
Part Windows Programmhig Basics

Figure 3-12 continued

4g4Fq Agr
MumI2ttmIm1iIEIImiwm

jqL

jpp

cA 1tirri

jj3

138

Page 00161

chapter Input Keyboard Stylus and Menus

1/

II Termlnstance Program cleanup

/1

mt Termlristance NINSTANCE hlnstance mt nDefRC

return nDefRC/___________
II Message handling procedures for MainWindow

II

II MainWndproc Callback function for application window
II

LREStJLT CALLBACK MainWndProc HWND hWnd UINT wMsg WPARAM wParam
LPARAM lParam

INT

II Search message list to see if we need to handle this

II message If in list call procedure
/1

for dimMalnMessages
if wMsg MainMessages

return MainMessages wMsg wParam iParam

return DefWindowProc hWrid wMsg wParam lParam

II

II DoCreateMain Process WM_CREATE message for window
//

LRESULT DoCreateMain HWND hWnd UINT wMsg WPARAM wParam
LPARAM iParam

HWND hwndCB

HICON hlcon

/1 Create command bar
hwndCB CommandBar_Create hlnst hWnd IDC_CMDBAR
II Add the menu
CommandBar_InsertMenubar hwndC8 hlnst ID_MENU
II Add exit button to command bar
CommandBar_AddAdornments hwndC8

hlcon HICON SendMessage hWnd WM_GETICON
if hlcon

hlcon Loadimage hlnst MAKEINTRESOURCE ID_ICON
IMAGE_ICON 16 16

CIIilgcd

139

Page 00162

Part Windows Programming Basics

Figure 3-12 continued

1qL

V1L

pd

flptP
riW 4N

Vi

Mi ipp Id

tfP

140

Page 00163

Chapter Input Keyboard Stylus and Menus

RECT rect

FIFONT hFont hOldFont

ICHAR szPromptC32
HDC hdc

II Adjust the size of the client rect to take into account

II the command bar height

GetCllentRect hWnd rect
rect.top CommandRar_Height GetDlgltem hWrjd IDC_CMDBAR

hdc BeginPaint hWnd ps
/1 Draw the board

DrawBoard hdc rectBoard

II Write the prompt to the screen

hFont GetStockObject SYSTEM_FONT
hOldFont SelectObject hdc hFont

if bTurn

LoadString hlnst IDS_XTURN szPrompt sizeof szPrompt
else

LoadString hlnst IDS_OTURN szPrompt sizeof szPrompt

Drawlext hdc szPrompt rectPrompt
DT_CENTER DT_VCENTER DT_SINGLELINE

SelectObject hdc hOldFont
EndPaint hWnd ps
return

ii

II DolnitMenuPopMain Process WM_INITMENUPOPUP message for window

If

LRESULT DolnitMenuPopMain HWND hWnd UINT wMsg WPARAM wParam
LPARAM lParani

HMENU hMenu

hMenu CommandBar_GetMenu GetDlgltem hWnd IDC_CMDBAR

if bLastHove -1
EnableMenultem hMenu 1DM_UNDO ME_BYCOMMAND ME_GRAYED

else

EnableMenultem hMenu 1DM_UNDO MF_BYCOMMAND MF_ENABLED
return

continued

141

Page 00164

Part Whidows Programmng Bascs

Figure 3-12 continued

iu
iç

1k

aac q$441i
%biir$4r94i ge

kIJ1 4çwp Xk

fIpA

M1Ih W1rC
f4W

Jk
id 17L

ft

142

Page 00165

Chap/er Input Keyboard Stylus and Menus

II Find row
nCell pt.y cy

II If cell empty fill it with mark
if b8oardEnCell

if blurn
bBoardnCelfl

blurn

else

bBoerd
bTurn

/1 Save the cell for the undo command

bLastMove nCell

II Force the screen to be repainted

InvalidateRect hWnd NULL FALSE
else

// Inform the user of the filled cell

MessageBeep

return

return

II

1/ DoDestroyMain Process WM_DESTROV message for window

II

LRESULT 000estroyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

PostOuitMessage

return

II Command handler routines

/1

1/

/1 DoMainCommandWewGame Process New Game command

II

LPARAM DoMainCommandNewGame HWND hWnd WORD idltem I4WND hwndCtl

WORD wNotifyCode 11

INT rc

II Count the number of used spaces

for

if bBoard

continued

143

Page 00166

Part Wndows Pogrammhig Bscs

Figure 3-12 continued

97P

pI tipPfiti1$
1iP

41I
I4pInrIII$1IJ

ft

ijM

iia

LL
1I hnV

1W8

144

Page 00167

Chapter Input Keyboard Stylus and Menus

void ResetGame void
TNT

II Initialize the board

for dimthBoard

bBoard

blurn

bLastMove -1
return

/1

II DrawXO Draw single or in square

void DrawXO HOC hdc HPEN hPen RECT prect TNT nCell TNT nType

POINT pt
TNT cx cy
RECT rect

cx prect-right prect-left/3

cy prect-bottom prect-top/3

II Compute the dimensions of the target cell

rect.left cx nel1 prect1eft 10

rect.right rect.left cx 20

rect.top cy nCell prect-top 10

rect.bottom rect.top cy 20

II Draw an

if nlypept rect.leftpt rect.toppt rect.rlghtpt rect.bottom

Polyline hdc pt

pt rect.rightpt rect.left

Polyline hdc pt
1/ Flow about an

else if nlype 11

Ellipse hdc rect.left rect.top rect.right rect.bottom

return

II

conlinued

145

Page 00168

Part ra rng asc

Figure 3-12 continued

pt

pt

fo

46

Page 00169

Chapter Input Keyboard Stylus and Menus

SelectObject hdc hOldPen
fleleteObject hPen
return

The biggest change in TicTac2 is the addition of WM_COMMAND handler in

the form of the routine OnGoinmandMain Because program might end up han
dling large number of different menu items and other controls extend the table

lookup design of the window procedure to another table lookup for command IDs

from menus and accelerators For TicTac2 use three command handlers one for

each of the menu items This results in another table of IDs and procedure pointers

that associates menu IDs with handler procedures Again this way of using table

lookup instead of the standard switch statement isnt necessary or specific to Win
dows CE Its simply my programming style

The first menu handler OnCommandNewGame simply calls the reset game
routine to clear the game structures The routine itself returns which is the default

value for WM_COMMAND handler

The OnCommandUndo command handler is interesting in that it isnt always

enabled TicTac2 handles an additional message WM_INITMENUPOPUP which is sent

to window immediately before the window menu is displayed This gives the win
dow chance to initialize any of the menu items In this case the routine

OnlnitMenuPopMain looks to see whether the bLastMove field contains valid cell

value through If not the routine disables the Undo menu item using

EnableMenultem This action also disables the keyboard accelerator for that menu
item as well

The final command handler OnCommandExit sends WM_CLOSE message
to the main window Closing the window eventually results in Windows sending

WM_DESTROY message which results in PostQuitMessage call that terminates the

program Sending WM_CLOSE message is by the way the same action that results

from clicking on the Close button on the command bar

Other changes from the first TicTac example include modification of the mes
sage loop to provide for keyboard accelerators and the addition of code in the

OnCreateMain routine to load and assign window icon Also the string prompts
for whose turn it is are loaded from the resource file

Looking at the OnCommandNewGame handler introduces one last new func

tion If the game isnt complete the program asks the players whether they really want

to clear the game board This query is accomplished by calling

mt MessageBox HWND hWnd LPCTSTR lpText LPCTSTR lpCaption
UINT uType

147

Page 00170

Part Whidows Programmhig Bscs

This function displays message box simple dialog box with definable text and

buttons message box can display message along with limited series of buttons

Message boxes are often used to query users for simple response or to notify them

of some event The Type parameter allows the programmer to select different but

ton configurations such as Yes/No OK/Cancel Yes/No/Cancel and simply OK You

can also select an icon to appear in the message box that signals the level of impor
tance of the answer

message box is essentially poor mans dialog box It offers simple method

of querying the user but little flexibility in how the dialog box is configured Now
that weve introduced the subject of dialog boxes its time to take closer look at

them and other types of secondary and child windows

148

Page 00171

Chapter

Windows Controls

and Dialog Boxes

Understanding how windows work and relate to each other is the key to understanding

the user interface of the Microsoft Windows operating system whether it be Microsoft

Windows 98 Microsoft Windows NT or Microsoft Windows CE Everything you see

on Windows display is window The desktop is window the taskbar is win

dow even the Start button on the taskbar is window Windows are related to one

another according to one relationship model or another they may be in parent/child

sibling or owner/owned relationships Windows supports number of predefined

window classes called controls These controls simplify the work of programmers

by providing range of predefined user interface elements as simple as button or

as complex as multiline text editor Windows CE supports the same standard set of

built-in controls as the other versions of Windows These built-in controls shouldnt

be confused with the complex controls provided by the common control library Ill

talk about those controls in Chapter

Controls are usually contained in dialog boxes sometimes simply referred to

as dialogs These dialog boxes constitute method for program to query users for

information the program needs specialized form of dialog named property sheet

allows program to display multiple but related dialog boxes in an overlapping style

each box or property sheet is equipped with an identifying tab Property sheets are

particularly valuable given the tiny screens associated with Windows CE devices

149

Page 00172

Part Whidows Programming asics

Finally Windows CE supports subset of the common dialog library available

under Windows NT and Windows 98 Specifically Windows CE supports versions of

the common dialog boxes File Open File Save Color and Print These dialogs are

somewhat different on Windows CE Theyre reformatted for the smaller screens and

arent as extensible as their desktop counterparts

CHILD WINDOWS
Each window is connected via parent/child relationship scheme Applications cre

ate main window with no parent called top-level window That window might
or might not contain windows called child windows child window is clipped to

its parent That is no part of child window is visible beyond the edge of its parent
Child windows are automatically destroyed when their parent windows are destroyed

Also when parent window moves its child windows move with it

Child windows are programmatically identical to top-level windows You use

the CreateWindow or CreateWindowEx function to create them each has window

procedure that handles the same messages as its top-level window and each can in

turn contain its own child windows To create child window use the WS_CHILD
window style in the dwStyle parameter of Create Window or Create WindowEx In

addition the hMenu parameter unused in top-level Windows CE windows passes
an ID value that you can use to reference the window

Under Windows CE theres one other major difference between top-level win
dows and child windows Windows sends WM_HIBERNATE messages only to top-

level windows that have the WS_OVERLAPPED and WS_VISIBLE styles Window
visibility in this case has nothing to do with what user sees window can be vis
ible to the system and still not be seen by the user if other windows are above it in

the Z-order This means that child windows and most dialog boxes arent sent

WM_HIBERNATE messages Top-level windows must either manually send

WM_HIBERNATE message to their child windows as necessary or perform all the

necessary tasks themselves to reduce the applications memory footprint On Win
dows CE systems such as the H/PC that support application buttons on the taskbar

the rules for determining the target of WM_HIBERNATE messages are also used to

determine what windows get buttons on the taskbar

In addition to the parent/child relationship windows also have an owner/owned

relationship Owned windows arent clipped to their owners However they always

appear above in Z-order the window that owns them If the owner window is

minimized all windows it owns are hidden Likewise if window is destroyed all

windows it owns are destroyed. Windows CE 1.0 supports window ownership only
for dialog boxes but fromversion 2.0 on Windows CE provides full support for owned
windows

150

Page 00173

Chapter Windows Controls and Dialog Boxes

Window Management Functions

Given the windows-centric nature of Windows its not surprising that you can choose

from number of functions that enable window to interrogate its enviromnent so

that it might determine its location in the window family tree To find its parent

window can call

HWND GetParent HWND hWnd

This function is passed window handle and returns the handle of the calling windows

parent window If the window has no parent the function returns NULL

Enumerating windows
Get Window prototyped as

HWND GetWindow HWND hWnd UINT uCmd

is an omnibus function that allows window to query its children owner and sib

lings The first parameter is the windows handle while the second is constant that

indicates the requested relationship The GW_CHILD constant returns handle to the

first child window of window Get Window returns windows in Z-order so the first

window in this case is the child window highest in the Z-order If the window has no

child windows this function returns NULL The two constants GW_HWNDFIRST and

GWJIDLAST return the first and last windows in the Z-order If the window handle

passed is top-level window these constants return the first and last topmost win
dows in the Z-order If the window passed is child window the GetWindow function

returns the first and last sibling window The GW_HWNDNEXT and GWJ-IWNDPREV
constants return the next lower and next higher windows in the Z-order These con

stants allow window to iterate through all the sibling windows by getting the next

window then using that window handle with another call to Get Window to get the

next and so on Finally the GW_OWNER constant returns the handle of the owner

of window

Another way to iterate through series of windows is

BOOL EnumWindows WNDENUMPROC ipEnurliFunc LPARAM lParam

This function calls the callback function pointed to by ipEnumFunc once for each

top-level window on the desktop passing the the handle of each window in turn

The iParam value is an application-defined value which is also passed to the enu
meration function This function is better than iterating through Get Window loop

to find the top-level windows because it always returns valid window handles its

possible that GetWindow iteration loop will get window handle whose window

is destroyed before the next call to Get Window can occur However since

Enum Windows works only with top-level windows Get Window still has place when

iterating through series of child windows

151

Page 00174

Part Windows Programming asics

Finding window

To get the handle of specific window use the function

HWND FindWindow LPCTSTR lpClassName LPCTSTR lpWindowName

This function can find window either by means of its window class name or by means

of windows title text This function is handy when an application is iust starting

up it can deiermine whether another copy of the application is already running All

an application has to do is call Find Window with the name of the window class for

the main window of the application Because an application almost always has main

window while its running NULL returned by Find Window indicates that the func

tion cant locate another window with the specified window classtherefore its

almost certain that another copy of the application isnt running

Editing the window structure values

The pair of functions

LONG GetWindowLong HWND hWnd mt nlndex

and

LONG SetWindowLong HWND hWnd mt nlndex LONG dwNewLong

allow an application to edit data in the window structure for window Remember

the WNDCLASS structure passed to the RegisterClass function has field cbWndExtra
that controls the number of extra bytes that are to be allocated after the structure If

you allocated extra space in the window structure when the window class was reg
istered you can access those bytes using the Get WindowLong and Set WindowLong
functions Under Windows CE the data must be allocated and referenced in 4-byte

integer sized and aligned blocks So if window class was registered with 12 in

the cbWndExtra field an application can access those bytes by calling Get WindowLong
or Set WindowLong with the window handle and by setting values of and in

the nlndex parameter

Get WindowLong and Set WindowLong support set of predefined index values

that allow an application access to some of the basic parameters of window Here

is list of the supported values for Windows CE

GWL_STYLE The style flags for the window

GWL_EKSTYLE The extended style flags for the window

GWLJ12NDPROC The pointer to the window procedure for the window

GWL_ID The ID value for the window

GWL_USERDATA An application-usable 32-bit value

152

Page 00175

Chapter Windows Controls and Dialog Boxes

Dialog box windows support the following additional values

DWL_DLGPROC The pointer to the dialog procedure for the window

DWL_MSGRESULT The value rettirned when the dialog box function

returns

DWL_USER An application-usable 32-bit value

Windows CE doesnt support the GWL_HINSTANCE and GWL_HWNDPARENT
values supported by Windows NT and Windows 98

Scroll Bars and the FontList2 Example Program

To demonstrate handy use for child window we return to the FontList program

from Chapter As you might remember the problem was that if scroll bar were

attached to the main window of the application the scroll bar would extend upward

past the right side of the command bar The reason for this is that scroll bar attached

to window is actually placed in the nonclient area of that window Because the com

mand bar lies in the client space we have no easy way to properly position the two

controls in the same window

An easy way to solve this problem is to use child window We place the child

window so that it fills all of the client area of the top-level window not covered by

the command bar The scroll bar can then be attached to the child window so that it

appears on the right side of the window but stops just beneath the command bar

Figure 4-1 shows the Fontlist2 window Notice that the scroll bar now fits properly

underneath the command bar Also notice that the child window is completely un
detectable by the user

Times New Roman Point24
Family Symbol Number ol lonts2

floun12

E6o flour14

Family Anal Number of font6

Anal Point1

Anal Point11

Anal Point12

Anal Point13

Anal Point18 ________
Font Liet 307 PM

Figure 4-1 The FontList2 window with the scroll barproperly positioned just beneath

the command bar

153

Page 00176

Parti

The code for this fix which isnt that much more complex than the original

FontList example is shown in Figure 4-2 Instead of one window procedure there

are flow two one for the top-level window which have labeled the Frame win
dow and one for the child window separated the code for these two windows into

two different source files FontList2.c and ClientWnd.c ClientWrid.c also contains

function InitGlient which registers the client window class

FontList2h/__
II Header file

II Written for the

II Copyright

/1 Returns number of elements

define dinix sizeofx size

1/

1/ Generic defines and data types

II

struct decodeiilNT associates

UINT Code

on
LRESULT FxnHWNQ

struct decodoCMD

UINT Code
LRESULT FxnHWF4D WORD HWND WORD

II

II Generic defines used by appli

define IDC_CMDBAR Command bar ID

define TOC_CLIENT Client window ID

II

II Window prototypes and defines

II

define FAMILYMAX 24

typedef struct

mt nNumFonts

TCHAR szFontFamily
FONTFAMSTRUT

Figure 4-2 The FonlLisr2progrwn

154

Page 00177

Chapter Windows Controls and Dialog Boxes

typedef FONTFAMSTRUCT PFONTFAMSTRIJCT

typedef struct

TNT yCurrent

MDC hdc
PAINTFONTINFO

typedef PAINTFONTINFC PPAINTFONTINFO

define CLIENTWINDOW TEXT ClientWnd

mt InitClient HINSTANCE
mt TermClient HINSTANCE int

II

II Function prototypes

//

mt InitApp HINSTANCE
HWND Initinstance HINSTANCE LPWSTR int
mt Terminstance HINSTANCE int

II Window procedures

LRESULT CALLBACK FrameWndProc HWND UTNT WPARAM LPARAM

LRESULT CALLBACK ClientWndProc HWND UINT WPARAM LPARAM

1/ Message handlers

LRESULT DoCreateFrame HWND UINT WPARAM LPARAM

LRESULT DoSizeFrame HWND hINT WPARAM LPARAM

LRESULT DoDestroyFrame HWND hINT WPARAM LPARAM

LRESULT DoCreateClient HWND UINT WPARAM LPARAM

LRESULT DoPaintClient HWND hINT WPARAM LPARAM

LRESULT DoVScrollClient HWND UINT WPARAM LPARAM

FontList2.c

II FontList2 Lists the available fonts in the system

//

Ii Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

include windows.h II For all that Windows stuff

include commctrl.h II Command bar includes

include FontList2.h II Program-specific stuff

continued

155

Page 00178

Part Whidows Programming Basics

Figure 4-2 continued %dwi_SItr
aq

11 _4LqWi Sri
zr

vr rtr 1jr 4jdHbiLvwISpbM btk
J1p %i

r42L Mfr

st 4fP P1 i1K
ioILkf jJ

i6UISr
rdt 4% 8j

1Ip

ii

156

Page 00179

Chapter Windows Controls and Dialog Boxes

wc.style 1/ Window style
wc.lpfnWndProc FrameWndProc 1/ Callback function
wc.cbClsExtra II Extra class data
wc.cbWndExtra II Extra window data
wc.hlnstance hlnstance II Owner handle
wc.hlcon NULL II Application icon
wc.hCursor NULL II Default cursor

wc.hbr8ackground HBRUSH GetStockObject WI4ITE._.BRUSH

wc.lpszMenuName NULL /1 Menu name

wc.lpszCassName szAppName II Window class name

if RegisterClass wc return

II Initialize client window class

if InitClient hinstance return

return

1/

II Initinstance Instance initialization
II

HWND Initlnstance HINSTANCE hlnstance LPWSTR lpCmdLine mt nCmdShow
HWND hWnd

II Save program instance handle in global variable
hlnst hlnstance

II Create frame window

hWnd CreateWindow szAppName II Window class

TEXT Font List II Window title

WS_VISIBLE 1/ Style flags

CW_USEDEFAULT II position

CW_USEDEFAULT II position

CW_USEDEFAULT II Initial width

CW_USEOEFAULT 1/ Initial height

NULL If Parent

NULL II Menu must be null

hlnstance II Application instance

NULL II Pointer to create

ii parameters
1/ Return fail code if window not created
if llsWindow hWnd return

II Standard show and update calls

ShowWindow hWnd nCmdShow
Updatewindow hWnd
return hWnd

continued

157

Page 00180

Part Windows Programming Basics

Figure 4-2 continued 4ei 31MIMJIIN

41
rFir1$ frhi1Ijb

W4 iMi rr

frhj
1b Eaw Ir

fr

m%nIirpp
$i

11 ie

diJii

158

Page 00181

Chapter Windows Controls and Dialog Boxes

hwndClient CreateWindow CLIENTWINDOW TEXT

WS_VISIBLE WS_CHILD WS_VSCROLL

lpcs-x lpcs-y sHeight

lpcs-cx lpcs-cy sHeight

hWnd HMENUIDCCLIENT
lpcs-hlnstance NULL

II Destroy frame if client window not created

if IsWindow hwndClient
DestroyWindow hWnd

return

II

II DoSizeFrame Process WM_STZE message for window

1/

LRESULT DoSizeFrame HWND hWnd UINT wMsg WPARAM wParam LPARAM iParam
RECT rect

INT

GetClientRect hWnd rect
CommadBar_Height GetDlgltem hWnd IDC_CMDBAR

rect.top

SetWindowPos GetDlgltem hWnd rDc_cLIENT NULL rect.left rect.top

rect.right rect.left rect.bottom rect.top

SWPNOZORDER
return

II

II DoDestroyFrame Process WM_DESTROY message for window

II

LRESULT DoDestroyFrame HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

PostQuitMessage

return

1MM

Client Wndc

1/ ClientWnd Client window code for FontList2

If Written for the book Programming Windows CE

1/ Copyright 1998 Douglas Boling

cotinzwd

159

Page 00182

Part Whidows Programming Bcs

Figure 4-2 continued

_1i1%MItJ4.PaPd
d1IiLiL 4j

iIrt

1r
j4j

iP $64
iVzit rir

4r

IiiMi ft

160

Page 00183

Chapter Windows Controls and Dialog Boxes

mt Termtlient HINSTANcE hlnstance irit nDefRC

return nOefRC/tZ_
II Font callback functions

II

1/ FontFamilycallback Callback function that enumerates the font

II families

int CALLBACK FontFamilyCallback CONST LOGFONT lplf
CONSI TEXTMETRIC lpntm
DWORD nForitlype LPARAM iParam

mt rc

II Stop enumeration if array filled

if sFamilyCnt FAMILYMAX

return

II Copy face name of font

lstrcpy ffs lplf-lfFaceName

return rc

1/

II EnumsingleFontFamily Callback function that enumerates the font

/1 families

int CALLBACK EnumSingleFontFamily CONST LOGFONT lplf
CONST TEXTMETRIC lpntm
DWORD nFontlype LPARAM iParam

PFONTFAMSTRUCT pffs

pffs PFONTFAMSTRUCT iParam

pffs-nNumFonts // Increment count of fonts in family

return

II

II PaintSingleFontFamily Callback function that enumerates the font

II families

int CALLBACK PaintSingleFontFamily CONSI LOGFONT lplf
CONST TEXTMETRIC lpntm
OWORD nFontType LPARAM lParam

PPAINTFONTINFO ppfi

TCHAR szOut
INT nFontHeight nPointSize

TEXTMETRIC tin

HFONT hFont hOldFont

continued

161

Page 00184

Part Windows Progammhig Basics

Figure 4-2 continued kPb
ppt pt3PV

4td

h$on
ir

iw

2it

v1 mp4u$3
twN1r11

tf 4uL ..r tt 4i1_%LkM1i1II1

i1pérIiVtw
1Jdia nt

MJ

uri

4iar ijjPL

TWT rn

rIrIII44jmU

162

Page 00185

Chapter Windows Controls and Dialog Boxes

return IlefWindowProc hWnd wMsg wParam iParam

II

If OoCreateClient Process WM_CREATE message for window
/1

LRESULT DoCreateClient HWND hWnci UINT wMsg WPARAM wParam
LPARAM iParam

HDC hdc
INT rc

I/Enumerate the available fonts
hdc GetDC hWnd
rc EnumFontFamiies HDChdc LPTSTRNULL FontFamilyCallback

for sFamilynt
ffsti.nNumFonts

rc EnumFontFamjlies HDChdc ffs
EnumSingleFontFamj3y
LPARAM PFONTFAMSTRUCTffs

ReleaseDc hWnd hdc
return

II

II QoPaintcljent Process WM._PAINT message for window
//

LRESULT DoPaintClient HWND hWnd UINT wMsg WPARAM wParam
LPARAM iParam

PAINTSTRIJCT ps
RECT rect

HOC hdc
TEXIMETRIC tm
INT nFontHeight

TCHAR szOutf256
PAINTFONTINFO pfi
SCROLLINFO si

hdc BeginPaint hWnd ps
GetClientRect hWnd rect

II Get the height of the default font
GetTextMetrics hdc tm
nFontHeight tm.tmHeight tm.tmExternalLeading

continued

163

Page 00186

Part Whidows Prorammflg Bascs

Figure 4-2 continued

Il%M

iii L4d

164

Page 00187

Chapter Windows Controls and Dialog Boxes

switch LOWORD wParam
case SB_LINEUP

sVPos 10
break

case SB_LINEDOWN

sVPos 10
break

case SB_PAGEUP

sVPos rect.bottom rect.top
break

case SB_PAGEDOWN

sVPos rect.bottoni rect.top
break

case SB_THUMBPOSITION

sVPos HIWORD wParam
break

1/ Check range
if sVPos

sVPos

if sVPos sVMax

sVPos sVMax

II If scroll position changed update scroilbar and
// force redraw of window

if sVPos sOldPos

si.cbSize sizeof Si
si.nPos sVPos

si.fMask SIF_POS

SetScrolllnfo hWnd SBVERT si TRUE

InvalidateRect hWnd NULL TRUE

return

The window procedure for the frame window is quite simple Just as in the

original FontList program in Chapter the command bar is created in the

WM_CREATE message handler DoCreateFrame Now however this procedure also

calls CreateW indow to create the child window in the area underneath the command
bar The child window is created itb three style flags WS_VTSIBLE so that the win
dow is initially visible WS_CHILD required because it will be child window of the

frame window and WS_VSCROLL to add the vertical scroll bar to the child window

165

Page 00188

Part Whidows Programming Basics

The majority of the work for the program is handled in the client window pro

cedure Here the same font enumeration calls are made to query the fonts in the sys

tem The WM_PAJNT handler DoPaintClient has new characteristic it now bases

what it paints on the new global variable sVPos which provides vertical positioning

That variable is initialized to in DoCreateClient and is changed in the handler for

new message WM_VSCROLL

Scroll bar messages
WM_VSCROLL message is sent to the owner of vertical scroll bar any time the user

taps on the scroll bar to change its position complementary message WIVI_HSCROLL

is identical to WM_VSCROLL but is sent when the user taps on horizontal scroll bar

For both these messages the wParam and iParam assignments are the same The

low word of the wParam parameter contains code indicating why the message was

sent Figure 4-3 shows diagram of horizontal and vertical scroll bars and how tap

ping on different parts of the scroll bars results in different messages The high word

of wParam is the position of the thumb but this value is valid only while youre pro

cessing the SB_THUMBPOSITION and SB_ThUMBTRACK codes which Ill explain

shortly If the scroll bar sending the message is stand-alone control and not attached

to window the iParam parameter contains the window handle of the scroll bar

SB_LINEUP
ij ISB_PAGEUP

SB_THUMBPOSITION

SB_THUMBTRACK

....psBLINEDowN
SB_LINELEFT SB_THUMBPOSITION SB_LINERIGHT

SB_PAGELEFT SB_THUMBTRACK SB_PAGERIGHT

Figure 4-3 Scroll bars and their hot spots

The scroll bar message codes sent by the scroll bar allow the program to react

to all the different user actions allowable by scroll bar The response required by

each code is listed in the following table Figure 4-4

The SB_LINExxx and SB_PAGExvx codes are pretty straightforward You move

the scroll position either line or page at time The SB_THUMBPOSITION and

SB_THUMBTRACK codes can be processed in one of two ways When the user drags

the scroll bar thumb the scroll bar sends SB_THUMBTRACK code so that program

can interactively track the dragging of the thumb If your application is fast enough

you can simply process the SB_THUMBTRACK code and interactively update the

display If you field the SB_THUMBTRACK code however your application must be

166

Page 00189

Chapter Windows Controls and Dialog Boxes

quick enough to redraw the display so that the thumb can be dragged without hesi

tation or jumping of the scroll bar This is especially problem on the slower devices

that run Windows CE

Codes Response

For WS_VSCROLL

SB_LINEUP Program should scroll the screen up one line

SB_LINEDOWN Program should scroll the screen down one line

SB_PAGEUP Program should scroll the screen up one screens

worth of data

SB_PAGEDOWN Program should scroll the screen down one

screens worth of data

For WS_HSCROLL

SB_LINELEFT Program should scroll the screen left one character

SB_LINERIGHT Program should scroll the screen right one character

SB_PAGELEFT Program should scroll the screen left one screens

worth of data

SB_PAGERIGHT Program should scroll the screen right one screens

worth of data

For both WS_VSCROLL and WS_HSCROLL

SB_THUMBTRACK Programs with enough speed to keep up should

update the display with the new scroll position

SB_THUMBPOSITION Programs that cant update the display fast enough
to keep up with the SB_THUMBTRACK message

should update the display with the new scroll

position

SB_ENDSCROLL This code indicates that the scroll bar has com
pleted the scroll event No action is required by the

program

SB_TOP Program should set the display to the top or left end

of the data

SB_BOTTOM Program should set the display to the bottom or

right end of the data

Figure 4-4 Scroll codes

167

Page 00190

Part Windows Programming Basics

If your application or the system its running on is too slow to quickly update

the display for every SB_THUMBTRACK code you can ignore the SB_ThUMBTRACK

and wait for the SB_THUMBPOSITION code thats sent when the user drops the scroll

bar thumb Then you have to update the display only once after the user has fin

ished moving the scroll bar thumb

Configuring scroll bar

To use scroll bar an application should first set the minimum and maximum val

uesthe range of the scroll bar along with the initial position Windows CE scroll

bars like their Win32 cousins support proportional thumb sizes which provide feed

back to the user about the size of the current visible page compared to the entire

scroll range To set all these parameters Windows CE applications should use the

SetScrolllnfo function prototyped as

mt SetScrolllnfo HWND hwnd mt fnBar LPSCROLLINFO ipsi BOOL fRedraw

The first parameter is either the handle of the window that contains the scroll

bar or the window handle of the scroll bar itself The second parameter fnBar is

flag that determines the use of the window handle The scroll bar flag can be one of

three values SB_HORZ for windows standard horizontal scroll bar SB_VERT for

windows standard vertical scroll bar or SB_CTL if the scroll bar being set is stand

alone control Unless the scroll bar is control the window handle is the handle of

the window containing the scroll bar With SB_CTL however the handle is the win

dow handle of the scroll bar control itself The last parameter is JFedraw Bool

ean value that indicates whether the scroll bar should be redrawn after the call has

been completed

The third parameter is pointer to SCROLLINFO structure which is defined as

typedef struct tagSCROLLINFO

UINT cbSize

UINT fMask

mt nMin

mt nMax
UINT nPage

mt nPos

mt nTrackPos

SCROLLINFO

This structure allows you to completely specify the scroll bar parameters The cbSize

field must be set to the size of the SCROLLINFO structure The fMask field contains

flags indicating what other fields in the structure contain valid data The nMin and

nMax fields can contain the minimum and maximum scroll values the scroll bar can

report Windows looks at the values in these fields if the fMask parameter contains

the SIF_RANGE flag Likewise the nPos field sets the position of the scroll bar within

its predefined range if the JMask field contains the SIF_POS flag

168

Page 00191

Chapter Windows Controls and Dialog Boxes

The nPage field allows program to define the size of the currently viewable

area of the screen in relation to the entire scrollable area This allows user to have

feel for how much of the entire scrolling range is currently visible This field is used

only if thejMask field contains the SIF_PAGE flag The last member of the SCROLLINFO

structure nTrackPos isnt used by the SetScrolllnfo call and is ignored

The JMask field can contain one last flag Passing SIF_DISABLENOSCROLL

flag causes the scroll bar to be disabled but still visible This is handy when the en
tire scrolling range is visible within the viewable area and no scrolling is necessary

Disabling the scroll bar in this case is often preferable to simply removing the scroll

bar completely

Those with sharp eye for detail will notice problem with the width of the

fields in the SCROLLINFO structure The nMin nMax and nPos fields are integers

and therefore in the world of Windows CE are 32 bits wide On the other hand the

WM_HSCROLL and WMVSCROLL messages can return only 16-bit position in the

high word of the wParam parameter If you re using scroll ranges greater than 65 535

use this function

BOOL GetScrolllnfo HWND hwnd mt fnBar LPSCROLLINFO ipsi

As with SetScrolllnfo the flags in the fnBar field indicate the window handle

that should be passed to the function The SCROLLINFO structure is identical to the

one used in SetScrolllnfo however before it can be passed to GetScrolllnfo it must

be initialized with the size of the structure in cbSize An application must also mdi

cate what data it wants the function to return by setting the appropriate flags in the

JMask field The flags used in JMask are the same as the ones used in SetScrolllnfo

with couple of additions Now SIF_TRACKPOS flag can be passed to have the

scroll bar return its current thumb position When called during WM_xSCEOLL
message the nTrackPos field contains the real time position while the nPos field

contains the scroll bar position at the start of the drag of the thumb
The scroll bar is an unusual control in that it can be added easily to windows

simply by specifying window style flag It also unusual in that the control is placed
outside the client area of the window The reason for this assistance is that scroll bars

are commonly needed by applications so the Windows developers made it easy to

attach scroll bars to windows Now let look at the other basic Windows controls

WINDOWS CONTROLS
While scroll bars hold special place because of their easy association vvith standard

windows there are large number of other controls that Windows applications often

use including buttons edit boxes and list boxes In short controls are simply pre
defined window classes Each has custom window procedure supplied by Windows
that gives each of these controls tightly defined user and programming interface

169

Page 00192

Part Windows Programmkig ascs

Since control is just another window it can be created with call to

CreateWindow or Create WindowEx or as will explain later in this chapter auto

matically by the dialog manager during the creation of dialog box Like menus

controls notify the parent window of events via WM_COMMAND messages encod

ing events and the ID and window handle of the control encoded in the parameters

of the message Controls can also be configured and manipulated using predefined

messages sent to the control Among other things applications can set the state of

buttons add or delete items to list boxes and set the selection of text in edit boxes

all by sending messages to the controls

There are six predefined window control classes They are

Button wide variety of buttons

Edit window that can be used to enter or display text

List window that contains list of strings

Combo combination edit box and list box

Static window that displays text or graphics that user cant change

Scroll bar scroll bar not attached to specific window

Each of these controls has wide range of function far too much for me to cover

completely in this chapter But Ill quickly review these controls mentioning at least

the highlights Afterward Ill show you an example program CtlView to demonstrate

these controls and their interactions with their parent windows

Button Controls

Button controls enable several forms of input to the program Buttons come in many

styles including push buttons check boxes and radio buttons Each style is designed

for specific usefor example push buttons are designed for receiving momentary

input check boxes are designed for on/off input and radio buttons allow user to

select one of number of choices

Push buttons

In general push buttons are used to invoke some action When user presses

push button using stylus the button sends WM_COMMAND message with

BN_CLICKED for button notification clicked notify code in the high word of the

wParam parameter

Check boxes
Check boxes display square box and label that asks the user to specify choice

check box retains its state either checked or unchecked until the user clicks

it again or the program forces the button to change state In addition to the standard

170

Page 00193

Chapter Windows Controls and Dialog Boxes

BSCHECKBOX style check boxes can come in 3-state style BS_3STATE that al

lows the button to be disabled and shown grayed out Two additional styles

BS_AUTOCHECKBOX and BS_AUTO3STATE automatically update the state and look

of the control to reflect the checked unchecked and in the case of the 3-state check

box the disabled state

As with push buttons check boxes send BN_CLICKED notification when the

button is clicked Unless the check box has one of the automatic styles its the re

sponsibility of the application to manually change the state of the button This can

be done by sending BM_SETCHECK message to the button with the wParam set to

to uncheck the button or to check the button The 3-state check boxes have

third disabled state that can be set by means of the BM_SETCHECK message with

the wParam value set to An application can determine the current state using the

BM_GETCHECK message

Radio buttons

Radio buttons allow user to select from number of choices Radio buttons are

grouped in set with only one of the set ever being checked at time If its using

the standard BS_RADIOBUTFON style the application is responsible for checking

and unchecking the radio buttons so that only one is checked at time However

like check boxes radio buttons have an alternative style BS_AUTORADIOBUITON
that automatically maintains the group of buttons so that only one is checked

Group boxes

Strangely the group box is also type of button group box appears to the user as

hollow box with an integrated text label surrounding set of controls that are natu

rally grouped together Group boxes are merely an organizational device and have

no programming interface other than the text of the box which is specified in the

window title text upon creation of the group box Group boxes should be created

after the controls within the box are created This ensures that the group box will be

beneath the controls it contains in the window Z-order

You should also be careful when using group boxes on Windows CE devices

The problem isnt with the group box itself but with the small size of the Windows

CE screen Group boxes take up valuable screen real estate that can be better used

by functional controls This is especially the case on the Palm-size PC with its very

small screen In many cases line drawn between sets of controls can visually group

the controls as well as group box can

Customizing the appearance of button

You can further customize the appearance of the buttons described so far by using

number of additional styles The styles BS_RIGHT BS_LEFT BS_BOTTOM and

BS_TOP allow you to position the button text in place other than the default center

of the button The BS_MULTILINE style allows you to specify more than one line of

171

Page 00194

Part Whidows Programming ascs

text in the button The text is flowed to fit within the button The newline character

\n in the button text can be used to specifically define where line breaks occur

Windows CE doesnt support the BS_ICON and BS_BITMAP button styles supported

by other versions of Windows

Owner-draw buttons

You can totally control the look of button by specifying the BS_OWNERDRAW style

When button is specified as owner-draw its owner window is entirely responsible

for drawing the button for all the states in which it might occur When window

contains an owner-draw button its sent WM_DRAWITEM message to inform it that

button needs to be drawn For this message the wParam parameter contains the

ID value for the button and the iParam parameter points to DRAWITEMSTRUCT

stmcture defined as

typedef struct tagDRAWITEMSTRUCT

UINT CtlType

UINT Ct1ID

UINT itenhID

UINT itemAction

HINT itemState

HWND hwndltem

HOC hOC
RECT rcltem

DWORD itemData

DRAWITEMSTRUCT

The CtlType field is set to ODT_BUTVFON while the Ct1ID field like the wParam

parameter contains the buttons ID value The itemAction field contains flags that

indicate what needs to be drawn and why The most significant of these fields is

itemState which contains the state selected disabled and so forth of the button

The hDC field contains the device context handle for the button window while the

rcltem RECT contains the dimensions of the button The itemData field is NULL for

owner-draw buttons

As you might expect the WM..DRAWITEM handler contains number of GDI

calls to draw lines rectangles and whatever else is needed to render the button An

important aspect of drawing button is matching the standard colors of the other

windows in the system Since these colors can change they shouldnt be hard coded

You can query to find out which are the proper colors by using the function

DWORD GetSysColor mt nlndex

This function returns an RGB color value for the colors defined for different

aspects of windows and controls in the system Among number of predefined in

dex values passed in the index parameter an index of COLORBTNFACE returns the

172

Page 00195

Chapter Windows Controls and Dialog Boxes

proper color for the face of button while COLOR_BTNSHADOW returns the dark

color for creating the three-dimensional look of button

The Edit Control

The edit control is window that allows the user to enter and edit text As you might

imagine the edit control is one of the handiest controls in the Windows control pan
theon The edit control is equipped with full editing capability including cut copy
and paste interaction with the system clipboard all without assistance from the ap
plication Edit controls display single line or by specifying the ES_MULTILINE style

multiple lines of text The Notepad accessory provided with the desktop versions of

Windows is simply top-level window that contains multiline edit control

The edit control has few other features that should be mentioned An edit

control with the ES_PASSWORD style displays an asterisk character by default

in the control for each character typed the control saves the real character The

ES_READONLY style protects the text contained in the control so that it can be read

or copied into the clipboard but not modified The ES_LOWERCASE and ES_UPPER

CASE styles force characters entered into the control to be changed to the speci

fied case

You can add text to an edit control by using the WM_SE1ITEXT message and

retrieve text by using the WM_GETFEXT message Selection can be controlled using

the EM_SETSEL message This message specifies the starting and ending characters

in the selected area Other messages allow the position of the caret the marker that

indicates the current entry point in an edit field to be queried and set Multiline edit

controls contain number of additional messages to control scrolling as well as to

access characters by line and column position

The List Box Control

The list box control displays list of text items so that the user might select one or

more of the items within the list The list box stores the text optionally sorts the items

and manages the display of the items including scrolling List boxes can be config

ured to allow selection of single item or multiple items or to prevent any selec

tion at all

You add an item to list box by sending an LB_ADDSTfflNG or LB_INSERTSTfflNG

message to the control passing pointer to the string to add in the iParam parame

ter The LB_ADDSTRING message places the newly added string at the end of the list

of items while LB_INSERTSTRING can place the string anywhere within the list of

items in the list box The list box can be searched for particular item using the

LB_FIND message

173

Page 00196

Part WindowS Programmhig Basics

Selection status can be queried using the LB_GETCURSEL for single selection

list boxes For multiple selection list boxes the LB_GETSELCOUNT and LB_GET

SELITEMS can be used to retrieve the items currently selected Items in the list box

can be selected programmatically using the LB_SETCURSEL and LB_SETSEL messages

Windows CE supports most of the list box functionality available in other ver

sions of Windows with the exception of owner-draw list boxes and the LB_DIR

family of messages new style LBS_EX_CONSTSTRINGDATA is supported un

der Windows CE list box with this style doesnt store strings passed to it Instead

the pointer to the string is stored and the application is responsible for maintaining

the string For large arrays of strings that might be loaded from resource this pro

cedure can save RAM because the list box wont maintain separate copy of the

list of strings

The Combo Box Control

The combo box is as the name implies combination of controlsin this case

single-line edit control and list box The combo box is space-efficient control for

selecting one item from list of many or for providing an edit field with list of pre

defined suggested entries Under Windows CE the combo box comes in two styles

drop-down and drop-down list Simple combo boxes arent supported The drop-

down style combo box contains an edit field with button at the right end Clicking

on the button displays list box that might contain more selections Clicking on one

of the selections fills the edit field of the combo box with the selection The drop-

down list style replaces the edit box with static text control This allows the user to

select from an item in the list but prevents the user from entering an item thats not in

the list

Since the combo box combines the edit and list controls list of the messages

used to control the combo box strongly resembles merged list of the messages for

the two base controls GB ADDSTfflNG CB_INSERTSTRING and CBFINDSTfflNG

act like their list box cousins Likewise the GB SETEDITSELECT and CB_GETEDIT

SELECT messages set and query the selected characters in the edit box of drop-

down or drop-down list combo box To control the drop-down state of drop-down

or drop-down list combo box the messages CB_SHOWDROPDOWN and GB_GET

DROPPEDSTATE can be used

As in the case of the list box Windows CE doesnt support owner-draw combo

boxes However the combo box supports the CBSEX_CONSTSTfflNGDATA extended

style which instructs the combo box to store pointer to the string for an item in

stead of the string itself As with the list box LBS_EXCONSTSTRINGDATA style this

procedure can save RAJ1 if an application has large array of strings stored in ROM

because the combo box wont maintain separate copy of the list of strings

174

Page 00197

Chapter Windows Controls and Dialog Boxes

Static Controls

Static controls are windows that display text icons or bitmaps not intended for user

interaction You can use static text controls to label other controls in window What

static control displays is defined by the text and the style for the control Under

Windows CE static controls support the following styles

SS_LEFT Displays line of left-aligned text The text is wrapped if nec

essary to fit inside the control

SS_CENTER Displays line of text centered in the control The text is

wrapped if necessary to fit inside the control

SS_RIGHT Displays line of text aligned with the right side of the con
trol The text is wrapped if necessary to fit inside the control

SS_LEFTNOWORDWRZ4P Displays line of left-aligned text The text isnt

wrapped to multiple lines Any text extending beyond the right side of

the control is clipped

SS_BJTMAP Displays bitmap Window text for the control specifies the

name of the resource containing the bitmap

SS_ICON Displays an icon Window text for the control specifies the name

of the resource containing the icon

Static controls with the SS_NOTIFY style send WM_COMMAND message

when the control is clicked enabled or disabled although the Windows CE ver

sion of the static control doesnt send notification when its double-clicked The

SS_CENTERTMAGE style used in combination with the SS_BITMAP or 55_ICON style

centers the image within the control The SS_NOPREFIX style can be used in combi

nation with the text styles It prevents the ampersand character from being inter

preted as indicating the next character is an accelerator character

Windows CE doesnt support static controls that display filled or hollow rect

angles such as those drawn with the SS_WHITEFRAME or SS_BLACKRECT styles Also

Windows CE doesnt support owner-draw static controls

The Scroll Bar Control

The scroll bar control operates identically to the window scroll bars described previously

with the exception that the fnBar field used in SetScrolllnfo and GetScrolllnfo must be

set to SB_CTL The hwnd field then must be set to the handle of the scroll bar control

not to the window that owns the scroll bar Like window scroll bars the owner of the

scroll bar is responsible for fielding the scroll messages WM_VSCROLL and WM_HSCROLL

and setting the new position of the scroll bar in response to these messages

175

Page 00198

Parti

The CtIView Example Program

The CtlView example program shown in Figure 4-5 demonstrates all the controls

Ive just described The example makes use of several applicationdefined child win

dows that contain \arious controls You switch between the different child indows

by clicking on one of five radio buttons displayed across the top of the main win

dow As each of the controls reports notification through WM_COMMAND mes

sage that notification is displayed in list box on the right side of the window CtlView

is handy for observing lust what messages control sends to its parent window and

when theyre sent One problem with CtlView is that its designed for an Il/PC screen

not Palm-size PC screen If you run CtlView on Palm-size PC youll see that the

controls dont all fit onto the small lalm-size PC screen

CtlView.rc

II Resource file

1/

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

include CtlVlew.h II Program-specific stuff

ID_ICON ICON CtlView.ico II Program icon

TEXTICON ICON btnicon.ico II Icon used in static window

STATICBMP BITMAP statbmp.bmp II Bitmap used in static window

CtlView..h/______
1/ Header file

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

1/ Returns number of elements

define dirnx sizeofx sizeofx
II

/1 Generic defines and data types

II

struct decodeUlNl II Structure associates

UINT Code II messages

II with function

LREStJLT FxnHWND UINT WPARAM LPARAM

Figure 4-5 TheCrlT7eu program

176

Page 00199

Chapter Windows Controls and Dialog Boxes

struct decodeCMfl II Structure associates

UINT Code II menu lOs With

LREStJLT iFxnHWND WORD HWND WORD 1/ function

1/

/1 Generic defines used by application

define rDI_BTNIc0N 20 II Icon used on button

define 113_ICON II Icon ID

define IDC_CMDBAR II Command bar ID

define IDC_RPTLIST /1 Report window ID

/1 Client window IDs go from through

define rDc_wND5EL II Starting client

II window lOs

II Radio button IDs go from 10 through 14

define IDC_RADIOBTNS 10 II Starting ID of

/1 radio buttons

1/ Button window defines

define IDC_PUSHBTN 100

define IDC_CHKBOX 101

define IDC_ACHKBOX 102

define IDC_A3STBOX 103

define IDC_RADIO1 104

define IDC_RADIO2 105

define IDC_OWNRDRAW 106

If Edit window defines

define IDC_SINGLELINE 100

define IDCJ4ULTILINE 101

define IDC_PASSBOX 102

/1 List box window defines

define IDC_COMBOBOX 100

define IDC_SNGLELJST 101

define IDC_MULTILIST 102

1/ Static control window defines

define IDC_LEFTTEXT 100

define IDC_RIGHTTEXT 101

define IDC_CENTERTEXT 102

define IDC_ICONCTL 103

define IDC_BITMAPCIL 104

coflhiflued

177

Page 00200

Part ro am ng

Figure 4-5 continued

78

Page 00201

Chapter Windows Controls and Dialog Boxes

II

/1 Window prototypes and defines for BtnWnd

II

define BTNWND TEXT ButtonWnd
mt InitBtnWnd HINSTANCE

II Window procedures

LRESULT CALLBACK BtnWndProc HWND hINT WPARAM LPARAM

LRESULT DoCreateBtnWnd HWND hINT WPARAM LPARAM
LRESULT DoCtlColorBtnWnd HWND UINT WPARAM LPARAM
LRESULI UoCommandBtnWnd HWND hINT WPARAM LPARAM
LRESULT DoDrawltemBtnWnd HWND UINT WPARAM LPARAM
LRESULT DoMeasureltemBtnWnd HWND UINT WPARAM LPARAM

II

1/ Window prototypes and defines for EditWnd

II

define EDITWND TEXT EditWnd
mt InitEditWnd HINSTANCE

1/ Window procedures

LRESULT CALLBACK EditWndProc HWND UINT WPARAM LPARAM

LRESULT DoCreateEditWnd HWND hINT WPARAM LPARAM
LRESULT DoCommandEditWnd HWND hINT WPARAM LPARAM
LRESULT DoDrawltemEditWnd HWND hINT WPARAM LPARAM
LRESULT DoMeasurelteinEditWnd HWND hINT WPARAM LPARAM

II

II Window prototypes and defines for ListWnd

II

define L1$TWND TEXT ListWnd
mt InitListWnd HINSTANCE

1/ Window procedures

LRESIJLT CALLBACK ListWndProc HWND UINT WPARAM LPARAM

LRESULT DoCreateListWnd HWND UINT WPARAM LPARAM
LRESULT DoCommandListWnd HWNU hINT WPARAH LPARAM
LRESULT DoDrawltemListWnd HWND UINT WPARAM LPARAM

LRESULT DoMeasureItenListWnd HWND hINT WPARAM LPARAM

II

II Window prototypes and defines for StatWnd

II

continued

179

Page 00202

Part Whidows Programmhig Basics

Figure 4-5 continued vtt4LgI
4i

LvLcR ad 4n
Iti 44

IiijL c1

IIWSI

180

Page 00203

Chapter Windows Controls and Dialog Boxes

WM_COMMAND DocommandFrame

MYMSG_ADDLINE DoAddLineFrame

WM_DESTROY DoDestroyFrame

typedef struct

TCHAR szljtle
TNT nID
TCHAR szCtlWnds
HWND hWndClient

RBTNDATA

/1 Text for main window radio buttons

TCHAR szBtnTitle TEXT Buttons TEXT Edit TEXT List
TEXT Static TEXT Scroll

/1 Class names for child windows containing controls

ICHAR szCtlWnds BTNWND EDITWND LISTWND STATWND SCROLLWND

INT nWndSel

//HWND hwndVisClient/_
II Program entry point

int WINAPI WinMain HINSTANCE hlnstance HINSTANCE hprevlnstance

LPWSTR lpCmdLine mt nCmdShow

MSG jnsg

mt rC

I-IWND hwndFrame

II Initialize application

rc InitApp hlnstance
if rc return rc

II Initialize this instance

hwndFrame Initlnstance hlnstance lpCmdLine nCmdShow
if hwndFrame

return BxlO

II Application message loop

while GetMessage msg NULL

TranslateMessage msg
DispatchMessage msg

II Instance cleanup

return Termlnstance hlnstance msg.wParam

continiwd

181

Page 00204

Part Whidows Programming Bscs

Figure 4-5 continued

4P iP

liltili iU jn jt
pfA $i4gfIiILpJIIih4ri1I1pMMiuIP$b 4k iIipn4 IdI
iiiiuijirnm1

eX fr 4F4fS Sr iI zp n4
4V

u_.wiIIIiw ie4$e AI1
uifr4IPIuLsi1I$w A\ i4 i11

uuIIr1Ipu

4P

çuP

182

Page 00205

Chapter Windows Controls and Dialog Boxes

NULL II Menu must be null

hlristance II Application instance

NULL II Pointer to create

II parameters

II Return fail code if window not created

if UsWindow hWnd return

/1 Standard show and update calls

ShowWindow hWnd nCmdShow
Updatewindow hWnd

return hWnd

II

II Terminstance Program cleanup

int Termlnstance HINSTANCE hlnstance mt nDefRC

return nDefRC

1/ Message handling procedures for FrameWindow

//

/1

/1 FrameWndProc Callback function for application window

1/

LRESULT CALL8ACK FrameWndProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

INT1
Il

/f Search message list to see if we need to handle this

II message If in list call procedure

for dimFrameMessages
if wMsg FrameMessagesli.c

return FrameMessages wMsg wParam lParam

return OefWindowProc hWnd wMsg wParani IParam

II

II DoCreateFrame Process WPLCREATE message for window

II

LRESULT DoCreateFrame HWND hWnd UINT wMsg WPARAP4 wRaram

LPARAM lParam

LPCREATESTRUCT lpcs
HWND hwndCB hwndChild

XMl sHeight cx cy

continued

183

Page 00206

Part Whdows Programmñng Bascs

Figure 4-5 continued

3iUiis imiigIW.w aigirqk
IiiIIj Al

4r4 fir
i4i

4diPuIlAl
sA

_c 1gp Wrp 4IA4

Alr III3I2Aaigm1ç

gi_
184

Page 00207

Chapter Windows Controls and Dialog Boxes

II Initialize tab stops for display list box

25
SendMessage hwndChild LB_SETTABSTOPS LPARAMi

1/

/1 Create the child windows Size them so that they fit under

II the command bar and fill the left side of the child area

for dimsztlWnds Ii

hwndChild CreateWindowEx WS_EX_CLIENTEDGE

szCtlWndsti
TEXT WS_CHILD

si-leight 25

cx/2 cy sHeight 25

hWnd NMENUIDC_WNDSELi
hlnst NULL

II Destroy frame if client window not created

if llsWindow hwndChild

DestroyWindow hWnd
return

II Check one of the auto radio buttons

SendDlgltemMessage hWnd IDC_RADIOBTNSnWndSel BM_SETCHECK

hwndChild GetOlgltem hWnd IDC_WWDSELnWndSel

ShowWindow hwndChild SW_SHOW
return

II

II DoCommandFrame Process WM_COMMAND message for window

/1

LRESULT DoCommandFrame HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParani

HWND hwndTemp

mt nBtn
II Donut look at list box messages

if LOWORD wParam IDC_RPTLIST

return

nBtn LOWORD wParam IDC_RADIOBTNS

if riWndSel nBtn

II Hide the currently visible window

hwndTemp GetDlgltem hWnd IDC_WNDSELnWndSel

ShowWindow hwndTemp SW_HIDE

II Save the current selection

nWndSel nBtn

contiiucd

185

Page 00208

Part Whdows gram ascs

Figure 4-5 continued

86

Page 00209

Chapter Windows Controls and Dialog Boxes

include winclowsh II For all that Windows stuff

include Ctlview.h II Program-specific stuff

extern HINSTANCE hlnst

LRESULT DrawButton HWND hWnd LPDRAWITEMSTRUCT pdi
II

/1 Global data

//

/1 Message dispatch table for BtnWndWindowProc

const struct decodeUlNT BtnWndMessagesJ

WLCREATE DoCreateBtnWnd

WM_CTLCOLORSTATIC DoCtlColorBtnWnd

WM_COMMAND DoComrnandBtnWnd

WM_DRAWITEM DoDrawltem8tnWnd

II Structure defining the controls in the window

CTLWNDSTRUCT BtnS

TEXT BUTTON IDC_PUSHBTN TEXT Button
10 10 120 23 OS_PUSHBUTTON BS_NOTIFY

TEXT BUTTON TDC_CHKBOX TEXT Check box
10 35 120 23 BS_CHECKBOX

TEXT BUTTON IDC_ACHKBOX TEXT Auto check box
10 60 120 23 BS_AUTOCHECKBOX

TEXT BUTTON JOC_A3STBOX TEXT Auto 3-state box
10 85 128 23 BS_AUTO3STATE

TEXT BUTTON IOC_RADIO1 TEXT Auto radio button

10 110 120 23 BS_AUTORADIOBUTTON

TEXT BUTTON IDC_RADIO2 TEXT Auto radio button

10 135 120 23 BS_AUTORADIOBUTTON

TEXT BUTTON IDC_OWNRDRAW TEXT OwnerDraw
150 10 44 44 BS_PUSHBLITTON BS_OWNERDRAW

II Structure labeling the button control WM_COMMAND notifications

NOTELABELS nlBtn TEXT BN_CLICKED
TEXT BN_PAINT
TEXT BN_HILITE
TEXT ON_UNHILITE
TEXT ON_DISABLE
TEXT BN_DOLJBLECLICKED
TEXT BN_SETFOCUS
TEXT BN_KILLFDCUS

continued

187

Page 00210

Part Whidows Programmhig Bases

Figure 4-5 continued

e4M iI 1WL

1i1MiIt
liii

IIW

NuPIit1

th dwF
188

Page 00211

Chapter Windows Controls and Dialog Boxes

LRESULT DoCreateBtnwnd HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

1NT

for Ci dimBtns

CreateWindow Btns BtnsBtns WS_VISIBLE WS_CHILD

Btns Btns Btns Btns
hWnd HMENU Btns hlnst NULL

hlcon Loadlcon hlnst TEXT TEXTICON

II We need to set the initial state of the radio buttons

CheckRadioButton hWnd IDC_RADIO1 IDC_RADIO2 IDC_RADIO1
return

II

II DoCtlColorBtnWnd process WL.CTLCOLORxx messages for window

1/

LRESULT DoCtlColorBtnWnd HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

return GetStockObject WHITE_BRUSH

II

II DoCommandBtnWnd Process WM_COMMAND message for window

II

LRESULT DoCommandBtnWnd HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

TCHAR szOut
INT

II Since the Check Box button is not an auto check box it

II must be set manually

if LOWORD wParam IDCCHKBOX
HIWORD wParam BN_CLICKED
II Get the current state complement and set

SendDlglteniMessage hWnd IDC_CHKBOX BM_GETCHECK

if

SendDlgltemMessage hWnd IDCCHKBOX BM_SETCHECK

else

SendDlgltemMessage hWnd IDCCHKBOX BM_SETCHECK

II Report WM_COMMAND messages to main window

coi/iflued

189

Page 00212

Parti

Figure 45 coizliiiud

for dimnlBtn
if HIWORD wParam nlBtn

lstrcpy szOut nlBtn
break

if dimnlBtn
wsprintf szOut TEXT notification %x HIWORD wParam

SendMessage GetParent hWnd MYMSG_ADDLINE wParam

LPARAMszOut
return

If

II DoDrawltemBtnWnd Process WM_DRAWITEM message for window

II

LRESULT DoDrawltemBtnWnd HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

return DrawButton hWnd LPDRAWITEMSTRUCTlParam

II

II DrawButton Draws an owner-draw button

1/

LRESULT DrawButton HWND hWnd LPDRAWITEMSTRUCT pdi

HPEN hPenShadow hPenLight hPenDkShadow hOldPen

HBRUSH hBr hOldBr

LOGPEN ipen
TCHAR szOut
POINT ptOut ptln

II Reflect the messages to the report window

wsprintf szOut TEXT WM_DRAWITEM Action%x State%x
pdi-itemAction pdi -itemState

SendMessage GetParent hWnd HYMSO_ADDLINE pdi-Ct1ID
LPARAMszOut

II Create pens for drawing

lpen.lopnStyle PS_SOLID

lpen.lopnWidth.x

lpen.lopnWidth.y

lpen.lopnColor GetSysColor COLOR_3DSI-IADOW

hPenShadow CreatePenlndirect lpen

190

Page 00213

Chap/er Windows Controls and Dialog Boxes

lpen.lopnWidth.x

lpen.lopnWidth.y

lpen.lopnColor GetSysColor COLOR_3DLIGHT
hPenLight Createpenlndirect lpen

lpen.lopnColor GetSysColor COLOR_3DDKSHADOW
hPenDkShadow CreatePenlndirect lpen

II Create brush for the face of the button

hBr CreateSolidBrush GetSysColor COLOR_3DFACE

II Draw rectangle with thick outside border to start the

II frame drawing

hOldPen SelectObject pdi-hDC hPenShadow
hOldBr SelectObject pdi-hDC hBr
Rectangle pdi-hDC pdi-rcltem.left pdi-rcltem.top

pdi-rcltem.right pdi-rcltem.bottoni

II Draw the upper left inside line

ptln pdircItem.left

ptln pdi-rcltem.bottom

ptln pdi-rcltem.left

ptln pdi-rcltem.top

ptln pdi-rcltern.right

ptln pdi-rcltern.top1

1/ Select pen to draw shadow or light side of button

if pdi-itemState ODS_SELECTED

SelectObject pdi hDC hPenDkShadow
else

SelectObject pdi-hDC hPenLight

Polyline pdi-hDC ptln

1/ If selected also draw bright line inside the lower

II right corner

if pdi-itemState ODS_SELECTED

SelectObject pdi-hDC hPenLight
ptln pdi-rcltem.right-

ptln pdi-rcltem.bottom

Polyline pdi-hDC ptln

II Now draw the black outside line on either the upper left or lower

II right corner

ptOut pdi-rcltem.left

ptOut pdi-rcltem.bottom-1

continued

191

Page 00214

Parti

Figure 45 oiitiiiicI

ptOutt2.x pdi-rcltem.right-
ptOut pdi-rcltem.top

SelectObject pdi -hDC hPenDkShadow

if pdi-itemState ODS_SELECTED

ptOut pdi-rcltem.left

ptOut pdi-rcltem.top
else

ptOut pdircItem.right-1
ptOut pdi-rcltem.bottom-1

Polyline pdi-hDC ptOut

II Draw the icon

if hlcon
ptln pdi-rcltem.right pdi-rclteni.left/2

GetSystemMetrics SM_CXICON/2
ptln pdi-rclteni.bottom pdi-rcltem.top/2

GetSystemMetrics SM_CYICON/2
II If pressed shift image down one pel to simulate depress
if pdi-itemState ODS_SELECTED

ptQut
ptOut

Drawlcon pdi-hDC ptln ptln hlcon

/1 If button has the focus draw the dotted rect inside the button

if pdi-itemState DOS_FOCUS

pdi-rcltem.left

pdi-rcltem.top

pdi-rcltem.right

pdi-rcltem.bottom

DrawFocusRect pdi-hDC pdi-rcltem

II Clean up First select the original brush and pen into the DC
SelectObject pdi-hDC hOldBr
SelectObject pdi-hDC hOldPen

II Now delete the brushes and pens created

DeleteObject hBr
DeleteObject hPenShadow
DeleteObject hPenDkShadow
DeleteObject hPenLight
return

192

Page 00215

Chapter Windows Controls and Dialog Boxes

EditWnd.c

II

II EditWnd Edit control window code

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

include windows.h II For all that Windows stuff

include Ctlview.h II Program-specific stuff

extern HINSTANCE hlnst

II

II Global data

II Message dispatch table for EditWndWindowProc

const struct decodeUlNT EditWndMessages

WM_CREATE DoCreateEditWnd

WM_COMMAND DoCommandEdi tWnd

II Structure defining the controls in the window

CTLWNDSTRUCT Edits
edit IDC_SINGLELINE TEXT Single line edit control

10 10 130 23 ES_AUTOHSCROLL

TEXT edit IDC_MULTILINE TEXT Multi line edit control
10 35 130 90 ES_MULTILINE ES_AUTOVSCROLL

TEXT edit IDC_PASSBOX TEXT

10 127 130 23 ES_PASSWORD

/1 Structure labeling the edit control WM_COMMAND notifications

NOTELABELS nlEditt EN_SETFOCUS 0x0100
TEXT EN_KILLFOCUS 0x0200
fTEXT EN_CHANGE 0x0300

EN_UPDATE 0x0400
EN_ERRSPACE 0x0500J

EN_MAXTEXT 0x0501

EN_HSCROLL 0x060111

EN_VSCROLL 0x0602

II InitEditWnd EditWnd window initialization

II

continzwd

193

Page 00216

Parti

Figure 45 cmtinccI

mt InltEditWnd HINSTANCE hlnstance

WNDCLASS wc

II Register application EditWnd window class

wc.style II Window style

wc.lpfnWndProc EditWndProc II Callback function

wc.cbClsExtra 1/ Extra class data

wc.cbWndExtra /1 Extra window data

wc.hlnstance hlnstance II Owner handle

wc.hlcon NULL II Application icon

wc.hCursor NULL II Default cursor

wc.hbrBackground HBRUSH GetStockObject WHITE.BRUSH
wc.lpszMenuName NULL 1/ Menu name

wc.lpszClassName EDITWND 1/ Window class name

if RegisterClass wc return

return

II Message handling procedures for EditWindow

II

II EditWndWndProc Callback function for application window

II

LRESULT CALLBACK EditWndProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

INT

II Search message list to see if we need to handle this

II message If in list call procedure

//

for Ci dimEditWndMessages
if wr4sg EditWndMessages

return EditWndMessages wMsg wParam iParam

return DefWindowProc hWnd wMsg wParam lParam

II

II DoCreateEdjtWnd Process WM.S_CREATE message for window

II

LRESULT DoCreateEditwnd HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

INT

for Ci diniEdits

194

Page 00217

Cbapler Windows Controls and Dialog Boxes

CreateWindow Edits EditsEdits WSVISIBLE WSCHILD WS_BORDER

Edits Edits Edits EditsEil.cy

hWnd HMENU Edits hlnst NULL

return

II

II DoCommandEditWnd Process WtLCOMMAND message for window

1/

LRESULT DoCominandEditWnd HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

ICHAR szQut
INT

for dimnlEdit
if HIWORD wParam nlEdit

lstrcpy szOut nlEdit
break

if dimnlEdit
wsprintf szOut TEXT notification %x HIWORD wParam

SendMessage GetParent hWnd MYMSG_ADDLINE wParam

LPARAMszOut
return

ListWnd.c

II ListWnd List box control window code

/1

II Written for the book Programming Windows CE

1/ Copyright 1998 Douglas Boling

include windows.h II For all that Windows stuff

include Ctlview.h II Program-specific stuff

extern HINSTANCE hlnst

II

// Global data

1/

contin 1cc1

195

Page 00218

Part Windows Programmrng Bascs

Figure 4-5 continued

dt t1i
dE1I LM

k1i rtLi It
jIJtL tint1 4IId

LS1UbT Jtt
c-ET 1rn CcIB 10

ThXT XT

RLL TY
Tw tLiiVbx LTfli TT 11LL EEtL JOT FY

tw 1f It Itc ri1 1M 1i
1Lit br YLE

L1
15t EULK

fl7r

WçJ L4 TPOC1$
LLKi LL3S

4N L1I
TEST qN_OLU

83 TlC3S
rExT BJTtt

xr Loiôti
UtLOWP

çr tNb$
XT 1L WAN

if tLtin i11
XflTtLi$ñd TMfC tc2
tN8 1A

jpp1

196

Page 00219

Chap/er Windows Controls and Dialog Boxes

wc.lpfnWndProc ListWndProc 1/ Callback function

wc.cbClsExtra II Extra class data

wc.cbWndExtra II Extra window data

wc.hlnstance hlnstance /1 Owner handle

wc.hlcon NULL II Application icon

wc.hCursor NULL II Default cursor

wc.hbrBackground HBRUSH GetStockObject WHITE_BRUSH
wc.lpszMenuName NULL /1 Menu name

wc.lpszClassName LISTWND II Window class name

if RegisterClass wc return

return/tr_
II Message handling procedures for ListWindow

II

II ListWndProc Callback function for application window

1/

LRESULT CALLBACK ListWndProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

INT

/I Search message list to see if we need to handle this

II message If in list call procedure

for dimcListWndMessages
if wMsg ListWndMessages

return ListWndMessages wMsg wParam lParam

return DefWindowProc hWnd wMsg wParam lParam

/1

/1 DoCreateListWnd Process WM_CREATE message for window

/1

LRESULT DoCreateListWnd HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

INT

TCHAR szOut

for dimLists

CreateWindow Lists Lists
Lists WS_VISIBLE WS_CHILD WS_BORDER

Lists Lists Lists Lists
hWnd HMENU Lists hlnst NULL

continued

197

Page 00220

Part Windows Programming Baes

Figure 4-5 continued

iI1 RAbie
ri

t/ .jl1ii1S1
/c Tcr -7PP9p Wii

LR SU tndbg1t1 ih iif

1A fl

IT

4tIL
fN1t ALmq .i//JP1

jIA/
198

Page 00221

chapter Windows Controls and Dialog Boxes

StatWnd.c/_r_
ii StatWnd Static control window code

/1

II Written for the book Programming Windows CE

/1 Copyright 1998 Douglas Boling

include windows.h II For all that Windows stuff

include Ctlview.h II Program-specific stuff

extern HINSTANCE hlnst

/1

II Global data

/1

II Message dispatch table for StatWndWindowProc

const struct decodeUlNT StatWndMessages

WMCREATE DoCreateStatWnd

WLCOMMAND DoCommandStatWnd

II Structure defining the controls in the window

CTLWNDSTRtJCT Stats

TEXT static 1DCLEFTTEXT TEXT Left text
10 10 120 23 SS_LEFT SS_NOTIFY

TEXT static IDC_RIGHTTEXT TEXT Right text
10 35 120 23 SSRIGHT

TEXT static IDC_CENTERTEXT TEXT Center text
10 60 120 23 SS_CENTER WS_BORDER

TEXT static IDC_ICONCTL TEXT TEXTICON
10 85 120 23 SS_ICON

TEXT static IDC_BITMAPCTL TEXT STATICBMP
170 10 44 44 SSBITMAP SSNOTIFY

/1 Structure labeling the static control WLCOMMAND notifications

NOTELABELS nlStatic STILCLICKEIY

TEXT STN_ENABLE

TEXT STN_DISABLE

II lnitStatWnd StatWnd window initialization

continued

199

Page 00222

Part Whidows Programming Basics

Figure 4-5 continued

ndPMM mt4rbD s$i
/I

jhji qriiV
r7

frfr

M4.44 f4 Mik5r
r7 --

4r //
X24 4V

/4
tI L1 P$

200

Page 00223

Chap/er Windows Controls and Dialog Boxes

for dimStats

CreateWindow Stats StatsStats WS_VISIBLE WS_CHILD

Stats Stats Stats Stats
hWnd HMENU Stats hlnst NULL

return

II

II DoCommandStatWnd Process WM_COMMAND message for window

II

LRESULT DoCommandStatWnd HWND hWnd hINT wMsg WPARAM wParam

LPARAM iParam

TCHAR szOut
INT

for Ci dini.nlStatic

if HIWORD wParam nlStatic
lstrcpy szOut nlStatic
brea Ic

if Ci dirnnlStatic

wsprintf szOut TEXT notification %x HIWORD wParamfl

SendMessage GetParent hWnd MYMSG_ADDLINE wParam

PA RAM zO ut
return

Scroll Wnd.c

1/ ScrollWnd Scroll bar control window code

/I Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

include windows.h II For all that Windows stuff

include Ctlview.h II Program-specific stuff

extern HINSTANCE hlnst

II

II Global data

/1

conlinhleci

201

Page 00224

Part Whidows Progrmmhig Basics

Figure 4-5 continued

0yi1A 3I_11 ft

Tt $M4b
1pM

f4 tc

wIi cQT
fIIr LINk1

%L
frs 4V1ii

4k iaNI
$p Ir 3%

rEçT 4LMJ L$tP
%ff

BJ1T

VUIII

tiLtPt 1W p4ntft

III1
1bt

202

Page 00225

Chapter Windows Controls and Dialog Boxes

wc.cbClsExtra II Extra class data
wc.cbWndExtra II Extra window data
wc.hlnstance hinstance II Owner handle

wc.hlcon NULL II Application icon

wc.hCursor NULL II Default cursor

wc.hbrBackground HBRUSH GetStockObject WHITE_BRUSH
wc.lpszMenuName NULL II Menu name

wc.JpszClassName SCROLLWND /1 Window class name

if RegisterClass wc return

return

/___z_________
II Message handling procedures for ScrollWindow
/1

II ScrollWndProc Callback function for application window
/1

LRESULT CALLBACK ScrollWndProc HWND hWnd UINT wMsg WPARAM wParam
LPARAM lParam

INT

/I Search message list to see if we need to handle this
/1 message If in list call procedure

for dimrScrollWndMessages
if wMsg ScrollWndMessages

return ScrollWndMessagesiJ.Fxnhfl wMsg wParam lParam

return DefWindowProc hWnd wMsg wParam iParam

II

II DoCreateScrollWnd Process WM_CREATE message for window
II

LRESULT DoCreateScrollwnd HWND hWnd UINT wMsg WPARAM wParam
LPARAM iParam

INT

for dimScrolls
CreateWindow Scrolls Scrolls .szTitle

Scrolls WS_VISIBLE WS_CHILD
Scrol lsIi Lx Scrollsli .y Scrollsfl .cx

Scrolls
hWnd HMENU Scrolls hlnst NULL

return

Gout/n ned

203

Page 00226

Part Whidows Progammrng Basics

Figure 4-5 continued

/1 iM sfr

$1L rUc r11i

SdL L1I $t

pt
i1 th1

7$ifl f4
4d

tc IJi 11

liP

tI4i

fr $L 1Er Wf1Q

t1 PI.1O

II JV

1p
R1

$p
rk

204

Page 00227

Chapter Windows Controls and Dialog Boxes

case SB_LINEDOWN II Also SO_LINERIGHT

sPos

break

case SB_PAGEUP II Also SB_PAGELEFT

sPos 10
break

case S8_PAGEDOWN II Also SB_PAGERIGHT

sPos 10
break

case SB_THUMBPOSITION

sPos HIWORD wParam
break

II Check range

if sPos
sPos

if sPos 100
sPos 100

II Update scrollbar position

si.cbSize sizeof Si
si.nPos sPos

si.fMask SIF_POS

SetScrolllnfo HWNDlParam SB_.CTL si TRUE
return

When the CtlView program starts the WM_CREATE handler of the main win

dow Do6reateFrcine creates row of radio buttons across the top of the window
list box on the right side of the window and five different child windows on the left

side of the window The five child windows are all created without the WS_VISIBLE

style so theyre initially hidden Each of the child windows in turn creates number

of controls Before returning from the DoCreciteFrame CtlView checks one of the auto

radio buttons and makes the BtnWnd child window the window that contains the

example button controls visible using Shou Winthu

As each of the controls on the child windows are tapped clicked or selected the

control sends WM_COMMAND messages to its parent window That window in turn

sends the inkrmation from the WM_COMMAND message to its parent the frame win
dow using the application-defined message MYMSG_AJ1LINE There the notification

data is formatted and displayed in the list box on the right side of the frame window

205

Page 00228

Part Whidows Programming Basics

The other function of the frame window is to switch between the different child

windows The application accomplishes this by displaying only the child window that

matches the selection of the radio buttons across the top of the frame window The

processing for this is done in the Wlvl_COMMAND handler DoCommandFrame in

Ctlyiew.c

The best way to discover how and when these controls send notifications is to

run the example program and use each of the controls Figure 4-6 shows the CtlView

window with the button controls displayed As each of the buttons is clicked

BNCLICKED notification is sent to the parent window of the control The parent

window simply labels the notification and forwards it to the display list box Be

cause the Check Box button isnt an auto check box CtlView must manually change

the state of the check box when user clicks it The other check boxes and radio

buttons however do automatically change state because they were created with

the BS_AUTOCHECKBOX BS_AUTO3STATE and BS_AUTORADIOBUrFON styles

The square button with the exclamation mark inside triangular icon is an owner-

draw button

id5a WM_DRAWITEM Actiorci StateO

fl Check box id64 BN_SETFOCUS
id54 BN CLICKED

Auto check
id64 BNKILLFOCUS

Auto 3-stale box
id65 EN_CLICKED

Auto radio button

Auto radio buttonConEoI View

Figure 4-6 The Cii View window with the button child window displayed in

the left pane

The source code for each child window is contained in separate file The source

for the window containing the button controls is contained in BtnWnd.c The file

contains an initialization routine InitBtnWnd that registers the window and win

dow procedure BtnWndProc for the window itself The button controls themselves

are created during the WM_CREATE message using CreateWindow The position style

and other aspects of each control are contained in an array of structures named Btns

The DoCreateBtn Wnd function cycles through each of the entries in the array call

ing CreateWindow for each one Each child window in CtlView uses similar pro

cess to create its controls

To support the owner-draw button BtnWndProc must handle the WM_DRAW
ITEM message The WM_DRAWITEM message is sent when the button needs to be

206

Page 00229

Chapter Windows Controls and Dialog Boxes

drawn because it ha changed state gained or lost the focus or because it has been

uncovered Although the DrawButton function called each time WM_DRAWITEM
message is received expends great deal of effort to make the button look like

standard button theres no reason button cant have any look you want
The other window procedures provide only basic support for their controls The

WM_COMMAND handlers simply reflect the notifications back to the main window
The ScrollWnd child window procedure Scroll WndProc handles WM_VSCROLL and

WM_HSCROLL messages because thats how scroll bar controls communicate with

their parent windows

Controls and colors

Finally word about colors large number of Windows CE devices use gray-scale

display instead of color display including all of the first generation H/PC and Palm-

size PC systems This has made many Windows CE developers including me some
what lazy in managing color in our Windows CE programs Now that newer Windows

CE systems sport color displays we have to think bit more

In CtlView the frame window class is registered in subtly different way from

the way Ive registered it in previous programs In the CtlView example set the

background brush for the frame window using the line

wc.hbrBackground HBRUSHGetSysColorBrush COLOR_STATIC

This sets the background color of the frame window to the same background color

used to draw the radio buttons The function GetSysColorB rush returns brush that

matches the color used by the system to draw various objects in the system In this

case the constant COLOR_STATIC is passed to GetSysColorB rush which then returns

the background color Windows uses when drawing static text and the text for check

box and radio buttons This makes the frame window background match the static

text background

In the window that contains the button controls the check box and radio but

ton background is changed to match the white background of the button window

by fielding the WMCTLCOLORSTATIC message This message is sent to the parent

of static control or button control when the button is check box or radio button

to ask the parent which colors to use when drawing the control In CtlView the but

ton window returns the handle to white brush so that the control background will

match the white background of the window Modifying the color of push button is

done by fielding the WM_CTLCOLORBUTTON message Other controls send differ

ent WM_CTLCOLORxr messages so that the colors used to draw them can be modi
fied by the parent window

207

Page 00230

Part Wndows Prorammhg Basics

DIALOG BOXES
The CtlView example program demonstrates complex use of controls While CtlView

creates these controls for demonstration purposes controls are generally used to query

user input As CtlView demonstrates fair amount of code is necessary for creating

and placingthe controls in the windows Fortunately you dont need this code be

cause Windows provides service for exactly this purpose dialog boxes Dialog boxes

query data from the user or present data to -the user hence the term dialog box

Dialog boxes are windows created by Windows using template provided by

an application The template describes the type and placement of the controls in the

window The Dialog Managerthe part of Windows that creates and manages dialog

boxesalso provides default functionality for switching focus between the controls

using the Tab key as well as default actions for the Enter and Escape keys In addition

Windows provides default dialog box window class freeing applications from the

necessity of registering window class for each of the dialog boxes it might create

Dialog boxes come in two types modal and modeless modal dialog prevents

the user from using the application until the dialog box has been dismissed For ex

ample the File Open and the Print dialog boxes are modal modeless dialog box

can be used interactively with the remainder of the application The Find dialog box

in Microsoft Pocket Word is modeless the user doesnt need to dismiss it before typ

ing in the main window

Like other windows dialog boxes have window procedure although the dia

log box window procedure is constructed somewhat differently from standard win
dows procedures Instead of passing unprocessed messages to DeJWindowProc for

default processing dialog box procedure returns TRUE if it processed the message

and FALSE if it didnt process the message Windows supplies default procedure

DeJflialogProc for use in specific casesthat is for specialized modeless dialog boxes

that have their own window classes

Dialog Box Resource Templates

Most of the time the description for the size and placement of the dialog box and for

the controls is provided via resource called dialog template You can create dia

log template in memory but unless program has an overriding need to format the

size and shape of the dialog box on the fly loading dialog template directly from

resource is much better choice As is the case for other resources such as menus

dialog templates are contained in the resource RC file The template is referenced

by the application using either its name or its resource ID Here is dialog template

for simple dialog box

208

Page 00231

Chapter Windows Controls and Dialog Boxes

GetVal DIALOG discardable 10 10 75 60

STYLE WS_POPUP WS_VISIBLE WS_CAPTION WS_SYSMENU OS_CENTER

EXSTYLE WS_EX_CAPTIONOKBTN

CAPTION Enter line number

BEGIN

LTEXT Enter value IDD_VALLABEL 10 40 12

EDITTEXT 100_VALUE 50 10 20 12 WSJrABSTOP

AUTORADIOBUTTON Decimal 100_DEC 25 60 12
WS_TABSTOP WSGROUP

AUTORAOIOBUTTONHex 100_HEX 40 60 12

END

The syntax for dialog template follows simple pattern similar to that for

menu resource First is the name or ID of the resource followed by the keyword DIA

LOG identifying that what follows is dialog template The optional discardable

keyword is followed by the position and size of the dialog box The position speci

fied is by default relative to the owner window of the dialog box

The units of measurement in dialog box arent pixels but dialog units dia

log unit is defined as one quarter of the average width of the characters in the system

font for horizontal units and one eighth of the height of one character from the same

font for vertical units The goal is to create unit of measurement independent of the

display technology in practice dialog boxes still need to be tested in all display reso

lutions in which the box might be displayed You can compute pixel vs dialog unit

conversion using the GetDialogBaseUn its function but youll rarely find it necessary

The visual tools that come with most compilers these days isolate programmer from

terms like dialog units but its still good idea to know just
how dialog boxes are

described in an RC file

The STYLE line of code specifies the style flags for the dialog box The styles

include the standard window WS_x style flags used for windows as well as se

ries of dialog DS_xx style flags specific to dialog boxes Windows CE supports the

following dialog box styles

DS_ABSALIGN Places the dialog box relative to the upper left corner of

the screen instead of basing the position on the owner window

DS_CENTER Centers the dialog box vertically and horizontally on the

screen

DS_MODALFRA/VIE Creates dialog box with modal dialog box frame

that can be combined with title bar and System menu by specifying the

WS_CAPTION and WSSYSMENU styles

209

Page 00232

Part Whidows Programmhig Bascs

DS_SETFOIVT Tells Windows to use nondefault font that is specified

in the dialog template

DS_SETFOREGROUND Brings the dialog box to the foreground after its

created If an application not in the foreground displays dialog box
this style forces the dialog box to the top of the Z-order so that the user

will se it

Most dialog boxes are created with at least some combination of the WS_POPUP
WS_CAPTION and WS_SYSMENU style flags The WS_POPUP flag indicates the dia

log box is top-level window The WS_CAPTION style gives the dialog box title

bar title bar allows the user to drag the dialog box around as well as serving as

site for title text for the dialog box The WS_SYSMENU style causes the dialog box to

have Close button on the right end of the title bar thus eliminating the need for

command bar control to provide the Close button Note that Windows CE uses this

flag differently from other versions of Windows in which the flag indicates that system

menu is to be placed on the end of the title bar

The EXSTYLE line of code specifies the extended style flags for the dialog box

For Windows CE these flags are particularly important The WS_EX_CAPTIONOKBTN

flag tells the dialog manager to place an OK button on the title bar to the immediate

left of the Close button Having both OK and Close or Cancel buttons on the title

bar saves precious space in dialog boxes that are displayed on the small screens typical

of Windows CE devices The WS_EX_CONTEXTHELP extended style places Help

button on the title bar to the immediate left of the OK button Clicking on this but

ton results in WM_HELP message being sent to the dialog box procedure

The CAPTION line of code specifies the title bar text of the dialog providing

that the WSCAPTION style was specified so that the dialog box will have title bar

The lines describing the type and placement of the controls in the dialog box

are enclosed in BEGIN and EVD keywords Each control is specified either by par
ticular keyword in the case of commonly used controls or by the keyword CON
TROL which is generic placeholder that can specify any window class to be placed

in the dialog box The LThXT line of code on page 209 specifies static left-justified

text control The keyword is followed by the default text for the control in quotes

The next parameter is the ID of the control which must be unique for the dialog box

In this template the ID is constant defined in an include file that is included by

both the resource script and the or file containing the dialog box procedure

210

Page 00233

Chapter Windows Controls and Dialog Boxes

The next four values are the location and size of the control in dialog units

relative to the upper left corner of the dialog box Following that any explicit style

flags can be specified for the control In the case of the LTEXT line no style flags are

necessary but as you can see the EDITTEXT and first UTOR4DIOBU77ON entries

each have style flags specified Each of the control keywords have subtly different

syntax For example the EDITIEXT1ine doesnt have field for default text The style

flags for the individual controls deserve notice The edit control and the first of the

two radio buttons have WS_TABSTOP style The dialog manager looks for controls

with the WS_TABSTOP style to determine which control gets focus when the user

presses the Tab In this example pressing the Tab key results in focus being switched

between the edit control and the first radio button

The WS_GROUP style on the first radio button starts new group of controls

All the controls following the radio button are grouped together up to the next con

trol that has the WS_GROUP style Grouping auto radio buttons allow only one radio

button at time to be selected

Another benefit of grouping is that focus can be changed among the controls

within group by exploiting the cursor keys as well as the Tab key The first mem
ber of group should have WS_TABSTOP style this allows the user to tab to the

group of controls and then use the cursor keys to switch the focus among the con

trols in the group

The CONTROL statement isnt used in this example but its important and merits

some explanation Its generic statement that allows inclusion of any window class

in dialog box It has the following syntax

CONTROL text Id class style width height

extended-style

For this entry the default text and control ID are similar to the other statements

but the next field class is new It specifies the window class of the control you want

to place in the dialog box The class field is followed by the style flags then the loca

tion and size of your control Finally the CONTROL statement has field for extended

style flags If you use Microsoft Developer Studio to create dialog box and look at

the resulting RC file using text editor youll see that Developer Studio uses CON
TROL statements instead of the more readable LTEXF EDITTEXT and BUTTON state

ments Theres no functional difference between an edit control created with

CONTROL statement and one created with an EDIYFEXT statement The CONTROL
statement is generic version of the more specific keywords The CONTROL state

ment also allows inclusion of controls that dont have special keyword associated

with them

211

Page 00234

Part Whidows Programmng Basics

Creating Dialog Box

Creating and displaying dialog box is simple just use one of the many dialog box

creation functions The first two are these

mt DialogBox HANDLE hlnstance LPCTSTR ipTemplate HWND hWndOwner

DLGPROC lpDialogFunc

mt DialogBoxParam HINSTANCE hlnstance LPCTSTR ipTemplate

HWND hWndOwner DLGPROC lpDialogFunc

LPARAM dwlnitParam

These two functions differ only in DialogBoxParams additional IPARAM pa
rameter so Ill talk about them at the same time The first parameter to these func

tions is the instance handle of the program The second parameter specifies the name

or ID of the resource containing the dialog template As with other resources to specify

resource ID instead of name requires the use of the MAKEINTRESOURCE macro
The third parameter is the handle of the window that will own the dialog box

The owning window isnt the parent of the dialog box because were that true the

dialog box would be clipped to fit inside the parent Ownership means instead that

the dialog box will be hidden when the owner window is minimized and will always

appear above the owner window in the Z-order

The fourth parameter is pointer to the dialog box procedure for the dialog

box Ill describe the dialog box procedure shortly The DialogBoxParam function

has fifth parameter which is user-defined value thats passed to the dialog box

procedure when the dialog box is to be initialized This helpful value can be used to

pass pointer to structure of data that can be referenced when your application is

initializing the dialog box controls

Two other dialog box creation functions create modal dialogs They are the

following

mt DialogBoxlndirect HANDLE hlnstance LPDLGTEMPLATE iplemplate
HWND hWndParent DLGPROC lpDialogFunc

mt DialogBoxlndirectParam HINSTANCE hlnstance

LPCDLGTEMPLATE DialogTemplate HWND hWndParent

DLGPROC lpDialogFunc LPARAM dwlnitParam

The difference between these two functions and the two previously described

is that these two use dialog box template in memory to define the dialog box rather

than using resource This allows program to dynamically create dialog box tem
plate on the fly The second parameter to these functions points to DLGTEMPLATE

structure which describes the overall dialog box window followed by an array of

DLGITEMTEMPLATE structures defining the individual controls

212

Page 00235

Chapter Windows Controls and Dialog Boxes

When any of these four functions are called the dialog manager creates modal

dialog box using the template passed The window that owns the dialog is disabled

and the dialog manager then enters its own internal GetMessage/DispatchMessage

message processing loop this loop doesnt exit until the dialog box is destroyed

Because of this these functions dont return to the caller until the dialog box has been

destroyed The WM_ENTERIDLE message thats sent to owner windows in other ver

sions of Windows while the dialog box is displayed isnt supported under Windows CE
If an application wanted to create modal dialog box with the template shown

above and pass value to the dialog box procedure it might call this

DialogBoxParani hllnstance TEXT GetVal hWnd GetValDlgproc

0x1234

The hlnstance and hWnd parameters would be the instance handle of the applica

tion and the handle of the owner window The GetVal string is the name of the dia

log box template while Get Va1D lgProc is the name of the dialog box procedure Finally

0x1234 is an application-defined value In this case it might be used to provide

default value in the dialog box

Dialog Box Procedures

The final component necessary for dialog box is the dialog box procedure As in

the case of window procedure the purpose of the dialog box procedure is to field

messages sent to the windowin this case dialog box windowand perform the

appropriate processing In fact dialog box procedure is simply special case of

window procedure although we should pay attention to few differences between

the two

The first difference as mentioned in the previous section is that dialog box

procedure doesnt pass unprocessed messages to DefWindowProc Instead the pro
cedure returns TRUE for messages it processes and FALSE for messages that it doesnt

process The dialog manager uses this return value to determine whether the mes

sage needs to be passed to the default dialog box procedure

The second difference from standard window procedures is the addition of

new message WM_INITDIALOG Dialog box procedures perform any initialization

of the controls during the processing of this message Also if the dialog box was created

with DialogBoxParam or DialogBoxlndirectParam the iParam value is the generic

parameter passed during the call that created the dialog box While it might seem

that the controls could be initialized during the WM_CREATE message that doesnt

work The problem is that during the WM_CREATE message the controls on the dia

log box havent yet been created so they cant be initialized The WM_INITDIALOG

message is sent after the controls have been created and beforethe dialog box is made

visible which is the perfect time to initialize the controls

213

Page 00236

Part Windows Programmbig Basics

Here are few other minor differences between window procedure and

dialog box procedure Most dialog box procedures dont need to process the

WM_PAINT message because any necessary painting is done by the controls or in

the case of owner-draw controls in response to control requests Most of the code in

dialog box procedure is responding to WM_COMMAND messages from the con
trols As with menus the WM_COMMAND messages are parsed by the control ID

values Two special predefined ID values that dialog box has to deal with are IDOK

and IDCANCEL IDOK is assigned to the OK button on the title bar of the dialog box

while IDCANCEL is assigned to the Close button In response to click of either buttpn

dialog box procedure should call

BOOL EndDialog HWND hDlg mt nResult

EndDialog closes the dialog box and returns control to the caller of whatever func

tion created the dialog box The hDlg parameter is the handle of the dialog box while

the nResult parameter is the value thats passed back as the return value of the func

tion that created the dialog box

The difference of course between handling the IDOK and IDCANCEL buttons

is that if the OK button is clicked the dialog box procedure should collect any rele

vant data from the dialog box controls to return to the calling procedure before it

calls EndDialog

dialog box procedure to handle the GetVal template previously described is

shown here

II GetVal Dialog procedure

II

BOOL CALLBACK GetValDlgProc HWND hWnd UINT wMsg WPARAM wPararn

LPARAM lParam

ICHAR szText
TNT nVal nBase

switch wMsg 11

case WM_INITDIALQG

SetDlgltemlnt hWnd IDD_VALUE TRUE
SendDlgltemMessage hWnd IDD_VALUE EM_LIMITTEXT

sizeof szlext-1
CheckRadioButton hWnd IDD_DEC IDD_HEX IDDDEC
return TRUE

case WM_CQMMAND

switch LOWORD wParam

case IDD_HEX

II See if Hex already checked

214

Page 00237

Chapter Windows Controls and Dialog Boxes

if SendDlglteniMessage hWnd IDD_HEX

BM_GETSTATE BST_CHECKED

return TRUE

// Get text from edit control

GetDlgltemText hWnd IDD_VALUE szText

sizeof szlext
II Convert value from decimal then set as hex
if ConvertValue szText 10 nVal

II If conversion successful set new value

wsprintf szlext TEXT %X nVal
SetDlgltemText hWnd IDD_VALUE szlext
II Set radio button

CheckRadioButton hWnd IDD...DEC IDD_HEX

IDD_HEX

else

MessageBox hWnd
TEXT Value not valid
TEXT Error MB_OK

return TRUE

case IDD_DEC

II See if Dec already checked

if SendDlgltemMessage hWnd IDELDEC

BM_GETSTATE BSTCHECKED
return TRUE

II Get text from edit control

GetDlgltemText hWnd IDD_VALUE szText

sizeof szText
II Convert value from hex then set as decimal

if ConvertValue szText 16 nVal
II If conversion successful set new value

wsprintf szlext TEXT %d nVal
SetDlglternlext hWnd IDDVALUE szText
II Set radio button

CheckRadioButton hWnd IDD_DEC IDD_HEX

IDD_DEC
else

II If bad conversion tell user

MessageBox hWnd
TEXT Value not valid
TEXT Error MBOK

return TRUE

continued

215

Page 00238

Part Whidows Peogrammhig Basics

case IDOK

II Get the current text

GetDlglteniText hWnd IDD_VALUE szlext

sizeof szlext
II See which radio button checked

if SendDlgltemMessage hWnd IDD_DEC

BM_GETSTATE BST_CHECKED

nBase 10
else

nBase 16
II Convert the string to number

if ConvertValue szlext nBase nVal
EndDialog hWnd nVal

else

MessageBox hWnd
TEXT Value not valid
TEXT Error MB_OK

break

case IDCANCEL

EndDialog hWnd
return TRUE

break

return FALSE

This is typical example of dialog box procedure for simple dialog box

The only messages that are processed are the WM_INITDIALOG and WM_COMMAND
messages The WM_INITDIAILOG message is used to initialize the edit control using

number passed via DialogBoxParam through to the iParam value The radio but

ton controls arent auto radio buttons because the dialog box procedure needs to

prevent the buttons from changing if the value in the entry field is invalid The

WM_COMMAND message is parsed by the control ID where the appropriate processing

takes place The IDOK and IDGANCEL buttons arent in the dialog box template as

mentioned earlier those buttons are placed by the dialog manager in the title bar of

the dialog box

Modeless Dialog Boxes

Ive talked so far about modal dialog boxes that prevent the user from using other

parts of the application before the dialog box is dismissed Modeless dialog boxes

on the other hand allow the user to work with other parts of the application while

the dialog box is still open Creating and using modeless dialog boxes requires bit

216

Page 00239

Chapter Windows Controls and Dialog Boxes

more work For example you create modeless dialog boxes using different functions

than those for modal dialog boxes

HWND CreateDialog HINSTANCE hlnstance LPCTSTR ipTemplate

HWND hWndOwner DLGPROC lpDialogFunc

HWND CreateDialoglndirect HINSTANCE hlnstance LPCDLGTEMPLATE ipTemplate

HWND hWndOwner DLGPROC lpoialogFunc

HWND CreateDialoglndirect HINSTANCE hlnstance

LPCDLGTEMPLATE ipTeniplate HWND hWndOwner

DLGPROC lpDialogFunc

or

HWND CreateDialoglndirectParam HINSTANCE hlnstance

LPCDLGTEMPLATE ipTemplate HWND hWndOwner

DLGPROC lpDialogFunc LPARAM iParamlnit

The parameters in these functions mirror the creation functions for the modal dialog

boxes with similar parameters The difference is that these functions return immedi

ately after creating the dialog boxes Each function returns if the create failed or

returns the handle to the dialog box window if the create succeeded

The handle returned after successful creation is important because applica

tions that use modeless dialog boxes must modify their message loop code to accom

modate the dialog box The new message loop should look similar to the following

while GetMessage msg NULL

if hMlDlg II IsDialogMessage hMlDlg msgY
Transl ateMessage msg
DispatchMessage msg

The difference from modal dialog box message loop is that if the modeless

dialog box is being displayed messages should be checked to see whether theyre

dialog messages If theyre not dialog messages your application forwards them to

TranslateMessage and DispatchMessage The code shown above simply checks to see

whether the dialog box exists by checking global variable containing the handle to

the modeless dialog box and if its not calls IsDialogMessage If IsDialogMessage

doesnt translate and dispatch the message itself the message is sent to the standard

TranslateMessage/DispatchMessage body of the message loop Of course this code

assumes that the handle returned by CreateDialog qr whatever function creates

the dialog box is saved in hMlDlg and that hMlDlg is set to when the dialog box

is closed

217

Page 00240

Part Whidows Progeammng ascs

Another difference between modal and modeless dialog boxes is in the dialog

box procedure Instead of using EndDialog to close the dialog box you must call

Destroy Window instead This is because EndDialog is designed to work only with

the internal message loop processing thats performed with modal dialog box Fi

nally an application usually wont want more than one instance of modeless dia

log box displayed at time An easy way to prevent this is to check the global copy

of the winddw handle to see whether its nonzero before calling CreateDialog To

do this the dialog box procedure must set the global handle to after it calls

Destroy Window

Property Sheets

To the user property sheet is dialog box with one or more tabs across the top that

allow the user to switch among different pages of the dialog box To the program

mer property sheet is series of stacked dialog boxes Only the top dialog box is

visible the dialog manager is responsible for displaying the dialog box associated

with the tab on which the user clicks However you approach property sheets theyre

invaluable given the limited screen size of Windows CE devices

Each page of the property sheet named appropriately enough property page

is dialog box template either loaded from resource or created dynamically in

memory Each property page has its own dialog box procedure The frame around

the property sheets is maintained by the dialog manager so the advantages of prop

erty sheets come with little overhead to the programmer Unlike the property sheets

supported in other versions of Windows the property sheets in Windows CE dont

support the Apply button Also the OK and Cancel buttons for the property sheet

are contained in the title bar not positioned below the pages

Creating property sheet

Instead of using the dialog box creation functions to create property sheet new

function is used

mt PropertySheet LPCPROPSHEETHEADER lppsph

The PropertySheet function creates the property sheet according to the information

contained in the PROPSHEETHEADER structure which is defined as the following

typedef struct _PROPSHEETHEADER

DWORD dwSize

DWORD dwFlags

HWND hwndOwner

HINSTANCE hlnstance

218

Page 00241

Chapter Windows Controls and Dialog Boxes

union

HICON hlcon

LPCWSTR pszlcon

LPCWSTR pszCaption

UINT nPages

union
11

UINT nStartPage

LPCWSTR pStartPage

union

LPCPROPSHEETPAGE ppsp
HPROPSHEETPAGE FAR phpage

PFNPROPSHEETCALLBACK pfnCallback

PROPSHEETHEADER

Filling in this convoluted structure isnt as imposing task as it might look The

dwSize field is the standard size field that must be initialized with the size of the struc

ture The dwFlags field contains the creation flags that define how the property sheet

is created which fields of the structure are valid and how the property sheet behaves

Some of the flags indicate which fields in the structure are used Ill talk about those

flags when describe the other fields Two other flags set the behavior of the prop

erty sheet The PSH_PROPTITLE flag appends the string Properties to the end of

the caption specified in the pszCaption field The PSH_MODELESS flag causes the

Propertysheet function to create modeless property sheet and immediately return

modeless property sheet is like modeless dialog box it allows the user to switch

back to the original window while the property sheet is still being displayed

The next two fields are the handle of the owner window and the instance handle

of the application Neither the hlcon or pszlcon fields are used in Windows CE so

they should be set to The pszCaption field should point to the title bar text for the

property sheet The nStartPage/pStartPage union should be set to indicate the page

that should be initially displayed This can be selected either by number or by title if

the PSH_USEPSTARTPAGE flag is set in the dwFlags field

The ppsp/phpage union points to either an array of PROPSHEETPAGE structures

describing each of the property pages or handles to previously created property pages

For either of these the nPages field must be set to the number of entries of the array

of structures or page handles To indicate that the pointer points to an array of

PROPSHEETPAGE structures set the PSH_PROPSHEETPAGE flag in the dwFlags field

Ill describe both the structure and how to create individual pages shortly

219

Page 00242

Part Whdows Programmhig Basics

The pfncallBack field is an optional pointer to procedure thats called twice
when the property sheet is about to be created and again when its about to be ini

tialized The callback function allows applications to fine-tune the appearance of the

property sheet for the rare times when its necessary This field is ignored unless the

PSP_USECALLBACK flag is set in the dwFlags field

Creating property page
As mentioned earlier individual property pages can be specified by an array of

PROPSHEETPAGE structures or an array of handles to existing property pages Cre

ating property page is accomplished with call to the following

HPROPSHEETPAGE CreatePropertySheetPage LPCPROPSFIEETPAGE lppsp

This function is passed pointer to the same PROPSHEETPAGE structure and returns

handle to property page PROPSHEETPAGE is defined as this

typedef struct _PROPSHEETPAGE

DWORD dwSize

DWORD dwFlags

HINSTANCE hlnstance

union

LPCSTR pszTeniplate

LPCDLGTEMPLATE pResource

union

HICON hlcon

LPCSTR pszlcon

LPCSTR pszlitle
DLGPROC pfnDlgProc
LPARAM iParam

LPFNPSPCALLBACK pfnCallback
UINT FAR pcRefParent

PROPSHEETPAGE

The structure looks similar to the PROPSHEETHEADER structure leading with

dwSize and dwFlags field followed by an hlnstance field In this structure hlnstance

is the handle of the module from which the resources will be loaded The dwFlags

field again specifies which fields of the structure are used and how theyre used as

well as few flags specifying the characteristics of the page itself

The pszTemplate/pResource union specifies the dialog box template used to

define the page If the PSP_DLGINDIRECT flag is set in the dwFlags field the union

points to dialog box template in memory Otherwise the field specifies the name

of dialog box resource The hlcon/pszlcon union isnt used in Windows CE and

220

Page 00243

Chapter Windows Controls and Dialog Boxes

should be set to If the dwFlags field contains PSP_USETITLE flag the pszTitle

field points to the text used on the tab for the page Otherwise the tab text is taken

from the caption field in the dialog box template The pfnDlgProc field points to the

dialog box procedure for this specific page and the iParam field is an application-

defined parameter that can be used to pass data to the dialog box procedure The

pfnCallback field can point to callback procedure thats called twice when the

page is about to be created and when its about to be destroyed Again like the call

back for the property sheet the property page callback allows applications to fine-

tune the page characteristics This field is ignored unless the dwFlags field contains

the PSP_USECALLBACK flag Finally the pcRefCount field can contain pbinter to

an integer that will store reference count for the page This field is ignored unless

the flags field contains the PSP_USEREFPARENT flag

Windows CE supports new flag for property pages PSP_PREMATURE This

flag causes property page to be created when the property sheet that owns it is

created Normally property page isnt created until the first time its shown This

has an impact on property pages that communicate and cooperate with each other

Without the PSP_PREMATUP.E flag the only property page thats automatically cre

ated when the property sheet is created is the page that is displayed first So at that

moment that first page has no sibling pages to communicate with Using the

PSP_PREMATURE flag you can ensure that page is created when the property sheet

is created even though it isnt the first page in the sheet While its easy to get over
whelmed with all these structures simply using the default values and not using the

optional fields results in powerful and easily maintainable property sheet thats also

as easy to construct as set of individual dialog boxes

Once property sheet has been created the application can add and delete

pages The application adds page by sending PSM_ADDPAGE message to the

property sheet window The message must contain the handle of previously cre

ated property page in lParam wParam isnt used Likewise the application can re

move page by sending PSM_REMOVEPAGE message to the property sheet window

The application specifies page for deletion either by setting wParam to the zero-

based index of the page selected for removal or by passing the handle to that page in

lParam

The code below creates simple property sheet with three pages Each of the

pages references dialog box template resource As you can see most of the initiali

zation of the structures can be performed in fairly mechanical fashion

PROPSHEETHEADER psh
PROPSHEETPAGE psp
TNT

continued

221

Page 00244

Part Windows Programmhig Basics

II mit page structures with generic information

memset psp sizeof pspfl II Zero out all unused values

for dimpsppsp sizeof PROPSHEETPAGEpsp PSP_DEFAULT II No special processing neededpsp hlnst II Instance handle where the

II dialog templates are located

II Now do the page specific stuffpsp TEXT Pagel II Name of dialog resource for pagepsp PagelDlgProc II Pointer to dialog proc for pagepsp TEXT Page2 II Name of dialog resource for pagepsp Page2DlgProc II Pointer to dialog proc for pagepsp TEXT Page3 II Name of dialog resource for pagepsp Page3olgProc II Pointer to dialog proc for page

II mit property sheet header structure

psh.dwSize sizeof PROPSHEETHEADER

psh.dwFlags PSH_PROPSHEETPAGE II We are using templates not handles

psh.hwndParent hWnd II Handle of the owner window

psh.hmnstance hlnst II Instance handle of the application

psh.pszCaption TEXT Property sheet title
psh.nPages dimpsp II Number of pages

psh.nStartPage II Index of page to be shown first

psh.ppsp psp II Pointer to page structures

psh.pfnCallback II We dont need callback procedure

II Create property sheet This returns when the user dismisses the sheet

II by tapping OK or the Close button

PropertySheet psh
While this fragment has fair amount of structure filling its boilerplate code

Everything not defined such as the page dialog box resource templates and the page

dialog box procedures are required for dialog boxes as well as property sheets So

aside from the boilerplate stuff property sheets require little if any work beyond

simple dialog boxes

Property page procedures

The procedures that back up each of the property pages have only few differences

from standard dialog box procedures First as mentioned previously unless the

PSP_PREMATURE flag is used pages arent created immediately when the property

sheet is created Instead each page is created and WM_INITDIALOG messages are

sent only when the page is initially shown Also the iParam parameter doesnt point

to user-defined parameter instead it points to the PROPSHEETPAGE structure that

222

Page 00245

Chapter Windows Controls and Dialog Boxes

defined the page Of course that structure contains user-definable value that can

be used to pass data to the dialog box procedure

Also property sheet procedure doesnt field the IDOK and IDCANCEL con
trol IDs for the OK and Close buttons on standard dialog box These buttons in

stead are handled by the system-provided property sheet procedure that coordinates

the display and management of each page When the OK or Close button is tapped

the property sheet sends WM_NOTIFY message to each sheet notifying them that

one of the two buttons has been tapped and that they should acknowledge that its

okay to close the property sheet

WM..NOTI FY
While this is the first time Ive mentioned the WM_NOTIFY message it has become

mainstay of the new common controls added to Windows over the last few years

The WM_NOTIFY message is essentially redefined WM_COMMAND message which

instead of encoding the reason for the message in one of the parameters passes

pointer to an extensible structure instead This has allowed the WM_NOTIFY mes

sage to be extended and adapted for each of the controls that use it In the case of

property sheets the WM_NOTIFY message is sent under number of conditions when

the user taps the OK button when the user taps the Close button when the page

gains or loses focus from or to another page or when the user requests help

At minimum the WM_NOTIFY message is sent with iParam pointing to an

NMHDR structure defined as the following

typedef struct tagNMHDR

HWND hwndFrom

UINT idFrom

UINT code

NMHDR

The hwndFrom field contains the handle of the window that sent the notify message

For property sheets this is the property sheet window The idFrom field contains the

ID of the control if control is sending the notification Finally the code field con

tains the notification code While this basic structure doesnt contain any more infor

mation than the WM_COMMAND message often this structure is extended with

additional fields appended to the structure The notification code then indicates what
if any additional fields are appended to the notification structure

Switching pages
When user switches from one page to the next the Dialog Manager sends

WM_NOTIFY message with the code PSN_KILLACTIVE to the page currently being

displayed The dialog box procedure should then validate the data on the page If its

permissible for the user to change the page the dialog box procedure should then

223

Page 00246

Part Whidows Programming Basics

set the return value of the window structure of the page to PSNRET_NOERROR and

return TRUE You set the PSNRET_NOERROR return field by calling Set WindowLong

with DWL_MSGRESULT as in the following line of code

SetWindowLong hwndPage DWLMSGRESULT PSNRET_NOERROR

where hwndPage is the handle of the property sheet page page can keep focus by

returning PSNRET_INVALID_NOCHANGEPAGE in the return field Assuming page

has indicated that its okay to lose focus the page being switched to receives

PSN_SETACTIVE notification via WM_NOTIFY message The page can then accept

the focus or specify another page that should receive the focus

Closing property sheet

When the user taps on the OK button the property sheet procedure sends

WM_NOTIFY with the notification code PSN_KILLACTIVE to the page currently be

ing displayed followed by WM_NOTIFY with the notification code PSN_APPLY to

each of the pages that has been created Each page procedure should save any data

from the page controls when it receives the PSN_APPLY notification code

When the user clicks the Close button PSN_QUERYCANCEL notification is

sent to the page procedure of the page currently being displayed All this notification

requires is that the page procedure return TRUE to prevent the close or FALSE to

low the close further notification PSN_RESET is then sent to all the pages that

have been created indicating that the property sheet is about to be destroyed

Common Dialogs

In the early days of Windows it was rite of passage for Windows developer to

write his or her own File Open dialog box File Open dialog box is complexit

must display list of the possible files from specific directory allow file navigation

and return fully justified filename back to the application While it was great for

programmers to swap stories about how they struggled with their unique implemen

tation of File Open dialog it was hard on the users Users had to learn different

file open interface for every Windows application

Windows now provides set of common dialog boxes that perform typical func

tions such as selecting filename to open or save or picking color These standard

dialog boxes called common dialogs serve two purposes First common dialogs lift

from developers the burden of having to create these dialog boxes from scratch

Second and just as important common dialogs provide common interface to the

user across different applications These days Windows programmers swap horror

stories about learning COM
Windows CE 2.0 provides four common dialogs File Open Save As Print and

Choose Color Common dialogs such as Find Choose Font and Page Setup that are

224

Page 00247

Chapter Windows Controls and Dialog Boxes

available under other versions of Windows arent supported under Windows CE
Applications developed for Windows CE 1.0 or for the first release of the Palm-size

PC must also do without the Print and Color common dialogs but this isnt much of

sacrifice because neither color screens nor printing is supported on those systems
The other advantage of the common dialogs is that they have customized look

for each platform while retaining the same programming interface This makes it easy
to use say the File Open dialog on both the H/PC and the Palm-size PC because

the dialog box has the same interface on both systems even though the look of the

dialog box is vastly different on the two platforms Figure 4-7 shows the File Open
dialog on the H/PC Figure 4-8 shows the File Open dialog box on the Palm-size PC

bsquare Windows DIpDemo

bsquare Programs Cmd9nd FontList Pen
My Documents CmdBar ForitLis REQ
Program Files .eCtIView Editsd KeyTrac ser5
Temp CtIView LVrew1 Shal

Dialog Demo

Figure 4-7 The File Open dialog on Handheld PC

File Help

argi

Folder fAh1 Folders

Type AII Documents

Blank Note Note Taker note Templa

Frys List Note Taker note

Meeting .. Note Taker note TemplaI
Memo Note Taker note TempIa1I
Phone M.. Note Taker note TempIatI

1Loicçnr1i

16a

Figure 4-8 The File Open dialog on Palm-size PC

225

Page 00248

Part Windows Programming Basics

Instead of showing you how to use the common dialogs here Ill let the next

example program DlgDemo show you That program demonstrates all four supported

common dialog boxes

The DlgDemo Example Program

The DlgDerno program demonstrates basic dialog boxes modeless ditlog boxes

property sheets and common dialogs When you start DlgDemo it displays win
dow that shows the WM_COMMAND and WM_NOTIFY messages sent by the vari

ous controls in the dialogs similar to the right side of the CtlView window The different

dialogs can be opened using the various menu items Figure 4-9 shows the Dialog

Demo window with the property sheet dialog displayed

9utton idcS WMCOMMAND BN_SBTFOCUS
Button idce WM...DRAWITEM Action1 State0

Button idcB WMCOMMAND BN_KILLFOCUS

Button idce WMDRAWITEM Action4 State10

Button idce WM_DRAWITEM Action2 State11

Button idce WM_DRAWITEM Action2 State 10

Button idce WM_COMMANB CUCKED
Button idce WM...DRA -k
Button idcb WM...COM ________
Button idcb WM_COM
Button idcc WM_COM

_____________________ _______
Button idcB WM...COM

Button idcS WM...COM

Button idcS WM_COM
Button idcS WM_COM
Button idcb WM...COM

Button idcb WM_COM
Button PSN_KJLL

Bdit PSN_SBT
Bdit idd2 WMCOM
Bdit idd2 WM_COM
Bdit idd2 WM COM __________________________________
Bdit idd2 WMCOMMAND ENJILLFOCUS
Bdit iddl WMCOMMAND BN_SBTFOCUS
Bdit idd3 WM_COMMAND EN...KILLFOCUS

Bdit idd4 WM_COMMAND ENSETFOCUS
Edit idd4 WMCOMMAND BNKILLFOCUS
Edit PSN...KILLACTIVB

Button PEN_SETACTIVE
Button idce WM_DRAWITBM Action State0

DiaIoq Demo

Figure 4-9 The DigDemo window

The basic dialog box is simple about box launched by selecting the Help

About menu The property sheet is launched by selecting the File Property Sheet menu
The property sheet dialog contains five pages corresponding to the different windows

in the CtlView example The common dialog boxes are launched from the File Open
File Save File Color and File Print menu items These last two menu items are dis

abled when the program is run on Palm-size PC since those common dialog boxes

arent supported on that platform The DlgDemo source code is shown in Figure 4-10

226

Page 00249

chap/er Windows Controls and Dialog Boxes

DlgDemo.rc

II Resource file

II

/I Written for the book Programming Windows CE

/1 Copyright 1998 Douglas Boling/__
include windows.h II

include DlgDemo.h II Program-specific stuff

/1

II Icons and bitmaps

ID_ICON ICON DlgDemo.ico II Program icon

IDI_BTNICON ICON btnicon.ico II Bitmap used in owner-draw button

statbmp BITMAP statbmp.bmp II Bitmap used in static window

II

Ii Menu

ID_MENU MENU DISCARDABLE

BEGIN

POPUP Fi
BEGIN

MENUITEM Open.. 1DM_OPEN

MENUITEM Save 1DM_SAVE

MENUITEM SEPARATOR

MENUITEM Color.. 1DM_COLOR

MENUITEM Print 1DM_PRINT

MENUITEM SEPARATOR

MENUITEM Property Sheet IDM_SHOWPROPSHEET

MENUITEM Modeless Dialog IDM_SHOWMODELESS
MENUITEM SEPARATOR

MENUITEM Exit 1DM_EXIT

END

POPUP Hel
BEGIN

MENUITEM About.. 1DM_ABOUT

END

END

II

II Property page templates

Figure 410 7be DlgDenw program continued

227

Page 00250

Part Whidows Programmhg Bscs

Figure 4-10 continued

JL s$
piwlp1Th rtêT

wJ
4w jtidP pijiiI

IiIp

IhbbT 11

TN tH Jr

M4
tI w-41i L1cd YM

5g
i11 $v

LV 4tIAa

ijL1 i1$I

ti4 wuIi

rnw
tN ZI

228

Page 00251

Chapter Windows Controls and Dialog Boxes

CTEXI Center text IDC_CENTERTEXT 55 70 20
S_B RD ER

ICON IDI_BINICON IDC_ICONCTL 95 32 32

CONTROL statbmp IDC_BITMAPCTL static SSBITMAP
95 40 32 32

END

ID_SCROLLPAGE DIALOG discardable 60 80

CAPTION Scroll
BEGIN

SCROLLBAR IDC_LRSCROLL 70 12
WS_TABSTOP

ScROLLBAR 1DL_1JDScROLL 80 12 70
WS_TABSTOP SBS_VERT

END

II

II Clear list modeless dialog box template
II

Clearbox DIALOG discardable 60 10 70 30

STYLE WS_POPUP WS_VISIBLE WS_CAPTION WS_SYSMENU DS_MODALFRAME
CAPTION Clear
BEGIN

DEFPUSHBUTTON Clear Listbox

IDD._CLEAR 60 20

END

II

II About box dialog box template

II

aboutbox DIALOG discardable 10 10 132 40

STYLE WS_POPUP WS_VISIBLE WS_CAPTION WSSYSMENU OS_CENTER

S_MO DA RAM

CAPTION About
BEGIN

ICON ID_ICON -1

LTEXT DlgDemo Written for the book Programming Windows

CE Copyright 1998 Douglas Boling

-1 28 100 30

END

DlgDemo.h

II Reader file

/1

/1 Written for the book Programming Windows CE

con/in iiud

229

Page 00252

Part Wkidows Programmng Basics

Figure 4-10 continued

rt wó1p
ied

de tCpJJJatVj
eW .4

Iii
If

1/ 3r gE

UINT piP
SF $iuiLlId

LRF
si4 dcdiT itj

Ac
Mo

Acr
iir

4Ak M63 jt9tc UTT
dd

na av
4r

JI M1B i1

fi 4tL nAr
Ac

4$

111 L1

230

Page 00253

Qxiptei- Windows Controls and Dialog Boxes

II Button window defines

define IOC_PUSHBTN 200

define IDC_CHKBOX 201

define IDC_ACHKBOX 202

define IDC_A3STBOX 203

define IDC_RADIO1 204

define IDC_RADIO2 205

define roc_OwNRDRAW 206

II Edit window defines

define IOC_SINGLELINE 210

define IDC_MULTILINE 211

define IDC_PASSBOX 212

// List box window defines

define IDC_COMB080X 220

define IDC_SNGLELrST 221

deflne IDC_MULTILIST 222

1/ Static control window defines

define IDC_LEFTTEXT 230

define IDC_RIGHTTEXT 231

define rDC_CENIERTEXT 232

define IDC_ICONCTL 233

deflne IDC_BITMAPCTL 234

// Scroll bar window defines

define IDC_LRSCROLL 240

define IDC_UDSCROLL 241

/1 Control IDs for modeless dialog box

define IDD_CLEAR 500

// User-defined message to add line to the window
define MYMSG_ADDLINE WM_USER 10

1/

II Program-specific structures

II

typedef struct

TCHAR pszLabel
DWORD wNotification

NOTELABELS PNOTELABELS

continued

231

Page 00254

Part Whidows Programming Bascs

Figure 4-10 continued

Ai

6e tèjpM NTtIr

tfr
kiA

JP 4I

XQ

tR
ML

ifl 1RIQ
4W1çIwf

MhIMPd
I1

/45W h1uh1irCiw rMiL

UAi$$1 1MiLLy
f454iir $1 hf41êW LW

451 45

45 45

qiMtn

232

Page 00255

Chapter Windows Controls and Dialog Boxes

include commdlg.h II Common dialog box includes
include prsht.h /1 Property sheet includes

include Dlgoemo.h // Program-specific stuff

//

/1 Global data

II

const TCHAR szAppName TEXT DlgDemo
HINSTANCE hlnst II Program instance handle
HWND g_hwndMlDlg II Handle to codeless dialog box

HINSTANCE hLib II Handle to CommDlg lib
FARPROC lpfnChooseColor /1 Ptr to color common dialog fn
FARPROC lpfnPrintDlg II Ptr to print common dialog fn

II Message dispatch table for MainWindowProc

const struct decodeUlNT MainMessages
WM_CREATE DoCreateMai

WM_COMMAND DoComrnandMain

MYMSO_ADDLINE DoAddLi neMai

WM_DESTROY DoDestroyMai

II Command message dispatch for MainWindowProc

const struct decodeCMD MainCommandltenis3
1DM_OPEN DoMainCommandOpen
1DM_SAVE DoMainCommandSave

IDM_SHOWPROPSHEET DoMainCommandShowprop

DM_SHOwMODELESS DoMai nCommandModej ess
1DM_COLOR DoMainCommandcol or
1DM_PRINT DoMainCommandPrjnt

1DM_EXIT DoMainCommandExit

1DM_ABOUT DoMal nCommandAbout

II Labels for WM_NOTIFY notifications
/1

NOTELABELS nlPropPage TEXT PSN_SETACTIVE PSN_FIRST-OJ
TEXT PSN_KILLACTIVE PSN_FIRST-1

YPSN_APPLY .1 PSN_FIR5T-2fl

PSN_RESET 1PSN_FIRST-3J

PSN_HASHELP PSN_FIRST-4y
PSN_HELP PSN_FIRST-5
PSN_WIZBACK PSN_FIRST-6J

TEXT PSN_WIZNEXT PSN_FIRST-7

continued

233

Page 00256

Part Widows Programmng Basics

Figure 4-1 continued

1ir1

iit rrt

i1iZ1 i/4I

114
11Tpi i_ èfl

i1$ifw 1T PMi

Iki4 J1
P/

rr IIPJP
LLL yk ii

gi 11P

iiiiI

ft

234

Page 00257

Chapter Windows Controls and Dialog Boxes

II InitApp Application initialization

int InitApp HINSTANCE hlnstance

WNDCLASS wc

// Register application main window class

wc.style II Window style

wc.lpfnWndProc MainWndProc /1 Callback function

wc.cbClsExtra II Extra class data

wc.cbWndExtra II Extra window data

wc.hlnstance hinstance II Owner handle

wc.hlcon MULL II Application icon

wc.hCursor NULL II Default cursor

wc.hbrBackground HBRUSH GetStockObject WHITE_.BRUSH

wc.lpszMenuName NULL II Menu name

wc.lpszclassName szAppName /1 Window class name

if RegisterCiass wc return

II Get the Color and print dialog function pointers
hLib LoadLibrary TEXT COMMOLG.DLL
if hLib

lpfnChooseColor GetProcAddress hLib TEXT ChooseColor
lpfnPrintDlg GetProcAddress hLib TEXT PrintDlg

return

ii

II Initlnstance Znstance initialization

//

HWND Initlnstance HINSTANCE hlnstance LPWSTR lpCmdLine
mt nCmdShow

HWND hWnd

1/ Save program instance handle in global variable

hlnst hlnstance

/1 Create main window

hWnd CreateWindow szAppName II Window class

TEXT Dialog Demo II Window title

WS_VISIBLE II Style flags

CW_IJSEDEFAULT II position

CW..USEDEFAULT II position

cW..WSEOEFAULT II Initial width

CW_USEDEFAULT II Initial height

NULL II Parent

continued

235

Page 00258

Part Windows Prog ammkig ascs

Figure 4-10 continued

4Y
.i L1L jtk.w Ik

ir
4i I14if%_p

qi$Kktw jf
i\

.ctrt
Lt Jj

çiFa
tIi

cr

rI Mpk
4c

E%faM4I
iT

1.41r
dl 1P

bir

II

236

Page 00259

Chapter Windows Controls and Dialog Boxes

INT nHeight

LPCREATESTRUCT lpcs

HMENU hMenu

II Convert iParam into pointer to create structure

lpcs LPCREATESTRUCT iParam

II Create command bar
hwndCB CommandBar_Create hlnst hWnd IDC_CMDBAR
II Add the menu
ConimandBar_InsertMenubar hwndCR hlnst ID_MENU
II Add exit button to command bar
CommandBar_AddAdornments hwndCB

II See color and print functions not found disable menus
hMenu CommandBar_GetMenu hwndCB
if lpfnChooseColor

EnableMenultern hMenu 1DM_COLOR MF_BYCOMMAND MF_GRAYED
if lpfnPrintDlg

EnableMenultem hMenu 1DM_PRINT t4F_BYCOMMAND MF_GRAYED

nHeight CommandBar_Height hwndCB

II Create report window Size it so that it fits under

II the command bar and fills the remaining client area
//

hwndChild CreateWindowEx TEXT listbox
TEXT WS_VISIBLE WS_CHILD WS_VSCROLL

LBS_USETABSTOPS LBS_NOINTEGRALHEIGHT

nHeight lpcs-cx lpcs-cy nHeight

hWnd HMENUIOC_RPTLJST
lpcs-hlnstance NULL

II Destroy frame if window not created

if IsWindow hwndChild
DestroyWindow hWnd
return

II Initialize tab stops for display list box
40

SendMessage hwndChild LB_SETTABSTOPS LPARAMi
return

II

/1 DoComniandMain Process WM_COMMAND message for window

continiwd

237

Page 00260

Part Whdows Prorammhig Basçs

Figure 4-10 continued

iP
ItiZwir /r

1%wIM 4r

1tEkn
MUi.ie

4y

Vt

uiJIIi

238

Page 00261

Chapter Windows Controls and Dialog Boxes

SendDlgltemMessage hWnd IDC_RPTUST LB_ADDSTRING
LPARAM LPCTSTRszOut

if LB_ERR

SendDlgltenjMessage hWnd IDC_RPTLIST LB_SETTOPINDEX

IPARAM LPCTSTR szOut
return

/1

If DoDestroyMain Process WM_DESTROY message for window
1/

LRESULT DoDestroyMain HWND hWnd UINI wMsg WPARAM wParapi

LPARAM iParam

PostQultMessage

return/__
II Command handler routines

II

II DoMainCommandOpen Process File Open command

//

LPARAM EloMainCommandOpen HWND hWnd WORD iditem HWND hwndCtl
WORD wNotifyCode

OPENFILENAME of
TCHAR szFileName @J
const LPTSTR pszOpenFilter TEXT All Documents .\0.\0\0
TCHAR szOut
INT rc

1/ Initialize filename

szFileName

/1 Initialize File Open structure

memset of sizeof of
of.lStructSize sizeof of
of.hwndOwner hWnd
of.lpstrFile szFileName

of.nMaxFile dimszFileName
of.lpstrFilter pszOpenFilter

of.Flags

rc GetOpenFileName of
continued

239

Page 00262

Part Whidows Programmhig ascs

Figure 4-10 continued

iIiIIINi jW t4

Mt

4t4t r41i
VA4fr

J41
icj1

iitLVç

240

Page 00263

Chapter Windows Controls and Dialog Boxes

/1 Initialize color structure

memset cc sizeof cc
memset cr sizeof cr
cc.lStructSize sizeof cc
cc.hwndOwner hWnd

cc.hlnstance hlnst

cc.rgbResult RGB 0.1

cc.lpCustColors Cr
cc.Flags CC_ANYCOLOR

rc lpfnChooseColor cc
wsprintf szOut TEXT Choose Color returned %x color %x

rc cc.rgbResult

SendMessage hWnd MYMSG_ADDLINE -1 LPARAMszOut
return

II

II DoMainCommandPrint Process File Print command

II

LPARAM DoMainCommandPrint HWND hWnd WORD iditem HWND hwndCtl

WORD wNotifyCode

PRINTDLG pd
INT rc

II Initialize print structure

memset pd sizeof pd
pd.cbStruct sizeof pd
pd.hwndOwner hWnd
pd.dwFlags PDSELECTALLPAGES

rc lpfnPrintDlg pd
return

II

II DoMainCommandShowProp Process show property sheet command

II

LPARAM DoMainCommandShowPropHWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

PROPSHEETPAGE psp
PROPSHEETHEADER psh
INTI

continued

241

Page 00264

Parti

Figure 4-10 continued

242

Page 00265

Chap/er Windows Controls and Dialog Boxes

II Only create dialog box if not already created

if g_hwndMlDlg

/1 Use CreateDialog to create codeless dialog box
g_hwndMlDlg Createoialog hlnst TEXT Clearbox hWnd

ModelessDlgProc
return

II

II DoMainCommandExit Process Program Exit command

1/

LPARAM DoMainCoimnandExit HWND hWnd WORD iditem HWND hwndCtl

WORD wNotifyCode

SendMessage hWnd WLCLOSE
return

II

/1 DoMainCommandAbout Process the Help About menu command

1/

LPARAM DoMainCommandAboutHWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

II Use DialogBox to create modal dialog box
DlalogBox hlnst TEXT aboutbox hWnd AboutDlgProc
return

II Modeless ClearList dialog box procedure
/1

BOOL CALLBACK ModelessDlgProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM lParam

switch wMsg
case WM_COMMAND

switch LOWORD wParam
case IDD_CLEAR

II Send message to list box to clear it
SendDlgltemMessage GetWindow hWnd GW_OWNER

IDC_RPTLIST

LB_RESETCONTENT

return TRUE

case lOOK

case IDCANCEL

/1 Modeless dialog boxes cant use EndDialog

DestroyWindow hWnd

continued

243

Page 00266

Part Whidows Programmhig Basics

Figure 4-1 continued

rMcI tiàg TirQ3N
$4Ia Ii 8rrN4l

pusiIm1I1iç4I

tt

V9

244

Page 00267

Chapter Windows Controls and Dialog Boxes

II Identification strings for various WM_COMMAND notifications

NOTELABELS nlBtn TEXT BN_CLICKED

TEXT BN_PAINT

TEXT BN_HILITE
TEXT AN_UNHILITE
TEXT BN_DISABLE

TEXT BN_DOUBLECLICKED

TEXT BN_SETFOCIJS

TEXT BN_KILLFOCUS

extern NOTELABELS nlPropPage
extern lot npropPageSize

1/ Handle for icon used in owner-draw Icon

HICON hlcon

1/ BtnDlgProc Button page dialog box procedure

II

BOOL CALLBACK BtnDlgProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParain

TCHAR szOut
HWND hwndMain

INT

switch wMsg

case WM_INITDIALOG

II The generic parameter contains the

II top-level window handle

hwndMain HWNDLPPROPSHEETPAGElParam-lParam

II Save the window handle in the window structure

SetWindowLong hWrid OWL_USER LONGhwndMain

II Load icon for owner-draw window

hlcon Loadicon hlnst MAKEINTRESOURCE IDI_BTNICON

If We need to set the initial state of the radio buttons

CheckRadioButton hWnd IDC_RAOIO1 IDC_RADIO2 IOC_RADIO1

return TRUE

II Reflect WM._COMMAND messages to main window

case WM_COMMAND

II Since the check box is not an auto check box the button

II has to be set manually

continued

245

Page 00268

Part Whdows Programming ascs

Figure 4-10 continued

IL

s1PáI1.rI _%
UPSISkpr

iII

246

Page 00269

Chapter Windows Controls and Dialog Boxes

if NMUOR lPara-code
nlPropPage

lstrcpy szOut nlPropPage
break

if riPropPageSize

wspriritf szOut TEXT Notify code%d
NMHDR lparam-code

SendMessage hwndMain MYMSGADDLINE
MAKEWPARAM -1.ID_BTNPAGE LPARAKszOut

return FALSE II Return false to force default processing

case WM_DRAWITEM

DrawButton hnd LPDRAWITEMSTRUCTlParam
return TRUE

return FALSE

II

1/ DrawButton Draws an owner-draw button

II

LRESULT DrawButton HWND hWnd LPDRAWITEMSTRUCT pdi Ii

HPEN hPenShadow hPenLight hPenDkShadow hOldPen

POINT ptOut ptln
HBRUSH hBr hOldBr

TCHAR szOut
HWND hwndMain

LOGPEN lpen

II Get the handle of the main window from the user word
hwndMaln HWND GetWindowLong hWnd OWL_USER

1/ Reflect the messages to the report window

wsprintf szOut TEXT WM_DRAWITEM Action%x State%x
pdi-iteniAction pdi-itemState

SendMessage hwrrdMain MYMSG_ADDLINE

MAKEWPARAM pdi -Ctl ID ID_BTNPAGE
LPARAMszOut

continzwd

247

Page 00270

Part Wridows Programmng Basics

Figure 4-1 continued

Lt

1Ii1IgiiII iç

tipk

tç

gt
rr

T$K

44

14

%c1 -thii6
g4

j4

D4
j1io4 jp

ZeidCte%Ti
Ir11MW@ hift

44

248

Page 00271

Chapter Windows Controls and Dialog Boxes

ptln pdi-rcltem.bOttOm

Polyline pdi-hDC ptln

II Now draw the black outside line on either the upper left or lower

II right corner

ptOut pdi-rcltetfl.left

ptout pdi-rcltem.bOttOml

ptOut pdi-rcltelfl.rightl

ptOutE2I.y pdi-rclteni.tOP

SelectObiect pdi-hDC hPenDkShadow

if pdi-itemState ODS_SELECTED

ptOut pdi-rcltern.left

ptOut pdi-rcltem.tOP

else

ptOut pdi-rclteffl.rightl

ptOut pdi-rcltem.bottOflll

Polyline pdi-hDC ptOut

II Draw the icon

if hlcon
ptln pdi-rcltem.right pdi-rcltem.left/2

GetSystemMetricS SM_CXICON/2

ptln pdl-rcltefll.bOttOm pdi-rcltem.toP/2

GetSysteniMetrics SM_CYICON/2

II If pressed shift image down one pel to simulate the press

if pdi-iterflState ODS_SELECTED

ptOut
ptOut

Drawlcon pdi-hDC ptln ptInG3.y hIcon

II If button has the focus draw the dotted rect inside the button

if pdi-itemState ODS_FOCUS

pdi-rcltenl.left

pdi-rcltefll.top

pdi-rcltem.right

pdi-rcltem.bOttOm
DrawFocusRect pdi-hDC pdi-rcltem

II Clean up First select the original brush and pen into the DC

SelectObject pdi-hDC hOldBr

SelectObject pdi-hDC holdPen

cojtiiiied

249

Page 00272

Part Windows Programmhig asics

Figure 4-10 continued iUP
411 4b 1r

I1 i1iiP

UUapMriIVW rNI

250

Page 00273

Chapter Windows Controls and Dialog Boxes

switch wMsg

case WM_INITDIALOG

II The generic parameter contains the

II top-level window handle

hwndMain I4WNDLPPROPSHEETPAGElParamlParaRl

1/ Save the window handle in the window structure

SetWindowLong hWnd OWL_USER LONGhwndMain

return TRUE
1/

1/ Reflect WM_COMMAND messages to main window

case WM_COMMANO

II Get the handle of the main window from the user word

hwndMain l-IWt4D GetWindowLong hWnd OWL_USER

II Look up button notification

lstrcpy szOut TEXT WM_COMMAND

for dimnlEdit
if HIWORO wparam nlEdit

lstrcat szOut nlEditi.pszt.abel

break

if dimnlEdit
wsprintf szOut TEXT WM_COMMAND notification %x

HIWORO wParam

SendMessage hwndMain MYMSG_ADDLINE

MAKEWPARAM LOWORD wPararn.ID_EDITPAGE

LPARAMszOut
return TRUE

/1

/1 Reflect notify message

/1

case WM_NOTJFY

II Get the handle of the main window from the user word

hwndMain HWND GetWindowLong hWnd OWL_USER

It Look up notify message

for nPropPageSize

if NMHDR lParam-code
nlPropPageiJ.wNotifiCatiOfl

lstrcpy szOut nlproppage
break

continued

251

Page 00274

Part
Whidows Programmng Bscs

Figure 4-1 continued

tIIIr Lr4P84 4h

iii4 4iizfr..crr
IIIi4 Nr 4M$$
p_w

pJ
4V $ç
4c

A4ai

9cI4 1Itpdtr$iu4
/Y

fLd cft i$t ip
i.A

1$ E1i

tvr Lmrt iAt

252

Page 00275

Chap/er Windows Controls and Dialog Boxes

CBN_DROPDOWN fl

TEXT CBN_CLOSEUP

TEXT CBN._SELENDOK 91

TEXT CBN._SELENDCANCEL 101

extern NOTELABELS nlPropPage

extern mt nPropPageSize

II ListDlgProc Button page dialog box procedure

II

BOOL CALLBACK ListDlgProc HWND hWnd UINT wMsg WPARAM wparam

LPARAM iParam

TCHAR szOutLl28l

HWND hwndMain

INT

switch wMsg

case WM_INITOIALOG

1/ The generic parameter contains the

Ii top-level window handle

hwndMain HWNDLPpROPSHEETPAGElParam-lParam
If Save the window handle in the window structure

SetWindowLong hWnd DWL_USER LONGhwndMain

1/ Fill the list and combo boxes

for 20

wsprintf szOut TEXT Item %d
SendUlgitemMessage hWnd IDCSNGLELIST LBJDDSTRING

LPARAMszOut

SendolgltemMessage hWnd IDC_MULTILIST LB_ADDSTRING

LPARAMszOut

SendglgltemMessage hWnd IDC_COMBOBOX CB.ADDSTRING

LPARAMszOut

// Provide default selection for the combo box

SendglgltemMesSage hWnd IOC_COMB000X CBSETCURSEL

return TRUE

If

/I Reflect WM_COMMAND messages to main window

//

co/tiE1cC/i

253

Page 00276

Part Whidows Pr grammng Bascs

Figure 4-10 continued

4c

Ij yiti4T c4rn$Ib 4ria fflhi

rI
irqT

Jlr1iIi

frtih dt

411i- 2F1D
c4ji rjLsp

CWLi 1tP
is jiriii

II
4essg4

r1N TRUt

ine 44P
If id
vs

/t

up rttf 1A

raff

wKt4Jg

254

Page 00277

bapter Windows Controls and Dialog Boxes

strcpy .szOut ni PropPage pszLabel

break

if nPropPageSize

wsprintf szOut TEXT Notify code%d
NMHDR lParam-code

SendMessage hwndMain MYMSG_ADDLINE

MAKEWPARAM -1 ID_LISTPAGE
LPARAMszOut

return FALSE II Return false to force default processing

return FALSE

StaticDlg.c

II StaticDlg Static control dialog box window code

II Written for the book Programming Windows CE

II Copyright 1998 Douglas Boling

include windows.h II For all that Windows stuff

include prsht.h II Property sheet includes

include DlgDemo.h /1 Program-specific stuff

extern HINSTANCE hlnst

II

II Global data

II

/I Identification strings for various WM_COMMAND notifications

NOTELABELS nlStatic SIN_CLICKED
STN_ENABLE
STN_DISABLE

extern NOTELABELS nlPropPage
extern mt nPropPageSize

II StaticDlgProc Button page dialog box procedure

/1

800L CALLBACK StaticDlgProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM lPararn

TCHAR szOut
contin zied

255

Page 00278

Parti

Figure 410 ci/l/lnl1I

FIWND hwndMain

INT

switch wMsg

case WM_INITDIALOG

II The generic parameter contains the

/1 top-level window handle

hwndMain HWNDLPPROPSHEETPAGElparam-lParam
II Save the window handle in the window structure

SetWindowLong hWnd DWL_USER LONGhwridMain

return TRUE

II Reflect WM_COMMAND messages to main window

case WM_COMMAND

II Get the handle of the main window from the user word

hwndMairi HWND GetWindowLong hWnd DWL_USER

II Look up button notification

lstrcpy szOut TEXT WM_COMMAND fl
for dimnlStatic

if HIWORD wParam nlStatic
lstrcat szOut nlStatic
break

if dimnlStatic

wsprintf szOut TEXT WM_COMMAND notification %x
HIWORD wParamfl

SendMessage hwndMain MYMSG_ADDLINE

MAKEWPARAM LOWORD wParam ID_STAIPAGE

LPARAMszOut
return TRUE

/i Reflect notify message

case WM_NOTIFY

II Get the handle of the main window from the user word

hwndMain HWND GetWiridowLong hWnd DWL_USER

II Look up notify message

256

Page 00279

cbclpki Windows Controls and Dialog Boxes

for nPropPageSize

if NMHDR lParam-code
nlPropPage

lstrcpy szOut nlPropPage
break

if nPropPageSize

wsprintf szOut TEXT Notify code%d
NMROR lParam-code

SendMessage hwndMain MYMSO_ADDLINE

MAKEWPARAM -1ID_STATPAGE LPARAMszOut

return FALSE II Return false to force default processing

return FALSE

ScrollDlg.c

II ScroliDig Scroll bar dialog box window code

II Written for the book Prograrnnhing Windows CE

II Copyright 1998 Douglas Boling

include windows.h II For all that Windows stuff

include prsht.h II Property sheet includes

include Dlgoemo.h II Program-specific stuff

extern HINSTANCE hlnst

II

II Global data

II Identification strings for various WM_xSCROLL notifications

NOTELABELS nlVScroll TEXT SB_LINEUP 01
TEXT SB_LINEDOWN 11
TEXT SB_PAGEUP 21

SB_PAGEDOWN 31
TEXT SBTHUMBPOSITION
TEXT SBTHUMBTRACK

SB_TOP 6J
SB_BOTTOM
SB_ENDSCROLL

continued

257

Page 00280

Part Whidows Programming ascs

Figure 4-10 continuedkut i3 QuirRCf

d1r

I2lr
r1 4kQiI

Pthric
4tfi ihttJjçr5$NTJ%

iM
t4j

II2 Pwqj IA1
tr4hdrt

p1Ii$rg

w1 L1

258

Page 00281

Chapter Windows Controls and Dialog Boxes

if dimnlVScroll

wsprlntf szOut TEXT notification %x
HIWORD wParam

else

for dimnlHScroll
if LOWORD wParani nlHScroll

lstrcpy szOut nlHScroll
break

if dimnlHScroll

wsprintf szOut TEXT notification %x
HIWORD wParam

SendMessage hwndMain MYMSG_ADDLINE

MAKEWPARAM -1 ID_SCROLLPAGE LPARAMszOut

II Get scroll bar position

si.cbSize sizeof si
si.fMask SIF_POS

GetScrolllnfo HWNDlParani SB_GIL si
sPos si.nPos

II Act on the scroll code
switch LOWORD wParam
case SB_LINEUP /1 Also SB_LINELEFT

sPos

break

case SB_LINEDOWN II Also SB_LINERIGHT

sPos

break

case SB_PAGEUP II Also SB_PAGELEFT

sPos 10
break

case SBJAGEDOWN II Also SBPAGERIGHT

sPos 10
break

case SB_TIIUMBPOSITION

sPos HIWORD wParam
break

contiizii-d

259

Page 00282

Part Wrndows Programmh1g Bascs

Figure 4-10 continued

i1

crI
44 ms i1 11 iiips%dii jqdd
i1tII Fl

4iIWI1
4r iNIwj IC1I

ii 1I ii
ebJI mt1pIUJF

Sb

jq tj
t4l

jti1L

evn

fi
The dialog box procedures for each of the property pages report all

WM_COMIVIAND and WM_NOTIFY messages back to the main window where theyre

displayed in list box contained in the main window The property page dialog box

260

Page 00283

Chapter Windows Controls and Dialog Boxes

procedures mirror the child window procedures of the CtlView example the differ

ences being that the page procedures dont have to create their controls and they
field the WM_INITDIALOG message to initialize the controls The page procedures
also use the technique of storing information in their window structuresin this case
the window handle of the main window of the example This is necessary because
the parent window of the pages is the property sheet not the main window The
window handle is conveniently accessible during the WM_INITDIALOG message
because its loaded into the user-definable parameter in the PROPSHEETPAGE struc

ture by the main window when the property sheet is created Each page procedure
copies the parameter from the PROPSHEETPAGE structure into the DWL_USER field

of the window structure available to all dialog box procedures When other messages
are handled the handle is then queried using GetWindowLong The page procedures
also field the WM_NOTIFY message so that they too can be reflected back to the

main window

As with CtlView the best way to learn from DlgDemo is to run the program
and watch the different WM_COMMAND and WM_NOTIFY messages that are sent

by the controls and the property sheet Opening the property sheet and switching
between the pages results in flood of WM_NOTIFY messages informing the indi
vidual pages of whats happening Its also interesting to note that when the OK but
ton is pressed on the property sheet the PSN_APPLY messages are sent only to

property pages that have been displayed

The menu handlers that display the Print and Color common dialogs work with
bit of twist Since the Palm-size PC doesnt support these dialogs DlgDemo cant

call the functions directly That would result in these two functions being implicitly
linked at run time Since the Palm-size PC doesnt have these common dialogs and

therefore these functions Windows CE wouldnt be able to resolve the implicit links

to all the functions in the program and therefore the program wouldnt be able to

load So instead of calling the functions directly you explicitly link these functions

in InitApp by loading the common dialog DLL using LoadLibrary and getting point
ers to the functions using GetProcAddress If DlgDemo is running on Palm-size PC
the GetProcAddress function fails and returns for the function pointer In

OnCreateMain check is made to see whether these function pointers are and if

so the Print and Color menu items are disabled In the menu handler functions

DoMainCommandColor and DoMainCommandprint the function pointers returned

by GetProcAddress are used to call the functions This extra effort isnt necessary if

you know your program will run only on system that supports specific set of func
tions but every once in while this technique comes in handy

261

Page 00284

Part WhidOWS Programmhig Bascs

CONCLUSION
This chapter has covered huge amount of ground from basic child windows to

controls and on to dialog boxes and property sheets My goal wasnt to teach every

thing there is to know about these topics Instead Ive tried to introduce these pro

gram elements provide few examples and point out the subtle differences between

the way theyFe handled by Windows CE and the desktop versions of Windows

This chapter also marks the end of the introductory section Windows Program

ming Basics In these first four chapters Ive talked about fundamental Windows

programming while also using basic Windows CE application to introduce the con

cepts of the system message queue windows and messages Ive given you an over

view of how to paint text and graphics in window and how to query the user for

input Finally talked about the windows hierarchy controls and dialog boxes

For the remainder of the book move from description of the elements common

to both Windows CE and the desktop versions of Windows to the unique nature of

Windows CE programming begin this process in Chapter by talking about an
other set of controls the common controls this time with an emphasis on controls

unique to Windows CE

262

Page 00285

Part II

Page 00286

I'

Page 00287

Chapter

Common Controls

and Windows CE

As Microsoft Windows matured as an operating system it became apparent that the

basic controls provided by Windows were insufficient for the sophisticated user in
terfaces that users demanded Microsoft developed series of additional controls called

common controls for their internal applications and later made the dynamic link li

brary DLL containing the controls available to application developers Starting with

Microsoft Windows 95 and Microsoft Windows NT 3.5 the common control library
was bundled with the operating system Although this hasnt stopped Microsoft from

making interim releases of the DLL as the common control library was enhanced
With each release of the common control DLL new controls and new features are
added to old controls As group the common controls are less mature than the stan
dard Windows controls and therefore show greater differences between implemen
tations across the various versions of Windows These differences arent just between

Microsoft Windows CE and other versions of Windows but also between Windows NT
Windows 95 and Microsoft Windows 98 The functionality of the common controls

in Windows CE tracks most closely with the common controls delivered with Win
dows 98 although not all of the Windows 98 features are supported

It isnt the goal of this chapter to cover in depth all the common controls That

would take an entire book Instead Ill cover the controls and features of controls the

Windows CE programmer will most often need when writing Windows CE applications

Ill start with the command bar and then look at the month calendar and time and date

265

Page 00288

Part II Whidows CE Basics

picker controls Finally Ill finish up with the list view control By the end of the chap

ter you might not know every common control inside and out but you will be able to

see how the common controls work in general And youll have the background to look

at the documentation and understand the common controls not covered

PROGRAMMING COMMON CONTROLS
Since the common controls are separate from the core operating system the DLL that

contains them must be initialized before any of the common controls can be used

Under all versions of Windows including Windows CE you can call the function

void InitCommonControls void

to load the library and register all the common control classes

Another function added recently to the common control library and supported

by Windows CE is this one

BOOL InitCommonControlsEx LPINITCOMMONCONTROLSEX lplnitCtrls

This function allows an application to load and initialize only selected common con

trols This function is handy under Windows CE because loading only the necessary

controls can reduce the memoryimpact The only parameter to this function is two-

field structure that contains size field and field that contains set of flags indicat

ing which common controls should be registered Figure 5-1 shows the available flags

and their associated controls

Flag Control Classes Initialized

ICC_BAR_CLASSES Toolbar

Status bar

Trackbar

Command bar

ICC_COOL_CLASSES Rebar

ICC_DATE_CLASSES Date and time picker

Month calendar control

ICC_LISTVIEW_CLASSES List view

Header control

ICC_PROGRESS_CLASS Progress bar control

ICC_TAB_CLASSES Tab control

ICC_TREE VIEW_CLASSES Tree view control

ICC_UPDOWN_CLASS Up-down control

Figure 5-1 Flags for selected common controls

266

Page 00289

Chapter Common Controls and Windows CE

Once the common control DLL has been initialized these controls can be treated

as any other control But since the common controls arent formally part of the Win
dows core functionality an additional include file commctrl.h must be included

The programming interface for the common controls is similar to standard Win
dows controls Each of the controls has set of custom style flags that configure the

look and behavior of the control Messages specific to each control are sent to con
figure manipulate and cause the control to perform actions One major difference

between the standard windows controls and common controls is that notifications

of events or requests for service are sent via WM_NOTIFY messages instead of

WM_COMMAND messages as in the standard controls This technique allows the

notifications to contain much more information than would be allowed using
WM_COMMAND message notifications

One additional difference when programming common controls is that most of

the control-specific messages that can be sent to the common controls have predefined

macros that make sending the message look as if your application is calling func
tion So instead of using an LVM_INSERTITEM message to list view control to insert

an item as in

nlndex iYt SendMessage hwndLV LVM_INSERTITEM LPARAMlvi

an application could just as easily have used the line

nlndex ListView_Insertltem hwndLV lvi
Theres no functional difference between the two lines the advantage of these mac
ros is clarity The macros themselves are defined in commctrl.h along with the other

definitions required for programming the common controls One problem with the

macros is that the compiler doesnt perform the type checking on the parameters that

would normally occur if the macro were an actual function This is also true of the

SendMessage technique in which the parameters must be typed as WPARAM and

LPARAM types but at least with messages the lack of type checking is obvious All in

all though the macro route provides better readability One exception to this system
of macros are the calls made to the command bar control and the command bands

control Those controls actually have number of true functions in addition to large

set of macro-wrapped messages As rule Ill talk about messages as messages not

as their macro equivalents That should help differentiate what is message or macro
and what is true function

THE COMMON CONTROLS
Windows CEs special nichesmall personal productivity deviceshas driven the re-

quirements for the common controls in Windows CE The frequent need for time and

date references for schedule and task management applications has led to inclusion of

267

Page 00290

Part II WindOWs Basics

the date and time picker control and the month calendar control The small screens

of personal productivity devices inspired the space-saving command bar Mating the

command bar with the rebar control that was created for Internet Explorer 3.0 has

produced the command bands control The command bands control provides even

more room for menus buttons and other controls across the top of Windows CE

application Youve seen glimpses of the command bar control in Chaptei and again

in Chapters and Its time you were formally introduced

The Command Bar

Briefly command bar control combines menu and toolbar This combination is

valuable because as Ive pointed out before the combination of menu and toolbar

on one line saves screen real estate on space-constrained Windows CE displays To

the programmer the command bar looks like toolbar with number of helper func

tions that make programming the command bar breeze In addition to the com
mand bar functions you can also use most toolbar messages when youre working

with command bars

The command bands control was added to Windows CE in version 2.0 com
mand bands control is rebar control that by default contains command bar in

each band of the control The rebar control is fairly new common control its

container of controls that the user can drag around the application window It was

previously known as Cool Bar when it first appeared in the common control DLL

delivered with Internet Explorer 3.0 Given that command bands are nothing more

than command bars in rebar control knowing how to program command bar is

most of the battle when learning how to program the command bands control

Creating command bar

You build command bar in number of steps each defined by particular func

tion The command bar is created the menu is added buttons are added other con

trols are added tool tips are added and finally the Close and Help buttons are

appended to the right side of the command bar

You begin the process of creating command bar with call to

HWND CommandBar_Create HINSTANCE hlnst HWND hwndparent

mt idCmdBar

The function requires the programs instance handle the handle of the parent win

dow and an ID value for the control If successful the function returns the handle to

the newly created command bar control But bare command bar isnt much use to

the application It takes menu and few buttons jazz it up

Command bar menus
You can add menu to command bar by calling one of two functions The first

function is this

268

Page 00291

Chapter Common Controls and Windows CE

BOOL ComrnandBar_InsertMenubar HWND hwndCB HINSTANCE hlnst

WORD idMenu mt iButton

The first two parameters of this function are the handle of the command bar and the

instance handle of the application The idMenu parameter is the resource ID of the

menu to be loaded into the command bar The last parameter is the index of the button

to the immediate left of the menu Because the Windows CE guidelines specify that

the menu should be at the left end of the command bar this parameter should be set

to which indicates that all the buttons are to the right of the menu

shortcoming of the CornrnandBar_InsertMenubar function is that it requires

the menu to be loaded from resource You cant configure the menu on the fly Of

course it would be possible to load dummy menu and manipulate the contents of

the menu with the various menu functions but heres an easier method

The function

BOOL ComrnandBar_InsertMenubarEx HWND hwndCB HINSTANCE hlnst

LPTSTR pszMenu mt iButton

was added in Windows CE 2.0 The difference between CornrnandBar_InsertMenu

barEx and Corn rnandBar_InsertMenubar is the change in the third parameter

pszMenu This parameter can be either the name of menu resource or the handle

to menu previously created by the program If the pszMenu parameter is menu

handle the hlnst parameter must be NULL
Once menu has been loaded into command bar the handle to the menu

can be retrieved at any time using

HMENU ConimandBar_GetMenu HWND hwndCB mt iButton

The second parameter iButton is the index of the button to the immediate left of the

menu This mechanism provides the ability to identify more than one menu on the

command bar However given the Windows CE design guidelines you should see

only one menu on the bar With the menu handle you can manipulate the structure

of the menu using the many menu functions available

If an application modifies the menu on the command bar the application must

call

BOOL CommandBar_DrawMenuBar HWND hwndCB mt iButton

which forces the menu on the command bar to be redrawn Here again the param

eters are the handle to the command bar and the index of the button to the left of the

menu Under Windows CE you must use CornrnandBar_DrawMenuBar instead of

DrawMenuBar which is the standard function used to redraw the menu under other

versions of Windows

269

Page 00292

Part ii WhidoWS CE ascs

Command bar buttons

Adding buttons to command bar is two-step process and is similar to adding buttons

to toolbar First the bitmap images for the buttons must be added to the command

bar Second the buttons are added with each of the buttons referencing one of the

images in the bitmap list that was previously added

The command bar maintains its own list of bitmaps for the buttons in an inter

nal image list Bitmaps can be added to this image list one at time or as group of

images contained in long and narrow bitmap For example for bitmap to contain

four 16-by-15-bit images the dimensions of the bitmap added to the command bar

would be 64 by 15 bits Figure 5-2 shows this bitmap image layoutI4
Image Image Image Image

16 32 48 63

Figure 5-2 Layout of bitmap that contains four 16-by-15-bit images

Loading image bitmap is accomplished using

mt CommandBar_AddBitmap HWND hwndCB HINSTANCE hlnst mt idBitmap

mt iNumlmages mt iReserved mt iReserved

This first two parameters are as is usual with command bar function the handle to

the command bar and the instance handle of the executable The third parameter

idBitmap is the resource ID of the bitmap image The fourth parameter iNumlmages

should contain the number of images in the bitmap being loaded Multiple bitmap

images can be loaded into the same command bar by calling CommandBar_

AddBitmap as many times as is needed

Two predefined bitmaps provide number of images that are commonly used

in command bars and toolbars You load these images by setting the hlnst parameter

in CommandBar_AddBitrflaP to HINST_COMMCTRL and setting the idBitmap param

eter to either IDB_STD_SMAILL_COLOR or IDBVIEW_SMML_COLOR The images

contained in these bitmaps are shown in Figure 5-3 The buttons on the top line con

tain the bitmaps from the standard bitmap while the second-line buttons contain the

bitmaps from the standard view bitmap

HiLW11I1 9i1
-I

Figure 5-3 Images in the mo sin nclard bitmap.s provided the common control DII

270

Page 00293

Chapter Common Controls and Windows CE

The index values to these images are defined in cornmctrl.h so you dont need

to know the exact order in the bitmaps The constants are

Constants to access the standard bitmap

STD_CUT Edit/Cut button image

STD_COPY Edit/Copy button image

SID_PASTE Edit/Paste button image

STD_IJNDO Edit/Undo button image

STD_REDOW Edit/Redo button image

STD_DELETE Edit/Delete button image

STD_FILENEW File/New button image

STD_FILEOPEN File/Open button image

STD_FILESAVE File/Save button image

STD_PRINTPRE Print preview button image

STD_PROPERTIES Properties button image

STD_HELP Help button Use Commandbar_Addadornments

function to add help button to the

command bar
STD_FIND Find button image

STD_REPLACE Replace button image

STD_PRINT Print button image

Constants to access the standard view bitmap

VIEW_LARGEICONS View/Large Icons button image

VIEW_SMALLICONS View/Small Icons button image

VIEW_LIST View/List button image

VIEW_DETAILS View/Details button image

VIEWSORTNAME Sort by name button image

VIEW....SORTSIZE Sort by size button image

VIEWSORTDATE Sort by date button image

VIEW_SORTTYPE Sort by type button image

VIEW_PARENTFOLDER Go to Parent folder button image

VIEW_NETCONNECT Connect network drive button image

VIEW_NETDISCONNECT Disconnect network drive button image

VIEW...NEWFOLDER Create new folder button image

Referencing images
The images loaded into the command bar are referenced by their index into the list

of images For example if the bitmap loaded contained five images and the image

to be referenced was the fourth image into the bitmap the zero-based index value

would be

If more than one set of bitmap images was added to the command bar using

multiple calls to CommandBar_AddBitmap the images subsequent lists are refer

enced according to the previous count of images plus the index into that list For

example if two calls were made to CommandBar_AddBitmap to add two sets Of

images with the first call adding five images and the second adding four images the

271

Page 00294

Part ii Windows CE Basics

third image of the second set would be referenced with the total number of images

added in the first bitmap plus the index into the second bitmap resulting in an

index value of

Once the bitmaps have been loaded the buttons can be added using one of

two functions The first function is this one

BOOL ComniandBar_AddButtons HWND hwndCB UINT uNumButtons

LPTBBUTTON pButtons

CommandBar_AddButtons adds series of buttons to the command bar at one time

The function is passed count of buttons and pointer to an array of TBBUTTON

structures Each element of the array describes one button The TBBUTTON structure

is defined as the following

typedef struct

mt iBitmap

mt idCommand

BYTE fsState

BYTE fsStyle

DWORD dwData

mt iString

TBBUTTON

The iBitmap field specifies the bitmap image to be used by the button This is as

just explained the zero-based index into the list of images The second parameter is

the command ID of the button This ID value is sent via WM_COMMAND message

to the parent when user clicks the button

ThefsState field specifies the initial state of the button The allowable values in

this field are the following

TBSTATE_ENABLED The button is enabled If this flag isnt specified the

button is disabled and is grayed

TBSTATE_HJDDEN The button isnt visible on the command bar

TBSTATE_PRESSED This button is displayed in depressed state

TBSTATE_CHECKED The button is initially checked This state can be

used only if the button has the TBSTYLE_CHECKED style

TBSTATEJNDETERMINATE The button is grayed

One last flag is specified in the documentation TBSTATE_WRAF but it doesnt

have valid use in command bar This flag is used by toolbars when toolbar wraps

across more than one line

272

Page 00295

Chapter Common Controls and Windows CE

The fsStyle field specifies the initial style of the button which defines how the

button acts The button can be defined as standard push button check button

drop-down button or check button that resembles radio button but allows only

one button in group to be checked The possible flags for the fsStyle field are the

following

TBSTYLE_BUTTON The button looks like standard push button

TBSTYLE_CHECK The button is check button that toggles between

checked and unchecked states each time the user clicks the button

TBSTYLE_GROP Defines the start of group of buttons

TBSTYLE_CHECKGROUP The button is member of group of check

buttons that act like radio buttons in that only one button in the group

is checked at any one time

TBSTYLE_DROPDOWN The button is drop-down list button

TBSTYLE_A UTO SIZE The buttons size is defined by the button text

TBSTYLE_SEP Defines separator instead of button that inserts small

space between buttons

The dwData field of the TBBUTTON structure is an application-defined value

This value can be set and queried by the application using the TB_SETBUTFONINFO

and TB_ GETBUTTONINFO messages The iString field defines the index into the

command bar string array that contains the text for the button The iString field can

also be filled with pointer to string that contains the text for the button

The other function that adds buttons to command bar is this one

BOOL CommandBar_InsertButton HWND hwndCB mt iButton

LPTBBUTTON lpButton

This function inserts one button into the command bar to the left of the button refer

enced by the iButton parameter The parameters in this function mimic the param

eters in CommandBar_AddButtons with the exception that the lpButton parameter

points to single TBBUITON structure The iButton parameter specifies the posi

tion on the command bar of the new button

Working with command bar buttons

When user presses command bar button other than drop-down button the

command bar sends WM_COMIVIAND message to the parent window of the com
mand bar So handling button clicks on the command bar is just like handling menu

273

Page 00296

Part II Whidows CE Basics

commands In fact since many of the buttons on the command bar have menu com
mand equivalents its customary to use the same command IDs for the buttons and

the like functioning menus thus removing the need for any special processing for

the command bar buttons

The command bar maintains the checked and unchecked state of check and

checkgroup buttons After the buttons have been added to the command bar their

states can queried or set using two messages TB_ISBUTTONCHECKED and

TB_CHECKBUTFON The TB_ prefix in these messages indicates the close relation

ship between the command bar and the toolbar controls The TB_ISBUTTON
CHECKED message is sent with the ID of the button to be queried passed in the

wParam parameter this way

fChecked SendMessage hwndCB TB_ISBUTTONCHECKED wID

where hwndCB is the handle to the command bar containing the button If the return

value from the TB_ISBUTFONCHECKED message is nonzero the button is checked

To place button in the checked state send TB_CHECKBUTTON message to the

command bar as in

SendMessage hwndCB TB_CHECKBUTTON wID TRIJE

To uncheck checked button replace the TRUE value in iParam with FALSE

new look for disabled buttons

Windows CE allows you to easily modify the way command bar or toolbar button

looks when the button is disabled Command bars and toolbars maintain two image

lists the standard image list that described previously and disabled image list used

to store bitmaps that you can employ for disabled buttons

To use this new feature you need to create and load second image list for

disabled buttons The easiest way to do this is to create the image list for the nor
mal states of the buttons using the techniques described when talked about

CommandBar_AddBitmap Image lists in toolbars are loaded with the message

TB_LOADIMAGES Once that image list complete simply copy the original image

list and modify the bitmaps of the images to create disabled counterparts to the origi

nal images Then load the new image list back into the command bar or toolbar

short code fragment that accomplishes this chore is shown below

HBITMAP hBmp hMask

HIMAGELIST hiloisabled hilEnabled

II Load the bitmap and mask to be used in the disabled image list

hBmp LoadBitmap hlnst TEXT DisCross
hMask LoadBitmap hlrist TEXT DisMask

274

Page 00297

Chapter Common Controls and Windows CE

II Get the std image list and copy it
hilEnabled HIMAGELISTSendMessage hwndCB IB_GETIMAGELIST

hilDisabled ImageList_Duplicate hilEnabled

II Replace one bitmap in the disabled list

ImageList_Replace hilDisabled VIEW_LIST hBmp hMask

II Set the disabled image list

SendMessage hwndCB TB_SETDISABLEDIMAGELIST LPARAM hilDisabled

The code fragment first loads bitmap and mask bitmap that will replace one

of the images in the disabled image list You retrieve the current image list by send

ing TB_GETIMAGELIST message to the command bar and then you duplicate it

using ImageList_Duplicate One image in the image list is then replaced by the bitmap

that was loaded earlier

This example replaces only one image but in real-world example many im

ages might be replaced If all the images were replaced it might be easier to build

the disabled image list from scratch instead of copying the standard image list and

replacing few bitmaps in it Once the new image list is created you load it into the

command bar by sending TB_SETDISABLEDIMAGELIST message The code that

just showed you works just as well for toolbars under Windows CE as it does for

command bars

Drop-down buttons

The drop-down list button is more complex animal than the standard button on

command bar The button looks to the user like button that when pressed dis

plays list of items for the user to select from To the programmer drop-down button

is actually combination of button and menu that is displayed when the user clicks

on the button Unfortunately the command bar does little to support drop-down

button except to modify the button appearance to indicate that the button is drop-

down button and to send special notification when the button is clicked by the user

Its up to the application to display the menu
The notification of the user clicking drop-down button is sent to the parent

window of the command bar by WM_NOTIFY message with notification value of

TBN_DROPDOWN When the parent window receives the TBN_DROPDOWN noti

fication it must create pop-up menu immediately below the drop-down button

identified in the notification The menu is filled by the parent window with what-

ever selections are appropriate for the button When one of the menu items is se

lected the menu will send WM_COMMAND message indicating the menu item

picked and the menu will be dismissed The easiest way to understand how to handle

drop-down button notification is to look at the following procedure that handles

TBN_DROPDOWN notification

275

Page 00298

Part ii Windows CE Basics

LRESULT DoNotifyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

LPNMHDR pNotifyHeader

LPNMTOOLBAR pNotifyToolBar
RECT rect

TPMPARAMS tpm
HMENU hMenu

II Get pointer to notify message header

pNotifyHeader LPNMHDRlParam

if pNotifyHeader-code TBN_DROPDOWN

II Get pointer to toolbar notify structure

pNotifyToolBar LPNMTOOLBARlParam

II Get the rectangle of the drop-down button

SendMessage pNotifyHeader-hwndFrom TB_GETRECT

pNotifyToolBar-iltem LPARAMrect

II Convert rect into screen coordinates The rect is

II considered here to be an array of POINT structures

MapWindowPoints pNotifyHeader-hwndFrom HWND_DESKTOP

LPPOINTrect

II Prevent the menu from covering the button

tpm.cbSize sizeof tpm
CopyRect tpm.rcExclude rect

II Load the menu resource to display under the button

hMenu GetSubMenu LoadMenu hlnst TEXT popmenu.O

II Display the menu This function returns after the

II user makes selection or dismisses the menu

TrackPopupMenuEx hMenu TPM_LEFTALIGN TPM_VERTICAL

rect.left rect.bottom hWnd tpm

return

After the code determines that the message is TBN_DROPDOWN notification the

first task of the notification handler code is to get the rectangle of the drop-down

button The rectangle is queried so that the drop-down menu can be positioned im

mediately below the button To do this the routine sends TB_GETRFCT message

to the command bar with the ID of the drop-down button passed in wParam and

pointer to rectangle structure in iParam

276

Page 00299

Chapter Common Controls and Windows CE

Since the rectangle returned is in the coordinate base of the parent window
and pop-up menus are positioned in screen coordinates the coordinates must be con

verted from one basis to the other You accomplish this using the function

MapWindowPoints HWND hwndFrom HWND hwndTo

LPPOINT ippoints UINT cPoints

The first parameter is the handle of the window in which the coordinates are origi

nally based The second parameter is the handle of the window to which you want

to map the coordinates The third parameter is pointer to an array of points to be

translated the last parameter is the number of points in the array In the routine just

showed you the window handles are the command bar handle and the desktop

window handle respectively

Once the rectangle has been translated into desktop coordinates the pop-up

or context menu can be created You do this by first loading the menu from the re

source then displaying the menu with call to TrackPopupMenuEx That function is

prototyped as

BOOL TrackPopupMenuEx HMENU hmenu UINT fuFlags mt mt
HWND hwnd LPTPMPARAMS lptpnl

The hMenu parameter is the handle of the menu to be displayed The hwnd param

eter identifies the window to receive the WM_COMMAND message if menu item is

selected The TPMPARAMS structure contains rectangle that wont be covered up

by the menu when it is displayed For our purposes this rectangle is set to the di

mensions of the drop-down button so that the button wont be covered by the pop

up menu The fuFlags field can contain number of values that define the placement

of the menu For drop-down buttons the only flag needed is TPM_VERTICAL If

TMP_VERTICAL is set the menu leaves uncovered as much of the horizontal area of

the exclude rectangle as possible The TrackPopupMenuEx function doesnt return

until an item on the menu has been selected or the menu has been dismissed by the

user tapping on another part of the screen

Combo boxes on the command bar

Combo boxes on command bar are much easier to implement than drop-down

buttons You add combo box by calling

HWND ConimandBar_InsertComboBox HWND hwndCB HINSTANCE hlnst

mt mWmdth UINT dwStyle

WORD mdConiboBox

mt mButton

This function inserts combo box on the command bar to the left of the button indi

cated by the iButton parameter The width of the combo box is specified in pixels

by the Width parameter The dwStyle parameter specifies the style of the combo box

277

Page 00300

Part II WndowsCE ascs

The allowable style flags are any valid Windows CE combo box style and window

styles The function automatically adds the WS_CHILD and WS_VISIBLE flags when

creating the combo box The idComboBox parameter is the ID for the combo box that

will be used when WM_COMMAND messages are sent notifying the parent window

of combo box event Experienced Windows programmers will be happy to know

that CommandBar_InsertComboBox takes care of all the parenting problems that

occur when control is added to standard Windows toolbar That one function call

is all that is needed to create properly functioning combo box on the command bar

Once combo box is created you program it on the command bar the same

way you would stand-alone combo box Since the combo box is child of the com
mand bar you must query the window handle of the combo box by passing the handle

of the command bar to GetDlgltem with the ID value of the combo box as in the

following code

hwndCombobox GetDlglteni Getolgltem hWnd IDC_CMDBAR
IDC_COMBO

However the WM_COMMAND messages from the combo box are sent directly to the

parent of the command bar so handling combo box events is identical to handling

them from combo box created as child of the applications top-level window

Command bar tool tips

Tool tips are small windows that display descriptive text that labels command bar

button when the stylus is held down over the control Tool tips under Windows CE

are implemented in completely different way from how theyre implemented under

Windows 98 and Windows NT
You add tool tips to command bar by using this function

BOOL CommandBar_AddloolTips HWND hwndCB UINT uNumToollips
LPTSTR ipToolTips

The lpToolTis parameter must point to an array of pointers to strings The uNumTool

Tzs parameter should be set to the number of elements in the string pointer array

The CommandBar_AddToolTps function doesnt copy the strings into its own storage

Instead the location of the string array is saved This means that the block of memory

containing the string array must not be released until the command bar is destroyed

Each string in the array becomes the tool tip text for control or separator on

the command bar excluding the menu The first string in the array becomes the tool

tip for the first control or separator the second string is assigned to the second con

trol or separator and so on So even though combo boxes and separators dont dis

play tool tips they must have entries in the string array so that all the text lines up
with the proper buttons

278

Page 00301

Chapter Common Controls and Windows CE

Other command bar functions

number of othei functions assist in command bar management The CommandBar_

Height function returns the height of the command bar and is used in all the example

programs that use the command bar Likewise the CommandBar_AddAdornments

function is also used whenever command bar is used This function prototyped as

BOOL ComniandBar_AddAdornments HWND hwndCB DWORD dwrlags

OWORD dwReserved

places Close button and if you want Help button and an OK button on the ex
treme right of the command bar You pass CMDBAR_HELP flag to the dwFlags pa
rameter to add Help button and you pass CMDBAR_OK flag to add an OK button

The Help button is treated differently from other buttons on the command bar

When the Help button is pressed the command bar sends WM_HELP message to

the owner of the command bar instead of the standard WM_COMMAND message

The OK buttons action is more traditional When it is pressed WM_COMMAND

message is sent with control ID of IDOK CommandBar_AddAdornments must be

called after all other conrols of the command bar have been added

command bar can be hidden by calling

BOOL ComniandBar...Show HWND hwndCB BOOL fShow

The fShow parameter is set to TRUE to show the command bar and FALSE to hide

command bar The visibility of command bar can be queried with this

BOOL CommandBar_IsVisible HWND hwndCB

Finally command bar can be destroyed using this

void CommandBar_Destroy HWND hwndCB

Although command bar is automatically destroyed when its parent window is

destroyed sometimes its more convenient to destroy command bar manually This

is often done if new command bar is needed for different mode of the applica

tion Of course you can create multiple command bars hiding all but one and switch

ing between them by showing only one at time but this isnt good programming

practice under Windows CE because all those hidden command bars take up valu

able RAM that could be used elsewhere The proper method is to destroy and create

command bars on the fly You can create command bar fast enough so that user

shouldnt notice any delay in the application when new command bar is created

Design guidelines for command bars

Because command bars are major element of Windows CE applications its not

surprising that Microsoft has rather strong set of rules for their use Many of these

rules are similar to the design guidelines for other versions of Windows such as the

recommendations for the ordering of main menu items and the use of tool tips Most

of these guidelines are already second nature for Windows programmers

279

Page 00302

Partli

The menu should he the left-most item on the command bar The order of the

main menu items should be from left to right File Edit \iew Insert Format Tools

and Window Of course most applications have all of those menu items but the or

der of the items used should follow the suggested order For buttons the order is

from left to right New Open Save and Print for file actions and Bold Italic and

Underline for font style

The CmdBar Example Program

The Cindflar example demonstrates the basics of command bar operation On startup

the example creates bar with only menu and close button Selecting the differ

ent items from the view menu creates various command bars showing the capabilities

of the command bar control The source code for CmdBar is shown in Figure 5-4

CmdBar.rc

II Resource file

1/

II Written for the book Programming Windows CE

1/ copyright 1998 Oquglas Boling

nd ude windows
include CmdBar.h II Program-specific stuff

1/

1/ Icons and bitmaps

/1

ID_ICON ICON cmdbar.ico II Program icon

DisCross BITMAP cross.bmp II Disabled button image

DisMask BITMAP mask.bmp II Disabled button image mask

SortDropBtn BITMAP sortdrop.bmp II Sort drop-down button image

II

/1 Menu

ID_MENU MENU DISCARDABLE

BEGIN

POPUP File
BEGIN

MENUITEM Exit 1DM_EXIT

END

Figure 54 77.e C1nclBcrpro/ra1n

280

Page 00303

Chapter Common Controls and Windows CE

POPUP View
BEGIN

MENUITEM Standard IDM_STDBAR

MENUITEM View IDM_VIEWBAR

MCMUllEN Combination IDM_COM808AR

END

POPUP Help
BEGIN

MENUITEM About.. 1DM_ABOUT

END

END

popmenu MENU DISCARDABLE

BEGIN

POPUP Sort
BEGIN

MENUITEM Name IDC_SNAME

MENUITEM Type IDC_STYPE

MENU1TEM Size JDC_SSIZE

MENUITEM Date IDC_SDATE

END

END

II

II About box dialog template

//

aboutbox DIALOG discardable 10 10 160 40

STYLE WS_POPUP WS_VISIBLE WS_CAPTION WS_SYSMENU

DS_CENTER DS_MODALFRAME

CAPTION About
BEGIN

iCON ID_ICON -1 10 10

LTEXT CnidBar Written for the book Programming Windows

CE Copyright 1998 Douglas Boling

-1 40 110 30

END

CmdBarh

1/ Header file

1/

ii Written for the book Programming Windows CE

II Copyright cc 1998 Douglas Baling

If Returns number of elements

continued

281

Page 00304

Part II Windows CE Basics

Figure 5-4 continued $jjp

i4 i$

lqIirk

I11II1F 1N
282

Page 00305

Chapter Common Controls and Windows CE

define JOCDPSORT 350

deflne STD._BMPS STD_PRINT1 II Number of bmps in

1/ std imglist

define VIEW...BMPS VIEW_NEWFOLDER1 1/ NuMber of bmps in

/1 view imglist

1/

If Function prototypes

1/

mt lnitApp HINSTANCE
HWND Initlnstance HINSTANCE LPWSTR int
mt Tertnlnstance HINSTANCE infl

II Window procedures

LRESULT CALLBACK MainWndProc HWND UINT WPARAM LPARAM

/1 Message handlers

LRESULT DoCreateMain HWND IJINT WPARAM LPARAM
LRESULT DoCommandMain HWND UJNT WPARAM LPARAM

LRESULT OoNotifyMain HWND UINT WPARAM LPARAM
LRESULT DoDestroyMain HWND UN1 WPARAM LPARAM

/1 Command functions

LPARAM DoMamnConimandExit HWND WORD HWND WORD
LPARAM DoMainComrnandVStd HWND WORD HWND WORD
LPARAM DoMainCommandVView HWND WORD HWND WORD
LPARAM DoMainCommandvCombo HWND WORD HWND WORD
LPARAM OoHainCommandAbout HWNO WORD HWND WORD

/1 Diaog procedures

BOOL CALLBACK AboutDlgProc HWND UINT WPARAM LPARAM

CmdBar.c

II CmdBar Command bar demonstration

ii

1/ Written for the book Programming Windows CE

II Copyright 1998 Douglas Soling

include windows.h // For all that Windows stuff

include commctrl.h II Command bar incudes

include mdBar.h 1/ Program-specific stuff

continued

283

Page 00306

Part II Wkdows CE Basics

Figure 5-4 continued

rngI1r art i4L 4A

4Pe pPrq
ii

IWW4 ffIr
IlL Qd I4ii 8daereM

iipAMIPIEb
cE

12IMR VPiDO AWflM1I1
L4ti

iz1ip pi
j1E$1L

IIIIUi d4JL 79

284

Page 00307

Chapter 5 Common Con\nlls and Windows CE

II Standard view ·bar buttQn .
cons t T8BUTTON tbCSVi e\'IBtn .
J I Bitmap Index

{0.
{VIEW~LARGEICONS~

{VI~W_SMALLICONS,

. {VInLusr ;· : .
. {VI EW_o:ETA WS • .. ·

' , ' ·' • Ill, '

Style
. 0-, : TBSIYLE_SEP,

rBSTATE_ENABlEO,
TBSTYLLBUTTON .

{STO_ FILEOPEN, _ .·JO.C..,.OPEN, ~BSTATE_ENABLED.
. • . -: . . TBSTYLLBUl'TON;

!'BSTAlLENABLED·. . .
.... . . . TBSTVLL.B·UTTON. !<~.

~?~~~~~~~~,~~~~~~~~~~~~ ,.
(continued)

285

Page 00308

Part II Wndows CE ascs

Figure 5-4 continued

nP M%V

SJ kb

W4
lL444

1c

_g%i14tt $L

ktt iJIp
TJ%.I

iiSid

if ib

286

Page 00309

Gbapier Common Controls and Windows CE

TranslateMessage msg
DispatchMessage msg

II Instance cleanup

return Terminstance hlnstance msg.wParam

II

II InitApp Application initialization

int InitApp HINSTANCE hlnstance

WNDCLASS wc
NITCOMMONCONTROLSEX cex

II Register application main window class

wc.style II Window style

wc.lpfnWndProc MainWndProc II Callback function

wc.cbClsExtra II Extra class data

wc.cbWndExtra /1 Extra window data

wc.hlnstance hlnstance 1/ Owner handle

wc.hlcon NULL If Application icon

wc.hCursor NULL If Default cursor

wc.hbrBackground HBRUSH GetStockObject WHITE_BRUSH

wc.lpszMenuName NULL II Menu name

wc.lpszClassName szAppName II Window class name

if RegisterCiass wc return

II Load the command bar common control class

icex.dwSize sizeof INITCOMMONCONTROLSEX

icex.dwICC ICC_BAR_CLASSES

InitCommonControlsEx icex
return

II

II Initlnstance Instance initialization

II

HWND Initlnstance HINSTANCE hlnstance LPWSTR lpCmdLine mt nCmdShow

HWND hWnd

// Save program instance handle in global variable

hlnst hlnstance

II Create main window

hWnd CreateWindow szAppName II Window class

TEXT CmdBar Demo II Window title

WS_VISIBLE II Style flags

continued

287

Page 00310

Part II Whidows CE Basics

Figure 5-4 continued

i2qtji ió$LEfr4 .4ikr
/c

t/ 4$FóW Iç4d

ll

1wLrfr it4eftd

4J

ns

14Lti
//

kJU

ern
1A

288

Page 00311

Chap/er Common Controls and Windows CE

LRESIJLT DoCreateMain HWND hWnd UINI wMsg WPARAM wParam

LPARAM iParam

HWND hwndCB

II Create minimal command bar that only has menu and an

II exit button

hwndCB CommandBar_Create hlnst hWnd IDC_CMDBAR

II Insert the menu
CommaridBar_InsertMenubar hwndCB hlnst ID_MENU

II Add exit button to command bar

CommandBar_AddAdornments hwndCB
return

If

II DoCommandMain Process WM_COMMAND message for window

II

LRESULT DoCommandMain HWND hWnd UINI wMsg WPARAM wParam

LPARAM iParam

WORD idltem wNotifyCode

HWND hwndCtl

INT

II Parse the parameters

idltem WORD LOWORD wParam
wNotlfyCode WORD HIWORD wParam
hwndCtl HWND iParam

If Call routine to handle control message

for dimMainCommandltems
if idltem MainCommandltems

return MainCommandItems idltem hwndCtl

wNotifyCode

return

II

II DoNotifyMain Process WM_NOTIFY message for window

II

LRESULT DoNotifyMain HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

LPNMHDR pNotifyHeader

LPNMTOOLBAR pNoti fyTool Bar

continued

289

Page 00312

Part II Windows CE ascs

Figure 5-4 continued

Ze

igrr
ctJ

Pu
çxtr pje

1U c4

4drI ti4W
ii

jjj
L4

/I

4v

iCI
..s III

290

Page 00313

Chapter Common Controls and Windows CE

LPARAM DoMainCornmandExit HWND hWnd WORD idltern HWND hwndCtl

WORD wNotifyCode

SendMessage hWnd WM_CLOSE

return

II

1/ DoMainComrnanclyiewStd Displays standard edit-centric cmd bar

II

LPARAM DoMainCommandvStd HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode 11

HWND hwndCB

1/ If command bar exists kill it
if hwndCB GetOlgltem hWnd IDC_CMDBAR

CommandBar_Destroy hwndCB

II Create command bar
hwndCB Command8arCreate hlnst hWnd IDC..CMDBAR

/1 Insert menu
Command0ar_InsertMenubar hwndCB hlnst ID_MENU

II Insert buttons

CommandBar_AddBitmap hwndCB HINST_COMMCTRL IDB_STD_SMALL_COLOR

STD_BMPS

CommandBar_AddButtons hwridCB dimtbC8StdBtns tbCBStdBtns

/1 Add exit button to command bar

CommandBar_AddAdornments hwndCB
return

II

II DoMainCommandVView Displays standard edit centric cnid bar

II

LPARAM DoMainCommandVView HWND hWnd WORD idltem HWND hwndCtl

WORD wNotifyCode

INT

HWND hwndCB

TCHAR szTmpt64
HBITMAP hBmp hMask

HIMAGELIST hilDisabled hilEnablod

1/ If command bar exists kill it
if hwndCB GetDlgltem hWnd IOC_CMDBAR

CommandBar_Destroy hwndCB

continued

291

Page 00314

Part II Whidows CE Basics

Figure 5-4 continued

ir1tm4rI 4CIBIzmtIiAi 1Lk IJI
VwflL4 kdi 9i

tt ir

Jkdw spSi1I
it1I

292

Page 00315

Chapter Common Controls and Windows CE

II

II DoMainCommandVcombo Displays combination of file and edit buttons
II

LPARAM DoMainCommandVcombo HWND hWnd WORD iditem HWND hwndCtl

WORD wNotifyCode
HWND hwndCB

1/ If command bar exists kill it
if hwndCB GetOlgitem hWnd IDc_MDBARfl

CommandBar_Destroy hwndCB

// Create command bar
hwndCB CommandBar_Create hlnst hWnd IDC_CMDBAR

ii rnsert menu
CommandBar_InsertMenubar hwndCB hlnst ID_MENU

/1 Add two bitmap lists plus custom bmp for drop-down button

CommandBar_AddBitmap hwndCB HINST_COMMCTR IOB_STD_SMALL_COLOR
STD_BMPS

CommandBar_AddBitmap hwndCB HINST_COMMCTRL 108_VIEW_SMALL_COLOR
VIEW_BMPS

CommandBar_AddBitmap hwndCB NULL

intLoadBitmap hlnst TEXT SortDropBtn

CommandBar_AddButtons hwndCB dinitbCBCmboBtns tbCBCmboBtns

II Add exit button to command bar
ComrnandBar_AddAdornments hwndCB
return

If

1/ DoMainCommandAbout Process the Help About menu command
II

LPARAM DoMainComniandAboutHWND hWnd WORD idlteni HWND hwndCtl
WORD wNotifyCode

// Use Dlalog8ox to create modal dialog box
DialogBox hlnst TEXT aboutbox hWnd AboutDlgProc
return

/1 About Dialog procedure

II

LOuu/nucci

293

Page 00316

Partli

Figure 54 continued

BOOL CALLBACK AboutDlgProc HWND hWnd UINT wMsg WPARAM wParam

LPARAM iParam

switch wMsg
case WM_CUMMAND

switch LOWORI3 wParam
case IDOK

case IDCANCEL

EndDialog hWnd
return TRUE

break

return FALSE

Each of the three command bars created in CmdBar demonstrate different Ca

pabflities of the command bar control The first command bar created in the routine

Jo.tIainConniandVStd creates vanilla command bar with menu and set of but

tons The button structure for this command bar is defined in the array tbCBStdBtns

which is defined near the top of CmdBar.C

The second command bar created in the routine DoMain6ömnandvl7ew
contains two groups of checkgroup buttons separated by CombO lOX This corn

manci bar also demonstrates the use of separate image for disabled button The

list view button the third button on the bar is disabled The image for that button in

the image list for disabled buttons is replaced with bitmap that looks like an

The DallainComnzcnclvCombo routine creates the third command bar It uses

both the standard and view bitmap images as well as custom bitmap for drop

down button This command bar demonstrates the technique of referencing the im

ages in an image list that contains multiple bitmaps The dropdown button is serviced

by the OuiVoti/ly2l1ain routine where pop-up menu is loaded and displayed when

TBN DROPDOWN notthcation is received

Command Bands

Command bands appeared in Windows CE 2.0 and are valuable feature especially

in their capacity to contain separate bands ti-mt can be dragged around by user Each

individual band can have gripper that can be used to drag the band to new

position hand can be in minimized state showing only its gripper and if you

want an icon in maciniized state covering up the other hands on the line or re

stored sharing space with the other bands on the same line You can even move bands

to new row creating multiplerow command band

294

Page 00317

Chapter Common Controls and Windows CE

The standard use of command bands control is to break up the elements of

command barmenu buttons and other controlsinto separate bands This allows

users to rearrange these elements as they see fit Users can also expose or overlap

separate bands as needed in order to provide larger total area for menus buttons
and other controls

Creating command bands control

Creating command bands control is straightforward if bit more involved than

creating command bar control You create the control by calling

HWND CommandBands_Create HINSTANCE hirist HWND hwndParent UINT wID
DWORD dwStyles HIMAGELIST him

The dwStyles parameter accepts number of flags that define the look and operation

of the command bands control These styles match the rebar styles the command

bands control is after all closely related to the rebar control

RBS_A UTO SIZE Bands are automatically reformatted if the size or posi

tion of the control is changed

RBS_BA J/DB ORDERS Each band is drawn with lines to separate adjacent

bands

RBS_FIXED ORDER Bands can be moved but always remain in the same

order

RBS_SMARTLABEIS When minimized band is displayed with its icon

When restored or maximized the bands label text is displayed

RBS_VARHEIGHT Each row in the control is vertically sized to the mini

mum required by the bands on that row Without this flag the height of

every row is defined by the height of the tallest band in the control

CCS_VERT Creates vertical command bands control

RBS_VERTICALGRIPPER Displays gripper appropriate for vertical

command bar This flag is ignored unless CCS_VERT is set

Of these styles the RBS_SMARTLABLES and RBS_VAREIGHT are the two most

frequently used flags The RBS_SMARTLABLES flag lets you choose an attractive ap
pearance for the command bands control without requiring any effort from the ap
plication The RBS_VARHEIGHT flag is important if you use controls in band other

than the default command bar The CCS_VERT style creates vertical command bands

control but because Windows CE doesnt support vertical menus any band with

menu wont be displayed correctly in vertical band As youll see however you

can hide particular band when the control is orientated vertically

295

Page 00318

Part II WhdOWS CE Basics

IMAGE LISTS FOR COMMAND BANDS CONTROLS

touched on image lists earlier Command bars and toolbars use image lists in

ternally to manage the images used on buttons Image lists can be managed in

stand-alone image list control This control is basically helper control that

assists applications in managing series of like-size images The image list control

in Windows CE is identical to the image list control under Windows NT and Win

dows 98 with the exception that the Windows CE version cant contain cursors

for systems built without mouse/cursor support For the purposes of the com

mand bands control the image list just needs to be created and set of bitmaps

added that will represent the individual bands when theyre minimized An ex

ample of the minimal code required for this is shown here

himi ImageList_Create 16 16 ILC_COLOR

hBmp LoadBitmap htnst TEXT CmdBarBmpsfl

ImageList_Add himi hBmp NULL
DeleteObject hBmp

The ImageList_Create function takes the dimensions of the images to be

loaded the format of the images ILC_COLOR is the default the number of

images initially in the list and the number to be added The two images are

then added by loading double-wide bitmap that contains two images and calling

ImageList_Add After the bitmap has been loaded into the image list it should

be deleted

Adding bands

You can add bands to your application by passing an array of REBARBANDINFO struc

tures that describe each band to the control The function is

BOOL CommandBands_AddBands HWND hwndCmdBands HINSTANCE hinst

UINT cBands LPREBARBANDINFO prbbi

Before you call this function you must fill out REBARBANDINFO structure for each

of the bands to be added to the control The structure is defined as

typedef struct tagREBARBANDINFOf

UINT cbSize

UINT fMask

UINT fStyle

COLORREF cirFore

COLORREF cirBack

LPTSTR lpText

UINT cch
mt lImage

296

Page 00319

Chapter Common Controls and Windows CE

HWND hwndChild

UINT cxMinChtld

UINT cyMinChild

UINT cx
HBITMAP hbmBack

UINT wID
UINT cyChild

UINT cyMaxChild

UINT cylntegral

UINT cxldeal

LPARAM iParam

REBARBANDINFO

Fortunately although this structure looks imposing many of the fields can be ignored
because there are default actions for uninitialized fields As usual with Windows

structure the cbSize field must be filled with the size of the structure as fail-safe

measure when the structure is passed to Windows The JMask field is filled with

number of flags that indicate which of the remaining fields in the structure are filled

with valid information Ill describe the flags as cover each of the fields

The fStyle field must be filled with the style flags for the band if the RBBIM_STYLE
flag is set in the J1IIask field The allowable flags are the following

RBBS_BREAK The band will start on new line

RBBS_FJXED SIZE The band can be sized When this flag is specified

the gripper for the band isn displayed

RBBS_HIDDEN The band won be visible when the command band is

created

RBBS_GRIPPERALWA YS The band will have sizing grip even if it the

only band in the command band

RBBS_NO GRIPPER The band won have sizing grip The band there

fore can be moved by the user

RBBS_NOVERT The band won be displayed if the command bands

control is displayed vertically due to the CCS_VERT style

RBBS_CHILDEDGE The band will be drawn with an edge at the top and

bottom of the band

RBBS_FIXEDBMP The background bitmap of the band doesn move
when the band is resized

For the most part these flags are self explanatory Although command bands

are usually displayed across the top of window they can be created as vertical bands

and displayed down the left side of window In that case the RBBS_NOVERT style

297

Page 00320

