267 USA
`
`I hereby certify that the attached Patent Application Transmittal Letter for
`
`Large Entity Concerning Filing Under 35 U.S.C. 111 and 37 C.F.R. 1.53, including a
`
`duplicate copy of the Transmittal Letter, Patent Application specification, an
`
`Abstract, an Application Data Sheet, Declaration and Power of Attorney, two
`
`acknowledgment postcards and a check in the amount of $1 ,760.00 are being
`
`deposited with the United States Postal Service "Express Mail Post Office to
`
`Addressee" under 37 C.F.R. § 1.10 in an envelope addressed to the Mail Stop
`
`Patent Application, Commissioner for Patents, P. O. Box 1450, Alexandria, VA
`
`22313-1450 on October 27, 2003.
`
`
`
` Christophe
`
`.
`Synnestvedt & Lechner LLP
`2600 Aramark Tower
`1101 Market Street
`
`Philadelphia, PA 19107-2950
`Telephone: (215) 923-4466
`Facsimile: (215)923-2189
`
`M:\PButch\Honeywel|\P-26267.usa\PatentOffice\ExpressMailCertificate.wpd
`
`Page 2 of 40
`
`Page 2 of 40
`
`

`
`EXPRESS MAIL LABEL NO. EV262354613US
`
`Dock t No. H0003789US
`
`PROCESS FOR PRODUCING FLUOROPROPENES
`
`Invented by:
`
`DANIEL C. MERKEL
`
`64 Glenmar Drive
`
`West Seneca, NY 14224
`Citizen of USA
`
`RAJIV R. SINGH
`
`18 Foxfire Drive
`
`Getzville, NY 14068
`Citizen of USA
`
`HSUEH SUNG TUNG
`
`16 Vassar Drive
`
`Getzville, NY 14068
`Citizen of U.S.A.
`
`Page 3 of 40
`
`Page 3 of 40
`
`

`
`Patent Docket No. HO003789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`PROCESS FOR PRODUCING FLUOROPROPENES
`
`Background of the Invention
`
`The present invention relates to a process for producing fluoropropenes in good yield on an industrial
`
`scale using commercially and readily available starting materials. More particularly, the present
`
`invention relates to a process for producing fluoropropenes by the dehydrohalogenation of halo-
`
`propanes, either by reaction with an essentially miscible alkali or alkaline earth metal hydroxide
`
`solution in a non-alcohol solvent, or by thermal decomposition.
`
`The production of fluoropropenes such as CF3CH=CH2 by catalytic vapor phase fluorination of various
`
`saturated and unsaturated halogen—containing C3 compounds is described in U.S. Patent Nos.
`
`2,889,379; 4,798,818 and 4,465,786. U.S. Patent No. 5,532,419 discloses a vapor phase catalytic
`
`process for the preparation of fluoroalkene using a ch|oro- or bromo-halofluorocarbon and HF. EP
`
`974,571 discloses the preparation of 1,1,1,3—tetrafluoropropene by contacting 1,1,1,3,3-
`
`pentafluoropropane (HFC-245fa) in the vapor phase with a chromium—based catalyst at elevated
`
`temperature, or in the liquid phase with an alcoholic solution of KOH, NaOH, Ca(OH)2 or Mg(OH)2_
`
`A fluoropropene of particular interest is 1,3,3,3-tetrafluoropropene (HFC-1234ze), which has potential
`
`use as a low global warming potential refrigerant. However. this material is presently not available in
`
`commercial quantity. The existing technology to make HFC—1234ze is a fluorination process using
`
`1,1,1,3,3—pentachloropropane (HCC-240fa) and HF in the presence of a vapor phase catalyst. HFC-
`
`1234ze is a by-product of the reaction that is made in relatively small quantity, i.e., less than about 8
`
`area % in a gas chromatograph (GC) of the organic reaction product.
`
`10
`
`15
`
`20
`
`25
`
`Page 4 of 40
`
`Page 4 of 40
`
`

`
`Patent Docket No. HO0O3789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`The process is very expensive because of the low selectivity for the desired product, HFC-1234ze.
`
`The reaction is actually intended for the manufacture of HFC-245fa, in which small quantities of HFC-
`
`1234ze is produced as a by-product. Complicating matters, the process involves handling large
`
`quantities of hazardous materials such as HF and HCI.
`
`
`Henne et al., J.Am. Chem. Soc. 68 496-497 (1946) described the synthesis of various
`
`fluoropropenes from CF3CH2CF3 using, e.g., alcoholic KOH, with varying degrees of success. For
`
`example, it is stated that in some instances dehydrohalogenation was unsuccessful.
`
`In another
`
`instance, a protracted reaction time (3 days) was required, or relatively low product yield (40%, 65%)
`
`10
`
`was obtained.
`
`
`Tarrant, et al., J. Am. Chem. Soc. 77 2783-2786 (1955) described the synthesis of CF3CH=CF2
`
`starting with: (1) 3-bromo-1,1,3,3-pentafluoropropane and reacting it with a hot solution of KOH in
`
`water; and (2) 3-bromo-1,1,3,3—tetraf|uoropropene, reacting it with HF at 150EC and neutralizing the
`
`reaction products with a KOH solution.
`
`Kimura, et al., J. Org. Chem. 48, 195-198 (1983) described multi-phase dehydrohalogenation of
`
`brominated compounds using aqueous KOH and a phase transfer catalyst based on polyethylene
`
`glycols and polyethylene glycol-grafted copolymers. The preparation of fluoropropenes by the
`
`dehydrohalogenation of fluoropropane using aqueous KOH and a phase transfer catalyst, but with
`
`improved yields and selectivity is disclosed by U.S. Patent No. 6,548,719.
`
`There is a continuing need for means by which fluoropropenes can be produced commercially with
`
`high yield and selectivity, either catalytically or non-catalytically.
`
`15
`
`20
`
`25
`
`Page 5 of 40
`
`Page 5 of 40
`
`

`
`Patent Docket No. H0003789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`Summary of the Invention
`
`The present invention provides two new dehydrohalogenation methods by which fluoropropenes may
`
`be commercially produced with high yield and selectivity. According to one aspect of the present
`
`invention, a dehydrohalogenation process is provided for the preparation of fluoropropenes of the
`
`formula CF3CY=CXNHp wherein X and Y are independently hydrogen or a halogen selected from the
`
`fluorine, chlorine, bromine and iodine, and N and P are independently integers equal to 0, 1 or 2,
`
`provided that (N+P)=2, in which there is reacted, without a catalyst, a halopropane of the formula:
`
`CF3C(YR1)C(XNHpR2)
`
`wherein R, [R2, X and Yare independently hydrogen or a halogen selected from fluorine, chlorine,
`
`bromine and iodine, provided that at least one of R1, R2, X and Y is a halogen and there is at least one
`
`hydrogen and one halogen on adjacent carbon atoms; with a solution of at least one alkali or alkaline
`
`earth metal hydroxide in a non-aqueous, non—alcoho| solvent therefor that is at least essentially
`
`miscible with the halopropane, wherein the reaction is performed at a temperature at which
`
`dehydrohalogenation will occur.
`
`Reactions performed without a catalyst produce cleaner reaction products, thereby simplifying product
`
`work-up and isolation. The halopropane can be CF3CH2CF2H (a commercially available compound
`
`also known as HFC-245fa) or CF3CH2CHC|F (HCFC-244fa) a by-product of the manufacture of HFC-
`
`245fa. Both halopropanes will dehydrohalogenate to form HFC-1234ze.
`
`According to another aspect of the present invention, a dehydrohalogenation process is provided for
`
`the preparation of fluoropropenes of the formula CF3CY=CXNHp, wherein X and Y are independently
`
`hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine, and N and P are
`
`10
`
`15
`
`20
`
`25
`
`Page 6 of 40
`
`Page 6 of 40
`
`

`
`Pat nt Docket No. H0003789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`independently integers equal to 0, 1 or 2 provided that (N+P)=2, comprising heating to a temperature
`
`at which dehydrohalogenation by thermal decomposition occurs a halopropane of the formula:
`
`CF3C(YR1)C(XNHPR2)
`
`wherein R1, R2, X and Y are independently hydrogen or a halogen selected from fluorine, chlorine,
`
`bromine and iodine, provided that at least one of R1, R2, X and Y is a halogen and there is at least
`
`one hydrogen and one halogen on adjacent carbon atoms. The thermal decomposition reaction can
`
`be performed either with or without a catalyst for hydrogen halide removal, such as transition metal
`
`10
`
`halides and oxides and combination thereof, preferably iron halides, nickel halides, cobalt halides and
`
`combinations thereof. HFC-245fa and CF3CH2CHC|F (HCFC-244fa) can also be reacted by the
`
`thermal decomposition reaction of the present invention to form HFC-1234ze.
`
`Page 7 of 40
`
`Page 7 of 40
`
`

`
`Patent Docket No. H0003789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`Detailed Description of the Invention
`
`The present invention can be generally described as a process for the preparation of fluoropropenes
`
`of the formula CF3CY=CXNHp wherein X and Y are independently a hydrogen or a halogen selected
`
`from fluorine, chlorine, bromine and iodine; and N and P are integers independently equal to O, 1 or 2,
`
`provided that (N+P)=2.
`
`Two dehydrohalogenation methods by which the fluoropropenes may be prepared are disclosed.
`
`Both methods dehydrohalogenate a halopropane having the formula:
`
`CF3C(YR1)C(XNHpR2)
`
`wherein R1, R2, X and Y are independently hydrogen or a halogen selected from fluorine, chlorine,
`
`bromine and iodine, provided that at least one of R1, R2, X and Y is a halogen and there is at least
`
`one hydrogen and one halogen on adjacent carbon atoms.
`
`Included among the halopropanes that can be included in the present invention is 1,1,1,3,3-
`
`pentafluoropropane or HFC-245fa and 1-chloro-1,3,3,3-tetrafluoropropane or HCFC-244fa. Various
`
`methods for producing these materials are described in U.S. Patent Nos. 5,710,352; 5,969,198;
`
`5,728,904; and 6,023,004. Another method described in U.S. Patent No. 5,574,192 is said to be
`
`economical, amenable to large-scale application and uses readily available raw materials. The
`
`process of that patent uses two steps as follows: (1) formation of CCl3CH2CHC|2 by the reaction of
`
`CCI4 with vinyl chloride; and (2) conversion of CCl3CH2CHC|2 to CF3CH2CHF2 and CF3CH2CHFC| by
`
`reaction with HF in the presence of a fluorination catalyst selected from antimony halides, niobium
`
`halides, arsenic halides, tantalum halides; tin halides; titanium halides; antimony mixed halides;
`
`niobium mixed halides, arsenic mixed halides, tantalum mixed halides, mixed tin halides; mixed
`
`titanium halides and mixtures thereof. Under-fluorinated materials, such as CF3CH2CHC|2, may be
`
`10
`
`15
`
`20
`
`25
`
`Page 8 of 40
`
`Page 8 of 40
`
`

`
`Patent Docket No. H0003789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`recycled in subsequent runs. The under—f|uorinated material CF3CH2CHC|F, or HFC-244fa, can also
`
`be used as a starting material in the present invention for producing a fluoropropene. Thus, the
`
`above—described process can be utilized to obtain two different starting materials for the process of
`
`the present invention.
`
`Furthermore, commercial quantities of CF3CH2CF2H are available from Honeywell International, |nc.,
`
`Morristown, New Jersey, for use as the starting material of the present process for direct conversion
`
`to the fluoroalkene CF3CH=CFH by dehydrofluorination according to either process disclosed herein.
`
`Other useful starting materials for the production of fluoropropenes and/or fluorohalopropenes include
`
`the following: CF3CH2CF2Br; CF3CH2CF2l; CF3CHFCF2Br; CF3CH2CH2Cl; CF3CH2CH2Br;
`
`CF3CH2CH2l; CF3CHBrCF2Br; CF3CHClCF2C|; CF3CH2CFHCl; CF3CH2CFHBr; CF3CHC|CF2H;
`
`CF3CH2CC|3;
`
`and the
`
`In another embodiment of the invention, HCFC-244fa and/or HFC-245fa can be prepared by
`
`fluorinating 1,1,1 ,3,3-pentachloropropane(HCC-240fa).
`
`In this embodiment, in a preliminary step, the
`
`process of the invention involves the formation of HCFC-244fa and/or HFC-245fa by reacting
`
`1,1,1,3,3-pentachloropropane (HCC-240fa) with hydrogen fluoride (HF) in the vapor phase, or the
`
`liquid phase, preferably in the presence of a fluorination catalyst as is well known in the art.
`
`The result is a reaction product of one or both of the two products, HCFC-244fa and/or HFC-245fa.
`
`In
`
`the preferred embodiment of the invention, the HF to HCC-240fa mole ratio preferably ranges from
`
`about 2:1 to about 100:1; more preferably from about 4:1 to about 50:1 and most preferably from
`
`about 5:1 to about 20:1.
`
`Useful fluorination catalysts include, but are not limited to, transition metal halides, Group lVb and Vb
`
`metal halides, and combinations thereof, preferably supported on activated carbon or fluorinated
`
`alumina. More specifically, preferred vapor phase fluorination catalysts non-exclusively include SbCl5,
`
`10
`
`15
`
`20
`
`25
`
`Page 9 of 40
`
`Page 9 of 40
`
`

`
`Patent Docket No. H0003789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`SbC|3, SbF5, TaCl5. SnCl4, NbCl5, TiCl4, MoCl5, Cr2O3,Cr2O3/AIZO3, Cr2O3/AIF3, Cr2O3/carbon,
`
`CoC|2/Cr2O3/Al2O3, NiC|2/Cr2O3/AIZO3, CoCl2/AIF3, NiCl2/AlF3 and mixtures thereof. Preferred liquid
`
`phase fluorination catalysts non-exclusively include SbC|5, SbC|3, SbF5, TaC|5, SnCl4, NbC|5, TiCl4, and
`
`MoC|5.
`
`It is understood that after pre—treatment with HF or during reaction in the presence of HF the
`
`above mentioned catalyst will be partially fluorinated_ Chromium oxide/aluminum oxide catalysts are
`
`described in U.S. Pat. No. 5,155,082 which is incorporated herein by reference. Chromium (Ill) oxides
`
`such as crystalline chromium oxide or amorphous chromium oxide are preferred vapor phase
`
`fluorination catalysts with amorphous chromium oxide being the most preferred vapor phase catalyst.
`
`Chromium oxide (Cr2O3) is a commercially available material which may be purchased in a variety of
`
`particle sizes. Unsupported SbCl5 and SbCl3 halides are preferred liquid phase catalysts. Both of
`
`these liquid phase catalysts are commercially available and well known in the art. Fluorination
`
`catalysts having a purity of at least 98% are preferred. The fluorination catalyst is present in an
`
`amount sufficient to drive the reaction. The fluorination reaction may be conducted in any suitable
`
`fluorination reaction vessel or reactor but it should preferably be constructed from materials which are
`
`resistant to the corrosive effects of hydrogen fluoride such as nickel and its alloys, including Hastelloy,
`
`lnconel, lncoloy, and Monel or vessels lined with fluoropolymers.
`
`Any water in the hydrogen fluoride (HF) will react with and deactivate the fluorination catalyst.
`
`Therefore substantially anhydrous hydrogen fluoride is preferred. By "substantially anhydrous" it is
`
`meant that the HF contains less than about 0.05 weight % water and preferably contains less than
`
`about 0.02 weight % water. However, one of ordinary skill in the art will appreciate that the presence
`
`of water in the HF can be compensated for by increasing the amount of catalyst used.
`
`The liquid phase fluorination of HCC—240fa is preferably conducted at a temperature of from about
`
`50°C to about and 450°C, more preferably from about 60°C to about 180°C and most preferably from
`
`about 65°C and 150°C. Fluorination is preferably conducted at a pressure of from about 50 psig to
`
`about 400 psig. The reactor is preferably preheated to the desired fluorination reaction temperature
`
`10
`
`15
`
`20
`
`25
`
`Page 10 of 40
`
`Page 10 of 40
`
`

`
`Patent Docket No. HO003789US
`
`Express Mail Label No. EV262354613US
`S&L File N . P26,267 USA
`
`while anhydrous HF is fed to the reactor. The HCC-240fa and HF may be fed to the reactor at the
`
`desired temperatures and pressures that are described herein.
`
`In a preferred embodiment of the
`
`invention, either or both of the HCC-240fa and HF are pre-vaporized or preheated prior to entering the
`
`reactor.
`
`When HCC-240fa and HF are reacted in a vapor phase with the fluorination catalyst the HCC-240fa
`
`and HF may be fed to the reactor at the desired temperatures and pressures that are described
`
`herein. The reactor is preheated to the fluorination reaction temperature while anhydrous HF is fed to
`
`the reactor. The HCC-240fa and HF may be fed to the reactor at any convenient temperature and
`
`pressure. In a preferred embodiment either or both of the HCC-240fa and HF are pre-vaporized or
`
`preheated to a temperature of from about 30 °C to about 000 °C prior to entering the reactor. in
`
`another embodiment, the HCC-240fa and HF are vaporized in the reactor.
`
`The HF and HCC-240fa feeds are then adjusted to the desired mole ratio. The HF to HCC-240fa mole
`
`ratio preferably ranges from about 2:1 to about 100:1; more preferably from about 4:1 to about 50:1
`
`and most preferably from about 5:1 to about 20:1.
`
`The fluorination reaction is conducted at a preferred temperature ranging from about 80 °C to about
`
`400 °C; more preferably from about 100 °C to about 350 °C and most preferably from about 200 °C to
`
`about 330°C. Reactor pressure is not critical and can be superatmospheric, atmospheric or under
`
`vacuum. The vacuum pressure can be from about 5 torr to about 760 torr. The reactant vapor is
`
`allowed to contact the fluorination catalyst for from about 0.01 to about 240 seconds, more preferably
`
`from about 0.1 to about 60 seconds and most preferably from about 0.5 to about 20 seconds.
`
`Usually the process flow of the HCC-240fa and HF is in the down direction through a bed of the
`
`catalyst. Before each use, the catalyst is preferably dried, pre-treated and activated.
`
`It may also be
`
`advantageous to periodically regenerate the catalyst after prolonged use while in place in the reactor.
`
`10
`
`15
`
`20
`
`25
`
`Page 11 of 40
`
`Page 11 of 40
`
`

`
`Patent Docket No. H0003789US
`
`Express Mail Label No. EV262354613US
`S&L File N . P26,267 USA
`
`For Cr2O3', Cr-203/AIZO3, Cr2O3/AIF3, Cr2O3/carbon, CoC|2/Cr2O3/Al2O3, NiCl2/Cr2O3/Al2O3, CoC|2/AIF3,
`
`NiC|2/AIF3 catalysts, pre-treatment can be done by heating the catalyst to about 250 °C to about 430
`
`°C in a stream of nitrogen or other inert gas. The catalyst may then be activated by treating it with a
`
`stream of HF diluted with a large excess of nitrogen gas in order to obtain high catalyst activity.
`
`Regeneration of the catalyst may be accomplished by any means known in the art such as, for
`
`example, by passing air or air diluted with nitrogen over the catalyst at temperatures of from about
`
`100°C to about 400°C, preferably from about 200°C to about 375°C, for from about 1 hour to about 3
`
`days, depending on the size of the reactor. For SbC|5, SbCl3, TaC|5, SnC|.,, NbCl5, TICI4, MoC|5
`
`catalysts, supported on an solid support such as activated carbon, pre-treatment or activation can be
`
`done by first heating the catalyst to about 30°C to 250°C in a stream of nitrogen or other inert gas.
`
`it is
`
`then treated with a stream of HF in the absence or presence of an oxidizing agent such as chlorine gas in
`
`order to obtain high catalyst activity.
`
`In addition, the catalyst may optionally be kept active by co-
`
`feeding chlorine to the reactor during reaction.
`
`HCFC-244fa and HFC-245fa may be recovered from the fluorination reaction product mixture
`
`comprised of unreacted starting materials and by—products, including HCI, by any means known in the
`
`art, such as by scrubbing, extraction, and preferably distillation. For example, the distillation may be
`
`preferably conducted in a standard distillation column at a pressure, which is less than about 300
`
`psig, preferably less than about 150 psig and most preferably less than 100 psig. The pressure of the
`
`distillation column inherently determines the distillation operating temperature. HCI may be recovered
`
`by operating the distillation column at from about -40 °C to about 25 °C, preferably from about -40 °C
`
`to about —20°C. Single or multiple distillation columns may be used. The distillate portion includes
`
`substantially all the HCFC-244fa, HFC-245fa, unreacted HF and HCI produced in the reaction as well
`
`as any other impurities.
`
`In the preferred embodiment, HCFC-244fa and the HFC-245fa are separated
`
`from all other reaction by-products and unreacted HF for further reaction in step (b) described herein.
`
`In the preferred embodiment, any HF present may also be recovered and recycled back for
`
`subsequent fluorination reactions.
`
`10
`
`15
`
`20
`
`25
`
`Page 12 of 40
`
`Page 12 of 40
`
`

`
`Patent Docket No. H0003789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`1234ze is formed by the dehydrochlorination of 1—chloro-1,3,3,3-tetrafluoropropane (HCFC-244fa) or
`
`the dehydrofluorination of 1,1,1,3,3-pentafluoropropane (HFC-245fa).
`
`According to one method of the present invention, the halopropane is dehydrohalogenated with an
`
`alkali metal or alkaline earth metal hydroxide in a non-aqueous, non-alcohol solvent for the alkali
`
`metal or alkaline earth metal hydroxide that is at least partially miscible with the halopropane. Alkali
`
`metal and alkaline earth metal hydroxides suitable for use in the present invention include, but are not
`
`limited to LiOH, KOH, NaOH, CaO, Ca(OH)2, CaCO3, and/or lime stone, and the like. By either
`
`method, the dehydrochlorination of HCFC—244fa proceeds as follows:
`
`The dehydrohalogenation is performed within a temperature range at which the halopropane will
`
`dehydrohalogenate. According to one aspect of this method, alkali metal or alkalin eearth metal
`
`hydroxide pellets are dissolved in the solvent with agitation under otherwise ambient conditions. The
`
`halopropane is then bubbled through the alkali metal or alkaline earth metal hydroxide solution as the
`
`temperature of the solution is gradually increased by heating. Gradual heating is continued until
`
`initiation of dehydrohalogenation is observed, after which the temperature at which
`
`dehydrohalogenation initiation occurred is maintained until completion of the process.
`
`In carrying out the process, the molar ratio of alkali metal or alkaline earth metal hydroxide relative to
`
`the amount of halopropane is from about 1:1 to about 20;1, preferably from about 1:1 to about 15:1;
`
`and more preferably from about 1:1 to about 12:1; for example, from 1:1 to about 10:1. In the
`
`preferred embodiment of the invention, the caustic strength of the caustic solution is from about 2 wt
`
`% to about 100 wt %, more preferably from about 5 wt % to about 90 wt % and most preferably from
`
`about 10 wt °/o to about 80 wt%. The reaction is preferably conducted at a temperature of from about
`
`20°C to about 150°C, more preferably from about 30°C to about 110°C and most preferably from
`
`about 40°C to about 90°C. The reaction pressure is not critical. The reaction can be conducted at
`
`10
`
`15
`
`20
`
`25
`
`Page 13 of 40
`
`10
`
`Page 13 of 40
`
`

`
`Patent Docket No. H0O03789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`atmospheric pressure, super-atmospheric pressure or under vacuum. The vacuum pressure can be
`
`from about 5 torr to about 760 torr. Preferably, the reaction is conducted at atmospheric or super-
`
`atmospheric pressure.
`
`The dehydrohalogenation reaction can be accomplished using a solution of at least one alkali metal or
`
`alkaline earth metal hydroxide in a non, aqueous, non—alcohol solvent for the alkali metal or alkaline
`
`earth metal hydroxide that is essentially miscible with the halopropane. For purposes of the present
`
`invention, “essentially miscible” means that an agitated mixture containing 50 wt. % halpropane and
`
`50 wt. % solvent does not separate to form more than one liquid phase over the temperature range at
`
`which the dehydrohalogenation will occur, or, if such separation does occur, one of the liquid phases
`
`is very small, less than 10 wt. % of the total weight of the blend.
`
`Examples of non—alcohol solvents suitable for use with the present invention include, but not limited
`
`to, nitriles such as acetonitrile, ethers such as diethyl ether, tetrahydrofuran and perfluoro—
`
`tetrahydrofuran, esters such as methyl acetate and ethyl acetate, amides, ketones, sulfoxides,
`
`phosphates, carboxylates, and the like.
`
`The alkali metal or alkaline earth metal hydroxide need not be highly soluble in the solvent. An
`
`amount of water, alcohol, or mixture thereof may be added to the solvent for the alkali metal or
`
`alkaline earth metal hydroxide in quantities that improve the solubility of the alkali metal or alkaline
`
`earth metal hydroxide therein. Embodiments according to this aspect of the present invention will
`
`blend a solution of the alkali metal or alkaline earth metal hydroxide in water, alcohol or a mixture of
`
`water and alcohol, with the solvent. Typically, the amount of water, alcohol, or water-alcohol blend
`
`will not exceed about 50 wt.% of the total quantity of solvent for the alkali metal or alkaline earth metal
`
`hydroxide, and preferably will not exceed about 20 wt.%. Alcohols that may be used contain from 1 to
`
`5 carbon atoms, and preferably from 1 to 3 carbon atoms.
`
`10
`
`15
`
`20
`
`25
`
`Page 14 of 40
`
`11
`
`Page 14 of 40
`
`

`
`Patent Docket No. H0003789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`Solvents are selected that are at least partially miscible with the alkali metal or alkaline earth metal
`
`hydroxide solution, which may be in water, alcohol or a mixture thereof. For purposes of the present
`
`invention “partially miscible” means a level of miscibility that permits the solvent to dissolve in the
`
`alkali metal or alkaline earth metal hydroxide solution to the extent that the dehydrohalogenation
`
`reaction will occur upon contact of the halopropane therewith the blend. A high degree is miscibility is
`
`not required in order for the reaction to proceed at the interface of the solvent and alkali metal or
`
`alkaline earth metal hydroxide solution. More caustic will dissolve as the amount in solution is
`
`depleted by the dehydrohalogenation reaction. The solvent need only be at least about 1%,
`
`preferably at least about 5%, and more preferably at least 10% soluble, the alkali metal or alkaline
`
`earth metal hydroxide solution on a weight basis.
`
`In an alternate embodiment of the invention, the dehydrochlorination of HCFC-244fa and dehydro-
`
`fluorination of HFC-245fa may be done by thermal decomposition in the presence or in the absence of
`
`a catalyst. Suitable catalysts include transition metal halides and oxides, supported or bulk.
`
`Preferred catalysts include, but not limited to, FeCl2, FeC|3, NiCl2, CoCl2, supported or in bulk. The
`
`preferred temperatures for the thermal decomposition are from about 30°C to about 400°C. more
`
`preferably from about 50°C to about 350°C and most preferably from about 75°C to about 300°C. As
`
`above, the reaction is preferably conducted at atmospheric pressure, super—atmospheric pressure.
`
`Reaction under vacuum is also acceptable. The vacuum pressure can be from about 5 torr to about
`
`10
`
`15
`
`20
`
`760 torr.
`
`The reactions may be conducted in any suitable reactor. Further, the dehydrochlorination of HCFC-
`
`244fa and the dehydrofluorination of HFC-245fa may either be conducted simultaneously in the same
`
`reactor, or they may first be separated followed by separately dehydrochlorinating HCFC-244fa with
`
`25
`
`the caustic solution or by thermal decomposition and separately dehydrofluorinating HFC-245fa with the
`
`caustic ‘solution or by thermal decomposition. The result of this two step process is a high yield of
`
`HFC-1234ze.
`
`Page 15 of 40
`
`12
`
`Page 15 of 40
`
`

`
`Patent Docket No. H0003789US
`
`Express Mail Lab I No. EV262354613US
`S&L File No. P26,267 USA
`
`Therefore, according to preferred embodiments of the invention, the dehydrochlorination of HCFC—
`
`244fa and dehydrofluorination of HFC-245fa are accomplished either by thermal decomposition or by
`
`reacting these with a strong caustic solution at an elevated temperature. By either method, the
`
`dehydrochlorination of HCFC-244fa proceeds as follows:
`
`CF3-CH2-CHCIF —> CF3-CH=CHF + HCI
`
`(HCFC-244fa)
`
`(HFC—1234ze)
`
`10
`
`15
`
`20
`
`25
`
`Furthermore, by either method, the dehydrofluorination of HFC-245fa proceeds as follows:
`
`CF3-CH2-CHF2 -) CF3-CH=CHF + HF
`
`(HFC-245fa)
`
`(HFC—1234ze)
`
`Both the dehydrochlorination of HCFC-244fa and dehydrofluorination of HFC-245fa are achieved
`
`according to the present invention by using caustic for hydrogen halide removal or by thermal
`
`decomposition in the absence of a catalyst or with a catalyst selected from transition metal halides
`
`and oxides and combinations thereof, preferably iron halides, nickel halides, cobalt halides and
`
`combinations thereof.
`
`Both processes described herein are useful for the preparation of fluoropropenes and/or
`
`fluorohalopropenes having the following formula:
`
`CF3CY=CXNHp
`
`wherein X and Y and independently hydrogen or a halogen selected from fluorine, chlorine, bromine
`
`and iodine; and N and P are integers independently equal to O, 1 or 2, provided that (N+P)=2. Such
`
`compounds include CF3CH=CF2,CF3CH=CFH, CF3CBr=CF2, CF3CH=CH2,CF3CF=CF2_ CF3CC|=CF2,
`
`Page 16 of 40
`
`13
`
`Page 16 of 40
`
`

`
`Patent Docket No. H0O03789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`CF3CF=CC|F, CF3CC|=CHF, CF3CH=CHC|, CF3CC|=CClF, CF3CH=CC|z_ CF3CF=CCl2, and the like.
`
`The fluoropropenes prepared by both methods of this invention are readily recovered by any means
`
`known in the art, such as by scrubbing, extraction, and preferably disti||ation.. Depending on extent of
`
`conversion of the starting material, the product can be used directly or further purified by standard
`
`distillation techniques. Unreacted halopropane and certain reaction by-products can be recycled back
`
`to the reaction vessel to provide a continuous process. Alternatively, fresh halopropane may be
`
`supplied to the reaction mixture in order to run the process continuously.
`
`The fluoropropenes obtained by the inventive processes are useful as monomers for producing
`
`fluorine-containing oligomers, homopolymers and copolymers, as well as intermediates for other
`
`fluorine-containing industrial chemicals.
`
`The following examples are given as specific illustrations of the invention.
`
`It should be understood,
`
`however, that the invention is not limited to these specific details set forth in the examples. All parts
`
`and percentages in the examples, as well as in the remainder of the specification, are by weight
`
`unless otherwise specified.
`
`Further, any range of numbers recited in this specification or paragraphs hereinafter describing or
`
`claiming various aspects of the invention, such as that representing a particular set of properties, units
`
`of measure, conditions, physical states or percentages, is intended to literally incorporate expressly
`
`herein by reference or otherwise, any number falling within such range, including any subset of
`
`numbers or ranges subsumed within any range so recited. The term “about” when used as a modifier
`
`for, or in conjunction with, a variable, is intended to convey that the numbers and ranges disclosed
`
`herein are flexible and that practice of the present invention by those skilled in the art using
`
`temperatures, concentrations, amounts, contents, carbon numbers, and properties that are outside of
`
`the range or different from a single value, will achieve the desired result, namely, processes for the
`
`preparation of fluoropropenes and reactants used in such processes.
`
`10
`
`15
`
`20
`
`25
`
`Page 17 of 40
`
`14
`
`Page 17 of 40
`
`

`
`Patent Docket No. HO0O3789US
`
`Express Mail Label No. EV262354613US
`S&L File No. P26,267 USA
`
`EXAMPLES
`
`EXAMPLE 1
`
`To a reaction setup consisting of a 3—neck round bottom flask (5 L), mechanical agitator, reflux
`
`condenser, and low temperature cold trap was added to 3000 ml acetonitrile and 9.9 moles (504 g) of
`
`KOH pellets. After mixing, 5.1 moles (684 g) of HFC-245fa were added through a dip tube. The
`
`reagents were heated slowly with vigorous agitat

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket