
Part II WhidowS CE Eascs

Figure 7-5 continued

Idi ig
Mi ff3$A

ij$e
4t

iL

d1
rur

Ai i1

I1

1t
lb

LTJ

if14

458

Page 00481

Chapter Files Databases and the Registry

case WM_COMMAND

switch LOWORD wParam
case IDOK

Edit_GetText GetOlgitem hWnd IDD_TRACK

lpti-szTrack sizeof lpti-szTrack
Edit_GetText GetOlgltem hWnd IDD_TIME

lpti-szTime sizeof lpti-szlime
if Validatelime lpti-szlime

EndDialog hWnd
else

MessageBox hWnd TEXT Track time must

be entered in nlmss format
TEXT Error MB_OK

return TRUE
case IDCANCEL

EndDialog hWnd
return TRUE

break

return FALSE/__
II EditAlbum dialog procedure

II

BOOL CALLBACK EditAlbumDlgProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

static PCEPROPVAL ppRecord
static mt nTracks

PCEPROPVAL pRecord pRecPtr

TCHAR pPtr szTmp
HWND hwndTList hwndCombo

TRACKINFO ti
800L fEnable

tNT nLen rc

switch wMsg
case WM_INITDIALOG

ppRecord PCEPROPVAL lParam
pRecord ppRecord

hwndCombo Getolgltem hWnd 100_CATEGORY

hwndTList GetDlgltern hWnd 100_TRACKS

Edit_LimitText GetDlgltem hWnd 100_NAME MAX_NAMELEN

continue1

459

Page 00482

Part II Whidows CE Basics

Figure 7-5 continued $Iii$$ft4
qvNc.wdAA PN 4i iIIiTI%4d rWb 1Vr.4 t414 Ip i_II

4jf$1
uj1ir iIDflI Iut IL

iii EP
%w

wir

4iJ á%

1Jb1I
ij4 mre

460

Page 00483

Chapter Files Databases and the Registry

else

EnableWindow GetOlgltem hWnd IDD_DELTRACK

FALSE
EnableWlndow GetOlgltem hWnd IDD_EDITTRACK

FALSE

return TRUE

case IM_COMMAt4D

hwndlList GetDlgltem hWnd IDD_TRACKS
hwndCombo GetDlgltem hWnd IDD_CATEGORY

pRecord ppRecord
switch LOWORD wParam

case IDD_TRACKS

switch HIWORD wParara
case LBN.JJBLCLK

PostHessage hWnd WM_COMMAND

MAKELONGIDD_EDITTRACK

break

case LBN_SELCHANGE

ListBox_GetCurSel hwndTList
if LB_ERR

fEnable FALSE

else

fEnable TRUE
EnableWindow GetDlgltem hWnd

TOD_DELTRACK fEnable
EnableWindow GetDlgltem hWnd

IDD_EDITTRACK fEnable
break

return TRUE

case IDD_NEWTRACK

memset ti sizeof ti
rc DialogBoxParam hlnst

TEXT EditTrackDlg hWnd

EditTrackDlgProc LPARAMti
if rc

wsprintf szTmp TEXT %s\t%s
ti.szTrack ti.szTime

List8ox_GeturSel thwndTLisfl

if LB_ERR

ListBox_InsertString hwndlLlst

szTmp

continued

461

Page 00484

Part II Whidows CE Bacs

Figure 7-5 continued

ecg.aC.1dptq44Wt4 d4
ri41i11IrJ

4j%wV vi1 jN
1Ih1ImIii 1$maIgl%IskI
_.igj%s NLtviii iiIp

IriE1I

JI1i

rM Ie JV

11uia1MI $p

J1

iW 1I PI JiQ

1Li Iitht

iLib 11 iEf F1k iaM dN Ii

462

Page 00485

Chapter Files Databases and the Registry

ListBox_SetCurSel hwndTList

return TRUE

case TOOK

II Be lazy and assume worst case size values

nLen sizeof CEPROPVAL NUM._DB_PROPS

MAX_NAMELEN MAX_ARTISTLEN

MAXJRACKNAMELEN

II See If prey record alloc if not

if pRecord
II Resize record if necessary

if nLen intLocalSize pRecord
pRecPtr

PCEPROPVALLocalReAlloc pRecord
nLen LMEM_MOVEABLE

else

pRecPtr pRecord

else

pRecPtr LocalAlloc LMEM_FIXED nLen
if pRecPtr

return

II Copy the data from the controls to

II marshaled data block with the structure

II at the front and the data in the back

pRecord pRecPtr

nTracks ListBox_GetCount hwndTList

pPtr TCHAR LPBYTEpRecPtr
sizeof CEPROPVAL NUM_DB_PROPS

II Zero structure to start over
memset pRecPtr LocalSize pRecPtr

pRecPtr-propid PlO_NAME

pRecPtr-val.lpwstr pPtr

GetOlgltemlext hWnd IOD_NAME pPtr

MAX_NAMELEN

pPtr lstrlen pPtr
pRecPtr

pRecPtr-propid P10_ARTIST

pRecPtr-val.lpwstr pPtr

GetolgltemText hWnd IOD_ARTIST pPtr

MAX_ARTISTLEN

pPtr lstrlen pPtr
pRecPtr

continued

463

Page 00486

Part II Wndows CE ascs

Figure 7-5 continued

1p

niiSILv41PIIiid

lIIItuIUiI$

Th

LWrr rIiL

1I

iii

L% twPAiirIp

jI
aIIIiITuI1P

464

Page 00487

Chapter Files Databases and the Registry

II About dialog procedure

II

BOOL CALLBACK AboutDlgProc

case

break

return FALSE

The program uses virtual list view control to display the records in the data

base As explained in Chapter virtual list views dont store any data internally

Instead the control makes calls back to the owning window using notification mes

sages to query the information for each item in the list view control The WM_NOTIFY
handler OnNotifyMain calls GetltemData to query the database in response to the

list view control sending LVN_GETDISPINFO notifications The Getltemlnfo func

tion first seeks the record to read then reads all the properties of database record

with one call to CeReadRecordProps Since the list view control typically uses the

LVN_GETDISPINFO notification multiple times for one item Getltemlnfo saves the

data from the last record read If the next read is of the same record the program

uses the cached data instead of rereading the database

As Ive explained before you can change the way you sort by simply closing

the database and reopening it in one of the other sort modes The list view control is

then invalidated causing it to again request the data for each record being displayed

With new sort order defined the seek that happens with each database record read

automatically sorts the data by the sort order defined when the database was opened

AlbumDB doesnt use the new Ex database functions provided by Windows CE 2.1

based systems This allows the program to run under earlier versions of the operat

ing system To modify the example to use separate database volumes only minor

changes would be necessary First global variable gguidDB of type CEOID would

be added In the DoCreateMain routine code such as the following which mounts

the volume would be added

465

Page 00488

Part II WbidoWS CE Eascs

if LCeMountDBVOl g_guidDB TEXT \\Albums.cdb OPEN_ALWAYS

wsprintf szErr TEXT Database mount failed rc %d
GetLastErrorO

MessageBox NULL szErr szAppName MB_OK

The following code would be added to the OnDestroyMain routine tounmount

the volume

if ICHECK_INVALIDGUID g_guidDB
CeUnniountDBVol g_guidDB

Finally the OpencreateDB routine would be replaced by this version

HANDLE OpenCreateDB HWND hWnd mt pnRecords
INT rc
CEOIDINFO oidinfo

CEDBASEINFO dbi

TCHAR szErr
CENOTIFYREQUEST cenr

g_oidoB

cenr.dwSize sizeof cenr
cenr.hWnd hWnd

cenr.dwFlags II Use old style notifications

cenr.hHeap

cenr.dwParam

g_hDB CeOpenDatabaseEx g_guidoB g_oidoB TEXT \\Albums
g_nLastSort cenr

if g_hDB INvALiD_HANDLE_VALUE

rc GetLastError
if rc ERROR_FILE_NOT_FOUND

dbi .rgSortSpecs P10_NAME

dbi.rgSortSpecs

dbi.rgSortSpecs P10_ARTIST

dbi.rgSortSpecs

dbi .rgSortSpecs P10_CATEGORY

dbi.rgSortSpecs

dbi.dwFlags CEDB_VALIDCREATE

lstrcpy dbi.szDbaseNanie TEXT \\Albums
dbi.dwDbaselype

dbi.wNuniSortOrder

g_oidDB CeCreateoatabaseEx g_guidDB dbi

466

Page 00489

chapter Files Databases and the Registry

if g_oidDB

wsprintf szErr
TEXT Database create failed rc %d
GetLastError

MessageBox hWnd szErr szAppName MB_OK
return

g_hDB CeOpenDatabaseEx g_guidDB g_oidDB NULL

g_nLastSort cenr

else if g_hDB

wsprintf szErr
TEXT Database open failed rc %X ext err%d
g_hDB GetLastError

MessageBox hWnd szErr szAppName MB_OK

CeOidGetlnfoEx g_guidDB g_oidDB oidinfo
pnRecords oidinfo.infDatabase.wNumRecords

return g_hDB

THE REGISTRY
The registry is system database used to store configuration information in applica

tions and in Windows itself The registry as defined by Windows CE is similar but not

identical in function and format to the registries under Windows 98 and Windows NT

In other words for an application most of the same registry access functions exist

but the layout of the Windows CE registry doesnt exactly follow either Windows 98

or Windows NT
As in all versions of Windows the registry is made up of keys and values Keys

can contain keys or values or both Values contain data in one of number of pre
defined formats Since keys can contain keys the registry is distinctly hierarchical

The highest level keys the root keys are specified by their predefined numeric con

stants Keys below the root keys and values are identified by their text name Mul

tiple levels of keys can be specified in one text string by separating the keys with

backslash

To query or modify value the key containing the value must first be opened

the value queried and or written then the key closed Keys and values can also be

enumerated so that an application can determine what specific key contains Data

in the registry can be stored in number of different predefined data types Among

the available data types are strings 32-bit numbers and free form binary data

467

Page 00490

Part II Whidows CE Basics

Registry Organization

The Windows CE registry supports three of the high-level root keys seen on other

Windows platforms HKEY_LOCAL_MACHINE HKEY_CURRENT_USER and HKEY_

CLASSES_ROOT As with other Windows platforms Windows CE uses the

HKEY_LOCAL_MACHINE key to store hardware and driver configuration data the

HKEY_CURRtNT_USER to store user-specific configuration data and the HKEY_

CLASSES_ROOT key to store file type matching and OLE configuration data

As practical matter the registry is used by applications and drivers to store

state information that needs to be saved across invocations Applicationstypically store

their current state when they are requested to close and then restore this state when

they are launched again The traditional location for storing data in the registry by an

application is obtained by means of the following structure

ROOT_KEY\SoftwareVcompany Naine\Icompany Product

In this template the ROOT_KEY is either HKEY_LOCALMACHINE for machine-

specific data such as what optional components of an application may be installed

on the machine or HKEY_CURRENT..USER for user-specific information such as the

list of the users last-opened files Under the Software key the companys name that

wrote the application is used followed by the name of the specific application For

example Microsoft saves the configuration information for Pocket Word under the key

HKEY_LOCAL_MACHINE\Software\Microsoft\Pocket Word

While this hierarchy is great for segregating registry values from different ap
plications from one another its best not to create too deep set of keys Because of

the way the registry is designed it takes less memory to store value than it does

key Because of this you should design you registry storage so that it uses fewer

keys and more values To optimize even further its more efficient to store more

information in one value than to have the same information stored across num
ber of values

The window in Figure 7-6 shows the hierarchy of keys used to store data for

Pocket Word The left pane shows the hierarchy of keys down to the Settings key

under the Pocket Word key In the Settings key three values are stored Wrap To

Window Vertical Scrollbar Visibility and Horizontal Scrolibar Visibility In this case

these values are DWORDs but they could have been strings or other data types

468

Page 00491

Chapter Files Databases and the Registry

HKEY_CLASSES_ROOT
__

HKEY_CURRENT_USER Wrap To Wndow
HKEY_LOCAL_MACHINE Vertical Scroilbar Visibilty

51 Windows CE Services Horizontal Scroilbar Visibiky

TAFT

0nIs
mit

Drivers

El ExEllodems

Corn

Printers

El Software

Microsoft

Windows CE Services

Tasks

151 Pocket Word

pwdDefaulWont

pwdCustDict

11 pwdMRU

fk pwdRebar

Sethnps

Converters

Calendar

Clock

Shell

El Powerpoint

Fvrei

Figure 7-6 You can see the hierarchy of the registry by looking at the values stored by

Pocket Word

The Registry API

Now lets turn toward the Windows CE registry API In general the registry API pro

vides all the functions necessary to read and write data in the registry as well as enu

merate the keys and data store within Windows CE doesnt support the security

features of the registry that are supported under Windows NT

Opening and creating keys

registry key is opened with call to this function

LONG RegOpenKeyEx HKEY hKey LPCWSTR lpszSubKey OWORD ulOptions

REGSAM samDesired PHKEY phkResult

The first parameter is the key that contains the second parameter the subkey This

first key must be either one of the root key constants or previously opened key

The subkey to open is specified as text string that contains the key to open This

subkey string can contain multiple levels of subkeys as long as each subkey is sepa

rated by backslash For example to open the subkey HKEY_LOCAL_MACHINE\

Software\Microsoft\Pocket Word an application could either call RegOpenKeyEx

with HKEY_LOCAL_MACHINE as the key and Software\Microsoft\Pocket Word as

the subkey or it could open the Software\Microsoft key and then make call with

469

Page 00492

Part II Whidows CE Easics

that opened handle to RegOpenKeyEx specifying the subkey Pocket Word Key and

value names arent case specific

Windows CE ignores the ulOptions and samDesired parameters To remain

compatible with future versions of the operating system that might use security fea

tures these parameters should be set to for ulOptions and NULL for samDesired

The phkResult parameter should point to variable that will receive the handle to

the opened key The function if successful returns value of ERROR_SUCCESS and

an error code if it fails

Another method for opening key is

LONG RegCreateKeyEx HKEY hKey LPCWSTR lpszSubKey DWORD Reserved

LPWSTR lpszClass DWORD dwOptions
REGSAM samDesi red
LPSECURITY_ATTRIBUTES lpSecurityAttributes
PHKEY phkResult LPDWORD lpdwDisposition

The difference between RegcreateKeyEx and RegOpenKeyEx aside from the extra

parameters is that RegCreateKeyEx creates the key if it didnt exist before the call

The first two parameters the key handle and the subkey name are the same as in

RegOpenKeyEx The Reserved parameter should be set to The lpClass parameter

points to string that contains the class name of the key if its to be created This

parameter can be set to NULL if no class name needs to be specified The dwOptions

and samDesired and lpSecurityAttributes parameters should be set to NULL and

NULL respectively The phkResult parameter points to the variable that receives the

handle to the opened or newly created key The lpdwDisposition parameter points

to variable thats set to indicate whether the key was opened or created by the call

Reading registry values

You can query registry values by first opening the key containing the values of inter

est and calling this function

LONG RegQueryValueEx HKEY hKey LPCWSTR lpszValueName
LPDWORD ipReserved LPDWORD ipType
LPBYTE lpData LPDWORD lpcbData

The hKey parameter is the handle of the key opened by RegCreateKeyEx or

RegOpenKeyEx The lpszValueName is the name of the value thats being queried

The lpType parameter is pointer to variable that receives the variable type This

variable is filled with The lpData parameter points to the buffer to receive the data

while the lpcbData parameter points to variable that receives the size of the data If

RegQueryValueEx is called with the lpData parameter equal to NULL Windows re

turns the size of the data but doesnt return the data itself This allows applications to

first query the size and type of the data before actually receiving it

470

Page 00493

Cbapter Files Databases and the Registry

Writing registry values

You set registry value by calling

LONG RegSetvalueEx HKEY hKey LPCWSTR lpszValueName DWORD Reserved

OWORD dwType const BYTE lpData DWORD cbData

The parameters here are fairly obvious the handle to the open key followed by the

name of the value to set The function also requires that you pass the type of data

the data itself and the size of the data The data type parameter is simply labeling

aid for the application that eventually reads the data Data in the registry is stored in

binary format and returned in that same format Specifying different type has no

effect on how the data is stored in the registry or how its returned to the application

However given the availability of third-party registry editors you should make ev

ery effort to specify the appropriate data type in the registry

The data types can be one of the following

REG_SZ zero-terminated Unicode string

REG_EXPAND_SZ zero-terminated Unicode string with embedded

environment variables

REG_MULTI_SZ series of zero-terminated Unicode strings terminated

by two zero characters

REG_D WORD 4-byte binary value

REG_BINARY Free-form binary data

REG_DWORD_BIG_ENDIAN DWORD value stored in big-endian format

REG_DWORD_11771E_ENDL4N Equivalent to REG_DWORD

REGL INK

REG_NONE

REG_RESOUR CE_LIST

Deleting keys and values

You delete registry key by calling

LONG RegDeleteKey HKEY hKey LPCWSTR lpszSubKey

The parameters are the handle to the open key and the name of the subkey you plan

to delete For the deletion to be successful the key must not be currently open You

can delete value by calling

LONG RegDeleteValue HKEY hKey LPCWSTR lpszValueName

471

Page 00494

Part II WndoWS CE Basics

wealth of information can be gleaned about key by calling this function

LONG RegouerylnfoKey HKEY hKey LPWSTR lpszClass LPDWORD lpcchClass

LPDWORD ipReserved LPDWORD lpcSubKeys
LPDWORD lpcchMaxSubKeyLen
LPDWORD lpcchMaxClassLen
LPDWORD lpcValues LPDWORD lpcchMaxvalueNanieLen
LPDWORD lpcbMaxVaiueData
LPDWORD lpcbSecurityoescriptor
PFILETIME lpftLastWriteTinie

The only input parameter to this function is the handle to key The function returns

the class of the key if any as well as the maximum lengths of the subkeys and val

ues under the key The last two parameters the security attributes and the last write

time are unsupported under Windows CE and should be set to NULL

Closing keys

You close registry key by calling

LONG RegCloseKey HKEY hKey

When registry key is closed Windows CE flushes any unwritten key data to the

registry before returning from the call

Enumerating registry keys

In some instances youll find it helpful to be able to query key to see what subkeys

and values it contains You accomplish this with two different functions one to query

the subkeys another to query the values The first function

LONG RegEnumKeyEx HKEY hKey DWORD dwlndex LPWSTR lpszName

LPDWORD lpcchName LPDWORD ipReserved

LPWSTR lpszClass
LPDWORD lpcchClass PFILETIME lpftLastWriteTime

enumerates the subkeys of registry key through repeated calls The parameters to

pass the function are the handle of the opened key and an index value To enumer

ate the first subkey the dwlndex parameter should be For each subsequent call to

RegEnumKeyEx dwlndex should be incremented to get the next subkey When there

are no more subkeys to be enumerated RegEnumKeyEx returns ERROR_NO_
MORE_ITEMS

For each call to RegEnumKeyEx the function returns the name of the subkey

and its classname The last write time parameter isnt supported under Windows CE
Values within key can be enumerated with call to this function

LONG RegEnuniValue HKEY hKey DWORD dwlndex LPWSTR lpszValueName

LPDWORD lpcchValueName LPDWORD ipReserved

LPDWORD ipType LPBYTE lpoata LPDWORD lpcbData

472

Page 00495

Chapter Files Databases and the Registry

Like RegEnumKe this hinction is called repeatedly passing index values to enumerate

the different values stored under the key When the function returns ERROR_NO_

MORE_ITEMS there are no more values under the key RegEnum Value returns the

name of the values the data stored in the value as well as its data type and the size

of the data

The Reg View Example Program

The following program isa registry viewer application It allows user to navigate

the trees in the registry and examine the contents of the data stored Unlike RegFdit

which is provided by Windows NT and Windows 98 RegView doesnt let you edit

the registry However such an extension wouldnt he difficult to make Figure 7-7

contains the code for the RegView program

RegView.rc

1/ Resource file

19 ny

include wi

include regv

II

II Icons and bitmaps

ID_ICON ICON regview.ico
ID_BMPS BITMAP TVBmps.bmp

II

II Menu

ID_MENU MENU DISCARDABLE

ED

POPUP File
BEGIN

MENtJITEM Exit
END

Figure 7-7 The Regl few program continued

473

Page 00496

Part II Whidows CE ascs

Figure 7-7 continued

aw JiPL Ji

Nc

1it 4JLahI i44r1H444

IAIrir
ie%i

4Pjtd

474

Page 00497

Chapter Files Databases and the Registry

struct decodeNotify /1 Structure associates

UINT Code // control lOs with

LRESULT FxnHWND WORD HWND LPNMHDR II notify handler

II

II Generic defines used by application

define 1D....ICON II App icon resource 10

define ID_BMPS II Bitmap resource ID

define IDC_CMDBAR 10 II Command band ID

define ID_MENU 11 1/ Main menu resource ID

define ID_TREEV 12 /1 Tree view control ID

define ID_LISTV 13 1/ List view control ID

II Menu item lOs

define 1DM_EXIT 10 II File menu

define 1DM_ABOUT 150 II Help menu

/1

1/ Function prototypes

int InitApp HINSTANCE
HWND InitlnstanCe HINSTANCE LPWSTR int
mt Terminstance HINSTANCE lot

TNT EnumChildren HWND HTREEITEM HKEY LPTSTR

DWORD CountChildren HKEY LPTSTR LPTSTR

TNT EnumValues HWND HKEY LPTSTR
TNT DisplayValue HWND TNT LPTSTR PBYTE DWORD DWORD

TNT GetTree HWND HTREEITEM HKEY TCHAR TNT
HTREEITEM InsertTV HWND HTREEITEM TCHAR LPARAM OWORD
TNT TnsertLV HWND TNT LPTSTR LPTSTR
HWND CreateLV HWND RECT

HWND CreateTV HWND RECT

1/ Window procedures

LRESULT CALLBACK MainWndProc HWND UINT WPARAM LPARAM

/1 Message handlers

LRESULT DoCreateMain HWND UINT WPARAM LPARAM

LRESULT DoSizeMain HWND UINT WPARAM LPARAM

LRESULT DoNotifyMain HWND UINT WPARAM LPARAM

LRESULI DoCommandMain HWND UINT WPARAM LPARAM

LRESULT DoDestroyMain HWND UINT WPARAM LPARAM

continued

475

Page 00498

Part II Windows CE Basics

Figure 7-7 continued

111 p4Imch iI1i

ar

_pIi

mtrp

476

Page 00499

Chapter Files Databases and the Registry

II Notification message dispatch for MainWindowProc

const struct decodeNotify MainNotifyltenis

JD_LISTV OoMainNotifyListv

ID_TREEV DoMainNotifylreeV

1/

II Program entry point

/1

mt WINAPI WinMain HINSTANCE hlnstance HINSTANCE hPrevlnstance

LPWSTR lpCmdLine mt nCmdShow

HWND hwndMain

MSG msg
mt rc

// Initialize application

rc InitApp hinstance
if rc return rc

II Initialize this Instance

hwndMaln Initlnstance hlnstance lpCmdLine nCmdShow
if hwndMain

return OxlO

II Application message loop

while GetMessage msg NULL Ofl

TranslateMessage msg
DispatchMessage jnsg

II Instance cleanup

return Termlnstance hlnstance msg.wParam

II

II InltApp Application initialization

1/

mt InitApp HINSTANCE hlnstancel

WNDCLASS wc
INITCOMMONCONTROLSEX icex

/1 Register application main window class

wc.style II Window style

wc.lpfnWndProc MainWndProc 1/ Callback function

wc.cbClsExtra II Extra class data

wc.cbWndExtra II Extra window data

wc.hlnstance hlnstance 1/ Owner handle

continued

477

Page 00500

Part ii WrndOWS CE Basics

Figure 7-7 continued

c- h1
4Rpa

tM
mt

ZI

14
1AV

478

Page 00501

Chapter Files Databases and the Registry

II

II Termlnstance Program cleanup

1/

mt Termlnstance HINSTANCE hlnstance mt nDefRC

return nDefRC

II Message handling procedures for MainWindow

II

II MainWndProc Callback function for application window

/1

LRESULT CALLBACK MainWndProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

INT

1/ Search message list to see if we need to handle this

/1 message If in list call procedure

for Ci dimMainMessages
if wMsg MainMessages

return MainMessages wMsg wParam iParam

return DefWindowProc hWnd wMsg wParam lParam

/1

II DoCreateMain Process WM_CREATE message for window

//

LRESULT DoCreateMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

HWND hwndCB hwndChild

INT nHeight

RECT rect

LPCREATESTRUCT pcs

1/ Convert lParam into pointer to create structure

lpcs LPCREATESTRUCT lParam

II Create minimal command bar that only has menu and an

ii exit button

hwndCB CommandBar_Create hlnst hWnd IDC_CMDBAR
II Insert the menu
CommandBar_InsertMenubar hwndCB hlnst ID_MENU

/1 Add exit button to command bar

CommandBar_AddAdornments hwndCB
nHeight commandBar_Height hwndCB

continued

479

Page 00502

Part II Whidows CE scs

Figure 7-7 continued

Fl

AJra r1 ipckBa iN0vrlrbgp

NM ii

riiiI1 Jii

i$h
480

Page 00503

Chapter Files Databases and the Registry

nDivPos rect.right rectleft nDivPct/1

SetWindowPos hwndlV NULL rect.left rect.top

nDivPos rect.bottom rect.top

SW P_N ZO RD ER

SetWindowPos hwndLv NULL nDivPos rect.top

rect.right rect.le-ft nflivPos

rect.bottom rect.top SWP_NOZORDER

return

If

II DoCommandMain Process WM_COMMAND message for window

II

LRESULT DoCommandMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParais

WORD idlteni wNotifyCode

HWND hwndCtl

INT

II Parse the parameters
idltem WORD LOWORD wParam
wNotifyCode WORD HIWORD wParam
hwndCtl HWND iParam

II Call routine to handle control message

for dimMainCommandltems i-H-

if idltem MainConimandltems
return MainCommandltemsti.FxnhWnd idrtem hwndCtl

wNotifyCode

return

1/

/1 DoNotifyMain Process WM_NOTIFY message for window

1/

LRESULT DoNotifyMain HWND hWnd lINT wMsg WPARAM wParam

LPARAM iParam

UINT idltem

HWND hCtl

LPNMHDR pHdr

INT

II Parse the parameters

iditem wParam

pHdr LPNMHDR lParam

hCtl pHdr-hwndFronr

coilinued

481

Page 00504

Partil Windows CE Basics

Figure 7-7 continued

f4trnre Fbr
41

1ri

Np 1pq1N4EM1
fau Wit1r 4S

11 DbNC13W/ 1W

it

Y-

t-iç
111 iLj WkeI W4

482

Page 00505

Chapter Files Databases and the Registry

II

II DoMainNotifyTreeV Process notify message for list view

II

LPARAM DoMainNotifyTreeV HWND hWnd WORD idltem HWND hwndCtl

LPNMHDR pnrnh

LPNM_TREEVI EW pNoti fyTV

TCHAR szKey
HKEY hRoot

HTREEITEM hChild hNext

TNT

pNotifylV LPNM_TREEVIEW pnmh

switch pnnih-code
case TVN_ITEr4EXPANDED

if pNotlfyTV-action TVE_COLLAPSE

II Delete the children so that on next open they will

1/ be reenumerated

hChild TreeViewGetChild hwndCtl

pNotifylV-iteniNew.hltem
while hChild

hNext TreeView$etNextltem hwndCtl hChild

GN_N EXT

TreeView_Deleteltem hwndCtl hChild
hChild hNext

break

case TVN_SELCHANGED

Getlree hWnd pNotifylV-itemNew.hlteni hRoot
szKey dimszKey

EnumValues hWnd hRoot szkey
break

case TVN_ITEMEXPANDING

if pNotifylV-action TVE_EXPAND

Getlree hWnd pNotifylV-itemNew.hltem hRoot
szKey dimszKey

EnumChildren hWnd pNotifyTV-itemNew.hltem

hRoot szKey

break

return

con/in ned

483

Page 00506

Part II Wndows CE Eascs

Figure 7-7 continued

ir iç
Sf gpdr

LV MIQ 13 4p
iip

k4i
LJ 11

ri$ pcr1 ttV r4 i44III
jr

_cgra jPfi1 tW j4
jF fvii

1lN PARbiV

iiiis 41
idà ii

dMsiá cqLj if

2t1

484

Page 00507

Chapter Files Databases and the Registry

/I Create tree view Size it so that it fits under

1/ the command bar and fills the left part of the client area
1/

hwndlV CreateWindowEx WC_TREEVIEW

TEXT WS_VISIBLE WS_CHILD WS_VSCRDLL
WS_BURDER TYS_HASLINES TVS_HASBUTTONS

TVS_LINESATROOI prect-left prect-top
prect-right prect-bottom
hWnd HMENUID_TREEV hlnst NULL

II Destroy frame if window not created
if IsWindow hwndTV

return

II Create image list control for tree view icons
himl ImageList_Create 16 16 ILC_COLOR
II Load first two images from one bitmap
hBmp LoadBitmap hrnst MAKEINTRESOURCE ID_OMPS
ImageList_Add himl hBmp NULL
Deleteobject ChOmp

TreeView_SetlmageListhwndTv himl TVSIL_NQRMAL
return hwndTV

II

1/ InsertLV Add an item to the list view control
/1

INT InsertLV HWND hWnd INT nltem LPTSTR pszName LPTSTR pszData

HWND hwndLV GetDlgltem hWnd 1D_LISTV
LVITEM lvi
INT rc

lvi .mask LVIF..TEXT LVIF_IMAGE LVIF_PARAM
lvi.iltem nitem

lvi.iSubltem

lvi.pszText pszName

lvi.ilmage

lvi.lParam nitem

rc SendMessage hwndLV LVM_INSERTITEM LPARAMlvi

lvi .mask LVIF_TEXT

lvi.iltem nltem

lvi.iSubltem

lvi.pszlext pszData

con/in ned

485

Page 00508

Part II
Windows CE Basics

Figure 7-7 continued

Mt

ea dI1c
Dnre

r4Pr

1W ne ir kIt

wqc

1fd

4ir

qtpt4TI
4$ 44W

44
44

486

Page 00509

Chapter Files Databases and the Registry

/1 Get the name of the item

tvi.mask TVIF_TEXT

tvi.hltem hltem

tvi.pszlext szName

tvi.cchTextMax dimszName
TreeView_Getitem hwndTV tvi

lstrcat pszKey TEXT \\
lstrcat pszKey szName

else

pszKey TEXT \O
szName TEXT

ii Get the name of the item

tvi.mask TVIF_TEXT TVIF_PARAM

tvi.hltem hitem

tvi.pszText szName

tvi.cchTextMax dimszName
if TreeView_Getltem hwndTV tvi

pRoot HTREEITEMtvi.lpararn

else

TNT rc GetLastErrorQ

return

II

If DisplayValue Display the data depending on the type

TNT DisplayValue HWND hWnd TNT nCnt LPTSTR pszName PBYTE pbData
DWDRD dwDSize DWORD dwlype

TCHAR szData
TNT len

switch dwType
case REG_MULTI_SZ

case REG_EXPAND_SZ

case REG_$Z

lstrcpy szData LPTSTRpbData
break

case REG_DWORD

wsprintf szData TEXT %X int pbData
break

ontinwd

487

Page 00510

Part II Windows CE 3ascs

Figure 7-7 continued

ji1

Ic v$IPI
mitmiiijI

Lb1 Ij1P ipr

4k L4I Ii

1r
1\

LJ

488

Page 00511

Chapter Files Databases and the Registry

dwNSize dimszName
dwDSize dimbData
nCnt
rc RegEnumvalue hKey nCnt szName dwNSize

NULL dwType blThta dwDSize

if hKey hRoot

RegCloseKey hKey
return

II

II CountChildren Count the number of children of key

1/

DWORD CountChildren HKEY hRoot LPTSTR pszKeyPath LPTSTR pszKey
TCHAR pEnd
DWORD dwCnt

HKEY hKey

pEnd pszKeyPath istrien pszKeypath
lstrcpy pEnd TEXT \\
lstrcat pEnd pszKey

if RegOpenKeyExhRoot pszkeyPath hKey ERROR_SUCCESS

RegouerylnfoKey hKey NULL NULL dwCnt NULL NULL NULL
NULL NULL NULL NULL

RegCloseKey hKey

pEnd TEXT \O
return dwCnt

/1

II EnumChildren Enumerate the child keys of key
1/

INT EnumChildren HWND hWnd HTREEITEM hParent HKEY hRoot

LPTSTR pszKey

INT rc
DWORD dwNSize

DWORD dwCSize

TCHAR szName
TCHAR szClassE256

FILETIME ft
DWORD nChild

HKEY hKey

TVITEM tvi

contin ned

489

Page 00512

Part II Whidows CE Bascs

Figure 7-7 continued

Adr jiP
irJEitIi 4rq/

ir

ikIOw11iI

pW 4d

4j

iL

JJ

4w

490

Page 00513

Chapter Files Databases and the Registry

EndDialog hWnd
return TRUE

break

return FALSE

The workhorses of this program are the enumeration functions that queiy what

keys and values are under each key As key is opened in the tree view control the
control sends WM_NOTIFY message In response RegView enumerates the items
below that key and fills the tree view with the child keys and the list view control
with the values

CONCLUSION
We have covered huge amount of ground in this chapter The file system while

radically different under the covers presents standard Win32 interface to the pro
grammer and familiar directory structure to the user The database API is unique to

Windows CE and provides valuable function for the information-centric devices that

Windows CE supports The registry structure and interface are quite familiar to Win
dows programmers and should present no surprises

The last two chapters have covered memory and the file system Now its time

to look at the third part of the kernel triumvirate processes and threads As with the

other parts of Windows CE the API will be familiar if perhaps bit smaller However
the underlying architecture of Windows CE does make itself known

491

Page 00514

Page 00515

Chapter

Processes

and Threads

Like Windows NT Windows CE is fully multitasking and multithreaded operating

system What does that mean In this chapter Ill present few definitions and then

some explanations to answer that question

Aprocess is single instance of an application If two copies of Microsoft Pocket

Word are running two unique processes are running Every process has its own
protected 32-MB address space as described in Chapter Windows CE enforces

limit of 32 separate processes that can run at any time

Each process has at least one thread thread executes code within process

process can have multiple threads running at the same time put the phrase at the

same time in quotes because in fact only one thread executes at any instant in time

The operating system simulates the concurrent execution of threads by rapidly switch

ing between the threads alternatively stopping one thread and switching to another

PROCESSES
Windows CE treats processes differently than does Windows 98 or Windows NT First

and foremost Windows CE has the aforementioned system limit of 32 processes being

run at any one time When the system starts at least four processes are created NK.EXE

which provides the kernel services FILESYS.EXE which provides file system services

GWES.EXE which provides the GUI support and DEVICE.EXE which loads and

maintains the device drivers for the system On most systems other processes are

493

Page 00516

Part II Whidows CE Basics

also started such as the shell EXPLORER.EXE and if the system is connected to

PC REPLLOG.EXE and RAPISRV.EXE which service the link between the PC and the

Windows CE system This leaves room for about 24 processes that the user or other

applications that are running can start While this sounds like harsh limit most sys

tems dont need that many processes typical H/PC thats being used heavily might

have 15 processes running at any one time

Windovs CE diverges from its desktop counterparts in other ways Compared
with processes under Windows 98 or Windows NT Windows CE processes contain

much less state information Since Windows CE supports neither drives nor the con

cept of current directory the individual processes dont need to store that informa

tion Windows CE also doesnt maintain set of environment variables so processes

dont need to keep an environment block Windows CE doesnt support handle in

heritance so theres no need to tell process to enable handle inheritance Because

of all this the parameter-heavy CreateProcess function is passed mainly NULLs and

zeros with just few parameters actually used by Windows CE

Many of the process and thread-related functions are simply not supported by

Windows CE because the system doesnt support certain features supported by Win
dows 98 or Windows NT Since Windows CE doesnt support an environment all the

Win32 functions dealing with the environment dont exist in Windows CE While

Windows CE supports threads it doesnt support fibers lightweight version of

thread supported by Windows NT So the fiber API doesnt exist under Windows CE
Some functions arent supported because theres an easy way to work around the lack

of the function For example GetCommandLine doesnt exist in Windows CE so an

application needs to save pointer to the command line passed to WiriMain if it needs

to access it later Finally ExitProcess doesnt exist under Windows CE But as you

might expect theres workaround that allows process to close

Enough of what Windows CE doesnt do lets look at what you can do with

Windows CE

Creating Process

The function for creating another process is

BOOL CreateProcess LPCTSTR ipApplicationName

LPTSTR lpCommandLine

LPSECURITY_ATTRIBUTES lpProcessAttributes

LPSECURITY_ATTRIBUTES lpThreadAttributes

BOOL blnheritHandles DWORD dwCreationFlags

LPVOID ipEnvironment

LPCTSTR lpCurrentDirectory

LPSTARTUPINFO lpStartuplnfo

LPPROCESS_INFORMATION ipProcessln-formation

While the list of parameters looks daunting most of the parameters must be set to

NULL or .0 because Windows CE doesnt support security or current directories

494

Page 00517

Chapter Processes and Threads

nor does it handle inheritance This results in function prototype that looks more

like this

BOOL CreateProcess LPCTSTR ipApplicationName

LPTSTR lpCommandLine NULL NULL FALSE

DWORD dwCreationFlags NULL NULL NULL

LPPROCESS_INFORMATION ipProcesslnformation

The parameters that remain start with pointer to the name of the application to launch

Windows CE looks for the application in the following directories in this order

The path if any specified in the ipApplicationName

For Windows CE 2.1 or later the path specified in the SystemPath value in

For earlier versions the root of any

external storage devices such as PC Cards

The windows directory \Windows

The root directory in the object store

This action is different from Windows NT where CreateProcess searches for the

executable only if ipApplicationName is set to NULL and the executable name is passed

through the lpCcommnadLine parameter In the case of Windows CE the applica

tion name must be passed in the lpApplicaitonName parameter because Windows CE

doesnt support the technique of passing NULL in ipApplicationName with the ap

plication name as the first token in the lpCommandLine parameter

The lpCommandLine parameter specifies the command line that will be passed

to the new process The only difference between Windows CE and Windows NT in

this parameter is that under Windows CE the command line is always passed as

Unicode string And as mentioned previously you cant pass the name of the exe

cutable as the first token in lpCommandLine

The dwCreationFlags parameter specifies the initial state of the process after it

has been loaded Windows CE limits the allowable flags to the following

Creates standard process

CREATE_SUSPENDED Creates the process then suspends the primary

thread

DEBUG_PROCESS The process being created is treated as process being

debugged by the caller The calling process receives debug information

from the process being launched

DEBUG_OIVLY_THIS_PROCESS When combined with DEBUG_PROCESS

debugs process but doesnt debug any child processes that are launched

by the process being debugged

495

Page 00518

Part II Whidows CE Basics

CREATE_NEW_CONSOLE Forces new console to be created This is

supported only in Windows CE 2.1 and later

The only other parameter of CreateProcess used by Windows CE is ipProcess

Information This parameter can be set to NULL or it can point to PROCESS_

INFORMATION structure thats filled by CreateProcess with information about the new

process The PROCESS_INFORMATION structure is defined this way

typedef struct _PROCESS_INFORMATION

HANDLE hProcess

HANDLE hlhread

DWORD dwProcessld

DWORD dwlhreadld

PROCESS_INFORMATION

The first two fields in this structure are filled with the handles of the new process and

the handle of the primary thread of the new process These handles are useful for

monitoring the newly created process but with them comes some responsibility When

the system copies the handles for use in the PROCESSJNFORMATION structure it

increments the use count for the handles This means that if you dont have any use

for the handles the calling process must close them Ideally they should be closed

immediately following successful call to CreateProcess Ill describe some good uses

for these handles later in this chapter in the section Synchronization

The other two fields in the PROCESS NFORMATION structure are filled with

the process ID and primary thread ID of the new process These ID values arent

handles but simply unique identifiers that can be passed to Windows functions to iden

tify the target of the function Be careful when using these IDs If the new process

terminates and another new one is created the system can reuse the old ID values

You must take measures to assure that ID values for other processes are still identify

ing the process youre interested in before using them For example you can by us

ing synchronization objects be notified when process terminates When the process

terminated you would then know not to use the ID values for that process

Using the create process is simple as you can see in the following code

fragment

TCHAR szFi eName
TCHAR szCmdLine
DWORD dwCreationFlags

PROCESS_INFORMATION p1
INT rc

lstrcpy szFileName TEXT calc
lstrcpy szCmdLine TEXT

dwCreationFlags

496

Page 00519

Chapter Processes and Threads

rc CreateProcess szFileName szCmdLine NULL NULL FALSE
dwCreationFlags NULL NULL NULL pi

if rc
CloseHandle pi.hlhread
CloseHandle pi.hProcess

This code launches the standard Calculator applet found on Handheld PCs and Palm-

size PCs Since the file name doesnt specify path CreateProcess will using the stan

dard Windows CE search path find calc.exe in the \Windows directory Because

didnt pass command line to Caic could have simply passed NULL value in

the lpCmdline parameter But passed null string in szCmdLine to differentiate the

lpCmdLine parameter from the many other parameters in CreateProcess that arent

used used the same technique for dwCreationFlags If the call to CreateProcess is

successful it returns nonzero value The code above checks for this and if the call

was successful closes the process and thread handles returned in the PROCESS_
INFORMATION structure Remember that this must be done by all Win32 applica

tions to prevent memory leaks

Terminating Process

process can terminate itself by simply returning from the WinMain procedure For

console applications simple return from main suffices Windows CE doesnt sup

port the EcitProcess ftmnction found in Windows 98 and Windows NT Instead you

can have the primary thread of the process call ExitThread Under Windows CE if

the primarythread terminates the process is terminated as well regardless of what other

threads are currently active in the process The exit code of the process will be the exit

code provided by ExitThread You can determine the exit code of process by calling

BOOL GetExitCodeProcess HANDLE hProcess LPDWORD ipExitCode

The parameters are the handle to the process and pointer to DWORD that receives

the exit code that was returned by the terminating process If the process is still run

ning the return code is the constant STILL_ACTIVE

You can terminate another process But while its possible to do that you

shouldnt be in the business of closing other processes The user might not be ex
pecting that process to be closed without his or her consent If you need to terminate

process or close process which is the same thing but much nicer word the

following methods can be used

If the process to be closed is one that you created you can use some sort of

interprocess communication to tell the process to terminate itself This is the most

advisable method because youve designed the target process to be closed by an
other party Another method of closing process is to send the main window of the

process WMCLOSE message This is especially effective on the Palm-size PC where

497

Page 00520

Part II Whidows CE BascS

applications are designed to respond to WM_CLOSE messages by quietly saving their

state and closing Finally if all else fails and you absolutely must close another pro

cess you can use TerminateProcess

TerminateProcess is prototyped as

BOOL TerminateProcess HANDLE hProcess DWORD uExitCode

The two parameters are the handle of the process to terminate and the exif code the

terminating process will return

Other Processes

Of course to terminate another process youve got to know the handle to that pro

cess You might want to know the handle for process for other reasons as well For

example you might want to know when the process terminates Windows CE sup

ports two additional functions that come in handy here both of which are seldom

discussed The first function is OpenProcess which returns the handle of an already

running process OpenProcess is prototyped as

HANDLE OpenProcess DWORD dwDesiredAccess BOOL blnheritHandle

DWORD dwProcessld

Under Windows CE the first parameter isnt used and should be set to The

blnheritHandle parameter must be set to FALSE because Windows CE doesnt sup

port handle inheritance The final parameter is the process ID value of the process

you want to open
The other function useful in this circumstance is

DWORD GetWindowThreadProcessld HWND hWnd LPDWORD lpdwProcessld

This function takes handle to window and returns the process ID for the

process that created the window So using these two functions you can trace win

dow back to the process that created it

Two other functions allow you to directly read from and write to the memory

space of another process These functions are

BOOL ReadProcessMemory HANDLE hProcess LPCVOID lpBaseAddress

LPVOID lpBuffer DWORD nSize

LPDWORD lpNumberDfBytesRead

and

BOOL WriteProcessMemory HANDLE hProcess LPVOID lpBaseAddress

LPVOID lpBuffer DWORD nSize

LPDWORD pNumberOfBytesWri tten

The parameters for these functions are fairly self-explanatory The first parameter is

the handle of the remote process The second parameter is the base address in the

other processs address space of the area to be read or written The third and fourth

parameters specify the name and the size of the local buffer in which the data is to

498

Page 00521

Chapter Processes and Threads

be read from or written to Finally the last parameter specifies the bytes actually read

or written Both functions require that the entire area being read to or written from

must be accessible Typically you use these functions for debugging but theres no

requirement that this be their only use

THREADS
thread is fundamentally unit of execution That is it has stack and processor

context which is set of values in the CPU internal registers When thread is sus

pended the registers are pushed onto the threads stack the active stack is changed

to the next thread to be run that threads CPU state is pulled off its stack and the

new thread starts executing instructions

Threads under Windows CE are similar to threads under Windows NT or Win
dows 98 Each process has primary thread Using the functions that describe be

low process can create any number of additional threads within the process The

only limit to the number of threads in Windows CE process is the memory and process

address space available for the threads stack

Threads within process share the address space of the process Memory allo

cated by one thread is accessible to all threads in the process Threads share the same

access rights for handles whether they be file handles memory objects handles or

handles to synchronization objects

Before Windows CE 2.1 the size of all thread stacks was set at around 58 KB

Starting with Windows CE 2.1 the stack size of all threads created within process is

set by the linker The linker switch for setting the stack size in Microsoft Visual

is /stack Secondary threads under Windows CE 2.1 are created with the same stack

size as the primary thread

The System Scheduler

Windows CE schedules threads in preemptive manner Threads run for quantum

or time slice which is usually 25 milliseconds on H/PCs and Palm-size PCs OEMs
developing custom hardware can specify different quantum After that time if the

thread hasnt already relinquished its time slice and if the thread isnt time-critical

thread its suspended and another thread is scheduled to run Windows CE chooses

which thread to run based on priority scheme Threads of higher priority are sched

uled before threads of lower priority

The rules for how Windows CE allocates time among the threads are quite dif

ferent from Windows NT and from Windows 98 Unlike Windows NT Windows CE

processes dont have priority class Under Windows NT process is created with

priority class Threads derive their priority based on the priority class of their parent

processes process with higher-priority class has threads that run at higher pri

ority than threads in lower-priority class process Threads within process can then

refine their priority within that process by setting their relative thread priority

499

Page 00522

Part II Windows CE Eascs

Because Windows CE has no priority classes all processes are treated as peers

Individual threads can have different priorities but the process that the thread runs

within doesnt influence those priorities Also unlike Windows NT the foreground

thread in Windows CE doesnt get boost in priority

In Windows CE thread can have one of eight priority levels Those priorities

are listed below

THREAD_PRIORJTY_TIJIIE_CRJTICAL Indicates points above normal

priority Threads of this priority arent preempted

THREAD_PRIORITY_HIGHEST Indicates points above normal priority

THREAD_PRIORITY_ABOVE_NORMAL Indicates point above normal

priority

THREAD_PRIORITY_NORMAL Indicates normal priority All threads are

created with this priority

THREAD_PRIORITY_BELOW_NORMAL Indicates point below normal

priority

THREAD_PRIORITY_LOWEST Indicates points below normal priority

THREAD_PRIORITY_ABOVE_IDLE Indicates points below normal

priority

THREAD_PRIORITY_IDLE Indicates points below normal priority

All higher-priority threads run before lower-priority threads This means that

before thread set to run at particular priority can be scheduled all threads that have

higher priority must be blocked blocked thread is one thats waiting on some

system resource or synchronization object before it can continue Threads of equal

priority are scheduled in round-robin fashion Once thread has voluntarily given

up its time slice is blocked or has completed its time slice all other threads of the

same priority are allowed to run before the original thread is allowed to continue If

thread of higher priority is unblocked and thread of lower priority is currently

running the lower-priority thread is immediately suspended and the higher-priority

thread is scheduled Lower-priority threads can never preempt higher-priority thread

There are two exceptions to the rules just stated If thread has priority

of THREAD_PRIORITY_TIME_CRITICAL its never preempted even by another

THREAD_PRIORITY_TIME_CRITICAL thread As you can see THREAD_PRIORITY_

TIME_CRITICAl thread can and will starve everyone else in the system unless writ

ten carefully This priority is reserved by convention for interrupt service threads in

device drivers which are written so that each thread quickly performs its task and

releases its time slice

500

Page 00523

Chapter Processes and Threads

The other exception to the scheduling rules happens if low-priority thread owns
resource that higher-prioritythread is waiting on In this case the low-priority thread

is temporarily given the higher-priority threads priority in scheme known as prior

ity inversion so that it can quickly accomplish its task and free the needed resource

While it might seem that lower-priority threads never get chance to run in

this scheme it works out that threads are almost always blocked waiting on something

to free up before they can be scheduled Threads are always created at THREAD_
PRIORITY_NORMAL so unless they proactively change their priority level thread

is usually at an equal priority to most of the other threads in the system Even at the

normal priority level threads are almost always blocked For example an applications

primary thread is typically blocked waiting on messages Other threads should be

designed to block on one of the many synchronization objects available to Win
dows CE application

Never Do This

Whats not supported by the arrangement just described or by any other thread-

based scheme is code like the following

while bFlag FALSE

II Do nothing and spin

II Now do something

This kind of code isnt just bad manners since it wastes CPU power its death sen

tence to battery-powered Windows CE device To understand why this is impor

tant need to digress into quick lesson on Windows CE power management
Windows CE is designed so that when all threads are blocked which happens

over 90 percent of the time it calls down to the OEM Abstraction Layer the equiva

lent to the BIOS on an MS-DOS machine to enter low-power waiting state Typi

cally this low-power state means that the CPU is halted that is it simply stops

executing instructions Because the CPU isnt executing any instructions no power-

consuming reads and writes of memory are performed by the CPU At this point the

only power necessary for the system is to maintain the contents of the RAM and light

the display This low-power mode can reduce power consumption by up to 99 per
cent of what is required when thread is running in well-designed system

Doing quick back-of-the-envelope calculation say Palm-size PC is designed

to run for 15 hours on couple of AAA batteries Given that the system turns itself off

after few minutes of non-use this 15 hours translates into month or two of battery

life in the device for the user Im basing this calculation on the assumption that the

system indeed spends 90 percent or more of its time in its low-power idle state Say

poorly written application thread spins on variable instead of blocking While this

application is running the system will never enter its low-power state So instead of

501

Page 00524

Part II
WindOWS CE BasicS

900 minutes of battery time 15 hours 60 minutes/hour the system spends 100 per

cent of its time at full power resulting in battery life of slightly over 98 minutes or

right at 1.5 hours So as you can see its good to have the system in its low-power

state

Fortunately since Windows applications usually spend their time blocked in

call to GetMessage the system power management works by default However if you

plan on using multiple threads in your application you must use synchronization

objects to block threads while theyre waiting First lets look at how to create thread

and then Ill dive into the synchronization
tools available to Windows CE programs

Creating Thread

You create thread by calling this function

HANDLE CreateThread LPSECURITY_ATTRIBUTES lplhreadAttribUteS

DWORD dwStackSiZe

LPTHREAD_START_ROUTINE pStartAddresS

LPVOID 1pParameter DWORD dwCreatioflFlagS

LPDWORD lpThreadld

As with CreateProcess Windows CE doesnt support number of the parameters in

CreateThread and so they are set to NULL or as appropriate For CreateThread

the lpThreadAttributes and dwStackSize parameters arent supported The parameter

lpThreadAttributes must be set to NULL and dwStackSize is ignored by the system

and should be set to The third parameter lpStartAddress must point to the start of

the thread routine The ipParameter parameter in CreateThread is an application-

defined value thats passed to the thread function as its one and only parameter

The dwCreationFlags parameter can be set to either or CREATE_SUSPENDED If

CREATE_SUSPENDED is passed the thread is created in suspended state and must

be resumed with call to ResumeTh read The final parameter is pointer to DWORD

that receives the newly created threads ID value

The thread routine should be prototyped this way

DWORD WINAPI ThreadFunc LPVOID lpArg

The only parameter is the ipParameter value passed unaltered from the call to

CreateThread The parameter can be an integer or pointer Make sure however

that you dont pass pointer to stack-based structure that will disappear when the

routine that called CreateThread returns

If CreateTh read is successful it creates the thread and returns the handle to the

newly created thread As with CreateProcess the handle returned should be closed

when you no longer need the handle Following is short code fragment that con

tains call to start thread and the thread routine

502

Page 00525

Chapter Processes and Threads

II

ll

HANDLE hThreadl

DWORD dwThreadllD

INT nParameter

hThreadl CreateThread NULL Thread2 nParameter

dwlhreadllD
Cl oseHandl hlhreadl

II

II Second thread routine

II

DWORD WINAPI Thread2 PVOID pArg

INT nParam INT pArg

ll Do something here

II

/I

II

return 0x15

In this code the second thread is started with call to CreateThread The

nParameter value is passed to the second thread as the single parameter to the thread

routine The second thread executes until it terminates in this case simply by return

ing from the routine

thread can also terminate itself by calling this function

VOID Exitlhread DWORD dwExitCode

The only parameter is the exit code thats set for the thread That thread exit code

can be queried by another thread using this function

BOOL GetExitCodeThread HANDLE hlhread LPDWORD ipExitCode

The function takes the handle to the thread not the thread ID and returns the exit

code of the thread If the thread is still running the exit code is STILL_ACTIVE con

stant defined as OxO 103 The exit code is set by thread using ExitThread or the vakie

returned by the thread procedure In the preceding code the thread sets its exit code

to 0x15 when it returns

All threads within process are terminated when the process terminates As

said earlier process is terminated when its primary thread terminates

503

Page 00526

Part II Whidows CE Basics

Setting and querying thread priority

Threads are always created at priority level of THREAD_PRIORITY_NORMAL The

thread priority can be changed either by the thread itself or by another thread calling

this function

BOOL SetlhreadPriority HANDLE hThread mt nPriority

The two parameters are the thread handle and the new priority level The level passed

can be one of the constants described previously ranging from THREAD_PRIORITY_

IDLE up to THREAD_PRIORITY_TIME_CRITICAL You must be extremely careful when

youre changing threads priority Remember that threads of lower priority almost

never preempt threads of higher priority So simple bumping up of thread one

notch above normal can harm the responsiveness of the rest of the system unless that

thread is carefully written

To query the priority level of thread call this function

mt GetThreadPriority HANDLE hThread

This function returns the priority level of the thread You shouldnt use the hard-coded

priority levels Instead use constants such as THREAD_PRIORITY_NORMAL defined

by the system This ensures that any change to the priority scheme in future versions

of Windows CE doesnt affect your program

Suspending and resuming thread

You can suspend thread at any time by calling this function

DWORD Suspendlhread HANDLE hThread

The only parameter is the handle to the thread to suspend The value returned is the

suspend count for the thread Windows maintains suspend count for each thread

Any thread with suspend count greater than is suspended Since SuspendTh read

increments the suspend count multiple calls to SuspendTh read must be matched with

an equal number of calls to ResumeTh read before thread is actually scheduled to

run ResumeCount is prototyped as

DWORD Resumelhread HANDLE hlhread

Here again the parameter is the handle to the thread and the return value is

the previous suspend count So if ResumeThread returns the thread is no longer

suspended

At times thread simply wants to kill some time Since Ive already explained

why simply spinning in while loop is very bad thing to do you need another way
to kill time The best way to do this is to use this function

vomd Sleep DWORD dwMillmseconds

Sleep suspends the thread for at least the number of milliseconds specified in the

dwMillisecQnds parameter Since the quantum or time slice on Windows CE

504

Page 00527

Chapter Processes and Threads

system is usually 25 milliseconds specifying very small numbers of milliseconds

results in sleeps of at least 25 milliseconds This strategy is entirely valid and some
times its equally valid to pass to Sleep When thread passes to Sleep it gives

up its time slice but is rescheduled immediately according to the scheduling rules

described previously

Thread Local Storage

Thread local storage is mechanism that allows routine to maintain separate in

stances of data for each thread calling the routine This capability might not seem

like much but it has some very handy uses Take the following thread routine

tNT g_nGlobal II System global variable

mt ThreadProc pStartData
tNT nValuel

tNT nValue2

while unblocked
II

/I Do some work
If

II Were done now terminate the thread by returning

return

For this example imagine that multiple threads are created to execute the same rou

tine ThreadProc Each thread has its own copy of nValuel and nValue2 because

these are stack-based variables and each thread has its own stack All threads though

share the same static variable g_nGlobal

Now imagine that the ThreadProc routine calls another routine WorkerBee

As in

mt g_nGlobal II System global variable

mt ThreadProc pStartData
mt nValuel

mt nValue2

while unblocked

WorkerBeeO II Let someone else do the work

II Were done now terminate the thread by returning

return

continued

505

Page 00528

Part II Windows CE asics

mt WorkerBee void
mt nLocall

static mt nLocal2

II Do work here

return nLocall

Now WorkerBee doesnt have access to any persistent memory thats local to thread

nLocall is persistent only for the life of single call to WorkerBee nLocal2 is persis

tent across calls to WorkerBee but is static and therefore shared among all threads

calling WorkerBee One solution would be to have ThreadProc pass pointer to

stack-based variable to WorkerBee This strategy works but only if you have control

over the routines calling WorkerBee What if youre writing DLL and you need to

have routine in the DLL maintain different state for each thread calling the rou

tine You cant define static variables in the DLL because they would be shared across

the different threads You cant define local variables because they arent persistent

across calls to your routine The answer is to use thread local storage

Thread local storage allows process to have its own cache of values that are

guaranteed to be unique for each thread in process This cache of values is small

because an array must be created for every thread created in the process but its large

enough if used intelligently To be specific the system constant TLS_MINIMUM_

AVAILABLE is defined to be the number of slots in the TLS array thats available for

each process For Windows CE like Windows NT this value is defined as 64 So each

process can have 64 4-byte values that are unique for each thread in that process

For the best results of course you must manage those 64 slots well

To reserve one of the TLS slots process calls

DWORD TisAlloc void

TisAlloc looks through the array to find free slot in the US array marks it as in use

and then returns an index value to the newly assigned slot If no slots are available

the function returns -1 Its important to understand that the individual threads dont

call TisAlloc Instead the process or DLL calls it before creating the threads that will

use the TLS slot

Once slot has been assigned each thread can access its unique data in the

slot by calling this function

BOOL TlsSetValue DWORD dwTlslndex LPVOID lpTlsValue

and

LPVOID TlsGetValue DWORD dwTlslndex

506

Page 00529

Chapter Processes and Threads

For both of these functions the TLS index value returned by TisAlloc specifies

the slot that contains the data Both TlsGet Value and TlsSet Value type the data as

PVOID but the value can be used for any purpose The advantage of thinking of the

TLS value as pointer is that thread can allocate block of memory on the heap
and then keep the pointer to that data in the TLS value This allows each thread to

maintain block of thread-unique data of almost any size

One other matter is important to thread local storage When TIsAlloc reserves

slot it zeros the value in that slot for all currently running threads All new threads are

created with their TLS array initialized to as well This means that thread can safely

assume that the value in its slot will be initialized to This is helpful for determining

whether thread needs to allocate memory block the first time the routine is called

When process no longer needs the TLS slot it should call this function

BOOL TlsFree DWORD dwllslndex

The function is passed the index value of the slot to be freed The function re

turns TRUE if successful This function frees only the TLS slot If threads have allo

cated storage in the heap and stored pointers to those blocks in their TLS slots that

storage isnt freed by this function Threads are responsible for freeing their own

memory blocks

SYNCHRONIZATION
With multiple threads running around the system you need to coordinate the activi

ties Fortunately Windows CE supports almost the entire extensive set of standard

Win32 synchronization objects The concept of synchronization objects is fairly simple

thread waits on synchronization object When the object is signaled the waiting

thread is unblocked and is scheduled according to the rules governing the threads

priority to run

Windows CE doesnt support some of the synchronization primitives supported

by Windows NT These unsupported elements include semaphores file change no

tifications and waitable timers Support for semaphores is planed for Windows CE in

the near future The lack of waitable timer support can easily be worked around us

ing the more flexible Notification API unique to Windows CE
One aspect of Windows CE unique to it is that the different synchronization ob

jects dont share the same namespace This means that if you have an event named

Bob you can also have mutex named Bob Ill talk about mutexes later in this chap

ter This naming convention is different fromWindows NTs rule where all kernel objects

of which synchronization objects are part share the same namespace While having

the same names in Windows CE is possible its not advisable Not only does the prac

tice make your code incompatible with Windows NT theres no telling whether re

design of the internals of Windows CE might just enforce this restriction in the future

507

Page 00530

Part II Whidows CE ascs

Events

The first synchronization primitive Ill describe is the event object An event object is

synchronization object that can be in signaled or nonsignaled state Events are

useful to thread to let it be known that well an event has occurred Event objects

can either be created to automatically reset from signaled state to nonsignaled

state or require manual reset to return the object to its nonsignaled state Starting

with Windows CE 2.0 events can be named and therefore shared across different pro

cesses allowing interprocess synchronization

An event is created by means of this function

HANDLE CreateEvent LPSECURITY_ATTRIBUTES lpEventAttributes

BOOL bManualReset BOOL blnitlaiState

LPTSTR lpNarne

As with all calls in Windows CE the security attributes parameter lpEventAttributes

should be set to NULL The second parameter indicates whether the event being cre

ated requires manual reset or will automatically reset to nonsignaled state imme

diately after being signaled Setting bManualReset to TRUE creates an event that must

be manually reset The blnitialState parameter specifies whether the event object is

initially created in the signaled or nonsignaled state Finally the lpName parameter

points to an optional string that names the event Events that are named can be shared

across processes If two processes create event objects of the same name the pro
cesses actually share the same object This allows one process to signal the other

process using event objects If you dont want named event the lpname parameter

can be set to NULL
To share an event object across processes each process must individually cre

ate the event object You cant simply create the event in one process and send the

handle of that event to another process To determine whether call to CreateEvent

created new event object or opened an already created object you can call Get

LastError immediately following the call to CreateEvent If GetLastError returns

ERROR_ALREADY_EXISTS the call opened an existing event

Once you have an event object youll need to be able to signal the event You

accomplish this using either of the following two functions

BOOL SetEvent HANDLE hEvent

or

BOOL PulseEvent HANDLE hEvent

The difference between these two functions is that SetEvent doesnt automatically reset

the event object to nonsignaled state For autoreset events SetEvent is all you need

because the event is automatically reset once thread unblocks on the event For

manual reset events you must manually reset the event with this function

BOOL ResetEvent HANDLE hEvent

508

Page 00531

Chapter Processes and Threads

These event functions sound like they overlap so lets review An event ob

ject can be created to reset itself or require manual reset If it can reset itself

call to SetEvent signals the event object The event is then automatically reset to the

nonsignaled state when one thread is unblocked after waiting on that event An event

that resets itself doesnt need PulseEvent or ResetEvent If however the event object

was created requiring manual reset the need for ResetEvent is obvious

PulseEvent signals the event and then resets the event which allows all threads

waiting on that event to be unblocked So the difference between PulseEvent on

manually resetting event and SetEvent on an automatic resetting event is that using

SetEvent on an automatic resetting event frees only one thread to run even if many

threads are waiting on that event PulseEvent frees all threads waiting on that event

You destroy event objects by calling CloseHandle If the event object is named

Windows maintains use count on the object so one call to CloseHandle must be

made for every call to CreateEvent

Waiting..

Its all well and good to have event objects the question is how to use them Threads

wait on events as well as on the soon to be described mutex using one of the fol

lowing functions WaitForSingleObject WaitForMultipleObjects MsgWaitForMultiple

Objects or MsgWaitForMultpleObjectsEx Under Windows CE the WaitForMultiple

functions are limited in that they cant wait for all objects of set of objects to be

signaled These functions support waiting for one object in set of objects being sig

naled Whatever the limitations of waiting cant emphasize enough that waiting is

good While thread is blocked with one of these functions the thread enters an

extremely efficient state that takes very little CPU processing power and battery power

Another point to remember is that the thread responsible for handling mes

sage loop in your application usually the applications primary thread shouldnt be

blocked by WaitForSingleObject or WaitForMultipleObjects because the thread cant

be retrieving and dispatching messages in the message ioop if its blocked waiting

on an object The function MsgWaitForMultipleObjects gives you way around this

problem but in multithreaded environment its usually easier to let the primary

thread handle the message loop and secondary threads handle the shared resources

that require blocking on events

Waiting on single object

thread can wait on synchronization object with the function

DWORD WaitForSingleObject HANDLE hHandle DWORD dwMilliseconds

The function takes two parameters the handle to the object being waited on and

timeout value If you dont want the wait to time out you can pass the value INFI

NITE in the dwMilliseconds parameter The function returns value that indicates why

509

Page 00532

Part II WndowS CE Basics

the function returned Calling WaitForSingleObject blocks the thread until the event

is signaled the synchronization object is abandoned or the timeout value is reached

WaitForSingleObject returns one of the following values

WAJT_OBJECT_O The specified object was signaled

WAIT_TIMEOUT The timeout interval elapsed and the objects state re

mains nonsignaled

WAIT_ABANDONED The thread that owned mutex object being waited

on ended without freeing the object

WAIT_FAILED The handle of the synchronization object was invalid

You must check the return code from WaitForSingleObject to determine whether

the event was signaled or simply that the time out had expired The WAIT_ABAN
DONED return value will be relevant when talk about mutexes soon

Waiting on processes and threads

Ive talked about waiting on events but you can also wait on handles to processes

and threads These handles are signaled when their processes or threads terminate

This allows process to monitor another process or thread and perform some ac

tion when the process terminates One common use for this feature is for one pro
cess to launch another and then by blocking on the handle to the newly created

process wait until that process terminates

The rather irritating routine below is thread that demonstrates this technique

by launching an application blocking until that application closes and then relaunch

ing the application

DWORD WINAPI KeepRunning PVOID pArg
PROCESS_INFORMATION pi

ICHAR szFileName
INT rc

II Copy the filename

Lstrcpy szFileName LPTSTRpArg
while

II Launch the application

rc CreateProcess szFileName NULL NULL NULL FALSE

NULL NULL NULL pi
II If the application didnt start terminate thread

if ftc
return -1

II Close the new processs primary thread handle

CloseHandle pi.hThread

510

Page 00533

Chapter Processes and Threads

II Wait for user to close the application

rc WaitForSingleObject pi.hProcess INFINITE

II Close the old process handle

CloseHandle p1 .hProcess

If Make sure we returned from the wait correctly
if rc WAIT_OBJECT_

return -2

return I/This should never get executed

This code simply launches the application using CreateProcess and waits on the

process handle returned in the PROCESS_INFORMATION structure Notice that the

thread closes the child processs primary thread handle and after the wait the handle

to the child process itself

Waiting on multiple objects
thread can also wait on number of events The wait can end when any one of the

events is signaled The function that enables thread to wait on multiple objects is

this One

DWORD WaitForMultipleObjects DWORD nCount CONST HANDLE lpHandles
BOOL bWaitAll DWORD dwMilliseconds

The first two parameters are count of the number of events or mutexes to wait on

and pointer to an array of handles to these events The bWaitAll parameter must be

set to FALSE to indicate the function should return if any of the events are signaled
The final parameter is timeout value in milliseconds As with WaitForSingleObject

passing INFINITE in the timeout parameter disables the time out Windows CE doesnt

support the use of WaitForMultileObjects to enable waiting for all events in the ar

ray to be signaled before returning

Like WaitForSingleObject WaitForMultileObjects returns code that indicates

why the function returned If the function returned due to synchronization object

being signaled the return value will be WAIT_OBJECT_a plus an index into the handle

array that was passed in the ipHandles parameter For example if the first handle in

the array unblocked the thread the return code would be WAIT_OBJECT_U if the

second handle was the cause the return code would be WAIT_OBJECT_U The

other return codes used by WaitForSingleObjectWAIT_TIMEOuT WAIT_ABAN
DONED and WAIT_FAILEDare also returned by WaitForMu1tileObjects for the

same reasons

511

Page 00534

Part II Whidows CE asics

Waiting while dealing with messages
The Win32 API provides other functions that allow you to wait on set of objects as

well as messages these are MsgWaitForMultipleObjects and MsgWaitForMultiple

ObjectsEx Under Windows CE these functions act identically so Ill describe only

MsgWaitForMultipleObjects This function essentially combines the wait function

MsgWaitForMultipleObjects with an additional check into the message queue so that

the function returns if any of the selected categories of messages are received during

the wait The prototype for this function is the following

DWORD MsgWaitForMultipleObjectsEx DWORD nCount LPHANDLE pHandles

BOOL fWaitAll DWORD dwMilliseconds

DWORD dwWakeMasks

This function has number of limitations under Windows CE As with WaitFor

MultipleObjects MsgWaitForMultileObjectsEx cant wait for all objects to be signaled

Nor are all the dwWakeMask flags supported by Windows CE Windows CE supports

the following flags in dwWakeMask Each flag indicates category of messages that

when received in the message queue of the thread causes the function to return

QS_ALLI1/PLJT Any message has been received

QS_INPIJT An input message has been received

QS_KEY key up key down or syskey up or down message has been

received

QS_MO USE mouse move or mouse click message has been received

QS_MOUSEBUITON mouse click message has been received

QS_MOUSEMOVE mouse move message has been received

QS_PA II VT WM_PAINT message has been received

QS_POSTMESSAGE posted message other than those in this list has

been received

QS_SENDMESSAGE sent message other than those in this list has been

received

QS_TIMER WMJflMER message has been received

The function is used inside the message loop so that an action or actions can

take place in response to the signaling of synchronization object while your pro

gram is still processing messages

The return value is WAIT_OBJECT_O up to WAIT_OBJECT_O nCount for

the objects ii the handle array If message causes the function to return the return

value is WAIT_OBJECT_O nCount An example of how this function might be used

follows In this code the handle array has only one entry hSyncHandle

512

Page 00535

Chapter Processes and Threads

fContinue TRUE
while fContinue

rc MsgWaitForMultipleObjects hSyncHandle FALSE

INFINITE QS_ALLINPUT

if rc WAIT_OBJECT_O

II Do work as result of sync object

II

else if rc WAIT_OBJECT_0

II Its message process it

PeekMessage msg hWnd PM_REMOVE
if msg.message WM_QUIT

fContinue FALSE

else

TranslateMessage msg
DispatchMessage msg

II

Mutexes

Earlier described the event object That object resides in either signaled or non-

signaled state Another synchronization object is the mutex mutex is synchroni

zation object thats signaled when its not owned by thread and nonsignaled when

it is owned Mutexes are extremely useful for coordinating exclusive access to re

source such as block of memory across multiple threads

thread gains ownership by waiting on that mutex with one of the wait func

tions When no other threads own the mutex the thread waiting on the mutex is

unblocked and implicitly gains ownership of the mutex After the thread has com

pleted the work that requires ownership of the mutex the thread must explicitly re

lease the mutex with call to ReleaseMutex

To create mutex call this function

HANDLE CreateMutex LPSECURITY_ATTRIBUTES lpMutexAttributes

BOOL blnitialOwner LPCTSTR lpName

The lpMutexAttributes parameter should be set to NULL The blnitialOwner parame

ter lets you specify that the calling thread should immediately own the mutex being

created Finally the lpName parameter lets you specify name for the object so that

it can be shared across other processes When calling CreateMutex with name speci

fied in the lpName parameter Windows CE checks whether mutex with the same

name has already been created If so handle to the previously created mutex is

returned To determine whether the mutex already exists call GetlastError It returns

ERROR_ALREADY_EXISTS if the mutex has been previously created

513

Page 00536

Part II WindOWS CE Bascs

Gaining immediate ownership of mutex using the blnitialOwner parameter

works only if the mutex is being created Ownership isnt granted if youre opening

previously created mutex If you need ownership of mutex be sure to call GetLast

Error to determine whether the mutex had been previously committed If so call

WaitForSingleObject to gain ownership of the mutex

You release the mutex with this function

BOOL ReleaseMutex HANDLE hMutex

The only parameter is the handle to the mutex

If thread owns mutex and calls one of the wait functions to wait on that

same mutex the wait call immediately returns because the thread already owns the

mutex Since mutexes retain an ownership count for the number of times the wait

functions are called call to ReleaseMutex must be made for each nested call to the

wait function

Critical Sections

Using critical sections is another method of thread synchronization Critical sections

are good for protecting sections of code from being executed by two different threads

at the same time Critical sections work by having thread call EnterCriticalSection

to indicate that it has entered critical section of code If another thread calls

EnterCriticalSection referencing the same critical section object its blocked until the

first thread makes call to LeaveCriticalSection Critical sections can protect more than

one linear section of code All thats required is that all sections of code that need to

be protected use the same critical section object The one limitation of critical sec
tions is that they can be used to coordinate threads only within process

To use critical section you first create critical section handle with this function

void InitializeCriticalSection LPCRITICAL_SECTION lpCriticalSection

The only parameter is pointer to CRETICAL_SECTION structure that you define

somewhere in your application Be sure not to allocate this structure on the stack of

function that will be deallocated as soon the function returns You should also not

move or copy the critical section structure Since the other critical section functions

require pointer to this structure youll need to allocate it within the scope of all

functions using the critical section While the CRETICAL_SECTION structure is defined

in WINBASE.H an application doesnt need to manipulate any of the fields in that

structure So for all practical purposes think of pointer to CRETICAL_SECTION

structure as handle instead of as pointer to structure of known format

When thread needs to enter protected section of code it should call this

function

void EntèrCriticalSection LPCRITICAL_SECTION lpCriticalSection

514

Page 00537

Chapter Processes and Threads

The function takes as its only parameter pointer to the critical section structure ini

tialized with InitializeCriticalSection If the critical section is already owned by an
other thread this function blocks the new thread and doesnt return until the other

thread releases the critical section If the thread calling EnterCriticalSection already

owns the critical section then use count is incremented and the function returns

immediately

When thread leaves critical section it should call this function

void LeaveCriticalSection LPCRITICAL_SECTION lpCriticalSection

As with all the critical section functions the only parameter is the pointer to the criti

cal section structure Since critical sections track use count one call to Leave

CriticalSection must be made for each call to EnterCriticalSection by the thread that

owns the section

Finally when youre finished with the critical section you should call

void DeleteCriticalSection LPCRITICAL_SECTION lpCriticalSection

This cleans up any system resources used to manage the critical section

Interlocked Variable Access

Heres one more low-level method for synchronizing threadsusing the functions

for interlocked access to variables While programmers with multithread experience

already know this need to warn you that Murphys Law seems to come into its

own when youre using multiple threads in program One of the sometimes over

looked issues in preemptive multitasking system is that thread can be preempted

in the middle of incrementing or checking variable For example simple code

fragment such as

if

II Do something because was zero

can cause great deal of trouble To understand why lets look into how that state

ment might be compiled The assembly code for that if statement might look some

thing like this

load regi of ii variable

add reg2 regi regi

store reg2 of incremented var

bne regi zero skipblk regi zero

Theres no reason that the thread executing this section of code couldnt be preempted

by another thread after the load instruction and before the store instruction If this

Murphys Law Anything that can go wrong will go wrong Murphys first corollary When some

thing goes wrong it happens at the worst possible moment

515

Page 00538

Part II Wndows CE Bascs

happened two threads could enter the block of code when that isnt the way the code

is supposed to work Of course Ive already described number of methods such

as critical sections and the like that you can use to prevent such incidents from

occurring But for something like this critical section is overkill What you need is

something lighter

Windows CE supports three of the interlocked functions from the Win32 API

InterlockedInriment InterlockedDecriment and InterlockedExchange Each of these

allows thread to increment decrement and exchange variable without your hav

ing to worry about the thread being preempted in the middle of the operation The

functions are prototyped here

LONG InterlockedlncrementLPLONG ipAddend

LONG InterlockedOecrenientLPLONG ipAddend

LONG InterlockedExchangeLPLONG Target LONG Value

For the interlocked increment and decrement the one parameter is pointer to the

variable to increment or decrement The returned value is the new value of the vari

able after it has been incremented or decremented The InterlockedExchange func

tion takes pointer to the target variable and the new value for the variable It returns

the previous value of the variable Rewriting the previous code fragment so that its

thread safe produces this code

if Interlockedlncrementi
II Do something because was zero

INTERPROCESS COMMUNICATION
There are many cases where two Windows CE processes need to communicate The

walls between processes that protect processes from one another prevent casual

exchanging of data The memory space of one process isnt exposed to another pro
cess Handles to files or other objects cant be passed from one process to another

Windows CE doesnt support the DuplicateHandle function available under Win
dows NT which allows one process to open handle used by another process Nor
as mentioned before does Windows CE support handle inheritance Some of the

other more common methods of interprocess communication such as named pipes

are also not supported under Windows CE However you can choose from plenty of

ways to enable two or more processes to exchange data

Finding Other Processes

Before you can communicate with another process you have to determine whether

its running on the system Strategies for finding whether another process is running

516

Page 00539

Chapter Processes and Threads

depend mainly on whether you have control of the other process If the process to

be found is third-party application in which you have no control over the design of

the other process the best method might be tO use Find Window to locate the other

processs main window Find Window can search either by window class or by win
dow title You can also enumerate the top-level windows in the system using Enum
Windows You can also use the ToolHelp debugging functions to enumerate the

processes running but this works only when the ToolHelp DLL is loaded on the sys

tem and unfortunately it generally isnt included by default on most systems

If youre writing both processes however its much easier to enumerate them

In this case the best methods include using the tools youll later use in one process

to communicate with the other process such as named mutexes events or memory-

mapped objects When you create one of these objects you can determine whether

youre the first to create the object or youre simply opening another object by call

ing GetLastError after another call created the object And the simplest method might

be the best call Find Window and send WM_USER message to the main window of

the other process

WMCOPYDATA
Once youve found your target process the talking can begin If youre staying at the

window level simple method of communicating is to send WM_COPYDATA
message WM_COPYDATA is unique in that its designed to send blocks of data from

one process to another You cant use standard user-defined message to pass pointers

to data from one process to another because pointer isnt valid across processes

WM_COPYDATA gets around this problem by having the system translate the pointer

to block of data from one processs address space to anothers The recipient pro
cess is required to copy the data immediately into its own memory space but this

message does provide quick and dirty method of sending blocks of data from one

process to another

Named memory-mapped objects
The problem with WM_COPYDATA is that it can be used only to copy fixed blocks

of data at specific time Using named memory-mapped object two processes can

allocate shared block of memory thats equally accessible to both processes at the

same time You should use named memory-mapped objects so that the system can

maintain proper use count on the object This procedure prevents one process from

freeing the block when it terminates while the other process is still using the block

Of course this level of interaction comes with price You need some synchro

nization between the processes when theyre reading and writing data in the shared

memory block The use of named mutexes and named events allows processes to

coordinate their actions Using these synchronization objects requires the use of sec

ondary threads so that the message loop can be serviced but this isn an exceptional

burden

517

Page 00540

Partli WndowS.CE Bascs

described how to create memory-mapped objects in Chapter The example

program
that shortly follows uses memory-mapped objects and synchronization

objects to coordinate access to the shared block of memory

Communicating with files and databases

more basic method of interprocess communication is the use of files or custom

database These methods provide robust if slower communication path Slow is

relative Files and databases in the Windows CE object store are slow in the sense

that the system calls to access these objects must find the data in the object store

uncompress the data and deliver it to the process However since the object store is

based in RAM you see none of the extreme slowness of mechanical hard disk that

youd see under Windows NT or Windows 98

The XTaIk Example Program

The following example program XTalk uses events mutexes and shared memory-

mapped block of memory to communicate among different copies of itself The ex

ample demonstrates the rather common problem of one-to-many communication In

this case the XTalk window has an edit box with Send button next to it When

user taps the Send button the text in the edit box is communicated to every copy of

XTalk running on the system Each copy of XTalk receives the text from the sending

copy and places it in list box also in the XTalk window Figure 8-1 shows two XTalk

programs communicating

12345

12345

abcdef

Figure 8-1

The desktop showing two XTalk windows

518

Page 00541

Chapter Processes and Threads

To perform this feat of communication XTalk uses named memory-mapped
object as transfer buffer mutex to coordinate access to the buffer and two event

objects to indicate the start and end of communication third event is used to tell

the sender thread to read the text from the edit control and write the contents to the

shared memory block Figure 8-2 shows the source code for XTalk

fic stuff

Figure 8-2 The source codeforXTalk continued

519

Page 00542

Part II Windows CE ascs

Figure 8-2 continued

hIt

ML jp r1iid 1tIr

JItIUNINU
520

Page 00543

Chapter Processes and Threads

/1 Message handlers

LRESULT DoCommndMain HWND LENT WPARAM LPARAM
DoDestroyMain HWND lINT WPARAM LPARAM

II Command functions

LPARAM DoMaincommandSend HWNO WORD HWND WORD
LPARAM DoMainCommandExit HWND WORD HWND WORD

II Thread functions

mt SenderThread PVOID pArg
mt Readerlhread PVOID pArg

XTaIk..c

/1 XTalk simple application for Windows CE

II Written for the book Programming Windows CE

1/ Copyright CC 1998 Douglas Boling

include windows.h II For all that Windows stuff

include commctrl.h II Command bar includes

include xtalk.h II Program-specific stuff

II

II Global data

II

const TCHAR szAppName TEXT xtalk
HINSTANCE hlnst II Program instance handle

HANDLE g_hMMObj II Memory-mapped object

PSHAREBUFF g_pBuff II Pointer to mm object

HANDLE g_hmWriteOkay /1 Write mutex

HANDLE g_hSendEvent II Local send event

HANDLE g_hReadEvent II Shared read data event

HANDLE g_hReadDoneEvent II Shared data read event

II Message dispatch table for MainWlndowProc

const struct decodeUlNT MainMessages
WM_COMMAND DoCommandMai

NM_DESTROY 000estroyMai

II Command Message dispatch for MainWindowProc

const struct decodeCMfl MainCommandltems

IDOK DoMainComujandExit

continued

521

Page 00544

Partil WhIdOWS CE Bascs

Figure 8-2 continued

Irii 4W

r1F T7E

si4Pkgipurnde .p4rrIVP

p1r
iIiNr

41
1i

522

Page 00545

Chapter Processes and Threads

continued

523

Page 00546

Part II Whdows CE ascs

Figure 8-2 continued

1p irM1i

Ii pI
ip

aI
4iII1UrI

vI
MILanhImv
If .rqq

i1IUIV1iW1át r1

524

Page 00547

Chapter Processes and Threads

continued

525

. ' :·~·~'

Chapter 8 Processes and Threads

(continued)

525

Page 00548

Part II Whidows CE Basics

Figure 8-2 continued

41
I1f 41

gIr
4l Jituii1iIIh6

Ti1uiPIIIm
4dI ii1 liiiU 11111

1ukMi

iw 1l IL

ii ii
ii1hi1aIiiiIIi11IuiuIIII_

th it ini

526

Page 00549

Chapter 8 Processes and Threads

(continued)

527

Page 00550

Part II WndOWS CE Basics

Figure 82 contiflwcl

INFINITE

B_ADDSTRING

PINDEX

rc
ReadThread Err MB_OK

The interesting routines in the cralk example are the In//Instance procedure

and the two thread procedures SenderThread and ReaderThread The relevant part

of Initlnstance is shown below with the error checking code removed for brevity

II Create mutex used to share memory-mapped structure

g_hmWriteOkay CreateMutex NULL TRUE TEXT XTALKWRTfl
rc GetLastErrorO

if rc ERROR_ALREADY_EXISTS

fF1 rstApp FALSE

II Wait here for ownership to insure the initialization is done

II This is necessary since CreateMutex doesnt wait

rc WaitForSingleObject g_hmWriteOkay 2000
if rc WAIT_OBJECT_0

return

II Create file-mapping object

g_hMMObj CreateFileMapping HANDLE-1 NULL PAGE_READWRITE

MMBUFFSIZE TEXT XTALKBLKfl

II Map into memory the file-mapping object

g_pBuff PSHAREBUFFMapViewOfFile g_hMMObj FILE_MAP_WRITE

II Initialize structure if first application started

if fFirstApp
memset g_pBuff sizeof SHAREBUFF

528

Page 00551

Chapter Processes and Threads

II Increment app running count Interlock not needed due to mutex
g_pBuff-nAppCnt

II Release the mutex We need to release the mutex twice

II if we owned it when we entered the wait above

ReleaseMutex g..hmWriteOkay

if fFirstApp
ReleaseMutex g_hmWriteOkay

II Now create events for read and send notification

g_hSendEvent CreateEvent NULL FALSE FALSE NULL
g_hReadEvent CreateEvent NULL TRUE FALSE TEXT XTALKREADfl
g_hReadDoneEvent CreateEvent NULL FALSE FALSE

TEXT XTALKDONE

This code is responsible for creating the necessary synchronization objects as

well as creating and initializing the shared memory block The mutex object is cre

ated first with the parameters set to request initial ownership of the mutex object

call is then made to GetLastError to determine whether the mutex object has already

been created If not the application assumes the first instance of XTalk is running
and later will initialize the shared memory block Once the mutex is created an ad
ditional call is made to WaitForSingleObject to wait until the mutex is released This

call is necessary to prevent late starting instance of XTalk from disturbing commu
nication in progress Once the mutex is owned calls are made to CreateFileMapping

and Map ViewOjFile to create named memory-mapped object Since the object is

named each process that opens the object opens the same object and is returned

pointer to the same block of memory
Once the shared memory block is created the first instance of XTalk zeros out

the block This procedure also forces the block of RAM to be committed because

memory-mapped objects by default are autocommit blocks Then nAppCnt which

keeps count of the running instances of XTalk is incremented Finally the mutex

protecting the shared memory is released If this is the first instance of XTalk Release

Mutex must be called twice because it gains ownership of the mutex twiceonce
when the mutex is created and again when the call to WaitForSingleObject is made

Finally three event objects are created SendEvent is an unnamed event local

to each instance of XTalk The primary thread uses this event to signal the sender

thread that the user has pressed the Send button and wants the text in the edit box

transmitted The ReadEvent is named event that tells the other instances of XTalk

that theres data to be read in the transfer buffer The ReadDoneEvent is named event

signaled by each of the receiving copies of XTaIk to indicate that they have read

the data

529

Page 00552

Part ii Whidows CE Bascs

The two threads ReaderThread and SenderThread are created immediately after

the main window of XTalk is created The code for SenderThread is shown here

mt SenderThread PVOID pArg
HWI4D hWnd

INT riGoCode rc
ICHAR szText
hWnd HWNDpArg
while

nGoCode WaitForSingleObject g_hSendEvent INFINITE

if nGoCode WAIT_OBJECT_O

SendDlgltemMessage hWnd IDD_OUTTEXT WM_GETTEXT

sizeof szText LPARAMszlext

rc WaitForSingleObject g_hmWriteOkay 2000
if rc WAIT_OBJECT_0

lstrcpy g_pBuff-szlext szlext

g_pBuff-nReadCnt g_pBuff-nAppCnt

Pul seEvent g_hReadEvent

If Wait while reader threads get data

while g_pBuff-nReadCnt
rc WaitForSingleObject g_hReadDoneEvent

INFINITE
ReleaseMutex g_hrnWriteOkay

return

The routine waits on the primary thread of XTalk to signal SendEvent The pri

mary thread of XTalk makes the signal in response to WM_COMMAND message

from the Send button The thread is then unblocked reads the text from the edit control

and waits to gain ownership of the WriteOkay mutex This mutex protects two cop

ies of XTalk from writing to the shared block at the same time When the thread owns

the mutex it writes the string read from the edit control into the shared buffer It then

copies the number of active copies of XTalk into the nReadCnt variable in the same

shared buffer and pulses the ReadEvent to tell the other copies of XTalk to read the

newly written data manual resetting event is used so that all threads waiting on

the event will be unblocked when the event is signaled

The thread then waits for the nReadCnt variable to return toO Each time reader

thread reads the data the nReadCnt variable is decremented and the ReadDone

event signaled Note that the thread doesnt spin on this variable but uses an event to

tell it when to check the variable again This would actually be great place to use

530

Page 00553

Chapter Processes and Threads

WaitForMultileObjects and have all reader threads signal when theyve read the data
but Windows CE doesnt support the WaitAll flag in

WaitForMultipleObjects

Finally when all the reader threads have read the data the sender thread re
leases the mutex protecting the shared segment and the thread returns to wait for

another send event

The ReaderThread routine is even simpler Here it is

mt ReaderThread PVOID pArg
HWND hWnd

TNT nGoCode rc
TCHAR szText
hWnd HWNDpArg
while

nGoCode WaitForSingleObject g_hReadEvent INFINITE
if nGoCode WAIT_OBJECT_

SendDlgltemMessage hWnd IDD_INTEXT LB_ADDSTRING

LPARAMg_pBuff-szText
SendDlgltemMessage hWnd IDD_INTEXT LB_SETTOPINDEX

Interlockedoecrement g_pBuff-nReadCnt
SetEvent g_hReadDoneEvent

return

The reader thread starts up and immediately blocks on ReadEvent When its

unblocked it adds the text from the shared buffer into the list box in its window The

list box is then scrolled to show the new line After this is accomplished the nReadCnt

variable is decremented using InterlockedDecrement to be thread safe and the Read-

Done event is signaled to tell the SenderThread to check the read count After thats

accomplished the routine loops around and waits for another read event to occur

EXCEPTION HANDLING
Windows CE along with Visual for Windows CE supports Microsofts standard

structured exception handling extensions to the language the __try __except and

__tiy __finally blocks Note that Visual for Windows CE doesnt support the

full exception handling framework with keywords such as catch and throw

Windows exception handling is complex and if were to cover it completely

could easily write another entire chapter The following review introduces the con
cepts to non-Win32 programmers and conveys enough information about the sub

ject for you to get your feet wet If you want to wade all the way in the best source

531

Page 00554

Part II WhidoWs CE ascs

for complete explanation of Win32 exception handling is Jeffrey Richters Advanced

Windows third edition Microsoft Press 1997

The __try __except Block

The first construct Ill talk about is the __try __except block which looks like this

__try

II Try some code here that might cause an exception

__except exception filter

II This code is depending on the filter on the except line

Essentially the try-except pair allows you the ability to anticipate exceptions

and handle them locally instead of having Windows terminate the thread or the pro

cess because of an unhandled exception

The exception filter is essentially return code that tells Windows how to handle

the exception You can hard code one of the three possible values or call function

that dynamically decides how to respond to the exception

If the filter returns EXCEPTION_EXECUTE_HANDLER Windows aborts the

execution in the try block and jumps to the first statement in the except block This is

helpful if youre expecting the exception and you know how to handle it In the code

that follows the access to memory is protected by __try __except block

BYTE ReadByteFromMemory LPBYTE pPtr BOOL bDatavaljd

BYTE ucData

bDatavalid TRUE

__try

ucData pPtr

__except DecideHowToHandleExceptiOfl

II The pointer isnt valid clean up
ucData

bDataValjd FALSE

return ucData

mt DecideHowToHandleEXceptiOfl void
return EXCEPTION_EXECUTE_HANDLER

532

Page 00555

Chapter Processes and Threads

If the memory read line above wasnt protected by __tiy __except block and

an invalid pointer was passed to the routine the exception generated would have

been passed up to the system causing the thread and perhaps the process to be ter

minated If you use the __try __except block the exception is handled locally and

the process continues with the error handled locally

Another possibility is to have the system retry the instruction that caused the

exception You can do this by having the filter return EXCEPTION_CONTINUE

EXECUTION On the surface this sounds like great optionsimply fix the prob
lem and retry the operation your program was performing The problem with this

approach is that what will be retried isnt the line that caused the exception but the

machine instruction that caused the exception The difference is illustrated by the

following code fragment that looks okay but probably wont work

II An example that doesnt work..

mt Dividelt mt aVal mt bVal
mt cVal

__try

cVal aVal bVal

__except EXCEPTION_CONTINUE_EXECUTION

bVal

return cVal

The idea in this code is noble protect the program from divide-by-zero error

by ensuring that if the error occurs the error is corrected by replacing bVal with

The problem is that the line

cVal aVal bVal

is probably compiled to something like the following on MIPS-compatible CPU

1w t6aVa1sp aVal

1w t7bVa1sp bVal

div t6t7 the divide

SW t6cValsp result into cVal

In this case the third instruction the div causes the exception Restarting the

code after the exception results in the restart beginning with the div instruction The

problem is that the execution needs to start at least one instruction earlier to load the

new value from bVal into the register The moral of the story is that attempting to

restart code at the point of an exception is risky at best and at worst unpredictable

The third option for the exception filter is to not even attempt to solve the prob
lem and to pass the exception up to the next higher __try __except block in code

533

Page 00556

Part II WndOWS CE Bascs

This is accomplished by the exception filter returning EXCEPTION_CONTINUE_

SEARCH Since __ty __except blocks can be nested its good practice to handle spe

cific problems in lower nested __try __except block and more global errors at

higher level

Determining the problem
With these three options available it would be nice if Windows let you in on why

the exception occurred Fortunately Windows provides the function

DWORD GetExceptionCode void

This function returns code that indicates why the exception occurred in the first

place The codes are defined in WINBASE.H and range from EXCEPTION_ACCESS_

VIOLATION to CONTROL_C_EXIT with number of codes in between Another

function allows even more information

LPEXCEPTION_POINTERS GetExceptionlnformatiOfl void

GetExceptionlnformation returns pointer to structure that contains pointers

to two structures EXCEPTION_RECORD and CONTEXT EXCEPTION_RECORD is

defined as

typedef struct _EXCEPTION_RECORD

DWORD ExceptionCode

DWORD ExceptionFlags

struct EXCEPTION_RECORD ExceptionRecord

PVOID ExceptionAddress

DWORD NumberParameters

DWORD Exceptionlnformation
EXCEPTION_RECORD

The fields in this structure go into explicit detail about why an exception oc

curred To narrow the problem down even further you can use the CONTEXT struc

ture The CONTEXT structure is different for each CPU and essentially defines the

exact state of the CPU when the exception occurred

There are limitations on when these two exception information functions can

be called GetExecptionCode can only be called from inside an except block or from

within the exception filter function The GetExceptionlnformation function can be

called only from within the exception filter function

The __try __finally Block

Another tool of the structured exception handling features of the Win32 API is the

__try __finally block It looks like this

534

Page 00557

Chapter Processes and Threads

__try

II Do something here

__finally

II This code is executed regardless of what happens in the try block

The goal of the __try __finally block is to provide block of code the finally

block that always executes regardless of how the other code in the try block attempts

to leave the block If theres no return break or goto in the try block the code in the

finally block executes immediately following the last statement in the
try block If

the try block has return or goto or some other statement that transfers execution

out of the try block the compiler insures that the code in the finally block will get

executed before execution leaves the try block Take for example the following code

mt ClintSimFunc mt Todayslask

.._try

switch TodaysTask
case THEGOOD

I/Do the good stuff

return

case THEBAD

I/Do the bad stuff

return

case THEUGLY

I/Do the ugly stuff

break

II Climb the Eiger

return

__finally

II Reload the .44

In this example the try block can be left three ways returning after executing

the Good case or the Bad case or after executing the Ugly case which breaks and

executes the Eiger code However the code exits the try block Clints gun is always

reloaded because the finally block is always executed

It works out that having the compiler build the code to protect the try block exits

tends to create fair amount of extra code To help you can use another statement

535

Page 00558

Part II WndoWS CE Bascs

__leave which makes it easier for the compiler to recognize whats happening and

make code-efficient path to the finally block Using the __leave statement the code

above becomes

mt ClintSimFunc mt TodaysTask

mt nFistfull

.._try

switch Todayslask
case THEGOOD

I/Do the good stuff

nFistfull

__l eave
case THEBAD

//Do the bad stuff

nFistfull

__l eave
case THEUGLY

//Do the ugly stuff

break

II Climb the Eiger

nFistFull

II The code falls into the __finally block

__fmnally

II Reload the .44

return nFistfull

The __try __finally block is helpful for writing clean code because you can

use the __leave statement to jump out of sequence of statements that build upon

one another and put all the cleanup code in the finally block The finally block also

has place in structured exception handling since the finally code is executed if an

exception in the try block causes premature exit of the block

In the past three chapters Ive covered the basics of the Windows CE kernel

from memory to files to processes and threads Now its time to break from this low-

level stuff and starting looking outward The next section covers the different com

munication aspects of Windows CE start at the low level with explanations of basic

serial and I/R communication and TAFT Chapter 10 covers networking from Win

dows CE perspective Finally Chapter 11 covers Windows CE to PC communications

Thats fair amount of ground to cover Lets get started

536

Page 00559

Part III

Page 00560

Page 00561Page 00561

Chapter

Serial

Communications

If theres one area of the W1n32 API that Windows CE doesnt skimp its in commu
nication It makes sense Systems running Windows CE are either mobile requiring

extensive communication functionality or theyre devices generally employed to

communicate with remote servers In this chapter introduce the low-level serial and

infrared communication APIs You use the infrared port at this level in almost the same

manner as serial port The only functional difference is that infrared transmission is

half duplex that is transmission can occur in only one direction at time

BASIC DRIVERS
Before can delve into the serial drivers we must take brief look at how Windows CE

handles drivers in general Windows CE separates device drivers into two main

groups native and stream interface Native drivers sometimes called built-in drivers

are those device drivers that are required for the hardware and were created by the

OEM when the Windows CE hardware was designed Among the devices that have

native drivers are the keyboard the touch panel audio and the PCMCIA controller

These drivers might not support the generic device driver interface describe below

Instead they might extend the interface or have totally custom interface to the

operating system Native drivers frequently require minor changes when new

version of the operation system is released These drivers are designed using

the OEM adaptation kit supplied by Microsoft more general adaptation kit the

539

Page 00562

Part III CommUrnCatOflS

Embedded Toolkit ETK also enables you to develop built-in drivers However these

drivers are developed theyre tightly bound to the Windows CE operating system and

arent usually replaced after the device has been sold

On the other hand stream interface device drivers which used to be referred

to as installable drivers can be supplied by third-party manufacturers to support

hardware added to the system Since Windows CE systems generally dont have bus

such as an IA bus or PCI bus for extra cards the additional hardware is usually

installed via PCMCIA or Compact Flash slot In this case the device driver would

use functions provided by the low-level PCMCIA driver to access the card in the

PCMCIA or the Compact Flash slot

In addition device driver might be written to extend the functionality of an

existing driver For example you might write driver to provide compressed or

encrypted data stream over serial link In this case an application would access the

encryption driver which would then in turn use the serial driver to access the serial

hardware

Device drivers under Windows CE operate at the same protection level as ap

plications They differ from applications in that theyre DLLs Most drivers are loaded

by the device manager process DEVICE.EXE when the system boots All these driv

ers therefore share the same process address space Some of the built-in drivers

on the other hand are loaded by GWE GWES.EXE GWE stands for Graphics

Windowing and Event Manager These drivers include the display driver DDI.DLL

as well as the keyboard and touch panel or mouse drivers

Driver Names
Stream interface device drivers are identified by three-character name followed by

single digit This scheme allows for 10 device drivers of one name to be installed

on Windows CE device at any one time Here are few examples of some three-

character names currently in use

COM Serial driver

ACM Audio compression manager

WAV Audio wave driver

CON Console driver

When referencing stream interface driver an application uses the three

character name followed by the single digit followed by colon The colon is

required under Windows CE for the system to recognize the driver name

Enumerating the Active Drivers

The documented method for determining what drivers are loaded onto Windows CE

system is to look in the registry under the key \Drivers\Active under HKEY_

LOCAL_MACHINE The device manager dynamically updates the subkeys contained

540

Page 00563

Chapter Serial Communications

here as drivers are loaded and unloaded from the system Contained in this key is

list of subkeys one for each active driver The name of the key is simply place-
holder its the values inside the keys that indicate the active drivers Figure 9-1 shows
the registry key for the COM1 serial driver on an HP 620

nis

nit

Drivers Name COM1
Active Hnd 70144

06 Key Drivers\8uiltnSersal

05

04

03
02

00

Figure 9-1 The registrys active list values for the serial device driverfor COM1

In Figure 9-1 the Name value contains the official five-character name four char

acters plus colon of the device The Tflnd and Hnd values are handles that are
used internally by Windows CE The interesting entry is the Key value This value points
to the registry key where the device driver stores its configuration information This

second key is necessary because the active list is dynamic changing whenever device

is installed In the case of the serial driver its configuration data is generally stored

in Drivers\Builtln\Serial although you shouldnt hard code this value Instead you
can look at the Key value in the active list to determine the location of drivers per
manent configuration data The configuration data for the serial driver is shown in

Figure 9-2

-init

DeviceArraylndev
nenodern

dli

AFD DII SerialDil

WAPIMAN Order

Waveoev DeviceType

FriendlyName Serial Cable on COM1

1HP_CODEC

DevConfig 100000000500 0000 100100000

Figure 9-2 The registry entry for the serial driver

You can look in the serial driver registry key for such information as the name
of the DLL that actually implements the driver the three-letter prefix defining the driver

name the order in which the driver wants to be loaded and something handy for

user interfaces the friendly name of the driver Not all drivers have this friendly name
but when they do its much more user-friendly name than COM2 or NDS1

541

Page 00564

Part III CommuflCahOflS

Drivers for PCMCIA or Compact Flash Cards have an additional value in their

active list key The Pnpld value contains the Plug and Play ID string for the card While

this string is more descriptive than the five-character driver name some PCMCIA and

Compact Flash Cards have their Pnpld strings registered in the system If so regis

try key for the Pnpld is located in the Drivers\PCMCIA key under HKEY_LOCAL_

MACHINE For example PCMCIA Card that had Pnpld string This_is_a_pc_card

would be registred under the key \Drivers\PCMCIA\This_is_a_pc_card That key

may contain FriendlyName string for the driver

Following is routine and small helper routine that creates list of active

drivers and if specified their friendly names The routine produces series of Unicode

strings two for each active driver The first string is the driver name followed by its

friendly name If driver doesnt have friendly name zero-length string is inserted

in the list The list ends with zero-length string for the driver name

II

II AddToList Helper routine

mt AddToList LPTSTR pptr INT pnListSize LPTSTR pszStr

INT nLen lstrlen pszStr

if pnListSize nLen
return -1

lstrcpy pPtr pszStr

pPtr nLen

pnListSize nLen

return

II

ft EnumActiveDrivers Produces list of active drivers

int EnumActiveDrivers LPTSTR pszDrvrList mt nListSize

INT rc
HKEY hKey hSubKey hDrvrKey

TCHAR szKey szValue
LPTSTR pPtr pszDrvrList

DWORD dwType dwSize

pPtr TEXT \O
if RegOpenKeyEx HKEY_LOCAL_MACHINE TEXT drivers\\active

hKey ERROR_SUCCESS

return

while

II Enumerate active driver list

dwSize sizeof szKey
if RegEnumKeyEx hKey szKey dwSize NULL NULL

NULL NULL ERROR_SUCCESS

break

542

Page 00565

Chapter Serial Communications

II Open active driver key
rc RegOpenKeyEx hKey szKey hSubKey
if rc ERRORSUCCESS

continue

II Get name of device

dwSize sizeof szValue
rc RegQueryValueEx hSubKey TEXT Name dwType

PBYTEszValue dwSize
if Crc ERRORSUCCESS

szValue TEXT \O
if AddloList pPtr nListSize szValue

rc -1
RegCloseKey hSubKey
break

II Get friendly name of device

szValue TEXT \0
dwSize sizeof szKey
rc RegOueryValueEx hSubKey TEXT Key dwlype

PBYTEszKey dwSize
if rc ERRORSUCCESS

II Get driver friendly name

if RegOpenKeyEx HKEY_LOCAL_MACHINE szKey

hDrvrKey ERRORSUCCESS

dwSize sizeof szValue
RegOueryvalueEx hDrvrKey TEXT FriendlyName

dwType PBYTEszValue dwSize
RegCloseKey hDrvrKey

RegCloseKey hSubKey
if AddToList pPtr nListSize szValue

rc -1
break

RegCloseKey hKey
II Add terminating zero

if rc
rc AddloList pPtr nListSize TEXT

return rc

543

Page 00566

Part III Commwica Ons

Reading and Writing Device Drivers

Your application accesses device drivers under Windows CE through the file I/O func

tions CreateFile ReadFile WriteFile and CloseHandle You open the device using

CreateFile with the name of the device being the five-character three characters plus

digit plus colon name of the driver Drivers can be opened with all the varied access

rights read only write only read/write or neither read nor write access

Once device is open you can send data to it using WriteFile and can read

from the device using ReadFile As is the case with file operations overlapped I/O

isnt supported for devices under Windows CE The driver can be sent control char

acters using the function not described in Chapter DeviceloControl The function

is prototyped this way

BOOL DeviceloControl HANDLE hDevice DWORD dwloControlCOde

LPVOID iplnBuffer DWORD nlnBufferSize

LPVOID ipOutBuffer DWORD nOutBufferSize

LPDWORD lpBytesReturned

LPOVERLAPPED pOverl apped

The first parameter is the handle to the opened device The second parameter dwlo

ControlCode is the loCti pronounced eye-OC-tal code This value defines the op

eration of the call to the driver The next series of parameters are generic input and

output buffers and their sizes The use of these buffers is dependent on the loCti code

passed in dwloControlCode The lpBytesReturned parameter must point to DWORD

value that will receive the number of bytes returned by the driver in the buffer pointed

to by ipOutBuffer

Each driver has its own set of loCti codes If you look in the source code for

the example serial driver provided in the ETK youll see that the following loCti

codes are defined for the COM driver Note that these codes arent defined in the

Windows CE SDK because an application doesnt need to directly call DeviceloContrOl

using these codes

IOCTL_SERIAL_SET_BREAK_ON IOCTL_SERIAL_SET_BREAK_OFF

IOCTL_SERIAL_SET_DTR IOCTL_SERIAL_CLR_DTR

IOCTL_SERIAL_SET_RTS IOCTL_SERIAL_CLR_RTS

IOCTL_SERIAL_SET_XOFF IOCTL_SERIAL_SET_XON

IOCTL_SERIAL_GET_WAIT_MASK IOCTL_SERIAL_SET_WAIT_MASK

IOCTL_SEfflAL_WAIT.0N_MASK IOCTL_SEfflAL.GET_COMMSTATUS

IOCTL_SERIAL_GET_MODEMSTATUS IOCTL_SERIAL_GET_PROPERTIES

IOCTL_SERIAL_SET_TIMEOUTS IOCTL_SERALGETJIMEOUTS

IOCTL_SERTALPURGE IOCTL_SEmALSET_QUEUE_SIZE

IOCTL_SERIAL_IMMEDIATE_CHAR IOCTL_SEPJAL_GET_DCB

IOCTL_SERIAL_SET_DCB IOCTL_SERIAL_ENABLE_IR

IOCL_SERIAL_DISABLER

544

Page 00567

Chapter Serial Communications

As you can see from the fairly self-descriptive names the serial driver IoCtl func

tions expose significant function to the calling process Windows uses these IoCtl codes

to control some of the specific features of serial port such as the handshaking lines

and time outs Each driver has its own set of loCti codes Ive shown the ones above

simply as an example of how the DeviceloControl function is typically used Under

most circumstances theres no reason for an application to use the DeviceloControl

function with the serial driver Windows provides its own set of functions that then

call down to the serial driver using Devicelo Control

Okay weve talked enough about generic drivers Its time to sit down to the

meat of the chapterserial communication Ill talk first about basic serial connec
tions and then venture into infrared communication Windows CE provides excel

lent support for serial communications but the API is subset of the API for

Windows NT or Windows 98 Fortunately the basics are quite similar and the dif

ferences mainly inconsequential

BASIC SERIAL COMMUNICATION
The interface for serial device is combination of generic driver I/O calls and spe
cific communication-related functions The serial device is treated as generic in

stallable stream device for opening closing reading and writing the serial port For

configuring the port the Win32 API supports set of Comm functions Windows CE

supports most of the Comm functions supported by Windows NT and Windows 98
word of warning programming serial port under Windows CE isnt like

programming one under MS-DOS You cant simply find the base address of the se
rial port and program the registers directly While there are ways for program to

gain access to the physical memory space every Windows CE device has different

physical memory map Even if you solved the access problem by knowing exactly

where the serial hardware resided in the memory map theres no guarantee the se
rial hardware is going to be compatible with the 8250 or these days 16550 serial

interface weve all come to know and love in the PC world In fact the implementa

tion of the serial port on some Windows CE devices looks nothing like an 8250

But even if you know where to go in the memory map and the implementation

of the serial hardware you still dont need to hack down to the hardware The se
rial port drivers in Windows CE are efficient interrupt-driven designs and are written

to support its specific serial hardware If you have any special needs not provided by

the base serial driver you can purchase the Embedded Toolkit and write serial driver

yourself Aside from that extreme case theres just no reason not to use the published

Win32 serial interface under Windows CE

545

Page 00568

Part III CommIffiiCMiOflS

Opening and Closing Serial Port

As with all stream device drivers serial port device is opened using CreateFile The

name used needs to follow the standards described previously with the three let

ters COM followed by the number of the COM port to open and then colon The

colon is required under Windows CE and is departure from the naming convention

used for device driver names used in Windows NT and Windows 98 The following

line opens COM port for reading and writing

hSer CreateFile TEXT COMi GENERIC_READ GENERIC_WRITE

NULL OPEN_EXISTING NULL

You must pass in the sharing parameter as well as in the security attributes

and the template file parameters of CreateFile Windows CE doesnt support over

lapped I/O for devices so you cant pass the FILE_FLAG_OVERlAPPED flag in the

dwFlagsAndAttributes parameter The handle returned is either the handle to the

opened serial port or INVALID_HANDLE_VALUE Remember that unlike many of the

Windows functions CreateFile doesnt return for failed open

You close serial port by calling CloseHandle as in the following

CloseHandle hSer

You dont do anything differently when using CloseHandle to close serial device

than when you use it to close file handle

Reading and Writing to Serial Port

Just as you use the CreateFile function to open serial port you use the functions

ReadFile and WriteFile to write to that serial port Reading data from serial port is

as simple as making this call to ReadFile

INT rc
DWORD cBytes

BYTE ch

rc ReadFilehSer ch cBytes NULL

This call assumes the serial port has been successfully opened with call to CreateFile

If the call is successful one byte is read into the variable ch and cBytes is set to the

number of bytes read

Writing to serial port is just as simple The call would look something like the

following

tNT rc
DWORD cBytes

BYTE ch

ch TEXT

rc WriteFilehSer ch cBytes NULL

546

Page 00569

Chapter Serial Communications

This code writes the character to the serial port previously opened As you may
remember from Chapter both ReadFile and WriteFile return TRUE if successful

Since overlapped I/O isnt supported under Windows CE you should be care
ful not to attempt to read or write large amount of serial data from your primary
thread or from any thread that has created window Because those threads are also

responsible for handling the message queues for their windows they cant be blocked

waiting on relatively slow serial read or write Instead you should use separate

threads for reading and writing the serial port

You can also transmit single character using this function

BOOL TransmitConimChar HANDLE hFile char cChar

The difference between TransmitCommChar and WriteFile is that TransmitCommChar

puts the character to be transmitted at the front of the transmit queue When you call

WriteFile the characters are queued up after any characters that havent yet been trans

mitted by the serial driver TransmitCommChar allows you to insert control charac

ters quickly in the stream without having to wait for the queue to empty

Asynchronous Serial I/O

While Windows CE doesnt support overlapped I/O theres no reason why you cant

use multiple threads to implement the same type of overlapped operation All thats

required is that you launch separate threads to handle the synchronous I/O opera
tions while your primary thread goes about its business In addition to using sepa
rate threads for reading and writing Windows CE supports the Win32 WaitCommEvent

function that blocks thread until one of group of preselected serial events occurs

Ill demonstrate how to use separate threads for reading and writing serial port in

the CeChat example program later in this chapter

You can make thread wait on serial driver events by means of the following

three functions

BOOL SetCommMask HANDLE hFile DWORD dwEvtMask
BOOL GetCommMask HANDLE hFile LPDWORD lpEvtMask

and

BOOL WaitCommEvent HANDLE hFile LPDWORD lpEvtMask
LPOVERLAPPED ipOverlapped

To wait on an event you first set the event mask using SetCommMask The

parameters for this function are the handle to the serial device and combination of

the following event flags

EVBREAK break was detected

EV_CTS The Clear to Send CTS signal changed state

547

Page 00570

Part III COmmUflCat0fls

EV_DSR The Data Set Ready DSR signal changed state

V_ER An error was detected by the serial driver

EV_RLSD The Receive Line Signal Detect RLSD line changed state

EV_RXCHAR character was received

EV_RKFLAG An event character was received

EV_TKEMPTY The transmit buffer is empty

You can set any or all of the flags in this list at the same time using SetCommMask

You can query the current event mask using GetCommMask

To wait on the events specified by SetCommMask you call WaitCommEvent

The parameters for this call are the handle to the device pointer to DWORD that

will receive the reason the call returned and ipOverlapped which under Windows CE

must be set to NULL The code fragment that follows waits on character being re

ceived or an error The code assumes that the serial port has already been opened

and the handle is contained in hComPort

DWORD dwMask

II Set mask and wait

SetCommMask hComPort EV_RXCI-IAR

if WaitCommEvent hComPort dwMask

II Use the flags returned in dwMask to determine the reason

II for returning

Switch dwMask
case EV_RXCHAR

I/Read character

break

case

II Process error

break

II

Configuring the Serial Port

Reading and writing to serial port is fairly straightforward but you also must con

figure the port for the proper baud rate character size and so forth The masochist

could configure the serial driver through device I/O control IOCTL calls but the loCti

codes necessary for this are exposed only in the Embedded Toolkit not the Software

Development Kit Besides heres simpler method

You can go long way in configuring the serial port using two functions

GetCommState and SetCommState prototyped here

548

Page 00571

Chapter Serial Communications

BOOL SetCommState HANDLE hFile LPDCB 1pDCB
BOOL GetCommState HANDLE hFile LPDCB 1pDCB

Both these functions take two parameters the handle to the opened serial port and

pointer to DCB structure The extensive DCB structure is defined as follows

typedef struct _DCB

DWORD DCBlength

DWORD BaudRate

DWORD fBinary

DWORD fParity

DWORD fOutxCtsFlowl

DWORD fOutxDsrFlow
DWORD fDtrControl

DWORD fDsrSensitivity1

DWORD fTXContinueOnXoff
DWORD fOutX

DWORD fInX

DWORD fErrorChar

DWORD fNull

DWORD fRtsControl

DWORD fAbortOnErrorl

DWORD fDummy217
WORD wReserved

WORD XonLim

WORD XoffLim

BYTE ByteSize

BYTE Parity

BYTE StopBits

char XonChar

char XoffChar

char ErrorChar

char EofChar

char EvtChar

WORD wReservedi

DCB

As you can see from the structure the SetCommState can set fair number of states

Instead of attempting to fill out the entire structure from scratch you should use the

best method of modifying serial port which is to call GetCommState to fill in DCB
structure modify the fields necessary and then call SetCommState to configure the

serial port

The first field in the DCB structure DCBlength should be set to the size of the

structure The BaudRate field should be set to one of the baud rate constants defined

in WINBASE.H The baud rate constants range from CBR_1 10 for 110 bits per second

to CBR_256000 for 256 kilobits per second Kbps Just because constants are defined

for speeds up to 256 Kbps doesnt mean that all serial ports support that speed To

549

Page 00572

Part III COmmwUCat0flS

determine what baud rates serial port supports you can call GetCommPropertieS

which Ill describe shortly Windows CE devices generally support speeds up to 115

Kbps although some support faster speeds The fBinary field must be set to TRUE

because no Win32 operating system currently supports nonbinary serial transmit

mode familiar to MS-DOS programmers The JParity field can be set to TRUE to en

able parity checking

The fOutxCtsFlow field should be set to TRUE if the output of the serial port

should be controlled by the port CTS line The fOutxDsrFlow field should be set to

TRUE if the output of the serial port should be controlled by the DSR line of the

serial port The fDtrControl field can be set to one of three values DTR_

CONTROL_DISABLE which disables the DTR Data Terminal Ready line and leaves

it disabled DTR_CONTROL_ENABLE which enables the DTR line or DTR_

CONTROL_HANDSHAKE which tells the serial driver to toggle the DTR line in re

sponse to how much data is in the receive buffer

The fDsrSensitivity field is set to TRUE and the serial port ignores any incom

ing bytes unless the port DSR line is enabled Setting the fTXContinueOflXOff field

to TRUE tells the driver to stop transmitting characters if its receive buffer has reached

its limit and the driver has transmitted an XOFF character Setting the fOutX field to

TRUE specifies that the XON/XOFF control is used to control the serial output Set

ting the J7nX field to TRUE specifies that the XON/XOFF control is used for the input

serial stream

The fErrorChar and ErrorChar fields are ignored by the default implementa

tion of the Windows CE serial driver although some drivers might support these fields

Likewise the fAbortOnError fields is also ignored Setting theJNull field to TRUE tells

the serial driver to discard null bytes received

The fRtsControl field specifies the operation of the RTS Request to Send line

The field can be set to one of the following RTS_CONTROL_DISABLE indicating that

the RTS line is set to the disabled state while the port is open RTS_CONTROL_ENABLE

indicating that the RTS line is set to the enabled state while the port is open or

RTS_CONTROLJIIANDSHAK-E indicating that the RTS line is controlled by the driver

In this mode if the serial input buffer is less than half full the RTS line is enabled

and disabled otherwise Finally RTS_CONTROL_TOGGLE indicates the driver enables

the RTS line if there are bytes in the output buffer ready to be transmitted and dis

ables the line otherwise

The XonLim field specifies the minimum number of bytes in the input buffer

before an XON character is automatically sent The Xofftim field specifies the maxi

mum number of bytes in the input buffer before the XOFF character is sent This limit

value is computed by taking the size of the input buffer and subtracting the value in

XoffLim In the sample Windows CE implementation of the serial driver provided in

the ETK the XonLim field is ignored and XON and XOFF characters are sent based

on the value in Xofflim However this behavior might differ in some systems

550

Page 00573

Chapter Serial Communications

The next three fields ByteSize Parity and StopB its define the format of the
serial data word transmitted The ByteSize field specifies the number of bits per byte
usually value of or but in some older modes the number of bits per byte can be
as small as The parity field can be set to the self-explanatory constants EVENPARETy
MARKPARflY NOPARITY ODDPARETY or SPACEPARITY The StopBits field should
be set to ONESTOPBIT ONE5STOPBITS or TWOSTOPBITS depending on whether

you want one one and half or two stop bits per byte

The next two fields XonChar and XoffChar let you specify the XON and XOFF
characters Likewise the EvtChar field lets you specify the character used to signal

an event If an event character is received an EV_RXFLAG event is signaled by the

driver This event is what triggers the WaitCommEvent function to return if the

EV_RXFLAG bit is set in the event mask

Setting the Port Timeout Values

As you can see SetCommState can fine-tune to almost the smallest detail the opera
tion of the serial driver However one more step is necessarysetting the timeout

values for the port The time out is the length of time Windows CE waits on read or

write operation before ReadFile or WriteFile automatically returns The functions that

control the serial time outs are the following

BOOL GetCommlimeouts HANDLE hFile LPCOMMTIMEOUTS lpCommhjmeouts

and

BOOL SetConimlimeouts HANDLE hFile LPCOMMTIMEOUTS lpCommljmeouts

Both functions take the handle to the open serial device and pointer to cOMM
TIMEOUTS structure defined as the following

typedef struct _COMMTIMEOUTS

DWORD ReadlntervalTimeout

DWORD ReadlotalTimeoutMultiplier
DWORD ReadlotalTimeoutConstant
DWORD WriteTotalTimeoutMultiplier
DWORD WriteTotallinieoutConstant

COMMTIMEOUTS

The COMMTIMEOUTS structure provides for set of timeout parameters that time

both the interval between characters and the total time to read and write block of

characters Time outs are computed in two ways First ReadlntervalTimeout speci
fies the maximum interval between characters received If this time is exceeded the

ReadFile call returns immediately The other time out is based on the number of char

acters youre waiting to receive The value in ReadTotalTimeoutMultiplier is multi

plied by the number of characters requested in the call to ReadFile and is added to

ReadTotalTimeoutConstant to compute total time out for call to ReadFile

551

Page 00574

Part IV
CommuniCatiOns

The write time out can be specified only for the total time spent during the

WriteFile call This time out is computed the same way as the total read time out by

specifying multiplier value the time in WriteTota1TimeoutMultilier and constant

value in WriteTotalTimeoutConstant All of the times in this structure are specified in

milliseconds

In addition to the basic time outs that just described you can set values in

the COMMTIMEOUTS structure to control whether and exactly how time outs are

used in calls to ReadFile and WriteFile You can configure the time outs in the fol

lowing ways

Time outs for reading and writing as well as an interval time out Set the

fields in the COMMTIMEOUTS structure for the appropriate timeout

values

Time outs for reading and writing with no interval time out Set Read

IntervalTimeout to Set the other fields for the appropriate timeout

values

ReadFile returns immediately regardless of whether there is data to be read

Set ReadlntervalTimeout to MAXDWORD Set ReadTotalTimeoutMultiPlier

and Read TotalTimeoutConstant to

ReadFile doesnt have time out The function doesnt return until the

proper number of bytes is returned or an error occurs Set Readlnterval

Timeout Read TotalTimeoutMultiplier and ReadTotalTimeoutConstaflt

toO

WriteFile doesnt have time out Set WriteTotalTimeoutMultii3lier and

WriteTotalTimeoutConstant to

The timeout values are important because the worst thing you can do is to spin

in loop waiting on characters from the serial port While the calls to ReadFile and

WriteFile are waiting on the serial port the calling threads are efficiently blocked on

an event object internal to the driver This saves precious CPU and battery power during

the serial transmit and receive operations Of course to block on the ReadFile and

WriteFile youll have to create secondary threads because you cant have your pri

mary thread blocked waiting on the serial port

Another call isnt quite as usefulSetupComm prototyped this way

BOOL SetupComm HANDLE hFile DWORD dwlnQueue DWORD dwOutQueue

This function lets you specify the size of the input and output buffers for the driver

However the sizes passed in SetupComm are only recommendations not require

ments to the serial driver For example the example implementation of the serial driver

in the ETK ignores these recommended buffer sizes

552

Page 00575

Chapter Serial Communications

Querying the Capabilities of the Serial Driver

The configuration functions enable you to configure the serial driver but with varied

implementations of serial ports you need to know
just what features serial port

supports before you configure it The function GetCommProperties provides just this

service The function is prototyped this way

BOOL GetCommProperties HANDLE hFile LPCOMMPROP lpCommProp

GetCommProperties takes two parameters the handle to the opened serial driver and

pointer to COMMPROP structure defined as

typedef struct _COMMPROP
WORD wPacketLength
WORD wPacketVersjon
DWORD dwServiceNtask

DWORD dwReservedl

DWORD dwMaxTxQueue

DWORD dwMaxRxQueue

DWORD dwMaxBaud

DWORD dwProvSublype

DWORD dwProvCapabilities
DWORD dwSettableparams

DWORD dwSettableBaud

WORD wSettableData

WORD wSettableStopparity
DWORD dwCurrentTxQueue

DWORD dwCurrentRxQueue

DWORD dwProvSpecl

DWORD dwProvSpec2

WCHAR wcProvChar
COMMPROP

As you can see from the fields of the COMMPROP structure GetCommProperties
returns generally enough information to determine the capabilities of the device Of

immediate interest to speed demons is the dwMaxBaud field that indicates the maxi
mum baud rate of the serial port The dwSettableBaud field contains bit flags that

indicate the allowable baud rates for the port Both these fields use bit flags that

are defined in WINBASE.H These constants are expressed as BAUD_xxxx as in

BAUD_19200 which indicates the port is capable of speed of 19.2 kbps Note that

these constants are not the constants used to set the speed of the serial port in the

DCB structure Those constants are numbers not bit flags To set the speed of COM
port in the DCB structure to 19.2 kbps you would use the constant CBR_19200 in the

BaudRate field of the DCB structure

Starting back at the top of the structure are the wPacketlength and wPacketVersion

fields These fields allow you to request more information from the driver than is

553

Page 00576

Part III Commurncatons

supported by the generic call The dwServiceMask field indicates what services the

port supports The only service currently supported is SP_SERIALCOMM indicating

that the port is serial communication port

The dwMaxTx Queue and dwMaxRx Queue fields indicate the maximum size

of the output and input buffers internal to the driver value of in these fields

indicates that youll encounter no limit in the size of the internal queues The

dwCurrentTx Queue and dwCurrentRxQueue fields indicate the current size for the

queues These fields are if the queue size cant be determined

The dwProvSubType field contains flags that indicate the type of serial port

supported by the driver Values here include PST_RS232 PST_RS422 and PST_RS423

indicating the physical layer protocol of the port PST_MODEM indicates modem

device and PST_FAIX tells you the port is fax device This field reports what the

driver thinks the port is not what device is attached to the port For example if an

external modem is attached to standard RS-232 serial port the driver returns the

PST_RS232 flag not the PST_MODEM flag

The dwProvCapabilities field contains flags indicating the handshaking the port

supports such as XON/XOFF RTS/CTS and DTR/DSR This field also shows you

whether the port supports setting the characters used for XON/XOFF parity check

ing and so forth The dwSettableParams dwSettableData and dwSettableStopParitY

fields give you information about how the serial data stream can be configured

Finally the fields dwprovSpecl dwProvSpec2 and wcProvChar are used by the driver

to return driver-specific data

Controlling the Serial Port

You can stop and start serial stream using the following functions

BOOL SetCommBreak HANDLE hFile

and

BOOL ClearComniBreak HANDLE hFile

The only parameter for both these functions is the handle to the opened COM port

When Set CommB reak is called the COM port stops transmitting characters and places

the port in break state Communication is resumed with the ClearCommBreak

function

You can clear out any characters in either the transmit or receive queues inter

nal to the serial driver using this function

BOOL PurgeConim HANDLE hFi1e DWORD dwFlags

The dwFlags parameter can be combination of the flags PURGE_TXCLEAR and

PURGE_RXCLEAR These flags terminate any pending writes and reads and reset the

queues In the case of PURGE_RXCLEAR the driver also clears any receive holds due

554

Page 00577

Chapter Serial Communications

to any flow control states transmitting an XON character if
necessary and

-setting RTS
and DTR if those flow control methods are enabled Since Windows CE doesnt sup
port overlapped I/O the flags PURGE_TXABORT and PURGE_RXABORT used un
der Windows NT and Windows 98 are ignored

The EscapeCommFunctjon provides more general method of controlling the
serial driver It allows you to set and clear the state of specific signals on the port On
Windows CE devices its also used to control serial hardware thats shared between
the serial port and the IrDA port Ill talk more about infrared data transmission and
the Infrared Data Association IrDA standard later in this chapter The function is

prototyped as

BOOL EscapecommFunctjon HANDLE hFile DWORD dwFunc

The function takes two parameters the handle to the device and set of flags in

dwFunc The flags can be one of the following values

SETDTR Sets the DTR signal

CLRDTR Clears the DTR signal

SETh7S Sets the RTS signal

CLRRTS Clears the RTS ignal

SETXOFF Tells the driver to act as if an XOFF character has been
received

SETXON Tells the driver to act as if an XON character has been received

SETBREAK Suspends serial transmission and sets the port in break state

CLRBREAK Resumes serial transmission from break state

SETIR Tells the serial port to transmit and receive through the infrared

transceiver

CLR Tells the serial port to transmit and receive through the standard

serial transceiver

The SETBREAK and CLRBREAK commands act identically to SetCommBreak
and ClearCommBreak and can be used interchangeably For example you can use

EscapeCommFunction to put the port in break state and ClearCommBreak to

restore communication

Clearing Errors and Querying Status

The function

BOOL ClearCommError HANDLE hFile LPDWORD ipErrors LPCOMSTAT lpStat

555

Page 00578

Part III
CommUfliCat05

performs two functions As you might expect from the name it clears any error states

within the driver so that I/O can continue The serial device driver is responsible for

reporting the errors The default serial driver returns the following flags in the vari

able pointed to by ipErrors CE_OVERRUN CE_RXPARITY CE_FRAME and CE_

TXFULL ClearCommErrOr also returns the status of the port The third parameter of

ClearCommErrOr is pointer to COMSTAT structure defined as

typedef struct _COMSTAT

DWORD fCtsHold

DWORD fDsrHold

DWORD fRlsdHold

DWORD fXoffHold

DWORD fXoffSent

DWORD fEof

DWORD fTxim

DWORD fReserved 25

DWORD cblnQue

DWORD cbOutQue

COMSTAT

The first five fields indicate that serial transmission is waiting for one of the

following reasons Its waiting for CTS signal waiting for DSR signal waiting for

Receive Line Signal Detect also known as Carrier Detect waiting for an XON

character or its waiting because an XOFF character was sent by the driver The J7or

field indicates that an end-of-file character has been received The fTxim field is TRUE

if character placed in the queue by the TransmitCommChar function instead of call

to WriteFile is queued for transmission The final two fields cblnQue and cbOutQue

return the number of characters in the input and output queues of the serial driver

The function

BOOL GetCommModefliStatUS HANDLE hFile LPDWORD lpModemStat

returns the status of the modem control signals in the variable pointed to by

lpModemStat The flags returned can be any of the following

MS_CTS_ON Clear to Send CTS is active

MS_DSRON Data Set Ready DSR is active

MSJJNG_ON Ring Indicate 1U is active

MSJLSD_ON Receive Line Signal Detect RLSD is active

Stayn Alive

One of the issues with serial communication is preventing the system from powering

down while serial link is active Windows CE system determines activity by the

number of key presses and screen taps It doesnt take into account such tasks as

556

Page 00579

Chapter Serial Communications

serial port transmitting data To prevent Windows CE device from powering off
you can simulate keystroke using either of the following functions

VOID keybd_event BYTE bVk BYTE bScan DWORD dwFlags
DWORD dwExtralnfo

or

UINT Sendlnput UINT nlnputs LPINPUT plnputs mt cbSize

These functions can be used to simulate keystroke that resets the activity timer used
by Windows CE to determine when the system should automatically power down
Windows CE supports an additional constant for both these functionsKEyEvErrF
SILENT which prevents the default keyboard click sound from being played

THE INFRARED PORT
Windows CE devices almost always have an infrared IrDA-compatible serial port In

fact all H/PC and Palm-size PC systems are guaranteed to have one The JR ports on
Windows CE devices are IrDA Infrared Data Association compliant The IrDA stan
dard specifies everything from the physical implementation such as the frequency
of light used to the handshaking between devices and how remote systems find each
other and converse

The JR port can be used in variety of ways At the most basic level the port
can be accessed as serial port with an JR transmitter and receiver attached This

method is known as raw JR When youre using raw JR the port isnt JrDA compliant
because the IrDA standard requires the proper handshaking for the link However
raw JR gives you the most control over the JR link word of warning While all Win
dows CE devices know currently support raw JR some might not in the future

You can also use the JR port in IrComm mode In this mode the JR link looks

like serial port However under the covers Windows CE works to hide the differ

ences between standard serial port and the JR link This is perhaps the easiest way
to link two custom applications because the applications can use the rather simple
Comm API while Windows CE uses the IrDA stack to handle the JR link

The most robust and complex method of using the JR port is to use IrSock Jn

this mode the JR link appears to be just another socket IrSock is an extension to

WinSock the Windows version of the socket interface used by applications commu
nicating with TCP/IP Ill cover WinSock in Chapter 10 so Ill defer any talk of JrSock

until then

Raw IR

As mentioned previously when you use raw JR youre mainly on your own You
essentially have serial port with an JR transceiver attached to it Since both the trans

mitter and receiver use the same ether the air collisions occur if you transmit at the

557

Page 00580

Part III COmmUflCat0flS

same time that youre receiving stream of data from another device This doesnt

happen when serial cable connects two serial ports because the cable gives you

separate transmit and receive wires that can be used at the same time

Finding the raw IR port

To use raw IR you must first find the serial port attached to the JR transceiver On

some Windows CE units the serial port and the JR port use the same serial hardware

This means you cant use the serial port at the same time you use the JR port Other

Windows CE devices have separate serial hardware for the JR port Regardless of how

device is configured Windows CE gives you separate instance of COM driver

for the JR port thats used for raw IR mode

There is no official method of determining the COM port used for raw JR How

ever the following technique works for current devices To find the COM port

used for raw JR look in the registry in the \Comm\IrDA key under HKEY_LOCAL_

MACHJNE There you should find the Port key that contains the COM port number

for the raw JR device Below is short routine that returns the device name of the

raw JR port

II

II GetRawlrDeviceName Returns the device name for the RawIR corn port

//

INT GetRawlrDeviceName LPTSTR pDevName

DWORD dwSize dwType dwData

HKEY hKey

INT rc

pDevName TEXT \O
II Open the IrDA key

if RegOpenKeyEx HKEYLOCAL_MACHINE TEXT Comrn\\IrOA
hKey ERROR..SUCCESS

II Query the device number

dwSize sizeof dwData
if RegoueryValueEx hKey TEXT Port dwType

PBYTEdwData dwSize ERROILSUCCESS

II Check for valid port number Assume buffer chars

if dwData 10

wsprintf pDevName TEXT COM%d dwData

RegCloseKey hKey

return lstrlen poevName

558

Page 00581

Chapter Serial Communications

Using raw IR

Once you have the port name you must perform one more task before you can use
the port If the COM port hardware is being shared by the serial port and the JR port
you must tell the driver to direct the serial stream through the JR transceiver You do
this by first opening the device and calling EscapeCommFunction The command
passed to the device is SETIR When youve finished using the JR port you should
call EscapeCommFunction again with the command CLRIR to return the port back to

its original serial function

Once the port is set up theres one main difference between raw JR and stan

dard serial communication You have to be careful when using raw JR not to transmit

while another device is also transmitting The two transmissions will collide corrupt

ing both data streams With raw IR youre also responsible for detecting the other

device and handling the dropped bytes that will occur as the infrared beam between

the two devices is occasionally broken

IrComm

Using IrComm is much easier than using raw JR JrComm takes care of remote device

detection collision detection and data buffering while communication with the other

device is temporally interrupted The disadvantage of IrComm is that its point-to-

point protocolonly two devices can be connected In most instances however this

is sufficient

Finding the IrComm port

Here again theres no official method for determining the IrCommport But you should

be able to find the IrConmri port by looking in the registry under the Drivers\builtin

\IrCOMM key under HKEY_LOCAL_MACHINE The item to query is the Index value
which is the COM device number for the IrComm port Following is routine that

returns the device name of the IrComm port

II

II GetlrCommDeviceName Returns the device name for the IrComm port

INT GetlrCommDeviceName LPTSTR pDevName
DWORD dwSize dwType dwData

HKEY hKey

pDevName TEXT \O
II Open the IrDA key

if RegOpenKeyEx HKEY_LOCAL_MACHINE

TEXT Drivers\\Bujltjn\\IrCOMM
hKey ERRORSUCCESS

continued

559

Page 00582

Part III
COmmUrnCat0S

II Query the device number

dwSize sizeof dwData
if ReguueryValueEX hKey TEXT Index dwType

PBYTEdwData dwSize ERROR_SUCCESS

II Check for valid port number Assume buffer chars

if dwData 10

wsprintf pDevName TEXT COM%d dwData

RegCloseKey hKey

return istrien pDevName

The JrComm port is different in number of ways from the serial port and the

raw JR port These differences arise from the fact that the IrComm port is simulated

port not real device The IrComm driver uses IrSock to manage the JR link The

driver is then responsible only for reflecting the data stream and few control char

acters to simulate the serial connection If you try to query the communication set

tings for the JrComm port using GetCommState the DCB returned is all zeros Jf you

try to set baud rate or some of the other parameters and later call GetCommState

again the DCB will still be JrSock manages the speed and the handshaking proto

col so JrComm simply ignores your configuration requests

On the other hand the IrComm driver happily queues up pending writes wait

ing on another IrComm device to come within range After the JrComm driver auto

matically establishes link it transmits the pending bytes to the other device This

assistance is far cry from raw JR and is what makes using IrComm so easy

The best way to learn about the characteristics of the two methods of JR com

munication Ive described is to use them Which brings us to this chapters example

program

THE CECHAT EXAMPLE PROGRAM
The CeChat program is simple point-to-point chat program that connects two Win

dows CE devices using one of the three methods of serial communication covered in

this chapter The CeChat window is shown in Figure 9-3 Most of the window is taken

up by the receive text window Text received from the other device is displayed here

Along the bottom of the screen is the send text window Jf you type characters here

and either hit the Enter key or tap on the Send button the text is sent to the other

device The combo box on the command bar selects the serial medium to use stan

dard serial raw IR or JrComm

560

Page 00583

Chapter Serial Communications

Rawift Po COM4

aqreeI

Figure 9-3 The eUjat window

The source code for CeChat is shown in Figure 9- CeChat uses three threads

to accomplish its work The primaly thread manages the window and the message

loop The two secondary threads haiiclle reading from and writing to the appropri
ate serial port

Cechatrc/_____
II Resource file

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Rolirig_____
include windows.h
include CeChat.h II Program-specific stu

II

1/ Icons and bitmaps

II

ID_ICON ICON CeChat.ico II Program icon

II

II Menu

/1

ID_MENU MENU DISCARDABLE

BEGIN

POPUP File
BEGIN

MENUITEM Exit 1DM_EXIT

END

POPUP Help
BEGIN

MENUITEM About.. 1DM_A

END

END

Figure 9-4 The CeChat source code continued

561

Page 00584

Part III CommUCahO1S

Figure 9-4 continued

2b

ça

Wa4t

v.v iir jIi

F1W

PmMSM4
4MJ

jM

562

Page 00585

Chapter Serial Communications

Lr
11mIiIM%i

4v

ai

ir 34

continued

563

Page 00586

Part III CommwicatOtS

Figure 9-4 continued

_g Pi .wp4

1i1IL1IRJI
Fi 111pat jt4 1IbiN IiS

Ii

4M4IIVI jrd

u1siauI
564

Page 00587

Chapter Serial Communications

ih1IUN44

M5b
W%ir

dpWi r4 iI

1W

4IIu

vrI1UII

1111111

continued

565

Page 00588

Part III CommUflCatWflS

Figure 9-4 continued

wHI

ern

ç4
jL

Ui
iIIp1j1

566

Page 00589

Chapter Serial Communications

Wk

$1N hM4 ci

MM

V4
continued

567

Page 00590

Part III CommirnCahOflS

Figure 9-4 continued

iik %I
cflIiWNvjp tt.e

nn Y4

I4h1ãMiMi44

tj$r gEj
JL

1I p1 uW
ti

i/

568

Page 00591

Chapter Serial Communications

return

II Open corn port

for i-t-

SendOlgltemMessage hwnclCB IOC_COMPORT CB_GETLBTEXT

LPARAMszFi rstDev
lstrlen szFirstDev

II Really bad hack to determine which is the RAW port
if InitCommunication hWnd szFirstDev

INVALID_HANDLE_VALUE

SendDlgltemMessage hwndCB IDC_COMPORT CB_SETCURSEL

LPARAMszFirstDev
break

return

II

II DoSizeMain Process WM_SIZE message for window
/1

LRESULT DoSizeMain HWND hWnd UINT wMsg WPARAM wParam LPARAM lPararn
RECT rect

II Adjust the size of the client rect to take into account

II the command bar height

GetClientRect hWrd rect
rect.top CornmandBar_Height GetDlgltem hWnd IDC_CMOBAR

SetWindowPos GetOlgltem hWnd ID_RCVTEXT NULL rect.left

rect.top rect.right rect.left
rect.bottom rect.top 25 SWP_NOZORDER

SetWindowPos GetDlgltem hWnd ID_SENDTEXT NULL rect.left
rect.bottom 25 rect.right rect.left 50
25 SWP_NOZORDER

SetWindowPos GetDlgltem hWnd ID_SENDBTN NULL

rect.right rect.left 50 rect.bottom 25
50 25 SlP_.NOZORDER

return

1/

II OoFocusMain Process WM_SETFOCUS message for window
II

LRESULT DoSetFocusMain HWND hwnd UINT wMsg WPARAM wPararn

LPARAM iParam
SetFocus GetOlgltem hWnd IOSENDTEXT
return

continued

569

Page 00592

Part III CommuncaUrn1S

Figure 9-4 continued

IL âb iia.i iLU

..im4IiIp1L
ri .w ir

gi
lrmij3M

ti4P ilMi 1iriI1PW11UN
.111

IJd4a 4i

570

Page 00593

Chapter Serial Communications

TNT

ICHAR szDevE321

if wNotifyCode CBN_SELCHANGE

SendMessage ChwndCtl CB_GETCURSEL

if nLastDev

nLastDev

SendMessage hwndCtl CB_GETLBTEXT LPARAMszDev
InitCoinmunication hWnd szOev
SetFocus GetDlgltem hWrtd IDSENDTEXT

return

/1

// DoMainCommandSendlext Process the Send text button

If

LPARAM DoMalnCommandSendText HWND hWnd WORD idltem HWNEI hwndCtl

WORD wNotifyCode

Ii Set event so that sender thread will send the text

SetEvent g_hSendEvent
SetFocus GetDlgltem hWnd ID_SENDTEXT
return

II

II DoMainCoinmandAbout Process the Help About menu command

II

LPARAM OoMalnCommandAboutHWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

II Use DialogBox to create modal dialog

DialogOox hlnst TEXT aboutbox hWnd AboutDlgProc
return

II About Dialog procedure

II

BOOL CALLBACK AboutfllgProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM Param
switch wMsg

case WM COMMAND

switch LOtJORD wParam
case JDOK

case TOCANCEL

EndDialog hWnd
return TRUE

continued

571

Page 00594

Part III

Figure 94 contililU

device name for the IrComm port

LPTSTR pDevName

pe dwData

pDevN TEXT

II Query

thiSize

if RegQuery dwType

572

Page 00595

Chapter Serial Communications

PBYTEdwData

1/ Check for valid port number

if dwData 10

wsprintf pDevName TEXT C0M%d

oseKey hKey

Co Fills the corn port combo box

hWnd

Ml
IDCCMDBAR

NSERTSTRING
-1

CMDBAR
TSTRJNG

es CMDBAR
TRING

SendDlg AR JOC_COMPORT

return

II

If InitCommunication Open and initialize selected COM port

HANDLE InitCommunication HWND hWnd LPTSTR pszDevName
OCO dcb
INT

TCHAR szobg
COMMIIMEOUTS cto
HANDLE hLocal

DWORD dwTStat

continued

573

Page 00596

Part III Commw1CatOflS

Figure 9-4 continued

jr
rt 4pip ii

rtn
3TtqceF it 3Acpr%1r

k14iI$NY iCt4PWb411IM
FT Di it tRt /tb

xj
TotiT 4P

d15i
II

If

r4 wish rt s%
Fr

ri

2Z

574

Page 00597

Chapter Serial Communications

if GetExitCodeThread hReadlhread dwlStat
dwTStat STILL_ACTIVE
hReadlhread CreateThreacj NULL ReadThread hWnd

dwTStat
if hReadThread

CloseHandle hReadmread

else

wsprintf szDbg TEXT Couldn\t open port %s rc%d\r\n
pszDevName GetLastErrorO

SendOlgiteniMessage hWnd ID_RCVTEXT EM_REPLACESEL

LPARAMszDbg

return hComPort1_
II SendThreaj Sends characters to the serial port

int SendThread PVOIO pArg
HWND hWnd hwndSText

INT cBytes nGoCode

TCHAR szTextITEXTSIZEJ

hWnd HWNDpArg
hwndSlext Getolgltem hWnd ID_SENDTEXT
while

nGoCode WaitForSingleobject g_hSendEvent INFINITE
if nGoCode WAIT_OBJECT_0

if LfContinue
break

GetWindowlext hwndSText szText dimszText
lstrcat szlext TEXT \r\n
WriteFile hComPort szText istrien szTextsizeof TCHAR

cBytes
SetWindowlext hwndSText TEXT 1/ Clear out text box

else

break

return/____t__
II ReadThread Receives characters from the serial port
//

mt ReadThread PVOID pArg
HWND hWnd

INT cBytes

con/in ned

575

Page 00598

Partill

Figure 94 .OlI/1III

BYTE szText pPtr
TCHAR tch

hWnd HWNDpArg
while fContinue

tch

pPtr szText

for Ci sizeof szText-sizeof TCHAR Ii

while ReadFile hComPort pPtr cBytes
if hComPort INVALID_HANDLE_VALUE

return

II This syncs the proper byte order for Unicode

tch tch BxffBO

tch pPtr
if tch TEXT \n

break

pPtr II Avoid alignment probs by addressing as bytes

pPtr

/1 If out of byte sync move bytes down one

if

pPtr szText

while pptr pptr1
pPtr pPtr1
pPtr

pPtr

SendDlgltemMessage hWnd ID_RCVTEXT EM_REPLACESEL

LPARAMszText

return

When the CeChat window is created it sniffs out the three port names using

the methods described earlier in the chapter The combo box is then filled and an

attempt is macic to open one of the COM ports Once port is opened the read thread

is created to wait on characters The read thread isnt as simple as it should he

because it must deal with 2-byte Unicode characters Because its quite possible to

drop byte or two in serial JR link the receive thread must attempt to resync the

proper high bytes with their low byte pair to form correct ETnicocie character

576

Page 00599

Chapter Serial Communications

The send thread is actually quite simple All it does is block on an event that

was created when CeChat was started When the event is signaled it reads the text

from the send text edit control and calls WriteFile Once that has completed the send
thread clears the text from the edit control and loops back to where it blocks again

In the CeChat window shown in Figure 9-3 on page 561 the program reports
that it cant open COM1 this is because COM1 was being used by PC Link to connect
to my PC One of the problems with debugging serial programs on the H/PC or
Palm-size PC is that youre generally using the one port that attaches to the PC In

these situations it helps to have secondary communication path from the PC to

the Windows CE device While you could put an additional serial PCMCIA Card into

the H/PC to add ports faster link can be made with PCMCIA Ethernet Card Which
brings us right to the next chapter Windows Networking and IrSock

577

Page 00600

.. I
!. ; n·
.'!

Page 00601

Chapter 10

Windows

Networking

and IrSock

Networks are at the heart of modern computer systems Over the years Microsoft

Windows has supported variety of networks and networking APIs The evolving
nature of networking APIs along with the need to keep systems backward compat
ible has resulted in huge array of overlapping functions and parallel APIs As in

many places in Windows CE the networking API is subset of the vast array of net

working functions supported under Windows NT and Windows 98
Windows CE supports variety of networking APIs This chapter covers two

First is the Windows Networking API WNet This API supports basic network con
nections so that Windows CE device can access disks and printers on network

Windows CE also supports subset of the WinSock 1.1 API Im not going to

cover the complete WinSock API because plenty of other books do that Ill spend
some time covering what is directly relevant to Windows CE developers Of particu
lar interest is the fact that that WinSock is the high-level API to the IrDA infrared

communication stack Ill also cover another extension to WinSock the Internet con
trol message protocol ICMP functions that allow Windows CE applications to ping
other machines on TCP/IP network

579

Page 00602

Part III ComrnuflCat0flS

WINDOWS NETWORKING SUPPORT

The WNet API is provider-independent interface that allows Windows applications

to access network resources without regard for the network implementation The

Windows CE version of the WNet API has fewer functions but provides the basics so

that Windows CE application can gain access to shared network resource such as

disks and printers The WNet API is implemented by redirector DLL that trans

lates the WNet functions into network commands for specific network protocol

By default the only network supported by the WNet API is Windows Network

ing Support for even this network is limited by the fact that redirector files that imple

ment Windows Networking arent bundled with most H/PCs or Palm-size PCs The

two files that implement this support REDIR.DLL and NETBIOS.DLL are available

from Microsoft As convenience Ive also included them on the books companion

disc as well As an aside the NetBIOS DLL doesnt export NetBIOS-like interface to

applications or drivers

WNet Functions

Windows CEs support for the WNet functions started with Windows CE 2.0 As with

other areas in Windows CE the WNet implementation under Windows CE is subset

of the same API on the desktop but support is provided for the critical functions while

eliminating the overlapping and obsolete functions For example the standard WNet

API contains four different and overlapping WNetAddConnection functions while

Windows CE supports only one WWetAddConnection3

For the WNet API to work the redirector DLLs must be installed in the \windows

directory In addition the network control panel also supplementary component

on most systems must be used to configure the network card so that it can access

the network If the redirector DLLs arent installed or an error occurs configuring or

initializing the network adapter the WNet functions return the error code ERROR_

NO_NETWORK

Conventions of UNC
Network drives can be accessed in one of two ways The first method is to explicitly

name the resource using the Universal Naming Convention UNC naming syntax

which is combination of the name of the server and the shared resource An ex

ample of this is \\BIGSRVR\DRVC where the server name is BIGSERV and the re

source on the server is named DRVC The leading double backslashes immediately

indicate that the name is UNC name Directories and filenames can be included

in the UNC name as in \\bigservr\drvc\dir2\filel .ext Notice that changed case in

the two names That doesnt matter because UNC paths are case insensitive

As long as the WNet redirector is installed you can use UNC names wherever

you use standard filenames in the Windows CE API Youll have problems though

580

Page 00603

Chapter 10 Windows Networking and IrSock

with some programs including in places the Windows CE shell where the applica
tion doesnt understand UNC syntax For example the Explorer in Windows CE 2.0

H/PC device understands UNC names but the File Open dialog box on the same
system doesnt

Mapping remote drive

To get around applications that dont understand UNC names you can map net
work drive to local name When network drive is mapped on Windows CE sys
tem the remote drive appears as folder in the \network folder in the object store
The \network folder isnt standard folder in fact before Windows CE 2.1 it didnt
even show up in the Explorer For systems based on Windows CE 2.1 the visi

bility of the \network folder depends on registry setting Instead its placeholder
name by which the local names of the mapped network drives can be addressed
For example the network drive \\BigSrvr\DrvC could be mapped to the local name
JoeBob Files and directories on \\BigSrvr\DrvC would appear under the folder

\network\joebob Since Windows CE doesnt support drive letters the local name
cant be specified in the form of drive as in

mentioned that the \network folder is virtual folder this needs further ex
planation Before Windows CE 2.1 the network folder wasnt visible to the standard

file system functions If you use the FindFirstFile/FindNextFile process to enumerate
the directories in the root directory the \network directory wont be enumerated

However FindFirstFile/FinclNextFjle enumerates the mapped resources contained in

the \network folder So if the search
string is to enumerate the root directory

the network isnt enumerated but if you use \network\ as the search string any
mapped drives will be enumerated

Starting with Windows CE 2.1 the \network folder can be enumerated by Find
FirstFile and FindNextFile if the proper registry settings are made However even

though the folder can be enumerated you still cant place files or create folders within

the \network folder To make the \network folder visible the DWORD value Register
FSRoot under the key must be set to non
zero value

The most direct way to map remote resource is to call this function

DWORD WNetAddConnectjon3 HWND hwndOwner LPNETRESOURCE lpNetResource
LPTSTR lpPassword LPTSTR ipUserName
DWORD dwFlags

The first parameter is handle to window that owns any network support dialogs
that might need to be displayed to complete the connection The window handle can
be NULL if you dont want to specify an owner window This effectively turns the

WNetAddConnection3 function into the WJVetAddConnection2 function supported
under other versions of Windows

581

Page 00604

Part III CommWUCaOflS

The second parameter lpNetResource should point to NETRESOURCE struc

ture that defines the remote resource being connected The structure is defined as

typedef struct _NETRESOIJRCE

DWORD dwScope

DWORD dwType

DWORD dwDisplayType

DWORD dtJsage

LPTSTR ipLocalName

LPTSTR pRemoteName

LPTSTR lpComment

LPTSTR ipProvider

NETRESOURCE

Most of these fields arent used for the WNetAddConnection3 function and should

be set to All you need to do is to specify the UNC name of the remote resource in

string pointed to by ipRemoteName and the local name in string pointed to by

lpLocalName The local name is limited to 64 characters in length The other fields in

this structure are used by the WNet enumeration functions that Ill describe shortly

You use the next two parameters in WNetAddConnection3 lpPassword and

ipUserName when requesting access from the server to the remote device If you dont

specify user name and Windows CE cant find user information for network access

already defined in the registry the system displays dialog box requesting the user

name and password Finally the dwFlags parameter can be either or the flag CON

NECT_UPDATE_PROFILE When this flag is set the connection is dubbed persistent

Windows CE stores the connection data for persistent connections in the registry

Unlike other versions of Windows Windows CE doesnt restore persistent connec

tions when the user logs on Instead the local name to remote name mapping is tracked

only in the registry If the local folder is later accessed after the original connection

was dropped reconnection is automatically attempted when the local folder is

accessed

If the call to WIJetAddConnection3 is successful it returns NO_ERROR Unlike

most Win32 functions WZ/etAddConnection3 returns an error code in the return value

if an error occurs This is nod to compatibility that stretches back to the Windows

3.1 days You can also call GetLastError to return the error information As an aside

the function WNetGetLastError is supported under Windows CE in that its redefined

as GetLastError so you can call that function if compatibility with other platforms is

important

The other function you can use under Windows CE to connect remote resource

is WNetconnectionDialogl This function presents dialog box to the user request

ing the remote and local names for the connection The function is prototyped as

OWORD WNetConnectionDialogl LPCONNECTDLGSTRUCT lpConnectDlgStruc

582

Page 00605

Chapter 10 Windows Networking and IrSock

The one parameter is pointer to CONNECTDLGSTRUCT structure defined as the
following

typedef struct

DWORD cbStructure

HWND hwndOwner

LPNETRESOURCE lpConnRes
DWORD dwFlags

DWORD dwDevNum

CONNECTDLGSTRJJCT

The first field in the structure is the size field and must be set with the size of
the CONNECTDLGSTRUCT structure before you call

WNetConnectionDialogl The
hwndOwner field should be filled with the handle of the owner window for the dia

log box The lpConnRes field should point to NETRESOURCE structure This struc

ture should be filled with zeros except for the lpRemoteName field which may be
filled to specify the default remote name in the dialog You can leave the ipRemoteName
field if you dont want to specify suggested remote path

The dwFlags field can either be or set to the flag CONNDL_RO_PATH When
this flag is specified the user cant change the remote name field in the dialog box
Of course this means that the ipRemoteName field in the NETRESOURCE structure

must contain valid remote name Windows CE ignores the dwDevNum field in the

CONNECTDLGSTRUCT structure

When the function is called it displays dialog box that allows the user to specify
local and if not invoked with the CONNDLG_RO_PATH flag the remote name as

well If the user taps on the OK button Windows attempts to make the connection

specified The connection if successful is recorded as persistent connection in the

registry

If the connection is successful the function returns NO_ERROR If the user

presses the Cancel button in the dialog box the function returns Other return

codes indicate errors processing the function

Disconnecting remote resource
You can choose from three ways to disconnect connected resource The first method

is to delete the connection with this function

DWORD WNetCancelConnection2 LPTSTR lpNarne DWORD dwFlags
BOOL fForce

The lpName parameter points to either the local name or the remote network name
of the connection you want to remove The dwFlags parameter should be set to or

CONNECT_UPDATE_PROFILE If CONNECT_UPDATE_PROFILE is set the entry in

the registry that references the connection is removed otherwise the call wont change
that information Finally the fEorce parameter indicates whether the system should

583

Page 00606

Part ill
COmmLUUCat0

continue with the disconnect even if there are open files or print jobs on the remote

device If the function is successful it returns NO_ERROR

You can prompt the user to specify network resource to delete using this

function

DWORD WNetDisconneCtDialOg HWND hwnd DWORD dwType

This function brings up system provided dialog box that lists all connections cur

rently defined The user can select one from the list and tap on the OK button to

disconnect that resource The two parameters for this function are handle to the

window that owns the dialog box and dwType which is supposed to define the type

of resourcesprinter RESOURCETYPE_PfflNT or disk RESOURCETYPE_DISK

enumerated in the dialog box However some systems ignore this parameter and

enumerate both disk and print devices This dialog displayed by WnetDisconfleCt

Dialog is actually implemented by the network driver So its up to each OEM to get

this dialog to work correctly

more specific method to disconnect network resource is to call

DWORD WNetDisconnectDialOgl LPDISCDLGSTRUCT lpDiscDlgStruC

This function is misleadingly named in that it wont display dialog box if all the

parameters in DISCDLGSTRUCT are correct and point to resource not currently

being used The dialog part of this function appears when the resource is being used

The DISCDLGSTRUCT is defined as

typedef struct

DWORD cbStructure

HWND hwndOwner

LPTSTR ipLocalName

LPTSTR pRenioteName

DWORD dwFlags

DISCDLGSTRUCT

As usual the cbStructure field should be set to the size of the stmcture The hwnd

Owner field should be set to the window that owns any dialog box displayed The

lpLocalName and lpRemoteName fields should be set to the local and remote names

of the resource thats to be disconnected Under current implementations the

lpLocalName is optional while the ipRemoteName field must be set for the function

to work correctly The dwFlags parameter can be either or DISC_NO_FORCE If this

flag is set and the network resource is currently being used the system simply fails

the function Otherwise dialog appears asking the user if he or she wants to dis

connect the resource even though the resource is being used Under the current

implementations the DISC_NO_FORCE flag is ignored

584

Page 00607

Chapter 10 Windows Networking and IrSock

Enumerating network resources
Its all very well and good to connect to network resource but it helps if you know
what resources are available to connect to Windows CE supports three WNet func
tions used to enumerate network resources WNetOpenEnum WNetEnumResource
and WZVetCloseEnum The process is similar to enumerating files with FileFindFirst
FileFindNext and FileFindClose

To start the process of numerating network resources first call the function

DWORD WNetOpenEnum DWORD dwScope DWORD dwType DWORD dwlJsage
LPNETRESOURCE pNetResource
LPHANDLE iphEnurn

The first parameter dwScope specifies the scope of the enumeration It can be one of
the following flags

RESOUR CE CONNECTED Enumerate the connected resources

RESOJR CE REMEMBER ED Enumerate the persistent network connections

RESOURCE_GLOBjJjNET Enumerate all resources on the network

The first two flags RESOURCE_CONNECTED and RESOURCE_REMEMBERED
simply enumerate the resources already connected on your machine The difference
is that RESOURCE CONNECTED returns the network resources that are connected
at the time of the call while RESOURCE_REMEMBERED returns those that are per
sistent regardless of whether theyre currently connected When using either of these

flags the dwUsage parameter is ignored and the lpNetResource parameters must
be NULL

The third flag RESOURCE_GLOBMNET allows you to enumerate resources
such as servers shared drives or printers out on the networkthat arent connected
The dwType parameter specifies what youre attempting to enumerateshared
disks RESOURCETYPE_DISK shared printers RESOURCETYPE PRIND or both

RESOURCETYPE_ANY
You use the third and fourth parameters only if the dwScope parameter is set to

RESOURCE_GLOBMNET The dwUsage parameter specifies the usage of the resource
and can be to enumerate any resource RESOURCEUSAGE_CONNECTABLE to

enumerate only connectable resources or RESOURCEUSAGE CONTAINER to enu
merate only containers such as servers

If the dwScope parameter is set to RFSOURCE_GLOBMNET the fourth param
eter lpNetResource must point to NETRESOURCE structure otherwise the parameter
must be NULL The NETRESOURCE structure should be initialized to specify the starting

point on the network for the enumeration The starting point is specified by UINC

name in the ipRemoteName field of NETRESOURCE The dwUsage field of the NET-

RESOURCE structure must be set to RESOURCETYPE CONTAINER For example to

585

Page 00608

Part III COmmW1Cat0flS

enumerate the shared resources on the server BIGSERV the ipRemoteName field would

point to the string \\BIGSERV To enumerate all servers in domain the ipRemote

Name should simply specify the domain name For the domain EntireNet the

ipRemoteName field should point to the string EntireNet Because Windows CE

doesnt allow you to pass NULL into lpRemoteName when you use the RESOURCE_

GLOBALNET flag you cant enumerate all resources in the network namespace

as you can under Windows 98 or Windows NT This restriction exists because

Windows CE doesnt support the concept of Windows CE device belonging to

specific network context

The final parameter of WNetOpenEnum iphEnum is pointer to an enumera

tion handle that will be passed to the other functions in the enumeration process

WlvetOpenEnum returns value of NO_ERROR if successful If the function isnt suc

cessful you can call GetLastError to query the extended error information

Once you have successfully started the enumeration process you actually query

data by calling this function

DWORD WNetEnumResourCe HANDLE hEnum LPDWORD lpcCount

LPVOID lpBuffer

LPDWORD lpBufferSize

The function takes the handle returned by WNetOpenEnum as its first parameter The

second parameter is pointer to variable that should be initialized with the num

ber of resources you want to enumerate in each call to WNetEnumResource You can

specify in this variable if you want WI\TetEnumResourCe to return the data for as

many resources as will fit in the return buffer specified by the lpBuffer parameter

The final parameter is pointer to DWORD that should be initialized with the size

of the buffer pointed to by lpBuffer If the buffer is too small to hold the data for even

one resource WNetEnumResource sets this variable to the required size for the buffer

The information about the shared resources returned by data is returned in the

form of an array of NETRESOURCE structures While this is the same structure de

scribed when talked about the WNetAddConnection3 function Ill list the elements

of the structure here again for convenience

typedef struct _NETRESOURCE

DWORD dwScope

DWORD dwType

DWORD dwoisplayType

DWORD dwUsage

LPTSTR ipLocalName

LPTSTR pRemoteName

LPTSTR lpComment

LPTSTR ipProvider

NETRESOURCE

586

Page 00609

Chapter 10 Windows Networking and IrSock

The interesting fields in the context of enumeration start with the dwType field
which indicates the type of resource that was enumerated The value can be
RESOURCETYPE_DJSK or RESOURCETYPE_PRINT The dwDisplay Type field provides
even more information about the resource demarcating domains RESOURCE
DISPLAYTYPE DOMAIN from servers RESOURCEDISPLAYTYPE SERVER and
from shared disks and printers RESOURCEDISPLAYTYPE_SHARE fourth flag

RESOURCEDISPLAYTYPE_GENERIC is returned if the display type doesnt matter
The ipLocalName field points to string containing the local name of the

resource if the resource is currently connected or is persistent connection The

ipRenioteName field points to the UNC name of the resource The lpComment field

contains the comment line describing the resource thats provided by some servers

WNetEnumResource either returns NO_ERROR indicating the function passed
but you need to call it again to enumerate more resources or ERROR_NO_
MORE_ITEMS indicating that you have enumerated all resources matching the speci
fication passed in WNetOpenEnum With any other return code you should call

GetLastError to further diagnose the problem

You have few strategies when enumerating the network resources You can

specify huge buffer and pass in the variable pointed to by lpcCount telling

WNetEnumResource to return as much information as possible in one shot Or you
can specify smaller buffer and ask for only one or two resources for each call to

WATetEnumResource The one caveat on the small buffer approach is that the strings

that contain the local and remote names are also placed in the specified buffer The
name pointers inside the NETRESOURCE structure then point to those strings This

means that you cant specify the size of the buffer to be exactly the size of the

NETRESOURCE structure and expect to get any data back third possibility is to

call WNetEnumResource twice the first time with the lpBuffer parameter and have
Windows CE tell you the size necessary for the buffer Then you allocate the buffer

and call WNetEnumResource again to actually query the data However you use

WnetEnumResource youll need to check the return code to see whether it needs to

be called again to enumerate more resources

When you have enumerated all the resources you must make one final call to

the function

DWORD WNetCloseEnum HANDLE hEnum

The only parameter to this function is the enumeration handle first returned by

WNetOpenEnuin This function cleans up the system resources used by the enumera
tion process

Following is short routine that uses the enumeration functions to query the

network for available resources You pass to function UNC name to use as -the

root of the search The function returns buffer of zero-delimited strings that desig
nate the local name if any and the UNC name of each shared resource found

587

Page 00610

Part III COmmU0at0

Helper routine

mt AddTOLiSt LPTSTR pPtr INT pnListSize LPTSTR pszStr

INT nLen istrien pszStr

if pnListSiZe nLen return -1

lstrcpY pPtr pszStr

pPtr nLen

pnListSZe nLen

return

II

II EnumNetDiskS Produces list of shared disks on network

int EnumNetDisks LPTSTR pszRoot LPTSTR pszNetList mt nNetSiZe

INT rc nBuffSize 1024

OWORD dwCnt dwSize

HANDLE hEnum

NETRESOIJRCE nr

LPNETRESOURCE pnr
PBYTE pPtr pNew

II Allocate buffer for enumeration data

pPtr PBYTE LocalAlloc LPTR nBuffSize

if pPtr
return -1

If Initialize specification for search root

memset nr sizeof nr
nr.lpRemoteName pszRoot

nr.dwUsage RESOURCEUSAGE_CONTAINER

II Start enumeration

rc WNetOpenEnum RESOURCE_GLOBALNET RESOURCETYPE_DISK nr
hEnum

if rc No_ERROR

return -1

II Enumerate one item per loop

do

dwCnt

dwSize nBuffSize

rc WNetEnumResOurce hEnurn dwCnt pPtr dwSize

If Process returned data

if rc NO_ERROR

pnr NETRESOURCE pPtr
if pnr-lpRemOteName

rc AddToList pszNetList nNetSize

pnr-lpRemOteName

588

Page 00611

Chapter 10 Windows Networking and IrSock

II If our buffer was too small try again

else if rc ERROR_MORE_DATA

pNew LocalReAlloc pPtr dwSize LMEM_MOVEABLE
if pNew 11

pPtr pNew

nBuffSize LocalSize pPtr
rc

while rc

II If the loop was successful add extra zero to list

if rc ERROR_NO_MORE_ITEMS

rc AddToList pszNetList nNetSize TEXT

rc

II Clean up
WNetCloseEnum hEnum
LocalFree pPtr
return rc

While the enumeration functions work well to query whats available on the

net you can use another strategy for determining the current connected resources

At the simplest level you can use FileFindFirst and FileFindNext to enumerate the

locally connected network disks by searching the folders in the \network directory

Once you have the local name few functions are available to you for querying just

what that local name is connected to

Querying connections and resources

The folders in the \network directory represent the local names of network shared

disks that are persistently connected to network resources To determine which of

the folders are currently connected you can use the function

DWORD WNetGetConnection LPCTSTR lpLocalName
LPTSTR lpRemoteName
LPDWORD lpnLength

WZJetGetConnection returns the UNC name of the network resource associated with

local device or folder The ipLocalName parameter is filled with the local name of

shared folder or printer The ipRemoteName parameter should point to buffer that

can receive the UNC name for the device The lpnLength parameter points to DWORJ
value that initially contains the length in characters of the remote name buffer If the

buffer is too small to receive the name the length value is loaded with the number of

characters required to hold the UNC name

589

Page 00612

Part III Commtfl1Cat0flS

One feature or problem depending on how you look at it of WNetGet

Connection is that it fails unless the local folder or device has current connection to

the remote shared device This allows us an easy way to determine which local fold

ers are currently connected and which are just placeholders for persistent connec

tions that arent currently connected

Sometimes you need to transfer filename from one system to anothei and you

need common format for the filename that would be understood by both systems

The WNetGetUniversalName function translates filename that contains local net

work name into one using the UNC name of the connected resource The prototype

for WJVetGetUniversalName is the following

DWORD WNetGetUniversalNarne LPCTSTR ipLocalPath OWORD dwlnfoLevel

LPVOID lpBuffer LPDWORD lpBufferSize

Like WI\TetGetConnection this function returns UNC name for local name There

are two main differences between WNetGetConnection and WNetGetUniversalName

First WAletGetUniversalName works even if the remote resource isnt currently con-

nected Second you can pass complete filename to WNetGetUniversalName instead

of simply the local name of the shared resource which is all that is accepted by

WNetGetConnection

WI\TetGetUniversalName returns the remote information in two different formats

If the dwlnfoLevel parameter is set to UNIVERSAL_NAME_INFO_LEVEL the buffer

pointed to by lpBuffer is loaded with the following structure

typedef struct _UNIVERSAL_NAME_INFO

LPTSTR ipUniversalName

UNIVERSAL_NAME_INFO

The only field in the structure is pointer to the UNC name for the shared resource

The string is returned in the buffer immediately following the structure So if

server \\BigServ\DriveC was attached as LocC and you pass WnetGetUniversalName

the filename \network\LocC\win32\filename.ext it returns the UNC name \\BigServ\

DriveC\win32\fllename.ext

If the dwlnfoLevel parameter is set to REMOTE_NAME_INFO_LEVEL the buffer

is filled with the following structure

typedef struct _REMOTE_NAME_INFO

LPTSTR ipUniversalName

LPTSTR lpConnectionName

LPTSTR lpRemainingPath

REMOTE_NAME_INFO

This structure returns not just the UNC name but also parses the UNC name into the

share name and the remaining path So using the same filename as in the previous

590

Page 00613

Chapter 10 Windows Networking and IrSock

example \network\LocC\win32\filename.ext the REMOTE_NAME_INFO fields

would point to the following strings

ipUniveralName \\BigServ\DriveC\win32\filename.ext

lpConnectionName \\BigServ\DriveC

lpRemainingPath \win32\filename.ext

One more thing you dont have to prefix the local share name with \network

In the preceding example the filename \LocC\Win32\filename.ext would have pro
duced the same results

One final WNet function supported by Windows CE is

DWORD WnetGetUser LPCTSTR lpName LPTSTR ipUserNarne

LPDWORD lpnLength

This function returns the name the system used to connect to the remote resource

WnetGet User is passed the local name of the shared resource and returns the user

name the system used when connecting to the remote resource in the buffer pointed

to by ipUserName The lpnLengh parameter should point to variable that contains

the size of the buffer If the buffer isnt big enough to contain the user name the variable

pointed to by lpnLength is filled with the required size for the buffer

The ListNet Example Program

ListNet is short program that lists the persistent network connections on Windows CE

machine The programs window is dialog box with three controls list box that

displays the network connections Connect button that lets you add new persis

tent connection and Disconnect button that lets you delete one of the connections

Double-clicking on connection in the list box opens an Explorer window to dis

play the contents of that network resource Figure 10-1 shows the ListNet window

while Figure 10-2 on the next page shows the ListNet source code

Figure 10-1 The ListNet window containing afew network folders

591

Page 00614

Part III COmmWUCat0flS

Hju%wa

Ip 1P1ii 1PUk

MPb
rHp

III

1puIUIINiI 14UIUN1
njp

Figure 10-2 The ListNet source

592

Page 00615

Chapter 10 Windows Networking and IrSock

If

struct decodeUlNT II Structure associates
LJLNT Code II messages

Ii with function
LRESULT FxnI4WND UINT WPARAM LPARAM

struct decodeCMD If Structure associates

hINT Code II menu lOs with

LRESULT FxnHWND WORD HWND WORD II function

II

/1 Generic defines used by application

define IDICON

define IDD.NETLIST 100 II Control lOs

define IDD_CNCT 101

define IDD_DCNCT 102

If

II Function prototypes

int InitApp HINSTANCE
HWND Initlnstance HINSTANCE LPWSTR int
mt Termlnstance HINSTANGE int
INT RefreshLocalNetDrives HWND hWnd

Ii Dialog window procedure

BOOL CALLBACK MainWndProc HWND hINT WPARAM LPARAM

II Dialog window Message handlers

800L DoCommandMain HWND hINT WPARAM LPARAM

II Command functions

LPARAM DoMainCommandExit HWNO WORD HWND WORD
LPARAM DoMainCommandviewDrive HWND WORD HWND WORD
LPARAM DoMainCommandMapDrive HWND WORD HWND WORD
LPARAM DoMainCommandFreeDrive HWND WORD HWND WORD

ListNet.c

// ListNet network demo application for Windows CE

1/

II Written for the book Programming Windows CE

continued

593

Page 00616

Part III

Figure 102 cjtilIled

/1 Copyright 1998 Douglas Boling__
include windows.h II Windows stuff

include winnetwk 1/ eS

include ListNet ecific stuff

II

II Global

II

const ICHA

HINSTA instance hande

BOO

1/ oc

ye

/1

hprevlnstanCe

MainWndProc

ion window

II the

594

Page 00617

Chapter /0 Windows Networking and IrSock

SendDlglteniMessage hWnd IDD_NETLIST LB_SETTABSTOPS

LPARAMi
RefreshLocalNetDrives hWnd
break

case WM_COMMAND

return DoCommandMain hWnd wMsg wParam iParam

return FALSE

II

II DoCommandMain Process WM_COMMAND message for window

1/

BOOL DoCommandMain IIWND hWnd UINT wMsg WPARAM wParam LPARAM lParam
WORD idltem wNotifyCode

HWND hwndCtl

INT

II Parse the parameters

iditem WORD LOWORD wParam
wNotifyCode WORD HIWORD wParam
hwndCtl HWND iParam

II Call routine to handle control message

for dimMaincomTnandItems

if idltem MainCommandltems
MainCommandltems idltem hwndCtl

wNotifyCode
return TRUE

return FALSE

1/ Command handler routines

/1

1/ DoMainCommandExit Process Program Exit command

II

LPARAM DoMainCommandExit HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

EndDialog hWnd
return

//

II DoMainCommandViewDrive Process list box double clicks

If

continued

595

Page 00618

Part III

Figure 10-2 continued

596

Page 00619

Chapter 10 Windows Networking and IrSock

/1 Display dialog box
rc WNetconnectionDialogl cds

if rc NO_ERROR

RefreshLocalNetDrives hWnd
return

II

1/ DoMainCommandFreeDrive Process disconnect network drive command

II

LPARAM DoMainCommandFreeDrive HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

WNetflisconnectDialog hWnd RESOURCETYPE_DISK

RefreshLocalNetDrives hwnd
return

1/ Network browsing functions

II

1/ EnumerateLocalNetDrives Add an item to the list view controL

INT RefreshLocalNetDrives HWND hWnd
UWND hwndCtl Getolgltem hWnd IDD_NETLIST
INT rc nBuffSize 1024

DWORD dwCnt dwSizo

HANDLE hEnurn

LPNETRESOURCE pnr
NETRESOURCE nr
PBYTE pPtr pNew

TCHAR szText

Sendriessage hwndCtl LB_RESETCONTENT

/1 Allocate buffer for enumeration data

pPtr POrTE LocalAlloc LPTR nBuffSize

if pPtr
return

1/ Initialize specification for search root

memset nr sizeof nr
lstrcpy szText TEXT \\sjdev
nr.lpRemoteName szText

nr.dwUsage RESOURCEUSAGE_CONTAINER

// Start enumeration

rc WNetOpenEnum RESOURCE_REMEMBERED RESOURCETYPE_ANY

hEnum

continued

597

Page 00620

Part III

Figure 102 continued

NO_ERROR return -1

te one item per loop

dw

dwS nBuff

rce hEnum dwCnt pPtr dwSize

r- calName

er

Oisk

dMessage STRING LPARAMszTGXt

again

dwSize LMEM_MOVEABLE

pNew
nBuffSize LocalSize pPtr
re

else

break

The hetrt of the networking code is at the end of ListNet in the routine

RefresbLoca/iVetDriVeS This routine uses the WNet enumerate functions to determine

the persistent network resources mapped to the system Network connections

and disconnections are accomplished with calls to W7\TetconfleCtiOflDkllOgI and

598

Page 00621

Chapter 10 Windows Networking and IrSock

WnetDisconnectDialog respectively You open an Explorer window containing the

shared network disk by launching EXPLORER.EXE with command line thats the

path of the folder to open

BASIC SOCKETS
WinSock is the name for the Windows socket API WinSock is the API for Windows CE

TCP/IP networking stack as well as the IrDA infrared communication stack Win
dows CE implements subset of WinSock version 1.1 Whats left out of the

Windows CE implementation of WinSock is the ever-so-handy WSAAsyncSelect func

tion that enables under other Windows systems an application to be informed when

WinSock event occurred Actually most of the WSAxxx calls that provide asynchro

nous actions are missing from Windows CE Instead the Windows CE implementa

tion is more like the original Berkeley socket API Windows CEs developers decided

not to support these functions to reduce the size of the WinSock implementation These

functions were handy but not required because Windows CE is multithreaded

The lack of asynchronous functions doesnt mean that youre left with calling

socket functions that block on every call You can put socket in nonbiocking mode

so that any function that cant accomplish its task without waiting on an event will

return with return code indicating that the task isnt yet completed

Windows CE has extended WinSock in one area As mentioned in Chapter

WinSock is also the primary interface for IrDA communication To do this Windows

CE extends the socket addressing scheme actually providing an entirely different

addressing mode designed for the transitory nature of IrDA communication

In this section Im not going to dive into complete explanation of socket-based

communication Instead Ill present an introduction that will get you started com

municating with sockets In addition Ill spend time with the IrSock side because this

interface is so significant for Windows CE devices

Initializing the WinSock DLL

Like other versions of WinSock the Windows CE version should be initialized before

you use it You accomplish this by calling WSAstartup which initializes the WinSock

DLL Its prototyped as

mt WSAStartup WORD wversionRequested LPWSADATA lpWSAData

The first parameter is the version of WinSock youre requesting to open For all cur

rent versions of Windows CE you must indicate version 1.1 An easy way to do this

is to use the MAKEWORD macro as in MAKEWORD 11 The second parameter must

point to WSAData structure shown in the code on the next page

599

Page 00622

Part III COmmUrnCahOflS

struct WSAData

WORD wVersion

WORD wHighVersion

char szDescription
char szSystemStatus
unsigned short iMaxSockets

unsigned short iMaxUdpDg

char FAR lpVendorlnfo

This structure is filled in by WSAStartup providing information about the specific

implementation of this version of WinSock Currently the first two fields return OxOlOl

indicating support for version 1.1 The szDescription and szSystemStatus fields can

be used by WinSock to return information about itself In the current Windows CE

version of WinSock these fields arent used The iMaxSockets parameter suggests

maximum number of sockets that an application should be able to open This num

ber isnt hard maximum but more suggested maximum Finally the iMaxUdpDg

field indicates the maximum size of datagram packet indicates no maximum

size for this version of WinSock

WSAStartup returns if successful otherwise the return value is the error code

for the function Dont call WSAGetLastError in this situation because the failure of

this function indicates that WinSock which provides WSAGetLastError wasnt initial

ized correctly

Windows CE also supports WSACleanup which is traditionally called when an

application has finished using the WinSock DLL For Windows CE this function per

forms no action but is provided for compatibility Its prototype is

mt WSACleanup

ASCII vs Unicode
One issue that youll have to be careful of is that almost all the string fields used in

the socket structures are char fields not Unicode Because of this youll find your

self using the functions

mt WideCharToMultiByteUINT CodePage DWORD dwFlags

LPCWSTR lpWideCharStr mt cchWideChar

LPSTR lpMultiByteStr mt cchMultiByte

LPCSTR lpDefaultChar LPBOOL lpUsedDefaultChar

to convert Unicode strings into multibyte strings and

mt MultiByteToWideChar UINT CodePage DWORD dwFlags

LPCSTR lpMultiByteStr mt cchMuitiByte

LPWSTR lpWideCharStr mt cchWideChar

to convert multibyte characters into Unicode The functions refer to multibyte

characters instead of ASCII because on double-byte coded systems they convert

double-byte characters into Unicode

600

Page 00623

Chapter 10 Windows Networking and IrSock

Stream Sockets

Like all socket implementations WinSock under Windows CE supports both stream

and datagram connections In stream connection socket is basically data pipe
Once two points are connected data is sent back and forth without the need for

additional addressing In datagram connection the socket is more like mailslot

with discrete packets of data being sent to specific addresses In describing the

WinSock functions Im going to cover the process of creating stream connec
tion sometimes called connection-oriented connection between client and

server application Ill leave explanation of the datagram connection to other more

network-specific books

The life of stream socket is fairly straightforward its created bound or con

nected to an address read from or written to and finally closed few extra steps

along the way however complicate the story slightly Sockets work in client/server

model client initiates conversation with known server The server on the other

hand waits around until client requests data When setting up socket you have

to approach the process from either the client side or the server side This decision

determines which functions you call to configure socket Figure 10-3 illustrates the

process from both the client and the server side For each step in the process the

corresponding WinSock function is shown

Server Function Client Function

Create socket socket Create socket socket

Bind socket to an address bind Find desired server many functions

Listen for client connections listen Connect to server connect

Accept clients connection accept

Receive data from client recv Send data to server send

Send data to client send Receive data from server recv

Figure 0-3 The process forproducing connection-oriented socket connection

Both the client and the server must first create socket After that the process

diverges The server must attach or to use the function name bind the socket to an

address so that another computer or even local process can connect to the socket

Once an address has been bound the server configures the socket to listen for

connection from client The server then waits to accept connection from client

Finally after all this the server is ready to converse

The clients job is simpler the client creates the socket connects the socket to

remote address and then sends and receives data This procedure of course

ignores the sometimes not-so-simple process of determining the address to connect

to Ill leave that problem for few moments while talk about the functions behind

this process

601

Page 00624

Part III CommurcatiOns

Creating socket

You create socket with the function

SOCKET socket mt af mt type mt protocol

The first parameter af specifies the addressing family for the socket Windows CE

supports two addressing formats AF_INET and AF_IRDA You use the AF_IRDA con

stant when youre creating socket for IrDA use and you use AF_INET for TCP/IP

communication The type parameter specifies the type of socket being created For

TCP/IP socket this can be either SOCK_STREAM for stream socket or SOCK_DGRAM

for datagram socket For IrDA sockets the type parameter must be SOCK_STREAM

Windows CE doesnt currently expose method to create raw socket which is

socket that allows you to interact with the IP layer of the TCP/IP protocol Among

other uses raw sockets are used to send an echo request to other servers in the pro

cess known as pinging However Windows CE does provide method of sending

an ICMP echo request Ill talk about that shortly

The protocol parameter specifies the protocol used by the address family speci

fied by the af parameter The function returns handle to the newly created socket

If an error occurs the socket returns INVALID_SOCKET You can call WSAGetLastError

to query the extended error code

Server side binding socket to an address

For the server the next step is to bind the socket to an address You accomplish this

with the function

mt bind SOCKET const struct sockaddr FAR addr mt namelen

The first parameter is the handle to the newly created socket The second parameter

is dependent on whether youre dealing with TCP/IP socket or an IrDa socket For

standard TCP/IP socket the structure pointed to by addr should be SOCKADDR_IN

which is defined as

struct sockaddr_in

short sin_family

unsigned short sin_port

IN...ADDR sin_addr

char sin_zero

The first field sin Jamilymust be set to AFJNET The second field is the IP port while

the third field specifies the IP address The last field is simply padding to fit the stan

dard SOCKADDR structure The last parameter of bind namelen should be set to

the size of the SOCKADDR_IN structure

When youre using IrSock the address structure pointed to by sockaddr is

SOCKADOR_IRDA which is defined as

602

Page 00625

Chapter 10 Windows Networking and IrSock

struct sockaddr_irda

u_short irdaAddressFamily

u_char irdaDevicelD
char irdaServiceName

The first field irdaAddressFamily should be set to AF_IRDA to identify the struc

ture The second field irdaDevicelD is 4-byte array that defines the address for

this JR socket This can be set to for an IrSock server The last field should be set to

string to identify the server

You can also use special predefined name in the irdaServiceName field to

bypass the IrDA address resolution features If you specify the name LSAP-SELxxx

where xxx is value from 001 through 127 the socket will be bound directly to the

LSAP Logical Service Assess Point selector defined by the value Applications should

not unless absolutely required bind directly to specific LSAP selector Instead by

specifying generic string the IrDA Address resolution code determines free LSAP

selector and uses it

Listening for connection

Once socket has been bound to an address the server places the socket in listen

mode so that it will accept incoming communication attempts You place the socket

in listen mode by using the aptly named function

mt listen SOCKET mt backlog

The two parameters are the handle to the socket and the size of the queue that youre

creating to hold the pending connection attempts This value can be set to SOMAX
CONN to set the queue to the maximum supported by the socket implementation

For Windows CE the only supported queue sizes are and Values outside this range

are rounded to the closest valid value

Accepting connection

When server is ready to accept connection to socket in listen mode it calls this

function

SOCKET accept SOCKET struct sockaddr FAR addr
mt FAR addrlen

The first parameter is the socket that has already been placed in listen mode The

next parameter should point to buffer that receives the address of the client socket

that has initiated connection The format of this address is dependent on the proto

col used by the socket For Windows CE this is either SOCKADDR_IN or SOCK

ADDR_IRDA structure The final parameter is pointer to variable that contains the

size of the buffer This variable is updated with the size of the structure returned in

the address buffer when the function returns

603

Page 00626

Part III CommUfltCahOfls

The accept function returns the handle to new socket thats used to commu

nicate with the client The socket that was originally created by the call to socket will

remain in listen mode and can potentially accept other connections If accept de

tects an error it returns INVALID_SOCKET In this case you can call WSAGetLastError

to get the error code

The accept function is the first function Ive talked about so far that blocks That

is it wont return until remote client requests connection You can set the socket

in nonblocking mode so that if no request for connection is queued accept will re

turn INVALID_SOCKET with an extended error code of WSAEWOULDBLOCK Ill talk

about blocking vs nonblocking sockets shortly

Client side connecting socket to server

On the client side things are different Instead of calling the bind and accept func

tions the client simply connects to known server said simply but as with most

things we must note few complications The primary one is addressingknowing

the address of the server you want to connect to Ill put that topic aside for mo

ment and assume the client knows the address of the server

To connect newly created socket to server the client uses the function

mt connect SOCKET const struct sockaddr FAR name
mt namelen

The first parameter is the socket handle that the client created with call to socket

The other two parameters are the address and address length values weve seen in

the bind and accept functions Here again Windows CE supports two addressing

formats SOCKADDR_IN for TCP/IPbased communication and SOCKADDR_IRDA

for IrDA communication

If connect is successful it returns Otherwise it returns SOCKET_ERROR and

you should call WSAGetLastError to get the reason for the failure

Sending and receiving data

At this point both the server and client have socket handles they can use to commu

nicate with one another The client uses the socket originally created with the call to

socket while the server uses the socket handle returned by the accept function

All that remains is data transfer You write data to socket this way

mt send SOCKET const char FAR buf mt len mt flags

The first parameter is the socket handle to send the data You specify the data you

want to send in the buffer pointed to by the buf parameter while the length of that

data is specified in len The flags parameter must be

You receive data by using the function

mt recv SOCKET char FAR buf mt len mt flags

604

Page 00627

Chapter 10 Windows Networking and IrSock

The first parameter is the socket handle The second parameter points to the buffer

that receives the data while the third parameter should be set to the size of the buffer

The flags parameter can be or it can be MSG_PEEK if you want to have the current

data copied into the receive buffer but not removed from the input queue or if this is

TCP/IP socket MSG_OOB for receiving any out-of-band data that has been sent

Two other functions can send and receive data they are the following

mt sendto SOCKET const char FAR buf mt len mt flags

const struct sockaddr FAR to mt token

and

mt recvfrom SOCKET char FAR buf mt len mt flags

struct sockaddr FAR from mt FAR fromlen

These functions enable you to direct individual packets of data using the address

parameters provided in the functions Theyre used for connectionless sockets but

mention them now for completeness When used with connection-oriented sockets

such as those Ive just described the addresses in sendto and recvfrom are ignored

and the functions act like their simpler counterparts send and recv

Closing socket

When you have finished using the sockets call this function

mt shutdown SOCKET mt how

The shutdown function takes the handle to the socket and flag indicating what part

of the connection you wish to shut down The how parameter can be SD_RECEIVE

to prevent any further recv calls from being processed SD_SEND to prevent any fur

ther send calls from being processed or SDBOTh to prevent either send or recv calls

from being processed The shutdown function affects the higher level functions send

and recv but doesnt prevent data previously queued from being processed Once

you have shut down socket it cant be used again It should be closed and new

socket created to restart session

Once connection has been shut down you should close the socket with

call to this function

mt closesocket SOCKET

The action of closesocket depends on how the socket is configured If youve prop

erly shut down the socket with call to shutdown no more events will be pending

and closesocket should return without blocking If the socket has been configured

into linger mode and configured with timeout value closesocket will block until

any data in the send queue has been sent or the timeout expires

605

Page 00628

Part ill CommwIiCatOflS

IrSock

Ive alluded to IrSock number of times as Ive described functions IrSock is essen

tially socketlike API built over the top of the IrDA stack used for infrared commu

nication IrSock is the only high-level interface to the IrDA stack Even the IrComm

virtual comm port described in Chapter uses the IrSock API underneath the covers

The major differences between IrSock and WinSock are that IrSdck doesnt

support datagrams it doesnt support security and the method used for addressing it

is completely different from that used for WinSock What IrSock does provide is

method to query the devices ready to talk across the infrared port as well as arbitra

tion and collision detection and control

From programmers perspective the main difference in programming IrSock

and WinSock is that the client side needs method of detecting what infrared ca

pable devices are within range and are ready to accept socket connection This is

accomplished by calling getsockopt with the level parameter set to SOL_IRLMP and

the optname parameter set to IRLMP_ENUMDEVICES as in the following

dwBuffSize sizeof buffer
rc getsockopt hlrSock SOL_IRLMP IRLMP_ENUMDEVICES

buffer dwBuffSize

When called with IRLMP_ENUMDEVICES getsockopt returns DEVICELIST structure

in the buffer DEVTCELIST is defined as

typedef struct _DEVICELIST

ULONG numDevice

IRDA_DEVICE_INFO DeviceEl

DEVICELIST

The DEVICELIST structure is simply count followed by an array of IRDA_DE

VICE_INFO structures one for each device found The IRDA_DEVTCE_INFO struc

ture is defined as

typedef struct _IRDA_DEVICE_INFO

u_char irciaDevicelD
char irdaoeviceName
u_char Reserved

IRDA_DEVICE_INFO

The two fields in the IRDA_DEVICE_INFO structure are device ID and string that

can be used to identify the remote device

Following is routine that opens an JR socket and uses getsockopt to query the

remote devices that are in range If any devices are found their names and IDs are

printed to the debug port

606

Page 00629

Chapter 10 Windows Networking and IrSock

II Poll for IR devices

II

DWORD WINAPI IrPoll HWND hWnd
INT rc nSize

char cDevice
TCHAR szName szOut
DEVICELIST pDL
SOCKET irsock

II Open an infrared socket

irsock socket AF_IRDA SOCK_STREAM

if irsock INVALID_SOCKET

return -1

II Search for someone to talk to try 10 times over seconds

for 10

II Call getsockopt to query devices

memset cOevice sizeof cDevicefl
nSize sizeof cDevice
rc getsockopt irsock SOL_IRLMP IRLMP_ENUMDEVICES

cDevice nSize
if rc

break

pDL DEVICELIST cDevice

if pDL-numDevice
Add2List hWnd TEXT %d devices found. pDL-numDevice

for intpDL-numDevice i-I--i-

II Convert device ID

wsprintf szOut
TEXT DevicelD \t%02X.%02X.%02X.%02X

pDL-Devi ce .1 rdaDevicelD
pDL-Devi ce .1 rdaDeviceID
pDL-Devi ce .1 rdaDevicelD

pDL-Devi ce .1 rdaDevicelD
OutputoebugString szOut

II Convert device name to Unicode

mbstowcs szName pDL-Device
sizeof pDL-Device

wsprintf szOut TEXT irdaDeviceName \t%s
szName

OutputoebugString szOut

continued

607

Page 00630

Part III CommUflCat0flS

Si eep 500

ciosesocket irsock
return

Just havig device with an JR port in range isnt enough the remote device

must have an application mnning that has opened an JR socket bound it and placed

it into listen mode This requirement is appropriate because these are the steps

any server using the socket API would perform to configure socket to accept

communication

Querying and setting IR socket options

IrSock supports the getsockopt and setsockopt functions for getting and setting the

socket options but the options supported have little overlap with the socket options

supported for standard TCP/IP socket To query socket options use this function

mt getsockopt SOCKET mt level mt optname

char FAR optvai mt FAR optien

The first parameter is the handle to the socket while the second parameter is the level

in the communications stack for the specific option The level can be at the socket

level So_SOCKET or level unique to IrSock SOL_IRLMP The options supported

for IrSock are shown in the lists below

For the SOL_SOCKET level your option is

SO_LINGER It queries the linger mode

For the SOLJRLMP level your options are

IRLMP_ENUMDE VICES which enumerate remote IrDA devices

IRJVIPJAS_ QUERY which queries lAS attributes

IRLMP_SEND_PDU_LEN which queries the maximum size of send packet

for IrLPT mode

The corresponding function with which to set the options is

mt setsockopt SOCKET mt level mnt optname

const char FAR optval mt optien

The parameters are similar to getsockopt The allowable options are shown below

For the SQL_SOCKET level your option is

SO_LINGER which delays the close of socket if unsent data remains in

the outgoing queue

608

Page 00631

Chapter 10 Windows Networking and IrSock

For the SOL_IRLMP level your options are

IRLMP_L4S_SET which sets lAS attributes

IRJVIP_IRLPT_MODE which sets the IrDA protocol to IrLPT

IRLMP_9 WIRE_MODE which sets the IrDA protocol to 9-wire serial mode

IRLMP_SHARP_MODE which sets the IrDA protocol to Sharp mode

Blocking vs nonbiocking sockets

One issue briefly touched on as was introducing sockets is blocking Windows

programmers are used to the quite handy asynchronous socket calls that are an ex
tension of the standard Berkeley socket API By default socket is in blocking mode

so that for example if you call recv to read data from socket and no data

is available the call blocks until some data can be read This isnt the type of call

you want to be making with thread thats servicing the message loop for your

application

Although Windows CE doesnt support the WSAAsync calls available to desk

top versions of Windows you can switch socket from its default blocking mode to

nonblocking mode In nonbiocking mode any socket call that might need to wait

to successfully perform its function instead returns immediately with an error code

of WSAEWOUILDBLOCK You are then responsible for calling the would-have-blocked

function again at later time to complete the task

To set socket into blocking mode use this function

mt loctisocket SOCKET long cmd u_long argp
The parameters are the socket handle command and pointer to variable that

either contains data or receives data depending on the value in cmd The allowable

commands for Windows CE IrSock sockets are the following

FIONBIO Set or clear sockets blocking mode If the value pointed to

by argp is nonzero the socket is placed in blocking mode If the value is

zero the socket is placed in nonblocking mode

FIOIVREAD Returns the number of bytes that can be read from the socket

with one call to the recv function

So to set socket in blocking mode you should make call like this one

fBlocking FALSE

rc ioctlsocket sock FIONBIO fBlocking

Of course once you have socket in nonblocking mode the worst thing you

can do is continually poll the socket to see if the nonblocked event occurred On

609

Page 00632

Part III COmmWUCat0flS

battery-powered system this can dramatically lower battery life Instead of polling

you can use the select function to inform you when socket or set of sockets is in

nonblocking state The prototype for this function is

mt select mt nfds fd_set FAR readfds fd_set FAR writefds

fd_set FAR exceptfds
const struct timeval FAR timeout

The parameters for the select function look somewhat complex which in fact they

are Just to throw curve the function ignores the first parameter The reason it ex

ists at all is for compatibility with the Berkeley version of the select function The next

three parameters are pointers to sets of socket handles The first set should contain

the sockets that you want to be notified when one or more of the sockets is in

nonbiocking read state The second set contains socket handles of sockets that you

want informed when write function can be called without blocking Finally the third

set pointed to by exceptfds contains the handles of sockets that you want notified

when an error condition exists in that socket

The final parameter is timeout value In keeping with the rather interesting

parameter formats for the select function the timeout value isnt simple millisecond

count Rather its pointer to TIMEVAL structure defined as

struct timeval

long tv_sec

long tv_useC

If the two fields in TIMEVAIL are the select call returns immediately even if none of

the sockets has had an event occur If the pointer timeout is NULL instead of point

ing to TIMEVAL structure the select call wont time out and returns only when an

event occurs in one of the sockets Otherwise the timeout value is specified in sec

onds and microseconds in the two fields provided

The function returns the total number of sockets for which the appropriate events

occur if the function times out or SOCKET_ERROR if an error occurred while pro

cessing the call If an error does occur you can call WSAGetLastError to get the error

code The function modifies the contents of the sets so that on returning from the

function the sets contain only the socket handles of sockets for which events occur

The sets that contain the events should be considered opaque The format

of the sets doesnt match their Berkeley socket counterparts Each of the sets is

manipulated by four macros defined in WINSOCK.H These are the four macros

FD_CLR Removes the specified socket handle from the set

FD_ISSET Returns true if the socket handle is part of the set

610

Page 00633

Chapter 10 Windows Networking and IrSock

FD_SET Adds the specified socket handle to the set

FD_ZERO Initializes the set to

To use set you have to declare set of type fd_set Then initialize the set with

call to FD_ZERO and add the socket handles you want with FD_SET An example
would be

fd_set fdReadSocks

FD_ZERO fdReadSocks
FD_SET hSockl fdReadSocks
FD_SET hSock2 fdReadSocks

rc select fdReadSocks NULL NULL NULL
if rc SOCKET_ERROR

if FD_ISSET hSockl fdReadSocks
II read event occurred in socket

if FD_ISSET hSock2 fdReadSocks
II read event occurred in socket

In this example the select call waits on read events from two sockets with handles

of hSockl and hSock2 The write and error sets are NULL as is the pointer to the timeout

structure so the call to select wont return until read event occurs in one of the two

sockets When the function returns the code checks to see if the socket handles are

in the returned set If so that socket has nonblocking read condition

The last little subtlety concerning the select function is just what qualifies as

read write and error condition socket in the read set is signaled when one of the

following events occur

There is data in the input queue so that recv can be called without

blocking

The socket is in listen mode and connection has been attempted so that

call to accept wont block

The connection has been closed reset or terminated If the connection

was gracefully closed recv returns with bytes read otherwise the recv

call returns SOCKET_ERROR If the socket has been reset the recv func

tion returns the error WSACONNRESET

socket in the write set is signaled under the following conditions

Data can be written to the socket call to send still might block if you

attempt to write more data than can be held in the outgoing queue

611

Page 00634

Part Ill COmmUflCat0

socket is processing connect and the connect has been accepted by

the server

socket in the exception set is signaled under the following condition

sockct is processing connect and the connect failed

The MySqurt Example Program

To demonstrate IrSock the following program MySqurt shows how to transfer files

from one Windows CE device to another Its similar to the IrSquirt program provided

with the H/PC and Palm-size PC The difference is that instead of sending file across

the infrared link and having the receiving side accept whatever file is sent MySqurt

has the receiving side specify the file thats sent from the serving side of the applica

tion In addition MySqurt has window that displays list of status messages as the

handshaking takes place between the two Windows CE systems To use MySqurt youll

need to have it running on both the Windows CE systems To transfer file enter the

name of the file you want from the other system and tap on the Get File button The

system transmits the request to the system and if the file exists it will be sent back to

the requesting system The MySqurt window is shown in Figure 10-4 The source code

for the example is shown in Figure 10-5

Figure 104 The ThSqurt window a/icr a/lie has been lransferred

MySqurt.rc

II Resource file

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

Figure 105 The Mrsqurt source

612

Page 00635

chap/er 10 Windows Networking and IrSock

nd ude windows
include MySqurt.h ii Program-specific stuff

II

// Icons and bitmaps

II

ID..JCON ICON MySqurt.ico 1/ Program icon

//

/1 Main window dialog template

II

MySqurt DIALOG discardable 10 10 130 110

STYLE WS_OVERLAPPED WS_VISIBLE WS_CAPTION WS_SYSMENU

OS_CENTER DS_MODALFRAME

CAPTION MySqurt
CLASS MySqurt
BEGiN

LTEXT File -1 11 15 12

EDITTEXI IDO_OUTTEXI 17 10 71 12
WS_TABSTOP ES_AUTOHSCROLL

PUSHBUTTON Get File IDD_GETFILE 92 10 34 12 WS_TABSTOP

LISTBOX IDD_INTEXT 25 124 80
WS_TABSTOP WS_VSCROLL

END

MySqurt..h/Z__t
II Header file

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

II Returns number of elements

define dimx sizeofx sizeofx

II

1/ Generic defines and data types

ii

struct decodeUlNT II Structure associates

UINT Code /1 messages

II with function

LRESULT FxnHWND UINT WPARAM LPARAM

continued

613

Page 00636

Part III

Figure 1O-5 continued

614

Page 00637

Chapter /0 Windows Networking and IrSock

II Command functions

LPARAM DoMainCommandGet HWND WORD HWND WORD
LPARAM DoMainConimandExit HWND WORD HWND WORD

If Thread functions

mt Senderlhread PVOID pArg
mt ReaderThread PVOIO pArg

MySqurtc/z__Z_r___
II MySqurt simple IrSock application for Windows CE

1/

II Written for the book Programming Windows CE

// Copyright 1998 Douglas BolingJ_
include windows.h II For all that Windows stuff
include winsock.h /1 socket includes

include af._irda.h II IrDA Includes

include MySqurt.h II Program-specific stuff
II

II Global data

II

const TCHAR szAppName TEXT MySqurt
const char chzAppNamefl MySqurt
RINSTANCE hlnst If Program instance handle
HWNO hMain II Main window handle

8001 fContinue TRUE // Server thread cont flag

II Message dispatch table for MainWindowProc
const struct decodeUlNT MainMessages

WM_COMMAND DoCommandMai

WM_DESTROY 000estroyMamn

1/ Command Message dispatch for MainWindowProc
const struct decodeCMD MainCornmandltenisD

lOOK DoMainCommandGet

IDCANCEL DoMainCommandExjt

IOD_GETFILE DoMainCoinmandGet/t_________
II Program entry point

int WINAPI WinMain H1NSTANcE hlnstance HINSTANCE hPrevInstance

continued

615

Page 00638

Part III CommuflCah0flS

Figure 10-5 continued

ppMM% PIW1p

jI
_p II

if

Uu.u1LuuIpUISu

iwiutMVIP

12p5p1Lp

616

Page 00639

Chapter 1 o Windows Networking and lrSock

(continu.ed)

617

Page 00640

