
Part II Wndews CE Bascs

allows the programmer to specify which bands wont be displayed when the com

mand band is in vertical orientation Bands containing menus or wide controls are

candidates for this flag because they wont be displayed correctly on vertical bands

You can fill the cirFore and cirBack fields with color that the command band

will use for the foreground and background color when your application draws the

band These fields are used only if the RBBIM_COLORS flag is set in the mask field

These fields along with the hbmBack field which specifies background bitmap for

the band are useful only if the band contains transparent command bar Otherwise

the command bar covers most of the area of the band obscuring any background

bitmap or special colors Ill explain how to make command bar transparent in the

section Configuring individual bands
The lpText field specifies the optional text that labels the individual band This

text is displayed at the left end of the bar immediately right of the gripper The ilmage

field is used to specify bitmap that will also be displayed on the left end of the bar

The ilmage field is filled with an index to the list of images contained in the image

list control The text and bitmap fields take added significance when paired with the

RBS_SMARTLABELS style of the command band control When that style is specified

the text is displayed when the band is restored or maximized and the bitmap is dis

played when the band is minimized This technique is used by the H/PC Explorer on

its command band control

The wID field should be set to an ID value that you use to identify the band

The band ID is important if you plan on configuring the bands after they have been

created or if you think youll be querying their state Even if you dont plan to use

band IDs in your program its important that each band ID be unique because the

control itself uses the IDs to manage the bands This field is checked only if the

RBBIM_ID flag is set in the fMask field

The hwndChild field is used if the default command bar control in band is

replaced by another control To replace the command bar control the new control

must first be created and the window handle of the control then placed in the

hwndChild field The hwndChild field is checked only if the RBBIM_CHILD flag is set

in the jMask field

The cxMinGhild and cyMinChild fields define the minimum dimensions to which

band can shrink When youre using control other than the default command bar these

fields are useful for defining the height and minimumwidth the width when minimized

of the band These two fields are checked only if the RBBIM_CHILDSIZE flag is set

The cxldeal field is used when band is maximized by the user If this field

isnt initialized maximized command band stretches across the entire width of the

control By setting cxldeal the application can limit the maximized width of band

which is handy if the controls on the band take up only part of the total width of the

control This field is checked only if the EBBIM_IDEALSIZE flag is set in the JMask field

The iParam field gives you space to store an application-defined value with

the band information This field is checked only if the RBBIM_LPARAM flag is set in

298

Page 00321

Chapter Common Controls and Windows CE

the fMask field The other fields in the REBARBANDINFO apply to the more flexible

rebar control not the command band control The code below creates command
bands control initializes an array of three REBARBANDINFO stmctures and adds the

bands to the control

II Create command bands ctl

hwndCB CommandBands_Create hlnst hWnd IDC_CMDBAND RBS_SMARTLABELS

RBS_VARHEIGHT himi

II mit common REBARBANDINFO structure fields
for dimrbirbi sizeof REBARBANDINFOrbi RBBIMID RBBIM_IMAGE RBBIM_SIZE RBBIM_STYLErbi RBBS_FIXEDBMPrbi IDB_CMDBANDi

II mit REBARBANDINFO structure for each band
II Menu bandrbi RBBS_NOGRIPPERrbi 130rbi
II Standard button bandrbi RBBIM_TEXTrbi 200rbirbi TEXT Std Btns

II Edit control band

hwndChild CreateWindow TEXT edit TEXT edit ctl
WSVISIBLE WS_CHILD WS_BORDER

10 hWnd HMENUIDC_EDITCTL
hlnst NULL

rbi2.fMask RBBIM_TEXT RBBIM_STYLE RBBIM_CHILDSIZE RBBIM_CI-IILDrbi RBBS_CHILDEDGErbi hwndChildrbirbi 25rbi 55rbi 130rbirbi TEXT Edit field

II Add bands

CommandBarids_AddBands hwndCB hlnst rbi

299

Page 00322

Part II Windows CE Easics

The command bands control created above has three bands one contain

ing menu one containing set of buttons and one containing an edit control

instead of command bar The control is created with the RBS_SMARTLABELS

and RBS_VARHEIGHT styles The smart labels display an icon when the bar is mini

mized and text label when the band isnt minimized The RBS_VARHEIGHT style

allows each line on the control to have different height

The common fields of the REBARBANDINFO structures are then initialized in

loop Then the remaining fields of the structures are customized for each band on

the control The third band containing the edit control is the most complex to ini

tialize This band needs more initialization since the edit control needs to be prop

erly sized to match the standard height of the command bar controls in the other bands

The ilmage field for each band is initialized using an index into an image list that

was created and passed to the CommandBands_Create function The text fields for

the second and third bands are filled with labels for those bands The first band which

contains menu doesnt contain text label because theres no need to label the menu

You also use the RBBSNOGfflPPER style for the first band so that it cant be moved

around the control This fixes the menu band at its proper place in the control

Now that weve created the bands its time to see how to initialize them

Configuring individual bands

At this point in the process the command bands control has been created and the

individual bands have been added to the control We have one more task which is

to configure the individual command bar controls in each band Actually theres little

more to configuring the command bar controls than what Ive already described for

command bars

The handle to command bar contained in band is retrieved using

HWND CommandBands_GetCommafldBar HWND hwndCnidBands UINT uBand

The uBand parameter is the zero-based band index for the band containing the com

mand bar If you call this function when the command bands control is being initial

ized the index value correlates directly with the order in which the bands were added

to the control However once the user has chance to drag the bands into new

order your application must obtain this index indirectly by sending RB_IDTOINDEX

message to the command bands control as in

nlndex SendMessage hwndCmdBands RB_IDTOINDEX ID_BAND

This message is critical for managing the bands because many of the functions and

messages for the control require the band index as the method to identify the band

The problem is that the index values are fluid As the user moves the bands around

these index values change You cant even count on the index values being consecu

tive So as rule never blindly use the index value without first querying the proper

value by translating an ID value to an index value with RB_IDTOINDEX

300

Page 00323

Chapters Common Controls and Windows CE

Once you have the window handle to the command bar simply add the menu
or buttons to the bar using the standard command bar control functions and mes
sages Most of the time youll specify only menu in the first bar only buttons in the

second bar and other controls in the third and subsequent bars

The following code completes the creation process shown in the earlier code

fragments This code initializes the command bar controls in the first two bands Since

the third band has an edit control you dont need to initialize that band The final act

necessary to complete the command band control initialization is to add the close

box to the control using call to CommandBands_AddAdornments

II Add menu to first band

hwndBand CommandBands_GetCommandBar hwndCB
CommandBar_InsertMenubar hwndBand hlnst ID_MENU

II Add std buttons to second band
hwndBand CommandBands_GetCommandBar hwndCB
ComniandBar_AddBitmap hwndBand HINST_COMMCTRL IDB_STD_SMALL_COLOR

15
CommandBar_AddButtons hwndBand dimtbCBStdBtns tbCBStdBtns

II Add exit button to command band

CommandBands_AddAdornments hwndCB hlnst NULL

Saving the band layout
The configurability of the command bands control presents problem to the pro
grammer Users who rearrange the bands expect their customized layout to be re
stored the next time the application is started This task is supposed to be made easy

using the following function

800L CommandBands_GetRestorelnformation HWND hwndCmdBands

UINT uBand LPCOMMANDBANDSRESTOREINFO pcbr

This function saves the positioning information from an individual band into

COMMANDBANDSRFSTOREINFO structure The function takes the handle of the

command bands control and an index value for the band to be queried The follow

ing code fragment shows how to query the information from each of the bands in

command band control

II Get the handle of the command bands control

hwndCB GetDlgltem hWnd IDC_CMDBAND

II Get information for each band

for NUMBANDS

continued

301

Page 00324

Part II Whidows CE asics

II Get band index from ID value

nBand SendMessage hwndCB RB_.IDTOINDEX IDB_CMDBANDi

II Initialize the size field and get the restore informationcbr sizeof COMMANDBANDSRESTOREINFO

CommandBands_GetRestorelnformation hwndCB nBand cbr
The code above uses the RB_IDTOINDEX message to convert known band IDs

into the unknown band indexes required by CommandBands_GetRestorelnformation

The data from the structure would normally be stored in the system registry Ill talk

about how to read and write registry data in Chapter Files Databases and the

Registry

The restore information should be read from the registry when the application

is restarted and used when creating the command bands control

II Restore configuration to command band

COMMANDBANDSRESTOREINFO cbr
REBARBANDINFO rbi

II Initialize size field

rbi.cbSize sizeof REBARBANDINFO

II Set only style and size fields

rbi.fMask RBBIM_STYLE RBBIM_SIZE

II Set the size and style for all bands

for NUMBANDS

rbi.cx cbr
rbi.fStyle cbr
nBand SendMessage hwndCB RB_IDTOINDEX cbr
SendMessage hwndCB RB_SETBANDINFO nBand LPARAMrbi

II Only after the size is set for all bands can the bands

II needing maximizing be maximized

for NUMBANDS

if cbr
nBand SendMessage hwndCB RB_IDTOINDEX cbr
SendMessage hwndCB RB_MAXIMIZEBAND nBand TRUE

This code assumes that the command bands control has already been created

in its default configuration In real-world application the restore information for

the size and style could be used when first creating the control In that case all that

would remain would be to maximize the bands depending on the state of the

302

Page 00325

Chapter Common Controls and Windows CE

jMaximized field in the COMMANDBANDSRESTOREINFO structure This last step must

take place only after all bands have been created and properly resized

One limitation of this system of saving and restoring the band layout is that you
have no method for determining the order of the bands in the control The band in
dex isnt likely to provide reliable clues because after the user has rearranged the bands

few times the indexes are neither consecutive nor in any defined order The only

way around this problem is to constrain the arrangement of the bands so that the user

cant reorder the bands You do this by setting the RBS_F1XEDORDER style This solves

your problem but doesnt help users if they want different order In the example

program at the end of this section use the band index value to guess at the order

But this method isnt guaranteed to work

Handling command band messages
The command bands control needs bit more maintenance than command bar

The difference is that the control can change height and thus the window contain

ing the command bands control must monitor the control and redraw and perhaps

reformat its client area when the control is resized

The command bands control sends number of different WM_NOTIFY
messages when the user rearranges the control To monitor the height of the

control your application needs to check for RBN_HEIGHTCHANGE notifica

tion and to react accordingly The code below does just this

II This code is inside WM_NOTIFY message handler
LPNMHDR pnmh

pnmh LPNMHDRlParam
if pnmh-code RBN_HEIGHTCHANGE

InvalidateRect hWnd NULL TRUE

If RBN_HEIGHTCHANGE notification is detected the routine simply invali

dates the client area of the window forcing WM_PAINT message The code in the

paint message then calls

UINT CommandBands_Height HWND hwndCmdBands

to query the height of the command bands control and subtracts this height from the

client area rectangle

As with the command bar the command bands control can be hidden and shown
with helper function

BOOL CommandBands_Show HWND hwndCmdBands BOOL fShow

The visibility state of the control can be queried using

BOOL CommandBands_Isvisjbje HWND hwndCmdBands

303

Page 00326

Part II

The CmdBand Example Program

fhe CmdBand prograin demonstrates fairly complete command bands control The

example creates three bands fixed menu band band containing number

buttons and hand containing an edit control Transparent command bars and

background bitmap in each band are used to create command bands control with

background image

You can use the View menu to replace the command bands control with simple

command bar by choosing Command Bar from the View menu You can then recre

ate and restore the command bands control to its last configuration by choosing

Command Bands from the View menLi The code for the CmdRand program is shown

in Figure S-5

CmdBand.rc

II Resource file

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

include windows.h II

include CmdBand.h II Program-specific stuff

ii

II Icons and bitmaps

/1

ID.ICON ICON cmdbandico II Program icon

CmdBarBnips BITMAP cbarbmps.bmp 1/ Bmp used in cmdband image list

CmdBarEditBmp BITMAP cbarbmp2.bmp 1/ Bmp used in cmdband image list

CmndBarBack BITMAP backg2.bmp II Bmp used for cmdband background

1/

II Menu

II

ID...MENU MENU DISCARDABLE

BEGIN

POPUP File
BEGIN

MENUITEM Exit 1DM_EXIT

END

POPUP View

Figure 55 The Gmdflaud program

304

Page 00327

Chapier Common Controls and Windows CE

BEGIN

MENUITEM Command Bar IDM_VIEWCMDBAR

MENUITEM Command Band IDM_VIEWCMDBAND

END

POPUP Hel

BEGIN

MENUITEM About 1DM_ABOUT

END

END

II

II About box dialog template

/1

aboutbox DIALOG discardable 10 10 160 40

STYLE WS_POPUP WS_VISIBLE WS_CAPTION WS_SYSMENIJ DS_CENTER

S_MO DA RAM

CAPTION About
BEGIN

ICON ID_ICON -1 10 10

LTEXT CmdBand Written for the book Programming Windows

CE Copyright 1998 Douglas Baling

-1 40 110 30

END

CmdBand.h/r_
II Header file

1/

II Written for the book Programming Windows CE

1/ Copyright 1998 Douglas Baling

II Returns number of elements

define dimx sizeofx sizeofx

II

1/ Generic defines and data types

II

struct decodeUlNT II Structure associates

UINT Code ii messages

II with function

continued

305

Page 00328

Part II Whidows CE Bascs

Figure 5-5 continued

gc 41N R1 wAL IM
rm jrc WQ

1_ wh
t1L4 dR$ fvp

..

I4MN tmi Ip

df4 fflTn
fr

IM4ii D.FIl 14 IIFF1

dt1 v/
.c

.k ..

i_t 1ppJr etji rn bd
4bn AUV 4L5k -fr 2L
lf iFiLI \f

j4

1di

i1IkP
iUbd

1tt hfld

11

1j1tp TM tNsYH11
I\

L1 çjjiPrq
.i

41 /dW4 Lk1h

NT

306

Page 00329

Chapter Common Controls and Windows CE

LRESULT DoCojninandMain HWND UINT WPARAM LPARAM
LRESULT Dol3estroyMain HWNO UINI WPARAM LPARAM

II Command functions

LPARAM DoMainCommandViewCmdBar HWND WORD HWND WORD
LPARAM floMainCornrnandVcmdBand HWND WORD HWND WORD
LPARAM DoMainCommandExit HWND WORD FIWNO WORD
LPARAM DoMainCommandAbout HWND WORD I-1WND WORD

/1 DIalog procedures

BOOL CALLBACK AboutDlgProc HWND UINT WPARAM LPARAM

CmdBand..c

/1 CmdBand Dialog box demonstration

1/

/1 Written for the book Programming Windows CE

1/ Copyright 1998 Douglas Boling

include wtndows.h /1 For all that Windows stuff
include commctrlh 1/ Command bar includes

include CmdBand.h II Program specific stuff

/1 --------

II Global data

II

conat TCHAR szAppNameU TEXT CmdBand
FIINSTANCE hlnst 1/ Program instance handle

/1 Message dispatch table for MainWindowProc

const struct decodeUlNT MainMessages
WMCREATE DoCreatel4a in

WM_PAINT floPaintHain

WM NOTIFY floNotifyMain

MM COMMAND DoCommandMain

MM_DESTROY DoDostroyMa in

II Command message dispatch for MainWindowProc

const struct decodetMO MalnCommandltenisf
ION VIEWCMDBAR DoNalnComniandVj ewCmdBar

IDM_VIEWCMDRAND DoMai nCommandvCmdBand
1DM EXIT LloMainCommandExit

1DM_ABOUT DoMainCommandAbout

continued

307

Page 00330

Part II Wndows CE Basics

Figure 5-5 continued

rwI4M 1J_Lq
iadi tjIz$ii44P

if

Uv
qf

WijPs1E

iFMi1L
Vi P%

iLit 1i
swig

tL
\jrALDrI

tTENL1

qi4
51

tj
1q

jIc

308

Page 00331

chapter Common Controls and Windows CE

HWND hwridMain

MSG msg
mt rc

1/ Initialize application

rc InitApp hinstance
if rc return rc

II Initialize this instance

hwndMain Initlnstance hlnstance lpCmdLine nCrndShow

if hwndMain

return OxlO

II Application message loop

while GetMessage msg NULL

TranslateMessage msg
DispatchMessage msg

II Instance cleanup

return Termlnstance hlnstance msg.wParam

II

II InitApp Application initialization

1/

mt InitApp HINSTANCE hlnstance

WNDCLASS wc
INITCOMMONCONTROLSEX cex

II Register application main window class

wc.style II Window style

wc.lpfnWndproc MainWndProc II Callback function

wc.cbClsExtra II Extra class data

wc.cbWndExtra II Extra window data

wc.hlnstance hlnstance II Owner handle

wc.hlcon NULL II Application icon

wc.hCursor NULL II Default cursor

wc.hbrBackground HBRUSH GetStockObject WHITE_BRUSH

wc.lpszMenuName NULL 1/ Menu name

wc.lpszClassName szAppName II Window class name

if RegisterClass wc return

II Load the command bar common control class

icex.dwSize sizeof INITCOMMONCONTROLSEX

icex.dwICC ICC_COOL_CLASSES

InitommoncontrolsEx icex

continued

309

Page 00332

Partil

Figure 55 coutiiwcl

return

II

// Initlnstance Instance initialization

II

HWND Initlnstance HINSTANCE hlnstance LPWSTR lpCmdLine mt nCmdShow

HWND hWnd

II Save program instance handle in global variable

hlnst hlnstance

II Create main window

hWnd CreateWindow szAppName II Window class

TEXT CmdBand Demo II Window title

WS..VISIBLE II Style flags

CW..USEDEFAULT /1 position

CW_USEDEFAULT II position

CW_USEDEFAULT II Initial width

CW.USEDEFAULT II Initial height

NULL II Parent

NULL II Menu must be null

hlnstance II Application instance

NULL // Pointer to create

II parameters

1/ Return fail code if window not created

if llsWindow hWnd return

1/ Standard show and update calls

ShowWindow hWnd nCmdShow

UpdateWindow hWnd
return hWnd

II

II Terminstance Program cleanup

//

mt Termlnstance HINSTANCE hlnstance mt nDefRC

return nDefRC

II Message handling procedures for MainWindow

II

II MainWndProc Callback function for application window

310

Page 00333

Uapter Common Controls and Windows CE

II

LRESULT CALLBACK MainWndProc HWND hWnd UINI wMsg WPARAM wParam

LPARAM iParam

INT

II Search message list to see if we need to handle this

II message If in list call procedure

/1

for Ci dimMainMessages
if wMsg MainMessages

return frtainMessages wMsg wParam iParam

return DefWindowProc hWnd wMsg wParam iParam

II

II DoCreateMain Process WM_CREATE message for window

II

LRESULT DoCreateMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

CreateCommandBand hWnd TRUE
return

II

II DoPaintMain Process WM_PAINT message for window

II

LRESULT DoPaintMain HWND hWnd UINT wMsg WPARAM wParani

LPARAM lParam

PAINISTRUCT ps
HWND hwndCB

RECT rect

HOC hdc
POINT ptArray

II Adjust the size of the client rect to take into account

1/ the command bar or command bands height

GetClientRect hWnd rect
if hwndCB GetOlgitem hWnd IDC_CMDBAND

rect.top CommandBands_Height hwndCB
else

rect.top ConnnandBar_Height Getolgltem hWnd IDC_CMDBAR

hdc BeginPaint hWnd ps
coniiiiiic1

311

Page 00334

Part II Wndows CE Basics

Figure 5-5 continued

ii1krt1 ecp
ci

rI
rja irk1Is

Li4t
OFEcm4h

JtP 1T fI NanUM 1P4rt
14pT 1t74

lD

MW 41w

d6g4t1 diqfnd rw tA

nt1fe

11

tA
cqm ftdnwA

1th ur
P4RN iirm

k$
4W AI

312

Page 00335

Chapter Common Controls and Windows CE

if pnmh-code RBLHEIGHTCHANGE

InvalidateRect hWnd NULL TRUE

return

/1

II DoDestroyMain Process WM_DESTROY message for window

II

LRESULT DoDestroyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

PostQuitMessage

return

II

II Command handler routines

II

II DoMainCommandExit Process Program Exit command

If

LPARAM DoMainCommandExit HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

SendMessage hWnd WM_CLOSE

return

II

II DoMainCommandVCmdBarStd Process View Std Command bar command

II

LPARAM DoMainCommandViewCmdBar HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

HWND hwndCB

hwndCB GetDlgltem hWnd IDC_CMDBAND
if hwndCB

DestroyCommandBand hWnd
else

return

II Create minimal command bar that has only menu and

II an exit button

hwndCB ComniandBar_Create hlnst hWnd IDC.CMDBAR

II Insert the menu
ComniandBar_InsertMenubar hwndCB hlnst ID_MENU

continued

313

Page 00336

Part II Wndows CE Eascs

Figure 5-5 continued

t1
ffl

zs mii
1%O

.rJ1P i.F

rd j4II it
Gâiirp

fr$ iN
18

ri

iP
$$ ii iI

4CMAk1

VIiIi1 j4v41
314

Page 00337

Chapter Common Controls and Windows CE

return FALSE

//

II DestroyCommandBand Destroy command band control after saving

II the current configuration

1/

mt DestroyCommandBand HWND hWnd
NWND hwndCB

INT nBand nMaxBand

hwndCB GetDlglteni hWnd IDC_CMDBAND
for NUMBANDS

II Get band index from ID value

nBand SendMessage hwndCB RB_IDTOINDEX IDBCMDBANDi

II Save the band number to save order of bands

nBandOrder nBand

1/ Get the restore informationcbr sizeof COMMANOBANOSRESTOREINFO

CommandBandsGetRestorelnformation hwndCB nBand cbrLi

DestroyWindow hwndCB
return

.1

II

1/ CreateComrnandBand Create formatted command band control

int CreateCommandBand HWND hWnd BOOL fFirst

HWND hwndCB hwndBand hwndChild

tNT nBand nBtnlndex nEditlndex

LONG lStyle

HBITMAP hBmp

HIMAGELIST himl

REBARBANDINFO rbi

/1 Create image list control for bitmaps for minimized bands

himl ImageList_Create 16 16 ILC_COLOR

/1 Load first two images from one bitmap

hBmp LoadBitmap hlnst TEXT CmdBarBmps
ImageList_Add himl hBmp NULL
DeleteObject hBmp
II Load third image as single bitmap

hBmp LoadBitmap hlnst TEXT CmdBarEditBmp5
rmageList_Add himl hBmp NULL
DeleteObject hBnip

continued

315

Page 00338

Part II Whidows CE Eascs

Figure 5-5 continued

tL 34

IIMPAIM cL
4F

Itr k.p1aMiqIPIP 2P9P

1IL

I4
V1

td Q4fr
D4 iI riI I4

316

Page 00339

Chapter Common Controls and Windows CE

II The next two parameters are initialized from saved datarbi cbrrbi cbr
II Edit control band

hwndChild CreateWindow TEXT edit TEXT edit ctl
WS_VISIBLE WS_CHILD ES_MULTILINE WS_BORDER

10 hWnd HMENUIDC_EDITCTL hlnst NULLrbi RBBIM_TEXT RBBIM_STYLE

RBBIM_CHILDSIZE RBBIM_CHILDrbi hwndChildrbi
rblrnEditlndex.cyMinChild 23rbi 55rbirbi TEXT Edit field
1/ The next two parameters are initialized from saved data
rbi .cx cbr .cxRestoredrbi cbr
II Add bands

CommandBands_AddBands hwndCB hlnst rbi

II Add menu to first band
hwndband CommandBands_GetCornmandBar hwndCb
CommandBar_InsertMenubar hwndBand hlnst ID_MENU

II Add standard buttons to second band
hwndBand CornmandBands_GetCommandBar hwndCB n8tnlndex
II Insert buttons

CommandBar_AddBitmap hwndBand HINST_COMMCIRL IDB_STD_SMALL_COLOR

16
CommandBar_AddButtons hwndBand dimtbCBStdBtns tbCBStdBtns

II Modify the style flags of each command bar to make transparent
for NLJMBANDS i-H-

hwndBand Commandbands_GetCommandOar hwndCB
iStyle SendMessage hwndBand TB_GETSTYLE

iStyle TBSTYLE_TRANSPARENT

SendMessage hwndBand TB_SETSTYLE iStyle

II If not the first time the command band has been created restore

II the users last configuration

coiIiiiiwcl

317

Page 00340

Part II Wndows

Figure 55 cmitiniecl

if fFirst
for NUMBANDS

if cbr
nBand SendMessage hwndCB RB_IDTOINDEXcbr
SendMessage hwndCB RB_MAXIMIZEBAND nBand TRUE

II Add exit button to command band

CommandBands_AddAdornments hwndCB hlnst NULL
return

Cmdlland creates the command band in the Greaie6ommaudBand routine

This routine is initially called in OnCreateMain and later in the DoMainCommand

VCmdBand menu handler The program creates the command bands control using

the RBS_SMARTLABELS style along with an image list and text labels to identify each

band when its minimized and when its restored or maximized An image list is cre

ated and initialized with the bitmaps that are used when the bands are minimized

The array of REBARBANDINFO structures is initialized to define each of

the three bands If the control had previously been destroyed data from the

COMMANDBANDSRESTOREINFO structure is used to initialize the style and cx fields

The CreateCommandBand routine also makes guess at the order of the button

and edit bands by looking at the band indexes saved when the control was last de

stroyed While this method isnt completely reliable for determining the previous

order of the bands it gives you good estimate

When the command bands control is created the command bars in each band

are also modified to set the TBS_TRANSPARENT style This process along with

background bitmap defined for each band demonstrates how you can use back

ground bitmap to make the command bands control have
just

the right look

When CmdBand replaces the command bands control with command bar the

application first calls the DestroyCommandBand function to save the current con

figuration and then destroy the command bands control This function uses the

CommandBands_GetRestorelnformation to query the size and style of each of the

bands The function also saves the band index for each band to supply the data for

the guess on the current order of the button and edit bands The first band the menu

band is fixed with the RBBS_NOGRIPPER style so theres no issue as to its position

This completes the discussion of the command bar and command bands con

trols talk about these two controls at length because youll need one or the other

for almost every Windows CE application

318

Page 00341

Chapter Common Controls and Windows CE

For the remainder of the chapter Ill cover the highlights of some of the other

controls These other controls arent very different from their counterparts under

Windows 98 and Windows NT Ill spend more time on the controls think youll need

when writing Windows CE application Ill start with the month calendar and the

time and date picker controls These controls are rather new to the common control

set and have direct application to the PIM-like applications that are appropriate for

many Windows CE systems Ill also spend some time covering the list view control

concentrating on features of use to Windows CE developers The remainder of the

common controls Ill cover just briefly

The Month Calendar Control

The month calendar control gives you handy month-view calendar that can be

manipulated by users to look up any month week or day as far back as the adop

tion of the Gregorian calendar in September 1752 The control can display as many
months as will fit into the size of the control The days of the month can be high

lighted to indicate appointments The weeks can indicate the current week into the

year Users can spin through the months by tapping on the name of the month or

change years by tapping on the year displayed

Before using the month calendar control you must initialize the common con
trol library either by calling InitCommonControls or by calling InitCommonControlsEx

with the ICC_DATE_CLASSES flag You create the control by calling CreateWindow

with the MONTHCAL_CLASS flag The style flags for the control are shown here

MCS_MULTISELECT The control allows multiple selection of days

MCS_NO TODAY The control wont display todays date under the

calendar

MCS_NOTODAYCIRCLE The control wont circle todays date

MCS_WEEKZ/UMBERS The control displays the week number through

52 to the left of each week in the calendar

McS_DAYSTATE The control sends notification messages to the parent

requesting the days of the month that should be displayed in bold You use

this style to indicate which days have appointments or events scheduled

Initializing the control

In addition to the styles just described you can use number of messages or their

corresponding wrapper macros to configure the month calendar control You can use

an MCM_SETFIRSTDAYOFWEEK message to display different starting day of the

week You can also use the MCM_SETRANGE message to display dates within given

range in the control You can configure date selection to allow the user to choose only

319

Page 00342

Part II Windows CE Basics

single dates or to set limit to the range of dates that user can select at any one

time The single/multiple date selection ability is defined by the MCS_MULTTSELECT

style If you set this style you use the MCMSETMAXSELCOUNT message to set the

maximum number of days that can be selected at any one time

You can set the background and text colors of the control by using the MCM_
SETCOLOR message This message can individually set colors for the differeiit regions

within the controls including the calendar text and background the header text and

background and the color of the days that precede and follow the days of the month

being displayed This message takes flag indicating what part of the control to set

and COLORREF value to specify the color

The month calendar control is designed to display months on an integral basis

That is if the control is big enough for one and half months it displays only one

month centered in the control You can use the MCM_GETMINREQRECT message

to compute the minimum size necessary to display one month Because the control

must first be created before the MCM_GETMINREQRECT can be sent properly siz

ing the control is round-about process You must create the control send the

MCM_GETMINREQRECT message and then resize the control using the data returned

from the message

Month calendar notifications

The month calendar control has only three notification messages to send to its par
ent Of these the MCN_GETDAYSTATE notification is the most important This noti

fication is sent when the control needs to know what days of month to display in

bold This is done by querying the parent for series of bit field values encoded in

MONTHDAYSTATE variable This value is nothing more than 32-bit value with bits

through 31 representing the days through 31 of the month

When the control needs to display month it sends MCN_GETDAYSTATE
notification with pointer to an NMDAYSTATE structure defined as the following

typedef struct

NMHDR nrnhdr

SYSTEMTIME stStart

mt cDayState

LPMONTHDAYSTATE prgDayState

NMDAYSTATE

The nmbhdr field is simplythe NMHDR structure thats passed with every WM_NOTIFY

message The stStart field contains the starting date for which the control is request

ing information This date is encoded in standard SYSTEMTIME structure used by

all versions of Windows Its detailed on the facing page

320

Page 00343

Chapter Common Controls and Windows CE

typedef struct

WORD wYear

WORD wMonth

WORD wDayOfWeek

WORD wDay
WORD wHour

WORD wMinute

WORD wSecond

WORD wMilliseconds

SYSTEMTIME

For this notification only the wMonth wDay and wYear fields are significant

The cDayState field contains the number of entries in an array of MONTHDAY
STATE values Even if month calendar control is displaying only one month it could

request information about the previous and following months if days of those months

are needed to fill in the top or bottom lines of the calendar

The month calendar control sends an MCN_SELCHANGE notification when the

user changes the daysthat are selected in the control The structure passed with this

notification NMSELCHANGE contains the newly highlighted starting and ending days
The MCN_SELECT notification is sent when the user double-taps on day The same
NMSELCHANGE structure is passed with this notification to indicate the days that have

been selected

The Date and Time Picker Control

The date and time picker control looks deceptively simple but is great tool for any

application that needs to ask the user to specify date Any programmer that has had

to parse validate and translate string into valid system date or time will appreci

ate this control

When used to select date the control resembles combo box which is an

edit field with down arrow button on the right side Clicking on the arrow how
ever displays month calendar control showing the current month Selecting day

in the month dismisses the month calendar control and fills the date and time picker

control with that date When you configure it to query for time the date and time

picker control resembles an edit field with spin button on the right end of the

control

The date and time picker control has three default formats two for displaying

the date and one for displaying the time The control also allows you to provide

formatting string so that users can completely customize the fields in the control The

control even lets you insert application-defined fields in the control

Creating date and time picker control

Before you can create the date and time picker control the common control li

brary must be initialized If InitCommonControlsEx is used it must be passed

321

Page 00344

Part II Windows CE Basics

ICC_DATE_CLASSES flag The control is created by using Create Window with class

of DATETIMEPICK_CLASS The control defines the following styles

DTS_LONGDATEFORJkIAT The control displays date in long format as

in Saturday September 19 1998 The actual long date format is defined in

the system registry

DTS_SHORTDATEFORMAT The control displays date in short format

as in 9/19/98 The actual short date format is defined in the system registry

DTS_TIMEFORMAT The control displays the time in format such as

55028 PM The actual time format is defined in the system registry

DTS_SHOWNONE The control has check box to indicate that the date

is valid

DTS_IJPDOWN An up-down control replaces the drop-down button that

displays month calendar control in date view

DTS_APPCANPARSE Allows the user to directly enter text into the con
trol The control sends DTN_USERSTRING notification when the user is

finished

The first three styles simply specify default format string These formats are

based on the regional settings in the registry Since these formats can change if the

user picks different regional settings in the Control Panel the date and time picker

control needs to know when these formats change The system informs top-level

windows of these types of changes by sending WM_SETTINGCHANGE message
An application that uses the date and time picker control and uses one of these de
fault fonts should forward the WM_SETFINGCHANGE message to the control if one

is sent This causes the control to reconfigure the default formats for the new regional

settings

The DTS_APPCANPARSE style enables the user to directly edit the text in the

control If this isnt set the allowable keys are limited to the cursor keys and the

numbers When field such as month is highlighted in the edit field and the user

presses the key the month changes to June With the DTS_APPCANPARSE style

the user can directly type any character into the edit field of the control When the

user has finished the control sends DTN_USERSTRING notification to the parent

window so that the text can be verified

Customizing the format

To customize the display format all you need to do is create format string and send

it to the control using DTM_SETFORMAT message The format string can be made

up of any of the following codes

322

Page 00345

Chapter Common Controls and Windows CE

String Description

fragment

One- or two-digit day
dd Two-digit day Single digits have leading zero
ddd The three-character weekday abbreviation As in Sun Mon..

dddd The full weekday name

One- or two-digit hour 12-hour format
hh Two-digit hour 12-hour format Single digits have leading zero

One- or two-digit hour 24-hour format

HH Two-digit hour 24-hour format Single digits have leading zero

One- or two-digit minute

mm Two-digit minute Single digits have leading zero

One- or two-digit month

MM Two-digit month Single digits have leading zero

MMM Three-character month abbreviation

MMMM Full month name

The one-letter AM/PM abbreviation As in or

tt The two-letter AM/PM abbreviation As in AM or PM

Specifies callback field that must be parsed by the application

One-digit year As in for 1998

yy Two-digit year As in 98 for 1998

yyy Full four-digit year As in 1998

Literal strings can be included in the format string by enclosing them in single

quotes For example to display the string Today is Saturday December 1998 the

format string would be

Today is dddd MMMM yyy

The single quotes enclose the strings that arent parsed That includes the Today iS

as well as all the separator characters such as spaces and commas
The callback field designated by series of characters provides for the ap

plication the greatest degree of flexibility for configuring the display of the date When

the control detects an field in the format string it sends series of notification

messages to its owner asking what to display in that field format string can have

any number of fields For example the following string has two fields

Today Xx is dddd MMMM yyy and is XXX birthday

The number of characters is used by the application only to differentiate the

application-defined fields it doesnt indicate the number of characters that should

323

Page 00346

Part II WndoWs CE Bascs

be displayed in the fields When the control sends notification asking for informa

tion about an field it includes pointer to the string so that the application can

determine which field is being referenced

When the date and time picker control needs to display an application-defined

field it sends two notifications DTN_FORMATQUERY and DTN_FORMAT Th
DTN_FORMATQUERY notification is sent to get the maximum size of the fext to be

displayed The DTN_FORMAT notification is then sent to get the actual text for the

field third notification DTN_WMKEYDOWN is sent when the user highlights an

application-defined field and presses key The application is responsible for deter

mining which keys are valid and modifying the date if an appropriate key is pressed

The List View Control

The list view control is arguably the most complex of the common controls It dis

plays list of items in one of four modes large icon small icon list and report The

Windows CE version of the list view control supports many but not all of the valu

able new features recently added for Internet Explorer 4.0 Some of these new func

tions are great help in the memory-constrained environment of Windows CE These

new features include the ability to manage virtual lists of almost any size headers

that can have images and be rearranged using drag and drop the ability to indent an

entry and new styles for report mode The list view control also supports the new
custom draw interface which allows fairly easy way of changing the appearance of

the control

You register the list view control by calling either InitCommonControls or

InitCommonControls using ICCLISTVIEW_CLASSES flag You create the control by

calling CreateWindow using the class filled with WC_LISTVIEW Under Windows CE
the list view control supports all the styles supported by other versions of Windows

including the new LVS_OWNERDATA style that designates the control as virtual list

view control

New styles in report mode
In addition to the standard list view styles that you can use when creating the list view
the list view control supports number of extended styles This rather unfortunate

term doesnt refer to the extended styles field in the Create WindowsEx func
tion Instead two messages LVM_GETEXTENDEDLISTVIEWSTYLE and LVM_

SETEXTENDEDLISTVIEWSTYLE are used to get and set these extended list view styles

The extended styles supported by Windows CE are listed below

LVS_EXCHECKBOxEs The control places check boxes next to each item

in the control

LVSEK_HEADERDRAGDROp Allows headers to be rearranged by the

user using drag and drop

324

Page 00347

Chapters Common Controls and WindOws CE

LVS_EX_GRIDLINES The control draws grid lines around the items in

report mode

LVS_EX_SUBITEMIMAGES The control displays images in the subitem

columns in report mode

LVS_EK_FULLROWSELECT The control highlights the items entire row
in report mode when that item is selected

Aside from the LVS_EX_CHECKBOXES extended style which works in all dis

play modes these new styles all affect the actions of the list view when in report mode
The effort here has clearly been to make the list view control an excellent control for

displaying large lists of data

Note that the list view control under Windows CE doesnt support other extended

list view styles such as LVS_EX_INFOTIP LVS_EX_ONECJJCKACTIVATE LVS_

EX_TWOCLICKACTIVATE LVS_EX_TRACKSELECT LVS_EX_REGIONAL or LVS_EX_

FLATSB supported in some versions of the common control library

Virtual list view
The virtual list view mode of the list view control is huge help for Windows CE

devices In this mode the list view control tracks only the selection and focus state

of the items The application maintains all the other data for the items in the control

This mode is handy for two reasons First virtual list view controls are fast The ini

tialization of the control is almost instantaneous because all thats required is that you

set the number of items in the control The list view control also gives you hints about

what items it will be looking for in the near term This allows applications to cache

necessary data in RAM and leave the remainder of the data in database or file Without

virtual list view an application would have to load an entire database or list of items

in the list view when its initialized With the virtual list view the application loads

only what the control requires to display at any one time

The second advantage of the virtual list view is RAM savings Because the vir

tual list view control maintains little information on each item the control doesnt keep

huge data array in RAM to support the data The application manages what data is

in RAM with some help from the virtual list views cache hint mechanism

The virtual list view has some limitations The LVS_OWNIERDATA style that desig

nates virtual list view cant be set or cleared after the control has been created Also

virtual list views dont support drag and drop in large icon or small icon mode virtual

list view defaults to LVS_AUTOARRANGE style and the LVM_SETITEMPOSITION message

isnt supported Also the sort styles LVS_SORTASCENDING and LVS_SORTDESCENDING

arent supported Even so the ability to store large lists of items is handy

To implement virtual list view an application needs to create list view control

with an LVS_OWNERDATA style and handle three notificationsLVN_GETDISPINFO

LVN_ODCACHEHINT and LVN_ODFINDITEM The LVN_GETDISPINFO notification

325

Page 00348

Part II Wndows CE Eascs

should be familiar to those of you who have programmed list view controls before It

has always been sent when the list view control needed information to display an item

In the virtual list view its used in similarmanner but the notification is sent to gather

all the information about every item in the control

The virtual list view lets you know what data items it needs using the LVN_

ODGACHEHINT notification This notification passes the starting and ending index

of items that the control expects to make use of in the near term An application can

take its cue from this set of numbers to load cache of those items so that they can

be quickly accessed The hints tend to be requests for the items about to be displayed

in the control Because the number of items can change from view to view in the

control its helpful that the control tracks this instead of having the application guess

which items are going to be needed Because the control often also needs informa

tion about the first and last pages of items it also helps to cache them so that the

frequent requests for those items dont clear the main cache of items that will be needed

again soon

The final notification necessary to manage virtual list view is the LVN_

ODFINDITEM notification This is sent by the control when it needs to locate an item

in response to key press or in response to an LVM_FINDITEM message

The LView Example Program

The LView program demonstrates virtual list view control The program creates

list view control that displays the contents of fictional database picture of the

LView window is shown in Figure 5-6 while the LView code is shown in Figure 5-7

FiIeO e1000 1000

tFiIel TpeY99 10O1

FiIe2 Tvpe998 1002

--

FiIe4 lp5996 1004 __________

Files Tp59Y5 1005

FileS TypeOO4 1005

III FiIe7 TypelO3 1007 --

FileS Is9 100

FileS e091 1009

Type990 101_Q --

Filell TypeSBI loll

Jfe12 TypeSSB 1012 -- --

FiIel3 pe987 1013 _________

FiIel4 e985 1014 ________

File15 TypeYBS l0
fl FuelS TypeS84 1015

FiIel7 111pe983 1017

FuIe1 ___________
FuelS Q19.
Fi1e20 TppeSSO 1020

FIt Fule2l TypeS7S 11021

FuIe22Iyy91022
Fi1e23

Figure 5-6 The LView window

326

Page 00349

Chapter Common Controls and Windows CE

i8 I4WiSF11L

bk41
Ic 4V

y4b tdi
JR

1VL
Wi

Sik7tfrkMZi
IT

I1Uz
V/ Ig4

ir

Figure 5-7 The View program continued

327

Page 00350

Part II WndOWS CE ascs

Figure 5-7 continued

jA

c1 ijV

DW 14 J3iC

eiL n$11v4r $i Th

lNc

d14 44
328

Page 00351

6iapter Common Controls and Windows CE

define 1DM_ABOUT 120

define VIEW_BMPS VIEW_NEWFOLDER1 /1 Number of BMPS in

II view list

II

1/ Program-specific structures

/1

1/ Defines for simulated database

typedef struct

TCHAR szNarne
ICHAR szlype
INT nSize

INT nlmage
INT nState

LVDATAITEM

typedef LVDATAITEM PLVDATAITEM

/1

II Function prototypes

1/ Cache functions

PLVDATAITEM GetltemData INT nitem
void InitDatabase void
void FlushMainCache void
void FlushEndCaches void
INT LoadTopCache void
INT LoadOotCache void
INT LoadMaincache INT nStart INT nEnd

/1 Database functions

void InitDatabase void
PLVDATAITEM GetDatabaseltem INT nltem
INT SetDatabaseltem INT nltem PLVDATAITEM pIn
PLVDATAITEM GetlteniData INT nltem
tNT Addltem HWND tNT LPTSTR LPTSTR tNT

mt InitApp HINSTANCE
HWND Initlnstance HINSTANCE LPWSTR int
mt Termlnstance HINSTANCE int

II Listview compare callback

mt CALLBACK CornpareLV LPARAM LPARAr4 LPARAM

II Window procedures
LRESULT CALLBACK MainWndproc HWND UINT WPARAM LPARAM

continued

329

Page 00352

Part II dows CE Eases

Figure 5-7 continued

ff4 rtWf JMML

aL1 ciMwt

pcIt1

qt

t4

ii3
3t

bL
4Y 44 14

330

Page 00353

Uxip/er Common Controls and Windows CE

INT nCacheltemStart nCacheSize

LVDATAITEM lvdiCache
LVDATAITEM vdiTopCache
LVDATAITEM lvdiBotCache

1/ Message dispatch table for MainWindowProc

const struct decodeUlNl MainMessagest

NM_CREATE DoCreateMain

WM_SIZE DoSizeMain

NM_NOTIFY DoNotifyMain

WM_COMMAND DoCommandMa in
MM_DESTROY DoDestroyMai

II Command message dispatch for MainWindowProc

const struct decodeCMO MainCommandltems

1DM_EXIT DoMainCommandExit

IDC_LICON DoMainCommandChView

IDC_SICON DoMainCommandChView

IDC_LIST DoMainCommandChview

1DC_RPT DoMainConimandChView

1DM_ABOUT DoMainCommandAbout

II Standard file bar button structure

const IBBUTTON tbCBCmboBtns
/1 Bitmaplndex Command State Style UserData String

10 TBSTYLE_SEP 01
VIEW_LARGEICONS IDC_LICON IBSTATE_ENABLED

TBSTYLE_CHECKROUP

VIEW_SMALLICONS IDC_SICON IBSTATE_ENABLED

TBSTYLE_CHECKGROUP

IVIEW_LIST IDC_LIST TBSTATE_ENABLED

TOSTYLE_CHECKOROUP

IVIEW_DETAILS IDC_RPT IBSTATE_ENABLED TBSTATE_CHECKED

TBSTYLE_CHECKGROUP

1/ Program entry point

/1

mt WINAPI WinMain HINSTANCE hlnstance HINSTANCE hPrevlnstance

LPWSTR lpCmdLine mt nCmdShow

MSG msg
HWND hwnclMain

mt rc

COfltiUUl

331

Page 00354

Part II Whdows CE EasCs

Figure 5-7 continued

ULIIk$tifc 41
iJ e1 rt

.t

iP
1p

jy

332

Page 00355

Chapter Common Controls and Windows CE

II Initialize the fictional database

InitDatabase

return

II

II Initinstance Instance initialization

II

HWND Initlnstance HINSTANCE hlnstance LPWSTR lpCmdLlne mt nCmdShow
HWND hWnd

II Save program instance handle in global variable

hlnst hlnstance

II Create main window

hWnd CreateWindow szAppName // Window class

TEXT LView II Window title

WS_VISIBLE II Style flags

CW_USEDEFAULT II position

CWJJSEDEFAULT 1/ position

CWJJSEDEFAULT II Initial width

CW_IJSEDEFAULT /1 Initial height

NULL II Parent

NULL /1 Menu must be null

hinstance II Application instance

NULL II Pointer to create

II parameters
II Return fail code if window not created

if IsWindow hWnd return

II Standard show and update calls

ShowWindow hWnd nCntdShow

UpdateWindow hWnd
return hWnd

/1

/1 Termlnstance Program cleanup

//

mt Terinlnstance HINSTANCE hlnstance mt nDefRC

II Flush caches used with list view control

FlushMainCache

FlushEndCaches

return nDefRC

con/in ned

333

Page 00356

Part II Whidows CE Basics

Figure 5-7 continued

iI$1 1/W$

Jk
rr

jp

ii

21k

334

Page 00357

Chapter Common Controls and Windows CE

II Add exit button to command bar
CommandBar_AddAdornrnents hwndCB
riHeight CommandBar_Height hwndCB

1/ Create the list view control

II

hwndLV CreatewindowEx WC_LISTVIEW TEXT

LVS_REPOIU LVS_SINGLESEL

LVSJWNERDATA WS_VISIBLE WS_CHILD

WS..VSCROLL nHeight lpcs-cx
lpcs-cy nHeight hWnd
HMENUIOC_L1STVIEW

lpcs-hlnstance NULL
II Destroy frame if window not created

if IsWindow hwndLV
DestroyWindow hWnd
return

II Add columns

LVCOLUMN lvc

lvc.mask LVCF_TEXT LVCF_WIDTH LVCF_FMT LVCF_SUBITEM
lvc.fmt LVCFMT_LEFT

lvc.cx 150
lvc.pszText TEXT Name
lvc.iSubltem

SendMessage hwndLV LVM.JNSERTCOLUMN LPARAMlvc

lvc.mask LYCFSUBITEM
lvc.pszlext TEXT Type
lvc.cx 100
lvc.iSubltem

SendMessage hwndLV LVM_INSERTCOLUMN LPARAMlvc

lvc.mask LVCF_SUBITEM

lvc.pszlext TEXT Size
lvc.cx 100
lvc.iSubltem

SendMessage hwndLV LVM_INSERTCOLUMN LPARAMlvc

II Add items

ListYlew_SetlteeCount hwndLV LVCNT
LoadlopCache

LoaciBotCache

continued

335

Page 00358

Part II Whidows CE Basics

Figure 5-7 continued

.r

iir n1 1m

7$ IL .k
tLi 44JLTLot1P

LI t
bTW% j$ 4LEeT

ThflpJti qk

j4

1frii
ce

b\

Itl4t
__

336

Page 00359

Chapter Common Controls and Windows CE

LRESULT DoNotifyMain HWND hwnd UINT wMsg WPARAM wParam
LPARAM iParam

mt idlteni

LPNMHDR pnmh

LPNMLISTVIEW pnmlv

NMLVDISPINFO pLVdi

PLVDATAITEM pdi 1/ Pointer to data

LPNMLVCACHEHINT pLvch
l4WNO hwndLV

II Parse the parameters

iditem int wParam

pnmh LPNMHDRlParam
hwndLV pnmh-hwndFrom

if idltem IDC_LISTVIEW

pnmlv LPNMLISTVIEWlParam

switch pnmh-code
case LVN_GETDISPINFO

pLVdi NMLVDISPINFO lParani

II Get pointer to the data either from the cache

II or from the actual database

pdi GetltemData pLVdl-item.iltem

if pLVdi itern.mask LVIF_IMAGE

pLVdi-itern.ilmage pdi-nlmage

if pLVdi-item.mask LVIF_PARAM

pLVdi-item.lParam

if pLvdi-item.niask LVIF_STATE

pLVdi-item.state pdi-nState

if pLVdi-iteni.mask LVIF..TEXT

switch pLVdi-item.iSubltem
case

lstrcpy pLVdi-item.pszText pdi-szName
break

case

lstrcpy pLVdi-item.pszText pdi-szlype
break

case

wsprintf pLVdi item.pszlext TEXT %d
pdi-nSize

con/in ued

337

Page 00360

Part II Whidows CE asics

Figure 5-7 continued

UI .ieer r1ç
i\J

$PjV/
jt 1A

Lf

ck fj/ iitI

t%3Pwi4Iftia
ii

fr

AwiI 1iiji

bIF

itW
jJMtP IJ1jLi tP1

tb IP41 pd 55

iP9
ir fr

1t VJI 55 Ii5.55IfrI55

338

Page 00361

hapier Common Controls and Windows CE/__
II Command handler routines

II

II DoMainCommandExit Process Program Exit command
II

LPARAM DoMainCommandExit HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

SendMessage hWnd WM_CLOSE

return

II

/1 DoMainCommandChView Process View xxx command

II

LPARAM DoMainCornrnandChvjew HWND hWnd WORD idltem HWND hwndCtl
WORD wNotifyCode

HWND hwndLV

LONG iStyle

hwndLV GetDlgltem hWnd IDC_LISTVIEW

iStyle GetWindowLong hwndLV GWL_STYLE
iStyle LVS_TYPEMASK

switch idltem
case IDC_LICON

iStyle LVS_ICON

break

case roC_SICON

iStyle LVS_SMALLICON

break

case IDC_LIST

iStyle LVS.._LrST

break

case IDC_RPT

iStyle LVS_REPORT

break

SetWindowLong hwndLV GWL_STYLE iStyle
return

II

II DoMainCommandAbout Process the Help About menu command
/1

LPARAM OoMaincommandAboutHWND hWnd WORD iditem HWND hwndtl
WORD wNotifyCode

coztinucl

339

Page 00362

Part II Whidows CE Bascs

Figure 5-7 continued

oI1Fi%f i1S$
qpLrar dEtk

rL

11

1Z2W
MPPW2I12WrfM1P

340

Page 00363

Chapter Common Controls and Windows CE

wsprintf szTmp TEXT %d nSize
lvi .mask U/IF_TEXT

lvi.ilteni nltern

lvl.iSubltem

lvi.pszText szTnip

SendMessage hwndCtl LVM_SETITEM LPARAMlvi

return

II

II GetltemData This routine returns pointer to the data It

/1 first checks the caches before calling directly to the database

1/

PLVDATAITEM GetlteinData tNT nltem
INT nCachelndex

PLVDATAITEM pdi

II See if its in the top cache

if nitem TOPCACHESIZE

nCachelndex nltem

pdi lvdiToptachefnCachejndex

II See if its in the bottom cache

else if nlteni LVCNT BOTCACHESIZE

nCachelndex nftem LVCNT BOTCACHESIZE
pdi lvdiBotCache

II See if items in the main cache

else if nItern nacheItemStart

nltem nCacheltemStart nCacheSize

nCachelndex nitem nCacheltemStart

pdi lvdiCache

II Otherwise Its not in any cache

else

pdi GetDatabaseltem nltem

return pdi

ontinued

341

Page 00364

Part II Windows CE Bascs

Figure 5-7 continued

%n_iuII 4tA ir
IIiI. ric
4%pQ$4

t1 SL t$

çiL

cr

342

Page 00365

Chapter Common Controls and Windows CE

else

nStart nOverlap

II See if start of hint in top cache

if nStart TOPCACHESIZE

II If completely in top cache keep old data
if nEnd TOPCACHESIZE

return

II Adjust the starting value to just beyond top cache end
nOverlap TOPCACHESIZE nStart

nStart TOPCACHESIZE

if noverlap nEnd LVCNT BOTCACHESIZE
nEnd LVCNT BOTCACHESIZE

else

nEnd nOverlap

II If hint already completely contained in the cache exit

if nStart nCacheltemStart

nEnd nCachelteniStart nCacheSize
return

II Flush old data in cache We should really be smart here to

II see whether part of the data is already in the cache

FushMainCache

// Load the new data
nCacheSize nEnd nStart

nCacheltemStart nStart

LoadACache lvdiCache nStart nCacheSize
return

1/

INT LoadTopCache void

LoadAcache lvdiTopcache TOPCACHESIZE
return

II

INT Load8otCache void

LoadACache lvdiBotCache LVCNT BOTCACHESIZE BOICACHESIZE
return

continued

343

Page 00366

Part II Whidows CE ascs

Figure 5-7 continued

iJc.irii Prr ir 1h4
pIIPikRI 2sè iV

Jt% IM
LI s4

4W

h11jL1r 1A

Itit r1

iç1

344

Page 00367

Chapter Common Controls and Windows CE

void InitDatabase void
TCHAR szName
TCHAR szType
HCURSOR hOldCur

INT

hOldCur SetCursor LoadCursor NULL IDC_WAIT

for LVCNT

wsprintf szName TEXT File%d
wsprintf cszType TEXT Type%d 1000

InitDatabaseltem cii szName szType 11000

SetCursor hOldCur
return

II

II GetDatabaseltem Return pointer to data in the database

/1

PLVOATAITEM GetDatabaseltem INT nltem

II Normally this would be more work But since

1/ we have only simulated data store the

II code is trivial

return lvdatabase

II

II SetDatabaseltem Copy data from list view control back into database

INT SetDatabaseltem INT nltem PLVDATAITEM pIn

lstrcpy lvdatabase pln-szName
lstrcpy lvdatabase pln-szType
lvdatabase pln-nSize
lvdatabase pln-nlmage
lvdatabase pln-nState
return

Notice that tile size for tile database is set to 2000 items by default Even ith

this large number tile performance oC the list view control is quite acceptable Most

of tile brief application startup time is taken up not by initializing tile list view con
trol but just by filling in the dummy database Support for tile virtual list view is cen
tereci on the Oni\/i/bl lain routine

345

Page 00368

Part II WindOWS CE Basics

Data for each item is supplied to the list view control through responses to the

LVN_GETDISPINFO notification The flags in the mask field of the LVDISPINFO deter

mine exactly what element of the item is being requested The code that handles the

notification simply requests the item data from the cache and fills in the requested fields

The cache implemented by LView uses three separate buffers Two of the buff

ers are initializedwith the first and last 100 items from the database The thijd 100-

item cache referred to as the main cache is loaded using the hints passed by the list

view control

The routine that reads the data from the cache is located in the GetltemData rou

tine That routine uses the index value of the requested item to see whether the data is

in the top or bottom caches and if not whether its in the main cache If the data

isnt in one of the caches call to GetDatabaseltem is made to read the data directly

from the dummy database

The routine that handles the cache hints from the list view control is LoadMain

Cache This routine is called when the program receives LVN_ODCACHEHINT

notification The routine takes two parameters the starting and ending values of the

hint passed by the notification The routine first checks to see if the range of items in

the hint lies in the two end caches that store data from the top and bottom of the

database If the range does lie in one of the end caches the hint is ignored and the

main cache is left unchanged If the hint range isnt in either end cache and isnt al

ready in the current main cache the main cache is flushed to send any updated in

formation back into the database The cache is then loaded with data from the database

from the range of items indicated by the hint

The cache hint notifications sent by the list view control arent necessarily in

telligent The control sends request for range of one item if that item is double-

clicked by the user The cache management code should always check to see whether

the requested data is already in the cache before flushing and reloading the cache

based on single hint The cache strategy you use and the effort you must make to

optimize it of course depends on the access speed of the real data

OTHER COMMON CONTROLS
Windows CE supports number of other common controls available under Windows

98 and Windows NT Most of these controls are supported completely within the limits

of the capability of Windows CE For example while the tab control supports verti

cal tabs Windows CE supports vertical text only on systems that support TrueType

fonts For other systems including the Palm-size PC the text in the tabs must be

manually generated by the Windows CE application by rotating bitmap images of each

letter Frankly its probably much easier to devise dialog box that doesnt need ver

tical tabs Short descriptions of the other supported common controls follow

346

Page 00369

Chapter Common Controls and Windows CE

The status bar control

The status bar is carried over unchanged from the desktop versions of Windows The

only difference is that under Windows CE the SBARS_SIZEGRIP style that created

gripper area on the right end of the status bar has no meaning because users cant

size Windows CE windows

The tab control

The tab control is fully supported the above-mentioned vertical text limitation not

withstanding But because the stylus cant hover over tab the TCS_HOTTRACK style

that highlighted tabs under the cursor isnt supported The TCS_EX_REGISTERDROP
extended style is also not supported

The trackbar control

The trackbar control gains the capacity for two buddy controls that are automati

cally updated with the trackbar value The trackbar also supports the custom draw

service providing separate item drawing indications for the channel the thumb and

the tic marks

The progress bar control

The progress bar includes the latest support for vertical progress bars and 32-bit ranges

This control also supports the new smooth progression instead of moving the progress

indicator in discrete chunks

The up-down control

The up-down control under Windows CE only supports edit controls for its buddy
control

The toolbar control

The Windows CE toolbar supports tooltips differently from the way tool tips are sup

ported by the desktop versions of this control You add toolbar support for tool tips

in Windows CE the same way you do for the command bar by passing pointer to

permanently allocated array of strings The toolbar also supports the transparent

and flat styles that are supported by the command bar

The tree view control

The tree view control supports two new styles recently added to the tree view com
mon control TVS_CHECKBOXES and TVS_SINGLESEL The TVS_CHECKBOXES style

places check box adjacent to each item in the control The TVS_SINGLESEL style

causes previously expanded item to close up when new item is selected The tree

view control also supports the custom draw service The tree view control doesnt

support the TVS_TRACKSELECT style which allows you to highlight an item when

the cursor hovers over it

347

Page 00370

Part II Windows CE Basics

UNSUPPORTED COMMON CONTROLS
Windows CE doesnt support four common controls seen under other versions of Win
dows The animation control the drag list control the hot key control and sadly the

rich edit control are all unsupported Animation would be hard to support given the

slower processorsoften seen running Windows CE The hot key control is problematic

in that keyboard layouts and key labels standardized on the PC vary dramatically on

the different hardware that runs Windows CE And the drag list control isnt that big

loss given the improved power of the report style of the list view control

The rich edit control is another story The lack of an edit control that can con

tain multiple fonts and paragraph formatting is noticeable gap in the Windows CE

shell Applications needing this functionality are forced to implement independent

and mutually incompatible solutions Lets hope the rich edit control is supported

under future versions of Windows CE
Windows CE supports fairly completely the common control library seen un

der other versions of Windows The date and time picker month calendar and com
mand bar are great help given the target audience of Windows CE devices

Ive spent fair amount of time in the past few chapters looking at the build

ing blocks of applications Now its time to turn to the operating system itself Over

the next three chapters Ill cover memory management files and databases and

processes and threads These chapters are aimed at the core of the Windows CE

operating system

348

Page 00371

Chapter

Memory

Management

If you have an overriding concern when youre writing Microsoft Windows CE pro

gram it should be dealing with memory Windows CE machine might have only

or MB of RAM This is tiny amount compared to that of standard personal com
puter which can range somewhere between 16 and 64 MB of RAM In fact memory
on Windows CE machine is so scarce that its often necessary to write programs

that conserve memory even to the point of sacrificing the overall performance of

the application

Fortunately although the amount of memory is small in Windows CE system

the functions available for managing that memory are fairly complete Windows CE

implements almost the full Win32 memorymanagement API available under Microsoft

Windows NT and Microsoft Windows 98 Windows CE supports virtual memory allo

cations local and separate heaps and even memory-mapped files

Like Windows NT Windows CE supports 32-bit flat address space with memory

protection between applications But because Windows CE was designed for differ

ent environments its underlying memory architecture is different from that for Win
dows NT These differences can affect how you design Windows CE application In

this chapter Ill cover the basic memory architecture of Windows CE Ill also cover

the different types of memory allocation available to Windows CE programs and how
to use each memory type to minimize your applications memory footprint

349

Page 00372

Part II Windows CE Basics

MEMORY BASICS

As with all computers systems running Windows CE have both ROM read only

memory and RAM random access memory Under Windows CE however both

ROM and RAM are used somewhat differently than they are in standard personal

computer

About RAM
The RAM in Windows CE system is divided into two areas program memory and

object store The object store can be considered something like permanent virtual

RAIVI disk Unlike the old virtual RAM disks on PC the object store retains the files

stored in it even if the system is turned off.1 This is the reason Windows CE systems

such as the Handheld PC and the Palm-size PC each have battery and backup

battery When the user replaces the main batteries the backup batterys job is to pro
vide power to the RAM to retain the files in the object store Even when the user hits

the reset button the Windows CE kernel starts up looking for previously created

object store in RAM and uses that store if it finds one

The other area of the RAM is devoted to the program memory Program memory
is used like the RAM in personal computers It stores the heaps and stacks for the

applications that are running The boundary between the object store and the pro

gram RAM is movable The user can move the dividing line between object store and

program RAM using the System control panel applet Under low-memory conditions

the system will ask the user for permission to take some object store RAM to use as

program RAM to satisfy an applications demand for more RAM

About ROM
In personal computer the ROM is used to store the BIOS basic input output sys

tem and is typically 64128 KB In Windows CE system the ROM can range from

to 16 MB and stores the entire operating system as well as the applications that are

bundled with the system In this sense the ROM in Windows CE system is like

small read-only hard disk

In Windows CE system ROM-based programs can be designated as Execute

in Place XIP That is theyre executed directly from the ROM instead of being loaded

into program RAM and then executed This is huge advantage for small systems in

two ways The fact that the code is executed directly from ROM means that the pro

gram code doesnt take up valuable program RAM Also since the program doesnt

on mobile systems like the H/PC and the Palm-size PC the system is never really off When the

user presses the Off button the system enters very low power suspended state

350

Page 00373

Chapter Memory Management

have to be copied into RAM before its launched it takes less time to start an appli

cation Programs that arent in ROM but are contained in the object store or on
Flash memory storage card arent executed in place theyre copied into the RAM
and executed

About Virtual Memory

Windows CE implements virtual memory management system In virtual memory

system applications deal with virtual memory which is separate imaginary address

space that might not relate to the physical memory address space thats implemented

by the hardware The operating system uses the memory management unit of the

microprocessor to translate virtual addresses to physical addresses in real time

The key advantage of virtual memory system can be seen in the complexity

of the Ms-DOS address space Once demand for RAM exceeded the 640-KB limit of

the original PC design programmers had to deal with schemes such as expanded and

extended memory to increase the available RAM OS/2 .x and Windows 3.0 replaced

these schemes with segment-based virtual memory system Applications using vir

tual memory have no idea nor should they care where the actual physical memory

resides only that the memory is available In these systems the virtual memory was

implemented in segments resizable blocks of memory that ranged from 16 bytes to

64 KB in size The 64-KB limit wasnt due to the segments themselves but to the 16-

bit nature of the Intel 80286 that was the basis for the segmented virtual memorysystem

in Windows 3.x and OS/2 1.x

Paged memory
The Intel 80386 supported segments larger than 64 KB but when Microsoft and IBM

began the design for OS/2 2.0 they chose to use different virtual memory system

also supported by the 386 known as paged virtual memory system In paged

memory system the smallest unit of memorythe microprocessor manages is the page
For Windows NT and OS/2 2.0 the pages were set to 386s default page size of 4096

bytes When an application accesses page the microprocessor translates the virtual

address of the page to physical page in ROM or RAM page can also be tagged so

that accessing the page causes an exception The operating system then determines

whether the virtual page is valid and if so maps physical page of memory to the

virtual page
Windows CE implements paged virtual memory management system similar

to the other Win32 operating systems Windows NT and Windows 98 Under Win
dows CE page is either 1024 or 4096 bytes depending on the microprocessor with

the 1-KB page size preferred by the Windows CE architects This is change from

Windows NT where page sizes are 4096 bytes for Intel microprocessors and 8192

351

Page 00374

Part II WindOWS CE Basics

bytes for the DEC Alpha For the CPUs currently supported by Windows CE the NEC

4100 series and the Hitachi SH3 use 1024-byte pages and the 486 the Phillips 3910

and Power PC 821 use 4096-byte pages

Virtual pages can be in one of three states free reserved or committed free

page is as it sounds free and available to be allocated reserved page is page

that has been reserved so that its virtual address cant be allocated by the operating

system or another thread in the process reserved page cant be used elsewhere

but it also cant be used by the application because it isnt mapped to physical memory

To be mapped page must be committed committed page has been reserved by

an application and has been directly mapped to physical address

All that Ive just explained is old hat to experienced Win32 programmers The

important thing for the Windows CE programmer is to learn how Windows CE changes

the equation While Windows CE implements most of the same memory API set of its

bigger Win32 cousins the underlying architecture of Windows CE does impact pro

grams To better understand how the API is affected it helps to look at how Win

dows CE uses memory under the covers

The Windows CE Address Space

In OS circles much is made of the extent to which the operating system goes to pro

tect one applications memory from other applications Microsoft Windows 95 used

single address space that provided minimal protection between applications and

the Windows operating system code Windows NT on the other hand implements

completely separate address spaces for each Win32 application although old 16-bit

applications under Windows NT do share single address space

Windows CE implements single 2-GB virtual address space for all applica

tions but the memoryspace of an application is protected so that it cant be accessed

by another application diagram of the Windows CE virtual address space is shown

in Figure 6-1 little over half of the virtual address space is divided into thirty-three

32-MB slots Each slot is assigned to currently running process with the lowest slot

slot assigned to the active process As Windows CE switches between processes it

remaps the address space to move the old process Out of slot and the new process

into slot This task is quickly accomplished by the OS by manipulating the page

translation tables of the microprocessor

The region of the address space above the 33 slots is reserved for the operating

system and for mapping memory-mapped files Like Windows NT Windows CE also

reserves the lowest 64-KB block of the address space from access by any process

352

Page 00375

Chapter Memory Management

Address Comments Slot

7FFF FFFF End of virtual address space

Used for memory-mapped files

4200 0000

4000 0000 Slot 32

3E00 0000 Slot 31

3C00 0000 Slot 30

OAOO 0000 Slot

0800 0000 Slot

0600 0000 Slot

0400 0000 Slot

0200 0000 Process Each slot from to 32 contains one process Slot

When process is active its also mapped into slot

0000 0000 Slot for the currently active process Slot

First 64 KB reserved by the OS

Figure 6-1 diagram of the Windows CE memory map

353

Page 00376

Part II Whidows CE Bascs

Querying the system memory
If an application knows the current memory state of the system it can better manage

the available resources Windows CE implements both the Win32 GetSystemlnfo and

GlobalMemoiyStatus functions The GetSystemlnfo function is prototyped below

VOID GetSystemlnfo LPSYSTEM_INFO ipSystemlnfo

Its passed pointer to SYSTEM_INFO structure defined as

typedef struct

WORD wProcessorArchitecture

WORD wReserved

DWORD dwPageSize

LPVOID lpMinimumApplicationAddress

LPVOID lpMaximumApplicationAddress

DWORD dwActiveProcessorMask

DWORD dwNumberOfprocessors

DWORD dwProcessorType
DWORD dwAllocationGranularity

WORD wProcessorLevel

WORD wProcessorRevision

SYSTEM_INFO

The wProcessorArchitecture field identifies the type of microprocessor in the

system The value should be compared to the known constants defined in Winnt.h

such as PROCESSOR_ARCHITECTURE_INTEL Windows CE has extended these con

stants to include PROCESSOR_ARCHITECTURE_ARM PROCESSOR_ARCHITECTURE_

SHx and others Additional processor constants are added as net CPUs are supported

by any of the Win32 operating systems Skipping few fields the dwProcessorType

field further narrows the microprocessor from family to specific microprocessor

Constants for the Hitachi SHx architecture include PROCESSOR_HITACHI_SH3 and

PROCESSOR_HITACHI_SH4 The last two fields wProcessorLevel and wProcessor

Revision further refine the CPU type The wProcessorLevel field is similar to the

dwProcessorType field in that it defines the specific microprocessor within family

The dwProcessorRevision field tells you the model and the stepping level of the chip

The dwPageSize field specifies the page size in bytes of the microprocessor

Knowing this value comes in handy when youre dealing directly with the virtual

memory API which talk about shortly The lpMinimumApplicationAddress and

lpMaxiinumApplicationAddress fields specify the minimum and maximum virtual

address available to the application The dwActiveProcessorMask and dwNumberOf

Processors fields are used in Windows NT for systems that support more than one

microprocessor Since Windows CE supports only one microprocessor you can ig

nore these fields The dwAllocationGranularity field specifies the boundaries to which

virtual memory regions are rounded Like Windows NT Windows CE rounds virtual

regions to 64-KB boundaries

354

Page 00377

Chapter Memory Management

second handy function for determining the system memory state is this

void GlobalMemoryStatusLPMEMORYSTATUS lpmst

which returns MEMORYSTATUS structure defined as

typedef struct

DWORD dwLength

DWORD dwMemoryLoad

DWORD dwTotal Phys

DWORD dwAvailPhys

DWORD dwlotalPageFile

DWORD dwAvailPageFile

DWORD dwlotalVirtual

DWORD dwAvailVirtual

MEMORYSTATUS

The dwLength field must be initialized by the application before the call is made

to GlobalMemoryStatus The dwMemoryLoad field is of dubious value it makes avail

able general loading parameter thats supposed to indicate the current memory use

in the system The dwTotalPhys and dwAvailPhys fields indicate how many pages of

RAM are assigned to the program RAM and how many are available These values

dont include RAM assigned to the object store

The dwTotalPageFile and dwAvailPageFile fields are used under Windows NT
and Windows 98 to indicate the current status of the paging file Because paging files

arent supported under Windows CE these fields are always The dwTotalVirtual

and dwA vailVirtual fields indicate the total and available number of virtual memory

pages accessible to the application

The information returned by GlobalMemoryStatus provides confirmation of the

memory architecture of Windows CE Making this call on an HP 360 H/PC with MB
of RAM returned the following values

dwMemoryLoad 0x18 24
dwTotal Phys 0x00555400 5592.064
dwAvail Phys 0x0O415C00 4283.392
dwTotalPageFile

dwAvailPageFile

dwTotalVi rtual 0x02000000 33554.432
dwAvai lvi rtual 0x01EF0000 32440320

The dwTotalPhys field indicates that of the MB of RAM in the system have

dedicated 5.5 MB to the program RAM of which 4.2 MB is still free Note that theres

no way for an application using this call to know that another MB of RAM has

been dedicated to the object store To determine the amount of RAM dedicated to

the object store use the function GetStorelnformation

The dwrotalPageFile and dwAvailPageFile fields are indicating no support

for paging file under Windows CE The dwTotal Virtual field is interesting because

it shows the 32-MB limit on virtual memory that Windows CE enforces on an

355

Page 00378

Part II WindoWS CE Bases

application Meanwhile the dwAvailVirtual field indicates that in this application little

of that 32 MB of virtual memory is being used

An Applications Address Space

Although its always interesting to look at the global memory map for an operating

system the fact an application should be interested only in its own memoryspace

not the global address space Nevertheless the design of the Windows CE address

space does have an impact on applications Under Windows CE an application is

limited to the virtual memory space available in its 32-MB slot While 32 MB might

seem like fair amount of space available to an application that might run on sys

tem with only MB of RAM Win32 application programmers used to 2-GB virtual

address space need to keep in mind the limited virtual address space available to

Windows CE application

Figure 6-2 shows the layout of an applications 32-MB virtual address space Each

line of the figure represents block of virtual memorymade up of one or more pages

The address of the blocks are offsets into the applications slot in the system address

space The Page status is free reserved private or image While Ive just explained

the termsfree and reserved private and image merit an explanation Image indicates

pages that have been committed and mapped to the image of an executable file in

ROM or RAM Private simply means the pages have been committed for use by the

application The size field indicates the size of the block which is always multiple

of the page size The access rights field displays the access rights for the block

This memorymap was captured on Casio H/PC that has SH3 processor with

1024-byte page size The application used in this example was stored in the object

store and then launched This allowed Windows CE to demand page only parts of

the EXE image into RAM as theyre needed If the application had been launched

froman external storage device that didnt support demand paging Windows CE would

have loaded the entire application into memory when it was launched

Address Page Status Size Access Rights Comments

0000 0000 Reserved 65536 EXE image

0001 0000 Reserved 4096 Code

0001 1000 Image 2048 Execute Read only Code

0001 1800 Reserved 1024 Code

0001 1COO Image 1024 Execute Read only Code

0001 2000 Reserved 2048 Code

0001 2800 Image 8192 Execute Read only Code

0001 4800 Reserved 2048 Code

0001 5000 Image 1024 Execute Read only Code

Figure 6-2 Memory map of Windows CE Application

356

Page 00379

Chapter Memory Management

Address Page Status Size Access Rights Comments

0001 5400 Reserved 11264

0001 8000 Image 3072 Read only Read only static data

0001 8C00 Reserved 1024

0001 9000 Image 1024 Read/Write Read/Write static data

0001 9400 Reserved 1024 Read/WrIte static data

0001 9800 Image 7168 Read/Write Read/Write static data

0001 B400 Reserved 7168

0001 D000 Image 2048 Read only Resource data segment

0001 D800 Reserved 2048 Resource data segment

0001 E000 Free 8192

0002 0000 Reserved 54272 Stack

0002 D400 Private 7168 Read/Write

0002 F000 Free 4096

0003 0000 Private 1024 Read/Write Local heap

0003 0400 Reserved 92192

0009 0000 Free 30408704 Free

01D9 0000 Reserved 1024 COMMCTRLimage

01D9 0400 Image 237568 Execute Read only

O1DC A400 Image 2048 Read/Write

O1DC ACOO Reserved 7168

O1DC C800 Image 7168 Read only

O1DC E400 Reserved 13312

O1DD 1800 Free 2091008 Free

O1FD 0000 Reserved 1024 COREDLL image

O1FD 0400 Image 119808 Execute Read only

O1FE D800 Image 1024 Read/Write

O1FE DCOO Reserved 8192

O1FE FCOO Image 1024 Read only

01FF 0000 Reserved 5120

01FF 1400 Free 60416

357

Page 00380

Part II Windows CE Basics

Notice that the application is mapped as 64-KB region starting at Oxl0000

Remember the lowest 64 KB of the address space for any application is reserved by

Windows CE The image of the file contains the code along with the static data seg

ments and the resource segments Although it appears that the program code is bro

ken into number of disjointed pages from Oxl0000 to 0x15400 this is actually the

result of demand paging Whats happening is that only the pages containing executed

code are mapped into the address space The reserved pages within the code seg

ment will be mapped into the space only when theyre executed

The read-only static data segment is mapped at 0x18000 and takes three pages

The read/write static data is mapped from 0x19000 to Ox1B3FF Like the code the

read/write data segment is committed to RAM only as its written to by the applica

tion Any static data that was initialized by the loader is already committed as is the

static variables written before this capture of the address space was made The re

sources for the application are mapped starting at OxlD000 The resources are read

only and are paged into the RAM only as theyre accessed by the application

Starting at 0x20000 the applications stack is mapped The stack segment is easily

recognized because the committed pages are at the end of the reserved section in

dicative of stack that grows from higher addresses down If this application had

more than one thread more than one stack segment would be reserved in the

applications address space

Following the stack is the local heap The heap has only few blocks currently

allocated requiring only one page of RAM The loader reserves another 392192 bytes

or 383 pages for the heap to grow The over-30 MB of address space from the end of

the reserved pages for the local heap to the start of the DLLs mapped into the ad

dress space is free to be reserved and if RAM permits committed by the application

This application accesses two dynamic-link libraries Coredll.dll is the DLL that

contains the entry points to the Windows CE operating system In Windows CE the

function entry points are combined into one DLL unlike in Windows NT or Win

dows 98 where the core functions are distributed across Kernel User and GDI The

other DLL is the common control DLL commctrl.dll As with the executable image

these DLLs are mapped into the address space as linear images However unlike the

EXE these DLLs are in ROM and directly mapped into the virtual address space of

the application therefore they dont take up any RAM

THE DIFFERENT KINDS
OF MEMORY ALLOCATION

Windows CE application has nUmber of different methods for allocating memory

At the bottom of the memory-management food chain are the Virtuaixxx functions

that directly reserve commit and free virtual memory pages Next comes the heap API

358

Page 00381

Chapter Memory Management

Heaps are regions of reserved memory space managed by the system for the applica
tion Heaps come in two flavors the default local heap automatically allocated when
an application is started and separate heaps that can be manually created by the

application After the heap API is static datadata blocks defined by the compiler
and that are allocated automatically by the loader Finally we come to the stack where

an application stores variables local to function

The one area of the Win32 memory API that Windows CE doesnt support is

the global heap The global heap API which includes calls such as GlobalAlloc

GlobaiFree and GlobaiRealloc are therefore not present in Windows CE The global

heap is really just holdover from the Winl6 days of Windows 3.x In Win32 the

global and local heaps are quite similar One unique use of global memory allocat

ing memory for data in the clipboard is handled by using the local heap under Win
dows CE

The key to minimizing memory use in Windows CE is choosing the proper

memory-allocation strategy that matches the memory-use patterns for given block

of memory Ill review each of these memory types and then describe strategies for

minimizing memory use in Windows CE applications

Virtual Memory

Virtual memory is the most basic of the memory types The system uses calls to the

virtual memory API to allocate memory for the other types of memory including heaps

and stacks The virtual memory API including the VirtualAlloc VirtualFree and

VirtualReSize functions directly manipulate virtual memory pages in the applications

virtual memory space Pages can be reserved committed to physical memory and

freed using these functions

Allocating virtual memory
Allocating and reserving virtual memory is accomplished using this function

LPVOID VirtualAlloc LPVOID lpAddress DWORD dwSize

DWORD flAllocationType
DWORD fiProtect

The first parameter to VirtualAlloc is the virtual address of the region of memory to

allocate The lpAddress parameter is used to identify the previously reserved memory
block when you use VirtualAlloc to commit block of memory previously reserved

If this parameter is NULL the system determines where to allocate the memory re

gion rounded to 64-KB boundary The second parameter is dwSize the size of the

region to allocate or reserve While this parameter is specified in bytes not pages

the system rounds the requested size up to the next page boundary

359

Page 00382

Part II WhdOWS CE Bscs

The flAllocationType parameter specifies the type of allocation You can specify

combination of the following flags MEM_COMMIT MEM_AUTO_COMMIT MEM_

RESERVE and MEM_TOP_DOWN The MEM_COMMIT flag allocates the memoryto

be used by the program MEM_RESERVE reserves the virtual address space to be later

committed Reserved pages cant be accessed until another call is made to VirtualAlloc

specifying the region and using the MEM_COMMIT flag The third flag MEMTOP_

DOWN tells the system to map the memoryat the highest permissible virtual address

for the application

The MEM_AUTO_COMIVHT flag is unique to Windows CE and is quite handy

When this flag is specified the block of memory is reserved immediately but each

page in the block will automatically be committed by the system when its accessed

for the first time This allows you to allocate large blocks of virtual memory without

burdening the system with the actual RAM allocation until the instant each page is

first used The drawback to auto-commit memoryis that the physical RAM needed to

back up page might not be available when the page is first accessed In this case

the system will generate an exception

VirtualAlloc can be used to reserve large region of memory with subsequent

calls committing parts of the region or the entire region Multiple calls to commit the

same region wont fail This allows an application to reserve memory and then blindly

commit page before its written to While this method isnt particularly efficient it

does free the application from having to check the state of reserved page to see

whether its already committed before making the call to commit the page

The fiProtect parameter specifies the access protection for the region being al

located The different flags available for this parameter are summarized in the fol

lowing list

PAGE_READONLY The region can be read If an application attempts to

write to the pages in the region an access violation will occur

PAGE_READWRITE The region can be read from or written to by the

application

PAGE_EXECUTE The region contains code that can be executed by the

system Attempts to read from or write to the region will result in an ac

cess violation

PAGE_EXECUTE_READ The region can contain executable code and

applications can also read from the region

PAGE_EXECTE_READWRJTE The region can contain executable code

and applications can read from and write to the region

360

Page 00383

Chapter Memory Management

PAGE_GUARD The first access to this region results in STATUS
GUARD_PAGE exception This flag should be combined with the other

protection flags to indicate the access rights of the region after the first

access

PAGENOACCESS Any access to the region results in an access violation

PA GE_NO CA CHE The RAM pages mapped to this region wont be cached

by the microprocessor

The PAGE_GUARD and PAGE_NOCHACHE flags can be combined with the other

flags to further define the characteristics of page The PAGE_GUARD flag specifies

guard page page that generates one-shot exception when its first accessed and

then takes on the access rights that were specified when the page was committed

The PAGENOCACHE flag prevents the memory thats mapped to the virtual page
from being cached by the microprocessor This flag is handy for devIce drivers that

share memory blocks with devices using direct memory access DMA
Regions vs pages
Before go on to talk about the virtual memoryAPI need to make somewhat subtle

distinction Virtual memory is reserved in regions that must align on 64-KB bound
aries Pages within region can then be committed page by page You can directly

commit page or series of pages without first reserving region of pages but the

page or series of pages directly committed will be aligned on 64-KB boundary
For this reason its best to reserve blocks of virtual memory in 64-KB chunks and

then commit that page within the region as needed

With the limit of 32-MB virtual memoryspace per process this leaves maxi

mum of 32 MB 64 KB 511 virtual memory regions that can be reserved before

the system reports that its out of memory Take for example the following code

fragment

define PAGESIZE 1024 II Assume were on 1-KB page machine
for 512

pMem VirtualAlloc NULL PAGESIZE MEM_RESERVE MEM_COMMIT

PAGE_READWRITE

This code attempts to allocate 512 one-page blocks of virtual memory Even if you
have half megabyte of RAM available in the system VirtualAlloc will fail before the

loop completes because it will run out of virtual address space for the application

This happens because each 1-KB block is allocated on 64-KB boundary Since the

code stack and local heap for an application must also be mapped into the same
32-MB virtual address space available virtual allocation regions usually top out at

about 490

361

Page 00384

Part II Whidows CE Escs

better way to make 512 distinct virtual allocations is to do something like this

define PAGESIZE 1024 II Assume were on 1-KB page machine

If Reserve region first

pMemBase VirtualAlloc NULL PAGESIZE 512 MEM_RESERVE

PAGE_NOACCESS

for 512
pMem VirtualAlloc pMemBase iPAGESIZE PAGESIZE

MEM_COMMIT PAGE_READWRITE

This code first reserves region the pages are committed later Because the region

was first reserved the committed pages arent rounded to 64-KB boundaries and so

if you have 512 KB of available memory in the system the allocations will succeed

Although the code just showed you is contrived example there are better

ways to allocate 1-KB blocks than directly allocating virtual memory it does dem
onstrate major difference from other Windows systems in the way memory allo

cation works in Windows CE In Windows NT applications have full 2-GB virtual

address space with which to work In Windows CE however programmer should

remain aware of the relatively small 32-MB virtual address per application

Freeing virtual memory
You can decommit or free virtual memoryby calling VirtualFree Decommitting page

unmaps the page from physical page of RAM but keeps the page or pages reserved

The function is prototyped as

BOOL VirtualFree LPVOID lpAddress DWORD dwSize

DWURD dwFreeType

The lpAddress parameter should contain pointer to the virtual memory region thats

to be freed or decommitted The dwSize parameter contains the size in bytes of the

region if the region is to be decommitted If the region is to be freed this value must

be The dwFreeType parameter contains the flags that specify the type of opera

tion The MEM_DECOMMIT flag specifies that the region will be decomnilted but will

remain reserved The MEM_RELEASE flag both decommits the region if the pages are

committed and also frees the region

All the pages in region being freed by means of VirtualFree must be in the

same state That is all the pages in the region to be freed must either be committed

or reserved VirtualFree fails if some of the pages in the region are reserved while

some are committed To free region with pages that are both reserved and commit

ted the committed pages should be decommitted first and then the entire region can

be freed

362

Page 00385

Chapter Memory Management

Changing and querying access rights

You can modify the access rights of region of virtual memory initially specified in

VirtualAlloc by calling VirtualProtect This function can change the access rights only
on committed pages The function is prototyped as

BOOL VirtualProtect LPVOID lpAddress DWORD dwSize

DWORD flNewProtect PDWORD lpflOldProtect

The first two parameters lpAddress and dwSize specify the block and the size of the

region that the function acts on The flNewProtect parameter contains the new pro
tection flags for the region These flags are the same ones mentioned when ex
plained the VirtualAlloc function The lpflOldProtect parameter should point to

DWORD that will receive the old protection flags of the first page in the region

The current protection rights of region can be queried with call to

DWORD VirtualQuery LPCVOID lpAddress

PMEMORY_BASIC_INFORMATION lpBuffer
DWORD dwLength

The lpAddress parameter contains the starting address of the region being queried

The lpBuffer pointer points to PMEMORY_BASIC_INFOR1vIATION structure that

Ill talk about soon The third parameter dwLength must contain the size of the

PMEMORY_BASIC_INFORMATION structure

The PMEMORY_BASIC_INFORMATION structure is defined as

typedef struct _MEMORY_BASIC_INFORMATION

PVOID BaseAddress

PVOID AllocationBase

DWORD AllocationProtect

DWORD RegionSize

DWURD State

DWORD Protect

DWORD Type
MEMORY_BASIC..INFORMATION

The first field of MEMORY_BASIC_INFORMATION BaseAddress is the address

passed to the VirtualQuery function The AllocationBase field contains the base

address of the region when it was allocated using VirtualAlloc function

The AllocationProtect field contains the protection attributes for the region when it

was originally allocated The RegionSize field contains the number of bytes from the

pointer passed to VirtualQuery to the end of series of pages that have the same

attributes The State field contains the statefree reserved or committedof the

pages in the region The Protect field contains the current protection flags for the

region Finally the Type field contains the type of memory in the region This field

363

Page 00386

Part II Wbidows CE Bascs

can contain the flags MEM_PRIVATE indicating that the region contains private data

for the application MEM_MAPPED indicating that the region is mapped to memory-

mapped file or MEM_IMAGE indicating that the region is mapped to an EXE or DLL

module

The best way to understand the values returned by VirtualQuery is to look at

an example Say an application uses VirtualAlloc to reserve 16384 bytes 16 .pages

on 1-KB page-ize machine The system reserves this 16-KB block at address

OxA0000 Later the application commits 9216 bytes pages starting 2048 bytes

pages into the initial region Figure 6-3 shows diagram of this scenario

A4000

A2COO

Pages orginally

reserved by

Pages later VirtualAlloc

committed

A1000

IpA ddress value passed AO800
to VfrlualQuery

A0000 ___________________

Figure 6-3 region of reserved virtual memory that has nine pages committed

If call is made to VirtualQuery with the lpAddress pointer pointing pages

into the initial region address OxAl000 the returned values would be the following

BaseAddress xAlO
AllocationBase xAO
AllocationProtect PAGE_NOACCESS

RegionSize BxlCOO 7168 bytes or pages

State MEM_COMMIT

Protect PAGE_READWRITE

Type MEM_PRI VAlE

The BaseAddress field contains the address passed to VirtualQueiy OxAl000

4096 bytes into the initial region The AllocationBase field contains the base address of

the original region while AllocationProtect contains PAGE_NOACCESS indicating that

364

Page 00387

Chapter Memory Management

the region was originally reserved not directly committed The RegionSize field con
tains the number of bytes from the pointer passed to VirtualQuery OxAl000 to the

end of the committed pages at OxA2COO The State and Protect fields contain the flags

indicating the current state of the pages The Type field indicates that the region was
allocated by the application for its own use

Heaps

Clearly allocating memory on page basis is inefficient for most applications To

optimize memory use an application needs to be able to allocate and free memory
on per byte or at least per 4-byte basis The system enables allocations of this

size through heaps Using heaps also protects an application from having to deal with

the differing page sizes of the microprocessors that support Windows CE An appli

cation can simply allocate block in heap and the system deals with the number of

pages necessary for the allocation

As mentioned before heaps are regions of reserved virtual memory space

managed by the system for the application The system gives you number of func

tions that allow you to allocate and free blocks within the heap with granularity

much smaller than page As memory is allocated by the application within heap
the system automatically grows the size of the heap to fill the request As blocks in

the heap are freed the system looks to see if an entire page is freed If so that page

is decommitted

Unlike Windows NT or Windows 98 Windows CE supports the allocation of

only fixed blocks in the heap This simplifies the handling of blocks in the heap but

it can lead to the heaps becoming fragmented over time as blocks are allocated and

freed The result can be heap being fairly empty but still requiring large number

of virtual pages because the system cant reclaim page from the heap unless its

completely free

Each application has default or local heap created by the system when the

application is launched Blocks of memory in the local heap can be allocated freed

and resized using the ZocalAlloc LocaiFree and LocaiRealloc functions An applica

tion can also create any number of separate heaps These heaps have the same prop
erties as the local heap but are managed through separate set of Heapxxxx functions

The Local Heap

By default Windows CE initially reserves 384 pages or 393216 bytes for the local

heap but only commits the pages as they are allocated If the application allocates

more than the 384 KB in the local heap the system allocates more space for the local

heap Growing the heap might require separate disjointed address space reserved

365

Page 00388

Part II Whidows CE Basics

for the additional space on the heap Applications shouldnt assume that the local

heap is contained in one block of virtual address space Because Windows CE heaps

support only fixed blocks Windows CE implements only the subset of the Win32 local

heap functions necessary to allocate resize and free fixed blocks on the local heap

Allocating memory on the local heap

You allocate block of memory on the local heap by calling

HLOCAL LocalAlloc UINT uFlags UINT uBytes

The call returns value cast as an HLOCAL which is handle to local memory block

but since the block allocated is always fixed the return value can simply be recast as

pointer to the block

The uFlags parameter describes the characteristics of the block The flags sup

ported under Windows CE are limited to those that apply to fixed allocations They

are the following

LMEM_FIXED Allocates fixed block in the local heap Since all local

heap allocations are fixed this flag is redundant

LMEM_ZEROINIT Initializes memory contents to

LPTR Combines the LMEM_FIXED and LMEM_ZEROINIT flags

The uBytes parameter specifies the size of the block to allocate in bytes The

size of the block is rounded up but only to the next DWORD byte boundary

Freeing memory on the local heap

You can free block by calling

HLOCAL Local Free HLOCAL hMem

The function takes the handle to the local memory block and returns NULL if suc

cessful If the function fails it returns the original handle to the block

Resizing and querying the size of local heap memory
You can resize blocks on the local heap by calling

HLOCAL LocalReAlloc HLOCAL hMem hINT uBytes hINT uFlag

The hMem parameter is the pointer handle returned by LocalAlloc The uBytes pa

rameter is the new size of the block The uFlag parameter contains the flags for the

new block Under Windows CE two flags are relevant LMEM_ZEROINIT and LMEM_

MOVEABLE LMEM_ZEROINIT causes the contents of the new area of the block to

be set to if the block is grown as result of this call The LMEM_MOVEABLE flag

366

Page 00389

Chapter Memory Management

tells Windows that it can move the block if the block is being grown and theres not

enough room immediately above the current block Without this flag if you dont
have enough space immediately above the block to satisfy the request LocaiRealloc

will fail with an out-of-memory error If you specify the LMEM_MOVEABLE flag the

handle really the pointer to the block of memory might change as result of the call

The size of the block can be queried by calling

UINT LocalSize HLOCAL hMem

The size returned will be at least as great as the requested size for the block As

mentioned earlier Windows CE rounds the size of local heap allocation up to the

next 4-byte boundary

Separate Heaps

To avoid fragmenting the local heap its better to create separate heap if you need

series of blocks of memory that will be used for set amount of time An example

of this would be text editor that might manage file by creating separate heap for

each file its editing As files are opened and closed the heaps would be created and

destroyed

Heaps under Windows CE have the same API as those under Windows NT or

Windows 98 The only noticeable difference is the lack of support for the HEAP_

GENERATE_EXCEPTIONS flag Under Windows NT this flag causes the system to

generate an exception if an allocation request cant be accommodated

subtle but more important difference to the programmer is how Windows CE

manages heaps While the heap API looks like the standard Win32 heap API Win
dows CE doesnt implement the functions as you might expect For example the

HeapCreate function has parameters that allow program to specify how much

memory to allocate and reserve for heap Windows CE ignores these values In fact

simply creating heap doesnt allocate or reserve any memory Memory is reserved

and committed only when the first block of the heap is allocated

Under most conditions going through the details about when heap memory is

reserved and committed would seem like nitpicking But if youve used up the 32-MB

virtual address space for other uses heap might not have the virtual address space
available for the allocation even if you thought you had reserved enough using the

HeapCreate call On the other hand Windows CE doesnt use the reserved param
eter in the HeapCreate call as hard-coded limit on the size of the heap Windows CE

accommodates almost any heap allocation request if the memory is available Well

enough editorializing on to the heap API

367

Page 00390

Part II WhidOWS CE BasicS

Creating separate heap

You create heaps by calling

HANDLE HeapCreate DWORD flOptions DWORD dwlnitialSize

DWORD dwMaximumSiZe

Under Windows CE the first parameter flOptions can be NULL or it can contaiq the

HEAP_NO_SERIALIZE flag By default Windows heap management routines prevent

two threads in process from accessing the heap at the same time This serialization

prevents the heap pointers that the system uses to track the allocated blocks in the

heap from being corrupted In other versions of Windows the HEAP_NO_SERIALIZE

flag can be used if you dont want this type of protection Under Windows CE how

ever this flag is only provided for compatibility and all heap accesses are serialized

The other two parameters dwlnitialSize and dwMaximumSize specify the ini

tial size and expected maximum size of the heap Windows NT and Windows 98 use

the dwMaximumSize value to determine how many pages in the virtual address space

to reserve for the heap You can set this parameter to if you want to defer to Win

dows determination of how many pages to reserve The dwlnitialSize parameter is

then used to determine how many of those initially reserved pages will be immedi

ately committed As mentioned while these two size parameters are documented

exactly the same way as their counterparts under Windows NT and 98 the current

version of Windows CE doesnt actually use them You should however use valid

numbers to retain compatibility with future versions of Windows CE that might use

these parameters

Allocating memory in separate heap

You allocate memory on the heap using

LPVOID HeapAlloc HANDLE hHeap DWORD dwFlags DWORD dwBytes

Notice that the return value is pointer not handle as in the LocalAlloc function

Separate heaps always allocate fixed blocks even under Windows NT and Win

dows 98 The first parameter is the handle to the heap returned by the HeapCreate

call The dwFlags parameter can be one of two self-explanatory values HEAP_NO_

SERIALIZE and HEAP_ZERO_MEMORY The final parameter dwBytes specifies the

number of bytes in the block to allocate The size is rounded up to the next DWORD

Freeing memory in separate heap

You can free block in heap by calling

BOOL HeapFree HANDLE hHeap DWORD dwFlags LPVOID lpMem

The only flag allowable in the dwFlags parameter is HEAP_NO_SERIALIZE The lpMem

parameter points to the block to free while hHeap contains the handle to the heap

368

Page 00391

Chapter Memory Management

Resizing and querying the size of memory in separate heap
You can resize heap allocations by calling

LPVOID HeapReAlloc HANDLE hHeap DWORD dwFlags LPVOID lpMem
DWORD dwBytes

The dwFlags parameter can be any combination of three flags HEAP_NO_SERIALIZE

HEAP_REALLOC_IN_PLACE_ONLY and HEAP_ZERO_MEMORY The only new flag

here is HEAP_REALLOC_IN_PLACE_ONLY which tells the heap manager to fail the

reallocation if the space cant be found for the block without relocating it This flag is

handy if you already have number of pointers pointing to data in the block and

you arent interested in updating them The lpMem parameter is the pointer to the

block being resized and the dwBytes parameter is the requested new size of the block

Notice that the function of the HEAP_REAILLOC_IN_PLACE_ONLY flag in HeapReAlloc

provides the opposite function from the one that the LMEM_MOVEABLE flag pro
vides for LocaiReAlloc HEAP_REALLOC_IN_PLACE_ONILY prevents block that would

be moved by default in separate heap while LMEM_MOVEABLE enables block

to be moved that by default would not be moved in the local heap HeapReAlloc re

turns pointer to the block if the reallocation was successful and returns NULL oth
erwise Unless you specified that the block not be relocated the returned pointer might

be different from the pointer passed in if the block had to be relocated to find enough

space in the heap

To determine the actual size of block you can call

DWORD HeapSize HANDLE hHeap DWORD dwFlags LPCVOID lpMeni

The parameters are as you expect the handle of the heap the single optional flag

HEAP_NO_SERIALIZE and the pointer to the block of memory being checked

Destroying separate heap
You can completely free heap by calling

BOOL HeapDestroy HANDLE hHeap

Individual blocks within the heap dont have to be freed before you destroy the heap
One final heap function is valuable when writing DLLs The function

HANDLE GetProcessHeap VOID

returns the handle to the local heap of the process calling the DLL This allows

DLL to allocate memory within the calling processs local heap All the other heap

calls with the exception of HeapDestroy can be used with the handle returned by

GetProcessHeap

369

Page 00392

Part Windows CE Basics

The Stack

The stack is the easiest to use the most self-managing of the different types of memory

under Windows CE The stack under Windows CE as in any operating system is the

storage place for temporary variables that are referenced within function The op

erating system also uses the stack to store return addresses for functions and the state

of the microprocessor registers during exception handling

Windows CE manages separate stack for every thread in the system Under

all versions of the operating system before Windows CE 2.1 each stack in the system

is limited to fewer than 58 KB Separate threads within one process can each grow

its stack up to the 58-KB limit This limit has to do with how Windows CE manages

the stack When thread is created Windows CE reserves 60-KB region for the

threads stack It then commits virtual pages from the top down as the stack grows

As the stack shrinks the system will under low-memory conditions reclaim the un

used but still committed pages below the stack The limit of 58 KB comes from the

size of the 64-KB region dedicated to the stack minus the number of pages necessary

to guard the stack against overflow and underfiow

Starting with Windows CE 2.1 the size of the stack can be specified by linker

switch when an application is linked The same guard pages are applied but the stack

size can be specified up to MB Note that the size defined for the default stack is

also the size used for all the separate thread stacks That is if you specify the main

stack to be 128 KB all other threads in the application have stack size limit of 128 KB

One other consideration must be made when youre planning how to use the

stack in an application When an application calls function that needs stack space

Windows CE attempts to commit the pages immediately below the current stack pointer

to satisfy the request If no physical RAM is available the thread needing the stack

space is briefly suspended If the request cant be granted within short period of

time an exception is raised Windows CE goes to great lengths to free the required

pages but if this cant happen the system raises an exception Ill cover low-memory

situations shortly but for now just
remember that you shouldnt try to use large amounts

of stack space in low-memory situations

Static Data

and applications have predefined blocks of memory that are automatically

allocated when the application is loaded These blocks hold statically allocated strings

buffers and global variables as well as buffers necessary for the library functions that

were statically linked with the application None of this is new to the programmer

but under Windows CE these spaces are handy for squeezing the last useful bytes

out of RAM

370

Page 00393

Chapter Memory Management

Windows CE allocates two blocks of RAM for the static data of an application
one for the read/write data and one for the read-only data Because these areas are
allocated on per-page basis you can typically find some space left over from the

static data up to the next page boundary The finely tuned Windows CE application
should be written to ensure that it has litde or no extra space left over If you have

space in the static data area sometimes its better to move buffer or two into the

static data area instead of allocating those buffers dynamically
Another consideration is that if youre writing ROM-based application you

should move as much data as possible to the read-only static data area Windows CE
doesnt allocate RAIVI to the read-only area for ROM-based applications Instead the

ROM pages are mapped directly into the virtual address space This essentially gives

you unlimited read-only space with no impact on the RAM requirements of the ap
plication

The best place to determine the size of the static data areas is to look in the

map file thats optionally generated by the linker The map file is chiefly used to deter

mine the locations of functions and data for debugging purposes but it also shows

the size of the static data if you know where to look Figure 6-4 shows portion of

an example map file generated by Visual

memtest

Timestamp is 34ce4088 Tue Jan 27 121608 1998

Preferred load address is 00010000

Start Length Name Class

000100000000 00006100H .text CODE

000200000000 00000310H .rdata DATA

000200000310 00000014H .xdata DATA

000200000324 00000028H .idata$2 DATA

00020000034c 00000014H .idata$3 DATA

000200000360 000000f4H .idata$4 DATA

000200000454 000003eeH .idata$6 DATA

000200000842 00000000H .edata DATA

000300000000 000000f4H .idata$5 DATA

0003000000f4 00000004H .CRT$XCA DATA

0003000000f8 00000004H .CRT$XCZ DATA

0003000000fc 00000004H .CRT$XIA DATA

000300000100 00000004H .CRT$XIZ DATA

000300000104 00000004H .CRT$XPA DATA

000300000108 00000004H .CRT$XPZ DATA

00030000010c 00000004H .CRT$XTA DATA

continued

371

Page 00394

Part II Windows CE Eascs

000300000110 00000004H .CRT$XTZ DATA

000300000114 0000lle8H .data DATA

0003000012fc 0000108cH .bss DATA

000400000000 000003e8H .pdata DATA

000500000000 000000f0H .rsrc$01 DATA

0005000000f0 00000334H .rsrc$02 DATA

Address iublics by Value RvaBase LibObject

000100000000 _WinMain 00011000 memtest.obj

00010000007c _InitApp 0001107c memtest.obj

0001000000d4 _Initlnstance 000110d4 memtest.obj

000100000164 _Termlnstance 00011164 memtest.obj

000100000248 _MainWndProc 00011248 menitest.obj

0001000002b0 _GetFixedEquiv 000112b0 memtest.obj

000100000350 _DoCreateMain 00011350 memtest.obj

Figure 6-4 The top portion of map file showing the size of the data segments in an

application

The map file in Figure 6-4 indicates that the EXE has five sections Section 0001

is the text segment containing the executable code of the program Section 0002

contains the read-only static data Section 0003 contains the read/write static data

Section 0004 contains the fix-up table to support calls to other DLLs Finally section

0005 is the resource section containing the applications resources such as menu and

dialog box templates

Lets examine the .data .bss and .rdata lines The data section contains the

initialized read/write data If you initialized global variable as in

static HINST g_hLoadlib NULL

the g_loadlib variable would end up in the data segment The .bss segment contains

the uninitialized read/write data buffer defined as

static BYTE g_ucltems

would end up in the .bss segment The final segment .rdata contains the read-only

data Static data that youve defined using the const keyword ends up in the .rdata

segment An example of this would be the structures use for my message look-up

tables as in the following

II Message dispatch table for MainWindowProc

const struct decodeUlNT MainMessages
WM_CREATE DoCreateMain

WM_SIZE DoSizeMain

WM_COMMAND DoCommandMain

WM_DESTROY DooestroyMain

372

Page 00395

Chapter Memory Management

The data and .bss blocks are folded into the 0003 section which if you add
the size of all blocks in the third section has total size of 0x2274 or 8820 bytes
Rounded up to the next page size the read/write section ends up taking nine pages
with 396 bytes not used So in this example placing buffer or two in the static data

section of the application would be essentially free The read-only segment section

0002 including rdata ends up being 0x0842 or 2114 bytes which takes up three

pages with 958 bytes almost an entire page wasted In this case moving 75 bytes of

constant data from the read-only segment to the read /write segment saves page of

RAM when the application is loaded

String Resources

One often forgotten area for read-only data is the resource segment of your applica
tion While mentioned new Windows CEspecific feature of the LoadString func
tion in Chapter its worth repeating here If you call LoadString with in place of

the pointer to the buffer the function returns pointer to the string in the resource

segment An example would be

LPCTSTR pString

pString LPCTSTRLoadString hlnst IDSTRING NULL

The string returned is read only but it does allow you to reference the string without

having to allocate buffer to hold the string

Selecting the Proper Memory Type
Now that weve looked at the different types of memory its time to consider the best

use of each For large blocks of memory directly allocating virtual memory is best

An application can reserve as much address space up to the 32-MB limit of the ap
plication but can commit only the pages necessary at any one time While directly
allocated virtual memory is the most flexible memory allocation type it shifts to us

the burden of worrying about page granularity as well as keeping track of the reserved

versus committed pages

The local heap is always handy It doesnt need to be created and will grow as

necessary to satisfy request Fragmentation is the issue here Consider that applica
tions on an H/PC might run for weeks or even months at time Theres no Off but-

ton on an H/PC or Palm-size PCjust Suspend command So when youre thinking

about memory fragmentation dont assume that user will open the application

change one item and then close it user is likely to start an application and keep it

running so that the application is just quick click away
The advantage of separate heaps is that you can destroy them when their time is

up nipping the fragmentation problem in the bud minor disadvantage of separate

heaps is the need to manually create and destroy them Another thing to remember

373

Page 00396

Part II WIndows CE Easics

about separate heaps is that Windows CE doesnt reserve virtual address space when

heap is created which can become an issue if your application uses much of the

virtual address space available to the application

The static data area is great place to slip in buffer or two essentially for free

because the page is going to be allocated anyway The key to managing the static

data is to make thesize of the static data segments close to but over the page size of

your target processor For applications written for the H/PC or Palm-size PC con
sider the 1024-byte page size of the NEC MIPS 4100 and Hitachi SH3 processors as

the default Sometimes its better to move constant data from the read-only segment

to the read/write segment if it saves page in the read-only segment The only time

you wouldnt do this is if the application is to be burned into ROM Then the more

constant data the better because it doesnt take up RAM
The stack is well the stacksimple to use and always around The only con

siderations are the maximum size of the stack and the problems of enlarging the stack

in low memory condition Make sure your application doesnt require large amounts

of stack space to shut down If the system suspends thread in your application while

its being shut down the user will more than likely lose data That wont help cus

tomer satisfaction

Managing Low-Memory Conditions

Even for applications that have been fine-tuned to minimize their memory use there

are going to be times when the system runs very low on RAM Windows CE applica

tions operate in an almost perpetual low-memory environment The Palm-size PC is

designed intentionally to run in low-memory situation Applications on the Palm-

size PC dont have Close buttonthe shell automatically closes them when the system

needs additional memory Because of this Windows CE offers number of methods

to distribute the scarce memory in the system among the running applications

The WM_HIBERNATE message
The first and most obvious addition to Windows CE is the WM_HIBERNATE mes

sage Windows CE sends this message to all top-level windows that have the WS_
OVERLAPPED style that is have neither the WS_POPUP nor the WS_CHILD style

and have the WS_VISIBLE style These qualifications should allow most applications

to have at least one window that receives WM_HIBERNATE message An exception

to this would be an application that doesnt really terminate but simply hides all its

windows This arrangement allows an application quick start because it only has to

show its window but this situation also means that the application is taking up RAM
even when the user thinks its closed While this is exactly the kind of application

design that should not be used under Windows CE those that are designed this way
must act as if theyre always in hibernate mode when hidden because theyll never

receive WM_1-IIBERNATE message

374

Page 00397

Chapter Memory Management

Windows CE sends WM_HIBERNATE messages to the top-level windows in

reverse Z-order until enough memory is freed to push the available memory above

preset threshold When an application receives WM_HIBERNATE message it should

reduce its memory footprint as much as possible This can involve releasing cached

data freeing any GDI objects such as fonts bitmaps and brushes and destroying

any window controls In essence the application should reduce its memory use to

the smallest possible footprint thats necessary to retain its internal state

If sending WM_HIBERNATE messages to the applications in the background
doesnt free enough memory to move the system out of limited-memory state

WM_HIBERNATE message is sent to the application in the foreground If part of your

hibernation routine is to destroy controls on your window you should be sure that

you arent the foreground application Disappearing controls dont give the user

warm and fuzzy feeling

Memory thresholds

Windows CE monitors the free RAM in the system and responds differently as less

and less RAM is available As less memory is available Windows CE first sends

WM_HIBERNATE messages and then begins limiting the size of allocations possible

The two figures below show the free-memory levels used by the Handheld PC and

the Palm-size PC to trigger low-memory events in the system Windows CE defines

four memory states normal limited low and critical The memory state of the sys

tem depends on how much free memory is available to the system as whole These

limits are higher for 4-KB page systems because those systems have less granularity

in allocations

Event Free Memory Free Memory Comments

1024-Page Size 4096-Page Size

Limited- 128 KB 160 KB Send MWM_HIBERNATE

memory state messages to applications

in reverse Z-order

Free stack space re

claimed as needed

Low- 64 KB 96 KB Limit virtual allocs to

memory state 16 KB

Low-memory dialog

displayed

Critical- 16 KB 48 KB Limit virtual allocs to

memory state KB

Figure 6-5 Memory thresholds for the Handheld PC

375

Page 00398

Part II WhidOWS CE Bascs

Event Free Memory Free Memory Comments

1024-Page Size 4096-Page Size

Hibernate 200 KB 224 KB Send WM_HIBERNATE
threshold messages to applications

in reverse Z-order

Limited- 128 KB 160 KB Begin to close applica

memory state tions in reverse Z-order

Free stack space re

claimed as needed

Low- 64 KB 96 KB Limit virtual allocs to

memory state 16 KB

Critical- 16 KB 48 KB Limit virtual allocs to

memory state KB

Figure 6-6 Memory thresholds for the Palm-size PC

The effect of these memory states is to share the remaining wealth First

WM_HIBERNATE messages are sent to the applications to ask them to reduce their

memory footprint After an application is sent WMHIBERNATE message the sys

tem memory levels are checked to see whether the available memory is now above

the threshold that caused the WM_HIBERNATE messages to be sent If not

WM_HIBERNATE message is sent to the next application This continues until all

applications have been sent WM_HIBERNATE message

The low-memory strategies of the Handheld PC and the Palm-size PC diverge

at this point If the memorylevel drops below the next threshold limited for the Palm-

size PC and Low for the H/PC the system starts shutting down applications On

the H/PC the system displays the OOM the out-of-memory dialog and requests

that the user either select an application to close or reallocate some RAM dedicated

to the object store to the program memory If after the selected application has been

shut down or memory has been moved into program RAM you still dont have enough

memory the out-of-memory dialog is displayed again This process is repeated until

theres enough memory to lift the H/PC above the threshold

For the Palm-size PC the actions are somewhat different The Palm-size PC shell

automatically starts shutting down applications in least recently used order without

asking the user If there still isnt enough memory after all applications except the

foreground application and the shell are closed the system uses its other techniques

of scavenging free pages from stacks and limiting any allocations of virtual memory

If on either system an application is requested to shut down and it doesnt

the system will purge the application after waiting approximately seconds This is

the reason an application shouldnt allocate large amounts of stack space If the ap
plication is shutting down due to low-memory conditions its quite possible that the

376

Page 00399

Chapter Memory Management

stack space cant be allocated and the application will be suspended If this happens
after the system has requested that the application close it could be purged from

memory without properly saving its state

In the low- and critical-memory states applications are limited in the amount
of memory they can allocate In these states request for virtual memory larger than

whats allowed is refused even if theres memory available to satisfy the request
Remember that it isnt just virtual memory allocations that are limited allocations on
the heap and stack are rejected if to satisfy the request those allocations require vir

tual memory allocations above the allowable limits

should point out that sending WM_HIBERNATE messages and automatically

closing down applications is performed by the shell of the H/PC and Palm-size PC
The embedded version of Windows CE uses much simpler shell that doesnt sup
port these memorymanagement techniques On these embedded systems youll have

to devise your own strategy for managing low-memory situations

It should go without saying that applications should check the return codes of

any memory allocation call but since some still dont Ill say it Check the return codes

from calls that allocate memory Theres much better chance of memory alloca

tion failing under Windows CE than under Windows NT or Windows 98 Applica
tions must be written to react gracefully to rejected memory allocations

The Win32 memory management API isnt fully supported by Windows CE but

theres clearly enough support for you to use the limited memory of Windows CE
device to the fullest great source for learning about the intricacies of the Win32

memory management API is Jeff Richters Advanced Windows Microsoft Press 1997
Jeff spends five chapters on memory management while have summarized the same

topic in one

Weve looked at the program RAM the part of RAM that is available to applica
tions Now its time in the next chapter to look at the other part of the RAM the

object store The object store supports more than file system It also supports the

registry API as well as database API unique to Windows CE

377

Page 00400

·-

Page 00401Page 00401

Chapter

Files Databases

and the Registry

One of the areas where Windows CE diverges the farthest from its larger cousins Win
dows NT and Windows 98 is in the area of file storage Instead of relying on ferromag

netic storage media such as floppy disks or hard disk drives Windows CE implements

unique RAM-based file system known as the object store In implementation the

object store more closely resembles database than it does file allocation system

for disk In the object store resides the files as well as the registry for the system

and any Windows CE databases Fortunately for the programmer most of the unique

implementation of the object store is hidden behind standard Win32 functions

The Windows CE file API is taken directly from Win32 Aside from the lack of

functions that directly reference volumes the API is fairly complete Windows CE

implements the standard registry API albeit without the vast levels of security found

in WindowsNT The database API however is unique to Windows CE The database

functions provide simple tool for managing and organizing data They arent to be

confused with the powerful multilevel SQL databases found on other computers Even

with its modest functionality the database API is convenient for storing and organiz-

ing simple groups of data such as address lists or mail folders

Some differences in the object store do expose themselves to the program

mer Execute-in-place files stored in ROM appear as files in the object store but

these functions cant be opened and read as standard files Some of the ROM-baséd

applications are also statically linked to other ROM-based dynamic-link libraries DLLs

379

Page 00402

Part II WndOWS CE Bacs

This means that some ROM-based DLLs cant be replaced by copying an identically

named file into the object store

The concept of the current directory so important in other versions of Win
dows isnt present in Windows CE Files are specified by their complete path DLLs

must be in the Windows directory the root directory of the object store or in the

root directory of ap attached file storage device such as PC Card

As general rule Windows CE doesnt support the deep application-level

security available under Windows NT However because the generic Win32 API was

originally based on Windows NT number of the functions for file and registry opera

tions have one or more parameters that deal with security rights Under Windows CE
these values should be set to their default not security state This means you should

almost always pass NULL in the security parameters for functions that request security

information

In this rather long chapter Ill first explain the file system and the file API Then

Ill give you an overview of the database API Finally well do tour of the registry

API The database API is one of the areas that has experienced fair amount of change

as Windows CE has evolved Essentially functionality has been added to later versions

of Windows CE Where appropriate Ill cover the differences between the differ

ent versions and present workarounds where possible for maintaining common
code base

THE WINDOWS CE FILE SYSTEM
The default file system supported on all Windows CE platforms is the object store

The object store is equivalent to the hard disk on Windows CE device Its subtly

complex file storage system incorporating compressed RAIvI storage for read/write

files and seamless integration with ROM-based files user sees no difference be
tween file in RAM in the object store and those files based in ROM Files in RAM
and ROM can reside in the same directory and document files in ROM can be opened

although not modified by the user In short the object store integrates the default

files provided in ROM with the user-generated files stored in RAM
In addition to the object store Windows CE supports multiple installable file

systems that can support up to 256 different storage devices or partitions on storage

devices The limit is 10 storage devices for Windows CE 2.0 and earlier The interface

to these devices is the installable file system IFS API Most Windows CE platforms

include an IFS driver for the FAT file system for files stored on ATA flash cards or hard

disks In addition under Windows CE 2.1 and later third party manufacturers can

write an IFS driver to support other file systems

Windows CE doesnt use drive letters as is the practice on PCs Instead every

storage device simply directory off the root directory Under Windows CE 1.0 an

380

Page 00403

Chapter Files Databases and the Registry

application can count on the name of the directory of the external drive being PC Card

If more than one PC Card was inserted the additional ones are numbered as in PC
Card and PC Card2 up to PC Card 99 for the 100th card Under Windows CE 2.0

the default name was changed from PC Card to Storage Card but the numbering

concept stayed the same For Windows CE 2.1 Windows CE doesnt assume name
Instead it asks the driver what it wants to call the directory.2 Later in this chapter Ill

demonstrate method for determining which directories in the root are directories

and which are actually storage devices

As should be expected for Win32-compatible operating system the filename

format for Windows CE is the same as its larger counterparts Windows CE suports

long filenames Filenames and their complete path can be up to MAX_PATH in length

which is currently defined at 260 bytes Filenames have the same name.ext format

as they do in other Windows operating systems The extension is the three charac

ters following the last period in the filename and defines the type of file The file

type is used by the shell when determining the difference between executable files

and different documents Allowable characters in filenames are the same as for

Windows NT and Windows 98

Windows CE files support most of the same attribute flags as Windows 98 with

few additions Attribute flags include the standard read-only system hidden com

pressed and archive flags few additional flags have been included to support the

special RAM/ROM mix of files in the object store

The Object Store vs Other Storage Media

To the programmer the difference between files in the RAM part of the object store

and the files based in ROM are subtle The files in ROM can be detected by special

in-ROM file attribute flag However files in the RAM part of the object store that are

always compressed dont have the compressed file attribute as might be expected

The reason is that the compressed attribute is used to indicate when file or direc

tory is in compressed state relative to the other files on the drive In the object store

all files are compressed which makes the compressed attribute redundant

The object store in Windows CE has some basic limitations First the size of the

object store is currently limited to 16 MB of RAM Given the compression features of

the object store this means that the amount of data that the object store can contain

is somewhere around 32 MB Individual files in the object store are limited to MB

under Windows CE 2.0 and earlier Files under Windows CE 2.1 and later are limited

only by the size of the object stores 16-MB limit These file size limits dont apply to

files on secondary storage such as hard disks PC Cards or Compact Flash Cards

This limit is 10 cards for Windows CE 2.0 and earlier

The Handheld PC Pro uses Storage Card as its default name

381

Page 00404

Part Ii Wbdows CE Basics

Standard File I/O

Windows CE supports the most of the same file I/O functions found on Windows NT

and Windows 98 The same Win32 API calls such as CreateFile ReãdFile WriteFile

and CloseFile are all supported Windows CE programmer must be aware of few

differences however First of all the standard file I/O functions such asfopenfread

andfprintf arent supported under Windows CE Likewise the old Winl6 standards

_lread _lwrite and _llseek arent supported This isnt really huge problem because

all of these functions can easily be implemented by wrapping the Windows CE file

functions with small amount of code Windows CE 2.1 does support basic console

library functions such as printf for console applications

Windows CE doesnt support the overlapped I/O thats supported under Win
dows NT Files or devices cant be opened with the FILE_FLAG_OVERLAPPED flag

nor can reads or writes use the overlapped mode of asynchronous calls and returns

File operations in Windows CE follow the traditional handle-based methodol

ogy used since the days of MS-DOS Files are opened by means of function that

returns handle Read and write functions are passed the handle to indicate the file

to act on Data is read from or written to the offset in the file indicated by system-

maintained file pointer Finally when the reading and writing have been completed

the application indicates this by closing the file handle Now on to the specifics

Creating and Opening Files

Creating file or opening an existing file or device is accomplished by means of the

standard Win32 function

HANDLE CreateFile LPCTSTR lpFileName DWORD dwDesiredAccess

DWORD dwShareMode

LPSECURITY_ATTRIBUTES lpSecurityAttributes
DWORD dwCreationDistribution

DWORD dwFlagsAndAttributes HANDLE hiemplateFile

The first parameter is the filename of the file to be opened or created The name of

the file should have fully specified path Filenames with no path information are

assumed to be in the root directory of the object store

The dwDesiredAccess parameter indicate the requested access rights The allow

able flags are GENERICJEAD to request read access to the file and GENERIC_WRITE

for write access Both flags must be passed to get read/write access You can open

file with neither read nor write permissions This is handy if you just want to get the

attributes of device The dwSbareMode parameter specifies the access rights that

can be granted to other processes This parameter can be FILESHAREREAD and/

or FILE_SHARE_WRITE The lpSecurityAttributes parameter is ignored by Windows CE

and should be set to NULL

382

Page 00405

Chapter Files Databases and the Registry

The dwreationDistribution parameter tells reateFile how to open or create

the file The following flags are allowed

CREATE_NEW Creates new file If the file already exists the function

fails

CREATE_ALWAYS Creates new file or truncates an existing file

OPEN_EXISTING Opens file only if it already exists

OPEN_ALWAYS Opens file or creates file if it doesnt exist This dif

fers from CREATE_ALWAYS because it doesnt truncate the file to bytes

if the file exists

TRUNCATE_EXISTING Opens file and truncates it to bytes The func

tion fails if the file doesnt already exist

The dwFlagsAndAttributes parameter defines the attribute flags for the file if its

being created in addition to flags in order to tailor the operations on the file The fol

lowing flags are allowed under Windows CE

FILE_A 7TRIB UTE_NORMAL This is the default attribute Its overridden

by any of the other file attribute flags

FILE_A777IBTJTE_READONLY Sets the read-only attribute bit for the file

Subsequent attempts to open the file with write access will fail

FILE_A 7TRIBUTE_ARCHIVE Sets the archive bit for the file

FILE_ATTRIBUTE_SYSTEM Sets the system bit for the file indicating that

the file is critical to the operation of the system

FILE_A 7TR IBLITE_HIDDEN Sets the hidden bit The file will be visible

only to users who have the View All Files option set in the Explorer

FILE_FLAG_WRITE_THROUGH Write operations to the file wont be la

zily cached in memory

FILE_FLAG_RANDOM_ACCESS Indicates to the system that the file will

be randomly accessed instead of sequentially accessed This flag can help

the system determine the proper caching strategy for the file

Windows CE doesnt support number of file attributes and file flags that are

supported under Windows 98 and Windows NT The unsupported flags include but

arent limited to the following FILE_ATFRIBUTE_OFFLINE FILE_FLAG_OVERLAPPED

FILE_FLAG_NO_BUFFERING FILE_FLAG_SEQUENTIAL_SCAN FILE_FLAG_DELETE_

ON_CLOSE FILE_FLAG_BACKUP_SEMANTICS and FILE_FLAG_POSIX_SEMANTICS

383

Page 00406

Part II Wndows CE Bascs

Under Windows NT and Windows 98 the flag FILE_ATTRIBUTE_TEMPORARY is used

to indicate temporary file but as well see below its used by Windows CE to indi

cate directory that is in reality separate drive or network share

The final parameter in CreateFile Template is ignored by Windows CE and

should be set to CreateFile returns handle to the opened file if the function was

successful If the function fails it returns INVALID_HANDLE_VALUE To deteriiiine

why the function failed call GetLastError If the dwCreationDistribution flags included

CREATE_ALWAYS or OPEN_ALWAYS you can determine whether the file previously

existed by calling GetLastError to see if it returns ERROR_ALREADY_EXISTS CreateFile

will set this error code even though the function succeeded

Reading and Writing

Windows CE supports the standard Win32 functions ReadFile and WriteFile Reading

file is as simple as calling the following

BOOL ReadFile HANDLE hFile LPVOID lpBuffer
DWORD nNumberOfBytesloRead

LPDWORD lpNumberOfBytesRead LPOVERLAPPED ipOverlapped

The parameters are fairly self-explanatory The first parameter is the handle of the

opened file to read followed by pointer to the buffer that will receive the data and

the number of bytes to read The fourth parameter is pointer to DWORD that will

receive the number of bytes that was actually read Finally the ipOverlapped parameter

must be set to NULL because Windows CE doesnt support overlapped file opera
tions As an aside Windows CE does support multiple reads and writes pending on

device it just doesnt support the ability to return from the function before the

operation completes

Data is read from the file starting at the file offset indicated by the file pointer

After the read has completed the file pointer is adjusted by the number of bytes read

ReadFile wont read beyond the end of file If call to ReadFile asks for more

bytes than remains in the file the read will succeed but only the number of bytes

remaining in the file will be returned This is why you must check the variable pointed

to by lpNumberOJEytesRead after read completes to learn how many bytes were

actually read call to ReadFile with the file pointer pointing to the end of the file

results in the read being successful but the number of read bytes is set to

Writing to file is accomplished with this

BOOL WriteFile HANDLE hFile LPCVOID lpBuffer
DWORD nNumberofBytesToWrite

LPDWORD pNumberofBytesWri tten
LPOVERLAPPED ipOverlapped

384

Page 00407

Chapter Files Databases and the Registry

The parameters are similar to ReadFile with the obvious exception that lpBuffer now
points to the data that will be written to the file As in ReadFile the ipOverlapped

parameter must be NULL The data is written to the file offset indicated by the file

pointer which is updated after the write so that it points to the byte immediately

beyond the data written

Moving the file pointer

The file pointer can be adjusted manually with call to the following

DWORD SetFilePointer HANDLE hFile LONG iDistanceloMove

PLONG lpDistanceToMoveHigh DWORD dwMoveMethod

The parameters for SetFilePointer are the handle of the file signed offset distance

to move the file pointer second upper 32-bit offset parameter and dwMoveMethod

parameter indicating how to interpret the offset While iDistanceToMove is signed

32-bit value lpDistanceToMoveHigh is pointer to signed 32-bit value For file pointer

moves of greater than GB lpDistanceToMoveHigh should point to LONG that

contains the upper 32-bit offset of the move This variable will receive the high 32

bits of the resulting file pointer For moves of less than GB simply set lpDistance

ToMoveHigh to NULL Clearly under Windows CE the lpDistanceToMoveHigh pa
rameter is bit excessive but having the function the same format as its Windows NT

counterpart aids in portability across platforms

The offset value is interpreted as being from the start of the file if dwMoveMethod

contains the flag FILE_BEGIN To base the offset on the current position of the file

pointer use FILE_CURRENT To base the offset from the end of the file use FILE_END

in dwMoveMethod

SetFilePointer returns the file pointer at its new position after the move has been

accomplished To query the current file position without changing the file pointer

simply call SetFilePointer with zero offset and relative to the current position in the

file as shown here

nCurrFilePtr SetFilePointer hFile NULL FILE_CURRENT

Closing file

Closing file handle is simple as calling

BOOL CloseHandle HANDLE hObject

This generic call used to close number of handles is also used to close file handles

The function returns TRUE if it succeeds If the function fails call to GetLastError

will return the reason for the failure

385

Page 00408

Part II Windows CE Basics

Truncating file

When you have finished writing the data to file you can close it with call to

CloseHandle and youre done Sometimes however you must truncate file to make

it smaller than it currently is In the days of MS-DOS the way to set the end of file

was to make call to write zero bytes to file The file was then truncated at the

current file pointer This wont work in Windows CE To set the end of file hiove

the file pointer to the location in the file where you want the file to end and call

BOOL SetEndOfFile HANDLE hFile

Of course for this call to succeed you need write access to the file The function

returns TRUE if it succeeds

To insure that all the data has been written to storage device and isnt just

sitting around in cache you can call this function

WINBASEAPI BOOL WINAPI FlushFileBuffers HANDLE hFile

The only parameter is the handle to the file you want to flush to the disk or more

likely in Windows CE PC Card

Getting file information

number of calls allow you to query information about file or directory To quickly

get the attributes knowing only the file or directory name you can use this function

DWORD GetFileAttributes LPCTSTR lpFileName

In general the attributes returned by this function are the same ones that covered

for CreateFile with the addition of the attributes listed below

FILE_ATTRIBUTE_COMPRESSED The file is compressed

FILE_A TTRJBUTE_INROM The file is in ROM

FILE_ATrRIBUTE_ROMMODULE The file is an executable module in ROM
formatted for execute-in-place loading These files cant be opened with

CreateFile

FILE_ATTRIBUTE_DIRECTORY The name specifies directory not file

FILE_ATTRIBUTE_TEMPORARY When this flag is set in combination with

FILE_ATFRIBUTE_DIRECTORY the directory is the root of secondary

storage device such as PC Card or hard disk

The attribute FILE_AURIBUTE_COMPRESSED is somewhat misleading on

Windows CE device Files in the RAM-based object store are always compressed but

this flag isnt set for those files On the other hand the flag does accurately reflect

386

Page 00409

Chapter Files Databases and the Registry

whether file in ROM is compressed Compressed ROM files have the advantage of

taking up less space but the disadvantage of not being execute-in-place files

An application can change the basic file attributes such as read only hidden

system and attribute by calling this function

BOOL SetFileAttributes LPCTSTR lpFileName DWORD dwFileAttributes

This function simply takes the name of the file and the new attributes Note that you
cant compress file by attempting to set its compressed attribute Under other Win
dows systems that do support selective compression of files the way to compress
file is to make call directly to the file system driver

number of other informational functions are supported by Windows CE All

of these functions however require file handle instead of filename so the file

must have been previously opened by means of call to CreateFile

File times

The standard Win32 API supports three file times the time the file was created the

time the file was last accessed that is the time it was last read written or executed
and the last time the file was written to That being said the Windows CE Object store

keeps track of only one time the time the file was last written to One of the ways to

query the file times for file is to call this function

BOOL GetFileTime HANDLE hFile LPFILETIME lpCreationTime
LPFILETIME lpLastAccessTirne

LPFILETIME lpLastWriteTime

The function takes handle to the file being queried and pointers to three FILETIME

values that will receive the file times If youre interested in only one of the three yalues

the other pointers can be set to NULL
When the file times are queried for file in the object store Windows CE cop

ies the last write time into all FILETIME structures This goes against Win32 documen

tation which states that any unsupported time fields should be set to For the FAT

file system used on storage cards two times are maintained the file creation time

and the last write time When GetFileTime is called on file on storage card the file

creation and last write times are returned and the last access time is set to

The FILETIME structures returned by GetFileTime and other functions can be

converted to something readable by calling

BOOL FileTimeloSystemTime const FILETIME lpFileljme
LPSYSTEMTIME lpSystemTirne

This function translates the FILETIME structure into SYSTEMTIME structure that has

documented day date and time fields that can be used One large caveat is that file

times are stored in coordinated universal time format UTC also known as Greenwich

387

Page 00410

Part II Whdows CE Bascs

Mean Time This doesnt make much difference as long as youre using unreadable

FILETIME structures but when youre translating file time into something readable

call to

BOOL FilelirneToLocalFilelime const FILETIME lpFileiime
LPFILETIME ipLocalFileTime

before translating the file time into system time provides the proper time zone trans

lation to the user

You can manually set the file times of file by calling

BOOL SetFilelime HANDLE hFile const FILETIME lpCreationlime

const FILETIME lpLastAccessTime

const FILETIME lpLastWritelime

The function takes handle to file and three times each in FILETIME format If you

want to set only one or two of the times the remaining parameters can be set to NULL
Remember that file times must be in UTC time not local time

For files in the Windows CE object store setting any one of the time fields re

sults in all three being updated to that time If you set multiple fields to different times

and attempt to set the times for an object store file the lpLastWrite Time takes prece

dence Files on storage cards maintain separate creation and last-write times You must

open the file with write access for SetFileTime to work

File size and other information

You can query files size by calling

DWORD GetFileSize HANDLE hFile LPDWORD lpFileSizeHigh

The function takes the handle to the file and an optional pointer to DWORD thats

set to the high 32 bits of the file size This second parameter can be set to NULL if

you dont expect to be dealing with files over GB GetFileSize returns the low 32

bits of the file size

Ive been talking about these last few functions separately but an additional

function GetFilelnformationByHandle returns all this information and more The

function prototyped as

BOOL GetFilelnformationByHandle HANDLE hFile

LPBY_HANDLE_FILE_INFORMATION lpFilelnformation

takes the handle of an opened file and pointer to BY_HANDLE_FILE_

INFORMATION structure The function returns TRUE if it was successful

The BY_HANDLE_FILEJNFORMATION structure is defined this way

typedef struct _BYHANDLE_FILE_INFORMATION

DWORD dwFileAttributes

FILETIME ftCreationhime

FILETIME ftLastAccesslime

388

Page 00411

Chapter Files Databases and the Registry

FILETIME ftLastWriteTime

DWORD dwVolunieSerialNumber

DWORD nFileSizeHigh

DWORD nFileSizeLow

DWORD nNumberOfLinks

DWORD nFilelndexHigh

DWORD nFilelndexLow

DWORD dwOID

BY_HANDLE_FILE_INFORMATION

As you can see the stmcture returns data in number of fields that separate func
tions return Ill talk about only the new fields here

The dw VolumeSerjaljvumber field is filled with the serial number of the volume

in which the file resides The volume is whats considered disk or partition under
Windows 98 or Windows NT Under Windows CE the volume refers to the object

store storage card or disk on local area network For files in the object store
the volume serial number is

The nNumberOftinks field is used by Windows NTs NTFS file system and can
be ignored under Windows CE The nFilelndexHigh and nFilelndexLow fields con
tain systemwide unique identifier number for the file This number can be checked

to see whether two different file handles point to the same file The File Index value

is used under Windows NT and Windows 98 but Windows CE has more useful value
the object ID of the file which is returned in the dwOID field Ill explain the object

ID later in the chapter for now Ill just mention that its universal identifier that

can be used to reference directories files databases and individual database records

Handy stuff

The FileView Sample Program

FileView is an example program that displays the contents of file in window It

displays the data in hexadecimal format instead of text which makes it different from

simply opening the file in Microsoft Pocket Word or another editor FileView is sim
ply file viewer it doesnt allow you to modify the file The code for FileView is shown
in Figure 7-1

FileView.rc/_
II Resource file

1/ Written for the book Programming Windows CE

/1 Copyright 1998 Douglas Boling

Figure 71 The 7cuer iam continued

389

Page 00412

Part II Windows CE Bscs

Figure 7-1 continued

áidrnl t91tvc \A tu

IP

f$fl

D41uf
.bprr

ihI1
41

2WiTh

O4

tpN I2f dc

/1
ND

390

Page 00413

Chaptcr Files Databases and the Registry

define dimx sizeofx sizeofxtO

II

1/ Generic defines and data types
1/

struct decodeUlNl II Structure associates
UINT Code ii messages

II with function
LRESULT FxnHWND UINT WPARAM LPARAM

struct decodecMD II Structure associates
UINT Code ii menu IDs with

FxnHWND WORD HWND WORD II function

1/

II Generic defines used by application
define ID_ICON II Application icon

/1 Resource ID

define IDC_CMDBAR /1 Command band ID

define ID_MENU II Main menu resource ID

define ID_VIEWER II View control ID

II Menu item IDs

define 1DM_OPEN 101 II File menu
define 1DM_EXIT 102

define 1DM_ABOUT 120 II Help menu

II

II Function prototypes

INT F4yGetFileName HWND hWnd LPTSTR szFileName INT nMax

mt InitApp HINSTANiE
HWND Iriitlnstance H1NSTANcE LPWSTR lot
mt Termlnstance HINSTANCE int

II Window procedures

CALLBACK MainWndprac HWND UINT WPARAM LPARAM

II Message handlers

LRESULT DoCreateMajn HWND UINT WPARAM LPARAM
DoSizeMain HWND UINT WPARAM

LRESULT DoCommandMain HWND UINT WPARAM LPARAM
LRESULT DoDestroyMain HWND UINT WPARAM LPARAM

continued

391

Page 00414

Part II Whidows CE Bascs

Figure 7-1 continued

wi1

jpIv

dIp

392

Page 00415

Chapter Files Databases and the Registry

II

II Program

1/

mt WINAPI Win

HWND hwnd

MSG msg
mt rc

II Intti

rc

if

nCrndShow

1/

II

ret

//
/1

/1

mt

/1

style

iback function
wc.c data
wc indow data
wc handi
wc catio

wc
wc.l

continued

393

Page 00416

Part II Whidows CE Basics

Figure 7-1 continuediIiII_
r9 14 1i4k

tkP1 to
j_t 4V

Lq4Jvv
zii ir

iiIpp4iP
rq1t$ti VLeI14 tjIMJ LT1t4

vt

rS1if Mb th

ps114

rIJW1

jW fr

--

394

Page 00417

Chapter Files Databases and the Registry

LRESULT CALLBACK MainWndProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

INT

II

/I Search message list to see if we need to handle this

II message If in list call function

for dimMainMessages
if wMsg MainMessagesLi.code

return .MainMessagesi.FxnhWnd wMsg wParam lParam

return DefWindowProc hWnd wMsg wParam iParam

II

1/ DoCreateMain Process WM_CREATE message for window

If

LRESULT DoCreateMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

HWND hwndCB hwndChild

INT nHeight nCnt
RECT rect

LPCREATESTRUCT lpcs

1/ Convert lParam into pointer to create structure

lpcs LPCREATESTRUCT lParam

II Create minimal command bar that only has menu and an

II exit button

hwndCB CommendSar_Create hlnst hWnd IDC_CMDBAR
1/ Insert the menu
CommandBar_InsertMenubar hwndCB hlnst ID_MENU

II Add exit button to command bar

CommandBar_AddAdornments hwndCB

nHeight CommandBar_Height hwndCB

SetRect rect nHeight lpcs-cx lpcs-cy nHeight
hwndChild CreateViewer hWnd rect ID_VIEWER

II Destroy frame if window not created

if IsWindow hwndChild
DestroyWindow hWnd
return

ListView_SetltemCount hwndChild nCnt
return

coiltil/EICC1

395

Page 00418

Part II Whdows CE Basics

Figure 7-1 continued

pm4rpct

iwJr1yi ti
riv$mi

44

iW MI

J4II

396

Page 00419

Chapter Files Databases and the Registry

LRESIJLT DoDestroyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

PostQuitMessage

return

II Command handler routines

II

// DoMainCommandOpen Process File Open command

II

LPARAPI DoMainCommandOpen HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

TCHAR szFi eNameMAX._PATHJ szlext
HWNO hwndViewer

INT rc

hwndViewer GetDlgltem hWnd ID_VrEWER

if MyGetFileName hWnd szFileName dlmszFileName
return

II Tell the viewer control to open the file

rc SendMessage hwndViewer VM OPEN LPARAMszFileName

if rc
wsprintf szText TEXT File open failed rc %d .rc
MessageBox ChWnd szlext szAppName MB_OK
return

return

If

1/ DoMainCommandExit Process Program Exit command

II

LPARAM DoMainCommandExit HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

SendMessage hWnd WM_CLOSE

return

II

//DoMainCommandVText Process the View Text command

II

LPARAM DoMainCornmandVlext HWND hWnd WORD iditem HWND hwndCtl

WORD wNotifyCode

return

continued

397

Page 00420

Part II Whidows CE Easics

Figure 7-1 continued

1r

ipW4f

398

Page 00421

Chapter Files Databases and the Registry

of.lStructSize sizeof of
ofhwndOwner hWnd

of.lpstrFile szFileName

of.nMaxFile nMax

of.lpstrFilter pszOpenFilter

of.Flags

if GetOpenFileName of
return istrien szFileNanie

else

return

Viewer.h

II Header file

II Written for the book Programming Windows CE

1/ Copyright 1998 Douglas Boling

define VMOPEN WM_USER100

II

II Function prototypes

int RegisterCtl HINSTANCE hinstance

HWND CreateViewer HWND hParent RECT prect mt nID
mt TermViewer HINSTANCE hinstance mt nDefRC

Viewer.c

II Viewer file view control

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Baling

include windows.h II For all that Windows stuff

include fileview.h /1 Program-specific stuff

include viewer.h II Control-specific stuff

cOntifllWd

399

Page 00422

Part II Wndows CE acs

Figure 7-1 continueduti
ft

14

4t ri
.w1iiIiWL

t1

11L 1/4M1

1MEL

UTP
daI ivijkç4

__ LF4

400

Page 00423

Chapter Files Databases and the Registry

II Register application viewer window class

wc.style II Window style

wc.lpfnWndProc ViewerWndProc II Callback function

wc.cbClsExtra II Extra class data

wc.cbWndExtra II Extra window data

wc.hlnstance hlnstance II Owner handle

wc.hlcon NULL II Application icon

wchCursor NULL ii Default cursor

wc.hbrBackground HBRUSH GetStockObject WHITE_BRUSH
wc.lpszMenuName NULL II Menu name

wc.lpszClassName szViewerCls /1 Window class name

if RegisterClass wc return

return

1/

II CreateViewer Create viewer control

/1

HWNO CreateViewer HWND hParent RECT prect mt nID
HWND hwndCtl

II Create viewer control

hwndCtl CreateWindowEx szViewerCls TEXT

WS_VISIBLE WS_CHILD WS_VSCROLL

WS_BORDER prect-left prect-top
prect-right prect-left
prect-bottom prect-top
hParent HMENUnID hlnst NULL

return hwndCtl

/1

II Ternilnstance Program cleanup

int TereViewer HINSTANCE hlnstance mt nDefRC

if g_hFile
CloseHandle g_hFile II Close the opened file

if g_pBuff
LocalFree g_pBuff II Free buffer

if g_hFont
DeleteObject g_hFont

return nDefRC

continued

401

Page 00424

Part II Wndows CE Bascs

Figure 7-1 continued

it

4i
wM

4W ri1L IIPftL

PX4III

%IiIIIi xvIIAJIPtr

AIP
.i

TZ

402

Page 00425

Chapter Files Databases and the Registry

II

II ComposeLine Converts hex buff to unicode string

1/

mt ComposeLine UNT nOffset LPTSTR szOut

INT nLen nBuffOffset

ICHAR szTmp
LPBYTE pPtr
OWORD cBytes

szOut TEXT \B
if g_hFile II If no file open no text

return

II Make sure we have enough bytes in buffer for dump
if nOffset 16 g_lBuffBase g_nBuffLen

nOffset g_lBuffBase

II Move file pointer to new place and read data
SetFilePointer g_hFile nOffset NULL FILE_BEGIN
if ReadFile g_hFile g_pBuff BUFFSIZE cBytes NULL

return

g..JBuffBase nOffset

g_nBuffLen cBytes

nBuffOffset nOffset g_lBuffBase

if nBuffoffset g.nBuffLen

return

1/ Now create the text for the line

wsprintf szOut TEXT %08X nOffset

pPtr g_pBuff nBuffOffset

nLen g_nBuffLen nBuffOffset

if nLen 16
nLen 16

for nLen

wsprintf szTmp TEXT %02X pPtr
lstrcat szOut s2Tfllp

if

lstrcat szOut TEXT

else

lstrcat szOut TEXT

return oLen

continued

403

Page 00426

Part II Windows CE ascs

Figure 7-1 continued

Li1_PMpipri
ASb4

iiPi

I%kmu
1p

44$

AM
2M

404

Page 00427

Cbapter Files Databases and the Registry

GetClientRect hWnd rect

switch LOWORD wParain
case SB_LINEUP

g_lFilePtr 16
break

case SB_LINEDOWN

g_IFilePtr 16
break

case SB_PAGEUP

g_lFilePtr g_nPageLen

break

case SB_PAGEDOWN

g_lFilePtr g_nPageLen

break

case SB_THUMBPOSITION

g_lFilePtr HIWORD wParam
break

II Check range

if g_lFilePtr

g_lFilePtr

if g_lFilePtr g_lFileSize-16

g_lFilePtr g_lFileSize 16 OxfffffffB

1/ If scroll position changed update scrolibar and

II force redraw of window

If g_lFilePtr sOldPos

si.cbSize sizeof si
sInPos g_lFilePtr

si.fMask SIF_POS

SetScrolllnfo hWnd SO_VERT si TRUE

InvalidateRect hWnd NULL TRUE

return

II

II DoDestroyViewer Process WPLDESTROY message for window

II

continued

405

Page 00428

Partil Whidows CE Basics

Figure 7-1 continued

L4

.tr44wp rmIiih
PWi4 4P 4m rLI

fjJ5
PUP VE

iif
cpIdIIm

406

Page 00429

Chapter Files Databases and the Registry

hdc GetOC hWnd
if hFontln

hFontln GetStockObject SYSTEM_FONT
hOidForit SelectObject hdc hFontln
GetTextMetrics hdc tm
SeiectObject hdc hOldFont
ReleaseoC hWnd hdc

niernset lf sizeof if
if.lfHeight -tm.tmlleight

lf.lfWeight tm.tmWeight
lf.ifItalic tm.tmltaiic

lf.lfUnderline tm.tmUnderiined

lf.lfStrikeOut tni.tniStruckOut

lf.ifCharSet tm.tmCharSet

if.lfOutPrecjsion OUT_DEFAULT_PRECIS
f.lfCl ipPrecision CLIP_DEFAULT_PRECIS

if.lfOuaiity DEFAULT_QUALITY

lf.lfPitchAndFamiiy tm.tmPitchAndFamily OxfO TMPF_FIXED.JITCH

lf.lfFaceName TEXT \O
II Create the font from the LOGFONT structure passed
return .reateFontIndirect if

The source code is divided into two files fileVie .c and Viewer.c FileView .c

contains the standard windows functions and the menu command handlers In

Viewer.c yoLi
find the source code for child window that opens the file and clis

plays its contents The routines of interest are DoOpen iewei where the file is opened
and CoinposeLine where the file data is read Both of these routines are in Viewer.c

DoOpen 7euer uses 6reateFile to open the file with read only access If the function

succeeds it calls to queiy the size of the file being viewed This is used to

initialize the range of the view window scrollbar The window is then invalidated to

force WM_PAINT message to be sent

In the WM_PAIN handler OnPaintl 7ewer lixed pitch font is selected into

the device context and data from the file starting at the current scroll location is

displayed in the window after the application calls the CoinposeLine function This

routine is responsible for reading the file data into O96-byte buffer he data is

then read out of the buffer 16 bytes at time as each line is displayed If the data for

the line isnt in the file buffer ComposeLine refills the buffer with the pioper data from

the file by calling SetFileIoinier and then Rca dPi/c

407

Page 00430

Part II Windows CE Basics

Memory-MaPPed Files and Objects

Memory-mapped files give you completely different method for reading and writ

ing files With the standard file I/O functions files are read as streams of data To

access bytes in different parts of file the file pointer must be moved to the first byte

the data read the file pointer moved to the other byte and then the file read again

With memorr-mapped files the file is mapped to region of memory Then

instead of using FileRead and FileWrite you simply read and write the region of

memory thats mapped to the file Updates of the memory are automatically reflected

back to the file itself Setting up memory-mapped file is somewhat more complex

process than making simple call to CreateFile but once file is mapped reading

and writing the file is trivial

Memory-mapped files

Windows CE uses slightly different procedure from Windows NT or Windows 98 to

access memory-mapped file To open file for memory-mapped access new

function unique to Windows CE is used its named CreateFileForMapping The pro

totype for this function is the following

HANDLE CreateFileForMapping LPCTSTR lpFileName DWORD dwDesiredAccess

DWORD dwShareMode

LPSECURITY_ATTRIBUTES lpSecurityAttributes

DWORD dwCreationDisposition

DWORD dwFl agsAndAttri butes

HANDLE hlemplateFile

The parameters for this function are similar to those for CreateFile The filename

is the name of the file to read The dwDesiredAccess parameter specifying the access

rights to the file must be combination of GENERIC_READ and GENERIC_WRITE

or it must be The security attributes must be NULL while the hTemplateFile pa
rameter is ignored by Windows CE Note that Windows CE 2.1 is the first version of

Windows CE to support write access to memory-mapped files If you try to use this

function in versions earlier than 2.1 it will fail if the dwDesiredAccess parameter con

tains the GENERIC_WRITE flag

The handle returned by CreateFileForMapping can then be passed to

HANDLE CreateFileMapping HANDLE hFile

LPSECURITY_ATTRIBUTES lpFileMappingAttributes

DWORD fiProtect DWORD dwMaxiniuniSizeHigh

DWORD dwMaximumSizeLow LPCTSTR lpName

This function creates file mapping object and ties the opened file to it The first

parameter for this function is the handle to the opened file The security attributes

parameter must be set to NULL under Windows CE The fiProtect parameter should

be loaded with the protection flags for the virtual pages that will contain the file data

408

Page 00431

Chapter Files Databases and the Registry

The maximum size parameters should be set to the expected maximum size of the

object or they can be set to if the object should be the same size as the file being

mapped The lpName parameter allows you to specify name for the object This is

handy when youre using memory-mapped file to share information across differ

ent processes Calling CreateFileMapping with the name of an already-opened file-

mapping object returns handle to the object already opened instead of creating

new one

Once mapping object has been created view into the object is created by

calling

LPVOID MapViewOfFile HANDLE hFileMappingObject DWORD dwDesiredAccess
DWORD dwFileOffsetHigh DWORD dwFileOffsetLow

DWORD dwNumberOfBytesloMap

Map ViewOfrile returns pointer to memory thats mapped to the file The function

takes as its parameters the handle of the mapping object just opened as well as the

access rights which can be FILE_MAP_READ FILE_MAP_WRITE or FILE_MAP_ALL_

ACCESS The offset parameters let you specify the starting point within the file that

the view starts while the dwNumberOfBytesToMap parameter specifies the size of

the view window

These last three parameters are useful when youre mapping large objects In

stead of attempting to map the file as one large object you can specify smaller view

that starts at the point of interest in the file This reduces the memory required be-j

cause only the view of the object not the object itself is backed up by physical RAM
When youre finished with the memory-mapped file little cleanup is required

First call to

BOOL UnmapViewOfFile LPCVOID lpBaseAddress

unmaps the view to the object The only parameter is the pointer to the base address

of the view

Next call should be made to close the mapping object and the file itself Both

these actions are accomplished by means of calls to CloseHandle The first call should

be to close the memory-mapped object and then CloseHandle should be called to

close the file

The code fragment that follows shows the entire process of opening file for

memory mapping creating the file-mapping object mapping the view then clean

ing up The routine is written to open the file in read-only mode This allows the code

to run under all versions of Windows CE

HANDLE hFile hFileMap
PBYTE pFileMem
TCHAR szFileName

continued

409

Page 00432

Part ii Wndows CE Basics

II Get the filename

hFile CreateFileForMapping szFileName GENERIC_READ

FILE_SHARE_READ NULL

OPEN_EXISTING FILE_ATTRIBUTE_NORMAL

FILE_FLAG_RANDOM_ACCESS

if hFile INVALID_HANDLE_VALUE

hFileMap CreateFileMapping hFile NULL PAGE....READONLY

if hFileMap
pFileMem MapViewOfFile hFileMap FILE_MAP...READ

if pFileMem
Il

/I Use the data in the file

II Start cleanup by unmapping view

UnmapViewOfFile pFileMem

CloseHandle hFileMap

CloseHandle hFile

Memory-mapped objects

One of the more popular uses for memory-mapped objects is for interprocess com
munication For this purpose you dont need to have an actual file its the shared

memory thats important Windows CE supports entities referred to as unnamed

memory-mapped objects These objects are memory-mapped objects that under Win
dows NT and Windows 98 are backed up by the paging file but under Windows CE

are simply areas of virtual memory with only program RAM to back up the object

Without the paging file these objects cant be as big as they would be under Win
dows NT or Windows 98 bUt Windows CE does have way of minimizing the RAM

required to back up the memory-mapped object

You create such memory-mapped object by eliminating the call to

CreateFileForMapping and passing ai in the handle field of CreateFileMapping Since

no file is specified you must specif the size of the memory-mapped region in the

maximum size fields of CreateFileMapping The following routine creates 16-MB

region using memory-mapped file

II Create 16-MB memory mapped object

hNFileMap CreateFileMapping HANDLE-1 NULL PAGE_READWRITE

0x1000000 NULL

410

Page 00433

Chapter Files Databases and the Registry

if hNFileMap
II Map in the object

pNFileMem MapViewOfFile hNFileMap
FILE_MAP_WRITE

The memory object created by the code above doesnt actually conm-iit 16 MB
of RAM Instead only the address space is reserved Pages are autocommitted as theyre

accessed This process allows an application to create huge sparse array of pages

that takes up only as much physical RAM as is needed to hold the data At some point

however if you start reading or writing to greater number pages youll run out

of memory When this happens the system generates an exception Ill talk about

how to deal with exceptions in the next chapter The important thing to remember is

that if you really need RAM to be committed to memory-mapped object you need

to read each of the pages so that the system will commit physical RAM to that ob
ject Of course dont be too greedy with RAM commit only the pages you abso

lutely require

Naming memory.mapped object

memory-mapped object can be named by passing string to CreateFileMapping

This isnt the name of file being mapped Instead the name identifies the mapping

object being created In the previous example the region was unnamed The follow

ing code creates named memory-mapped object named Bob This name is global

so that if another process opens mapping object with the same name the two pro
cesses will share the same memory mapped object

II Create 16-MB memory mapped object

hNFileMap CreateFileMapping HANDLE-1 NULL PAGEREADWRITE

0x1000000 TEXT Bob
if hNFileMap

II Map in the object

pNFileMem MapViewOfFile hNFileMap
FILE_MAP_WRITE

The difference between named and unnamed file mapping objects is that

named object is allocated only once in the system Subsequent calls to CreateFile

Mapping that attempt to create region with the same name will succeed but the

function will return handle to the original mapping object instead of creating new

one For unnamed objects the system creates new object each time CreateFile

Mapping is called

When using memory-mapped object for interprocess communication processes

should create named object and pass the name of the region to the second process

not pointer While the first process can simply pass pointer to the mapping region

to the other process this isnt advisable If the first process frees the memory-mapped

411

Page 00434

Part II Whidows CE Basics

file region while the second process is still accessing the file an exception will oc
cur Instead the second process should create memory-mapped object with the same

name as the initial process Windows knows to pass pointer to the same region that

was opened by the first process The system also increments use count to track

the number of opens named memory-mapped object wont be destroyed until

all processes have closed the object This assures process that the object will re

main at least until it closes the object itself The XTALK example in Chapter pro
vides an example of how to use named memory mapped object for interprocess

communication

Navigating the File System

Now that weve seen how files are read and written lets take look at how the

files themselves are managed in the file system Windows CE supports most of the

convenient file and directory management APIs such as CopyFile MoveFile and

CreateDirectory

File and directory management
Windows CE supports number of functions useful in file and directory management

You can move files using MoveFile copy them using CopyFile and delete them using

DeleteFile You can create directories using CreateDirectory and delete them using

RemoveDirectory While most of these functions are straightforward should cover

few intricacies here

To copy file call

BOOL CopyFile LPCTSTR lpExistingFileName LPCTSTR lpNewFileName

BOOL bFaillfExists

The parameters are the name of the file to copy and the name of the destination di

rectory The third parameter indicates whether the function should overwrite the

destination file if one already exists before the copy is made
Files and directories can be moved and renamed using

BOOL MoveFile LPCTSTR lpExistingFileName LPCTSTR lpNewFileNam

To move file simply indicate the source and destination names for the file The

destination file must not already exist File moves can be made within the object store

from the object store to an external drive or from an external drive to the object store

MoveFile can also be used to rename file In this case the source and target direc

tories remain the same only the name of the file changes

MoveFile can also be used in the same manner to move or rename directories

The only exception is that MoveFile cant move directory from one volume to an
other Under Windows CE MoveFile moves directory and all its subdirectories and

412

Page 00435

Chapter Files Databases and the Registry

files to different location within the object store or different locations within an
other volume

Deleting file is as simple as calling

BOOL DeleteFile LPCTSTR lpFileName

You pass the name of the file to delete For the delete to be successful the file must

not be currently open
You can create and destroy directories using the following two functions

BOOL Createoirectory LPCTSTR lpPathName

LPSECURITYATTRIBUTES lpSecurityAttributes

and

BOOL Removeoirectory LPCTSTR lpPathName

CreateDirectory takes the name of the directory to create and security parameter

that should be NULL under Windows CE RemoveDirectory deletes directory The

directory must be empty for the function to be successful

Finding files

Windows CE supports the basic FindFirstFile FindNextFile FindClose procedure for

enumerating files as is supported under Windows NT or Windows 98 Searching is

accomplished on per-directory basis using template filenames with wild card char

acters in the template

Searching directory involves first passing filename template to FindFirstFile

which is prototyped in this way

HANDLE FindFirstFile LPCTSTR lpFileName

LPWIN32_FIND_DATA lpFindFileData

The first parameter is the template filename used in the search This filename can

contain fully specified path if you want to search directory other than the root

Windows CE has no concept of Current Directory built into it if no path is specified

in the search string the root directory of the object store is searched

As would be expected the wildcards for the filename template are and

The question mark indicates that any single character can replace the question

mark The asterisk indicates that any number of characters can replace the as

terisk For example the search string \windows\alarm.wav would return the files

\windows\ alarmi .wav \windows\ alarm2 .wav and \windows\alarm3 .wav On the

other hand search string of \windows\ way would return all files in the windows

directory that have way extension

The second parameter of FindFirstFile is pointer to W1N32_FIND_DATA struc

ture as defined at the top of the following page

413

Page 00436

Part II Whidows CE Basics

typedef struct _W1N32_FIND_DATA

DWORD dwFileAttributes

FILETIME ftCreationTinie

FILETIME ftLastAccessTime

FILETIME ftLastWriteTjme

DWORD nFileSizeHigh

DWORD nFileSizeLow
DWORD dwOID

WCHAR cFileName MAX_PATH

W1N32_FIND_DATA

This structure is filled with the file data for the first file found in the search The fields

shown are similar to what weve seen

If FindFirstFjle finds no files or directories that match the template filename it

returns INVALIDHANDLEVALUE If at least one file is found FindFirstFile fills in

the W1N32 FIND DATA structure with the specific data for the found file and returns

handle value that you use to track the current search

To find the next file in the search call this function

BOOL FindNextFile HANDLE hFindFile

LPWIN32_FIND_DATA lpFindFileData

The two parameters are the handle returned by FindFirstFile and pointer to find

data structure FindNextFile returns TRUE if file matching the template passed to

FindFirstFile is found and fills in the appropriate file data in the WIN3 2_FIND_DATA
structure If no file is found FindNextFile returns FALSE

When youve finished searching either because FindNextFile returned FALSE or

because you simply dont want to continue searching you must call this function

BOOL FindClose HANDLE hFindFile

This function accepts the handle returned by FindFirstFile If FindFirstFile returned

INVALID_ HANDLE_VALUE you shouldnt call FindClose

The following short code fragment encompasses the entire file search process
This code computes the total size of all files in the Windows directory

W1N32_FIND_DATA fd
HANDLE hFind

INT nTotalSize

II Start search for all files in the windows directory
hFind FindFirstFile TEXT \\windows\\ fd
II If file was found hFind will be valid

if hFind INVALID_HANDLE_VALUE

414

Page 00437

Chapter Files Databases and the Registry

II Loop through found files Be sure to process file

II found with FindFirstFile before calling FindNextFile

do

II If found file is not directory add its size to

II the total Assume that the total size of all files

II is less than GB
if fd.dwFileAttributes FILE_ATTRIBUTE_DIRECTORY

nTotalSize fd.nFileSizeLow

II See if another file exists

while FindNextFile hFind fdfl

II Clean up by closing file search handle

FindClose hFind

In this example the windows directory is searched for all files If the found file isnt

directory that is if its true file its size is added to the total Notice that the return

handle from FindFirstFilemust be checked not only so that you know whether file

was found but also to prevent FindClose from being called if the handle is invalid

Determining drives from directories

As mentioned at the beginning of this chapter Windows CE doesnt support the

concept of drive letters so familiar to MS-DOS and Windows users Instead file stor

age devices such as PC Cards or even hard disks are shown as directories in the root

directory That leads to the question How can you tell directory from drive

The newer versions of Windows CE starting with version 2.1 dont have predefined

name for these other storage devices Using predefined name is shaky at best any

way given that the name was originally PC Card and then changed to Storage Card

Instead you need to look at the file attributes for the directory Directories that are

actually secondary storage devicesthat is they store files in place other than the

object storehave the file attribute flag FILEAYrfflBUTE_TEMPORARY set So finding

storage devices on any version of Windows CE is fairly easy as is shown in the fol

lowing code fragment

W1N32_FINDDATA fd
HANDLE hFind

TCHAR szPath
ULARGE_INTEGER lnTotal lnFree

lstrcpy szPath TEXT \\
hFind FindFirstFile szPath fd
if hFind INVALID_HANDLE_VALUE

continued

415

Page 00438

Part II Widows CE Basics

do

if fd.dwFileAttributes FILE_ATTRIBUTE_DIRECTORY

fd.dwFileAttributes FILE_ATTRIBUTE_TEMPORARY

II Get the disk space statistics for drive

GetDiskFreeSpaceEx fd.cFileName NULL lnlotal

lnFree

while FindNextFile hFind fd
FindClose hFind

This code uses the find first/find next functions to search the root directory for

all directories with the FILE_ATFRIBUTE_TEMPORARY attribute set

Notice in the code just showed you the call to this function

BOOL GetDiskFreeSpaceEx LPCWSTR lpDirectoryName

PULARGE_INTEGER lpFreeBytesAvailableToCaller

PULARGE_INTEGER lpTotalNumberOfBytes

PULARGE_INTEGER plotal NumberOfFreeBytes

This function provides information about the total size of the drive and amount of

free space it contains The first parameter is the name of any directory on the drive in

question This doesnt have to be the root directory of the drive GetDiskFreeSpaceEx

returns three values the free bytes available to the caller the total size of the drive

and the total free space on the drive These values are returned in three

ULARGE_INTEGER structures These structures contain two DWORJ fields named

LowPart and HighPart This allows GetDiskFreeSpaceEx to return 64-bit values Those

64-bit values can come in handy on Windows NT and Windows 98 where the drives

can be large If you arent interested in one or more of the fields you can pass NULL
in place of the pointer

for that parameter You can also use GetDiskFreeSpaceEx to determine the size of the

object store

Another function that can be used to determine the size of the object store is

BOOL GetStorelnformation LPSTORE_INFORMATION lpsi

GetStorelnformation takes one parameter pointer to STORE_INFORMATION struc

ture defined as

typedef struct STORE_INFORMATION

DWORD dwStoreSize

DWORD dwFreeSize

STORE_INFORMATION LPSTORE_INFORMATION

As you can see this structure simply returns the total size and amount of free space
in the object store Why would you use GetStorelnformation when GetDiskFree

SpaceEx is available and more general Because GetDiskFreeSpaceEx wasnt available

under Windows CE 1.0 but GetStorelnformation was

416

Page 00439

Chapter Files Databases and the Registry

That covers the Windows CE file API As you can see very little Windows CE
unique code is necessary when youre working with the object store Now lets look

at an entirely new set of functions the database API

DATABASES
Windows CE gives you an entirely unique set of database APIs not available under

the other versions of Windows The database implemented by Windows CE is simple

with only one level and maximum of four sort indexes but it serves as an effective

tool for organizing uncomplicated data such as address lists or to-do lists

Under the first two versions of Windows CE databases could reside only in the

object store not on external media such as PC Cards Starting with the release of

Windows CE 2.1 however Windows CE can now work with databases on PC Cards

or other storage devices This new feature required changes to the database API ef

fectively doubling the number of functions with xxxEx database functions now shad

owing the original database API While the newer versions of Windows CE still support

the original database functions those functions can be used only with databases stored

in the object store

Basic Definitions

Windows CE database is composed of series of records Records can contain

any number of properties These properties can be one of the data types shown in

Figure 7-2

Data Type Description

iVal 2-byte signed integer

uiVal 2-byte unsigned integer

iVal 4-byte signed integer

ulVal 4-byte unsigned integer

FILETIME time and date structure

LPWSTR 0-terminated Unicode string

CEBLOB collection of bytes

BOOL Boolean

Double 8-byte signed value

This data type supported only under Windows CE 2.1 and later

Figure 7-2 Database data types supported by Windows CE

417

Page 00440

Part II Whidows CE Basics

Records cant contain other records Also records can reside on only one data

base Windows CE databases cant be locked However Windows CE does provide

method of notifying process that another thread has modified database

Windows CE database can have up to four sort indices These indices are

defined when the database is created but can be redefined later although the restruc

turing of database takes large amount of time Each sort index by itself results in

fair amount of overhead so you should limit the number of sort indices to what

you really need

In short Windows CE gives you basic database functionality that helps appli

cations organize simple data structures The pocket series of Windows CE applica

tions provided by Microsoft with the H/PC H/PC Pro and the Palm-size PC use the

database API to manage the address book the task list and e-mail messages So if

you have collection of data this database API might just be the best method of

managing that data

Designing database
Before you can jump in with call to CeCreateData base you need to think carefully

about how the database will be used While the basic limitations of the Windows CE

database structure rule out complex databases the structure is quite handy for man
aging collections of related data on small personal device which after all is one of

the target markets for Windows CE
Each record in database can have as many properties as you need as long as

they dont exceed the basic limits of the database structure The limits are fairly loose

An individual property cant exceed the constant CEDB_MAXPROPDATASIZE which

is set to 65471 single record cant exceed CEDB_MAXRECORDSIZE currently

defined as 131072

Database volumes

Starting with Windows CE 2.1 database files can now be stored in volumes instead

of directly in the object store database volume is nothing more than specially

formatted file where Windows CE databases can be located Because database vol

umes can be stored on file systems other than the object store database information

can be stored on PC Cards or similar external storage devices The most immediate

disadvantage of working with database volumes is that they must be first mounted

and then unmounted after you close the databases within the volume Essentially

mounting the database creates or opens the file that contains one or more databases

along with the transaction data for those databases

There are disadvantages to database volumes aside from the overhead of

mounting and unmounting the volumes Database volumes are actual files and there

fore can be deleted by means of standard file operations The volumes are by de
fault marked as hidden but that wouldnt deter the intrepid user from finding and

418

Page 00441

Chapter Files Databases and the Registry

deleting volume in desperate search for more space on the device Databases

created directly within the object store arent files and therefore are much more dif

ficult for the user to accidentally delete

The Database API

Once you have planned your database given the restrictions and considerations nec
essary to it the programming can begin

Mounting database volume
To mount database volume call

BOOL CeMountDBVol PCEGUID pguid LPWSTR lpszVol DWORD dwFlags

This function performs dual purpose it can create new volume or open an exist

ing volume The first parameter is pointer to guid CeMountDB Vol returns guid
thats used by many of the Ex database functions to identify the location of the data

base file You shouldnt confuse the CEGUID-type guid parameter in the database

functions with the GUID type that is used by OLE and parts of the Windows shell

CEGUID is simply handle that tracks the opened database volume
The second parameter in CeMountDB Vol is the name of the volume to mount

This isnt database name but the name of file that will contain one or more data

bases Since the parameter is filename you should define it in \path\name.ext for

mat The standard extension should be cdb

The last parameter dwFlags should be loaded with flags that define how this

function acts The possible flags are the following

CREATE_NEW Creates new database volume If the volume already

exists the function fails

CREATE_ALWAYS Creates new database volume If the volume already

exists it overwrites the old volume

OPEN_EXISTING Opens database volume If the volume doesnt exist

the function fails

OPEN_ALWAYS Opens database volume If the volume doesnt exist

new database volume is created

TRUNCATE_EXISTING Opens database volume and truncates it to

bytes If the volume already exists the function fails

If the flags resemble the action flags for CreateFile they should The actions

of CeMountDB Vol essentially mirror CreateFile except that instead of creating or

419

Page 00442

Part II Wkidows CE Bascs

opening generic file CeMountDB Vol creates or opens file especially designed to

hold databases

If the function succeeds it returns TRUE and the guid is set to value that is

then passed to the other database functions If the function fails call to GetLastError

returns an error code indicating the reason for the failure

Database yolumes can be open by more than one process at time The sys
tem maintains reference count for the volume As the last process unmounts da
tabase volume the system unmounts the volume

Enumerated mounted database volumes
You can determine what database volumes are currently mounted by repeatedly calling

this function

BOOL CeEnumDBVolumes PCEGUID pguid LPWSTR lpBuf DWORD dwSize

The first time you call CeEnumDB Volumes set the guid pointed to by pguid to be

invalid You use the CREATE_INVALIDGUID macro to accomplish this CeEnumDB
Volumes returns TRUE if mounted volume is found and returns the guid and name
of that volume in the variables pointed to by pguid and lpBuff The dwSize param
eter should be loaded with the size of the buffer pointed to by lpBuff To enumerate

the next volume pass the guid returned by the previous call to the function Repeat

this process until CeEnumDB Volumes returns FALSE The code below demonstrates

this process

CEGUID guid
ICHAR szVol ume
INT nCnt

CREATE_INVALIDGUID guid
while CeEnurnDBVolumes guid szVolume sizeof szVolumefl

II guid contains the guid of the mounted volume
II szVolume contains the name of the volume

nCnt II Count the number of mounted volumes

Unmounting database volume
When you have completed using the volume you should unmount it by calling this

function

BOOL CeUnniountDBVol PCEGUID pguid

The functions only parameter is the guid of mounted database volume Calling this

function is necessary when you no longer need database volume and you want to

free system resources Database volumes are only unmounted when all applications

that have mounted the volume have called CeUnmountDB Vol

420

Page 00443

Chapter Files Databases and the Registry

Using the object store as database volume
If youre writing an application for Windows CE 2.1 or later you still might want to

use the new Ex database functions but not want to use separate database volume
Because most of the new Ex functions require CEGUID that identifies database

volume you need CEGUID that references the system object store Fortunately one

can be created using this macro

CREATE_SYSTEMGUID PCEGUID pguid

The parameter is of course pointer to CEGUID The value set in the CEGUID by

this macro can then be passed to any of the Ec database functions as placeholder

for separate volume CEGUID.Databases created within this system CEGUID are

actually created directly in the object store as if you were using the old non-Ex data

base functions

Creating database

Creating database is accomplished by calling one of two functions CeCreateData base

or CeCreateDatabaseEx The newer function is CeCreateDatabaseEx and works only

for Windows CE 2.1 and later CeCreateDatabase is the proper function to use on

Windows CE 2.0 First Im going to talk about CeCreateData base then Ill talk about

the expanded functionality of CeCreateDatabaseEx

CeCreateDatabase is prototyped as

CEOID CeCreateDatabase LPWSTR lpszName DWORD dwDbaselype

WORD wNumSortOrder

SORTORDERSPEC rgSortSpecs

The first parameter of the function is the name of the new database Unlike filenames

the database name is limited to 32 characters including the terminating zero The

deDbaseType parameter is user-defined parameter that can be employed to differ

entiate families of databases For example you might want to use common type

value for all databases that your application creates This allows them to be easily

enumerated At this point there are no rules for what type values to use Some ex
ample type values used by the Microsoft Pocket suite are listed in Figure 7-3

Database Value

Contacts 24 18 hex

Appointments 25 19 hex

Tasks 26 1A hex

Categories 27 lB hex

Figure 7-3 Predefined database types

421

Page 00444

Part II Whidows CE Basics

The values listed in Figure 7-3 arent guaranteed to remain constant simply

wanted to show some typical values If you use 4-byte value it shouldnt be too

hard to find unique database type for your application although theres no reason

another application couldnt use the same type

The final two parameters specify the sort specification for the database The

parameter wNtmSortOrder specifies the number of sort specifications up tb maxi

mum of while the rgSortSpecs parameter points to an array of SORTORDERSPEC

structures defined as

typedef struct _SORTORDERSPEC

PEGPROPID propid

DWORD dwFlags

SORTORDERSPEC

The first field in the SORTORDERSPEC structure is property ID or PEGPROPID

property ID is nothing more than unique identifier for property in the database

Remember that property is one field within database record The property ID is

DWORD value with the low 16 bits containing the data type and the upper 16 bits

containing an application-defined value These values are defined as constants and

are used by various database functions to identify property For example prop
erty that contained the name of contact might be defined as

clefine PID_NAME MAKELONG CEVT_LPWSTR

The MAKELONG macro simply combines two 16-bit values into DWORD or LONG
The first parameter is the low word or the result while the second parameter becomes

the high word In this case the CEVT_LPWSTR constant indicates that the property

contains string while the second parameter is simply value that uniquely identi

fies the Name property distinguishing it from other string properties in the record

The second field in the SORTORDERSPEC dwFlags contains flags that define

how the sort is to be accomplished The following flags are defined for this field

CEDB_SORT_DESCENDING The sort is to be in descending order By

default properties are sorted in ascending Order

CEDB_SORT_CASEINSENSITIVE The sort should ignore the case of the

letters in the string

CEDB_SORT_UI\rKATOWWFIRST Records without this property are to be

placed at the start of the sort order By default these records are placed

last

typical database might have three or four sort orders defined After database

is created these sort orders can be changed by calling CeSetDatabaselnfo However

422

Page 00445

Chapter Files Databasel and the Registry

this function is quite resource intensive and can take from seconds up to minutes to

execute on large databases

If you kant to open database outside of the object store you can use the fol

lowing function

CEOID CeCreateDatabaseEx PCEGUID pguid CEDBASEINFO plnfo

This function takes pguid parameter that identifies the mounted database volume

where the database is located The second parameter is pointer to CEDBASEINFO

structure defined as

typedef struct _CEDBASEINFO

DWORD dwFlags

WCHAR szDbaseName
DWORD dwDbaselype

WORD wNuniRecords

WORD wNumSortOrder

DWORD dwSize

FILETIME ftLastModified

SORTORDERSPEC rgSortSpecs
CEDBASEINFO

As you can see this structure contains number of the same parameters passed

individually to CeCreateData base The szDatabaseName dwDbaseType wNumSort

Order and rgSortSpecs fields must be initialized in the same manner as they are when

you call CeCreateDatabase

The dwFlags parameter has two uses First it contains flags indicating which

fields in the structure are valid The possible values for the dwFlags field are

CEDB_VALIDNAME CEDB_VAILIDTYPE CEDB_VALIDSORTSPEC and CEDB_VALID

DBFLAGS When youre creating database its easier to simply set the dwFlags field

to CEDB_VAIJDCREATE which is combination of the flags just listed An addi

tional flag CEDB_VALIDMODTIME is used when this structure is used by

CeOidGetlnfo

The other use for the dwFlags parameter is to specify the properties of the da

tabase The only flag currently defined is CEDB_NOCOMPRESS This flag can be speci

fied if you dont want the database youre creating to be compressed By default all

databases are compressed which saves storage space at the expense of speed By

specifing the CEDB_NOCOMPRESS flag the database will be larger but you will be

able to read and write the database faster

You can use CeCreateDatabaseEx but create database within the object store

instead of within separate database volume The advantage of this strategy is that

the database itself isnt created within file and is therefore safer from user who

might delete the database volume

The value returned by either CeCreateDatabase or CeCreateDatabaseEx is

CEOID We have seen this kind of value couple of times so far in this chapter Its

423

Page 00446

Part II WindOWS CE Bascs

an ID value that uniquely identifies the newly created database not just among other

databases but also among all files directories and even database records in the file

system If the value is an error occurred while you were trying to create the data

base You can call GetLastError to diagnose the reason the database creation failed

Opening database
In contrast to what happens when you create file creating database doesnt also

open the database To do that you must make an additional call to

HANDLE CeOpenDatabasePCEOID poid LPWSTR lpszName CEPROPID propid
DWORD dwFlags HWND hwndNotify

database can be opened either by referencing its CEOID value or by referencing

its name To open the database by using its name set the value pointed to by the

poid parameter to and specify the name of the database using the lpszName pa
rameter If you already know the CEOID of the database simply put that value in the

parameter pointed to by poid If the CEOID value isnt the functions ignore the

lpszName parameter

The propid parameter specifies which of the sort order specifications should

be used to sort the database while its opened Windows CE database can have

only one active sort order To use different sort order you can open database again

specifying different sort order

The dwFlags parameter can contain either or CEDB_AUTOINCREMENT If

CEDB_AUTOINCREMENT is specified each read of record in the database results

in the database pointer being moved to the next record in the sort order Opening

database without this flag means that the record pointer must be manually moved to

the next record to be read This flag is helpful if you plan to read the database records

in sequential order

The final parameter is the handle of window thats to be notified when an
other process or thread modifies the database This message-based notification al

lows you to monitor changes to the database while you have it opened When
database is opened with CeOpenDatabase Windows CE sends the following three

messages to notify you of changes

DB_CEOID_CREA TED record has been created in the database

DB_CEOID_CHANGED record has been changed

DB_CEOID_RECORD_DELETED record has been deleted

These messages are encoded as WM_USERl WM_USER3 and WM_USER6

respectively so be careful not to use these low WM_USER messages for your own

purposes if you want to have that window monitor database changes

424

Page 00447

Chapter Files Databases and tile Registry

If the function is successful it returns handle to the opened database This handle

is then used by the other database functions to reference this opened database If the

handle returned is the function failed for some reason and you can use GetLastError

to identify the problem

If youre running under Windows CE 2.1 or later you can use the function

HANDLE CeOpenDatabaseEx PCEGUID pguid
PCEOID poid LPWSTR lpszName CEPROPID propid
DWORD dwFlags CENOTIFYREQUEST pRequest

With couple of exceptions the parameters for CeOpenDatabaseEx are the same as

for CeOpenDatabase The first difference between the two functions is the extra pointer

to guid that identifies the volume in which the database resides

The other difference is the method Windows CE uses to notify you of change

to the database Instead of passing handle to window that will receive one of three

WM_USER based messages you pass pointer to CENOTIFYREQUEST structure

that you have previously filled in This structure is defined as

typedef struct _CENOTIFYREQUEST

DWORD dwSize

HWND hWnd

DWORD dwFlags

HANDLE hHeap

DWORD dwParam

CENOTIFYREQUEST

The first field must be initialized to the size of the structure The Wnd field

should be set to the window that will receive the change notifications The dwFlags

field specifies how you want to be notified If you put in this field youll receive

the same DB_CEIOD_xxx messages that are sent if youd opened the database with

CeOpenDatabase If you put CEDBEXNOTIFICATION in the dwFlags field your

window will receive an entirely new and more detailed notification method

Instead of receiving the three DB_CEIOD_ messages your window receives

WM_ DBNOTIFICATION message When your window receives this message the

iParam parameter points to CENOTIFICATION structure defined as

typedef struct _CENOTIFICATION

DWORD dwSize

DWORD dwParam

UINT ulype

CEGUID guid

CEOID oid
CEOID oidParent

CENOTIFICATION

425

Page 00448

Part II WhdowS CE Bacs

As expected the dwSize field fills with the size of the structure The dwParam
field contains the value passed in the dwParam field in the CENOTIFYREQUEST
structure This is an application-defined value that can be used for any purpose

The uType field indicates why the WM_DBNOTIFICATION message was sent

It will be set to one of the following values

DB_CEOID_CREA TED new file system object was created

DB_CEOID _DA TA BA SE DELETED The database was deleted from

volume

DB_CEOID _RECORD DELETED record was deleted in database

DB_CEOID_CHANGED An object was modified

The guid field contains the guid for the database volume that the message re
lates to while the oid field contains the relevant database record oid Finally the

oidParent field contains the oid of the parent of the oid that the message references

When you receive WM_DBNOTIFICATION message the CENOTIFICATION
structure is placed in memoryblock that you must free If you specified handle to

heap in the hHeap field of CENOTIFYREQUEST the notification structure will be

placed in that heap otherwise the system defined where the structure is placed

Regardless of its location you are responsible for freeing the memory that contains

the CENOTIFICATION structure You do this with call to

BOOL CeFreeNotificationPCENOTIFyREQUEST pRequest

PCENOTIFICATION pNotify

The functions two parameters are pointer to the original CENOTIFYREQUEST
structure and pointer to the CENOTIFICATION structure to free You must free

the CENOTIFICATION structure each time you receive WM_DBNOTIFICATION
message

Seeking or searching for record

Now that the database is opened you can read and write the records But before you
can read or write record you must seek to that record That is you must move the

database pointer to the record you want to read or write You accomplish this using

CEOID CeSeekDatabase HANDLE hDatabase DWORD dwSeeklype DWORD dwValue
LPDWORD lpdwlndex

The first parameter for this function is the handle to the opened database The

dwSeekType parameter describes how the seek is to be accomplished The param
eter can have one of the following values

426

Page 00449

Chapter Files Databases and the Registry

CEDB_SEEK_CEOID Seek specific record identified by its object ID The

object ID is specified in the dwValue parameter This type of seek is par

ticularly efficient in Windows CE databases

CEDB_SEEK_BEGINIVING Seek the ne record in the database The index

is contained in the dwValue parameter

CEDB_SEEK_CURRENT Seek from the current position records forward

or backward in the database The offset is contained in the dwValue pa
rameter Even though dwValue is typed as unsigned value for this seek

its interpreted as signed value

CEDB_SEEK_END Seek backward from the end of the database records

The number of records to seek backward from the end is specified in the

dwValue parameter

CEDB_SEEK_VALUESMALLER Seek from the current location until

record is found that contains property that is the closest to but not equal

to or over the value specified The value is specified by CEPROPVAL

structure pointed to by dwValue

CEDB_SEEK_VALUEFIRSTEQUAL Starting with the current location seek

until record is found that contains the property thats equal to the value

specified The value is specified by CEPROPVAL structure pointed to by

dwValue The location returned can be the current record

CEDB_SEEK_VALUENEXTEQUAL Starting with the next location seek

until record is found that contains property thats equal to the value

specified The value is specified by CEPROPVAL structure pointed to by

dwValue

CEDB_SEEK_VALUEGREATER Seek from the current location until

record is found that contains property that is equal to or the closest to

the value specified The value is specified by CEPROPVAL structure

pointed to by dwValue

As you can see from the available flags seeking in the database is more than

just moving pointer it also allows you to search the database for particular record

As just
mentioned in the descriptions of the seek flags the dwValue param

eter can either be loaded with an offset value for the seeks or point to property

value for the searches The property value is described in CEPROPVAL structure

defined as

typedef struct _CEPROPVAL

CEPROPID propid

continued

427

Page 00450

Part II Whidows CE Bascs

WORD wLenData

WORD wFlags

CEVALUNION val

CEPROPVAL

The propid field should contain one of the property ID values you defined for

the properties in your database Remember that the property ID is combination of

data type identifier along with an application specific ID value that uniquely iden

tifies property in the database This field identifies the property to examine when

seeking The wLenData field is ignored None of the defined flags for the wFlags field

is used by CeSeekData base so this field should be set to The val field is actually

union of the different data types supported in the database

Following is short code fragment that demonstrates seeking to the third record

in the database

DWORD dwlndex

CEOID oid

II Seek to the third record

old CeSeekDatabase g_hDB CEDB_SEEK_BEGJNNING dwlndex
if old

II There is no third item in the database

Now say we want to find the first record in the database that has height prop
erty of greater than 100 For this example assume the size property type is signed

long value

II Define pid for height property as signed long with ID of one
define PID_HEIGHT MAKELONG CEVT_14

CEOID oid
DWORD dwlndex

CEPROPVAL Property

II First seek to the start of the database
old CeSeekDatabase g_hDB CEDB_SEEK_BEGINNING dwlndex

II Seek the record with height 100

Property.propid PID_HEIGHT II Set property to search
Property.wLenData II Not used but clear anyway
Property.wFlags II No flags to set

Property.val.lVal 100 II Data for property

oid CeSeekDatabase g_hDB CEDB_SEEK_VALUEGREATER Property
dwlndex

428

Page 00451

Chapter Files Databases and the Registry

if oid
II No matching property found db pointer now points to end of db

else

II old contains the object ID for the record

II dwlndex contains the offset from the start of the database

II of the matching record

Because the search for the property starts at the current location of the database

pointer you first need to seek to the start of the database if you want to find the first

record in the database that has the matching property

Changing the sort order

talked earlier about how CeDatabaseSeek depends on the sort order of the opened

database If you want to choose one of the predefined sort orders instead you must

close the database and then reopen it specifying the predefined sort order But what

if you need sort order that isnt one of the four sort orders that were defined when

the database was created You can redefine the sort orders using this function

BOOL CeSetDatabaselnfo CEOID oidDbase CEDBASEINFO pNewlnfo

or under Windows CE 2.1 or later this function

BOOL CeSetDatabaselnfoEx PCEGUID pguid

CEOID oidDbase CEDBASEINFO pNewlnfo

Both these functions take the object ID of the database you want to redefine and

pointer to CEDBASEINFO structure This structure is the same one used by

CeCreateDatabaseEx You can use these functions to rename the database change

its type or redefine the four sort orders You shouldnt redefine the sort orders casu

ally When the database sort orders are redefined the system has to iterate through every

record in the database to rebuild the sort indexes This can take minutes for large data

bases If you must redefine the sort order of database you should inform the user of

the massive amount of time it might take to perform the operation

Reading record

Once you have the database pointer at the record youre interested in you can read

or write that record You can read record in database by calling the following

function

CEOIO CeReadRecordPrOpS HANDLE hDbase DWORD dwFlags LPWORD lpcProplD

CEPROPID rgProplD LPBYTE lplpBuffer
LPDWORD lpcbBuffer

or if youre miming under Windows CE 2.1 or later by calling the function you see

at the top of the next page

429

Page 00452

Part II Wbidows CE ascs

CEOID CeReadRecordPropsEx HANDLE hDbase DWORD dwFlags
LPWORD lpcProplD
CEPROPID rgProplD LPBYTE lplpBuffer
LPDWORD lpcbBuffer
HANDLE hHeap

The differences between these two functions is the addition of the hHeap pa
rameter in CeReadRecorclProps Ill explain the significance of this parameter shortly

The first parameter in these functions is the handle to the opened database The

lpcProplD parameter points to variable that contains the number of CEPROPID struc
tures pointed to by the next parameter rgProplD These two parameters combine to

tell the function which properties of the record you want to read There are two ways
to utilize the lpcProplD and rgProplD parameters If you want only to read selected
few of the properties of record you can initialize the array of CEPROPID structures
with the ID values of the properties you want and set the variable pointed to by
lpcProplD with the number of these structures When you call the function the re
turned data will be inserted into the CEPROPID structures for data types such as in
tegers For strings and blobs where the length of the data is variable the data is

returned in the buffer indirectly pointed to by lplpBuffer
Since CeReadRecord.props and CeReadRecordpropsEx have significant over

head to read record it is always best to read all the properties necessary for record
in one call To do this simply set rgProplD to NULL When the function returns the
variable pointed to by lpcProplD will contain the count of properties returned and
the function will return all the properties for that record in the buffer The buffer will

contain an array of CEPROPID structures created by the function immediately followed
by the data for those properties such as blobs and strings where the data isnt stored

directly in the CEPROPID array

One very handy feature of CeReadRecordProps and CeReadRecordPropsEx is

that if you set CEDB_ALLOWREALLOC in the dwFlags parameter the function will

enlarge if necessary the results buffer to fit the data being returned Of course for
this to work the buffer being passed to the function must not be on the stack or in

the static data area Instead it must be an allocated buffer in the local heap for

CeReadRecordprops or in the case of CeReadRecordprops in the local heap or

separate heap In fact if you use the CEDB_ALLOWRTLOC flag you dont even
need to pass buffer to the function instead you can set the buffer pointer to In
this case the function will allocate the buffer for you

Notice that the buffer parameter isnt pointer to buffer but pointer to
pointer to buffer There actually is method to this pointer madness Since the re
sulting buffer can be reallocated by the function it might be moved if the buffer needs
to be reallocated So the pointer to the buffer must be modified by the function You

430

Page 00453

Chapter Files Databases and the Registry

must always use the pointer the buffer returned by the function because it might have

changed Also youre responsible for freeing the buffer after you have used it Even

if the function failed for some reason the buffer might have moved or even have been

freed by the function You must clean up after the read by freeing the buffer if the

pointer returned isnt

Now to the difference between CeReadRecordProps and CeReadRecordPropsEx

As you might have guessed by the above discussion the extra hHeap parameter al

lows CeReadRecordPropSEX to use heap different from the local heap when reallo

cating the buffer When you use CeReadRecordPropsEx and you want to use the local

heap simply pass in the hHeap parameter

The routine below reads all the properties for record then copies the data

into structure

mt ReadDBRecord HANDLE hDB DATASTRUCT pData
WORD wProps

CEOID old
PCEPROPVAL pRecord

PBYTE pBuff

DWORD dwRecSize

mt

II Read all properties for the record

pBuff II Let the function allocate the buffer

old CeReadRecordPrOps hDB CEDB_ALLOWREALLOC wProps NULL

LPBYTEpBuff dwRecSize

II Failure on read

if old
return

II Copy the data from the record to the structure The order

II of the array is not defined

memset pData sizeof DATASTRUCT II Zero return struct

pRecord PCEPROPVALpBuff II Point to CEPROPVAL

II array

for wProps

switch pRecord-propid
case P10_NAME

lstrcpy pData-szName pRecord-val.lpwstr

break

case P10_TYPE

lstrcpy pData-szType pRecord-val .lpwstr

break

continued

431

Page 00454

Part II Windows CE Basics

case PID_SIZE

pData-nSize pRecord-val.iVal

break

pRecord

Local Free pBuff
return

Since the function above reads all the properties for the record CeReadRecordProps
creates the array of CEPROPVA.L structures The order of these structures isnt defined

so the function cycles through each one to look for the data to fill in the structure

After all the data has been read call to locaiFree is made to free the buffer that was
returned by CeReadRecordProps

There is no requirement for every record to contain all the same properties You
might encounter situation where you request specific property from record by

defining the CEPROPID array and that property doesnt exist in the record When this

happens CeReadRecordProps will set the CEDB_PROPNOTFQUND flag in the wFlags
field of the CEPROPID structure for that property You should always check for this

flag if you call CeReadRecordProps and you specify the properties to be read In the

example above all properties were requested so if property didnt exist no
CEPROPID structure for that property would have been returned

Writing record

You can write record to the database using this function

CEOID CeWriteRecordProps HANDLE hDbase CEOID oidRecord WORD cProplD
CEPROPVAL rgPropVal

The first parameter is the obligatory handle to the opened database The oidRecord

parameter is the object ID of the record to be written To create new record instead

of modifying record in the database set oidRecord to The cProplD parameter
should contain the number of items in the array of property ID structures pointed to

by rgProp Val The rcPropVal array specifies which of the properties in the record to

modify and the data to write

Deleting properties records and entire databases
You can delete individual properties in record using CeWriteRecordProps To do

this create CEPROPVM structure that identifies the property to delete and set

CEDB_PROPDELETE in the wFlags field

To delete an entire record in database call

BOOL CeDeleteRecord HANDLE hDatabase CEOID oidRecord

432

Page 00455

Chapter Files Databases and the Registry

The parameters are the handle to the database and the object ID of the record to de

lete

You can delete an entire database using this function

BOOL CeoeleteDatabase CEOID oidDbase

or under Windows CE 2.1 or later this function

BOOL CeDeleteDatabaseEx PCEGUID pguid CEOID old

The database being deleted cant be currently open The difference between the two

functions is that 6eDeleteDatabaseEx can delete databases outside the object store

Enumerating databases

Sometimes you must search the system to determine what databases are on the sys

tem Windows CE provides two sets of functions to enumerate the databases in

volume The first set of these functions works only for databases directly within the

object store These functions are

HANDLE CeFindFirstDatabase DWORD cwDbaseType

and

CEOID CeFindNextDatabase HANDLE hEnum

These functions act like FindFirstFile and FindNextFile with the exception that

CeFindFirstDatabase only opens the search it doesnt return the first database found

With these functions the only way to limit the search is to specify the ID of specific

database type in the dwDbaseType parameter If this parameter is set to all data

bases are enumerated CeFindFirstDatabase returns handle that is then passed to

CeFindNextDatabase to actually enumerate the databases

Below is an example of how to enumerate the databases in the object store

HANDLE hDBList

CEOID oidDB

SendDlgltemMessage hWnd IDC_RPTLIST WM_SETREDRAW FALSE

hDBList CeFindFirstDatabaSe

if hDBList INVALID_HANDLE_VALUE

oidDB CeFindNextDatabaSe hDBList
while oidDB

If Enumerated database identified by object ID

MyDisplayDatabaselnfo hCeDB

hCeDB CeFindNextDatabase hDBList

CloseHandle hDBList

433

Page 00456

Part ii Windows CE Basics

To enumerate databases within separate database volume use

HANDLE CeFindFirstDatabaseEx PCEGUID pguid DWORD dwClasslD

and

HANDLE CeFindFirstDatabaseEx PCEGUID pguid DWORD dwClasslD

For the most past these two functions work identically to their non-Ex predecessors
with the exception that they enumerate the different databases within single data
base volume The additional parameter in these functions iS the CEOID of the mounted
volume to search

Querying object information
To query information about database use this function

BOOL CeOidGetlnfo CEOID oid CEOIDINFO pojdjnfo

or if under Windows CE 2.1 or later use this function

BOOL CeOidGetlnfoEx PCEGUID pguid CEOID old CEOIDINFO ojdjnfo
These functions return information about not just databases but any object in the
file system This includes files and directories as well as databases and database records
The functions are passed the object ID of the item of interest and pointer to an
CEOIDINFO structure Here is the definition of the CEIOIDINFO structure

typedef struct _CEOIDINFO

WORD wObjType
WORD wPad
union

CEFILEINFO infFile

CEDIRINFO infDirectory

CEDBASEJNFO infDatabase

CERECORDINFO infRecord

CEOIDINFO

This structure contains word indicating the type of the item and union of four
different structures each detailing information on that type of object The currently
supported flags are OBJTYPE_FILE indicating that the object is file
OBJTYPE_DIRECTQRy for directory objects OBJTYPE_DATABASE for database ob
jects and OBJTYPE_RFCORD indicating that the object is record inside database
The structures in the union are specific to each object type

The CEFILEINFO structure is defined as

lypedef struct .CEFILEINFO

DWORD dwAttributes

434

Page 00457

Chapter Files Databases and the Registry

CEOID oidparent

WCHAR szFi eName
FILETIME ftLastChanged

DWORD dwLength

CEFILEINFO

the CEDIRIENFO structure is defined as

typedef struct _CEDIRINFO

DWORD dwAttributeS

CEOID oidParent

WCHAR szDi rMame
CEDIRINFO

and the CERECORDINFO structure is defined as

typedef struct _CERECORDINFO

CEOID oidParent

CERECORDINFO

You have already seen the CEDBASEINFO structure used in CeCreateDatabaSeEX and

CeSetDatabaselflfO As you can see from the above structures CeGetOidlnfo returns

wealth of information about each object One of the more powerful bits of infor

mation is the objects parent oid which will allow you to trace the chain of files and

directories back to the root These functions also allow you to convert an object ID

into name of database directory or file

The object ID method of tracking file object should not be confused with the

PID scheme used by the shell Object IDs are maintained by the file system and are

independent of whatever shell is being used This would be minor point under other

versions of Windows but with the ability of Windows CE to be built as components

and customized for different targets its important to know what parts of the operat

ing system support which functions

The AlbumDB Example Program

Its great to talk about the database functions its another experience to use them in

an application The example program that follows AlbumDB is simple database

that tracks record albums the artist that recorded them and the individual tracks on

the albums It has simple interface because the goal of the program is to demon

strate the database functions not the user interface Figure 7-4 on the next page shows

the AlbumDB window with few albums entered in the database

Figure 7-5 contains the code for the AlbumDB program When the program is

first launched it attempts to open database called AlbumDB If one isnt found

new one is created This is accomplished in the OpenCreateDB function

435

Page 00458

Part II Windows CE Basics

YthIflG
Once Alan Parsons

oject Rock
Gaudr

Alan Parsons Project Rock

Stereotomy Alan Parsons Project Rock
VuIEjre Culflre Alan Parsons Project Rock

Ammorva Avenue Alan Parsons Project Rock

Pyramid Alan Parsons Project Rock
Robot Alan Parsons Project Rock

On Air Alan Parsons Project Rock
Eve

Alan Parsons Project Rock
Turn of Friendly Card Alan Parsons Project Rock
Cosmic Thiny 852s

Rock
No Need to Argue Cranberries Rock

Everybody Else is doing it Why cant We2 Cranberries Rock
To tie Failfifjl Departed Cranberries Rock
Communrque Dire Elsaits Rock

Makeing Movies Dire StaiN Rock
Love over Gold

Dire Staits Rock
Dire Eta

Dire StaiN Rock
Brolhers in Arms Dire Starts Rock
One Every Steet Dire StaiN Rock
On the Esarder

Eagles Rock
Hotel Calitornia

Eagles Rock

Desperad
Eagles Rock

Eagles
Eagles Rock

Dulcnea
Toad The Wet Sprocket Rock

In Liqht Syrup Toad the Wet Sprocket Rock
Coil

Toad The Wet Sprocket Rock

Figure 7-4 The AlbumDB window

ii

AP

Figure 7-5 The AlbumDB program

436

Page 00459

Chapter Files Databases and the Registry

MENUITEM Delete Database IDM_DELOB

MENUITEM SEPARATOR

MENUITEM Exit 1DM_EXIT

END

POPUP Album
BEGIN

MENUITEM New 1DM_NEW

MENUITEM Edit 1DM_EDIT

MENUITEM Delete IBM_DELETE

MENUITEM SEPARATOR

MENUITEM Sort Name IDM_SORTNAME

MENUITEM Sort Artist IDM_SORTARTIST

MENUITEM Sort Category IDM_SORTCATEGORY

END

POPUP Help
BEGIN

MENUITEM About 1DM_ABOUT

END

END

II

II New/Edit Track dialog template

//

EditTrackDlg DIALOG discardable 10 10 165 40

STYLE WS_POPUP WS_VISIBLE WS_CAPTION WS_SYSMENU OS_CENTER

S_MO DA RAM

EXSTYLE WS_EX_CAPTIONOKBTN

CAPTION Edit Track

BEGIN

LTEXT Track Name -1 50 12

EDITTEXT IDDJRACK 60 100 12 WS_TABSTOP

LTEXT Time -1 20 50 12

EOITTEXT IDD_TIME 60 20 50 12 WS_TABSTOP

END

1/

/1 New/Edit Album data dialog template

/1

EditAlbumDlg DIALOG discardable 10 10 200 100

STYLE WS_POPUP WS_VISIBLE WS_CAPTION WS_SYSMENU OS_CENTER

S_MO BA RAM

EXSTYLE WS_EX_CAPTIONOKBTN

CAPTION Edit Album

BEGIN

LTEXT Album Name -1 50 12

EDITTEXT 100_NAME 60 135 12 WS_TABSTOP

continued

437

Page 00460

Part II Windows CE Basics

Figure 7-5 continued

1rp

$açit
4j Jb

kE

rI
4t 1IIMP4

rItSkI

IIiiUUIUUUUUNH11
438

Page 00461

Chapter Files Databases and the Registry

II

II Generic defines and data types

II

struct decodeUlNl /1 Structure associates

UINT Code II messages
If with function

LRESULT FxnI-WND UINT WPARAM LPARAM

struct decodeCMD 1/ Structure associates

UINT Code ii menu IDs with

LRESULT FxnHWND WORD HWND WORD 1/ function

1/

II Generic defines used by application

define ID_ICON II App icon resource ID

define IDC_CMDBAR /1 Command band ID

define ID_MENU 1/ Main menu resource ID

define ID_LISTV 1/ List view control ID

1/ Menu item IDs

define IDM_DELDB 101 1/ File menu

define 1DM_EXIT 102

define 1DM_NEW 110 II Album menu

define 1DM_EDIT 111

define 1DM_DELETE 112

define IDM_SORTNAME 120 II Sort lOs must be

define 1DM_SORTARTIST 121 II consecutive

define IDM_SORTCATEGORY 122

define 1DM_ABOUT 150 II Help menu

/1 IDs for dialog box controls

define IDD_NAME 100 II Edit album dialog

define IDD_ARTIST 101

define IDD_NUMTRACKS 102

define IDO_CATEGORY 103

define IDD_TRACKS 104

define IDD_NEWTRACK 105

define IDD_EDITTRACK 106

define IDDDELTRACK 107

define IDD_TRACK 200 /1 Edit track dialog

define 100._TIME 201

continued

439

Page 00462

Part II Whidows CE Basics

Figure 7-5 continued

In iuiii

1àP

ii

IIi
It Jp

4_ Nkd

a1

11p Mi

it

440

Page 00463

Chapter Files Databases and the Registry

mt GetltemData mt PLVCACHEDATA

HWND CreateLV HWND RECT

void ClearCache void

1/ Window procedures

LRESIJLT CALLBACK MainWndProc HWND UINT WRARAM LPARAM

II Message handlers

LRESULT DoCreateMain HWND JINT WPARAM LPARAM

LRESULT DoSizeMain UWNO UINT WPARAM LPARAM

LRESULT DoCommaridMairi FIWND tJINT WPARAr4 LPARAM

LRESULT DoNotifyMain HWNO tJINT WPARAM LPARAM

LRESULT DoDbNotifyMain HWND UINT WPARAM LPARAM

LRESULT DoDestroyMain I-1WND UINT WPARAM LPARAM

II Command functions

LPARAM DoMainCommafldDelDB HWND WORD HWND WORD
LPARAM DoMainCommandEXit HWND WORD HWND WORD
LPARAM DoMainCommandNew HWND WORD HWND WORD
LPARAM DoMainCommandEdit HWND WORD HWND WORD
LPARAM DoMainCommandDelete HWND WORD HWND WORD
LPARAM DoMamnCommandSort HWND WORD NWND WORD
LPARAM DoMainCommandAbout HWND WORD HWND WORD

II Dialog procedures

BOOL CALLBACK AboutDlgProc HWND JINT WPARAM LPARAM

BOOL CALLBACK EditAlbumDlgProc HWND UINT WPARAM LPARAM

AIbumDBc

II AlbumDB Windows CE database

/I Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling/__
include windows.h II For all that Windows stuff

include windowsx.h II For Window Controls macros

include commctrl.h II Command bar includes

include AlbumDB.h II Program-specific stuff

ii

II Global data

II

continued

441

Page 00464

Part II Whidows CE ascs

Figure 7-5 continueduIrd.I4NIIrni

gia
PRJrp riQ frg

14
4ftZ1i.1

Lwi 44 1M4 jt

iw7WR

1Cw4

rz
4i

j/4

442

Page 00465

Chapter Files Databases and the Registry

iIViLt iit 4i Id1

ftj
I1pI

ft

1ti.tp
IL If 1jri$tvh

J1fJ

iL11mI
NPP9 1I

ãP

MCLS1h
continued

443

Page 00466

Part II Whidows CE Bscs

Figure 7-5 continued1p_1I gçiME
$_fw ikihi1r Ii 1g LP

id

M4P 8iQ 4L4IkdcSi1rpsrwt _4 dr F4

kj4w
__

1Y 1j

444

Page 00467

Chapter FlIes Qatabases and the Registry

for dimMairiMessages

if wMsg MainMessages
return MainMessagesfi.FxnhWnd wMsg wParam iParam

return DefWindowProc hWnd wMsg wParam iParam

/1

II DoCreateMain Process WI_CREATE message for window

II

LRESULT DoCreateMain HWND hWnd hINT wMsg WPARAM wParam

LPARAM iParam

HWND hwndCB hwndChild

INT nHeight nCnt
RECT rect

LPCREATESTRUCT lpcs

/1 Convert iParam into pointer to create structure

lpcs LPCREATESTRUCT lParam

1/ Create minimal command bar that only has menu and an

1/ exit button

hwndCB CommandBar_Create hlnst hWnd IDC_CMDBAR

II Insert the menu
CommandBar_InsertMenubar hwndCB hlnst ID_MENU

1/ Add exit button to command bar

CommandBar_AddAdornments hwndCB

nHeight CommandOar_fleight hwndCB

II Open the album database If one doesnt exist create it

g_hDB OpenCreateOB hWnd nCnt
if g_hDB INVALIDHANDLE_VALUE

MessageBox hWnd TEXT Could not open database. szAppName

MB_OK
DestroyWindow hWnd
return

II Create the list view control in right pane

SetRect rect nHeight lpcs-cx lpcs-cy nfleight

hwndChild CreateLV hWnd rect

II Destroy frame if window not created

if IsWindow hwndChild

DestroyWindow hWnd
return

conlliUied

445

Page 00468

Part II Windows CE Bastcs

Figure 7-5 continued

tY14w

ti bzMa

SJ ul tWEL h4 44 Li

Iwi iid

tpJ11 1Md

1j ii

tCT4Re QT $t
tip 1---

tiP bIitLV

1/---

nh4 M4J1
1REfl

1iI At4
tMI3 N%
FWNE

if

OPJ ib
lw

bwt1 Wbt

fj ftmj iI iii
dtew

çq jtt Jr

rtLn

I7 --- -- --

jçxX tj4

446

Page 00469

Chapter Files Databases and the Registry

II

LRESULT DoobNotifyMaifl HWND hWnd UTNT wMsg WPARAM wParam

LPARAM iParam

switch wMsg
case DB_CEOID_CHANGED

InvalidateRect etD1gItem hWnd ID_LISTV NULL TRUE

break

case DB_CEOID_CREATED

ReopenDatabase hWnd -1
break

case DB_CEOID_RECORD_DELETED

ReopenDatabaSe hWnd -1
break

return

II

II DoNotifyMain Process WM_NOTIFY message for window

II

LRESULT DoNotifyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

mt idltem

LPNMHDR pnmh

LPNMLISTVIEW pnmlv

NMLVDISPINFO pLVdi

LVCACHEDATA data
HWND hwndLV

Parse the parameters

iditem int wParam

pnmh LPNMHDRlParam
hwndLV pnmh-hwndFrofli

if idltem ID_LISTV

pnmlv LPNMLISTVIEWlParafll

switch pnnih-code
case LVN_GETDISPINFO

pLVdi NMLVDISPINFO lParam

II Get pointer to the data either from the cache

II or from the actual database

GetltemData pLVdi-item.iItem data

if pLVdi-item.maSk LVIF_IMAGE

pLVdi-.iteflLiImage

continued

447

Page 00470

Part II Wrndows CE Bascs

Figure 7-5 continued

U. tUaMUIN Zh1dJ4glftL TTi

dk 1h1

4%

ig uj

\4 h1Itti4pI1g$wbIçeL 4j

ei
iIIrrUc1uiIU1UU1

448

Page 00471

Chapter Files Databases and the Registry

II

1/ DoDestroyMain Process WM_DESTROY message for window

//

LRESULT DoDestroyMain HWND hWnd UTNT wMsg WPARAM wParam

LPARAM lParam 11

PostOuitMessage

return/__r
II Command handler routines

II

/1 DoMainCommandDelDB Process Program Delete command

1/

LPARAM DoMainCommandDelDB HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyode

lot rc

MessageBox hWnd TEXT Delete the entire database
TEXT Delete MB_YESNO

if IDVES

return

if g_oidDB
Closel-1andle g_hDB
rc CeDeleteDatabase g_oidflB

if rc
TCFIAR szDbgtl28
rc GetLastErrorO

wsprintf szDbg TEXT Couldn\t delete db rc%d rc
MessageBox hWnd szDbg szAppNaine MB_OK
g_hDB CeOpenDatabase g_oidDB NULL g_nLastSort

hWnd
return

g_hDB

g_oidOB

LjstView_SetltemCoUnt GetDlgltem hWnd ID_LISTV

return

1/

II DoMainCommandExit Process Program Exit command

II

LPARAM DoMainCommandExit HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

coitiiii.Cd

449

Page 00472

Pan II Wrndows CE Bascs

Figure 7-5 continued

Ihs tw 1r
itgr

LD
cj cWi
MR ttid

cpMi c4 1j
NT

4I
fiwN 1fr

tpU ecy
ci

4j

Dg

$rTTip44

C1

hdj

ijin rEj i4
if

LAAt4

PRAL 9ip

tRf Prj

450

Page 00473

Chap/er Files Databases and the Registry

DWORD dwRecSize dwlndex

CEOID aid
HWND hwndLV GetDlgltern hWnd ID_LISTV

nSel ListView_GetSelectioflMark hwndLV
if nSel -1

return

If Seek to the necessary record

old ceSeekoatabase g_hDB cEOB_SEEK_BEGINNIN nSel dwIndex
if oid

TCHAR szTxt64
INT rc GetLastErrorO

wsprintf szTxt TEXT Db item not found rc %d %x
rc rc

MessageBox NULL szlxt TEXT err MB_OK
return

II Read all properties for the record Have the system

II allocate the buffer containing the data

old çeReadRecordProps g_hDB cEDB_ALLOWREALLOG wProps NULL

LPBYTDpcepv dwRecSize

if old
TCHAR szlxt.641

INT rc GetLastErrorO

wsprintf szTxt TEXT Db item not read rc %d %x
rc rc

MessageBox NULL szlxt TEXT err MB_OK
return

II Display the edit dialog

rc DialogBoxParaffl hlnst TEXT EditAlburoDig hWnd

EditAlbumDlgProc LPARAMpcepv
if rc

return

II Write the record

old ceWriteRecordPropsg_hDB old NUM_DB_PROPS pcepv
if oid

TCHAR szText
rc GetLastError

wsprintf szText TEXT Write Rec fail Error %d %x
rc rc

MessageBox hWnd szText TEXT Error MB_OK

continued

451

Page 00474

Part II Whidows CE Easics

Figure 7-5 continued

rn

1/ 1le nd

hrn
cc

ri

uaet
111 eX

4eE 4b

ibtta isi

M$

ci
rcN1

qJ
1fft It

452

Page 00475

Cba/ter Files Databases and the Registry

switch idltem
case IDM_SORTNAME

nSort P10_NAME

break

case IDM_SORTARTIST

nSort PID_ARTIST

break

case IDM_SORTCATEGORY

nSort PID_CATEGORY

break

if nSort g_nLastSort

return

ReopenDatabase hWnd nSort II Close and reopen the database

return

II

1/ DoMainCommandAbout Process the Help About menu command

II

LPARAM DoMainComrnandAboutHWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

II Use Dialog8ox to create modal dialog

DialogOox hlnst TEXT aboutbox hWnd AboutDlgProc
return

/1

II CreateLV Creates the list view control

II

HWND CreateLV HWND hWnd RECT prect
HWND hwndLV

LVCOLUMN lvc

II Create album list window

hwndLV CreateWindowEx WC_LISTVIEW TEXT

WS_VISIBLE WS_CHILD WS_YSCROLL

LVS_OWNERDATA WS_BORDER LVS_REPORT

prect-left prect-top
prect-rlght prect-left
prect-bottom prect-top
hWnd HMENUIDLISTV
hlnst NULL

II Add columns

if hwndLV
lvc.mask LVCF_TEXT LVCF_WIDTH LVCF_FMT LVCF_SUBITEM

continued

453

Page 00476

Part II Whidows CE ascs

Figure 7-5 continued

ipr pç1
1g bpi%c 4I44q

kk .\Afr1rrN23
4jjr

I1rJI$z
tI _1

1g
iii

i1

tt
ti

fl
lIil

454

Page 00477

Chapter Files Databases and the Registry

g_oidDB CeCreateDatabase TEXT \\Albums
SOS

if g_oidDB

TCHAR szErr
wsprintf szErr TEXT Database create failed

rc %d GetLastErrorO

MessageBox hWnd szErr szAppNatne MB_OK
return

g.._hDB CeOpenDatabasegoidDB.NULL g_nLastSort hWnd

CeOidGetlrifo g_oidDB oidinfo
pnRecords oidinfo.infDatabase.wNumRecOrdS

return g_hDB

II

II ClearCache Clears the one item cache for the list view control

void ClearCache void

if g_pLastRecord

Local Free g_pLastRecord

g_pLastRecord

g_nLastltem -1

return

II

// ReopenDatabase Closes and reopens the database

void ReopenDatabase HWND hWnd INT nNewSort

INT nCnt

if nNewSort -1

g_nLastSort nNewSort

if g_hDB
CloseHandle g_hDB

ClearCache II Clear the lv cache

ghDB OpenCreateDB hWnd nCnt

ListView_SetltemCount GetDlgltem hWnd IELLISTV nCnt
InvalidateRect GetDlgltem hWnd ID.LISTV NULL

return

con tinucd

455

Page 00478

Part II Windows CE ascs

Figure 7-5 continued

agp jç1g
i4 tTp

4wIf
i47arrMfiuI1 Y4

Ifr4mWI1Mw

4i.ipp
4r

ci ia JIkI

t1RU WI I4

JiL

1WIUWL

MI

456

Page 00479

Chapter Files Databases and the Registry

II Copy the data from the record to the album structure

for wProps

switch pRecord-propid
case Plo_NAME

lstrcpy pcd-Album.szName pRecord-val.lpwstr
break

case P10_ARTIST

lstrcpy pcd-Album.szArtist pRecord-val.lpwstr
break

case P10_CATEGORY

pcd-Album.sCategory pRecord-val.iVal

break

case PID_NUMTRACKS

pcd-Album.sNumTracks pRecord-val .iUal

break

pRecord

return

II

1/ lnsertLV Add an item to the list view control

TNT lnsertLv HWNO hWnd INT nltem LPTSTR pszName LPTSTR pszType

TNT nSize

LVITEM lvi
HWNO hwndLV GetDlgltem hWnd TD_LISTV

lvi .mask LVIF_TET LVIF_IMAGE LVIF_PARAM

lvi.iltern nltem

lvi.iSubltem

lvi.pszText pszName

lvi.ilmage

lvi.lParam nitem

SendMessage hwndLV LVM INSERTITEM LPARAMlvi

lvi.mask LylE_TEXT

lvi.iltem nitem

lvi.iSubltem

lvi.pszText pszType

SendMessage hwndLV LVM_SETLTEM LPARAMlvi

return

II

conliniwd

457

Page 00480

