
Powered by

icrosoft

Windows

Ill fl

Douglas BoUng

Samsung Exhibit 1032 Page 00001

,..

\

~
'(!!9/
Microsoft•
WindO\V?CE

QA76. 76
063
Bo23
1998

Boling

Microsoft ; ----
PRESS

Page 00002

PL

AQrOrt\JYJtsj

cp fl-1L
NORTH CAROLINA STATE UNIVERSITY LIBRARIES

S01237722

Page 00003

GRA

I 0

Douglas l

MictOSoft

®

This book is due on the date indicated
below and .. is~subject to an overdue
fine as posted at the circulation desk.

EXCEPTION: Date due will be
earlier if this item is RECALLED.

,. r, 7'
/ '

;vr~-'~9ql\

3 no

JUN .2~ 1001

AUG 2 0 2003

150M/01 -92-941680

EC 1 4 ~004

Page 00004

PUBLISHED BY
Microsoft Press

Division of Microsoft Corporation

One Microsoft Way
Redmond Washington 98052-6399

Copyright 1998 by Douglas McConnaughey Boling

All rights reserved No part of the contents of this book may be reproduced or

transmitted in any form or by any means without the written permission of the publisher

Library of Congress Cataloging-in-Publication Data

Boling Douglas McConnaughey 1960

Programming Microsoft Windows CE Douglas McConnaughey Boling

cm
Includes index

ISBN 1-57231-856-2

Microsoft Windows Computer file Operating Systems

Computers Title

QA76.76.O63B623 1998

005.4469--dc2l 98-39279

CIP

Printed and bound in the United States of America

123456789 QMQM 321098

Distributed in Canada by ITP Nelson division of Thomson Canada Limited

CIP catalogue record for this book is available from the British Library

Microsoft Press books are available through booksellers and distributors worldwide For further

information about international editions contact your local Microsoft Corporation office Or

contact Microsoft Press International directly at fax 425 936-7329 Visit our Web site at

mspress .microsoftcorn

Active Desktop Developer Studio Microsoft Microsoft Press MS-DOS Visual Win32 Win

dows the Windows CE logo and Windows NT are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries Other product and company

names mentioned herein may be the trademarks of their respective owners

Acquisitions Editor Eric Stroo

Project Editor Kathleen Atkins

Technical Editor Jim Fuchs

Page 00005

To Nancy Jane

Page 00006

To Ncmcyjcme

Page 00007

COntents at Wance

Part Windows Programming Basics

Chapter Hello Windows CE

Chapter Drawing on the Screen 35

Chapter Input Keyboard Stylus and Menus 87

Chapter Windows Controls and Dialog Boxes 149

Part II Windows CE Basics

Chapter Common Controls and Windows CE 265

Chapter Memory Management 349

Chapter Files Databases and the Registry 379

Chapter Processes and Threads 493

Part Ill
Communications

Chapter Serial Communications 539

Chapter 10 Windows Networking and lrSock 579

Chapter 11 Connecting to the Desktop 633

PartlV Advanced Topics

Chapter 12 Shell ProgrammingPart 709

Chapter 13 Shell ProgrammingPart 749

Chapter 14 System Programming
793

Appendix COM Basics 811

Page 00008

Page 00009

Contents

Acknowledgments xi

Introduction xiii

Part Windows Programming Basics

Chapter Hello Windows CE

WHAT Is DIFFERENT ABOUT WINDOWS CE
ITS STILL WINDOWS PROGRAMMING

YOUR FIRST PROGRAM

Chapter Drawing on the Screen 35

PAINTING BASICS 36

WRITING TEXT 39

BITMAPS 63

LINES AND SHAPES 71

Chapter Input Keyboard Stylus and Menus 87

THE KEYBOARD 87

THE STYLUS AND THE TOUCH SCREEN 105

MENUS 125

RESOURCES 127

Chapter Windows Controls and Dialog Boxes 149

CHILD WINDOWS 150

WINDOWS CONTROLS 169

DIALOG BOXES 208

CONCLUSION 262

Page 00010

Contents

Part ii ViIndows CE Basics

Chapter Common Controls and Windows CE 265

PROGRAMMING COMMON CONTROLS 266

THE COMMON CONTROLS 267

OTHER COMMON CONTROLS 346

UNSUPPORTED COMMON CONTROLS 348

Chapter Memory Management 349

MEMORY BASICS 350

THE DIFFERENT KINDS OF MEMORY ALLOCATION 358

Chapter Files Databases and the Registry 379

THE WINDOWS CE FILE SYSTEM 380

DATABASES 417

THE REGISTRY 467

CONCLUSION 491

Chapter Processes and Threads 493

PROCESSES 493

THREADS 499

SYNCHRONIZATION 507

INTERPROCESS COMMUNICATION 516

EXCEPTION HANDLING 531

Part Ill CommLrflcathms

Chapter Serial Communications 539

BASIC DRIVERS 539

BASIC SERIAL COMMUNICATION 545

THE INFRARED PORT 557

THE CECHAT EXAMPLE PROGRAM 560

viii

Page 00011

Contents

Chapter 10 Windows Networking and IrSock 579

WINDOWS NETWORKING SUPPORT 580

BASIC SOCKETS
599

TCP/IP PINGING 626

Chapter 11 Connecting to the Desktop 633

THE WINDOWS CE REMOTE API 634

THE CEUTIL FUNCTIONS 662

CONNECTION NOTIFICATION 667

FILE FILTERS 680

Part IV Adflc.ed Topics

Chapter 12 Shell ProgrammingPart 709

WORKING WITH THE SHELL 710

THE TASKBAR 716

THE OUT OF MEMORY DIALOG Box 725

NOTIFICATIONS 726

CONSOLE APPLICATIONS 742

Chapter 13 Shell ProgrammingPart 749

THE SUPPLEMENTARY INPUT PANEL 750

WRITING AN INPUT METHOD 758

HARDWARE KEYS 787

Chapter 14 System Programming 793

THE BOOT PROCESS 794

SYSTEM CONFIGURATION 802

WRITING CROSS-PLATFORM WINDOWS CE APPLICATIONS 802

Appendix COM Basics 811

USING COM INTERFACES 812

COM CLIENTS 812

COM SERVERS 813

Index 815

lx

Page 00012

Page 00013

Acknowledgments

Id heard stories from authors about the travails of writing book Still was unpre
pared for the task While wrote learned just how much of team effort is neces

sary to make book My name appears on the cover but countless others were
involved in its creation

First there is the talented team at Microsoft Press Kathleen Atkins the project
leader and editor of this book took my gnarled syntax and confused text and made
it readable Kathleen thanks for your words of encouragement your guidance and

for making this book as good as it is The books technical editor Jim Fuchs was my
voice in the initial editing process His judgement was so good that rarely had to

correct an edit for technical reasons Many thanks also go to Cheryl Penner the copy
editor and proofreader Elizabeth Hansford the principal compositor and Michael

Victor who translated my stick drawings into professional illustrations Finally thanks

to Eric Stroo who took chance and signed me to write this book Eric the sun seems

to be out now
For technical help was privileged to be able to mine the golden knowledge

of the Microsoft Windows CE development team Special thanks go to Mike Thomson
who put up with endless inquiries about the technical details of Windows CE On
the rare occasions that Mike didnt have the answer he guided me to the folks who
did Among those folks who helped were Dave Campbell Carlos Alayo Scott Holden
Omar Maabreh Jeff Kelley and Jeff Blum While these guys did the best they could

am of course responsible for any mistakes introduced into the text as interpreted

their answers

You cant write book of this type without hardware My thanks go to Cheryl

Balbach Scott Nelson and the Casio Corporation for their assistance When other

companies turned me down Casio stepped up to the plate and provided prerelease

and hard-to-find hardware necessary to test my code Thanks Cheryl Call me if you
need any more drop testing performed

also owe debt of gratitude to the folks at Vadem Ltd It was while working at

Vadem that was initially introduced to Windows CE and amazingly enough allowed

to contribute to the creation of one of the machines youll see in the introduction

Thanks to Craig Colvin who talked me into working at Vadem and is now busy de
signing new and innovative Windows CE products John Zhao the president and

Henry Fung CTO as well as the managers down the line Jim Stair and Norm Farquhar

xi

Page 00014

Acknowledgments

To all of you thanks for allowing me to disappear as the book ran behind schedule

Id also like to thank Edmond Ku Scott Chastain Ron Butterworth Anthony Armenta
and the rest of the Clio team

One good friend deserves special mention Jeff Prosise started me down this

path when he talked me into writing my first article in 1985 When you get past his

honesty good nature and modesty youre left with one incredibly smart guy de
voted to his family and friends Thanks Jeff for everything

My career as writer started at the top PC Magazine There Id like to thank

Michael Miller Jake Kirchner Bill Howard and Gail Shaffer Other folks no longer

directly tied to the magazine but whom still regard as part of the PCMagazine fam
ily are Bill Machrone Trudy Neuhaus and Dale Lewallen

In addition thank two of the mastersCharles Petzold and Ray Duncan These

guys along with Jeff Prosise write the best technical books on the planet
Thanks also to the folks at Microsoft Systems Journal and Microsoft Interactive

Developer Eric Maffei Josh Trupin and Gretchen Bilson special thanks goes to

Joe Flanigan who introduced me to some of the folks on the Windows CE team at

Microsoft

Id also like to thank number of musical groups that helped me through long
hours in front of the PC These include but arent limited to the Beach Boys the Cran
berries Alan Parsons Project Toad the Wet Sprocket the Eagles and Dire Straits

Thanks also to the Southland Corporation owners of the 7-Eleven franchise for in

venting the Big Gulp and its more potent cousins the Super Big Gulp and the Double

Gulp Thanks also to the Coca-Cola Corporation for providing the caffeine

On more serious note if theres any one person whose name also deserves to

be on the cover of this book its Nancy Jane Hendricks Boling my wife Nancy en
dured year of being single parent because spent every spare moment in front of

my PC and an array of Windows CE devices writing this book Thank you Nancy
Im sure didnt say it enough over the past year love you Your name isnt on the

cover but the book is dedicated to you must also mention two other family mem
bersour Sons Andy years old and Sam born during the writing of Chapter

Andy is well on his way to becoming the best big brother boy can be Sam well he

has the cutest giggle Thanks also to Amy Sekeras for taking such good care of Andy
and Sam

Finally lack the words to adequately say thanks to my parents Ronald and

Jane Boling Mom and Dad you are simply the best parents know have met or

ever read about It is my goal in life to attempt to be as good parent to my children

as you are to Rob Chris Jay and me am truly blessed to have you as parents

XII

Page 00015

Introduction

was introduced to Microsoft Windows CE right before it was released in the fall of

1996 Windows programmer for many years was intrigued by an operating sys
tem that applied the well-known Windows API to smaller more power-conserving
operating system The distillation of the API for smaller machines enables tens of
thousands of Windows programmers to write applications for an entirely new class

of systems The subtle differences however make writing Windows CE code some
what different from writing for Windows 98 or Windows NT Its those differences
that Ill address in this book

JUST WHAT IS WINDOWS CE
Windows CE is the newest smallest and arguably the most interesting of the Micro
soft Windows operating systems Windows CE was designed from the ground up to

be small ROM-based operating system with Win32 subset API Windows CE ex
tends the Windows API into the markets and machines that cant support the larger

footprints of Windows 98 and Windows NT
Windows 98 is great operating system for users who need backward compati

bility with DOS and Windows 2.x and 3.x programs While it has shortcomings Win
dows 98 succeeds amazingly well at this difficult task Windows NT on the othei hand
is written for the enterprise It sacrifices compatibility and size to achieve its high level
of reliability and robustness

Windows CE isnt backward compatible with MS-DOS or Windows Nor is it

an all-powerful operating system designed for enterprise computing Instead Win
dows CE is lightweight multithreaded operating system with an optional graphi
cal user interface Its strength lies in its small size its Win32 subset API and its

multiplatform support

PRODUCTS BASED ON WINDOWS CE
The first products designed for Windows CE were handheld organizer type devices

with 480-by-240 or 640-by-240 screens and chiclets keyboards These devices dubbed
Handheld PCs were first introduced at Fall Comdex 96 Fall Comdex 97 saw the re
lease of dramatically upgraded version of the operating system Windows CE 2.0

XIII

Page 00016

Introduction

with newer hardware in familiar formthis time the box came with 640-by-240

landscape screen and somewhat larger keyboard

In January 1998 at the Consumer Electronics Show Microsoft announced two

new platforms the Palm-size PC and the Auto PC The Palm-size PC was aimed di

rectly at the pen-based organizer market currently dominated by the Palm Pilot The

Palm-size PC sports portrait mode 240-by-320 screen and uses stylus-based input

number of Palm-size PCs are on the market today

Figure I-i shows both Palm-size PC in this case Casio E-1O and Handheld

PC in this case Casio A-20

Figure I-i The Casio E-1O Palm-size PC and the Casio A-20 Handheld PC

just as this book is being released Microsoft has introduced the Handheld PC

Professional which is greatly enhanced H/PC with new applications and which uses

the latest version of the operating system Windows CE 2.11.1 This device brings the

compact nature of Windows CE to devices of laptop size The advantages of apply

ing Windows CE to laptop device are many First the battery life of Handheld PC

Pro is at least 10 hours far better than the 2-to 3-hour average of PC-compatible

laptop Second the size and weight of the Windows CE devices are far more user

friendly with systems as thin as inch weighing less than pounds Even with the

diminutive size Handheld PC Pro still sports large VGA screen and keyboard

that normal human can use The Vadem Clio Handheld PC Pro shown in Figure 1-2

is an example of how Windows CE is being used in newer platforms The system

Windows CE 2.11 is Windows CE 2.10 with few minor changes

xiv

Page 00017

Introduction

can be used as standard laptop or flipped into tablet-mode device This de

vice is just one example of how Windows CE is expanding into new system types

Figure 1-2 The Vadem Clio Handheld PC Pro

refer to the Handheld PC Pro throughout this book under its operating system

version Windows CE 2.1 because the platform name Handheld PC Pro was deter

mined very late in the process knew of and in fact had hand in the development

of Handheld PC Pro under its code name Jupiter However you can use code names

in book so its operating system version had to suffice

Other platformsAuto PC Web TV set-top boxes and embedded platforms

designed for specific tasksare also appearing or will appear in the coming months

Whats amazing about Windows CE is that the flexibility of the operating system al

lows it to be used in all these diverse designs while all the time retaining the same

basic well-known Win32 API

WHY YOU SHOULD READ THIS BOOK
Programming Microsoft Windows CE is written for anyone who will be writing appli

cations for Windows CE Both the embedded systems programmer using Windows CE

for specific application and the Windows programmer interested in porting an ex

isting
Windows application or writing an entirely new one can use the information

in this book to make their tasks easier

The embedded systems programmer who might not be as familiar wjth the

Win32 API as the Windows programmer can read the first section of the book to

xv

Page 00018

Introduction

become familiar with Windows programming While this section isnt the compre
hensive tutorial that can be found in books such as Programming Windows by Charles

Petzold it does provide base that will carry the reader through the other chapters

in the book It also can help the embedded systems programmer develop fairly com

plex and quite useful Windows CE programs

The experienced Windows programmer can use the book to learn about the

differences among the Win32 APIs used by Windows CE Windows NT and Windows

98 Programmers who are familiar with Win32 programming recognize subtle differ

ences between the Windows 98 and Windows NT APIs The differences between

Windows CE and its two cousins are even greater The small footprint of Windows CE

means that many of the overlapping APIs in the Win32 model arent supported Some

sections of the Win32 API arent supported at all On the other hand because of its

unique setting Windows CE extends the Win32 API in number of areas that are

covered in this text

The method used by Programming Windows CE is to teach by example wrote

numerous Windows CE example programs specifically for this book The source for

each of these examples is printed in the text Both the source and the final compiled

programs for number of the processors supported by Windows CE are also pro
vided on the accompanying CD

The examples in this book are all written directly to the API the so-called

Petzold method of programming Since the goal of this book is to teach you how to

write programs for Windows CE the examples avoid using class library such as MFC
which obfuscates the unique nature of writing applications for Windows CE Some

people would say that the availability of MFC on Windows CE eliminates the need for

direct knowledge of the Windows CE API believe the opposite is true Knowledge

of the Windows CE API enables more efficient use of MFC also believe that truly know

ing the operating system also dramatically simplifies the debugging of applications

WHAT ABOUT MFC
The simple fact is that Windows CE systems arent the best platform for general-

purpose class library like MFC The slower processors and the significantly lower

memory capacity of Windows CE devices make using MFC problematic Most Win
dows CE systems dont include the MFC library in their ROM This means that the

MFC and OLE32 DLLs required by MFC applications must be downloaded into the

systems The first versions of the Palm-size PCs dont even support MFC
That said theres place for MFC on Windows CE devices One such place might

be if youre designing custom application for system you know will have the MFC
and 0LE32 DLLs in ROM For those specific applications you might want to use MFC
but only if you know the target environment and have configured the system with

the proper amouni of RAM to do the job

xvi

Page 00019

Introduction

WINDOWS CE DEVELOPMENT TOOLS

This book is written with the assumption that the reader knows and is at least fa

miliar with Microsoft Windows All code development was done with Microsoft Vi

sual 5.0 and Windows CE Visual for Windows CE under Windows NT 4.0

To compile the example programs in this book you need Microsoft Visual 5.0

which is part of the integrated development environment IDE DevStudio run

ning on standard IBM-compatible PC You also need Microsoft Visual for

Windows CE which isnt stand-alone product Its an add-in to Visual 5.0 that

incorporates components to the compiler that produce code for the different CPUs

supported by Windows CE Visual for Windows CE isnt currently available through

standard retail channels but information on ordering it directly from Microsoft can

be found on the Microsoft Web site Finally you need one of the platform SDKs for

Windows CE These SDKs provide the custom include files for each of the Windows

CE platforms These platform SDKs are available for free on the Microsoft Web site

As convenience Ive also included the platform SDKs available at the time of the

writing of this book on the accompanying CD
While not absolutely required for developing applications for Windows CE

Windows NT 4.0 is strongly recommended for the development environment Its

possible to compile and download Windows CE programs under Windows 98 but

many of the features of the integrated development environment IDE such as Win

dows CE emulation and remote debugging arent supported

Visual for Windows CE wont change the outward appearance of Visual

with the exception of few new tools listed under the tools menu Nor will the in

stallation of Visual for Windows CE prevent you from developing applications

for other Windows operating systems The installation of Visual for Windows CE

will result in new Windows CE targets such as WCE MIPS and WCE SH and WCE x86Em

being added to the platforms listing when youre creating new Win32 application

Also Windows CE MFC AppWizard will be added to the new projects listing to assist

in creating MFC programs for Windows CE

TARGET SYSTEMS
You dont need to have Windows CE target device to experience the sample pro

grams provided by this book The various platform SDKs come with Windows CE

emulator that lets you perform basic testing of Windows CE program under Win

dows NT This emulator comes in handy when you want to perform initial debugging

to ensure that the program starts creates the proper windows reacts to menu selec

tions and so on However the emulator has some limitations and there simply is no

replacement for having target Windows CE system to perform final debugging and

testing for applications

xvii

Page 00020

Introduction

You should consider number of factors when deciding what Windows CE

hardware to use for testing First if the application is to be commercial product

you should buy at least one system for each type of target CPU You need to test against

all of the target CPUs because while the source code will probably be identical the

resulting executable will be different in size and so will the memory allocation foot

print for each target CPU
Most applications will also be written specifically for the Handheld PC or Palm-

size PC not both Although the base operating system for both the Handheld PC and

Palm-size PC is Windows CE the hardware underneath is vastly different The strict

memory constraints of the Palm-size PC as well as its much smaller screen its differ

ent orientation and its lack of keyboard force compromises that arent acceptable

on Handheld PC or its larger relative the Handheld PC Pro Other constraints on

Palm-size PC systems such as the lack of printing and TrueType support differenti

ate its environment from the Handheld PCs
In this book demonstrate programs that can run on the Handheld PC

Handheld PC Pro or Palm-size PC The goal is to allow the lessons to be applied to

all platforms For some examples however the different screen dimensions mean

that the example will run better on one particular system point out the differences

and the reasons they exist For example some controls might exist on only one plat

form or the other The shells for the two platformsHandheld or Palm-sizeare also

different and need separate coverage Finally small set of features in Windows CE

are simply not supported on the smaller Palm-size PC platform

WHATS ON THE CD
The accompanying CD contains the source code for all the examples in the book

Ive also provided project files for Microsoft DevStudio so that you can open

preconfigured projects Unless otherwise noted the examples are Windows CE 2.0

compatible so that they can run on most Windows CE systems available today Chap
ter 13 Shell ProgrammingPart contains examples that are compiled for

Windows CE 2.01 SO they wont run on current Handheld PCs There are some ex
amples such as the console applications in Chapter 12 that are specific to the

Handheld PC Pro and other devices running Windows CE 2.10

When you build for specific platform remember that it might not be back

ward compatible with earlier versions of Windows CE For example Microsoft moved

some of the library support from statically linked libraries in Windows CE 2.0 into

the operating system for Windows CE 2.01 the Palm-size PC release This reduces

the size of an executable but prevents code built for the Palm-size PC from running

on Handheld PC running Windows CE 2.0 You can however compile code for

Handheld PC running Windows CE 2.0 and have it run on Palm-size PC

XVIII

Page 00021

Introduction

In addition to the examples the CD contains number of folders of interest to

the Windows CE programmer Ive included the platform SDKs for the Handheld PC

as well as for the Palm-size PC Unfortunately the Handheld PC Pro SDK wasnt avail

able in time for this release Like the other platform SDKs that one is available for

free on the Microsoft Web site Check out the readme file on the CD for late-breaking

information about what else is included on the CD

OTHER SOURCES
While have attempted to make ProgrammingMicrosoft Windows CE one-stop shop

for Windows CE programming no one book can cover everything nice comple

ment to this book is Inside Windows CE by John Murray It documents the oral his

tory of Windows CE Knowing this kind of information is crucial to understanding

just why Windows CE is designed the way it is Once you know the why its easy to

extrapolate the what when trying to solve problems Murrays book is great not just

because of the information youll learn about Windows CE but also because its an

entertaining read

For learning more about Windows programming in general suggest the clas

sic text Programming Windows by Charles Petzold This is by far the best book for

learning Windows programming Charles presents examples that show how to tackle

difficult but common Windows problems For learning more about the Win32 kernel

API suggest Jeff Richters Advanced Windows Jeff covers the techniques of pro

cess thread and memory management down to the most minute detail For learning

more about MFC programming theres no better text than Jeff Prosises Programming

Windows 95 with MFC This book is the Petzold of MFC programming and simply

required read for MFC programmers

FEEDBACK
While have striven to make the information in this book as accurate as possible

youll undoubtedly find errors If you find problem with the text or just have ideas

about how to make the next version of the book better please drop me note at

CEBook@DelValle.com cant promise you that Ill answer all your notes but will

read every one

Doug Boling

Tahoe City California

August 1998

xix

Page 00022

Page 00023

Part

WiNDows

PROGRAMMING BASICS

III

Page 00024

Page 00025

chapter

Hello Windows CE

From Kernighan and Ritchie to Petzold and on to Prosise programming books tradition

ally start with hello world program Its logical place to begin Every program has

basic underlying structure that when not obscured by some complex task it was de

signed to perform can be analyzed to reveal the foundation shared by all programs

running on its operating system

In this programming book the hello world chapter covers the details of set

ting up and using the programming environment The environment for developing

Microsoft Windows CE applications is somewhat different from that for developing

standard Microsoft Windows applications because Windows CE programs are writ

ten on PCs running Microsoft Windows NT and debugged mainly on separate Win
dows CEbased target devices

While experienced Windows programmers might be tempted to skip this chap

ter and move on to meatier subjects suggest that theyyouat least skim the chapter

to note the differences between standard Windows program and Windows CE

program number of subtle and significant differences in both the development

process and the basic program skeleton for Windows CE applications are covered in

this first chapter

WHAT IS DIFFERENT ABOUT WINDOWS CE
Windows CE has number of unique characteristics that make it different from other

Windows platforms First of all the systems running Windows CE are most likely not

using an Intel x86 compatible microprocessor Instead short list of supported CPUs

run Windows CE Fortunately the development environment isolates the program

mer from almost all of the differences among the various CPUs

Page 00026

Part Windows Programmrng Bascs

Nor can Windows CE program be assured of screen or keyboard Some Win

dows CE devices have 240-by-320-pixel portrait-style screen while others might have

screens with more traditional landscape orientations in 480-by-240 640-by-240 or 640-

by-480-pixel resolution An embedded device might not have display at all The tar

get devices might not support color And instead of mouse most Windows CE

devices have touch screen On touch-screen device left mouse button clicks are

achieved by means of tap on the screen but no obvious method exists for delivering

right mouse button clicks To give you some method of delivering right click the

Windows CE convention is to hold down the Alt key while tapping Its up to the Win

dows CE application to interpret this sequence as right mouse click

Fewer Resources in Windows CE Devices

The resources of the target devices vary radically across systems that run Windows CE

When writing standard Windows program the programmer can make number of

assumptions about the target device almost always an IBM-compatible PC The tar

get device will have hard disk for mass storage and virtual memory system that

uses the hard disk as swap device to emulate an almost unlimited amount of vir

tual RAM The programmer knows that the user has keyboard two-button mouse

and monitor that these days almost assuredly supports 256 colors and screen reso

lution of at least 640 by 480 pixels

Windows CE programs run on devices that almost never have hard disks for

mass storage The absence of hard disk means more than just not having place to

store large files Without hard disk virtual RAM cant be created by swapping data

to the disk So Windows CE programs are almost always run in low-memory envi

ronment Memory allocations can and often do fail because of the lack of resources

Windows CE might terminate program automatically when free memory reaches

critically low level This RAM limitation has surprisingly large impact on Windows CE

programs and is one of the main difficulties involved in porting existing Windows

applications to Windows CE

Unicode

One characteristic that programmer can count on when writing Windows CE applica

tions is Unicode Unicode is standard for representing character as 16-bit value as

opposed to the ASCII standard of encoding character into single 8-bit value Unicode

allows for fairly simple porting of programs to different international markets because

all the worlds known characters can be represented in one of the 65536 available

Unicode values Dealing with Unicode is relatively painless as long as you avoid the

dual assumptions made by most programmers that strings are represente4 in ASCII

and that characters are stored in single bytes

Page 00027

Chapter Hello Windows CE

consequence of program using Unicode is that with each character taking up
two bytes instead of one strings are now twice as long programmer must be careful

making assumptions about buffer length and string length No longer should you as
sume that 260-byte buffer can hold 259 characters and terminating zero Instead of

the standard char data type you should use the TCHAR data type TCHAR is defined to

be char for Microsoft Windows 95 and Microsoft Windows 98 development and unsigned
short for Unicode-enabled applications for Microsoft Windows NT and Windows CE

development These types of definitions allow source-level compatibility across ASCII-

and Unicode-based operating systems

New Controls

Windows CE includes number of new Windows controls designed for specific envi

ronments New controls include the command bar that provides menu- and toolbar-

like functions all on one space-saving line critical on the smaller screens of Windows CE
devices The date and time picker control and calendar control assist calendar and or

ganizer applications suitable for handheld devices such as the Handheld PC H/PC
and the Palm-size PC Other standard Windows controls have reduced function

reflecting the compact nature of Windows CE hardware-specific OS configurations

Another aspect of Windows CE programming to be aware of is that Windows CE

can be broken up and reconfigured by Microsoft or by OEMs so that it can be better

adapted to target market or device Windows programmers usually just check the

version of Windows to see whether it is from the Microsoft Windows 3.1 95 or 98

line or Windows NT line by knowing the version they can determine what API func

tions are available to them Windows CE however has had four variations already in

its first two years of existence the Handheld PC the Palm-size PC the Handheld PC

Pro and the Auto PC number of new platforms are on their way with much in

common but also with many differences among them Programmers need to under

stand the target platform and to have their programs check what functions are avail

able on that particular platform before trying to use set of functions that might not

be supported on that device

Finally because Windows CE is so much smaller than Windows 98 or Win
dows NT it simply cant support all the function calls that its larger cousins do While

youd expect an operating system that didnt support printing such as Windows CE on

the original Palm-size PC not to have any calls to printing functions Windows CE also

removes some redundant functions supported by its larger cousins If Windows CE

doesnt support your favorite function different function or set of functions will

probably work just as well Sometimes Windows CE programming seems to consist

mainly of figuring out ways to implement feature using the sparse API of Windows CE
If 2000 functions can be called sparse

Page 00028

Part Whidows Programming Basics

ITS STILL WINDOWS PROGRAMMING
While differences between Windows CE and the other versions of Windows do exist

they shouldnt be overstated Programming Windows CE application is program

ming Windows application It has the same message loop the same windows and

for the most part the same resources and the same controls The differences dont

hide the similarities For those who arent familiar with Windows programming heres

short introduction

Windows programming is far different from MS-DOSbased or Unix-based pro

gramming An MS-DOS or Unix program uses getc- and putc-style functions to read

characters from the keyboard and write them to the screen whenever the program

needs to do so This is the classic pull style used by MS-DOS and Unix programs

which are procedural Windows program on the other hand uses push model

in which the program must be written to react to notifications from the operating system

that key has been pressed or command has been received to repaint the screen

Windows applications dont ask for input from the operating system the oper

ating system notifies the application that input has occurred The operating system

achieves these notifications by sending messages to an application window All win

dows are specific instances of window class Before we go any further lets be sure

we understand these terms

The Window Class

window is region on the screen rectangular in all but the most contrived of cases

that has few basic parameters such as positionx and window is over or

under other windows on the screenvisibility and hierarchythe window fits into

parent/child window relationship on the system desktop which also happens to be

window

Every window created is specific instance of window class window class

is template that defines number of attributes common to all the windows of that

class In other words windows of the same class have the same attributes The most

important of the shared attributes is the window procedure

The window procedure

The behavior of all windows belonging to class is defined by the code in its win

dow procedure for that class The window procedure handles all notifications and

requests sent to the window These notifications are sent either by the operating sys

tem indicating that an event has occurred to which the window must respond or by

other windows querying the window for information

These notifications are sent in the form of messages message is nothing more

than call being made to window procedure with parameter indicating the nature

of the notification or request Messages are sent for events such as window being moved

Page 00029

Chapter Hello Windows CE

or resized or to indicate key press The values used to indicate messages are defined

by Windows Applications use predefined constants such as WM_CREATE OrWM_MOVE
when referring to messages Since hundreds of messages can be sent Windows conve
niently provides default processing function to which message can be passed when
no special processing is necessary by the window class for that message

The life of message
Stepping back for moment lets look at how Windows coordinates all of the mes
sages going to all of the windows in system Windows monitors all the sources of

input to the system such as the keyboard mouse touch screen and any other hard

ware that could produce an event that might interest window As an event occurs

message is composed and directed to specific window Instead of Windows di

rectly calling the window procedure the system imposes an intermediate step The

message is placed in message queue for the application that owns the window When
the application is prepared to receive the message it pulls it out of the queue and

tells Windows to dispatch that message to the proper window in the application

If it seems to you that number of indirections are involved in that process

youre right Lets break it down

An event occurs so message is composed by Windows and placed in

message queue for the application that owns the destination window In

Windows CE as in Windows 95 and Windows NT each application has

its own unique message queue This is break from Windows 3.1 and

earlier versions of Windows where there was only one systemwide mes

sage queue Events can occur and therefore messages can be composed
faster than an application can process them The queue allows an appli

cation to process messages at its own rate although the application had

better be responsive or the user will see jerkiness in the application The

message queue also allows Windows to set notification in motion and

continue with other tasks without having to be limited by the responsive

ness of the application to which the message is being sent

The application removes the message from its message queue and calls

Windows back to dispatch the message While it may seem strange that

the application gets message from the queue and then simply calls Win
dows back to process the message theres method to this madness

Having the application pull the message from the queue allows it to pre

process the message before it asks Windows to dispatch the message to

Technically each thread in Windows CE application can have message queue Ill talk about

threads later in the book

Page 00030

Part Windows Programming Basics

the appropriate window In number of cases the application might call

different functions in Windows to process specific kinds of messages

Windows dispatches the message that is it calls the appropriate window

procedure Instead of having the application directly call the window pro

cedure another level of indirection occurs allowing Windows to coordi

nate the call to the window procedure with other events in the system

The message doesnt stand in another queue at this point but Windows

might need to make some preparations before calling the window proce

dure In any case the scheme relieves the application of the obligation to

determine the proper destination windowWindows does this instead

The window procedure processes the message All window procedures

have the same calling parameters the handle of the specific window in

stance being called the message- and two generic parameters that con

tain data specific to each message type The window handle differentiates

each instance of window for the window procedure The message pa

rameter of course indicates the event that the window must react to The

two generic parameters contain data specific to the message being sent

For example in WM_MOVE message indicating that the window is about

to be moved one of the generic parameters points to structure contain

ing the new coordinates of the window

Your First Program

Enough small talk Its time to jump into the first example Hello Windows CE While

the entire program files for this and all examples in the book are available on the

companion CD-ROM suggest that at least in this one case you avoid simply load

ing the project file from the CD and instead type in the entire example by hand By

performing this somewhat tedious task youll see the differences in the development

process as well as the subtle program differences between standard Win32 programs

and Windows CE programs Figure 1-1 contains the complete source for HelloCE my
version of hello world program

HeIIocEh

II Header file

1/

/1 Written for the book Programming Windows CF

II Copyright 1998 Douglas Baling

Figure 1-1 The IlelloCE progi am

Page 00031

Chapter Hello Windows CE

irL

fr k1

1Iij11$k41
TI

Ipr

Ir

fL

Ii

jr
VI trWi 44L

m.1II.1I
1k

iL

PINW

continued

Page 00032

Part Windows Programmhig ascs

Figure 1-1 continued

ir $4 jfr

$tMAhJIdI
fJiIbLkIfI11g1I

$tJ jfte
uIItuJIkc12st

irqi-io
NaahIE 1uuIa

IiriUruwi

10

Page 00033

Chapter Hello Windows CE

wj
fQ

re F1m th4 41sw ai Wt$g1ra1
niit VI

J%
ti

It

i1W

i4I eI4W14IcI

.j

.tiz
Fy tk

continued

11

Page 00034

Part Windows Programmhig Basics

Figure 1-1 continued

.IpSFLLMvSaIapi4Irt

caisa

wuNusur

12

Page 00035

Chapter Hello Windows CEjJ
i%ccQM

d1.mWIW.áiiijJ1IUrT .$4Yi4t9dfttt iii4YMP1rsaprMIpii1IV wi4PIitgti 1ITbPUPii
JI1V

C4 PsJi 48I
e1.b flaiiJr4$k i14

iL

$k

continued

13

Page 00036

Part Windows Programming Basics

Figure 11 conijnjwd

II If activating and no command bar create it

if LOWORO wPararn WA_INACTIVE

GetOlgltem hWnd IDC_CMDBAR

/1 Create command bar
hwndCB CommandBar_Create hlnst hWnd IDC_CMDBAR

II Add exit button to command bar

CommandBar_AddAdornments hwndCB

return

II

1/ DoDestroyMain Process WM_DESTROY message for window

1/

LRESULr DoDestroyMain HWND hWnd UINT wflsg WPARAM wParam

LPARAM iParam

PostQuitMessage

return

If you look over the source code for He11oCE youll see the standard boilerplate

for all programs in this 100k Ill talk at greater length about few of the characteris

tics such as Hungarian notation and the somewhat different method use to con

struct my window procedures later in their own sections but at this point Ill make

just few observations about them

Just after the comments you see the include of windows.h You can find this

file in all Windows programs it lists the definitions for the special variable types and

function defines needed for typical program Windows.h and the include files it

contains make an interesting read because the basics for all windows programs come

from the functions typedefs and structures defined there The include of commctrl.h

provides among other things the definitions for the command bar functions that are

part of almost all Windows CE programs Finally the include of HelloCE.h gives you

the boilerplate definitions and function prototypes for this specific program

few variables defined globally follow the defines and includes know plenty

of good arguments why no global variables should appear in program but use

them as convenience that shortens and clarifies the example programs in the book

Each program defines an szAppName Unicode string to be used in various places in

that program also use the hlnst variable number of places and Ill mention it when

cover the InitApp procedure The final global structure is list of messages along

14

Page 00037

Chapter Hello Windows CE

with associated procedures to process the messages This structure is used by the win
dow procedure to associate messages with the procedure that handles them Now
on to few other characteristics common to all the programs in this book

Hungarian Notation

tradition and good one of almost all Windows programs since Charles Petzold wrote

Programming Windows is Hungarian notation This programming style developed years

ago by Charles Simonyi at Microsoft prefixes all variables in the program usually with

one or two letters indicating the variable type For example string array caled Name
would instead be called szName with the sz prefix indicating that the variable type
is zero-terminated string The value of Hungarian notation is the dramatic improvement
in readability of the source code Another programmer or you after not looking at

piece of code for while wont have to look repeatedly at variables declaration to

determine its type The following are typical Hungarian prefixes for variables

Variable Type Hungarian Prefix

Integer or

Word 16-bit or

Double word 32-bit unsigned dw

Long 32-bit signed

Char

String sz

Pointer

Long pointer ip

Handle

Window handle hwnd

Stmct size cb

You can see few vestiges of the early days of Windows The ip or long pointer

designation refers to the days when in the Intel 16-bit programming model pointers

were either short 16-bit offset or long segment plus an offset Other prefixes

are formed from the abbreviation of the type For example handle to brush is

typically specified as hbr Prefixes can be combined as in lpsz which designates

long pointer to zero-terminated string Most of the structures defined in the Windows
API use Hungarian notation in their field names use this notation as well throughout

the book and encourage you to use this notation in your programs

15

Page 00038

Part Wkidows Programmhig acs

My Programming Style

One criticism of the typical SDK style of Windows programming has always been the

huge switch statement in the window procedure The switch statement parses the

message to the window procedure so that each message can be handled indepen

dently This standard structure has the one great advantage of enforcing similarsruc

ture across almost all Windows applications making it much easier for one programmer

to understand the workings of another programmers code The disadvantage is that

all the variables for the entire window procedure typically appear jumbled at the top

of the procedure

Over the years Ive developed different style for my Windows programs The

idea is to break up the WinMain and WinProc procedures into manageable units that

can be easily understood and easily transferred to other Windows programs WinMain

is broken up into procedures that perform application initialization instance initial

ization and instance termination Also in WinMain is the ubiquitous message loop

thats the core of all Windows programs

break the window procedure into individual procedures with each handling

specific message What remains of the window procedure itself is fragment of

code that simply looks up the message thats being passed to see whether proce

dure has been written to handle that message If so that procedure is called If not

the message is passed to the default window procedure

This structure divides the handling of messages into individual blocks that can

be more easily understood Also with greater isolation of one message-handling code

fragment from another you can more easily transfer the code that handles specific

message from one program to the next first saw this structure described number

of years ago by Ray Duncan in one of his old Power Programming columns in PC

Magazine Ray is one of the legends in the field of MS-DOS and OS/2 programming

Ive since modified the design bit to fit my needs but Ray should get the credit for

this program structure

Building HeII0CE

To create HelloCE from scratch on your system start Microsoft Visual and create

new Win32 application The first change from standard Win32 programming becomes

evident when you create the new project Youll have the opportunity to select new

platform specific to Windows CE as shown in Figure 1-2 These platforms have WCE

prefix followed by the target CPU For example selecting Win32 WCE MIPS enables

compiling to Windows CE platform with MIPS CPU No matter what target device

you have be sure to check the WCE x86em target This allows you to run the sample

program in the emulator under Windows NT

16

Page 00039

Chapter Hello Windows CE

Figure 1-2 The Platforms list box allows Visual 5.0 to target Windows CE

platforms

After you have created the proper source files for HelloCE or copied them from

the CD select the target Win32 WCE x86em Debug and then build the program
This step compiles the source and assuming you have no compile errors automati

cally launches the emulator and inserts the EXE into the emulator file system you

can then launch HelloCE If youre running Windows 95 or Windows 98 the system

displays an error message because the emulator runs only under Windows NT
If you have Windows CE system available such as an H/PC attach the H/PC

to the PC the same way you would to sync the contents of the H/PC with the PC

Open the Mobile Devices folder and establish connection between the H/PC and

the PC While its not strictly necessary to have the Mobile Devices connection to your

Windows CE device mnning because the SDK tools inside Visual are supposed

to make this connection automatically Ive found that having it running makes for

more stable connection between the development environment and the

Windows CE system

Once the link between the PC and the Windows CE device is up and running

switch back to Visual select the compile target appropriate for the target device

for example Win32 SHI Debug for an HP 360 HPC and rebuild As in the

17

Page 00040

Part Windows Programmbg Bascs

case of building for the emulator if there are no errors Visual automatically down-

loads the compiled program to the remote device The program is placed in the root

directory of the object store

Running the program
To run HeIIoCE on an H/PC simply click on the My Handheld PC icon to bring up the

files in the root diretory At that point double-tap on the applications icon launches

the program

Running the program on Palm-size PC is somewhat more complex Because

the Palm-size PC doesnt come with an Explorer program that allows users to browse

through the files on the system you cant launch HelloCE without bit of prepara

tory work You can launch the program from Visual by selecting Execute from

the Build menu Or you can have Visual automatically copy the executable file

into the \windows\start menu\programs directory of the Palm-size PC This auto-

matically places the program in the Programs submenu under the Start menu You

can tell Visual to automatically copy the file by setting the remote target path in

the Debug tab ofthe Project Settings dialog box Figure 1-3 shows this dialog box When

youve set this path you can easily start the program by selecting it in the Start menu

Figure 1-3 The Project Settings dialog box in Visual with the Debug tab selected

One gotcha to look out for here If youre debugging and recompiling the

program it cant be downloaded again if an earlier version of the program is still

running on the target system That is make sure He11oCE isnt running on the rd

mote system when you start new build in Visual or the auto download part

of the compile process will fail If this happens close the application and choose

18

Page 00041

Chapter Hello Windows CE

the Update Remote File menu command in Visual to download the newly com
piled file

Palm-sizePC users will notice that unlike almost all Palm-size PC progratus He11oCE

has Close button in the upper right corner of the window By convention the user

doesnt close Palm-size PC applications theyre closed only when the system needs

more memory space The lack of Close button in Palm-size PC applications is only

user interface guideline not lack of function of the version of Windows CE in the

Palm-size PC For development you might want to keep Close button in your appli

cation because youll need to close the program to download new version You can

then remove the Close button before you ship your application

If you dont have access to an H/PC or if you want to check out Windows CE

programming without the hassle of connecting to remote device the emulation

environment is great place to start Its the perfect place for stepping though the

code just as you would were you debugging standard PC-based Windows program

You can set breakpoints and step though code running on remote system but the

slow nature of the serial link as well as the difficulty in single-stepping program on

the remote system make debugging on the emulator much less painful On the other

hand debugging on the remote system is the only way to truly test your program While

the emulator is good first step in the debug process nothing replaces testing on the

target system

The code
Now that you have the program up and running either in the emulator or on Win

dows CE device its time to look at the code itself The program entry point WinMain

is the same place any Windows program begins Under Windows CE however some

of the parameters for WinMain have limits to the allowable values WinMain is de

fined as the following

mt WINAPI WinMain HINSTANCE hlnstance HINSTANCE hPrevlnstance

LPWSTR lpCmdLine mt nCmdShow

The first of the four parameters passed hlnstance identifies the specific instance

of the program to other applications and to Windows API functions that need to identify

the EXE The hPrevlnstance parameter is left over from the old Winl6 API Win
dows 3.1 and earlier In those versions of Windows the hPrevlnstance parameter

was nonzero if there were any other instances of the program currently running In

all Win32 operating systems including Windows CE the hPrevlnstance is always

and can be ignored

The lCmdLine parameter points to Unicode string that contains the text of

the command line Applications launched from Microsoft Windows Explorer usu

ally have no command line parameters But in some instances such as when the

system automatically launches program the system includes command line

19

Page 00042

Part Windows Programming Bases

parameter to indicate why the program was started The lCmdLine parameter provides

us with one of the first instances in which Windows CE differs from Windows NT or

Windows 98 Under Windows CE the command line string is Unicode string In Win
dows NT and Windows 98 the string is always ASCII

The final parameter nShowCmd specifies the initial state of the programs main

window In standard Win32 program this parameter might specify that the window

be initially displayed as an icon SW_SHOWMINIMIZE maximized SW_SHOW
MAXIMIZED to cover the entire desktop or normal SW_RESTORE indicating that

the window is placed on the screen in the standard resizable state Other values

specify that the initial state of the window should be invisible to the user or that the

window be visible but incapable of becoming the active window Under Windows

CE the values for this parameter are limited to only three allowable states normal

SW_SHOW hidden SW_HIDE or show without activate SW_SHOWNOACT Unless an application needs to force its window to predefined state this

parameter is simply passed without modification to the Show Window function after the

programs main window has been created

On entry into WinMain call is made to InitApp where the window class for the

main window is registered After that call to Initlnstance is made the main window

is created in this function Ill talk about how these two routines operate shortly but for

now Ill continue with WinMain proceeding on the assumption that at the return from

Initlnstance the programs main window has been created

The message loop
After the main window has been created WinMain enters the message loop which

is the heart of every Windows application HelloCEs message loop is shown here

while GetMessage msg NULL

TranslateMessage msg
DispatchMessage msg

The loop is simple GetMessage is called to get the next message in the ap
plications message queue If no message is available the call waits blocking that

applications thread until one is available When message is available the call re

turns with the message data contained in MSG structure The MSG structure itself

contains fields that identify the message provide any message-specific parameters

and identify the last point on the screen touched by the pen before the message was

sent This location information is different from the standard Win32 message point

data in that in Windows 9x or Windows NT the point returned is the current mouse

position instead of the last point clicked or tapped as in Windows CE
The TranslateMessage function translates appropriate keyboard messages into

character message Ill talk about others of these filter type messages such as

20

Page 00043

Chapter Hello Windows CE

IsDialogMsg later The DispatchMessage function then tells Windows to forward the

message to the appropriate window in the application

This GetMessage TranslateMessage DispatchMessage loop continues until Get-

Message receives WM_QUIT message which unlike all other messages causes

GetMessage to return As can be seen from the while clause return value of

by GetMessage causes the loop to terminate

After the message ioop terminates the program can do little else but clean up
and exit In the case of HelloCE the program calls Termlnstance to perform any

necessary cleanup He11oCE is simple program and no cleanup is required In more

complex programs Termlnstance would free any system resources that arent auto

matically freed when the program terminates

The value returned by WinMain becomes the return code of the program Tra

ditionally the return value is the value in the wParam parameter of the last message

WM_QUIT The wParam value of WM_QUIT is set when that message is sent in

response to PostQuitMessage call made by the application

InitApp

The goal of InitApp is to perform global initialization for all instances of the applica

tion that might run In practice InitApp is holdover from Winl6 days when win
dow classes were registered on an applicationwide basis instead of for every instance

as is done under Win32 Still having place for global initialization can have its uses

in some applications For program as simple as HelloCE the entire task of InitApp

can be reduced to registering the applications main window class The entire proce
dure is listed below

mt InitApp HINSTANCE hlnstance

WNDCLASS wc

II Register App Main Window class

wc.style II Class style flags

wc.lpfnWndproc MainWndProc II Callback function

wc.cbClsExtra II Extra class data

wc.cbWndExtra II Extra window data

wc.hlnstance hlnstance II Owner handle

wc.hlcon NULL II Application icon

wc.hCursor NULL II Default cursor

wc.hbrBackground HBRUSH GetStockObject WHITE_BRUSH
wc.lpszMenuName NULL II Must be NULL

wc.lpszClassName szAppName II Class name

if RegisterClass wc return

return

21

Page 00044

Part Windows Programming Basics

Registering window class is simply matter of filling out rather extensive struc

ture describing the class and calling the Registerciass function The parameters assigned

to the fields of the WNDCIASS structure define how all instances of the main window

for HelloCE will behave The initial field style sets the class style for the window In

Windows CE the class styles are limited to the following

CS_GLOBALCLASS indicates that the class is global This flag is provided only

for compatibility because all window classes- in Windows CE are process

global

CS_HREDRAW tells the system to force repaint of the window if the win
dow is sized horizontally

CS_VREDRAW tells the system to force repaint of the window if the win

dow is sized vertically

CS_NOCLOSE disables the Close button if one is present on the title bar

CS_PARENTDC causes window to use its parents device context

CS_DBLCLKS enables notification of double-clicks double-taps under Win

dows CE to be passed to the parent window

The lpfn WndProc field should be loaded with the address of the windows win
dow procedure Because this field is typed as pointer to window procedure the

declaration to the procedure must be defined in the source code before the field is set

Otherwise the compilers type-checker will flag this line with warning

The cbClsExtra field allows the programmer to add extra space in the class struc

ture to store class-specific data known only to the application The cbWndExtra field

is much handier This field adds space to the Windows internal structure responsible

for maintaining the state of each instance of window Instead of storing large amounts

of data in the window structure itself an application should store pointer to an

application-specific structure that contains the data unique to each instance of the

window Under Windows CE both the cbClsExtra and cbWndExtra fields must be

multiples of bytes

The hlnstance field must be filled with the programs instance handle which

specifies the owning process of the window The hlcon field is set to the handle of

the windows default icon The hlcon field isnt supported under Windows CE and

should be set to NULL In Windows CE the icon for the class is set after the first

window of this class is created For He11oCE however no icon is supplied and un
like other versions of Windows Windows CE doesnt have any predefined icons that

can be loaded

22

Page 00045

Chapter Hello Windows CE

Unless the application being developed is designed for Windows CE system

with mouse the next field hCursor must be set to NULL Almost all Windows CE

systems use touch panel instead of mouse so you find no cursor support in those

systems For those special systems that do have cursor support the Windows CE doesnt

support animated cursors or colored cursors

The hbrBackground field specifies how Windows CE draws the background of

the window Windows uses the brush small predefined array of pixels specified

in this field to draw the background of the window Windows CE provides number

of predefined brushes that you can load using the GetStockObject functiQn If the

hbrBackground field is NULL the window must handle the WM_ERASEBKGND

message sent to the window telling it to redraw the background of the window

The lpszMenuName field must be set to NULL because Windows CE doesnt

support windows directly having menu In Windows CE menus are provided by

command bar or command band controls that can be created by the main window

Finally the lpszClassName parameter is set to programmer-defined string that

identifies the class name to Windows He11oCE uses the szAppName string which is

defined globally

After the entire WNDCLASS structure has been filled out the RegisterCiass func

tion is called with pointer to the WNDCLASS structure as its only parameter If the

function is successful value identifying the window class is returned If the func

tion fails the function returns

Initinstance

The main task of Initinstance is to create the applications main window and display

it in the form specified in the nShowCnid parameter passed to WinMain The code

for Initlnstance is shown below

HWND Initlnstance HINSTANCE hlnstance LPWSTR lpCmdLine mt nCmdShow

HWND hWnd

HICON hlcon

II Save program instance handle in global variable

hlnst hlnstance

II Create main window

hWnd CreateWindow szAppName II Window class

TEXTHello II Window title

WS_VISIBLE II Style flags

II position

CW_USEDEFAULT II Initial width

continued

23

Page 00046

Part Whidows Programmbig ascs

CW_USEDEFAULT II Initial height

NULL II Parent

NULL II Menu must be null

hlnstance II App instance

NULL II Ptr to create params

II Return fail code if window not created

if IsWindow hWnd return

II Standard show and update calls

ShowWindow hWnd nCmdShow

UpdateWindow hWnd

return hWnd

The first task performed by Initlnstance is to save the programs instance handle

hlnstance in global variable named hlnst The instance handle for program is useful

at number of points in Windows application save the value here because the

instance handle is known and this is convenient place in the program to store it

All Windows programmers learn early in their Windows programming lives the

CreateWindow function call Although the number of parameters looks daunting the

parameters are fairly logical once you learn them The first parameter is the name of

the window class of which our window will be an instance In the case of HelloCE

the class name is string constant szAppNanie which was also used in the WNDCLASS
structure

The next field is referred to as the window text In other versions of Windows
this is the text that would appear on the title bar of standard window However since

Windows CE main windows rarely have title bars this text is used only on the taskbar

button for the window The text is couched in TEXT macro which insures that the

string will be converted to Unicode under Windows CE
The style flags specify the initial styles for the window The style flags are used

both for general styles that are relevant to all windows in the system and for class-

specific styles such as those that specify the style of button or list box In this

case all we need to specify is that the window be created initially visible with the

WS_VTSIBLE flag Experienced Win32 programmers should refer to the documenta

tion for CreateWindow because there are number of window style flags that arent

supported under Windows CE
The next four fields specify the initial position and size of the window Since

most applications under Windows CE are maximized that is they take up the entire

screen above the taskbar the size and position fields are set to default values which

are indicated by the CW_USEDEFAULT flag in each of the fields The default value

settings create window thats maximizedunder the current versions of Windows CE

but also compatible with future versions of the operating system which might not

24

Page 00047

Chapter Hello Windows CE

maximize every window Be careful not to assume any particular screen size for Win

dows CE device because different implementations have different screen sizes

The next field is set to the handle of the parent window Because this is the

top-level window the parent window field is set to NULL The menu field is also set

to NULL because Windows CE supports menus through the command bar and com

mand bands controls

The hlnstance parameter is the same instance handle that was passed to the

program Creating windows is one place where that instance handle saved at the

start of the routine comes in handy The final parameter is pointer that can be

used to pass data from the CreateWindow call to the window procedure during the

WM_CREATE message In this example no additional data needs to be passed so

the parameter is set to NULL
If successful the Create Window call returns the handle to the window just cre

ated or it returns if an error occuned during the function That window handle is then

used in the two statements Show Window and Update Window just after the error-

checking statement The Show Window function modifies the state of the window to

conform with the state given in the nCmdShow parameter passed to WinMain The

Update Window function forces Windows to send WM_PAINT message to the win

dow that has just been created

That completes the InitApp function At this point the applications main win

dow has been created and updated So even before we have entered the message

loop messages have been sent to the main windows window procedure Its about

time to look at this part of the program

Main WndProc

You spend most of your programming time with the window procedure when youre

writing Windows program WinMain contains mainly initialization and cleanup code

that for the most part is boilerplate The window procedure on the otherhand is

the core of the program the place where the actions of the programs windows cre

ate the personality of the program

LRESULT CALLBACK MainWndProcHWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

INT

II Search message list to see if we need to handle this

II message If in list call procedure

for Ci dimMainMessages
if wMsg MainMessages

return MainMessages wMsg wParam iPararn

return DefWindowProchWnd wMsg wParam lParam

25

Page 00048

Part Wndows Prógrammkig Basics

All window procedures regardless of their window class are declared with the

same parameters The LRESULT return type is actually just long long is 32-bit

value under Windows but is typed this way to provide level of indirection between

the source code and the machine While you can easily look into the include files to

determine the real type of variables that are used in Windows programming this can

cause problems when youre attempting to move your code across platforms Though

it can be useful to know the size of variable type for memory-use calculations there

is no good reason and there are plenty of bad ones not to use the type definitions

provided by windows.h

The CALLBACK type definition specifies that this function is an external entry

point into the EXE necessary because Windows calls this procedure directly and that

the parameters will be put in Pascal-like right-to-left push onto the program stack

which is the reverse of the standard C-language method The reason for using the

Pascal language stack frame for external entry points goes back to the very earliest

days of Windows development The use of fixed-size Pascal stack frame meant that

the called procedure cleaned up the stack instead of leaving it for the caller to do

This reduced the code size of Windows and its bundled accessory programs suffi

ciently so that the early Microsoft developers thought it was good move
The first of the parameters passed to the window procedure is the window handle

which is useful when you need to define the specific instance of the window The wMsg

parameter indicates the message being sent to the window This isnt the MSG struc

ture used in the message loop in WinMain but simple unsigned integer containing

the message value The remaining two parameters wParam and iParam are used to

pass message-specific data to the window procedure The names wParam and lParam

come to us from the Winl6 days when the wParam was 16-bit value and lParam

was 32-bit value In Windows CE as in other Win32 operating systems both the

wParam and iParam parameters are 32 bits wide

Its in the window procedure that my programming style differs significantly from

most Windows programs written without the help of class library such as MFC For

almost all of my programs the window procedure is identical to the one shown above

Before continuing repeat this program structure isnt specific to Windows CE use

this style for all my Windows applications whether they are for Windows 3.1 Win
dows 95 Windows NT or Windows CE

This style reduces the window procedure to simple table look-up function

The idea is to scan the MainMessages table defined early in the file for the mes

sage value in one of the entries If the message is found the associated procedure

is then called passing the original parameters to the procedure processing the

message If no match is found for themessage the DefWindowProc function is called

DeJWindowProc is Windows function that provides default action for all messages

in the system which frees Windows program from having to process every mes

sage being passed to window

26

Page 00049

Chapter Hello Windows CE

The message table associates message values with procedure to process it The

table is listed below

II Message dispatch table for MainWindowProc

const struct decodeUlNl MainMessages
WM..CREATE DoCreateMain

WM_PAINT DoPaintMain

WM_HIBERNATE DoHibernateMain

WM_DESTROY DoDestroyMai

The table is defined as constant not just as good programming p1actice but

also because its helpful for memory conservation Since Windows CE programs can

be executed in place in ROM data that doesnt change should be marked constant

This allows the Windows CE program loader to leave such constant data in ROM
instead of loading copy into RAM so that it can be modified later by the program

The table itself is an array of simple two-element structure The first entry is

the message value followed by pointer to the function that processes the message

While the functions could be named anything Im using consistent structure through

out the book to help you keep track of them The names are composed of Do pre

fix as bow to object-oriented practice followed by the message name and suffix

indicating the window class associated with the table So DoCreateMain is the name

of the function that processes WM_CREATE messages for the main window of the

program

DoCreateMain

The WM_CREATE message is the first message sent to window WM_CREATE is

unique among messages in that Windows sends it while processing the CreateWindow

function and therefore the window has yet to be completely created This is good

place in the code to perform any data initialization for the window But since the

window is still being created some Windows functions such as GetWindowRect used

to query the size and position of the window return inaccurate values For our pur

poses the procedure shown in the following code performs only one function it

creates command bar for the window

LRESULT DoCreateMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

HWND hwndCB

II Create command bar

hwndCB CommandBar_Create hlnst hWnd IDC_CMDBAR

II Add exit button to command bar

CommandBar_AddAdornments hwndCB
return

II

27

Page 00050

Part Whidows Programmhig Bascs

Because Windows CE windows dont support standard menus attached to win

dows command bar is necessary for menus While He11oCE doesnt have menu
it does require Close button also provided by the command bar so the program

can be terminated by the user For this reason the simplest form of command bar

one with only Close button is created You create the command bar by calling

CommandBar_Create and passing the programs instance handle the handle to the

window and constant that will be used to identify this specific command bar This

constant can be any integer value as long as it is unique among the other child win
dows in the window Once youve created the command bar you add Close but

ton by calling CommandBarAdct4dornments Since all we want to do is perform

the default action for this function the parameters passed are basic the command

bar handle and two zeros That completes the processing of the WM_CREATE mes

sage Ill examine the command bar in depth in Chapter

DoPaintMain

Painting the window and therefore processing the WM_PAINT message is one of

the critical functions of any Windows program As program processes the WM_PAINT

message the look of the window is achieved Aside from painting the default back

ground with the brush you specified when you registered the window class Win
dows provides no help for processing this message In He11oCE the task of the

DoPaintMain procedure is to display one line of text in the center of the window

LRESULT DoPaintMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

PAINTSTRUCT ps
RECT rect

HDC hdc

II Adjust the size of the client rect to take into account

II the command bar height

GetClientRect hWnd rect
rect.top CommandBar_Height GetDlgltem hWnd IDC.SMDBAR

hdc BeginPaint hWnd ps
Drawlext hdc TEXT Hello Windows CE -1 rect

DT_CENTER DT_VCENTER DT_SINGLELINE

EndPaint hWnd ps
return

28

Page 00051

Chapter Hello Windows CE

Before the drawing can be performed the routine must determine the size of the

window In Windows program standard window is divided into two areas the

nonclient area and the client area windows title bar and its sizing border commonly

comprise the nonclient area of window and Windows is responsible for drawing it

The client area is the interior part of the window and the application is responsible for

drawing that An application determines the size and location of the client area by call

ing the GetClientRect function The function returns RECT structure that contains left

top right and bottom elements that delineate the boundaries of the client rectangle

The advantage of the client vs nonclient area concept is that an application doesnt

have to account for drawing such standard elements of window as the title bar

When youre computing the size of the client area you must remember that

the command bar resides in the client area of the window So even though the

GetClientRect function works identically in Windows CE as in other versions of Win

dows the application needs to compensate for the height of the command bar which

is always placed across the top of the window Windows CE gives you convenient

function CommandBar_Height which returns the height of the command bar and

can be used in conjunction with the GetClientRect call to get the true client area of

the window that needs to be drawn by the application

Other versions of Windows supply series of WM_NCxxx messages that en
able your applications to take over the drawing of the nonclient area In Windows

CE windows seldom have title bars and at the present time none of them have

sizing border Because theres so little nonclient area the Windows CE developers

decided not to expose the nonclient messages

All drawing performed in WM_PAINT message must be enclosed by two func

tions BeginPaint and EndPaint The BeginPaint function returns an HDC or handle

to device context device context is logical representation of physical display

device such as video screen or printer Windows programs never modify the dis

play hardware directly Instead Windows isolates the program from the specifics of

the hardware with among other tools device contexts

BeginPaint also fills in PAINTSTRUCT structure that contains number of useful

parameters

typedef struct tagPAINTSTRUCT

HDC hdc
BOOL fErase

RECT rcPaint

BOOL fRestore

BOOL flncUpdate

BYTE rgbReserved
PAINTSTRUCT

29

Page 00052

Part Whidows Programming Basics

The hdc field is the same handle thats returned by the BeginPaint function The

JErase field indicates whether the background of the window needs to be redrawn by

the window procedure The rcPaint field is RECT structure that defines the client

area that needs repainting He11oCE ignores this field and assumes that the entire client

window needs repainting for every WM_PAINT message but this field is quite handy

when performance is an issue because only part of the window might need repaint

ing Windows actually prevents repainting outside of the rcPaint rectangle even when

program attempts to do so The other fields in the structureJEestoreftncUpdate and

rgbReserved are used internally by Windows and can be ignored by the application

The only painting that takes place in HelloCE occurs in one line of text in the

window To do the painting He11oCE calls the DrawText function cover the details

of DrawText in the next chapter but if you look at the function its probably obvious

to you that this call draws the string Hello Windows CE on the window After

DrawText returns EndPaint is called to inform Windows that the program has

completed its update of the window

Calling EndPaint also validates any area of the window you didnt paint Win
dows keeps list of areas of window that are invalid areas that need to be re

drawn and valid areas that are up to date By calling the BeginPaint and EndPaint

pair you tell Windows that youve taken care of any invalid areas in your window

whether or not youve actually drawn anything in the window In fact you must call

BeginPaint and EndPaint or validate the invalid areas of the window by other means

or Windows will simply continue to send WM_PAINT messages to the window until

those invalid areas are validated

DoHibernateMain

You need DoHibernateMain because the WM_HIBERNATE message unique to Win
dows CE should be handled by every Windows CE program WM_HIBERNATE

message is sent to window to instruct it to reduce its memory use to the absolute

minimum

LRESULT DoHibernateMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

II If not the active window destroy the cmd bar to save memory

if GetActiveWindow hWnd

CommandBar_Destroy GetDlglteni hWnd IDC.CMDBAR

return

In the case of HelloCE the only real way to reduce memory use is to destroy

the command bar control This is done by means of call to CommandBar_Destroy

30

Page 00053

Chapter Hello Windows CE

The only case in which one should not destroy the command bar is when the window
is the active window the window through which the user is interacting with the pro

gram at the current time

More complex Windows CE applications have much more elaborate procedure

for handling the WM_HIBERNATE messages Applications should free up as much

memory and system resources as possible without losing currently unsaved data In

choice between performance and lower memory use an application is better reac

tivating slowly after WM_HIBERNATE message than it is consuming more memory

DoActivateMain

While the WM_ACTIVATE message is common to all Windows platforms it takes on

new significance for Windows CE applications because among its duties is to indi

cate that the window should restore any data structures or window controls that were

freed by WM_HIBERNATE message

LRESULT DoActivateMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

HWND hwndCB

II If activating and no command bar create it
if LOWORD wParam WA_INACTIVE

GetDlgltem hWnd IDC_CMDBAR

II Create command bar
hwndCB CommandBar_Create hlnst hWnd IDC_CMDBAR

II Add exit button to command bar
CommandBar_AddAdornments hwndCB

return

ii

The lower word of the wParam parameter is flag that tells why the

WMACTIVATE message was sent to the window The flag can be one of three val

ues WA_INACTIVE indicating that the window is being deactivated after being the

active window WA_ACTIVE indicating that the window is about to become the ac

tive window and WA_CLICKACTIVE indicating that the window is about to become

the active window after having been clicked on by the user

HelloCE processes this message by checking to see whether the window remains

active and whether the command bar no longer exists If both conditions are true the

command bar is re-created using the same calls used for the WM_CREATE message

The GetDlgltem function is convenient because it returns the handle of child window

of another window using its window ID Remember that when the command bar

31

Page 00054

Part Whidows Programmhig Bscs

child of He11oCEs main window was created used an ID of IDC_CMDBAR defined

in He110CE.h That ID value is passed to GetDlgltem to get the command bar window

handle However if the conmiand bar window doesnt exist the value returned is

indicating that He11oCE needs to re-create the command bar

DoDestroyMain

The final message that HelloCE must process is the WM_DESTROY message sent when

window is about to be destroyed Because this window is the main window of the

application the application should terminate when the window is destroyed To make

this happen the DoDestroyMain function calls PostQuitMessage This function places

WM_QUIT message in the message queue The one parameter of this function is

the return code value that will be passed back to the application in the wParam pa
rameter of the WIvI_QUIT message

LRESULT DoDestroyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

PostQuitMessage

return

Notice that the DoDestroyMain function doesnt destroy the command bar con

trol created in DoCreateMain Since the command bar is child window of the main

window its automatically destroyed when its parent window is destroyed

As Ive mentioned when the message loop sees WM_QUIT message it exits

the loop The WinMain function then calls Termlnstance which in the case of HelloCE

does nothing but return WinMain then returns terminating the program

Running HeIIoCE

After youve entered the program into Visual and built it it can be executed by

double-tap on the He11oCE icon The program displays the Hello Windows CE text in

the middle of an empty window as shown in Figure 1-4 Figure 1-5 shows HelloCE

running on Palm-size PC The command bar is placed by Windows CE across the

top of the window Tapping on the Close button on the command bar causes Win

dows CE to send WM_CLOSE message to the window Although He11oCE doesnt

explicitly process the WM_CLOSE message the DefWindowProc procedure enables

default processing by destroying the main window As the window is being destroyed

WIvI_DESTROY message is sent which causes PostQuitMessage to be called

32

Page 00055

Chapter Hello Windows CE

Hello Windoys CE

Hello 523 PM

Figure 1-4 The HelloCE window on an H/PC

Hello Windows CE

____ 13a

Figure 1-5 The He11oCE window on Palm-sizePC

As said He11oCE is very basic Windows CE program but it does gives you

skeleton of Windows CE application upon which you can build If you look at

HelloCE.EXE using Explorer the program is represented by generic icon When

HelloCE is running the button on the task bar representing HelloCE has no icon dis

played next to the text How to add programs icon as well as how the DrawText

function works are couple of the topics Ill address in the next few chapters

33

Page 00056

Page 00057

Chapter

Drawing

on the Screen

In Chapter the example program HelloCE had one task to display line of text on

the screen Displaying that line took only one call to DrawText with Windows CE

taking care of such details as the font and its color the positioning of the line of text

inside the window and so forth Given the power of graphical user interface GUI
however an application can do much more than simply print line of text on the

screen It can craft the look of the display down to the most minute of details

Over the life of the Microsoft Windows operating system the number of func

tions available for crafting these displays has expanded dramatically With each suc

cessive version of Windows functions have been added that extend the tools available

to the programmer As functions were added the old ones remained so that even if

function had been superseded by new function old programs would continue to

run on the newer versions of Windows The approach in which function after func

tion is piled on while the old functions are retained for backward compatibility was

discontinued with the initial version of Windows CE Because of the requirement to

produce smaller version of Windows the CE team took hard look at the Win32

API and replicated only the functions absolutely required by applications written for

the Windows CE target market

One of the areas of the Win32 API hardest hit by this reduction was graphical

functions Not that you now lack the functions to do the jobits just that the high

degree of redundancy led to some major pruning of the Win32 graphical functions

35

Page 00058

Part Windows Programmhi ascs

An added challenge for the programmer is that different Windows CE platforms have

subtly different sets of supported APIs One of the ways in which Windows CE graphics

support differs from that of its desktop cousins is that Windows CE doesnt support

the different mapping modes available under other implementations of Windows

Instead the Windows CE device contexts are always set to the MM_TEXT mapping

mode Coordinate transformations are also not supported under Windows CE While

these features can be quite useful for some types of applications such as desktop

publishing their necessity in the Windows CE environment of small portable devices

isnt as clear Fortunately as Windows CE matures we can expect more and more of

the basic Win32 API to be supported

So when youre reading about the functions and techniques used in this chap

ter remember that some might not be supported on all platforms So that pro

gram can determine what functions are supported Windows has always had the

GetDeviceCaps function which returns the capabilities of the current graphic device

Throughout this chapter Ill refer to GetDeviceCaps when determining what functions

are supported on given device

This chapter like the other chapters in Part of this book reviews the drawing

features supported by Windows CE One of the most important facts to remember is

that while Windows CE doesnt support the full Win32 graphics API its rapid evolu

tion has resulted in it supporting some of the newest functions in Win32some so

new that you might not be familiar with them This chapter shows you the functions

you can use and how to work around the areas where certain functions arent sup

ported under Windows CE

PAINTING BASICS

Historically Windows has been subdivided into three main components the ker

nel which handles the process and memory management User which handles the

windowing interface and controls and the Graphics Device Interface or GDI which

performs the low-level drawing In Windows CE User and GDI are combined into

the Graphics Windowing and Event handler or GWE At times you might hear

Windows CE programmer talk about the GWE The GWE is nothing really newjust

different packaging of standard Windows parts In this book usually refer to the

graphics portion of the GWE under its old name GDI to be consistent with standard

Windows programming terminology

But whether youre programming for Windows CE or Windows 98 or Windows NT
there is more to drawing than simply handling the WM_PAINT message Its helpful

to understand just when and why WMPAINT message is sent to window

36

Page 00059

Chapter Drawing on the Screen

Valid and Invalid Regions

When for some reason an area of window is exposed to the user that area or re

gion as its referred to in Windows is marked invalid When no other messages are

waiting in an applications message queue and the applications window contains an

invalid region Windows sends WM_PAINT message to the window As mentioned

in Chapter any drawing performed in response to WM_PAINT message is couched

in calls to BeginPaint and EndPaint BeginPaint actually performs number of ac

tions It marks the invalid region as valid and it computes the clipping region The

clipping region is the area to which the painting action will be limited BeinPaint

then sends WM_ERASEBACKGROUND message if needed to redraw the back

ground and it hides the caretthe text entry cursorif its displayed Finally

BeginPaint retrieves the handle to the display device context so that it can be used

by the application The EndPaint function releases the device context and redisplays

the caret if necessary If no other action is performed by WM_PAINT procedure you

must at least call BeginPaint and EndPaint if only to mark the invalid region as valid

Alternatively you can call to ValidateRect to blindly validate the region But no

drawing can take place in that case because an application must have handle to the

device context before it can draw anything in the window

Often an application needs to force repaint of its window An application should

never post or send WMPAINT message to itself or to another window Instead

you do the following

BOOL InvalidateRect HWND hWnd const RECT lpRect BOOL bErase

Notice that InvalidateRect doesnt require handle to the windows device context

only to the window handle itself The ipRect parameter is the area of the window to

be invalidated This value can be NULL if the entire window is to be invalidated The

bErase parameter indicates whether the background of the window should be redrawn

during the BeginPaint call as mentioned above Note that unlike other versions of

Windows Windows CE requires that the hWnd parameter be valid window handle

Device Contexts

device context often referred to simply as DC is tool that Windows uses to

manage access to the display and printer although for the purposes of this chapter

Ill be talking only about the display Also unless otherwise mentioned the explana

tion that follows applies to Windows in general and isnt specific to Windows CE

Windows applications never write directly to the screen Instead they request

handle to display device context for the appropriate window and then using the

handle draw to the device context Windows then arbitrates and manages getting

the pixels from the DC to the screen

37

Page 00060

Part Windows Programming Basics

BeginPaint which should only be called in WM_PAINT message returns

handle to the display DC for the window An application usually performs its draw

ing to the screen during the WM_PMNT messages Windows treats painting as low-

priority task which is appropriate since having painting at higher priority would

result in flood of paint messages for every little change to the display Allowing an

application to complete all its pending business by processing all waiting messages

results in all the invalid regions being painted efficiently at once Users dont notice

the minor delays caused by the low priority of the WM_PAINT messages

Of course there are times when painting must be immediate An example of

such time might be when word processor needs to display character inimedi

ately after its key is pressed To draw outside WM_PAINT message the handle to

the DC can be obtained using this

HDC GetDC HWND hWnd

GetDC returns handle to the DC for the client portion of the window Drawing can

thenbe performed anywhere within the client area of the window because this pro

cess isnt like processing inside WM PAINT message theres no clipping to restrict

you from drawing in an invalid region

Windows CE 2.1 supports another function that can be used to receive the

DC It is

HDC GetDCEx HWND hWnd HRGN hrgnClip OWORD flags

GetDCEx allows you to have more control over the device context returned The new

parameter hrgnclzp lets you define the clipping region which limits drawing to

that region of the DC The flags parameter lets you specify how the DC acts as you

draw on it Windows CE doesnt support the following flags DCX_PARENTCLIP

DCX_NORESETATIRS DCX_LOCKWINDOWEJPDATE and DCX_VALIDATE

After the drawing has been completed call must be made to release the de

vice context

mt ReleaseDC HWND hWnd HDC hDC

Device contexts are shared resource and therefore an application must not hold

the DC for any longer than necessary

While GetDC is used to draw inside the client area sometimes an application

needs access to the nonclient areas of window such as the title bar To retrieve

DC for the entire window make the following call

HDC GetWindowDC HWND hWnd

As before the matching call after drawing has been completed for GetWindowDC

is ReleaseDC

38

Page 00061

Chapter Drawing on the Screen

The DC functions under Windows CE are identical to the device context func

tions under Windows 98 and Windows NT This should be expected because DCs

are the core of the Windows drawing philosophy Changes to this area of the API

would result in major incompatibilities between Windows CE applications and their

desktop counterparts

WRITING TEXT
In Chapter the He11oCE example displayed line of text using call to DrawText

That line from the example is shown here

Drawlext hdc TEXT Hello Windows CE -1 rect
DT_CENTER DT_VCENTER DT_SINGLELINE

DrawText is fairly high-level function that allows program to display text

while having Windows deal with most of the details The first few parameters of

DrawText are almost self-explanatory The handle of the device context being used

is passed along with the text to display couched in TEXT macro which declares

the string as Unicode string necessary for Windows CE The third parameter is the

number of characters to print or as is the case here indicating that the string

being passed is null terminated and Windows should compute the length

The fourth parameter is pointer to rect structure that specifies the formatting

rectangle for the text DrawText uses this rectangle as basis for formatting the text to

be printed How the text is formatted depends on the functions last parameter the

formatting flags These flags specify how the text is to be placed within the formatting

rectangle or in the case of the DT_CALCRECT flag the flags have DrawText compute

the dimensions of the text that is to be printed DrawText even formats multiple lines

with line breaks automatically computed In the case of He11oCE the flags specify that

the text should be centered horizontally DT_CENTER and centered vertically

DT_VCENTER The DT_VCENTER flag works only on single lines of text so the final

parameter DT_SINGLELINE specifies that the text shouldnt be flowed across multiple

lines if the rectangle isnt wide enough to display the entire string

Device Context Attributes

What havent mentioned yet about He11oCEs use of DrawText is the large number of

assumptions the program makes about the DC configuration when displaying the text

Drawing in Windows device context takes large number of parameters such as fore

ground and background color and how the text should be drawn over the background

as well as the font of the text Instead of specifying all these parameters for each draw

ing call the device context keeps track of the current settings referred to as attributes

and uses them as appropriate for each call to draw to the device context

39

Page 00062

Part Windows Programming Basics

Foreground and background colors

The most obvious of the text attributes are the foreground and background color Two

functions SetTextColor and GetTextColor allow program to set and retrieve the

current color These functions work well with both four-color gray-scale screens as

well as the color screens supported by Windows CE devices

To determine how many colors device supports use GetDeviceCap as men
tioned previously The prototype for this function is the following

mt GetDeviceCaps HDC hdc mt nlndex

You need the handle to the DC being queried because different DCs have dif

ferent capabilities For example printer DC differs from display DC The second

parameter indicates the capability being queried In the case of returning the colors

available on the device the NUMCOLORS value returns the number of colors as long

as the device supports 256 colors or fewer Beyond that the returned value for

NUMCOLORS is and the colors can be returned using the BITSPIXEL value which

returns the number of bits used to represent each pixel This value can be converted

to the number of colors by raising to the power of the BITSPIXEL returned value

as in the following code sample

nNumColors GetDeviceCaps hdc NUMCOLORS
if nNumColors -1

nNumColors GetDeviceCaps hdc BITSPIXEL

Drawing mode
Another attribute that affects text output is the background mode When letters are

drawn on the device context the system draws the letters themselves in the foreground

color The space between the letters is another matter If the background mode is set

to opaque the space is drawn with the current background color But if the back

ground mode is set to transparent the space between the letters is left in whatever

state it was in before the text was drawn While this might not seem like big differ

ence imagine window background filled with drawing or graph If text is written

over the top of the graph and the background mode is set to opaque the area around

the text will be filled and the background color will overwrite the graph If the back

ground mode is transparent the text will appear as if it had been placed on the graph

and the graph will show through between the letters of the text

The TextDemo Example Program

The TextDemo program shown in Figure 2-1 demonstrates the relationships among
the text color the background color and the background mode

40

Page 00063

Chapter Drawing on the Screen

IW1IIP

$juIf
citU

pipJi1vJ1Ij q1.i
1II

Figure 2-1 The TextDemo program continued

41

Page 00064

Part Wkidows Programming ascs

Figure 2-1 continued

d1r V7
ij j%4Ijw fr

1I1rIIiPrc

1j

Ium PIiii

TutjeIIu1I

42

Page 00065

Chapter Drawing on the Screen

fl1 ca GP
T41

msha4 flg

tne
yj P%a

/tAi p4 lcVtn

rA

%1II
.m41

i1Thk uttf1
eWl trà

Wf iiti

XM1t- Lt Ifl

3T 1RVH

1$
f1 If n1ft

PWt 1iiLii nt

tS hM

%t1i I1hi
Wmd

OT ithw
fILL

IELT P1 ii
cw t4K t1Q1L

continued

43

Page 00066

Part Windows Programming Basics

Figure 2-1 continued ci i1t
uti ipnPgtI_i9 kI 1PWIiigcI Ic 4t
1jr11

u1trI 44 .iUr
VI9V Et

JoRptt t$ri Jd41w
4L

IL II iSLiIaI4
itP nis Ir4

44

Page 00067

Chapter Drawing on the Screen

LRESULT DoCreateMain HWND hWnd hINT wMsg WPARAM wParam

LPARAM lParam

HWND hwndCB

/1 Create command bar

hwndCB CommandBar_Create hlnst hWnd IDC..CMDBAR

1/ Add exit button to command bar

Command8ar_AddAdornmentS hwrjdCB

return

ii

/1 DoPaintMain Process WM_PAINT message for window

1/

LRESULT DoPaintMain HWND hWnd hINT wMsg WPARAM wParam

LPARAM IParam

PAINTSTRIJCT Ps
RECT rect rectCli

HBRUSH hbrOld

HDC hdc
XMl cy
DWORD dwColorTable 0x00000000 0x00808080

0x00cccccc OxOOffffff

II Adjust the size of the client rect to take into account

II the command bar height

GetClientRect hWnd rectCli
rectCli.top CommandBar_Height GetDlgltem hWnd IDC_CMDBAR

hdc Beginpaint hWnd ps
II Get the height and length of the string

Drawlext hdc TEXT Hello Windows CE -1 rect
DT_CALCRECT DTCENTER DT_srNGLELINE

cy rect.bottom rect.top

II Draw black rectangle on right half of window

hbrOld SelectObject hdc GetStockObject BLACK.BRUSH
Rectangle hdc rectCli.left rectCli.right rectCli.left

rectCli.top rectCli.right rectCli.bottom

SelectObject hdc hbrOld

rectCli.bottom rectCli.top cy

continzUd

45

Page 00068

Parti

Figure 21 conlijijied

SetBkKode hdc TRANSPARENT
for

SetTextColor hdc dwCo orla

SetBkColor hdc dwColo

DrawText hdc TEXT -1 rectCli
DT_CENTER DT

rectcli.top

rectCli.bottom

SetBkMode hdc
for

SetTextCol or

SetBkColor

DrawText rectCli

indow

PARAM wParam

The meat ofTextDemo is in the OnpaintIain function The first call to DrciuText

doesnt draw anything in the device context Instead the DT_CALCRECT flag instructs

Windows to store the dimensions of the rectangle for the text string in rect This in

formation is used to compute the height of the string which is stored in cy Next

black rectangle is drawn on the right side of the window Ill talk about how rect

angle is drawn later in the chapter its used in this program to produce two different

backgrounds before the text is written The function then prints out the same string

using different foreground and background colors and both the transparent and

opaque drawing modes lhe result of this combination is shown in Figure 2-2

46

Page 00069

Chapter Drawing on the Screen

Hello Wir

Hello Wi
HHo WjF
Hello Windows CE

Figure 2-2 TextDemo shows how the text color background color and background
mode relate

The first four lines are drawn using the transparent mode The second four are

drawn using the opaque mode The text color is set from black to white so that each

line drawn uses different color while at the same time the background color is set

from white to black In transparent mode the background color is irrelevant be

cause it isnt used but in opaque mode the background color is readily apparent

on each line

Fonts

If the ability to set the foreground and background colors were all the flexibility that

Windows provided we might as well be back in the days of MS-DOS and character

attributes Arguably the most dramatic change from MS-DOS is Windows ability to

change the font used to display text All Windows operating systems are built around

the concept of WYSIWYGwhat you see is what you getand changeable fonts are

major tool used to achieve that goal

Two types of fonts appear in all Windows operating systemsraster and

TrueType Raster fonts are stored as bitmaps small pixel by pixel images one for each

character in the font Raster fonts are easy to store and use but have one major prob

lem they dont scale well Just as small picture looks grainy when blown up to

much larger size raster fonts begin to look blocky as they are scaled to larger and

larger font sizes

47

Page 00070

Part Windows Pvogrammhig Bscs

TrueType fonts solve the scaling problem Instead of being stored as images each

TrueType character is stored as description of how to draw the character The font

engine which is the part of Windows that draws characters on the screen then takes

the description and draws it on the screen in any size needed TrueType font support

was introduced with Windows 3.1 but was only added to the Windows CE line in Win

dows CE 2.0 Even under Windows CE 2.0 though some devices such as the origi

nal Palm-size PC dont support TrueType fonts Windows CE system can support

either TrueType or raster fonts but not both Fortunately the programming interface

is the same for both raster and TrueType fonts relieving Windows developers from

worrying about the font technology in all but the most exacting of applications

The font functions under Windows CE closely track the same functions under

other versions of Windows Lets look at the functions used in the life of font from

creation through selection in DC and finally to deletion of the font How to query

the current font as well as enumerate the available fonts is also covered in the fol

lowing sections

Creating font

Before an application is able to use font other than the default font the font must

be created and then selected into the device context Any text drawn in DC after

the new font has been selected into the DC will then use the new font

Creating font in Windows CE can be accomplished this way

HFONT CreateForitlndirect const LOGFONT lplf

This function is passed pointer to LOGFONT structure that must be filled

with the description of the font you want

typedef struct tagLOGFONT

LONG lfHeight

LONG lfWidth

LONG ifEscapement
LONG ifOrientation

LONG lfWeight

BYTE ifltalic

BYTE ifUnderline

BYTE lfStrikeOut

BYTE lfCharSet

BYTE lfOutPrecision

BYTE lfClipPrecision

BYTE lfOuality

BYTE lfPitchAndFamily

TCHAR lfFaceName
LOGFONT

48

Page 00071

Chapter Drawing on the Screen

The lfI-Ieight field specifies the height of the font in device units If this field

is the font manager returns the default font size for the font family requested For

most applications however you want to create font of particular point size The

following equation can be used to convert point size to the ifFleight field

lfHeight -1 PointSize GetDeviceCaps hdc LOGPIXELSY 72

Here GetDeviceCaps is passed LOGPTXELSY field instructing it to return the

number of logical pixels per inch in the vertical direction The 72 is the number of

points typesetting unit of measure per inch

The fV/idth field specifies the average character width Since the height of

font is more important than its width most programs set this value to This tells

the font manager to compute the proper width based on the height of the font The

ifEscapement and ifOrientation fields specify the angle in tenths of degrees of the base

line of the text and the x-axis The if Weight field specifies the boldness of the font

from through 1000 with 400 being normal font and 700 being bold The next three

fields specify whether the font is to be italic underline or strikeout

The lpCharSet field specifies the character set you have chosen This field is more

important in international releases of software where it can be used to request

specific languages character set The lfOutPrecision field can be used to specify

how closely Windows matches your requested font Among number of flags avail

able OUT_TT_ONLY_PRECIS flag specifies that the font created must be

TrueType font The lfClijbprecision field specifies how Windows should clip char

acters that are partially outside the region being displayed The lfQuality field is set

to either DEFAULT_QUALITY or DRAFT_QUALITY which gives Windows permis

sion to synthesize font that while more closely matching the other requested fields

might look less polished

The lfPitchAndFamily field specifies the family of the font you want This field

is handy when youre requesting family such as Swiss that features proportional

fonts without serifs or family such as Roman that features proportional fonts with

serifs but you dont have specific font in mind You can also use this field to specify

simply proportional or monospaced font and allow Windows to determine which

font matches the other specified characteristics passed into the LOGFONT struc

ture Finally the ifFaceName field can be used to specify the typeface name of

specific font

When CreateFontlndirect is called with filled LOGFONT structure Windows

creates logical font that best matches the characteristics provided To use the font

however the final step of selecting the font into device context must be made

49

Page 00072

Part Windows Programming Basics

Selecting font into device context

You select font into DC by using the following function

HGDIOBJ SelectObject HDC hdc HGDIOBJ hgdiobj

This function is used for more than just setting the default font you use this func

tion to select other GDI objects as we shall soon see The function returns the previ

ously selected object in our case the previously selected font which should be saved

so that it can be selected back into the DC when were finished with the new font The

line of code looks like the following

hOldFont SelectObject hdc hFont

When the logical font is selected the system determines the closest match to the

logical font from the fonts available in the system For devices without TrueType fonts

this match could be fair amount off from the specified parameters Because of this

never assume that just because youve requested particular font the font returned

exactly matches the one you requested For example the height of the font you

asked for might not be the height of the font thats selected into the device context

Querying fonts characteristics

To determine the characteristics of the font that is selected into device context

call to

BOOL GetlextMetrics HDC hdc LPTEXTMETRIC lptm

returns the characteristics of that font TEXTMETRIC structure is returned with the

information and is defined as

typedef struct tagIEXIMETRIC

LONG tmHeight

LONG tmAscent

LONG tmDescent

LONG tmlnternalLeading

LONG tmExternalLeading

LONG tmAveCharWidth

LONG tmMaxCharWidth

LONG tmWeight

LONG tmOverhang

LONG tmDigitizedAspectx
LONG tmDigitizedAspecty
char tmFirstChar

char tmLastChar

char tmDefaultChar

50

Page 00073

Chapter Drawing on the Screen

char tmBreakChar

BYTE tmltalic

BYTE tmUnderlined

BYTE tmStruckOut

BYTE tmPitchAndFaniily

BYTE tmCharSet

TEXTMETRIC

The TEXTMETRIC structure contains number of the fields we saw in the

LOGFONT structure but this time the values listed in TEXTMETfflC are the values of

the font thats selected into the device context Figure 2-3 shows the relatipnship of

some of the fields to actual characters

tmlleight

tmExternaLeading

tmlnternaLeading

tmAscenf

tmDescent

Figure 2-3 Fields from the TEXTMETR structure and how they relate to afont

Aside from determining whether you really got the font you wanted the

GetTextmetrics call has another valuable purposedetermining the height of the font

Recall that in TextDemo the height of the line was computed using call to DrawText

While that method is convenient it tends to be slow You can use the TEXTMETfflC

data to compute this height in much more straightforward manner By adding the

tmHeight field which is the height of the characters to the tmExternalLeading field

which is the distance between the bottom pixel of one row and the top pixel of the

next row of characters you can determine the vertical distance between the baselines

of two lines of text

51

Page 00074

Part Windows Programming Basics

Destroying font

Like other GDI resources fonts must be destroyed after the program has finished using

them Failure to delete fonts before terminating program causes whats known as

resource leakan orphaned graphic resource thats taking up valuable memory but

thats no longer owned by an application

To destroy font first deselect it from any device contexts it has been selected

into You do thisby calling SelectObject the font passed is the font that was returned

by the original SelectObject call made to select the font After the font has been dese

lected call to

BOOL DeleteObject HGDIOBJ hObject

with hObject containing the font handle deletes the font from the system

As you can see from this process font management is no small matter in Win

dows The many parameters of the LOGFONT structure might look daunting but they

give an application tremendous power to specify font exactly

One problem when dealing with fonts is determining just what types of fonts

are available on specific device Windows CE devices come with set of standard

fonts but specific system might have been loaded with additional fonts by either

the manufacturer or the user Fortunately Windows provides method for enumer

ating all the available fonts in system

Enumerating fonts

To determine what fonts are available on system Windows provides this function

irit EnumFontFamilies HDC hdc LPCTSTR lpszFamily

FONTENUMPROC lpEnumFontFamProc LPARAM iParam

This function lets you list all the font families as well as each font within fam

ily The first parameter is the obligatory handle to the device context The second

parameter is string to the name of the family to enumerate If this parameter is null

the function enumerates each of the available families

The third parameter is something differenta pointer to function provided

by the application The function is callback function that Windows calls once for

each font being enumerated The final parameter lParam is generic parameter that

can be used by the application This value is passed unmodified to the applications

callback procedure

While the name of the callback function can be anything the prototype of the

callback must match the declaration

mt CALLBACK EnumFontFamProc LOGFONT lpelf TEXTMETRIC lpntm
DWORD FontType LPARAM iPararn

52

Page 00075

hapier Drawing on the Screen

Ihe first parameter passed hack to the callback function is pointer to

LOGFONI structure describing the font being enumerated The second parameter

pointer to textmetric structure further describes the font The font type parameter

indicates whether the font is raster or TrueType font

The FontList Example Program

The FontList program shown in Figure 2-t uses the EnumPontFamilies function in

ways to enumerate all fonts in the system

FontL.ist.h

II t3eader file

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

II

/1 Returns number of elements

define dimx sizeofx sizeofx

II

II Generic defines and data types

II

struct decodeUlNl II Structure associates

UINT Code ii messages

II with function

LRESULT FxnHWND UINT WPARAM LPARAM

struct decodeCMD II Structure associates

UINT Code II menu IDs with

LRESULT FxnHWND WORD HWND WORD /1 function

II

ii Generic defines used by application

define IDC_CMDBAR II Command bar ID

II

1/ Program specific structures

II

define FAMILYMAX 24

Figure 24 rhe Fun/I/si program enumera/eS al//on/s in thu cnieni GOiiiIiUEd

53

Page 00076

Part Whidows Programmhig Bascs

Figure 2-4 continued

ra

riI
4.4_I1 4tiDrp v1j jjr Frp4pg

ILULiiiIJ PI1iii 1i
r4

.ttS3 PO AiiIL4itka t1EJ

dF

AII

54

Page 00077

Chapter Drawing on the Screen

1I ii

s%
Ir$2aIIpai1Iu
pSII%Jt h1I

qe bi

rt
1K PJ

q4 pJ

continued

55

Page 00078

Part Whidows Programming Bascs

Figure 2-4 continued

4/ ie

iiL

i1

aI4cjt11i iZ
JiqTdA ur

JiIir 91r1v yhi44
4a

IqII

r4irf

56

Page 00079

Chapter Drawing on the Screen

II Standard show and update calls

ShowWindow hWnd nCmdShow
UpdateWindow hWnd
return hWnd

If

II Termlnstance Program cleanup

int Termlnstance HINSTANCE hlnstance mt nDefRC

return nDefRC

II

II Font callback functions

1/

II

If FontFamilyCallback Callback function that enumerates the font

II families

CALLBACK FontFamilyCallback CONST LOGFONT lplf
CONST TEXTMETRIC lpntm
DWORD nFontlype LPARAM lParam

mt rc

II Stop enumeration if array filled

if sFamilyCnt FAMILYMAX

return

II Copy face name of font

lstrcpy ffs lplf-lfFaceName

return rc

II EnumSingleFontFamily Callback function that enumerates fonts

int CALLBACK EnumSingleFontFamily CONST LOGFONT lplf
CONST TEXTMETRIC 1pntm
DWORD nFontlype LPARAM lParam

PFONTFAMSTRUCT pffs

pffs PFONTFAMSTRUCT lParam

pffs-nNumFonts II Increment count of fonts in family

return

continued

57

Page 00080

Part Windows Progrmmhig asi

Figure 2-4 continued

i41I

ijiñ\ 41

rrt IViIISU

pn 4m i1b 4á

r9
ji 1c$i1 tiW3t öpf 194 hEnt 4f4

nP 1eh LP
pr

1p iiIc
41 1k

Dw
Vkâi4IV .Iw1htp t1

ppri

1/

42

pb rs

27
442

58

Page 00081

CYiapter Drawing on the Screen

II

/1 MainWndProc Callback function for application window

/1

LRESULT CALLBACK MainwndProc HWND hWnd urNi wMsg WPARAM wParam

LPARAM iParam

INT

II Search message list to see if we need to handle this

II message If in list call procedure

II

for dimMainMessages
if wMsg MainMessages

return MainMessages wMsg wParam lParam

return DefWindowProc hwnd wMsg wParam iParam

1/

1/ DoCreatel4ain Process WMCREATE message for window

II

LRESULT DoCreateMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

HWND hwndC8

HOC hdc
INT rc

II Create command bar

hwndCB CommandBar_Create hlnst hWnd IDC_CMDBAR

II Add exit button to command bar

CommandBarAddAdornments hwndCB

I/Enumerate the available fonts

hdc GetOC hWnd
rc EnumFontFamilies HDChdc LPTSTRN1JLL

FontFamilyCallback

for sFamilyCntffs
rc EnumFontFamilies HDChdc ffs

EnumSingleFontFami ly
LPARAM PFONTFAMSTRUCTffs

ReleaseDC hWnd hdc
return

continued

59

Page 00082

Part Whidows Progrmmhtg Basics

Figure 2-4 continued

dJáiti%t
1Nix 1i2I1IhL1I1EI

aV%i tcIiIMFV

11111111
i1utki4l 4jw

3I wrd
u1Ir jr

IdtIf jP

cç

1Itr
iP

1p

A% 4ri $ihp áert
raI

IISL

ft

60

Page 00083

Chapter Drawing on the Screen

1/

1/ DoDestroyMain Process WM_DESTROY message for window

/1

LRESULT DoDestroyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

PostOuitMessage

return

Enumerating the different fonts begins when the application is processing the

WM_CREATE message in OnCrealeMain here EnumFontFanhlies is called with the

FontFamily field set to NULL so that each family will be enumerated The callback

function is FontFamilyCallback where the name of the font family is copied into an

array of strings

The remainder of the work is performed during the processing of the

WM_PAINT message The OnPaintMain function begins with the standard litany

of getting the size of the area below the command bar and calling BeginPaint which

returns the handle to the device context of the window GetTextMetrics is then called

to compute the row height of the default font loop is then entered in which

EnumerateFontFamilies is called for each family name that had been stored during

the enumeration process in OnCreateMain The callback process for this callback

sequence is somewhat more complex than the code weve seen so far

The PaintSingleFontFamily callback procedure used in the enumeration of

the individual fonts employs the iParam parameter to retrieve pointer to

PAINTFONTINFO structure defined in FontList.h This structure contains the current

vertical drawing position as well as the handle to the device context By using the

iParam pointer FontList avoids having to declare global variables to communicate

with the callback procedure

The callback procedure next creates the font using the pointer to LOGFONT

that was passed to the callback procedure The new font is then selected into the device

context while the handle to the previously selected font is retained in hOldFont The

point size of the enumerated font is computed using the inverse of the equation

mentioned earlier in the chapter on page 49 The callback procedure then produces

line of text showing the name of the font family along with the point size of this

particular font Instead of using DrawText the callback uses different text output

function

BOOL ExtlextOut HDC hdc mt mt UINT fuOptions

const RECT lprc LPCTSTR lpString

UINT cbCount const mt lpDx

61

Page 00084

Part Windows Programming Basics

The ExtTextOut function has few advantages over DrawText in this situation

First Ext TextOut tends to be faster for drawing single lines of text Second instead of

formatting the text inside rectangle and starting coordinates are passed speci

fying the upper left corner of the rectangle where the text will be drawn The rect

parameter thats passed is used as clipping rectangle or if the background mode is

opaque the area where the background color is drawn This rectangle parameter can

be NULL if you dont want any clipping or opaquing The next two parameters are

the text and the character count The last parameter ExtTextOut allows an applica

tion to specify the horizontal distance between adjacent character cells In our case

this parameter is set to NULL also which results in the default separation between

characters

Windows CE differs from other versions of Windows in having only these two

text drawing functions for displaying text Most of what you can do with the other

text functions typically used in other versions of Windows such as TextOut and

TabbedTextOut can be emulated using either DrawText or ExtTextOut This is one

of the areas in which Windows CE has broken with earlier versions of Windows

sacrificing backward compatibility to achieve smaller operating system

After displaying the text the function computes the height of the line of text

just drawn using the combination of tmHeight and tmExternalLeading that was pro
vided in the passed TEXTMETIUC structure The new font is then deselected using

second call to SelectObject this time passing the handle to the font that was the origi

nal selected font The new font is then deleted using DeleteObject Finally the call

back function returns nonzero value to indicate to Windows that it is okay to make

another call to the enumerate callback

Figure 2-5 shows the FontListing window Notice that the font names are dis

played in that font and that each font has specific set of available sizes

FamiI3 MS Sans Serif

MS Sans Serif Point9

MS Sans Serif Point1

Family Courier New
Courier New Point1O

Courier New Point12
Family Times New Roman

Times New Romais Point1O

Times NewRoman Point11

Times New Roman Poit2t14

Times New Roman Point15

Font

Figure 2-5 The Fontlist window shows some of the available fonts

for Handheld PC

62

Page 00085

Chapter Drawing on the Screen

Unfinished business

If you look closely at Figure 2-5 youll notice problem with the display The list of

fonts just runs off the bottom edge of the FontList window At this point in book

covering the desktop versions of Windows the author might add window style flag

for vertical scroll bar and small amount of code and magically the program would

have scrollable window But if you do that to Windows CE main window you

end up with the look shown in Figure 2-6

Family MS Sam Seril

MS Sam SeriF Point9

MS Sans Serif Point1

Family Courier New
Courier New Point1O

Courier New Point12
Family Times New Roman

Tinie New Roman Point1O

Times NewRoman Point11

Times New Roman Point14

Times New Roman Point15

Font
Listing

415PM

Figure 2-6 The FontList window with scroilbar attached to the main window

Notice how the scroll bar extends past the right side of the command bar up to

the top of the window The scroll bar should stop below the command bar and the

command bar should extend to the right edge of the window The problem is that

the command bar lies in the client area of the window and the default scroll bar style

provided by all Windows operating systems places the scroll bar outside the client

area in the nonclient space along the edge of the window The solution to this prob

lem involves creating child window inside our main window and letting it do the

scrolling But since Ill provide complete explanation of child windows in Chap
ter Ill hold off describing how to properly implement scroll bar until then

BITMAPS

Bitmaps are graphical objects that can be used to create draw manipulate and re

trieve images in device context Bitmaps are everywhere within Windows from the

little Windows logo on the Start button to the Close button on the command bar Think

of bitmap as picture composed of an array of pixels that can be painted onto the

screen Like any picture bitmap has height and width It also has methd for

determining what color or colors it uses Finally bitmap has an array of bits that

describe each pixel in the bitmap

63

Page 00086

Part Windows Prngramminç asics

Historically bitmaps under Windows have been divided into two types device

dependent bitmaps DDBs and device independent bitmaps DIBs DDBs are bitmaps

that are tied to the characteristics of specific DC and cant easily be rendered on

DCs with different characteristics DIBs on the other hand are independent of any

device and therefore must carry around enough information so that they can be ren

dered accurately on any device

Windows CE contains many of the bitmap functions available in other versions

of Windows The differences include new four-color bitmap format not supported

anywhere but on Windows CE and different method for manipulating DIBs

Device Dependent Bitmaps

device dependent bitmap can be created with this function

HBITMAP CreateBitmap mt nWidth mt nHeight UINT cPlanes

UINT cBitsPerPel CONST VOID lpvBits

The nWidth and nHeight parameters indicate the dimensions of the bitmap The

cPlanes parameter is an historical artifact from the days when display hardware imple

mented each color within pixel in different hardware plane For Windows CE
this parameter must be set to The cBitspperPel parameter indicates the number of

bits used to describe each pixel The number of colors is to the power of the

cBitspPerPel parameter Under Windows CE the allowable values are 16
and 24 As said the four-color bitmap is unique to Windows CE and isnt supported

under other Windows platforms including the Windows CE emulator that runs on

top of Windows NT
The final parameter is pointer to the bits of the bitmap Under Windows CE

the bits are always arranged in packed pixel format that is each pixel is stored as

series of bits within byte with the next pixel starting immediately after the first

The first pixel in the array of bits is the pixel located in the upper left corner of the

bitmap The bits continue across the top row of the bitmap then across the second

row and so on Each row of the bitmap must be double-word 4-byte aligned If

any pad bytes are required at the end of row to align the start of the next row they

should be set to Figure 2-7 illustrates this scheme showing 126-by-64 pixel bitmap

with bits per pixel

The function

HBITMAP CreateCompatibleBitmap HOC hdc mt nWidth mt nHeight

creates bitmap whose format is compatible with the device context passed to the

function So if the device context is four-color DC the resulting bitmap is four

64

Page 00087

Chapter Drawing on the Screen

color bitmap as well This function comes in handy when youre manipulating im

ages on the screen because it makes it easy to produce blank bitmap thats directly

color compatible with the screen

Byte

7936 63
______ _____

Figure 2-7 Layout of bytes within bitmap

Device Independent Bitmaps

The fundamental difference between DIBs and their device dependent cousins is that

the image stored in DIB comes with its own color information Almost every bitmap

file since Windows 3.0 which used the files with the BMP extension contains infor

mation that can be directly matched with the information needed to create DIB in

Windows

In the early days of Windows it was rite of passage for programmer to write

routine that manually read DIB file and converted the data to bitmap These

days the same arduous task can be accomplished with the following function unique

to Windows CE

HBITMAP SHLoadDIBitmap LPCTSTR szFileName

It loads bitmap directly from bitmap file and provides handle to the bitmap In

Windows NT and Windows 98 the same process can be accomplished with Loadlmage

using the LR_LOADFROMFILE flag but this flag isnt supported under the Windows CE

implementation of Loadlmage

65

Page 00088

Part Windows Ptogramming asics

DIB Sections

While Windows CE makes it easy to load bitmap file sometimes you must read what

is on the screen manipulate it and redraw the image back to the screen This is an
other case in which DIBs are better than DDBs While the bits of device dependent

bitmap are obtainable the format of the buffer is directly dependent on the screen

format By using DIB or more precisely something called DIB section your pro

gram can read the bitmap into buffer that has predefined format without worry

ing about the format of the display device

While Windows has number of DIB creation functions that have been added

over the years since Windows 3.0 Windows CE carries over only one DIB section

function from Windows NT and Windows 98 Here it is

HBITMAP CreateDlBSection HDC hdc const BITMAPINFO pbmi
UINT iUsage void ppvBits
HANDLE hSection DWORD dwOffset

Because its rather late addition to the Win32 API DIB sections might be new to

Windows programmers DIB Sections were invented to improve the performance of

applications on Windows NT that directly manipulated bitmaps In short DIB sec

tion allows programmer to select DIB in device context while still maintaining

direct access to the bits that compose the bitmap To achieve this DIB section as
sociates memory DC with buffer that also contains the bits of that DC Because

the image is mapped to DC other graphics calls can be made to modify the image
At the same time the raw bits of the DC in DIB format are available for direct ma
nipulation While the improved performance is all well and good on NT the relevance

to the Windows CE programmer is the ease in which an application can work with

bitmaps and manipulate their contents

The parameters of this call lead off with the pointer to BITMAPINFO struc

ture This structure describes the layout and color composition of device indepen

dent bitmap and is combination of BITMAPINFOHEAIER structure and an array

of RGBQUAD values that represent the palette of colors used by the bitmap

The BITMAPINFOHEADER structure is defined as the following

typedef struct tagBITMAPINFOHEADER

DWORD biSize

LONG biWidth

LONG biHeight

WORD biPlanes

WORD biBitCount

DWORD biConipression

DWORD biSizelmage

66

Page 00089

Chapter Drawing on the Screen

LONG biXPeisPerMeter

LOG biYPelsPerMeter

DWORD biCirUsed

DWORD biCirlmportant

BITMAPINFOHEADER

As you can see this structure contains much more information than just the pa

rameters passed to CreateBitmap The first field is the size of the structure and must

be filled in by the calling program to differentiate this structure from the similar

BITMAPCOREINFOHEADER structure thats holdover from the OS/2 prçsentation

manager The biWidth biHeight biPlanes and biB itCount fields are similr to their

like-named parameters to the CreateBitmap callwith one exception The sign of

the biHeight field specifies the organization of the bit array If biHeight is negative

the bit array is organized in top-down format as is CreateBitmap If biHeight is

positive the array is organized in bottom-up format in which the bottom row of

the bitmap is defined by the first bits in the array As with the CreateBitmap call the

biPlanes field must be set to

The biCompression field specifies the compression method used in the bit ar

ray Under Windows CE the only allowable setting for this field is BI_RGB indicat

ing that the buffer isnt compressed The biSizelmage parameter is used to indicate

the size of the bit array when used with BI_RGB however the biSizelmage field can

be set to meaning the array size is computed using the dimensions and bits per

pixel information provided in the BITMAPINFOHEADER structure

The biXPelsPerMeter and biYPelsPerMeter fields provide information to accu

rately scale the image For CreateDlBSection however these parameters can be set

to The biClrUsed parameter specifies the number of colors in the palette that are

actually used In 256-color image the palette will have 256 entries but thebitmap

itself might need only 100 or so distinct colors This field helps the palette manager

the part of the Windows that manages color matching to match the colors in the system

palette with the colors required by the bitmap The biClrlmportant field further de

fines the colors that are really required as opposed to those that are used For most

color bitmaps these two fields are set to indicating that all colors are used and that

all colors are important

As mentioned above an array of RGBQUAD structures immediately follows

the BITMAPINFOHEADER structure The RGBQUAD structure is defined as follows

typedef struct tagRGBOUAD rgbq

BYTE rgbBlue

BYTE rgbGreen

BYTE rgbRed

BYTE rgbReserved

RGBQUAD

67

Page 00090

Part Whidows Programmng Bascs

This structure allows for 256 shades of red green and blue While almost any

shade of color can be created using this structure the color thats actually rendered

on the device will of course be limited by what the device can display

The array of RGBQUAD structures taken as whole describe the palette of

the DIB The palette is the list of colors in the bitmap If bitmap has palette each

entry in the bitmap array contains not colors but an index into the palette that con

tains the color for that pixel While redundant on monochrome bitmap the palette

is quite important when rendering color bitmaps on color devices For example 256

color bitmap has one byte for each pixel but that byte points to 24 bit value that

represents equal parts red green and blue colors So while 256-color bitmap can

only contain 256 distinct colors each of those colors can be one of 16 million colors

rendered using the 24-bit palette entry For convenience in 32-bit world each pal

ette entry while containing only 24 bits of color information is padded out to 32-

bit wide entryhence the name of the data type RGBQUAD
Of the remaining four CreateDiBSection parameters only two are used under

Windows CE The iUsage parameter indicates how the colors in the palette are repre

sented For Windows CE this field must be set to DIB_RGB_COLORS The pp vB its

parameter is pointer to variable that receives the pointer to the bitmap bits that

compose the bitmap image The final two parameters hSection and dwOffset arent

supported under Windows CE and must be set to In other versions of Windows

they allow the bitmap bits to be specified by memory mapped file While Windows

CE does support memory mapped files they arent supported by CreateDlBSection

Drawing Bitmaps

Creating and loading bitmaps is all well and good but theres not much point to it

unless the bitmaps you create can be rendered on the screen Drawing bitmap isnt

as straightforward as you might think Before bitmap can be drawn in screen DC
it must be selected into DC and then copied over to the screen device context While

this process sounds convoluted there is rhyme to this reason

The process of selecting bitmap into device context is similar to selecting

logical font into device context it converts the ideal to the actual Just as Windows

finds the best possible match to requested font the bitmap selection process must

match the available colors of the device to the colors requested by bitmap Only

after this is done can the bitmap be rendered on the screen To help with this inter

mediate step Windows provides shadow type of DC memory device context

To create memory device context use this function

HOC CreateCompatibleDC HOC hdc

68

Page 00091

Chapter Drawing on the Screen

This function creates memory DC thats compatible with the current screen DC Once

created the source bitmap is selected into this memoryDC using the same SelectObject

function you used to select in logical font Finally the bitmapjcopied ft the

memory DC to the screen DC using one of the blit functions Bijo StretchBlt

The workhorse of bitmap functions is the following

BOOL BitBlt HDC hdcDest mt nXDest mt nYDest mt nWidth

mt nHeight HDC hdcSrc mt nXSrc mt nYSrc

DWORD dwRop

Fundamentally the BitBit function pronounced bit but is just fancy ilwmcopy

function but since it operates on device contexts not memory its something far more

special The first parameter is handle to the destination device contextthe DC to

which the bitmap is to be copied The next four parameters specify the location and

size of the destination rectangle where the bitmap is to end up The next three pa
rameters specify the handle to the source device context and the location within that

DC of the upper left corner of the source image

The final parameter dwRop specifies how the image is to be copied from the

source to the destination device contexts The ROP code defines how the source bitmap

and the current destination are combined to produce the final image The ROP code

for simple copy of the source image is SRCCOPY The ROP code for combining the

source image with the current destination is SRCPAINT Copying logically inverted

image essentially negative of the source image is accomplished using SRCINVERT

Some ROP codes also combine the currently selected brush into the equation to

compute the resulting image large number of ROP codes are available too many
for me to cover here For complete list check out the Windows CE programming

documentation

The following code fragment sums up how to paint bitmap

II Create DC that matches the device

hdcMem CreateCompatibleDC hdc

II Select the bitmap into the compatible device context

hOldSel SelectObject hdcMem hBitmap

II Get the bitmap dimensions from the bitmap

GetObject hBitmap sizeof BITMAP bmp
II Copy the bitmap image from the memory DC to the screen DC
BitBit hdc rect.left rect.top bmp.bmWidth bmp.bmHeight

hdcMem SRCCOPY
continued

69

Page 00092

Part Whidows Programming asics

II Restore original bitmap selection and destroy the memory DC

SelectObject hdcMem hOldSel
DeleteDC hdcMem

The memory device context is created and the bitmap to be painted is selected

into that DC Since you might not have stored the dimensions of the bitmap to be

painted the routine makes call to GetObject GetObject returns information about

graphics object in this case bitmap Information about fonts and other graphic

objects can be queried using this useful function Next BitBit is used to copy the bitmap

into the screen DC To clean up the bitmap is deselected from the memory device

context and the memory DC is deleted using DeleteDC Dont confuse DeleteDC with

ReleaseDC which is used to free display DC DeleteDC should be paired only with

CreateCompatibleDC and ReleaseDC should be paired only with GetDC or

Get WindowDC
Instead of merely copying the bitmap stretch or shrink it using this function

BOOL StretchBlt HDC hdcoest mt nXOriginDest mt nvOriginDest

mt nWidthDest mt nHeightDest HDC hdcSrc

mt nXOriginSrc mt nYOrigmnSrc mt nWidthSrc

mt nHeightSrc DWORD dwRop

The parameters in StretchBlt are the same as those used in BitBit with the ex

ception that now the width and height of the source image can be specified Here

again the ROP codes specify how the source and destination are combined to pro

duce the final image

Windows CE 2.0 added new and quite handy bitmap function It is

BOOL Transparentlniage HDC hdcDest LONG DstX LONG DstY LONG DstCx

LONG DstCy HANDLE hSrc LONG SrcX LONG SrcY

LONG SrcCx LONG SrcCy COLORREF TransparentColor

This function is similar to StretchBlt with two very important exceptions First you

can specify color in the bitmap to be the transparent color When the bitmap is copied

to the destination the pixels in the bitmap that are the transparent color are not cop
ied The second difference is that the hSrc parameter can either be device context

or handle to bitmap which allows you to bypass the requirement to select the

source image into device context before rendering it on the screen

As in other versions of Windows Windows CE supports two other blit func

tions PcitBlt and MaskBlt The PatBit function combines the currently selected brush

with the current image in the destination DC to produce the resulting image cover

brushes later in this chapter The MaskBlt function is similar to BitBit but encompasses

masking image that provides the ability to draw only portion of the source image

onto the destination DC

70

Page 00093

Chapter Drawing on the Screen

LINES AND SHAPES
One of the areas in which Windows CE provides substantially less functionality than

other versions of Windows is in the primitive line-drawing and shape-drawing func
tions Gone are the Chord Arc and Pie functions that created complex circular shapes
Gone too is the concept of current point Other versions of Windows track current

point which is then used as the starting point for the next drawing command So

drawing series of connected lines and curves by calling MoveTo to move the cur

rent point followed by calls to LineTo ArcTo PolyBezierTo and so forth is np longer

possible But even with the loss of number of graphic functions Windows CE still

provides the essential functions necessary to draw lines and shapes

Lines

Drawing one or more lines is as simple as call to

BOOL Polyline HDC hdc const POINT 1ppt mt cPoints

The second parameter is pointer to an array of POINT structures that are defined as

the following

typedef struct tagPOINT

LONG

LONG

POINT

Each and combination describes pixel from the upper left corner of the

screen The third parameter is the number of point structures in the array So to draw

line from to 50 100 the code would look like this

POINTS pts

pts
pts
pts 50
pts 100
PolyLine hdc pts

Just as in the early text examples this code fragment makes number of as

sumptions about the default state of the device context Fofexample just what does

the line drawn between 00 and 50 100 look like What is its width and its color

and is it solid line All versions of Windows including Windows CE allow these

parameters to be specified

71

Page 00094

Part Whidows Programmhg ascs

The tool for specifying the appearance of lines and the outline of shapes is called

appropriately enough pen pen is another GDI object and like the others de

scribed in this chapter is created selected into device context used deselected

and then destroyed Among other stock GDI objects stock pens can be retrieved using

the following code

HGDIOBJ GetStockObject mt fnObject

All versions of Windows provide three stock pens each pixel wide The stock

pens come in colors white black and null Using GetStockObject the call to re

trieve one of those pens employs the parameters WHITE_PEN BLACK_PEN and

NULL_PEN respectively Unlike standard graphic objects created by applications stock

objects should never be deleted by the application Instead the application should

simply deselect the pen from the device context when its no longer needed

To create custom pen under Windows two functions are available The first

is this

HPEN CreatePen mt fnPenStyle mt nWidth COLORREF crColor

The fnPenStyle parameter specifies the appearance of the line to be drawn For ex

ample the PS_DASH flag can be used to create dashed line The Width parameter

specifies the width of the pen Finally the crColor parameter specifies the color of

the pen The crColor parameter is typed as COLORREF which under Windows CE

2.0 is an RGB value The RGB macro is as follows

COLORREF RGB BYTE bRed BYTE bGreen BYTE bBlue

So to create solid red pen the code would look like this

hPen CreatePen Ps_SOLID RGB Oxff

The other pen creation function is the following

HPEN CreatePenlndirect const LOGPEN lplgpn

where the logical pen structure LOGPEN is defined as

typedef struct tagLOGPEN

UINT lopnStyle

POINT lopnWidth

COLORREF lopnColor

LOGPEN

Createpenlndirect provides the same parameters to Windows in different form To

create the same 1-pixel-wide red pen with CreatePenlndirect the code would look

like this

72

Page 00095

Chapter Drawing on the Screen

LOGPEN ip
HPEN hPen

lp.lopnStyle PS_SOLID

lp.lopnWidth.x

lp.lopnWidth.y

lp.lopnColor RGB Oxff

hPen CreatePenlndirect lp
Windows CE devices dont support complex pens such as wide more than

one pixel wide dashed lines To determine whats supported our old friend

GetDeviceCaps comes into play taking LINECAPS as the second parameter Refer to

the Windows CE documentation for the different flags returned by this call

Shapes

Lines are useful but Windows also provides functions to draw shapes both filled and

unfilled Here Windows CE does good job supporting most of the functions famil

iar to Windows programmers The Rectangle RoundRect Ellipse and Polygon func

tions are all supported

Brushes
Before can talk about shapes such as rectangles and ellipses need to describe another

GDI object that Ive only mentioned briefly before now called brush brush is

small 8-by-8 bitmap used to fill shapes Its also used by Windows to fill the back

ground of client window Windows CE provides number of stock brushes and

also the ability to create brush from an application-defined pattern number of

stock brushes each solid color can be retrieved using GetStockObject Among the

brushes available is one for each of the grays of four grayscale display white light

gray dark gray and black

To create solid color brushes the function to call is the following

HBRUSH CreateSolidBrush COLORREF crColor

This function isnt really necessary when youre writing an application for four-color

Windows CE device because those four solid brushes can be retrieved with the

GetStockObject call For higher color devices however the crColor parameter can be

generated using the RGB macro

To create custom pattern brushes Windows CE supports the Win32 function

HBRIJSH CreateDlBPatternBrushPt const void lpPackedDlB
UINT iUsage

73

Page 00096

Part Wndows ProgvammHng Bascs

The first parameter to this function is pointer to DIB inpacked format This means

that the pointer points to buffer that contains BITMAPINFO structure immediately

followed by the bits in the bitmap Remember that BITMAPINFO structure is ac

tually BITMAPINFOETEADER structure followed by palette in RGBQUAD for

mat so the buffer contains everything necessary to create DIBthat is bitmap

information palette and the bits to the bitmap The second parameter must be

set to DIB_RGB_COLORS for Windows CE applications This setting indicates that

the palette specified contains RGBQUAD values in each entry The complimentary

flag DIB_PAL_COLORS used in other versions of Windows isnt supported in

Windows CE
The CreateDlBPatternBrushPt function is more important under Windows CE

because the hatched brushes supplied under other versions of Windows by the

CreateHachBrusb function arent supported under Windows CE Hatched brushes

are brushes composed of any combination of horizontal vertical or diagonal lines

Ironically theyre particularly useful with grayscale displays because you can use them

to accentuate different areas of chart with different hatch patterns These brushes

however can be reproduced by using CreateDlBPatternBrushPt and the proper

bitmap patterns The Shapes code example later in the chapter demonstrates method

for creating hatched brushes under Windows CE

By default the brush origin will be in the upper left corner of the window This

isnt always what you want Take for example bar graph where the bar filled with

hatched brush fills rectangle from 100 100 to 125 220 Since this rectangle

isnt divisible by brushes being by pixels square the upper left corner of the

bar will be filled with partial brush that might not look pleasing to the eye

To avoid this situation you can move the origin of the brush so that each shape

can be drawn with the brush aligned correctly in the corner of the shape to be filled

The function available for this remedy is the following

BOOL SetBrushOrgEx HDC hdc mt nXOrg mt nYOrg LPPOINT lppt

The nXOrg and nYOrg parameters allow the origin to be set between and so that

you can position the origin anywhere in the 8-by-8 space of the brush The lppt pa

rameter is filled with the previous origin of the brush so that you can restore the pre

vious origin if necessary

Rectangles

The rectangle function draws either filled or hollow rectangle the function is de

fined as the following

BOOL Rectangle HDC hdc mt nLeftRect mt nlopRect

mt nRightRect mt nBottomRect

74

Page 00097

Chapter Drawing on the Screen

The function uses the currently selected pen to draw the outline of the rectangle and
the current brush to fill the interior To draw hollow rectangle select the null brush

into the device context before calling Rectangle

The actual pixels drawn for the border are important to understand Say were
drawing 5-by-7 rectangle at The function call would look like this

Rectangle

Assuming that the selected pen was pixel wide the resulting rectangle would look

like the one shown in Figure 2-8

0123456

2U
3U
4U..

Figure 2-8 Expanded view of rectangle drawn with the Rectanglefunction

Notice how the right edge of the drawn rectangle is actually drawn in column

and that the bottom edge is drawn on row This is standard Windows practice

The rectangle is drawn inside the right and bottom boundary specified for the Rect

angle function If the selected pen is wider than one pixel the right and bottom edges

are drawn with the pen centered on the bounding rectangle Other versions of Win
dows support the PS_INSIDEFRAME pen style that forces the rectangle to be drawn

inside the frame regardless of the pen width

Circles and ellipses

Circles and ellipses can be drawn with this function

BOOL Ellipse HDC hdc mt nLeftRect mt nTopRect
mt nRightRect mt nBottomRect

The ellipse is drawn using the rectangle passed as bounding rectangle as shown in

Figure 2-9 As with the Rectangle function while the interior of the ellipse is filled

with the current brush the outline is drawn with the current pen

75

Page 00098

Part Wkidows Programming Basics

nLeftRect nropRect nRightRect-1 nTopRect

fiLeltflect nBottomRect-1 nRightRect-1 nflottomRect-1

Figure 2-9 The ellipse is drawn within the bounding rectangle passed to the Ellipse

function

Round rectangles

The RoundRect function

BOOL RoundRect HOC hdc mt nLeftRect mt nlopRect

mt nRightRect mt nBottomRect

mt nWidth mt nHeight

draws rectangle with rounded corners The roundedness of the corners is defined

by the last two parameters that specify the width and height of the ellipse used to

round the corners as shown in Figure 2-10 Specifying the ellipse height and width

enables your program to draw identically symmetrical rounded corners Shortening

the ellipse height flattens out the sides of the rectangle while shortening the width

of the ellipse flattens the top and bottom of the rectangle

nLeftRect nTopRect

nHeIhj
nRiglitRect nBottomRect

Figure 2-10 The height and width of the ellipse define the round corners of the

rectangle drawn by RoundRect

Polygons

Finally the Polygon function

BOOL Polygon HOC hdc const POINT lpPomnts mt nCount

76

Page 00099

Chapter Drawing on the Screen

draws many-sided shape The second parameter is pointer to an array of point

structures defining the points that delineate the polygon The resulting shape has one

more side than the number of points because the function automatically completes

the last line of the polygon by connecting the last point with the first Under Win
clows CE 1.0 this function is limited to producing convex polygons

The Shapes Example Program

The Shapes program shown in Figure 2-li demonstrates number of these func

tions In Shapes five figures are drawn each filled with different brush

Shapes.h/__r
/1 Header file

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

II

/1 Returns number of elements

define dimx sizeofx sizeofx

II

II Generic defines and data types

/1

struct decodeUlNT II Structure associates

UINT Code II messages

II with function

LRESULT FxnHWND UINT WPARAM LPARAM

struct decodeCMD 1/ Structure associates

UINT Code II menu lOs with

LRESULT FxnHWND WORD HWND WORD II function

II

II Generic defines used by application

define IDC.CMDBAR 1/ Command bar ID

II

II Defines used by MyCreateHatchedBrush

Figure 211 71e Shapes pigram Continued

77

Page 00100

Part Whidows Pvogrammhig Bscs

Figure 2-11 continued

1IIIijrpcrn1IviI

Qj

LIi4
4_ 4I

nu uwi

flpjIz fjgpp

78

Page 00101

Chapter Drawing on the Screen

/1

II Global data

II

const TCHAR szAppName TEXT Shapes
HINSTANCE hlnst II Program instance handle

II Message dispatch table for MainWindowProc

const struct decodeUlNT MainMessagesfl

WM_CREATE DoCreateMain

wM_PArNT DoPaintMain

WLDESTROY DoDestroyMain

1/

II Program entry point

int WINAPI WinMain HINSTANCE hlnstance HINSTANCE hPrevlnstance

LPWSTR lpCmdLine mt nCmdShow

MSG msg
mt rc

HWND hwndMain

II Initialize application

rc InitApp hlnstance
if Crc return rc

II Initialize this instance

hwndMain Initlnstancehlnstance lpCmdLine nCmdShow
if hwndMain

return OxlO

II Application message loop

while GetMessage msg NULL

TranslateMessage msg
DispatchMessage msg

1/ Instance cleanup

return Termlnstance hinstance rnsg.wParam

II

II InitApp Application initialization

II

conli

79

Page 00102

Part Wndows Programmhtg Bascs

Figure 2-11 continued

$II1

__I4pc

4LI1p
np Rc %d1r$ iL

80

Page 00103

Chapter Drawing on the Screen

ShowWindow hWnd nCmdShow
UpdateWindow hWnd
return hWnd

1/

1/ Termlnstance Program cleanup

int Terminstance HINSTANCE hlnstance mt nDefRC

return nDefRC

II Message handling procedures for MainWindow

II

1/ MainWndProc Callback function for application window

/1

LRESULT CALLBACK MainWndProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM Param
INT

1/ Search message list to see if we need to handle this

II message If in list call procedure
II

for dimMainMessages
if wMsg MainMessages

return MainMessagesCi.FxnhWnd wMsg wParam lParam

return DefwindowProc hWnd wMsg wParam iParem

II

II DoCreateMain Process WM._CREATE message for window

II

LRESULT DoCreateMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

HWND hwndCB

II Create command bar
hwndCB CommandBarCreate hlnst hWnd IDC_CMDBAR

II Add exit button to command bar
CommandBar_AddAdornments hwndCB
return

continued

81

Page 00104

Part Windows Programmhig Bcs

Figure 2-11 continued

f4aI4TP4 iissiiNdf9
fti

k4NI I_ bIiiIi 1PE$iiIt
pp

82

Page 00105

Chapter Drawing on the Screen

LRESULT DoPaintMain HWND hWnd UINT wMsg WPARAF4 wParam

LPARAM lParam

PAINTSTRUCT ps
RECT rect

HOC hdc
POINT ptArray
HBRUSH hBr hOldBr

TCHAR szlext128

II Adjust the size of the client rect to take into account

II the command bar height

GetClientRect hWnd rect
rect.top ComniandBar_Height GetOlgitem hWnd IOC_Ct1DBAR

hdc BeginPaint hWnd ps
II Draw rectangle

hBr GetStockObject BLACK_BRUSH
hOldBr SelectObject hdc hOr
Rectangle hdc 50 50 125 150
SelectObject hdc hOldBr

II Draw ellipse

h8r GetStockObject DKGRAY_BRUSH
hOldBr SelectObject hdc hBr
Ellipse hdc 150 50 225 150
SelectObject hdc hOldBr

II Draw round rectangle

hBr GetStockObject LIGRAY_BRUSH
hOld8r SelectObject hdc hBr
RoundRect hdc 250 50 325 150 30 30
SelectObject hdc hOldBr

II Draw hexagon using Polygon

hBr GetStockObject WHITE_BRUSH
hOld8r SelectObject hdc hBr
ptArray 387
ptArray0.y 50
ptArray1.x 350
ptArray 75
ptArray 350
ptArray 125

continued

83

Page 00106

Parti

Figure 211 colIjzlccI

ptArray 387

ptArray 150

ptArray 425

ptArrayf4.y 125

ptArray53.x 425

ptArray /5

Polygon ay

Selec

hBr S_DIAGCRQSS ROB

hBr
425 210

Br

OPAQUE
szlext TEXT Opaque background

hdc 60 175 NULL
szlext lstrlen szlext NULL

SetBkMode hdc TRANSPARENT
lstrcpy szText TEXT Transparent background
ExtTextOut hdc 250 175 NULL

szText istrien szText NULL

EndPaint hWnd ps
return

1/

// DoDestroyMain Process WM_DESTROY message for window

II

LRESULT 000estroyMain HWND hWnd UJNT wMsg WPARAM wParam

LPARAM iParam

PostQuitMessage

return

In Shapes OuPaint11aiu draws the five figures using the different functions

discussed earlier For each of the shapes clifterent brush is created selected into

the device context and after the shape has been drawn deselected from the DC
The first four shapes are filled with solid grayscale shades ranging from black to white

These solid brushes are loaded with the GetstockObject function The final shape is

84

Page 00107

Chapter Drawing on the Screen

filled with brush created with the CreateDlBPatternBrushPt The creation of this

brush is segregated into function called MyCreateHatchB rush that mimics the Create

HatchB rush function not available under Windows CE To create the hatched brushes

black and white bitmap is built by filling in bitmap structure and setting the bits

to form the hatch patterns The bitmap itself is the 8-by-8 bitmap specified by Create

DlBPatternBrushpt Since the bitmap is monochrome its total size including the

palette and header is only around 100 bytes Notice however that since each scan

line of bitmap must be double-word aligned the last three bytes of each one-byte

scan line are left unused

Finally the program completes the painting by writing two lines of text into the

lower rectangle The text further demonstrate the difference between the opaque and

transparent drawing modes of the system In this case the opaque mode of drawing

the text might be better match for the situation because the hatched lines tend to

obscure letters drawn in transparent mode view of the Shapes window is shown

in Figure 2-12

ebackroun

Shapes 641 AM

Figure 2-12 The Shapes example demonstrates drawing different filled shapes

To keep things simple the Shapes example assumes that its running on at least

480-pixel-wide display To properly display the same shapes on Palm-size PC

requires few minor changes to the coordinates used to position the shapes displayed

have barely scratched the surface of the abilities of the Windows CE GDI por
tion of GWE The goal of this chapter wasnt to provide total presentation of all as

pects of GDI programming Instead wanted to demonstrate the methods available

for basic drawing and text support under Windows CE In other chapters in the book

extend some of the techniques touched on in this chapter talk about these new

85

Page 00108

Part Windows Programming Bascs

techniques and newly introduced functions at the point generally where demonstrate

how to use them in code To further your knowledge recommend Programming

Windows95 by Charles Petzold Microsoft Press 1996 as the best source for learning

about the Windows GDI

Now that weve looked at output its time to turn our attention to the input side

of the system the keyboard and touch panel

86

Page 00109

Chapter

Input Keyboard

Stylus and Menus

Traditionally Microsoft Windows platforms have allowed users two methods of in

put the keyboard and the mouse Windows CE continues this tradition but replaces

the mouse with stylus and touch screen Programmatically the change is minor

because the messages from the stylus are mapped to the mouse messages used in

other versions of Windows more subtle but also more important change from ver

sions of Windows that run on PCs is that system running Windows CE might have

either tiny keyboard or no keyboard at all This makes the stylus input that much

more important for Windows CE systems

THE KEYBOARD
While keyboards play lesser role in Windows CE theyre still the best means of

entering large volumes of information Even on systems without physical keyboard

such as the Palm-size PC soft keyboardscontrols that simulate keyboards on touch

screenwill most likely be available to the user Given this proper handling of key-

board input is critical to all but the most specialized of Windows CE applications While

Ill talk at length about soft keyboards later in the book one point should be made

here To the application input from soft keyboard is no different from input frQm

traditional hard keyboard

87

Page 00110

Part Wbidows Programmhig Bascs

Input Focus

Under Windows operating systems only one window at time has the input focus

The focus window receives all keyboard input until it loses focus to another window
The system assigns the keyboard focus using number of rules but most often the

focus window is the current active window The active window youll recall is the

top-level window the one with which the user is currently interacting With rare

exceptions the active window also sits at the top of the Z-order that is its drawn on

top of all other windows in the system The user can change the active window by

pressing Alt-Esc to switch between programs or by tapping on another top-level

windows button on the task bar The focus window is either the active window or

one of its child windows

Under Windows program can determine which window has the input focus

by calling

HWND GetFocus void

The focus can be changed to another window by calling

HWND SetFocus HWND hWnd

Under Windows CE the target window of SetFocus is limited The window being given
the focus by SetFocus must have been created by the thread calling SetFocus An

exception to this rule occurs if the window losing focus is related to the window gaining
focus by parent/child or sibling relationship in this case the focus can be changed
even if the windows were created by different threads

When window loses focus Windows sends WM_KJLLFOCUS message to

that window informing it of its new state The wParam parameter contains the handle

of the window that will be gaining the focus The window
gaining focus receives

WM_SETFOCUS message The wParam parameter of the WM_SETFOCUS message
contains the handle of the window losing focus

Now for bit of motherhood Programs shouldnt change the focus window
without some input from the user Otherwise the user can easily become confused

proper use of SetFocus is to set the input focus to child window more than likely

control contained in the active window In this case window would respond to

the WM_SETFOCUS message by calling SetFocus with the handle of child window
contained in the window to which the program wants to direct keyboard messages

Keyboard Messages

Windows CE practices the same keyboard message processing as its larger desktop
relations with few small exceptions which cover shortly When key is pressed
Windows sends series of messages to the focus window typically beginning with

WMKEYDOWN message If the key pressed represents character such as letter or

88

Page 00111

Chapter Input Keyboard Stylus and Menus

number Windows follows the WM_KEYDOWN with WM_CHAR message Some

keys such as function keys and cursor keys dont represent characters so WM_CHAR

messages arent sent in response to those keys For those keys program must

interpret the WM_KEYDOWN message to know when the keys are pressed When

the key is released Windows sends WMJEYUP message If key is held down

long enough for the auto-repeat feature to kick in multiple WMKEYDOWN and

WM_CHAR messages are sent for each auto-repeat until the key is released when

the final WM_KEYUP message is sent used the word typically to qualify this

process because if the Alt key is being held when another key is pressed the mes

sages Ive just described are replaced by WM_SYSKEYDOWN WM_SYSCHAR and

WM_SYSKEYUP messages

For all of these messages the generic parameters wParam and iParam are used

in mostly the same manner For WM_KEYxx and WM_SYSKEYxx messages the

wParam value contains the virtual key value indicating the key being pressed All

versions of Windows provide level of indirection between the keyboard hardware

and applications by translating the scan codes returned by the keyboard into virtual

key values You see list of the VK_xx values and their associated keys in Figure 3-1

While the table of virtual keys is extensive not all keys listed in the table are present

on Windows CE devices For example function keys mainstay on PC keyboards

and listed in the virtual key table arent present on most Windows CE keyboards In

fact number of keys on PC keyboard are left off the space-constrained Windows CE

keyboards short list of the keys not typically used on Windows CE devices is pre

sented in Figure 3-2 on page 92 This list is meant to inform you that these keys might

not exist not to indicate that the keys never exist on Windows CE keyboards

VIRTUAL-KEY CODES

Constant Value Keyboard Equivalent

VK_LBUYFON 01 Stylus tap

VKRBUTFON 02 Mouse right button

VK_CANCEL 03 Control-break processing

VKRBUYFON 04 Mouse middle button1

-- 0507 Undefined

VK_BACK 08 Backspace key

VKTAB 09 Tab key

-- OAOB Undefined

VX_CLEAR OC Clear key

Figure 3-1 Virtual key values in relation to the keys on the keyboard continued

Not all keys will be on all keyboards

89

Page 00112

Part Windows Programmng Basics

Figure 3-1 continued

Constant Value Keyboard Equivalent

VK_RETURN OD Enter key

-- OEOF Undefined

VK_SHIFT 10 Shift key

VK_CONTROL 11 Ctrl key

VK_MENU 12 Alt key

VK_CAPITAL 14 Caps Lock key

-- 1519 Reserved for Kanji systems

-- 1A Undefined

VK_ESCAPE lB Escape key

-- iCiF Reserved for Kanji systems

VK_SPACE 20 Spacebar

VK_PRIOR 21 Page Up key

VK_NEXT 22 Page Down key

VK_END 23 End key

VK_HOME 24 Home key

VK_LEFT 25 Left Arrow key

VKJP 26 Up Arrow key

VK_RIGHT 27 Right Arrow key

VKDOWN 28 Down Arrow key

VK_SELECT 29 Select key

-- 2A Original equipment manufacturer OEM
specific

VK.EXECUTE 2B Execute key

VKSNAPSHOT 2C Print Screen key for Windows 3.0 and later

VK_INSERT 2D Insert

VKDELETE 2E

VK_HELP 2F Help key

VKOVK_9 3039 09 keys

-- 3A40 Undefined

VK_AVXZ 415A through keys

VK_LWIN SB Windows key

VK_RWIN 5C Windows key

90

Page 00113

Chapter Input Keyboard Stylus and Menus

Constant Value Keyboard Equivalent

VK_APPS 5D

-- 5E5F Undefined

VK_NUMPADO9 6069 Numeric keypad 09 keys

VK_MULTIPLY 6A Numeric keypad Asterisk key

VKADD 6B Numeric keypad Plus sign key

VK_SEPARATOR 6C Separator key

VK_SUBTRACT 6D Numeric keypad Minus sign key

VK_DECIMAL 6E Numeric keypad Period key

VK_DIVIDE 6F Numeric keypad Slash mark key

VK_F1VK_F24 7087 FlF24

-- 888F Unassigned

VK_NUMLOCK 90 Num Lock

YK_SCROLL 91 Scroll Lock

-- 929F Unassigned

VKLSHIFT A0 Left Shift

VK_RSHIFT Al Right Shift

VK_LCONTROL A2 Left Control

\JK_RCONTROL A3 Right Control

VK_LMENU A4 Left A1t

VKRMENU A5 Right Alt

-- A6B9 Unassigned

VKSEMICOLON BA key

VK_EQUAL BB key

VKCOMMA BC key

VK_HYPHEN BD key

VKPERIOD BE key

VKSLASH BF key

VK_BACKQUOTE CO key

-- CiDA Unassigned

VK_LBRACKET DB

VKBACKSLASH DC key

VKRBRACKET DD key

YK_APOSTROPHE DE key

continued

91

Page 00114

Part Windows Programming Basics

Figure 3-1 continued

Constant Value Keyboard Equivalent

VK_OFF DF Power button

-- E5 Unassigned

-- E6 OEM-specific

-- E7E8 Unassigned

-- E9F5 OEM-specific

VK_ATIFN F6

VK_CRSEL F7

VK_EXSEL F8

VK_EREOF F9

VK_PLAY FA

VK_ZOOM FB

VK_NONAME FC

VK_PA1 FD

VK_OEM.CLEAR FE

Many Windows CE Systems dont have this key

On some Windows CE systems Delete is simulated with Shift-Backspace

These constants can be used only with GetKeyState and GetAsyncKeyState

Mouse right and middle buttons are defined but are relevant only on Windows CE system

equipped with mouse

For the WM_CHAR and WM_SYSCHAR messages the wParam value contains

the Unicode character represented by the key Most often an application can simply

look for WM_CHAR messages and ignore WM_KEYDOWN and WM_KEYUP The

WM_CHAR message allows for second level of abstraction so that the application

doesnt have to worry about the up or down state of the keys and can concentrate on

the characters being entered by means of the keyboard

The iParam value of any of these keyboard messages contains further informa

tion about the pressed key The format of the iParam parameter is shown in Figure 3-3

on the following page

InsertDelete Many Windows CE keyboards use Shift-Backspace for this function

Num LockPause

Print Screen

Scroll Lock

Function Keys

Windows Context Menu key

Figure 3-2 Keys on PC keyboard that are rarely on Windows CE keyboard

92

Page 00115

Chapter Input Keyboard Stylus and Menus

The low word bits through 15 contains the repeat count of the key Often

keys on Windows CE device can be pressed faster than Windows CE can send

messages to the focus application In these cases the repeat count contains the num
ber of times the key has been pressed Bit 29 contains the context flag If the Alt key

was being held down when the key was pressed this bit will be set Bit 30 contains

the previous key state If the key was previously down this bit is set otherwise its

Bit 30 can be used to determine whether the key message is the result of an auto-

repeat sequence Bit 31 indicates the transition state If the key is in transition from

down to up Bit 31 is set The Reserved field bits 16 through 28 is used in the desk

top versions of Windows to indicate the key scan code In almost all cases Windows

CE doesnt support this field However on some of the newer Windows CE platforms

where scan codes are necessary this field does contain the scan code You shouldnt

plan on the scan code field being available unless you know its supported on your

specific platform

I31l30I29I21
72025 24 23 22 21 20 19 18 17 b61l5l14113l12lh1 1

1
0

1

11

Reserved Repeat count

Context flag set to ii Alt key down

Previous key state set to lit key previously down

Transition state set to if key is being released

Figure 3-3 The layout of the iParam value for key messages

One additional keyboard message WM_DEADCHAR can sometimes come into

play You send it when the pressed key represents dead character such as an um
laut that you want to combine with character to create different character In this

case the WM_DEADCHAR message can be used to prevent the text entry point the

caret from advancing to the next space until the second key is pressed so that you

can complete the combined character

The WM_DEADCHAR message has always been present under Windows but

under Windows CE it takes on somewhat larger role With the internationalization

of small consumer devices that run Windows CE programmers should plan for and

if necessary use the WMDEADCHAR message that is so often necessary in foreign

language systems

Keyboard Functions

You will find useful few other keyboard-state-determining functions for Windows

applications Among the keyboard functions two are closely related but often con

fused GetKeyState and GetAsyncKeyState

93

Page 00116

Part Whidows Programmhig scs

GetKeyState prototyped as

SHORT GetKeyState mt nvirtKey

returns the up/down state of the shift keys Ctrl Alt and Shift and indicates whether

any of these keys is in toggled state If the keyboard has two keys with the same

functionfor example two Shift keys one on each side of the keyboardthis

function can also be used to differentiate which of them is being pressed Most key

boards have left and right Shift keys and some include left and right Ctrl and Alt keys
You pass to the function the virtual key code for the key being queried If the

high bit of the return value is set the key is down If the least significant bit of the

return value is set the key is in toggled state that is it has been pressed an odd

number of times since the system was started The state returned is the state at the

time the most recent message was read from the message queue which isnt neces

sarily the real-time state of the key An interesting aside notice that the virtual key

label for the Alt key is VK_MENU which relates to the windows convention that the

Alt-shift key combination works in concert with other keys to access various menus

from the keyboard

Note that the GetKeyState function is limited under Windows CE to querying

the state of the shift keys Under other versions of Windows GetKeyState can deter

mine the state of every key on the keyboard

To determine the real-time state of key use

SHORT GetAsyncKeyState mt vKey

As with GetKeyState you pass to this function the virtual key code for the key being

queried The GetAsyncKeyState function returns value subtly different from the one

returned by GetKeyState As with the GetKeyState function the high bit of the return

value is set while the key is being pressed However the least significant bit is then

set if the key was pressed after previous call to GetAsyncKeyState Like GetKeyState

the GetAsyncKeyState function can distinguish the left and right Shift Ctrl and Alt

keys In addition by passing the VK_LBUYFON virtual key value GetAsyncKeyState

determines whether the stylus is currently touching the screen

An application can simulate keystroke using the keybd_event function

VOID keybd_event BYTE bVk BYTE bScan DWORD dwFlags

DWORD dwExtralnfo

The first parameter is the virtual key code of the key to simulate The bScan code

should be set to NULL under Windows CE The dwFlags parameter can have two

possible flags KEYEVENTF_KEYUP indicates that the call is to emulate key up
event while KEYEVENTF_SILENT indicates that the simulated key press wont cause

the standard keyboard click that you normally hear when you press key So to

fully simulate key press keybd_event should be called twice once without

94

Page 00117

Chapter Input Keyboard Stylus and Menus

KEYEVENTF_KEYUP to simulate key down then once again this time with

KEYEVENTF_KEYUP to simulate the key release

One final keyboard function Map VirtualKey translates virtual key codes to

characters Map VirtualKey in Windows CE doesnt translate keyboard scan codes to

and from virtual key codes although it does so in other versions of Windows The

prototype of the function is the following

UINI MapVirtualKeyUINT uCode UINT uMaplype

Under Windows CE the first parameter is the virtual key code to be translated while

the second parameter uMap Type must be set to

Testing for the keyboard

To determine whether keyboard is even present in the system first call GetVersionEx

to find out which version of Windows CE is running All systems that run Windows

CE 1.0 have keyboard When running under Windows CE 2.0 or later call

DWORD GetKeyboardStatus VOID

This function returns the KBDI_KEYBOARD_PRESENT flag if hardware keyboard

is present in the system This function also returns KBDI_KEYBOARD_ENABLED

flag if the keyboard is enabled To disable the keyboard call can be made to

BOOL EnableHardwareKeyboard BOOL bEnable

with the bEnable flag set to FALSE You might want to disable the keyboard in sys

tem for which the keyboard folds around behind the screen in such system user

could accidentally hit keys while using the stylus This function is also new to Win
dows CE 2.0

If you build an application to run under Windows CE 1.0 youll need to explic

itly load both GetKeyboardStatus and EnableHardwareKeyboard using LoadLibrary

and GetProcAddress to determine the address of these 2.0-specific functions If call

is made directly to 2.0 function from an application that application is incompat

ible with Windows CE 1.0 and wont load

The KeyTrac Example Program

The following example program KeyTrac displays the sequence of keyboard mes

sages Programmatically KeyTrac isnt much of departure from the earlier programs

in the book The difference is that the keyboard messages Ive been describing are

all trapped and recorded in an array thats then displayed during the WM_PAINT

message For each keyboard message the message name is recorded along with the

wParam and iParam values and set of flags indicating the state of the shift keys

The key messages are recorded in an array because these messages can occur faster

than the redraw can occur Figure 3-4 shows the KeyTrac window after few keys

have been pressed

95

Page 00118

Part Whidows Programming Basics

cU
WM_KEY1JP wP00000041 IPc000000l shift

WM_CHAR wP00000061 IP00000001 shift

WM_KEDOWN wP00000041 IP00000O1 shift

WM_KEr1JP wP00000041 IPc000000l shift

WM_KEYUP wP0000001O IPc000000l shift

WM_CHAR wP00000041 IP00000001 shift IS

WM_KEtDOWN wP00000041 IP00000001 shift IS

WM_KEYDOWN wP0000001O IP00000001 shift IS

Figure 3-4 The KeyTrac window after Shfl-A key combination followed by
lowercase key press

The best way to learn about the sequence of the keyboard messages is to run

KeyTrac press few keys and watch the messages scroll down the screen Pressing

character key such as the results in three messages WM_KEYDOWN WM_CHAR
and WM_KEYUP Holding down the Shift key while pressing the and then releas

ing the Shift key produces key-down message for the Shift key followed by the three

messages for the key followed by key-up message for the Shift key Because the

Shift key itself isnt character key no WM_CHAR message is sent in response to it

However the WM_CHAR message for the key now contains 0x41 in the wParam

value indicating that an uppercase was entered instead of lowercase

Figure 3-5 shows the source code for the KeyTrac program

KeyTrac.h

II Header file

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Soling

II

II Returns number of elements

define dinix sizeofx sizeofx

II

II Generic defines and data types

Figure 35 Iln AciIiac /Ii.l1I

96

Page 00119

Chapter Input Keyboard Stylus and Menus

struct decodeUlNi 1/ Structure associates

UINI Code II messages
II with function

LRESULT FxriHWND UINT WPARAM LPARAM

struct decodeCMD II Structure associates

UINT Code II menu lOs with

LRESULT FxnHWND WORD HWND WORD II function

II

II Generic defines used by application

define IDC_CMDBAR 1/ Command bar ID

/1

II Program-specific defines and structures

II

define FLAG_LMENU

define FLAG_RMENU 0x0002

define FLAG_LCONTROL BxGOB4

define FLA.RCONTROL OxOGB8

define FLALSHIFT OxOGlB

define FLAGRSHIFT 0x0020

typedef struct

UINT wKeyMsg

INT wParam

INT lParam

UINT wFlags

TCHAR szMsgTxtt64
KEYARRAY PKEYARRAY

II

II Function prototypes

int InitApp HINSTANCE
HWND Initlnstance HINSTANCE LPWSTR int
mt Termlnstance HINSTANCE int

/1 Window procedures

LRESULT CALLBACK MainWndProc HWND UINT WPARAM LPARAM

II Message handlers

LRESULT DoCreateMain HWND JINT WPARAM LPARAM
LRESULT DoPaintMain HWND UINT WPARAM LPARAM
LRESULT DoKeysMain HWND UINT WPARAK LPARAM
LRESULT DoDestroyMain HWND UINI WPARAM LPARAM

continued

97

Page 00120

Part Wkdows Programmhig Bcs

Figure 3-5 continued

it4KI Am----nrr vi/Kr d4 1iI4.rr.d
jJ

wiI
ui4bn1I

1Iq1i jqj
flt ig qiAt

11_ik

sc 4I1t hi

4MN1 Irr
iLEiiW ji

14M

CJrfrKIL154

Ir

P1

98

Page 00121

Chapter Input Keyboard Stylus and Menus

mt WINAPI WinMain HINSTANCE hinstance HINSTANCE hPrevlnstance

LPWSTR lpCmdLine mt nCmdShow

MSG msg
mt rc

HWND hwndMain

II Initialize application

rc InitApp hlnstance
if rc return rc

II Initialize this instance

hwndMain Initinstance hlnstance lpCmdLine nCmdShow
if hwndMain

return 0xI0

II Application message loop

while GetMessage msg NULL
TranslateMessage msg
DispatchMessage msg

II Instance cleanup

return Termlnstance hlnstance msg.wParam

/1

II InitApp Application initialization

int InitApp HINSTANCE hlnstance

WNDCLASS wc

II Register application main window class

wc.style II Window style

wc.lpfnWndProc MalnWndProc /1 Callback function

wc.cbClsExtra II Extra class data

wc.cbWndExtra 1/ Extra window data

wc.hlnstance hinstance II Owner handle

wc.hlcon NULL II Application icon

wc.hCursor NULL II Default cursor

wc.hbrBackground HBRUSH GetStockObject WHITE_BRUSH

wc.lpszMenuName NULL II Menu name

wc.lpszClassName szAppName II Window class name

if RegisterClasswc return

return

contiziecl

99

Page 00122

Part Windows Programmhig Bscs

Figure 3-5 continued

L4111 4isihim

ir 1e -1_Iv iV1
Iiri ir a.1Jqj$1

inIis2iiati h4gaM
tC4G

100

Page 00123

Cbapter Input Keyboard Stylus and Menus

INT

//

II Search message list to see if we need to handle this

II message If in list call procedure

for dimMainMessages
if wMsg MainMessages

return MainMessages wMsg wParam lParam

return DefWindowProc hWnd wMsg wParam lParam

/1

II DoCreateMain Process WM_CREATE message for window
//

LRESULT DoCreateMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

HWND hwndCB

MDC hdc
TEXTMETRIC tm

Ii Create command bar
bwndCB ComrnandBar_Create hlnst hWnd IDC_CMDBAR

// Add exit button to command bar
CommandBarjddAdornments hwndCB

II Get the height of the default font

hdc GetDC hWnd
GetTextMetrics hdc tm
nFontHeight tm.tmHeight tm.tmExternalLeading
ReleaseDC hWnd hdc

return

II

II DoPaintMain Process WLPAINT message for window

DoPaintMain HWND hWnd UINT wMsg WPARAM wParam
LPARAM iParam

PAINTSTRUCT ps
RECT rect rectOut

TCHAR szOut
MDC hdc
INT

1/ Adjust the size of the client rect to take into account

II the command bar height

continued

101

Page 00124

Part Wndows Programmhig Basics

Figure 3-5 continued

49

Fk4

7iIPpi1IW1P$%cy sih
-Iw 4f1IiifV

cggiNàI4 1Pi1%cIMkaduIje
AdTIib S4IdiJu da%vwsiN 1i

sp .uIdIIiiimMa dIuii4Mm
it11It pI

1k ati .1 gin1i

1WdUU114
jillqUjI1fIgi

102

Page 00125

Chapter Input Keyboard Stylus and Menus

1/ DoKeysMain Process all keyboard messages for window
II

LRESULT DokeysMain HWND hWnd UINT wMsg WPARAM wParam
LPARAM iParani

if nKeyCnt 16
return

switch wMsg
case WM_KEYUP

lstrcpy katnKeyCnt.szMsgTxt TEXT WM_KEYUP
break

case WM_KEYDOWN

lstrcpy kanKeyCnt.szMsgTxt TEXT WM_KEYDOWN
break

case WM_CHAR

lstrcpy ka TEXT WM_CHAR
break

case WMDEADCHAR

lstrcpy ka TEXT WM_DEADCHAR
break

case WM_SYSCHAR

lstrcpy kaLnkeyCnt.szMsglxt TEXT WM_SYSCHAR
break

case WM.SYSDEADCHAR

lstrcpy ka TEXT WM_SYSDEADCHAR
break

case WM_SYSKEYDOWN

lstrcpy ka TEXT WM_SYSKEYDOWN
break

case WM_SYSKEYUP

lstrcpy kaEnKeyCnt.szMsglxt TEXT WM_SYSKEYUP
break

default

lstrcpy ka TEXT unknown
break

continued

103

Page 00126

Parti

Figure 35 con/inued

eyCn

LAG_LMENU

if

lags FLAG_RMENU

tate VLLCONTROL
nt.wFlags FLAG_LCONTROL

etKeyState VKRCONTROLka FLAG_RCONTROL

if GetKeyState VK_LSHIFT
kanKeyCnfl.wFlags FLAGLSHIFT

if GetKeyState VK_RSHIFTka FLAG_RSHIFT

nKeyCnt
InvalidateRect hWnd NULL FALSE
return

II

1/ DoDestroyMain Process WM_DESTROY message for window

II

LRESULT DoDestroyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

PostQuitMessage

return

Here are few more characteristics of Ke Trac to notice After each keyboard

message is recorded an IniciliclaleRect function is called to force redraw of the

window and therefore also \XTM_PAINT message As mentioned in Chapter

program should never attempt to send or post WM_PAINT message to window

because Windows needs to perform some setup before it calls window with

WM_A NT message

Another device context function used in Keyl mc is

BOOL ScrollDC HDC hDC mt dx mt dy const RECT lprcScroll

const RECT lprcClip HRGN hrgnUpdate

LPRECT prcUpdate

104

Page 00127

Chapter Input Keyboard Stylus and Menus

which scrolls an area of the device context either horizontally or vertically but under

Windows CE not both directions at the same time The three rectangle parameters
define the area to be scrolled the area within the scrolling area to be clipped and

the area to be painted after the scrolling ends Alternatively handle to region can
be passed to ScrollDC That region is defined by ScrollDC to encompass the region

that needs painting after the scroll

Finally if the KeyTrac window is covered up for any reason and then re

exposed the message information on the display is lost This is because device

context doesnt store the bit information of the display The application isrespon
sible for saving any information necessary to completely restore the client area of

the screen Since Keytrac doesnt save this information its lost when the window
is covered up

THE STYLUS AND THE TOUCH SCREEN
The stylus/touch screen combination is new to Windows platforms but fortunately

its integration into Windows CE applications is relatively painless The best way to

deal with the stylus is to treat it as single-button mouse The stylus creates the same

mouse messages that are provided by the mouse in other versions of Windows and

by Windows CE systems that use mouse The differences that do appear between

mouse and stylus are due to the different physical realities of the two input devices

Unlike mouse stylus doesnt have cursor to indicate the current position

of the mouse Therefore stylus cant hover over point on the screen in the way
that the mouse cursor does cursor hovers when user moves it over window
without pressing mouse button This concept cant be applied to programming for

stylus because the touch screen cant detect the position of the stylus when it isnt

in contact with the screen

Another consequence of the difference between stylus and mouse is that

without mouse cursor an application cant provide feedback to the user by means
of changes in appearance of hovering cursor Windows CE does support setting

the cursor for one classic Windows method of user feedback The busy hourglass

cursor indicating that the user must wait for the system to complete processing is

supported under Windows CE so that applications can display the busy hourglass in

the same manner as applications running under other versions of Windows using

the SetCursor function

Stylus Messages

When the user presses the stylus on the screen the topmost window under that

point receives the input focus if it didnt have it before and then receives

WM_LBUTFONDOWN message When the user lifts the stylus the window receives

105

Page 00128

Part Windows Programmhig Basics

WMLBUTFONUP message Moving the stylus within the same window while its

down causes WM MOUSEMOVE messages to be sent to the window For all of these

messages the wParam and iParam parameters are loaded with the same values The

wParam parameter contains set of bit flags indicating whether the Ctrl or Shift keys

on the keyboard are currently held down As in other versions of Windows the Alt

key state isnt provided in these messages To get the state of the Alt key when the

message was sent use the GetKeyState function

The iParam parameter contains two 16-bit values that indicate the position on

the screen of the tap The low-order 16 bits contains the horizontal location rela

tive to the upper left corner of the client area of the window while the high-order 16

bits contains the vertical position

If the user double-taps that is taps twice on the screen at the same location

and within predefined time Windows sends WM_LBUTTONDBLCLK message to

the double-tapped window but only if that windows class was registered with the

CS_DBLCLKS style The class style is set when the window class is registered with

RegisterClass

You can differentiate between tap and double-tap by comparing the mes

sages sent to the window When double-tap occurs window first receives the

WM_LBUTITONDOWN and WM_LBUYfONUP messages from the original tap Then

WM_LBUTFONDBLCLK is sent followed by another WM_LBUTTONUP The trick

is to refrain from acting on WM_LBUTIONDOWN message in any way that pre

cludes action on subsequent WM_LBUTTONDBLCLK This is usually not prob

lem because taps usually select an object while double-tapping launches the default

action for the object

Inking

typical application for handheld device is capturing the users writing on the screen

and storing the result as ink This isnt handwriting recognitionsimply ink storage

At first pass the best way to accomplish this would be to store the stylus points passed

in each WM_MOUSEMOVE message The problem is that sometimes small CE-type

devices cant send these messages fast enough to achieve satisfactory resolution

Under Windows CE 2.0 new function call has been added to assist programmers in

tracking the stylus

BOOL GetMouseMovePoints PPOINT pptBuf UINT nBufPoints

UINT pnPointsRetrieved

GetMouseMovePoints returns number of stylus points that didnt result in

WM_MOUSEMOVE messages The function is passed an array of points the size of

the array in points and pointer to an integer that will receive the number of points

106

Page 00129

Chapter Input Keyboard Stylus and Menus

passed back to the application Once received these additional points can be used

to fill in the blanks between the last WM_MOUSEMOVE message and the current one
GetMouseMovePoints does throw one curve at you It returns points in the reso

lution of the touch panel not the screen This is generally set at four times the screen

resolution so you need to divide the coordinates returned by GetMouseMovePoints

by four to convert them to screen coordinates The extra resolution helps programs
such as handwriting recognizers

short example program PenTrac illustrates the difference that GetMouseMove
Points can make Figure 3-6 shows the PenTrac window Notice the two lines of dots

across the window The top line was drawn using points from WM_MOUSEMOVE
only The second line included points that were queried with GetMouseMovePoints

The black dots were queried from WM_MOUSEMOVE while the red lighter dots

were locations queried with GetMouseMovePoints

Penlrac 1050 AM

Figure 3-6 The Pen Trac window showing two lines drawn

The source code for PenTrac is shown in Figure 3-7 The program places dot

on the screen for each WM_MOUSEMOVE or WM._LBUYFONDOWN message it re
ceives If the Shift key is held down during the mouse move messages PenTrac also

calls GetMouseMovePoints and marks those points in the window in red to distinguish

them from the points returned by the mouse messages alone

PenTrac cheats little to enhance the effect of GetMouseMovePoints In the

DoMouseMain routine called to handle WM_MOUSEMOVE and WM_LBUTTON
DOWN messages the routine calls the function sleep to kill few milliseconds This

simulates slow-responding application that might not have time to process every

mouse move message in timely manner

107

Page 00130

Part Wüidows Programmhig ascs

1d

miIiI

VIc4mihL iç iPiESaIr 4I
ur$EMpr at pt
2ViI1 14 bip
mgdIk
Ii1Icrp4 im

9LIS
wiig JpJ

4r iF4içM Jt
i1b

ci wwp r4

fI iJ

PiP4i_p4Uh1S14k
Figure 3-7 The Pen Trac program

108

Page 00131

Chapter Input keyboard Stylus and Menus

PenTrac.c

II PenTrac Tracks stylus movement

/I Written for the book Programming Windows CE

/7 Copyright 1998 Douglas Boling

II/_
lnclude wlndows.h II For all that Windows stuff

include commctrl.h /1 Command bar includes

include pentrac.h 1/ Program-specific stuff

1/

II Global data

II

const TCHAR szAppName TEXT PenTrac
HINSTANCE hlnst II Program instance handle

II Message dispatch table for MainWindowProc

const struct decodeUlNT MainMessages
WM_CREATE DoCreateMain

WFvLLBUTTONDOWN DoMouseMain

WM_MOUSEMOVE DoMouseMain

WM_DESTROY DoDestroyMain

II Program entry point

int WINAPI WinMain HINSTANCE hlnstance HINSTANCE hPrevlnstance

LPWSTR lpCmdLine mt nCmdShow

MSG msg
mt rc

HWND hwndMain

II Initialize application

rc InitApp hlnstance
if rc return rc

II Initialize this instance

hwndMain Initlnstance hlnstance lpCmdLine nCmdShow
if hwndMain

return 0x18

continued

109

Page 00132

Part Whidows Programming Bascs

Figure 3-7 continued

1pui
Ji ck4

Sj .-1iA1IIi4r 4MMri $4
I1 4F-4 %i fr

girnii
NIP VI
IPNI%cI1

1i

ii/iP I.p.J

.r

110

Page 00133

Chapter Input Keyboard Stylus and Menus

CW_USEDEFAULT II Initial width

CW_USEDEFAULT II Initial height

NULL II Parent

NULL II Menu must be null

hinstance II App instance

NULL II Pointer to create

II parameters

II Return fail code if window not created

if llsWindow hWnd return

II Standard show and update calls

ShowWindow hWnd nCmdShow
UpdateWindow hWnd
return hWnd

II

II Termlnstance Program cleanup

/1

mt Termlnstance HINSTANCE hlnstance mt nDefRC

return nDefRC

/1 Message handling procedures for MainWindow

1/

II

II MainWndProc Callback function for application window

II

LRESULT CALLBACK MainWndProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM lPararn

INT

II Search message list to see if we need to handle this

II message If in list call procedure

for dimMainMessages
if wMsg MainMessages

return MainMessages wMsg wParam lParam

return DefWindowProc hWnd wMsg wParam lParam

II

II DoCreateMain Process WM_CREATE message for window

II

continued

111

Page 00134

Part Windows Programmhg Basics

Figure 3-7 continued

ii1irW
$tM j$$ iIip.V

y4hii1tc
ki

rru

jr

112

Page 00135

Chapter Input Keyboard Stylus and Menus

II Kill time to make believe we are busy

Sleep25
return

II

II DoDestroyMain Process WM_DESTROY message for window

//

LRESULT DoDestroyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

PostQuitMessage

return

Input focus and mouse messages
Here are some subtleties to note about circumstances that rule how and when mouse

messages initiated by stylus input are sent to different windows As mentioned pre

viously the input focus of the system changes when the stylus is pressed against

window However dragging the stylus from one window to the next wont cause the

new window to receive the input focus The down tap sets the focus not the process

of dragging the stylus across window When the stylus is dragged outside the win

dow that window stops receiving WM_MOUSEMOVE messages but retains input

focus Because the tip of the stylus is still down no other window will receive the

WM_MOUSEMOVE messages This is akin to using mouse and dragging the mouse

outside window with button held down

To continue to receive mouse messages even if the stylus moves off its win

dow an application can call

HWND SetCapture HWND hWnd

passing the handle of the window to receive the mouse messages The function re

turns the handle of the window that previously had captured the mouse or NULL if

the mouse wasnt previously captured To stop receiving the mouse messages initi

ated by stylus input the window calls

BOOL ReleaseCapture void

Only one window can capture the stylus input at any one time To determine

whether the stylus has been captured an application can call

HWND GetCapture void

which returns the handle of the window that has captured the stylus input or if no

window has captured the stylus inputalthough please note one caveat The window

113

Page 00136

Part Whidows Programmhig Bascs

that has captured the stylus must be in the same thread context as the window calling

the function This means that if the stylus has been captured by window in another

application GetCapture still returns

If window has captured the stylus input and another window calls GetCapture

the window that had originally captured the stylus receives WM_CAPTURECHANGED

message The lParam parameter of the message contains the handle of the window

that has gained the capture You shouldnt attempt to take back the capture by call

ing GetCapture in response to this message In general since the stylus is shared

resource applications should be wary of capturing the stylus for any length of time

and they should be able to handle gracefully any loss of capture

Another interesting tidbit Just because window has captured the mouse that

doesnt prevent tap on another window gaining the input focus for that window

You can use other methods for preventing the change of input focus but in almost

all cases its better to let the user not the applications decide what top-level win
dow should have the input focus

Right-button clicks

When you click the right mouse button on an object in Windows systems the action

typically calls up context menu which is stand-alone menu displaying set of

choices for what you can do with that particular object On system with mouse
Windows sends WM_RBUTFONDOWN and WM_RBUTETONUP messages indicating

right-button click When you use stylus however you dont have right button

The Windows CE guidelines however allow you to simulate right button click using

stylus The guidelines specify that if user holds down the Alt key while tapping

the screen with the stylus program should act as if right mouse button were be

ing clicked and display any appropriate context menu Because theres no MK_ALT

flag in the wParam value of WM_LBUYFONDOWN the best way to determine whether

the Alt key is pressed is to use GetKeyState with VK_MENU as the parameter and test

for the most significant bit of the return value to be set GetKeyState is more appro

priate in this case because the value returned will be the state of the key at the time

the mouse message was pulled from the message queue

The TicTaci Example Program
To demonstrate stylus programming have written trivial tic-tac-toe game The

TicTaci window is shown in Figure 3-8 The source code for the program is shown

in Figure 3-9 This program doesnt allow you to play the game against the computer

nor does it determine the end of the gameit simply draws the board and keeps track

of the Xs and Os Nevertheless it demonstrates basic stylus interaction

114

Page 00137

Chapter Input Keyboard Stylus and Menus

XOX
Os

x_ __
TicTaci 1O5O AM

Figure 3-8 The TicTaci window

tir ML 4fr 43qFPjI

Ai11p1

h1f irlillil

Uiizr WtIiUII
jII

Figure 3-9 The TicTaci program continued

115

Page 00138

Part Whidows Programmhig Basics

Figure 3-9 continued

rAr

i$N b7 Jj

$rAdpIIJ.$.i1I
ITII1

rLi
I1

4frj

.i
ir414 IIiid%

116

Page 00139

Chapter Input Keyboard Stylus and Menus

II Message dispatch table for MainWindowProc

const struct decodeUlNT MainMessages
WM_CREATE DoCreateMain

WM_SIZE DoSizeMain

WM_PAINT DoPaintMain

WM_LBUTTONUP DoLButtonUpMairi

WMDESTRUY DoDestroyMain

II Program entry point

1/

mt WINAPI WinMain N1NSTANCE hlnstance HINSTANCE hPrevlnstance

LPWSTR lpCmdLine mt nCmdShow

MSG msg
mt rc

HWND hwndMairi

/1 Initialize application

rc InitApp hlnstance
if rc return rc

II Initialize this instance

hwndMain Initlnstance hlnstance lpCmdLmne nCmdShow
if hwndMain

return OxlO

1/ Application message loop

while GetMessage msg NULL
TranslateMessage msg
DispatchMessage msg

ii rnstance cleanup

return Termlnstance hlnstance msg.wParam

II

II InitApp Application initialization

int InitApp HINSTANCE hlnstance

WNDCLASS wc

II Register application main window class

wc.style II Window style

wc.lpfnWndProc MainWndProc II Callback function

wc.cbClsExtra II Extra class data

continued

117

Page 00140

Part Whidows Programming Bscs

Figure 3-9 continued

nrF ALtik

MI

1IEWj3if i%2IFuImrf
ts4

ii Jb

%tIMi Zi
iiH 44 9r 4L%%IpTiI

bZQ LJL

f4

118

Page 00141

Chapter Input Keyboard Stylus and Menus

mt Terminstance HINSTANCE hlnstance mt nDefRC

return nDefRC

1/ Message handling procedures for MainWindow

/1

II

1/ MainWndProc Callback function for application window

II

LRESULT CALLBACK MainWndProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

INT

1/ Search message list to see if we need to handle this

II message If in list call procedure

II

for dimMainMessages
if wMsg MamnMessages

return eMainMessages wMsg wParam lParam

return DefWindowProchWnd wMsg wParam lParam

II

II DoCreateMain Process WM_CREATE message for window

II

LRESULT DoCreateMain HWND hWnd DINT wMsg WPARAM wParam

LPARAM lParam 11

HWND hwndCB

II Create command bar

hwndCB CommandBar_Create hlnst hWnd IDCCMIIBAR

/1 Add exit button to command bar

CommandBar_AddAdornments hwndCB

return

II

/1 DoSizeMain Process WM_SIZE message for window

II

LRESULT DoSizeMain HWND hWnd DINT wMsg WPARAM wParam

LPARAM lParam

RECI rect

INT

continued

119

Page 00142

Part Whdows Programmhg Bscs

Figure 3-9 continued

td

4Liii4i
U11SPtssE

i$11 jr
k4I4Pj$icW

ibIpI 4t4

4hpaI
0iiW 44

iii

44w

120

Page 00143

chapter Input Keyboard Stylus and Menus

GetCilentRect hWnd rect
rect.top CommandBar_Height GetDlgltem hWnd IOC_CMDBAR

hdc BeginPaint hWnd ps
II Draw the board

DrawBoard hdc rectBoard

II Write the prompt to the screen

hFont GetStockObject SYSTEM_FONT

hOldFont SelectObject hdc hFont

if bTurn

Drawlext hdc TEXT Xs turn -1 rectPrompt

DT_CENTER DT_VCENTER DT_SINGLELINE

se

DrawText hdc TEXT 0s turn -1 rectPrompt

DT_CENTER DT_VCENTER DT_SINGLELINE

SelectObject hdc hOldEont
EndPaint hWnd ps
return

/1

II DoLButtonUpMain Process WMLBUTTONUP message for window

II

LRESULT DoLButtonUpMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

POINT pt
TNT cx cy oCell

pt.x LOWORD lParam
pt.y HIWORD lParam

II See if pen on board If so determine which cell

if PtlnRect rectBoard ptfl
II Normalize point to upper left corner of board

pt.x rectBoard.left

pt.y rectBoard.top

II Compute size of each cell

cx rectBoard.right rectBoard.left/3

cy rectBoard.bottom rectBoard.top/3

II Find column

nCell pt.x cx

continued

121

Page 00144

Parti

Figure 39 coitiiiiied

1/ Find row

nCell 1- pt.y cy

II If cell empty fill it with mark
if bBoard

if bTurn
bBoard
bTurn

else

bBoard
blurn

IrivalidateRect hWnd NULL FALSE
else

II Inform the user of the filled cell
Messageoeep

return

return

II

/1 DoDestroyMain Process WM_DESTROY message for window
II

LRESULT DoDestroyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

PostQuitMessage

return/_
II Game-specific routines

II

II DrawXO Draw single or in square

void DrawXO HDC hdc HPEN hPen RECT prect INT nCell INT nType
POINT pt
INT cx cy
RECT rect

cx prect-right prect-left/3
cy prect-bottom prect-top/3

II Compute the dimensions of the target cell

rect.left cx ncell prect-1eft 10
rect.right rect.right rect.left cx 20
rect.top cy nCeil prect-top 18

122

Page 00145

Chapter Input Keyboard Stylus and Menus

rect.bottom rect.top cy 20

II Draw an

if nTypept rect.leftpt rect.toppt rect.rightpt rect.bottom

Polyline hdc pt

pt rect.rightpt rect.left

Polyline hdc pt
II How about an

else if nlype

Ellipse hdc rect.left rect.top rect.right rect.bottom

return

II

II DrawBoard Draw the tic-tac-toe board

II VK_MENU

void DrawBoard HOC hdc RECT prect
HPEN hPen hOldPen

POINT pt
LOGPEN lp
INT cx cy

1/ Create nice thick pen

lp.lopnStyle PS.SOLID

lp.lopnWidth.x

lp.lopnWidth.y

lp.lopnColor ROB

hPen CreatePenlndirect lp
hOldPen SelectObject hdc hPen

cx prect-right prect-left/3

cy prect-bottom prect-top/3

II Draw lines downpt cx prect-leftpt cx prect-leftpt prect toppt prect-bottom

Polyline hdc pt

continued

123

Page 00146

Part

Figure 39 on/ined

pt cx

ptfl.x cx
Polyline hdc pt

II Draw lines acrosspt prect-left
ptIl.x prect-rightpt cy prect-toppt cy prect-top
Polyline hdc pt

pttO.y cypt cy
Polyline hdc pt

II Fill in Xs and Os
for dim bBoard

DrawXO hdc hPen rectBoard bBoard

SelectObject hdc hOldPen
DeleteObject hPen
return

The action in TicTaci is centered around three routines DrauBocird DmwXO
and OnLButtonL7i Via/n The first two perftrm the tasks of drawing the playing board

The routine that determines the location of tap on the board and therefore is more

relevant to our current train of thought is OnLBilIonbMain As the name suggests

this routine is called in response to WM_LBUYFONUP message The first action to

take is to call

BOOL PtlnRect const RECT lprc POINT pt

which determines whether the tap is even Ofl the game board The program knows

the location of the tap because its passed in the Iaram value of the message The

board rectangle is computed when the program starts in OuSizeMain Once the tap

is localized to the board the program determines the location of the relevant cell within

the playing board by dividing the coordinates of the tap point within the board by

the number of cells ic5 and down
mentioned that the board rectangle was computed during the OnSizeMain

routine which is called in response 10 WM_SEZF message While it might seem

strange that Windows CE supports the WM_SIZE message common to other versions

of Windows it needs to support this message because window is sized frequently

first right after its created and then each time its minimized and restored You might

124

Page 00147

Chapter Input Keyboard Stylus and Menus

think that another possibility for determining the size of the window would be dur

ing the WM_CREATE message The iParam parameter points to CREATESTRUCT

structure that contains among other things the initial size and position of the win
dow The problem with using those numbers is that the size obtained is the total size

of the window not the size of client area which is what we need Under Windows

CE most windows have no title bar and no border but some have both and many
have scroll bars so using these values can cause trouble So now with the TicTaci

example we have simple program that uses the stylus effectively but isnt complete

To restart the game we must exit and restart TicTaci We cant take back move nor

have start first We need method for sending these commands to the program

Sure using keys would work Another solution would be to create hot spots on the

screen that when tapped provided the input necessary However the standard method

of exercising these types of commands in program is through menus

MENUS
Menus are mainstay of Windows input While each application might have differ

ent keyboard and stylus interface almost all have sets of menus that are organized in

structure familiar to the Windows user

Windows CE programs use menus little differently from other Windows pro

grams the most obvious difference being that in Windows CE menus arent part of

the standard window Instead menus are attached to the command bar control that

has been created for the window Other than this change the functions of the menu

and the way menu selections are processed by the application match the other ver

sions of Windows for the most part Because of this general similarity give you

only basic introduction to Windows menu management in this section

Creating menu is as simple as calling

HMENU CreateMenu void

The function returns handle to an empty menu To add an item to menu two

calls can be used The first

BOOL AppendMenu HMENU hMenu UINT fuFlags UINT idNewltem

LPCTSTR lpszNewltem

appends single item to the end of menu The fuFlags parameter is set with series

of flags indicating the initial condition of the item For example the item might be

initially disabled thanks to the MF_GRAYED flag or have check mark next to it cour

tesy of the MF_CHECKED flag Almost all calls specify the MF_STRING flag indicat

ing that the lpszNewltem parameter contains string that will be the text for the item

The idNewltem parameter contains an ID value that will be used to identify the item

when its selected by the user or that the state of the menu item needs to be changed

125

Page 00148

Part Whdows Programmhig ascs

Another call that can be used to add menu item is this one

BOOL InsertMenu HMENU hMenu UINT uPosition UINT uElags

UINT ulDNewltem LPCTSTR lpNewltem

This call is similar to AppendMenu with the added flexibility that the item can be in

serted anywhere within menu structure For this call the uFlags parameter can be

passed one of two additional flags MF_BYCOMMAND or MF_BYPOSITION which

specify how to locate where the menu item is to be inserted into the menu

Under Windows CE 2.0 menus can be nested to provide cascading effect This

feature brings Windows CE up to the level of other versions of Windows which have

always allowed cascading menus To add cascading menu or submenu create the

menu you want to attach using CreateMenu and InsertMenu Then insert or append

the submenu to the main menu using either InsertMenu or AppendMenu with the

MF_POPUP flag in the flags parameter In this case the ulDNewltem parameter con

tains the handle to the submenu while the lpNewltem contains the string that will be

on the menu item

You can query and manipulate menu item to add or remove check marks or

to enable or disable it by means of number of functions This function

BOOL EnableMenultem HMENU hMenu UINT ulDEnableltern UINT uEnable

can be used to enable or disable an item The flags used in the uEnable parameter

are similar to the flags used with other menu functions Under Windows CE the flag

you use to disable menu item is MF_GRAYED not MF_DISABLED The function

DWORD CheckMenultem HMENU hmenu UINT ulDCheckltem UINT uCheck

can be used to check and uncheck menu item Many other functions are available

to query and manipulate menu items Check the SDK documentation for more details

The following code fragment creates simple menu structure

hMainMenu CreatePopupMenu

hMenu CreateMenu

AppendMenu hMenu MF_STRING ME_ENABLED 100 TEXT Newfl
AppendMenu hMenu ME_STRING ME_ENABLED 101 TEXT Openfl
AppendMenu hMenu ME_STRING ME_ENABLED 101 TEXT Save
AppendMenu hMenu ME_STRING ME_ENABLED 101 TEXT Exit
AppendMenu hMainMenu ME_STRING ME_ENABLED ME_POPUP UINThMenu

TEXT File
hMenu CreateMenu

AppendMenu hMenu ME_STRING ME_ENABLED 100 TEXT Cut
AppendMenu hMenu ME_STRING ME_ENABLED 101 TEXT Copy
AppendMenu hMenu ME_STRING ME_ENABLED 101 TEXT Paste

126

Page 00149

Chapter Input Keyboard Stylus and Menus

AppendMenu hMainMenu MF_STRING ME_ENABLED ME_POPUP hMenu
TEXT Edit

hMenu CreateMenu

AppendMenu hMenu ME_STRING ME_ENABLED 100 TEXT Aboutfl

AppendMenu hMainMenu ME_STRING ME_ENABLED ME_POPUP hMenu

TEXT Helpfl

Once menu has been created it can be attached to command bar using this

function

BOOL CommandBar_InsertMenubarEx HWND hwndCB HINSTANCE hlnst

LPTSTR pszMenu mt iButton

The menu handle is passed in the third parameter while the second parameter hlnst

must be The final parameter iButton indicates the button that will be to the im
mediate right of the menu The Windows CE user interface guidelines recommend

that the menu be on the far left of the command bar so this value is almost always

Handling Menu Commands
When user selects menu item Windows sends WM_COMMAND message to the

window that owns the menu The low word of the wParam parameter contains the

ID of the menu item that was selected The high word of wParam contains the noti

fication code For menu selection this value is always The iParam parameter is

for WM_COMMANID messages sent due to menu selection Those familiar with

Windows 3.x programming might notice that the layout of wParain and iParam match

the standard Win32 assignments and are different from Winl6 programs So to act

on menu selection window needs to field the WM_COMMAND messagedecode
the ID passed and act according to the menu item that was selected

Now that Ive covered the basics of menu creation you might wonder where

all this menu creation code sits in Windows program The answer is it doesnt Instead

of dynamically creating menus on the fly most Windows programs simply load menu

template from resource To learn more about this lets take detour from the de

scription of input methods and look at resources

RESOURCES
Resources are read-only data segments of an application or DLL that are linked to

the file after it has been compiled The point of resource is to give developer

compiler-independent place for storing content data such as dialog boxes strings

bitmaps icons and yes menus Since resources arent compiled into program they

can be changed without having to recompile the application

127

Page 00150

Part Wrndows Programmrng Bastcs

You create resource by building an ASCII filecalled resource script

describing the resources Your ASCII file has an extension of RC You compile this

file with resource compiler which is provided by every maker of Windows devel

opment tools and then you link them into the compiled executable again using the

linker These days these steps are masked by heavy layer of visual tools but the

fundamentals remain the same For example Visual 5.0 creates and maintains

an ASCII resource RC file even though few programmers directly look at the resource

file text any more

Its always struggle for the author of programming book to decide how to

approach tools Some lay out very high level of instruction talking about menu

selections and describing dialog boxes for specific programming tools Others show

the reader how to build all the components of program from the ground up using

ASCII files and command line compilers Resources can be approached the same way
could describe how to use the visual tools or how to create the ASCII files that are

the basis for the resources In this book stay primarily at the ASCII resource script

level since the goal is to teach Windows CE programming not how to use particu

lar set of tools Ill show how to create and use the ASCII RC file for adding menus

and the like but later in the book in places where the resource file isnt relevant

wont always include the RC file in the listings The files are of course on the CD

included with this book

Resource Scripts

Creating resource script is as simple as using Notepad to create text file The lan

guage used is simple with C-like tendencies Comment lines are prefixed by double

slash // and files can be included using include statement

An example menu template would be the following

II menu template

ID_MENU MENU DISCARDABLE

BEGIN

POPUP Fi
BEGIN

MENUITEM Open... 100

MENUITEM Save.. 101

MENUITEM SEPARATOR

MENUITEM Exit 120

END

POPUP Hel
BEGIN

MENUITEM About 200

END

END

128

Page 00151

Chapter Input Keyboards Stylus and Menus

The initial ID_MENU is the ID value for the resource Alternatively this ID value

can be replaced by string identifying the resource The ID value method provides

more compact code while using string may provide more readable code when
the application loads the resource in the source file The next word MENU identi

fies the type of resource The menu starts with POPUP indicating that the menu item

File is actually pop-up cascade menu attached to the main menu Because its

menu within menu it too has BEGIN and END keywords surrounding the descrip

tion of the File menu The ampersand character tells Windows that the next char

acter should be the key assignment for that menu item The character following the

ampersand is automatically underlined by Windows when the menu item is displayed

and if the user presses the Alt key along with the character that menu item is selected

Each item in menu is then specified by the MENUITE7I keyword followed by the

string used on the menu The ellipsis following the Open and Save strings is Win
dows UI custom indicating to the user that selecting that item displays dialog box

The numbers following the Open Save Exit and About menu items are the menu

identifiers These values identify the menu items in the WM_COMMAND message
Its good programming practice to replace these values with equates that are defined

in common include file so that they match the WM_COMMAND handler code

Figure 3-10 lists other resource types that you might find in resource file The

DISCARDABLE keyword is optional and tells Windows that the resource can be dis

carded from memory if its not in use The remainder of the menu is couched in BEGIN

and END keywords although bracket characters and are recognized as well

Resource Type Explanation

MENU Defines menu

ACCELERATORS Defines keyboard accelerator table

DIALOG Defines dialog box template

BITMAP Includes bitmap file as resource

ICON Includes an icon file as resource

FONT Includes font file as resource

RCDATA Defines application-defined binary data block

STRINGTABLE Defines list of strings

VERSIONINFO Includes file version information

Figure 3-10 The resource types allowed by the resource compiler

129

Page 00152

Part Windows Programming Bascs

Icons

Now that were working with resource files its trivial matter to modify the icon

that the Windows CE shell uses to display program Simply create an icon with your

favorite icon editor and add to the resource file an icon statement such as

ID_ICON ICON tictac2.ico

When Windows displays program in Windows Explorer it looks inside the EXE file

for the first icon in the resource list and uses it to represent the program

Having that icon represent an applications window is somewhat more of chore

Windows CE uses small 16-by-16-pixel icon on the taskbar to represent windows

on the desktop Under other versions of Windows the RegisterCiassEx function could

be used to associate small icon with window but Windows CE doesnt support

this function Instead the icon must be explicitly loaded and assigned to the win

dow The following code fragment assigns small icon to window

hlcon HICON SendMessage hWnd WM_GETICON FALSE

if hlcon

hlcon Loadlmage hlnst MAKEINTRESOURCE ID_ICON1 IMAGE_ICON

16 16
SendMessage hWnd WM_SETICON FALSE LPARAMhlcon

The first SendMessage call gets the currently assigned icon for the window The

FALSE value in wParam indicates that were querying the small icon for the window

If this returns indicating that no icon has been assigned call to Loadlmage is made

to load the icon from the application resources The Loadlmage function can take

either text string or an ID value to identify the resource being loaded In this case

the MAKEINTRESOURCE macro is used to label an ID value to the function The icon

being loaded must be 16-by-16 icon because under Windows CE Loadlmage wont

resize the icon to fit the requested size Also under Windows CE Loadlmage is lim

ited to loading icons and bitmaps from resources Windows CE provides the function

ShLoadDlBitmap to load bitmap from file

Unlike other versions of Windows Windows CE stores window icons on per

class basis This means if two windows in an application have the same class they

share the same window icon subtle caveat herewindow classes are specific to

particular instance of an application So if you have two different instances of the

application FOOBAR they each have different window classes so they may have

different window icons even though they were registered with the same class infor

mation If the second instance of FOOBAR had two windows of the same class open

those two windows would share the same icon independent of the window icon in

the first instance of FOOBAR

130

Page 00153

Chapter Input Keyboard Stylus and Menus

Accelerators

Another resource that can be loaded is keyboard accelerator table This table is used

by Windows to enable developers to designate shortcut keys for specific menus or

controls in your application Specifically accelerators provide direct method for

key combination to result in WM_COMMAND message being sent to window
These accelerators are different from the Alt-F key combination that for example
can be used to access File menu File menu key combinations are handled auto

matically as long as the File menu item string was defined with the character as in

File The keyboard accelerators are independent of menus or any othei controls

although their assignments typically mimic menu operations as in using Ctrl-O to

open file

Below is short resource script that defines couple of accelerator keys

ID_ACCEL ACCELERATORS DISCARDABLE

BEGIN

IDM_NEWGAME VIRTKEY CONTROL

1DM_UNDO VIRTKEY CONTROL

END

As with the menu resource the stmcture starts with an ID value The ID value

is followed by the type of resource and again optionally the discardable keyword
The entries in the table consist of the letter identifying the key followed by the ID

value of the command VIRTKBY which indicates that the letter is actually virtual

key value followed finally by the CONTROL keyword indicating that the control shift

must be pressed with the key

Simply having the accelerator table in the resource doesnt accomplish much
The application must load the accelerator table and for each message it pulls from

the message queue see whether an accelerator has been entered Fortunately this is

accomplished with few simple modifications to the main message ioop of pro

gram Heres modified main message loop that handles keyboard accelerators

II Load accelerator table

hAccel LoadAccelerators hlnst MAKEINTRESOURCE ID_ACCELfl

II Application message ioop

while GetMessage msg NULL

II Transl ate accel erators

if TranslateAccelerator hwndMain hAccel msg
TranslateMessage msg
DispatchMessage msg

131

Page 00154

Part Wndows Programming Bascs

The first difference in this main message loop is the loading of the accelerator

table using the LoadAccelerators function Then after each message is pulled from

the message queue call is made to TranslateAccelerator If this function trans

lates the message it returns TRUE which skips the standard TranslateMessage and

DispatchMessage loop body If no translation was performed the ioop body ex
ecutes normally

Bitmaps

Bitmaps can also be stored as resources Windows CE works with bitmap resources

somewhat differently from other versions of Windows With Windows CE the call

HBITMAP LoadBitniapHINSTANCE hlnstance LPCTSTR lpBitmapName

loads read-only version of the bitmap This means that after the bitmap is selected

into device context the image cant be modified by other drawing actions in that

DC To load read/write version of bitmap resource use the Loadlmage function

Strings

String resources are good method for reducing the memory footprint of an appli

cation while keeping language-specific information out of the code to be compiled

An application can call

mt LoadStringHINSTANCE hlnstance hINT ulD LPTSTR lpBuffer

mt nBufferMax

to load string from resource The ID of the string resource is ulD the lpBuffer

parameter points to buffer to receive the string and nBufferMax is the size of the

buffer To conserve memory LoadString has new feature under Windows CE If

lpBuffer is NULL LoadString returns read-only pointer to the string as the return

value Simply cast the return value as pointer to constant Unicode string LPCTSTR
and use the string as needed The length of the string not including any null termi

nator will be located in the word immediately preceding the start of the string

While will be covering memory management and strategies for memory con
servation in Chapter one quick note here Its not good idea to load number of

strings from resource into memory This just uses memory both in the resource and

in RAM If you need number of strings at the same time it might be better strategy

to use the new feature of LoadString to return pointer directly to the resource itself

As an alternative you can have the strings in read-only segment compiled with the

program You lose the advantage of separate string table but you reduce your

memory footprint

132

Page 00155

Chapter Input Keyboard Stylus and Menus

The TicTac2 Example Program

The final program in this chapter encompasses all of the information presented up to

this point as well as few new items The TicTac2 program is an extension of TicTaci
the additions are menu window icon and keyboard accelerators The TicTac2

window complete with menu is shown in Figure 3-11 while the source is shown in

Figure 3-12

Xs turn

____ _____
Figure 3-11 The TicTac2 window uInsertDele/e 1anp Wiodows keyboards use

.Shft-Backspace for this function

TicTac2.rc

II TicTac2 Resource file

/I Written for the book Programming Windows CE

1/ Copyright 1998 Douglas Boling

1/

include tictac2.h

1/

/I icon

II

ID_ICON ICON tictac2.ico

1/

Figure 312 The Tictac2 program con/inued

133

Page 00156

Part Wrndows Programmbig Bascs

Figure 3-12 continued

IIIUIt$
tEM

iL

ij4.S
ii$c1IJ

fiiiSr

$k ieI iJ f/M1 4Ii

_uIpuI JUl

spr 4P

134

Page 00157

Chap/er Input Keyboard Stylus and Menus

/1

struct decodeUlNT II Structure associates

UINI Code II messages

II with function

LRESULT FxnHWND UINI WPARAM LPARAM

struct decodeCMD II Structure associates

UINT Code II menu lOs with

LRESULT FxnHWND WORD HWND WORD If function

II

1/ Generic defines used by application
define IDC_CMDBAR II Command bar ID

define ID_ICON 10 II Icon resource ID

define 10_MENU 11 II Main menu resource ID

define ID_ACCEL 12 II Main menu resource ID

define IDM_NEWGAME 100 II Menu item ID

define 1DM_UNDO 101 /1 Menu item ID

define 1DM_EXIT 102 II Menu item ID

define IDS_XTURN 201 II String ID

define IDS_OTURN 202 II String ID

II

II Function prototypes

int InitApp HINSTANCE
HWND Initlnstance HINSTANCE LPWSTR int
mt Termlnstance HINSTANCE int

II Window procedures

LRESULT CALLBACK MainWndProc HWND UINT WPARAM LPARAM

II Message handlers

LRESULT DoCreateMain HWND UINT WPARAM LPARAM
LRESULT DoSizeMain HWND UINT WPARAM LPARAM
LRESULT DoPaintMain HWND UINT WPARAM

LRESULT DolnitMenuPopMain HWND UINT WPARAM LPARAM
LRESULT DoComniandMain HWNO UINT WPARAM LPARAM

DoLButtonUpMain HWND UINT WPARAM LPARAM
LRESULT 000estroyMain HWND UINT WPARAM LPARAM

ccnitijiiwclI

135

Page 00158

Part Whidows Programmhig Basics

Figure 3-1 continued

1N
fr iL

ir

bf l1rbt r44f

A4b.J ft

$sA1pE

M4IFE i1i

rf

136

Page 00159

Chapter Input Keyboard Stylus and Menus

// command Message dispatch for MainWindowProc
const struct decodeCMD MainCommandltems

IDM_NEWGAME DoMainCommandNewGame

1DM_UNDO DoMainCommandUndo

1DMEX1T DoMainCommandExit

/1

II Program entry point

int WINAPI WinMain HINSTANCE hlnstance HINSTANCE hPrevlnstance
LPWSTR lpCmdLine mt nCmdShow

MSG msg
mt rc

HWND hwndMain

HACCEL hAccel

II Initialize application

rc InitApp htnstance
if rc return rc

If Initialize this instance

hwndMamn Initlnstance hlnstance lpCmdLmne nCmdShow
if hwndMain

return OxlO

II Load accelerator table

hAccel LoadAccelerators hlnst MAKEINTRESOURCE ID_ACCEL

II Application message loop

while GetMessage msg NULL
II Translate accelerators

if TranslateAccelerator hwndMain hAccel msg
TranslateMessage msg
DispatchMessage msg

II Instance cleanup

return Termlnstance hlnstance msg.wParam

II

1/ InitApp Application initialization

int InitApp HINSTANCE hlnstance

WNDCLASS wc

continued

137

Page 00160

