
Home (/) / Programming (/Programming/)

/ Pocket pc network programming (/Programming/Pocket+pc+network+programming/)

The Remote API (RAPI) provides a set

of helper functions that enable a

desktop-based application to execute

code on a connected Pocket PC device.

Once a function has returned, the

results are sent back to the PC. In

essence, RAPI is a type of one-way

Remote Procedure Call (RPC)?the

client (your desktop application) makes

a request to the server (a connected

Pocket PC device) to execute some

functionality, and returns the results to

it.

RAPI was originally designed as a way

to manage a Pocket PC device from the

desktop. It includes functions that enable an application to query the file system, registry, and

device databases, as well as get information about the Pocket PC's system configuration. You

can even create your own functions, which can be run over the RAPI APIs.

You will quickly notice that most of the functions in RAPI look similar to the functions in the

standard Pocket PC and Windows 32 API. In fact, they typically have the same definition and

number of parameters, as well as the same return values, as a standard desktop function call.

The only difference is that they all are prefixed with the letters Ce. For example, the RAPI

function CeFindFirstFile() is the same as the desktop FindFirstFile() API, except

that it will enumerate the files on a connected Pocket PC device, rather than those on the

desktop. This being the case, I will not provide a detailed description of each function available

via the RAPI API.

Because RAPI is run on the desktop, you must ensure that the computer running your

application has the latest version of ActiveSync installed on it. This will ensure that rapi.dll

(which is required for your application to work) is present on the desktop, as you may not

distribute rapi.dll on your own. You can call RAPI from console applications, window

applications, and even a .NET assembly.

In order to use the Remote API within your applications, you need to include the rapi.h

header file in your project, as well as link with the rapi.lib library (note that because this is a

desktop library, it is located in the .\wce300\Pocket PC 2002\support

21

Remote API (RAPI) :: Chapter 9. Desktop Synchronization :: Pocket pc ... http://etutorials.org/Programming/Pocket+pc+network+programming/Ch...

1 of 22 11/21/2016 8:17 PM

Rosetta-2029 0001f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

\ActiveSync\lib directory in the folder where you have installed Embedded Visual C++).

Using RAPI

Before you can use any of the RAPI functions, you must first initialize Windows CE's remote

services and establish a communications link with a connected device by calling either the

CeRapiInit() or CeRapiInitEx() functions.

The simplest way to start RAPI is by calling the synchronous (i.e., blocking) function

CeRapiInit(), which is defined as follows:

HRESULT CeRapiInit();

Once the function is called, it will immediately attempt to establish a connection to a Pocket PC

device, and will not return control to your application until either a connection has been made or

the function fails. CeRapiInit() will return E_SUCCESS if a successful connection can be

made and RAPI has initialized without a problem; otherwise, you will be returned E_FAIL. If

RAPI has already been initialized, you will receive CERAPI_E_ALREADYINITIALIZED as the

return value.

The following short code sample shows you how to use the CeRapiInit() function:

HRESULT hr = S_OK;

hr = CeRapiInit();

if(FAILED(hr)) {

 if(hr == CERAPI_E_ALREADYINITIALIZED)

 OutputDebugString(TEXT("RAPI has already been

 initalized"));

 return FALSE;

}

Although using the CeRapiInitEx() function is a bit more involved, you will find that it

provides you with a greater amount of control because it is asynchronous (the function will

return to you immediately). This means, of course, that you will have to periodically check the

RAPI event handle you are returned in order to find out when it has become signaled.

The CeRapiInitEx() function is defined as follows:

HRESULT CeRapiInitEx(RAPIINIT *pRapiInit);

The only parameter that the function takes is a pointer to a RAPIINIT structure, which contains

information about the RAPI event handle and its status. The structure is defined as follows:

typedef struct _RAPIINIT {

 DWORD cbSize;

 HANDLE heRapiInit;

 HRESULT hrRapiInit;

} RAPIINIT;

The first field, cbSize, should be set before calling CeRapiInitEx() with the size of the

RAPIINIT structure. This is followed by heRapiInit, which will be filled in with the event

handle that you can use to check on the status of your RAPI connection. The last field,

Remote API (RAPI) :: Chapter 9. Desktop Synchronization :: Pocket pc ... http://etutorials.org/Programming/Pocket+pc+network+programming/Ch...

2 of 22 11/21/2016 8:17 PM

Rosetta-2029 0002f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

hrRapiInit, will be filled in with the return code from CeRapiInitEx() once heRapiInit

becomes signaled.

The following code snippet shows how you can use the CeRapiInitEx() function to initialize

your RAPI connection by using the WaitForSingleObject() function to monitor the RAPI

event handle:

HRESULT hr = S_OK;

RAPIINIT rapiInit;

memset(&rapiInit, 0, sizeof(RAPIINIT));

rapiInit.cbSize = sizeof(RAPIINIT);

hr = CeRapiInitEx(&rapiInit);

if(FAILED(hr)) {

 if(hr == CERAPI_E_ALREADYINITIALIZED)

 OutputDebugString(TEXT("RAPI has already been

 initalized"));

 return FALSE;

}

// Wait for RAPI to be signaled

DWORD dwResult = 0;

dwResult = WaitForSingleObject(rapiInit.heRapiInit, 5000);

if(dwResult == WAIT_TIMEOUT || dwResult == WAIT_ABANDONED) {

 // RAPI has failed or timed out. Proceed with cleanup

 CeRapiUninit();

 return FALSE;

}

if(dwResult == WAIT_OBJECT_0 && SUCCEEDED(rapiInit.hrRapiInit)) {

 // RAPI has succeeded.

 OutputDebugString(TEXT("RAPI Initialized."));

 // Do something here

}

When working with applications that use RAPI, it is important to remember that you are relying

on a network connection between the desktop and a device. When a function fails, an error can

occur in either the RAPI layer or the function itself. You can determine where the error has

actually occurred by calling into the CeRapiGetError() function, which is defined as follows:

HRESULT CeRapiGetError(void);

The function takes no parameters, and will return a value other than 0 if RAPI itself was

responsible for the function failing. If CeRapiGetError() returns 0, however, you know that

the error occurred in the actual remote function, and you can use the CeGetLastError()

function to determine the error code, as shown in the following example:

Remote API (RAPI) :: Chapter 9. Desktop Synchronization :: Pocket pc ... http://etutorials.org/Programming/Pocket+pc+network+programming/Ch...

3 of 22 11/21/2016 8:17 PM

Rosetta-2029 0003f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

DWORD dwError = CeRapiGetError();

if(dwError == 0) {

 // The error did not occur in RAPI, find out what the

 // remote function returned

 dwError = CeGetLastError();

}

A few functions (CeFindAllDatabases(), CeFindAllFiles(), and

CeReadRecordProps()) will allocate memory on the desktop when they are called. In order to

properly free this memory, you can use the following function:

HRESULT CeRapiFreeBuffer(LPVOID);

The only parameter you need to pass in is a pointer to the buffer that was allocated. If the

function succeeds, then you will be returned a value of S_OK.

When you have finished using RAPI, you must also make sure that you properly shut down the

remote connection services. To do so, you can simply use the following function:

HRESULT CeRapiUninit();

The function takes no parameters, and will return a value of E_FAIL if RAPI has not been

previously initialized.

File System RAPI Functions

Table 9.2 lists the Remote API functions for working with the Pocket PC file system.

Table 9.2. RAPI File System Functions

Remote File System Functions

Remote API (RAPI) :: Chapter 9. Desktop Synchronization :: Pocket pc ... http://etutorials.org/Programming/Pocket+pc+network+programming/Ch...

4 of 22 11/21/2016 8:17 PM

Rosetta-2029 0004f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Remote File System Functions

[View full width]

BOOL CeCloseHandle(HANDLE);

BOOL CeCopyFile(LPCWSTR, LPCWSTR, BOOL);

BOOL CeCreateDirectory(LPCWSTR,

LPSECURITY_ATTRIBUTES);

BOOL CeDeleteFile(LPCWSTR);

BOOL CeFindAllFiles(LPCWSTR, DWORD, LPDWORD,

 LPLPCE_FIND_DATA);

BOOL CeFindClose(HANDLE);

BOOL CeFindNextFile(HANDLE, LPCE_FIND_DATA);

BOOL CeGetFileSize(HANDLE, LPDWORD);

BOOL CeGetFileTime(HANDLE, LPFILETIME, LPFILETIME,

 LPFILETIME);

BOOL CeMoveFile(LPCWSTR, LPCWSTR);

BOOL CeReadFile(HANDLE, LPVOID, DWORD, LPDWORD,

 LPOVERLAPPED);

BOOL CeRemoveDirectory(LPCWSTR);

BOOL CeSetEndOfFile(HANDLE);

BOOL CeSetFileAttributes(LPCWSTR, DWORD);

BOOL CeSetFileTime(HANDLE, LPFILETIME, LPFILETIME,

 LPFILETIME);

BOOL CeWriteFile(HANDLE, LPCVOID, DWORD, LPDWORD,

 LPOVERLAPPED);

DWORD CeGetFileAttributes(LPCWSTR);

DWORD CeSetFilePointer(HANDLE, LONG, PLONG,

DWORD);

HANDLE CeCreateFile(LPCWSTR, DWORD, DWORD,

 LPSECURITY_ATTRIBUTES, DWORD, DWORD, HANDLE);

HANDLE CeFindFirstFile(LPCWSTR, LPCE_FIND_DATA);

The following example shows how you can use the Remote API's CeFindAllFiles() (as well

as CeRapiFreeBuffer()) function on the desktop to easily retrieve a list of the wave files that

are located on the device:

Remote API (RAPI) :: Chapter 9. Desktop Synchronization :: Pocket pc ... http://etutorials.org/Programming/Pocket+pc+network+programming/Ch...

5 of 22 11/21/2016 8:17 PM

Rosetta-2029 0005f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

